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ABSTRACT: 

 

THE EMERGING ORAL PATHOGEN, FILIFACTOR ALOCIS, DISRUPTS 

NEUTROPHIL FUNCTIONS TO ENHANCE SURVIVAL AND DYSREGULATE 

INFLAMMATION 

 

Irina Miralda Molina 

April 15, 2020 

 

Periodontitis is an irreversible, chronic inflammatory disease where pathogenic 

microbial communities accumulate in the gingival crevice. Advances in culture-

independent techniques have facilitated the identification of new bacterial species in 

periodontal lesions, such as the Gram-positive anaerobe, Filifactor alocis. Neutrophils are 

a major component of the innate host response, and the outcome of their interaction with 

F. alocis may be a determinant of oral health. Neutrophil functions typically protect the 

host against periodontal disease, oral pathogens have adapted to evade or disarm neutrophil 

microbicidal functions while promoting mechanisms that drive inflammation, which also 

provides a source of nutrients for growth. This study has two main goals: to determine how 

F. alocis interferes with microbicidal mechanisms to survive in neutrophils and to examine 

how F. alocis contributes to the chronicity of periodontitis by promoting inflammation.  

This dissertation characterizes human neutrophil global gene expression during 

infection with F. alocis (Chapter 2). Challenge of human neutrophils with F. alocis resulted 

in the differential expression of genes involved in multiple neutrophil effector functions 
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such as chemotaxis, cytokine and chemokine signaling pathways, and apoptosis. F. alocis 

challenge also affected the expression of components from the TNFα and MAPK kinase 

signaling pathways. This resulted in transiently dampened p38 MAPK activation by 

secondary stimuli TNFα. Functionally, the F. alocis-mediated inhibition of p38 activation 

by TNFα resulted in decreased cytokine production but had no effect on priming of the 

respiratory burst response, or the delay of apoptosis by TNFα. Since this modulatory effect 

was characteristic of viable F. alocis only, this is an F. alocis’ mechanism to control 

neutrophils and their functional responses. 

I also examined neutrophil functional mechanisms in bone marrow neutrophils 

from TLR2-/- mice (Chapter 3). I found that compared to WT, TLR2-/- neutrophils were 

more efficient at killing F. alocis, but the increase in killing capacity was not due to a 

difference in phagocytosis or production of ROS. Instead, it was due to an increase in 

fusion of myeloperoxidase granules with the F. alocis phagosome. Meanwhile, F. alocis 

promotes inflammation by inducing the release of pro-inflammatory cytokines through 

TLR2 signaling. The TLR2 adaptor protein, MyD88, was also critical for cytokine 

production, but the events downstream of MyD88 follow non-canonical signaling.  

Apoptotic pathways were also showed significant changes in mRNA levels when 

neutrophils are challenged with F. alocis. Neutrophils had prolonged lifespans and higher 

functional capacity than unchallenged cells (Chapter 4). Despite their viability, F. alocis-

challenged cells were significantly efferocytosed by macrophages, which developed a pro-

inflammatory profile (Chapter 5). Collectively, this data confirms that F. alocis interferes 

with TLR2 signaling to promote its survival within neutrophils and promotes chronic 
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inflammation by extending neutrophil lifespan and delaying the resolution of 

inflammation.   
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CHAPTER 1:  

 

INTRODUCTION 

 

 

Periodontal Disease: etiology and consequences  

Periodontal diseases affect the integrity of one or several tissues of the 

periodontium, which is comprised of the gingiva, periodontal ligament, cementum and 

alveolar bone. The prevalence of the disease is high, affecting 42% of adults 30 years or 

older in the USA alone, with older adults and those living under the poverty line being the 

most susceptible to develop the disease [1]. The term periodontal disease usually refers to 

the most common inflammatory disorders, gingivitis and periodontitis. Out of the two, 

gingivitis is the mildest form of periodontal disease and can be easily reversed by effective 

oral hygiene. On the contrary, periodontitis is an irreversible, chronic inflammatory disease 

that causes the loss of connective tissue, alveolar bone, and eventually the loss of teeth [2]. 

Preventative and treatment measures are aimed at controlling or removing the periodontal 

biofilm and include deep cleaning, antibiotics and surgery in severe cases [3]; but 

unfortunately, their efficacy is transient since the infection almost always returns. Even in 

cases where inflammation is resolved and some tissue is regenerated, it is impossible for 

the lost tooth support to be restored.  

The progression of periodontal disease into periodontitis is one of the most severe 

and irreversible forms of the disease. This development depends on the disruption of 
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periodontal host-microbe homeostasis due to a shift in the composition of microbial 

populations in the oral cavity. Unlike some infectious diseases, periodontitis does not 

develop from a monoculture infection, but rather the colonization of a heterotypic 

community of organisms where the presence of one organism enhances the colonization or 

virulence of others [4]. These interspecies interactions include one organism providing the 

substrate for attachment and colonization of another, the utilization of released metabolic 

by-products of one organism as a nutrient source by another organism, or the coordinated 

break-down of complex substrates [5-8]. The physical interactions among organisms and 

the diffusion of soluble factors that benefit the whole community results in interdependence 

between the different bacterial species, each providing a discrete set of community-

essential genes. This is explained by the current accepted model for the etiology and 

pathogenesis of periodontitis, which is called the poly-microbial synergy and dysbiosis 

(PSD) model [9, 10]. Under the PSD model, a perturbation of the symbiotic microbial 

community will result in an increase in the diversity and number of microbial burden. 

Ultimately, this gives rise to a dysbiotic microbial community that can adapt to and take 

advantage of the inflammatory environment to enhance the population’s bacterial fitness 

[10].  

Under homeostatic conditions, colonizing bacteria initially assemble into 

physiologically compatible communities that can communicate through sophisticated 

signaling mechanisms. Any overgrowth or pathology is efficiently controlled by the host 

inflammatory response, and the gingiva will return to its normal, mild inflammatory state. 

However, changes in host immune competence, diet, or behaviors like smoking can affect 

microenvironmental factors like inflammation, pH, redox potential or nutrient availability 
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that can drive the selection and enrichment of specific pathogenic bacteria. While the 

microbiota associated with healthy oral tissues is considered more generalist, the disease-

associated microbiota is influenced by the traits of specialized microorganisms that have 

an elevated virulence potential. In mouse models of the disease, the colonization of a 

keystone pathogen, like Porphyromonas gingivalis, introduces pathogenicity that can 

elevate the virulence of the entire microbial community, even if there are low numbers of 

the keystone pathogen present [11]. It is important to note that it is the combination of 

polymicrobial constituents and their cooperative functional genes that unite to shape and 

stabilize the dysbiotic microbiota. As the dysbiotic community develops, they will 

stimulate inflammatory responses that are poorly restrained by susceptible hosts and 

ineffective at confining the bacterial community. The aggravated and dysregulated 

responses of the immune system will contribute to tissue destruction that affords a source 

of nutrients for the microbial community’s growth, and thus a continuous cycle of dysbiosis 

and inflammation ensues.   

Importantly, this cycle of dysbiosis and inflammation is not an isolated event. 

Periodontitis has been linked to systemic inflammation and other adverse impacts on 

systemic health, amongst them several comorbidities like cancers, rheumatoid arthritis, 

cardiovascular disease, Alzheimer’s disease and other inflammatory conditions [12-15]. 

The link between these seemingly independent diseases has been explained through several 

plausible mechanisms. First, locally produced pro-inflammatory cytokines from the oral 

cavity can enter the bloodstream to induce inflammation in distal sites. For example, tumor 

necrosis factor (TNF) α, interleukin (IL)-1β and IL-6 can cause an acute-phase response in 

the liver that increases systemic levels of C-reactive protein, fibrinogen and serum amyloid 
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A, that contributes to atherosclerosis or intra-uterine inflammation [16, 17]. Through 

ulceration of the gingiva, periodontal bacteria can also enter the bloodstream and 

disseminate to other organs. P. gingivalis has been detected in atherosclerotic lesions where 

it supports a pro-atherogenic environment and Fusobacterium nucleatum has been detected 

in the placenta where it drives inflammation-induced pregnancy complications [18, 19]. 

Finally, since large quantities of bacteria are swallowed daily, it has been proposed that 

oral bacteria like P. gingivalis can alter the gut microbiota and drive increased gut 

permeability to cause systemic inflammation [20]. Therefore, finding efficient treatments 

against periodontitis may provide solutions against the exacerbation of many other 

pathologies.  

 

A moving target: Making an inventory of oral microbes in periodontitis 

The microbial shift observed in the gingival crevice from a symbiotic microbiota 

to a dysbiotic polymicrobial community has been tracked and refined throughout the years 

as culture-independent techniques have advanced [4, 8, 21, 22]. Initial studies from the turn 

of the 20th century, used the microbiological techniques available at that time to begin 

characterizing the etiological agents responsible for periodontitis [23]. Those initial studies 

discovered spirochetes, fusiforms and streptococci [23, 24] present in periodontal pockets. 

Later, using microscopic techniques, Listgarten et al. [25, 26] showed the frequency of 

each morphology type in the composition of the subgingival microbiota of patients from 

different stages of oral disease. The development of immunological techniques and DNA 

probes helped identify the microbial species present in the subgingival pockets [27]. 

However, high-throughput analysis of microbial communities from subgingival pockets 
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became possible with molecular DNA-based technologies. Using community 

fingerprinting techniques like restriction fragment length polymorphism [28], or 

denaturing gradient gel electrophoresis [29], variation and shift in the composition of the 

microbial community in periodontitis could be identified. The development of DNA-DNA 

checkerboard hybridization helped to understand the specific association of oral bacteria 

with health and disease [30]. Socransky et al. [31] described the presence of five microbial 

communities in subgingival biofilms associated with health and different stages of 

periodontitis. The 16S rRNA approach has revolutionized the identification of bacterial 

taxa whether they are cultivable or ‘yet-to-be-cultivated’, in a mixed population and 

showed diversity of the oral microbiota [32, 33]. Next generation sequencing technologies 

further reformed the study of oral microbial diversity with existence of underappreciated 

periodontal pathogens [34-38]. The pioneer traditional studies together with the more 

advanced 16S rRNA gene comparative analysis identified presence of approximately 700 

predominant taxa in oral microbiome of which approximately 1/3 is ‘yet-to-be-cultivated’ 

[39]. About 400-500 taxa were reported in the subgingival crevice alone [32, 37]. 

Taken together, the plaque analysis from periodontitis-diseased sites has revealed 

the presence of P. gingivalis, Tannerella forsythia and Treponema denticola related with 

disease severity [31, 40] whereas the  presence of Aggregatibacter actinomycetemcomitans 

has been associated with aggressive periodontitis [24]. F. nucleatum is a commensal 

species in the oral cavity that increases in abundance in diseased individuals; however, it 

has been associated with most types of periodontal diseases (chronic and aggressive 

periodontitis, gingivitis, and endodontic infections) due to its highly synergistic 

interactions with P. gingivalis and T. forsythia [41]. The microbes described above are the 
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most well-studied periodontal pathogens and have their pathogenic credentials well-

established. However, examining the microbial composition of the gingival crevice using 

more advanced techniques revealed the complexity of the microbial communities. A 

review comparing 41 published studies from 1999 to 2013, showed that 17 newly identified 

species comprised of five Gram-positive (Eubacterium saphenum, Mogibacterium 

timidum, Peptoanaerobacter stomatis, Filifactor alocis and Enterococcus faecalis), eight 

Gram-negative and four not-yet-cultivable group have a moderate association with the 

etiology of periodontitis [42].  

 

Filifactor alocis: finding its place in dysbiotic periodontal community 

The oral microbiome consists of about 700 predominant taxa [39] and out of these, 

about 400-500 taxa have been reported in the subgingival cervice alone [32, 37]. Many of 

these microbial species are “yet-to-be-cultivated,” but have been identified due to advances 

in 16S rRNA gene sequencing technology. Filifactor alocis is one of these putative perio-

pathogens identified by culture-independent techniques. Initially, F. alocis was identified 

from the gingival sulcus in gingivitis and periodontitis patients, and named Fusobacterium 

alocis [43], but this bacterium was later reclassified under the genus Filifactor [44].  

Multiple studies have shown high incidence of F. alocis in the subgingival plaques 

of periodontitis patients, but a complete absence or low number detection in healthy 

patients [34, 45-47]. A study conducted on 490 subgingival plaques identified F. alocis as 

the second most prevalent bacteria in chronic periodontitis, the third most prevalent 

bacteria in generalized aggressive periodontitis, and low prevalence in the control subjects 

resistant to periodontitis [48]. The occurrence of F. alocis has also been reported in 
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endodontic infections [49-52] and peri-implantitis [53]. Moreover, a review comparing 41 

published studies shows that there is consensus amongst published literature in regards to 

F. alocis being one of the 17 newly identified species associated with the etiology of 

periodontitis [42]. Due to the stark difference in colonization of healthy vs. diseased 

tissues, F. alocis has been designated a top marker for generalized aggressive periodontitis 

along with P. gingivalis, T. denticola and T. forsythia [54].  

In the oral cavity, F. alocis forms biofilms close to apical and middle thirds of the 

gingival pocket, which is in close proximity to soft tissue [48]. A comparison of the 

subgingival microbiota in periodontitis patients showed that F. alocis is more prominent in 

the fourth layer of plaque, which is characterized as a loose layer between the attached 

biofilm and the soft tissue where some traditional pathogens like T. denticola are also found 

[55]. When the biofilms and saliva of healthy adults were cultured for three weeks in 

growth media that simulates the inflamed subgingival environment, there was an 

enrichment of periodontal pathogens like P. gingivalis, F. alocis, and several 

Peptostreptococcus and Treponema spp, which further establishes the classification of F. 

alocis an inflammaphilic oral pathogen [56]. This finding also supports the idea that 

inflammatory changes in the subgingival nutritional environment favors an increase in the 

abundance of pathogenic bacterial species like F. alocis.  

Characterization of the bacterial composition of different oral sites like saliva, the 

supragingival area, or the subgingival area showed positive correlation and possible 

synergistic interactions between F. alocis and eight oral pathogens including P. gingivalis 

and T. forsynthia [57]. Further, in vitro studies showed that co-culture of F. alocis with P. 

gingivalis enhanced biofilm formation [58] and this biofilm is heterotypic, with enhanced 
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P. gingivalis growth [59]. Similarly, F. alocis can also form biofilms with F. nucleatum 

and A. actinomycetemcomitans [59]. Taken together, these studies demonstrate that F. 

alocis is strongly associated with periodontitis, and that F. alocis is a key player in biofilm 

formation.  

 

Enduring inflammation: F. alocis survival mechanisms & virulence factors  

F. alocis is a slow-growing, non-spore forming, obligate anaerobic rod that has 

been classified as Gram positive and asaccharolytic, due to its metabolic preference for 

specific amino acids like arginine [44, 60, 61].  F. alocis manufactures many proteins 

involved in arginine and citrulline synthesis pathways such as arginine deiminase, 

aminotransferases, arginine decarboxylase, and acetyl ornithine transferase, suggesting 

that the nutritional requirement is adequately fulfilled by the byproducts of the disrupted 

host tissue produced as the consequence of the chronic periodontal inflammation [21, 58, 

61]. Also, arginine degradation helps increase the pH, which counteracts the acidic 

conditions generated through carbohydrate metabolism in the mixed oral community [62].  

One of the properties of F. alocis that plays a role in the bacterium’s survival in 

periodontal tissues is its resistance to oxidative stress; in fact, its growth was stimulated in 

media supplemented with hydrogen peroxide [58]. This is likely mediated through F. 

alocis’ expression of superoxide reductase, which catalyzes the conversion of toxic 

superoxides into hydrogen peroxide. Additionally, the presence of sialidase activity helps 

F. alocis play the role of oxidative sink and stabilize the microbial community in the 

inflammatory environment of periodontal pockets [62]. F. alocis’ contribution enhanced 

P. gingivalis survival in hydrogen-peroxide-induced oxidative stress [62].  
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Another important asset of F. alocis is the presence of different proteases. While 

most of them are membrane bound, they play an important role in protein or peptide 

modification and secretion. For example, a collagen peptidase was identified in the F. 

alocis extracellular fraction that can contribute to tissue destruction in periodontitis [63]. 

F. alocis also expresses a cytoplasmic enzyme, acetyl-ornithine transaminase, that is 

involved in arginine catabolism but also inhibits the activation of complement component 

3 convertase (C3 convertase) when present on the bacterial surface. Because of the 

discovery of this dual function, it was designated as F. alocis complement inhibitor, 

FACIN [64]. FACIN, lipoproteins, autolysins, and another 28 proteins were detected in the 

extracellular vesicles from F. alocis [65]. Outer membrane vesicles like these represent an 

efficient mode of disseminating bacterial effector components that manipulate host cell 

responses.  To conclude, all these studies show that F. alocis has the arsenal to disrupt 

normal host cell processes and shields itself and bystander bacteria from the hostile 

environment of periodontitis.  

 

F. alocis interactions with oral epithelium and monocytes 

The inflamed environment of subgingival plaques favors the growth of 

periodontitis-associated pathogens like F. alocis [56], which is further supported by the 

finding that this bacteria is abundantly present in subgingival plaques [34, 46] . Since F. 

alocis is mostly found in the deep layers of biofilm close to the soft tissue, it is constantly 

interacting with host cells. Studies focusing on the interaction of F. alocis with gingival 

epithelial cells have shown that this bacterium can adhere and invade epithelial cells [62, 

66]. Upon contact with F. alocis, pro-inflammatory cytokines like TNF-α, IL-1β and IL-6 
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are secreted from epithelial cells and the bacteria induces apoptosis in oral epithelial cells 

via activation of caspase 3 and suppression of MEK1/2 signaling pathway [66]. When F. 

alocis is co-cultured with P. gingivalis and epithelial cells, the level of internalization of 

both bacteria by epithelial cells increases more than in monoculture. Their uptake is 

mediated through endocytic events, and electron microscopy showed that the endocytic 

vesicles contained both pathogens. Ultimately, uptake of F. alocis and P. gingivalis leads 

to change in epithelial cell morphology and cell death [58]. In human oral keratinocytes, 

F. alocis induced apoptosis in time and dose-dependent manner through the action of the 

recombinant F. alocis peptidase U32 that has collagenase activity and induces the 

expression of pro-apoptotic genes like Apaf-1, caspase3 and 9 and cytochrome C [67].  

F. alocis can also drive inflammation through the secretion of pro-inflammatory 

cytokines and mediators from the epithelium and infiltrating monocytes. By activating 

NOD1 in mesothelial cells, heat-killed F. alocis induces the expression of CXCL-1, an 

inflammatory neutrophil chemokine  [68]. Additionally, F. alocis causes increases in 

matrix metalloproteinase (MMP)-1 gene expression and protein synthesis in fibroblastic 

and monocytic cells that can further contribute to tissue damage in periodontitis [69]. F. 

alocis also induces release of IL-8, IL-6, and TNF-α from human monocytes and human 

oral epithelial cells in vitro; however, host behaviors can modify this response, since it was 

reported that marijuana-derived cannabinoids suppress the F. alocis-mediated release of 

pro-inflammatory cytokines by activating the CB2/PI3K axis signaling pathway [70]. 

Notably, recognition of the whole bacterium is not necessary to elicit pro-inflammatory 

responses. Extracellular vesicles isolated from the culture of F. alocis induced the 

expression of CCL1, CCL2 (MCP-1), CCL3 (MIP 1), CCL4 (MIP-1), CCL5 
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(RANTES), CXCL1, CXCL10, ICAM-1, IL-1β, IL-1ra, IL-6, Il-8, Macrophage Migration 

Inhibitory Factor (MIF), TNF-α and SerpinE in a human monocytic cell line and also 

caused the expression of CXCL1, granulocyte-colony stimulating factor (G-CSF), 

granulocyte-macrophage colony stimulating factor (GM-CSF), IL-6 and Il-8 in human oral 

kerationocytes cell line [65]. Thus, F. alocis and its bacterial products can fuel a pro-

inflammatory environment that benefits the asaccharolytic bacteria’s growth.  

 

F. alocis presence in extra-oral diseases 

In the past few decades, the link between dental bacteremia and systemic adverse 

conditions has drawn much attention from researchers [71]. Recent developments in 

culture-independent techniques has facilitated the detection and identification of microbial 

species in extra-oral infectious sites [72]. The first in vivo study to address this with F. 

alocis used a mouse subcutaneous chamber model, which showed that F. alocis infection 

(1) triggered a local inflammatory response that included recruitment of neutrophils into 

the chamber and proinflammatory cytokine production, and (2) can exit the inoculation site 

and colonize distal organs like the spleen, liver, lung, and kidney where presence of the 

bacteria caused significant damage to both proximal and distal tubular epithelial cells in 

the kidney [73]. Corroborating the data from this mouse model, two case reports detected 

the presence of F. alocis in extra-oral diseases. In the first report, a high concentration of 

F. alocis was detected by 16S DNA analysis in the pleural fluid from a 65- year old patient 

hospitalized for thoracic empyema [74]. The second study reported that 16S rRNA 

sequencing identified F. alocis in the brain abscess fluid from an 85-year old patient 

hospitalized for dysarthria and left side paralysis [75]. These studies strengthen F. alocis’ 
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potential for systemic dissemination and position the bacteria as a pathogen that can 

colonize and drive inflammation in distal organs outside the oral cavity. 

