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ABSTRACT 

DEVELOPMENT OF RATIONALLY DESIGNED LIVE ATTENUATED VACCINES FOR LASSA FEVER AND 
VENEZUELAN EQUINE ENCEPHALITIS 

Dylan M Johnson 

May 9, 2020 

Lassa Virus (LASV) and Venezuelan Equine Encephalitis Virus (VEEV) are two single 

stranded RNA viruses belonging to the Arenavirus and Alphavirus families, respectively. Both are 

emerging pathogens without approved vaccines or treatments. VEEV is an important biothreat 

pathogen because it has been weaponized and is extremely infectious as an aerosol. VEEV 

causes biphasic febrile illness that can progress to a viral encephalitis with low mortality, but 

high morbidity. LASV causes a viral hemorrhagic fever, Lassa Fever (LF), which is endemic in 

West Africa, and responsible for between 100-500k annual infections with a 1-2% overall 

mortality rate. ML29 and VEEV TC-83 are well-described live attenuated vaccines based on LASV 

and VEEV, respectively. This work describes strategies to further attenuate and enhance the 

safety of ML29 and TC-83, an important step in preclinical development. 

VEEV V4020 was designed based on the stabilization of an E2 mutation, and 

rearrangement of the structural genes of TC-83. Here, VEEV V4020 is shown to be more 

attenuated than TC-83 based on IC inoculation in mice, and more phenotypically stable, in terms 

of pathogenicity, during serial passaging. 

ML29 is a reassortant virus combining the immune dominant glycoprotein (GPC) and 

nucleoprotein (NP) of LASV with the replicative machinery of to Mopeia virus (MOPV), a 

nonpathogenic relative of LASV. We provide evidence ML29 is safer and more immunogenic 
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than MOPV in STAT-1 deficient (STAT-1-/-) mice and Hartley guinea pigs. Additionally, Defective 

Interfering Particles (DIPs) from ML29 enhance vaccine immunity and attenuation in STAT-1-/- 

mice, and in intracranial inoculations of CBA/J mice. 

A potential mechanism of attenuation for ML29 is presented based on small RNAs 

detected from the ML29 L-segment by Northern Blot (NB). Furthermore, a unique RNA band was 

associated with DIP enriched ML29 was detected. A L-segment based Minigenome System (MG) 

for arenaviruses is described, which can be used for future analysis of the mechanism of 

replication for reassortant arenaviruses. 

The advanced safety data for both ML29 and VEEV V4020, described in this dissertation, 

combined with non-human primate efficacy studies described elsewhere, supports the 

advancement of both of these experimental vaccines to human clinical trials.  
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CHAPTER I 

INTRODUCTION 

Live Attenuated Vaccines (LAV) are responsible for many of the most successful 

vaccination campaigns, including the eradication of small pox (caused by Variola virus) and 

Rinderpest, and the near eradication of Polio [1]. LAVs have also proven useful for many other 

viral diseases including Influenza [2], Varicella Zoster Virus [3], Measles virus [4], Rotavirus [5], 

Ebola virus [6], and Yellow Fever virus [7], among others. 

LAVs are predominantly based on attenuation of the disease causing strain, however 

notable exceptions exist including the Vaccinia virus vectored small pox vaccine, and the 

vesicular stomatitis virus or adenovirus vectored Ebola virus vaccines [1, 6, 8]. While vector 

based vaccines have the advantage of increased versatility, they often engage the host immune 

system in different ways than the natural infection [9-11]. This can affect the magnitude and 

duration of host responses, along with the potential for the generation of vector focused 

immune responses [9-11]. Because of this, vaccines based on the naturally occurring pathogen 

are often preferred. However, because LAVs are often derived from pathogenic viral strains, 

concerns remain about the possibility of reversions to pathogenic phenotypes arising [12, 13]. 

This dissertation focuses on the development of LAVs that target two emerging single-stranded 

RNA viruses, Lassa virus (LASV) and Venezuelan Equine Encephalitis Virus (VEEV). Both of the 

LAVs are based on attenuation of their respective naturally occurring viruses.  

ML29 Live attenuated vaccine for LASV 
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Mopeia virus (MOPV), a virus closely related to LASV which does not cause pathogenesis 

in humans or non-human primates, has documented immunogenicity that spans across LASV 

genetic clades [14, 15]. However, MOPV is widely considered insufficiently attenuated for use as 

a LAV [15]. ML29, a genetic reassortant between MOPV and LASV (with antigenic determinants 

of LASV and the replicative machinery of MOPV,) is a leading LASV vaccine candidate that 

protects non-human primates (NHP) from fatal challenge [16-18]. Current approaches for LASV 

vaccine design are forgone in this introduction in favor of extensive discussion in Chapter II. In 

this dissertation, we test the hypothesis that ML29 is attenuated compared to MOPV, and 

examine the potential for the inclusion of defective interfering particles to further attenuate 

ML29 while enhancing the broadly protective immunogenicity of the LAV. 

Challenges for the development of safe and effective VEEV vaccines 

VEEV is maintained in avian and rodent species in South and Central America. It is a 

vector-borne virus, which is transmitted primarily by Culex mosquitos. When the mosquito 

subsequently transmits the virus to an equine while taking a blood meal, VEEV replicates to high 

levels, leading to fever, leukopenia, neurological disease, and up to a 83% mortality rate [19, 

20]. During the illness, high levels of viremia allow an infected equine to transmit the virus back 

to the mosquito vector allowing for subsequent rounds of infection, along with spillover into 

humans. Humans infected with VEEV typically experience a biphasic febrile illness, and malaise, 

which can be accompanied by severe headaches. In 4-14% of individuals, VEE will progress to a 

viral encephalitis resulting in clinical neurological symptoms, although VEEV has a low case 

fatality rate humans [19]. VEEV is grouped into six subtypes; however, epidemics have only been 

associated with subtype I, variants AB and C [21]. 
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Early research on VEEV resulted in a number of documented laboratory acquired 

infections, despite measures to prevent aerosol transmission [22]. The high rate of human 

infection following aerosol exposure, accompanied by the incapacitating nature of the illness 

lead to weaponization efforts by both the United States (US) and former Soviet Union [23]. As a 

result, in the US, VEEV is currently regulated under the Federal Select Agent Program as a 

biological agent that has the potential to pose a severe threat to both public health and safety 

and animal health and safety. 

The first VEEV vaccine efforts centered on formulations of formalin inactivated 

circulating VEEV IAB strains. Incomplete inactivation of these viruses led to vaccine-associated 

epidemics of VEEV IAB [19, 24, 25]. While the reservoir for VEEV IAB remains cryptic, VEEV IC 

strains periodically emerge through mutation in the ID strains [26]. The attenuated vaccine 

strain VEEV TC-83 was developed by passaging the virus in guinea pig hearts cell in culture while 

monitoring for virulence [13]. Although the introduction of VEEV TC-83 drastically reduced 

laboratory acquired infections [22], it has been stalled in Phase II clinical trials due to incomplete 

protection and the prevalence of adverse drug effects (ADE) that mirror some clinical features of 

wild-type disease [27-29]. Despite the high rate of ADE, including fever and headache [30], VEEV 

TC-83 is still used as an investigational new drug (IND) to vaccinate at risk laboratory workers 

and soldiers. 

Another negative aspect of VEEV TC-83 is that it often fails to induce protective 

immunity. A formalin inactivated form of VEEV TC-83, C-84, has been investigated for use as a 

standalone vaccine and to boost the immunity of non-responders to TC-83 vaccination [31]. 

Unfortunately, C-84 is poorly immunogenic and requires frequent re-vaccination [30, 32].  
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VEEV V3526, a rationally designed vaccine based on a lethal mutation in the PE2 

glycoprotein cleavage site, along with a suppressor mutation in the E1 glycoprotein at position 

253, is immunogenic and protective. Yet VEEV V3526 remains deeply attenuated in mice, 

equines and non-human primates [33-36]. Additionally, VEEV V3526 appears to result in less 

adverse drug reactions in mice and non-human primates than VEEV TC-83 [35, 36]. Despite great 

promise, the VEEV V3526 failed in phase I clinical trials due to unacceptable reports of moderate 

to severe fever following vaccination [32]. 

Recently, chimeric alphaviruses have been considered as LAVs to protect against VEEV. 

A chimera generated from the structural proteins from VEE combined with the replicative 

machinery of a related alphavirus with low pathogenicity in humans, Sindbis Virus, was 

attenuated in mice while providing protecting from lethal VEEV challenge [21, 37]. A similar 

construct for Eastern Equine Encephalitis protected non-human primates (NHP) from a lethal 

aerosol challenge [38]. Eilat Virus (EILV) is an alphavirus that only replicates in mosquitos, and is 

unable to infect mammalian or avian cells in culture due to host restriction for both entry and 

RNA replication [39, 40]. Chimeric viruses with EILV replicative machinery and VEE structural 

proteins were safe in mice, and protected them from lethal VEEV challenge [41]. However, in 

this case, the chimeric virus is functioning more as a replicon than a LAV, as it likely does not 

replicate following vaccination. Additionally, EILV can interfere with VEEV replication potentially 

extending the window for use of this chimeric vaccine in post-exposure prophylaxis [41, 42]. 

VEEV V4020 is a vaccine candidate based on VEEV TC-83 with rearrangement of the 

structural genes, a stabilizing mutation in the key E2-120 glycoprotein attenuating mutation, and 

the addition of a second subgenomic 26S promoter, leading to glycoprotein and capsid genes 

being produced independently [43, 44]. The additional promoter likely changes the ratio of 

glycoprotein to capsid production in vivo, which could interfere with viral particle assembly. 
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Previously, we showed that VEEV V4020 provided complete protection with sterilizing immunity 

following lethal challenge of VEEV-TrD in mice [44]. Here, we test the hypothesis that VEEV 

V4020 is attenuated compared to VEEV TC-83 in terms of neuro-virulence in mice, and that it 

has reduced capacity for reversion to a pathogenic phenotype compared to TC-83. 

In this work, we provide evidence to support the overarching hypothesis that LAVs for 

LASV and VEEV, based on their respective natural pathogens, are safe and immunogenic. 

Additionally, two methods to enhance the immunogenicity and safety of the vaccine candidates 

are tested: the inclusion of defective interfering particles for the enhancement of the ML29 

vaccine, and the rearrangement of structural genes for enhancement of the Venezuelan Equine 

Encephalitis Virus (VEEV) TC-83 vaccine. Advanced small animal models are used to compare the 

safety and immunogenicity of ML29, defective interfering particle enhanced ML29, and VEEV 

TC-83, and VEEV V4020. 
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CHAPTER II 

NEW CHALLENGES FOR DEVELOPMENT OF A LASSA FEVER VACCINE WITH FULL COVERAGE 

Lassa virus (LASV) is the most prevalent African arenavirus, existing in nature as a 

persistent infection of rodent hosts. In particular, Mastomys natalensis, which are widely spread 

in sub-Sahara Africa. While LASV does not affect its natural host, rodent-to-human transmission 

can result in Lassa Fever (LF) disease with high mortality rates in vulnerable groups. Recent 

improvement in virus detection and rodent host identification provided evidence of LASV 

expansion outside of traditional endemic areas including Nigeria, Guinea, Liberia and Sierra 

Leone. Recently, Nigeria experienced the largest ever LF outbreak with an unusually high case 

fatality rate of 27% in 2018 and 20.4% in 2019. The World Health Organization (WHO) included 

LASV in top priority pathogens, and released a Target Product Profile (TPP) for LASV vaccine, 

which raised challenges for vaccine developers to produce a vaccine with pan-LASV coverage. 

Rationally designed and platform-based vaccine candidates will be overviewed, and how they 

will meet the WHO’s TPP criteria for development of a prophylactic LASV vaccine with full 

coverage will discussed.  

Introduction 

Lassa virus (LASV) is a rodent-borne human pathogen from the Arenaviridae family. 

Currently, the family includes four genera, Antennavirus, Hartmanivirus, Mammarenavirus, and 

Reptarenavirus [45-47]. These viruses infect fish (antennaviruses), snakes (hartmaniviruses and 

reptarenaviruses) and rodents (mammarenaviruses). LASV belongs to the Old World group (OW 
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or Lymphocytic Choriomeningitis Virus, LCMV-LASV serocomplex) of the genus 

Mammarenavirus.  

Mammalian arenaviruses have 2 genomic single-stranded ambisense RNA segments. 

The L RNA encodes large L (RNA-dependent RNA polymerase) and small RING finger Z (matrix) 

proteins. The S RNA encodes a nucleoprotein (NP) that tightly associates with viral RNA, and a 

glycoprotein precursor (GPC), which is processed into three subunits: the stable signal peptide, 

SSP; the receptor-binding GP1; and the transmembrane GP2, which is responsible for fusion 

with cell membrane. All three subunits are non-covalently linked to form trimeric features on 

the virion surface [48]. Surface GPs are extensively glycosylated and complex pattern of this 

glycosylation complicates development of GPC-based vaccines [45, 49-51].  

LASV originated in Nigeria about 800-1000 years ago and gradually moved westward 

during the last few centuries [52-54]. LASV viral polymerase was identified as a major positive 

selection target during this migration [55]. The LASV species represent a collection of genetically 

heterogeneous isolates from rodents and humans, resulting in their placement into 6 genetic 

lineages based on geographic location. The most heterologous LASV strains circulates in Nigeria 

(lineages I-III) and Guinea, Liberia and Sierra Leone (lineage IV) with sequence inter-lineage 

diversity up to 24.6% [45, 53, 54, 56]. A fifth lineage has been proposed for LASV isolates from 

Mali and Ivory Coast [54, 57]. An isolate from a cluster of human infections epidemiologically 

linked to Togo was proposed to represent a lineage VI [58].  

Persistently infected multimammate rats (Mastomys natalensis spp.), a widely spread 

and genetically diverse rodent species in Sub-Sahara Africa, are the major source of LASV 

infection which can vary from asymptomatic or flu-like disease to fatal Lassa fever (LF) 

responsible for thousands of death annually. With the exception of dengue fever, the estimated 
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global burden of LF is the highest among the viral hemorrhagic fevers [59]. In contrast to poorly 

predicted EBOV outbreaks, LASV infection is endemic in West African countries, representing 5% 

of the total world population, including the most populated Nigerian state [60, 61]. New 

epidemiological studies indicate that LASV endemic regions are expanding [62]. One 

environmental-mechanistic study predicts that the number of LASV infections will double from 

the current levels in coming years [63]. Taking into consideration the impact of LASV infection 

on public health in endemic areas, the WHO included LASV in its top-priority pathogens list, and 

released a Target Product Profile (TPP) for LASV vaccine development [64]. In 2018, the US Food 

and Drug Administration (FDA) added LASV to their priority review voucher program. 

The WHO’s TPP is focused on a preventive vaccine for the safe protection of healthy 

adults and children, with a duration of at least 3 years, against LASV strains from the major 

genetic lineages, I-IV. The WHO’s prequalification requirement included in this TPP indicated the 

preferred vaccine candidate must be inexpensive, safe, highly efficacious, heat-stable, multi-

antigen, and user- and environmentally friendly. Here, we will review the current status of LASV 

vaccine research focusing on several challenging areas of pre-clinical and clinical development.  

LASV genetic diversity likely contributes to the underestimating of its prevalence in West 

Africa [65, 66] and seems to be also associated with wide range of clinical manifestations and 

outcomes in different endemic areas. LASV diversity represents a huge challenge for diagnostics 

and vaccine development [67]. Currently, there is no licensed vaccine against LF and therapeutic 

options are limited to off-label use of Ribavirin.  

2. Rodent-to-human transmission

Although M. natalensis species are widely spread in sub-Sahara Africa, LASV infection is 

predominantly confined to M. natalensis monophylogenic group A-I in West Africa [68]. Other 
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host phylogroups from Central and Southern African regions have been associated with non-

pathogenic Mopeia (MOPV), Morogoro (MORV), Gairo (GAIV) and Luna (LUNV) mammalian 

arenaviruses [69-72]. In these areas, LASV has not been found, and LF cases have never been 

reported. MOPV has been considered as a “natural LASV vaccine” since experimentally 

immunized non-human primates (NHPs) were fully protected against fatal LF [15, 73, 74]; and 

thus, the MOPV genetic backbone was used to rationally design promising LASV vaccines [17, 

75]. 

Natural rodent-to-human transmission of LASV occurs primarily via inhalation or/and 

ingestion of dusts contaminated with excreta of infected rodents [76-79]. The peri-domestic life 

style of M. natalensis, house design, and poor sanitation in rural areas provides an ideal 

environment for rodent activities at night, and even during the day [80, 81]. Rodent excreta in 

food stocks and consuming rodents meat have been identified as major risk factors of LASV 

transmission [77]. Clusters of infected M. natalensis are responsible for the spatial distribution 

of LF cases in endemic areas [63, 82-84]. In LASV endemic areas, contaminated rodent excreta is 

a source for the natural infection of NHPs as recently documented in Southern Nigeria [85].   

3. Mucosal routes of LASV infection

Mammarenaviral infection is dependent on directional exposure to, and release from, 

polarized epithelial cells. The pattern of LASV interaction with its target cells during entry can 

drive the pathogenicity observed during natural infection [86, 87]. In polarized renal epithelial 

MDCK cells, LASV entry occurred more efficiently from basolateral surfaces, while matured virus 

particles were predominantly released apically [88]. A basolateral route of entry suggests that 

the virus can only access cell receptors when the integrity of the epithelial barrier has been 

compromised [89]. The relation of the in vitro LASV – receptor interaction pattern to renal 
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dysfunction in LF patients in Nigeria, [90] and virus shedding in urine [81], remains to be 

elucidated.  

The microbial community associated with the gastro-intestinal mucosa may affect 

susceptibility to LASV infection. Pre-exposure of epithelial cells to Salmonella enterica promoted 

the entry of lentivirus pseudo particles expressing LASV GPs [91]. This finding suggests that the 

high burden of Salmonella infections in Africa can be an additional risk factor for individuals 

living in LASV endemic areas [92]. 

Polarized epithelial cells serve as a barrier restricting virus infection [93]. Accumulating 

evidence indicates that crossing a healthy epithelia barrier at site of the infection can contribute 

to virus attenuation. In a surrogate model of LF in NHPs, LCMV-WE54 applied systemically 

(intravenously) always resulted in fatal LF-like disease. However, oral application (lavage) 

resulted in limited infection, and the development of protective immunity [94-96]. LASV 

infectivity was only marginally decreased at pH 4.0  [97], which suggests that the low pH gastric 

environment does not substantially affect LASV infectivity. If so, this observation indicates 

rodent-to-human transmission via the gastro-intestinal tract as one of the major routes of 

natural infection [76, 77]. 

Gastric infection may confer natural immunity to LASV. Experimentally, mice orally 

immunized with recombinant S. typhimurium expressing LASV NP were protected against lethal 

LASV challenge [98]. Similarly, hamsters experimental inoculated intragastrically with Puumala 

virus (PUUV), a rodent-borne hantavirus causing hemorrhagic fever with renal syndrome (HFRS), 

developed protective immunity against lethal PUUV challenge [99]. These observations suggest 

that the high resistance of LASV to low pH environments may be an adaptation that facilitates 
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transmission via alimentary tract because it results in benign infection and protection from fatal 

disease.  

Human-to-human transmission is estimated to be responsible for about 20% of LASV 

infections. It is the major mechanism of transmission during nosocomial outbreaks, and is often 

associated with a few infected individuals, referred to as “super-spreaders” [100, 101]. The 

mechanism of super spreading is not clear and remains to be elucidated. In addition, persistence 

of the virus in urine, combined with poor sanitation practices, can facilitate LASV transmission 

during nosocomial outbreaks.   

4. LASV cell receptor usage diversity

After crossing an epithelial barrier, LASV targets macrophages and dendritic cells (DCs) 

and via the blood stream (viremia), leading to infection of many different tissues and organs 

(pan-tropism). The major cellular receptor for LASV, MOPV, and LCMV and some NW 

mammalian arenaviruses is α-dystroglycan, αDG [102]. The αDG protein is non-covalently linked 

to a transmembrane subunit, βDG, which transduces signals from the Extra Cellular Matrix 

(ECM) to the intracellular cytoskeleton. Like-acetylglucosaminyltransferase mediated O-

mannosylation is crucial for the αDG interaction with GP1, as well as for the interaction of αDG 

with its natural ligands [103-105]. The strength of LASV GP1 binding affinity to αDG can be partly 

correlates with pathogenicity. The affinity of LASV and LCMV-WE54 GP1 to αDG was 2-3 logs 

higher than those of the non-pathogenic viruses MOPV and LCMV-ARM [106]. Notably, viral GP1 

binding results in down-regulation of functional αDG on cell surface, which can affect cell-to-cell 

interaction (e.g., interaction of DCs with T lymphocytes) [105, 107]. 

While the αDG is the major cell receptor for LASV, the usage of this receptor is cell- and 

tissue specific depending on O-mannosylation, additional signaling interactions (e.g., cellular 



12 

receptor tyrosine kinases, p21-activating kinase), and proper interaction with DG-associated 

proteins (e.g., utrophin, β-dystrobrevin, β2-syntropin, sarcoglycans) [108, 109]. In cells lacking 

functional αDG (e.g., mature hepatocytes), additional molecules,  DCs-specific adhesion 

molecule (DC-SIGN), liver and lymph node sinusoidal endothelial cell C-type lectin, and Axl and 

Tyro3, two members of the TAM (Tyro3, Axl, Mer) family, promote αDG-independent LASV 

infection in vitro [110, 111]. In marmosets, the Nigerian LASV/803213 strain induced 

upregulation of Axl-1 in the liver promoting virus replication and pathological hepatocyte 

proliferation, contributing to arenavirus-induced liver pathology.  

TAM receptors and their ligands (e.g., Gas6, protein S) play an essential role in apoptotic 

cell clearance, damping immune responses, and in coagulation pathways [112, 113]. DC-SIGN 

and LSECtin lectins can also serve as LASV attachment factors on monocyte/macrophages and 

DCs, early targets of LASV infection [111]. These targets seem to be crucial for the induction of 

host responses via TLR2/TLR6/CD14 engagement and, Mal/Dy88- and NF-κB-mediated innate 

immunity pathways [114]. This engagement can contribute to strong innate NF-κB-mediated 

pro-inflammatory and adaptive immune responses [114, 115]. Despite all this receptor usage 

complexity, it is becoming clear that receptor engagement induces an array of cell responses 

that results in internalization of the virus, while also orchestrating of the host cell response. 

Upon engagement of the cell receptor, LASV and LCMV enter susceptible cells using an 

unusual pathway, which is independent of clathrin, caveolin, and actin, factors required for the 

“classical” endocytic pathway employed by the NW mammalian arenaviruses (e.g., JUNV, 

MACV). Recent studies demonstrated the involvement of a micropinocytosis-like mechanism in 

LASV entry [108, 116]. It was documented that several micropinocytosis-associated kinases, 

epithelial and hepatocyte growth factor receptors (EGFR and HGFR), and sodium hydrogen 
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exchangers (NHE), were required for LASV entry. However, in contrast to “classical” inducible 

micropinocytosis, LASV entry did not induce morphological changes in host cells.  

