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ABSTRACT 

IMPACT OF MAGNETOCALORIC MATERIAL PROPERTIES ON 

PERFORMANCE OF A MAGNETOCALORIC HEAT PUMP 

Michael G. Schroeder 

December 17, 2019 

In the field of magnetocaloric heat pumps much research has been performed 

around machine design and theoretical machines, but little has been researched around 

practical problems such as variability in material properties.  The present work defines a 

simulation tool that has been proven with experimental data.  Magnetocaloric material 

cascades were statistically analyzed and parameterized, such that they could be 

recreated parametrically using a split Lorentz function with normally distributed 

parameters.  Correlated curve-defining values with standard deviations were used as 

input into the simulation tool to determine the effect of variation on cooling heat pump 

performance for a household refrigerator application.  A 10% reduction in efficiency and 

cooling power density occurred on average with the addition of material variability.  Data 

from the study was further used to estimate system magnetic cost at greater than $1500 

per heat pump.  Strategies for dramatically lowering cost were also shown and 

discussed, backed by additional simulation data.  Finally, a 400% percent increase in 

cost was shown as a result of material variation at current levels. 
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1 – INTRODUCTION 

1.1 - Motivation 

Energy usage has become increasingly scrutinized in all forms, with special 

emphasis placed on the largest contributors.  This scrutiny has largely been a product of 

global warming concerns which are tied to greenhouse gas emissions from power 

producing facilities using fossil fuels. Heat pump applications represent up to half of 

commercial and domestic energy use (Conti et al., 2014).  According to U.S. Department 

of Energy (2012) residential energy consumption was 20.99 quadrillion Btu in 2009, split 

up as shown in Figure 1.   
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Figure 1:  Residential site energy consumption according to U.S. Department of Energy (2012) 

Figure 1 demonstrates the magnitude of scale that even a small increase in 

efficiency can bring, especially in heat pump technology.  Energy consumption for 

spacing heat, space cooling, water heating, and refrigeration all can be directly reduced 

by improvements in heat pump technology.  Many heat pumps utilize a vapor 

compression cycle, which is at a high degree of maturity, having been in use for the last 

century.  Alternative technologies that may exceed the efficiency of vapor compression 

heat pumps are attractive as a means for reducing global energy usage.   
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As a material phenomenon the magnetocaloric effect has been documented for 

over a century (BUH, 2010).  As a means for achieving cryogenic temperatures, the 

magnetocaloric effect (MCE) has been utilized for several decades (Sager and Paulson, 

1982).  More recently, materials research has shown that materials can exhibit the 

magnetocaloric effect near room temperature.  This discovery has brought on a new 

surge of research in the field, focused on replacing vapor compression.  In theory a 

magnetocaloric heat pump can demonstrate efficiency exceeding that of vapor 

compression (Engelbrecht, 2008; Gschneider Jr. et al., 2005), in excess of 50% of 

Carnot efficiency.   

1.2 – The Magnetocaloric Effect 

The magnetocaloric effect is the change in temperature of a material when it is 

exposed to or removed from a magnetic field.  The effect is generally caused by the 

difference in entropy between a magnetically aligned and a magnetically random 

structure in magnetic materials.  Magnetocaloric materials may exhibit first order phase 

transitions (FOPT) or second order phase transitions (SOPT), and some materials 

exhibit both.  By definition a first order phase transition material exhibits a discontinuity in 

the first derivative of Gibbs free energy, while a second order phase transition material 

exhibits a discontinuity in the second derivative (Aprea et al., 2015).  Pecharsky and 

Gschneidner Jr  (1999) created an excellent graphic depicting the transition. 
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Figure 2:  Magnetocaloric effect (Pecharsky and Gschneidner Jr, 1999, figure 1.1) 

As seen in Figure 2, a magnetically aligned state has lower entropy level than a 

magnetically random state.  If a material is forced into magnetic alignment with an 

external magnetic field in an adiabatic environment, the temperature will generally 

increase, although this can also work in reverse (Tishin and Spichkin, 2003; von Ranke 

et al., 2009).  This occurs because total entropy is conserved in an adiabatic 

environment with a reversible process.  The entropy of any magnetocaloric material 

(MCM) can be represented as 
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,ࢀ)ࡿ (ࡴ = ,ࢀ)࢓ࡿ (ࡴ + (ࢀ)࢚ࢇ࢒ࡿ +  (1 ) (ࢀ)࢒ࢋࡿ

where T is absolute temperature, H is magnetic field, ܵ௠ is magnetic entropy, ௟ܵ௔௧ is 

lattice entropy, and ܵ௘௟ is electronic entropy (Pecharsky and Gschneidner Jr, 1999).  In 

an adiabatic environment, as magnetic entropy decreases total entropy is maintained.  In 

FOPT materials there may also be changes in lattice entropy, which results in even 

larger temperature changes, more localized in temperature. 

Figure 3:  Entropy components as functions of temperature (Pecharsky and Gschneidner Jr, 1999, 

figure 1.2) 

Figure 3 shows each entropy component as a function of temperature, as shown 

by Pecharsky and Gschneidner Jr (1999).  It can be seen that the summation of all 

entropy components yields the total entropy at any temperature.  Each particular 

magnetocaloric alloy is most active at what is known as Curie temperature.  The 

magnetocaloric effect drops off as temperature deviates from this point.  Materials are 
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generally characterized by either adiabatic temperature rise or isothermal entropy 

change by magnetic field intensity and temperature.  These relationships for elemental 

Gadolinium, a second order material are shown in Figure 4. 

Figure 4:  Isothermal entropy change (a) & adiabatic temperature change (b) for Gd (Lee, 2004, 

figure 2) 

The wide peaks shown in Figure 4 are indicative of a SOPT.  Typically, materials 

which exhibit a FOPT have a larger peak value and a much lower peak width than 

Gadolinium.  Material curves vary by composition, but typically the maximum adiabatic 

temperature change does not exceed 3-4 ܭ at 1 Tesla.  Because of the small 

temperature range of each material’s effectiveness, specific materials must be 

developed which cover the entire desired span of any heat pump device.  Materials can 

be cascaded one after the other to create a larger span than any single material can 

achieve.  A regenerative cycle, first proposed by Brown (1976), can be utilized to keep 

each section of the cascade near its Curie temperature during operation.  An example of 

a possible five material cascade is shown in Figure 5, of the composition 

 ଵ.ହଷ;  where “y” denotes changes in chemical make-up, shown inܪଵ.ଶ଺݅ܵ࢟݊ܯ࢟ଵଵ.଻ସି݁ܨܽܮ

the subscripts of chemical formula.  As opposed to Gadolinium, LaFeMnSiH is a first 

order material.   
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Figure 5:  Isothermal entropy change vs. temperature at 1.6 Tesla (Barcza et al., 2011, figure 6) 

As shown in Figure 5 each stage of a cascade is able to pump heat through a 

small portion of the total span of the cascade.  If a regenerative cycle is used each stage 

can operate near its Curie temperature, and a temperature gradient will span the 

regenerator during steady state operation.  The number of stages required is determined 

by the active span of each material, the total required span of the device, and the 

amount of overlap required between stages for stability.   
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1.3 – Magnetocaloric Cycles and Machine Implementation 

In order to produce any cycle in a machine, MCM within a container is typically 

moved relative to a permanent magnetic field.  Typically, a fluid is passed across the 

MCM within the container to affect heat transfer and exchange energy between the 

MCM and the hot and cold reservoirs.  Such an interface between fluid and MCM is 

known as an active magnetocaloric regenerator (AMR) or regenerator.  Two packed bed 

regenerators within clear tubular containers are shown in Figure 6.   

Figure 6:  Left, regenerator with spherical particles.  Right, regenerators with irregular particles. 

Regenerators may utilize packed beds of MCM particle beds as shown in Figure 

6, but can alternatively use microchannels, printed structures, or other porous media.  
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Figure 7:  Microchannel regenerator example from Oak Ridge National Labs (Momen, 2017). 

An example of microchannels is shown in Figure 7.  Microchannel diameter is 

generally below 1 mm, and typically provides highly efficient, laminar, flow through the 

media.  Heat transfer fluid fills in any volume that is not MCM within the container.  A 

simple example machine cross section is shown in Figure 8.  Fluid flow is periodic, but 

an average temperature gradient exists as is shown; from cold (blue) to hot (red). 

Figure 8:  Magnetocaloric heat pump 

One-way valves ensure that outgoing fluid must pass through a heat exchanger prior to 

returning the regenerator.  Looking deeper, a typical cycle includes 4 segments.  

Material is magnetized; MCM and working fluid temperatures rise to high level, Figure 9. 
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Figure 9:  Magnetization, segment 1 

Next, some fluid is displaced.  Cold fluid enters from the cold side, and heated fluid exits 

the hot-side.  Additionally, the MCM is providing stored heat to the flowing fluid during 

this period, Figure 10. 

Figure 10:  Warm flow, segment 2 

Material is demagnetized; MCM and working fluid temperatures fall to low level, Figure 

11. 

Figure 11:  Demagnetization, segment 3 

Fluid is displaced in the opposite direction.  Warm fluid enters from the hot side, and 

cooled fluid exits the cold side.  Additionally, the MCM is receiving and storing heat from 

the flowing fluid during this period, Figure 12. 
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Figure 12:  Cold flow, segment 4 

The basic cycle shown in figures 9 through 12 was proposed by Barclay (1983) 

and can be summarized:   

1. Adiabatic magnetization; MCM temperature raises to high level.

2. Constant magnetization heat transfer; fluid is displaced.  Fluid enters from the

cold side, and heated fluid exits the hot-side.

3. Adiabatic demagnetization; MCM temperature falls to lower level than step 1.

4. Constant magnetization heat transfer; fluid is displaced in the opposite direction.

Ambient temperature fluid enters from the hot side, and cooled fluid exits the cold

side.

Using a real material with a Curie temperature of 291 K, entropy versus 

temperature curves have been generated at zero magnetic field and a 1.5 Tesla 

magnetic field to further illustrate the cycle. 
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Figure 13:  Thermodynamic cycle for idealized regenerative magnetocaloric cycle. 

The idealized cycle in Figure 13 exhibits two constant entropy transitions and two 

constant magnetic field transitions.  Cycle steps 1 and 3 are in reality not horizontal 

lines, because the process is actually not perfectly reversible.  By modifying the cycle 

and allowing heat transfer during magnetic field changes, there is the possibility to 

achieve a true Carnot cycle. 

Figure 14:  Carnot cycle in magnetocaloric machine 
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It can be deduced from Figure 14, that a Carnot cycle produces lower cooling 

capacity but most likely at a higher efficiency.  The lengths of lines are short, meaning 

that less entropy and energy change are observed between steps.   

1.4 –Machine Parameters 

Performance of machines is often presented as cooling capacity or efficiency as 

a function of span.  A typical performance curve is shown in Figure 15. 

Figure 15:  Cooling power and efficiency as a function of span for an arbitrary case. 

As shown in Figure 15, performance curves for cooling power have a plateau 

section across the majority of the cascade span and a sharp drop-off as the cascade 

span is exceeded.  Percent of Carnot efficiency peaks near the end of the cascade span, 

when all stages are being utilized.  Changes in operating or machine parameters have a 

large impact on both the shape and height of performance curves.  Examples of 

operating parameters include cycle frequency, fluid velocity profile, and magnetic field 
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profile.  Machine parameters encompass regenerator length and cross section area, 

MCM channel diameter and shape, rejection temperature, temperature span, and losses 

such as heat leak.  Many papers show how these various parameters effect 

performance (Aprea et al., 2014; Bahl et al., 2014; M.A. Benedict et al., 2016; 

Engelbrecht et al., 2011; Rowe and Tura, 2006).   

1.5 – The Effect of Magnetocaloric Property Variation 

1.5.1 – Causes for Variation in Magnetocaloric Material Properties 

In addition to operating parameters and machine geometry, magnetocaloric 

material properties effect performance.  Causes for variation in material properties for 

first order materials can be broken down into three primary categories: physical, purity, 

and composition.  Generally, manufacturers of MCM utilize all three in order to achieve 

desirable properties.  A unique combination of process parameters may be required for 

each material of a cascade. 

The first listed category effecting MCE is physical, which includes the processing 

and heat treating involved in reaching the final phase and structure for the desired 

material.  Generally, there are specific heating and sintering procedures involved for 

each composition.  Katter et al. (2008) showed how changes in sintering temperature 

effect Curie temperature location and maximum effect in LaFeCoSi.  Higher sintering 

temperature leads to a larger peak effect at a lower absolute temperature.  Blázquez et 

al. (2015) discussed the need for long annealing processes to achieve a desirable final 

effect for the same material family, as can be seen in Figure 16.   
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Figure 16:  MCE as a function of sintering temperature for LaFeCoSi (figure 3, Katter et al., 2008) 

It is clear in Figure 16 that sintering temperature has a strong effect on 

magnetocaloric effect, or adiabatic temperature change, with a peak effect occurring at 

1373 K sintering temperature.  Other magnetocaloric materials exhibit similar 

sensitivities to processing and heat treating as well.  Pryds et al. (2011) show that 

sintering LaCaSrMnO dramatically changes MCE.  Heat capacity drops by 

approximately 20% and MCE increases by about 300%. 

The second listed parameter that affects MCE is purity.  Impurities are trace 

elements which are not desired in any amount in the final product.  Blázquez et al. 

(2015) showed how impurities in the Fe phases brought on by aging negatively affect the 

magnetocaloric properties of the material.  If left unprotected in a reactive environment, 

material properties change, leading to generally less MCE.  Dan’kov et al. (1998) 
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acquired samples of elemental Gadolinium, measured impurity levels, and correlated 

various impurities to MCE.  Differences in MCE are shown in Figure 17. 

Figure 17:  MCE in adiabatic temperature change as a function of temperature and sample.  Shown 

by Dan’kov et al. (1998) as figure 11. 

They showed that some impurities are more detrimental than others, and 

generally smaller elements produce the largest negative impact on MCE.  Hydrogen is 

hypothesized to interrupt the crystalline structure and limit transitions in magnetic state, 
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thus reducing magnetocaloric response.  It is therefore critical to limit the addition of 

impurities throughout the processing and useful lifetime of a magnetocaloric regenerator. 

The third category is composition.  Materials are composed of a distribution of 

compositions, and the resulting properties are also a distribution.  Composition can 

change locally and also batch to batch, causing variation that is traceable to many well 

documented relationships.  For instance, in LaEuSrMnO, larger relative fractions of La 

and smaller relative fractions of Eu provide lower Curie temperatures and wider peaks 

(Amaral et al., 2008).   Basso et al. (2015) showed the result of varying the amount of 

Manganese in LaFeMnSiH, as shown in Figure 18. 
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Figure 18:  MCE in entropy change as a function of temperature for various compositions of 

LaFeMnSiH.  Presented by Basso et al. (2015) as figure 7. 

In Figure 18 it can be observed that changing the composition slightly results in 

largely differing Curie temperatures and peak MCE.  For another composition, LaFeSi, 

adding controlled amounts of Mn or Co allows the Curie temperature to be varied 

(Burriel et al., 2011).  Similarly, Katter et al. (2008) altered Curie temperature in 

LaFeCoSi by altering the relative proportion of Co.  Dinesen et al. (2005) showed how 

Curie temperature and peak effect are changed with various quantities of Sr and Ca in 

LaCaSrMnO.  Wang et al. (2011) used various levels of Mn in LaCeFeMnSi to produce 

different Curie temperatures and peak effects.  Barcza et al. (2011) showed similar 

results with LaFeMnSiH. 
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All three categories contribute to the final magnetocaloric effect and heat 

capacity for magnetocaloric materials, and must be adequately tolerance to repeatable 

achieve the desired outcome.  A link between machine performance and material 

property variation may allow meaningful material production tolerances to be 

established.   

1.5.2 – Previous Work to Predict the Effect of Variation on Machine Performance 

In one study the effect of magnetocaloric properties was looked at from a high 

level without random variation.  Lei et al. (2016) generated data for hypothetical mixed 

first and second order phase transition magnetocaloric materials.  A peak function was 

used to generate hypothetical material curves to assess the tradeoffs of peak width 

versus peak height.  Wide, short, peaks correspond to stronger second order behavior, 

similar to elemental Gadolinium.  Narrow, tall, peaks correspond to stronger first order 

behavior.  Wider peaks allow for farther stage spacing, although peak performance is 

reduced.   

