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ABSTRACT 
 

 

MECHANISTIC INSIGHT OF THE ROLE OF NHERF1 IN CISPLATIN-INDUCED 

ACUTE KIDNEY INJURY 

Adrienne M. Bushau-Sprinkle 

January 22, 2020 

 

Background. Acute kidney injury (AKI) develops in 30% of patients who receive 

cisplatin, a widely used chemotherapeutic agent. We previously showed that 

NHERF1 loss resulted in increased susceptibility to cisplatin nephrotoxicity. The 

overarching goal of this dissertation was to elucidate mechanisms of 

susceptibility to cisplatin-induced AKI, specifically the effects of NHERF1 loss on 

tubule cell metabolism, tubule cell mitochondrial function, and alterations in 

oxidative state and/or renal handling of cisplatin. Methods. 2-4 month male wild 

type (WT) and NHERF1 knock out (KO) mice were treated with either vehicle 

control or cisplatin (20 mg/kg dose IP) for 4, 24, and 72 hours. Urine was 

collected for NGAL and kidneys were harvested for histology and the following 

assays: Thiobarbituric Acid Reactive Substances (TBARS) for lipid peroxidation, 

γ-glutamyl transferase (GGT) activity, and Western Blot for GGT and cysteine S-

conjugate beta lyase (CCBL). Mitochondrial respiration was conducted via the 

Seahorse XF24 analyzer on non-treated isolated kidney mitochondria. LC-MS 
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analysis was used to evaluate ATP content in non-treated kidneys. Electron 

microscopy was utilized to evaluate mitochondrial morphology and number in 

non-treated kidneys. HPLC of the reduced and oxidized forms of the small 

molecular weight thiols (glutathione (GSH), glutathione disulfide (GSSG), 

cysteine (Cys), and cystine (CySS), and cysteine-glutathione disulfide (CySSG) 

on plasma and kidney cortex. Statistical analysis was completed using Student’s 

t-test for LC-MS, mitochondrial number, and mitochondrial respiration and Two-

way ANOVA was used for all other analysis. P-values of <0.05 were considered 

statistically significant. Results. Chapter III demonstrates that WT and NHERF1 

KO mice do not exhibit metabolic changes or changes in ATP content that would 

definitively sensitize the KO mice to cisplatin injury. Chapter IV shows that 

NHERF1 loss does not affect mitochondrial morphology or mitochondrial number, 

or oxidative phosphorylation capacity via Seahorse XF24 analysis. Thus, 

mitochondrial dysfunction does not appear to sensitize the KO mice to cisplatin 

injury. Lastly, Chapter V reveals that NHERF1 KO mouse kidneys do not exhibit 

changes in lipid peroxidation, oxidative stress, GGT or CCBL protein levels that 

would sensitize these animals to cisplatin. However, NHERF1 KO kidneys 

appear to respond differently to the cisplatin insult itself, characterized by 

differences in GGT activity in response to cisplatin. Conclusions.  In conclusion, 

the work presented in this dissertation reveals that metabolic stress and 

mitochondrial dysfunction are not the mechanisms of susceptibility to cisplatin in 

NHERF1 KO mice. Furthermore, NHERF1 loss does not lead to changes in 

kidney GSH metabolism. In conclusion, these data do not support NHERF1 loss 
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resulting in a fundamental metabolic defect that increases susceptibility to 

cisplatin injury. Instead NHERF1 loss appears to influence either the handling, 

the initial insult, or the response to injury resulting in exacerbated injury.  
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CHAPTER I 

 

INTRODUCTION 

 

A. Background and rationale for this study 

 

1. Structure and function of the kidney 

In humans and in most mammals the normal kidney is bean shaped and 

found in pairs within the abdominal cavity behind the peritoneum (1, 2). Each 

kidney is covered by a fibrous capsule with a slit located in the central concave 

portion of the kidney called the hilum (1, 2) (Figure 1.1). The hilum serves as 

both the entry site for the renal artery and the exit site of the renal vein (1, 2). The 

hilum opens into the renal sinus, composed of shallow urine-filled spaces (1, 2). 

Once bisected the kidney is composed of 3 main regions, the cortex, the outer 

medulla, and the inner medulla (1, 2) (Figure 1.1). The cortex is comprised of 

glomeruli (clumps of capillaries) and tubules (convoluted epithelial structures), 

while the medulla lacks glomeruli and consists of parallel arrangements of 

tubules (1, 2).  

The nephron is the functional unit of the kidney and it consists of a 

glomerulus and a tubule (Figure 1.2). The glomerulus is a group of blood vessels 

that forms filtrate from blood plasma, while the epithelial tubule is designed to  



2 
 

Figure 1.1 

 

Figure 1.1: Structure of the mammalian kidney. 

The kidney structure includes three regions: an outer cortex, outer medulla, and 

inner medulla. The arteries and veins that support the kidney enter and exit at the 

hilum. Additionally, the hilum serves as a point of exit for the ureter.  
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Figure 1.2 

 

 

Figure 1.2: Structure of the nephron. 

The nephron is the functional unit of the kidney and is responsible for removing 

wastes. Both the glomerulus and the sections of the tubules of the nephron are in 

the cortex of the kidney.  
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convert the blood plasma filtrate into urine (1, 2). Bowman’s capsule surrounds 

the glomerulus and the site where the filtrate passes from the vascular to the 

tubule system (1, 2). The epithelial tubule is divided into multiple subdivisions 

called the proximal tubule, the thin descending and ascending limb of the loop of 

Henle, the thick ascending limb of the loop of Henle, the distal convoluted tubule, 

and the collecting tubule (2) (Figure 1.2). The tubules of the kidney are 

instrumental in recovery of most of the fluid and solutes filtered from the 

glomerulus (1). 

The proximal tubule recovers the vast majority of filtrate from the 

glomerulus and is involved in regulating acid-base balance (2), salt and water 

homeostasis, recovery of filtered glucose and amino acids, as well as divalent ion 

metabolism (1, 2). Additionally, the proximal tubule is the site for organic anion 

and cation transport, including drugs. The loop of Henle creates the conditions 

required for the generation of a concentrated or dilute urine, by pumping salts 

and urea into the medulla to establish the progressively hypertonic cortical to 

medullary gradient within the renal interstitium (1, 2). The creation of this osmotic 

gradient enables the regulated movement of water from tubule to interstitium, 

thus determining urine osmolality. The distal tubule and collecting duct system 

are sites for more precise control of water and salt excretion via several 

hormones (e.g., aldosterone, arginine vasopressin) (1, 2). All of these structures 

collectively enable the kidney to form a filtrate of blood plasma and to selectively 

reabsorb the tubule fluid or secrete solutes into it. 
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2. Importance of the kidney in human health and disease 

The kidneys are multifunctional organs involved in maintaining blood volume, 

total body salt and water balance, acid-base balance, and bone strength and 

integrity (1). The kidneys accomplish these tasks through cooperation with other 

organ systems. Each of these tasks are important in human health, and 

disruption of one or more of these functions can result in complications and/or 

the development of disease (1, 3). 

The human body intakes water, salt, and electrolytes at varying degrees that 

can interrupt the body’s balance of these substances. The kidneys have the 

ability to vary their excretion of electrolytes and water to maintain this balance (1, 

3). Another aspect of this balance of water, salts, and electrolytes is the 

regulation of plasma osmolality, the combined concentration of these substances 

(1, 3). Osmolality is altered whenever the input and output of water and solutes 

shift disproportionally (2, 3). Thus, the kidneys must excrete water and solutes to 

match the intakes at rates that maintain the ratio of solutes and water close to a 

constant value of 292 milliosmoles per kilogram (mOsm/kg) (2, 3). In addition to 

excreting excess amounts of substances the kidney also responds to shortages. 

To accomplish this response the kidneys will reduce the output leading to the 

restoration of this balance of water and solutes (1, 3). One of the major actions of 

the kidney is to regulate all of the electrolytes, body water, and plasma osmolality 

independently (2, 3).  

The kidneys work in tandem with other organ systems including the 

cardiovascular system (1, 2). The kidneys regulate systemic blood pressure by: 
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[1] determining blood volume which controls cardiac output (heart rate x stroke 

volume); and [2] producing hormones that regulate vascular resistance (systemic 

blood pressure/cardiac output) (2, 3). It is vital that the kidneys maintain 

extracellular fluid volume, which includes blood plasma (1-3). This maintenance 

ensures that there is sufficient volume to fill the vascular space, allowing blood to 

circulate normally (1-3). Maintenance of the extracellular fluid volume is a result 

of the kidneys’ regulation of water and salt balance (2, 3). In addition to 

maintaining adequate volume of the cardiovascular system, the kidneys produce 

vasoactive substances (e.g., renin-angiotensin-aldosterone system) that help 

control vascular smooth muscle (2, 3). This influences peripheral vascular 

resistance and consequently systemic arterial blood pressure (1-3). Disruption of 

this aspect of renal function leads to the development of hypertension (1, 3).  

The human body constantly forms the end products of metabolic processes, 

which must be excreted at the same rate that they are produced (1, 2). These 

products include urea from protein, uric acid from nucleic acids, creatinine from 

muscle creatinine, urobilin from hemoglobin breakdown, and the metabolites of 

various hormones and biochemical processes (2, 3). Collectively these products 

are called uremic toxins when they accumulate under conditions of kidney failure 

(3), and contribute to uremia, the constellation of clinical features characteristic of 

advanced chronic kidney disease (CKD) (1, 3). In addition, the kidneys are 

responsible for the excretion of many types of drugs. Frequently these drugs 

damage the kidneys leading to alterations in kidney function. 
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Although the kidneys are responsible for excretion of hormones and their 

metabolites, they are also involved in production of the hormone erythropoietin 

(1-3). Interstitial cells located in the cortical intersititum (border between renal 

cortex and medulla) secrete this hormone that stimulates the production of red 

blood cells in the bone marrow (1, 2). The reduction of partial oxygen pressure 

stimulates the kidney cells to secrete erythropoietin (2, 3). In cases of anemia, 

blood loss, or insufficient blood flow to the kidneys the local oxygenation drops 

and triggers secretion of erythropoietin (1-3).  

The kidneys in combination with the gastrointestinal (GI) tract are essential 

regulators for phosphate and calcium homeostasis, which is necessary for bone 

health (1-3). The kidneys accomplish this homeostasis through the production of 

calcitriol (active form of vitamin D) (1-3). Calcitriol helps increase calcium 

absorption from the intestine into the blood. CKD can disrupt this process and 

cause a form of bone disease, renal osteodystrophy (1, 3). Moreover, the 

impaired bone metabolism is accompanied by calcium-phosphate deposits in 

blood vessels, increasing the risk of heart disease (3).  

Lastly, the kidneys are responsible for maintaining tight control of acid-base 

balance and they are a site of gluconeogenesis (body’s process of producing 

glucose from non-carbon sources) (1-3). Disruption in acid-base balance can 

lead to life-threatening conditions such as metabolic acidosis and alkalosis (1-3). 

Loss of gluconeogenesis can result in hypoglycemia in advanced CKD, 

particularly under conditions of stress or nutrient deficiency. 
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Altogether the kidney is a unique organ that is involved in many vital 

processes. The kidneys excrete many substances and help maintain the body’s 

homeostasis. Equally important to the kidneys’ ability to excrete waste, the 

kidneys also work in partnership with other organ systems through production of 

hormones. Consequently, alterations in any of these processes can lead to 

complications and the development of disease in the body, further illustrating the 

importance of the normal functioning kidney to overall human health. 

 

3. Acute kidney injury 

Acute kidney injury (AKI) is defined as an abrupt decline in kidney function, 

and is a common clinical condition; approximately 20% of all hospital admissions 

are related to AKI (4). 2-300 per million cases of AKI are severe enough to 

require dialysis (5). Meanwhile, 2-3000 per million cases of AKI do not require 

dialysis (5). In the critical care setting close to two thirds of patients will develop 

AKI and around five percent of intensive care unit (ICU) patients will develop 

severe cases of AKI that warrant dialysis (5). AKI is associated with a four-fold 

increase in mortality and is a risk factor for the development of CKD (5).  

AKI can be divided into three pathophysiological categories: pre-renal, 

intrinsic, and post-renal (obstructive) (2). Pre-renal AKI results from a decrease in 

arterial blood volume leading to kidney hyperfusion (2), but without intrinsic 

damage to the kidney tissue. Hemorrhage from trauma or surgery, septic shock, 

and cirrhosis are all conditions that can lead to the development of pre-renal AKI 

(2). Intrinsic AKI occurs from direct damage to the kidneys resulting in a sudden 
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loss in kidney function. The common causes are acute tubular necrosis (ATN), 

acute glomerulonephritis (AGN), and acute interstitial nephritis (AIN) (2). 

Ischemic and septic ATN are the most common causes of intrinsic AKI, however, 

ATN can result from drug toxicities (2). AGN can be the result of autoimmune 

diseases, such as Lupus Nephritis, which can damage and inflame the glomeruli 

of the kidneys (2). AIN manifests as severe inflammation of the kidneys. This 

inflammation is usually the result of medications, such as antibiotics or a 

nonsteroidal anti-inflammatory drugs (NSAIDs) such as naproxen or ibuprofen 

(2). Additionally, AIN can be caused by streptococcal, viral, or Legionella 

infection (2). Post-renal AKI is commonly induced by the obstruction of the 

ureters, bladder outlet, or urethra (2). These obstructions may be due to prostatic 

conditions, anticholinergic agent therapy, blood clots, or ureter fibrosis (2). From 

herein the focus of this dissertation will focus on drug-induced intrinsic AKI.  

Drugs are the third to fifth leading cause of AKI in critically ill patients (6) 

consistent with the kidneys’ role in concentrating and excreting toxic metabolites 

and drugs (7), making them a common site of drug toxicity. Drugs damage the 

kidneys by several mechanisms: [1] vasoconstriction, [2] altered intraglomerular 

hemodynamics, [3] tubular cell toxicity, [4] interstitial nephritis, [5] crystal 

deposition, [6] drug-induced thrombotic microangiopathy, [7] osmotic nephrosis, 

and [9] rhabdomyolysis.  

Vasoconstriction is the mechanism of nephrotoxicity of calcineurin inhibitors, 

vasopressors, and contrast agents (7). The use of NSAIDs, angiotensin 

converting enzyme inhibitors (ACEI), and angiotensin receptor blockers (ARB) 
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can lead to altered intraglomerular hemodynamics resulting in a decline in kidney 

function (7). The proximal tubule is particularly vulnerable to toxic injury due to its 

role of reabsorbing the glomerular filtrate. Tubular cell toxicity is seen in a dose-

dependent manner for many drugs (e.g. aminoglycosides, amphotericin, 

calcineurin inhibitors, cisplatin, methotrexate, and antivirals) causing kidney injury 

(7), while crystal deposition in the distal tubular lumen is pH-dependent and 

commonly seen in nephrotoxicity associated with acyclovir, sulfonamide, 

methotrexate, indinavir, and triamterene (7). Additionally, uric acid and calcium 

phosphate crystals are observed following chemotherapy (7). Drug-induced 

thrombotic microangiopathy has been reported with mitomycin, cyclosporin, 

tacrolimus, interferon, and quinine (7). Osmotic nephrosis has been associated 

with high doses of mannitol and immunoglobulins (7) and results from 

hyperoncotic solutions by decreasing glomerular filtration rate (GFR) or from 

osmotically induced tubular damage (7).  

Unfortunately, the need for many of these medications outweighs the risk of 

nephrotoxicity development. During these instances measures are taken to 

minimize the drug-induced kidney damage, but these measures are not always 

successful. For these reasons innovative and novel research is needed toward 

the prevention of drug-induced AKI.  

 

4. History of cisplatin in the clinic 

Cisplatin is a widely used chemotherapeutic to treat a variety of solid 

malignant tumors (e.g. head and neck, ovarian, testicular, and lung cancer) (8).  
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As discussed previously, cisplatin is associated with proximal tubule toxicity in 

AKI. To fully understand cisplatin’s efficacy in the clinic despite its toxicity, it is 

important to also understand its development and long history of use clinically. 

The biological effects of platinum were discovered in 1961 by a physicist, 

Barnett Rosenberg, while examining if alternating electromagnetic forces could 

affect cell division (9). Rosenberg set up platinum conducting plates in a chamber 

with Escherichia coli (E. coli) grown on a medium containing ammonium chloride, 

which provided the nitrogen required for cell growth (9). Rosenberg then applied 

an electric current and observed that the E. coli stopped dividing (9). He carried 

out further experiments to determine what was inhibiting the cell division, and 

discovered it was the platinum when combined with ammonia molecules (9). This 

discovery led to the further development of using platinum complexes as anti-

tumor agents. A number of platinum complexes were tested, however, only the “-

cis” complexes with adjacent ammonia groups displayed anti-tumor activity (9). In 

1969 the cisplatin (cis-diammine-dichloroplatinum (II)) compound was discovered 

to have the most potent anti-tumor effects (9). Cisplatin has a central platinum 

atom bound by ammonia and chloride groups in a square planar structure (10) 

(Figure 1.3). Cisplatin forms DNA crosslinks which interrupt cellular DNA 

functioning and induces apoptosis (10). This is accomplished through the two 

“leaving” chloride groups which readily dissociate in physiological conditions, and 

the subsequent formation of a platinum-DNA adducts that can only be repaired 

using nucleotide excision repair (10). 

 



12 
 

 

Figure 1.3 

 

Figure 1.3: Structure of cis-diamminedichloroplatinum (II) or cisplatin. 

Molecular structure of cisplatin is a square planar complex with two labile 

chlorine and two inert ammonia molecules that are coordinated to the central 

platinum (II) atom in the cis configuration. 
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Following pre-clinical and human studies cisplatin was approved by the Food 

and Drug Administration (FDA) in 1978 for the treatment of advanced metastatic 

testicular, ovarian and bladder cancer (11). Since then it has had great success 

as a chemotherapeutic agent and is one of the most widely used anti-tumor 

drugs in the world. For example, in the early 1970s metastatic testicular cancer 

was associated with a 5% survival rate (12). Improved surgical techniques in 

combination with cisplatin chemotherapy has increased the 5-year survival rate 

for men with testicular cancer to 95% (12). Furthermore, as recently as 2010 

there were over 500 active clinical trials involving cisplatin (13), underlying its 

continued prominent use in the treatment of solid malignant tumors. 

Unfortunately, the major limiting factor of cisplatin is its nephrotoxicity.  

The first report of cisplatin’s nephrotoxicity was in 1971 during pre-clinical 

animal studies (13). These studies found histopathologic changes of ATN along 

with azotemia (abnormally high levels of nitrogen containing compounds in the 

blood). Early clinical use of cisplatin saw dose-related renal failure in 14-100% of  

patients, with the incidence varying with the cumulative dose (13). This high 

severity of toxicity almost prevented cisplatin’s FDA approval as a 

chemotherapeutic agent (8, 14). In response, hydration protocols were 

developed that reduced the nephrotoxicity and allowed the implementation of 

increased doses to reach therapeutic levels (8, 15). Subsequently, cisplatin alone 

and in combination based chemotherapy regimens are currently used as a front-

line therapy for testicular cancer, ovarian germ cell tumors, epithelial ovarian 
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cancer, head and neck cancer, advanced cervical cancer, bladder cancer, 

mesothelioma, endometrial cancer, non-small cell lung cancer, malignant 

melanoma, carcinoids, penile cancer, and adrenocortical carcinoma (8). 

Additionally, it is used as a consolidation therapy for many types of solid tumors 

that have failed standard treatment regimens (8). Even though cisplatin is widely 

used, and hydration protocols decreased the incidences of kidney injury, cisplatin 

is still associated with a risk of 20-30% of patients developing AKI after a single 

dose. Research has been ongoing to both understand how cisplatin damages the 

kidney and to discover preventative methods. 

 

5. Cisplatin and the kidney 

Nephrotoxicity is an unusual side effect of a chemotherapeutic agent in 

general. In most cases chemotherapy drugs target pathways that are essential 

for cell division and therefore rapidly dividing cells such as bone marrow cells are 

most sensitive to these agents. Thus, the high rate of nephrotoxicity in the kidney 

which as a low cell turnover rate is unexpected and indicates that cisplatin may 

have two distinct mechanisms that kill cells, one for highly prolific cancer cells 

and one for quiescent kidney cells. 