When virus-containing vesicles are delivered to late endosomes/lysosomes, LASV GP1 is 

dissociated from αDG and binds LAMP1 (Lysosome-Associated Membrane Protein 1) to initiate 

membrane fusion [117]. All LASV strains share the GP1 amino acid residues required for LAMP1 

binding, but these residues have not been found in LCMV and MORV. This suggests that among 

genetically related mammalian arenaviruses, the requirement of LAMP1 is a unique feature of 

LASV [117, 118]. LASV GP1 binds N-glycosylated LAMP1 carrying α-2,3-linked sialic acid (SA) in 

the upper airway of rodents, promoting the horizontal transmission of LASV in the natural 

reservoir. Meanwhile, α-2,6-congugated SA in the human upper airway seems to limit human-

to-human transmission. Interestingly, EBOV entry also is critically dependent on the late 

endosomal/lysosomal protein NPC1 (Niemann-Pick disease type C1 protein), suggesting that this 

“receptor switch” mechanism can contribute to virus-host interaction and viral tropism in both 

highly pathogenic infections [119]. 

The extensive LASV glycan shield on the LASV surface (which comprises ~ 25% of the 

glycoprotein mass) efficiently protects vulnerable GP1 sites involved in interaction with αDG, 

LAMP1, and the GP2 fusion loop from a humoral antibody response [48, 120]. This shield 

contains an abundance of unprocessed glycans forming spatially distinct clusters, protecting 

crucial GP1 and GP2 sites. Evolutionary limited amino acid diversification around these clusters 

supports their role in immune evasion [48, 53]. The presence of unprocessed oligomannose-type 

glycans, and the importance of native quaternary LASV glycoprotein structures, are real 

challenges for the development of recombinant vaccine candidates based on the expression of 

LASV GPC, since current expression technologies poorly mimic the native trimeric architecture 

and glycosylation patterns of mature LASV particles [48].   
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5. LASV biological diversity and variation in LF clinical manifestations

LASV is a rodent-borne virus, and LASV infection is handled differently by the immune 

system of rodents, humans, or NHPs. Not surprisingly, LASV isolates from LF patients with 

different clinical outcomes showed a weak correlation between the severity of human disease 

and virulence in experimentally infected guinea pigs [121, 122]. Most studies in animal models 

were performed with LASV/Josiah/SL/76/H (LASV/JOS) or related viruses from lineage IV [123]. 

LASV/JOS and the Nigerian LASV/803213 (lineage II) are highly pathogenic in strain 13 Guinea 

Pigs (S13GPs) and NHPs, but not in  outbred Hartley Guinea Pigs (OHGPs) [122, 124] [125] [126]; 

while the LASV/GA391 (lineage III) causes fatal infection in OHGPs [127]. The LASV/LP, the 

prototypic strain from lineage I, induced only mild weight loss in S13GPs [128].  Notably, a LASV 

isolate from Mali which is estimated to have separated from lineage IV around 200-300 years 

ago, was only partially lethal in STR13GPs and NHPs [129]. 

Our knowledge of the natural history of LASV infection in humans is mainly based on 

limited clinical studies in Sierra Leone and Liberia performed in the late 1970-1980’s [130-133]. 

A prospective case-control study of 441 confirmed LF patients established that the best 

predictors of disease are a combination of fever, pharyngitis, retrosternal pain and proteinuria 

[131, 134]. The best predictors of clinical outcome were fever, sore throat, and vomiting. 

Meanwhile, a prospective cohort study in Guinea, where LF was infrequently recognized, failed 

to identify specific predictors of poor clinical outcomes [135]. Progressed LF in children included 

widespread edema, abdominal distention, and bleeding (“swollen baby syndrome”) [136].  

During 1969-2016, 33 imported cases of LF were documented in travelers arriving to non-LASV-

endemic countries from West Africa [137]. Non-African individuals seem to be more sensitive to 

LASV infection, and most of them developed more distinctive clinical features (fever with 
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pharyngitis, sore throat, tonsillitis, conjunctivitis, oropharyngeal ulcers, or proteinuria) [135, 

137]. 

In progressed LF patients, elevated levels of AST in plasma and high viremia were 

strongly associated with death [135, 138]. High AST/ALT ratios suggested substantial 

involvement of non-hepatic tissues in pathogenesis of the disease. In patients with fatal 

outcomes, updated clinical observations revealed  low or undetectable levels of the pro-

inflammatory chemokines, IL-8 and IFN-inducible IP-10 [139]. Elevated levels of TNF-α receptors 

and IL-6 were associated with fatal LF. Elevated levels of IL-6 in plasma is currently being 

considered as the third biological marker of fatal LF associated with hepatic regeneration [135, 

140-142]. Likewise, low levels of IL-6, IL-10, CD40L, AST, ALT, ALP, and BUN in Sierra Leonean LF 

strongly correlated with survival [135, 143].  

The first cases of LF in Sierra Leone were described as LASV hepatitis, and limited 

postmortem histological studies indicated that the liver was one of the most affected organs 

participating in a systemic breakdown  [140, 144]. With minimal inflammation, hepatocellular 

necrosis and active hepatocyte proliferation was found in the livers of LF patients. However, the 

degree of liver damage was not sufficient to implicate hepatic failure as the primary cause of 

death. The hepatocyte proliferation observed in LF patients from Sierra Leone was also 

observed in NHPs experimentally infected with LASV/JOS and Nigerian LASV/803213 [126, 142]. 

However, in spite of strong proliferative signals, LASV did not induce hepatic hyperplasia. In a 

marmoset model of arenavirus-induced hepatitis, the infection triggered hepatocyte 

proliferation, which aborted in G1/S transition of the cell cycle [67, 142, 145]. Expression of non-

conventional receptors (Axl-1, Tyro3, DC-SIGN, LSECtin), and stimulation of oval cells 

(hepatocyte progenitors expressing αDG), promoted virus replication in hepatocytes. This NHP 

model of arenavirus-induced liver pathology may be helpful to gain insight into mechanisms of 
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pathophysiological hepatic proliferation, and can explain the high levels of AST and ALT in LF 

patients and the contribution of the liver to LF pathogenesis.  

A recent retrospective observational study on 291 LF patients treated in the Irrua 

Specialist Teaching Hospital, Edo State, Nigeria revealed some similarities and differences 

between LF in Sierra Leone and Nigeria [90]. In both studies, the liver was clearly involved in 

pathogenesis as lower AST/ALT ratios (of 1.5) among Nigerian patients were more consistent 

with hepatocyte-affecting arenavirus infection [145]. Likewise, higher viral loads detected by 

qRT-PCR strongly correlated with poor outcome [146]. However, in contrast to Sierra Leonean 

LF, sepsis-associated hypothermia rather than fever was a predictor of poor outcome in Nigerian 

patients. In addition, LF patients under 5 years old or over 55 years old were at greatest risk for 

death [90, 147]. Prospective clinical and epidemiological observations provided evidence that 

Nigerian strains were associated with more severe LF disease than strains from clade IV (Guinea, 

Liberia, and Sierra Leone). The fatality rate among hospitalized LF patients in Nigeria, 30-50%, 

was almost 2-fold higher than among patients from other LASV endemic areas [81, 146, 148, 

149]. 

The 2018 LF outbreak in Nigeria was the largest on the record, and affected 20 states 

across country with an overall case fatality rate of 25.1%, which is unprecedentedly high for 

natural “rural” LASV infection [150]. The majority of cases (81%) were from the three southern 

states, Edo, Ondo, and Ebonyi. Among the confirmed cases, the most common clinical 

manifestations were fever, headache, vomiting, fatigue, and abdominal pain. While hemorrhage 

signs were rare (17%), these signs, as well as unconsciousness and age (41-60 years), were 

significantly associated with fatal outcome. Higher fatality rates in older Nigerian LF patients 

were documented in several studies, which was a clear departure from observations in Sierra 

Leone where mortality among 60+ year old patients was lower than children [90, 146, 150].  
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The most striking clinical feature of the recent Nigerian LF outbreak was renal 

involvement, since elevated creatinine and blood urea were associated with fatal outcome [90]. 

The acute kidney damage in Nigerian patients seemed to be an intrinsic feature of LASV 

infection, rather than a complication of the disease. Whether the extent of renal involvement is 

a specific feature of Nigerian LF has yet to be further elucidated. The heterogeneity of LASV 

strains from clade II which circulate in the Edo state does not exclude the possibility that some 

of these viruses uniquely cause kidney damage [146].  

Non-Nigerian LASV strains also have the potential to induce kidney pathology. LASV/JOS 

exposure of human blood mononuclear cells affected the expression of genes involved in 

coagulation pathways including upregulation of HBEGF (heparin-binding epidermal-growth-

factor-like growth factor) which is associated with renal failure and glomerulonephritis [78, 151]. 

Among other genes involved in coagulation, the strong upregulation of THBD (thrombomodulin) 

could explain why disseminated intravascular coagulation (DIC) is rare in LF patients in 

comparison with other viral HFs [78]. 

The 2018 increase in LF cases in Nigeria was not associated with a particular LASV strain.  

Phylogenetic analysis revealed that LASV genomes were from lineage II (93% of genomes) and III 

with relatively high diversity. It has been estimated that both lineages split from a common 

ancestor more than 200 years ago, and remained stably separated in rodent populations, 

presumably by natural barriers formed by the Niger and Benue Rivers [152]. Genomic analysis 

also did not find evidence of a substantial contribution of human-to-human transmission in the 

recent outbreak which seems to be more related to improvements in diagnostics and public 

awareness rather that changes in epidemiology of the disease. 

6. Correlates of protection during natural LASV infection
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In LF patients, the development of LASV antibodies are not associated with viral 

clearance, survival, or positive prognosis. High viremia, and high IgM and IgG titers often coexist 

in LF patients. At the time of hospital admission, LASV antibodies against NP or GPs were not 

associated with survival or positive prognosis. In contrast, patients simultaneously containing 

LASV antigen and specific IgM antibodies had significantly higher chances (>4 times) to die in 

comparison with patients with IgM antibodies alone [143, 153]. In some surviving patients, LASV 

IgM antibodies can persist for a prolonged time, suggesting that a broken IgM/IgG switch is a 

part of pathogenesis [143, 154]. In most cases of natural LASV infection, humoral responses 

(predominantly against LASV NP) have a short lifetime, and antibody titers decline below 

detectable levels within a few months [155, 156]. In clinical trials, human convalescent plasma 

did not protect recipients [138]. Although LASV humoral responses do not play a role in 

controlling LASV during natural infection, human LASV antibody generated from B cells of LASV-

infected individuals can be useful for post-exposure treatment [157, 158]. These neutralizing 

antibodies locked LASV glycoprotein complex in a pre-fusion conformation and prevented the 

rearrangements required for interaction with LAMP1 binding and membrane fusion. 

There is a widely accepted perception in the field that protective immunity during 

natural LASV infection in healthy individuals is predominantly associated with T cell responses 

[59, 159-161]. In long-term LF survivors, and in experimentally infected NHPs, early and robust 

virus-specific T cell responses correlated with recovery and protection [15, 141, 162-164]. 

Consistent with these findings, depletion of CD8+ T cells completely abolished the protection of 

vaccinated animals, whereas CD4+ T cell depletion only resulted in partial protection [165, 166]. 

LASV specific protective CD8+ and CD4+ T-cell subsets were poly-functional, cross-reactive and 

cross-protective [17, 165-168]. Likewise, in a nurse who acquired LF in Togo, and was treated at 
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Emory University Hospital, recovery was consistent with the development of long-term  poly-

functional LASV-specific T cell responses [169].  

LASV survivors had strong CD4+ T cell proliferative responses against LASV NP and GP2 

epitopes [163, 164]. Importantly, these responses were not only LASV strain-specific but were 

also broadly cross-reactive, potentially contributing to protection against heterologous LASV 

strains. These observations are in line with previous results, which documented the role of LASV 

NP and GP2 epitopes in induction of CD4+ T cell-based cross-reactivity and cross-protection in 

NHP and rodent models [98, 170]. NP is the major structural factor of the arenavirus 

transcription/replication machinery complex, and is synthesized during early stages of the 

infection, prior to GPC. Together, these studies indicate that early, strong anti-NP immunity is 

crucial for effective viral control and vector immunogenicity [171, 172].  

7. Rationally designed LASV vaccine candidates

Epidemiological evidence indicates that LF survivors acquire long-term protection 

against manifested LF disease, indicating that a live attenuated virus (LAV) platform represents 

the most effective approach to control LASV. Methods used in the past to create very effective 

LAV vaccines against yellow fever, polio, measles, mumps and other infections, are generally not 

preferred under current regulatory environment and guidelines, due to the intractability of 

generating attenuated strains by serial passaging. However, remarkable advances in 

biotechnology and molecular virology have brought renewed interest to the new generation of 

LAV vaccines. These vaccines are safe, efficacious and cost-effective (e.g., the human-rhesus 

reassortant vaccine against rotavirus infection, RotaShield, licensed for use in the US in children 

at 2-6 months of age) [173]. 
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The safety and efficacy of several LASV vaccine candidates based on vaccinia virus [15, 

127, 174], MOPV [16-18], alphavirus replicons [175, 176], VSV [167, 177] , and yellow fever 17D 

[178, 179] vectors were tested in NHPs (Table 1). The major features of these vaccine candidates 

and new approaches based on LASV reverse genetics were discussed recently in several reviews 

[59, 161, 180-182]. This subsection will focus on the most challenging areas of LASV vaccine 

research and development: addressing LASV heterogeneity, correlates of protection, safety in 

immunocompromised individuals, and regulatory pathways. 

8. LASV antigens required for induction of broad cross-reactive and long-lasting protective

immunity 

The first experimental vector-based LASV vaccine expressed NP antigen of 

LASV/GA391/NIG/96/H (clade III) in vaccinia virus (Vv, Lister strain) [127]. This vaccine did not 

induce detectable LASV antibodies before challenge, but completely protected Hartley guinea 

pigs against fatal LF disease [127]. All other experimental LASV vaccines were designed based on 

LASV/Josiah (clade IV). In strain 13 guinea pigs, 94% and 74% of animals vaccinated with 

recombinant Vv (strain NYBH) expressing LASV/JOS NP or GPC were protected against 

homologous challenge, respectively [183]. Similarly, LASV/JOS NP expressed via alphavirus RNA 

replicons fully protected strain 13 guinea pigs against fatal LF disease [175].  In contrast, in the 

same challenge model, LASV NP expressed in an rVSV vector provided only partial protection 

against LASV/JOS [128]. 
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Table 1. Contributions of anti-NP and –GPC adaptive immune responses in the protection of 
guinea pig and NHP challenge models of Lassa fever 

Vaccine 
Vector, 
Dose, Route 

Antigen/Challenge Animal 
Model 

Protection/ 
Viremia 

CMI Humoral 
immunity 

Ref 

Vv, Lister, 
1x107.5 PFU, 
single dose, 

NP, GA391 
(III)/GA391a 

Hartley GPs 100%/- CMI? No nAbs [127] 

Vv, NYBN, 
single dose 

NP, Josiah/JOS(IV) STR13GPs 94%/+ CMI? No nAbs [183] 

Vv, NYBN, 
single dose 

GPC, JOS/JOS STR13GPs 74-100/+ CMI? No nAbs [174, 
183] 

LASV Z-158b, 
1x103.7 PFU, 
single dose 

All Z158 
antigens/JOS 

STR13GPs 100%/- CMI, 
spleen 
transfer 
exp. 

Immune 
plasma 
did not 
protect 

[122] 

VEEV-RNA 
replicon, 
1x107 IU, 3 
injections 

NP 
GPC 
NP+GPC, JOS/JOS 

STR13GPs 100%/- 
100%/- 
100%- 

CMI Immune 
plasma 
did not 
protect 

[175] 

MOPV/LASV 
(ML29), 
1x103, single 
dose 

NP&GPC, JOS/JOS, 
803213(II) 

STR13GPs 100%/- (for 
JOS 
challenge) 
100%/+ 
(for 803213 
challenge 

CMI No nAbs, 
IgG Abs 

[17, 
125] 

YF17D/LASV, 
1x105 PFU, 
single dose 

GPC, JOS/JOS STR13GPs 80%/+/- CMI? No nAbs, 
IgG Abs 

[178] 

rVSV/LASV, 
1x106 PFU, 
single dose 

GPC, JOS/JOS, Z-
132, Soromba-R 

STR13GPs 100% 
(against 
JOS and Z-
132 
challenge) 

ND No nAbs, 
IgG Abs 

[128, 
184] 

rVSV/LASV, 
1x105 PFU, 
single dose 

NP, JOS/JOS STR13GPs 66.6% ND ND [128] 

DNA, 300 µg, 
3 injections, 
IMEP or IDEP 

GPC, JOS/JOS STR13GPs 80-
100%/+/- 

CMI? nAbs, low 
titers 

[185] 

Rc-
LASSARABV, 
1x106 FFU, 
single dose 

GPC, JOS/JOS-GP Hartley GPs 40% ND No nAbs, 
IgG Abs 

[184] 

LASSARAB, 
killed, with 

GPC, JOS/JOS-GP Hartley GPs 80%/+++ No nAbs, [184] 
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TLR4 agonist, 
3 injections 

non-nAbs 
involved 
in ADCC 

LASV, VRP, 
1x107, SC 

All LASV/JOS 
proteomsc/JOS 

STR13GPs 100%/- CMI No IgM 
or IgG 
before 
challenge 

[186, 
187] 

LASV/JOS, 
killed, 
multiple 
injections 

All LASV 
proteoms/JOS NHPs 

(cynos) 

0% No nAbs, 
IgG Abs 
(anti-NP, 
-GPC) 

[188] 

MOPV, 
single dose, 

All MOPV 
proteoms/JOS 

NHPs 
(rhesus) 

100%/- ND ND [15, 
73, 
74] 

Vv, NYBN, 
single dose 

NP 
GPC 
NP&GPC,JOS/JOS 

NHPs 
(rhesus, 
cynos) 

27% 
85%/++ 
100%/+ 

CMI [15] 

rVSV, 1x106 
PFU, single 
dose 

GPC, JOS/JOS NHPs 
(cynos) 

100%/++ nAbs [167] 

ML29, 1x103 
PFU, single 
dose 

GPC&NP, JOS/JOS, 
LCMV-WE 

NHPs 
(rhesus, 
marmosets) 

100%/- 
(against 
LASV/JOS 
and LCMV-
WE 

CMI No nAbs [16, 
17, 
161, 
168] 

MOPEVACLAS, 

single dose, 
6x106 FFU, 
SC 

GPC, JOS/JOS NHPs 
(cynos) 

100% CMI nAbs [75] 

DNA, 10 mg, 
4 sites, 2-3 
injections, 
IDEP 

GPC, codon 
optimized, JOS/JOS 

NHPs 
(cynos) 

100%/- CMI nAbs, IgG [189, 
190] 

Efficacy trials in NHPs (Macaca mulatta and M. fascicularis) with rVv expressing 

different LASV genes documented that both GPC subunits, GP1 and GP2, are required for 

protection [15, 191]. In contrast to results in guinea pigs, vaccination with rVv-NP protected only 

3 of 15 NHPs (22%). Nevertheless, the highest level of the protection was observed when NHPs 

were vaccinated with rVv expressing both genes, NP&GPC, simultaneously [15]. In addition, 

while Vv vectored vaccine formulations failed to induced sterilizing immunity, the lowest level of 
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post-challenge viremia was observed in NHPs immunized with Vv-NP&GPC. Similar to guinea 

pigs, protection in NHPs was not associated with humoral immune responses [15, 156]. 

These results indicate that expression vectors and animal challenge models have an 

effect on the results of vaccine efficacy trials. In terms of antigen formulation, there is a 

consensus that expression of LASV GPC is required and sufficient for solid protection. While anti-

NP immunity in rodent models is highly protective, it is still not enough to protect NHPs, 

suggesting different contributions of anti-NP immunity in viral control between rodents and 

NHPs. The positive impact of anti-NP immunity on viral control at an early stage of the infection 

is well anticipated because NP plays the central role in transcription/replication [192]. NP 

together with L protein are the two minimal trans-acting factors required to rescue LCMV and 

LASV from recombinant cDNAs [193, 194]. Detection of broad cross-reactive anti-NP CD4+ T 

cells in LF survivors suggests contribution of these cells in long-term protection against LF 

caused by LASV strains from different clades. Among LASV advanced vaccine candidates (tested 

in NHPs), only ML29 has the ability to induce LASV-specific anti-NP and anti-GPC immune 

responses (Table 1) [17]. 

As expected, LASV/JOS GPC-based experimental vaccines were protective against 

challenge with the homologous JOS strain or strains from the same clade but from different 

geographical areas [128]. While LASV/JOS represents the largest collection of LASV strains in 

West Africa, the most diverse LASV strains from clade I-III circulate in Nigeria [53, 56]. The ML29 

vaccine expressing both JOS-derived genes, NP and GPC, fully protected strain 13 guinea pigs 

and NHPs against LASV/JOS(IV) and LASV/803213(II) [125]. Taking into consideration the close 

phylogenetic relationship between clade IV and III, the ML29-induced protection against LASV 

strains from clade III is very likely.   
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LASV/JOS causes fatal disease mimicking human LF in strain 13 guinea pigs and NHP 

species, rhesus, cynomolgous, and African green monkeys, and in marmosets [122, 123, 126, 

195]. Infection of capuchin and squirrel monkeys resulted in mild disease. Strain 13 guinea pigs 

and cynomolgous monkeys are the most widely used “FDA-validated” LASV/JOS challenge 

models. Animal studies of Nigerian LASV strains are limited. The LASV/GA391 from clade III is 

lethal for Hartley guinea pigs [127].  The Nigerian prototypic strain 803213 from clade II causes 

LF-like fatal disease in strain 13 guinea pigs and marmosets. However, the prototypic strain 

LP/NIG69/H (clade I), which occupies the bottom of LASV phylogenetic tree, did not induce fatal 

disease in strain 13 guinea pigs, complicating the evaluation of efficacy of experimental LASV 

vaccines  [128]. There is no information on the sensitivity of NHPs to LASV/LP infection. 

Taking into consideration the distant genetic relationship between clades I and IV, there 

is a concern that LASV/JOS-based vaccines will not provide full protection against LASV/LP 

challenge. In this case, LASV/LP antigens (at least GPC) need to be included in the vaccine 

formulation. Both advanced vaccine candidates, rVSVΔG/LASV-GPC and ML29, have powerful 

reverse genetics tools capable of adding the expression of GPC from LASV/LP. Successful 

expression of two arenaviral glycoproteins including LASV GPC from clade I and IV was also 

reported in an alphavirus RNA replicon system [161, 175, 196]. The development and 

standardization of reliable challenge models for Nigerian strains of LASV is urgently needed to 

secure clinical development of successful LASV vaccine in West Africa.   

9. Vector Platform-based LASV vaccine candidates  

In contrast to EBOV and other emerging pathogens, which cause unpredictable 

outbreaks with limited numbers of human cases, LF is a common disease in West Africa. In 

emergency and non-emergency situations, regulatory agencies (the US Food and Drug 
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Administration, FDA; the European Medicines Agency, EMA) will require LASV vaccine efficacy 

trials in humans. Both agencies can act as Reference National Regulatory Authorities (NRAs) for 

the purposes of WHO pre-qualification, and/or assist other NRAs in their evaluation of the safety 

and effectiveness of the vaccine. Further, both NRAs will issue a Certificate of Pharmaceutical 

Product (CPP) upon which some countries will then use as the basis for their review of a vaccine 

candidate. In the US, the FDA encourages the path to Biological License Application (BLA) and 

licensure even if disease is not endemic in the US. Vaccine development in the US follows the 

same general path as other drugs intended for human use, and is evaluated during clinical 

development under an Investigational New Drug (IND). Sponsors of vaccines for diseases 

endemic in geographies outside the US have access to a variety of regulatory mechanisms of 

acceleration, such as “Fast Track” designation, and others that address unmet medical needs.  