Engelbrecht and Bahl (2010) performed a very similar study, examining the 

behavior of materials with various peak widths, shown in Figure 19. 
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Figure 19:  Figure six from (Engelbrecht and Bahl, 2010).  Cooling power as a function of flow rate 

and cascade properties. 

As can be seen in Figure 19, they came to the conclusion that wider curves are 

beneficial to performance so long as peak height remains constant.  Wider peaks allow 

performance to approach that of a constant effect.  Here, a constant effect means that a 

single stage exists that provides the same MCE across all temperatures. 

By far, the most relevant previous work for the current proposal is from Lei et al. 

(2015), which was expanded slightly in (Lei et al., 2016).  They simulated the effect of 

variation in Curie temperature of a 15 layer cascade with identical stages as a uniform 

distribution, and found nominal cooling power to reduce as standard deviation increased, 

as shown in Figure 20.   
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Figure 20:  Specific cooling power as function of Curie temperature standard deviation and MCM 

curve shape (Lei et al., 2015, figure 10). 

It can be seen in Figure 20 that SOPT materials such as Gadolinium are largely 

insensitive to variation in peak location due to the large width of peaks.  Whereas a 

FOPT material with a narrow peak is strongly negatively impacted when stage spacing is 

uneven.  This is due to gaps forming between stages, which force stages to operate off-

peak.  Also observable in Figure 20 is that output variation increases as standard 

deviation of Curie temperature increased.   
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Another observation that they made was that nominal stage spacing can be decreased 

in order to make the regenerator less sensitive to spacing variation, as shown in Figure 

21. 

Figure 21:  Specific cooling power as a function of Curie temperature standard deviation and stage 

count (Lei et al., 2015, figure 11). 

The 8 stage cascades shown in Figure 21 cover the same span, meaning that 

nominal stage spacing is tighter.  Tighter spacing leads to a mild decrease in sensitivity 
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to spacing variation.  Tolerances are much more critical for FOPT materials, however 

specific cooling power is much greater than that of SOPT materials. 

Variation in peak spacing represents one of the parameters of interest in the 

proposed study.  An important distinction in method is that a normal distribution will be 

used in the proposed work, as it should better represent variation around target means. 

A uniform distribution is applicable if materials are generated without good process 

control, creating a library of existing materials.  Cascades are then built using existing 

materials from library, resulting in a uniform distribution within each target stage. 

1.6 – Research Summary and New Contributions 

Sections 1.1 through 1.5 lay out current research at a high level, and serve to 

highlight the lack of research existing relating to material property variation.  Specifically, 

a significant gap exists in the body of knowledge related to the effect material property 

variation has on machine performance.  Previous studies are very limited in parameter 

ranges, investigating a limited number of parameters with a limited scope, as shown in 

section 1.5.2.  There has been no previous research showing the combined effect of 

variation in peak location, height, and width for both MCE and heat capacity for a 

realistic cascaded regenerator.  Real materials exhibit trends in nominal peak shape as 

a function of temperature, whereas previous research has assumed stages to have 

identical shape regardless of Curie temperature for similar studies.  All material 

characteristics and machine design factors may interact, meaning that they must all be 

studied simultaneously, which is a contribution of the present work.  The working 

hypothesis is that higher levels of material property variation will lead to a decrease in 

average and performance while also increasing variability of output performance.  In 
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other words, the distribution of output will spread out and drop as a whole for cooling 

power density and Carnot ratio , or efficiency.  A derivative analysis shows that cost 

should be the optimized metric in research in order to move magnetocaloric technology 

nearer to mass production.  This broad look at system cost is also a contribution of the 

present work.  Furthermore, the present research aims to enhance the commercial 

feasibility of magnetocaloric technology by providing variability targets for materials 

manufacturers, based on projected machine cost.  This all is accomplished using 

measured magnetocaloric materials and a well validated model to run large numbers of 

simulations on dedicated server computers.  No additional physical testing beyond that 

shown in the validation reference for the model was completed in this work.  To 

summarize the contributions of this research: 

1. Compile large cascades of previously unpublished and previously published material

data using existing methods to parameterize all material curves.  Existing data and

parameterization methods were developed by (Benedict et al., 2016a, 2016b).

2. Create basic linear functions to relate curve parameters to material Curie

temperature based on least squares regression.  These linear functions define

nominal material properties and a baseline to which variation can be added.

3. Modify the input method to an existing simulation tool to generate magnetocaloric

material cascades based on linear functions relating material property curve

parameters and Curie temperature.  In addition, include standard deviations to define

normally distributed random variation on top of the linear functions.

4. Using the existing simulation tool, simulate a broad design space of magnetocaloric

regenerators, varying 9 input parameters across 2 or 3 levels each for a refrigerator

application to establish baseline, or zero material variation, performance.
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5. Simulate points within the same design space with realistic material variability, as

characterized within the present work.

6. Analyze both sets of simulation data and discuss differences.  Determine the impact

of material variability on cooling power density and efficiency

7. Create and use a magnetic mass function, which translates regenerator size and

magnetic field strength into required magnet mass.  Estimate magnetic system cost

and regenerator cost based on this function and a price per kilogram material cost

estimate.

8. Use this cost estimation function to assess the impact of material variability on

system cost, and provide high level options to reduce system cost.
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2 – SIMULATION TOOL FOR PREDICTING MACHINE 

PERFORMANCE WITH MAGNETOCALORIC PROPERTY 

VARIATION 

Many simulations have been created to predict performance of magnetocaloric 

regenerative heat pumps, many of which are based on Engelbrecht (2004).  Schroeder 

and Brehob, (2016) describe the simulation tool that was used as the starting point this 

study.  Various modifications to this tool are detailed in this chapter.  Basic interactions 

include longitudinal mass and heat transfer and radial heat transfer.  A regenerator is 

sliced into longitudinal nodes and further split into fluid and magnetocaloric material 

nodes radially, resulting in a 1.5-D model. 

2.1 – Simulation Inputs 

2.1.1 – Geometry, Cycle Definition, and Material Properties 

Fluid cycles are defined in the model input file by event start times, ramp times, 

and peak durations and magnitudes.  Magnetic profiles are defined as a square profile 
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with a start and stop time.  An example flow profile can be observed in Figure 22. 

Figure 22:  An example fluid velocity profile as defined by ramp start times, ramp durations, peak 

durations, and peak magnitudes. 

For simplicity ramp up and ramp down times will always be equal in this study.  

Additionally, how and cold flow periods will be held equal in this study for simple 

parameterization.  An entire flow profile is therefore defined by ramp start time, ramp 

elapsed time, and peak elapsed time.  Magnetic profiles are also assumed to be 

symmetric, and are therefore the square magnetic profile is defined by peak amplitude 

alone.  MCM thermal conductivity and density entered into the program as constants, as 

are fluid thermal conductivity, density, viscosity, and heat capacity.  Geometry 

parameters such as cross sectional area, regenerator length, fluid fraction, dead volume, 

and characteristic length are also included in the input file as constants.  MCM cascade 

information is also entered, which is further described in section 2.1.2. 

2.1.2 – Magnetocaloric Material Cascade Definition 

Material information is also read in parametrically, and additional inputs allow 

these parameters to vary as functions of stage temperature to emulate real data.  

Standard deviations for cascade inputs may also be entered to show the effect of MCM 

variability.  As shown by Benedict et al. (2016), four parameters appropriately describe 
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material temperature response curves:  peak height ܣ, peak location ௖ܶ, half width at half 

max (HWHM) ܹ, and skew ܵ.  These parameters are denoted in Figure 23. 

Figure 23:  Magnetocaloric material characteristic curve, where W is HWHM, S is skew, A is 

amplitude or peak height, ࢉࢀ is peak temperature. 

It can be observed in Figure 23 how curve shape is defined by these parameters. 

Heat capacity as a function of temperature follows the same shape, with the addition of 

base height.  Base height simply raises the tails of the function to a non-zero asymptote.  

These terms were chosen as they directly represent easily distinguishable 

characteristics of material temperature response and heat capacity curves, and they 

provide a good fit for first order materials (Benedict et al., 2016).  Parameters in Figure 

23 come from a Split Lorentz distribution, represented by 
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where ܣ is peak amplitude, ܤ is base or minimum asymptotic level, ܶ is temperature, ௖ܶ 

is Curie temperature, ܹ is peak width at half max, and ܵ is skew or the ratio of width left 

of peak to width right of peak.  Beyond the description of individual temperature 

response and heat capacity curves, additional parameters were added to represent 

characteristics of full cascades of materials.  Natural trends generally occur in peak 

height as Curie temperature is varied from warm to cool.  Many of these are described in 

detail in referenced articles from section 1.5.  In the current work these trends are 

created by defining each material curve parameter at both the highest and lowest Curie 

temperature stages.  Intermediate stages are generated using basic linear interpolation 

of parameters. 

Figure 24:  Cascade of magnetocaloric materials without variation 

As shown in Figure 24, with zero random variation height of all curves in a 

cascade follow a linear gradient.  The same is done with peak width and base as 

appropriate.  This provides good nominal trends onto which random variation in 

properties can be superimposed. 
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Figure 25:  Cascade of magnetocaloric materials with simulated variation 

In Figure 25, the same cascade parameters from Figure 24 were used with the 

addition of random variation in material curve parameters.  With variation implemented 

randomly for every stage, properties are no longer well matched from stage to stage.  

Furthermore, stages are no longer evenly spaced, having variation around the target 

peak temperature ௖ܶ for each respective stage.  Each parameter has the same standard 

deviation across all stages, but each stage will have a unique parameter value within the 

prescribed normal distribution defined by standard deviation and mean.  Each unique 

parameter value is recalculated every time the program is run.  To show the 

effectiveness of applying normally distributed randomness, Figure 26 contains the real 

material data that was analyzed to generate Figure 25. 
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Figure 26:  Real cascade of magnetocaloric materials 

Figure 26 shows the original data from  in M.A. Benedict et al. (2016).  It can be 

observed that the real and randomly generated cascades are qualitatively similar in 

Figure 25 and Figure 26, having the same nominal values and standard deviations for all 

curve parameters.   

In summary, a simulated cascade is defined by stage count, standard deviation 

of MCE peak amplitude, standard deviation of MCE peak width at half max, standard 

deviation of heat capacity peak amplitude, standard deviation of heat capacity peak at 

half max, standard deviation of Curie temperature, hottest and coldest stage nominal 

Curie temperature, hottest and coldest stage nominal MCE peak amplitudes, hottest and 

coldest stage nominal MCE peak widths at half max, hottest and coldest stage nominal 

heat capacity peak amplitudes, and hottest and coldest stage nominal heat capacity 

peak widths at half max.  Heat capacity base level is constant for all stages within the 

cascade, and skew is neglected.  



32 

2.2 - Assumptions 

In order to maintain model simplicity, the following assumptions are made: 

1. All materials are incompressible.

2. Fluid properties are constant with temperature and pressure.

3. MCM density and thermal conductivity are constant.

4. MCE is applied as an instantaneous change in temperature, and is isentropic.

5. The ends of the regenerator are adiabatic and the only energy exchanged with the

hot and cold reservoir occurs via heat carried by moving fluid across the regenerator

ends.

6. There is no radial heat leak to the environment.

7. The AMR container does not interact with the AMR fluid or MCM.

2.3 - Magnetocaloric Effect Scaling and Derivation 

Magnetocaloric properties are generated using a Split Lorentz function as arrays 

of adiabatic temperature rise on magnetization and heat capacity at zero magnetic field, 

both as a function of temperature.  Adiabatic temperature rise is then scaled to the 

proper peak magnetic field strength using two thirds scaling, 

ࢉ࢏࢚ࢇ࢈ࢇ࢏ࢊࢇࢀ∆
૙ିࡴ૛

= ࢉ࢏࢚ࢇ࢈ࢇ࢏ࢊࢇࢀ∆
૙ିࡴ૚

 ቀ
૛ࡴ

૚ࡴ
ቁ

૛/૜
( 3) 

where ܪଶ is the simulated field strength in Tesla, ܪଵ is the input data field strength, 

∆ܶ௔ௗ௜௔௕௔௧௜௖
଴ିுଵ

 is the input adiabatic temperature rise data, and ∆ܶ௔ௗ௜௔௕௔௧௜௖
଴ିுଶ

 is the scaled 

adiabatic temperature rise. 
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Two thirds scaling has been shown to be a good thermodynamic approximation 

for second order materials such as Gadolinium, and can still be used under certain 

conditions on first order materials with minimal error (Smith et al., 2014).  Low to high 

field temperature change due to the magnetocaloric effect is define using a Lorentzian 

function as 

(ࢀ)ࡴ→ࡸࢀ∆ = ቐ
ࢀ࡭

൬
ࡼࢀࢀషࢀ
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ࢀ࡭ = ࢉ࢏࢚ࢇ࢈ࢇ࢏ࢊࢇࢀ∆
૙ିࡴ૛

, ( 5) 

where ்ܶ௉ is peak temperature, and ்ܹ is peak width at half amplitude.  The assumption 

of reversibility can be applied to temperature change in either direction.  Peak amplitude 

and width must be identical in either direction, and peak location must be shifted by peak 

amplitude.  High field to low field temperature change is therefore defined using the 

same parameters as low to high field temperature change, 
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Low field heat capacity function is similarly defined as 
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where ܣ஼௅ is low field heat capacity amplitude, ܤ is low field heat capacity base, ஼ܶ௅௉ is 

low field heat capacity peak temperature, and ஼ܹ௅ is low field heat capacity peak width 
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at half amplitude.  Each stage may have unique parameters describing the Lorentzian 

functions.   

High field heat capacity must still be calculated by assuming isentropic and 

adiabatic transitions between magnetic states.  In order to force thermodynamic 

consistency, total entropy during magnetization and demagnetization is held constant, 

generally following a method proposed by Pecharsky et al. (2001).  High field entropy is 

calculated by shifting the low field entropy by the adiabatic change in temperature.  For 

example, at 300K a 3K adiabatic temperature rise is observed in a material on 

magnetization.  The low field entropy at 300K must then match the high field entropy at 

303K for the transition to be isentropic.  Adiabatic temperature change on 

demagnetization can be found from low and high field entropy in a similar fashion.  

Entropy at the low field state is calculated using the definition of heat capacity, 

ࡿࢊ =
ࢀࢊ ࡸ࡯

ࢀ
( 8) 

where ܥ௅ is low field heat capacity, and ܶ is absolute temperature. 

2.4 - Governing Equations 

One MCM node and one fluid node are represented at each axial location.  A 

basic schematic of interactions is shown in Figure 27.  Only three node locations are 

shown for simplicity. 
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Figure 27:  Modeled interactions between nodes within the AMR, as well as interactions between the 

AMR and the hot and cold reservoirs. 

Not shown in the Figure 27 but included in the model is the application of viscous 

heating and the MCE.  In a real machine the MCE is magnetic work coming from the 

magnetization system.  Viscous heating is applied as a generation term in the fluid 

nodes during fluid flow, and corresponds in a real machine to fluid pumping power.  

When combined with node thermal mass a set of equations can be used to calculate 

rate of temperature change of each node due to all effects combined.  Fluid node 

temperature changes are calculated using 
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Solid node temperature changes are calculated using 
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where ߲ ெܶ஼ா is temperature change due to the magnetocaloric effect and a change in 

magnetic field and other parameters are defined below. 

2.4.1 - Fluid Nodal Temperature Change Rate Components 

Next the individual components are defined.  Fluid temperature change rate due 

to mass transfer during flow in the positive “x” direction is defined as 

ቀ
ࢀࣔ

࢚ࣔ
ቁ ࢙࢙ࢇ࢓

.࢙࢔ࢇ࢚࢘
=

ࢌ࢙࢜

 ࢿ ࢋࢊ࢕࢔ࡸ
ቀࢌ࢔ࢀା૚ − ࢌ࢔ࢀ

ቁ ( 11) 

where ݒ௦௙ is superficial fluid velocity, ܮ௡௢ௗ௘ is node length, ߝ is fluid fraction of the 

packed bed,  ௡ܶ೑
 is current node temperature, and ௡ܶ೑ାଵ is adjacent node temperature

(see Figure 27).  During flow in the negative “x” direction ௡ܶ೑ାଵ is replaced with ௡ܶ೑ିଵ.