 Cisplatin is cleared by the kidney via glomerular filtration and tubular 

secretion (13, 16). Concentration of cisplatin is higher in the kidney than in the 

blood suggesting there is active accumulation of the drug by renal parenchymal 

cells (8, 13). Even though cisplatin was developed over 50 years ago, its 

mechanism of toxicity is not completely understood. Previous studies provided 
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evidence that cisplatin undergoes a basolateral-to-apical transport within the 

kidney (13, 17). In more recent years studies have identified two membrane 

transporters that are capable of cisplatin uptake: copper transporter 1 (Ctr1) and 

organic cation transporter 2 (OCT2) (13). Both Ctr1 and OCT2 are highly 

expressed in the kidney and found in the basolateral membrane of the proximal 

tubule (Figure 1.4). Downregulation of Ctr1 protein expression in kidney cells 

decreases cisplatin uptake within the kidney (13, 18). Likewise, OCT2 knock out 

(KO) mice demonstrate significantly reduced cisplatin urinary excretion and 

nephrotoxicity (13, 19, 20). Furthermore cimetidine, an OCT2 substrate, also 

reduced cisplatin uptake and cytotoxicity in vitro (18, 21), and patients with a 

nonsynonymous single-nucleotide polymorphism (SNP) in the OCT2 gene 

(rs316019) demonstrated a reduced cisplatin-induced nephrotoxicity (13, 19, 20). 

Another membrane protein, the multidrug and toxin extrusion 1 (MATE1) protein, 

is responsible for cisplatin extrusion out of the proximal tubule into the tubular 

lumen (Figure 1.4). MATE1 KO mice also exhibited enhanced cisplatin 

nephrotoxicity (22). Taken together these studies suggest that the cell 

mechanisms for cisplatin transport in the proximal tubule play a critical role in 

determining the susceptibility to injury. In addition to renal cisplatin uptake, there 

is evidence that cisplatin undergoes a biotransformation to a more potent toxin in 

the kidney (Figure 1.4). Studies in rats and mice show that the process may 

begin with the formation of glutathione-conjugates in the circulation, possibly 

mediated by glutathione-S-transferase (13, 23, 24). In the kidney these 

glutathione-conjugates are extruded by MATE1 and further cleaved to cysteinyl- 
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Figure 1.4 

 

Figure 1.4: Cisplatin metabolism to a nephrotoxin. 

Cisplatin enters the renal proximal tubule cell and is conjugated to glutathione 

(GSH). MATE-1 is responsible for exodus of cisplatin and cisplatin-glutathione 

conjugates into the tubule lumen. γ-glutamyl transpeptidase (GGT) and 

aminodipeptidase (AP) further metabolize cisplatin-glutathione conjugates to 

cisplatin-cysteinyl and cysteine conjugates. The cisplatin-cysteine conjugate re-

enters the renal proximal tubule cell and cysteine-S-conjugate beta-lyase 

metabolizes it to an unstable and reactive cisplatin-thiol conjugate, the 

nephrotoxic metabolite of cisplatin. 
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glycine-conjugates by γ-glutamyl transpeptidase (GGT) (Figure 1.4), expressed 

apically in the proximal tubule (13, 25, 26). The cysteinyl-glycine-conjugates are 

further metabolized to cysteine-conjugates by aminopeptidases (AP) (Figure 1.4), 

also expressed apically (13, 25, 26). The cysteine-conjugates are transported 

back into the proximal tubule by an unknown protein transporter where they are 

further metabolized by cysteine-S-conjugate beta lyase (CCBL), forming a highly 

reactive thiol (13, 25-27) (Figure 1.4). This reactive thiol is what is believed to 

cause the toxicity. Experiments show that blocking any of these enzymes 

ameliorates cisplatin nephrotoxicity.  

Renal tissue damage, characterized by tubular cell death, is a frequent and 

common occurrence of cisplatin nephrotoxicity. Subsequently renal tubule cell 

death may be in the form of apoptosis and necrosis. Necrotic cell death has been 

observed with high concentrations of cisplatin, whereas lower concentrations led 

to apoptosis in vitro (12, 28). In animal models both apoptosis and necrosis can 

be observed following cisplatin administration (12, 29). Although there has been 

a great deal of investigation into the mechanism of cisplatin-induced 

nephrotoxicity there are still many unanswered questions. As a result, it is still not 

understood why some patients are more susceptible to cisplatin nephrotoxicity. 

To develop either renoprotective strategies or therapies more research is needed 

regarding mechanisms of susceptibility along with identifying novel targets that 

do not affect cisplatin’s efficacy. One such target recently discussed is the Na/H 

exchange regulatory factor 1 (NHERF1) scaffolding protein.  
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6. NHERF1: is it more than an anchor? 

Cells communicate through coordinated signaling networks that rely on 

scaffolding proteins, which organize multiprotein complexes and enable proper 

transmission of information. NHERF1 is a member of a post-synaptic density 

protein 95/Drosophila Discs Large/Zonula Occulens -1 (PSD-95/DIg/ZO-1) 

homology (PDZ) scaffolding protein family. NHERF1 has two tandem PDZ 

domains, a carboxy terminal ezrin binding domain, and a CRAC (cholesterol 

binding) domain. Initially NHERF1 was identified (30) as an organizer and 

regulator of hormone receptors, signal transduction pathways, and transporters 

through its interaction with actin-binding-ezrin-radixin-moesin (ERM) proteins on 

the apical side of epithelial cells (31, 32). NHERF1 has many known functions in 

the kidney including: regulating the sodium hydrogen antiporter 3 (NHE3) 

function via the parathyroid hormone (PTH), regulating and anchoring the sodium 

phosphate co-transporter type-2 (Npt2a) expression by PTH and dopamine, and 

regulating the sodium pump. More recently NHERF1 has been found to be 

involved in a variety of functions across multiple cell types including: cell 

structure and trafficking, tumorigenesis and tumor behavior (33, 34), 

inflammatory responses (2, 18), and tissue injury (35-37). There have been a 

number of divergent and contradictory reported effects of NHERF1, making it 

difficult to predict how either the absence or the overexpression of NHERF1 will 

affect a specific cell function. 

Cell Structure 
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NHERF1 plays a role in actin cytoskeleton organization (38), cell polarity (39), 

and trafficking (40) possibly though its ability to scaffold signaling complexes via 

its interaction with ERM proteins. NHERF1 disrupts the actin skeleton in HeLa 

cells, thought to be through increased α actinin IV ubiquitination and degradation 

(38); however, in Madin-Darby-canine-kidney (MDCK) cells NHERF1 enhances 

actin skeleton organization (41) stimulated by podocalyxin-induced RhoA 

activation through the Rho/Rho-associated coiled-coil protein kinase (ROCK) 

pathway (42).   

There are multiple functional consequences of the actin cytoskeleton 

organizational role of NHERF1. NHERF1 colocalization with proteins has been 

implicated in cell polarity through tight junction formations (39) and protein 

targeting to the apical or basolateral membrane (43-45). NHERF1 has a 

significant role in protein anchoring and assembly of multi-protein complexes. For 

example, NHERF1 expression is critical for assembling G-protein-coupled 

receptors (GPCRs), downstream signaling molecules (e.g. adenylyl cyclase), and 

target proteins such as Npt2a and the NHE3 in the proximal tubule. Additionally, 

NHERF1 is essential for regulating total body phosphate homeostasis by 

anchoring Npt2a through ezrin binding and subsequently the NHERF1 KO 

mouse displays phosphaturia and uricosuria (46). 

In addition to membrane targeting NHERF1 may also play a role in 

establishing cell phenotype. NHERF1 mediated plasma membrane expression of 

the calcium adenosine triphosphatase (Ca-ATPase) 2 prevented involution of 
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lactating mammary gland cells through suppression of the signal transducer and 

activator of transcription 3 (Stat3) activation (43). 

Cancer 

NHERF1 exhibits a dual role in tumorigenesis that is dependent on its 

expression or subcellular localization. When NHERF1 is located at the plasma 

membrane it acts as a tumor suppressor (47). In contrast, NHERF1 expression 

loss, cytoplasmic or nucleus localization results in pro-oncogenic properties (47). 

This phenomenon has been observed in melanoma (48), breast (49-54), 

reproductive system (55-58), digestive system (59-63), liver (64-66), lung (67), 

and brain cancers (68-71). Potential mechanisms for the effect of NHERF1 on 

tumor behavior include: inhibition of the epidermal growth factor receptor (EGFR) 

signaling due to a decreased interaction with NHERF1 (72), increased 

cytoplasmic expression of vascular endothelial growth factor (VEGF) and its 

receptor VEGFR1 (73), alteration in mineral metalloproteinase expression (74), 

and enhanced Wnt1 signaling (75). Furthermore, NHERF1 overexpression has 

been linked in liver cancer cells, regulation of cell cycle (45, 76, 77), and 

suppression of reactive oxygen species (ROS) (78). 

Cytoplasmic localization of NHERF1 has been implicated in the development 

of metastatic cancers (79). A potential mechanism may involve differential 

phosphorylation of NHERF1, where NHERF1 creates protein complexes which 

either activate or inactivate the promotion of metastatic behavior (80). For 

instance, overexpression of NHERF1 has been associated with pro-metastatic 

behavior in breast cancer cell lines. Moreover, overexpression of NHERF1 was 
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connected with enhanced cell functions associated with the metastatic phenotype 

and mitigated by mutations of the phosphorylation sites S279 or S301 in 

NHERF1. NHERF1 phosphorylation is also essential for tumor-induced 

angiogenesis (80).  

Inflammation and fibrosis 

ROS impacts aging/fibrosis, cancer, neurodegenerative disorders, and 

cardiovascular disease (81). Interestingly, NHERF1 has been found to be a 

binding partner and regulator of NADPH oxidase (Nox1) by directly associating 

with the Nox organizing subunit p47phox.  Additionally, NHERF1 interacts with 

other proteins involved in inflammatory pathways including the interleukin 8 (IL8) 

receptor beta, C-X-C Motif light-chain-enhancer of activated B cells (NF-B), and 

simultaneously increased NF-B production.   

A study using a rat aging model found NHERF1 expression loss was 

associated with renal fibrosis development (84). One potential mechanism is 

suggested by the observation that NHERF1 blunted the transforming growth 

factor beta 1 (TGF-β1) expression of mesenchymal cell markers in a lung cancer 

cell line (85). Additionally, a role for NHERF1 in regulating epithelial-

mesenchymal transition (EMT) is another possibility in lieu of previously cited 

studies where NHERF1 plays a role in cell polarity, cell phenotype expression, 

and cell cycle regulation.  

Response to injury 

NHERF1 expression has been implicated in responses to injury. In a model of 

cholestatic liver injury induced by bile duct ligation the NHERF1 KO mouse 
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exhibits attenuated liver injury (36). Loss of NHERF1 also resulted in the deletion 

of the ICAM-1-ERM-NHERF1 complex resulting in a reduction in both hepatic 

ICAM1 and ERM proteins, which are essential for neutrophil mediated cholestatic 

liver injury (36). Therefore, NHERF1 may have a sensitizing role in inflammatory 

induced liver injury. On the other hand, NHERF1 loss does not result in 

protection against cisplatin-induced AKI. In fact NHERF1 KO mouse kidneys 

were more susceptible to cisplatin-induced AKI (35), exhibiting a decrease in 

renal function, a significant increase in urine neutrophil gelatinase-associated 

lipocalin (NGAL), and severe histologic damage (casts, BBM sloughing, and 

ATN) when compared to cisplatin treated wild type (WT) mice. 

Interestingly the absence of NHERF1 protected against liver tissue injury in 

the biliary ligation model, but increased sensitivity to injury in the cisplatin-

induced AKI model. Thus, NHERF1 may have a significant role in the severity of 

injury after specific insults and in specific tissues potentially due to regulation of 

the acute inflammatory response.  

Implications for renal physiology/pathophysiology 

NHERF1 has a much broader role than as a scaffold or anchor in the cell, 

illustrated by the effect NHERF1 has on a variety of diseases and tissues along 

with its contributions to cell growth and proliferation, cell polarity and structure, 

determination of cell phenotype, response to inflammation, and neoplastic 

transformation. For this dissertation the role NHERF1 plays in susceptibility to 

cisplatin-induced AKI (35) will be further investigated. However, many questions 

remain including: whether NHERF1 is a primary mediator or responder of kidney 
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injury and if NHERF1 can be used as a biomarker or therapeutic target for the 

prevention of kidney injury. 

 

 7. Metabolism and susceptibility to cisplatin toxicity 

As previously discussed, the accumulation and bioactivation of cisplatin to a 

more potent nephrotoxic metabolite underlies the kidney’s susceptibility to 

cisplatin-induced AKI. Recent studies have found that cisplatin alters renal cell 

metabolism, contributing to injury and the common occurrence of CKD 

development. 

Several studies have found that cisplatin treatment leads to renal tubular cell 

depletion of amino acids, caused by both elevated levels of aminoaciduria and 

decreased tubular reabsorption of amino acids (86-89). Interestingly, branched-

chain amino acids such as leucine, isoleucine, and valine were found to be 

elevated in urine and decreased in serum (86, 90). Many have discussed if this 

phenomenon could be used as either a biomarker for prediction of susceptibility 

to nephrotoxicity or enable earlier detection of kidney injury following cisplatin 

treatment (86). Moreover, cisplatin influences lipid metabolism through the 

reduction of fatty acid oxidation resulting in accumulation of fatty acids in kidney 

tissue (86, 89, 91). Likewise, diacylglycerols, triacylglycerols, ceramides, and 

neutral lipids accumulate in kidney tissue (86, 87, 92). Cisplatin also impacts 

glycolysis through the reduction of glycolytic enzymes, thus, glucose will 

accumulate while metabolites of glycolysis decrease (86, 93). In addition to 
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glycolysis, cisplatin also decreases intermediates of the pentose phosphate 

pathway and the citric acid cycle (86, 94).  

These observations bring into question if susceptible patients could have an 

altered renal cell metabolism, consequently, predisposing these patients to 

nephrotoxic injury from cisplatin. This hypothesis will be further discussed and 

investigated later in this dissertation.  

 

 8. Mitochondrial dysfunction and susceptibility to cisplatin toxicity 

It has been well established that cisplatin nephrotoxicity induces cell death via 

both apoptosis and necrosis. However, the mechanisms by which cisplatin 

induces these pathways remains unclear. Recent evidence reveals that ROS and 

mitochondrial function play an important role in cisplatin’s mechanism of injury 

(95). Mitochondria continuously produce ROS, such as superoxide, and 

scavenge these ROS using antioxidant enzymes (superoxide dismutase, 

glutathione peroxidase, catalase, and glutathione S-transferase) (96). Moreover, 

cisplatin has been found to also accumulate in the mitochondria of renal epithelial 

cells (97, 98). Several studies show that cisplatin induces ROS in renal epithelial 

cells by decreasing the activity of antioxidant enzymes along with the depletion of 

intracellular glutathione (GSH) concentrations (99-102). Furthermore, there are 

additional studies that demonstrate that pre-treatment with antioxidants such as 

GSH is beneficial in reducing cisplatin’s nephrotoxicity (103, 104). 

However, other studies suggest that at least in cultured proximal tubule cells, 

the primary cause of cell death post cisplatin treatment may be far more related 
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to mitochondrial dysfunction than ROS formation (100, 105). Several of these 

studies show that cisplatin induces mitochondrial dysfunction, primarily through 

targeting enzymatic complexes that comprise the electron transport chain (ETC) 

(100, 105). Once the ETC is compromised, proximal tubule cells show a 

significant reduction in ATP, with a rapid metabolic collapse and necrotic cell 

death (28, 106). Additionally, slighter amounts of ATP depletion in tubule cells 

have been associated with lower doses of cisplatin (106, 107). Lower amounts of 

ATP depletion lead to apoptosis through the release of mitochondrial cytochrome 

c in tubule cells (106, 107). Similarly, to other aspects of cisplatin injury, the 

mechanism by which cisplatin causes cytochrome c release remains 

controversial. Two proposed mechanisms include induction of mitochondrial 

permeability transition (107) and increases in mitochondrial transmembrane 

potential (106). Likewise, the mechanism behind cisplatin’s ability to inhibit the 

enzymatic complexes of the ETC are also unclear.  

If ATP depletion and mitochondrial dysfunction play a central role in cisplatin-

induced cell death, then how does one explain the supporting evidence for ROS 

formation triggering cell death following cisplatin exposure? One possibility is that 

these two processes co-exist, and are not mutually exclusive in regards to 

cisplatin-induced cell death (8). It is possible that while the amount of ATP 

depletion may induce the primary cell injury and influence the cell death pathway, 

it may also accelerate ROS formation from the damaged cells (8), thus, 

contributing to an amplification loop leading to ROS mediated cell death (8). 

Especially since reduction in ROS through the pre-treatment of antioxidants can 
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alleviate nephrotoxicity (103, 104), this may limit this amplification loop and 

reduce the accompanying inflammatory response (100).  

Collectively, it is evident that both ROS production and mitochondrial 

dysfunction remain conceivable mechanisms of cisplatin-induced renal cell 

death. With this knowledge it brings into question if renal cells containing higher 

amounts of ROS and/or mitochondrial dysfunction could prime these cells for a 

‘second hit’ with cisplatin, therefore, sensitizing these cells to cisplatin 

nephrotoxicity and possibly clarifying why some patients are more susceptible to 

cisplatin-induced AKI. This proposed mechanism will be further investigated 

throughout this dissertation.   

 

9. Statement of goals 

It is well established that cisplatin’s limiting factor is its nephrotoxicity, but the 

mechanism of toxicity remains uncertain. Moreover, there are no methods to 

predict which patients are susceptible to injury and there are no targeted 

therapies to halt or reverse the development of AKI. Development of such 

methods or therapies requires a better understanding of mechanisms of disease 

progression as well as identification of novel drug targets. Therefore, one goal of 

this dissertation is to shed new insight into mechanisms of susceptibility to 

cisplatin-induced AKI. Additionally, it has been established that loss of the 

NHERF1 protein in mice predisposes these animals to cisplatin nephrotoxicity 

(35). Another goal of this dissertation is to elucidate mechanisms by which 

NHERF1 loss affects the kidneys. Taken together, the goal of this dissertation is 
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to both understand the role NHERF1 plays in cisplatin nephrotoxicity and to 

speculate on its potential use as a biomarker and/or therapeutic target.   

 

B. Aims and proposals 

 

1. Characterization of metabolic differences in kidneys of WT and 

NHERF1 KO mice 

As discussed in earlier sections, cisplatin significantly alters areas of 

metabolic function and cellular homeostasis. In addition, mitochondria are 

essential for maintaining this homeostasis. Mitochondria are responsible for ATP 

production and in regulating the cell death pathways of apoptosis and necrosis. 

Our laboratory has also established that loss of the NHERF1 scaffolding protein 

predisposes mice to cisplatin-induced AKI (35). Understanding the mechanism of 

susceptibility of these animals may be beneficial in understanding disease 

development of cisplatin-induced AKI along with potentially providing future 

therapeutic targets. Preliminary data from our laboratory suggested that NHERF1 

KO mice may have an altered metabolic function. This was in part supported by 

proteomic analysis of the brush border membrane (BBM) of WT and NHERF1 

KO mouse kidneys. This analysis showed notable decreases in mitochondrial 

proteins in the NHERF1 KO BBM. Furthermore, Seahorse XF24 analysis of 

isolated proximal tubule cells from WT and NHERF1 KO mouse kidneys 

exhibited a decrease in oxygen consumption rate (OCR). These results suggest 

that metabolic changes may play an important role in the sensitization of the 
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NHERF1 KO kidney to insult. This is supported by the following: [1] NHERF1 

deficient cells do not grow as rapidly as normal proximal tubule cells, suggesting 

that these cells are stressed. [2] NHERF1 KO mice treated with cisplatin display 

a significant increase in BUN levels that are consistent with a more severe renal 

injury when compared with treated WT mice (35). [3] Semi-quantitative scoring in 

a blinded study showed cisplatin treated NHERF1 KO kidneys have a higher 

level of severity in injury based on number of tubular casts, degree of ATN, and 

BBM sloughing (35). [4] Levels of apoptosis are similar between cisplatin treated 

WT and NHERF1 KO kidneys, indicating that damaged NHERF1 KO kidneys 

may have a higher level of ATP depletion resulting in higher levels of necrotic cell 

death (35). [5] Anaerobic glycolysis, a hallmark of AKI, is known to increase in 

rodent models treated with cisplatin (108) and in models of ischemic reperfusion 

(109) concomitant with a decrease in aerobic metabolism. The goal of this aim 

was to define any metabolic differences between kidneys of WT and NHERF1 

KO mice. This study evaluated gluconeogenic, glycolytic, and pentose phosphate 

enzyme activity along with measuring ATP content of WT and NHERF1 KO 

mouse kidneys under basal and cisplatin treated conditions. 

 

2. Identification of changes in mitochondrial function in NHERF1 KO 

mice kidneys 

Cisplatin is known to accumulate in renal cell mitochondria and can damage 

mitochondrial enzymatic complexes. Additionally, mitochondrial dysfunction is 

one potential mechanism of cisplatin-induced renal cell death. It was 
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hypothesized that an underlying mitochondrial dysfunction in NHERF1 KO 

kidneys may lead to sensitization of cisplatin nephrotoxicity. Furthermore, two 

proposed potential causes of mitochondrial dysfunction were: [1] Decrease in 

mitochondrial OCR also known as oxidative phosphorylation and/or alterations in 

mitochondrial structure in NHERF1 KO kidneys. [2] Decrease in number of 

mitochondria in NHERF1 KO kidneys. Therefore, electron microscopy (EM) was 

utilized to analyze both the mitochondrial morphology, distribution, and number of 

mitochondria in WT and NHERF1 KO kidneys. Additionally, mitochondria were 

isolated from WT and NHERF1 KO kidneys to evaluate function using the 

Seahorse XF24 Analyzer. This builds upon the work in Aim 1 of this dissertation, 

further evaluating metabolic and mitochondrial homeostasis as a potential 

mechanism of susceptibility to cisplatin nephrotoxicity in NHERF1 KO mice.  