 

Neutrophil Effector Functions: The calm before the dysbiotic storm 

Polymorphonuclear leukocytes, or neutrophils account for 40% to 60% of 

peripheral blood leukocytes in humans and are the most abundant white blood cell present 

in the gingival crevice or periodontal pocket [76, 77]. They play an essential role in the 

innate immune response, as demonstrated by the development of life-threatening infections 

or uncontrolled inflammation in individuals with severe neutropenia or genetic disruptions 

of neutrophil anti-microbial capabilities [78-80]. While it is true that to effectively clear 

invading organisms, neutrophils must be capable of mounting rapid, vigorous responses to 

activating stimuli, uncontrolled or prolonged neutrophil activation uses antimicrobial 

responses to injure normal host cells, leading to pathologic changes to tissues and organs 

in autoimmune and inflammatory diseases like periodontitis [81]. Consequently, although 

neutrophil activation is normally tightly regulated, oral pathogens have evolved 

mechanisms to manipulate neutrophil functions to the bacteria’s advantage. To better 

understand how the dysbiotic microbial community in the oral cavity disarms neutrophils 

at every step of their lifespan, first it is important to appreciate these effector functions at 

their optimal response. Thus, here I highlight normal neutrophil functions before discussing 

how oral pathogens distort them.   

Figure 1.1 depicts the different functions that neutrophils perform from circulation 

to the site of infection, which will be described with more detail in this  section. Circulating 

neutrophils exist in a basal state, characterized by non-adherence, a round morphology, 
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minimal transcriptional activity, and a limited capacity to respond to activating stimuli. 

However, microbial invasion or tissue injury will release pathogen-associated molecular 

pattern (PAMPs) or damage-associated molecular pattern (DAMPs) molecules that induce 

sentinel immune cells to release pro-inflammatory cytokines. Those cytokines first modify 

the adhesion molecules on endothelial cells to facilitate the capture of circulating 

neutrophils [82]. Additionally, the cytokines from tissue-resident cells will affect the 

adhesion receptor pattern of neutrophils by inducing the shedding of selectins and the 

fusion of neutrophil secretory vesicles with the plasma membrane, which leads to increased 

expression of integrins and other receptors that augment the responsiveness of neutrophils. 

Transmigration through the endothelial cell layer occurs primarily at endothelial cell 

junctions and is mediated by a number of adhesion molecules [83, 84]. Next, neutrophils 

will release proteolytic enzymes like gelatinase to traverse the vascular basement 

membrane and enter the extravascular space [85]. Once there, neutrophils detect the 

intensity of chemotactic gradients and move with directionality first towards intermediate 

chemoattractants (IL-8, leukotriene B4, and platelet activated factor) and then towards end 

target chemoattractants (bacterial formylated peptides and complement fragments C5a and 

C3a) [86, 87].  
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Figure 1.1:   Sequential steps of classic neutrophil recruitment and activation.  
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As professional phagocytes, neutrophils will rapidly and readily undergo the 

receptor-mediated process of phagocytosis [88]. Phagocytosis occurs most efficiently by 

the recognition of complement or IgG-opsonized particles, and while non-opsonized 

phagocytosis can occur it is less efficient since neutrophils possess fewer non-opsonic 

receptors than macrophages [89]. Once the particle is engulfed, production of reactive 

oxygen species (ROS) and fusion of antimicrobial granules will contribute to the 

phagosome’s maturation and lethality [88]. The complementary actions of the granule 

proteases and ROS production will create a highly toxic environment that few microbes 

can survive.  

Reactive oxygen species (ROS) are generated through the conversion of molecular 

oxygen to superoxide by the multi-component NADPH oxidase complex. The oxidase is 

comprised of three membrane subunits (gp91phox/NOX2, p22phox, and Rap1A), and four 

cytosolic proteins (p47phox, p67phox, p40phox, and Rac2). Spatial separation of the membrane 

and cytosolic components maintains enzymatic inactivity in resting neutrophils. Upon 

stimulation, the cytosolic components translocate to the membrane bound components to 

form the catalytically active enzyme complex [90-92]. Notably, neutrophils have the 

capacity to tailor their response depending on the type of stimuli they encounter. 

Stimulation of neutrophils by a soluble stimulus, such as fMLF, triggers assembly and 

activation of the NADPH oxidase at the plasma membrane and release of superoxide anions 

towards the extracellular space.  In contrast, if neutrophils encounter a particulate stimuli, 

for example a bacterium, assembly and activation of the NADPH oxidase will take place 

at the membrane of the bacteria-containing phagosome with release of superoxide anions 

inside the phagosome [93-95].  
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Neutrophil granules are divided into four classes based on granule density and 

contents [96-99]. Secretory vesicles are created by endocytosis, while gelatinase (tertiary), 

specific (secondary), and azurophilic (primary) granules are formed from the trans-Golgi 

network during neutrophil maturation [100]. Like ROS production, the different neutrophil 

granule subtypes can either be recruited to the bacteria-containing phagosome or stimulated 

to undergo exocytosis and release their matrix content to the extracellular environment 

[101]. Normally granule subsets undergo an ordered release based on stimulus intensity, 

termed graded exocytosis [97, 98]. A weak stimuli induces mobilization of secretory 

vesicles, and increasing stronger stimulation is required to mobilize gelatinase, specific, 

and  azurophil granules, respectively [102]. The diverse repertoire of proteins and receptors 

present at the membrane of each granule subtype, as well as within the granule lumen, 

highlights the important role each granule plays in the different neutrophil responses during 

inflammation [103-105]. However, the antimicrobial efficacy of neutrophils on 

intracellular and extracellular microorganisms is enhanced by the ability to combine both 

oxygen-dependent and independent mechanisms.  

Under homeostatic conditions, after their release from the bone marrow into 

circulation, neutrophils are programmed to undergo apoptosis ~12-24 hours and are cleared 

by macrophages in the liver, spleen, and bone marrow [106]. In tissues, neutrophil lifespan 

is prolonged by cytokines (IL-1β, TNFα, GM-CSF, G-CSF, and interferon (IFN) γ), 

microbial components, and the local environment [107]. Moreover intracellular pathogens 

like Anaplasma phagocytophilum, Chlamydia pneumoniae, and Francisella tularensis can 

promote neutrophil viability as a way to protect their replicative niche, whereas other 

microbes like Streptococcus pyogenes, Staphylococcus aureus, and Pseudomonas 
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aeruginosa accelerate apoptosis, trigger neutrophil lysis, or redirect cell death towards 

necrosis to evade intracellular killing [89]. In addition to apoptosis pathways activated 

through extrinsic receptor ligation or intrinsic mitochondrially-mediated pathways, 

neutrophils can also undergo apoptosis through a process termed phagocytosis-induced cell 

death (PICD), that is triggered by phagocytosis of complement- or antibody-coated 

particles and bacteria, production of NADPH oxidase-derived ROS, and global changes in 

gene expression [108, 109]. Apoptosis is a critical step to minimize tissue damage by 

downregulating the phagocytic and proinflammatory capacity of neutrophils and 

preventing release of neutrophil cytotoxic components into the extracellular space [110-

112]. Additionally, timely apoptosis and clearance of neutrophil corpses by macrophages 

minimizes tissue damage because this process dampens pro-inflammatory cytokine 

production and reprograms macrophages to a pro-resolution phenotype that favors 

restoration of tissue homeostasis [113-115].  

 

Neutrophils in the progression of periodontitis 

Neutrophils are the most abundant white blood cell present in the gingival crevice 

or periodontal pocket [77]. They are recruited into the periodontal pocket by following 

chemotactic gradients produced endogenously by the junctional gingival epithelium and 

serum-derived factors or exogenously by the microbial community. This chemotactic 

gradient is comprised of pro-inflammatory cytokines like interleukin (IL)-8, IL-1b, and 

chemokines like CXCL12 secreted by gingival epithelial cells, pro-inflammatory serum-

derived products like C5a, and microbial and biofilm derived chemotactic factors like N-

formyl-met-leu-phe (fMLF) peptide, lipopolysaccharide (LPS) [116, 117]. As neutrophils 
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migrate toward the crevicular fluid, they will form a protective wall between the bacterial 

community and the junctional epithelium [118-120]. Here, neutrophil microbicidal 

mechanisms will reduce the bacterial burden, but the host must strike a balance between 

the protective and damaging effects of neutrophils since excessive neutrophil-driven 

inflammation results in collateral tissue destruction.  

Neutrophils are indispensable in the innate immune response against bacterial 

infection and are critical for maintaining homeostasis in the oral cavity (reviewed in [121]). 

This is best illustrated in patients with neutropenic diseases or genetic defects that affect 

neutrophil function like Leukocyte adhesion deficiency type I (LAD-I syndrome), 

Chediak-Higashi syndrome, and Papillon-Lefèvre syndrome, who develop severe 

periodontitis (reviewed in [122, 123]). Nonetheless, despite their beneficial role in 

homeostasis, neutrophils are implicated as the main immune cells responsible for the 

progression of periodontitis [124, 125]. Under periodontal disease conditions, neutrophils 

are supernumerary, hyperactivated, or display dysregulated functions. Neutrophil effector 

functions are likely altered in periodontitis through products from the chronic inflammatory 

environment that contribute to a primed and hyperactive phenotype [126, 127] or through 

the manipulating mechanisms of periodontal pathogens, which will be the focus of this 

section (Table 1.1).  

Many studies have compared neutrophils from periodontitis patients to those of 

healthy controls, and found that while periodontitis neutrophils had augmented phagocytic 

capacity, they showed defects in chemotaxis, apoptosis and released significantly higher 

quantities of reactive oxygen species (ROS), anti-bacterial enzymes, neutrophil 

extracellular traps (NETs), and pro-inflammatory cytokines [128-131]. Together, this 
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results in the inefficient killing of microbial pathogens, unresolved inflammation, and the 

destruction of the tooth supporting tissues via the release of tissue-degrading enzymes or 

inflammatory and toxic molecules [132-134]. To better understand the interaction of 

emerging periodontal pathogens like F. alocis on neutrophil functions, it is necessary to 

know the context of how well-established pathogenic oral bacteria can obstruct normal 

neutrophil functions to promote disease (Figure 1.2).   

 

Figure 1.2: Mechanisms by established oral pathogens to disrupt neutrophil functions 

 

Manipulation of Neutrophil Effector Functions by Periodontal Pathogens  

Chemotaxis: 
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As the bacterial burden increases during periodontitis progression, neutrophil 

recruitment and accumulation also magnifies. Not only are neutrophils the predominant 

immune cell isolated from various oral fluids, but neutrophil counts correlate with the level 

of inflammation, the increasing depth of the periodontal pocket and the severity of chronic 

periodontitis [117, 135-137]. Defects in chemotaxis greatly contribute to the high presence 

of neutrophils in tissues, and pathogenic oral bacteria are known to modulate this 

neutrophil function. A clinical study from Roberts et. al showed that peripheral blood 

neutrophils from chronic periodontitis patients had reduced chemotactic capacity, velocity, 

and accuracy towards IL-8 and fMLF gradients, which was partially recovered when the 

patients received non-surgical therapy [138]. One of the most effective ways pathogenic 

oral bacteria restrict neutrophil chemotaxis is indirectly, by interfering with the 

chemotactic gradient. T. denticola can degrade IL-8 through the action of dentilisin, a 

major outer membrane protease [139]. Additionally, T. denticola and P. gingivalis can both 

suppress IL-8 production by gingival epithelial cells to cause local chemokine paralysis 

[140, 141].  

Alternatively, oral bacteria can disarm neutrophil migration by acting on the 

neutrophil itself. The supernatant from sonicated organisms like F. nucleatum, A. 

actinomycetemcomitans, and P. gingivalis can bind and antagonize neutrophil chemotactic 

receptors to prevent the detection of the chemotactic gradient and thus, inhibit neutrophil 

migration towards known chemoattractants [142, 143].  Microbial products like the Major 

Sheath Protein (MSP) of T. denticola can also interfere with cytoskeletal signaling 

pathways that mediate cell movement [144-148]. Pathogenic oral bacteria also employ 

misdirection mechanisms: P. gingivalis can downregulate the expression of cell adhesion 
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molecules like E-selectin and intracellular adhesion molecule (ICAM)1 that are required 

for leukocyte extravasation [149-152], while leukotoxin from A. actinomycetemcomitans 

enhances random migration of neutrophils [153].  

When the neutrophil directed migration pattern is altered, they will become vagrant 

cells and accumulate at the periodontal pocket and adjacent connective tissue. This 

meandering neutrophil behavior is beneficial to the microbial community because it 

decreases the chances of neutrophil-bacteria interaction while increasing the chances for 

bacterial colonization. Paradoxically, the same periodontal bacteria can contribute to the 

recruitment of neutrophils to the gingival tissue through the actions of their proteases.  

Mirolysin and karilysin from T. forsythia and arginine-specific gingipain (RgpA) from P. 

gingivalis can cleave complement component 5 (C5) to generate the anaphylatoxin C5a, 

which strongly recruits neutrophils [154-156]. It has been shown that the concentration of 

gingipains released by P. gingivalis is tailored to promote bacterial survival. At early 

infection stages gingipains can be found at low concentrations, promoting cleavage of C5 

and generation of C5a which stimulates neutrophil recruitment that will enhance tissue 

destruction and provide nutrients for the dysbiotic community. However, when their 

concentration increases once the biofilm has been formed in deeper periodontal pockets, 

they inhibit the complement pathway to protect P. gingivalis and bystander bacteria from 

complement and neutrophil killing [157].   

 

Phagocytosis: 

The insidious manipulation of neutrophils by oral pathogens continues at the level 

of phagocytosis and microbicidal mechanisms. T. denticola and P. gingivalis efficiently 
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block neutrophil phagocytic events by interfering with cytoskeleton pathways, which 

provides protective advantages to other bacteria in the oral cavity [148, 158, 159]. 

Neutrophils treated with MSP from T. denticola had diminished incorporation of actin 

monomers during de novo filament assembly, which resulted in decreased uptake of IgG-

coated spheres [148]. Alternately, P. gingivalis activates PI3K-dependent signaling 

pathways that suppress RhoA GTPase activity and actin polymerization, thus inhibiting the 

formation and extension of lamellipodia necessary to form the phagocytic cup [158, 159]. 

While some oral bacteria like T. denticola, A. actinomycetemcomitans, and P. gingivalis 

naturally avoid phagocytosis by neutrophils, the presence of complement and antibodies 

can overcome this resistance [128, 160, 161]. The problem that arises is that T. denticola 

and P. gingivalis proteases can degrade C3 or other upstream components of the 

complement pathway to synergistically inhibit complement opsonization and killing [154, 

157]. Additionally, despite the finding that patients with periodontitis have high serum IgG 

levels against P. gingivalis, the lysine-specific gingipain K (Kgp) is able to cleave IgG1 

and IgG3 at the hinge region, which separates the antigen binding region of the antibody 

from the effector fragment, resulting in the inactivation of IgG-mediated opsonization 

[162-164]. When neutrophils are not able to engulf the bacteria, they resort to extracellular 

killing mechanisms that also drive inflammation.  

 

ROS Generation: 

Activation of neutrophils, either by a particulate or soluble stimulus, results in 

assembly of the NADPH oxidase multi-component enzymatic complex and robust 

production of ROS [165]. Generally, ROS produced from neutrophils contributes to 
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bacterial killing and intracellular signaling; however, excessive ROS can have cytotoxic 

effects on periodontal tissues through oxidative damage to DNA and proteins, interference 

with cell growth and cell cycle progression, and induction of apoptosis of gingival 

fibroblasts [166-170].  Indirectly, ROS can also induce alveolar bone resorption through 

their role as intracellular signaling molecules in osteoclastogenic pathways [171]. Like 

other effector functions, the normal ROS generation by neutrophils is compromised in the 

context of periodontitis. Neutrophils isolated from subjects with periodontitis released 

significantly more reactive oxygen species in the absence of stimulus when compared to 

neutrophils from healthy controls [128], but this was not due to increased expression of 

NADPH oxidase components [172]. When tested against individual oral bacteria in vitro, 

neutrophils can mount an ROS response of varying degrees against T. denticola, T. 

forsythia, F. nucleatum, A. actinomycetemcomitans, and P. gingivalis, although the extent 

of ROS production heavily depends on the strain used, multiplicity of infection, and 

opsonization [160, 173-177]. Once generated, ROS do not discriminate between host and 

pathogen cells, and contribute heavily to disease progression since patients with 

hyperactive ROS response are more susceptible to periodontitis [178, 179]. Notably, 

patients with Chronic Granulomatous Disease (CGD), who cannot mount a respiratory 

burst response, are not more susceptible to periodontitis, suggesting that ROS are not 

critical for maintenance of periodontal health [180].  

The contribution of ROS to periodontal destruction was highlighted in a clinical 

study that treated chronic periodontitis patients with lycopene, an antioxidant [181]. 

Lycopene-treated patients had reduced oxidative stress and improved clinical parameters 

like gingival inflammation, periodontal probing depth, and clinical attachment loss. This 
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improved outcome could be observed up to 4 months after discontinuing antioxidant 

treatment, suggesting that if ROS formation can be limited, the destruction of periodontal 

tissues can also be restricted. The inefficacy of ROS against oral pathogens may be due, in 

part, to bacterial virulence factors that confer protection for the entire bacterial community. 

Several oral pathogens like A. actinomycetemcomitans, F. nucleatum, and P. gingivalis 

express superoxide dismutase (SOD), which catalyzes the dismutation of superoxides into 

hydrogen peroxide [182-185]. The master neutrophil manipulator, P. gingivalis also 

expresses rubrerythrin (Rbr) and alkyl hydroperoxidase reductase (Ahp), which detoxify 

hydrogen peroxide [186-188]. Additionally, through the proteolytic action of gingipains, 

P. gingivalis can acquire heme deposits on its cell surface, which act as an oxidative sink 

to further protect bacteria against the deleterious effects of ROS [189, 190]. Other 

periodontal bacteria may be acting directly on neutrophils to control the ROS response, for 

example F. nucleatum is able to inhibit fMLF-induced superoxide generation, although the 

mechanism for this phenotype is still unknown [177]. 

 

Granule Exocytosis: 

Cationic antimicrobial peptides are one of the very first lines of defense against 

microbial invaders. In the oral cavity and gingival tissues, the extracellular defense is 

predominantly mediated by release of human beta-defensins from epithelial cells and 

neutrophil derived cathelicidin‐type peptide LL‐37 and alpha‐defensins found in the 

neutrophil cytoplasm and granules [191]. The crevicular fluid from chronic periodontitis 

patients contained significantly elevated quantities of LL‐37 and alpha‐defensins [192, 

193]; regardless, periodontal pathogens have increased resistance to antimicrobial 
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peptides, though this response seems to depend on the strain of bacteria tested [194-198]. 

The high resistance of periodontal pathogens to bactericidal activity of these peptides can 

be partially explained through the action of bacterially derived proteolytic peptides. From 

T. forsythia, miropin, and karilysin efficiently inhibited the activity of a broad range of 

proteases (LL-37, neutrophil and pancreatic elastases, cathepsin G, subtilisin, and 

trypsin)  [199, 200], and gingipains from P. gingivalis directly cleaved multiple host 

antimicrobial proteins, which conferred resistance against extracellular, non-oxidative 

killing mechanisms [201-204]. Interestingly, the expression of these gingipains is increased 

when P. gingivalis undergoes oxidative stress, suggesting there is a synergistic, 

compounding attack against neutrophil mechanisms [205].   

While neutrophil granule contents can be released into the extracellular matrix or 

into a microbe-containing phagosome, most studies related to periodontal pathogens have 

focused on the release of neutrophil granule contents in the context of tissue degradation. 

A. actinomycetemcomitans, F. nucleatum, T. denticola, and P. gingivalis have all been 

reported to induce the release of Matrix metalloproteinase 8 (MMP8), Matrix 

metalloproteinase 9 (MMP9), elastase and lysozyme [173, 196, 197, 206-209]. The 

exocytosis of neutrophil granules has also been confirmed in neutrophils isolated from the 

oral cavity, since neutrophils from periodontitis patients express increased levels of 

degranulation markers on their surface [210]. Elevated levels of neutrophil elastase, 

plasminogen, and MMP9 were detected in periodontal ligament from chronic periodontitis 

patients [211]. Zymographic analysis of these three proteinases was tested in vitro on 

periodontal ligaments, and elastase was the only proteinase involved in the degradation of 

collagen fibrils. Notably, the morphological features from the in vitro system were similar 
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to that of the periodontal ligament in chronic periodontitis, which directly implicates this 

neutrophil enzyme in the early destructive stages of periodontal disease [211]. Similarly, 

bacterial proteases can also directly induce tissue degradation. Karilysin from T. forsythia 

shares structural homology to human matrix metalloproteinases and can cleave elastin, 

fibrinogen and fibronectin [212].  