Temperature change rate of fluid due to MCM to fluid heat transfer is defined as 
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where ߩ௙ is fluid density, ௡ܸ௢ௗ௘ is total node volume, ௡ܶಾ಴ಾ
 is temperature of the co-

located MCM node, ܷܣெ஼ெି௙ is thermal conductance between MCM and fluid in W/K, 

and ܥ௙ is fluid heat capacity.  Temperature change rate of fluid due to axial dispersion is 

defined as 
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where ݇௘௙௙ is axial dispersion coefficient.  The final fluid component is viscous heating, 

defined as 
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where ∆ ௡ܲ௢ௗ௘ is pressure change across a node length. 

2.4.2 - MCM Nodal Temperature Change Rate Components 

Temperature change rate of MCM due to axial conduction is defined as 
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where ݇ெ஼ெ is MCM thermal conductivity, ߩெ஼ெ is MCM density, and ܥெ஼ெ is MCM heat 

capacity.  Temperature change rate of MCM due to MCM to fluid heat transfer is defined 

as 

ቀ
ࢀࣔ

࢚ࣔ
ቁ ࢊ࢏࢛࢒ࢌ

ࢌିࡹ࡯ࡹ
࢚ࢇࢋࢎ

.࢙࢔ࢇ࢚࢘

=
ࢌషࡹ࡯ࡹ࡭ࢁ

 (ࢿ૚ି) ࡹ࡯ࡹ࡯ ࢋࢊ࢕࢔ࢂ ࡹ࡯ࡹ࣋
ቀࢌ࢔ࢀ

− ࡹ࡯ࡹ࢔ࢀ
ቁ. ( 16) 

2.4.3 - Correlations and Supporting Equations 

Heat transfer coefficient multiplied by area for a given AMR volume is calculated 

using a relationship based on the work of Hausen (1943), 

ࢌିࡹ࡯ࡹ࡭ࢁ =
૟(૚ିࢿ)

ቈࡰ૛ቆ
૚

૜.૟૟ࢌ࢑
ା ૚

૟ ࡹ࡯ࡹ࢑
ቇ቉

( 17) 

where ܦ is channel diameter, ܴ݁ is Reynolds number, and ܲ݁ is Peclet number.  Axial 

dispersion is also calculated assuming laminar developed flow, 

ࢌࢌࢋ࢑ = ࢌ࢑ ቀ૚ +
૛࢘ࡼ ૛ࢋࡾ

૚ૢ૛
ቁ ( 18) 
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In this case ݇௘௙௙ is the effective thermal conductivity in the axial direction of flowing fluid. 

Finally, pressure drop across each node is also defined assuming laminar flow, as 

ࢋࢊ࢕࢔ࡼ∆ =
૟૝࢜ࡸ࣋૛

ࡰ ࢋࡾ
( 19) 

where ߩ is fluid density, ܮ is node length, ݒ is fluid channel velocity, ܴ݁ is Reynolds 

number, and ܦ is channel diameter.   

2.5 - Time Stepping, Single Case Convergence, and Accuracy 

Validation 

An explicit Euler method is used for time stepping, following a trial-and-error 

study to determine the best numerical method.  Higher order methods had minimal effect 

on numerical accuracy while increasing computation time.  Absorbed heat, rejected heat, 

magnetic work input, and viscous heat generation, and coefficient of performance (COP) 

are all calculated each cycle.  Absorbed and rejected heat are calculated by summing 

fluid energy as it crosses the cold-side and hot-side boundaries using heat capacity, 

density, volume exchange, and temperature.   

ࢋ࢒ࢉ࢟ࢉ ࢊ࢏࢛࢒ࢌࡱ = ∑ ࢀ)࡯ࢂ࣋ − ࢋ࢓࢏࢚ ࢋ࢒ࢉ࢟ࢉ(࢙ࢋ࢘ࢀ
૙  ( 20) 

where ߩ is fluid density, ܸ is fluid displacement for each time step, ܥ is specific fluid heat 

capacity, ܶ is fluid tempereature, and ௥ܶ௘௦ is reservoir temperature.  ܧ௙௟௨௜ௗ ௖௬௖௟௘ can be 

replaced by ܧ௖௢௟ௗ ௖௬௖௟௘ or ܧ௛௢௧ ௖௬௖௟௘ to represent either accepted or rejected heat 

respectively.  Magnetic work is calculated as 

ࢋ࢒ࢉ࢟ࢉ ࢉ࢏࢚ࢋ࢔ࢍࢇ࢓ࡱ = ࢋ࢒ࢉ࢟ࢉ ࢚࢕ࢎࡱ − ࢋ࢒ࢉ࢟ࢉ ࢊ࢒࢕ࢉࡱ −  (21 ) ࢋ࢒ࢉ࢟ࢉ ࢙࢛࢕ࢉ࢙࢏࢜ࡱ
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Viscous heating is simply integrated across all nodes at each time step and summed at 

the end of each cycle. 

ࢋ࢒ࢉ࢟ࢉ ࢙࢛࢕ࢉ࢙࢏࢜ࡱ = ∑ ∑ ૚૛ૡ
ሶࢂࣆ ૛ ࢚ࢊ ࢞ࢊ

૝ࡰ࣊
ࢉ࢟ࢉୀ࢚ ࢋ࢓࢏࢚ 
૙

࢔ࢋࢍࢋ࢘ࡸୀ࢞ࢊ
૙ ( 22) 

where ߤ is dynamic fluid viscosity, ሶܸ  is volume rate of fluid flow, ܦ is channel diameter, 

 is time step.  Energy per cycle can be ݐ݀ is node length in the flow direction, and ݔ݀

transformed into power, or energy rate, by multiplying by frequency.  For instance,  

ሶࡱ ࢍ࢔࢏࢒࢕࢕ࢉ = ࢋ࢒ࢉ࢟ࢉ ࢊ࢏࢛࢒ࢌࡱ ࢌ
ࢊ࢒࢕ࢉ

 ( 23) 

Simulation cases are considered converged when the change in cooling capacity 

and rejected heat per iteration are below 0.1% of respective absolute values.  

Convergence acceleration is applied to reduce computation time, and is described in 

detail in Schroeder and Brehob (2016).   

This model was used by Benedict et al. (2016a, 2016b), and showed that when 

the machine and materials used are well understood the model predicts within 5% of 

actual measured values for a range of design and operational parameters.  Within the 

referenced study, magnetic levels tested were 1.1 and 1.5 Tesla.  Fluid velocity ranged 

from 0.05 to 0.10 m/s.  Displacement ranged from 10% to 26% of total regenerator fluid.  

Void fraction was 0.43.  Materials tested include MnFePAs and LaFeSiH, both material 

families used in the present work. Accuracy is expected to remain high for the remainder 

of the present work because input parameters are always near previously studied 

values.  Utilizing microchannel geometry as opposed to a packed bed actually removes 

reliance on assumptions of particle size distribution and shape as well, which would be 

expected to lead to further improvement in output accuracy.  Microchannel correlations 
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within the fully laminar flow regime are not nearly as varied as those used for packed 

beds of irregular particles, which is the basis for this statement. 

2.6 – Top Level Convergence 

After creating a cascade with material property variation and reading in other 

machine design input parameters, the program runs until convergence, representing one 

iteration.  ܧ௛௢௧ ௖௬௖௟௘, ܧ௖௢௟ௗ ௖௬௖௟௘, ܧ௠௔௚௡௘௧௜௖ ௖௬௖௟௘, ܧ௩௜௦௖௢௨௦ ௖௬௖௟௘, and COP are output from the 

program for each iteration.  If any cascade standard deviation parameters are non-zero 

this process must be repeated to assess the effect of input variability.  Each iteration a 

new randomly generated Gaussian based cascade is made, resulting in each iteration 

having different output. Statistics are calculated on all iterations’ outputs for each design 

point.  For instance, cooling power for 10 iterations of a single design point can be 

described by mean and standard deviation, thus providing the outcome of the simulated 

material curve parameters’ standard deviations and means.  Figure 28 shows this 

process graphically, starting with an input file with nominal design points and mean and 

standard deviation values for all material properties’ curve parameters. 
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Figure 28:  Flow of logic for variation program, from start to statistical output. 

As shown in Figure 28, each design point with prescribed levels or material curve 

variation is simulated repeatedly until output standard deviation and mean stop 

changing.  Figure 29 shows top level convergence for an example case.   
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Figure 29:  Convergence metrics versus iteration for an arbitrary simulation case.  Top-left: Standard 

deviation of cooling capacity.  Bottom-left: change per iteration of cooling capacity standard 

deviation.  Top-right: cooling capacity mean.  Bottom-right: change per iteration of cooling capacity 

mean. 

Iteration to iteration change in cooling power standard deviation and mean 

represents less than 1% of the current value at 50 iterations, and less than 0.5% at 100 

iterations.  Efficiency, not shown, produces a similar trend.  By another metric, after 100 

iterations the current value for all parameters is with 1% of the final value (1000 iteration 

value).  Convergence is considered complete at 50 iterations for simplicity.  Considering 

planned statistical analysis of this generated data, less than 50 replicates per case can 

be used while still showing statistically significant results.  A final check into the 

applicability of the above method is to confirm that the output is normally distributed, as 

shown in Figure 30.   
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Figure 30:  Histogram of 1000 iterations for cooling power and best fit normal distribution for cooling 

capacity of an arbitrary case. 

As denoted in Figure 30, a histogram of 1000 points for output cooling power 

follow a normal distribution, meaning that mean and standard deviation appropriately 

describe output data.  1000 points are not necessary to characterize standard deviation 

and mean, as shown in Figure 29, although many points are needed to show the 

normality of the data in Figure 30.  With many replicates, such as the case shown in 

Figure 30, P-value is approximately 1, meaning that the data is clearly aligned with the 

expected normal distribution probability density function, and can be considered to follow 

a normal distribution.  As a last check, the average P-value for a Chi-Square goodness 

of fit test to a normal distribution is 0.27 for all simulated cases, having at least 10 

replicates each, meaning that the null hypothesis of normally distributed data remains 

valid using a 0.05 alpha level.  Figure 30 suggests that this value generally rises with 

addition replicates.  A plot of ratio of Carnot COP data, not shown, again produces a 

similar result.  Going forward, output distributions are assumed to be normal for analysis. 



44 

2.7 – Top Level Program Output 

Output from the program includes high level information on each design point, 

such as mean, standard deviation, and sample count for cooling power and Carnot COP 

ratio, as seen in Table 1.   

Table 1:  Parameters in high level output file, listed in Figure 28 as summary array. 

High level output for an arbitrary performance curve shows the impact of 

relatively low levels of variation in material properties on cooling power, shown in Figure 

31. 

Parameter name in file Description
ave Q cold (W) Cooling power
ave Q hot (W) Heating power
ave Q mag (W) Magnetic power input
ave Q Visc (W) Viscous power input
ave COP Coefficient of performance
ave Carnot ratio Ratio of Carnot COP
SD Q cold (W) Cooling power
SD Q hot (W) Heating power
SD Q mag (W) Magnetic power input
SD Q Visc (W) Viscous power input
SD COP Coefficient of performance
SD Carnot ratio Ratio of Carnot COP
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Figure 31:  Output lower limit, mean, and upper limit cooling capacity as a function of span. 

In Figure 31, 6-sigma lower limit indicates 6 standard deviations below average 

performance.  For machine design purposes the lower limit of performance must be 

used as minimum acceptable condition.  If zero variation were present for the 

performance curve in Figure 31 the real machine could be downsized to save cost 

without sacrificing statistical worst case performance. 

The most critical portion of the performance curve in Figure 31 is capacity at full 

span, as this represents the design condition.  Other sections of the curve are only 

utilized on off-design point operational states, such as during pull-down.  Span is 

naturally limited by the cascade materials’ Curie temperature range, and the 

overreaching point shows this rapid drop-off in cooling power.  Because of this, a single 

span condition can be used for design guidance. 
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Detailed information for each iteration of each design point is also outputted into 

another file, such that any case can be recreated precisely.  Low level details in the 

output file include all input parameters as well as the lists of randomly selected material 

properties for each stage of each cascade simulated.  Low level data is mostly useful for 

debugging high level output, or determining the root cause of good or poor performance. 

Tabulated low level output parameters are given in  

Iteration 0 to N 

List of all input parameters 

List of dT_A for each material 

List of dT_W for each material 
List of dT_T for each material 

List of C_A for each material 

List of C_W for each material 

Q cold 

Q hot 

Q magnetic work 

Q viscous heating 

COP 

Carnot Ratio 
Table 2. 

Iteration 0 to N 

List of all input parameters 

List of dT_A for each material 

List of dT_W for each material 
List of dT_T for each material 

List of C_A for each material 

List of C_W for each material 

Q cold 

Q hot 

Q magnetic work 

Q viscous heating 

COP 

Carnot Ratio 
Table 2:  Parameters in low level output file 
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Each column represents an iteration of the simulation on a particular design point.  The 

design point gets an average output level for Q_cold for instance, by averaging the entire row 

across all iterations.   
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3 – ANALYSIS OF REAL MATERIAL 

3.1 –Measurement Methods to Generate Material Data 

Materials are typically measured using a differential scanning calorimeter (DSC) 

(Marcos et al., 2003) or physical property measurement system (PPMS) (Morrison et al., 

2012).  Measurements of interest include adiabatic temperature change on 

magnetization and zero-field heat capacity, both as functions of temperature.  Assuming 

isentropic transitions, adiabatic temperature change on demagnetization and high-field 

heat capacity can be generated from the stated measurements of interest (Pecharsky et 

al., 2001).  Other measurements of magnetocaloric effect are often made, but 

temperature change and heat capacity are directly used by the model for this study, and 

are therefore of primary interest for prediction of machine performance.  Other 

information, such as entropy as a function of temperature, can be calculated from 

adiabatic temperature change and zero-field heat capacity, such that variation can be 

assessed using any translatable information. 

When well calibrated, DSC and PPMS are in good agreement (Jeppesen et al., 

2008), but poor calibration can lead to large errors (Morrison et al., 2012).  Uncertainty 

levels for this measurement have been assessed at 1.5% for heat capacity and heat of 

fusion and 0.1 - 0.2 K for temperature change, all at 95% confidence (Nieto de Castro et 

al., 2000).  Direct measurements of various magnetocaloric materials contain 

measurement uncertainty and real material variation.  It will be assumed in this study 
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that measurement devices utilized were all well calibrated and data can be compared 

directly across different studies.  These levels of measurement variation represent a 

minimum expected variation in directly measured magnetocaloric effect.  Any additional 

variation will be considered real material variation. 

3.2 – Origin and Analysis of Available Data 

Various studies have presented measured data for first order magnetocaloric 

materials.  Data was measured by Yibole et al. (2014) for MnFePSi.  Benedict et al. 

(2016) published fitted values for 14 real materials, within the MnFePAs family of 

materials, from 280.9 – 310.9 Kelvin.  Engelbrecht et al. (2013) also presented 

measured data for MnFePAs, although only as a single stage.  Kaeswurm et al. (2016) 

and Katter et al. (2008) showed data for adiabatic temperature change for LaFeCoSi.  

Barcza et al. (2011) published a cascade of LaFeMnSiH composed of 5 materials.  M.A. 

Benedict et al. (2016) published fitted values for 10 materials, also of the LaFeMnSiH 

family of materials.    Jacobs et al. (2014) presented heat capacity data for a six stage 

regenerator composed of LaFeSiH.   

In order to study variation in material properties, large cascades are desirable.  

For large cascades, with many stages, trends between material parameters and Curie 

temperature can be easily accounted for.  Because larger cascades are more ideal for 

analysis, data from Benedict et al. (2016a) and M.A. Benedict et al. (2016b) was utilized, 

and is hereto referred to as Benedict-LaFeSiH and Benedict-MnFePAs respectively.  