 

3. Identification of mechanisms for enhanced cisplatin injury in 

NHERF1 KO mice 

Recently, a study showed that cervical cancer cells that are NHERF1 

deficient have cisplatin resistance (110). Our laboratory previously established 

that NHERF1 KO mice have exacerbated cisplatin nephrotoxicity (35). 

Collectively, these data suggest that loss of NHERF1 may alter cisplatin cellular 

uptake and/or metabolism. Cisplatin metabolism begins with conjugation to GSH 

and within renal proximal tubule cells results in a nephrotoxic metabolite, 

cisplatin-thiol conjugate which is reactive and unstable and thus damages the 

mitochondria (111). Previous studies in mice and rats found that inhibition of 
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GGT and CCBL, involved in cisplatin metabolism, blocked the nephrotoxic effects 

of cisplatin (26, 112, 113). In in vitro studies, different cisplatin GSH conjugates 

led to more cell death to tubule cells than cisplatin alone (114). Aim 3 of this 

dissertation tests the hypothesis of potential changes in renal handling of 

cisplatin in NHERF1 KO mice. This was tested through the evaluation of lipid 

peroxidation, levels of small molecular weight thiols that act as antioxidants (e.g. 

GSH and Cysteine (Cys)), enzymatic activity of GGT, GGT and CCBL protein 

levels via western blot, and localization of GGT. Additionally, multiple time points 

(4 hours, 24 hours, and 72 hours) were evaluated based upon the established 

pharmacokinetics of cisplatin (115, 116).  

 

Overall aim of this dissertation. 

The overall aim of this dissertation is to provide new insight into mechanisms 

of susceptibility to cisplatin-induced AKI. To this end, the role of NHERF1 and 

sensitivity to cisplatin is a novel hypothesis that has not previously been 

investigated. Additionally, 3 potential mechanisms of susceptibility were 

investigated in this dissertation. [1] metabolic changes in NHERF1 KO mice 

kidneys (Aim 1) [2], mitochondrial function, morphology, and number in NHERF1 

KO kidneys (Aim 2) [3], altered renal handling of cisplatin in NHERF1 KO kidneys 

(Aim 3). Taken together, this work will shed new mechanistic insight into 

cisplatin-induced AKI. 

 



 

31 
 

CHAPTER II 

 

EXPERIMENTAL PROCEDURES 

 

A. Animals and treatments 

Animal experiments were carried out by the Lederer laboratory. Mice were 

housed in a pathogen-free barrier facility, accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care. All animals used in 

these studies and procedures were in accordance with the guidelines established 

by University of Louisville’s Institutional Animal Care and Use Committee 

(IACUC). 

 

1. Animal sacrifice, tissue collection, and storage 

At the time of sacrifice, animals were anesthetized with ketamine/xylazine 

(100/15 mg/kg, intraperitoneally (IP)). Blood was collected before sacrifice and 

plasma was extracted by centrifugation (10,000xg for 10 minutes). Plasma was 

stored at -80 ⁰C until further analysis. Kidneys were removed and decapsulated. 

Portions of the kidney were snap-frozen in liquid nitrogen or immediately had the 

cortex separated from the rest of the kidney. The cortex was then either 

homogenized, frozen-fixed in Tissue Tek OCT-Compound (Sakura Finetek, 

Torrance, CA) or immersed in 3.7% formaldehyde in phosphate buffered saline 
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(PBS) for 24 hours followed by 70% ethanol prior to paraffin embedding for 

histology.  

 

2. Acute model of cisplatin nephrotoxicity 

Male (2-4 month old) WT C57BL/6J and C57BL6J NHERF1 (-/-) KO mice (46) 

were maintained on a 12:12 hour light-dark cycle and were provided water and 

food ad libitum. Mice received a single IP injection of 20 mg/kg cisplatin 

(University of Louisville hospital pharmacy) or vehicle (saline). Vehicle treated 

and cisplatin treated mice were euthanized after 4, 24, and 72 hours. All studies 

were performed at the same time each day. 

 

B.  Enzyme kinetics 

1. Tissue preparation 

Kidney cortex was homogenized in 0.1 M Tris-HCl, pH 7.4 on ice. Tissue 

homogenates were then sonicated on ice for 10 seconds/sample. The samples 

were then centrifuged for 15 minutes at 2,500xg at 4°C. 

 

2. Fructose-1,6-Bisphosphatase activity assay 

Solutions of 0.1 M Tris-HCl, pH 8.6; 0.1 MgCl2; 0.1 M Cysteine HCl; 50 mM 

fructose-1,6-bisphosphatase (FBPase) were prepared. All components were 

added to tissue samples, except FBPase. Blanks were then prepared for the 

assay (solution blank and sample blank in solution). Each reaction was run in a 

96 well plate with the FBPase added last to all samples and incubated for 60 
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minutes at 37°C. 10% trichloroacetic acid (TCA) was used to stop the reaction 

after the allotted time. Once a precipitate formed the plate was centrifuged at 

10,000xg for 10 minutes to lower the precipitate to the bottom of the well. 5g of 

FeSO4 was dissolved in 10 mL of 10% ammonium molybdate for working 

standards. FeSO4 working standards were prepared (0, 10, 25, 50, 100,150, 200, 

250 nM) and added to a new 96 well plate. For each sample 50 μL of the first 

reaction was then added to the new plate. Then 40 μL of the FeSO4 solution was 

added last to each standard and sample well and incubated at room temperature 

for 10 minutes. The plate was read at 10 minutes at 820 nm. (WT vehicle n=3), 

(NHERF1 KO vehicle n=4), (WT cisplatin n=3), (NHERF1 KO cisplatin=5). 

 

3. Glucose-6-Phosphatase activity assay 

0.1 M Tris-HCl, pH 7.4; 10% TCA; 50 mM glucose-6-phosphatase (G6Pase); 

0.1M MgCl2 were prepared. Additionally, a 3.2 mM KH2PO4 solution was 

prepared and stored at 4°C. All working standards were prepared fresh using the 

3.2 mM KH2PO4 stock solution and diluted to 590 μM. Blanks were then prepared 

for the assay (solution blank and sample blank in solution). Each reaction was 

run in a 96 well plate with the G6Pase added last to all samples. The plate was 

then incubated for 60 minutes at 37°C. 10% TCA was used to stop the reaction 

after the allotted time. Once a precipitate formed the plate was centrifuged at 

10,000xg for 10 minutes to lower the precipitate to the bottom of the well. 5g of 

FeSO4 was dissolved in 10 mL of 10% ammonium molybdate for working 

standards. FeSO4 working standards were prepared (0, 10, 25, 50, 100,150, 200, 
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250 nM) and added to a new 96 well plate. Then 50 μL of the FeSO4 solution was 

added last to each standard and sample well and incubated at room temperature 

for 10 minutes. The plate was read at 10 minutes at 820 nm. (WT vehicle n=3), 

(NHERF1 KO vehicle n=4), (WT cisplatin n=3), (NHERF1 KO cisplatin=5). 

 

4. Lactate Dehydrogenase activity assay 

0.1 M Tris-HCl, pH 7.4; 0.5 mM sodium pyruvate; 0.1M MgCl2 were prepared. 

Additionally, 0.5 mM NADH was made fresh in a 1mM sodium bicarbonate, pH 

9.0 solution the day of the reaction. Blanks were then prepared for the assay 

(solution blank and sample blank in solution). Each reaction was run in a 96 well 

plate with the NADH added last to all samples. The plate was read immediately 

after adding the NADH at 340 nm for 3-10 minutes. (WT vehicle n=3), (NHERF1 

KO vehicle n=4), (WT cisplatin n=3), (NHERF1 KO cisplatin=5). 

 

5. Malate Dehydrogenase activity assay 

0.1 M Tris-HCl, pH 7.4; 0.5 mM oxaloacetate; 0.1M MgCl2 were prepared. 

Additionally, 0.5 mM NADH was made fresh in a 1mM sodium bicarbonate, pH 

9.0 solution the day of the reaction. Blanks were then prepared for the assay 

(solution blank and sample blank in solution). Each reaction was run in a 96 well 

plate with the NADH added last to all samples. The plate was read immediately 

after adding the NADH at 340 nm for 3-10 minutes. (WT vehicle n=3), (NHERF1 

KO vehicle n=4), (WT cisplatin n=3), (NHERF1 KO cisplatin=5). 
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6. Malic Enzyme activity assay 

0.1 M Tris-HCl, pH 7.4; 0.5 mM L-malic acid; 0.1M MgCl2 were prepared. 

Additionally, 2mg/mL of NADP was made fresh in a 100 mM imidazole solution 

the day of the reaction. Blanks were then prepared for the assay (solution blank 

and sample blank in solution). Each reaction was run in a 96 well plate with the 

NADP added last to all samples. The plate was read immediately after adding the 

NADP at 340 nm for 3-10 minutes. (WT vehicle n=3), (NHERF1 KO vehicle n=4), 

(WT cisplatin n=3), (NHERF1 KO cisplatin=5). 

 

7. Glucose-6-Phosphate Dehydrogenase activity assay 

0.1 M Tris-HCl, pH 7.4; 0.5 mM glucose-6-phosphate; 0.1M MgCl2 were 

prepared. Additionally, 2mg/mL of NADP was made fresh in a 100 mM imidazole 

solution the day of the reaction. Blanks were then prepared for the assay 

(solution blank and sample blank in solution). Each reaction was run in a 96 well 

plate with the NADP added last to all samples. The plate was read immediately 

after adding the NADP at 340 nm for 3-10 minutes. (WT vehicle n=3), (NHERF1 

KO vehicle n=4), (WT cisplatin n=3), (NHERF1 KO cisplatin=5). 

 

8. γ-Glutamyl Transferase activity assay 

The activity assay was performed using the GGT colorimetric assay kit 

(Sigma Aldrich; St. Louis, Missouri) per the manufacturer’s instructions. Tissue 

samples were prepared using approximately 10 mg of kidney cortex in 200 μL of 

ice-cold GGT assay buffer. The samples were then centrifuged at 13,000xg for 
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10 minutes to remove insoluble material. The supernatant was kept and further 

diluted to 1:100 using GGT assay buffer and stored at -80°C until further use. 4 

hours: (WT vehicle: n=6), (NHERF1 KO vehicle: n=6), (WT cisplatin: n=6), and 

(NHERF1 KO cisplatin: n=6) and 24 hours: (WT vehicle: n=5), (NHERF1 KO 

vehicle: n=5), (WT cisplatin: n=7), and (NHERF1 KO cisplatin: n=8). 

 

C. Liquid Chromatography-Mass Spectrometry (LC-MS) 

1. LC-MS of kidney cortex for ATP quantification 

10 mg of kidney cortex was snap-frozen and stored in -80 °C until LC-MS 

procedure. The tissue was maintained in liquid nitrogen during preparation for 

LC-MS. Tubes and beads were pre-cooled in liquid nitrogen and 2.5% kidney 

cortex homogenate was made using an extraction solution (70% acetonitrile and 

30% H2O). Tissue was homogenized using a bead beater at 5 m/s for 15 

seconds. The homogenized tissue was then transferred to another tube for 

centrifugation at 16,000xg for 10 min at 4°C. The supernatant was saved for 

subsequent LC-MS analysis. To quantitate the ATP present in mouse kidney 

cortex tissue a standard curve was prepared using 1mM ATP diluted serially with 

the extraction buffer containing 20µM 13C10ATP. Each concentration point was 

diluted 50X with 60% ACN and 40% 15mM Ammonium Acetate. 5µL was 

injected onto a SeQuant ZIC-cHILIC 100X2.1mm metal free HPLC column.  

Separation was performed by pumping 60% ACN and 40% 15mM Ammonium 

Acetate through the column with a flow rate of 0.5mL/min with no change in 

composition using a Waters Acquity UPLC. The ATP was eluted from the column 
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and flowed into a Waters Quattro Premier XE mass spectrometer and 

subsequently quantitated using optimized MRMs. A calibration curve was 

constructed using ATP concentration on the x-axis and response of ATP over 

13C10ATP on the y axis. Mouse kidney extracts were also diluted with 50X 60% 

ACN and 40% 15mM Ammonium Acetate, 5µL was injected and the 

concentration in kidney tissue was interpolated using the calibration curve 

previously made for (WT n=5) and (NHERF1 KO n=5). 

 

D. Electron Microscopy 

1. Perfusion fixation of total kidney in situ for electron microscopy 

The abdominal cavity of the mouse was opened along the linea alba and 

intestines moved aside to expose kidneys. A suture was loosely put around the 

right kidney for removal without glutaraldehyde exposure. The right kidney was 

then used for kidney cortex homogenates. Next, the chest cavity was opened to 

expose the heart and the vena cava was cut while the right kidney was tied off 

and removed. The left mouse kidney was perfused with 3% glutaraldehyde 

solution at a rate of 6 mL/min for approximately 1-3 minutes. Perfusion was 

stopped once kidneys had a change in color and consistency. The kidney was 

removed and placed in a petri dish of 3% glutaraldehyde where three to four 0.2 

cm x 0.4 cm slices were cut and then stored in 3-4 mL of 3% glutaraldehyde at 

4°C. At this point the tissue was sent to Norton Children’s Hospital Pathology 

Department for a blinded EM analysis of kidney tubule mitochondria. Images 

were taken by a renal pathologist at the Pathology Department. Sections with the 
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highest concentration of mitochondria were randomly picked in a 4x field to be 

used to calculate mitochondria number and mitochondria area by Image J (WT 

n=6) and (NHERF1 KO n=5).  

 

E. Seahorse XF24 mitochondrial respiration analysis 

Mice for this study had food taken away 6 hours before sacrifice. 

Mitochondrial oxidative capacity was measured in isolated kidney mitochondria 

using a Seahorse Bioscience XF24 extracellular flux analyzer (Billerica, MA, 

USA). For measurements in isolated mitochondria, tissue from the kidney cortex 

of both kidneys (approximately 50 mg) was isolated and homogenized in 1 ml of 

isolation buffer (220 mM mannitol, 70 mM sucrose, 5 mM 3-(N-

morpholino)propanesulfonic acid (MOPS), 1 mM ethylene glycol tetraacetic acid 

(EGTA), 0.3% fatty acid-free bovine serum albumin (BSA), pH 7.2). The 

homogenate was centrifuged at 500 x g for five minutes at 4°C. The supernatant 

containing mitochondria was centrifuged at 10,000 x g for five minutes. Following 

two wash centrifugation steps in BSA-free isolation buffer, the mitochondria were 

suspended in respiration buffer (120 mM KCl, 25 mM sucrose, 10 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 1 mM MgCl2, 5 mM 

KH2PO4, pH to 7.2). Protein in the mitochondrial suspension was estimated by 

bicinchoninic acid method (Sigma) using BSA as a standard. 10 μg of 

mitochondrial protein was sedimented in XF culture plates. Succinate (10 mM), 

rotenone (1 μM), and ADP (1 mM) were injected to assess state 3 respiratory 

activity (phosphorylating respiration). The OCR of mitochondria after exposure to 
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oligomycin (1 μg/ml) was used to estimate state 4 activity (non-phosphorylating 

respiration). Finally, Antimycin A (20 μM) was stop all respiration. Data are 

expressed as pmol O2/min/μg protein (WT n=6, NHERF1 KO n=6). 

 

F. Histology and immunohistochemistry 

1. Histology 

Paraffin embedded fixed whole kidney tissue were cut in 5 μm thick either 

transversely or longitudinally from cisplatin treated and vehicle treated WT and 

NHERF1 KO animals. These sections were stained with hematoxylin and eosin 

(H&E) as well as periodic acid-schiff (PAS) to evaluate number of casts, degree 

of BBM sloughing, and ATN. These sections were sent to a pathologist for 

analysis. Images were taken at 20x and 40x (WT vehicle n=5), (NHERF1 KO 

vehicle n=5), (WT cisplatin n=7), and (NHERF1 KO cisplatin n=8). 

 

2. Immunohistochemistry (IHC) 

IHC was carried out on paraffin embedded fixed whole kidney tissue cut in 5 

μm thick sections either transversely or longitudinally from cisplatin treated and 

vehicle treated WT and NHERF1 KO animals. A primary antibody against GGT 

(1:50) (ABclonal; Woburn, MA; A1776) and 4-Hydroxynonenal (4-HNE) (1:100) 

(Abcam; Cambridge, UK; ab46545) were utilized for staining to evaluate any 

changes in proximal tubule localization or loss after cisplatin treatment. Images 

were taken at 10x, 20x and 40x (WT vehicle: n=5), (NHERF1 KO vehicle: n=5), 

(WT cisplatin: n=10), and (NHERF1 KO: n=9).  
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G. Clinical Chemistry 

1. Neutrophil gelatinase-associated lipocalin (NGAL) 

NGAL was determined using an enzyme linked immunosorbent assay 

(ELISA) kit (R&D Systems; Minneapolis, MN; DY1857) on mouse urine as 

directed by the manufacturer (WT vehicle n=5), (NHERF1 KO vehicle n=5), (WT 

cisplatin n=7), and (NHERF1 KO cisplatin n=8).  

 

H. Thiobarbituric acid reactive substances (TBARS) 

Lipid peroxidation was determined using a TBARS assay kit (Cayman 

Chemicals; Ann Arbor, MI; 10009055) on mouse kidney cortex tissue as directed 

by the manufacturer (WT vehicle n=5), (KO vehicle n=5), (WT cisplatin n=8), and 

(NHERF1 KO cisplatin n=9). 

 

I. High-performance Liquid Chromatography (HPLC) 

1. Collection of Mouse Blood and Tissue for GSH, GSSG, Cys, and Cyss  

Blood samples were collected from mice and added to a tube with 0.5 M 

borate buffer stock solution and 165 uM γ-glutamylglutamate as the internal 

standard as described in (117) within 1-2 minutes after the blood was drawn. 

Plasma was extracted via centrifugation (3,000xg for 2 minutes) and 50 uL of 

supernatant was transferred to a new tube with preservation solution (10% 

perchloric acid, 0.2 M boric acid, and 10 uM γ-glutamylglutamate). Tubes were 

then stored at -80°C. 10 mg of kidney cortex tissue was removed from the kidney 

and added to preservation solution (5% perchloric acid, 0.2 M boric acid, and 10 
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uM γ-glutamylglutamate) and homogenized. Kidney cortex homogenates were 

then stored at -80° until further use. Plasma: (WT vehicle: n=5), (NHERF1 KO 

vehicle: n=5), (WT cisplatin: n=7), and (NHERF1 KO cisplatin: n=9). 

 

2. HPLC Analysis of kidney cortex and plasma for GSH, GSSG, Cys, and 

CySS  

Tissue and plasma Cys, CySS, GSH and GSSG were assayed by HPLC as 

S-carboxymethyl, N-dansyl derivatives using γ-glutamylglutamate as an internal 

standard as previously described (117, 118). The HPLC system consisted of an 

aminopropyl column, 2 Waters 515 HPLC Pumps to deliver a gradient of acetate 

and methanol, a Waters 717 plus Autosampler with refrigeration unit, and a 

Waters 2475 Multi λ Fluorescence Detector. Integration of peak areas and 

comparison to internal standard was performed by Waters Empower 3 software. 

Kidney: (WT vehicle: n=5), (NHERF1 KO vehicle: n=5), (WT cisplatin: n=8), and 

(NHERF1 KO cisplatin: n=9). 

 

J. Immunoblots 

1. Western blot 

Kidney cortex homogenates were made as previously described (119). 

Protein concentration was measured by bicinchoninic acid (BCA) method 

(Sigma) using BSA as a standard. Kidney homogenates were separated by 10% 

SDS-PAGE and transferred to nitrocellulose membranes. The membranes were 

incubated with 5% (wt/vol) dried milk in Tris-buffered saline with 0.5% Tween 20 
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(TTBS) for 30 minutes to decrease nonspecific antibody binding. Membranes 

were incubated overnight at 4°C with primary antibodies against GGT (ABclonal; 

A1776) and CCBL1 (ABclonal; A6542), diluted (1:1000) in 5% milk. Membranes 

were washed with TTBS and incubated for 2 hours with horseradish peroxidase-

conjugated secondary antibodies diluted in TTBS and 5% milk. 

Chemiluminescence (ThermoScientific) was utilized to detect bands and 

visualization via GeneSys software with a Pixi imaging system (Syngene). 

