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ABSTRACT 

TOBACCO-DERIVED ALDEHYDES: PLATELET ACTIVATION, THROMBOSIS, 

AND THE ROLE OF TRPA1 

Andre Dwyane Richardson 

November 12, 2019 

 

Cigarette smoking is the single largest risk factor for cardiovascular 

disease (CVD) pathophysiology. Numerous researchers have shown potential 

associations between aldehydes in tobacco-derived aerosols from mainstream 

cigarette smoke (MCS) or electronic cigarettes (e-cigs) and their cardiotoxicity by 

damaging blood vessel endothelium. The severity of exposure to these toxicants 

can furthermore lead to adverse cardiovascular outcomes such as myocardial 

infarctions, stroke, coronary and peripheral artery disease, or atherosclerosis due 

to blood clots, a pro-thrombotic event. However, the mechanisms by which levels 

of harmful and potentially harmful constituents (HPHCs) such as aldehydes 

induce thrombosis are not well-known. Of specific interest, evidence has shown 

that smoke exposure enhances platelet sensitivity and activation. Thus, the 

purpose of this project is to examine the effects of exposure to MCS, e-cigs, as 

well as their constituent saturated and unsaturated aldehydes, and flavoring 

additives on platelet activation as a marker of thrombosis. 

  



vi 
 

TABLE OF CONTENTS 

PAGE 

ACKNOWLEDGMENTS ……………………………………………………………….iii 
DEDICATION…………………………………………………………………………...iv 
ABSTRACT ……………………………………………………………………………...v 
LIST OF FIGURES…………………………………………………………………….viii 
 

CHAPTER 1: INTRODUCTION………………………………………………………..1 

 1.A. Cardiovascular Disease & Tobacco Smoking…………………………..1 

 1.B. The Prevalence of Electronic Cigarettes………………………….…….2 

 1.C. Toxicity of Tobacco-Derived Aldehydes and Flavors………………….4 

  1.C.i. Formaldehyde………………………….…………………………5 

  1.C.ii. Acetaldehyde…………………………………………………….5 

  1.C.ii. Acrolein…………………………………………………………...5 

  1.C.iv. Crotonaldehyde…...…………………………………………….6 

  1.C.v. E-Cig Flavoring Additives……………….………………………7 

 1.D. Pathophysiology of Platelet Activation/ Thrombosis…………………...8 

 1.E. Importance of Study…………………………..…………………………...9



vii 
 

  Hypothesis and Aims…………………………………..……………….9 

 1.F. Summary…………………………………………………………………..10 

CHAPTER 2: METHODS AND MATERIALS……………………………………….11 

 2.A. Platelet Aggregometry Assay…………………………………………...11 

 2.B. Flow Cytometry…………………………………………………………...13 

CHAPTER 3: RESULTS………………………………….…………………………..20 

CHAPTER 4: DISCUSSION & CONCLUSION……………………………………..47 

 4A. Platelet Aggregometry Data Interpretation……………………………..47 

 4.B. Flow Cytometry Data Interpretation…………………………………….50 

CHAPTER 5: FUTURE DIRECTIONS………………………………………………52 

REFERENCES…………………………………………………………………………55 

APPENDICES……………………………...……….……………………………….…61 

 Abbreviations…………………………………………………………………..61 

 Sources of Funding……………………………………………………………63 

CURRICULUM VITAE………………………………………………………………...64

  



viii 
 

LIST OF FIGURES 

FIGURE                                                                                                         PAGE 

1. E-cig inhalation exposure system………………………………………………..16 

2. Aldehyde inhalation exposure system…………………………………………..17 

3. Concentration-dependent effects of vegetable glycerin-derived acrolein on 

ADP-induced platelet aggregation………………………… ……………………21 

4. Concentration-dependent effects of clove oil-derived eugenol on ADP-

induced platelet aggregation……………………………………………………..23 

5. Concentration-dependent effects of cinnamon-derived cinnamaldehyde on 

ADP-induced platelet aggregation……………………………………………….25 

6. Effect of vanilla-derived vanillin on ADP-induced platelet aggregation……...26 

7. Effect of mint-derived menthol on ADP-induced platelet aggregation……….28 

8. Effects of acute MCS exposure on PLAs in male mice …………………..…..30 

9. Effects of acute e-cig exposure on PLAs in male mice ……………………….32 

10. Effects of acute formaldehyde (2 ppm) exposure on PLAs in male mice…...34 

11. Effects of acute formaldehyde (5 ppm) exposure on PLAs in male mice……35 

12. Effects of acute (2-wk) formaldehyde (5 ppm) exposure on PLAs in male 

mice…………………………………………………………………………………36 

13. Effects of acute formaldehyde (2 ppm) exposure on PLAs in female mice…38

14. Effects of acute formaldehyde (5 ppm) exposure on PLAs in female mice…39 



ix 
 

15. Effects of acute acetaldehyde (5 ppm) exposure on PLAs in male mice……41 

16. Effects of acute (2-wk) acetaldehyde (5 ppm) exposure on PLAs in male 

mice…………………………………………………………………………………42 

17. Effects of acute acetaldehyde (5 ppm) exposure on PLAs in female mice….44 

18.  Effects of acute or chronic crotonaldehyde exposure in male mice…….......46 



1 
 

CHAPTER 1: 

INTRODUCTION 

 

1.A. Cardiovascular Disease (CVD) & Tobacco Smoking 

Cardiovascular diseases are a collective of pathological changes involving 

the structure and function of the heart and/or the blood vessels [1], and CVD are 

a major public health concern. Coronary heart disease (CHD), a type of CVD, is 

most prominently caused by atherosclerosis that occurs due to cholesterol and 

fatty deposits building along the arterial wall [2, 3]. This action causes plaque 

accumulation, narrowing of arteries leading to hypertension [1, 3], and thus 

increasing the risk of atherosclerosis, myocardial infarction (MI), and stroke. Also 

regarded as the leading death causing disease in the U.S. as well as worldwide 

[4], CVD claims more lives each year than all forms of cancer and chronic 

respiratory diseases combined and also accounts for approximately 610,000 

related deaths every year, which is one out of every four deaths. Related to 

public health, the costs associated with CVD total more than $316 billion in 

health expenditures and lost productivity and is expected to rise to >$1 trillion 

dollars by the year 2030 [4]. These statistics demonstrate the severity of CVD as 

both significant health and financial concerns for the public.
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As noted by the Centers for Disease Control and Prevention (CDC) and 

the American Heart Association (AHA), smoking harms nearly every organ of the 

human body, causing many diseases, and significantly reducing an individual’s 

overall health with chronic use as well as to those around them due to 

secondhand smoke exposure [5-8]. Smoking is reported as the leading 

preventable cause of severe illnesses and premature death in the U.S. [9, 10]. 

Smoking contributes to more than 440,000 deaths each year, accounting for 30% 

of CVD-related deaths in the U.S.  

Tobacco smoking exacerbates plaque build-up along blood vessel walls 

[11] as a result of the tobacco-derived chemical constituents causing 

hypercoagulability in the blood and platelets to activate. This leads to formation 

of a thrombus within the vessels. This pathophysiologic outcome manifests in the 

form of MI, stroke, and thrombosis. Moreover, stroke alone is characterized as an 

impairment of cerebral cognition and function due to lack of blood reaching the 

brain [12]. It has been reported that current smokers are at a significantly higher 

risk of stroke compared with individuals who have never smoked or are former 

smokers [13-16].  