Along with this data, some newly presented data is included in the study.  The new data 

is for LaFeSiH, will be referred to as Schroder-LaFeSiH-1 and Schroeder-LaFeSiH2, and 

can be found in the appendix.  All four cascades were measured at 1.5 T.  Shape of 
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material curves are quite similar between most first order material families (Basso et al., 

2015; Engelbrecht et al., 2013), suggesting that other material families should behave 

similarly with regard to variation.   

3.3 – Summary of Analyzed Data 

In order to parameterize material data for variation assessment a split-Lorentzian 

function was fitted, as such a function very closely matches real data and provides 

useful fit parameters (Benedict et al., 2016, 2016).  Curve parameters can at most 

include amplitude (A), width at half amplitude (W), skew (S), peak temperature (T), and 

Base.  Although skew can provide a slightly better correlation to real data, it was 

excluded from this study.  This decision was made because it simplifies the study and 

does not alter curve shape dramatically.   

All of the material data represent lab-scale production, and aren’t ideal for 

projecting mass production variation.  However, the available data does represent a 

benchmark, from which improvements can be made.   
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Table 3:  Regression output for four cascades, including MCE and heat capacity parameters. 

Table 3 provides analysis of variance (ANOVA) linear regression data utilizing 

cascade stage number (cold to hot), and shows that some parameters have statistically 

significant trends while others do not.  To generate Table 3, sum of squares (SS) for 

error is first calculated as, 

Data set Curve Var SS SD P P < 0.05 Int Slope

A 0.18 0.118 0.234 NO 3.6 -0.021
W 1.05 0.284 0.097 NO 6.6 0.150
Tc 1.27 0.312 0.000 YES 295.6 -0.849
A
W 0.00 0.123 0.003 YES 6.1 -0.005
Tc 1.10 0.657 0.000 YES 295.2 -0.924

Base
A 0.65 0.590 0.088 NO 3.1 -0.029
W 3.08 0.807 0.723 NO 6.7 0.024
Tc 3.21 0.814 0.000 YES 313.2 -2.324
A 257947 140.9 0.507 NO 1330.0 6.644
W 3.67 0.532 0.333 NO 5.8 -0.074
Tc 3.95 0.551 0.000 YES 312.7 -2.279

Base 8229.5 25.2 0.012 YES 536.2 -5.136
A 0.66 0.144 0.000 YES 3.5 -0.027
W 2.36 0.271 0.000 YES 7.8 0.113
Tc 12.61 0.628 0.000 YES 311.4 -1.486
A
W
Tc

Base
A 1.61 0.171 0.000 YES 4.6 -0.034
W 18.04 0.573 0.000 YES 5.3 0.112
Tc 6.80 0.352 0.000 YES 311.6 -1.006
A
W
Tc

Base

Benedict-LaFeSiH 
(10 Stages)

MCE

Heat 
Capacity

Schroeder-LaFeSiH-1 
(33 Stages)

MCE

Heat 
Capacity

Not Available

Not Available

MCE

Heat 
Capacity

Benedict-MnFePAs 
(14 Stages)

Not Available

Analysis Data

Schroeder-LaFeSiH-2 
(56 Stages)

MCE

Heat 
Capacity

Not Available
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࢘࢕࢘࢘ࢋࡿࡿ = ∑ ൫࢏ࢅ − ൯࢏෡ࢅ
૛

࢏ ( 24) 

where ෠ܻ௜ is the prediction of the least squares linear regression equation at each 

particular stage, and ௜ܻ is the actual data point at the same stage.  Sum of squares in 

this case is the sum of error, or residuals, when comparing the regression equation to 

the actual data.  Sum of squares for the model is similarly calculated as 

࢒ࢋࢊ࢕࢓ࡿࡿ = ∑ ൫ࢅ෡࢏ − ഥ൯ࢅ
૛

࢏ ( 25) 

where തܻ is the average of all predicted responses (all stages) using the linear model. 

Standard deviation (SD), further is calculated as 

ࡰࡿ = ቀ
ࡿࡿ

૚ି࢔
ቁ

૚/૛
( 26) 

where n is number of observations and ݊ − 1 is degrees of freedom.  Because there is 

only one linear model for each independent output parameter (ܣ, ܹ, ௖ܶ ,  mean square ,(ܤ

of each linear model is 

࢒ࢋࢊ࢕࢓ࡿࡹ =  (27 ) .࢒ࢋࢊ࢕࢓ࡿࡿ

Mean square error is 

࢘࢕࢘࢘ࢋࡿࡹ =
࢘࢕࢘࢘ࢋࡿࡿ

૚ି࢔
, ( 28) 

where ݊ is number of stages for which there is data.  P-value for an input parameter is 

less than alpha, the null hypothesis is rejected, and the data or model is significantly 

dependent on the input parameter in question.  For these studies alpha is 0.05.  

Regression intercept (Int) and slope define the best fit linear regression equation for 
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each parameter (A, 2W, etc.) as a function of cascade stage number.  For instance, 

nominal amplitude (A) of stage 1 in Benedict-MnFePAs is  

࡭ = −૙. ૙૛૚ (૚) + ૜. ૜ = ૜. ૛ૠૢ (29 ) .ࡷ 

Any given parameter can be multiplied by Curie temperature slope to translate units into 

slope per degree K from slope per stage.  This is useful for direct comparisons 

independent of stage temperature spacing. 

It is observable in Table 3 that significant trends in MCE amplitude and width are 

only found in Schroeder-LaFeSiH-1 and Schroeder-LaFeSiH-2.  Being the longest 

cascades, Schroeder-LaFeSiH-1 and Schroeder-LaFeSiH-2 have the most potential to 

show subtle trends.  Not surprisingly, Curie temperature is significant in all cases 

because it is varied to create these cascades.  Figure 32 shows peak amplitude and half 

width at half max (HWHM) for Schroeder-LaFeSiH-1, which are both significant 

statistically in Table 3. 
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Figure 32:  Schroeder-LaFeSiH-1 MCE peak amplitude and HWHM versus Curie temperature and 

regression equation output as a function of stage number. 

It is observable in Figure 32 that trends may have a slight curvature, but linear 

regression provides a satisfactory fit for all cases.  Adding additional terms would add 

complexity without dramatically improving correlation.  Also note that the regression 

equations are not perfectly linear on the scale shown due to the least squares regression 

equation being based on stage number rather than temperature.  This allows variation 

data to uniformly encompass peak height, width, and location using the same predictor, 

stage number.  Figure 33 shows the same data for Schroeder-LaFeSiH-2. 
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Figure 33:  Schroeder-LaFeSiH-2 MCE peak amplitude and half width at half max versus temperature. 

In this data set the data appears to be even more strongly linear than that shown 

in Figure 32.  Very clear linear trends can be fitted, which are parameterized in Table 3.  

Also note that peaks are stronger in Schroeder-LaFeSiH-2 than in Schroeder-LaFeSiH-

1, meaning that peak amplitudes are higher and peak widths are narrower, 

demonstrating qualitatively how changes in processing and batch can lead to major 

changes in curve shape.  Table 4 provides a summary of standard deviation data from 

three cascades of FOPT materials.  Standard deviation describes variation from the 
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linear regression lines described in Table 3, and is the metric used as input to the 

regenerator performance simulation program in chapter 2. 

Standard Deviations

MCE (K) Heat Capacity (J/kgK) 

Data set Stages Tc A W Tc A W B 
Benedict-
MnFePAs 14 0.312 0.118 0.284 0.657 NA 0.123 NA 
Benedict-
LaFeSiH 10 0.814 0.590 0.807 0.551 141 0.532 25.2 

Schroeder-
LaFeSiH-1 33 0.628 0.144 0.271 Not Available 
Schroeder-
LaFeSiH-2 56 0.352 0.171 0.286 Not Available 

Combined 113 0.845 0.494 0.677 0.615 141 0.356 25.2 
Table 4:  Standard deviation of fit parameters for Lorentzian function for three cascades. 

Summarized and combined standard deviations are shown in Table 4, calculated 

by combining variances for each set of observations (cascades). 

ࢉ࢈ࢇࡿ = ൬
൫ࢇࡿࢇࡺ

૛ା࢈ࡿ࢈ࡺ
૛ାࢉࡿࢉࡺ

૛൯

ࢉࡺା࢈ࡺାࢇࡺ
൰

૙.૞

( 30) 

ܵ௔௕௖ is the combined standard deviation of arbitrary factors a, b, and c, ܰ is sample 

count for groups a, b, or c, and ܵ is standard deviation for groups a, b, or c.  These 

measured cascades are used as the baseline variation level in the simulation study of 

chapter 4.  Average values for each parameter are shown in Table 5. 
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Averages 

MCE (K) Heat Capacity (J/kgK) 

Data set Stages Tc A W Tc 
A W B 

Benedict-
MnFePAs 14 289.644 3.496 3.830 288.766 

NA 3.031 497.6 

Benedict-
LaFeSiH 10 296.932 2.933 3.427 296.747 

1270.438 2.623 500.2 

Schroeder-
LaFeSiH-1 33 301.036 3.346 4.275 Not Available 
Schroeder-
LaFeSiH-2 56 283.421 3.613 4.223 Not Available 

Table 5:  Average material parameters from benchmark study. 

Average amplitudes and widths are quite similar for these materials, and they 

represent a good sampling of available material data.  As stated previously, peak 

amplitude tends to be higher at equivalent temperature in Schroeder-LaFeSiH-2 than in 

Schroeder-LaFeSiH-1 even though the base material is identical.  Average Curie 

temperature represents the center of each cascade, which is similar for all datasets, 

representing a good sampling of materials for household refrigeration applications near 

room temperature.  Analysis has also revealed that spacing between stages is currently 

about 1-1.5 K.   



58 

4 – PERFORMANCE AS A FUNCTION OF MATERIAL PROPERTY 

VARIATION 

4.1 – Design Point Study 

4.1.1 – Design Point Study Application 

Household refrigeration is the application of interest for this study.  For such an 

application it is common for the refrigeration system to operate near 105 F (313.7 K), 

which is held constant for this study.  Designs can operate at higher or lower 

temperatures, but 105 F is assumed to be a reasonable temperature for most 

applications (Langebach et al., 2014).  Cold side heat exchanger temperature is also 

held constant at -10 F (249.8 K), a typical application value as well (Langebach et al., 

2014).  105 F and -10 F are therefore the rejection and absorption temperatures of the 

heat pumps evaluated in this study.   

Heat exchangers reject and absorb heat at 90 F and 0 F respectively in this 

application, allowing for 10-15 F in temperature differential between heat transfer fluid 

and air.  Improvements in heat exchanger technology reduce the operating span of a 

refrigerator, and provide efficiency benefits that can be calculated.  Carnot COP, 

࢚࢕࢔࢘ࢇ࡯ࡼࡻ࡯  =
ࢊ࢒࢕ࢉࢀ

ࢊ࢒࢕ࢉࢀି࢓࢘ࢇ࢝ࢀ
( 31) 
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increases when span decreases.  Heat exchanger performance is ignored in this study.  

Heat leak and regenerator container interactions are also ignored.  Motor efficiencies are 

highly dependent on many factors outside the scope of this study, such as the loading 

profile, number of poles, drive method, among others, and is considered to be 100% 

efficient.  Pump efficiency is similarly dependent on many outside factors, such as pump 

type, frequency, backpressure profile, etc., and is similarly assumed to be 100% efficient 

for this study.  A specific assumed efficiency below 100% would be arbitrary without a 

specific system design, which is the reasoning behind this assumption.  However, a 

hypothetical case with a non-perfect pump and motor is shown later in the present work 

to show the relative impact on system efficiency, found in Chapter 6, Figure 68.   

4.1.2 – Design Point Study Control Parameters 

In order to assess the effect of material property variation on machine 

performance, a range of design points were selected for simulation.  Machine 

parameters include applied magnetic field strength, fluid profile, channel diameter, 

regenerator length, and void fraction.  Fluid profile parameters are defined in Figure 22, 

and include maximum fluid superficial velocity, ramp start time (magnetization time), 

ramp elapsed time, and peak elapsed time.  Void fraction is fluid volume contained in the 

regenerator divided by total volume of the regenerator.  Lei et al. (2015) showed that 

tighter stage spacing results in a cascade slightly less sensitive to variation, and stage 

count was included at 2 levels.  Maximum stage spacing is set to 1.5 K per stage, the 

measured average value in Chapter 3 on real cascades of materials.  Minimum stage 

spacing was set to 1.25 K per stage. 

Center points are used for parameters with a relatively large change between low 

and high levels due to the highly nonlinear nature of regenerator physics.  For instance, 
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fluid velocity goes from a low level value of 0.01 m/s to a high level value of 0.05 m/s, an 

increase of 500%.  In this case a center point is well justified. Lower and upper levels 

were set based on past experience, and are well aligned with the validated design space 

of the simulation tool. 

Variables Min Max Levels Units 

Magnetic field strength 1 1.5 2 tesla 

Max fluid velocity 0.01 0.05 3 m/s 

Magnetization time 0.05 0.5 3 s 

Fluid ramp time 0.05 0.5 3 s 

Fluid peak time 0.05 0.5 3 s 

Channel diameter 0.1 0.5 3 mm 

Regenerator length 0.05 0.15 3 m 

Void Fraction 0.4 0.5 2 m 

Stage spacing 1.25 1.5 2 K/stage 
Table 6:  Design of experiments matrix for design point study, having 9 main effects. 

Table 6 shows ranges and levels simulated for the proposed design point study, 

which takes the form of a full factorial matrix with 5832 different cases.  Analysis only 

assesses main effects and 2-way interactions, including interactions with curvature 

terms.  For 9 main effects and 6 curvature terms, output parameter count is 

࢚࢛࢕ࡺ = ૢ + ૟ + (૚૝ + ૚૜ … + ૚) = ૚૛૙ ( 32) 

All 120 terms are included in the initial stages of analysis, to be reduced based on effect 

and significance.  By neglecting to include higher level interactions, there effectively are 

multiple replicates for each output term for analysis.  There are about 48 points for every 

parameter included in analysis, and every parameter is evenly distributed across all 

levels.  For instance, there are 1944 points using 0.01 m/s fluid velocity, or 1/3 of the 

total points simulated.  Higher level interactions in the background act to provide 

variability within the design space.  Using a sparse method to fill the design space works 
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well for simulation based studies that are not based on random variation, because direct 

replicates of exact design parameter combinations result in identical output.  When 

material variability is added in chapter 5 replicates can be used to generate variable 

output. 

4.1.3 – Design Point Study Constants 

All other simulation parameters remain constant for the design point study.  

Working fluid is 45% ethylene glycol, 55% water, which has a sufficiently low freezing 

point for the application minimum temperature.  Fluid properties are summarized in 

Table 7. 

Parameter Value Units 

Thermal Conductivity 0.447 ܹ/݉ܭ 

Specific Heat Capacity 3357 ܭ݃݇/ܬ 

Density 1063 ݇݃/݉ଷ 

Viscosity at 275K 5.59E-03 ܲܽ ݏ 

Viscosity at 300K 2.42E-03 ܲܽ ݏ 

Viscosity at 325K 1.31E-03 ܲܽ ݏ 
Table 7:  Fluid properties for study, 45% ethylene glycol and 55% water mix. 

Viscosity is treated as a polynomial, fitted through the three temperatures in 

Table 7.  Thermal conductivity, specific heat capacity, and density are considered 

constant.  Justifications are that these properties change by less than 10% across the 

regenerator temperature span, and have negligible impact on the material property 

variation study.  Round straight microchannel geometry is assumed for regenerator 

structure.  When cascade span is exceeded by application span performance logically 

suffers.  Ends of the regenerator would be operating away from their respective Curie 

temperatures, where the maximum transition energy is available.  To avoid this condition 

regardless of cycle parameters magnetocaloric material cascade Curie temperatures 
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span from 112 F (317.5 K) to -17 F (246 K), providing 7 F on both regenerator ends as a 

buffer.   