In the EU, the EMA is responsible for the scientific evaluation of marketing applications, 

with the Committee for Medicinal Products for Human Use (CHMP) holding responsibility for 

human medicines, including vaccines. The EMA has a procedure (Article 58) that allows the 

agency to render an opinion in cooperation with the WHO for the evaluation of drugs intended 

for use outside the European Community. 

The history of the development and regulatory pathway of Candid 1, the first arenaviral 

vaccine (manufactured and licensed in Argentina) [197], can be a valuable guideline for LASV 

vaccine clinical development.  Candid 1 significantly reduced numbers of arenaviral HF cases 

from 3,500 to 30-50 per year. In the US, Candid 1 is still under IND status and it is not 

“approvable” due to missing records of passages at the early stages of attenuation. The 

redesigned, “rescue” of recombinant Candid 1 from cDNA clones provides hope that a version of 

Candid 1 will get FDA approval in the future [198].   



26 

Currently, two vaccine candidates, ML29 and rVSVΔG/LASV-GPC, have been considered 

for “accelerated” development [199], and the rVSV-based LASV vaccine is scheduled to be 

tested in a Phase I trial in 2017-2018 [166]. There is a solid rationale to assess safety and dose-

dependent immune responses (phase II) in volunteers in endemic and non-endemic areas 

before getting the national authorization for efficacy trials. Nigeria has the most developed 

medical infrastructure in Sub-Sahara Africa, and several clinical research centers are already 

involved in LASV international research programs [53, 157, 200]. Together with Guinea and 

other African countries, Nigeria is a member of African Vaccine Manufacturing Initiative, with a 

mission to promote the establishment of sustainable human vaccine manufacturing capacity in 

Africa.  

While the clinical development of LASV vaccines in Africa is feasible, several risk factors 

have to be taken into consideration and addressed. First, contract research organizations (CROs) 

managing all aspects of clinical development under “good clinical practices” are not well 

represented in West Africa. Family Health International (FHI360, www.fhi360.org) with regional 

medical research experience, including development of EBOV vaccines, can be considered as a 

potential partner for clinical trial-related operations. Second, to secure proper enrollment, a 

clear description of benefits and potential risks for healthy subjects needs to be provided. Third, 

the regulatory environment and the broad range of costs per patient (from $2,500-5,000 in 

Nigeria to $8,500 in Sierra Lone) is additional factor of uncertainty.  

In “first-in-human” safety trials, 18-55 years old subjects with a healthy immune system 

will be enrolled, with well-defined inclusion and exclusion criteria. There is a reasonable 

expectation that dose-dependent immunogenicity trials would be conducted in endemic areas, 

with the possible enrollment of healthy subjects previously exposed to LASV infection. Prior 

immunity will potentially affect vaccine-induced immunity, and will require sub-group analysis 
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to assess immunogenicity in naïve recipients receiving low and high doses of the vaccine. Safety 

and immunogenicity of LASV in HIV-1 positive subjects is a solid rationale for separate trials after 

the basic safety and immunogenicity profile of the vaccine in healthy individuals is defined.  

The “ideal” LASV vaccine has to be developed for the general population of West Africa 

including children from different age groups. Pediatric studies in the US and the EU are subject 

to special provisions of the clinical trial regulation, and a Pediatric Investigational Plan (PIP) 

would normally need to be developed and authorized. Currently, there is no clear regulatory 

pathway describing how to incorporate a PIP in LASV vaccine development. As such, a PIP 

should be prepared and discussed with the FDA and the EMA during the pre-IND and Scientific 

Advice meetings.  

One of the goals of the recently launched Coalition for Epidemic Preparedness 

Innovations (CEPI) is to optimize the approval process for vaccines against emerging infectious 

diseases, and make this process significantly shorter, transparent, and more effective [201-203]. 

There is a hope that the CEPI initiative will be a game changer, and will provide innovative tools 

to proactively develop and manufacture vaccines against epidemic infectious diseases. 

Accelerated clinical development of LASV vaccine is one of the CEPI priorities for the next five 

years.   

Conclusion 

LASV infection is a growing threat for the populations of West African countries and 

non-endemic areas. Recent evidence of LASV expansion suggests that all countries in the 

tropical wooded savanna areas between Nigeria and Senegal can be considered a LASV endemic 

zone. Improvement in molecular-based detection of LASV and species-identification of small 

mammals discovered new LASV-related species and new LASV natural hosts. Taking into 
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consideration the high genetic and biological diversity, the taxonomic status of LASV as a single 

species may be reevaluated in coming years.  

Our knowledge of how LASV interacts with susceptible cells has been significantly 

improved. Although sophisticatedly-glycosylated α-DG is the major LASV cellular receptor, some 

C-type lectins and TAM family proteins can also be involved in LASV entry in cells lacking 

functional α-DG (e.g., mature hepatocytes). The requirement of the intracellular receptor 

LAMP1 for LASV entry provided evidence of similarity with EBOV entry. Despite differences in 

morphology and vesicular trafficking, both viruses use glycoprotein GP1 sub-unit to initiate 

interactions with host receptors and the required intracellular receptor switch, to NPC1 (for 

EBOV) and to LAMP1 (for LASV) for cell entry. The surface of both viruses are heavily 

glycosylated to prevent interaction with specific antibodies, a common mechanism of immune 

control evasion. Intriguingly, the GP2 sub-unit of newly discovered reptilian arenaviruses are 

highly similar to those of EBOV suggesting a possible ancestor interaction between arena- and 

filoviruses.  

A NHP model continues to be the major source of our knowledge on LF pathogenesis. In 

this model, LASV strains from different endemic areas demonstrated a range of clinical 

manifestations from mild infections with low lethality to severe hemorrhagic fevers with fatal 

outcome, potentially mimicking differences in clinical forms of human LF. With obvious 

limitations, murine models can still be helpful to study certain steps of the acute disease (e.g., 

liver involvement), LF sequelae (e.g., sensorineural hearing deficiency), and immunogenicity of 

experimental LASV vaccines (vaccine potency). Some evidence of LASV-induced 

immunopathology observed in immunocompromised and chimeric mice seems to be associated 

with the inherent phenotype of LASV (and LCMV) in mice/rodents.  
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With improvements in virus and antibody detection, the negligible role of humoral 

responses in recovery and protection during the natural course of LASV infection was 

additionally documented.  Nevertheless, monoclonal antibodies specific for LASV GPC were 

successfully cloned from memory B cells of the survivors, and demonstrated therapeutic 

activities in a NHPs lethal challenge model. These antibodies can potentially be used alone or in 

combination with ribavirin for the treatment of LF patients at the time of hospital admission.  

A new generation of replication competent vaccines represents the most feasible 

approach to control LASV. At least two vaccine candidates, rVSVΔG/LASV-GPC and reassortant 

ML29, have demonstrated safety and efficacy in NHPs, and are well positioned for rapid clinical 

development. The new initiative, Coalition for Epidemic Preparedness Innovation (CEPI), has 

been recently established for proactive development of effective vaccine against epidemic 

infections. The CEPI included development of LASV vaccines in its 2017-2021 business plan, with 

the goal  to develop vaccines through phase II for further stockpiling for emergency use and/or 

phase III efficacy trials. In case of LASV, “emergency use” is permanent since this infection is 

endemic for West Africa. This suggests that once regulatory issues for CEPI vaccines are settled, 

the lead LASV vaccines will be tested in multicenter efficacy trials in major endemic areas of 

Nigeria and West African countries.  
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CHAPTER III 

ATTENUATED REPLICATION OF LASSA VIRUS VACCINE CANDIDATE ML29 IN STAT-1-/- MICE1 

1. Introduction

Lassa virus (LASV) is a highly prevalent arenavirus in West Africa, where it infects several 

hundred thousand individuals annually. This results in a large number of Lassa fever (LF) cases 

that are associated with high morbidity and mortality rates [80, 133]. The natural LASV reservoir 

is the rodent Mastomys natalensis, which is widely distributed throughout sub-Saharan Africa. 

The area where LASV is endemic covers large regions of West Africa [61] putting a population of 

up to 200 million people at risk for infection [60]. Furthermore, there is evidence that LASV 

endemic regions are expanding [62]. The high degree of LASV genetic diversity [53, 56] likely 

contributes to underestimates of its prevalence [65]. With the exception of Dengue fever, LF has 

the greatest estimated global burden among all viral hemorrhagic fevers (HFs) [59]. LF outbreaks 

are associated with morality rates as high as 60%, as documented during the 2015-2016 

outbreak in Nigeria [147]. The currently ongoing 2018 outbreak is the worst on record [205]. 

There is no FDA-approved LASV vaccine or therapeutic. Treatment options are limited to off-

label ribavirin with varying degrees of success. In 2017-2018, the WHO included LASV on the top 

priority pathogens list and issued a Target Product Profile (TPP) for LASV vaccine development 

[64, 206, 207].  

1 This chapter is adapted from work published in Pathogens, 2019, Volume 8, Issue 1 with the same title 
under a Creative Commons Attribution (CC BY) license [204]. 
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LASV belongs to the Old World (OW) group (former lymphocytic choriomeningitis virus, 

LCMV-LASV sero-complex) of the genus Mammarenavirus of the Arenaviridae family [45]. The 

LASV genome has two RNA segments that each encode two open reading frames in opposite 

polarities, separated by a structured intergenic region. The L RNA encodes for a large L protein, 

which functions as a RNA-dependent RNA polymerase (RdRp), and a RING finger protein Z, 

which comprises the matrix of virions. The S RNA encodes for a nucleoprotein (NP) which tightly 

associates with viral RNA and a glycoprotein precursor (GPC) that is processed into three 

subunits: a stable signal peptide, SSP; a receptor-binding GP1; and a transmembrane GP2 which 

mediates fusion with cell membranes. All three glycoprotein subunits associate to form club-

shaped features on the surface of pleomorphic viral particles, which vary in the diameter from 

50 to 300 nm. In addition to LASV, the OW group includes genetically related non-pathogenic 

viruses: Mopeia (MOPV), Morogoro (MORV), Gairo (GAIV) and Luna (LUNV) hosted by the same 

rodents [69-72]. The New World (NW) mammalian arenaviruses (former Tacaribe virus, TCRV, 

sero-complex) comprise viruses which circulate in Americas, and include the causative agents of 

South American HFs [208]. 

Reassortant studies using genetically-related mammalian arenaviruses with different 

pathogenic potential demonstrated that the L gene is responsible for high levels of virus 

replication in vivo, and is associated with acute disease in experimental animals [209, 210]. Co-

infection of cells with LASV and MOPV resulted in generation of MOPV/LASV reassortants [18, 

211]. One of the rationally selected clones, ML29, carrying the L RNA from MOPV and the S RNA 

from the Josiah strain of LASV (LASV/JOS), is a promising LASV vaccine candidate [17, 18, 199].  

While MOPV L RNA is the major driving force of ML29 attenuation, eighteen mutations 

incorporated in the ML29 genome during in vitro selection additionally seem to contribute to 

the attenuation of ML29 [17, 212]. Indeed, transcriptome profiling of human peripheral blood 
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mononuclear cells (hPBMC) exposed to LASV or ML29 exhibited distinct molecular signatures 

that can be useful biomarkers of pathogenicity and protection [16, 151]. Similar studies 

comparing MOPV and ML29 infected hPBMC revealed that gene expression patterns in mock 

and ML29 infected hPBMC clustered together and differed from the expression pattern 

observed in MOPV infected hPBMC [16].  

Recently, recombinant ML29 (rML29) was rescued from cDNA clones and demonstrated 

the same features as a biological ML29 (bML29) [213]. Reverse genetics provides a powerful tool 

for elucidation of the individual contributions of ML29-specific mutations to attenuation. 

However, the absence of a reliable small animal model for LASV pathogenicity is a major 

obstacle for the field. LASV, as well as other mammalian arenaviruses, stimulate antiviral 

immunity differently in natural rodent hosts and in humans and non-human primates, NHPs [15, 

123, 159]. While some pathogenic features of human LF can be observed in strain 13 guinea pigs 

[122, 124, 214], there is a poor correlation between clinical outcome of LF in humans and 

virulence of LASV in guinea pigs [121]. Results of LASV vaccination/challenge studies in strain 13 

guinea pigs are not reproducible in NHPs [15, 175, 183]. In addition, strain 13 guinea pigs are no 

longer commercially available and difficult to breed.  

Rodent models remain useful to study some mechanisms of LF pathogenesis and 

protective immune responses, and to provide valuable information during pre-clinical 

development of vaccine candidates [123, 215]. Previous research has documented that mice 

lacking a functional STAT1 pathway are highly susceptible to LASV infection, and develop fatal 

disease with some pathological features that mimic human LF [198]. Notably, human LASV 

isolates from fatal LF cases in Sierra Leone induced clinically similar fatal disease including high 

viral load in blood and visceral organs of STAT-1-/- mice after intraperitoneal inoculation (i.p.). In 

contrast, LASV isolated from a non-lethal human case induced disease with moderate mortality. 
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Surviving mice developed hearing loss that mimicked the sensorineural hearing loss (SNHL) 

commonly observed in LF patients during convalescence [216].   

In this study, we provided additional evidence of deep ML29 attenuation by modeling 

the  LASV infection protocol for STAT-/- mice as a means to assess the safety profile of ML29 

(bML29 or rML29) in comparison with MOPV. We also generated ML29 stocks enriched with 

interfering particles (IPs) produced by ML29-persisitently infected cells. The growing body of 

evidence indicates that, during natural infection, IPs are critically involved in the modulation of 

viral load, innate immune responses, disease outcome, and contribute to the evolutionary 

persistence of viruses [217-219]. An accumulation of IPs with genome deletions have been 

documented during the production of live-attenuated polio [220], influenza [221, 222] and 

measles [223-225] vaccines, and was associated with  modulating vaccine potency and 

immunostimulatory properties. Here, we demonstrated that STAT-/- mice are a susceptible 

model capable of discriminating between viruses with different levels of attenuation, MOPV and 

ML29. ML29 IPs were completely attenuated in these mice, enhancing immunogenic features of 

ML29. The broad cross-protection activity of ML29 IPs and their intrinsic adjuvant features can 

be potentially used for rational formulation of a pan-LASV ML29-based vaccine by developing 

vaccine manufacturing protocols to optimize the ratio between infectious ML29 and IPs.  

2. Results

2.1. Generation of interfering particles (IPs) by ML29-persisitently infected cells 

Arenavirus IPs can be generated at high multiplicity of infection (MOI) by serial infection 

of fresh tissue cultures with undiluted culture medium harvested from previous passages. 

Alternatively, initially infected cells can be subjected to serial passages. Both methods resulted 

in the accumulation of IPs. Earlier studies suggested a contribution of IPs in the establishment 
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and/or maintenance of LCMV persistent infection in vitro and in vivo, and in the inhibition of 

virus-induced immunopathology in mice [226-232]. The protocol previously applied for the 

generation of LASV IPs in cell cultures was used to establish ML29 persistent infection of Vero 

cells. In line with previous observations [233-235], passages of ML29-infected cells, either 

infected with bML29 or with rML29, resulted in the gradual decline of infectious particles 

released in culture medium. As seen in Figure 1, the infectious titers of ML29 released into the 

medium of persistently infected Vero cells (Vero/ML29) was reduced almost 100-fold after 10 

passages, and was under detectable levels after 15 passages. Vero/ML29 cells strongly 

interfered with replication of homologous (ML29) or genetically related LASV/JOS, LCMV, and 

MOPV and did not generate infectious plaques after super infection of Vero/ML29 with these 

viruses. Meanwhile, neither the replication of TCRV, a NW arenavirus, nor the non-related Ebola 

virus was affected in these cells. ML29 IPs released from persistently infected Vero/ML29 cells 

were able to suppress replication of homologous virus in a dose-dependent manner (Figure 1f). 

While the replication of ML29 or LASV was not detectable in ML29/Vero cells after 

passage 10, viral proteins were detected in these cells by immunofocus (IF) assay (Figure 1c). In 

contrast to infectious “plaques”, this assay detects cells expressing virus antigens stained by 

specific antibodies. With an increasing number of passages, ML29-infected cells lost their ability 

to produce plaques after homologous superinfection, but were strongly positive for ML29-

specific antigens as demonstrated by quantitated analyses (Figure 1c; Figure 6). Differences in 

the morphology of IF foci between naïve and Vero/ML29 cells after infection and superinfection 

with ML29, respectively, seems to be related to differences in the expression of NP and GP 

proteins in different passages of Vero/ML29. 

Viral RNA load in Vero/ML29 cells, as assessed by quantitative qRT-PCR targeting the NP 

gene, declined about 10 fold during the first five passages and persisted approximately at the 
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same levels during subsequent passages of Vero/ML29 (Figure 1b). Viral RNA load remained at a 

similar level through 50 passages (data not shown.) Our attempts to detect genomic RNA 

deletions, either in infected cells or in virions released from infected cells, using RT-PCR failed 

(not shown, see Discussion).   

2.2. MOPV and attenuated reassortant ML29 induce experimental disease with different clinical 

manifestations and outcome in STAT-1-/- mice 

In STAT1-/- mice, LASV infection resulted in experimental disease with the outcome 

depending on the pathogenic potential of the LASV isolate [216]. Based on these observations, 

we tested the attenuation of MOPV and ML29 in these mice. Using the LASV infection protocol, 

three groups of mice (n=9) were IP inoculated with MOPV, ML29 and ML29P50 (IPs produced by 

Vero/ML29, passage 50). MOPV infection resulted in poor grooming, lethargy and signs of 

dehydration starting around day 8-post infection. These symptoms aggravated, and the mice 

gradually lost weight, and experienced a drop in body temperature. All animals in this group met 

euthanasia criteria within 11-17 days following infection (Figure 2). In ML29 infected STAT1-/- 

mice, the symptoms started to improve at the late stage of the infection. Body temperature 

quickly recovered after day 10 and 33% of mice survived at day 21. No clinical signs were 

observed in the ML29P50 group. These mice gained weight at the end of the observation period 

and their temperature fluctuated within a normal range.  

As a control, wild type mice with an identical genetic background were i.p. inoculated 

with MOPV, ML29 and ML29P50. The mice were successfully infected with these viruses as was 

documented by detection of viral RNA in tested tissues (Figure 7). However, in the wild type 

mice, the replication of the viruses was well controlled and viral RNA was barely detectable at 
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day 21. As expected, infection did not induce clinical manifestations in any of the wild type study 

groups, and these mice gained weight at the end of the 21 days observation period. 

2.3. Replication of MOPV and ML29 in tissues of STAT- -/- mice: no viremia and infectious virus in 

tissues of ML29P50 infected mice 

High viremia, infectious titers, and viral RNA loads were associated with replication of 

MOPV in tissues of STAT-1-/- mice as assessed by infectious plaque assay and qRT-PCR (Figure 2). 

At the peak of clinical manifestation, day 7-10, viremia and viral load in the liver reached more 

than 1x107 PFU/ml or PFU/g, respectively. RNAscope in situ hybridization confirmed extensive 

liver infection with strong signals associated with hepatocytes and endothelial cells (Figure 3, 

arrowed). In contrast, replication of ML29 was more attenuated in STAT-1-/- mice. Viremia and 

viral load in the liver was 3-logs lower in these mice compared with MOPV infection, and only a 

few weakly-positive hepatocytes were seen in ML29-infected liver samples. In brain tissue, 

replication of infectious ML29 was transiently detected at early and late stages of infection. 

Replication of infectious ML29P50 in STAT-1-/- mice was below detectable levels in blood, liver, 

and brain. However, replication of ML29P50 was detected in tissues by viral RNA-based assays, 

qRT-PCR, and RNAscope in situ hybridization. As seen in Figure 2g-i, at early stage of the 

infection, relative levels of ML29P50 viral RNA in tissues were lower than MOPV and ML29 viral 

RNAs. ML29P50 was barely detectable in the tissues at late stage of the infection. This indicates 

that ML29P50 was well controlled, an observation that is in line with the absence of clinical 

manifestations. 

2.4. Host responses in mice infected with MOPV and ML29 

Cell-mediated immune responses in infected mice were assessed by ELISPOT using 

stimulation of spleen cells isolated on day 3, 7, and 21 after infection with peptide cocktails 
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derived from LASV/JOS GPC and MOPV GPC as previously described [165, 236]. At day 3, virus-

specific T cells secreting IFN-ɣ, IL-2, or both were barely detectable in all groups of mice (not 

shown). By day 7, in STAT-1-/- mice, comparable levels of IFN-ɣ-secreting cells (~ 0.4% of total 

spleen cells) were observed in spleens from ML29 and ML29P50 infected mice (Figure 4a). In 

wild type mice, ML29 and ML29P50 infection induced slightly lower T-cell responses. Notably, in 

wild type and STAT-1-/- mice infected either with ML29 or with ML29P50, similar levels of IFN-ɣ-

secreting cells were induced after stimulation with GPC cocktails derived from LASV or MOPV. 

Infection with MOPV induced comparatively diminished T cell responses in wild type and in 

STAT-1-/- mice, predominantly after stimulation with homologous MOPV GPC-derived peptides. 

After stimulation with GPC cocktails, spleen cells isolated from mice infected with ML29 and 

ML29P50, but not with MOPV, also secreted IL-2 cytokine, ~ 0.1% of total spleen cells. Cells 

secreting both cytokines were easily detectable at day 7 in ML29 and ML29P50 mice after 

stimulation with homologous antigens. In MOPV infected STAT-1-/- mice, this cells population 

was barely detectable.  

Survival of ML29P50-infected mice was clearly associated with strong cell-mediated 

responses. As seen in Figure 4, in spleens isolated from STAT-1-/- mice on day 21, cells secreting 

IFN-ɣ, IL2, or both were strongly upregulated after stimulation with GPC cocktails, > 0.3-0.6%. In 

wild type mice inoculated with ML29P50, these responses had declined by this time point. 

Interestingly enough, in both groups of mice infected with ML29P50 humoral responses were 

similar (Figure 4g). 

Measurement of pro-inflammatory cytokine expression in spleen of STAT-1-/- mice 

infected with MOPV revealed upregulation of IL-6 and IL-1β at early stages of the infection and 

rapid declined at later time points while TNF-α was down-regulated for all viruses except the 

early stages of MOPV and the late stage of ML29P50 (Figure 5, Figure 8).  Levels of IL-1β and IL-6 
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mRNA in spleens of the mice infected with ML29 and ML25P50 were upregulated at day 3 and 

day 7, respectively.  At the later time point, the infection had minimal if any effect on TNF-α and 

IL-1β expression in STAT-1-/- and control mice. In MOPV-infected wild type mice, IL-6 mRNA 

levels had similar kinetics with those in STAT-1-/- mice, with down-regulation in the liver and 

spleen tissues during the infection. 

3. Discussion

The first aim of this study was to determine if STAT-1-/- mice provide a reliable small 

animal model to assess level of attenuation of LASV-related arenaviruses. LASV and MOPV share 

a common reservoir, M. natalensis, found in Western and Southeastern regions of Africa [69, 70, 

237]. In Mozambique and Tanzania, areas where MOPV and MORV are prevalent, there is a 

marked absence of clinical cases of LF. Additionally, MOPV does not cause clinical signs in guinea 

pigs and NHPs [122]. These observations, combined with ability of MOPV to generate in vitro 

replication-competent reassortants with LASV [18], and to protect experimentally infected NHPs 

against fatal LF [73], suggests that MOPV is a “naturally-attenuated” genetic relative of LASV. 