Densitometric analysis was performed via Image J. For densitometric analysis, 

specific protein expression was normalized to densitometry values for 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Cell Signaling; Beverly, 

MA) or β-actin (Cell Signaling) in each lane (WT vehicle n=3), (NHERF1 KO 

vehicle n=3), (WT cisplatin n=4), and (NHERF1 KO cisplatin n=4). 

 

L. Statistical analysis 

1. Statistical analysis of ATP, mitochondrial number, and respiration 

data 

Student’s t-test was used to evaluate LC-MS data measuring ATP content 

between WT and NHERF1 KO kidneys. Additionally, student’s t-test was used to 

compare mitochondrial number and mitochondrial respiration via Seahorse XF24 

between WT and NHERF1 KO kidney mitochondria. P-values of <0.05 were 

considered statistically significant and data were shown as mean ± standard 

error means (SEM).  
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2. Statistical analysis of enzyme kinetics, western blots, HPLC, NGAL, 

and TBARS  

Two-way analysis of variance (ANOVA) was used to evaluate changes in 

enzyme kinetics between vehicle and cisplatin treated mouse kidneys. Likewise, 

two-way ANOVA was utilized to evaluate protein expression changes in GGT 

and CCBL in treated kidney cortex by western blot; reduction/oxidation state of 

GSH and Cys in plasma and treated kidneys; lipid peroxidation by TBARS in 

treated kidneys; and urine NGAL from treated mice. P-values of <0.05 were 

considered statistically significant and data were shown as mean ± SEM.
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CHAPTER III 

 

NHERF1 LOSS RESULTS IN ALTERED PENTOSE PHOSPHATE ENZYMES IN 

MICE 

 

A. Introduction 

Although cisplatin is a widely used chemotherapeutic that treats a variety of 

solid malignant tumors (e.g. ovarian testicular, head and neck, and lung cancer), 

its mechanism of action is still not completely understood (8). Likewise, the 

mechanism of cisplatin’s nephrotoxicity remains perplexing and is surrounded by 

much controversy. Moreover, 20-30% of patients on cisplatin will develop 

cisplatin-induced AKI with a single dose (8). Currently, there are no methods of 

prevention for cisplatin-induced AKI or therapeutics to treat the development of 

AKI. Therefore, understanding patient susceptibility to cisplatin is a needed area 

of research.  

Identifying new potential biomarkers and/or therapeutic targets are a 

promising area of research. To meet this need, a new area of research has been 

proposed to involve the scaffolding protein NHERF1 and susceptibility to 

cisplatin-induced AKI (35). NHERF1 is a known monomeric intrinsic membrane 

protein that belongs to the NHERF family of PDZ-scaffold proteins (31). NHERF1 
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is found in all epithelial cells and acts as a scaffold for multi-protein signaling 

complexes. In proximal tubule cells of the kidney NHERF1 is anchored to the 

cytoskeleton in the subapical plasma membrane where it acts as a key 

scaffolding protein of transport proteins and has critical roles in defining the renal 

proximal tubule BBM composition and in regulating ion transport (31). 

Furthermore, there is increasing evidence that NHERF1 has a much broader role 

than as a scaffolding protein. In fact, NHERF1 expression and/or localization has 

been associated with tumorigenesis (33, 34). Several studies have documented 

when NHERF1 is localized at the apical membrane it acts as a tumor suppressor, 

and when its expression is lost or its localization is in the cytoplasm or nucleus it 

exhibits pro-oncogenic properties (33, 34). Additionally, NHERF1 has received 

increased interest in its involvement in a variety of functions including: cell 

structure and trafficking (38, 40), inflammatory responses (82), and tissue injury 

(35-37). One such study found that NHERF1 KO mice had attenuated cholestatic 

liver injury by bile duct ligation (36). NHERF1 loss has been reported in 

exacerbation of cisplatin-induced AKI in mice (35). Furthermore, aging rats (22 

months) exhibit a decrease in NHERF1 expression (84) associated with the 

development of renal fibrosis.  

Taken together, NHERF1 expression may also be lost in aging humans, 

predisposing these patients to cisplatin nephrotoxicity. One question addressed 

in this dissertation is whether NHERF1 loss may alter metabolic pathways 

resulting in increased sensitivity to cisplatin. Cisplatin itself is known to modify 
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renal metabolic pathways such as glycolysis, gluconeogenesis, and lipid 

metabolism in response to cellular injury and death (86, 87, 92, 93).  

 

B. Experimental Procedures 

1. Animals and treatments 

Male (2-4 month) WT and NHERF1 KO mice were treated with cisplatin (20 

mg/kg IP) for 72 hours as described in Chapter II. 

 

2. LC-MS of kidney cortex for ATP quantification 

Snap-frozen kidneys were prepared for LC-MS analysis as described in 

Chapter II. 

 

3. Enzyme kinetics 

Kidney cortex tissue was homogenized and prepared for enzyme kinetic 

assays as described in Chapter II. Enzyme kinetic assays were run for FBPase, 

G6Pase, lactate dehydrogenase (LDH), malate dehydrogenase (MDH), malic 

enzyme, and glucose-6-phosphate dehydrogenase (G6PD) as described in 

Chapter II.  

 

4. Data analysis 

Enzyme kinetic data were analyzed as described in Chapter II. 

 

5. Statistical analysis 
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Enzyme kinetic data were analyzed by two-way ANOVA as described in 

Chapter II.  

 

C. Results 

1.  Cisplatin treatment significantly decreases fructose-1,6-

bisphosphatase enzyme activity in both WT and NHERF1 KO mice. 

Previous studies investigated the effect of cisplatin on gluconeogenesis (86, 

93, 120). However, the effect of NHERF1 protein loss on gluconeogenesis before 

and after cisplatin treatment has not been investigated. The first objective of this 

dissertation was to measure the enzyme activity of FBPase before and after 

cisplatin treatment in WT and NHERF1 KO mice. FBPase is a critical regulatory 

enzyme in gluconeogenesis that catalyzes the hydrolysis of fructose-1,6-

bisphosphate to fructose-6-phosphate and inorganic phosphate (121). In order to 

determine if NHERF1 loss affected gluconeogenic enzyme activity alone or with 

cisplatin treatment, male 2-4 month old mice were treated with vehicle or cisplatin 

to induce AKI and then sacrificed after 72 hours. Kidney cortex tissue from these 

mice were used for the FBPase enzyme kinetic assay as described in Chapter II. 

There were no significant differences between vehicle [(WT: 41.5 nmole/mg 

protein/min ± 6.5) (KO: 38.7 nmole/mg protein/min ± 4.1)] or cisplatin [(WT: 20.6 

nmole/mg protein/min ± 0.4) (KO: 19.7 nmole/mg protein/min ± 1.2)] treated WT 

and NHERF KO kidneys (Figure 3.1). However, cisplatin did decrease FBPase 

activity in both WT and NHERF1 KO kidneys (P = 0.0001) (Figure 3.1). 
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Figure 3.1 

 

Figure 3.1: Effect of cisplatin treatment on fructose-1,6-bisphosphatase enzyme 

activity in WT and NHERF1 KO mouse kidneys. 

2-4 month old male C57BL/6J WT and NHERF1 KO mice were given cisplatin 

(20 mg/kg dose IP) or vehicle (saline) and sacrificed after 72 hours as described 

in Chapter II. FBPase enzyme activity was determined from kidney cortex tissue 

of these mice. Data are means ± SEM (WT vehicle n=3), (KO vehicle n=4), (WT 

cisplatin n=3), and (KO cisplatin n=5). ***P = 0.001 cisplatin treated WT and 

NHERF1 KO mice compared to vehicle saline controls.  
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2.  Cisplatin treatment significantly decreases glucose-6-phosphatase 

enzyme activity in both WT and NHERF1 KO mice. 

G6Pase is the final step in gluconeogenesis. It hydrolyzes glucose-6-

phosphate to free glucose and a phosphate group (122). This enzyme was also 

investigated to evaluate the effect NHERF1 loss may have on gluconeogenesis 

alone or with cisplatin treatment. Kidney cortex tissue from these mice were used 

for the G6Pase enzyme kinetic assay as described in Chapter II. Similarly to 

FBPase, G6Pase activity remained comparable in WT and NHERF1 KO kidneys 

regardless of treatment [(WT vehicle: 92.3 nmole/mg protein/min ± 5.0), (KO 

vehicle: 103.0 nmole/mg protein/min ± 11.3), (WT cisplatin: 38.0 nmole/mg 

protein/min ± 5.1), and (KO cisplatin: 26.4 nmole/mg protein/min ± 3.8)], while 

cisplatin led to a significant decrease in enzyme activity in both genotypes (P 

<0.0001) (Figure 3.2). 

 

3. NHERF1 loss or cisplatin treatment does not significantly affect 

lactate dehydrogenase enzyme activity in mice. 

Lactate dehydrogenase (LDH) catalyzes the interconversion of lactate and 

pyruvate, concomitantly with the interconversion of NADH and NAD+ (123) . 

When oxygen is absent LDH converts pyruvate, the final product of glycolysis, to 

lactate (123). Kidney cortex tissue from WT and NHERF1 KO vehicle and 

cisplatin treated mice were used to evaluate enzyme activity of LDH as described 

in Chapter II. NHERF1 loss (P = 0.65) or cisplatin treatment (P = 0.71) did not  
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Figure 3.2 

 

Figure 3.2: Effect of cisplatin treatment on glucose-6-phosphatase enzyme 

activity in WT and NHERF1 KO mouse kidneys. 

2-4 month old male C57BL/6J WT and NHERF1 KO mice were given cisplatin 

(20 mg/kg dose IP) or vehicle (saline) and sacrificed after 72 hours as described 

in Chapter II. G6Pase enzyme activity was determined from kidney cortex tissue 

of these mice. Data are means ± SEM (WT vehicle n=3), (KO vehicle n=4), (WT 

cisplatin n=3), and (KO cisplatin n=5). ***P < 0.001 cisplatin treated WT and 

NHERF1 KO mice compared to vehicle saline controls.  
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significantly affect lactate dehydrogenase activity in these mouse kidneys [(WT 

vehicle: 0.06 nmole/mg protein/min ± 0.02), (KO vehicle: 0.1 nmole/mg 

protein/min ± 0.05), (WT cisplatin: 0.1 nmole/mg protein/min ± 0.8), and (KO 

cisplatin: 0.02 nmole/mg protein/min ± 0.006)] (Figure 3.3).   

 

4. Cisplatin treatment significantly decreases malate dehydrogenase 

enzyme activity in both WT and NHERF1 KO mice. 

Malate dehydrogenase (MDH) is an enzyme involved in many metabolic 

pathways including the citric acid cycle. MDH reversibly catalyzes the oxidation 

of malate to oxaloacetate with the reduction of NAD+ to NADH (124). The effect 

of NHERF1 loss and/or cisplatin treatment on MDH activity was analyzed. In a 

similar way to LDH, NHERF1 loss or cisplatin treatment did not significantly affect 

MDH activity in these mouse kidneys [(WT vehicle: 0.9 nmole/mg protein/min ± 

0.06), (KO vehicle: 0.7 nmole/mg protein/min ± 0.02), (WT cisplatin: 0.8 

nmole/mg protein/min ± 0.02), and (KO cisplatin: 0.81 nmole/mg protein/min ± 

0.06)] (Figure 3.4).   

 

5. NHERF1 loss affects malic enzyme activity before and after cisplatin 

treatment. 

Malic enzyme (ME) catalyzes the conversion of malic acid to pyruvate and 

produces NADPH (125). ME serves as an additional source of NADPH for 

lipogenesis. In order to understand the affect that NHERF1 loss and/or cisplatin  
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Figure 3.3 

 

Figure 3.3: Lactate Dehydrogenase enzyme activity in WT and NHERF1 KO 

mouse kidneys. 

2-4 month old male C57BL/6J WT and NHERF1 KO mice were given cisplatin 

(20 mg/kg dose IP) or vehicle (saline) and sacrificed after 72 hours as described 

in Chapter II. LDH enzyme activity was determined from kidney cortex tissue of 

these mice. Data are means ± SEM (WT vehicle n=3), (KO vehicle n=4), (WT 

cisplatin n=3), and (NHERF1 KO cisplatin n=5). No significant differences were 

recorded.  
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Figure 3.4 

 

Figure 3.4: Malate Dehydrogenase enzyme activity in WT and NHERF1 KO 

mouse kidneys. 

2-4 month old male C57BL/6J WT and NHERF1 KO mice were given cisplatin 

(20 mg/kg dose IP) or vehicle (saline) and sacrificed after 72 hours as described 

in Chapter II. MDH enzyme activity was determined from kidney cortex tissue of 

these mice. Data are means ± SEM (WT vehicle n=3), (KO vehicle n=4), (WT 

cisplatin n=3), (NHERF1 KO cisplatin n=5). No significant differences were 

reported. 
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treatment may have on ME activity, kidney cortex tissue from vehicle or cisplatin 

treated WT and NHERF1 KO were evaluated as described in Chapter II. 

Interestingly, there was a significant genotype effect on ME activity resulting in an 

increase in activity in NHERF1 KO kidneys (P = 0.0065) (Figure 3.5). 

Additionally, a significant interaction affect was also noted between WT and 

NHERF1 KO kidneys after cisplatin treatment (P = 0.0005) [(WT vehicle: 0.07 

nmole/mg protein/min ± 0.012), (KO vehicle: 0.21 nmole/mg protein/min ± 0.01), 

(WT cisplatin: 0.15 nmole/mg protein/min ± 0.012), and (KO cisplatin: 0.13 

nmole/mg protein/min ± 0.02)] (Figure 3.5).   

 

6. NHERF1 loss affects glucose-6-phosphate dehydrogenase enzyme 

activity before and after cisplatin treatment. 

Cisplatin-induced AKI is known to decrease intermediates of the pentose 

phosphate pathway (86, 94) in mice. Glucose-6-phosphate dehydrogenase 

(G6PD) is a cytosolic enzyme that participates in the pentose phosphate 

pathway, resulting in NADPH production (126). This is accomplished when G6PD 

reduces NADP+ to NADPH while oxidizing glucose-6-phosphate (126). G6PD 

enzyme activity was analyzed in vehicle and cisplatin treated WT and NHERF1 

KO kidney cortex to elucidate if NHERF1 loss and/or cisplatin treatment affected 

the pentose phosphate pathway. Similarly to ME, there was a significant 

genotype effect on G6PD activity resulting in an increase in activity in NHERF1 

KO kidneys (P = 0.0033) (Figure 3.6). Additionally, a significant interaction affect 

was also noted between WT and NHERF1 KO kidneys after cisplatin treatment  
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Figure 3.5 

 

Figure 3.5: Effect of NHERF1 loss and cisplatin treatment on malic enzyme 

activity in WT and NHERF1 KO mouse kidneys. 

2-4 month old male C57BL/6J WT and NHERF1 KO mice were given cisplatin 

(20 mg/kg dose IP) or vehicle (saline) and sacrificed after 72 hours as described 

in Chapter II. ME activity was determined from kidney cortex tissue of these 

mice. Data are means ± SEM (WT vehicle n=3), (KO vehicle n=4), (WT cisplatin 

n=3), and (KO cisplatin n=5). **P = 0.0065 vehicle treated NHERF1 KO mice 

compared to WT vehicle controls; ***P = 0.0005 interaction of cisplatin treated 

NHERF1 KO mice to cisplatin treated WT mice.  
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Figure 3.6 

 

Figure 3.6: Effect of NHERF1 loss and cisplatin treatment on glucose-6-

phosphate dehydrogenase enzyme activity in WT and NHERF1 KO mouse 

kidneys. 

2-4 month old male C57BL/6J WT and NHERF1 KO mice were given cisplatin 

(20 mg/kg dose IP) or vehicle (saline) and sacrificed after 72 hours as described 

in Chapter II. G6PD enzyme activity was determined from kidney cortex tissue of 

these mice. Data are means ± SEM (WT vehicle n=3), (KO vehicle n=4), (WT 

cisplatin n=3), and (KO cisplatin n=5). **P = 0.0065 vehicle treated NHERF1 KO 

mice compared to WT vehicle controls; **P = 0.0005 interaction of cisplatin 

treated NHERF1 KO mice to cisplatin treated WT mice. 
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 (P = 0.00029) [(WT vehicle: 0.13 nmole/mg protein/min ± 0.02), (KO vehicle: 0.3 

nmole/mg protein/min ± 0.03), (WT cisplatin: 0.3 nmole/mg protein/min ± 0.007), 

and (KO cisplatin: 0.3nmole/mg protein/min ± 0.02)] (Figure 3.6).  

 

7. NHERF1 loss does not affect amount of ATP by LC-MS in mouse 

kidneys. 

ATP provides energy to drive many cellular processes and is consumed 

during many metabolic processes (127). In eukaryotes ATP is produced by three 

different metabolic pathways: [1] glycolysis, [2] the citric acid cycle or oxidative 

phosphorylation, and [3] beta-oxidation (127). In order to determine if NHERF1 

KO kidneys had differences in ATP content, kidneys were snap-frozen and 

processed while cold for LC-MS as described in Chapter II. LC-MS analysis 

revealed that there were no significant differences in ATP amount in WT (3.4 

nmoles/mg tissue ± 0.5) and NHERF1 KO (3.1 nmoles/mg tissue ± 0.5) kidneys 

(P = 0.67) (Figure 3.7).  

 

D. Discussion 

This work had two primary goals: [1] to characterize any metabolic differences 

in NHERF1 KO mouse kidneys and [2] to evaluate if metabolic changes in 

NHERF1 KO mouse kidneys could predispose these animals to susceptibility of 

cisplatin-induced AKI. As discussed in the introduction, previous studies noted 

metabolic changes in affected mouse kidneys post cisplatin treatment, 

contributing to both injury and the development of CKD. These studies revealed 
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Figure 3.7 

 

Figure 3.7: ATP content of WT and NHERF1 KO mouse kidneys. 

2-4 month old male C57BL/6J WT and NHERF1 KO mice kidneys were removed 

and snap-frozen in liquid nitrogen. LC-MS was utilized to evaluate amount of 

ATP in these tissues as described in Chapter II. Data are means ± SEM (WT 

n=5) and (KO n=5). No significant differences were reported in these kidneys.   
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that cisplatin nephrotoxicity depletes amino acids (86-89), reduces fatty acid 

oxidation (86, 89, 91), reduces glycolytic enzymes (86, 93), and decreases 

intermediates of the pentose phosphate pathway and the citric acid cycle (86, 

94).  

One of the first objectives of this study was to evaluate any changes in 

gluconeogenesis of NHERF1 KO mouse kidneys compared to WT mouse 

kidneys pre and post cisplatin treatment. Baseline measurements of FBPase 

showed no changes in enzymatic activity with NHERF1 loss; furthermore, WT 

and NHERF1 KO kidneys both had a decrease in activity following cisplatin 

treatment. Indicating that FBPase functions similarly with or without NHERF1, 

consistent with other reports (128, 129).  Likewise, G6Pase activity was 

unchanged with NHERF1 loss and, similarly to other reports, decreased after 

cisplatin treatment in both genotypes (128, 129). These data confirm that 

NHERF1 loss does not have an apparent effect on gluconeogenesis, whereas 

cisplatin injury results in decreased gluconeogenic enzymes. MDH and LDH 

belong to the same family of NAD-dependent enzymes, and cisplatin-induced 

oxidative stress has been shown to increase LDH due to lipid peroxidation and 

decrease MDH (130, 131). Interestingly, this study found no significant changes 

in LDH and MDH activity regardless of genotype or cisplatin treatment, which is 

consistent with a previous study that demonstrated similar results where LDH 

and MDH activities were unchanged after cisplatin treatment in rats (132). These 

disparities between studies and cisplatin’s effect on LDH and MDH activities 

further illustrate the complexity of this disease. 
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ME and G6PD activity provide necessary NADPH, a key cofactor in redox 

control and reductive biosynthesis. ME plays a role in production of pyruvate and 

serves as an additional source of NADPH for lipogenesis. Mammals that utilize 

glucose for lipogenesis via citrate are believed to rely heavily on transferring 

reducing equivalents from extra-mitochondrial NADH to NADP through the 

combined acts of MDH and ME (134). Pyruvate from ME is available to re-enter 

the mitochondria and be converted to of oxaloacetate or acetyl-CoA (134). 

Additionally, there is recent evidence for direct cross-talk between ME and the 

pentose phosphate pathway (135), where G6PD is a rate limiting enzyme. 

Another goal of this study was to determine the effect of NHERF1 loss and/or the 

combined effect with cisplatin on ME and G6PD activity. Notably, both ME and 

G6PD activity were significantly increased in the NHERF1 KO mouse kidney 

under baseline conditions. Following cisplatin treatment ME and G6PD activity 

decreased until level with cisplatin treated WT activity and resulted in a 

significant interaction. These increases in ME and G6PD activity at baseline 

suggest some altered or compensatory metabolic changes in the pentose 

phosphate pathway of NHERF1 KO mice. One study found using a cell culture 

model of diabetes that increased activity of G6PD restored redox balance in 

endothelial cells exposed to high glucose levels (136), where high glucose levels 

had previously decreased G6PD and increased levels of oxidative stress. 