4.1.4 –Design Point Study Output 

Output from the design study includes cooling power per regenerator volume, 

࢚࢟࢏࢙࢔ࢋࢊ ࢘ࢋ࢝࢕࢖ ࢍ࢔࢏࢒࢕࢕࡯ =
ሶࡱ ࢍ࢔࢏࢒࢕࢕ࢉ

࢔ࢋࢍࢋ࢘ࡸ࢔ࢋࢍࢋ࢘࡭
( 33) 

where ࡱሶ  ௥௘௚௘௡ isܮ ௥௘௚௘௡ is regenerator cross sectional area, andܣ ,is cooling power ࢍ࢔࢏࢒࢕࢕ࢉ

regenerator length.  Cooling power density is used rather than cooling power to make 

the output more broadly useful.  If a particular regenerator generates a very low cooling 

power but is very small in size it can be scaled up directly via cross sectional area in 

order to generate a larger cooling power.  This hypothetical regenerator design may still 

be a good design point and should not be viewed as a bad design option.  This also 

allows output to be less strongly tied to the specific application.  A good design can be 

scaled to work well for large and small refrigerators directly.   

Carnot ratio is the second primary output parameter, 

࢚࢕࢔࢘ࢇ࡯ࡾ =
ࡼࡻ࡯

࢚࢕࢔࢘ࢇ࡯ࡼࡻ࡯
. ( 34) 

COP, or coefficient of performance, is defined as 

ࡼࡻ࡯ =
ሶࡱ ࢍ࢔࢏࢒࢕࢕ࢉ

ሶࡱ ሶࡱିࢊࢋ࢚ࢉࢋ࢐ࢋ࢘ ࢍ࢔࢏࢒࢕࢕ࢉ
( 35) 

Ratio of simulated COP to Carnot COP is implied when the word efficiency is used within 

this study.  Carnot ratio is another metric that is more useful than non-normalized terms 

such as COP.  Carnot ratio can be compared across different applications with different 
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temperature spans, and in this way is the most useful metric for comparing different 

technologies as well.  In the case of this type of simulation, largely negative cooling 

power results from exceptionally poor combinations of input parameters.  Numerically, 

when this happens the model becomes divergent and must exit prematurely.  For 

analysis these cases would skew the statistics if left as-is, but to remove them entirely 

would inversely skew the statistical model.  Essentially a negative impact must still be 

observed in these poor cases, but the magnitude of that impact must be clipped.  It was 

deemed reasonable to limit highly negative cases by the maximum positive value 

observed on the best case, such that the best positive cases enact an equivalent 

positive impact to the worst case’s negative impact.  For Carnot ratio the same method 

is employed, limiting negative Carnot ratio to the inverse of maximum observed Carnot 

ratio in the best case. 

For analysis, a general linear model was utilized.  There are two outputs and 

many inputs, including 9 main effects, 6 curvature terms, and 105 2-way order 

interactions.  This yields a total of 120 terms within the study.  Total variance, 

࢒ࢇ࢚࢕࢚ࡿࡿ = ∑ ∑ ∑ ൫࢑࢐࢏ࢅ − ഥ∗∗∗൯ࢅ
૛

࢏࢐࢑ ( 36) 

is partitioned and different sources of variance are compared to attain P-values.  Here, 

i,j, and k represent arbitrary input parameter sets, such that every input parameter 

combination is summed.  Again, there are actually 120 input parameters for this 

analysis.  ࢅഥ∗∗∗ signifies the average output of all input combinations, and ࢑࢐࢏ࢅ represents 

output from each individual input parameter combination.  Variance induced by each of 

the 84 input parameters is found by 

࢏ࡿࡿ = ∑ ∗∗࢏ഥࢅ)࢏࢔ − ࢏(∗∗∗ഥࢅ
૛
, ( 37) 
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where തܻ௜∗∗ is the average output from each level of parameter ݅, and ݊௜ is sample count 

within each level ݅.  Variation from interactions follows a similar form, 

࢐࢏ࡿࡿ = ∑ ∗࢐࢏ഥࢅ൫࢐࢏࢔ − ࢏ഥ∗∗∗൯ࢅ
૛

− ࢏ࡿࡿ − ,࢐ࡿࡿ ( 38) 

Finally, unaccounted for variability is the difference, 

࢘࢕࢘࢘ࢋࡿࡿ = ࢒ࢇ࢚࢕࢚ࡿࡿ − ࢏ࡿࡿ − ࢐ࡿࡿ −  (39 ) ࢑ࡿࡿ

Mean square is next calculated using sum of squares for each factor, which for factor ݅ is 

࢏ࡿࡹ =
࢏ࡿࡿ

૚ିࢇ
, ( 40) 

where ܽ is the number of levels for factor ݅, and ܽ − 1 is the degrees of freedom for 

factor ݅.  Mean square error for factor ݅ is 

࢘࢕࢘࢘ࢋࡿࡹ =
࢘࢕࢘࢘ࢋࡿࡿ

(࢙ࢋ࢙ࢇࢉ  .ࢍ࢏࢙ ࢒࢒ࢇ ࢌࢊ)∑ିࡺ
,  ( 41) 

where ܰ is the total number of input cases.  Mean squares are used to find the ratio 

used for an F test, which for factor ݅ is 

૙ࡲ =
࢏ࡿࡹ

࢘࢕࢘࢘ࢋࡿࡹ
( 42) 

P-value is the probability of obtaining each ܨ଴ or larger if the null hypothesis is true.  In 

other words, if P-value for an input parameter is less than alpha, the null hypothesis is 

rejected, and the data is significantly dependent on the input parameter in question.  An 

alpha value of 0.05 is assumed for the presented study.  Insignificant effects and 

interactions (ܲ > 0.05) in both Carnot ratio and cooling power density outputs are omitted 

from further analysis.  The zero variation study output covers a wide range of design 

options, as is indicated by the points cloud in Figure 34. 
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Figure 34:  Points cloud, showing power density and Carnot ratio for the design point, or zero 

variation, study.  Only positive cooling power cases are shown. 

Maximum efficiency observed is about 75% of Carnot COP.  It would be 

expected that maximum efficiency could not be achieved at maximum power density, 

which is also observable in Figure 34.  Figure 34 shows an excellent points spread, 

suggesting that it is representative of a general design space, although additional levels 

of input parameters would be expected to expand it somewhat farther in all directions.  

The addition of material variation terms, coming in chapter 5 would also be expected to 

more completely fill in this points cloud.  Designs with negative cooling power are 

omitted from the graph, but are included in the analysis.  Short-hand for parameter 

names are shown in Table 8. 
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Short-hand Definition 

dT_A 
Standard deviation of peak amplitude for magnetocaloric 
effect 

dT_W Standard deviation of peak width for magnetocaloric effect 

dT_T 
Standard deviation of peak location for magnetocaloric 
effect 

C_A 
Standard deviation of amplitude for magnetocaloric heat 
capacity 

C_W 
Standard deviation of peak width for magnetocaloric heat 
capacity 

S Number of stages, indirectly sets stage spacing 

M Magnetic field strength 

V Peak velocity 

t_f Peak flow time for velocity profile 

t_r Ramp time for velocity profile 

t_m Magnetization time or dwell time for velocity profile 

D Channel diameter 

L Regenerator length 

VF Void fraction 
Table 8:  Short-hand for parameter names in analysis. 

Material variation terms are included in the first 5 rows of Table 8, although they 

are not yet utilized until chapter 5.  Names are shortened to make results more readable. 

For interaction terms “&” is placed between interacting terms, and “**2” indicates that it is 

a curvature term.  Curvature terms are squared in coded units, which allows the center 

point to be differentiated from end points.   

In order to compare effects on cooling power density and Carnot ratio side-by-

side, normalized parameter effects are calculated.  For arbitrary factor ݅, normalized 

effect is defined as 

࢏࣎ = ∗∗࢏ഥࢅ
૚

− ∗∗࢏ഥࢅ
ି૚

, ( 43) 
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where തܻ௜∗∗
ଵ

 is the average of all output data with high level of factor ݅ and തܻ௜∗∗
ିଵ

 is the 

average of all output data with low level of factor ݅.  Furthermore, normalized effect is 

defined as 

࢓࢘࢕࢔_࢏࣎ =
࢏࣎

࢞ࢇ࢓࣎
( 44) 

where ߬௠௔௫ is the largest effect shown by any combination of input parameters. 

Normalized parametric output for the zero variation study is shown in Figure 35, with 

only the top 50 effects shown out of 120 total analyzed output terms.   
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Figure 35:  Main effects and interactions as fractions of maximum output of all cases for cooling 
power density and Carnot Ratio 
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In Figure 35, parameters are ranked in descending order by the sum of effects of 

Carnot ratio and normalized cooling power density.  Effect has both magnitude and 

direction, either negative or positive.  Direction shows whether the output parameter, 

Carnot ratio or normalized cooling power density, is negatively or positively impacted by 

a positive change in the input parameter.  For example, higher length values (L) are 

associated with an increased Carnot ratio and cooling power density.  Larger channel 

diameter (D) is associated with lower Carnot ratio and cooling power density.  These are 

both expected due to the physics of the system.  The direction of all effects are 

summarized in Figure 36. 

Figure 36:  Scatter plot of effect magnitudes for Carnot ratio and normalized cooling power density 

in the zero variation study. 
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Labels have been omitted near the origin on the graph for readability.  Generally, 

effects that fall within the upper right or lower left quadrants are the most straightforward 

to consider in the design process.  Effects in these 2 zones affect both efficiency and 

cooling power in the same direction.  For example, smaller channel diameters produce 

higher efficiency and higher cooling power density.  Low velocity leads to higher 

efficiency and cooling power density within this study.  Effects in the upper left and lower 

right quadrants of Figure 36 require a more delicate balance.  Another interesting 

outcome is that an “X” is readily observed when viewing effects in this format, 

suggesting that parameters affecting performance generally impact both efficiency and 

cooling power density simultaneously.  This also indicates that some parameters affect 

efficiency and cooling power density inversely, while others effect efficiency and cooling 

power density in the same direction.  Very few terms have a large effect on one output 

without having an effect on the other.  Further analysis of various effects in the zero 

variation study follow, categorized by main effects, interactions, and curvature.   

4.1.3.1 – Main Effects in Design Point Study 

In Figure 35, channel diameter, length, and fluid velocity have the largest effects, 

and represent the most critical design parameters.  Lower in magnitude, again in 

descending order, are flow time, magnetic field strength, void fraction, and flow ramp 

time.  It is observable in Figure 35 and Figure 36 that channel diameter shows the 

largest impact on both efficiency and power density.  This is visualized in Figure 37. 
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Figure 37:  Carnot ratio versus cooling power density, broken up by channel diameter. 

Very small fluid channels provide vastly different performance as compared with 

larger channels.  Large fluid diameter channels lead to lower power density and lower 

efficiency, most likely due to the drop in heat transfer area and increase in Peclet 

number and dispersive losses.  Smaller channels are much more numerous in order to 

maintain the specified void fraction, which in turn leads to high heat transfer area per unit 

volume.  Regenerator length also shows a large effect on both COP and cooling power, 

both of which are positive.  However, the effect is much smaller than channel diameter, 

as is shown in Figure 38. 
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Figure 38: Carnot ratio versus cooling power density, broken up by regenerator length. 

Comparing Figure 37 and Figure 38, it is observable that regenerator length has 

a much smaller effect than channel diameter, even though length is still a significant 

effect.  Fundamentally, the effect of length is explainable by looking at the driving 

differential equations relating to dispersion and mass transfer in section 2.4.1.  Useful 

movement of energy is performed via bulk fluid motion, which is linearly related to 

regenerator length.  Energy transfer during bulk motion portions of the cycle is reduced 

via dispersion, which is quadratically related to length.  Above a certain length dispersive 

losses are far outweighed by mass transfer.  A simpler perspective for this is that the hot 

and cold ends of the regenerator are farther separated, which reduces heat transfer from 

hot to cold, in the opposite direction to heat pumping action.   
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The next largest effect following length is fluid velocity, which shows a negative effect on 

both output parameters over the range tested in the study.  Higher velocities increase 

dispersive and viscous losses in the channels, which hurt efficiency and cooling power 

density in this case as well.  To an extent, a higher fluid velocity can increase mass 

transfer at a faster rate than associated losses for smaller design ranges, but for the 

present work this is not the case.   

Flow time directly effects cycle frequency, and therefore negatively affects 

efficiency and cooling power density.  An ideal system with a small flow time would 

generally have a lower fluid displacement per cycle than a system with a large flow time. 

Very small amounts of fluid are difficult to extract efficiently in practice, and such a 

system would rely on a very low dead volume.  Some amount of dead volume, or 

expansion space is always necessary on the regenerator ends to transition between 

hydraulic lines and the regenerator.  When the total displaced fluid volume per cycle is 

similar to dead volume, the actual performance will not match a simulation study well. 

Other main effects such as magnetic field strength also have logical explanations 

for their respective effects.  Magnetic field strength shows a positive effect for Carnot 

ratio and a slightly negative effect on cooling power density.  This outcome is partially in 

conflict with Benedict et al. (2017b) and Benedict et al. (2017a), which showed a positive 

impact on cooling power density for a specific design range.  This would be expected to 

shift as material variation is introduced, where a larger magnetic fields allow gaps 

between stages to be less detrimental to performance.  Magnetocaloric materials 

typically increase in effect (adiabatic temperature change) with magnetic field strength.  

In addition, peak width increases with field strength, which improves cases with large 

stage spacing and larger material variability the most.   
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Much smaller, but still significant, are ramp time, void fraction, and magnetization 

time.  Ramp time negatively affects efficiency and positively affects cooling power 

density.  This suggests that an ideal fluid flow velocity profile for efficiency may be nearly 

square, with minimal time for transition between levels.  Magnetization time should also 

be minimized as much as possible, but again there are practical limits on how quickly a 

magnetic field can be applied and withdrawn within a physical system with moving parts.  

Finally, void fraction shows positive effects, suggesting that sparser structures with less 

MCM allow for easier transferring of energy within the range of the present work. 

4.1.3.2 – Interactions in Design Point Study 

Most effects fall into the category of interactions.  Looking at the number of 

interactions containing each input term is suggestive to the term’s importance in the 

design process. 
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Figure 39:  Occurrence counts for all input parameters found in interaction terms within the top 50 

effects, measured by magnitude. 

In descending order in Figure 39:  Velocity (V), diameter (D), length (L), flow time 

(t_f), ramp time (t_r), magnetic field (M), magnetization time (t_m), void fraction (VF), 

and stage spacing (S).  Stage spacing (S) does not fall within the top 50 terms, although 

it is still significant statistically.  This sequence of prevalence closely matches the order 

of main effects found in Figure 35.  Diameter and ramp time curvature interact most 

strongly, although relevance of the interaction is somewhat difficult to determine, as is 

shown in Figure 40. 
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Figure 40:  Cooling power density as a function of ramp time and channel diameter. 

Figure 40 shows average cooling power density as a function of ramp time and 

channel diameter.  Although the interaction is significant, many of the points for the 

0.00025 m and 0.0005 m channel diameters have negative cooling power based on 

Figure 40, leading to negative average cooling power densities.  This is the case for 

every interaction between diameter and other parameters.  These cases with negative 

cooling power do not break physical laws, but simply do not provide a useful capability 

for cooling. 

In contrast, velocity and length interact strongly in a meaningful way, where 

higher velocities should be paired with longer regenerators for optimal performance.  

Essentially, velocity and length should be scaled up or down together while designing a 

regenerator.  In a similar way velocity interacts with diameter, suggesting that higher 
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velocities should be paired with larger diameters.  In this case viscous heat generation 

and losses due to fluid flow need to be balanced by matching high velocities with large 

channels.  Many other interactions are highly relevant in Figure 35, but as shown in 

these several examples, interactions are quite complex overall. 

4.1.3.3 – Curvature in Design Point Study 

 Curvature terms’ occurrence counts are shown in Figure 41. 

Figure 41:  Occurrences of curvature terms in the top 50 effects for the zero variation study. 

Relative levels in Figure 41 closely follow those observed in Figure 39 for main 

effects.  All terms show significant curvature, and again illustrate the complexity of such 

a heat pump design.  Velocity curvature appears most often in the top 50 terms, but flow 
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time, ramp time, magnetization time, diameter, and length all appear in at least 6 of the 

top 50 terms. 