Studies to assess virulence of human LASV isolates in NHPs are very limited [129]. LASV 

isolates from LF patients with different clinical outcome showed a weak correlation between 

severity of human disease and virulence in guinea pigs [121, 238]. Meanwhile, in STAT-1 -/- mice, 

outcome of the disease correlated with virulence of human LASV isolates. 4 out of 5 mice 

infected with a lethal isolate met euthanasia criteria between days 7 and 8, while mice infected 

with nonlethal LASV isolates developed chronic disease [198, 216]. In our experiments, MOPV 

infection of STAT-1-/- mice induced manifested disease that met euthanasia criteria 11-17 days 

post infection (Figure 2a). The delayed euthanasia time-point of 11-17 days versus 7-8 days, 

indicates some level of attenuation of MOPV infection in STAT-1-/- mice. However, high levels of 
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viremia and viral load in target tissues, comparable with those in animals infected with virulent 

LASV isolates [198, 216], and poor adaptive immune responses (Figure 4) resulted in aggravated 

disease. In contrast to MOPV, ML29 infection in STAT-1-/- mice was more attenuated, and 33% of 

animals survived in this group (Figure 2a). Compared to MOPV infected mice, ML29 infection 

notably resulted in more than a thousand-fold reduction in viremia and viral load in tissues by 

plaque assay (Figure 2d-f). Strong T cell responses contributed to viral control in this 

experimental group (Figure 4). It is well documented that strong T cell-mediated immunity 

correlates with protection and positive clinical outcomes in experimentally infected NHPs and LF 

patients [159, 169, 239, 240]. 

The second aim of this study was to assess the contribution of IPs generated by ML29-

persistently infected cells to the attenuation and modulation of immune responses. Similar to 

many other RNA viruses, mammalian arenaviruses can generate IPs during acute infection of 

cells at high MOI, or during persistent infection. The defective IPs: (i) are antigenically identical 

to parental viruses and contain the same structural proteins; (ii) preserve 5’ and 3’ terminal 

sequences of parental genome but have extensive internal deletions; (iii) can only replicate with 

help of standard virus; and (iv) strongly compete for replication machinery with the parental 

virus [178, 241-244]. Historically, arenavirus IPs were observed following in vitro infection at 

high MOI, and masked the cell-killing potential of standard viruses. Earlier studies suggested the 

contribution of IPs in the establishment and/or maintenance of LCMV persistent infection in 

vitro, and in inhibition of virus-induced immunopathology in mice [226-232]. Similarly, LASV IPs 

generated by persistently infected cells strongly interfered with replication of standard LASV in 

vitro, were attenuated in C3H mice, and partially protected mice against wild type LASV 

challenge [233, 235, 245, 246]. In contrast to IPs generated from VSV, Sendai, Sindbis, and other 

RNA viruses, arenavirus IPs are difficult to separate from standard virions [229]. The unique 
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ability of mammalian arenaviruses to incorporate host ribosomes and RNAs during the late stage 

of virus maturation [45] seems to be responsible for failure of density-based methods to purify 

arenavirus IPs. Nevertheless, LCMV defective IPs partially purified from culture medium of  

persistently infected cells lacked the S RNA segment [247], compared to LASV defective IPs 

where the L RNA segment was not detectable [234]. In line with these results, UV inactivation 

experiments confirmed “smaller” genomes for LCMV [228] and LASV defective IPs [234]. The 

LCMV L RNA segment was much less abundant and not detectable during the early stage of 

persistent infection. However, RNA deletions were not found among virus-specific RNA species 

in brain tissue of LCMV persistently infected mice. During the progression of persistence, an 

accumulation of terminally truncated RNA species was documented [248].  

In our experiments, we were able to demonstrate the basic features of ML29 IPs 

generated by persistently infected cells (gradual infectivity loss during passages, antigenic 

identity and persistence, GP/NP ratio fluctuation, interference with homologous and closely 

related viruses) (Figure 1, 6). However, we failed to detect genomic deletions among virus-

specific RNA species extracted from persistently infected cells or among viral RNA extracted 

from concentrated supernatants by RT-PCR methods using different sets of primers to amplify 

the genomic L and S RNA segments. By using qRT-PCR quantification of the LASV(ML29) NP 

gene, we demonstrated that S RNA copies rapidly declined during the first five cell culture 

passages of infected cells and the number of copies persisted at roughly same levels during 

passages 10-25 (Figure 1b). These levels remain relatively constant for all subsequent passages 

tested through passage 50 (not shown). In contrast to the permanent level of the S RNA 

replication and protein expression detected by IF assay (Figure 1D), the infectivity of particles 

produced by persistently infected cells dropped dramatically during the first 10 passages, was 
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below the threshold of detection by passage 15 (Figure 1a), and was not detectable at the final 

passage 50.  

The inability of ML29-persistently infected cells to generate infectious plaques after 

homologous superinfection with ML29, or infection with LASV/JOS or MOPV, can be partially 

explained by arenavirus Z-mediated “superinfection exclusion” [249]. However, the replication 

of the NW mammalian arenavirus TCRV was not affected in ML29/Vero cells (Figure 1f). A recent 

study documented the capability of LCMV, LASV and MACV mammalian arenaviruses to 

replicate and disseminate without the Z protein providing evidence that NP can play role as 

potential surrogate of the Z protein [250]. We assume that ML29 IPs-induced interference was 

unlikely to be related to Z protein. Nevertheless, the contribution of the Z protein to innate 

immune responses cannot be fully excluded. ML29 has Z protein derived from MOPV. 

Interestingly enough, Z protein of pathogenic arenaviruses (including LASV,) but not that of 

nonpathogenic viruses, including the MOPV Z, inhibit RIG-I-like receptor-dependent IFN type I 

production [251]. 

In this study, we failed to provide evidence that ML29 IPs produced by ML29/Vero cells 

are “classical” defective IPs and the nature of ML29 IP-based interference has to be further 

elucidated. Nevertheless, ML29 IPs seem to be very attractive for vaccine formulation and 

development. First, as seen in Figure 2a, ML29P50 generated by ML29/Vero cells, passage 50, 

were completely attenuated in STAT-1-/- mice. These particles were not detectable by plaque 

assay (test on infectivity) in blood and tissues of mice. However, the level of ML29P50 RNA 

replication was similar or only slightly reduced in comparison with “wild type” ML29 RNA 

replication (Figure 2g-i). Second, while ML29P50 and ML29 induced comparable T cell responses 

at day 7, at the late stage of the infection ML29P50 generated much stronger T cell immunity as 

assessed by IFN-ɣ/IL-2 ELISPOT in line with the strong immunomodulation potency of defective 



42 

IPs [252]. While mechanism of LASV protection can be dependent on the vaccine platform itself, 

as well as the animal challenge protocol, in the case of the ML29 vaccine, T cell immunity, but 

not antibody production, was associated with protection of NHPs [161]. Third, ML29 is the only 

vaccine with documented evidence of T cell mediated cross protection against Nigerian LASV 

strains from clade II, among currently available LASV vaccine candidates [125]. This is critical 

considering the Nigerian LASV strains from clade II are responsible for causing the current 

unprecedented LF outbreak. LASV genetic diversity is the greatest challenge for vaccine 

development. The formulation of ML29 with IPs will improve the breadth of the host’s immune 

responses [251] and further contribute to the development of a pan-LASV vaccine with full 

coverage meeting the WHO requirements [64]. 

4. Materials and Methods

4.1. Viruses and Cells 

Generation of MOPV An20410, LASV/Josiah, and MOP/LAS reassortant (ML29) LCMV 

(WE and ARM) stocks in Vero cells and plaque titration technique was previously described [17]. 

Freeze-dried Tacaribe virus (TCRV-11573, ATCC® VR-1272CAF™) was purchased from ATCC and 

the virus stock was prepared by low MOI passage in Vero cells. Infectious plaques for all viruses, 

except MOPV, were counted at 5 days after infection by treatment of infected cell monolayers 

under agarose overlay with 4% paraformaldehyde and staining with 1% crystal violet. For MOPV, 

neutral red stain staining was used for plaque development. Vero C1008 cells (Vero 76, clone E6, 

ATCC® CRL1586) were maintained in DMEM/F-12 supplemented with 10% fetal calf serum, 1X 

antibiotic-antimycotic (ThermoFisher), and 1X Glutamax (ThermoFisher). ML29 persistent 

infection in Vero cells was established by using a previously described protocol [233, 234]. In 

brief, after the initial infection of Vero cell monolayers with an MOI of 1.0, at weekly intervals, 
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cells were detached from cell tissue flasks by treatment with 0.05% trypsin-EDTA 

(ThermoFisher) and sub-cultured at a 1:10 ratio. Culture medium was changed at 3-4-day 

intervals. Samples of cells and/or culture medium were used for plaque titration, antigen 

detection assays (IF, Western) and for RNA isolation. To titrate ML29 IPs produced by 

persistently infected Vero/ML29 cells, monolayers of naïve Vero cells were pre-treated with 

dilutions of Vero/ML29 passage 5, 20 and 30 supernatants for 1 hour followed by infection with 

ML29 and detection of plaques as described above. LASV/JOS or EBOV plaque titrations were 

performed in BSL-4 facilities using maximum containment practices at the University of Texas 

Medical Branch with the assistance of Dr. Slobodan Paessler’s lab.  

4.2. Immunofocus assay 

Vero E6 cells or ML29 persistently infected cells (Vero/ML29) were plated at a density of 

2x104 cells/well in 96-welltissue culture plates. 24 hours later, cells were overlaid with 

methylcellulose media. Naïve or Vero/ML29 cells were infected with 0.1 MOI of ML29 for 1 hour 

prior to being overlaid with methylcellulose. After 3 days, the methylcellulose was removed and 

cells were then fixed with an acetone methanol mixture. Residual endogenous peroxidase was 

blocked by hydrogen peroxide and cells were incubated overnight in 10% FBS. After washing, 

cells were treated with either polyclonal monkey-anti-ML29 antibody (1:400), monoclonal 

mouse-anti-LASV/JOS-NP, 1:100 (GenScript, Piscataway, NJ) or polyclonal rabbit-anti-LASV-GP 

1:400 (IBT Bioservices, Rockville, MD) followed by HRP linked appropriate secondary antibody. 

TrueBlue Peroxidase Substrate (SeraCare, Milford, MA) was used for detection. Quantification of 

staining from high-quality images of scanned plates was performed using Adobe Photoshop to 

reduce background and threshold images followed by ImageJ counting of pixels.  

4.3. Animal protocols 
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4–5 week old female STAT-1-/- mice (129S6/SvEv-Stat1tm1Rds) and wild type controls 

(129SVE-F) were purchased from Taconic (Hudson, NY). During a 1-week acclimation, a 

temperature and identification transponder was implanted subcutaneously and the mice were 

transferred to ABSL-3 housing at the NIH Regional Biocontainment Laboratory on the University 

of Louisville campus.  For infection, 1x103 PFU of MOPV, ML29 or ML29P50 (quantitated as a 

qRT-PCR equivalent dose) was administered (i.p.) in 100 μL of PBS. Mice were monitored daily 

during 21 days and any animal with 25% weight loss was determined to have met the humane 

euthanasia criteria. Plasma samples from infected mice that had been euthanized were 

collected in EDTA tubes (BD). Tissue sample homogenates (10% w/v) were prepared with an 

Omni TH Tissue Homogenizer in DMEM/F12 followed with centrifugation at 4,500 x g for 20 

minutes. Clarified tissue homogenates were tested in the plaque assay described above. All 

animal protocols were approved by the University of Louisville Institutional Animal Care and Use 

Committee. 

4.4. qRT-PCR and RNAscope in situ hybridization 

Tissue samples were placed into 2 ml screw-top tubes with 1 ml TRIzol Reagent 

(ThermoFisher) and glass beads, processed in a bead homogenizer, and tissue homogenates 

were stored at -80°C until RNA isolation by phenol-chloroform extraction and ethanol 

precipitation. The qScript cDNA super mix (Quanta Biosciences) was used to make cDNA with an 

input of 1000 ng of RNA. qRT-PCR with TaqMan primers targeting the MOPV L gene, the LASV 

NP gene, IL-6, TNF-α, or IL-1β were used  with a 18S housekeeping probe on a StepOnePlus qRT-

PCR analyzer (Applied Biosystems). All IL-6, TNF-α, IL-1β and 18S primer/probe sets were 

commercially purchased through ThermoFisher Scientific through the Applied Biosystems 

division. Primer/probe set for MOPV amplified a region of the L segment (FWD 5’-

TCCTCAATTAGG CGTGTGAA-3’; REV 5’-TACACATCCTTGGGTCCTGA-3’; probe 6FAM-
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CCCTGTTCCCTCCAACTTGTTCTT TG-TAMRA). Primer/probe set for LASV (ML29) amplified the NP 

gene segment (FWD 5’-TCC AACATATTGCCACCATC-3’; REV 5’- GCT GAC TCA AAG TCA TCC CA-3’; 

probe 6FAM TGCCTTCACAGCTGCACCCA-TAMRA). The qRT-PCR reaction contained 5 μM of each 

primer and 2μM of probe for each primer/probe set, 5 µl of cDNA and TaqMan Fast Advanced 

Master Mix (ThermoFisher) in a final reaction volume of 20 μL. The reaction conditions were as 

follows: 50 °C for 2 min, 95 °C for 20 sec then 40 cycles alternating between 95 °C for 3 sec and 

60 °C for 30 sec. For RNAscope hybridization, fixed tissue sections were embedding in paraffin, 

cut on a Leica RM2125 RTS microtome, and mounted on glass slides. Custom designed target 

probes, preamplifier, amplifier, and label probe targeting MOPV L RNA were synthesized by 

Adanced Cell Diagnostics (Hayward, CA) and RNAscope assay was performed according to the 

manufacturer’s manual. Chromogenic detection was performed using DAB followed by 

counterstaining with hematoxylin. 

4.5. EISPOT and IgG ELISA 

Assessment of T cell responses in infected mice by the murine IFN-γ/IL-2 Double-Color 

Enzymatic ELISPOT (Cellular Technology Ltd., Cleveland, OH) has been recently described [236]. 

In brief, erythrocyte-free splenocytes were added to 96-well filter plates (Millipore, MSIPS4510) 

pre-coated with anti-mouse cytokine antibody in triplicate at a density of 4x105 cells/well. Cells 

were stimulated overnight at 37°C with cocktails of 10 µM LASV/JOS or MOPV GPC peptides 

(Mimotopes Ltd, Melbourne, Australia). Each cocktail contained 69 overlapping 20-mer 

peptides. As positive and negative controls, Conconavalin A (ThermoFisher) and CLT media alone 

was added to quality control wells. After stimulation, plates were developed according to the 

manufacturer’s protocol and cells secreting individual cytokines IFN-γ or IL-2 or both were 

counted using C.T.L. Ltd. Immunospot® S5 Micro-analyzer and Immunospot® V 4.0 software. 

Quality control analysis was provided by C.T.L. Ltd.  
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IgG ELISA was performed as previously described [165]. In brief, microtiter plates were 

coated with 5x106 PFU/well of sonicated virus suspension in carbonate buffer (Sigma) overnight. 

Plates were washed, blocked with 10% milk for 2 hours, washed again, and coated with dilutions 

of mouse serum for 1 hour. Plates were washed and secondary HRP linked rabbit-anti-mouse 

IgG (Sigma) was added at a 1:2,500 dilution for 1 hour. Plates were washed and SureBlue TMB 

peroxidase substrate (SeraCare) was added for 15 minutes before the addition of TMB Stop 

Solution (SeraCare). 

4.6. Statistics Analysis 

Results are reported as means ± SEM (n = 4–5). ANOVA with Bonferroni’s post hoc test 

(for parametric data) or Mann-Whitney Rank Sum test (for nonparametric data) was used for 

the determination of statistical significance among treatment groups, as appropriate. Statistical 

analysis (mean, SD, T-test) and graphics were performed using the GraphPad Prism version 7 for 

Windows package (GraphPad Software, LaJolla, CA). 
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Figures 

Figure 1. Vero cells persistently infected with ML29 interfere with replication of homologous 

and genetically-related arenaviruses. (a) Supernatants from a Vero cell line persistently infected 

with ML29 (Vero/ML29) were titrated for infectious virus by plaque assay at the indicated 

passages. (b) Total RNA was isolated from a Vero/ML29 cells at the indicated passages and was 

assayed using qRT-PCR with a LASV/JOS NP TaqMan probe. Copy number was determined by 

regression against a standard curve. (c) Immunofocus assay using polyclonal monkey-anti-ML29 

on uninfected Vero E6 cells (top left), Vero/ML29 passage 34 cells (top right), Vero E6 cells 

infected with a 0.1 MOI of ML29 for 3 days (bottom left), and Vero/ML29 passage 34 cells 
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superinfected with a 0.1 MOI of ML29 for 3 days (bottom right). (d) Naïve or persistently 

infected Vero/ML29 cells at different passages were used to titer MOPV, LCMV/WE, TCRV, ML29 

by plaque assay. (e) Plaque-forming activity of Vero/ML29 cells. ML29 (top left and top center), 

LCMV/ARM (top right), LAS/JOS (bottom left and bottom left center), and EBOV (bottom right 

center and bottom right) were used in a plaque assay on Vero E6 cell (top left, bottom left, and 

bottom right center) or the 25th passage of a Vero cell line persistently infected with ML29, 

Vero/ML29P25 (top center, top right, bottom center left, bottom right.) (f) Dose-dependent 

effects of IPs on replication of ML29. Vero E6 cells were pre-incubated for 1 hour with the 

indicated dilution of ML29 IPs produced by Vero/ML29 cells at passage 5, 20 or 30. The pre-

treated cells were then infected with standard ML29 and viral titer was determined by plaque 

assay. Percent inhibition is normalized to infectious titer determined on Vero E6 cells that were 

not pretreated. 
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Figure 2. Clinical manifestation and outcome of MOPV and ML29 infections in STAT-1 -/- mice. (a) 

Mice were infected (i.p.) with 1x103 PFU of MOPV An20410, ML29 (standard infectious virus) or 

with ML29P50 (IPs collected from culture medium of Vero/ML29P50 cells). ML29P50 IPs were 

quantified by MOPV L gene qRT-PCR and used in genome-equivalent dose, 1x103 PFU. (b) 

Weight and (c) Temperature of infected mice. (d) Viremia, (e) Infectious viral load in liver, and 

(f) brain of STAT-1-/- mice. (g-i) Viral RNA load assessed as relative expression of MOPV L gene by 

qRT-PCR in the indicated tissues at the time point indicated. DPI, days post infection. EC, 

endpoint criteria. 
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Figure 3. RNAscope in situ hybridization. Representative images at two different magnifications 

(100x and 400x) of RNAscope in situ hybridization (brown spots, arrowed) targeting the MOPV L 

gene in the liver and kidney of STAT1-/- mice. 
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Figure 4. Adaptive immune responses of STAT-1-/- mice. ELISPOT counts per 4x105 splenocytes 

from STAT-1-/- mice or wild type (WT) controls collected (a-c) 7 days post infection or (d-f) at 

endpoint criteria or 21 days post infection. Splenocytes were stimulated with LASV GPC or 

MOPV GPC-derived peptide cocktails for 24 hours. (a, d) IFN-γ-secreted cells, (b, e) IL-2-secreted 

cells, or (c, d) poly-functional IFN-γ/IL-2-secreting cells. (g) Antibody responses measured by IgG 

ELISA in the serum of STAT-1-/- mice or wild type controls collected at 21 days post infection or 

endpoint criteria. >, Too numerous to count. 

Figure 5. Cytokine responses of STAT-1-/- mice. (a) IL-6, (b) TNF-α, or (c) IL-1β expression in 

splenocytes of STAT-1-/- mice relative to mock infected by qRT-PCR. 
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Figure 6. Quantification of immunofocus staining using polyclonal moneky-anti-ML29 on the 

indicated cell lines (A) without additional treatment, or (B) 3 days following infection with a 0.1 

MOI of ML29. (C) Western blot of cell lysates from ML29, Vero/ML29P26, and Vero/ML29P46 

detected with polyclonal monkey-anti-ML29 antibody. (D-E) Quantification of immunofocus 

staining using (D) polyclonal rabbit-anti-LASV-GP 1:400 or (E) mouse-anti-LASV/Jos-NP 1:100 

antibodies. (F) The calculated ratio between staining quantified in (D) and (E). * p < 0.05, ** p < 

0.01, *** p<0.001. 
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Figure 7. (A) Survival of wild type 129S6 mice infected IP with 1x103 PFU of ML29, 1x103 PFU of 

MOPV, or a MOPV L gene qRT-PCR equivalent dose of supernatant from passage 50 Vero/ML29 

cells. Daily (B) weight and (C) temperature of mice from (A). (D-F) Relative expression of MOPV L 

gene by qRT-PCR in the (D) liver, (E) spleen, and (F) kidney of wild type 129S at the time points 

indicated post infection. 

Figure 8. qRT-PCR analysis showing IL-6 expression in the (A) liver and (B) spleen , (C) TNF-α in 

the spleen, or (D) IL-1β expression in the spleen of wild type 129S6 mice infected with the 

indicated viruses relative to mock infected at days 3, 7, and 21 post-infection. 

Supplemental Materials and Methods 
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Quantification of immunofocus staining from high-quality images of scanned plates was 

performed using Adobe Photoshop to reduce background and threshold images followed by 

ImageJ counting of pixels. Statistical significance was tested with a one-way ANOVA using 

GraphPad Prism version 7. 

For western blotting, a T-75 cell culture flask with a confluent monolayer of either Vero 

cells was infected with a 1 MOI of ML29 5 days prior, or Vero/ML29, was harvested in Tris-buffer 

containing 1.0% NP-40, protease inhibitors and 0.1% SDS. Protein content was standardized 

based on a pierce modified Lowry protein assay (ThermoFisher) denatured by boiling in 

Laemmli’s buffer and run on a 10% acrylamide gel at 120V for 1 hour. The proteins were 

transferred to a nitrocellulose membrane, blocked with 5% milk, and detected with a 1:1000 

dilution of polyclonal monkey-anti-ML29 antibody. 
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CHAPTER IV 

SAFETY AND IMMUNOGENICITY OF A DEFECTIVE INTERFERING PARTICLE ENHANCED LASSA 
VIRUS VACCINE CANDIDATE IN STAT-1-/- MICE, CBA MICE, AND GUINEA PIGS 

Introduction 

Defective interfering particle enhanced ML29 (ML29P50) is attenuated in STAT-1 -/- mice 

compared to standard ML29 preparations [204]. Additionally, ML29P50 elicits greater specific T-

cell mediated immunity than ML29 upon stimulation with both homologous peptides from Lassa 

virus (LASV) strain Josiah (LASV/Jos) glycoprotein precursor (GPC) and heterologous peptides 

from Mopeia virus (MOPV) [204]. 

Retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated antigen 5 

(MDA-5), and dsRNA-dependent protein kinase R (PKR) are intracellular receptors that recognize 

arenavirus RNA during replication and induce innate immunity through activation of Nuclear 

Factor Kappa B (NF-κB), Interferon Response Factor 3 (IRF-3), and Interferon Response Factor 7 

(IRF-7) [253-255]. Old world arenaviruses including LASV, MOPV, and Lymphocytic 

Choriomeningitis virus (LCMV) antagonize these responses through the exonuclease activity of 

viral nucleoprotein (NP), and by the binding of the matrix RING-finger protein (Z) to the cellular 

RNA receptors [256, 257]. IRF-3 and IRF-7 play an important role in generating interferon 

responses and  apoptosis in a STAT-1 dependent manner [258, 259]. IRF-3 also stimulates 

chemokine and cytokine production in a STAT-1 independent fashion [259]. NF-κB activation can 

stimulate pro-inflammatory cytokine signaling and is important in the induction of adaptive 

immunity [260]. However, it has been reported that even in the absence of IFN signaling, MOPV, 

and to a lesser extent LASV, are able to induce interferon stimulated genes (ISGs) [254], 

potentially through the actions of  NF-κB and IRF-3. Notably, the NP-inducible anti-IFN activities 
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of arenaviruses are common features of mammalian arenaviruses regardless of their pathogenic 

potential for humans [256, 261, 262].    