Multiple studies have noted the importance of cellular redox balance in both 

development of and in protection from renal injury (103, 104). In rats G6PD 

activity is reported to decrease in acute models of nephrotoxicity, and ME activity 
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is reported to increase (129). Additionally, one other investigator found that 

NHERF1 is a previously unidentified regulator of Nox1 (NADPH oxidase) and 

further promotes Nox1 activity (81). In fact, vascular smooth muscle cells 

deficient of NHERF1 were unable to mount a ROS response to potent O2 stimuli 

(81). Taken together, one possible explanation for these data are that NHERF1 

KO mice are under some stress resulting in an increase in G6PD activity in an 

attempt to restore redox balance. Whether, redox balance is indeed restored in 

these mice will be further investigated in Chapter V. These data suggest subtle 

metabolic changes in the kidneys of the NHERF1 KO animals, but do not allow 

us to make definitive conclusions on the mechanism involved. This is in part due 

to the amelioration of cisplatin nephrotoxicity when antioxidants are given or 

when there is a decrease in ROS prior to treatment. On the other hand, cisplatin 

does decrease intermediates of the pentose phosphate pathway. Indicating this 

could be a mechanism of enhanced susceptibility if the NHERF1 KO kidneys are 

more reliant on this pathway for energy generation.  

Lastly, this study evaluated ATP levels between WT and NHERF1 KO 

kidneys to determine any alterations in cellular energy. Following LC-MS 

assessment it was determined that WT and NHERF1 KO kidneys contain similar 

levels of ATP, indicating that NHERF1 KO mice are not depleted and/or 

producing higher amounts of ATP due to energy demands. Collectively, the 

results of the ATP, G6PD and ME data point towards potential changes in 

NADPH of NHERF1 KO mice. This presents another area of interest to 

investigate in the future.  
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In conclusion, this study provides insight into metabolic changes of NHERF1 

KO mice. In this study increased enzymes of the pentose phosphate pathway 

were found in NHERF1 KO mice and suggest these animals are expressing 

some differences in metabolic pathways when compared to WT animals. The 

basis for these changes in the activity of this metabolic pathway and its 

significance for the increased susceptibility of NHERF1 KO mice to cisplatin 

nephrotoxicity remain unknown. These results provide another avenue to be 

explored in the future pertaining to NADPH levels in NHERF1 KO mouse 

kidneys. Further investigation into bioenergetics of the NHERF1 KO mouse 

kidneys may elucidate more insight into susceptibility to cisplatin injury. 
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CHAPTER IV 

 

MECHANISM OF SUSCEPTIBILITY OF NHERF1 KO MICE TO CISPLATIN-

INDUCED AKI IS NOT MITOCHODNRIAL DYSFUNCTION 

 

A. Introduction 

Mitochondria are important for multiple cellular functions but are more 

commonly known as the ‘powerhouse of the cell’. In all eukaryotic cells that do 

not undergo photosynthesis the mitochondria is the main source for ATP, an 

energy rich compound that drives cellular functions (137, 138). The inner 

mitochondrial membrane is the site of the ETC and oxidative phosphorylation 

where ATP is generated from ADP and phosphate ions (137, 138). Other 

mitochondrial functions apart from cellular respiration and ATP synthesis include: 

production of NADH and GTP in the citric acid cycle, amino acid biosynthesis, 

calcium signaling, stress responses, and cellular signaling (137, 138). On the 

other hand, when mitochondria are damaged they undergo electron leakage and 

produce massive amounts of free radicals in the form of ROS, leading to cell 

injury and death. Thus, mitochondrial dysfunction is often the cause of severe 

diseases.  

Not surprisingly, the critical role of mitochondria in human health and disease 

progression has strengthened interest in the relationship of mitochondrial 
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function and cisplatin nephrotoxicity. As previously discussed in Chapters I and 

III, cisplatin is a highly successful chemotherapeutic with nephrotoxic side 

effects. This toxicity greatly limits cisplatin’s therapeutic use and often leads to 

the development of AKI (8). Pathologically cisplatin induces cell death and injury 

to the renal tubules, triggers vascular dysfunction, and launches a strong 

inflammatory response (8). These effects of cisplatin result in both necrosis and 

apoptosis in the proximal and distal tubules. Cisplatin’s mechanism of toxicity 

remains uncertain to this day, however, cisplatin induced-mitochondrial 

dysfunction and the development of renal tubule cell damage/death provides an 

attractive hypothesis.  

Cisplatin nephrotoxicity results in a decline in both state 3 mitochondrial 

respiration and calcium accumulation (139-141). Additionally, cisplatin 

nephrotoxicity has been associated with a decrease in cytochrome c oxidase 

activity and a reduction in complex IV protein expression (139-142). These 

changes can lead to increased ROS production from mitochondria. Moreover, 

cisplatin toxicity drastically reduces renal cell antioxidant activity (139, 140, 142, 

143). Some studies found that cisplatin-induced mitochondrial damage results in 

a decrease in mitochondrial mass, disruption of cristae, and even mitochondrial 

swelling (105, 139, 140). These morphological changes are associated with a 

significant reduction in mitochondrial activity and ATP production (139, 140). 

Furthermore, protein-bound platinum was found in renal tubule cell mitochondria 

24 hours after cisplatin treatment (144). Together, these studies indicate a critical 

role of mitochondrial function and oxidative stress in cisplatin nephrotoxicity. 
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These studies provided a new avenue of research to explore in understanding 

how NHERF1 loss increases susceptibility to cisplatin-induced AKI. In Chapter III 

NHERF1 loss was associated with an increase in ME and G6PD activity under 

baseline conditions and a differential response when compared to WT animals, 

suggesting compensatory mechanisms that may affect mitochondrial function. 

Previous studies from our laboratory comparing WT and NHERF1 deficient 

opossum kidney (OK) cells, a model of mammalian renal proximal tubule, 

demonstrated that the NHERF1 deficient cells grew more slowly and were more 

likely to die in culture with no apparent morphological differences. Additionally, 

proteomic studies revealed that NHERF1 KO mice exhibited markedly diminished 

associated mitochondrial proteins in the BBM of these mice (unpublished data). 

These properties of the NHERF1 deficient cells and mice (the poor survival, 

decreased expression of mitochondrial proteins in BBM, and aberrant pentose 

phosphate enzyme activity) suggested that NHERF1 loss may be associated with 

mitochondrial dysfunction and susceptibility to kidney injury. Based on these 

observations the goals of this work are twofold: [1] to determine if NHERF1 KO 

mice have altered mitochondrial function and/or structure and [2] to determine if 

NHERF1 KO mice have an underlying mitochondrial dysfunction that 

predisposes these animals to cisplatin nephrotoxicity. 

 

B. Experimental Procedures 

1. Electron microscopy 
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2-4 month old male WT and NHERF1 KO mice were perfused with 3% 

glutaraldehyde and the kidneys were removed for EM analysis as described in 

Chapter II. 

 

2. Seahorse XF24 mitochondrial respiration analysis 

Mitochondria were isolated from 2-4 month old male WT and NHERF1 KO 

mouse kidney homogenates. Seahorse XF24 analysis of OCR of isolated 

mitochondria were obtained as described in Chapter II.  

 

3. Data analysis  

EM and Seahorse XF24 mitochondrial data were analyzed as described in 

Chapter II. 

 

4. Statistical analysis 

Statistical analysis of electron microscopy and Seahorse XF24 mitochondrial 

data was performed as described in Chapter II. 

 
C. Results 

1. NHERF1 loss does not affect kidney proximal tubule mitochondria 

morphology. 

The mitochondrial structure is essential for proper function, thus, EM images 

of WT and NHERF1 KO proximal tubule mitochondria were utilized to evaluate 

their morphology as described in Chapter II. These images were taken and 

evaluated by a renal pathologist for signs of injury, oxidative stress, and changes 
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in cristae. There were no apparent changes in mitochondria morphology between 

WT and NHERF1 KO proximal tubules (Figure 4.1). The only injury reported was 

early ischemic changes mostly likely due to harvesting of the kidneys (Figure 

4.1). Some endosomal swelling was noted but occurred across both genotypes. 

Additionally, in figure 4.1 the density and distribution of mitochondria within the 

tubules were also alike. Lastly, no apparent signs of oxidative stress were found 

in either genotype (Figure 4.1).  

 

2. NHERF1 loss does not affect mitochondria number or area in kidney 

proximal tubules. 

Changes in mitochondrial number and a decrease in size have been 

associated with a decline in mitochondrial function (145). Therefore, one goal of 

this study was to determine if mitochondrial number and/or size changed in 

NHERF1 KO proximal tubules when compared to WT. Images from EM of WT 

and NHERF1 KO kidney proximal tubules were utilized in order to count the 

number of mitochondria and to calculate the average area via Image J. There 

was not a significant difference between the average number of mitochondria 

between WT and NHERF1 KO tubules (WT average number: 128.8) and 

(NHERF1 KO average number: 115) (P = 0.6) (Figure 4.2A). In addition, there 

was not a significant difference between the average area of mitochondria in WT 

and NHERF1 KO tubules (WT average area: 580,540.9 μm2) and (NHERF1 KO 

average area: 678,465.4 μm2) (P = 0.75) (Figure 4.2B).  
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Figure 4.1 

 

Figure 4.1: Electron microscopy of WT and NHERF1 KO proximal tubule 

mitochondria. 

Representative photomicrographs of a 4x field of WT and NHERF1 KO proximal 

tubule mitochondria. The left panel represents proximal tubule mitochondria of 

WT mice, while the right panel represents NHERF1 KO proximal tubule 

mitochondria (WT n=6) and (NHERF1 KO n=5). The scale bars were set at 2 μm. 
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Figure 4.2

 

Figure 4.2: Mitochondrial number and area of WT and NHERF1 KO mouse 

proximal tubules. 

2-4 month old male WT and NHERF1 KO mice were perfused with 3% 

glutaraldehyde for EM analysis. (A) Number of mitochondria were counted in 

random 4x visual fields with the highest density of mitochondria. Data are means 

± SEM (WT n=6) and (NHERF1 KO n=5). Mitochondria number of NHERF1 KO 

proximal tubules were insignificant when compared to WT. (B) Mitochondria area 

was calculated using EM images and Image J. Data are means ± SEM (WT n=6) 

and (NHERF1 KO n=5). Mitochondria area of NHERF1 KO proximal tubules were 

insignificant when compared to WT.  
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3. WT and NHERF1 KO mouse kidney mitochondria have similar 

oxidative capacities. 

The mitochondria’s capacity to reduce oxygen is a critical aspect in the 

process of mitochondrial electron transport and ATP synthesis. Therefore, 

measuring mitochondrial oxygen consumption can provide a valuable method to 

assess mitochondrial function. One purpose of this work was to assess 

mitochondrial function by oxidative capacity in WT and NHERF1 KO kidneys 

using the Seahorse XF24 analyzer. In panel A of figure 4.3 OCR of WT and 

NHERF1 KO kidney mitochondria are shown over time. Both WT and NHERF1 

KO mitochondria exhibit a similar trend and response to added substrates and 

inhibitors. When adding the substrate Succinate/Rotenone plus ADP for 

production of ATP both genotypes exhibit a maximal increase in OCR. Moreover, 

both genotypes undergo a decrease in OCR after adding Oligomycin, an inhibitor 

of Complex V (formation of ATP from ADP via O2 consumption). Lastly, 

Antimycin A shuts down all respiration, where the OCR is close to the basal 

OCR. The difference between the basal OCR and OCR after Antimycin A is the 

non-mitochondrial respiration. 

Changes in state 3 (conversion of ATP from ADP and consumption of O2) and 

state 4 (non-phosphorylating or resting respiration) respiration are commonly 

used to evaluate mitochondria oxidative capacity. Panel B of figure 4.3 shows 

both state 3 [(WT: 60 pmoles/min/μg protein ± 6) and (NHERF1 KO: 44  
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Figure 4.3 
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Figure 4.3: Mitochondrial function in isolated mitochondria of WT and NHERF1 

KO kidneys. 

Mitochondria from 2-4 month old male WT and NHERF1 KO mice were isolated 

and analyzed via the Seahorse XF24 for oxidative capacity as described in 

Chapter II. (A) OCR was recorded after the addition of both substrates 

(Succinate/Rotenone/ADP) and inhibitors (Oligomycin and Antimycin A) [(WT 

n=6) and (NHERF1 KO n =6)]. (B) State 3 and State 4 was calculated using the 

recorded OCR’s of WT and NHERF1 KO mitochondria. Data are means ± SEM 

[(WT n=6) and (NHERF1 KO n=6)]. State 3 and State 4 respiration were 

considered insignificant between WT and NHERF1 KO mouse kidney 

mitochondria. (C) Respiratory control ratio (RCR) (state 3/state 4) was calculated 

between WT and NHERF1 KO kidney mitochondria. Data are represented as 

state 3/state 4 ratio [(WT n =6) and (NHERF1 n=6)]. RCR was insignificant 

between WT and NHERF1 KO mouse kidney mitochondria.   
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pmoles/min/μg protein ± 2)] and 4 [(WT: 37 pmoles/min/μg protein ± 6) and 

(NHERF1 KO: 28 pmoles/min/μg protein ± 2)] of WT and NHERF1 KO kidney 

mitochondria, where state 3 (P = 0.2) and 4 (P = 0.1) were determined to be 

insignificant between the groups.  

The respiratory control ratio (RCR) is the best general measure of 

mitochondrial function in isolated mitochondria. RCR is measured by taking state 

3/state 4 respiration and sums up the main function of mitochondria: the ability to 

idle at low rates and then respond to ADP by making ATP at high rates. In 

addition the RCR has no absolute value that is diagnostic of mitochondrial 

dysfunction (146). Thus, RCR values are substrate and tissue dependent, 

making this complex function advantageous when measuring mitochondrial 

function in isolated mitochondria (146). A change in almost any aspect of 

oxidative phosphorylation will result in a change in the RCR when comparing 

isolated mitochondria (146). Accordingly, the RCR was calculated between WT 

(1.63) and NHERF1 (1.61) KO kidney mitochondria and also found to be 

insignificant (Figure 4.3C).  

 

D. Discussion 

The goal of this study was to determine if NHERF1 loss results in 

mitochondrial dysfunction. This possibility was investigated as a potential 

mechanism of susceptibility of NHERF1 KO mice to cisplatin-induced AKI. This is 

the first study to investigate mitochondrial dysfunction in NHERF1 KO mice, and 
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the first to show that NHERF1 KO mice do not have an underlying mitochondrial 

dysfunction. 

The morphology of proximal tubule mitochondria of WT and NHERF1 KO 

mice was determined to be similar. Structural changes in mitochondria are 

indicative of improper function thus; these observations indicate that NHERF1 

KO mice proximal tubule mitochondria do not have structural changes leading to 

dysfunction. In addition to structural changes, mitochondrial number and size 

were also evaluated. With age, mitochondrial integrity and functionality are 

known to decrease due to mutations and oxidative damage by ROS (145). 

Moreover, in aged mice (22-28 months), mitochondria exhibit lowered oxidative 

capacity, reduced oxidative phosphorylation, decreased ATP production, 

significant increase in ROS generation, and diminished antioxidant defense (145, 

147). In addition, with age mitochondrial biogenesis declines due to alterations in 

mitochondrial dynamics and inhibition of mitophagy, an autophagy process that 

removes dysfunctional mitochondria. Thus, one question postulated was if 

NHERF1 KO mice had a change in mitochondrial number and/or area that would 

indicate inadequate functioning or stress. EM analysis found that both 

mitochondrial number and area were similar between both genotypes, 

suggesting proper mitochondrial integrity and biogenesis in NHERF1 KO mice 

proximal tubules. 

Assessing mitochondrial dysfunction requires a definition of that dysfunction, 

usually defined as the mitochondria’s capability of making ATP in response to 

energy demands. Furthermore, this dysfunction can be evaluated in isolated 
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mitochondria. For isolated mitochondria the best method of evaluating 

dysfunction is analyzing mitochondrial oxidative capacity and respiratory control. 

Respiratory control is the increase in respiration in response to ADP. The RCR is 

both substrate and tissue dependent, however, when comparing different study 

groups a high RCR value indicates good mitochondrial function, while a low RCR 

indicates mitochondrial dysfunction. When comparing WT and NHERF1 KO 

mitochondrial function state 3 and state 4 were determined to be similar between 

the genotypes. Furthermore, the RCR (state 3/state 4) was determined to be the 

same (NHERF1 KO: 1.61 vs WT: 1.63). These data indicate that NHERF1 KO 

mouse kidney mitochondria are responding accordingly to energy demands when 

isolated from tissue. However, isolated mitochondria removed from their natural 

environment and the effect of the intracellular milieu on mitochondria function 

cannot be assessed in this type of assay. Previous studies established that 

NHERF1 KO mice exhibited phosphate wasting (148). This phenotype could 

create an environment where mitochondria cannot function properly. When 

isolating mitochondria both the isolation buffer and respiration buffer contain 

phosphate to ensure the isolation process does not harm the mitochondria’s 

ability to function. Therefore, a future project would be to evaluate mitochondrial 

function using whole kidney tissue with the Seahorse XF24 analyzer. This 

experiment could help clarify if NHERF1 KO mouse kidneys have an underlying 

mitochondrial dysfunction due to their environment and hence serving to answer 

the question if an underlying mitochondrial dysfunction could predispose 

NHERF1 KO mice to cisplatin nephrotoxicity. 
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This study demonstrates that proximal tubule mitochondria from NHERF1 KO 

kidneys are structurally similar and healthy when compared to WT mitochondria. 

Additionally, isolated mitochondria from NHERF1 KO mice do not exhibit 

changes in function indicative of stressed or dysfunctional kidney mitochondria. 

These data do not support the hypothesis that NHERF1 loss results in an 

underlying mitochondrial dysfunction. However, one potential mechanism that 

has yet to be investigated is whether NHERF1 loss and the subsequent low 

phosphate environment affects kidney mitochondrial function. This information 

may provide an alternative mechanism of susceptibility to cisplatin nephrotoxicity 

in NHERF1 KO mice, and it will be investigated in the future. Understanding the 

underlying mechanism of susceptibility to cisplatin-induced AKI with NHERF1 

loss may provide future therapeutic targets and or biomarkers to use in the clinic. 
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CHAPTER V 

 

NHERF1 LOSS AFFECTS GGT ACTIVITY IN RESPONSE TO CISPLATIN  

 

A. Introduction 

Cisplatin is one of the most effective chemotherapeutic agents used to treat a 

number of diseases including: head and neck, esophageal, bladder, testicular, 

ovarian, uterine, cervical, breast, stomach, small cell, and non-small cell lung 

cancer (8-10). As a chemotherapeutic cisplatin crosslinks with purine bases in 

DNA and inhibits DNA synthesis (9). Because cisplatin shows its highest activity 

in highly proliferative cells, its unusual dose-dependent and cumulative side 

effect of nephrotoxicity remains a mystery (8-10). In addition, some patients 

appear to have an increased sensitivity to this side effect, with 20-30% 

developing cisplatin-induced AKI with a single dose (8). This sensitivity remains 

an important area of research as there are no FDA-approved strategies or 

approved therapies for preventing or ameliorating cisplatin-induced AKI.  

In hopes of tackling this urgent clinical need, much research has been driven 

in understanding how cisplatin is handled by the kidneys. To date the accepted 

hypothesis for the renal handling of cisplatin is that during glomerular filtration 

cisplatin accumulates in the kidneys (149). OCT2 and Ctr1 have been identified 
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as membrane transporters capable of cisplatin uptake in renal proximal tubule 

cells (150). Furthermore, MATE1 has also been identified in transporting cisplatin 

from the proximal tubule to the urine (22). Cisplatin nephrotoxicity was 

ameliorated with OCT2 inhibition and is exacerbated with MATE1 inhibition in 

mice (18, 22, 150). Biotransformation of cisplatin is believed to start immediately 

after transportation into the apical renal epithelial cell (25). The initial 

biotransformation step is proposed to be with the formation of glutathione 

conjugates (25). These conjugates are then cleaved to cysteinyl-glycine-

conjugates by GGT, which is expressed on the surface of proximal tubule cells 

(25). From there AP is thought to convert cysteinyl-glycine-conjugates to cysteine 

conjugates, which are then believed to be further metabolized by CCBL into 

highly reactive nephrotoxic thiols (25). With that series in mind, much of the 

biotransformation of cisplatin in the kidney remains controversial. For example, it 

is known that GGT has the highest activity in the kidney and it was thus 

considered a potential target for attenuation of nephrotoxicity. However, 

investigation into that possibility yields controversial results, suggesting that 

enhanced GGT activity may either increase or decrease sensitivity to cisplatin-

induced AKI (151).  