Curvature is most significant with length (L).  Next is diameter (D**2), followed by 

velocity (V).  Causes of curvature can be taken from nonlinear physical relationships 

being simulated.  Heat transfer between MCM and heat transfer fluid, 

ࢌିࡹ࡯ࡹ࡭ࢁ =
૟(૚ିࢿ)

ቈࡰ૛ቆ
૚

૜.૟૟ࢌ࢑
ା ૚

૟ ࡹ࡯ࡹ࢑
ቇ቉

(17) 

provides one such example.  Heat transfer between MCM is the primary means for 

harvesting the magnetocaloric effect, and is therefore a significant contributor to overall 

system performance.  Another nonlinear effect is axial dispersion,  

ࢌࢌࢋ࢑ = ࢌ࢑ ቀ૚ +
૛࢘ࡼ ૛ࢋࡾ

૚ૢ૛
ቁ (18) 

Axial dispersion is an indirect loss mechanism for oscillating flow systems, conducting 

heat between the hot and cold reservoirs through the regenerator solid-fluid matrix.  Both 

are strongly tied to length, velocity, and diameter. 

4.1.3.4 – Summary of Design Point Study Findings 

Because only cases with positive cooling power were analyzed, this study 

identified what variables are most critical to control for a given successful design.  All 

parameters produce a statistically significant effect on Carnot ratio and cooling power 

density, but channel diameter, length, and fluid velocity must be most closely controlled. 

Even with such a complicated system there are excellent optimization schemes 

to be implemented which are capable of finding optima as directed.  Where research is 

lacking is not in simple predictions of performance, but in determining performance with 
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realistic material property variation.  At a high level this data represents a baseline, to 

which magnetocaloric property variation can be added, shown in section 4.2 for 

comparison.   

4.2 –  Material Property Variation Study 

For this portion of the study it is of greatest interest to know the impact of 

magnetocaloric material property variation on good designs.  Cases with positive cooling 

power from the design point study represent zero property variation, or the lowest level 

of variation.  It is most important to know the effect of material variation on designs that 

actually produce cooling power, which is the reason for ignoring cases with negative 

cooling power, which do not actually work in a practical sense.  About 25% of the zero 

variation points yielded positive cooling power, or 1485 of the 5832 points.  Two 

additional levels of material variation were simulated at these design points, utilizing 

center points to assess curvature in material variation parameters.   

Table 9:  Levels for each standard deviation of material property parameters. 

Maximum variation levels (coded unit, level 1) are based on the analysis of real 

material variation in Chapter 3.  Standard deviation values being provided to the 

simulation tool are summarized in Table 9.  The center point (coded unit, level 0) is 50% 

of the maximum variation value for each variation parameter in Table 9.  Zero is the 

lowest level for each parameter (coded unit, level -1).   
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For this portion of the study replicates were not directly used, and 100,000 

combinations were simulated.  For each design of interest, a random designation for 

each material property variation parameter was assigned, -1, 0, or 1.  By allowing the 

five material property variation parameters to vary relative to each other, interactions can 

be assessed.  If these 5 additional parameters describing material variability were varied 

in every possible combination, 360,855 designs would have to be simulated for a single 

replicate.  Due to the computational limitations this was limited to 100,000 simulations.  

Using the same principle applied in section 4.1 to generate replicates by ignoring higher 

level interactions, this allows main effects and 2-way interactions to be assessed using a 

limited dataset.  For 13 main effects, 11 curvature effects, and 276 2-way interactions, a 

total of 300 effects are used in the analysis.  For 100,000 points in the output dataset, 

there are about 333 output cases per analyzed term.  Input parameters are evenly 

distributed across all levels, providing approximately 333 replicates per analyzed effect.  

Results qualitatively fall within a similar performance envelope, as is shown in Figure 42. 
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Figure 42:  Power density versus Carnot COP ratio for all points having high or low variation levels 

(1 or -1 in coded units). 

Figure 42 shows the cloud of points simulated for both portions of the presented 

study, which all qualitatively appear to be part of the same dataset.  Maximum efficiency 

is slightly higher, at about 78% of Carnot COP, and maximum cooling power density is 

similarly slightly higher.  This matches well with observations by Lei et al. (2015), where 

some cascades showed modest gains in performance due to randomness of material 

properties.  Although average performance suffers with variation, a few cases 

outperform zero variation case.  Looking deeper, difference can be observed in the 

effect of individual parameters on performance. 
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4.2.1 – Average Cooling Power Density and COP 

Figure 43 shows primary effects, curvature terms, and 2-way interactions that are 

directly comparable to the design point study in section 4.1, corresponding to average 

performance predictions.  This is simply a direct analysis of the points cloud using 

ANOVA. 
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Figure 43:  Main effects and interactions as fractions of maximum output of all cases for average 
cooling power density and average COP with material property variability. 
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Within Figure 43 it is observed that the largest effect on average COP and 

cooling power density is channel diameter (D), closely followed by length, which is 

similar to the zero variation study.  However, this is where the similarities end.  Of the 

top 50 significant terms shown, nearly every interaction involves material variation 

parameters.  Figure 44 shows the number of instances of each primary input parameter 

in Figure 43. 

Figure 44:  Number of instances of each primary input parameter within the top 50 significant terms 

in the material variation study, using average output parameters, side by side with zero material 

variation data. 
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It is observable that diameter (D) is incredibly critical with variable material 

properties.  Velocity, magnetic field strength and regenerator length are relevant, but an 

order of magnitude less so than diameter.  With the exception of diameter, all design 

parameters are observed less in the top 50 effects than in the zero variation study.  

Curvature terms show a similar change in Figure 45. 

Figure 45:  Number of instances of curvature terms within the top 50 significant terms in the material 

variation study, using average output parameters 

Less occurrences of all curvature parameters are observed as compared with the 

zero variation study.  Diameter shows the least reduction in prevalence between zero 

variation and with variation, average.  Velocity, which was the most numerous term in 
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the zero variation study, has declined to zero in the variation study.  Figure 46 shows the 

number of instances of each material variation input parameter in Figure 43. 

Figure 46:  Number of instances of each material variation input parameter within the top 50 

significant terms in the material variation study, using average output parameters. 

In great contrast to primary design parameters in Figure 44, material variation 

parameters are evenly observed as significant effects on performance, dwarfed only by 

channel diameter in overall occurrences within the top 50 effects.    These material 

variation parameters have replaced a large portion of the top 50 effects from the zero 

variation study. 



87 

4.2.2 – Lower Limit Cooling Power and COP 

Lower limit cooling power is more useful for a machine designer than average 

cooling power, because worst-case performance typically must still reach a 

predetermined threshold.  A heat pump must be over-built in order to reach targeted 

limits on performance with a level of statistical confidence.  For instance, if a designer 

determines that at least 150 W of cooling are required to cooling a space, the heat pump 

would be designed to a higher cooling power, perhaps 160W to account for variation 

during production. 

Lower limit performance contains more information than average performance, 

as it requires an average and a standard deviation of data taken at each design point.  

Each time a design is simulated, a new magnetocaloric cascade is generated, which 

produces a different efficiency and cooling power density output.  Standard deviation is 

calculated as 

ࡰࡿ = ቀ
∑ ૛ࢅ

ࡺ
− ഥ૛ቁࢅ

૙.૞
( 45) 

where തܻ is the average output at a particular design point, ܰ is number of iterations at a 

design point, and ܻ is the output of each iteration at a particular design point.  A 6-sigma 

lower limit is used in this study, indicating that the design point lower limit is 6 standard 

deviations below the average output for the design point.  In terms of machine design, 

this suggests that a heat pump would be “over-designed” to achieve a much higher 

cooling power density and efficiency on average, such that a particularly weak 

magnetocaloric cascade will still reach the minimum required cooling power density and 

efficiency. 
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For this portion of the study additional replicates are required because of the need for a 

mean and standard deviation for each parameter combination.  Material variations parameters 

were consolidated into a 3 overall variation levels by summing the normalized levels across all 5 

variation parameters shown in 

Table 9 for each of the 100,000 simulation points.  For instance, a simulation with 

all variation parameters at the highest levels sums to the maximum value of 5 using 

coded units.  The average value of this summation across all simulated design points is 

0 because the study is evenly distributed across all variation levels.  Low, medium, and 

high levels of overall variation were broken up as follows based on the summation of 

normalized variation parameters:  -5 to -2 for low, -1 to 2 for medium, and 3 to 5 for high.  

An assumption of equivalent effect for the 5 variation parameters is necessary to take 

this step in consolidating the data.  It is shown in section 4.2.1 that all material variation 

parameters do show similar effect.   

Because of this agglomeration of points, additional replicates now exist for each 

design point, and lower limit cooling power and lower limit Carnot ratio can be calculated 

for input parameter combination.  Interestingly, this means that there is now overlap 

between material variation parameters in the analysis, although an effect can still be 

calculated for each.   Lower limit output can be observed with previously presented data 

in Figure 47. 
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Figure 47:  Cooling power density versus ratio of Carnot COP for lower limit data points; separated 

by zero variation and max variation levels. 

Lower limit output generally appears nearer to the origin of Figure 47 than zero 

variation output, having both a lower Carnot ratio and a lower cooling power density.  

Maximum efficiency drops from 75% of Carnot COP in the zero variation study to 73% in 

the lower limit variation study using maximum variation levels, a drop of about 3%.  It is 

critical to note that many design points dropped by more than 3%.  Average Carnot ratio 

dropped from 36% to 32%.  Maximum cooling power density maximum dropped by 

3.5%, and average cooling power density dropped by 10%.  Again, the top 50 effects are 

seen in Figure 48. 
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Figure 48: Main effects and interactions as fractions of maximum output of all cases for lower limit 
cooling power density and average COP with material property variability. 
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Diameter remains the largest effect by far and length remains near the top of the 

list, although other parameters have substantially shifted in importance.  Void fraction is 

now quite high on the list, and also interacting strongly with various material parameters. 

Larger void fractions lead to higher efficiency and lower cooling power.  Standard 

deviation of peak location has dropped in importance as compared the average 

performance study of section 4.2.1, suggesting that it produces a consistent detriment to 

performance.  In this way it reduces average performance and lower limit performance 

by a similar amount.  In contrast, several design parameter interactions have risen back 

towards the top of Figure 48, suggesting that they affect average performance in a less 

consistent way.  This is easier to see in occurrence counts for design parameters. 
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Figure 49: Number of instances of each primary input parameter within the top 50 significant terms 

using zero variation data and variation inclusive data, analyzed using average and lower limit 

methods. 

Within Figure 49 it is observable that “zero variation” and “with variation, lower 

limit” are much more similar to each other than to “with variation, average”, which utilizes 

averages rather than lower limits.  In looking for realistic lower limit performance, fluid 

velocity is a more critical design parameter than it would be if designing without 

accounting for variation in material properties.  Flow time, ramp time, and length are 

somewhat lower in importance, and other parameters are quite flat between the studies. 
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Figure 50:  Number of instances of each curvature input parameter within the top 50 significant 

terms using zero variation data and variation inclusive data, analyzed using average and lower limit 

methods. 

Within Figure 50 it can be seen that curvature terms become less relevant in the 

lower limit study than in the zero variation study.  These terms were nearer to the end of 

the top 50 rankings in the zero variation study, and some were displaced by material 

variation terms. 
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Figure 51:  Number of instances of each material variation input parameter within the top 50 

significant terms using variation inclusive data, analyzed using average and lower limit methods. 

Figure 51 shows that, again, material variation terms displaced other parameters 

which dropped off of the top 50 list.  Material variation terms do appear much less 

frequently in the lower limit study than in the average study, as expected.  Material 

variation terms are expected to have less effect on the output due to the agglomeration 

of similar levels needed to produce replicates for the lower limit study.  There is overlap 

between material variation parameters in the analysis, which would be expected to 

reduce the effect of individual material variation parameters in analysis.    
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5 – HIGH LEVEL INTERPRETATION AND DISCUSSION OF 

RESULTS 

5.1 – High Level Study Interpretation 

At a high level, effects from the lower limit analysis match the zero variation study 

more closely than effects from the average-based analysis study.  In industry it is much 

more relevant to take a lower limit approach on the design process, which makes lower 

limit results most relevant.  Simulations performed without material variation are still 

highly relevant to our understanding of magnetocaloric technology.  This is a major 

conclusion of the present work.  High performing designs saw a reduction in lower limit 

performance due to material property variation of 2.5% to 5% in Carnot ratio, although 

many cases saw much more, as shown in Figure 52.   
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Figure 52:  Histogram of reductions in Carnot ratio due to material property variation. 

Figure 52 is based on the performance change of each individual input 

parameter combination in the zero variation and lower limit studies, containing 5832 

unique cases.  Median reductions in performance are in the 0.05 to 0.10 range and data 

skews strongly toward higher values.  When looking at simulations studies with zero 

variation in material parameters, it would be useful to assume such a degradation to 

simulated efficiency unless better data exists.  Reduction in cooling power is nearly 

identical, as seen in Figure 53. 
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Figure 53:  Histogram of normalized reductions in cooling power density due to material property 

variation. 

For cooling power density, the histogram peak reduction in performance occurs 

at 15 to 25 percent of zero variation cooling power density.  Again, the highest cooling 

power density cases do see 5 to 10 percent reduction in performance.  When looking at 

simulation studies with zero variation in material parameters, it would be useful to 

assume such a degradation to simulated cooling power unless better data exists.  In this 

way, an uncontrolled “noise” factor effect can be approximated.  

Taking a deeper look at individual design parameters and their relative 

importance, channel diameter is vastly more important to the design process than any 

other parameter, as seen in Figure 48.  Figure 49 shows that fluid velocity has become 

more critical than it was when assuming zero variation of material properties, although 
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still less important than diameter.  When looking for occurrences of velocity in Figure 48 

it becomes apparent that all occurrences are interaction terms, which makes a design 

process less straightforward.  Velocity must be optimized with all other parameters 

simultaneously.  Diameter and velocity are also the terms that most often interact with 

material property variation parameters, which again illustrates their importance in a 

design process that includes material property variation.   

Considering the materials themselves, it has been shown that there are some 

parameters that are more import to control than others, although only marginally so.  

Practically, all five material property variation parameters need to be controlled to a 

similar degree.  Peak amplitudes and widths need to be maximized as well to maximize 

performance.  This may be a positive consequence of better process control that is not 

captured in this study.   

5.2 – Detrimental Effect of Variability in Material Properties on 

Performance 

5.2.1 – Entropy Generation due to Fluctuations in Temperature Gradients 

Main effects and most interactions with material variability parameters are 

significant for lower limit Carnot ratio output, as shown in section 4.2.2.   This suggests 

that stage-to-stage variability leads to entropy generation and a reduction in efficiency.  

In addition to local irregularities within the temperature profile following a magnetic 

transition, average temperatures across the span of the regenerator will be more 

irregular with inconsistent material properties.  As a case study, a high performing 
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regenerator will be looked at in more detail.  Input parameters for the design points are 

found in Table 10. 

Stages 45 

Velocity 0.03 m/s 

Magnetic strength 1.50 Tesla 

Channel diameter 0.0001 m 

Void fraction 0.50 

Flow time 0.275 s 

Ramp time 0.5 s 

Magnetization time 0.05 s 

Regenerator length 0.15 m 
Table 10:  Input values defining a regenerator design for a case study. 

This case achieved just over 75% of Carnot COP and 25 Watts of cooling, 

equating to 33,333 ܹ/݉ଷ cooling power density based on regenerator length (0.15m) 

and area (0.005m).  Parameters match up well with main effects in the analysis, having 

a large length, smallest diameter channels, and a high void fraction. 
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Figure 54:  Stage values for magnetocaloric effect (dT_A), peak width (dT_W and C_W), and peak 

location (dT_T) for a high performing regenerator with high material property variation. 

This particular simulation utilized high levels of material property variability, 

yielding cascade parameters depicted in Figure 54.  Such variation across the 

temperature span of the regenerator produces the temperature profiles shown in Figure 

55.
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Figure 55:  Temperature profiles before and after each magnetic transition in the highest efficiency 

regenerator design with high material property variation. 