 

1.B. The Prevalence of Electronic Cigarettes 

Smoking devices such as electronic cigarettes (e-cigs) impose a new 

threat to public health and have been linked to increased risk of developing CVD-

related illnesses [17, 18]. In the U.S., the development of “next-generation” e-cigs 

in 2007 has prompted a completely different public health burden. Conventional 
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tobacco usage was at a decline, but an increased use of e-cigs was observed 

with an initial claim that these were a healthier substitute [19, 20]. Compared with 

conventional tobacco products, e-cigs are considered electronic nicotine delivery 

systems (ENDS) since these do not typically contain tobacco [21]. These 

products are marketed specifically towards youth and young adults. The concern, 

however, is that by using these products, the potential for renormalizing use of 

conventional tobacco products is increased as well as CVD-risk [19]. The 

common misconception is that e-cigs are less toxic because they contain far less 

non-carcinogenic ingredients and do not produce highly toxic aerosols compared 

with those of conventional cigarettes [22]. Conventional tobacco cigarettes 

contain hundreds of ingredients (e.g. nicotine and cardiotoxic heavy metals), and 

during combustion, the smoke that is generated consists of a complex mixture of 

more than 7,000 toxic chemical constituents (e.g. aldehydes, polycyclic aromatic 

hydrocarbons, carbon monoxide, oxidants, ammonia, and tar) [23]. 

Approximately 70 of the known constituents of these products are known 

carcinogens and/or are poisonous [23]. On the other hand, e-cigs contain e-

liquids with the following ingredients: propylene glycol (PG), vegetable glycerin 

(VG), nicotine, and various flavoring additives [24]. Around the time e-cigs were 

introduced, these e-liquids were thought to be nontoxic because either they did 

not contain toxic byproducts or they did not produce these toxins at levels near 

those present in or derived from tobacco combustion [25-27]. However, Sassano 

et al. showed that chemicals in e-liquids do have toxic effects by negatively 
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affecting cell viability [27]. Additionally, nicotine is an addictive substance with 

severe health risks [28, 29].   

 

1.C. Toxicity of Tobacco-Derived Aldehydes and Flavors 

In a conventional tobacco cigarette, smoke generated by combustion 

contains toxic reactive aldehydes, specifically formaldehyde, acetaldehyde, 

acrolein, and crotonaldehyde. These are also known as harmful or potentially 

harmful constituents (HPHCs) [30].  On the other hand, when taking a puff from 

an e-cig, the e-liquids are then heated and generate an aerosol containing the 

same toxic reactive aldehydes as a result of a thermal dehydration reaction of the 

e-liquids [31]. Although acrolein and crotonaldehyde are not typically produced in 

e-cig aerosols, or produced at much lower levels compared with conventional 

tobacco smoke, there are proposed mechanisms by which PG/VG produces 

these unsaturated aldehydes as well [32]. VG produces acrolein, the simplest 

unsaturated aldehyde [32, 33]. PG generates saturated aldehydes such as 

formaldehyde, acetaldehyde, and propionaldehyde [32, 33]. Varying 

concentrations of these aldehydes are generated depending on the e-cig battery 

voltage [31, 34]. Furthermore, the various concentrations of aldehydes in e-cig 

aerosols are associated with a number of cardiovascular risks such as cardiac 

oxidative stress, DNA damage in bone marrow, increased platelet counts, and 

increased blood coagulation via platelet activation [35]. Acrolein, a common air 

pollutant, specifically has certainly been associated with increased CVD-risk [36, 

37] and has been shown to increase thrombosis activate hemostasis via platelet 
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activation [38],  promote platelet-leukocyte aggregate formation and also forms 

adducts with platelets [38], though the mechanism is unclear. Although many 

health implications have been discussed concerning aldehydes derived from e-

cig vaping, there is not a clear, defined relationship between the toxic aldehydes 

and the risk these impose on CVD. 

1.C.i. Formaldehyde: 

Formaldehyde is the simplest aldehyde and is gaseous at room 

temperature; it is colorless with a pungent, irritating odor. According to the 

National Toxicology Program (NTP), formaldehyde is a known human carcinogen 

[39]. In terms of the cardiotoxic effects that are associated with formaldehyde 

exposure, it has been shown that high levels of formaldehyde induce 

vasopressor effects in anesthetized rats, or an increase in blood pressure as a 

result of a blood vessel undergoing contraction [40]. Conversely, lower levels of 

formaldehyde in rats result in hypotension [40].  

1.C.ii. Acetaldehyde: 

According to the NTP, acetaldehyde is a reasonably anticipated human 

carcinogen [41]. It has also been shown that acetaldehyde induces hypertension 

at high concentrations (≥3.0 µg/mL) in inhalation-exposed rats [42]. Similar 

results are observed when acetaldehyde is administered via intraperitoneal 

injection (5-20 mg/kg) with a decrease in heart rate [43-45].  

1.C.iii. Acrolein: 
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 Acrolein is a well-researched environmental toxicant and air pollutant 

which is generated as a result of burning and high temperature fumes [46, 47]. 

Acrolein, which can also be generated from VG degradation, is an α,β-

unsaturated aldehyde, a known eye irritant, a respiratory and cardiovascular 

toxicant [46], and a major constituent of cigarette smoke [48].  Acrolein also 

induces vasopressor effects as demonstrated by Egle et al. 1974 in their study of 

intravenously-injected rats. While acrolein up to 0.25 mg/kg caused rapid 

hypertension [40], hypotension resulted from exposure at higher levels (>0.25 

mg/kg) [40]. Exposure to acrolein via inhalation exposure also causes high blood 

pressure [40]. 

1.C.iv. Crotonaldehyde: 

Crotonaldehyde is an α,β-unsaturated aldehyde with a pungent, 

suffocating odor. Inhaled crotonaldehyde is toxic at low concentrations and 

causes irritation within the upper respiratory tract [49].  The Occupational Safety 

and Health Administration (OHSA) imposed a 2 ppm exposure limit to 

crotonaldehyde over an eight-hour workshift, but levels between 0.035 ppm and 

0.12 ppm induce toxicity [50]. Although much remains unknown about the 

cardiotoxicity associated with crotonaldehyde exposures, we hypothesize that 

this compound could potentially induce vasopressor effects in a similar fashion 

as acrolein due to their similarities in their chemical structures.  

For the purpose of this research, we will study formaldehyde, 

acetaldehyde, acrolein, and crotonaldehyde as these are the foremost toxic 

aldehydes present in tobacco and e-cig aerosols, and thus, may contribute to 



7 
 

CVD-risk and noncancerous pulmonary disease. In our preliminary studies, we 

tested the effects of aldehyde exposure on platelet aggregation ex vivo as well as 

on platelet-leukocyte aggregate (PLA) formation in vivo. 

1.C.v. E-Cig Flavoring Additives: 

 Today, the craze surrounding the e-cig market is the development and 

usage of flavorings. A variety of flavorings such as clove oil, cinnamon, vanilla, 

and mint allow e-cigs users to choose a desired sweetener for consumption. 

When heated using an e-cig, the chemical products (e.g. eugenol, 

cinnamaldehyde, vanillin, and menthol) may exacerbate CVD-risk [33]. This 

alone creates new alarms in that flavorings may contribute to adverse 

cardiovascular outcomes. A study published in 2018 revealed a remarkable 

finding that in fact nine flavoring products induce cardiotoxicity via endothelial cell 

dysfunction [51]. Fetterman et al. exposed human aortic endothelial cells to nine 

different flavoring compounds and found that these flavors induced dysfunction to 

the endothelium via cell death, oxidative stress, increased inflammation, and 

decreased nitric oxide (NO) production [51]. NO is well known to inhibit platelet 

activation [52-55], suggesting if NO is diminished due to flavoring exposure, the 

likelihood of platelet activation is significantly increased [56]. However, this idea 

that flavors induce platelet activation has yet to be fully investigated. In our 

preliminary study, we tested the effects of e-cig flavorings on adenosine 

diphosphate (ADP)-induced biphasic platelet aggregation ex vivo (see Materials 

& Methods). 
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1.D. Pathophysiology of Platelet Activation/Thrombosis 

Platelets are small (2-3 µm in diameter) circulating fragments of 

megakaryocytes in the blood that play an important role in hemostasis, 

thrombosis, and inflammation [57]. Platelets aid in maintaining vascular integrity 

within an injured blood vessel via forming adducts with leukocytes, thus creating 

clots [57, 58]. Quiescent platelets circulate throughout the vasculature until 

recruited to sites of vascular injury or damage, where they become activated [57]. 