Defective interfering genomes (DIG) have been described for most RNA viruses [263]. 

Classically, DIGs contain large deletions while preserving sequences required for replication and 

packaging into virions to create defective interfering particles (DIPs) [263]. Because DIGs are 

shorter than full length viral genomes, it is thought that they more efficiently compete for 

replicative machinery, which is responsible for the observed interference [263]. However, other 

mechanisms of DIG interference, including modulation of antiviral apoptosis responses, has also 

been observed [264]. For many viruses, DIPs can regulate virulence while stimulating host 

immunity [263]. A key component of this regulation is the induction of interferon responses and 

pro-inflammatory cytokines by DIPs [252, 265-268]. The inflammatory regulation for many DIPs 

can be attributed to engagement of RIG-I and MDA-5 [269, 270]. Additionally, DIPs may play a 

role in enhancing antigen presentation [271], which makes them an attractive tool for vaccine 

enhancement. A vaccine enhanced with DIPs would presumably have enhanced capacity for 

induction of innate immunity and superior antigen presentation. Additionally, it has been 

speculated that the interfering activity of DIPs could be exploited as antivirals [272]. The 

antiviral activity of DIPs may enhance the post-exposure prophylaxis therapeutic window for 

vaccination. 

DIP production by LCMV is thought to play a key role in the establishment of persistence 

in the rodent host [232, 273]. In LCMV, it has also been shown that phosphorylation of the late-

gene motif PPXY may play a role in the regulation of DIP production [273]. A key difference in 

DIPs observed from ML29 compared to those of LCMV, is that LCMV DIPs tend to exert waxing 

and waning interference (observed by increases and decreases in the infectious particle 

production from chronically infected cells) [274], while ML29 DIPs are associated with complete 
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abrogation of infectious particle production shortly after establish of persistent infection (15 

passages of ML29-infected cells)  [204].  

The genetic diversity of LASV has been one of the greatest challenges to vaccine 

development [67]. Currently, LASV strains are split into 4-6 phylogenetic lineages, which 

circulate in Nigeria and different areas of West Africa [275]. Interference mediated by DIPs 

provides a very attractive approach to overcome these phylogenetic barriers and develop pan-

LASV preventive and therapeutic strategies.  

DIGs still require wild-type (full-length) viral genomes for replication, which complicates 

detection of DIGs. If the DIGs were truncations instead of internal deletions, conventional PCR 

or sequencing methods would not be useful for detecting them. The presence of wild-type 

genomes in DIP can mask the presence of ML29 DIGs. For the New World arenavirus Machupo 

(MACV), deletions were detected by analysis of chimeric reads from next generation sequencing 

of viral stocks with reduced pathogenicity [276]. However, the direct contribution of these 

chimeric sequences to the interference of pathogenicity is unknown. 

In our study, Northern blotting (NB) was used to detect truncated viral RNAs directly 

from ML29-persistently infected cell cultures. Additionally, a minigenome-like L-segment with 

significant or total deletion of the L-gene was used to test the hypothesis that synthetic DIPs, 

similar to those noted for influenza [277], could interfere with arenavirus replication.  

Another challenge to address concerning LASV vaccine development is the potential for 

adverse drug effects including sensorineural hearing loss. LASV associated sensorineural hearing 

loss, thought to be due to T-cell mediated autoimmunity during convalescence, is a leading 

cause of deafness in West Africa [278-280]. To some extent, the STAT-1-/- mouse model 

recapitulates the hearing loss observed following LASV infection in humans and was proposed as 
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a model to test hearing loss as a possible adverse reaction following vaccination [216]. We 

hypothesized that because ML29 is able to induce robust T-cell responses in STAT-1-/- mice 

[204], that if these T-cell responses cause cochlear damage following ML29 vaccination, it would 

cause detectable hearing loss in the mice.  Additionally, since T-cell responses were stronger in 

ML29P50 vaccinated mice [204], these mice would seem to be even more susceptible to post-

vaccination hearing loss.  

In this study, the highly susceptible CBA/J model, and a Hartley guinea pig model that 

more closely mimics human responses to LASV infection were used further assess the safety of 

ML29 and ML29P50. CBA/J mice intracranially (IC) infected with ML29 or ML29P50 were used to 

confirm the attenuated phenotype of ML29P50, [17, 165]. Hartley outbred guinea pigs (Cavia 

porcellus) are susceptible to infection with some strains from LASV clade IV (LF2384 strain 

without adaptation [281] and LASV/Jos with adaptation [282],) and Nigerian LASV strain from 

LASV clade III [127]. Additionally, while strain 13 guinea pigs infected with LASV tend to show 

signs of airway disease, LASV infection of Hartley guinea pigs causes disease more typical of that 

observed in humans [123, 282]. Hartley guinea pigs were used to screen for signs of viral 

hepatitis and renal disease following vaccination with ML29 and ML29P50. Additionally, this 

model was used to investigate the potential for heterologous protection from LCMV strain WE 

(LCMV-WE) following ML29 vaccination. 

Methods 

Establishment of Vero cells persistently infected with ML29 and assessment of heterologous 

interference of persistently infected cells  

A persistently-infected subline of Vero cells was established as previously described 

[204]. In brief, Vero cells were initially infected with ML29 at a 0.01 multiplicity of infection 
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(MOI), and subjected to serial passages passaged normally every 7 to 10 days. Cell culture 

medium (ThermoFisher #11330032 supplemented with 1X antibiotic antimycotic #15240062, 

1Xglutamax #35050061, and 10% FBS #10438026,) was removed and cell monolayers were 

washed with PBS. Cells were detached from tissue flasks with a short treatment (5-10 minutes) 

with 0.05% Trypsin-EDTA (ThermoFisher #25300120), suspended in fresh culture medium, 

counted and plated in new tissue flasks  at a 1:10 to 1:5 ratio as previously described [204]. A 

naming scheme of “VeroML29PX” was employed to refer to the passaged cells with “X” being 

replaced with the passage number. VeroML29P25 and VeroML29P49 were cryopreserved at a 

density of 1x107 viable cells per 1 ml of cell culture media containing 5% DMSO (VWR #97063-

136). Cells were recovered and passaged several times before VeroML29P28 and VeroML29P53 

were plated at a density of 4x105 cells per well in 6-well tissue culture treated plates. After 

passage 15, persistently-infected cells failed to generate infectious “plaques” after infection 

with ML29 and the genetically-related viruses, LASV and LCMV [204]. To further assess the 

mechanisms of heterologous interference, VeroML28P28 and –P53 cells were infected with 

3.4x104 foci forming units (FFU) of tri-segmented Lymphocytic Choriomeningitis Virus strain 

Armstrong (LCMV-Arm) expressing green fluorescent protein (GFP) from both the nucleoprotein 

(NP) and glycoprotein precursor (GPC) loci from alternate S-segments, r3LCMV-Arm-GFP [283]. 

At 24 and 48 hours post-infection (HPI) images were captured with a BZ-X800 fluorescent 

microscope (Keyence, Itasca, IL, USA) with a 488 nm filter using 40% excitation light, 1/8.5s 

exposure, and a 4X lens in high sensitivity mode from the center of the well. The images were 

then compiled in Adobe Photoshop (Adobe Inc., San Jose, CA, USA) and the brightness and 

contrast were uniformly enhanced for visualization (brightness setting 56, contrast 88.) 

Northern Blotting 
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Vero cells were plated on 6 well tissue culture plates at a density of 4x105 cells per well 

and allowed to sit overnight prior to infection with 0.001 MOI of ML29, LASV/Jos (in the BSL-4 

facility at UTMB, Galveston), or MOPV strain AN20410 in 200 µL of 2% FBS cell culture media. 

Infection was allowed to occur on a rocking plate in a 37°C, 5 %CO2 incubator. After infection, 

the virus inoculum was aspirated and replaced with 2 ml of 2% FBS cell culture medium. At the 

indicated times, the cell supernatants were aspirated, and 1 ml of TRIzol (ThermoFisher 

#15596018) was pipetted over the cells 5-10 times before being transferred to a microfuge tube. 

Wells harvested before the end of the experiment were washed three times with 10% FBS in 

PBS to quench the phenol. RNA was isolated from the TRIzol with 1-bromo-3-chloropropane 

(Millipore Sigma #B9673) according to the manufacturer’s directions and stored in 30 µl of 

FORMAzol (Molecular Research Center, Inc., #FO 121). 

A 1.2% agarose gel containing 1X MOPS buffer and 6.6% (w/v) formaldehyde was made 

using DEPC water. Five µg of each RNA sample was mixed with 3.5 µl of 37% (w/v) formalin, 2 µl 

10X MOPS buffer, and 2 μg of ethidium bromide in a total volume of 20 µl FORMAzol prior to 

incubation for 15 minutes at 65°C. After rapid cooling, samples were mixed with loading buffer 

and run for 3 hours at 80V. The gel was then washed with two changes of DEPC water, followed 

by 10 mM sodium phosphate for 10 minutes each on an orbital shaker. The gel was then blotted 

onto a nylon membrane by upward capillary transfer, and UV cross-linked. Templates for probe 

generation were PCR amplified from ML29 L segment (for ML29 and MOPV detection) using 

forward (GATGT CAACA GATGA TAAGT CAGGC TTTAA AG) and reverse (CACCG GGGAT CCTAG 

GCATT G) primers, ML29 S segment (for ML29 detection) with forward (GGCCT TTCTG TTCTG 

ATCAC CTTTG A) and reverse (CGCAC AGTGG ATCCT AGGCT ATTGG) primers, or LASV L segment 

with forward (TCAGG GACTG TAGGG TGGGG GT) and reverse (ATGGG AAACA AGCAA GCCAA 

AGC) primers. Phosophorus-32 labeled ribonucleotides were used to generate probes from the 
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PCR amplified DNA, and the radioactive probes were hybridized to the nylon membrane. The 

membrane was washed, and exposed to film for 6 hours to develop. 

Quantification of virus stocks from the supernatant of VeroML29P50 cells 

Supernatants from VeroML29P50, referred to here as ML29P50, were quantified based 

on quantitative reverse transcriptase PCR (qRT-PCR) as described previously [204]. Briefly, RNA 

from ML29 and ML29P50 viral stocks was extracted in TRIzol LS (ThermoFisher #1026028) and 

reverse transcribed with qScript cDNA SuperMix (QuantaBio #95048, Beverly, MA, USA), prior to 

qPCR on a StepOnePlus analyzer (Applied Biosystems) using TaqMan Fast Advanced Master Mix 

(Thermo Fisher #4444965). Custom primers specific for the ML29 NP gene (FWD 5′-TCCAA 

CATAT TGCCA CCATC-3′; REV 5′- GCTGA CTCAA AGTCA TCCCA-3′; probe 6FAM TGCCT TCACA 

GCTGC ACCCA -TAMRA (ThermoFisher) along with a Eukaryotic 18S rRNA endogenous control 

(VIC/TAMARA) (ThermoFisher #431093E) were used. Dilutions of ML29 were used to make a 

standard curve based on the assumption that one copy of viral RNA detected correlates with 

one PFU of infectious virus. The number of ML29P50 copies per volume were plotted on this 

curve to determine the equivalent concentration of virus in the stock. 

Transfection of cells with minigenome (MG) constructs derived from the LCMV L RNA 

Arenavirus MGs provide valuable tools to study mechanisms of replication and 

transcription in vitro [181]. Most arenavirus MG systems are based on the S RNA sequences, and 

include minimal cis- (5’ and 3’ untranslated regions [UTRs] and the intergenic region [IGR]), and 

trans- (NP and L protein) elements required for replication/transcription. To study defective 

genomes derived from arenavirus L RNA, we designed MG system based on LCMV L RNA. In 

brief, the full length L-Segment of LCMV-Arm was replaced with a GFP gene, and named 

LCMV#1074. A similar construct was also made, except 198 nucleotides of the N-terminus 
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coding region of L was left intact, followed by a P2A linker, and a gene encoding for the 

fluorescent reporter ZsGreen, called LCMV#1076. These constructs were tested in the previously 

described LCMV rescue system [284, 285]. Briefly, BHK-21 cells were plated in 6 well tissue 

culture treated plates and allowed to rest for one day, at which point they were about 85% 

confluent. They were then transfected with the LCMV#1074 or LCMV#1076 constructs, using the 

Lipofectamine 2000 system (ThermoFisher #11668030) along with pCAGGs expression vectors 

coding for the LCMV L-RdRP protein and the LCMV nucleoprotein NP [193, 286]. In our 

experiments, BHK-21 cells were also transfected with LCMV#1074 or LCMV#1076 as described 

above, but without the trans-acting factors required for rescue. These cells were then infected 

with a 0.1 or 0.5 MOI of LCMV-Arm one-day post transfection to provide “helper” virus for L and 

NP production. The supernatant of these cultures was collected two days following transfection 

and titered on BHK-21 cells with detection of focus forming units (FFU) using anti-LCMV NP 

antibody VL-4 (BioXcell West Lebanon, NH, USA) conjugated to a 488 nm fluorescent dye using 

an antibody labeling kit (ThermoFisher #53024). 

In vivo CBA/J and STAT-1-/- mouse experiments 

Four week old female CBA/J were purchased from The Jackson Laboratory (Bar Harbor, 

ME, USA). Fifteen mice were randomly assigned to each group (n = 15) and allowed to acclimate 

for one week. Following acclimation, mice were inoculated IC with 103 PFU of ML29, the qRT-

PCR equivalent dose of ML29P50 (approximately a 1 to 20 dilution of the stock), or sterile PBS 

for mock treatment in a total volume of 10 µl. Mice were observed daily for up to two weeks for 

survival, weight, and clinical score based on a composite of grooming, adjusted grimace scale, 

activity and neurological manifestations, as previously described [44].  
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Four-to-five week-old female STAT-1-/- mice (129S6/SvEv-Stat1tm1Rds) were ordered 

from Taconic (Hudson, NY, USA). During a 1-week acclimation, mice were randomized into 

groups of 12 for ML29 and MOPV or 6 for ML29P50 or mock treatment. Prior to treatment, the 

mice were transferred to ABSL-3 housing at the NIH Regional Biocontainment Laboratory on the 

University of Louisville campus. At day 0, mice were inoculated via the intraperitoneal route (IP) 

with 103 PFU of ML29, the qRT-PCR equivalent dose of ML29P50 (approximately a 1 to 20 

dilution of the stock), MOPV, or sterile PBS for mock in a total volume of 100 µl. Mice were 

observed daily for up to 62 days for survival, weight, and clinical score. Hearing tests were 

conducted by acoustic startle with a SR-Lab startle response system (San Diego Instruments, San 

Diego, CA, USA) as previously described [216]. Supportive care of 1 ml of warmed 0.9% NaCl 

given subcutaneously (SC), access to sterile water soaked mouse chow on the cage floor, and 

DietGel  76A (Clear H2O, Portland, ME, USA) were provided to all mice in the study during 7-12 

DPI. After 12 DPI, supportive measures were discontinued for mock and ML29P50 groups based 

on veterinary advice, while mice in ML29 and MOPV groups received either 1 ml (13-15 DPI) or 2 

ml (16-18 DPI) of Lactated Ringers’ Solution given SC. Additionally, during 13-18 DPI, ML29 and 

MOPV groups received DietGel 76A, sterile 5% dextrose soaked mouse chow on the cage floor, 

and were housed with their cages placed half on a 42°C heating pad for thermal support. 

In vivo Hartley outbred guinea pig experiments 

Female Hartley outbred guinea pigs were ordered from Charles River (Willmington, MA, 

USA) with a requested weight of 250-300 grams. Upon arrival, all animals were randomized to 

study groups and allowed to acclimate for one week.  

For vaccination and heterologous challenge, 3 animals were assigned to each group (n = 

3) and transferred to ABSL-3 housing. Animals in the ML29 group received a single dose of 103 
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PFU of ML29 SC while mock vaccinated animals received PBS vehicle. Twenty-eight days 

following vaccination, animals were challenged with 103 PFU of the viscerotropic LCMV strain 

WE (LCMV-WE). 

Guinea pigs were vaccinated with 103 PFU of ML29 or a qRT-PCR determined equivalent 

dose of ML29P50. At 3, 7, and 14 DPI, four animals from each group were euthanized and blood 

was collected into K2EDTA tubes for peripheral blood mononuclear cell (PBMC) isolation. PBMCs 

from whole blood were isolated with SepMate50 tubes containing Lymphoprep (STEMCELL 

Technologies Inc., Cambridge, MA, USA) and washed twice in RPMI 1640 (ThermoFisher 

#11875093) supplemented with 1X antibiotic-antimycotic, 1X GlutaMax, 10% FBS, and 55 µM 2-

Mercaptoethanol (ThermoFisher #21985023). Washed cells were used for ELISpot analysis as 

previously described [287]. Guinea pig IFN-γ capture and biotinylated detection antibodies were 

a generous gift from Professor Hubert Schäfer (Robert Koch Institute, Berlin, Germany). Peptide 

cocktails containing a mixture of LASV strain Josiah glycoprotein precursor epitopes at a final 

concentration of 10 µM were used for specific stimulation. Spots were read and quantified on a 

S5 UV ELISpot reader using BioSpot and ImmunoSpot software (Cellular Technology Limited, 

Cleveland, OH, US). 

Blood collected in lithium-heparin microtiter tubes with a gel separator was spun at 

6,000 x g for 90 seconds. Plasma was separated and 100 µl was loaded onto a Basic Metabolic 

Panel Plus reagent disk, and run on a Piccolo Xpress analyzer (Abaxis, Union City, CA, US). A 

group of 3 unvaccinated guinea pigs challenged with 10 PFU of LCMV-WE provided blood for 

comparison. Samples from mock vaccinated animals were pooled from 11 total blood draws 

(separated by at least a week) from 6 different guinea pigs and the exact same 11 data points 

are presented as a comparison basis to both day 7 and 14 samples. 
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Results 

 VeroML29P53 cells interfere with replication of r3LCMV-Arm-GFP/GFP 

We have previously documented that persistently infected VeroML29P15+ cells lost 

their ability to produce infectious ML29 “plaques” under agarose overlay [204]. Notably, this 

interference was also associated with particles generated into culture medium of persistently 

infected cells. The homologous interference is one of the major features of DIPs. Additionally, 

the ML29-persisitently infected cells do not produce plaques when superinfected with 

genetically closely-related arenaviruses, LASV, MOPV, and LCMV. LASV and MOPV are parental 

viruses used to generate infectious reassortant ML29, one of the most promising LASV vaccine 

candidates [18]. ML29 contains the MOPV L-segment encoding the L and Z proteins, and the 

LASV/Jos S-segment encoding GPC and NP [18]. In mini-genome systems, the NPs and L proteins 

of LASV and MOPV were exchanged without loss of function [288]. Meanwhile, the LCMV L 

protein required homologous NP for activity [288], and co-infection of cells with LASV and LCMV 

failed to generate infectious reassortants (Lukashevich, unpublished). To investigate 

heterologous interference of VeroML29PX cells further, these cells were infected with tri-

segmented LCMV-Arm (r3LCMV-Arm-GFP/GFP). In this system, the level of replication and/or 

interference can be observed based on the inhibition of expression of the GFP reporter gene. As 

seen in Figure 9, in wild-type Vero cells, replication of r3LCMV-Arm-GFP/GFP resulted in strong 

expression of reporter gene in time-dependent manner. In contrast, in VeroML29P28 and 

VeroML29P53 cells, expression of the reporter gene was heavily suppressed, and only a few cells 

were GFP-positive in the VeroML29P53 infection. These results confirm our previous 

observation  that VeroML29PX cells interfere with replication of LCMV [1], and this interference 

can be measured either with classical infectious plaque assay, or by the expression of a reporter 

gene cloned/expressed in NP or GPC open-reading frames as in r3LCMV-Arm-GFP/GFP.  
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Sub-genomic RNA species in VeroML29PX cells 

Generation of deleted genomes during accumulation of DIPs (or interference activities 

in persistently-infected cells) is another major biological feature of DIPs [263]. Historically, 

sedimentation patterns in sucrose gradients of RNA isolated from interfering particles produced 

by LASV-persistently infected Vero revealed heavy deletions in the 28-31S sedimentations 

classes containing 28S host ribosomal RNAs and LASV L RNA species [234]. High resistance of 

interference activity of LASV DI genome to UV-inactivation also suggested genomic deletions 

[49]. Here, we applied NB analysis to detect RNA deletions associated with L-segment of DIGs 

from ML29 infected cells using an L RNA-derived radioactive probe. NB analysis allows native 

viral RNA detection without any potential PCR biased enhancement of “helper” genomes in the 

initial RNA samples. For NB analysis, three types of RNA samples were used: (i) RNA from cells 

infected with ML29 at low MOI (acute infection control); (ii) RNA from LASV- and MOPV-infected 

cells (low MOI); and (iii) RNA from ML29-persisitently-infected cells, VeroML29P28 and –P53. As 

expected, in cells infected with LASV and MOPV at low MOI, the predominant RNA band was the 

L RNA migrated in the gel with predicted molecular mass, ~ 7.2 kb. In ML29-infected cells (at low 

MOI), in addition to the high-molecular RNA species migrating at the position of L RNA, several 

smaller RNA species were detected with the L RNA-derived probe. The predominant species 

gradually accumulated during 2-4 days after infection and migrated as heterogeneous bands in 

the area of ~ 1.5 kb (Figure 10a). The low/undetectable (by plaque assay) level of ML29 

replication in persistently-infected cells reasonably generated a weak signal in our NB analysis. 

Nevertheless, a full-length L RNA can be detected in VeroML29P28 and –P53 cells. In 

VeroML29P53 cells, in addition to L RNA, two additional RNA bands were detected with the L 

RNA probe. The predominant band migrated as an RNA species with a length of ~ 3kb. In 
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addition, a tiny band migrated in the gel slightly slower than 1.5 kb RNA species can be also 

faintly detected.  

MGs derived from the LCMV L RNA failed to interfere with replication of infectious homologous 

virus  

Two artificial constructs of the LCMV L-Segment with fluorescent reporter replacement 

of the complete L-gene (LCMV#1074, Figure 11a top) or all but 198 Bp of the L-gene 

(LCMV#1076, Figure 11a bottom) were designed to test whether deletions in the L gene would 

result in successful competition (interference) with the replication of wild-type LCMV. Both of 

the constructs were replicated by the LCMV rescue system, and produced their respective 

fluorescent reporters (Figure 11b, left two panels, LCMV#1074 top, LCMV#1076 bottom). 

Additionally, LCMV-Arm infection was sufficient to provide the necessary trans-acting factors for 

replication, as seen by the fluorescent reporter produced from infection with 0.1 MOI (Fig 11b, 

center panels) or 0.5 MOI (Fig 11b, right panels) of LCMV-Arm. However, similar viral titers were 

isolated from the supernatants of cells transfected with LCMV#1074, LCMV#1076, or an 

irrelevant vector driving GFP production, at one day post LCMV infection (Figure 11c). This 

suggests that these constructs are insufficient to cause interference with in vitro viral 

replication. 