Within Figure 55 the jagged post-transition profiles can be observed.  An ideal 

temperature gradient thermodynamically is linear, as it creates the least amount of 

entropy generation due to heat transfer.  Figure 55 shows that material variation not only 

leads to entropy generation immediately following magnetic transitions, but also 

throughout the entire cycle.  Due to variations in Curie temperature many curves do not 

reach peak MCE amplitude.  Creating local temperature gradients that differ 

substantially from the average regenerator temperature gradient will have a negative 
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impact on efficiency, as it qualitatively represents entropy generation.  Entropy that goes 

into the cycle magnetically in order to generate the magnetocaloric effect is partially 

wasted in forming temporary gradients, which are dispersed as the cycle moves on.  For 

reference, the same design point without material property variation contains linear 

cascade properties, shown in Figure 56. 

Figure 56:  Stage values for magnetocaloric effect (dT_A), peak width (dT_W and C_W), and peak 

location (dT_T) for a high performing regenerator with zero material property variation. 

The regenerator described in Figure 56 produces a much smoother and more 

linear effect, shown in Figure 57.  There are no neighboring stages with large differences 

in magnetocaloric effect or peak width, and a much smoother temperature profile results. 
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Figure 57:  Temperature profiles before and after each magnetic transition in the highest efficiency 

regenerator design with zero material variation. 

Figure 57 shows a much smoother and more linear temperature profile than 

Figure 55, which illustrates again the effect of variation in magnetocaloric material 

properties.  In fact, much of the profile is perfectly linear, with a slight flattening near the 

ends. 

5.2.2 - Mismatch of Design Parameters with Cascade 

A second mode of entropy generation due to material property variation is the 

mismatch of design parameters, which creates imbalances in the system. Every input 

parameter effects this balance, and each design must be looked at holistically to negate 
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the detriment of material variability on performance.  A highly efficient cycle is well 

balanced thermodynamically, and in a cascaded regenerative system, this means that 

the weakest or farthest spaced stage will limit the entire cascade.  Logically this 

suggests that a cascade with too few stages for a given temperature span will be less 

robust to material variation.  A fairly small effect was observed in this study related to 

stage spacing, meaning that this limit on minimum stage spacing may be outside the 

envelope of study.  In a similar way, materials having a wider peak effect as a function of 

temperature are more robust to variation.  Both of the effects were observed in 

simulation studies referenced in section 1.5.2, with Lei et al. (2015) specifically showing 

both effects. 

Another input parameter which helps reduce the effect of material property 

variation is fluid displacement ratio, 

ࡾࡰࡲ =
൯࢖࢓ࢇ࢚࢘ା࢝࢕࢒ࢌ࢚൫ࢌ࢙࢜

࢔ࢋࢍࢋ࢘ࡸ ࢿ
( 46) 

where ݒ௦௙ is superficial peak velocity, ߝ is void fraction, ܮ௥௘௚௘௡ is regenerator length, 

 ௥௔௠௣ is ramping flow time.  Practically, this is the amount ofݐ  ௙௟௢௪ is peak flow time, andݐ

fluid contained within the regenerator that is exchanged during each flow period, which 

occurs twice per cycle. 
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Figure 58:  Carnot ratio as a function of fluid displacement ratio in the zero variation study. 

As seen in Figure 58, an extremely low fluid displacement ratio leads to poor 

performance related to dead volume, where most of the rejected heat is stored in un-

exchanged fluid volume at the regenerator ends.  In a theoretical machine with zero 

dead volume, this is neglected.  A very large fluid displacement ratio leads to wash-out, 

a phenomenon in which the moving thermal mass of fluid exchanges too much heat with 

magnetocaloric material, and drives MCM temperature away from Curie temperature.  

As an extreme example, flowing fluid through a regenerator steadily will bring the entire 

regenerator to the same temperature as the fluid, bringing nearly all stages’ 

temperatures far away from peak magnetocaloric effect temperature.  Magnetic 

transitions occurring while MCM temperature is not near Curie result in minimal 

temperature change.  Having a moderate fluid displacement ratio per cycle, 15-25% for 
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example, helps negate the detrimental effect of singular bad stages or “weak links” in the 

cascade by exchanging heat beyond nearest neighboring stages.  In this sense, it would 

be reasonable to ensure that fluid displacement ratio per stage is much larger than 1.  

Fluid displacement ratio per stage would be calculated as 

ࢋࢍࢇ࢚࢙ࡾࡰࡲ =
൯࢖࢓ࢇ࢚࢘ା࢝࢕࢒ࢌ࢚൫ࢌ࢙࢜

࢙ࢋࢍࢇ࢚࢙ࡺ࢔ࢋࢍࢋ࢘ࡸ ࢿ
( 47) 

where ݒ௦௙ is superficial (empty channel) velocity, ݐ௙௟௢௪ is peak flow time, ݐ௥௔௠௣ is 

ramping flow time, ߝ is fluid fraction or void fraction, ܮ௥௘௚௘௡ is regenerator length, and  

௦ܰ௧௔௚௘௦ is the number of stages.  Stage count is either 45 or 55 for all designs in the 

present work, and 20% FDR translates into 9-11 for stage FDR.  This means that about 

10 stages are directly interacting through fluid displacement in a good cycle. 

Looking only at second order interactions, the effect of fluid displacement ratio 

relates to interactions between velocity, flow time, ramp time, length, void fraction, and 

magnetocaloric property variation parameters.  High order interactions such as these 

make magnetocaloric system quite difficult to study. 

5.2.3 – Thermodynamically Pairing Cascades to Regenerator Designs 

If a material existed that could provide constant MCE as a function of 

temperature, it would be represented by a horizontal line in MCE as a function of 

temperature.  An ideal material cascade may actually provide slightly greater MCE on 

the hot side as compared to the cold side.  In this way each stage can pump the same 

amount of heat at the same temperature gradient for perfect stage-to-stage matching.  

This is shown in Figure 59. 
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Figure 59:  Ideal MCE as a function of temperature for a Carnot heat pump. 

For Figure 59, 150 W of cooling at the cold end and power input requirements 

based on the Carnot cycle efficiency for each stage are assumed.  Each stage is 

approximated to only interact with directly adjacent stages.  Stage spacing is assumed to 

be 1.5 K, meaning that each stage has a span of 1.5 K.  Carnot COP for each stage is 

based on temperature and span,  

ࢋࢍࢇ࢚࢙ࡼࡻ࡯ =
ࢉࢀ

ࢉࢀିࢎࢀ
( 48) 
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Warmer stages must convey more heat in operation because of thermodynamic losses, 

where rejected heat must always exceed accepted heat, and each stage must follow the 

second law of thermodynamics.  The cascade as a whole also follows this law indirectly, 

resulting in a total cascade COP of about 4 if all stages’ losses are summed, equaling 

the Carnot COP for a cooling heat pump of the total span.  Relative MCE in Figure 59 is 

the relative MCE required for each stage, as compared with the coldest stage.  Stage 

strength changes between the cold and hot cascade ends could foreseeably be 

accomplished directly via material peak MCE.  As an example, if the coldest stage 

operates with a 3 K peak MCE amplitude, the hottest stage should have a peak MCE 

amplitude of about 3.78, 26% greater than the coldest stage.  This 26% increase allows 

thermodynamic losses to be perfectly balanced with a cascade’s ideal operating point, 

allowing each stage to operate near peak strength and efficiency. 

Other losses, such as viscous heat generation or radial heat leak, can be 

accounted for in the same way as thermodynamic losses in Figure 59.  When a MCM 

cascade is perfectly matched to losses, each stage can operate at near peak strength 

with minimal losses.  Cascade Schroeder-LaFeSiH exhibits 30% stronger warm-side 

MCM than the cold side based on temperature change, which is nearly ideal if the stage-

to-stage variation is ignored.  When a MCM cascade is not well matched to losses, the 

temperature gradient will compensate to reach equilibrium, forcing stages to operate off-

peak, and generally reduce COP and power. 
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6 - COMMERCIAL VIABILITY OF THE TECHNOLOGY 

The greater context of the present work is to drive magnetocaloric technology 

toward commercialization.  Material variability should be reduced, but the driving force 

for this reduction is found in machine cost.  Looking at Chapters 4 and 5 in isolation 

would lead one to believe that material property variation only leads to a marginal 

detriment to performance, which is partially true.  However, it will be shown that a 

marginal decrease in efficiency and cooling power density leads to a major increase in 

estimated machine price.  Several hurdles also exist in order to achieve this goal of 

commercialization, including microchannel production, overall system cost reduction 

through machine innovation and material variation reduction, and market need.   

6.1 – Microchannel Size 

One highlight of the present work is the massive effect of microchannel size on 

performance.  Specifically, 0.0001 ݉ channels produce much better cooling than 

0.00025 ݉ or 0.0005 ݉ channels, with a strong trend to seek even smaller channels.  

Practically, there are limitations on channel size, although 0.00015 channels have been 

printed using magnetocaloric material at Oak Ridge National Labs using a scalable 

process (Momen, 2017).  Scalability in this instance refers to the ability to produce large 

numbers of parts relatively cheaply and quickly in a factory setting, and is due to the 

inkjet printing process used.  Inkjet, or binder jet, printing uses a print head with many 

nozzles, which spray a binder onto find powder to produce a solid part layer by layer.  A 

single pass of the print head completes an entire layer, allowing relatively high speed 
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printing.  Sintering or other processing can occur after initial printing to strengthen or 

heat treat parts.   

Figure 60:  Images from (Momen, 2017) showing printed magnetocaloric structures. 

Figure 60 shows an example of small 3D printed structures using magnetocaloric 

material.  250 ݉ߤ channels are shown, and 150 ݉ߤ channels are considered printable 

using current technology.  This is an ongoing project that shows good potential to 

provide the necessary microchannel structures at high production volume. 

6.2 – Basic System Cost 

Cost also needs to be considered as a part of the design process, and magnets 

are one of the largest contributors to system cost based on internal work at GE 

Appliances, as well as work by Bjørk et al. (2016) and Langebach et al. (2014).  Cost 

estimation and reduction of magnetic systems for magnetocaloric heat pumps has seen 
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considerable interest because of its relative criticality to move forward from research to 

product development for the mass market (Bjørk, 2010; Bjørk et al., 2016, 2010; Russek 

and Zimm, 2006; Tura and Rowe, 2014, 2011).  Using multiple internal GE Appliances 

prototypes having a variety of magnetic systems as reference points, it is possible to 

correlate magnetic system requirements to regenerator size and measured magnetic 

field, providing the following relationship. 

ࢍࢇ࢓ࢂ = ૙. ૞ ࢔ࢋࢍࢋ࢘࡭ ࢔ࢋࢍࢋ࢘ࡸ൫૚. ૝૛૛૚૞ ࡴ૛ + ૞.૜૟ૠ૟૛൯ࡴ ( 49) 

where ௠ܸ௔௚ is volume of magnetic material, ܮ௥௘௚௘௡ is regenerator length, ܣ௥௘௚௘௡ is 

regenerator frontal area, and ܪ is magnetic field strength, in Tesla.  $40 per kg is 

assumed as bulk pricing on magnets, which are likely high performing Neodymium 

magnets (Langebach et al., 2014).  Density is approximated as 7900 ݇݃/݉ଷ.  Applying 

this relationship on the zero material variation study shows the cost of magnetic field 

strength, which rises dramatically between 1 and 1.5 Tesla fields strengths. 
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Figure 61:  Cooling power density as a function of magnet cost per Watt cooling power, where the 

cost function is log scaled. 

Figure 61 shows the nonlinear relationship between magnetic system cost per 

Watt and cooling power density.  Larger magnetic fields provide higher cooling power 

density consistently.  This also shows that magnetic field strength needs to be reduced 

to the absolute minimum level in order to build a cost effective product, and that no 

designs fell below $2 per Watt cooling power.  A household refrigerator requiring 150 

Watts of cooling would cost approximately 300 dollars within the constraints of this 

study, including only the magnetic system, which contains the vast majority of total 

machine cost.  150 Watts is approximately the cooling requirement for a large household 

refrigerator (Langebach et al., 2014).  Motors, pumps, structure, and all other 

components are not included in this metric.  There are a range of methods to reduce this 
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cost considerably, but using a magnetic field below 1 Tesla may be a necessity.  In 

contrast, maximum efficiency is achieved with 1.5 Tesla, showing the delicate balance 

required in system design. 

Figure 62:  Carnot ratio as a function of magnet cost per Watt cooling power in the zero variation 

study, where the cost function is log scaled. 

For efficiency, Figure 62 shows another powerful relationship between magnetic 

field strength and cost per Watt cooling power.  Higher magnetic fields provide higher 

efficiencies, but at a great increase to system magnetic cost.  Higher efficiency is 

meaningless to the average consumer if the cost is too great, as it becomes 

unaffordable.  Within the scope of the present work, a system designed to provide 72% 

of Carnot COP would cost $1500 for 150 W cooling power with just the magnetic 

subsystem; well beyond the total cost of many refrigerators in the market today.  The 



114 

$300 system based on cooling power density alone in Figure 61 is equivalent in 

efficiency to high end vapor compression systems. 

Regenerator cost must be put into perspective alongside magnetic system cost.  

Mass production of magnetocaloric materials has also been a topic for research for the 

same reasons as magnetic system cost (Zhang et al., 2017).  Assuming magnetocaloric 

material is not more expensive than magnetic material, $40 per kg is assumed 

(Langebach et al., 2014).  MCM volume is calculated as 

ࡹ࡯ࡹࢂ = ૚)࢔ࢋࢍࢋ࢘࡭࢔ࢋࢍࢋ࢘ࡸ −  (10) (ࢿ

where ܮ௥௘௚௘௡ is regenerator length, ܣ௥௘௚௘௡ is regenerator frontal area, and ߝ is void 

fraction. 

Figure 63:  Cooling power density as a function of cost per watt cooling power of MCM, where the 

cost function is log scaled. 
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Figure 63 shows very little difference between magnetic field strength in the cost 

function for MCM, and bottoms out at about 0.16 dollars per Watt cooling power.  

Efficiency responds very differently, as shown in Figure 64. 

Figure 64:  Carnot ratio as a function cost per Watt cooling power of MCM in the zero variation study, 

where the cost function is log scaled. 

A clear distinction between magnetic field levels is apparent, with higher fields 

producing lower cost system at higher efficiency.  The trend toward higher magnetic field 

levels for MCM cost is in direct contrast with the trend for magnetic system costs.  Basic 

systems operating at 60% of Carnot COP cost about 0.16 dollars per Watt of Cooling, 

and high performing system at 72% of Carnot COP cost double that.  Therefore, total 
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MCM cost for 150 W cooling ranges from $24 to $50 for the same respective system 

designs.  This is about 3% of the cost of magnetic materials for the same size system. 

Other components such as the motor, pump, controls, valves, lines, etcetera can 

be estimated to cost $80 additional (Langebach et al., 2014).  A basic magnetocaloric 

system achieving 60% of Carnot COP would cost a total of $404 with magnets, 

regenerator, and other components totaled.  A system achieving 75% of Carnot COP is 

estimated to cost $3080.  Total system cost for a vapor compression system can be 

estimated at $64 (Langebach et al., 2014), which is greatly exceeded by even the lowest 

cost magnetocaloric system.   

6.3 – Split Regenerator System Cost 

One exemplative method to reduce cost greatly is to implement a split system, 

where 2 unique and independent regenerators operate concurrently across different 

temperature spans.  Patents exist for such systems, although implementation can vary 

greatly.  For example, patent number US20190024952 discloses a positive displacement 

hydraulic system utilizing 2 heat transfer fluids (Schroeder and Benedict, 2017).  
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Figure 65:  Figure 1 of US20190024952, depicting a split magnetocaloric system (Schroeder and 

Benedict, 2017). 