Host-derived protease inhibitors are produced locally as negative-feedback loops 

to maintain homeostasis in oral tissues and regulate the activity of neutrophil proteases 

[213]. Two of these protease inhibitors are secretory leukocyte protease inhibitor (SLPI) 

inhibits neutrophil elastase activity and elafin targets elastase and protease 3 (PR3). Gene 

expression of these protease inhibitors was significantly induced when gingival epithelial 

cells were infected with P. gingivalis, but not T. forsythia, A. actinomycetemcomitans, or 

F. nucleatum [214]. It has been suggested that P. gingivalis manipulates this system to 

specifically dampen neutrophil antimicrobial responses since SLPI and elafin have no 

inhibitory action against gingipains [215]. Paradoxically, gingipains will degrade SLPI and 

elafin, supporting the notion that P. gingivalis sustains some level of inflammation to 

maintain infection [214, 216]. Taken together, these studies show there is an additional 

level of complexity where oral pathogens can interfere with the host regulation of 

extracellular neutrophil granule protein activity to protect the microbial community while 

still maintaining inflammation.  

 

NET formation: 

NETs represent an immune defense mechanism deployed by neutrophils to 

immobilize and kill invading microbes or contain biofilms from disseminating into other 
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sites of the body [217]. However, as with all other neutrophil mechanisms, this function is 

a double edged sword that has also been implicated in inflammation and induction of auto-

immunity [218]. Confocal and electron microscopy of gingival biopsies and crevicular 

exudates from patients with chronic periodontitis confirmed there was NET formation in 

the oral cavity [219]. A later study found that neutrophils are attracted to the supragingival 

biofilms, where they are stimulated to release NETs [220]. When individual oral bacteria 

were tested against neutrophils, A. actinomycetemcomitans and F. nucleatum both induced 

NET formation. F. nucleatum activated neutrophils through nucleotide oligomerization 

domain (NOD) 1 and 2 and induced a time-dependent, robust release of NETs [221]. This 

NETosis was independent of TLR stimulation and ROS production [176]. A. 

actinomycetemcomitans was also able to induce NETosis through stimulation by the whole 

bacterium as well as through stimulation with leukotoxin alone [153]. The presence of 

serum and signaling through complement receptor (CR)1 enhanced NET release induced 

by A. actinomycetemcomitans [222]. Contrasting reports have shown that P. gingivalis 

does [223, 224] and does not [176] induce NET formation, though this conflicting data 

may be mediated by bacterial strain differences. No studies have directly tested whether T. 

forsythia or T. denticola can induce NET release from neutrophils. Regardless of whether 

NETosis was induced by the oral pathogen, both A. actinomycetemcomitans and P. 

gingivalis could be trapped by HOCl-produced NETs [176].  

Despite initial trapping by NETs, several oral microbes like P. gingivalis, 

Prevotella intermedia, and F. nucleatum, but not A. actinomycetemcomitans, express 

nucleases with differing DNA degradation capacities [225, 226]. Additionally, P. 

gingivalis expresses Porphyromonas peptidylarginine deiminase (PPAD), an enzyme that 
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citrullinates histone H3, thereby facilitating the bacterial escape from NETs [227-230]. 

When neutrophils were cultured with P. gingivalis or purified Rgp gingipains, both 

stimulants induced NETs that not only lacked bactericidal activity but instead stimulated 

the growth of bacteria species otherwise susceptible to killing in NETs [224]. The 

protection against killing by NETs was mediated through the proteolysis of bactericidal 

components on the NETs. Taken together, some periodontal pathogens may be playing a 

dual role in NETosis: they are the potent direct inducers of NETs formation but 

simultaneously prevent bacterial entrapment and subsequent killing by NETs.   

 

Bacterial Killing: 

Neutrophils isolated from the crevicular fluid of periodontitis patients showed 

decreased phagocytic activity and intracellular killing against A. actinomycetemcomitans 

and P. gingivalis as compared to neutrophils from healthy controls, indicating that there is 

a pervasive inhibition of bacterial killing during periodontitis [231]. When cultured under 

anaerobic conditions, neutrophils were unable to eliminate P. gingivalis as tested by colony 

forming units (CFU) [204]. P. gingivalis was also resistant to killing by neutrophil granule 

contents, likely because P. gingivalis culture supernatant contains ginigipains that could 

inactivate cathepsin G, elastase, bacterial-permeability increasing factor and defensins 

[204, 232]. Addition of gingipain inhibitors to the P. gingivalis culture supernatant and 

neutrophils, neutrophils regained their microbicidal capacity against the bacteria [233]. 

Neutrophils were also able to significantly kill F. nucleatum and A. 

actinomycetemcomitans strain Y4 within an hour [128, 234, 235]. Other strains of A. 

actinomycetemcomitans were able to resist intracellular microbidical mechanisms after an 
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hour of challenge, which correlates with the levels of leukotoxin expression [236]. Notably, 

exposure of neutrophils to nicotine severely dampens their ability to kill F. nucleatum and 

A. actinomycetemcomitans, hinting at the severity of effects from host-driven susceptibility 

[237]. Killing of T. denticola and T. forsythia has been reported by in vitro studies using 

macrophages [238, 239], but to the best of our knowledge, no studies have examined 

whether neutrophils can directly kill T. denticola or T. forsythia.   

  Whether the pathogenic bacteria can block killing by neutrophils on its own is not 

as important in the case of the periodontal dysbiotic community because the protective 

effects from one species could benefit others that do not have any virulence factors of this 

type. Succinic acid, a metabolic, fatty acid byproduct of P. gingivalis and other Bacteroides 

species, abolished neutrophil killing of Escherichia coli by decreasing neutrophils ability 

to produce ROS [240, 241]. Similarly, when neutrophils were incubated with short chain 

fatty acids derived from anaerobic bacteria, their ability to undergo granule exocytosis and 

produce ROS was also diminished [242].  

Out of the established periodontal pathogens, P. gingivalis’ survival around 

neutrophils is the best characterized and depends on the cross-talk between two receptors 

on the surface of neutrophils in vivo [158, 243]. While P. gingivalis directly activates 

TLR2/1 receptors, the C5a formed by the gingipain-dependent cleavage of C5 will activate 

the C5a receptor (C5aR1). The co-stimulation of these receptors results in the degradation 

of the TLR adaptor protein MyD88 [158, 244]. This reroutes signaling through another 

adaptor protein, MyD88 adaptor-like (Mal, also known as TIRAP). This is significant 

because activation of the MyD88-dependent signaling pathway is associated with the 

initiation of antimicrobial responses while Mal-dependent pathways activate PI3K and 
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block phagocytosis, while still resulting in the release of pro-inflammatory cytokines. 

Thus, by redirecting signaling through Mal instead of MyD88, P. gingivalis dismantles the 

killing activity of neutrophil, but not the proinflammatory activity [122]. Nonetheless, little 

to no literature is available to explain how some oral pathogens can survive within the 

hostile environment of the neutrophil phagosome. 

 

Cytokine Production: 

The role of neutrophils as regulators of the immune response has gained increasing 

recognition because of their capacity to transcribe, perform de novo synthesis, and release 

different cytokines and chemokines [245-247]. Depending on the type of stimulation they 

encounter, neutrophils can produce and release an array of different cytokines and 

chemokines, which is significant in the amplification loop of the local immune response 

[246-250]. Although each individual neutrophil may not produce quantities comparable to 

other immune cells, in periodontitis where neutrophils accumulate in great numbers, the 

collective release of cytokines and chemokines by neutrophils can especially play a role in 

tissue damage. It is unknown whether T. forsythia or A. actinomycetemcomitans induce 

direct cytokine production by neutrophils, but reports show that T. denticola, F. nucleatum, 

and heat-killed P. gingivalis induce release of pro-inflammatory cytokine IL-1β [160, 251]. 

F. nucleatum and its LPS also induce robust release of IL-8 and TNFα from neutrophils 

[131, 177].  LPS from A. actinomycetemcomitans stimulated the release of significantly 

greater amounts of IL-1β, TNFα, and IL-8 than the response elicited by P. gingivalis-LPS 

[252]. However, challenge of neutrophils with P. gingivalis results in the release of TNFα, 

IL-8, and CCL2 [252, 253]. A noteworthy distinction is that the best practice for measuring 
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neutrophil-derived cytokines is to test a neutrophil population that is as pure as possible 

since contamination of even 0.01% of monocytes can skew the cytokine and chemokine 

populations significantly [254, 255].   

   

Apoptosis: 

Signs of cell death are readily observed in gingival tissue [256, 257]. The gingival 

tissues of chronic periodontitis patients show increased activity of caspase 3 and caspase 

7, the executioners of apoptotic cell death [258]. Moreover, periodontal pathogens, such as 

T. denticola, P. gingivalis, and T. forsythia, elicit the release of adenosine triphosphate 

(ATP), uric acid, heat shock protein (HSP)60, and High Mobility Group Box (HMGB)1 

from THP-1 derived macrophages, indicating the presence of pyroptotic cell death in 

periodontal tissue [259]. Although cell death pathways in epithelial cells and macrophages 

have been well studied after interaction with periodontal pathogens, there are only a few 

publications that have addressed neutrophil viability after encounters with oral bacteria.  

Transcriptionally, neutrophils from chronic periodontitis patients have significantly 

upregulated pro-survival pathways [260]; however, most studies on periodontal bacteria 

and neutrophil lifespan have only measured cell death at very short-timepoints (three hours 

or less) post bacterial challenge. For example, F. nucleatum, P. gingivalis and T. denticola 

did not induce lactate dehydrogenase (LDH) release from neutrophils after 1-hour 

challenge with neutrophils [196]. Incubation of neutrophils with T. denticola for an hour 

resulted in a mild increase in cell death only detected in neutrophils that phagocytosed 

antibody coated T. denticola at a multiplicity of infection (MOI) of 100 bacteria per 

neutrophil [160]. Under the same experimental set-up, F. nucleatum induced cell death in 
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a MOI and antibody opsonization-dependent manner [160, 261]. The induction of 

apoptosis persisted when neutrophils were treated with multiple strains of F. nucleatum 

[177]. Uptake of antibody-opsonized A. actinomycetemcomitans after 1 hour of challenge 

also resulted in the rapid cell death of neutrophils [236]. The induction of apoptosis after 

such short timepoints suggests the neutrophils challenged with A. actinomycetemcomitans, 

P. gingivalis, F. nucleatum, and T. denticola underwent phagocytosis-induced cell death 

(PICD), which is linked to the production of ROS [108, 262]; however, since periodontal 

bacteria can resist neutrophil phagocytosis, the probability of PICD may not occur very 

often in vivo.  

Compounding the length of neutrophil lifespan is the presence of several pro-

inflammatory mediators that promote neutrophil longevity at sites of inflammation, such 

as LPS, liopoteichoic acids (LTA), TNFα, C5a, IL-1α, granulocyte-macrophage colony-

stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and 

interferon (IFN) γ, and render these granulocytes resistant to extrinsic ligand-induced 

apoptosis (FS-7-associated surface antigen (FAS) and TNF) [263, 264]. Additionally, the 

products of periodontal bacteria can also lead to changes in neutrophil survival. Neutrophil 

challenge for 1-3 hours with MSP from T. denticola does not induce cell death [148] and 

culture of neutrophils with the LPS from three different P. gingivalis strains delayed 

apoptosis in a dose-dependent fashion [265-267], but leukotoxin from A. 

actinomycetemcomitans directly lyses neutrophils [236, 268]. Notably, it is unknown 

whether direct interaction with T. forsythia or products from the bacteria will affect 

neutrophil lifespan.  
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 Induction of neutrophil apoptosis is beneficial to the bacteria because it will prevent 

neutrophil phagocytosis and microbicidal mechanisms from eliminating the bacterial 

burden. However, when neutrophil apoptosis is delayed, the inflammophillic bacteria still 

profit because inflammation worsens by two mechanisms: (1) collateral tissue damage 

increases because neutrophils will accumulate and continue to release degradative 

neutrophil enzymes and ROS, and (2) resolution of inflammation is delayed because 

clearance of apoptotic cells though efferocytosis cannot take place, which is essential for 

the initiation of tissue restoration mechanisms.  

 

 Neutrophils against emerging oral pathogens  

Considering the identification of novel bacteria associated with periodontitis, there 

is still a significant gap in our understanding of the role of these organisms in the disease 

etiology. Without a full understanding of the pathogenic potential of abundant organisms 

in the periodontal lesions, there is a substantial barrier to the development of new 

approaches to prevent or ameliorate the disease. Since neutrophils are a key component of 

host innate immunity that must be overcome by pathogenic periodontal bacteria, studies 

on how neutrophils control or are thwarted by emerging oral pathogens afford vital 

contributions to the scientific community.  

So far, characterization of F. alocis’ interaction with neutrophils has demonstrated 

that this putative oral pathogen can modulate neutrophil effector functions for its nefarious 

purposes. Unlike many periodontal pathogens, F. alocis does not resist phagocytosis by 

human neutrophils [269]. In fact, most neutrophils challenged with F. alocis rapidly 

internalized the bacteria independent of viability or opsonization with complement. This is 
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likely because viable F. alocis is capable of disrupting the neutrophil antimicrobial 

response. After 4 hours of challenge, >50% of F. alocis remain viable inside neutrophils, 

and electron microscopy analysis of F. alocis-infected neutrophils showed that electron 

dense bacteria could still be found inside neutrophil phagosomes after 20 hours of co-

culture, suggesting a defect in the degradation and clearance of engulfed bacteria.  

To dissect how F. alocis could actively remain viable despite the toxic capacity of 

neutrophils, the progression of phagosome maturation was assessed by testing oxygen 

dependent and independent mechanisms of intracellular killing against viable and heat-

killed F. alocis. When the production of intracellular ROS was measured, heat-killed F. 

alocis induced a robust ROS response that was four times greater than the amount of ROS 

produced by neutrophils stimulated with viable F. alocis [269]. Furthermore, viable F. 

alocis did not suppress the respiratory burst induced by a secondary stimulus like heat-

killed Staphylococcus aureus; suggesting that inhibition of ROS production is not a global 

effect, but rather a local phagosomal mechanism geared towards promoting survival. The 

second, oxygen-independent arm of intracellular killing is mediated through the fusion of 

pre-formed granules with the bacteria-containing phagosome. However, live F. alocis 

could also control granule trafficking to the phagosome to prevent phagosome maturation. 

Viable F. alocis phagosomes had decreased co-localization with key antimicrobial proteins 

lactoferrin and elastase whereas twice as many heat-killed F. alocis phagosomes had 

efficient co-localization [269]. Thus, F. alocis actively subverts elimination by neutrophil 

by inducing a minimal respiratory burst response and preventing phagosome maturation.   

As an inflammophilic bacteria, F. alocis still drives pro-inflammatory processes to 

secure a source of nutrients for replication. F. alocis is recognized by neutrophils through 
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ligation of TLR2, which triggers the exocytosis of three of the four neutrophil granule 

subtypes through activation of both p38 MAPK and ERK1/2 [270]. The release of toxic 

granules has implications for tissue degradation, which could be directly observed through 

gelatin zymography of supernatants of F. alocis-stimulated neutrophils [269]. In addition, 

neutrophils challenged with either live or heat-killed F. alocis, showed enhanced random 

and directed migration towards IL-8; an effect that was dependent on the bacteria-induced 

granule exocytosis [270].    

Remarkably, F. alocis appears to play the role of referee and helps limit the 

system’s overall inflammation. Specifically, F. alocis does not induce NET formation at 

any bacterial dose or time tested; additionally, pre-treatment of neutrophils with F. alocis 

significantly inhibits PMA-induced NETs [271]. F. alocis is recognized by TLR2/6 

heterodimers and promotes the release of neutrophil-derived cytokines and chemokines but 

to a lesser extent compared to another emerging oral bacterium, Peptoanaerobacter 

stomatis [253]. Additionally, F. alocis induced significant release of anti-inflammatory 

cytokine, IL-1ra, which was greater than the amount induced by P. gingivalis.  

 

Dissertation Goals 

Much work remains to fully understand the mechanism of how F. alocis contributes 

to the progression of periodontitis. A large piece of that puzzle is to define how the putative 

oral pathogen interacts with neutrophils. Based on published work, F. alocis follows a 

similar pattern as described for other periodontal pathogens, to evade killing by neutrophils 

while simultaneously promoting inflammation. Nonetheless, it was unknown how F. alocis 

manipulates neutrophil functions. I hypothesized that F. alocis interferes with signaling 
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pathways to block extermination by neutrophils while inducing a pro-inflammatory 

environment, so I completed a transcriptome study of F. alocis-challenged neutrophils 

(Chapter 2) and found that Toll-like receptor (TLR) signaling (Chapter 3), apoptosis 

pathways (Chapter 4), and efferocytic clearing (Chapter 5) are affected in F. alocis-

challenged neutrophils.  
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Table 1.1: Oral Pathogens’ Effects on Neutrophil 

 Chemotaxis Phagocytosis 
ROS  

generation 

Granule 

Release 

NET 

formation 

Bacterial 

Killing 
Apoptosis 

Release of 

cytokines 

Treponema  

denticola 
Decreased 

by MSP  

[1
4
5

-1
4
8

] 

Resisted by 

Td 

[1
6
0

] 

Induced 

[1
6
0

, 1
7

3
] 

MMP9 

[1
7
3

, 2
0

6
, 2

7
2

] 

? ? No effect  

[1
4
8

, 1
6

0
, 1

9
6

] 

 Minimal  

 IL-1b 

[1
6
0

] 

Inhibited by 

MSP  

[1
4
8

] 

Tannerella  

forsythia 

No Effect 

[2
7
3

] 

Ingested 

normally 

[1
7
4

] 

Induced 

[1
7
4

] 

? ? ? ? ? 

Increased by 

Mirolysin 

[1
5
5

] 

Fusobacterium  

nucleatum 

Decreased 

by Fn 

extract 

[1
4
2

] 

Ingested 

normally 

[1
6
0

, 1
9

6
, 2

5
1

] 

Induced 

[1
6
0

, 1
7

5
] 

No MMP9 

& Robust 

Elastase 

[1
6
0

, 1
9

6
] 

Induced 

[2
2
1

] 

Killed 

[2
3
4

] 

No effect  

[1
6
0

, 1
9

6
] 

IL-1β, 

IL-8 & 

TNFα 

[1
3
1

, 1
6

0
, 1

7
7

, 2
5
1

] 

Inhibited 

fMLF-

stimulated 

ROS 

[1
7
7

] 

Accelerates 

[1
7
7

, 2
6

1
]  
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 Chemotaxis Phagocytosis 
ROS  

generation 

Granule 

Release 

NET 

formation 

Bacterial 

Killing 
Apoptosis 

Release of 

cytokines 

Aggregatibacter 

actinomycetem- 

comitans 

Decreased 

by Aa 

extract 

[1
4
2

] 

Resists 

phagocytosis 

[2
3
6

] 

Induced  

[1
7
5

] 

MMP8 by 

Aa & 

Lactoferrin, 

Elastase by 

Leukotoxin 

[2
0
9

, 2
6

8
] 

Induced 

[1
5
3

, 2
2

2
] 

Not Killed 

[1
2
8

, 2
3

5
] 

Accelerated 

by Aa 

[2
3
6

]  

IL-1β, 

TNFα 

and IL-

8 (by 

Aa 

LPS) 

[2
5
2

] 

Increased by 

leukotoxin 

[1
4
3

, 1
5

3
] 

Killed 

[2
3
6

] 

Lysed by 

leukotoxin 

[2
6
8

] 

Porphyromonas  

gingivalis 

Extract from 

Pg was 

chemotactic, 

but inhibited 

chemotaxis 

to other 

stimuli 

[1
4
2

] 

Resists 

phagocytosis 

[1
5
8

, 1
5

9
, 2

2
9

] 

Minimally 

induced  

[1
7
6

] 

MMP9 

[1
9
6

] 

No 

effect  

[1
7
6

] 

Not killed 

[2
0
4

] 

No effect 

[1
9
6

, 2
6

5
-2

6
7

] 

IL-1β, 

TNFα, 

IL-8 

and 

CCL2 

[2
5
1

-2
5
3

] 

Ingested 

normally 

[1
9
6

, 

2
2
3

, 

2
7
4

] 

Killed 

[2
2
3

] 

Filifactor alocis Inhibits 

[2
7
5

] 

Ingested 

normally 

[2
7
6

] 

Minimal 

[2
7
6

] 

Secretory 

vesicles, 

Gelatinase 

& 

Specific 

granules  

[2
7
6

] 

Does 

not 

induce 

& 

inhibits 

PMA-

induced 

[2
7
6

] 

Not killed 

[2
7
6

] 

? 
IL-1ra, 

CCL4 

[2
5
3

] 

Peptoanaero-

bacter stomatis 

Induces 

migration 

of 

neutrophils 

[2
5
3

] 

Resists 

phagocytosis 

[2
7
7

] 

Robust 
[2

7
7

] 
Robust, 

all 

granules 

[2
7
7

] 

Induced 

[2
7
6

] 

Killed  

[2
7
7

] 

? 

IL-1β, 

TNFα, 

IL-1ra, 

CXCL1, 

CCL2, 

CCL3, 

CCL4 

[2
5
3

] 
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CHAPTER 2: 

 

WHOLE TRANSCRIPTOME ANALYSIS REVEALS THAT FILIFACTOR ALOCIS 

MODULATES TNF-STIMULATED MAPK ACTIVATION IN HUMAN 

NEUTROPHILS. 