These conflicting results have made the development of reno-protective 

strategies or therapies difficult. Recently, a new potential target, NHERF1, a 

known scaffolding protein important to the proper function of renal proximal 

tubule cells, has been identified. In this recent study NHERF1 KO mice exhibited 

exacerbated cisplatin nephrotoxicity, manifested by a significant increase in BUN, 
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NGAL, and higher histologic injury severity scores than in cisplatin treated WT 

mice (35). Interestingly, NHERF1 KO mice showed similar levels of apoptosis 

when compared to WT mice, but had a clear increase in necrotic cell death 

following cisplatin treatment (35). Other studies noted that cisplatin nephrotoxicity 

was dose dependent and involved both necrosis and apoptosis, however, higher 

levels of necrosis were associated with higher concentrations of cisplatin (152, 

153). Collectively, these data along with another study showing NHERF1 

expression was also involved with cisplatin resistance in cervical cancer cells 

(110), suggested that loss of NHERF1 may affect the renal handling of cisplatin.  

The goal of this work was to elucidate new potential mechanisms of 

susceptibility to cisplatin-induced AKI. NHERF1 loss was hypothesized to affect 

the renal handling of cisplatin by alterations in renal uptake and/or metabolism. In 

this endeavor the current understanding of cisplatin’s uptake and 

biotransformation was utilized to evaluate NHERF1’s effect on cisplatin-induced 

AKI. 

 

B. Experimental Procedures 

1. Animals and treatments 

Male (2-4 month) WT and NHERF1 KO mice were treated with cisplatin (20 

mg/kg IP) for 4, 24, or 72 hours as described in Chapter II. 

 

2. γ-Glutamyl Transferase activity assay 

The GGT activity assay was performed as described in Chapter II. 
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3. Histology and immunohistochemistry 

H&E, PAS, and IHC were performed as described in Chapter II. 

 

4. NGAL 

NGAL was determined as described in Chapter II. 

 

5. TBARS 

TBARS assay was performed as described in Chapter II. 

 

6. HPLC 

Blood and tissue samples for GSH, GSSG, Cys, CySS were processed and 

analyzed as described in Chapter II. 

 

7. Immunoblots 

Western blots were performed as described in Chapter II. 

 

8. Data analysis 

Data analysis was performed as described in Chapter II. 

 

10. Statistical analysis  

Statistical analysis was performed as described in Chapter II.  

 

C. Results 
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1. NHERF1 loss results in early cisplatin-induced renal histologic injury. 
 

H&E and PAS staining of the kidneys of cisplatin treated mice after 24 hours 

revealed that NHERF1 KO mice exhibited early histologic injury that does not 

correspond with treated WT mice at the same time point (Figure 5.1). Similarly to 

the 72 hour time point, the injury is predominantly cortical in NHERF1 KO mice at 

24 hours. This injury was manifested by intermittent casts, atrophy, and BBM 

sloughing (Figure 5.1) in NHERF1 KO mice, while cisplatin treated WT mice 

exhibited no obvious signs of histologic damage.  

 

2. Cisplatin treatment significantly increases urine NGAL protein in 

NHERF1 KO mice in comparison to cisplatin treated WT mice at 24 

hours. 

In order to confirm cisplatin treatment resulted in early higher kidney injury in 

NHERF1 KO mice urine NGAL was measured as described in Chapter II. With 

cisplatin treatment both WT (0.1 μg/mL ± 0.02) and NHERF1 KO (0.7 μg/mL ± 

0.2) mice had a significant increase in NGAL protein compared to vehicle treated 

WT (0.04 μg/mL ± 0.03) and NHERF1 KO (0.02 μg/mL ± 0.006) (P = 0.007) 

(Figure 5.2). However, a statistically significant increase in NGAL urine protein 

level was observed in cisplatin treated NHERF1 KO compared to cisplatin treated 

WT mice (P = 0.03) (Figure 5.2). Additionally, a significant decrease in NGAL 

urine protein in vehicle treated NHERF1 KO compared to vehicle treated WT 

mice was found (P = 0.04) (Figure 5.2).  
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Figure 5.1 

 

Figure 5.1: Early histologic effect of cisplatin on WT and NHERF1 KO kidneys. 

Representative photomicrographs (40x) of H&E (top panel) and PAS staining 

(bottom panel) of 24 hour cisplatin treated WT and NHERF1 KO mice. H&E 

panel (A) represents a vehicle treated WT kidney, (B) a vehicle treated NHERF1 

KO kidney, (C) a cisplatin treated WT kidney, and (D) a cisplatin treated NHERF1 

KO kidney. PAS panel (A) and (C) represent cisplatin treated WT kidneys and 

panel (B) and (D) represent cisplatin treated NHERF1 KO kidneys. Arrows 

indicate areas of injury (casts and BBM sloughing). 
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Figure 5.2 

 

Figure 5.2: Effect of cisplatin on urine NGAL. 

NGAL protein measurement of mouse urine in 24 hour cisplatin treated WT and 

NHERF1 KO mouse kidneys. Data are means ± SEM (WT vehicle: n=5), 

(NHERF1 KO vehicle: n=5), (WT cisplatin: n=7), and NHERF1 KO cisplatin: n=8). 

**P = 0.007 cisplatin treated WT and NHERF1 KO mice compared to vehicle 

saline controls; *P = 0.03 cisplatin treated NHERF1 KO compared to cisplatin 

treated WT mice; *P = 0.04 vehicle treated NHERF1 KO mice compared to 

vehicle treated WT mice. 
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3. NHERF1 loss does not affect lipid peroxidation by TBARS 

Cisplatin nephrotoxicity has been shown in rats to induce lipid peroxidation, 

oxidative degeneration on lipids in cellular membranes (120). A TBARS assay 

was utilized to test if NHERF1 loss alone led to lipid peroxidation or if cisplatin 

treated NHERF1 KO mice had an increased level of lipid peroxidation. The 

TBARS assay measures levels of malondialdehyde (MDA) and other lipid 

peroxidation products. WT and NHERF1 KO 72 hour cisplatin treated kidney 

cortex homogenates were used for this assay. Under baseline conditions lipid 

peroxidation levels were similar for both genotypes (WT vehicle: 0.95 nmole/mg 

± 0.09) and (NHERF1 KO vehicle: 0.96 nmole/mg ± 0.09) (Figure 5.3). No 

significant increase of lipid peroxidation was found with cisplatin treatment in 

either WT (0.86 nmole/mg ± 0.05) or NHERF1 KO (0.83 nmole/mg ± 0.07) mice 

(Figure 5.3). Furthermore, no differences were found between cisplatin treated 

WT and NHERF1 KO mice (Figure 5.3).  

 

4. NHERF1 loss increases 4-hydroxynonenal in cortex and 

juxtamedullary region following cisplatin treatment  

Besides MDA, 4-hydroxynonenal (4-HNE) is another product of lipid 

peroxidation. To give a broader view of lipid peroxidation in vehicle and cisplatin 

treated mice IHC of 4-HNE was performed. IHC for 4-HNE showed minimal 

staining with no marked differences between genotypes for vehicle treated 

kidneys (Figure 5.4). Cisplatin treatment resulted in an increase in 4-HNE  
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Figure 5.3 

 

Figure 5.3: Cisplatin’s effect on lipid peroxidation by TBARS in WT and NHERF1 

KO mice. 

TBARS measurement of lipid peroxidation of kidney cortex 72 hour cisplatin 

treated WT and NHERF1 KO mice. Data are means ± SEM (WT vehicle: n=5), 

(NHERF1 KO vehicle: n=5), (WT cisplatin: n=8), and NHERF1 KO cisplatin: n=9). 

No significant differences were found between treatment groups.  
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Figure 5.4 

 

Figure 5.4: The effect of NHERF1 loss and cisplatin treatment on 4-HNE staining 

in the kidney. 

Representative photomicrographs (10x) of IHC staining of 4-HNE in 72 hour 

cisplatin treated WT and NHERF1 KO mice. Panel (A) represents a vehicle 

treated WT kidney, (B) a vehicle treated NHERF1 KO kidney, (C) a cisplatin 

treated WT kidney, and (D) a cisplatin treated NHERF1 KO kidney. Arrows 

indicate areas of marked staining in the cortex and juxtamedullary (JM) region of 

the kidney.  
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staining within the cortex and juxtamedullary (JM) region of both genotypes, 

however, staining was more marked in the cisplatin treated NHERF1 KO kidneys, 

especially in the JM regions (Figure 5.4). 

 

5. NHERF1 KO kidneys do not have altered GSH metabolism 

Cisplatin nephrotoxicity is proposed to deplete GSH and to induce oxidative 

stress resulting in cellular injury and death. Due to this finding, HPLC of the 

reduced and oxidized forms of small molecular weight thiols, GSH, glutathione 

disulfide (GSSG), cysteine (Cys) and cystine (CySS), and the mixed disulfide 

between the two, cysteine-glutathione disulfide (CySSG), were performed on 

plasma and kidney cortex 72 hours after cisplatin treatment. In vehicle treated 

mice, the only significant difference observed in plasma was a CySS decrease in 

NHERF1 KO (24.1 µM ± 3.7) relative to WT (37.6 µM ± 2.7) (P = 0.0042) (Figure 

5.5 A). Additionally, after cisplatin treatment NHERF1 KO mice (18.9 µM ± 3.2) 

had a decrease in plasma CySS compared to WT (29 µM ± 4) (P = 0.0042) 

(Figure 5.5 A). In response to cisplatin, plasma CySS, Cys [(WT vehicle: 29 µM ± 

3), (NHERF1 KO vehicle: 31 µM ± 2), (WT cisplatin: 23 µM ± 3), (NHERF1 KO 

cisplatin: 20 µM ± 2)] (P = 0.013), CySSG [(WT vehicle: 22 µM ± 3), (NHERF1 

KO vehicle: 21 µM ± 6), (WT cisplatin: 16 µM ± 1), (NHERF1 KO cisplatin: 10 µM 

± 2)] (P = 0.003), GSH [(WT vehicle: 30 µM ± 3), (NHERF1 KO vehicle: 35 µM ± 

2), (WT cisplatin: 23 µM ± 2), (NHERF1 KO cisplatin: 24 µM ± 4)] (P = 0.02), and 

GSSG [(WT vehicle: 5 µM ± 1), (NHERF1 KO vehicle: 7 µM ± 2), (WT cisplatin: 3 

µM ± 0.3), (NHERF1 KO cisplatin: 3 µM ± 0.6)] (P = 0.002) decreased when  
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Figure 5.5 
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Figure 5.5: Cisplatin and NHERF1 loss effect on small molecular weight thiols. 

Plasma and Kidney GSG, GSSG, CySSG, Cys, and CySS were measured in 72 

hour vehicle and cisplatin treated WT and NHERF1 KO mice. Data are means ± 

SEM. Plasma: (WT vehicle: n=5), (NHERF1 KO vehicle: n=5), (WT cisplatin: 

n=7), and (NHERF1 KO cisplatin: n=9) and Kidney: (WT vehicle: n=5), (NHERF1 

KO vehicle: n=5), (WT cisplatin: n=8), and (NHERF1 KO cisplatin: n=9). Plasma: 

*P < 0.05 cisplatin treated WT and NHERF1 KO mice compared to vehicle saline 

controls for CySS, Cys, CySSG, GSH, GSSG, and CySSG; *P < 0.05 vehicle 

treated NHERF1 KO compared to vehicle treated WT mice for CySS. Kidney: *P 

< 0.05 vehicle treated NHERF1 KO mice compared to vehicle treated WT mice 

for CySS, Cys, and GSSG; *P < 0.05 cisplatin treated WT and NHERF1 KO mice 

compared to vehicle saline controls for CySS, Cys, CySSG, and GSSG. 
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Table 5.1: 

Oxidized and Reduced 
forms Plasma Kidney 

  
WT 
veh 

KO 
veh 

WT 
cis 

KO 
cis 

WT 
veh 

KO 
veh 

WT 
cis 

KO 
cis 

CyS ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↑ 

CySS ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ 

CySSG ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ 

GSH ↑ ↑ ↓ ↓ NS NS NS NS 

GSSG ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↓ 

GSH/GSSG N/A N/A N/A N/A ↑ ↓ ↑ ↑ 

 
Table 5.1: Summary of the effect of NHERF1 and cisplatin on small molecular 

weight thiols.  

Plasma and Kidney GSG, GSSG, CySSG, Cys, and CySS were measured in 72 

hour vehicle and cisplatin treated WT and NHERF1 KO mice. Table 5.1 

illustrates the summarized effects of NHERF1 and cisplatin treatment on CyS, 

CySS, CySSG, GSH, GSSG, and GSH/GSSG in both the plasma and the kidney. 

N/A stands for not applicable and NS for not significant. Arrows indicate 

increased or decreased levels of each small molecular weight thiol.  
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compared to vehicle treated mice (Figure 5.5A & B). In the kidney vehicle treated 

NHERF1 KO mice had a decrease in Cys (3 nmole/mg protein ± 2) (P = 0.03) 

and an increase in GSSG (2 nmole/mg protein ± 0.1) (P = 0.022) relative to 

vehicle treated WT mice [(CySSG: 15 nmole/ mg protein ± 1), (Cys: 5 nmole/ mg 

protein ± 0.2), (GSSG: 1 nmole/mg protein ± 0.1) (Figure 5.5 C & D). Cisplatin 

treatment led to an increase in CySS [(WT cisplatin: 1 nmole/mg protein ± 0.1), 

(NHERF1 KO cisplatin: 0.8 nmole/mg protein ± 0.08)] (P = 0.002) and Cys [(WT 

cisplatin: 9 nmole/mg protein ± 1), (NHERF1 KO cisplatin : 7 nmole/mg protein ± 

0.8)] (P = 0.0005) and a decrease in CySSG [(WT cisplatin: 3 nmole/mg protein ± 

0.4), (NHERF1 KO cisplatin: 3 nmole/mg protein± 0.7)] (P < 0.0001) and GSSG 

[(WT cisplatin: 0.7 nmole/mg protein ± 0.1), (NHERF1 KO cisplatin: 0.8 nmole/mg 

protein ± 0.08)] (P  < 0.0001) in both genotypes (Figure 5.5 C & D). On the other 

hand, cisplatin did not affect the kidney levels of GSH [(WT vehicle: 30 nmole/mg 

protein ± 2), (NHERF1 KO vehicle: 27 nmole/mg protein ± 1), (WT cisplatin: 26 

nmole/mg protein ± 3), (NHERF1 KO cisplatin: 24 nmole/mg protein ± 2)] in 

either genotype (Figure 5.5 D). Kidney redox potential (GSH/GSSG) was also 

measured and found to be increased in both genotypes with cisplatin treatment 

[(WT vehicle: 26.4 ± 1.4), (NHERF1 KO vehicle: 18 ± 0.7), (WT cisplatin: 40.2 ± 

4), and (NHERF1 KO cisplatin: 29.2 ± 2)] (P = 0.0002) (Figure 5.5 E). 

Furthermore, NHERF1 KO kidneys were found to have a decrease in 

GSH/GSSG redox potential under baseline (P = 0.003) (Figure 5.5 E).  

 

6. NHERF1 loss affects GGT activity response to cisplatin insult 
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Although controversial, GGT activity is thought to be part of cisplatin’s 

biotransformation into a nephrotoxin. Urine GGT activity was found to be highest 

after cisplatin treatment at 24 hours or earlier in humans (154). To understand 

the effect NHERF1 loss has on GGT activity in response to cisplatin over time 4 

hr and 24 hr cisplatin treated WT and NHERF1 KO kidneys were evaluated. GGT 

activity was found to be non-significantly altered with NHERF1 loss alone at any 

timepoint [4hr (WT vehicle: 5800 nmole/min/mL ± 1300), (NHERF1 KO vehicle: 

5700 nmole/min/mL ± 1600)] and [24 hr (WT vehicle: 8100 nmole/min/mL ± 

2300), (NHERF1 KO vehicle: 7200 nmole/min/mL ± 1500)], and remained similar 

4 hours after cisplatin treatment [4 hr (WT cisplatin: 7000 nmole/min/mL ± 1600), 

(NHERF1 KO cisplatin: 5300 nmole/min/mL ± 1600)] (Figure 5.6). However, 24 

hours after cisplatin treatment there was a significant genotype difference 

between WT and NHERF1 KO kidneys in response to cisplatin [24 hr (WT 

cisplatin: 9900 nmole/min/mL ± 2400), (NHERF1 KO cisplatin: 7300 

nmole/min/mL ± 1400)] (P = 0.04) (Figure 5.6).  

 

7. NHERF1 loss does not affect GGT protein expression 

To evaluate if NHERF1 loss affected the amount of GGT protein a western 

blot was performed on the 4 and 24 hour cisplatin treated WT and NHERF1 KO 

kidney homogenates (Figure 5.7). GGT protein expression was found to be 

unchanged with NHERF1 loss under baseline conditions for either time point [4 

hr (WT vehicle: 0.84 GGT/GAPDH ± 0.05), (NHERF1 KO vehicle: 0.62 

GGT/GAPDH ± 0.08)] and  
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Figure 5.6 

 

 
Figure 5.6: Effect of NHERF1 on GGT activity following cisplatin treatment. 

GGT activity was measured at 4 hours and 24 hours after cisplatin treatment in 

WT and NHERF1 KO kidney cortex homogenates as described in Chapter II. 

Data are means ± SEM. 4 hours: (WT vehicle: n=6), (NHERF1 KO vehicle: n=6), 

(WT cisplatin: n=6), and (NHERF1 KO cisplatin: n=6) and 24 hours: (WT vehicle: 

n=5), (NHERF1 KO vehicle: n=5), (WT cisplatin: n=7), and (NHERF1 KO 

cisplatin: n=8). *P < 0.04 cisplatin treated NHERF1 KO compared to cisplatin 

treated WT.   
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Figure 5.7 

 
 
Figure 5.7: Effect of NHERF1 loss on GGT protein. 

Representative blots of 4 hour (A) and 24 hour (B) GGT and GAPDH are shown. 

Kidney cortex homogenates were separated by 10% SDS-PAGE and transferred 

to nitrocellulose membranes. Quantitation was performed as described in 

Chapter II (B) Data are means ± SEM (WT vehicle: n=3), (NHERF1 vehicle: n=3), 

(WT cisplatin: n=4), and (NHERF1 KO cisplatin: n=4). A representative blot from 

2 independent experiments for each time point is shown. 
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[24 hr (WT vehicle: 1.3 GGT/GAPDH ± 0.14), (NHERF1 KO vehicle: 1.2 

GGT/GAPDH ± 0.1)] (Figure 5.7).Following cisplatin the amount of GGT protein 

was also found to be unchanged at 4 and 24 hours post treatment in both 

genotypes [4 hr (WT cisplatin: 0.7 GGT/GAPDH ± 0.09), (NHERF1 KO cisplatin: 

0.9 GGT/GAPDH ± 0.03)] and [24 hr (WT cisplatin: 1.2 GGT/GAPDH ± 0.13), 

(NHERF1 KO vehicle: 0.9 GGT/GAPDH ± 0.2)] (Figure 5.7). 

 

8. GGT localization is altered in NHERF1 KO kidneys 24 hours after 

cisplatin treatment 

To evaluate localization of GGT in WT and NHERF1 KO kidneys, kidney 

slices were stained for GGT by IHC. IHC revealed similar GGT staining in the 

proximal tubules of both vehicle treated genotypes (Figure 5.8, panel A & B). In 

cisplatin treated WT kidneys there was no apparent damage and GGT 

localization remained unaltered (Figure 5.8, panel C). However, in the cisplatin 

treated NHERF1 KO kidneys areas of BBM sloughing in the proximal tubule 

showed decreased staining for GGT (Figure 5.8, panel D).  

 

9. NHERF1 loss does not affect CCBL protein 

CCBL is a pyridoxal phosphate-dependent enzyme that metabolizes S-

cysteine conjugates through transamination or β-elimination reactions, and is 

also proposed to be involved in cisplatin’s biotransformation into a nephrotoxin. 

To determine if there were any changes in CCBL protein in WT and NHERF1 KO 

mice 4 hour and 24 hour cisplatin treated kidney cortex  
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Figure 5.8 

 
 
Figure 5.8: GGT localization in vehicle and cisplatin treated kidneys. 