Once activated, platelets undergo an initial shape change and secrete their α-

granule and dense granule contents via exocytosis or granule secretion. When 

this occurs, a number of catecholamines (e.g. adenosine diphosphate (ADP), 

adenosine triphosphate (ATP), serotonin, histamine, and calcium [59]) are 

released into circulation and bind to surface receptors of other nearby platelets 

[60]. This initiates a cascade of signaling mechanisms, platelet activation, and 

aggregation ultimately leading to formation of a platelet plug, preventing further 

bleeding and/or hemorrhaging. 

Thrombosis is described as the formation of a thrombus, or clot. Deep 

vein thrombosis (DVT), venous thromboembolisms, and pulmonary embolisms 

are all influenced by platelet aggregates. It is well known that smoking is a risk 

factor for the development of thrombosis. As demonstrated by Morris et al. and 

other investigators, traditional cigarettes and e-cig smoking strongly impacts the 

turnover, structure, activation, and function of platelets [17, 61]. Each of these 

pro-thrombotic actions contribute to CVD-related morbidity and mortality. 
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1.E. Importance of Study 

Hypothesis: Tobacco-derived constituents induce platelet activation as 

observed by potentiated biphasic platelet aggregation ex vivo and increased 

platelet-leukocyte aggregate (PLA) formation in vivo.  

Aim 1: Test the concentration-dependent influence of tobacco-derived 

acrolein and flavorings on phase-specific ADP-induced platelet aggregation. 

Aim 2: Examine the level- and duration-dependent effects of exposure to 

mainstream cigarette smoke (MCS), e-cig aerosol, and aldehydes on PLA 

formation. 

Exposure to acrolein activates hemostasis and pro-thrombotic events via 

platelet activation. Exposure to acrolein from smoking induces the formation of 

PLAs and also forms adducts with the platelets themselves [38], though the 

mechanism is unclear. Thus, we aim to determine the specific contribution of 

aldehydes and flavorings in smoking products to platelet activation in order to 

better define the relationship between these toxins and CVD-risk. Platelets 

undergo a cascade of events following activation (e.g. adhesion, aggregation, 

and complex formation with leukocytes leading to platelet plug formation), and 

these could all be influenced by interaction with inhaled tobacco constituents. 

Platelet adhesion is the first action of platelet activation upon blood vessel injury 

involving platelet surface receptor protein interactions with collagen in the sub-

endothelium [62]. Platelet aggregation is the second action of platelets following 

release of granules and catecholamines in order to form clots [63], addressed in 

the first specific aim. PLAs are those complexes formed with leukocytes upon 
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adhesion and aggregation at the site of blood vessel injury [38, 58, 64], 

addressed in the second specific aim. Each specific aim is significant in that they 

will help to better define the mechanism of tobacco smoke-induced 

cardiovascular toxicity, specifically regarding platelet activation. Furthermore, we 

aim to determine the levels of aldehyde- and flavor-containing aerosols capable 

of inducing unwarranted thrombotic events. 

 

1.F. SUMMARY 

We are proposing that cigarette smoke and vaping exposure induces 

cardiotoxicity via platelet activation. Taken together, the results of this proposed 

preliminary research will help our understanding of these tobacco products and 

how they potentially threaten cardiovascular health. Since the development of e-

cigs, there is an urgent need to address the potential cardiotoxic outcomes that 

may result from using these products. Many researchers have addressed 

carcinogenic and pulmonary outcomes from using e-cigs [65-68], however, more 

research is needed to gain knowledge about the cardiovascular-related 

outcomes, adding to the significance and impact of this research.
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CHAPTER 2: 

MATERIALS & METHODS  

 

2.A. ADP-induced Platelet Aggregation in vitro via Platelet Aggregometry 

Assay: 

The dynamism of platelets has long been studied via a number of different 

platelet function assays and methodologies [69]. The platelet aggregometry 

assay is the most widely accepted, gold standard platelet function assay that 

utilizes human platelet rich plasma (PRP) of whole blood. This method measures 

the ability of different stimuli to induce platelet-platelet aggregation ex vivo. 

Using the ex vivo platelet aggregometry assay, the direct effects of the 

various concentrations of acrolein and e-cig flavoring compounds on ADP-induced 

platelet aggregation were assessed. Human biorepository blood were collected in 

top citrate tubes. Human PRP was be obtained via centrifugation (180 xg, 12 min) 

of whole blood for use in this assay. A ChronoLog aggregometer was used to 

measure aggregation photometrically post-ADP induction over five minutes. Fifty 

microliters of PRP were used to obtain a platelet count. The remaining blood was 

centrifuged again for 20 minutes at 1,300 xg in order to obtain the platelet poor 

plasma (PPP) used as a reference sample in each experiment. Additionally, we 

wanted the platelet concentration of PRP to be 3.00 x 108 plt/mL. From the platelet
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counts, if the concentration was above this limit, we used the PPP to dilute the 

PRP using the equations below: 

 

[𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡 𝑖𝑛 𝑃𝑅𝑃] 𝑥 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑅𝑃 (𝑚𝐿)

[𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡 𝑖𝑛 𝑃𝑅𝑃]

= 𝐹𝑖𝑛𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑅𝑃  (𝑚𝐿) 

 

𝐹𝑖𝑛𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑅𝑃 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑅𝑃

= 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑃𝑃 𝑡𝑜 𝑎𝑑𝑑 𝑡𝑜 𝑃𝑅𝑃 𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 3.00 ∗ 108
𝑝𝑙𝑡

𝑚𝐿
 

 

Following this procedure, varying concentrations (10, 30, 300, and 100 µM) of 

acrolein along with 10, 25, 50, and 100 µM concentrations of e-cig flavoring 

additives (eugenol, cinnamaldehyde, vanillin, and menthol) were tested to observe 

their effects on ADP-induced platelet aggregation using the aggregometer. Three 

hundred fifty microliter aliquots of PRP were placed into sample cuvettes within 

each of the four channels of the aggregometer and incubated for five minutes at 

37 ºC with continuous stirring at 1,000 rpm. Next in the test/control run, the 

aggregation response of the platelets with ADP (2.5 or 10 µM) were observed.  

ADP was added to each sample, and we monitored and calculated the 

biphasic aggregation responses as phase 1 and phase 2 for an additional five 

minutes. Again, at resting state, our platelets were incubating with our 
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constituent/chemical of choice for five minutes. Once ADP was added, it initiated 

a shape change followed by the phase 1 response solely due the stimulant. During 

phase 1, the alpha and dense granules are secreting, and the secondary response 

is being amplified due to other platelets becoming activated and starting to 

aggregate together, which is the phase 2 response. We recorded total aggregation, 

phase 1 and phase 2 as percentages using the equation below. 

 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 (%) = 𝑃ℎ𝑎𝑠𝑒 1 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 (%) + 𝑃ℎ𝑎𝑠𝑒 2 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 (%) 

 

In each of the following sample runs, each channel contained either ADP alone 

(positive control), ADP with acrolein, or ADP with an e-cig flavorant. We 

hypothesized that the compounds in question would enhance the sensitivity of the 

platelets directly.  

Statistical Analysis: 

Data analysis was performed using a paired Student’s t-test in order to evaluate 

and compare differences in the mean percent responses of total, phase 1, and 

phase 2 aggregation of acrolein or flavorings with respect to control (ADP-only). 

Statistical significance was accepted at p<0.05. 

 

2.B. Platelet-Leukocyte Aggregates (PLA) in vivo via Flow Cytometry:  

2.B.i. Mice Inhalation Exposure System: 
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As described by Conklin et al. 2017 [70], we obtained C57BL/6J male and 

female mice from Jackson Laboratories and used them at 12 weeks of age. The 

mice were housed under pathogen-free conditions in the University of Louisville 

vivarium under controlled temperature and 12 h light: 12 h dark cycle. For the 

exposure system, the mice were exposed to either HEPA-filtered air (control) or 

aldehyde (specified aerosol, concentration, and duration of exposure) using a 

custom exposure system and certified permeation tubes as described by O’Toole 

et al. 2014 [71]. Immediately after completion of final exposure, the mice were 

anesthetized with sodium pentobarbital (150 mg/kg) followed by ventral 

thoracotomy and exsanguination via cardiac puncture for blood collection in 

EDTA (0.2 M; 20 µL)-coated syringes (22G in diameter). The blood was 

transferred into in EDTA coated microcentrifuge tubes and kept on ice until 

aliquotted for plasma, CBC, or for preparation of flow cytometry analysis. We 

also performed CBC and looked at platelet numbers and platelet volume. 