 

 

 

Introduction:   

Periodontitis is a chronic inflammatory disease where inflammophilic pathogenic 

bacterial communities accumulate at the gingival crevice. These dysbiotic microbial 

communities induce a severe inflammatory response that fails to control bacterial growth 

and contributes to the irreversible destruction of the tooth-supporting tissues [8]. 

Historically, periodontal research has focused on the pathogenic members of the ‘red 

complex,’ which includes Porphyromonas gingivalis, Treponema 

denticola, and Tannerella forsythia. However, recent human microbiome studies have 

revealed many previously uncultured organisms with a strong correlation with periodontal 

disease [36, 38]. One of these newly appreciated species is Filifactor alocis, a Gram-

positive anaerobic rod whose pathogenic potential and contribution to periodontal diseases 

is emerging. F. alocis is consistently and abundantly found in periodontal active lesions 

[49, 50, 57, 278-280]. Furthermore, F. alocis shares virulence characteristics with other 

periodontal pathogens such as resistance to oxidative stress, biofilm formation, secretion 

of proteases, and evasion of the immune system [48, 58, 59, 62, 73].  
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Neutrophils constitute an overwhelming majority of the leukocytes recruited to the 

oral cavity, where they are essential for maintaining homeostasis of periodontal tissues 

[119, 281, 282]. Neutrophils can deploy several strategies to efficiently detect, detain and 

destroy microbes. These include phagocytosis, release of antimicrobial enzymes or toxic 

factors, generation of massive amounts of reactive oxygen species (ROS) and the discharge 

of their nuclear material into neutrophil extracellular traps (NETs) [283].  However, oral 

pathogens have evolved mechanisms to manipulate neutrophil functional responses to 

prevent being killed while propagating inflammation [14, 282]. Previous work from our 

laboratory has shown that despite efficient phagocytosis by neutrophils, F. alocis survives 

within neutrophils by inducing minimal production of intracellular ROS and curtailing the 

fusion of antimicrobial granules with its phagosome [275, 284]. However, in comparison 

to the keystone oral pathogen, P. gingivalis, and another emerging oral pathogen, 

Peptoanaerobacter stomatis, challenge with F. alocis resulted in a mild release of 

neutrophil-derived pro-inflammatory cytokines, which resulted in limited recruitment of 

monocytes and other neutrophils [253]. Thus, I hypothesize that F. alocis may modulate 

neutrophil signaling events to interrupt pro-inflammatory cytokine production and alter 

immune cell recruitment and communication. 

The Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved 

regulators that carry out signal transduction for many cellular functional processes. MAPK 

activation cascades are well characterized, and usually begin with the ligation of cell 

surface receptors followed by activation of a relay cascade of phosphorylation of three core 

kinases: MAP3K, MAP2K (MEK or MKK) and MAPK. Active MAPKs can phosphorylate 

a variety of intracellular targets, including transcription factors, nuclear pore proteins, 
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membrane transporters, cytoskeletal elements, and other protein kinases, so their activation 

is subjected to spatiotemporal regulation by complex feedback and crosstalk mechanisms 

[285, 286]. In human neutrophils, bacterial lipopolysaccharide (LPS) activates Toll-like 

Receptor (TLR) 4 followed by downstream activation of MAPK signaling pathways and 

the transcription factor regulator nuclear factor (NF)-κB; both of which can independently 

regulate the production of inflammatory cytokines and chemokines [287, 288].  Both p38 

MAPK and ERK pathways control transcription and translation of inducible cytokines in 

neutrophils stimulated with LPS or TNFα [289]. Due to the relevant role that MAPK 

signaling plays in regulation of immune responses, it is not surprising that some pathogens 

have developed mechanisms to hijack this signaling cascade on immune cells [290, 291]. 

For example, Mycobacterium tuberculosis acetylates a MAPK phosphatase, DUSP16, to 

increase phosphatase activity on Janus kinase (JNK) and limit inflammatory cytokine 

production by bone marrow-derived macrophages [292]. Prior work from our group 

showed that F. alocis initially activates both p38 MAPK and ERK1/2 through TLR2 [275]; 

however, it is unknown what the MAPK response is after F. alocis stimulation for longer 

time points or how the cells respond to secondary stimuli after F. alocis challenge.  

Few sequencing studies have tracked transcriptome changes in human neutrophils 

during challenge with a bacterial pathogen [293-296]. Even fewer studies have measured 

changes in the neutrophil transcriptome associated with challenge by putative oral 

pathogens. Thus, I sought to characterize global changes at the gene expression level in 

human neutrophils during infection with F. alocis. Analysis of whole-transcriptome by 

RNA-based next-generation sequencing (RNAseq) shows that F. alocis challenge alters 

the human neutrophil transcriptome by inducing significant changes in the expression of 
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genes involved in various neutrophil effector functions. One of the findings of our RNA-

seq screen was that F. alocis challenge affected the expression of components in both the 

TNF and MAPK kinase signaling pathways. This resulted in decreased p38 MAPK 

activation by secondary stimuli TNFα, but not fMLF. Moreover, only live F. alocis limited 

the TNFα-stimulated production of IL-8, demonstrating that this is one of the mechanisms 

actively induced by the oral pathogen to control neutrophil functional responses.  

 

Materials & Methods:   

 

Human neutrophil isolation: Human donor recruitment, blood draws, and the use of the 

materials required for this procedure were in accordance with the guidelines approved by 

the Institutional Review Board of the University of Louisville. Neutrophils were isolated 

from venous blood of healthy donors using plasma‐Percoll gradients, as described 

previously [297]. Neutrophil populations were further enriched to obtain highly pure cells 

(>99%) by negative magnetic selection using the Easy Eights EasySep Magnet and human 

neutrophil enrichment kit (Stemcell Technologies, Vancouver, BC, Canada), as previously 

described [298]. Cell purity was assessed by simultaneously staining with FITC‐

conjugated anti‐CD66b (clone G10F5; BioLegend, San Diego, CA, USA) and APC‐

conjugated anti‐CD16 (clone CB16; eBioscience, San Diego, CA, USA) antibodies and 

determining the percentage of CD66b+CD16+ cells using BD Celesta flow cytometer (BD 

Biosciences, San Jose, CA, USA). Both pure (>90–95%) and highly pure (>99%) 

neutrophils were cultured in complete RPMI‐1640 medium (Sigma-Aldrich, St. Louis, 

MO, USA) with 5% human serum (Atlanta Biologicals, Flowery Branch, GA, USA). 
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Bacterial strains and growth conditions: F. alocis ATCC 38596 was cultured in brain heart 

infusion (BHI) broth supplemented 5 mg/mL yeast extract, L-cysteine (0.05%) and 

arginine (0.05%) for 7 days anaerobically at 37 °C as previously described [275, 276]. 

Serum opsonization was performed by incubating F. alocis at 37°C for 20 min in 10% 

normal human serum (Complement Technology, Inc., Tyler, TX, USA). Heat killed F. 

alocis was generated by incubation at 90 °C for 60 min. Non-viability was confirmed by 

incubation in culture media at same conditions used for the live organism.  

 

F. alocis challenge and RNA isolation: Highly pure (>99%) human neutrophils (10–20 × 

106 cells/mL) were unstimulated or challenged with opsonized F. alocis at a multiplicity 

of infection (MOI) of 10, for 1, 3, or 6 h. The infection was synchronized by centrifugation 

at 14°C for 4 min at 600×g. After each time point, the cells were harvested using Trizol 

(Life Technologies, Carlsbad, CA, USA) and stored at -80°C until RNA extraction. RNA 

was isolated from unstimulated and F. alocis challenged human purified neutrophils using 

the hybrid method of Trizol and RNeasy minikit (Qiagen, Venlo, Netherlands). The 

aqueous phase containing RNA was loaded on the Qiagen column for further purification 

of RNA. The purified RNA quality was measured by running sample on Bioanalyzer.  

 

Library Preparation: The isolated RNA was checked for integrity using the Agilent 

Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA) and quantified 

using a Qubit fluorometric assay (Thermo Fisher Scientific, Waltham, MA, USA). Total 

RNASeq libraries were prepared following Illumina’s TruSeq Stranded Total RNA LT 
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with Ribo-Zero Gold library preparation protocol (Illumina Inc., San Diego, CA, USA, 

Cat# RS-122-2301). After depletion of ribosomal RNA, all samples were ligated with 

Illumina adapters and individually barcoded. Absence of adapter dimers and consistent 

library size of approx. 300 bp was confirmed using the Agilent Bioanalyzer 2100. Library 

quantitation was performed by qPCR using the KAPA Library Quantitation Kit (Kapa 

Biosystems, part of Roche Sequencing and Life Science, Wilmington, MA, USA) for 

Illumina Platforms. 

 

Sequencing run: 1.8 pM of the library pool was loaded with 1% PhiX spike-in on two 

NextSeq 500/550 75 cycle High Output Kit v2 sequencing flow cells. Sequencing was 

performed on the Illumina NextSeq 500 sequencer targeting 50M 1x75bp reads per sample.  

 

Bioinformatic analysis: Each of four single-end raw .fastq files for each replicate was 

concatenated into one single end .fastq file using the unix cat command. A total of sixteen 

files representing four independent donors and four experimental conditions were 

generated. Quality control (QC) of the raw sequence data was performed using FastQC 

(version 0.10.1) [47]. The interquartile range remained above 30 (99.9% base call 

accuracy) across the reads. The concatenated sequences were directly aligned to the Homo 

sapiens reference genome assembly (hg38.fa) using tophat2 (version 2.0.13) [300], 

generating alignment files in bam format.  The alignment rate ranged from 88 to 93 percent 

across the samples. Differential expression analysis between each treatment condition (1hr, 

3hrs, and 6hrs) and the control condition was performed using cufflinks cuffdiff2 (version 

2.2.1) [301, 302].  A q-value cutoff ≤ 0.05 with an absolute |log2FC| ≥ 1 was used to 

determine differential expression.  
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Reverse Transcription and quantitative real-time PCR (RT-qPCR): Total RNA isolated 

from the different experimental conditions was followed by reverse-transcription into 

cDNA using a High capacity RNA to cDNA kit (Applied Biosystems, Foster City, CA, 

USA), while qPCR was carried out using SYBR®Green PCR Master Mix Applied 

Biosystems, Foster City, CA, USA) on an Applied Biosystems StepOne Plus cycler with 

stepone software V2.2.2. Sequences of the gene-specific primers (Integrated DNA 

Technologies, Skokie, IL, USA) used in this study are listed in Table 2.1. Data were 

calculated and expressed as mean normalized expression (MNE) units after GAPDH 

normalization as previously described [303].  

 

Western Blotting: Neutrophils (10 × 106 cells/mL) were cultured at 37°C, 5%CO2 in RPMI-

1640 with 5% heat-inactivated human serum and left unstimulated, stimulated with FSL 

(100 ng/mL), challenged with either live or heat-killed F. alocis for 1, 3, 6, or 10 hours 

followed by stimulation with fMLF (300 nM, 1 min) or TNF-α (10 ng/ml, 15 min). After 

the different experimental procedures, cells were centrifuged at 6,000 ×g for 30 s and lysed 

for 30 min on ice in ice-cold lysis buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1% 

[vol/vol] Triton X-100, 0.5% [vol/vol] Nonidet P-40, 20 mM NaF, 20 mM NaVO3, 1 mM 

EDTA, 1 mM EGTA, 5 mM phenylmethylsulfonyl fluoride [PMSF], 21 μg/ml aprotinin, 

5 μg/ml leupeptin, and 4mM Diisopropyl fluorophosphates [DFP]). After protein 

estimation using the Pierce BCA protein assay kit (Thermo Scientific, Waltham, MA, 

USA), samples were adjusted to a concentration of 2 µg/µL. 16-20 µg/µL of total cell 

lysates were separated by 12% SDS-PAGE and immunoblotted with antibodies for 
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phospho-ERK1/2, total ERK1/2, phospho-p38 MAPK, total p38 MAPK, phospho-AKT, 

total AKT, phospho-S6 (Cell Signaling Danvers, MA, USA), p47phox or p67phox (gift 

from Dr. William M. Nauseef) all at 1:1000 dilution. The appropriate secondary antibodies 

were used at 1:2000 dilution (Cell Signaling, Danvers, MA, USA). The ECL system 

(Amersham Pharmacia Biotech, Little Chalfont, United Kingdom) or the SuperSignal West 

Femto Maximum Sensitivity Substrate (Thermo Scientific,Waltham, MA, USA) was used 

to visualize antigen-antibody reactions. Densitometric values of each band were calculated 

using Image Lab software (BioRad, Hercules, CA, USA). 

 

Superoxide Generation and Priming: Superoxide anion release was measured 

spectrophotometrically at 550 nm as the superoxide dismutase‐inhibitable reduction of 

ferricytochrome c as previously described [297]. Briefly, neutrophils (4 × 106cells/ml) 

were cultured in RPMI supplemented with 5% heat inactivated human serum, and left 

untreated or pre-treated with p38 inhibitor BIRB-796 (75 nM, added to media 60 min 

before 6 and 10 hour timepoints; Sigma, St. Louis, MO, USA), or with opsonized F. alocis 

(MOI 10) for 6 and 10 hours at 37 °C in a shaking waterbath. After this first pre-treatment, 

TNFα (10 ng/ml, 10 min) were added to all the samples. Samples were run in duplicate, 

one of the duplicates was used to detect basal superoxide levels in the presence or absence 

of each pre-treatment, the other sample was used to measure TNF-priming by further 

challenge with fMLF (300 nM) for 5 min. After stimulation of superoxide production, the 

samples were centrifuged for 10 min at 600×g, 4 °C, supernatants were collected, and 

optical densities were read.  
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IL-8 Cytokine Measurement and Apoptosis: Neutrophils (10 × 106 cells/mL) were cultured 

in RPMI + 5% heat inactivated human serum, and left untreated, or pre-treated with TAK1 

inhibitor (5Z)-7-Oxozeanol (3 µM, added 30 min before 6 and 10 hour timepoints; 

Cayman, Ann Arbor, MI, USA), or p38 inhibitor BIRB-796 (75 nM, added 60 min before 

6 and 10 hour timepoints; Sigma, St. Louis, MO, USA), or opsonized F. alocis (MOI 10) 

for 6 and 10 hours at 37 °C in an incubator with 5% CO2. After the pre-treatment, the 

volume in the tube was divided evenly between two tubes, one of the tubes received TNFα 

(10 ng/ml) and the other nothing. All tubes were returned to the incubator for 4 or 12 hours. 

After the TNFα stimulation period, cells were centrifuged, their supernatants collected and 

the pellets tested for apoptosis. 1% protease and phosphatase inhibitors were added to the 

supernatants to protect them from degradation. IL-8 was measured in the supernatants 

using a commercially available kit (Invitrogen, Carlsbad, CA, USA). Cells were processed 

for Annexin V/7-AAD staining using the commercially available APC Annexin V 

Apoptosis Detection Kit with 7-AAD (BioLegend, San Diego, CA, USA). Samples were 

read on a BD FACSCelesta flow cytometer and analyzed using the FlowJo software 

(Ashland, OR, USA).  

 

Statistical Analysis: Unless otherwise noted, statistical differences among experimental 

conditions and time points were analyzed by a repeating measures two-way ANOVA, 

followed by Bonferroni post-tests using GraphPad Prism Software (Graphpad San Diego, 

CA, USA). Differences were considered significant at the level P < 0.05. When a two-way 

ANOVA was not applicable, one-way ANOVA followed by the post-hoc Tukey multiple-

comparison test was used.  

https://www.google.com/search?rlz=1C1GCEV_en&sxsrf=ACYBGNSvDlhVPDEEo33jrXvDByVSxVDa6w:1580933057603&q=Carlsbad,+California&stick=H4sIAAAAAAAAAONgVuLQz9U3KDIpz3vE6Mgt8PLHPWEpi0lrTl5jNOLiCs7IL3fNK8ksqRRS4WKDsqS4eKTgmjQYpLi44DyeRawizolFOcVJiSk6Cs6JOZlp-UV5mYkAnNVDU2cAAAA
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Results:   

F. alocis induces global changes in gene expression 

To assess changes in gene expression after F. alocis challenge, whole transcriptome 

by RNA-based next-generation sequencing (RNA-seq) was performed on human 

neutrophils from 4 individual healthy donors that were either left unstimulated or 

challenged with F. alocis for 1, 3 or 6 hours. All time points for each donor were mapped 

onto a principal component analysis (PCA) plot to determine the variation in the dataset 

(Figure 2.1A). All four donors clustered together for each experimental condition, showing 

that donor variability is not a major contributor in our dataset. Contrastingly, the 

transcriptional profile of F. alocis-stimulated neutrophils clearly separated from basal 

conditions at each time point. Next, differential expression analysis was completed 

between each treatment condition using the Tuxedo Suite Program cuffdiff2, where a p-

value cutoff ≤ 0.01 and a log fold change │log2FC│ ≥ 1 was utilized to compile a list of 

differentially expressed genes (DEG) for further analyses. Volcano plots for each time 

point showed that F. alocis challenge induced a time-dependent change in gene expression, 

as the number of red colored dots, which represent the significant DEG, grew at each time 

point (Figure 2.1B). On the volcano plots, the most significant DEG for each time point 

were identified. Out of these highlighted DEGs, CAMK1G was upregulated and 

TNFRSF12A was downregulated at all three time points compared to unstimulated cells. 

The CAMK1G gene encodes a protein like calcium/calmodulin dependent protein kinase; 

however, according to RefSeq, its exact function is unknown. TNFRSF12A, also known 

as Fn14, is a weak inducer of apoptosis that can activate NF-kB signaling pathways, 
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promotes oxidative stress, and is linked to high expression of matrix metalloprotease 9 

(MMP-9) [304-307].  

The number of DEG was determined for each time point and plotted based on 

whether it was upregulated or downregulated compared to the basal control (Figure 2.1C). 

The biggest change in transcriptome occurred early in the time course, with 624 genes 

differentially expressed at one hour and a steep increase in the number of DEG between 1 

and 3 hours (Figure 2.1D).  At the 6-hour time point, the number increased only marginally 

from 3 hours. Throughout the time course, the number of genes induced was roughly the 

same as the number of repressed genes. While our DEG criteria is more stringent than other 

studies, these global changes in gene expression appear to be unique to F. alocis as 

compared to other transcriptome studies between neutrophils and bacterial challenge [293-

296]. To validate the RNAseq data, 2 upregulated genes, 2 downregulated genes and 2 

genes with no change were selected for validation by quantitative PCR. Figure 2.1E shows 

the Fragments Per Kilobase of transcript per Million mapped reads (FPKM) expression 

values for all four donors from the RNAseq screen, while Figure 2.1F shows the mean 

normalized mRNA expression by qPCR. Overall, the qPCR results validate the RNAseq 

screen and provide confidence about the targets identified by the high throughput screening 

analysis.  

 

F. alocis affects neutrophil functional and biochemical processes  

To reduce bias during the bioinformatic analysis, the list of DEG was uploaded into 

two separate databases: Database for Annotation, Visualization and 

Integrated Discovery (DAVID) [308, 309] and MetaCore by Clarivate Analytics. In each 
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database, I first identified the significant (p < 0.01) biological processes during challenge 

with F. alocis. From the DAVID analysis, 37, 74, and 86 processes were identified for the 

1-, 3- and 6-hour time points, respectively, and categorized by cell function (Table 2.2). 

Significant process categories in every time point include biological processes related to 

the inflammatory response, response to microbes, chemotaxis, signal transduction, gene 

expression and transcription factor regulation, cytokine-mediated responses and 

production, and apoptosis. However, as the time course progressed, there was a shift in the 

affected processes. While cytokine-related processes were most prominent at the earlier 

timepoints, biological processes related to phagosome maturation and metabolic processes 

became significant at the later time points. Moreover, processes related to protein folding 

only became significant at 6 hours post bacterial challenge.  

Using MetaCore, 71 significant (p < 0.01) network processes were determined in 

our data set. Since the MetaCore software automatically categorizes the processes by cell 

function, I determined the frequency of each category (Figure 2.2A). Like the DAVID 

analysis, most processes were involved with inflammation, signal transduction, the 

immune response, and apoptosis. Cell function processes with a lower frequency include 

protein folding, cytoskeleton, transcription, chemotaxis, and autophagy. Next, I plotted the 

top 25 most significantly upregulated (Figure 2.2B) and downregulated processes (Figure 

2.2C). Processes related to inflammation made up 4 out of the top 5 upregulated network 

processes, but the significance of the inflammatory processes decreased as the time course 

progressed. In fact, some of these inflammation processes from the upregulated list became 

significant in the downregulated processes during the later time points, as is the case with 

processes such as IL-6 signaling and neutrophil activation (Table 2.3). This suggests that 
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F. alocis may be dampening inflammatory processes between 1 and 3 hours to prolong its 

survival or provide protection to bystander species. Together, this data shows that F. alocis 

challenge induces temporal changes in neutrophil functional mechanisms like cytokine 

production, chemotaxis, vesicular trafficking and degranulation, as well as neutrophil 

biochemical mechanisms like the regulation of signaling pathways and metabolism. This 

coincides with previous data from our laboratory that shows that F. alocis affects 

neutrophil cytokine production, chemotaxis, vesicle trafficking, and degranulation 

functions [253, 284].  