Representative photomicrographs (40x) of IHC staining of GGT in 24 hour 

cisplatin treated WT and NHERF1 KO mice. Panel (A) represents a vehicle 

treated WT kidney, (B) a vehicle treated NHERF1 KO kidney, (C) a cisplatin 

treated WT kidney, and (D) a cisplatin treated NHERF1 KO kidney. Arrows 

indicate areas of BBM sloughing and GGT staining loss.  
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homogenates were analyzed via western blot. CCBL protein was found to be 

unchanged with NHERF1 loss under baseline conditions for either time point [4 

hr (WT vehicle: 1.4 CCBL/GAPDH ± 0.3), (NHERF1 KO vehicle: 1.1 

CCBL/GAPDH ± .01)] and [24 hr (WT vehicle: 2.5 CCBL/GAPDH ± 0.7), 

(NHERF1 KO vehicle: 1.2 CCBL/GAPDH ± 0.1)] (Figure 5.9). Following cisplatin 

the amount of CCBL protein was also found to be unchanged at 4 and 24 hours 

post treatment in both genotypes [4 hr (WT cisplatin: 1.7 CCBL/GAPDH ± 0.1), 

(NHERF1 KO cisplatin: 1.3 CCBL/GAPDH ± 0.2)] and [24 hr (WT cisplatin: 2.2 

CCBL/GAPDH ± 0.4), (NHERF1 KO cisplatin: 2.4 CCBL/GAPDH ± 0.8)] (Figure 

5.9).  

 

D. Discussion  

The purpose of this study was to determine if NHERF1 loss affected the renal 

handling of cisplatin. This possibility was investigated as a potential mechanism 

of susceptibility of NHERF1 KO mice to cisplatin-induced AKI. This is the first 

study to investigate the effect NHERF1 loss has on cisplatin uptake and/or 

metabolism in the kidney as well as the first study to show an altered GGT 

activity in response to cisplatin in NHERF1 KO mice. 

NHERF1 KO mice are indeed more sensitive to cisplatin as confirmed by 

earlier signs of cisplatin related kidney injury. WT mice did not show histologic 

signs of injury 24 hours after cisplatin treatment. Additionally, WT mice had a 

moderate increase in urine NGAL, a sensitive marker of kidney injury, 24 hours 

after treatment. On the other hand, NHERF1 KO mice showed patchy areas of  
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Figure 5.9 

 

Figure 5.9: Effect of NHERF1 loss on CCBL protein. 

Representative blots of 4 hour (A) and 24 hour (B) CCBL and GAPDH are 

shown. Kidney cortex homogenates were separated by 10% SDS-PAGE and 

transferred to nitrocellulose membranes. Quantitation was performed as 

described in Chapter II (B) Data are means ± SEM (WT vehicle: n=3), (NHERF1 

vehicle: n=3), (WT cisplatin: n=4), and (NHERF1 KO cisplatin: n=4). A 

representative blot from 2 independent experiments for each time point is shown. 
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histologic injury 24 hours after cisplatin administration (e.g. BBM sloughing, 

casts, and atrophy). Moreover, NHERF1 KO mice had a robust increase in urine 

NGAL 24 hours following cisplatin treatment. These data corroborate the 

increased sensitivity to cisplatin seen in the previous 72 hour study (35). In 

addition to evaluating the sensitivity of NHERF1 KO mice to cisplatin, levels of 

lipid peroxidation were also measured. 

Cisplatin has been shown to increase lipid peroxidation due to induced 

oxidative stress. In this study a TBARS assay was utilized and WT and NHERF1 

KO mice were found to have similar levels of lipid peroxidation via MDA. These 

data illustrate the perplexing nature of cisplatin nephrotoxicity, where much of the 

research is contradictory. In this study kidney cortex was used for the sample 

preparation, however, other studies used whole kidney or did not clarify whether 

cortex was isolated (155, 156). Conceivably these conflicting results may be due 

to what area of the kidney was used, especially since IHC of 4-HNE revealed that 

NHERF1 KO mice had an increased positive staining in both cortex and the JM 

region. On the other hand, many of the lipid peroxidation studies were performed 

on rats, while studies on mice seem to be dependent on the concentration of 

cisplatin, dosing regimen, and mouse strain (116, 156, 157). In addition, rats are 

more sensitive to cisplatin nephrotoxicity than mice (116). Thus, cisplatin 

nephrotoxic cell death and the relationship to induced lipid peroxidation remains 

obscure. However, both the TBARS assay and the IHC data reinforce that 

NHERF1 KO mice do not have an underlying increase in lipid peroxidation. 
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Therefore, this is not a mechanism of susceptibility of NHERF1 KO mice to 

cisplatin-induced AKI. 

Even though there was no apparent increase in lipid peroxidation other 

indicators of oxidative stress were measured. These indicators included the 

oxidized and reduced forms of small molecular weight thiols that act as 

antioxidants. Plasma from 72 hour cisplatin treated mice showed a consistent 

decrease in GSH, GSSG, CySSG, Cys, and CySS. These data are consistent 

with other reports (25, 158-160). When compared to WT alone, NHERF1 loss led 

to a decrease in cystine (CySS), which is the oxidized form of cysteine. CySS is 

readily taken up into cells to be reduced to Cys. Cys is a necessary substrate for 

the cellular antioxidant GSH (161). Although plasma CySS is decreased in the 

vehicle treated NHERF1 KO mice GSH in the kidney remains similar between 

vehicle treated WT and NHERF1 KO mice. Like in other studies, the kidney 

CySSG and GSSG are decreased in both genotypes with cisplatin treatment, but, 

unexpectedly GSH was not decreased in either genotype (159). The oxidized 

form of glutathione (GSSG), was increased in the kidney of vehicle treated 

NHERF1 KO mice. Collectively, NHERF1 KO mice had a decrease in CySS in 

the plasma and an increase in GSSG in the kidney. Moreover, NHERF1 KO mice 

had a decrease in kidney redox potential (GSH/GSSG) when compared to WT. 

Perhaps these data indicate a low level of oxidative stress or maybe a 

suppressed ability to convert CySS to Cys and GSSG to GSH with NHERF1 loss. 

However, NHERF1 KO kidneys do not reflect a decrease in GSH levels. 

Therefore, it appears that NHERF1 loss does not affect GSH metabolism itself. 
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Unfortunately, the role of NHERF1 loss and an underlying oxidative stress 

remains ambiguous as a potential mechanism. In the future measuring 

glutathione peroxidase, glutathione synthase, superoxide dismutase or catalase 

in WT and NHERF1 KO mice may be beneficial.  

In addition to GSH metabolism and oxidative stress indicators, GGT activity 

was also measured. Several studies have indicated GGT activity and/or 

expression is important to the biotransformation of cisplatin to a nephrotoxin (13, 

25, 26). A robust increase in GGT activity was seen in the 24 hour cisplatin 

treated WT mice, while an increase in GGT activity was not seen in the NHERF1 

KO mice, making it appear that they are unable to respond to cisplatin in this 

manner and suggesting that NHERF1 is important for GGT’s response to an 

insult. The role of GGT activity or expression in protection or susceptibility to 

cisplatin nephrotoxicity is also controversial (113, 151). GGT KO mice are 

protected from cisplatin nephrotoxicity (112). Alternatively, depending on the cell 

type an increase in GGT activity may be protective or increase sensitivity to the 

drug (151, 162). These data have led to two alternative theories: [1] GGT is 

important in the conversion of cisplatin to a nephrotoxin thus inhibition leads to 

protection or [2] GGT is important for detoxification of xenobiotics and production 

of GSH, thus increased activity results in increased GSH production that can 

alleviate some of the induced oxidative stress from cisplatin. The second theory 

may explain the exacerbated AKI in NHERF1 KO mice. If NHERF1 loss limits the 

ability of GGT to respond quickly and/or robustly to an insult there may be 

increased injury. Besides evaluating GGT activity, protein levels and localization 
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were investigated. GGT protein levels were not significantly different, however, 

IHC showed some GGT loss in the proximal tubule due to BBM sloughing. This 

GGT loss has been recorded in mice treated with cisplatin for 72 hours in 

addition to a decrease in GGT activity at 72 hours (116, 154, 163). This 

observation provides an alternative hypothesis for the difference in GGT activity 

between WT and NHERF1 KO mice. Because NHERF1 KO mice are beginning 

to lose GGT through BBM sloughing perhaps this is affecting their level of GGT 

activity in response to cisplatin. Alternatively, a 12 hour time point may be useful 

to determine if NHERF1 KO mice have an increase in activity between 4 and 24 

hours post cisplatin treatment. This proposal would fall under the hypothesis that 

an increase in GGT activity leads to worse injury. Thus, NHERF1 KO mice could 

have an increase in GGT activity earlier and subsequently result in increased 

damage by 24 hours. In any case more research is needed to understand how 

cisplatin causes nephrotoxicity and what role GGT plays in that mechanism. 

CCBL is the rate limiting enzyme in the production of the ‘reactive thiol’ in 

cisplatin nephrotoxicity (13, 25-27). Understanding the effect of NHERF1 loss on 

CCBL protein level, localization, and activity level are valuable pieces of 

information. In this work CCBL protein level was investigated and found to be 

similar regardless of genotype or treatment. Future experiments will also 

evaluate CCBL activity and localization between vehicle and cisplatin treated WT 

and NHERF1 KO mice. In addition to CCBL, determining platinum (Pt) levels in 

cisplatin treated WT and NHERF1 KO mice is imperative. A change in Pt levels 

between cisplatin treated WT and NHERF1 KO mice would be indicative of either 
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altered uptake or extrusion of cisplatin. Blocking of the extrusion transport 

protein, MATE1, results in increased toxicity from cisplatin (22). Moreover, 

increased uptake and increased cisplatin concentrations led to worse damage 

and an increase in necrosis (28, 116). Previously, 72 hour cisplatin treated 

NHERF1 KO mice had an increase in ATN when compared to treated WT mice 

(35). Thus, these data could suggest higher levels of cisplatin in these kidneys. 

72 hour and 24 hour cisplatin treated kidneys have been sent for ICP-MS 

analysis for Pt levels. This future data could provide more insight into the 

exacerbated AKI of NHERF1 KO mice. 

Ultimately, the mechanism of cisplatin nephrotoxicity remains a mystery, 

however, it is evident that NHERF1 expression has a vital role in its 

development. Until the other areas discussed (CCBL localization, activity, and Pt 

levels) have been investigated the underlying mechanism of susceptibility to 

cisplatin in NHERF1 KO mice remains unclear. These future experiments are 

integral in elucidating the mechanism of susceptibility. Continued research and 

broadening the understanding of cisplatin nephrotoxicity and susceptibility is an 

encouraging area for the development of new innovative preventative protocols 

or even therapeutic targets that can be used in the clinic. 
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CHAPTER VI 

 

DISCUSSION AND CONCLUSIONS 

 

A. Restatement of goals and questions 

The overall goal of the work described in this dissertation was to discover new 

potential mechanisms and hypotheses for susceptibility to cisplatin-induced AKI 

with NHERF1 loss. The work summarized in Chapter III aimed to test if metabolic 

changes played a role in the sensitization of the NHERF1 KO mouse kidney to 

cisplatin insult. Chapter IV aimed to evaluate if NHERF1 KO mice had an 

underlying mitochondrial dysfunction due to: [1] decreases in mitochondrial 

oxidative capacity and/or alterations in the structure of NHERF1 KO kidneys [2] 

decreases in number of mitochondria in NHERF1 KO kidneys. Finally, Chapter V 

of this dissertation used the proposed mechanism of cisplatin biotransformation 

to a nephrotoxin to test if NHERF1 loss resulted in altered renal handling of 

cisplatin. Taken together, these studies provide new insight into the mechanism 

of susceptibility of NHERF1 loss in cisplatin-induced AKI.   

 

B. Major findings of this dissertation 

1. NHERF1 loss results in altered pentose phosphate enzymes in mice



 

106 
 

The accumulation and bioactivation of cisplatin to a nephrotoxic metabolite 

has been extensively studied, but requires further clarification for the 

development of novel therapeutic targets or prevention protocols to be used in 

the clinic. Recent studies have found that cisplatin alters renal cell metabolism, 

contributing to injury and the secondary result of CKD development. These 

studies have provided a new avenue of research for cisplatin-induced AKI 

development. Cisplatin treatment results in depletion of amino acids in the kidney 

(86-89), reduces fatty acid oxidation while concomitantly accumulating fatty acids 

in the kidney (86, 89, 91), and decreases renal glycolytic enzymes and 

intermediates of the pentose phosphate pathway (86, 93). These observations 

combined with the increased susceptibility to cisplatin-induced AKI suggested the 

hypothesis that NHERF1 KO mice have metabolic alterations that predispose 

them to cisplatin nephrotoxicity. Therefore, the goal of Chapter III was to define 

metabolic changes in the NHERF1 KO mouse. Overall this study uncovered new 

areas to investigate in understanding susceptibility to cisplatin-induced AKI with 

NHERF1 loss.  

NHERF1 KO mice did not exhibit changes in gluconeogenic or glycolytic 

enzyme activity. Indeed, cisplatin treatment resulted in a parallel decrease in 

FBPase and G6Pase activity in NHERF1 KO and WT mice. Additionally, there 

were no significant changes with LDH and MDH activity between non-treated and 

treated WT and NHERF1 KO mice. These results coincide with previous studies 

(86, 94). NHERF1 KO mice also do not have changes in kidney ATP content 

when compared to WT. On the other hand, NHERF1 KO mouse kidneys exhibit 
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increased activity of ME and G6PD under baseline conditions when compared to 

WT mouse kidneys. Cisplatin treatment resulted in a decrease in G6PD and ME 

activity in the NHERF1 KO kidneys that was equivalent to the level of cisplatin 

treated WT kidneys. These findings suggest that NHERF1 KO mice have 

developed compensatory mechanisms involving the pentose phosphate pathway 

and in NADPH production in order to maintain the cellular redox state. A similar 

observation has been made in studies of liver cirrhosis in rats subject to oxidative 

stress, where an increase in ME and G6PD gene expression and activity (164) 

are also seen, presumably providing protection against the stress through an 

increased production of NADPH (164).  

These observations bring into question whether NHERF1 KO mice are under 

oxidative stress that is masked due to increased NADPH. Therefore, when these 

mice are given cisplatin, a known oxidative stress inducer, the mouse kidneys 

undergo more severe damage due to the inability to combat the additional 

underlying oxidative stress following cisplatin treatment. This work has revealed 

new areas to investigate and laid the foundation for future studies, such as 

investigating NADPH levels and gene and protein expression of ME and G6PD 

between WT and NHERF1 KO mice.  

 

2. Mechanism of susceptibility of NHERF1 KO mice to cisplatin-induced 

AKI is not mitochondrial dysfunction 

Chapter IV of this dissertation aimed to characterize any differences in 

mitochondrial function and/or structure between WT and NHERF1 KO mice. This 
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aim builds upon the work described in Chapter III of this dissertation, which 

demonstrated that NHERF1 KO mice do not have gluconeogenic or glycolytic 

enzyme activity alterations, but do have increased pentose phosphate enzyme 

activity. In addition to affecting metabolic pathways cisplatin nephrotoxicity has 

been established in inducing apoptotic and necrotic cell death. The mechanisms 

involved in cisplatin-induced nephrotoxic cell death remain unclear. However, 

there is increasing evidence that ROS and mitochondrial function have an 

important role in cisplatin’s mechanism of injury. As discussed in Chapter III, 

NHERF1 KO mice may have increased levels of NADPH to maintain cellular 

redox levels, therefore the results from Chapter III and previous studies from our 

laboratory (poor survival of NHERF1 deficient OK cells and decreased 

expression of mitochondrial BBM proteins in NHERF1 KO mice) suggested the 

hypothesis that NHERF1 loss may be associated with mitochondrial dysfunction 

and susceptibility to kidney injury.  

In Chapter IV there were two main goals in characterizing differences in 

mitochondria between WT and NHERF1 KO mice: [1] to determine if NHERF1 

KO mice have altered mitochondrial function and/or structure and [2] to 

determine NHERF1 KO mice have an underlying mitochondrial dysfunction and if 

that predisposes these animals to cisplatin nephrotoxicity. EM analysis revealed 

that NHERF1 KO mice have similar proximal tubule mitochondrial morphologies, 

size, and distribution and number when compared to WT. Furthermore, there 

were no overt signs of oxidative stress in NHERF1 KO mitochondria. In fact, only 

early ischemic changes most likely due to harvesting were noted. In addition, 
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isolated mitochondria from NHERF1 KO kidneys were found to have similar 

oxidative capacities as demonstrated by nonsignificant changes in OCR and 

similar RCR (WT: 1.63 and KO: 1.61) (Figure 4.3C) to those of WT mice. The 

RCR data is compelling since this is the best general measure of mitochondrial 

function in isolated mitochondria. RCR gives an idea into the mitochondria’s 

ability to respond robustly to the addition of substrate and ADP through the 

production of ATP. In addition, the RCR value is unique to each tissue and 

substrate used (146). Therefore, NHERF1 KO mitochondria when isolated from 

their environment function normally. This study answers an important aspect in 

evaluating NHERF1 KO mitochondria which is that they can function normally 

when given optimal components. However, this poses the question if NHERF1 

KO mitochondria function normally in their natural environment. NHERF1 KO 

mice undergo phosphate wasting (148) potentially creating an intracellular 

environment where mitochondria cannot function properly. This work uncovers a 

novel potential mechanism of susceptibility to cisplatin-induced AKI that can be 

investigated in future studies. Seahorse XF24 analysis on kidney tissue would be 

beneficial in establishing if NHERF1 KO mice have mitochondrial dysfunction due 

to phosphate wasting that sensitizes the kidney to cisplatin toxicity.  

 

3. NHERF1 loss affects GGT activity in response to cisplatin 

The studies in Chapter III and Chapter IV focus on potential underlying 

changes that could increase susceptibility to cisplatin nephrotoxicity. Therefore, 

Chapter V focused on the renal handling of cisplatin between WT and NHERF1 
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KO mice. This study was based on the hypothesis that NHERF1 loss results in 

altered renal uptake and/or metabolism of cisplatin resulting in increased toxicity. 

Understanding the renal handling of cisplatin is an important area of research 

that has been substantially investigated. Unfortunately, many aspects of 

cisplatin’s metabolism to a nephrotoxin remain ambiguous with conflicting results. 

For example, the role of GGT activity in cisplatin nephrotoxicity is controversial, 

where enhanced GGT activity may either increase or decrease sensitivity to 

cisplatin-induced AKI (151). Furthermore, in the proposed hypothesis of 

cisplatin’s biotransformation to a nephrotoxin, cisplatin is thought to exit the 

proximal tubule via MATE1 where it is further processed in the tubular lumen and 

taken up in the proximal tubule by an unknown transport protein. Thus, the 

conflicting data along with potentially other unknown players add a degree of 

complexity in understanding cisplatin-induced AKI.  

Before investigating changes in renal handling of cisplatin, Chapter V first set 

to establish that NHERF1 KO mice are indeed more sensitive to the initial 

cisplatin insult. Therefore, WT and NHERF1 KO mice were treated with cisplatin 

for 24 hours instead of 72 hours. These kidneys were processed for histology 

and markers of kidney injury. Ultimately, NHERF1 KO mouse kidneys were 

confirmed to be more sensitive to the initial insult, characterized by early 

histologic changes (casts and BBM sloughing) along with significantly increased 

urine NGAL protein when compared to cisplatin treated WT.  

Next, levels of lipid peroxidation were assessed by the means of TBARS 

analysis and IHC of 4-HNE between vehicle and cisplatin treated WT and 
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NHERF1 KO mice. Some studies have shown that cisplatin induces lipid 

peroxidation, and are thought to be involved in ROS induced cell death (165). 

NHERF1 KO mouse kidneys were found to not have increased levels of lipid 

peroxidation under baseline conditions, however, with cisplatin treatment IHC 

analysis revealed increased positive staining for 4-HNE in the cortex and the JM 

regions of the kidney. Even though there was no apparent increase in lipid 

peroxidation other indicators of oxidative stress were measured. These indicators 

included the oxidized and reduced forms of small molecular weight thiols that act 

as antioxidants. Plasma from 72 hour cisplatin treated mice showed a decrease 

in all reduced and oxidized forms of glutathione and cysteine which is consistent 

with other reports (25, 158-160). The only difference noted between NHERF1 KO 

mouse plasma and WT alone was a decrease in the oxidized form of cysteine, 

CySS. CySS is necessary for the production of the cellular antioxidant GSH 

(161). Interestingly, the kidney GSH levels of NHERF1 KO mice do not reflect the 

decrease in plasma CySS. The decrease in CySSG and GSSG in the kidney 

after cisplatin administration are consistent with other reports, however GSH 

was, unexpectedly, not decreased in either genotype (159). Furthermore, the 

oxidized form of glutathione, GSSG, was increased in the kidneys of vehicle 

treated NHERF1 KO mice. In summary, NHERF1 KO mice had a decrease in 

oxidized cysteine in the plasma, an increase in oxidized glutathione in the kidney, 

and a decrease in kidney redox potential (GSH/GSSG) when compared to WT. 

These results may indicate that NHERF1 KO kidneys are under a level of 

oxidative stress and support the findings in Chapter III, where the pentose 
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phosphate enzymes may be increased to compensate with a higher NADPH 

production to maintain cellular redox levels. On the other hand, NHERF1 KO 

kidneys do not have a decrease in GSH levels and appear to not have changes 

in GSH metabolism itself. 