ML29P50 is attenuated in two mouse models 

One of the possible mechanisms of DIP-associated interference can be induction of 

innate (e.g., by RIG-I-dependent pathways triggered by pathogenic RNA species) and acquired 

immunity. Indeed, potent immunogenic features of DIPs are well documented for several RNA 

viruses and seems to contribute to vaccine efficacy [272]. Taking into consideration detection of 

substantial amount of L-derived RNA species in ML29 generated at low and high MOI (in 
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persistently-infected ML29 cells) we used two small animal models CBA/J mice and STAT-1-/- 

mice to test attenuation of ML29 and possible contribution of interfering particles. CBA/J mice 

are susceptible to both LASV and ML29 IC challenge [17, 165]. The CBA/J IC challenge model was 

also used to test the attenuation of ML29 enriched with DIPs, ML29P50. 

 All mice challenged with ML29 succumbed to infection at 7DPI, while all mice receiving 

ML29P50 survived two weeks following challenge (Figure 12a). Additionally, ML29P50 challenge 

mice did not show weight loss or the clinical manifestations caused by ML29 challenge at 6-7 

DPI. Viral loads in brain tissue measured by qRT-PCR at 7 DPI was undetectable for ML29P50 

challenged mice (data not shown). 

Mice deficient for STAT-1 do not respond to either type I or type II interferon and are 

therefore extremely susceptible to viral infection [289]. Likewise, STAT-1-/- mice are susceptible 

to LASV infection [198]. These mice can be also used to distinguish between lethal and non-

lethal human isolates of LASV. In addition STAT-1-/- mice surviving LASV infection show 

sensorineural hearing loss similar to that observed in human LASV survivors [216].  STAT-1 -/- 

mice are also susceptible to infection caused by ML29 and MOPV [204]. Because supportive 

measures are commonly used for human Lassa fever (LF) patients [290], we attempted to use 

supportive measures to increase the survival of STAT-1-/- mice following ML29 vaccination to 

examine the potential of the vaccine to cause sensorineural hearing loss. Supportive measures 

including fluid administration, caloric support, and temperature support during hypothermia for 

mice infected with ML29 or MOPV. While the efforts were largely unsuccessful with 1/12 ML29 

and 3/12 MOPV mice surviving (Figure 12d), survivors did not show weight loss (Figure 12e) or 

clinical manifestations (Figure 12f) that lasted more than 3 weeks following infection. This 

allowed for hearing tests by audible startle to check for signs of sensorineural hearing loss. No 
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hearing loss was observed in ML29, ML29P50, or MOPV mice at 62 DPI (Figure 12g-i) under the 

same conditions used to detect LASV associated hearing loss [216]. 

ML29 induces LASV-specific T cell responses in Hartley outbred guinea pigs 

Mice provide useful tools to study arenaviruses. However, mice cannot mimic the 

pathogenesis of the human diseases caused by these viruses. Guinea pigs with different genetic 

backgrounds are a more appropriate model for the study of LASV-induced pathogenesis and 

mechanisms of the protection. Hartley outbred guinea pigs are susceptible to infection with 

LCMV-WE with a LD50 less than 10 PFU, and display similar disease to those infected with LASV 

[209, 291, 292]. Hartley guinea pigs were used to study the anticipated cross-protection induced 

by ML29. The rationale of this study was based on the protection of Rhesus macaques 

vaccinated with ML29 against fatal LF-like disease caused by LCMV-WE [161]. As seen in Figure 

13a, at day 10, LCMV-WE also killed all Hartley guinea pigs infected with LCMV-WE. While 

vaccination with ML29 did not protect against fatal disease caused by LCMV-WE, we still 

observed a substantial delay in time of death for vaccinated animals. Furthermore, ML29 

vaccinated guinea pigs displayed LASV GPC specific T cell responses at 14 days following 

vaccination (Figure 13b). Their responses were measured in IFN-γ ELISPOT after stimulation of 

PBMC cells with peptide cocktails derived from LASV/Jos GPC, as previously described [204].  

Guinea pigs are also commonly used animals for pre-clinical toxicological studies to 

assess safety of biologics (vaccines and therapeutics). Neither ML29 nor ML29P50 treated 

animals had hematological signs of renal disease (Figure 13c-f) or viral hepatitis (Figure 13g-j) 

commonly seen in LF patients. However, LCMV-WE induced signs of renal disease observed in 

guinea pigs meeting endpoint criteria (EC) including elevated glucose, blood urea nitrogen, 

amylase, and decreased calcium (Figure 13c-f). LCMV-WE also induced viral hepatitis observed 
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by increased Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) and 

decreased albumin in EC guinea pigs. Interestingly, albumin was also significantly decreased at 

7DPI and there was a non-significant trend towards increased Gamma-Glutamyl Transferase at 

this time. 

Discussion 

Previously we documented that Vero cell persistently infected with ML29 after passage 

15 (VeroML29P15) did not generate infectious plaques under agarose overlay, a standard assay 

to quantitate replication-competent (infectious) viruses. In addition, these cells did not form 

plaques after super-infection with closely-related viruses, MOPV and LASV, and LCMV. While 

interference between ML29, MOPV, and LASV was highly expected, experiments in MG systems 

indicated that LCMV L protein requires specific (homologous) NP for MG function [288]. This 

finding is in line with the observed failure to generate live reassortants in cells co-infected with 

LCMV and LASV (Lukashevich, unpublished). To investigate further the heterologous 

interference of VeroML29P cells, we used tri-segmented LCMV expressing the GFP reporter 

gene, r3LCMV-Arm-GFP/GFP. In agreement with our infectious plaque assay results, ML29P28 

and ML29P53 cells interfered with replication of r3LCMV-Arm-GFP/GFP since the expression of 

the GFP reporter following infection with r3LCMV-Arm-GFP/GFP was significantly reduced. 

Greater interfering activity was seen in the VeroML29P53 cells, which tended to have 

approximately a 10- to 100-fold reduction in the number of GFP-positive cells infected at both 

24 and 48 hours. In VeroML29P28 cells, the total number of infected cells was more similar to 

that observed in standard Vero cells, however there was diminished average expression of the 

GFP in each infected cell. This is consistent with the observation that there is less viral protein 

(particularly GPC and NP) detected per cell by immunofocus assay in ML29P34 cells compared to 

cells with primary ML29 infection [204]. 
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Interestingly enough, in NB analysis with an L RNA-derived probe we observed 

numerous small RNA species with a size ranging from about 1 kBp to 4 kBp along with the 

expected viral genome and L mRNA. These L RNA-derived small RNA species were predominant 

in ML29-acutely infected cells. Notably, the S RNA-derived probe detected RNA species with 

expected size (viral S RNA and mRNA for NP). While the detection of small L RNA-derived species 

in ML29-infected cells infected at low MOI was a surprising finding, these small RNA species can 

contribute to enhanced immunogenicity of ML29. Small viral RNAs can be potent activators of 

RIG-I, MDA-5 or PKR [253]. We are assuming that part of the mechanism of advanced 

attenuation and/or immunogenicity of ML29 compared to MOPV is these small RNA species 

causing the activation of antiviral innate immunity at very early stages of the infection. This is 

very crucial to viral control and building potent acquired immune responses at latter stages of 

the infection. It has been documented that the L and NP genes from LASV and MOPV are 

interchangeable in a MG system [288]. However, LCMV L is not functional with LASV nor MOPV 

NP, although both LASV and MOPV L support MG replication with LCMV NP [288]. Importantly, 

most previously described arenavirus MG systems contained the cis-acting elements from the 

viral S RNAsegments [181, 288]. In these MG systems, NPs and L proteins of LASV and MOPV 

could be exchanged without loss of function. Still, the MOPV MG was about 3-fold less active 

than the LASV MG, irrespective of NP and L origin. This means that cis-acting elements (e.g., 

MOPV 3’UTR) contribute to MG activity. Design and functional testing of MG systems based on 

the L RNA-derived cis-acting elements will provide very valuable insights regarding the 

replication machinery of these arenaviruses. Based on available experimental results and our 

data, we hypothesize that mismatch between the either LASV NP and MOPV L, or LASV NP and 

the cis-acting elements from the MOPV/ML29 L-segment are responsible for the generation of 

small RNA species in cells infected with ML29 at low MOI. Notably, this mismatch does not 



72 

affect replication efficiency of ML29 since replication kinetics in vitro was very similar for ML29 

and parental viruses, LASV and MOPV. It is also possible that single nucleotide polymorphisms in 

ML29, particularly mutations in L protein, Y851N, R1233G, and D2136N [17], account for 

different binding ML29 NP affinity with either ML29 L or the cis-acting elements of ML29.  

Our search for “classical” defective genomes with RNA deletions in ML29-persistently-

infected cells resulted in the detection of a unique RNA band with a size slightly greater than 3 

kb in addition to the viral L RNA species. This band was observed only in persistently infected 

cells using a NB probe derived from the L RNA. This band was predominant, at least in 

VeroML29P53 cells, and can be also detected in VeroML29P28 cells (after longer exposure of NB 

to the film, Fig 10a). In general, defective viral genomes are naturally generated MG systems 

preserving terminal sequences required for replication/packaging with substantial deletions of 

internal parts of the genome. These natural MG can be used as potential broad-spectrum 

antivirals for rapidly evolved (highly heterogeneous) RNA viruses (e.g., influenza) [293]. Indeed, 

defective interfering RNAs inhibited influenza virus replication in human respiratory tract cells 

[294]. This approach can be also attractive for arenaviruses. LCMV and LASV are the most 

genetically diverse mammalian arenaviruses. Genetic diversity is one of the problems for 

development of universal LASV vaccine. To test potential antiviral activity of arenavirus MGs, we 

used recombinant LCMV L RNA-derived plasmids with deleted L protein. These plasmids, 

LCMV#1074 and LCMV#1076, contained native 3’ and 5’UTR sequences, IG region and expressed 

GFP instead of large, L protein. However, transfection of Vero cells with these plasmids did not 

affect replication of LCMV (Figure 11b). Further experiments are needed to assess role of 

defective MGs in arenavirus replication. Nevertheless, experiments with LCMV#1074 and 

LCMV#1076 MGs provide evidence that the cis-acting elements from the L-segment can be 

successfully used to design new arenavirus MG systems.  
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While we currently do not how or if the L RNA-derived small RNA species, (either from 

acute infection of persistently-infected cells), contribute to advanced attenuation and 

immunogenicity of ML29, we provided evidence that indeed ML29P50 was deeply attenuated in 

CBA/J and STAT-1-/- mice. In the future, it may be interesting to see if a blended vaccine 

formulated with interfering particles produced by persistently-infected cells will induce broad 

cross-protection against LASV strains from different phylogenetic lineages of LASV. In the STAT-

1-/- mouse model, ML29 was more attenuated than MOPV. ML29 enriched with interfering 

particles (ML29P50) induced potent T cell responses, and was fully attenuated in these mice.  

ML29P50 inoculated STAT-1-/- mice had weight loss and clinical manifestations in the 

week following vaccination (Figure 12e,f) but quickly recovered. By the end of the two-month 

observation, their weights were similar to mock treated mice. Supportive care was largely 

unsuccessful in increasing the survival of ML29 inoculated STAT-1-/- mice, but did rescue 25% of 

animals challenged with a lethal dose of MOPV. There were no signs of sensorineural hearing 

loss with ML29, MOPV, or ML29P50 mice two months following inoculation, confirming that this 

is not likely to be an adverse effect of ML29 vaccination. 

Arenaviruses, by definition, are rodent-borne viruses. These viruses are treated 

differently by the immune system of rodents and humans (or NHPs). Nevertheless, among 

experimental rodents, guinea pigs seems to be the most reliable and appropriate small animal 

model to study arenavirus-induced pathogenesis and protective immune responses. We used 

outbred Hartley guinea pigs in efforts to assess safety and cross-protective immunogenicity of 

ML29. Hartley guinea pigs vaccinated with ML29 and challenged with lethal LCMV-WE (which 

mimics LF in NHPs), were not protected. However, they still had had a modest (but statistically 

significant) delay in time to death following LCMV-WE challenge. In contrast, ML29 vaccinated 

rhesus macaques were fully protected from lethal LCMV-WE challenge [161]. This is likely due to 
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the unusually high susceptibility of these Hartley guinea pigs to LCMV-WE infection despite the 

clear presence of T-cell immunity by ELISpot (Figure 13b.) It is also possible that different T-cell 

epitopes are protective in the Hartley guinea pig model, and that these epitopes do not provide 

for heterologous protection against LCMV-WE. Challenge with guinea pig adapted LASV/Jos may 

be a more appropriate challenge model to evaluate ML29 protection. While LCMV-WE infection 

induced clear signs of renal disease (elevated blood glucose, blood urea nitrogen and amylase 

with reduce calcium) and viral hepatitis (elevated ALT, AST, GGT and reduced albumin), ML29 

and ML29P50 did not. This further demonstrates the excellent safety profile of these live 

attenuated vaccines. 
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Figures 

Figure 9. GFP expression from Vero (left), VeroML29P28 (center) and VeroML29P53 (right) cells 

infected with 3.4x104 FFU of r3LCMV-Arm-GFP/GFP at 24 (top) and 48 (bottom) hours post 

infection. 

Figure 10. (a) Northern blot of Vero cells infected with a 0.001 MOI of ML29 at the indicated 

hours post infection (Lanes 1-3), VeroML29P28 at 96 hours after passaging (lane 4), 

VeroML29P53 at 96 hours after passaging (lane 5), and uninfected Vero cells (lane 6) detected 
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with a probe targeting the N-terminus of the ML29/MOPV L-protein coding region extending 

into the non-repeated portion of the L-Segment 3’ untranslated region (left blot) or a probe 

targeting the N-terminus of the ML29 NP-protein coding region extending into the non-repeated 

portion of the S-Segment 3’ untranslated region. (b) Norther blot of Vero cells (uninfected, lane 

1) infected with a 0.001 MOI of LASV at the hours post infection indicated (lane 2-5) detected

with a probe targeting the Z protein coding region of the L-segment. The 0 HPI lane was 

collected immediately following infection. (c) Northern blot of Vero cells infected with a 0.001 

MOI of MOPV at the indicated hours post infection (Lanes 2-4) and uninfected Vero cells (lane 1) 

detected with the same probe used in (a). 
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Figure 11. (a) Schematic showing the constructs LCMV#1074 and LCMV#1076 which were 

inserted into an mPol-I driven expression vector. (b) BHK-21 cells were transfected with mPolI-

LCMV#1074, mPolI-LCMV#1076, or a pCAGGs expression vector for GFP. One day later, the cells 

were infected with LCMV-Arm at an MOI of either 0.1 or 0.5 and allowed to incubate for an 

additional day before the supernatants were collected and titered by focus forming assay. (c) 

Left two panels: BHK-21 cells were transfected with LCMV#1074 (top) or mPolI-LCMV#1076 

(bottom) and expression vectors for the two LCMV trans-acting replication factors: RdRP L-

protein (pCAGGs L) and nucleoprotein (pCAGGs NP). Right four panels: Vero cells transfected 

with LCMV#1074 (top) or mPolI-LCMV#1076 (bottom) and, one day post transfect, infected with 

a 0.1 MOI (center two panels) or 0.5 MOI (right two panels) of LCMV-Arm. Images captured 2 

days post transfection. 
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Figure 12. CBA/J mice were inoculated IC with 103 PFU of ML29 (green), a qRT-PCR equivalent 

dose of ML29P50 (red), or mock inoculated with PBS (blue) and followed for two weeks for (a) 

survival, (b) weight, and (c) clinical manifestations. Survival curves are significantly different (p < 

0.0001) by Mantel-Cox Log-rank test. STAT-1-/- mice were inoculated IP with 103 PFU of ML29 

(green), a qRT-PCR equivalent dose of ML29P50 (red), 103 PFU of MOPV (purple), or mock 

inoculated with PBS (blue) and followed for two months for (d) survival, (e) weight, and (f) 

clinical manifestations. Sixty-two days post inoculation, mice were tested for hearing loss by 

acoustic startle with a sound generated at (g) 20 dB, (h) 30 dB, or (i) 40 dB greater than the 

background noise of the room. Following the startle tone, the movement of the mouse was 

tracked with a digital pressure transducer, which recorded pressure signal as millivolts. The 

dashed line represents the sensitivity threshold used to distinguish response to the sound from 

non-specific signal. Values above the dashed line were able to hear the startle inducing tone. 
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Figure 13. (a) Hartley guinea pigs were vaccinated with 103 PFU of ML29 SC or mock vaccinated. 

Twenty-eight days post vaccination, mice were challenged with 103 PFU of LCMV-WE SC and 

followed for survival. Survival curves are significantly different (p = 0.0253) by Mantel-Cox Log-

rank test. (b) Hartley guinea pigs (n = 4 per time point) were inoculated with ML29. Blood was 

collected and PBMCs were tested for IFN-γ production in response to LASV/Jos peptide 

stimulation by ELISpot at 3, 7, and 14 DPI. ** p < 0.01 by one way ANOVA with Dunnett’s post-

hoc comparison to mock. (c-j) Blood chemistry values measured with a Piccolo Xpress analyzer 

including (c) glucose, (d) blood urea nitrogen, (e) calcium, (f) amylase, (g) ALT, (h) AST, (i) 

Albumin, and (j) GGT. ** p < 0.01, *** p < 0.001, **** p < 0.0001 by one way ANOVA with 

Dunnett’s post-hoc comparison to mock. 
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CHAPTER V 

ADVANCED SAFETY AND GENETIC STABILITY IN MICE OF A NOVEL DNA-LAUNCHED VENEZUELAN 
EQUINE ENCEPHALITIS VIRUS VACCINE WITH REARRANGED STRUCTURAL GENES2 

1. Introduction

Venezuelan Equine Encephalitis Virus (VEEV) is member of the genus Alphavirus in the 

family Togaviridae. There are six antigenic subtypes and seven varieties in the VEEV complex, 

most of which are endemic to Central and South America [295, 296]. Types IAB and IC are 

associated with epizootic outbreaks in equines, when the virus breaks from its sylvatic cycle 

between the mosquito vector and rodents or birds [295]. In equines, VEEV presents as a biphasic 

illness with high fever followed by neurologic disease, resulting in 50%−89% mortality [297]. 

During infection, equines have a high titer viremia, which can lead to subsequent transmission 

through the mosquito vector to other equines or humans [297]. However, person-to-person 

transmission has not been reported. In humans, VEEV causes a biphasic febrile illness followed 

by myeloencephalitis with high morbidity, including neurological complications, and a mortality 

rate of approximately 2% [298]. Significant overlap occurs between regions of VEEV endemicity 

and that of some other tropical disease, which complicates clinical diagnosis. In particular, it has 

been reported that overlap with areas of dengue virus infection may result in an 

underestimation of VEEV prevalence [295]. In a population-based study, the seroprevalence of 

2 This chapter is adapted from work published in Vaccines, 2020, Volume 8, Issue 1 with the 
same title under a Creative Commons Attribution (CC BY) license [27]. 
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VEEV has been reported to be as high as 75% in some endemic regions [299]. Climate change 

may be contributing to the increased geographical distribution of Culex mosquitos, increasing 

the population of humans and equine at risk for contracting VEEV [300-302]. 

VEEV was weaponized in the US and former USSR before biological warfare programs were 

discontinued [298, 303-305]. Still, VEEV is recognized as a potential biological weapon threat. In 

the US, VEEV subtypes IAB and IC are regulated under the HHS/USDA Select Agent program due 

to the severe threat posed to human and animal health, especially in the absence of FDA-

licensed human vaccines and therapeutics [306]. Due to the minimum infectious aerosol dose 

required for infection, VEEV also has a long history of being implicated in laboratory-acquired 

infections [307-309]. 

The first effort to create a VEEV vaccine used a formalin inactivated wild-type virus. 

However, these experimental vaccines had low immunogenicity and were prone to incomplete 

inactivation [310]. A live attenuated vaccine, TC-83, was developed by serially passaging VEEV 

TrD through guinea pig heart cells 83 times while monitoring virulence by intracranial (IC) 

injection in mice [13]. VEEV TC-83 contains 10 point mutations compared to the VEEV TrD strain, 

however the attenuation is attributed to two key differences: G to A mutation at position 3 of 

the 5′ untranslated region, which reduces translation efficiency by restoring Ifit1 restriction, and 

a threonine to arginine substitution at position 120 of the E2 glycoprotein [311-313]. 

Murine infection with the Trinidad-Donkey strain (TrD) of VEEV has been identified as a 

good challenge model for vaccine development, in line with the FDA animal rule [314], in 

addition to the aerosolized model of infection in Rhesus macaques. TC-83 has been tested in 

human phase I and II trials and became available for individuals “at risk” through the Special 

Immunization Program under the supervision of the United States Army Medical Research 

Institute of Infectious Disease (USAMRIID, Fort Detrick, MD) [29]. TC-83 human trials have 
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revealed high reactogenicity, often leading to symptomatic VEEV infection including febrile 

illness and headaches in up to 40% of vaccinated individuals [37, 315]. Additionally, it has been 

documented that a single dose of TC-83 is often insufficient to illicit protective humoral 

responses (neutralizing antibodies), as detected by plaque-reduction neutralization tests (PRNT). 

Individuals with poor responses are usually further immunized (boosted) with formalin-

inactivated TC-83 (called C-84) to enhance PRNT titers following TC-83 vaccination [29]. 

Experimental V3526, a rationally designed VEEV vaccine containing a mutation in the E2 

cleavage site of the structural polyprotein, showed promising results in mice. However, the 

phase I clinical trial revealed unacceptable adverse effects and development of V3526 was 

discontinued [316]. Recently, chimeric alphaviruses, either with Sindbis virus, or the insect host-

restricted Eilat virus, have been tested as VEEV vaccine platforms [37, 41, 317, 318]. An 

alternate approach has been proposed to create a novel vaccine by the introduction of an 

internal ribosome entry site to drive control of VEEV structural proteins or capsid [319-321]. 

The limited number of attenuating mutations in TC-83 and the high error rate of the viral 

RNA-dependent RNA-polymerase (RdRP) seem to be related to the instability of TC-83 

attenuation [317]. Substantial progress in alphavirus molecular virology and VEEV pathogenesis 

has provided a variety of powerful tools to address the safety and immunogenicity of the VEEV 

TC-83 vaccine. Recently, we have used several approaches to further improve the VEEV TC-83 

vaccine: (i) infectious DNA (iDNA) technology to launch a live-attenuated vaccine in vivo [322]; 

(ii) rearrangement of alphavirus structural genes; and (iii) genetic stabilization of the TC-83-

attenuated phenotype [44]. The novel V4020 experimental vaccine was rationally designed by 

securing the key TC-83 attenuating mutation (E2-T120A), along with a further improvement of 

attenuation by rearrangement of TC-83 structural genes [44]. 
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In proof-of-concept studies, V4020 provided complete protection against wild-type VEEV 

TrD challenge, inducing sterilizing immunity in mice [44]. After a single dose of either 

subcutaneous live V4020 or electroporation with V4020 iDNA, one month later, BALB/c mice 

were protected from lethal challenge with VEEV-TrD [44]. Cynomolgus macaques, vaccinated 

with either a single dose or two doses of V4020, were aviremic following an aerosol challenge 

with VEEV TrD [323]. Here, we compared the safety and genetic stability of V4020 and TC-83 in 

viral replication kinetics studies in brain tissues, and then assessed the potential to revert to a 

pathogenic phenotype during passages of the vaccines in mice. In addition to virology methods, 

NanoString gene expression profiling and RNA-Seq analysis were applied to track viral genetics 

and host responses during the replication of both attenuated viruses in brain tissues of 

experimentally infected mice. 

2. Materials and Methods

2.1. Viruses 

VEEV TC-83 was obtained from U.S. Army Medical Research and Materiel Command (Fort 

Detrick, MD, USA), and amplified once in Vero cells. The pMG4020 plasmid for launching was 

previously described [44]. VEEV V4020 virus was prepared by electroporation of pMG4020 into 

Vero cells and the generated virus particles were concentrated by ultracentrifugation [44]. Virus 

titers were determined by infecting monolayers of Vero cells in 24-well tissue culture plates with 

serial dilutions of virus stocks for 1 hour, followed by methylcellulose overlay. Three days post 

infection, cells were fixed with paraformaldehyde and stained with crystal violet to count 

infectious plaques. 