Based on previous work that demonstrated that F. alocis induces minimal 

intracellular and extracellular ROS production [284], I looked at whether the components 

of the NAPDH oxidase complex are affected during F. alocis challenge (Table 2.4). From 

the RNAseq data, the only statistically significant results show that the expression of 

CYBB (gp91phox subunit) increased in a time-dependent manner while the expression of 

NCF1 (p47phox subunit) decreased by 6 hours of challenge, which was also validated by 

qPCR (Figure 2.1F). While the minimal ROS activation at the early time points cannot be 

attributed to modulation of gene expression by F. alocis, generation of ROS at later time 

points may be inhibited by the expression of a member of the galectin family of 

carbohydrate binding proteins, galectin 3. The increased expression of galectin 3, has 

already been associated with inhibition of ROS production when human neutrophils were 

challenged with Candida albicans [310]. In our dataset, both the FPKM expression as well 

as the qPCR validation show a time dependent increase in galectin-3 mRNA expression 

(Figure 2.1E-F), and when tested by western blot, F. alocis induced a time dependent 

increase in galectin-3 protein expression (data not shown).   
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F. alocis challenge upregulates cytokine pathways and downregulates signaling pathways 

Next, I identified pathways relevant to challenge with F. alocis. Using DAVID, the 

list of DEG was mapped onto predefined pathways from the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database. I limited our analysis to highly significant pathways with 

a p value < 0.01, which resulted in 10, 26, and 33 pathways for the 1, 3, and 6-hour time 

points, respectively (Table 2.5). The F. alocis-neutrophil transcriptome reinforced the 

pathogenic potential of F. alocis by the number of significant pathways linked to pathogens 

that subvert immune cells (Salmonella, Legionella, Helicobacter pylori, and Influenza A). 

Similarly, pathways for cancers, rheumatoid arthritis, and inflammatory bowel disease 

were significant for the F. alocis-challenged neutrophil transcriptome in both databases. 

Oral bacteria continue to be linked to systemic malignancies like those listed above [311], 

and although F. alocis has not been amongst the oral pathogens detected yet, these results 

hint that it could play a role in the pathogenesis of these diseases.  

Two major bacterial recognition receptor signaling pathways were identified in our 

data set, NOD-like receptor and Toll-like receptor signaling. These receptor pathways align 

with published data on F. alocis-induced cytokine production, where NOD1 is activated 

during challenge with heat-killed F. alocis to produce IL-6 in monocytes [68], and TLR2/6 

activation of neutrophils leads to the production and release of cytokines and chemokines 

[253]. Using Metacore, I divided the significant pathways into the top 20 upregulated 

(Figure 2.3A) and downregulated (Figure 2.3B) plots. The list of upregulated pathways 

supports published data that shows initial contact with F. alocis results in the early 

transcription and production of cytokines [253]. At 1 hour, cytokine-related pathways such 
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as cytokine-cytokine receptor interaction, TNF signaling pathway, and chemokine 

signaling pathway were also prominent pathways by KEGG analysis (Table 2.5). In both 

databases, the NFκB signaling pathway was significant and upregulated, suggesting this 

transcription factor is responsible for the cytokine and chemokine transcriptome response.  

While many of the upregulated pathways were related to inflammation and cytokine 

responses, the downregulated list was largely comprised of signal transduction pathways 

(Figure 2.3B). The pathways were significantly affected at the later timepoints and include 

signal transduction by MAPK, GPCR, Rho GTPases, PI3K, PTEN, AKT, and PKA. Out 

of the list of 20 downregulated pathways, seven relate to MAPK signaling. To further 

support this analysis, under the signal transduction biological process category, positive 

regulation of ERK1 and ERK2 cascade and activation of MAPK activity are significant at 

one hour, but at 3 and 6 hours, inactivation of MAPK activity becomes significant (Table 

2.5). I focused on this pathway and determined if F. alocis is modulating MAPK signaling 

in human neutrophils.  

 

F. alocis challenge does not affect fMLF-stimulated MAPK signaling  

Since G-protein coupled receptor (GPCR) and MAPK were both hits in our dataset, 

western blots to evaluate ERK1/2 and p38 MAPK activation were performed on lysates 

from human neutrophils pretreated with media or media containing F. alocis for 1, 3, 6, 

and 10 hours followed by stimulation with the bacterial peptide N-Formylmethionine-

leucyl-phenylalanine (fMLF) (Figure 2.4A). Densitometry analysis of the western blots 

bands for phosphorylated and total ERK1/2 showed that stimulation with F. alocis alone 

has a time dependent increase in phosphorylation of ERK1/2 (Figure 2.4B). This suggests 
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there is a bimodal response in the activation of ERK1/2 since it was previously published 

that ERK phosphorylation peaks at 15 min and then decreases [275]. In the case of p38 

MAPK, the levels of phosphorylated p38 MAPK are also increased in the F. alocis pre-

treated cells as compared to neutrophils cultured in media alone (Figure 2.4C). However, 

the levels remain steadily elevated throughout the time course. This pattern of 

phosphorylation for the MAPK is also observed, although at different magnitudes, when 

neutrophils are pre-treated with heat-killed F. alocis (Figure 2.4D, E), or the TLR2/6 

agonist FSL1 (Figure 2.4F, G). Despite the increased basal levels of phosphorylated 

ERK1/2 and p38 MAPK in the viable and heat-killed F. alocis pretreated cells, when the 

neutrophils are stimulated with fMLF after pre-treatment with F. alocis, the 

phosphorylation of both ERK and p38 MAPK is comparable to that of cells cultured in 

media + fMLF (Figure 2.4B, C). Contrastingly, cells pretreated with FSL1 showed 

increased phosphorylation of ERK1/2 when stimulated with fMLF, which became 

significant at 10 hours compared to media-cultured cells stimulated with fMLF alone 

(Figure 2.4F). A similar trend was observed at the 10-hour time point with phosphorylation 

of p38 MAPK but the data did not reach statistical significance when compared to fMLF 

alone (Figure 2.4G). 

 

F. alocis challenge dampens TNF-α-stimulated MAPK signaling  

From the DAVID analysis, one of the KEGG pathways that was significantly 

modulated by F. alocis at each timepoint was the TNF signaling pathway (Table 2.5). 

Similarly, four of the upregulated pathways and one of the dowregulated pathways from 

the MetaCore analysis involve TNF signaling (Figure 2.3A, B). Since it is well documented 
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that stimuli like LPS and TNFα can activate the p38 and MEK/ERK pathways in 

neutrophils [287, 312, 313] and high levels of TNFα are present in periodontitis active sites 

[314, 315], I tested the effect of F. alocis pre-treatment on TNFα-induced MAPK signaling 

cascade. Whole cell lysates from neutrophils pretreated with media or F. alocis followed 

by stimulation with TNFα were immunoblotted for phosphorylated and total ERK1/2 and 

p38 MAPK (Figure 2.5A). Densitometry analysis of the ERK immunoblots showed that 

pre-treatment with F. alocis did not impact TNFα-driven phosphorylation of ERK1/2 

(Figure 2.5B). However, the TNFα-driven phosphorylation of p38 MAPK was 

significantly dampened in neutrophils pre-treated with F. alocis for 6 and 10 hours as 

compared to neutrophils cultured in media alone (Figure 2.5C). This effect is dependent on 

the bacteria being viable, because when the neutrophils were pre-treated with heat-killed 

F. alocis before stimulation with TNFα, there was no decrease in the p38 phosphorylation 

at 6 or 10 hours (Figure 2.5D). Additionally, ligation of TLR2/6 is insufficient to elicit the 

phenotype observed (Figure 2.5E). This data shows that viable F. alocis modulates TNFα-

induced activation of the MAPK signaling pathway by selectively interfering with the 

phosphorylation of p38 MAPK, but not ERK1/2. 

In human neutrophils, activation of p38 MAPK by TNFα results in the downstream 

phosphorylation and activation of AKT [316]. Therefore, since the TNFα-induced 

activation of p38 MAPK was affected when neutrophils were pre-treated with F. alocis, 

the activation of AKT should also be compromised. To test this hypothesis, the lysates 

from media or F. alocis pre-treated neutrophils stimulated with TNFα were immunoblotted 

for phosphorylated and total AKT (Figure 2.6A). Densitometry analysis of the Western 

blots demonstrated that TNFα-mediated phosphorylation of AKT was also dampened in F. 
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alocis treated cells as compared to media-cultured neutrophils (Figure 2.6B). The reduced 

AKT phosphorylation followed the timing of the decreased p38 MAPK phosphorylation 

with the phenotype reaching statistical significance only at 6 and 10 hours. Like the p38 

MAPK phenotype, the lowered AKT activation was dependent on interaction with viable 

F. alocis (Figure 2.6C) and was not mediated solely through ligation of the TLR2/6 

receptor (Figure 2.6D). Also downstream of p38 MAPK phosphorylation is the activation 

of translation machinery such as the S6 ribosomal protein [287]. Thus, the phosphorylation 

of S6 was tested in whole cell lysates from neutrophils pre-treated with F. alocis prior to 

TNFα stimulation (Figure 2.7A). Densitometry analysis showed that the activation of S6 

in response to TNFα was significantly dampened in neutrophils pre-treated with F. alocis 

for 6 hours in comparison to media treated controls (Figure 2.7B). While this trend 

continued in the 10-hour pre-treatment condition, it did not reach statistical significance. 

Together, these results demonstrate that F. alocis actively modulates the TNFα signaling 

pathway by dampening the activation of p38 MAPK and its downstream effectors, AKT 

and S6 ribosomal protein.  

 

Functional effects of F. alocis’ inhibition of TNFα-mediated p38 phosphorylation   

TNFα stimulation can prime the ROS response of neutrophils, extend their lifespan 

and induce cytokine production (reviewed in [127]). To determine if the interference of 

TNFα signaling resulted in any phenotypic changes, these three TNFα-mediated functional 

responses were tested on cells cultured with F. alocis for 6 and 10 hours prior to TNFα 

stimulation. The RNA seq screen showed that the mRNA levels of some NADPH oxidase 

components were affected; thus, before testing the ROS priming response, the protein 
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expression of two of the subunits p47phox (NCF1) and p67phox (NCF2) was determined 

(Figure 2.8). The RNAseq screen showed the gene expression of p67phox was unchanged 

when the cells were challenged with F. alocis, but the gene expression of p47phox was 

significantly decreased in F. alocis treated cells (Table 2.4). At the protein level, there was 

no significant difference between media cultured neutrophils and those exposed to F. alocis 

at any timepoint tested for either p47phox or p67 (Figure 2.8A-C). Stimulation with TNFα 

also had no effect on either subunit’s protein expression in media cultured neutrophils or 

those exposed to F. alocis, demonstrating that any changes observed in the ROS priming 

response could not be due to differences in the availability of NADPH oxidase components. 

The basal extracellular superoxide production was similar in cells cultured in media or in 

media with p38 inhibitor BIRB-796 or F. alocis for 1, 6, and 10 hours (Figure 2.9A). 

However, when BIRB-796 and F. alocis pre-treated cells were primed with TNFα followed 

by stimulation with fMLF, the superoxide production was comparable to that of neutrophils 

cultured in media prior to the TNFα priming. Thus, I conclude that inhibiting p38 activation 

through a chemical inhibitor or F. alocis does not affect the ability of TNFα to prime 

neutrophils’ ROS response.  

In human neutrophils, TNFα stimulation activates MAPK kinase kinase, TAK1 

(also known as MAP3K7), which leads to the downstream phosphorylation of ERK1/2 to 

delay apoptosis and the phosphorylation of p38 to induce cytokine production (Figure 2.12) 

[287, 316]. First, the effect of F. alocis- impaired p38 activation was tested on apoptosis. 

Neutrophils were cultured in media or media with a TAK1 inhibitor (5Z)-7-Oxozeanol (30 

min), a p38 inhibitor BIRB-796, (60 min) or F. alocis for 6 hours, followed by ± TNFα 

stimulation for 12 hours (Figure 2.9B, Fig. 2.10). Based on Annexin V and 7-AAD 
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staining, TNFα stimulation of cells cultured in media was able to decrease the number of 

apoptotic cells compared to cells left in media alone. When TAK1 was inhibited by (5Z)-

7-Oxozeanol, neutrophils became apoptotic, especially when treated with TNFα. 

Neutrophils pre-treated with BIRB-796 behaved similarly to media-cultured neutrophils, 

where TNFα stimulation is pro-survival because inhibition of p38 does not affect the 

TNFα-ERK1/2 mediated delay in apoptosis. Interestingly, pre-treatment of neutrophils 

with F. alocis alone resulted in a decrease in apoptotic cells, which was not reduced further 

with TNFα stimulation. Apoptosis was also assessed in cells pre-treated with F. alocis for 

10 hours prior to the 12-hour stimulation with TNFα, and results matched the 6-hour pre-

treatment (Figure 2.11A-E). Together, this data reinforces the finding that only ERK1/2 

signalling is important in TNFα-induced neutrophil survival and that F. alocis is selectively 

inhibiting p38 MAPK.  

TNFα stimulation can also induce the production of cytokines and chemokines, 

such as interleukin (IL)-8. Thus, the release of IL-8 was tested in the supernatants of cells 

cultured with media, (5Z)-7-Oxozeanol, BIRB-796, or F. alocis for 6 hours followed by 

+/- TNFα stimulation for 12 hours (Figure 2.9C). As expected, TNFα stimulation of media-

cultured neutrophils induced significant release of IL-8. Culturing the neutrophils with the 

TAK1 and p38 inhibitors alone did not induce IL-8 production; however, TAK1 and p38 

inhibition reduced the release of IL-8 by TNFα stimulation. Contrastingly, the F. alocis 

pre-treatment alone caused robust release of IL-8, which significantly surpassed the IL-8 

release of TNFα-activated, media-cultured cells. Despite the potent IL-8 production by F. 

alocis alone, the further stimulation of F. alocis pre-treated cells with TNFα did not cause 

significant, additional release of IL-8. To rule out the possibility that F. alocis treatment 
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alone exhausted the neutrophils’ ability to produce IL-8, I also tested neutrophil IL-8 

production after pre-treatment with heat-killed F. alocis, which show normal p38 activation 

in response to TNFα stimulation (Figure 2.5D). Similar to viable bacteria, the heat-killed 

bacteria induced significant IL-8 production from neutrophils, and this production was not 

significantly enhanced with stimulation by TNFα (Figure 2.9C). This phenotype was also 

observed when neutrophils were pre-treated for 10 hours with viable or heat-killed F. alocis 

prior to TNFα challenge for 12 hours (Figure 2.11F), suggesting that despite a defect in 

TNFα-mediated p38 phosphorylation by the viable bacterium, alternative pathways are 

activated by F. alocis that result in maximal IL-8 production from neutrophils in the 

timepoints tested. This observation raised the possibility that the inhibition of p38 

phosphorylation by F. alocis subsides during the 12-hour TNFα stimulation period. 

Therefore, I tested the phosphorylation of p38 in neutrophils pre-treated with media or  F. 

alocis for 6, 10 and 20 hours prior to TNFα stimulation for 15 min, and the inhibition of 

p38 phosphorylation by F. alocis had dissipated by 20 hours, suggesting the MAPK 

dampening by F. alocis is a transient effect (Figure 2.9D). Finally, to determine if IL-8 

production is affected during the period of infection where p38 phosphorylation is 

dampened, I shortened the TNFα stimulation to 4 hours (Figure 2.9E). Despite the shorter 

stimulation period, TNFα still caused significant release of IL-8 from media cultured cells. 

Both viable and heat-killed F. alocis induced significant IL-8 production on their own, but 

their responses diverged after TNFα stimulation. While heat-killed F. alocis pre-treated 

cells produced a greater amount of IL-8 upon addition of TNFα, viable F. alocis-treated 

cells were incapable of generating more IL-8. Combined, this data demonstrates that viable 

F. alocis blocks TNFα-mediated p38 activation to reduce transiently the production of pro-
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inflammatory cytokines, but this interference has no effect on other TNFα induced effector 

functions like ROS priming or pro-survival response.  

 

Discussion:   

 

 As executioners of the innate immune response, neutrophils are recruited to the 

gingival tissue to provide the host with protection against infection. However, in active 

periodontitis disease sites the interaction between neutrophils and the dysbiotic microbial 

community results in dysregulated inflammation, which is detrimental to the host. 

Composition analysis of the dysbiotic microbial community identified high concentrations 

of emerging periodontal pathogens such as F. alocis. I recently demonstrated that F. alocis 

survives within human neutrophils by inducing minimal ROS production and blocking 

granule recruitment to the bacteria-containing phagosome [284]. Despite F. alocis causing 

significant changes in the mRNA expression of different neutrophil-derived cytokines and 

chemokines, lower levels of these inflammatory mediators are released when compared to 

the response elicited by other oral pathogens [253]. Therefore, a systems biology-level 

approach was used to define global changes in human neutrophil transcriptome modulated 

by F. alocis. This unbiased approach provides insights into how this emerging oral 

pathogen might undermine the innate immune system and contribute to disease 

progression. Our results show that among the 71 significant biological process modulated 

by F. alocis, the highest percent were related to inflammation, signal transduction, immune 

response, and apoptosis. Furthermore, the KEGG pathway analysis revealed that uptake of 

F. alocis significantly downregulated the expression of genes associated with signal 

transduction pathways primarily the MAPK cascade and the TNFα signaling pathways. To 
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the best of our knowledge, our results are the first to show that TNF-α-induced p38 MAPK 

activation is significantly impaired in F. alocis-challenged neutrophils.  

Research studies from the last 20 years have corrected the misconception that 

neutrophils were unable to induce changes in gene expression because they are short-lived, 

differentially terminated cells with a densely condensed nucleus [317-320]. Microarray-

based approaches show that significant changes in neutrophil gene expression take place 

after 3-6 h following microbial uptake [319]. Likewise, our results show a significant 

increase in neutrophil DEGs from 624 genes up to 2671 following 1 and 3 h of F. alocis 

challenge, respectively. By 6 h post bacterial challenge the number of DEGs continued to 

rise up to 3489 with a similar number of upregulated (1739) and downregulated (1750) 

genes. Interestingly, the transcriptome studies performed thus far on neutrophils following 

bacterial interactions reveal common as well as pathogen-specific transcriptional profiles, 

providing novel information about the potential pathogenic persona of the microorganism 

studied [320]. For example, Anaplasma phagocytophilum induces minimal ROS 

production by neutrophils and a microarray study following 1.5 up to 24 h post infection 

shows that the inability to mount the response is not due to modulation of the genes 

encoding for the different components of the NADPH oxidase [294]. F. alocis is 

phagocytized by human neutrophils but induces minimal ROS production [284]. In contrast 

to the transcriptional neutrophil profile elicited by A. phagocytophilum, our RNAseq and 

qPCR results indicate a significant downregulation of the gene that encodes for one of the 

cytosolic components of the NADPH oxidase, p47phox, and a significant time dependent 

increase in the gene expression of galectin 3. P47phox together with p67phox and p40phox 

form the triad cytoplasmic complex, in a 1:1:1 stoichiometric ratio, which is essential for 
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NADPH oxidase activation [321]. Although the minimal ROS induced by F. alocis-

challenged neutrophils was monitored between 1 and 90 min and the significant decrease 

in p47phox gene expression was observed at 6 h post infection, these pathogen-induced 

changes in the transcript levels could leave neutrophils defective in mounting an 

appropriate respiratory burst response. Furthermore, cytosolic galectin 3 acts as a negative 

regulator of ROS production in both human and mouse neutrophils by modulating 

complement receptor 3 signaling pathway during C. albicans infections [310].  Our results 

show a time dependent increase in galectin 3 gene expression which could be one of the 

strategies used by F. alocis to inhibit ROS production. The mechanisms by which F. alocis 

modulates ROS production, both during early and late time points of infection, is an area 

under investigation in our laboratory.  

To mount an efficacious antimicrobial response inside the neutrophil phagosome, 

the synergy between an optimal activation of the NADPH oxidase, and the fusion of the 

different neutrophil granule subtypes with the bacteria-containing phagosome is essential 

[321]. Microbial pathogens manipulate either one or both of these antimicrobial processes 

to evade neutrophil killing [89]. The expression of CEACAM3-binding opacity (Opa) 

proteins on Neisseria gonorrhoeae renders the organism susceptible to neutrophil killing. 

The ability of N. gonorrhoeae to switch off the expression of Opa proteins, by phase-

variation, prevents azurophilic granule fusion to the phagosome, thus promoting bacterial 

survival [322]. During the phagocytic cup formation, effector proteins secreted by Yersinia 

pseudotuberculosis prevent fusion of specific granules to the forming phagosome in human 

neutrophils [323]. Our transcriptome results show that F. alocis challenge significantly 

downregulated neutrophil processes and signaling pathways involved in the regulation of 
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vesicle-mediated transport, neutrophil degranulation, and cellular pathways involved in 

transport. This significant downregulation of vesicular trafficking and phagosome 

maturation transcripts is consistent with our previous results that F. alocis inhibits specific 

and azurophilic granule recruitment to the bacteria-containing phagosome [284]. The 

mechanisms induced by F. alocis to modulate neutrophil vesicular trafficking to the 

phagosome is an area of active investigation in our laboratories. 