In Figure 65, regenerators 124 and 122 are connected to each other thermally 

via heat exchanger 150, but separated hydraulically.  Such a system allows better heat 

transfer fluids, such as water, to be used on a large portion of the total span.  Water has 

a higher heat capacity and lower viscosity than most alternatives.  For example, water 

would work well as a heat transfer fluid from 105 F down to 40 F or slightly below, having 

a freezing point of 32 F.  This regenerator would reject heat via heat exchanger 34, and 

absorb heat from heat exchanger 150 and 32.  Glycol or another fluid with a much lower 

freezing point would operate between 45 F and -10 F, would reject heat to the water-

containing regenerator via heat exchanger 150, and would absorb heat from heat 

exchanger 33.  In order to cool a fresh food compartment down to 35 F, the warmer 

regenerator section would likely need a small amount of freezing point suppression, but 

could still reap many of the same rewards as can be found with pure water. 
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In order to assess the improvement of a split system, a small set of case studies 

was performed as in section 4.1, but without the extensive analysis, simply to provide a 

realistic relationship between predicted costs and material variability level, to be shown 

in Figure 61.  For the example cases, channel size was restricted to 100 ݉ߤ because it 

was by far the most successful size in Chapter 4.  Length was restricted to 0.075 ݉ per 

section and the highest levels of magnetization time and flow ramp time were omitted 

because the best designs in Chapter 4 did not use the highest respective levels of each. 

Each of the two regenerator sections contains 25 stages, which maintains similar stage 

temperature spacing to Chapter 4 studies.  Otherwise, parametric levels were retained 

from Chapter 4 using zero material property variation.  The simulation tool described in 

Chapter 2 was simply run twice to account for each of the two regenerators in the split 

system.  As in chapter 4, the design parameters do not deviate substantially away from 

validated ranges.  Substantial improvements in both Carnot ratio and cooling power 

density were observed.  The coldest portion of the split system has an average cooling 

power density that is 35% lower than the warmer portion using the same design and 

operational parameters.  Ratio of Carnot COP is 20% lower for the cooler portion than 

the warmer portion.  The water-containing, warmer span, regenerator section is 

predicted to be both more efficient and more powerful than the colder regenerator 

section in this small set of example cases.  
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Figure 66:  Magnet cost function versus Carnot ratio for the colder regenerator section and colder 

regenerator section. 

Figure 66 shows a points cloud that is much less densely populated than Figure 

34, Figure 42, or Figure 47, and shows the same relationship for non-split systems 

without and with variability.  However, designs achieving more than 70% of Carnot COP 

are still present in both parts of the split regenerator system.  For the hypothetical 

system with 150 W of cooling needed, we can approximate a 50% split between the 

freezer and fresh food compartments.  Approximately half of the cooling load is used by 

the freezer compartment, and half by the fresh food compartment.  In this case only 75 

W of cooling will be necessary for the coldest portion of the split system, directly 

removing 25% of total magnetic system cost by a reduction in regenerator volume by 
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25%.  By selecting low individual designs from the points in Figure 66, a total system 

efficiency can be deduced.  First, rejected heat from each section is calculated as 

࢚࢛࢕ࡽ =
࢔࢏ࡽ

ࡼࡻ࡯
+  (50 ) ࢔࢏ࡽ

where ܳ௢௨௧ is rejected heat in Watts, ܳ௜௡ is absorbed heat in Watts, and COP is 

coefficient of performance.  ܳ௜௡ is determined by freezer cooling needs, 75 W, for the 

colder section.  For the warmer section,  

࢚࢛࢕ࡽ =
ቆ࢚࢛࢕ࡽ

ࢆࡲ
ାࡲࡲࡽቇ

ࡲࡲࡼࡻ࡯
+ ࢚࢛࢕ࡽ

ࢆࡲ
+  (51 ) ࡲࡲࡽ

where ܳ௢௨௧
ி௓

 is rejected heat from the colder section, ܳிி is fresh food cooling 

requirements, and ܱܥ ிܲி is fresh food regenerator coefficient of performance. 

Q 
HX 
(W) COP 

COP 
Carnot 

Carnot 
Ratio 

Q in 
(W) 

Q out 
(W) 

Cost 
Ftn 

($/W) 

Mag 
cost 
($) 

MCM 
cost 
($) 

Freezer 75 4.5 8.175 55% 75 91.7 1 75 14 

Fresh food 75 4.85 7.687 63% 166.7 201.0 0.5 83 16 

Total System 150 2.94 3.91 75% 150 201.0 1.06 158 29 
Table 11:  Comparison of split system performance and cost to baseline un-split systems with zero 

material variation. 

Table 11 shows the performance and cost of a split system operating at 75% of 

Carnot COP, which is only which is only $187 in estimated cost for the magnetic system 

and regenerator materials.  Adding other components brings this total $267 (Langebach 

et al., 2014).  Non-split magnetocaloric systems are more than 10 times more expensive 

than split systems with equivalent efficiency and cooling power.  The overall split system 

uses less energy than a non-split system due to the thermodynamic improvements and 

load balancing.  By running the same set of split system design points with multiple 
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levels of variation, a relationship can be shown for system magnetic and regenerator 

cost versus material variation level at 75% of Carnot COP.   

Figure 67:  System estimated cost as a function of material property variation level, including only 

magnet material and magnetocaloric material costs. 

Figure 67 shows a massive impact to cost related to material property variation, 

with diminishing returns as zero variation is approached.  Material variability inflates 

projected heat pump cost by 400%, from about $200 to $800 when comparing existing 

material variation levels to zero material property variation.  A 50% reduction in material 

properties results in 57% cost reduction.  An additional 50% reduction (25% of the 

original level) results in 29% additional reduction (70% total reduction from baseline).  

Most importantly the total system cost begins to approach levels that may entice 

businesses to adopt this technology.  Another cost-benefit relationship exists when 

considering the process to produce magnetocaloric material, which could conceivably 

become costlier in order to reduce property variation.  This is a separate but closing 

related issue that could be addressed with additional research. 
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Figure 67 represents only magnetic and MCM cost, but it shows that there are 

very large improvements to be made to basic systems to make them work well from a 

cost perspective.  Negative aspects of a split system relate to system complexity.  A split 

system requires a more substantial hydraulic system and an extra heat exchanger, as 

well as the hardware needed to mechanically operate 2 distinct magnetic and 

regenerative systems.  The cost and complexity addition in using a split system is likely 

overwhelmed by the cost savings.  A Loss waterfall plot puts regenerator losses into 

perspective in Figure 68. 

Figure 68:  Loss waterfall, showing power requirement additions for a Carnot cycle, heat 

exchangers, and regenerator, motor, and pump losses. 
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A split Carnot cycle operating at 0 F, 40 F, and 90 F for heat exchanger 

temperatures requires 23 W of energy input to produce 150 W of total cooling.  This 

represents the lower limit for such a system, and all components add electrical energy 

draw to the appliance by decreasing COP.  Heat exchangers add power input based on 

changes to the Carnot COP calculation; equation 32. 

࢚࢕࢔࢘ࢇ࡯ࡼࡻ࡯  =
ࢊ࢒࢕ࢉࢀ

ࢊ࢒࢕ࢉࢀି࢓࢘ࢇ࢝ࢀ
( 31) 

For example, adding a real freezer heat exchanger means that the heat pump must 

absorb heat at -10 F rather than 0 F, the freezer air temperature.  Regenerator losses 

account for over 50% of total losses in Figure 68, showing a large opportunity for further 

improvement.  A relatively high efficiency pump and motor are much smaller 

components, although still important to consider. 

6.4 – Removing Design Constraints to Reduce Cost 

A large amount of cost reduction and performance gain can likely be made by 

removing design constraints.  One such design constraint is a symmetric, or even, flow 

profile, which has typically been assumed for research.  An example of a design to 

produce uneven flow can be found in patent number US9927155B2, which discloses a 

planar rotating diverter valve for a magnetocaloric heat pump (Boeder et al., 2014).  

Other design constraints to be explored include flow profile shape, cascade Curie 

temperature profile, and cascade span (Monfared and Palm, 2015).  These all strongly 

affect efficiency and must be balanced together.  Some design constants can be made 

into functions of location, such as cross sectional area (Dall’Olio et al., 2017).  A tapered 

regenerator can provide benefits, such as having more cross sectional area on the 

regenerator hot side, where more heat must flow as compared to the cold side. 
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Other design constants that can be made into variable functions of position 

include magnetic field strength, void fraction, channel diameter, and stage spacing or 

temperature gradient.  Nearly any combination is possible assuming 3D printing will be 

used for production.  By increasing the flexibility of the design an ideal balance can be 

found for the highest possible efficiency at a reasonable cost, taking material variability 

into consideration as well. 
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7 – CONCLUSIONS AND FUTURE WORK 

7.1 - Conclusions 

Within the present work a computer model was described which was used to 

simulate magnetocaloric regenerator performance based on various design parameters.  

A large design envelope study was performed for a cooling heat pump within a 

refrigerator, with 9 input parameters at 2 or 3 levels per parameter.  The design point 

study showed maximum efficiencies of around 75% of Carnot COP measured at the 

regenerator ends.  The model was extended to include random variation in 

magnetocaloric material properties based on normal distributions and standard 

deviations for material input parameters, which allowed realistic material variation to be 

simulated.  Three levels of variation were used, based on measured data on several 

cascades of magnetocaloric material.  Lower limit performance, which is the most 

relevant output, showed a 3% drop in maximum efficiency due to material variation at 

levels measured on real material.  Maximum cooling power density also suffered a 

similar reduction. Average efficiency and cooling power density suffered a larger 

reduction, exceeding 10%.  These results expand upon work by  Lei et al. (2015) and Lei 

et al. (2016), and are largely in agreement.  For instance, the inclusion of random 

variation of materials within the study leads to some cases exceeding the highest 

performing zero variation cases, but lower limit and average performance suffer. 
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A new cost model for magnetic material and magnetocaloric material was implemented, 

showing a basic magnetocaloric system cost to be over $300, achieving equivalent 

efficiency to vapor compression systems.  Cost is projected to be greater than $1500 to 

achieve 20-30% improvements over existing technology having a single regenerator 

span.  An innovation was described to split the system into 2 sections using 2 different 

heat transfer fluids, which brings the estimated price down below $200 for the magnetic 

system and regenerator of a system 30% more efficient than vapor compression 

systems if material variation is reduced to negligible levels.  If material variability is not 

reduced, system cost exceeds $800 for a such a high efficiency system.  Other 

approaches were also described in brief to bring cost down by even more, which all fall 

under the category of future work.  In summary: 

1. Large cascades of new and existing measured material data were compiled using

existing methods to parameterize all material curves.

2. Linear functions to relate Split-Lorentzian curve parameters to material Curie

temperature were fitted to be used in simulations.

3. Using an existing simulation tool, a broad design space of magnetocaloric

regenerators were simulated, varying 9 input parameters across 2 or 3 levels each

for a refrigerator application.

4. The simulation tool was modified to generate magnetocaloric cascades of material

randomly based on new input parameters for material variation

5. Parameterized material data was used to simulate points using realistic material

variability

6. Material variability was found to reduce average performance by about 10%, as

measured by cooling power density and ratio of Carnot COP.
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7. A new function was created to estimate required magnetic mass for any arbitrary

magnetocaloric machine design based on magnetic field strength and regenerator

volume.  This is useful for future cost estimates of magnetocaloric machines.

8. A cost model was implemented, which showed that material variability inflates

projected heat pump cost by 400%, from about $200 to $800.

7.2- Future Work 

The field of magnetocalorics is open to continued research, much of it centered 

on machine design.  Complexity of these magnetocaloric systems necessitates creative 

approaches to finding designs which are robust enough to perform with real material 

variation consistently.  If computational power was limitless, a brute force approach 

would work well, simulating iterations on each design until lower limit performance 

converges.  Although this was the approach of the present work, a realistic design 

search would be exponentially larger than the present work.  More levels would be 

needed for all parameters to find an ideal design.  Therefore, there is a good opportunity 

to develop optimization strategies to allow a short path to commercialization, such as 

using genetic algorithms (Lei et al., 2015).  Future work will need to address sensitivity to 

fluctuations in absorption and rejection temperatures and pull down time, because real 

applications need to cool a load from room temperature under a variety of environmental 

conditions.  Additional work could also be done to reduce costs for machines, which in 

turn makes the technology more attractive for businesses.  This may include additional 

study of split systems and other innovative machine concepts. 
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APPENDIX I – FITTED LORENTZIAN DATA FOR LaFeSiH-1 

CASCADE 

Stage 

dT 
Peak 
(K) 

T Peak 
(K) 

HWHM 
(K) 

1 2.51 264 6.25 

2 2.42 265.5 6 

3 2.86 267.4 5.1 

4 2.6 268.7 5.65 

5 2.67 270.3 5.6 

6 2.77 271.3 5.6 

7 2.88 273.1 5.4 

8 2.76 274.8 5.35 

9 2.87 276.3 5.3 

10 2.93 276.9 5.1 

11 2.87 278.3 5.1 

12 3.01 280.1 4.9 

13 3.18 281.6 4.85 

14 3.12 283.2 4.75 

15 3.16 284.6 4.8 

16 3.21 286 4.55 

17 3.25 287.6 4.45 

18 3.36 289 4.55 

19 3.46 289.9 3.95 

20 3.24 291.8 4.45 

21 3.13 293.2 4.6 

22 3.04 294.7 4.75 
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23 3.21 296.5 4.45 

24 3.25 297.6 4.45 

25 3.24 299 4.45 

26 3.31 301 4.2 

27 3.7 302 3.7 

28 3.35 303.7 4.3 

29 3.29 305.4 4.45 

30 3.41 306.8 4.35 

31 3.45 308.3 4.15 

32 3.31 310.4 4.25 

33 3.43 314.4 3.95 
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APPENDIX II – FITTED LORENTZIAN DATA FOR LaFeSiH-2 

CASCADE 

Stage 
dT Peak 

(K) 
T Peak 

(K) 
HWHM 

(K) 

1 4.12 310.84 6.81 

2 4.76 309.84 5.34 

3 4.16 308.87 5.84 

4 4.24 307.66 6.51 

5 4.41 306.17 6.12 

6 4.79 305.18 5.36 

7 4.52 304.55 5.87 

8 4.4 303.37 5.98 

9 4.52 302.25 5.88 

10 4.05 301.36 7.14 

11 4.06 300.25 6.95 

12 3.97 299.38 6.88 

13 3.99 298.41 6.78 

14 3.68 296.78 7.81 

15 3.76 296.4 8.1 

16 4.23 295.81 6.59 

17 3.99 294.9 6.92 

18 4.18 293.79 5.56 

19 3.99 292.38 7.35 

20 4.05 290.91 7.48 

21 3.91 290.67 7.62 

22 3.96 289.64 7.59 

23 3.96 288.64 7.69 
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24 4.07 287.44 7.61 

25 3.65 286.92 7.96 

26 3.67 285.78 8.17 

27 3.62 285.01 8.51 

28 3.79 283.7 8.17 

29 3.56 282.82 8.6 

30 3.76 281.13 7.52 

31 3.58 280.05 8.32 

32 3.42 279.71 9.52 

33 3.24 278.57 10.18 

34 3.35 277.35 9.2 

35 3.2 276.34 9.08 

36 3.36 275.12 8.49 

37 3.11 274.22 9.26 

38 3.24 273.11 9.1 

39 3.24 272.01 9.23 

40 3.23 271.07 9.44 

41 3.2 269.87 9.67 

42 3.13 269.81 10.34 

43 3.13 268.86 9.81 

44 3.16 267.93 9.78 

45 3.14 266.94 9.83 

46 3.1 265.51 9.9 

47 2.91 264.61 10.11 

48 2.99 263.76 10.81 

49 2.98 262.63 10.8 

50 2.76 260.96 11.61 

51 2.76 260 11.6 

52 2.64 259.37 11.53 

53 2.73 258.04 11.85 

54 2.73 257.01 11.91 

55 2.66 255.74 12.01 

56 2.58 254.47 12.03 
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APPENDIX III – LIST OF ACRONYMS 

AMR:  Active magnetocaloric regenerator 

COP:   Coefficient of performance 

MCM:  Magnetocaloric material 

MCE:  Magnetocaloric effect 

FOPT:  First order phase transition 

SOPT:  Second order phase transition 

HWHM:  Half width at half max 

FWHM:  Full width at half max 
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