2.B.ii. Mainstream Cigarette Smoke and E-Cig Aerosol: 

Adult C57BL/6 male mice underwent an acute (6h/d, 4d) whole body 

exposure to HEPA-filtered air (control), mainstream cigarette smoke (MCS; 3R4F 

reference cigarettes; 12 cig/d) or e-cig aerosol (blu+; 6 h/d, 4d) via inhalation 

(see Figure 1). As detailed by Conklin et al. 2018, a software-controlled 

(FlexiWare) cigarette-smoking robot (CSR) (SCI-REQ; Montreal, CAN) system 

was used to generated cigarette smoke aerosols from KY Reference cigarettes 

(3R4F) and e-cig cartridges (blu®) [32]. Our MCS exposure followed the 

International Standard of Organization (ISO) protocol (i.e. 2 s puff, 35 mL puff, 1 
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puff/min, 9 puffs/cigarette, 2 cigarettes/h) [32]. Our e-cig exposure consisted of 

13 e-cig sessions per 4h exposure. Each session (9 min; same duration as 1 

cigarette) had 18 puffs (4 s puff, 91 mL puff, 2 puffs/min) [32]. After the final 

exposure, the mice were immediately euthanized and peripheral blood collected 

and used in flow cytometry to detect CD45+/CD41+ PLAs. 

 

2.B.iii. Aldehyde exposures:  

C57BL/6 male and female mice were placed into a sealed chamber which 

allowed for an aldehyde-like atmosphere for the mice to inhale during a 

continuous exposure of aldehyde for a specified duration (see Figure 2). Control 

mice were placed into similar chambers in which they were exposed to HEPA-

filtered air. 

2.B.iv. Statistical Analysis: 

Data are reported as mean ± standard error. For statistical comparison 

between two groups, the Mann-Whitney U test was used. Significance was 

accepted where p<0.05.  
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Figure 1. E-cig inhalation exposure system. The pump draws out vapor from the 
e-cig and transfers the vapor into the exposure chamber in which the C57BL/6 
male mice are contained during exposure. The MCS exposure has a similar set up 
for transferring smoke to mice in the exposure chamber, but MCS exposure 
involves 12 3R4F reference tobacco cigarettes following ISO protocol (i.e., 2 s puff, 
35 mL puff, 1 puff/min, 9 puffs/cigarette; 2 cigarettes/h [32]. The total suspended 
particulate (TSP) matter was monitored in real time with an inline infrared forward 
scattering monitor (MicroDust Pro; Casella CEL Ltd., Bedford, UK). 
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Figure 2. Aldehyde inhalation exposure system. C57BL/6 male or female mice are 
placed inside a sealed exposure chamber. Steady, continuous 6h flow of aldehyde 
gas is pumped via certified permeation tubes (Kin-Tek; LaMarque, TX) into the 
chamber per specified duration in each study [71, 72]. During exposure, aldehydes 
are monitored continuously with an in-line calibrated photoionization detector (PID; 
ppbRAEPlus, Rae Industries, Sunnyvale, CA) [72]. 
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2.B.v. Formaldehyde:  

 Adult male and female C57BL/6 mice underwent an acute (6h/d, 4d or 

2wk) exposure to HEPA-filtered air (control) or formaldehyde (2 or 5 ppm) via 

inhalation. After the final exposure, the mice were immediately euthanized and 

peripheral blood collected and used to detect CD45+/CD41+ PLAs by flow 

cytometry. 

2.B.vi. Acetaldehyde:  

Adult male and female C57BL/6 mice underwent an acute exposure (6 

h/d, 4d or 2wk) exposure to HEPA-filtered air (control) or acetaldehyde (5 ppm) 

via inhalation. After the final exposure, the mice were immediately euthanized 

and peripheral blood collected and used to detect CD45+/CD41+ PLAs by flow 

cytometry. 

2.B.vii. Crotonaldehyde:  

Adult male and female C57BL/6 mice underwent an acute (6h/d, 4d) or 

chronic (12wk, 6h/d) exposure to HEPA-filtered air (control) or crotonaldehyde (1 

ppm) via inhalation. After the final exposure, the mice were immediately 

euthanized and peripheral blood collected and used to detect CD45+/CD41+ 

PLAs by flow cytometry.  

Activated platelets not only bind to endothelium and to other platelets, but 

they also bind to leukocytes [58, 64, 73]. PLAs are one of the in vivo markers of 

thrombosis. As previously described by Sithu et al. [38], the PLAs were quantified 

as events double positive for CD41 (platelets) and CD45 (leukocytes) by flow 
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cytometry. For this, 100 microliter aliquots of male or female mouse whole blood 

were diluted with 400 µL of HEPES-Tyrodes solution before being fixed using 

16% paraformaldehyde (50 µL) at room temperature for 30 minutes.  Red blood 

cells were then lysed by dilution with milliQ water (2 mL), and the lysed cells 

were collected by centrifugation at 400 x g for five min then decanted.  The 

remaining cells were incubated (4 ºC) with 1% Fc Block (5 µL) for 10 min before 

staining with FITC-labeled anti-CD41 and APC-labeled anti-CD11b or isotype 

matched negative controls (FITC IgG1 and APC IgG2b kappa) for additional 30 

min.  Stained cells were washed with HEPES-Tyrodes (1 mL) solution containing 

1% BSA, centrifuged at 400 x g for five minutes and resuspended in HEPES-

Tyrodes solution (250 µL).  A BD LSR Flow Cytometer (BD Biosciences; San 

Jose, CA) was used to analyze the stained cells, and 20,000 CD45+ events were 

collected from each sample. A FlowJo v10 (FlowJo, LLC) software was used to 

gate for our PLAs.  We began with gating for our CD45+ leukocytes using side 

scatter. Then, the IgG negative control assisted in determining where to place the 

CD41+ platelet gate. Thus, our PLAs were identified in quadrant 2 (Q2).
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CHAPTER 3: 

RESULTS 

 

3.A. Direct effect of acrolein on ADP-induced phase 1 and phase 2 

aggregation ex vivo. The current study explores the biphasic platelet 

aggregation responses to concentration-dependent acrolein exposure. Sithu et 

al. completed a study in which mice were fed acrolein (1-5 mg/kg/day) for 1-3 

days, and their blood collected and pooled to measure ADP-induced platelet 

aggregation. They found that acrolein augmented ADP-induced aggregation [74]. 

The present study solely explores direct exposure of acrolein to human platelets. 

Our data shows acrolein has no effect ADP-induced total aggregation, which has 

been previously published [75]. Furthermore, only low concentrations of acrolein 

(10 and 30 µM) induce a decrease in phase 1 and an increase in phase 2 

aggregation (Figure 3).
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Figure 3. Concentration-dependent effects of vegetable glycerin-derived acrolein 

on ADP-induced platelet aggregation. A) Acrolein (10 µM) and ADP (2.5 µM) 

tested versus ADP-alone control; B) Acrolein (30 µM) and ADP tested versus 

ADP-only control. Arrows indicate the inflection point between phase 1 and 

phase 2 aggregation. C) Summary data of concentration-dependent effects of 

acrolein on ADP-induced platelet aggregation. Using a paired Student’s t-test, 

the percent responses of total, phase 1, and phase 2 aggregation of acrolein 

were compared with respect to their control. Statistical significance was accepted 

where p<0.05. This study only found biphasic changes at 10 µM and 30 µM 

concentrations compared with control.  