Neutrophils isolated from periodontitis patients and from healthy controls were 

transcriptionally active following 3 h challenge with Fusobacterium nucleatum, which is 

found in high numbers in the subgingival plaque from periodontitis patients [295]. In this 

microarray study, F. nucleatum induced significant upregulation of genes encoding pro-

inflammatory cytokines and chemokines, and it has been shown that this organism induces 

the release of high levels of these inflammatory mediators from neutrophils [197]. In our 

study I looked at the transcriptional response at 1, 3 and 6 hours while the microarray study 

with F. nucleatum was performed only at 3 hours. However, our results show that at 1 h 

post F. alocis challenge there is a significant increase in genes involved in pro-

inflammatory cytokines such as IL-1β and IL-6 but those same signaling pathways were 

significantly downregulated by 3 and 6 hours. F. alocis induces an early increase in both 

gene expression and protein release of pro-inflammatory mediators such as IL-1β, TNFα, 

CXCL1, CXCL8, CCL1, CCL2, and CCL3; but the levels released by human neutrophils 

are significantly lower compared to the response elicited by P. gingivalis and P. stomatis 

[253]. These results suggested that F. alocis might modulate the protein expression and/or 

release of inflammatory mediators by neutrophils, and our current results confirm this 

hypothesis since F. alocis pre-treatment limited the release of IL-8 from TNFα stimulation.  
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An interesting observation from the RNAseq analysis was that F. alocis modulates 

MAPK signaling pathways.  Activation of the different MAPK pathways play a pivotal 

role in several inflammatory and antimicrobial functional responses both in macrophages 

and in neutrophils [291]. Pathogenic organisms have evolved different strategies to 

modulate MAPK activation by releasing bacterial compounds into the host innate immune 

cell that cause kinase inactivation by proteolysis, post-translational modification at active 

enzymatic sites, as well as by induction of different phosphatases [290, 291]. Either 

inactivation or sustained activation of the MAPK signaling pathways will lead to a 

dysregulated immune response. F. alocis challenge induces an early activation of p38 and 

ERK1/2 in human neutrophils that peaks between 15-30 min and decreases following 60 

min of bacterial challenge [275]. I expanded our initial observation, and the data from the 

present study revealed that F. alocis induces a second phase of MAPK activation in human 

neutrophils beyond 60 min of bacterial challenge. Besides modulation of MAPK signaling, 

RNAseq analysis showed that F. alocis also induced changes in gene expression associated 

with GPCR and TNF signaling pathways. In the inflamed gingival crevice environment, 

neutrophils infected with F. alocis will be also exposed to bacterial peptides, such as fMLF, 

as well as to inflammatory cytokines such as TNFα. Our results show a similar degree of 

fMLF-stimulated p38 and ERK1/2 phosphorylation in human neutrophils in the presence 

or absence of F. alocis infection. However, when TNFα was used as the second stimulus, 

F. alocis-challenged neutrophils showed a significant decrease in p38 MAPK activation. 

This modulation of TNFα-induced p38 phosphorylation was not seen when neutrophils 

were exposed to heat-killed F. alocis or the TLR2/6 agonist, FSL-1, prior to the cytokine 

stimulation. Furthermore, the combination of F. alocis and TNFα had no impact on 
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ERK1/2 activation by the pro-inflammatory cytokine. While many pathogenic organisms 

can modulate MAPK signaling in innate immune cells as a mechanism to increase bacterial 

virulence, this is the first time this observation has been shown for F. alocis.  

In human neutrophils, TNFα stimulation results in activation of both p38 and 

ERK1/2, which are involved in the production of inflammatory cytokines and chemokines 

independently of NF-kB activation [316]. However, blocking TNFα-induced activation of 

p38, but not ERK1/2, impaired both the transcription and translation of inflammatory 

cytokines by human neutrophils [287].  Our results show that TNFα-induced activation of 

p38 MAPK is impaired in neutrophils infected with F. alocis, the extent to which this 

affects functional mechanisms was tested and is summarized in Figure 2.12. This 

manipulation of MAPK signaling pathway by F. alocis limited the release of TNF-induced 

chemokine IL-8 by neutrophils. This phenotype has been described for other periodontal 

pathogens, which employ multiple mechanisms to manipulate IL-8 production and limit 

the influx of neutrophils [282]. In human neutrophils, stimulation by TNFα also has a pro-

survival response. It has been shown that activation of MEK and ERK1/2, which are 

uncoupled in human neutrophils, participate in the pro-survival effect of TNFα [289]. A 

previous study also showed that TNFα activated both p38 and ERK1/2 in human 

neutrophils, but that only activation of ERK1/2 was necessary for TNFα-mediated 

inhibition of caspase-3 activity and the pro-survival effect [324]. In our study, F. alocis 

challenge did not affect TNFα-induced ERK1/2 activation, and when apoptosis was tested, 

the pro-survival effect of the cytokine was not impaired. In fact, stimulation with F. alocis 

alone had a pro-survival effect on neutrophils, which was also reflected in the RNAseq 

analysis where F. alocis up-regulated anti-apoptotic signaling pathways in neutrophils.  
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It has been shown that phagocytosis of pathogenic bacteria such as Staphylococcus 

aureus and Streptococcus pyogenes induces changes in neutrophil gene expression 

involved in the acceleration of apoptosis; whereas a different transcriptional profile, linked 

to delay neutrophil apoptosis, is induced following A. phagocytophilum and Francisella 

tularensis infection [294, 296, 320]. A microarray study showed that F. nucleatum induces 

upregulation of anti-apoptotic genes in human neutrophils [295]. Similarly, our RNAseq 

analysis identified several upregulated pro-survival and downregulated pro-apoptotic 

differentially expressed genes in neutrophils after F. alocis challenge. Extending neutrophil 

life span delays cell turnover and prevents resolution of inflammation contributing to 

disease progression. The mechanisms utilized by F. alocis to delay neutrophil apoptosis is 

an area under current investigation in our laboratory.  

In conclusion, F. alocis induces significant changes in the human neutrophil 

transcriptome. In particular, biological processes involved with inflammation, signal 

transduction, vesicular trafficking, neutrophils activation, and apoptosis were significantly 

regulated. Furthermore, these results show that F. alocis modulated both the TNF and 

MAPK kinase signaling pathways. This resulted in decreased p38 MAPK activation by a 

secondary stimulus i.e. TNFα, but not by fMLF. F. alocis, by selectively blocking p38 

MAPK, but not ERK1/2, by the secondary stimulus TNF will potentially maintain a delay 

of neutrophil apoptosis, while dampening the release of inflammatory mediators. 
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Figure 2.1: Global changes in the transcriptome of F. alocis-challenged neutrophils   
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Figure 2.1: Illumina RNA sequencing was performed on human neutrophils from 4 

individual healthy donors that were either left unstimulated (Basal) or challenged with F. 

alocis for 1, 3 or 6 hours. PCA analysis shows the variation between the four donors at 

each timepoint (A). The Tuxedo Suite program cuffdiff2 was used to acquire a list of 

differentially expressed genes (DEG) that were graphed in volcano plots (B). Genes that 

had p ≤ 0.01 and log2 FC│ ≥ 1 are colored in red and genes with high fold changes are 

labeled. For each time point, the average number of upregulated and downregulated 

differentially expressed genes (DEG) was determined and plotted (C, D). Six genes (two 

upregulated, two with no change, and two downregulated) were chosen to validate the 

RNAseq data by quantitative qPCR analysis. From the RNAseq data, the fragments per 

kilobase of transcript per million mapped reads (FPKM) for these six genes are plotted as 

mean ± SEM from the four donors (E). From the qPCR analysis, the mean normalized 

mRNA expression (MNE) from 5 independent experiments are plotted in (F) as MNE ± 

SEM. One-way ANOVAs were performed on the expression levels from each gene to 

determine statistical significance between the basal condition and each timepoint. * = p < 

0.05, ** = p < 0.01, *** = p < 0.001.
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Figure 2.2: Biological processes affected during F. alocis challenge. Differentially 

expressed genes (DEG) for each timepoint were uploaded into the MetaCore database and 

analyzed for biological processes with a significant number of DEG. The frequency of each 

cell function was tallied for all the 71 significant (p < 0.01) processes. The percentage of 

each function are displayed as a donut graph (A). The top 25 upregulated (B) or 

downregulated (C) network processes are graphed according to the –log of the p value for 

each time point. The dotted line represents a p value of 0.01.  
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Figure 2.3: Pathways affected during F. alocis challenge. Using the MetaCore database, 

the top 20 upregulated (A) or downregulated (B) pathways in the transcriptome of F. 

alocis-challenged neutrophils were determined. These pathways are graphed according to 

the –log10 of the p value for each time point. The dotted line represents a p value of 0.01.  
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Figure 2.4: F. alocis effect on fMLF-induced MAPK activation  
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Figure 2.4: To assess whether F. alocis is interfering with MAPK signaling, human 

neutrophils were cultured in media with or without F. alocis at an MOI of 10 for 1, 3, 6, or 

10 hours followed by stimulation with fMLF for 1 min. Western blots of whole cell lysates 

were probed for phosphorylated and total p38 and ERK1/2 (A) and quantified by 

densitometry (B, C). Alternatively, neutrophils were cultured in media alone, media with 

heat-killed F. alocis (D, E) or the TLR2/6 agonist FSL (F, G) for 1, 3, 6, or 10 hours before 

fMLF stimulation. Densitometries are plotted as the mean ± SEM from 6 (B, C) and 4 (D-

G) independent experiments. Statistical differences among experimental conditions and 

time points were analyzed by a repeating measures two-way ANOVA, followed by 

Bonferroni post-tests. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Figure 2.5: F. alocis effect on TNFα-induced MAPK activation  

 

 

 

 



 

74 

Figure 2.5: Human neutrophils were cultured in media with or without F. alocis at an MOI 

of 10 for 1, 3, 6, or 10 hours followed by stimulation with TNF-α for 15 min. Western blots 

with whole cell lysates were probed for phosphorylated and total p38 and ERK1/2 (A) and 

quantified by densitometry (B, C). To determine if the decreased p38 phosphorylation at 6 

and 10 hours was specific to the viable bacteria or a consequence of TLR 2/6 ligation, 

neutrophils were cultured in media alone, media with heat-killed F. alocis (D) or the 

TLR2/6 agonist FSL (E) for 6 or 10 hours before TNF-α stimulation. Western blots of 

whole cell lysates were probed for phosphorylated and total p38. Densitometries are plotted 

as the mean ± SEM from 3 independent experiments. Statistical differences among 

experimental conditions and time points were analyzed by a repeating measures two-way 

ANOVA, followed by Bonferroni post-tests. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Figure 2.6: F. alocis effect on TNFα-induced AKT activation. Whole cell lysates from 

human neutrophils pre-treated with media alone or F. alocis (MOI 10) for 3, 6, or 10 hours 

followed by TNF-α stimulation were probed for phosphorylated and total AKT (A) and 

quantified by densitometry (B). Similarly, neutrophils were cultured in media alone, media 

with heat-killed F. alocis (C) or the TLR2/6 agonist FSL (D) for 6 or 10 hours before TNF-

α stimulation. Densitometries are plotted as the mean ± SEM from 3 (B) and 4 (C, D) 

independent experiments. Statistical differences among experimental conditions and time 

points were analyzed by a repeating measures two-way ANOVA, followed by Bonferroni 

post-tests. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.  
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Figure 2.7: Dampened p38 MAPK phosphorylation affects the activation of 

translation machinery.  Western blots for S6 ribosomal protein, S6, were performed on 

whole cell lysates from human neutrophils cultured in media or with F. alocis for 3, 6, and 

10 hrs, followed by no stimulation or TNFα stimulation for 15 min (A). The protein 

expression of phosphorylated S6  was quantified by densitometry, normalized to β-actin, 

and plotted as the mean ± SEM from three independent experiments (B).   
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Figure 2.8: F. alocis challenge has no effect on the protein expression of NADPH 

oxidase components. Western blots for NADPH oxidase components, p67phox and 

p47phox, were performed on whole cell lysates from human neutrophils cultured in media 

or with F. alocis for 1, 3, 6, and 10 hrs, followed by no stimulation or TNFα stimulation 

for 15 min (A). The protein expression of p67phox (B) and p47phox (C) was quantified by 

densitometry, normalized to β-actin, and plotted as the mean ± SEM from three 

independent experiments.  
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Figure 2.9: F. alocis effect on TNFα-induced functional responses  
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Figure 2.9: The ability of TNFα to prime media, BIRB 796 or F. alocis pre-treated 

neutrophils was assessed as the production of superoxide release (A). Cells were cultured 

in media, pre-treated with F. alocis for 1, 6, and 10 hours, or the p38 inhibitor BIRB 796 

(60 min) followed by TNFα alone or TNFα + fMLF. Results from three independent 

experiments are shown as the mean ± SEM superoxide production from basal TNFα 

stimulation or from cells primed with TNFα followed by fMLF stimulation. To test 

apoptosis, neutrophils were cultured in media or pre-treated with the TAK1 inhibitor (5Z)-

7-Oxozeanol (30 min), BIRB-796 (60 min), or F. alocis for 6 hours followed by a 12-hour 

TNFα stimulation (B). The apoptosis data are plotted as the mean ± SEM percent of early 

apoptotic cells (Q3: Annexin V+, 7-AAD-) from three independent experiments. IL-8 

production was also tested in neutrophils described above as well as neutrophils pre-treated 

with heat-killed F. alocis for 6 hours prior to a 12-hour stimulation with TNFα (C). The 

cytokine data are graphed as the mean ± SEM IL-8 release from 5 independent 

experiments. The duration of F. alocis’ inhibitory effect on TNFα-mediated p38 

phosphorylation was tested at 6, 10, and 20 hours (D). Normalized western blot 

densitometries are summarized from 3 independent experiments. Finally, IL-8 production 

was also tested in neutrophils cultured in media or pre-treated with live or heat-killed F. 

alocis for 6 hours prior to a 4-hour stimulation with TNFα (E). Data is graphed as the mean 

± SEM IL-8 release from 4 independent experiments. N.s. = no significance,  * = p < 0.05, 

** = p < 0.01, *** = p < 0.001.   
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Figure 2.10: BIRB-796 and 6-hour F. alocis treatment do not inhibit TNFα pro-

survival effect.  Neutrophils were cultured in media (A) or media with TAK 1 inhibitor 

(5Z)-7-Oxozeanol (B), p38 inhibitor BIRB-796 (C), or F. alocis MOI 10 (D) for 6 hours, 

followed by +/- TNFα stimulation for 12 hours. Cells were stained for Annexin V and 7-

AAD and apoptosis was determined by flow cytometry. Flow cytometry scatter plots show 

the cells that did not receive TNFα (red) and those that did (blue). Histograms for each 

marker are shown to the side.    
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Figure. 2.11: BIRB-796 and 10-hour F. alocis treatments do not inhibit the TNFα 

functional effects.
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Fig. 2.11: The apoptotic status was tested in neutrophils cultured in media (A), media with 

TAK 1 inhibitor (5Z)-7-Oxozeanol (B), p38 inhibitor BIRB-796 (C), or F. alocis MOI 10 

(D) for 10 hours, followed by +/- TNFα stimulation for 12 hours. Cells were stained for 

Annexin V and 7-AAD and apoptosis was determined by flow cytometry. Flow cytometry 

scatter plots show the cells that did not receive TNFα (red) and those that did (blue). 

Histograms with the mean fluorescence intensity for each marker are shown to the right of 

each plot. Data is summarized as the mean ± SEM percent of early apoptotic cells (Q3) 

from three independent experiments (E). The supernatants from these cells were tested for 

IL-8 production (F). Data is graphed as the mean ± SEM IL-8 release from 4 independent 

experiments. 
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Figure 2.12: Proposed working model.  Normal TNFα signaling pathway in neutrophils starts 

with ligation of TNFR and activation of TAK 1, which phosphorylates ERK1/2 to delay apoptosis 

and phosphorylates p38 to induce cytokine production. However, challenge of neutrophils with 

viable F. alocis results in decreased p38 activation by TNFα. Ultimately, this results in decreased 

cytokine (IL-8) production, but does not interfere with the TNFα-mediated delay in apoptosis.  
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Table 2.1: qPCR primer sequences used to validate RNAseq results 

 
Gene qPCR Primer Sequence 

Galectin 3 
Forward: 5′- CAGAATTGCTTTAGATTTCCAA-3′ 

 

Reverse: 5′-TTATCCAGCTTTGTATTGCAA-3' 
 

NCF-1 
Forward 5'-AAGATGGCAAGAGTACCGC-3' 

 

Reverse   5'-TCTCGTAGTTGGCAATGGC-3' 
 

GAPDH 
Forward 5'-CTTTGGTATCGTGGAAGGACTC-3' 

 

Reverse  5'-GTAGAGGCAGGGATGATGTTC-3' 
 

CXCL5 
Forward 5'-TCTGCAAGTGTTCGCCATAG-3' 

 

Reverse 5'-CAGTTTTCCTTGTTTCCACCG-3' 
 

CCL5 
Forward 5'-TGCCCACATCAAGGAGTATTT-3' 

 

Reverse 5'-TTTCGGGTGACAAAGACGA-3' 
 

ASC 
Forward 5'-CTCCTCAGTCGGCAGCCAAG-3' 

 

Reverse 5'-ACAGAGCATCCAGCAGCCAC-3' 
 

NOD2 
Forward 5'-CTGAAGAATGCCCGCAAGGT-3' 

 

Reverse 5'-GTCTCTTGGAGCAGGCGGATG-3' 
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Table 2.2: Significant biological processes from DAVID analysis categorized by cell function 

 

 1 Hour 3 Hour 6 Hour 

In
fl

a
m

m
a
to

ry
 R

es
p

o
n

se
 

Process P-value Process P-

value 

Process P-

value 

inflammatory response 1.40E-13 inflammatory 

response 

3.30E

-15 
inflammatory response 4.80E

-09 

immune response 7.30E-08 regulation of 

inflammatory 

response 

1.10E

-04 
innate immune response 8.50E

-06 

positive regulation of 

inflammatory response 

9.30E-04 positive regulation of 

inflammatory 

response 

5.50E

-04 
negative regulation of 

inflammatory response 

1.50E

-03 

negative regulation of 

inflammatory response 

9.00E-03 negative regulation of 

inflammatory 

response 

3.60E

-03 
positive regulation of 

inflammatory response 

1.60E

-03 

  
immune response 6.70E

-03 
regulation of 

inflammatory response 

1.50E

-02 

R
es

p
o
n

se
 t

o
 M

ic
ro

b
es

 

Process P-value Process P-

value 
Process P-

value 

cellular response to 

lipopolysaccharide 

1.70E-04 transferrin transport 2.90E

-06 
response to 

lipopolysaccharide 

1.30E

-03 

response to 

lipopolysaccharide 

1.60E-03 response to 

lipopolysaccharide 

3.60E

-05 
response to muramyl 

dipeptide 

3.80E

-03 

  
lipopolysaccharide-

mediated signaling 

pathway 

4.90E

-05 
defense response 1.10E

-02 
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 1 Hour 3 Hour 6 Hour 
 Process P-value Process 

P-

value 
Process 

P-

value 

R
es

p
o
n

se
 t

o
 

M
ic

ro
b

es
 

(c
o
n

t.
) 

  
cellular response to 

lipopolysaccharide 

3.70E

-04 
lipopolysaccharide-

mediated signaling 

pathway 

1.80E

-02 

  
response to muramyl 

dipeptide 

5.60E

-03 
cellular response to 

lipopolysaccharide 

1.70E

-02 

P
h

a
g
o
cy

to
si

s 
&

 P
h

a
g

o
so

m
e 

M
a
tu

ra
ti

o
n

 

  

cellular response to 

oxidative stress 

1.50E

-06 
actin cytoskeleton 

organization 

1.10E

-02 
  

phagosome 

acidification 

8.80E

-06 
phagocytosis 4.00E

-03 
  

intracellular protein 

transport 

3.20E

-04 
phagosome acidification 6.00E

-03 
  

response to hydrogen 

peroxide 

7.70E

-04 
response to hydrogen 

peroxide 

7.30E

-04 
  

regulation of 

macroautophagy 

8.60E

-04 
response to nitrosative 

stress 

4.60E

-03 
  

macroautophagy 2.60E

-03 
cellular response to 

oxidative stress 

7.20E

-03 
  

autophagy 2.80E

-03 
positive regulation of 

autophagy 

8.30E

-03 
  

endosome to 

lysosome transport 

5.40E

-03 
positive regulation of 

xenophagy 

1.10E 

-02 
    

negative regulation of 

inclusion body assembly 

1.60E 

-02 
    

transferrin transport 7.80E 

-04 
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 1 Hour 3 Hour 6 Hour 

 Process 
P-

value 
Process 

P-

value 
Process 

P-

value 

C
h

em
o

ta
x
is

 

neutrophil chemotaxis 5.10E-

06 
neutrophil chemotaxis 4.70E-

05 
leukocyte migration 4.80E-

04 

monocyte chemotaxis 6.80E-

05 
chemotaxis 1.30E-

04 
granulocyte chemotaxis 6.10E-

04 

lymphocyte chemotaxis 1.80E-

04 
positive regulation of 

neutrophil chemotaxis 

6.00E-

04 
chemotaxis 2.50E-

03 

chemotaxis 2.70E-

04 
leukocyte migration 2.50E-

03 
neutrophil chemotaxis 3.80E-

03 

cell chemotaxis 5.50E-

04 
positive regulation of cell 

migration 

5.90E-

03 
positive regulation of 

neutrophil chemotaxis 

2.50E-

04 

positive regulation of 

neutrophil chemotaxis 

1.40E-

03 
monocyte chemotaxis 8.60E-

03 
positive regulation of cell 

migration 

1.10E-

03 

positive regulation of cell 

migration 

3.00E-

03 
small GTPase mediated 

signal transduction 

2.90E-

05 
small GTPase mediated 

signal transduction 

3.10E-

05 

positive regulation of 

ERK1 and ERK2 cascade 

8.50E-

05 
intracellular signal 

transduction 

5.70E-

04 
signal transduction 6.10E-

05 

positive regulation of 

peptidyl-serine 

phosphorylation 

7.70E-

04 
    



 