2.2. Vaccine Replication Kinetics in Brain Tissues 
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BALB/c mice (6−8 weeks old, female, 24 mice per group) were inoculated IC with 105 plaque 

forming units (PFU) of either V4020 or TC-83 in a total volume of 20 µL of PBS. To prepare for IC 

inoculation, mice were shaved, anesthetized with isoflurane in an induction chamber, 

transferred to a nose cone, had the injection site cleaned with first povidone iodine followed by 

ethanol, and positioned with their head tilted forward. A 27-guage needle (BD) was inserted 

through the foramen magnum angled to prevent damage to the brain stem. Following injection, 

mice were monitored during recovery. Mice that did not recover from the IC procedure or that 

met euthanasia criteria at 1 DPI (about 7% of all IC treated animals with no apparent association 

to treatment group) were excluded from analysis. 

Mice were weighted daily and assessed for signs of clinical disease on a 16-point scale as 

previously described [44]. Briefly, observation was based on grooming, adjusted grimace scale 

score, activity, and neurological responses including tail strength, hind leg strength, abdominal 

curl reflexes, and righting reflexes. On days 1, 2, 3, 5, 7, 9, 11 and 13-post infection, three mice 

from each group were sacrificed, and brain tissue was collected. Half of the brain was fixed in 

neutral buffered formalin for 24 hours before standard processing and paraffin embedding for 

histology. A quarter of the brain was placed in 2 ml screw top tubes with 1 mL TRIzol Reagent 

(ThermoFisher #15596026), and homogenized with glass beads in a bead beater for isolation of 

RNA by phenol-chloroform extraction. The remaining brain tissue was homogenized in cell 

culture media and clarified as described previously [204] for plaque assay. 

2.3. Sequential IC Passages in Mice 

BALB/c mice (6−8 weeks old, female, 10 mice per group) were inoculated IC, and, two days 

post infection, two mice from each group were sacrificed, brain tissue was collected, 

homogenized, clarified, aliquoted, and stored at –80 °C, as described above. One aliquot from 
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each mouse was titered by plaque assay. A second aliquot was used to prepare the inoculum for 

subsequent passages after a single freeze–thaw cycle. Each mouse was inoculated with 105 PFU 

of virus comprised of 5 × 104 PFU per dose originating from each of two mice from the previous 

passage. The remaining mice in each group were weighed daily and monitored for clinical signs 

for 14 days or until they met the euthanasia criteria of 25% weight loss or the loss of ability to 

obtain food and water for a period of 24 hours or greater (e.g., complete loss of righting reflex 

or hind leg paralysis.) At the time of sacrifice, brain tissue was collected as described above. 

2.4. In Situ Hybridization and Histology 

Formalin-fixed paraffin embedded (FFPE) brain tissue was sectioned on a Leica RM2125 RTS 

microtome to a thickness of approximately 5 μm and mounted on charged glass slides. Slides 

were baked to dry. Manual hematoxylin and eosin staining was performed as previously 

described [324]. In situ hybridization was done using RNAScope HD Assay Brown (#322300) 

using a probe targeting VEEV nsP3 (#404501, Advanced Cell Diagnostics, Hayward, CA, USA) 

according to the manufacturer’s directions. 

2.5. NanoString Array 

RNA collected during necropsy from the kinetic study on days 5, 7, 9, 11, and 13 post 

inoculation was isolated from mouse brain homogenized in TRIzol as described above. RNA was 

similarly collected from mock (PBS) IC-inoculated mice. Purified RNA was quantified on a 

NanoDrop 2000 spectrophotometer (ThermoFisher, Wilmington, DE, USA), diluted to 10 ng/µL, 

and sent to NanoString Technologies (NanoString Technologies, Seattle, WA, USA) for analysis. A 

total of 100 ng of each sample was hybridized to the nCounter Mouse Neuro-inflammation 

panel (XT-CSO-MNROI1-12) for 16 hours at 65°C. Hybridized RNA was quantified on a 

NanoString Prep Station and Digital Analyzer Max System (NanoString Technologies, Seattle, 
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WA, USA) with the manufacturer’s high sensitivity protocol. Additional probes to detect VEEV 

genes (Table 2) were designed and synthesized by NanoString Technologies (NanoString 

Technologies, Seattle, WA, USA) based on the TC-83 GenBank reference sequence L01443.1. 

These probes were additionally included in the neuro-inflammation panel.  

2.6. RNA-Seq 

Brain tissue from mice inoculated with passages one through five (P1-P5) of V4020 and TC-

83 were collected two days post inoculation, DNAse I treated (Zymo Research #E1010), and 

Table 2. NanoString probes used for the detection of Venezuelan Equine Encephalitis Virus (VEEV) 
genes. 

Target Probe 

6K 
ACAAT AACCA ACAGA TGTTC TGGAT TCAAT TGCTG ATCCC TCTGG CCGCC TTGAT 
CGTAG TGACT CGCCT GCTCA GGTGC GTGTG CTGTG TCGTG CCTTT 

capsid 
ATCGA CAACG ACGTT CTGGC CGCGC TTAAG ACGAA GAAAG CATCC AAATA CGATC 
TTGAG TATGC AGATG TGCCA CAGAA CATGC GGGCC GATAC ATTCA 

E1 
CACCA GGGTG TCAGA AACAC CGACA CTTTC AGCGG CCGAA TGCAC TCTTA ACGAG 
TGCGT GTATT CTTCC GACTT TGGTG GGATC GCCAC GGTCA AGTAC 

E2 CTTAA AAGGA AAACT GCATG TCCCA TTCTT GCTGG CAGAC GGCAA ATGCA CCGTG 
CCTCT AGCAC CAGAA CCTAT GATAA CCTTC GGTTT CAGAT CAGTG 

E3 
CCACC ATGTG TCTGC TCGCC AATGT GACGT TCCCA TGTGC TCAAC CACCA ATTTG 
CTACG ACAGA AAACC AGCAG AGACT TTGGC CATGC TCAGC GTTAA 

nsP3 GTGTG CTCAT CCTTT CCATT GCCGA AGTAT AGAAT CACTG GTGTG CAGAA GATCC 
AATGC TCCCA GCCTA TATTG TTCTC ACCGA AAGTG CCTGC GTATA 

nsP4 
GCTGG TTAGG AGATT AAATG CGGTC CTGCT TCCGA ACATT CATAC ACTGT TTGAT 
ATGTC GGCTG AAGAC TTTGA CGCTA TTATA GCCGA GCACT TCCAG 

purified with an RNeasy mini kit (Qiagen #74104.) Purified RNA was quantified on a NanoDrop 

2000 spectrophotometer (ThermoFisher, Wilmington, DE, USA) Samples were prepared for 

sequencing by rRNA depletion using the NEBNext rRNA Depletion Kit (#E6310) followed by 

library prep using NEBNEXT Ultra II RNA Library Prep with Sample Purification Beads (#E7775, 

NEB, Ipswich, MA, USA.) Libraries were quality checked on an Agilent BioAnalyzer before 

sequencing on an Illumina NextSeq 500 with a NextSeq 500/550 High Output Kit v2.5 (75 Cycles) 

kit (#20024906, Illumina, San Diego, CA, USA.) 
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The sequencing files were imported into Galaxy [325], trimmed using trimmomatic version 

0.36.6 [326], aligned to viral reference sequences with BowTie 2 version 2.3.4.2 [327], and a 

pile-up was generated, filtered and exported to Excel for statistical analysis. Sequences not 

aligning with the viral references were aligned with the mouse mm10 genome (GenBank 

assembly accession GCA_000001635.8) using HiSat2 version 2.1.0+galaxy4 [328]. Mouse 

transcripts were quantified with htseq-count version 0.9.1 [329] and screened for differential 

gene expression by DESeq2 version 2.11.40.2 [330]. Gene ontologies relating to differential gene 

expression were detected by goseq mapping software version 1.26.0 [331]. 

2.7. Statistical Analysis 

Results showing weights, clinical scores, or viral plaque assay titers are presented as mean ± 

SEM using the GraphPad Prism version 7 for Windows package (GraphPad Software, LaJolla, CA, 

USA). Prism was also used for statistical significance testing, as indicated in the applicable figure 

legends, and to visualize data from NanoString and RNA-Seq experiments as heat-maps. 

NanoString nSolver software (NanoString Technologies, Seattle, WA, USA) was used to 

generate all presented volcano plots and the data presented in supplemental Table 1 and 3. 

nSolver also calculated relative cell marker expression. Differences in cell marker expression 

were tested for significance in Prism by two-way ANOVA followed by Fisher’s LSD post-hoc 

analysis. 

NanoString nSolver Advanced Analysis 2.0 software was used to calculate pathway scores. 

Pathway scores are calculated based on the first principal component of each measured gene in 

the KEGG pathway. These differences are then quantified based on the normalized expression of 

all genes belonging to the pathway. This summarizes the involvement of each tested KEGG 

pathway for each biological replicate relative to all samples included in the analysis. Pathway 
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scores summarize whether the overall gene expression in a pathway is up- or down-regulated. 

Values for pathway score were exported from nSolver, normalized to mock infected controls, 

and tested for significance in GraphPad Prism using a two-way ANOVA with Dunnett’s post-hoc 

comparison to the mock IC treated group. 

NanoString nSolver Advanced Analysis 2.0 software also calculates a “Global Significance 

Score” (GSS) for a group of samples by measuring the overall differential expression of all genes 

belonging to a particular KEGG pathway, while ignoring whether each gene is up- or down-

regulated. GSS is different from pathway score because it summarizes how much difference 

there is in pathway involvement between groups. GSS allows for the easier comparison of many 

pathways between groups, but does not provide meaningful data about the magnitude of 

overall gene expression. 

2.8. Ethics Statement 

All animal experiments were conducted under protocols approved by the University of 

Louisville institutional animal care and use committee. Work with live VEEV was conducted at 

the National Institutes of Health Regional Biocontainment Laboratory on the University of 

Louisville campus and was done with University of Louisville institutional biosafety committee 

approval. TC-83 and V4020 were handled with BSL2/ABSL2 practices and are exempt from US 

federal select agent regulations. Passaging of V4020 and TC-83 in mouse brains was done at 

ABSL3. 

3. Results

3.1. Kinetics Study: Attenuated Replication of V4020 in Brains of Infected Mice 
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To assess replication kinetics in brain tissues, two groups of BALB/c mice were inoculated 

with 1 × 105 PFU of either V4020 or TC-83 via the IC route. At 1−2 day intervals, three mice from 

each group were euthanized and brain samples were taken to determine infectious viral load by 

plaque titration. Mice from both experimental groups showed symptoms of disease and lost 

weight (Figure 14b), while a control group of mock-infected mice did not show clinical scores 

during the observation period (Figure 19). We previously documented that higher clinical scores 

correlated with weight loss in this model [44]. Direct comparison of percent weight loss to viral 

load reveals key differences between V4020 and TC-83 at 7 DPI (Figure 14b). Replication kinetics 

of both attenuated viruses showed similar patters during the first 3 DPI, reaching peak titers of 

109 PFU per gram of brain tissue at 2 DPI. After 3 DPI, V4020 replication rapidly declined, with a 

significant decrease in viral titer at 5 DPI. No infectious V4020 viruses were detected at 7 DPI or 

at later time points. Conversely, infectious TC-83 was detected at 7 DPI and 9 DPI (with titers of 

105 and 104 PFU/g respectively). The high viral loads in TC-83-infected mice seemed to drive 

more aggressive weight loss than was observed in V4020-inoculated mice (Figure 14b).  

In line with infectious viral load results, RNAScope in situ hybridization detected strong and 

extensive signals in the brain tissues of both groups of mice at early stage of the infection 

(Figure 15, 2 DPI, brown staining). In V4020-infected mice, these signals declined at 5 DPI and 

were not detectable at later time points. In contrast, in TC-83-infected mice, strong positive 

hybridization signals remained in brain tissues of TC-83 mice until 9 DPI and were still detectable 

as late as 13 DPI (Figure 15). Histology (H&E staining) did not reveal clear differences between 

two groups of mice. Nevertheless, in TC-83-infected mice at 5 DPI, there was a notable increase 

in perivascular cuffing, a key indicator of VEEV brain inflammation (Figure 15, H&E panels, 

arrowed). In summary, the replication kinetics study documented a more attenuated profile of 

VEEV V4020 replication in comparison with the VEEV TC-83 experimental vaccine. 
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3.2. Neuro-Inflammation in Brain Tissues of Mice Infected with V4020 vs. TC-83 Assessed by 

Direct Multiplexed Measurement of Gene Expression 

NanoString nCounter gene expression technology allows direct measurement of mRNA 

expression levels in tissues without enzymatic reactions [332]. This technology is more sensitive 

than DNA microarrays and comparable to real-time PCR measurements for individual genes 

[333, 334]. In this study, the commercially available Mouse Neuro-Inflammation color-coded 

probe panel [335], enabling the quantification of 770 genes involved in 23 KEGG-pathways and 

processes, was used to assess host cell responses in brain tissues of V4020- and TC-83-infected 

mice. In addition, customized barcoded VEEV-derived probes were designed and included in this 

panel to detect and quantify the expression of individual VEEV genes. 

Pathway scoring is a summary statistic that reflects the relative KEGG pathway involvement 

based on gene expression. As seen in Figure 16, inflammatory and cytokine signaling, as well as 

innate and adaptive immune response pathways, were significantly upregulated in both TC-83 

and V4020-inoculated mice compared to mock-inoculated controls at 5 and 7 DPI. However, the 

magnitude of upregulation is much greater for TC-83 compared to V4020, and remains 

significantly higher than mock-infected mice at 9 and 13 DPI. Conversely, in V4020-inoclulated 

mice, pathways scores declined and are no longer statistically different from mock treated 

animals by 9 DPI (Figure 16a). In general, pathway scores peak at 5 DPI for VEEV V4020 and 9 

DPI for VEEV TC-83 (Figure 16a) which corresponds to the last day that infectious viral particles 

are detected by plaque assay in brain tissue (Figure 14b). 

Volcano plots provide visualization of the magnitude of differential gene (host and viral) 

expression in V4020 treated mice compared to TC-83 (X axis, log2[fold change]), along with 

statistical significance (Y axis, -log10[P-value]). There were no significant differences in gene 

expression patterns at 5DPI (Figure 20a). At 7, 9 and 13 DPI, VEEV viral genes were 
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downregulated in V4020-inoculated mice compared to TC-83-inoculated animals (Figure 16b–d, 

named viral genes, red [p < 0.01] and green [p < 0.001] colored genes). At 9 DPI, the greatest 

number of genes displayed large log2-fold changes, and the changes were highly statistically 

significant (Figure 16c). Among these, host genes related to inflammation (labeled by orange 

boxes) were clearly identified. These inflammation related genes were less abundant at 13 DPI 

(Figure 16d). All differentially expressed genes, with a greater than 2 log2-fold change in at least 

one passage, are listed in Table S1. VEEV viral genes E1, 6K, nsP4, nsP3, E2, capsid protein and 

E3 showed the greatest average magnitude of change, followed by host genes related to 

inflammation, including interleukin 1 receptor antagonist (Il1rn), granzyme B (Gzmb), 

macrophage scavenger receptor 1 (Msr1), leukocyte immunoglobulin like receptor B4 (Lilrb4a), 

granzyme A (Gzma) and chemokine genes (Ccl2, Cxcl10, ccl7, Cxcl9). 

A heat-map of GSS scores showed clearly distinguished patterns between V4020 and TC-83 

samples (Figure 20b). The GSS scores for mock and V4020 inoculated mice at 9DPI were very 

similar across all pathways, suggesting the processes involved in neuro-inflammation, damage, 

repair and adaptive immune responses have returned to baseline values at this time point. 

Meanwhile, “inflammatory signaling” and “neuron and neurotransmission” GSS had markedly 

different patterns between V4020 and TC-83 groups (Figure 20,c,d, respectively). 

NanoString technology can also quantitate predicted cell type abundance based on mRNA 

expression probes specific for cell type markers presented in the Mouse Neuro-inflammation 

panel. Markers of macrophages, DCs, and microglia were expressed with statistically significant 

differences in brain tissues of V4020 mice in comparison with TC-83-inoculated mice. As seen in 

Figure 16e, in brain tissues of TC-83-inoculated mice, the expression of DC markers was strongly 

upregulated at 5, 7, and 9 DPI. Macrophage cell markers were generally upregulated in TC-83 

compared to V4020, with statistically significant differences at 5 and 13 DPI. In addition to 
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macrophages, markers of microglia were also clearly upregulated in TC-83-inoculated mice. In 

summary, direct multiplexed measurement of genes involved in mouse neuro-inflammation 

pathways clearly demonstrated upregulated patterns of genes involved in neuro-inflammation 

in mice inoculated with VEEV TC-83 versus VEEV V4020. 

3.3. Clinical Profiling of Mice during Serial Intracranial Passages of V4020 and TC-83 

Serial IC passages in mice are widely used to assess the phenotypic and genetic stability of 

alphavirus attenuation. This approach was used to compare the V4020 and TC-83 experimental 

vaccines. As seen in Figure 17, five sequential IC passages (P1-P5) of V4020 and TC-83 in BALB/c 

mice resulted in striking differences in clinical profiles. First, throughout the five serial passages, 

all V4020 treated mice survived, while three out of eight TC-83 mice met euthanasia criteria in 

the groups which received passage 2 (P2) and P3 virus (Figure 17a-b). Second, measurement of 

viral load at 2 DPI in brain tissues of mice revealed lower titers during P1-P3 in V4020 mice, and 

these differences were statistically significant. (Figure 17c). Third, mice infected with V4020 

isolated from previous brain passages tended to have weight loss predominantly during the first 

3 DPI, then gained weight after this time point. Some mice (e.g., in P1- and P2-V4020 groups) 

nearly fully recovered their initial weight by the end of observation period (Figure 17d). In 

contrast, mice in TC-83 groups tended to have a prolonged, more profound, weight loss. No 

mice in TC-83 groups recovered their initial weight (Figure 17e). Finally, clinical scoring of mice 

revealed that mouse-brain-passaged V4020 had clinical manifestations peaking at 2-3 DPI. After 

this time point, clinical signs were ameliorated in all mice, and, after 7-8 DPI, no V4020 animals 

had scored clinical symptoms (Figure 17f). In great contrast, mouse brain passaged TC-83 caused 

more severe clinical scores that persisted in some mice at 14 DPI (Figure 17g). Interestingly, 

clinical symptoms of TC-83 inoculated animals displayed a biphasic pattern (e.g., P3 and P4 TC-
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83, Figure 17g). These results indicate that IC passages of the VEEV V4020 experimental vaccine 

did not result in a change in the pathogenic profile from the initial V4020 inoculation (P1). In 

contrast, VEEV TC-83 passages resulted in the generation of viruses which caused aggravated 

experimental disease, which resulted in the euthanasia of 13.3% of TC-83 treated mice. 

3.4. Viral and Host RNA-Seq Profiles of Brain Samples, P1-P5 

During serial passaging in brain, RNA samples from tissue samples collected at 2 DPI were 

analyzed by Illumina NextSeq 500 to assess genetic variations in V4020 and TC-83 viral 

populations. In general, as seen in Figure 18a, the V4020 virus had lower rates of mutations that 

had high statistical significance throughout passages P1-P5 (downward spikes in blue for V4020 

or grey for TC-83). Read depth among sequenced samples depicted in red for V4020 or purple 

for TC-83 was similar (Figure 18a). At 2 DPI, neither virus showed signs of selective pressure 

driving the reversion of either of the key attenuating mutations: the 5′UTR position 3-A or the 

E2-120 codon (Figure 18b). The rates of transversion and transition mutations were similar 

among all samples (Figure 21a,b). Synonymous to non-synonymous mutation ratios (SMR) were 

significantly lower for nsP1 and nsP2 genes and elevated for nsP3 genes in samples derived from 

both viruses (Figure 18c). The SMR ratio tended to increase for highly statistically significant 

mutations (Figure 21c). Interestingly, a significantly higher SMR was observed in the nsP4 (RdRP) 

gene of TC-83 compared to V4020. In particular, many more nucleotide variants (NVs) were 

detected in nsP3 and nsP4 of passage 2 and 3 of TC-83 than V4020, with several of these 

persisting through passages 4 and 5. Fewer NVs were observed in the capsid gene of V4020, 

with the largest differences in P2, P3, and P4. 

Sequence reads mapping to the murine host allowed a basic analysis of the host response 

at 2DPI for V4020 compared to TC-83 infected mice. DESeq2 analysis with two factors, virus 
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(V4020 or TC-83) and passage number, revealed 21 differentially expressed host genes. 

However, none of these appear to segregate in a clear way to inoculation with V4020 or TC-83 

(Figure 22a). A full list of differentially expressed host genes generated by DESeq2 in both the 

two factor analysis and, for (one factor, virus,) of each passage is presented in Table S2. Based 

on RNA-Seq at 2 DPI and NanoString analysis from 5-13 DPI, 97 host genes were identified to be 

differentially expressed between V4020, and TC-83 in both assays (Table S3). Interestingly, 

among these genes—immune regulators Tbx21 (a key regulator of cytotoxic T-cell response) and 

Eomes, complement genes C1qa and C1qb, the cytokine Cx3cl1, and the lysosomal marker 

Lamp2—were identified as being differentially expressed in relation to both virus and time point 

(Table S3, fold changes in V4020 compared to TC-83). Ontological analysis of differentially 

expressed genes compiled from each individual passage highlighted that the pathways most 

likely to be differently regulated in V4020 compared to TC-83 IC-inoculated mice at 2 DPI 

predominantly involve neurogenesis and brain function (Figure 22b). In summary, RNA-Seq 

profiling of samples collected at 2 DPI during serial passages revealed lower rates of viral 

mutations in V4020 samples, and different patterns of host gene expression associated with 

neurogenesis and brain function in V4020- and TC-83-inoculated mice. 

4. Discussion

Historically, live attenuated vaccines against viral infections have been among the safest 

and most efficacious medical interventions, and they continue to be the most cost-effective 

preventive measures [1, 336]. In recent years, live attenuated vaccines against influenza 

(FluMist), rotavirus (Rotarix) and herpes (Zostavax) infections were licensed for human use. This 

indicates that the powerful tools of molecular virology which are currently available can be 

successfully applied to address the inherent weaknesses of these vaccines: genetic stability and 
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reversion to wild-type phenotypes [337]. The TC-83 vaccine for VEEV was developed almost 60 

years ago using the “classical” technique of multiple passages in vitro and in vivo, which resulted 

in two attenuating mutations, the first in the 5′-end untranslated region, position 3 (G > A) and 

the second in the E2 envelope glycoprotein, position 120 (Thr > Arg) [13]. Since the 1960s, 

despite numerous attempts to develop better vaccines, TC-83 is the only vaccine in human use 

under an IND protocol (Special Immunization Program) which has allowed it to be tested in 

Phase II trial (NCT03531242, NCT00582504, NCT00582088, NCT03051386, 

https://ClinicalTrials.gov). Nevertheless, TC-83 is reactogenic and poorly immunogenic in ~ 18%-

20% of vaccinees, which raises serious safety concerns. 