A. B. 

C. 
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3.B. Direct effect of clove oil-derived eugenol on ADP-induced phase 1 and 

phase 2 platelet aggregation ex vivo. We are interested in how flavors from 

vaping may influence pro-thrombotic events. A study by Muthumalage et al. 2017 

investigated respiratory outcomes associated with exposure to different e-cig-

derived flavoring compounds, without the presence of nicotine [76]. Though 

ingestion of these flavorings is potentially safe, the study revealed that 

consumption of flavors via inhalation is not recommended. We hypothesized that 

direct exposure to eugenol (clove oil) induces significant changes in biphasic 

platelet aggregation ex vivo. We found that eugenol exhibited anti-

platelet/inhibitory responses at each concentration tested (Figure 4). 
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Figure 4. Concentration-dependent effects of clove oil-derived eugenol on ADP-
induced platelet aggregation. A) Eugenol (10 µM) and ADP (10 µM) tested versus 
ADP-alone control; B) Eugenol (100 µM) and ADP tested versus ADP-only control. 
Arrows indicate the inflection point between phase 1 and phase 2 aggregation. C) 
Summary data of concentration-dependent effects of eugenol on ADP-induced 
platelet aggregation. Using a paired Student’s t-test, the percent responses of total, 
phase 1, and phase 2 aggregation of eugenol were compared with respect to their 
control. Statistical significance was accepted where p<0.05. This study found 
significant inhibition at each concentration compared with control. However, no 
change in phase 1 was observed.  

C. 

A. B. 
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3.C. Direct effect of cinnamon- and vanilla-derived cinnamaldehyde and 

vanillin on ADP-induced phase 1 and phase 3 platelet aggregation ex vivo. 

Muthumalage et al.  2017 also found that e-cig-derived cinnamaldehyde and 

vanillin were the two most toxic compounds, causing both inflammatory and 

oxidative responses in vitro [76]. The present study investigates these two flavoring 

compounds known to induce some cardiovascular-related events. We 

hypothesized that direct exposure to eugenol (clove oil), cinnamaldehyde 

(cinnamon), vanillin (vanilla), or menthol (mint) induces significant changes in 

biphasic platelet aggregation ex vivo. We found that cinnamaldehyde (Figure 5) 

and vanillin (Figure 6) exerted no effects on ADP-induced biphasic platelet 

aggregation. 
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Figure 5. Concentration-dependent effects of cinnamon-derived cinnamaldehyde 
on ADP-induced platelet aggregation. A) Cinnamaldehyde (10 µM) and ADP (10 
µM) tested versus ADP-alone control; B) Cinnamaldehyde (100 µM) and ADP 
tested versus ADP-only control. Arrows indicate the inflection point between 
phase 1 and phase 2 aggregation. C) Summary data of concentration-dependent 
effects of cinnamaldehyde on ADP-induced platelet aggregation. Using a paired 
Student’s t-test, the percent responses of total, phase 1, and phase 2 
aggregation of cinnamaldehyde were compared with respect to their control. 
Statistical significance was accepted where p<0.05. No significant changes were 
detected. 

B. A.

. 

C.

. 
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Figure 6. Effect of vanilla-derived vanillin on ADP-induced platelet aggregation. 
A) The representative curve indicating vanillin (100 µM) and ADP (10 µM) tested 
versus ADP-alone control. Arrows indicate the inflection point between phase 1 
and phase 2 aggregation. B) Summary data of effect of vanillin on ADP-induced 
platelet aggregation. Using a paired Student’s t-test, the percent responses of 
total, phase 1, and phase 2 aggregation of vanillin were compared with respect to 
their control. Statistical significance was accepted where p<0.05. No significant 
changes were detected. 

  

A.

. 

B.

. 
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3.E. Direct effect of mint-derived menthol on ADP-induced phase 1 and 

phase 2 platelet aggregation. The present study investigates menthol flavoring, 

known to induce some cardiovascular-related events. Ciftçi et al. 2009 evaluated 

cardiovascular outcomes associated with menthol (mentholated) tobacco 

cigarettes in humans [77]. They found that mentholated cigarettes worsened 

cardiovascular outcomes compared with non-mentholated cigarettes as 

demonstrated by impaired ventricular diastolic function, exacerbated heart rate 

(101.2 bpm compared with 83 bpm), increased in systolic blood pressure (130.7 

mmHg compared with 118.0 mmHg), and increased stiffness of the carotid artery 

(index of 5.7 compared with 2.2) [77]. We hypothesized that direct exposure to 

menthol induces significant changes in biphasic platelet aggregation ex vivo. We 

found that menthol exerted no effects on ADP-induced biphasic platelet 

aggregation (Figure 7).  

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Cift%C3%A7i%20O%5BAuthor%5D&cauthor=true&cauthor_uid=19717955
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Figure 7. Effect of mint-derived menthol on ADP-induced platelet aggregation. . 
A) The representative curve indicating menthol (100 µM) and ADP (10 µM) tested 
versus ADP-alone control. Arrows indicate the inflection point between phase 1 
and phase 2 aggregation. B) Summary data of effect of menthol on ADP-induced 
platelet aggregation.  Using a paired Student’s t-test, the percent responses of 
total, phase 1, and phase 2 aggregation of menthol were compared with respect 
to their control. Statistical significance was accepted where p<0.05. No significant 
changes were detected. 
  

A.

. 

B.

. 
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3.F. Effect of acute MCS exposure via inhalation on C57BL/6 male mice.  

Various physiological mechanisms have been proposed for tobacco smoke-

induced CVD. Salahuddin et al. proposed that cigarette smoke is comprised of 

oxidant gases and toxic chemicals that inevitably release and activate free radicals 

that cause oxidative stress, increase inflammation, and decrease NO production 

[78]. As a result of these effects, platelet activation and thrombosis are more likely 

to occur. With this knowledge, we hypothesized that acute exposure to MCS will 

lead to platelet activation in vivo as measured by increased formation of PLAs. To 

test this hypothesis, C57BL/6 male mice were exposed to MCS (12 cigs/d, 4d) or 

HEPA-filtered air (control; 4d, 6h/d). Immediately after final exposure, the mice 

were euthanized and their peripheral blood was collected and prepared for flow 

cytometric analyses for identification and quantification of CD45+/CD41+ PLAs. 

Our results indicate that acute exposure to MCS yielded a significant increase in 

PLA formation compared with air control (Figure 8). These data suggest that 

exposure to MCS causes platelet activation.  
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Figure 8. Effects of acute MCS exposure on PLAs in male mice. Flow cytometry 
analysis was performed in order to identify CD45+/CD41+ PLAs in 100µL male 
mouse blood following an acute 4d exposure to MCS (50% of smoke from 12-cigs 
/ 6h; n=5,5). Representative flow cytometry dot plots of (A.i) control (HEPA-filtered 
air) versus (A.ii) MCS-exposed mice are displayed. B) Summary data displays 
each individual mouse exposed to either air or MCS. PLAs are characterized as 
20,000 CD45/CD41 double positive events, located in quadrant 2 (Q2). The mice 
exposed to MCS showed significant increase in PLAs compared with control 
p=0.032 via Mann-Whitney U test.  
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3.G. Effect of acute e-cig aerosol exposure via inhalation on C57BL/6 male 

mice.  As previous mentioned and shown in Conklin et al. 2018, we know that 

MCS and e-cig aerosols have common aldehyde constituents [32]. Therefore, in 

our study, we investigated if e-cig exposure induces platelet activation in a similar 

fashion as our MCS study. We hypothesized that acute exposure to e-cig will 

lead to platelet activation in vivo as assessed by increased formation of PLAs. 

C57BL/6 male mice were exposed to e-cig aerosol (blu+; 4d, 6h/d) or HEPA-

filtered air (control; 4d, 6h/d). Immediately after the final exposure, the mice were 

euthanized, and their peripheral blood was collected and prepared for flow 

cytometric analyses of CD45+/CD41+ PLAs. Our results indicate that acute 

exposure to e-cig aerosol induced no change in PLA formation compared with air 

control (Figure 9).  
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Figure 9. Effects of acute e-cig exposure on PLAs in male mice. Flow cytometry 
analysis was performed in order to identify CD45+/CD41+ PLAs in 100µL male 
mouse blood following an acute 4d exposure to e-cig aerosol (blu+ Classic 
Tobacco; 6h/d; n=10,10). Representative flow cytometry dot plots of (A.i) control 
(HEPA-filtered air) versus (A.ii) e-cig-exposed mice are displayed. B) Summary 
data displays each individual mouse exposed to either air or e-cig aerosol. PLAs 
are characterized as 20,000 CD45/CD41 double positive events, located in 
quadrant 2 (Q2). The mice exposed to e-cig aerosol showed no difference in PLAs 
compared with control, p=0.273 via Mann-Whitney U test. 
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3.H. Effect of acute exposure to formaldehyde via inhalation on C57BL/6 

male mice.  In order to assess the effects of formaldehyde on platelet activation, 

we measured the concentration- and time-dependent exposure impacts on PLAs. 