  

8
8 

 1 Hour 3 Hour 6 Hour 
 Process 

P-

value 
Process 

P-

value 
Process 

P-

value 

S
ig

n
a
l 

T
ra

n
sd

u
ct

io
n

 

signal transduction 8.40E-

04 
positive regulation of JNK 

cascade 

5.70E-

04 
intracellular signal 

transduction 

3.70E-

03 

G-protein coupled 

receptor signaling 

pathway 

2.30E-

03 
signal transduction 1.10E-

03 
positive regulation of 

GTPase activity 

4.30E-

03 

activation of MAPKKK 

activity 

5.50E-

03 
TRIF-dependent toll-like 

receptor signaling 

pathway 

2.90E-

03 
positive regulation of 

ERK1 and ERK2 cascade 

3.60E-

03 

intracellular receptor 

signaling pathway 

7.00E-

03 
signaling 6.10E-

03 
inactivation of MAPK 

activity 

1.40E-

02 

positive regulation of 

peptidyl-tyrosine 

phosphorylation 

1.00E-

02 
regulation of protein 

phosphorylation 

8.90E-

03 

  

  
inactivation of MAPK 

activity 

7.00E-

03 

  

  
positive regulation of 

peptidyl-serine 

phosphorylation 

1.00E-

02 

  

  positive regulation of 

TOR signaling 

1.00E

-02 

  

  negative regulation of I-

kappaB kinase/NF-

kappaB signaling 

7.70E

-05 
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 1 Hour 3 Hour 6 Hour 
 Process 

P-

value 
Process 

P-

value 
Process 

P-

value 

G
en

e 
E

x
p

re
ss

io
n

 &
 T

ra
n

sc
ri

p
ti

o
n

 F
a

ct
o
rs

 

negative regulation of 

transcription from RNA 

polymerase II promoter 

1.70E-

05 
positive regulation of 

NF-kappaB 

transcription factor 

activity 

1.70E-

04 
negative regulation of 

gene expression 

1.10E-

02 

positive regulation of 

transcription from RNA 

polymerase II promoter 

2.50E-

05 
positive regulation of I-

kappaB kinase/NF-

kappaB signaling 

1.10E-

03 
positive regulation of 

NF-kappaB transcription 

factor activity 

8.40E-

04 

positive regulation of 

tyrosine phosphorylation 

of Stat3 protein 

4.20E-

05 
positive regulation of 

protein kinase B 

signaling 

2.30E-

03 
positive regulation of I-

kappaB kinase/NF-

kappaB signaling 

7.10E-

03 

  positive regulation of 

NF-kappaB import into 

nucleus 

2.70E-

03 
negative regulation of I-

kappaB kinase/NF-

kappaB signaling 

8.30E-

03 

  regulation of I-kappaB 

kinase/NF-kappaB 

signaling 

3.00E-

03 
regulation of I-kappaB 

kinase/NF-kappaB 

signaling 

1.70E-

02 

  positive regulation of 

transcription, DNA-

templated 

1.00E-

02 
negative regulation of 

NF-kappaB transcription 

factor activity 

1.80E-

02 

  negative regulation of 

transcription from RNA 

polymerase II promoter 

1.00E-

02 
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 1 Hour 3 Hour 6 Hour 

 Process 
P-

value 
Process 

P-

value 
Process 

P-

value 

C
y

to
k

in
es

 

chemokine-mediated 

signaling pathway 

4.60E-

08 
cellular response to 

tumor necrosis factor 

8.30E-

06 
interferon-gamma-

mediated signaling 

pathway 

2.90E-

06 

cellular response to 

tumor necrosis factor 

2.00E-

07 
positive regulation of 

tumor necrosis factor 

production 

1.60E-

05 
positive regulation of 

interleukin-1 beta 

secretion 

3.90E-

05 

cellular response to 

interleukin-1 

6.60E-

07 
chemokine-mediated 

signaling pathway 

3.00E-

05 
negative regulation of 

type I interferon 

production 

8.00E-

04 

cellular response to 

interferon-gamma 

2.60E-

05 
positive regulation of 

interleukin-1 beta 

secretion 

8.30E-

05 
tumor necrosis factor-

mediated signaling 

pathway 

3.40E-

03 

tumor necrosis factor-

mediated signaling 

pathway 

7.50E-

03 
cellular response to 

interleukin-1 

4.10E-

04 
positive regulation of 

interferon-beta 

production 

6.00E-

03 

  
tumor necrosis factor-

mediated signaling 

pathway 

4.10E-

03 
cellular response to 

tumor necrosis factor 

6.40E-

03 

  
regulation of tumor 

necrosis factor-mediated 

signaling pathway 

4.30E-

03 
cellular response to 

cytokine stimulus 

6.50E-

03 

  
negative regulation of 

transforming growth 

factor beta receptor 

signaling pathway 

5.10E-

03 
positive regulation of 

interleukin-1 beta 

production 

6.50E-

03 



 

  

9
1 

 

 1 Hour 3 Hour 6 Hour 

 Process 
P-

value 
Process 

P-

value 
Process 

P-

value 

C
y

to
k

in
es

 (
co

n
t.

) 

  
positive regulation of 

chemokine production 

5.40E-

03 
negative regulation of 

transforming growth 

factor beta receptor 

signaling pathway 

7.20E-

03 

  
positive regulation of 

interleukin-8 production 

8.60E-

03 
chemokine-mediated 

signaling pathway 

7.70E-

03 

    
type I interferon signaling 

pathway 

7.20E-

03 

P
ro

te
in

 F
o

ld
in

g
 

    
response to unfolded 

protein 

1.40E-

08 

    protein folding 1.50E-

05 

    
protein refolding 5.70E-

05     
protein ubiquitination 1.60E-

02     
protein maturation 1.70E-

02     
chaperone-mediated 

protein complex assembly 

8.80E-

03 
    

positive regulation of 

protein phosphorylation 

9.10E-

04 

 



 

  

9
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 1 Hour 3 Hour 6 Hour 

 Process 
P-

value 
Process 

P-

value 
Process 

P-

value 
M

et
a

b
o

li
c 

P
ro

ce
ss

es
 

positive regulation of 

nitric oxide biosynthetic 

process 

9.80E-

03 
glycosphingolipid 

metabolic process 

2.40E-

04 
glycosphingolipid 

metabolic process 

2.30E-

03 

response to amino acid 3.90E-

03 
cellular response to 

starvation 

1.50E-

03 
positive regulation of 

tumor necrosis factor 

production 

3.30E-

03 

cellular response to 

glucocorticoid stimulus 

1.10E-

03 
positive regulation of 

nitric oxide biosynthetic 

process 

2.80E-

03 
GTP metabolic process 3.60E-

03 

cellular response to 

corticotropin-releasing 

hormone stimulus 

1.50E-

03 
cellular response to fatty 

acid 

4.50E-

03 
proteasomal ubiquitin-

independent protein 

catabolic process 

4.60E-

03 

  
UDP-N-

acetylglucosamine 

biosynthetic process 

5.60E-

03 
glycogen biosynthetic 

process 

4.70E-

03 

  
N-acetylneuraminate 

catabolic process 

6.10E-

03 
carbohydrate metabolic 

process 

1.10E-

02 
  

positive regulation of 

cholesterol homeostasis 

6.10E-

03 
phospholipid metabolic 

process 

1.10E-

02 
  

ATP metabolic process 6.30E-

03 
regulation of 

gluconeogenesis 

1.10E-

02 
  

ATP hydrolysis coupled 

proton transport 

6.30E-

03 
inositol phosphate 

metabolic process 

9.70E-

03 
  

proton transport 2.60E-

05 
ceramide biosynthetic 

process 

1.40E-

02 
    

N-glycan processing 1.60E-

02 
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 1 Hour 3 Hour 6 Hour 

 
Process P-

value 

Process P-

value 

Process P-

value 

M
et

a
b

o
li

c 

P
ro

ce
ss

es
 

(C
o
n

t.
) 

    
N-acetylneuraminate 

catabolic process 

1.70E-

03 

    
positive regulation of 

MHC class I biosynthetic 

process 

1.90E-

02 

A
p

o
p

to
si

s 

negative regulation of 

apoptotic process 

2.00E-

05 
negative regulation of 

apoptotic process 

2.10E-

05 
apoptotic process 3.70E-

07 

apoptotic process 7.90E-

04 
apoptotic process 1.60E-

04 
apoptotic mitochondrial 

changes 

2.60E-

03 

activation of cysteine-

type endopeptidase 

activity involved in 

apoptotic process 

1.70E-

03 
positive regulation of 

apoptotic process 

1.90E-

04 
extrinsic apoptotic 

signaling pathway 

1.20E-

02 

  
necroptotic process 1.10E-

03 
activation of cysteine-type 

endopeptidase activity 

involved in apoptotic 

process 

4.00E-

04 

  
negative regulation of 

extrinsic apoptotic 

signaling pathway via 

death domain receptors 

1.80E-

03 
activation of cysteine-type 

endopeptidase activity 

involved in apoptotic 

signaling pathway 

1.30E-

03 
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 1 Hour 3 Hour 6 Hour 

 
Process P-

value 

Process P-

value 

Process P-

value 

A
p

o
p

to
si

s 
(C

o
n

t.
) 

  
negative regulation of 

cysteine-type 

endopeptidase activity 

involved in apoptotic 

process 

3.20E-

03 
negative regulation of 

extrinsic apoptotic 

signaling pathway via 

death domain receptors 

6.60E-

03 

  
intrinsic apoptotic 

signaling pathway in 

response to DNA 

damage 

5.30E-

03 
regulation of extrinsic 

apoptotic signaling 

pathway via death domain 

receptors 

6.70E-

03 

  
regulation of extrinsic 

apoptotic signaling 

pathway via death 

domain receptors 

5.40E-

03 
negative regulation of 

apoptotic process 

1.10E-

02 

  
activation of cysteine-

type endopeptidase 

activity involved in 

apoptotic process 

5.60E-

03 
positive regulation of 

apoptotic process 

1.10E-

03 

M
is

ce
ll

a
n

eo
u

s positive regulation of 

osteoclast differentiation 

3.70E-

05 
positive regulation of 

osteoclast differentiation 

1.60E-

03 
endoplasmic reticulum 

calcium ion homeostasis 

3.30E-

03 

cell adhesion 8.10E-

03 
positive regulation of 

calcium ion transport 

8.60E-

03 
cell-cell adhesion 3.50E-

03 

    

secretion by cell 1.60E-

02 
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 1 Hour 3 Hour 6 Hour 

 Process P-

value 

Process P-

value 

Process P-

value 

M
is

ce
ll

a
n

eo
u

s 

    
proton transport 4.80E-

03     
response to iron ion 9.10E-

03     
negative regulation of 

protein serine/threonine 

kinase activity 

9.10E-

03 

    
negative regulation of 

cysteine-type 

endopeptidase activity 

involved in apoptotic 

process 

1.40E-

02 

    
positive regulation of 

calcium ion transport 

4.70E-

03 
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Table 2.3: Genes involved in the Biological Process of Inflammation & Neutrophil activation by MetaCore 

 
  1 Hour 3 Hour 6 Hour 

Input IDs Network Object Name Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value 

ENSG00000142208 AKT(PKB) -0.268394 0.56125 -1.35053 0.0029 -2.14563 0.00005 

ENSG00000012779 ALOX5 -0.235755 0.46905 -0.43537 0.17815 -1.30551 0.00025 

ENSG00000115966 AP-1 0.336876 0.41865 0.492399 0.23355 0.730992 0.0755 

ENSG00000115966 ATF-2/c-Jun 0.336876 0.41865 0.492399 0.23355 0.730992 0.0755 

ENSG00000143632 Actin 0.636624 1 -1.3805 1 -0.975943 1 

ENSG00000164742 Adenylate cyclase 1.20705 1 0.372034 1 0.698685 1 

ENSG00000164742 Adenylate cyclase type I 1.20705 1 0.372034 1 0.698685 1 

ENSG00000078295 Adenylate cyclase type 

II 

0.948255 1 0.638634 1 0.867516 1 

ENSG00000138031 Adenylate cyclase type 

III 

0.214679 0.767 3.72654 0.00005 4.60815 0.00005 

ENSG00000129467 Adenylate cyclase type 

IV 

-0.906962 0.0755 -0.65237 0.1834 -1.09539 0.02525 

ENSG00000162104 Adenylate cyclase type 

IX 

0.704655 1 2.14178 0.0006 2.31121 0.0002 

ENSG00000173175 Adenylate cyclase type 

V 

-4.53876 1 0.0994383 1 -2.46958 1 

ENSG00000174233 Adenylate cyclase type 

VI 

0.173814 1 0.654431 1 0.28185 1 

ENSG00000121281 Adenylate cyclase type 

VII 

-0.605382 0.2165 -0.429987 0.3534 -0.103959 0.83925 

ENSG00000155897 Adenylate cyclase type 

VIII 

-15.5693 1 0.222025 1 2.16771 1 

ENSG00000135046 Annexin I 0.240346 0.4812 -0.660925 0.0554 -1.59915 0.00015 

ENSG00000120868 Apaf-1 -0.147656 0.73435 -0.852756 0.06645 -0.543003 0.23705 

ENSG00000138071 Arp2/3 -0.085798 0.8165 -0.290621 0.39975 -0.611465 0.1097 

ENSG00000015475 Bid 0.106129 0.8675 1.5263 0.0072 0.85196 0.169 
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  1 hour 3 hour 6 hour 

Input IDs Network Object Name Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value 

ENSG00000010671 Btk -0.151721 0.70195 -1.02335 0.0073 0.172335 0.69585 

ENSG00000106804 C5a -0.670077 0.3237 0.572423 0.49415 0.942053 0.25 

ENSG00000197405 C5aR 0.291758 0.38 -0.129738 0.7045 -1.24779 0.0008 

ENSG00000108691 CCL2 2.84034 0.00005 1.91775 0.0006 0.95627 0.06905 

ENSG00000135404 CD63 0.341514 0.49925 2.20922 0.00005 2.74768 0.00005 

ENSG00000006210 CX3CL1 0.412438 1 0.807216 1 0.31547 1 

ENSG00000168329 CX3CR1 -0.154489 0.76035 -0.579668 0.35505 -0.20214 0.6979 

ENSG00000164305 Caspase-3 0.0872686 0.80205 0.340595 0.3449 0.796916 0.0377 

ENSG00000064012 Caspase-8 -0.332073 0.4657 -1.05957 0.0224 -1.78981 0.00025 

ENSG00000172757 Cofilin -0.019265 0.96085 -0.29201 0.4632 -1.2949 0.00155 

ENSG00000051523 Cytochrome b-558 -0.234277 0.64875 0.438144 0.3666 0.201541 0.6868 

ENSG00000172115 Cytochrome c 0.401099 0.43565 -0.174956 0.7352 -0.420116 0.43985 

ENSG00000168970 Cytosolic phospholipase 

A2 beta 

-0.649148 0.4939 -0.859994 0.3485 -1.22401 0.20455 

ENSG00000007908 E-selectin 0 1 15.6737 1 14.7034 1 

ENSG00000163735 ENA-78 2.78973 1 4.99307 0.0094 4.94474 0.0082 

ENSG00000102882 ERK1 (MAPK3) -0.31347 0.50515 -1.46191 0.0036 -1.83436 0.00085 

ENSG00000100030 ERK1/2 0.111859 0.86515 -1.22384 0.04215 -2.03661 0.00205 

ENSG00000100030 ERK2 (MAPK1) 0.111859 0.86515 -1.22384 0.04215 -2.03661 0.00205 

ENSG00000168040 FADD -1.82699 0.02235 -1.83039 0.0195 -2.24993 0.00495 

ENSG00000171051 FPR 0.309293 0.4953 0.433394 0.33985 -0.117564 0.80285 

ENSG00000171049 FPRL1 0.300916 0.7945 0.258945 0.80795 -0.704088 0.52475 

ENSG00000060558 G-protein alpha-15 0.108801 0.77065 1.07998 0.00265 1.11406 0.0034 

ENSG00000127955 G-protein alpha-i family 0.571501 1 -12.529 1 -2.51315 1 

ENSG00000114353 G-protein alpha-i2 -0.334653 0.3361 -0.98326 0.004 -2.03799 0.00005 
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  1 hour 3 hour 6 hour 

Input IDs Network Object Name Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value 

ENSG00000088256 G-protein alpha-q/11 -0.383532 0.6306 -0.040169 0.9544 0.202808 0.78065 

ENSG00000078369 G-protein beta/gamma -0.003427 0.99495 0.695778 0.17615 0.279574 0.6152 

ENSG00000177885 GRB2 0.162711 0.7157 0.776796 0.06805 0.653148 0.16675 

ENSG00000163739 GRO-1 3.37405 0.00005 1.8271 0.00005 1.77034 0.00005 

ENSG00000081041 GRO-2 6.33583 0.00005 6.15229 0.00005 6.00946 0.00005 

ENSG00000163734 GRO-3 4.37038 0.00005 3.77473 0.00005 4.35262 0.00005 

ENSG00000144648 Galpha(i)-specific 

peptide GPCRs 

-1.48914 0.04105 -1.18726 0.09355 -1.35623 0.064 

ENSG00000174775 H-Ras -0.079523 0.88715 -0.100795 0.88615 -2.22536 0.00045 

ENSG00000100906 I-kB 0 1 3.16244 0.00005 2.48684 0.00005 

ENSG00000090339 ICAM1 2.80958 0.00005 2.10994 0.00005 1.37142 0.00605 

ENSG00000108622 ICAM2 -0.172743 0.70855 0.353612 0.4279 -0.709392 0.13385 

ENSG00000105371 ICAM4 2.97046 0.0036 2.5412 0.00365 2.49967 0.00435 

ENSG00000111537 IFN-gamma -0.411676 1 -1.57507 1 -1.43862 1 

ENSG00000213341 IKK (cat) 0.0386051 0.9263 -0.201073 0.64655 -0.033242 0.93635 

ENSG00000213341 IKK-alpha 0.0386051 0.9263 -0.201073 0.64655 -0.033242 0.93635 

ENSG00000104365 IKK-beta -0.24989 0.576 1.24499 0.0115 1.03277 0.0572 

ENSG00000136634 IL-10 -0.882243 0.1873 -0.420915 0.48805 0.508715 0.52685 

ENSG00000109471 IL-2 0 1 15.6737 1 0 1 

ENSG00000134460 IL-2 receptor 1.67419 1 4.1224 0.0016 3.33951 0.0022 

ENSG00000100385 IL-2R beta chain 0.432867 1 0.504894 1 1.06171 0.29405 

ENSG00000113525 IL-5 0.242808 1 1.40525 1 1.79082 1 

ENSG00000136244 IL-6 2.99727 0.08685 6.22286 0.0654 5.70078 0.0652 

ENSG00000163464 IL8RA -0.746133 0.023 -2.18534 0.00005 -1.99003 0.00005 

ENSG00000180871 IL8RB -0.329611 0.40595 -1.94377 0.00005 -2.21343 0.00005 
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  1 hour 3 hour 6 hour 

Input IDs Network Object Name Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value 