The small number of attenuating mutations seems be associated with the genetic instability 

and reactogenicity of TC-83. To address this issue, we have applied several approaches to 

develop an advanced VEEV vaccine, V4020 [44], including: (i) rearrangement of structural genes, 

(ii) introduction of an additional sub-genomic promoter (26S) downstream from the 

glycoprotein genes; (iii) synonymous translational codon replacement to secure the attenuating 

E2 mutation TC-83; and (iv) the rescue of V4020 from a molecular clone (cDNA) to limit the 

population heterogeneity of the V4020. Here, we compared the replication kinetics of V4020 

and TC-83 in the brain following IC inoculation of mice, and performed five IC mouse passages, 

using brain tissues as the source of the virus, to assess the genetic stability and heterogeneity of 

these experimental vaccines. 

It is cannot be excluded that incomplete attenuation, characterized by the emergence of 

viruses with reversions, is responsible for the pathogenic features and adverse effects of TC-83 

vaccination [303]. Notably, viruses with reversion mutations have been isolated from throat 

swabs of individuals vaccinated with TC-83 (Jahrling PB, unpublished data) [36]. Antiviral host 

responses following inoculation, along with the delay in the virus reaching the CNS, probably 
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have synergistic effects on the attenuation of neuro-virulence. IC inoculation of experimental 

mice is a useful tool for short-cutting the natural infection route and directly examining the 

neuro-virulence of live attenuated vaccines. 

We have shown here that IC inoculation of VEEV V4020 resulted in a more attenuated 

pattern of replication compared with TC-83, as determined by clinical manifestations (weight 

loss) and viral load in brain tissues of BALB/c mice (Figure 14b). The most striking difference 

between two infections was more than 2 log10 differences in infectious viral load (PFU/g) in the 

brain at 5-7 days after IC inoculation. This was in line with RNAScope in situ hybridization data 

(Figure 15). High viral load seemed to be the major driving force, resulting in a spike in weight 

loss (which has previously been shown to correlate with clinical score [44]) at this time point in 

TC-83-infected mice. 

C3H/HeN mice are considered a more susceptible VEE model in comparison to BALB/c mice 

[338]. However, IC inoculation of BALB/c with wild-type VEEV TrD and C3H/HeN mice with wild-

type VEEV TrD or with VEEV TC-83 resulted in the same LD50 value, around 20 PFU [36]. In 

contrast, the experimental VEEV V3526 vaccine was not lethal in C3H/HeN mice. However, the 

poor safety profile of this vaccine in Phase I trial prevented further development [32]. The 

predominant adverse effects of VEEV TC-83 tend to be fever and headache [315], which coincide 

with the key symptoms of natural human VEEV infection [339]. In non-human primate models, 

central nervous system (CNS) invasion by TC-83 causes perivascular infiltration, gliosis, and signs 

of neurological disease [35]. IC inoculation of BALB/c mice recapitulates key features of neuro-

virulence following TC-83 vaccination including perivascular cuffing (Figure 15), monocyte 

accumulation in the CNS (Figure 16e,) and clinical signs of infection (Figure 14b, and Figure 17). 

NanoString technology with a custom-made panel of barcoded probes for individual viral 

genes, combined with a commercially available mouse neuro-inflammation panel, allowed the 
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direct detection and assessment of the involvement of viral and host genes in neuro-

inflammation of brain tissues in V4020- and TC-83-inoculated BALB/c mice. Volcano plots clearly 

illustrated differential expression of the genes in V4020 mice versus TC-83 mice at 5, 7 and 9 

DPI, and (among host genes) genes related to inflammation pathways and processes prevailed in 

TC-83 mice (Figure 16, Table S1). In line with these results, markers of macrophages, DCs, and 

microglia were strongly upregulated in TC-83-infected mice, suggesting the involvement of these 

cells in inflammation. As further evidence that immune infiltration into the brain is responsible 

for weight loss and clinical manifestations (Figure 14), histology revealed perivascular 

inflammation foci in TC-83 brain H&E-stained sections (Figure 15, H&E staining, arrowed). 

Reversion to a neuro-virulent phenotype represents the greatest risk in using a live 

attenuated vaccine against VEEV [317]. It has been reported that attenuated strains of VEEV can 

revert to causing neuro-virulence in as few as three serial passages in mouse brain [13, 340]. 

Indeed, in our experiments P3 and P4 TC-83 isolates induced clinically manifested infection and 

death. Interestingly enough, after serial passages in brain, TC-83 induced a biphasic disease 

(Figure 17g), a classical description of the murine model of wild-type VEEV [303]. In contrast, 

after five IC passages, V4020 did not induce lethal disease. Clinical manifestations were mild or 

moderate and disappeared in most animals within one week of IC inoculation. VEEV 

pathogenesis seems to be due to complex polygenic traits that are difficult to relate to NVs in 

the viral genome [304]. Unique NVs were not detected from more neuro-virulent passages of 

TC-83. However, TC-83 viruses from passages P2 and P3 had a high level of NVs which mapped 

within nsP4 versus V4020 viruses (Figure 18a). SMR, defined as the total number of base pair 

mutations without change in the amino acid code divided by the total number of base pair 

mutations, was used to detect purifying selection as the evolutionary mechanism of VEEV 

evolution [341]. For both TC-83 and V4020 experimental vaccines, which nearly completely 
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share a sequence identity (except, as previously noted, for V4020 rearrangement and stabilizing 

E2 position 120 mutation), nsP1 and nsP2 had significantly reduced SMR over five serial 

passages in mouse brain, suggesting that mutation in these genes is likely deleterious. 

Conversely, E3 had an increased SMR. While the time was too short (2 DPI) to consider selective 

pressure and adaptive immunity involvement, it is interesting to note that E3 has been 

identified as a key target of humoral responses which are protective against VEEV-TrD [342]. It 

has been reported that TC-83 strains with lower-fidelity RdRP are more attenuated and 

immunogenic [343]. nsP4, the viral RdRP [304], had a higher SMR in TC-83 than V4020, however 

we did not detect differences in mutation frequency across the genome (Figure 21d), suggesting 

that no real difference in RdRP fidelity arose during passaging.  

5. Conclusions

The lack of apparent differences in mutation frequency at key attenuating mutations, and 

the further lack of evidence for any positive selection during the time points studied, suggests 

that the strategy of stabilizing the E2 T120A is valid to decrease the appearance of revertants 

which would potentially arise by random mutation in the viral quasi-species at the peak of viral 

replication following vaccination. Structural rearrangement seems to additionally secure the 

attenuated phenotype of V4020. Taken together, these results indicate that V4020 is a safer and 

genetically more stable alternative to TC-83. Successful testing of V4020 in a non-human 

primate aerosol challenge model provides an additional argument for the clinical development 

of this experimental vaccine [323]. 

Supplementary Materials: The following are available online at 

https://doi.org/10.3390/vaccines8010114, Table S1: Differentially expressed genes detected by 
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NanoString, Table S2: Differentially expressed genes for a “virus x passage” RNA-Seq model, 

Table S3: Differential expression of genes detected by both NanoString and RNA-Seq.  

Supplemental Table Legends: 

Supplemental Table 1. Mouse and viral genes that were differentially expressed with an 

adjusted p-value < 0.05 and an absolute value of log2(FC) > 2 from the NanoString nCounter 

neuro-inflammation array with probes for viral genes added. Fold changes (FC) are reported as 

the change in V4020 expression compared to TC-83. Adjusted p-values were computed by 

nSolver using a model to compare individual samples by day of collection. 

Supplemental Table 2. Mouse genes that were differentially expressed with an adjusted p-value 

<0.05 from RNA-Seq on 5 passages of V4020 and TC-83 in mouse brain as reported by DESeq2 

model of virus x passage or for comparison of samples in individual passages. FC are reported as 

the change in V4020 expression compared to TC-83. Adjusted p-values are based on the 

Benjamine-Hochberg correction.   

Supplemental Table 3. Concatenation of gene fold change and significance from Table S1 and 

Table S2 for genes that were present in both NanoString and RNA-Seq analysis. 
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Figure 14. (a) Schematic diagram of the genomic structure of VEEV strains TrD, TC-83, and 

V4020. Red vertical lines denote nucleotide variants (NVs) with differing sequence from the 

TrD wild type strain which are not thought to play a key role in attenuation. Green vertical 

lines denote NVs with differing sequence between TrD and TC-83 which do play a key role 

in attenuation. A blue vertical line is used to denote the stabilized E2 120Arg NV in V4020. 

(b) Replication kinetics of V4020 and TC-83 in the brain of BALB/c mice (n = 24 per group) IC 

inoculated with 1X105 PFU of either V4020 or TC-83 and monitored daily for 13 days. 
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Weight loss (VEEV TC-83 in red square symbols and VEEV V4020 in blue circle symbols.) On 

days 1, 2, 3, 5, 7, 9, 11, and 13 post inoculation, 3 mice per time point from each group 

were necropsied and brain tissue was prepared for VEEV infectious titration by plaque 

assay to assess viral load in brain tissues (VEEV TC-83 in red bars and VEEV V4020 in blue 

bars plotted against the left Y axis). 
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Figure 15. In situ hybridization by RNAScope and H&E histology of brain sections. Stained 

tissue sections of V4020 and TC-83 brain tissue on day 2, 5, 7, 9, and 13-post IC inoculation. 
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Brown staining in RNAScope images indicates the presence of viral RNA detected by an 

nsP3 in situ hybridization probe. Representative images at 50X magnification for RNAScope 

and 100X for H&E are shown. Arrows are used to indicate perivascular cuffing. 

Figure 16. Detection and profiling genes involved in neuro-inflammation pathways. RNA 

was isolated from the brains of mice inoculated with V4020 or TC-83 and was quantified by 

NanoString nCounter assay using the mouse neuro-inflammation panel with additional 



104 

probes to detect VEEV genes. (a) NanoString nSolver software was used to calculate a 

pathway score to summarize the differential expression data from all genes in the pathway 

based on the first principal component of normalized gene expression. Pathway scores 

were normalized to the average score for mock IC inoculation. Two-way ANOVA followed 

by multiple Student’s t-tests with Dunnett’s correction were used for post-hoc comparison 

to mock inoculated controls. * p < 0.01, # p <.001, + p < 0.0001. Volcano plot presentation 

of differential gene expression in V4020-infected mice compared to TC-83 inoculated mice 

on (b) day 7, (c) day 9, and (d) day 13. Differentially expressed genes color coded according 

to adjusted significance where genes in red above the solid line represents the threshold of 

p < 0.01 and genes in green are above the dashed line which represents p < 0.001. Genes 

relating to the inflammatory KEGG pathway are labeled and shown in orange boxes (and 

are not additionally color coded by significance, but this can be determined by the lines on 

the graph). All significantly differentially expressed genes, (or the top 50 overall most 

significant genes for 7 DPI) have text names. (e) Cell type abundance in brain samples was 

determined by markers present in the NanoString mouse neuro-inflammation panel on 

days 5, 7, 9, and 13 with significance determined for each time by a two-way ANOVA 

without matching followed by Fisher’s LSD post-hoc analysis. * p < 0.05, ** p< 0.01, **** p 

< 0.0001. 
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Figure 17. Groups of BALB/c mice (n = 10) were inoculated via the intracranial route with 

1x105 PFU of either V4020 or TC-83. Two days after inoculation, two mice from each group 

were sacrificed, their brains were collected, homogenized, and used to make clarified viral 

stocks for inoculation of a subsequent group. This process was repeated four times for a 

total of five passages including the initial inoculation (named in the schematic of PX-Virus 

where X is the passage number and virus is either V4020 or TC-83.) Survival of (a) V4020 

and (b) TC-83 passage groups was tracked during this time. (c) Brain titers from the mice 

sacrificed on day 2 post inoculation. Two-way ANOVA followed by Fisher’s LSD post-hoc 

analysis were used to compare viral titers, * p < 0.05, ** p < 0.01. Daily weights (d) (e) and 

clinical scores (f) (g) were taken from the remaining mice challenged with either V4020 (d) 

(f) or TC-83 (e) (g) daily for 14 days. 
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Figure 18. RNA-Seq by Illumina NextSeq was run on rRNA depleted RNA isolated from brain 

tissue of mice receiving passaged virus on day 2 post IC inoculation. Sequences were quality 

trimmed with trimmomatic and aligned to VEEV TC-83 or V4020 reference sequences with 

BowTie2. Pile-ups were generated and filtered in Galaxy before being exported to excel to 

calculate normalized read depth (a), statistical significance of mutations (a), mutation 

frequency (b) and SMR (c). (a) Normalized read depth plotted on the left y-axis (red for 

V4020, purple for TC-83) was calculated by dividing the number of virus-aligned reads at 

each position by the sum of the number of reads for every position. Statistical significance 

of mutation rate as a Z-score plotted by nucleotide position on the right y-axis (blue for 

V4020 and grey for TC-83) was calculated in Excel using the “NORM.DIST” function to 

calculate a probability density function based on the mean and standard deviation of each 

biological sample. The boundaries between genes and certain features are marked with a 
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dashed vertical line and labeled at the bottom of the panel. Z-scores over 10-25 are reported 

as this value. Passages 2-5 of V4020 and Passage 1 of TC-83 are the average of 2 biological 

replicates. All other data are representative of a single biological replicate. (b) Mutation 

frequency calculated as a ratio of a mutation occurring at the identified location divided by 

the total number of reads for each reported location for V4020 (blue) and TC-83 (red). (c) 

SMR for the overall coding sequences and individual genes of V4020 (blue) and TC-83 (red). 

* p < 0.05 for the indicated gene compared to the overall SMR by one-way ANOVA with

Dunnettt’s post-hoc test , # p < 0.05 for the SMR of nsP4 in V4020 compared to TC-83 by 

student’s t-test. Data in this figure are averaged from 2 mice per group except for V4020 

passage 1 and TC-83 passages 2 through 5 which represent a single mouse.  

Figure 19. A group of BALB/c mice (n = 5) were inoculated IC with 10 μl of normal saline as a 

control for animals similarly inoculated with virus. These mice were followed for 14 days for 

(a) weight, (b) clinical score, and (c) survival. 



108 

Figure 20. RNA was isolated from the brains of mice inoculated with V4020 or TC-83 as 

described in Figure 16  and was quantified by NanoString nCounter assay using the mouse 

neuro-inflammation panel with additional probes to detect VEEV RNA. (a) Differential gene 

expression in V4020 compared to TC-83 inoculated mice on day 5. (b) NanoString nSolver 

software was used to calculate a GSS (a measure of the overall differential expression of 

genes belonging to a particular KEGG pathway ignoring whether each gene is up- or down-

regulated) for each experimental grouping. Calculated NanoString GSS of the (c) 

inflammatory signaling and (d) neurons and neurotransmission gene sets for V4020 (blue) 

and TC-83 (red) on the indicated days.  
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Figure 21. Frequency of transitions and transversions by base pair calculated as the counts 

of the specified mutation occurring divided by the total reads at all positions with the 

specified reference nucleotide grouped by (a) virus and passage or by (b) virus. (c) The SMR 

for all positions (overall) with a significance of Z-score less than the indicated value. (d) 

Mutation frequency by virus and passage for the whole virus genome from 2 DPI RNA-Seq 

calculated as the sum of the number of non-reference reads at every position divided by 

the sum of the total number of reads at every position. 
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Figure 22. RNA-Seq data was generated and trimmed as described in Figure 18. All analysis 

described was performed using the named modules in the Galaxy web-based platform. 

Sequences were aligned to the mouse mm10 genome using HiSat2, and features were 

counted with htseq-count. (a) All genes with significant differential expression in a model 

accounting for both virus vaccine strain and passage number are presented in a heat map 

showing fold change. All genes with differential expression with an adjusted p-value greater 

than 0.05 from each individual passage that were detected by DeSEQ2 were used as the 

input to run GOseq on each passage individually. The pathways reported by GOseq for each 

passage were combined and sorted by significance. (b) The overall top 50 over-represented 

ontologies are displayed in a heat map depicting the associated adjusted p-value associated 

with the likelihood of over-representation from GOseq. p-values less than 10 -10 are 

reported as 10-10. 
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CHAPTER VI 

DISCUSSION AND CONCLUSIONS 

Discussion 

Applications of arenavirus L derived minigenome systems to study L-segment cis-acting factors 

The L-segment based MG system will allow future studies to elucidate the role of cis-

acting factors (namely the 3’ untranslated region, the intergenic region (IGR), and the 5’ 

untranslated region) in interactions with the viral RdRP L and NP. This will facilitate the 

elucidation of the mechanisms responsible for the generation of the L-segment small RNAs that 

arise during ML29 replication (Figure 10). rLCMV containing a L segment where the IGR has been 

replaced with the S segment IGR is deeply attenuated [344]. We speculate that the mismatch of 

the ML29 (MOPV derived) L IGR with LASV NP protein may play a role in the generation of small 

RNAs observed. Additionally, further inquiry is needed to determine if the rescue of tri-

segmented arenaviruses with duplicated L-segments is possible. It is thought that the limiting 

factor for inclusion of segments in virions for arenavirus rescue is the overall size of the 

combined genome [345]. If a tri-segmented L based particle can be generated, it may 

additionally be possible to generate quad-segmented particles if the additional genes have a 

total length of no more than around 3 kb.  

While tri-segmented reporter expressing viruses are typically not as fit as their wild-type 

counterparts in vitro [283], they still may be a useful tool to study the generation of DIPs. In a 

proof of concept study, mice generated immunity to reporter sequences included in tri-

segmented ML29 viruses [346]. This suggests that despite differences in fitness, tri-segmented 
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viruses could be used for in vivo imaging of reporter expressing genes to track the establishment 

of persistent infection. The L-segment MG system can also be used as the basis to study the 

generation of DIPs by providing different reporters expressed from the Z and L loci to track the 

relative expression of Z and L genes. If there were DIG competition for viral replicase complexes, 

this could be observed as a uniform decrease in the reporter signal from any of the promoter 

genes. Over expression of the Z protein from both LCMV and TCRV interferes with transcription 

and replication, a phenomenon known as Z mediated superinfection exclusion [248, 347]. To 

exclude the possibility that there is an over production of matrix protein causing Z mediated 

superinfection exclusion, the ratio of Z loci reporter to L loci reporter would be observed. 

Tri-segmented viruses may also be useful for the expression of additional antigens in 

arenavirus LAVs. For ML29, the additional gene segments could be used to include epitopes 

from diverse strains of LASV, or even other circulating viruses. LASV and EBOV co-circulate, and 

result in LF and Ebola virus disease (EVD) with similar symptoms [348]. The currently approved 

vaccine approaches for EBOV rely on LAV vectored vaccines [6], which leads us to hypothesize 

that a tri-segmented ML29 expressing EBOV antigenic determinants could be a useful vaccine 

with coverage against both African hemorrhagic fever viruses. 

Rearrangement of structural genes is a useful tool to generate attenuated alphavirus vaccines 

Genetic rearrangement of the structural genes of VEEV was demonstrated to be a useful 

tool to further attenuate alphavirus vaccine candidates. Partial transcription termination, where 

the viral RdRP will fall off of the template between genes leads to increased expression genes 

that are closer to the native 26S sub-genomic promoter [349]. As a result, the rearrangement 

and addition of a second 26S sub-genomic promoter likely changes the ratio of capsid to 

glycoprotein produced in VEEV V4020 compared to VEEV TC-83. While clear differences in the 
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viral gene expression between VEEV V4020 and VEEV TC-83 were observed (Figure 16), the 

mechanisms of attenuation that are attributable to the additional promoter remain unclear. 

However, the shift in the ratio of capsid to glycoprotein would likely decrease the efficacy of 

virion assembly. We hypothesize that this could be observed in differences in the ratio of 

particles (detected by qRT-PCR, which would also allow the detection of DIPs) to infectious units 

(detected by FFU or PFU). If this were the case, perhaps due to the contribution of DIPs, a higher 

particle to PFU ratio would be observed in VEEV V4020 compared to VEEV TC-83. Additionally, 

rearrangement of the structural genes could be a useful tool to generate other attenuated 

alphaviruses for use as LAVs, or to enhance the attenuation of other LAV candidates.  

Defining the pathogenic determinants of passaged VEEV infection 

Both VEEV TC-83 and VEEV V4020 replicated to high titer in the brain of IC challenged 

mice by 2 DPI. We made three key observations about the emergence of pathogenicity i) there 

are differences in virulence that emerge between passaged VEEV TC-83 and VEEV V4020, ii) 

neither the key attenuating mutations nor any of the other SNPs between VEEV TrD and VEEV 

TC-83 are reverted at 2 DPI, and iii) the emergence of pathogenic reversions seems to be a 

somewhat random event. Based on these finding, we speculate that the IC model allows for 

explosive expansion of the viral quasispecies before innate antiviral host responses can control 

the growth. During this time, there is relatively little selective pressure on the virus. Eventually 

host innate, and then adaptive, responses begin to cull mutants that most strongly elicit these 

responses. 

The emergence of pathogenesis could be explained by a number of phenomena: i) 

either random or selective pressure could lead to the selection of reversions at the sites of VEEV 

TrD attenuation, ii) there may be a selection of mutants that evade host detection or elicit non-
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protective responses, or iii) there may be a selection of mutants that strongly engage host 

responses leading to pathogenesis by from overly vigorous inflammatory responses. 

Additionally, it is interesting to consider whether pathogenesis observed in passaged VEEV TC-

83 IC challenge is due to a consistent defined set of mutations or a more random accumulation 

of minor pathogenesis contributors. Paradoxically, it has been noted that reduced fidelity of the 

viral replicase attenuates alphaviruses [350], however, we observed increased pathogenesis in 

VEEV TC-83 that seemed to have more genetic variability (Figure 17, 18).  

Sequencing of viral RNA isolated from necropsy brain samples of mice that received 

passaged VEEV TC-83 and met early euthanasia criteria, would provide insight to the nature of 

the pathogenic revisions we observed. Based on the recovered sequences, future experiments 

to document the time course of infection with these mutants could be designed. 

Additionally, many of these questions could be answered by set of passaging 

experiments with more passages from more individual donors that also incorporate serial 

sacrifice to collect RNA from the brain at multiple time points, followed by RNA-Seq analysis of 

the viral quasispecies and host responses. Presumably, there would be differences in host 

responses to either pathogenic or non-pathogenic passages of VEEV TC-83, especially at times 

after strong engagement of innate immunity. Perhaps more interesting is how much variation is 

there in the host responses to pathogenic passaged virus. As described here and previously, 

lethal viruses arose in 20%-40% of passages of VEEV-TC83 [36], but was not observed in the first 

two passages.  

Conclusions 

 ML29 was attenuated compared to MOPV in STAT-1-/- mice and did not show any signs 

of causing sensorineural hearing loss. Additionally, enhancing ML29 with the addition of DIPs 
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increased protective T-cell responses in this model. ML29 was also immunogenic in Hartley 

outbred guinea pigs, and neither ML29 nor ML29P50 displayed signs of renal or hepatic toxicity 

in this model. ML29P50 was deeply attenuated compared to ML29 both in vitro and in the highly 

sensitive CBA/J IC challenge model. Furthermore, the newly described L-segment derived MG 

system will be useful to study the mechanisms of DIP interference. ML29 is a broadly protective 

and safe vaccine against LASV and is an ideal candidate for further clinical developments.  

VEEV V4020 also an excellent candidate for clinical development. It is based on VEEV TC-

83 which has been used safely in human phase II trials, but further enhances safety. The mouse 

neuro-virulence data presented here, combined with the protective efficacy and favorable 

safety profile from the NHP study [323] support the application for US FDA investigational new 

drug status. 

In conclusion, this work builds upon two LAVs, ML29 and VEEV 4020, which are both 

based on attenuation of their respective wild-type viruses. Both were demonstrated favorable 

safety and immunogenicity using advanced small animal models, which makes them both 

excellent candidates for further vaccine development. 
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