We hypothesized that acute (4d or 2-wk) exposure to formaldehyde will induce 

platelet activation in vivo as assessed by increased formation of PLAs. C57BL/6 

male mice were exposed to formaldehyde (2 or 5 ppm; 6h/d, 4d or 2-wk) or 

HEPA-filtered air (control; 6h/d, 4d or 2-wk). Immediately after final exposure, the 

mice were euthanized and their peripheral blood was collected and prepared for 

flow cytometric analyses of CD45+/CD41+ PLAs. Our results indicate that male 

mice acutely exposed to formaldehyde (2 ppm) had no alterations in PLA 

formation compared with control (Figure 10). As Bhatnagar found that 

formaldehyde concentrations above 2 ppm increased platelet count [35], we 

hypothesized that by increasing the concentration, more PLA formation will 

result. However, treatment with a formaldehyde concentration of 5 ppm still 

exerted no change (Figure 11). However, the previous report of an increased 

platelet count resulted from a longer duration (12d) of exposure [35]. Therefore, 

we completed a two week exposure to a high concentration of formaldehyde, 

hypothesizing this would change abundance of PLAs. However, we found no 

changes in PLA formation compared with air controls (Figure 12).  
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Figure 10. Effects of acute formaldehyde (2 ppm) exposure on PLAs in male mice. 
Flow cytometry analysis was performed in order to identify CD45+/CD41+ PLAs in 
100µL male mouse blood following an acute 4d exposure to formaldehyde (6h/d; 
n=10,10). Representative flow cytometry dot plots of (A.i) control (HEPA-filtered 
air) versus (A.ii) formaldehyde-exposed mice are displayed. B) Summary data 
displays each individual mouse exposed to either air or formaldehyde. PLAs are 
characterized as 20,000 CD45/CD41 double positive events, located in quadrant 
2 (Q2). The mice exposed to formaldehyde showed no difference in PLAs 
compared with control, p=0.597 via Mann-Whitney U test. 
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Figure 11. Effects of acute formaldehyde (5 ppm) exposure on PLAs in male mice. 
Flow cytometry analysis was performed in order to identify CD45+/CD41+ PLAs in 
100µL male mouse blood following an acute 4d exposure to formaldehyde (6h/d; 
n=6,8). Representative flow cytometry dot plots of (A.i) control (HEPA-filtered air) 
versus (A.ii) formaldehyde-exposed mice are displayed. B) Summary data 
displays each individual mouse exposed to either air or formaldehyde. PLAs are 
characterized as 20,000 CD45/CD41 double positive events, located in quadrant 
2 (Q2). The mice exposed to formaldehyde showed no difference in PLAs 
compared with control, p=0.368 via Mann-Whitney U test. 
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Figure 12. Effects of acute (2-wk) formaldehyde (5 ppm) exposure on PLAs in 
male mice. Flow cytometry analysis was performed in order to identify 
CD45+/CD41+ PLAs in 100µL male mouse blood following exposure to 
formaldehyde (6h/d; n=10,10). Representative flow cytometry dot plots of (A.i) 
control (HEPA-filtered air) versus (A.ii) formaldehyde-exposed mice are displayed. 
B) Summary data displays each individual mouse exposed to either air or 
formaldehyde. PLAs are characterized as 20,000 CD45/CD41 double positive 
events, located in quadrant 2 (Q2). The mice exposed to formaldehyde showed no 
difference in PLAs compared with control, p=0.678 via Mann-Whitney U test. 
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3.I. Effect of acute exposure to formaldehyde via inhalation on C57BL/6 

female mice.  Like our previous studies, we measured the effects of 

formaldehyde exposure on PLA outcomes in female mice. We hypothesized that 

acute (4d) exposure to formaldehyde will induce platelet activation in vivo as 

assessed by increased formation of PLAs. C57BL/6 female mice were exposed 

to formaldehyde (2 or 5 ppm; 6h/d, 4d) or HEPA-filtered air (control; 6h/d, 4d). 

Immediately after final exposure, the mice were euthanized, and their peripheral 

blood was collected and prepared for flow cytometric analyses of CD45+/CD41+ 

PLAs. Our results indicate that female mice acutely exposed to formaldehyde (2 

ppm) demonstrated no alterations in PLA formation compared with control 

(Figure 13). We also increased the concentration of formaldehyde, hypothesizing 

that by increasing the concentration, more PLA formation will result. However, a 

formaldehyde concentration of 5 ppm still exerted no change in PLA abundance 

(Figure 14). Thus, there were no sex-dependent differences in PLA formation in 

response to formaldehyde exposure. 
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Figure 13. Effects of acute formaldehyde (2 ppm) exposure on PLAs in female 
mice. Flow cytometry analysis was performed in order to identify CD45+/CD41+ 
PLAs in 100µL female mouse blood following an acute exposure to formaldehyde 
(6h/d; n=8,10). Representative flow cytometry dot plots of (A.i) control (HEPA-
filtered air) versus (A.ii) formaldehyde-exposed mice are displayed. B) Summary 
data displays each individual mouse exposed to either air or formaldehyde. PLAs 
are characterized as 20,000 CD45/CD41 double positive events, located in 
quadrant 2 (Q2). The mice exposed to formaldehyde showed no difference in PLAs 
compared with control, p=0.143 via Mann-Whitney U test. 
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Figure 14. Effects of acute formaldehyde (5 ppm) exposure on PLAs in female 
mice. Flow cytometry analysis was performed in order to identify CD45+/CD41+ 
PLAs in 100µL female mouse blood following an acute exposure to formaldehyde 
(6h/d; n=6,8). Representative flow cytometry dot plots of (A.i) control (HEPA-
filtered air) versus (A.ii) formaldehyde-exposed mice are displayed. B) Summary 
data displays each individual mouse exposed to either air or formaldehyde. PLAs 
are characterized as 20,000 CD45/CD41 double positive events, located in 
quadrant 2 (Q2). The mice exposed to formaldehyde showed no difference in PLAs 
compared with control, p=0.503 via Mann-Whitney U test. 
 
  



40 
 

3.J. Effect of acute exposure to acetaldehyde via inhalation on C57BL/6 

male mice. Acetaldehyde is a metabolite of ethanol. Investigators have 

demonstrated that both compounds inhibit platelet aggregation [79, 80]. In order 

to assess the effects of acetaldehyde in PLA formation, we performed a 

concentration- and time-dependent exposure and analyzed the effects on 

formation of PLAs via flow cytometry. We hypothesized that acute (4d or 2-wk) 

exposure to acetaldehyde will inhibit platelet activation in vivo as measured by 

decreased formation of PLAs. C57BL/6 male mice were exposed to 

acetaldehyde (5 ppm; 6h/d, 4d or 2-wk) or HEPA-filtered air (control; 6h/d, 4d or 