Lastly, enzymes thought to be involved in cisplatin’s mechanism to a reactive 

thiol were considered. GGT activity in the urine was found to be highest between 

4 and 24 hours following cisplatin treatment in humans (154), indicating these 

time points should be used in assessing differences in activity level. At 4 hours 

GGT activity remained unvarying between the treatment groups. However, at 24 

hours WT mouse kidneys responded to cisplatin treatment with a substantial 

increase in activity while NHERF1 KO kidneys maintained a steady activity level. 

These data indicate that NHERF1 KO mice respond differently to the cisplatin 

insult. Whether this response is time dependent or based on functional ability of 

the enzyme is unclear. A 12 hour time point may be helpful to further elucidate 

the changes in GGT activity in treated NHERF1 KO mice. Interestingly, GGT 

protein levels were unchanged between the treatment groups via western blot. 

IHC was also performed on NHERF1 KO and WT kidneys resulting in similar 

staining intensity and localization of GGT within the tubules under baseline 

conditions. However, 24 hours after cisplatin treatment NHERF1 KO kidneys 

began to show some histologic changes including BBM sloughing which 

coincided with decreased staining for GGT. These data are consistent with other 

studies performed on rats at 72 hours, where increased damage to the proximal 

tubule coincided with decreased GGT expression and activity (116, 154, 163). 
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Although NHERF1 KO kidney GGT protein expression remained insignificant 

with cisplatin treatment it is apparent that the degree of injury at 24 hours is less 

than what is seen at 72 hours. It is possible that NHERF1 KO mouse kidneys are 

beginning to lose GGT at 24 hours through BBM sloughing, but have not lost a 

significant amount of GGT protein at this time point. These experiments could be 

repeated on 72 hour cisplatin treated mice for improved interpretation of these 

results. CCBL protein was also measured in these mice. Similar to the GGT 

western blot data CCBL protein remained insignificantly altered between the 

different groups.  

This study has provided some clarification regarding changes in the renal 

handling of cisplatin with NHERF1 loss. The main finding being an altered 

response in GGT activity with the cisplatin insult. Furthermore, this study 

confirmed that NHERF1 KO mice are indeed more sensitive to the cisplatin 

insult. NHERF1 KO mice do not have overt signs of oxidative stress, but this may 

be masked by compensatory mechanisms in the pentose phosphate pathway. 

Most importantly, this study has laid the groundwork for future experiments 

regarding altered renal handling of cisplatin in the NHERF1 KO mouse. A few 

examples include: implementing a 12 hour time point to study time dependent 

changes in GGT activity following cisplatin treatment, CCBL activity and 

localization, and evaluating GGT and CCBL localization and protein levels 72 

hours after cisplatin treatment.  

 

C. Significance of new findings 
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Chapter III investigated metabolic changes in NHERF1 KO mice that may 

predispose these animals to cisplatin nephrotoxicity. Moreover, gluconeogenic 

and glycolytic enzymes were found to be unchanged, but ME and G6PD had 

increased activities with NHERF1 loss. The significance of these findings is that 

that NHERF1 KO mice may have compensatory mechanisms in the NADPH-

dependent processes for maintenance of the cellular redox state. G6PD and ME 

are the two main sources of cytosolic NADPH, which is important for protection 

from oxidative stress (166). Furthermore, G6PD activity through the generation of 

ribose-5-phosphate is also involved in nucleic acid synthesis and repair (164). 

Therefore, enhancement of ME and G6PD is consistent with the presence of 

some underlying stress in the NHERF1 KO mouse. The combined effect of an 

underlying oxidative stress and the cisplatin-induced oxidative stress could result 

in increased sensitivity and exacerbation of injury with NHERF1 loss. 

The work in Chapter IV involved characterizing differences in mitochondrial 

structure and/or function between WT and NHERF1 KO kidneys. Interestingly, no 

changes in mitochondrial structure, number or size were found to indicate an 

altered function or mitochondrial oxidative stress. Furthermore, Seahorse XF24 

functional assays determined that isolated NHERF1 mitochondria function 

normally when compared to WT. This observation suggests that NHERF1 KO 

mitochondria have normal bioenergetics when all required compounds are 

available. However, NHERF1 KO mice do undergo phosphate wasting (148), 

potentially creating a suboptimal intracellular environment for mitochondria. 

Inorganic phosphate is essential for many cellular functions such as signal 
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transduction and energy metabolism. For instance, inorganic phosphate uptake 

into mitochondria is required for oxidative phosphorylation and the subsequent 

production of ATP (167). Mitochondrial inorganic phosphate also activates matrix 

enzymes and ETC activity (167). Moreover, in insulin secreting cells inorganic 

phosphate uptake results in further hyperpolarization of the electrical gradient 

(167). Therefore, the significance of this work is the formulation of a novel 

potential mechanism of susceptibility to cisplatin-induced AKI. Thus, NHERF1 

KO mice may have mitochondrial dysfunction due to phosphate wasting that 

sensitizes the kidney to cisplatin toxicity. Seahorse XF24 functional analysis on 

whole kidney tissue would be beneficial for future studies.  

The biotransformation of cisplatin to a nephrotoxin is poorly understood and 

the state of research in the field is encumbered with controversial results. 

Therefore, more research is needed in this area for the development of future 

therapies or early prognostic tests. In Chapter V changes in the renal handling of 

cisplatin were investigated in the NHERF1 KO mouse. First, NHERF1 KO mice 

were confirmed to have increased sensitivity to the initial cisplatin insult. This was 

demonstrated by early histologic signs of damage in the NHERF1 KO kidney 

when compared to WT. Additionally, urine NGAL was significantly increased in 

the 24 hour cisplatin treated NHERF1 KO mouse in comparison to the WT. 

Following that information, lipid peroxidation levels were assessed and found to 

be minimal in vehicle treated WT and NHERF1 KO mice. However, the cisplatin 

treated NHERF1 KO mouse had increased 4-HNE staining in the cortex and JM 

regions when compared to WT. Reduced and oxidized forms of Cys and GSH 
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were compared between WT and NHERF1 KO mice. Although there were some 

differences in vehicle treated NHERF1 KO mice there were no overt signs of 

oxidative stress. GSH levels remained unchanged in both WT and NHERF1 KO 

animals, however, the kidney redox potential in the NHERF1 KO mouse was 

significantly decreased when compared to WT. An increase in redox potential is 

indicative of increased oxidative stress. However, with the increased activity in 

G6PD and ME found in Chapter III, indicators of oxidative stress may be masked. 

Thus, a decrease in redox potential may be a sign of compensatory mechanisms 

to protect from oxidative stress. Finally, since GSH levels were unchanged 

between WT and NHERF1 KO mice it appears the KO mouse has unaltered 

GSH metabolism. In addition to the thiol measurements GGT activity, protein 

level, and localization was also assessed. While the protein level was unchanged 

between all treatment groups the GGT activity response was found to be altered 

with cisplatin treatment in the KO mouse. GGT is important for detoxification of 

xenobiotics and production of GSH, and thus, increased activity may alleviate 

some of the induced oxidative stress from cisplatin. If an increase in GGT activity 

is protective then the NHERF1 KO may not have the ability to increase GGT 

activity quickly and/or robustly with the cisplatin insult, resulting in exacerbated 

injury. Alternatively, if an increase in GGT activity is detrimental, then a 12 hour 

time point may be useful in determining if GGT activity fluctuates over time. 

Therefore, since the KO mouse already has kidney damage at 24 hours there 

could be an increase in activity between 4 and 24 hours resulting in this early 

injury. Another potential explanation for a lack of increase in GGT activity may be 
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due to the histologic changes seen 24 hours after cisplatin treatment, where 

NHERF1 KO mice have patchy areas of BBM sloughing resulting in GGT loss. 

This hypothesis would coincide with data from other studies using 72 hour 

cisplatin treated rats. When the rats exhibited increased damage to the proximal 

tubule the damage corresponded with decreased GGT expression and activity 

(116, 154, 163). Therefore, it is possible that NHERF1 KO mice are beginning to 

lose GGT at 24 hours through BBM sloughing, but have not lost a significant 

amount of GGT protein to be reflected in the western blot data. Finally, CCBL 

protein was also considered in this study. Similar to the GGT protein there were 

no significant changes in CCBL between any of the treatment groups. These 

data provide insight into the effects of NHERF1 loss and renal handling of 

cisplatin. Furthermore, this insight has contributed to upcoming experiments that 

may lead to new hypotheses and therapeutic approaches in the study of 

cisplatin-induced AKI. 

 

D. Strengths and weaknesses of this dissertation 

1. Strengths 

There are several strengths of this dissertation. The first study provides 

insight into the role of NHERF1 loss and metabolic changes in the pentose 

phosphate pathway (Chapter III). The second study (Chapter IV) established that 

NHERF1 KO mice isolated mitochondria do not have structural or functional 

changes that would result in dysfunction. Lastly, Chapter V established that 

NHERF1 KO mice are indeed sensitive to the initial cisplatin insult and have an 
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altered GGT activity response when given cisplatin. Overall this dissertation 

identifies that NHERF1 KO mice respond differently to the cisplatin insult. 

Additionally, it provides novel hypotheses that could lead to potential therapeutic 

approaches or prognostic tests for cisplatin-induced AKI. Currently, no FDA 

approved therapy exists to halt or reverse cisplatin-induced AKI.   

All the work in Chapters III and V was performed in the whole animal. Use of 

the whole animal is particularly important when studying diseases and allows 

better translation to human disease. Chapter IV utilized sensitive approaches in 

establishing mitochondrial changes in the NHERF1 KO mouse. Additionally, 

these studies used multiple time points with an established acute model of 

cisplatin-induced AKI. Furthermore, pharmaceutical grade cisplatin was used 

when treating the animals. While no model fully recapitulates the human disease, 

this model provided an established result of nephrotoxicity in WT C57BL/6J mice. 

Thus, the experimenter can determine changes in response to cisplatin in the 

NHERF1 KO mice. Additionally, the mice used in these experiments were all 

within the same age range (2-4 months old) and were littermates. These steps 

were taken in order to ensure the animals used were young, healthy, and did not 

have genetic drift that may affect the results of these studies. 

The renal circadian clock is known to regulate the dosing-time dependency of 

cisplatin-induced nephrotoxicity in mice (168). All of the mice used in this study 

were treated with cisplatin at approximately 10 a.m. and sacrificed either 24 or 72 

hours later. Unfortunately, the 4 hour time point was conducted earlier at 6 a.m. 

due to restrictions in access to the mice. However, it was deemed to be more 
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important to sacrifice all the animals at the same time point of 10 a.m. This 

decision was made after extensive literature searches, where other studies found 

that when mice were treated with cisplatin later in the day they exhibited less 

kidney injury (169). Thus, this experimental design attempts to mitigate any 

effects of circadian rhythms on cisplatin nephrotoxicity. 

Experimental design is extremely important in mitigating factors that could 

influence results. In addition to using established animal models of cisplatin-

induced AKI and taking into account circadian rhythm, most of these studies 

used five or more animals in each treatment group. This number is due in part to 

the increased sensitivity of the NHERF1 KO mouse to cisplatin and the variability 

in kidney injury seen with cisplatin treatment. As previously mentioned these 

studies also utilized highly sensitive methods for analysis. For instance, LC-MS 

was utilized in order to determine the ATP content of WT and NHERF1 KO 

kidneys. This method is very sensitive and is advantageous when compared to 

commercially available kits used to measure ATP.  

 

2. Weaknesses 

The main purpose of this work was to investigate potential mechanisms of 

susceptibility of the NHERF1 KO mouse to cisplatin nephrotoxicity. In order to 

study the effects NHERF1 loss and its effect before and after cisplatin treatment, 

WT C57BL/6J and C57BL/6J mice with a global deletion of NHERF1 were used. 

Whole mouse deletions can result in non-specific effects due to compensatory 

mechanisms that are selected for early in development. NHERF1 KO mice are 
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viable, fertile, and histologically the kidneys are similar to WT. However, 

NHERF1 KO mice do have alterations in kidney function, phosphate wasting, uric 

acid wasting, and hypercalciuria (46). The potential roles of alterations in 

electrolyte metabolism were not tested in this study. 

Although there are strengths associated with the use of a mouse model, there 

are also limitations. The use of in vivo experiments may recapitulate human 

disease more completely when compared to in vitro experiments. Unfortunately, 

the use of in vivo research also involves less control of variables and introduces 

complexities. Furthermore, relevance to human disease may be questionable 

when mouse models are compared to human studies. At this time the role of 

NHERF1 loss and susceptibility to cisplatin nephrotoxicity has not been studied 

in humans. It is therefore possible that NHERF1 loss is not detrimental or that the 

observed changes in the pentose phosphate pathway and in GGT activity may 

be mouse-specific and have little relevance to humans. While these aspects of in 

vivo models can never be entirely avoided, it can be optimized for the question at 

hand and taken into consideration when interpreting results.  

Other limitations of this study involve the ambiguous and complex process of 

cisplatin biotransformation in the kidney. The controversial role of GGT activity 

has been extensively discussed in this dissertation. However, another limitation 

in studying cisplatin metabolism involves CCBL. Mammals have at least 10 

variations in CCBL, none of which have been conclusively linked with cisplatin 

nephrotoxicity (170). However, glutamine transaminase K (GTK) has a high 

inherent CCBL activity and therefore is the most studied in cisplatin 
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nephrotoxicity. In this dissertation the antibody against CCBL1 or GTK was 

utilized and future activity assays will also be performed using GTK. This added 

complication is another limitation when studying the biotransformation of 

cisplatin. Therefore, any results using GTK may not be relevant in mice let alone 

human subjects.  

 

E. Future Directions 

While the experiments described in this dissertation answered specific gaps 

in our knowledge of NHERF1 loss and susceptibility to cisplatin nephrotoxicity, it 

has also created new questions that will need to be addressed in future studies.  

Seven of these questions are discussed below. 

 

1. Is the increased ME and G6PD activity identified in Chapter III a 

compensatory mechanism to maintain the cellular redox state in 

NHERF1 KO mice? 

In Chapter III ME and G6PD activity was increased in the NHERF1 KO 

mouse and suggested the possibility of increased NADPH production to provide 

protection from oxidative stress. Therefore, measuring NADPH levels in the WT 

and NHERF1 KO kidneys is necessary to answer this question. To carry out this 

investigation LC-MS analysis would be the most sensitive method in measuring 

NADPH levels. Additionally, ATP and NADPH could be measured in cisplatin 

treated animals to further understand the bioenergetics of the NHERF1 KO 

mouse in response to insult. In the previous study cisplatin treated NHERF1 KO 
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mice were found to have increased ATN (35), which may be indicative of 

decreased ATP and/or NADPH levels. In addition, measuring gene and protein 

expression of ME and G6PD could also be investigated to further understand any 

compensatory mechanisms of the NHERF1 KO mouse.  

 

2. Do the NHERF1 KO mitochondria function normally in whole tissue or 

with changes in substrate? 

In Chapter IV NHERF1 KO kidney mitochondria were found to function 

normally in optimal conditions, however this does not answer how the 

mitochondria function in their native environment. Fortunately, Agilent has 

developed Seahorse XF24 islet capture microplates which can be used to 

analyze whole tissue. Furthermore, there have been previous studies using this 

method in multiple tissue types (171-173). Optimization will be needed for the 

kidney, but whole tissue analysis will be useful in determining how NHERF1 KO 

mitochondria function within the kidney. In addition to examining mitochondrial 

function in the kidney, other substrates could be used besides 

succinate/rotenone when assessing isolated mitochondrial function. Agilent also 

has a palmitate-BSA fatty acid oxidation substrate that can be used to assess 

fatty acid oxidation in isolated mitochondria. This consideration is of importance 

as proximal renal tubules use fatty acids as their major source of energy. 

 

3. Does cisplatin damage NHERF1 KO mitochondria to a greater degree 

than WT mitochondria? 
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Cisplatin has been established in inducing ROS and mitochondrial 

dysfunction (139, 140, 142, 143). Furthermore, platinum can be found in 

mitochondria 24 hours after cisplatin treatment. This information combined with 

studies from Chapter IV gives rise to multiple future experiments. WT and 

NHERF1 KO mice could be treated with cisplatin for 24 and 72 hours and 

mitochondria can be isolated from these kidneys for Seahorse XF24 functional 

analysis and measurement of platinum by inductively coupled plasma-mass 

spectrometry (ICP-MS). Additionally, ROS could be measured in isolated 

mitochondria using mitoSOX for mitochondrial O2 detection. These studies could 

help in understanding if cisplatin is taken up to a greater degree in NHERF1 KO 

mitochondria and if cisplatin damages these mitochondria to a greater degree 

resulting in enhanced injury.  

 

4.  Does NHERF1 loss result in altered renal handling of cisplatin 

besides GGT activity? 

In addition to GGT activity CCBL activity can also be measured between 

vehicle and cisplatin treated WT and NHERF1 KO mice. There are multiple 

methods to assess CCBL activity, however GTK activity assay is simple and has 

been well studied (174). Additionally, IHC can be utilized to assess CCBL 

localization in vehicle and cisplatin treated WT and NHERF1 KO kidneys. ICP-

MS can also be used to measure platinum levels between cisplatin treated WT 

and NHERF1 KO kidneys. An increase in platinum in the NHERF1 KO kidney 

could indicate altered uptake or extrusion of cisplatin. Higher concentrations of 
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cisplatin have been associated with increased necrotic cell death which was seen 

in the 72 hour cisplatin treated NHERF1 KO mouse (35). Furthermore, WT and 

NHERF1 KO mice could be treated with known inhibitors for OCT2, MATE1, and 

GGT in order to determine if the KO mouse responds the same and exhibits 

either amelioration or enhancement of toxicity. These outcomes could help to 

identify key players in the susceptibility of the NHERF1 KO mouse to cisplatin 

nephrotoxicity. Lastly, OK and NHERF1 deficient OK proximal tubule cells could 

be used to overexpress GGT to evaluate the effect of increased GGT expression 

on activity after treatment with cisplatin. This information would again, help to 

elucidate if increased GGT activity is detrimental or protective with NHERF1 loss 

and cisplatin treatment. 

 

5. How do NHERF1 KO mice respond to a chronic model of cisplatin 

nephrotoxicity? 

Utilization of a chronic repeated dosing model of cisplatin nephrotoxicity could 

help in determining if NHERF1 KO mice are only sensitive to an acute high dose 

of cisplatin or if they are equally sensitive to lower repeated doses over time. In 

WT mice the kidney damage associated with the chronic model is less severe 

and results in longer survival (175). Studying NHERF1 loss and cisplatin 

nephrotoxicity in a chronic model could provide information in understanding 

conditions when NHERF1 loss is detrimental with cisplatin administration. 
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6. Do heterozygous NHERF1 KO mice have some protection to cisplatin 

nephrotoxicity? 

All of the studies mentioned in this dissertation have been conducted with 

complete loss of the NHERF1 protein. To broaden our knowledge of 

susceptibility to cisplatin nephrotoxicity with NHERF1 loss, heterozygous mice 

could also be tested using the acute cisplatin model. This could help answer the 

following questions: [1] is complete loss of NHERF1 expression needed for 

susceptibility to cisplatin nephrotoxicity and [2] is there a percent loss of NHERF1 

that predisposes these animals to cisplatin nephrotoxicity? 

 

7. Does NHERF1 loss predispose mouse kidneys to other nephrotoxins 

or forms of AKI? 

These studies have only evaluated the nephrotoxic effects of cisplatin in 

NHERF1 KO mice. It would be interesting to establish if these mice are only 

sensitive to cisplatin or if other nephrotoxins also result in enhanced injury. For 

example, cyclosporine, vancomycin, acyclovir, lead, mercury, and cadmium 

could be tested. In addition, models of ischemic reperfusion could also be 

evaluated.  

 

F. Summary and conclusions 

The overall goal of the work described in this dissertation was to discover new 

potential mechanisms and hypotheses for susceptibility to cisplatin-induced AKI 

with NHERF1 loss. Chapter III evaluated metabolic alterations in the NHERF1 
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KO mouse that may play a role in the susceptibility to cisplatin insult. This study 

provided the foundation for new hypotheses and future experiments concerning 

changes in NADPH production in the NHERF1 KO mouse and masked signs of 

oxidative stress that may predispose these animals to injury. Chapter IV aimed to 

evaluate if NHERF1 KO mice had an underlying mitochondrial dysfunction due 

to: [1] decreases in mitochondrial oxidative capacity and/or alterations in the 

structure of NHERF1 KO kidneys [2] decreases in number of mitochondria in 

NHERF1 KO kidney. This study did not find any evidence of mitochondrial 

dysfunction in the NHERF1 KO mouse. Finally, Chapter V assessed if NHERF1 

loss resulted in altered renal handling of cisplatin and found an altered GGT 

activity response when NHERF1 KO mice were given cisplatin. Taken together, 

these studies provide new insight into the mechanism of susceptibility of 

NHERF1 loss in cisplatin-induced AKI.  
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