2-wk). Immediately after final exposure, the mice were euthanized, and their 

peripheral blood was collected and prepared for flow cytometric analyses for 

identification and quantification of CD45+/CD41+ PLAs. Our results indicate that 

males acutely exposed to 5 ppm acetaldehyde yielded no change in PLA 

formation compared with air control (Figure 15). By increasing the duration of 

exposure, we were expecting to exacerbate PLA formation, but our results show 

no effect in males (Figure 16).  
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Figure 15. Effects of acute acetaldehyde (5 ppm) exposure on PLAs in male mice. 
Flow cytometry analysis was performed in order to identify CD45+/CD41+ PLAs in 
100µL male mouse blood following an acute exposure to acetaldehyde (6h/d; 
n=5,5). Representative flow cytometry dot plots of (A.i) control (HEPA-filtered air) 
versus (A.ii) acetaldehyde-exposed mice are displayed. B) Summary data 
displays each individual mouse exposed to either air or acetaldehyde. PLAs are 
characterized as 20,000 CD45/CD41 double positive events, located in quadrant 
2 (Q2). The mice exposed to acetaldehyde showed no difference in PLAs 
compared with control, p=0.056 via Mann-Whitney U test. 
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Figure 16. Effects of acute (2-wk) acetaldehyde (5 ppm) exposure on PLAs in male 
mice. Flow cytometry analysis was performed in order to identify CD45+/CD41+ 
PLAs in 100µL male mouse blood following exposure to acetaldehyde (6h/d; 
n=10,10). Representative flow cytometry dot plots of (A.i) control (HEPA-filtered 
air) versus (A.ii) acetaldehyde-exposed mice are displayed. B) Summary data 
displays each individual mouse exposed to either air or acetaldehyde. PLAs are 
characterized as 20,000 CD45/CD41 double positive events, located in quadrant 
2 (Q2). The mice exposed to acetaldehyde showed no difference in PLAs 
compared with control, p=0.473 via Mann-Whitney U test.  
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3.K. Effect of acute exposure to acetaldehyde via inhalation on C57BL/6 

female mice. We were interested in determining if the effects of inhaled 

acetaldehyde exposure are sex dependent. We performed an acute exposure 

using C57BL/6 female mice and analyzed the effects on formation of PLAs via 

flow cytometry. These mice were exposed to acetaldehyde (5 ppm; 6h/d, 4d) or 

HEPA-filtered air (control; 6h/d, 4d). Immediately after final exposure, the mice 

were euthanized, and their peripheral blood was collected and prepared for flow 

cytometric analyses for identification and quantification of CD45+/CD41+ PLAs. 

Our results indicate that acute exposure to acetaldehyde yielded no change in 

PLA formation compared with air control. This effect was not sex-dependent 

(Figure 17).  
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Figure 17. Effects of acute acetaldehyde (5 ppm) exposure on PLAs in female 
mice. Flow cytometry analysis was performed in order to identify CD45+/CD41+ 
PLAs in 100µL female mouse blood following exposure to acetaldehyde (6h/d; 
n=5,6). Representative flow cytometry dot plots of (A.i) control (HEPA-filtered air) 
versus (A.ii) acetaldehyde-exposed mice are displayed. B) Summary data 
displays each individual mouse exposed to either air or acetaldehyde. PLAs are 
characterized as 20,000 CD45/CD41 double positive events, located in quadrant 
2 (Q2). The mice exposed to acetaldehyde showed no difference in PLAs 
compared with control, p=0.573 via Mann-Whitney U test. 
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3.L. Effect of acute and chronic exposure to crotonaldehyde via inhalation 

on C57BL/6 male mice. Crotonaldehyde is an understudied toxicant. Both 

acrolein and crotonaldehyde are present at high levels in cigarette smoke. Our 

preliminary results indicate an increase in PLA formation in male mice acutely 

exposed to MCS. Acrolein also exerts the same effect. Given that acrolein and 

crotonaldehyde are similar compounds, we hypothesized that acute (4d) or 

chronic (12-wk) exposure to crotonaldehyde will induce platelet activation in vivo 

as assessed by increased formation of PLAs. C57BL/6 male mice were exposed 

to crotonaldehyde (1 ppm; 6h/d, 4d or 12-wk) or HEPA-filtered air (control; 4d or 

12-wk, 6h/d). Immediately after final exposure, the mice were euthanized and 

their peripheral blood was collected and prepared for flow cytometric analyses of 

CD45+/CD41+ PLAs. These data suggest that acute exposure to crotonaldehyde 

significantly decreases PLA formation compared with air control. Chronic 

exposure to crotonaldehyde yielded no change in PLA formation compared with 

air control (Figure 18).  
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Figure 18. Effects of (A) acute 4d or (B) chronic 12-wk crotonaldehyde exposure 
in male mice. Flow cytometry analyses were performed in order to identify 
CD45+/CD41+ PLAs in 100µL male mouse blood following exposure to 
crotonaldehyde (1 ppm; 6h/d; n=9,9 and n=8,9, respectively in each study). PLAs 
are characterized as 20,000 CD45/CD41 double positive events, located in 
quadrant 2 (Q2). There is a significant decrease in PLA formation following acute 
exposure to crotonaldehyde compared with control (HEPA-filtered air), p=0.042 via 
Mann-Whitney U test. No changes in PLA formation resulted from chronic 
exposure compared with control via Mann-Whitney U test.
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CHAPTER 4:  

DISCUSSION 

Here, we explored the influences of concentration-dependent acrolein and e-cig 

flavoring additives (eugenol, cinnamaldehyde, vanillin, and menthol) on phase-

specific ADP-induced platelet aggregation. When platelets activate, they undergo 

biphasic activity. Primary aggregation, or phase 1, is a direct effect of the 

stimulant/agonist. The stimulant induces a shape change, with subsequent 

granule secretion. Secondary aggregation, or phase 2, occurs as a result of 

platelet-platelet interactions due to the action of granule contents recruiting and 

activating surrounding platelets. To our knowledge, no study has investigated the 

direct effects of these compounds on phase 1 and phase 2 platelet aggregation 

as a potential mechanism of total aggregation. By identifying what phase is more 

affected, we will more fully understand the mechanism of these pro-thrombotic 

agents. 

Selley et al. investigated the effects of acrolein on ADP-induced 

aggregation and found that acrolein exerted no effect on total aggregation 

compared with control (ADP-alone) [75]. Our results in Figure 3 were able to 

duplicate the published data, demonstrating that concentration-dependent effects 

of acrolein on total aggregation did not differ compared with our control. 

However, we observed a significant decrease in phase 1 activity at 10 and 30 µM
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and an increase in phase 2 at those same concentrations. We hypothesize that 

at those levels, direct exposure causes rapid exocytosis of platelet granules, a 

direct reflection of phase 1 activity. Thus, aggregation in phase 2 occurred much 

faster, exhibited as an increase in response. Higher concentrations exerted no 

effect on biphasic activity. This could be because the platelets became fixed prior 

to ADP-induction. 

Eugenol is a clove-oil derived flavoring compound [81]. This chemical is 

also a potent anti-inflammatory agent [82-85], suggesting anti-platelet behavior. 

In our results, we observed a decreased response of total and phase 2 

aggregation with exposure to eugenol at increasing concentrations (Figure 4). 

Upon close observation, it appears that we only see one phase of aggregation, 

the primary phase. These results suggest that phase 2 is suppressed or 

inhibited. In fact, at the highest concentration tested (100 µM), we observed 

disaggregation in which our traces reversed post-phase 1 activity.  Together, we 

believe eugenol is an inhibitor of platelet aggregation.  

Cinnamaldehyde is a cinnamon-derived flavoring compound. It is an 

ingredient in the essential oils of cinnamon leaves and bark, and it has been 

used as an additive in many aerosol fragrances as well as some household 

products. Cinnamaldehyde is also a known peripheral vasodilator [86, 87]. When 

the blood vessel is dilated, platelets tend to be inactive. This suggests that 

cinnamaldehyde functions as an inhibitor of platelet aggregation. Some studies 

have in fact proven the inhibitory effect of cinnamaldehyde [88, 89]. We 

suspected to observe similar results as seen with eugenol. However, our result 
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did not agree. We observed no change in total, phase 1, and phase 2 

aggregation with exposure to cinnamaldehyde compared with control (Figure 5). 

However, Takenaga et al. 1987 completed their study using collagen and 

thrombin as their aggregating agents [89], whereas our study only used ADP. 

This suggests that cinnamaldehydes effect on platelet aggregation is agonist-

dependent. 

Vanillin, a vanilla-derived flavoring compound in e-cigs, exerts anti-platelet 

aggregation effects in vitro via arachidonic acid-induction [90, 91]. Our 

preliminary results indicate vanillin has no effect on ADP-induced aggregation as 

well as no phase 1 or phase 2 responses (Figure 6). We hypothesize that vanillin 

action is dependent upon arachidonic acid-receptor activation and not responsive 

to ADP-receptor activation. 

Menthol is mint-derived flavoring compound. Menthol triggers a cooling 

sensation byway of dermal, oral, or inhalation exposures [92]. As indicated in the 

literature, menthol inhibits collagen- and ADP-induced platelet aggregation in 

vitro [93]. However, like our cinnamaldehyde responses, our results did not 

compare with the literature. Additionally, phase 1 and phase 2 were unaffected 

compared with control (Figure 7).  Since total aggregation did not show inhibitory 

responses, we believe our data is inconclusive and needs to be refined. 

Though much of the data appear inconclusive, we do believe our data are 

indicative of agonist-dependent effects. This suggests that certain e-cig-derived 

flavoring compounds or aldehydes may act through different platelet receptors 
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(e.g. ADP, collagen, thrombin, arachidonic acid, or epinephrine). This hypothesis 

will be tested in future studies.   

Also in this study, we investigated the level- and duration-dependent 

effects of exposure to mainstream cigarette smoke (MCS), e-cig aerosol, and 

aldehydes on PLA formation in vivo. Under the conditions tested, acute exposure 

to MCS caused a significant increase in PLA formation in C57BL/6 male mice. 

Nocella et al. 2018 and Carnevale et al. 2016 compared the impact of e-cigs with 

conventional cigarettes in smokers and nonsmokers, specifically with endpoints 

of oxidative stress, vascular function, and platelet function [94, 95]. These studies 

revealed that exposure to conventional cigarettes induced changes in platelet 

activation markers (sCD40L and sP-selectin) as well as increased collagen-

induced platelet aggregation [94]. However, exposure to e-cig did not exert the 

same effects in these markers. Our lab has published that e-cig aerosols 

generate unsaturated aldehyde at much lower levels than saturated aldehydes 

[32], whereas MCS encompasses high concentrations of all four aldehydes. 

Since we did not observe a change in PLA formation due to e-cig aerosol 

exposure, we hypothesize that the unsaturated aldehydes may be the culprits or 

agonists of PLA formation, not the saturated aldehydes.  

To our knowledge, no study has explored the relationship between 

saturated aldehyde exposure and PLA formation as measured by flow cytometry. 

Under the conditions tested in our studies, exposure to formaldehyde (1 ppm or 5 

ppm), at any duration, exerted no effect on PLA formation in both males and 

females compared with control. Similarly, exposure to acetaldehyde exerted no 
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significant changes. Acetaldehyde exerts inhibitory responses to platelet 

aggregation in humans and rodents [79, 80]. In Figure 13, our Rank Sum Test 

revealed acetaldehyde-induced a decrease in PLA formation compared with air-

exposed control with a p-value of 0.056. Though insignificant, we believe the 

effect may be real if given a greater n. 

As previously mentioned, Sithu et al. found that acute (1d, 6h) and sub-

chronic (4d, 6h/d as indicated in the literature) exposure to acrolein (1 ppm) 

increased PLA formation compared with air control [38]. We believed that 

exposure to crotonaldehyde (1 ppm) would exert similar effects given the 

similarities in chemical structure and reactivity. Under the conditions tested in our 

study, acute exposure to crotonaldehyde resulted in an inhibitory response of 

PLA formation compared with control (Figure 18A). A potential hypothesis is that 

exposure to crotonaldehyde induces NO production. This action causes inhibitory 

effects of platelet activation, which may help to explain the inhibitory response of 

PLA formation in our study. More studies are needed to confirm this hypothesis. 

Chronic exposure had no effect on PLA formation as compared with control. We 

would also need to increase our n to validate these data. 

CONCLUSION 

Based on our studies, we conclude that exposure to some HPHCs such 

as aldehyde and flavorings in tobacco-derived aerosols may play a significant 

role in platelet activation. More research is required to explore the 

pathophysiological mechanisms of platelet activation and how our HPHCs 

influence those mechanisms.
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CHAPTER 5:  

FUTURE DIRECTIONS 

Given all tobacco products on the market, new possible health concerns 

have been exposed. Aside from what is known about their respiratory effects, our 

lab aims to uncover the adverse cardiovascular effects induced by exposure to 

these products and their constituents. Future in vitro and in vivo studies will 

explore the effects of these aldehydes with or without nicotine. Nicotine is a 

highly addictive substance that accelerates heart rate as well as increases blood 

pressure [23, 96-98]. Nicotine has been shown to inhibit platelet aggregation in 

human platelets [99]. In combination with aldehydes, we will test if nicotine offers 

a synergistic, inhibitory, or additive effect on platelet aggregation, PLA formation, 

as well as other platelet activation markers. 

We are furthermore proposing that the actions of the tobacco-derived 

constituents on platelet activation are mediated via transient receptor potential 

ankyrin-1 (TRPA1). For other future directions, we will test if the TRPA1 receptor 

mediates platelet activation in each of our studies that displayed positive 

outcomes.  Investigators have postulated that effects observed due to exposure 

to acrolein and/or other aldehydes are mediated via TRPA1-dependent activation 

in the lungs and in the vasculature [72, 100, 101]. To our knowledge, there is no 

data to demonstrate mechanistically that the effects of exposure to acrolein on
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platelet activation are mediated via TRPA1. TRPA1 is an irritant/pain responder 

linked to pain and inflammation and is activated by environmental toxicants such 

as cigarette smoke. Furthermore, TRPA1 protects against endogenous and 

exogenous acrolein-induced cardiopulmonary toxicity in vivo at high 

concentrations. Additionally, female wild-type mice were proven to be protected 

from acrolein-induced mortality when compared with male wild-types [72]. We 

hypothesize that the effects seen with acrolein-induced cardiopulmary toxicity are 

both TRPA1- and sex-dependent. Previous studies have shown formaldehyde-

induced lung inflammation is mediated via progesterone and estradiol, which is a 

female hormone-specific effect [102-104]. Another study found that the TRPA1 

channel may the target of sex-dependent issue related to migraine pain, 

suggesting that women express more pain-related sensations compared to men 

[105]. This may add to our hypothesis of sex-dependent effects of TRPA1-

mediated platelet activation. Our future directions are to test the relationship 

between cigarette smoke exposure, TRPA1 and thrombosis. We will also 

investigate sex-specific differences that are potentially TRPA1-dependent as 

well.  

The purpose of this research was to examine the effects of exposure to 

MCS, e-cigs, flavorings, as well as the HPHCs on platelet activation as a marker 

of thrombosis. Altogether, the results presented indicate that cigarette smoke can 

exacerbate platelet pathophysiological outcomes. Our goal in the future is to 

discover the potential mechanism in which tobacco-derived aerosols induce 

platelet activation. Ultimately, there is a huge gap of knowledge concerning the 
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effects of smoking and vaping on cardiovascular health, and we intend to bridge 

together that understanding and combat CVD. 
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APPENDICES 

LIST OF ABBREVIATIONS 

 

ADP  Adenosine diphosphate 

AHA  American Heart Association 

ATP  Adenosine triphosphate 

CBC  Complete blood count 

CDC  Centers for Disease Control and Prevention 

CHD  Coronary heart disease 

CSR  Cigarette-smoking robot 

CVD  Cardiovascular disease 

DVT  Deep vein thrombosis 

E-cig  Electronic cigarette 

ENDS  Electronic nicotine delivery systems 

HPHCs Harmful or potentially harmful constituents 

MCS  Mainstream cigarette smoke 

MI  Myocardial infarction 

NO  Nitric oxide 

NTP  National Toxicology Program 

OHSA  Occupational Safety and Health Administration 

PE  Pulmonary embolism 

PG  Propylene glycol 

PPP  Platelet poor plasma 

PRP  Platelet rich plasma 

PLA  Platelet-leukocyte aggregate 

ISO  International Standard of Organization
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TRPA1 Transient receptor potential ankyrin-1

TSP  Total suspended particulate 

VG  Vegetable glycerin
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