ENSG00000150995 IP3 receptor 0.0169103 0.9694 1.96326 0.00005 2.39845 0.00005 

ENSG00000169896 ITGAM -0.072381 0.8493 -0.199032 0.59635 -0.635927 0.10645 

ENSG00000160255 ITGB2 -0.277596 0.3734 -0.768094 0.01255 -2.11987 0.00005 

ENSG00000162434 JAK1 0.134832 0.66445 0.0062887 0.9844 0.463703 0.14465 

ENSG00000175592 JunB/Fra-1 0.700587 0.10625 -1.95565 0.00005 -2.27314 0.00005 

ENSG00000170345 JunD/c-Fos 0.540993 0.1754 -1.63712 0.00005 -0.447981 0.2341 

ENSG00000106683 LIMK1 -0.488078 0.22955 -1.0831 0.00895 -2.07483 0.00005 

ENSG00000182541 LIMK2 0.505974 0.16555 0.975505 0.0039 0.210261 0.54895 

ENSG00000111144 LTA4H -0.18693 0.6781 -0.627719 0.1415 -0.426102 0.3342 

ENSG00000213903 LTBR1 -0.811739 0.26125 -1.3433 0.08285 -2.08177 0.0134 

ENSG00000213906 LTBR2 -1.221 0.41905 -2.23305 0.17685 -3.13535 0.091 

ENSG00000110514 MADD 0.0831299 0.8343 -0.649991 0.14525 -0.791325 0.04255 

ENSG00000156575 MBPH 0.9458 1 1.26023 1 2.31847 1 

ENSG00000169032 MEK1(MAP2K1) -0.016729 0.9712 -0.019278 0.9619 -0.485772 0.3074 

ENSG00000169032 MEK1/2 -0.016729 0.9712 -0.019278 0.9619 -0.485772 0.3074 

ENSG00000126934 MEK2(MAP2K2) 0.0310253 0.9711 -0.818938 0.27245 -0.478587 0.58065 

ENSG00000095015 MEKK1(MAP3K1) 0.0913193 0.7935 -0.773331 0.02555 0.30483 0.38005 

ENSG00000109320 NF-kB 1.4494 0.00125 3.07581 0.00005 2.37882 0.00005 

ENSG00000109320 NF-kB p50/c-Rel 1.4494 0.00125 3.07581 0.00005 2.37882 0.00005 

ENSG00000109320 NF-kB p50/p50 1.4494 0.00125 3.07581 0.00005 2.37882 0.00005 

ENSG00000109320 NF-kB p50/p65 1.4494 0.00125 3.07581 0.00005 2.37882 0.00005 

ENSG00000077150 NF-kB p52/RelB 1.65511 0.00005 2.46764 0.00005 1.84765 0.00005 

ENSG00000162924 NF-kB p65/c-Rel 1.09213 0.0241 1.97707 0.00005 1.74788 0.00025 

ENSG00000173039 NF-kB p65/p65 0.805521 0.075 0.644145 0.14395 -0.831558 0.0612 

ENSG00000109320 NF-kB1 (p50) 1.4494 0.00125 3.07581 0.00005 2.37882 0.00005 



 

  

1
0
0 

  1 hour 3 hour 6 hour 

Input IDs Network Object Name Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value 

ENSG00000077150 NF-kB2 (p100) 1.65511 0.00005 2.46764 0.00005 1.84765 0.00005 

ENSG00000077150 NF-kB2 (p52) 1.65511 0.00005 2.46764 0.00005 1.84765 0.00005 

ENSG00000100906 NFKBIA 0 1 3.16244 0.00005 2.48684 0.00005 

ENSG00000146232 NFKBIE 2.0777 0.0001 2.61055 0.00005 2.19574 0.00005 

ENSG00000006062 NIK(MAP3K14) -0.560321 0.4498 -1.84519 0.0133 -1.53898 0.0294 

ENSG00000007952 NOX1 -1.19698 1 -0.310513 1 -0.99699 1 

ENSG00000051523 NOX1/p22-phox -0.234277 0.64875 0.438144 0.3666 0.201541 0.6868 

ENSG00000117592 NSGPeroxidase 0.215028 0.5748 -0.361838 0.3472 -0.453273 0.27595 

ENSG00000174175 P-selectin 0.758977 0.2542 -1.2616 0.035 -1.26137 0.05625 

ENSG00000116711 PA24A 0.253945 0.55755 -1.20128 0.007 -2.08999 0.00125 

ENSG00000184381 PA2G6 2.83811 0.0049 3.50727 0.00005 3.8014 0.00005 

ENSG00000149269 PAK1 0.184457 0.58715 0.554972 0.1074 0.320026 0.3308 

ENSG00000180370 PAK2 0.0139468 0.9761 -0.652408 0.191 -0.826735 0.13585 

ENSG00000005381 PERM 0.103196 0.84875 0.0038075 0.99585 -0.866344 0.11665 

ENSG00000138308 PG12B -1.56865 1 1.23723 1 1.1968 1 

ENSG00000121879 PI3K cat class IA 0.205456 0.77335 -0.755579 0.2899 0.305876 0.6754 

ENSG00000121879 PI3K cat class IA (p110-

alpha) 

0.205456 0.77335 -0.755579 0.2899 0.305876 0.6754 

ENSG00000051382 PI3K cat class IA (p110-

beta) 

0.0572675 0.88035 -0.077703 0.83165 -0.313535 0.38125 

ENSG00000171608 PI3K cat class IA (p110-

delta) 

-0.173014 0.60385 -1.013 0.00495 -0.900246 0.012 

ENSG00000145675 PI3K reg class IA 0.211027 0.69585 -0.252244 0.65605 0.199538 0.70535 

ENSG00000117461; 

ENSG00000278139 

PI3K reg class IA (p55-

gamma) 

0.178026 1 0.585365 1 14.7034 1 

ENSG00000145675 PI3K reg class IA (p85) 0.211027 0.69585 -0.252244 0.65605 0.199538 0.70535 



 

  

1
0
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  1 hour 3 hour 6 hour 

Input IDs Network Object Name Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value 

ENSG00000145675 PI3K reg class IA (p85-

alpha) 

0.211027 0.69585 -0.252244 0.65605 0.199538 0.70535 

ENSG00000105647; 

ENSG00000268173 

PI3K reg class IA (p85-

beta) 

1.46031 0.26735 1.69027 0.1937 2.09423 0.1278 

ENSG00000101333 PIB4 -15.5693 1 0.278206 1 1.61796 1 

ENSG00000154229 PKC-alpha 1.46251 1 1.31425 1 0.964295 1 

ENSG00000166501 PKC-beta -0.026308 0.9484 -0.464389 0.27455 -0.237803 0.5807 

ENSG00000163932 PKC-delta -0.006682 0.9835 0.907419 0.0052 0.385075 0.2377 

ENSG00000067606 PKC-zeta -0.239774 0.5907 -1.19652 0.0118 -1.3945 0.00325 

ENSG00000069764 PLA2 -0.049767 1 -0.496008 1 -0.257958 1 

ENSG00000069764 PLA2G10 -0.049767 1 -0.496008 1 -0.257958 1 

ENSG00000123739 PLA2G12 0.859792 0.40245 -2.39237 1 -1.85832 1 

ENSG00000117215 PLA2G2D 14.5678 1 15.6737 1 14.7034 1 

ENSG00000100078 PLA2G3 0 1 15.6737 1 14.7034 1 

ENSG00000105499 PLA2G4C 1.65877 0.00005 3.85692 0.00005 4.54325 0.00005 

ENSG00000182621 PLC-beta 0.320995 0.55995 0.0635368 0.91035 -0.749371 0.16965 

ENSG00000182621 PLC-beta1 0.320995 0.55995 0.0635368 0.91035 -0.749371 0.16965 

ENSG00000137841 PLC-beta2 -0.617107 0.1306 -1.58707 0.00005 -2.59408 0.00005 

ENSG00000149782 PLC-beta3 -0.41557 0.38635 0.297363 0.50225 0.0303082 0.9445 

ENSG00000075651 PLD1 0.655048 0.2572 2.88132 0.00005 2.86643 0.00005 

ENSG00000129219 PLD2 -0.420784 0.36975 -1.13418 0.02485 -1.84026 0.0017 

ENSG00000186951 PPAR-alpha -0.263617 0.63005 0.456419 0.449 0.30982 0.57365 

ENSG00000124126 PREX1 -0.044813 0.88785 0.193453 0.5318 0.25828 0.40825 

ENSG00000110876 PSGL-1 -0.636731 0.0715 -1.4926 0.00005 -1.76971 0.00005 

ENSG00000067900 ROCK 0.0737406 0.82895 -0.68744 0.03295 -0.369869 0.2781 

ENSG00000067900 ROCK1 0.0737406 0.82895 -0.68744 0.03295 -0.369869 0.2781 



 

  

1
0
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  1 hour 3 hour 6 hour 

Input IDs Network Object Name Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value 

ENSG00000134318 ROCK2 0.228265 0.60285 -0.493979 0.3389 -0.3473 0.4248 

ENSG00000136238 Rac1 -0.058633 0.89405 0.336282 0.4181 0.142861 0.73685 

ENSG00000128340 Rac2 -0.215299 0.5043 0.527082 0.09755 0.35238 0.2695 

ENSG00000160271 RalGDS 1.38866 0.0004 2.56647 0.00005 2.03533 0.00005 

ENSG00000067560 RhoA 0.181352 0.6135 0.393 0.24965 -0.143086 0.7032 

ENSG00000196218 Ryanodine receptor 1 1.73729 1 0.477101 1 1.04811 1 

ENSG00000092531 SNAP-23 0.0824211 0.86715 -0.476283 0.29665 0.236652 0.60175 

ENSG00000185338 SOCS1 -0.443341 0.63635 0.356888 0.62995 2.23929 0.009 

ENSG00000156735 SODD -0.259028 0.69995 -1.92762 0.01045 -0.945209 0.15885 

ENSG00000168610 STAT3 0.318497 0.2861 -0.182545 0.5424 -0.518398 0.0822 

ENSG00000106089 Syntaxin 1A -1.49897 0.00725 -3.17114 0.00005 -3.77 0.00005 

ENSG00000103496 Syntaxin 4 0.915306 0.02265 1.76622 0.00005 1.55602 0.00005 

ENSG00000135823 Syntaxin 6 -0.697353 0.1095 -1.36091 0.00095 -1.18491 0.0033 

ENSG00000079950 Syntaxin 7 0.0715859 0.92885 0.412041 0.5591 1.35408 0.05435 

ENSG00000067182 TNF-R1 -0.474593 0.3514 -0.90111 0.04775 -1.00755 0.06335 

ENSG00000028137 TNF-R2 -0.1768 0.5946 1.24355 0.00035 0.729701 0.03695 

ENSG00000232810 TNF-alpha 4.0306 0.00005 2.77055 0.00005 1.15677 0.00165 

ENSG00000226979 TNF-beta 0.273582 0.5725 1.24517 0.00705 0.212522 0.6612 

ENSG00000102871 TRADD -0.849765 0.05665 -1.15573 0.0059 -0.85951 0.0678 

ENSG00000127191 TRAF2 -0.070513 0.94135 0.0796205 0.93035 0.548455 0.5636 

ENSG00000131323 TRAF3 0.0651305 0.87575 2.40231 0.00005 2.67965 0.00005 

ENSG00000263620;  

ENSG00000220205 

VAMP2 -0.26636 0.79795 -1.81689 0.57355 1.47089 0.0633 

ENSG00000141968 VAV-1 -0.055979 0.8732 1.09768 0.0008 0.702089 0.03485 

ENSG00000134215 VAV-3 0.187493 0.6775 0.512374 0.2545 -0.061412 0.896 



 

  

1
0
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  1 hour 3 hour 6 hour 

Input IDs Network Object Name Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value Log2Fold  

Change 

p-value 

ENSG00000100568 VTI1B -0.23661 0.7201 -1.13439 0.0526 -0.284376 0.6871 

ENSG00000169896 alpha-M/beta-2 integrin -0.072381 0.8493 -0.199032 0.59635 -0.635927 0.10645 

ENSG00000177606 c-Jun -0.495397 0.1884 -0.793995 0.03005 -0.218374 0.55605 

ENSG00000175592 c-Jun/Fra-1 0.700587 0.10625 -1.95565 0.00005 -2.27314 0.00005 

ENSG00000170345 c-Jun/c-Fos 0.540993 0.1754 -1.63712 0.00005 -0.447981 0.2341 

ENSG00000177606 c-Jun/c-Jun -0.495397 0.1884 -0.793995 0.03005 -0.218374 0.55605 

ENSG00000132155 c-Raf-1 0.127627 0.7162 -0.041701 0.8997 0.248827 0.4648 

ENSG00000116711 cPLA2 0.253945 0.55755 -1.20128 0.007 -2.08999 0.00125 

ENSG00000165168 gp91-phox 0.530715 0.25785 1.60592 0.00045 1.62704 0.00055 

ENSG00000007171 iNOS -15.5693 1 -12.529 1 2.07421 1 

ENSG00000051523 p22-phox -0.234277 0.64875 0.438144 0.3666 0.201541 0.6868 

ENSG00000185386 p38 MAPK -2.27641 1 -0.431726 1 -1.38824 1 

ENSG00000112062 p38alpha (MAPK14) -0.02206 0.96605 -0.716459 0.1727 -1.45325 0.006 

ENSG00000185386 p38beta (MAPK11) -2.27641 1 -0.431726 1 -1.38824 1 

ENSG00000156711 p38delta (MAPK13) -0.134623 0.79435 0.596537 0.19465 0.422063 0.37635 

ENSG00000188130 p38gamma (MAPK12) 0.45834 1 0.110895 1 -0.029106 1 

ENSG00000100365 p40-phox 0.05836 0.8683 -0.397913 0.2401 0.112339 0.7651 

ENSG00000116701 p67-phox -0.011738 0.97455 0.542507 0.11335 0.447425 0.1847 

ENSG00000015475 tBid 0.106129 0.8675 1.5263 0.0072 0.85196 0.169 
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Table 2.4: Fold change of Components of NADPH Oxidase Complex compared to basal 

ENSEMBL 

GENE 
GENE SYMBOL|DESCRIPTION 1 hr 3 hr 6 hr 

ENSG00000165168 CYBB|cytochrome b-245, beta polypeptide 1.4 3.04* 3.09* 

ENSG00000051523 CYBA|cytochrome b-245, alpha 

polypeptide 

0.9 1.4 1.1 

ENSG00000158517 NCF1|neutrophil cytosolic factor 1 1.3 1.2 0.32* 

ENSG00000116701 NCF2|neutrophil cytosolic factor 2 1.0 1.5 1.4 

ENSG00000100365 NCF4|neutrophil cytosolic factor 4, 40kDa 1.0 0.8 1.1 

ENSG00000128340 RAC2|ras-related C3 botulinum toxin 

substrate 2 (rho family, small GTP binding 

protein Rac2) 

0.9 1.4 1.3 

ENSG00000116473 RAP1A|RAP1A, member of RAS 

oncogene family 

1.1 0.8 0.9 

Note: Asterisk denotes p value <0.05 compared to basal unstimulated conditions 

 

 

 

Table 2.5:  KEGG pathways significantly enriched for differentially expressed genes 

during challenge with F. alocis 

 

Time Point DEG Count Description P-value 

1 h 

19 Cytokine-cytokine receptor interaction 5.40E-09 

13 TNF signaling pathway 2.50E-08 

10 Rheumatoid arthritis 3.50E-06 

9 NF-kappa B signaling pathway 2.70E-05 

8 Salmonella infection 1.50E-04 

6 Legionellosis 9.20E-04 

6 NOD-like receptor signaling pathway 1.10E-03 

9 Transcriptional mis-regulation in cancer 2.40E-03 

9 Chemokine signaling pathway 4.60E-03 

10 MAPK signaling pathway 9.10E-03 
 

3 h 

26 Rheumatoid arthritis 2.30E-08 

19 Legionellosis 1.50E-07 

29 Lysosome 4.10E-07 

26 TNF signaling pathway 1.40E-06 

3h 18 NOD-like receptor signaling pathway 1.50E-06 
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22 NF-kappa B signaling pathway 5.70E-06 

40 Cytokine-cytokine receptor interaction 4.00E-05 

17 Epithelial cell signaling in Helicobacter pylori infection 8.50E-05 

19 Salmonella infection 1.20E-04 

22 Toll-like receptor signaling pathway 1.30E-04 

30 Chemokine signaling pathway 6.40E-04 

20 Chagas disease (American trypanosomiasis) 8.00E-04 

13 Vibrio cholerae infection 9.00E-04 

28 Influenza A 1.00E-03 

23 Measles 1.30E-03 

34 Endocytosis 2.70E-03 

24 Phagosome 2.80E-03 

13 Apoptosis 4.40E-03 

20 Epstein-Barr virus infection 5.30E-03 

13 Inflammatory bowel disease (IBD) 5.70E-03 

17 Inflammatory mediator regulation of TRP channels 6.40E-03 

26 Herpes simplex infection 8.70E-03 

10 Sphingolipid metabolism 0.014 

12 Pancreatic cancer 0.017 

32 HTLV-I infection 0.018 

27 Viral carcinogenesis 0.019 
 

      

6 h 

22 Legionellosis 2.70E-07 

46 Chemokine signaling pathway 1.20E-06 

20 Apoptosis  1.80E-05 

30 Lysosome 1.20E-04 

32 Measles 1.20E-04 

37 Influenza A 4.40E-04 

24 Estrogen signaling pathway 9.10E-04 

22 Rheumatoid arthritis 1.00E-03 

40 Viral carcinogenesis 1.40E-03 

16 NOD-like receptor signaling pathway 1.60E-03 

45 Endocytosis 1.80E-03 

29 Insulin signaling pathway 2.50E-03 

24 TNF signaling pathway 2.70E-03 

26 Sphingolipid signaling pathway 2.90E-03 

8 Other glycan degradation 3.00E-03 

26 Epstein-Barr virus infection 3.60E-03 

17 Epithelial cell signaling in Helicobacter pylori infection 4.00E-03 

6 h 24 Toxoplasmosis 4.00E-03 
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23 Chagas disease (American trypanosomiasis) 4.10E-03 

23 Toll-like receptor signaling pathway 5.20E-03 

13 Sphingolipid metabolism 6.80E-03 

16 Pancreatic cancer 7.30E-03 

33 Tuberculosis 8.20E-03 

21 Phosphatidylinositol signaling system 9.10E-03 

21 Inflammatory mediator regulation of TRP channels 9.10E-03 

14 Non-small cell lung cancer 0.011 

17 Pertussis 0.012 

19 Prostate cancer 0.013 

13 Vibrio cholerae infection 0.015 

25 Platelet activation 0.016 

16 Leishmaniasis 0.016 

27 Hepatitis B 0.018 

11 Bladder cancer 0.018 
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CHAPTER 3: 

 

THE TLR2 TANGO: FILIFACTOR ALOCIS MANIPULATES NEUTROPHIL 

SIGNALING TO PREVENT KILLING WHILE PROMOTING INFLAMMATION    

 

 

 

Introduction  

One of the primary roles of neutrophils is host defense against microbial challenge. 

However, their efficient antimicrobial activity hinges on the recognition of microbial 

invaders and firing of the complex intracellular signal transduction pathways that link 

neutrophil functional processes [325]. This process is initiated through the ligation of cell 

surface receptors called pattern recognition receptors (PRR), which recognize general 

microbial structures. There are several PRR, including C-type lectins, NOD-like, RIG-like, 

and Toll-like receptors (TLR), but in this thesis the focus will be on TLRs.   

Toll-like receptors belong to the IL-1R/TLR family of receptors and are 

characterized by leucine-rich repeats on their extracellular domains. Out of the 13 TLR 

members in the family of receptors, TLR1 to -9 are conserved in mouse and humans, while 

neutrophils express all tested TLR except TLR3 and 7 [325-330]. Generally, TLR1, -2, -4, 

-5 and -6 are present on the neutrophil cell surface, while TLR, -8 and -9 are in intracellular 

endocytic compartments. Regardless of its cellular localization, TLRs mediate the 

recognition of microbial components defined as pathogen-associated molecular patterns 

(PAMPs). These microbial components include triacyl lipopeptides (TLR1 ligand), 
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peptidoglycan (TLR2 ligand), bacterial lipopolysaccharide (LPS, TLR4 ligand), flagellin 

(TLR5 ligand), diacyl lipopeptides (TLR6 ligand), bacterial CpG DNA (TLR9 ligand), and 

viral single-stranded RNA (TLR8 ligand) [331]. TLR4 is regarded as the major receptor 

for recognizing LPS from Gram-negative bacterial species while TLR2 recognizes the 

lipopeptides, lipoteichoic acids (LTAs), and peptidoglycans of Gram-positive bacterial 

species. Albeit at lower levels than monocytes, neutrophils express both TLR2 and -4 on 

their surface and can upregulate the expression of TLR2 after exposure to several bacterial 

species [109, 332]. F. alocis is a non-flagellated, Gram-positive bacterium that has been 

shown to activate TLR2, but not TLR4 [275].  

Once microbial PAMPS are recognized, a complex signal transduction cascade is 

initiated to elicit antimicrobial and inflammatory functions. As shown in Figure 3.1, once 

TLR2 binds with its ligand, the adaptor protein MyD88-like adaptor protein (Mal, also 

called TIRAP) is recruited to the receptor’s cytoplasmic tail to facilitate the recruitment 

and bridge the binding of myeloid differentiation primary-response protein 88 (MyD88) to 

the TLR2 receptor. Once at the cytoplasmic tail of the receptor, MyD88 forms a complex 

called the Myddsome with several IL-1 receptor-associated kinase (IRAK) -1, -2 and -4 

[333]. IRAK4 is the first recruited to MyD88, where IRAK4 will auto-phosphorylate its 

central kinase domain and activate IRAK1 and IRAK2 through phosphorylation [334]. The 

Myddsome assembly induces the association and activation of E3 ubiquitin (Ub) ligase 

TNF receptor-associated factor 6 (TRAF6), which facilitates the activation of transcription 

factor, interferon regulatory factor (IRF) -5 [335], or associates with the TGF-𝛽 activated 

kinase 1 (TAK1) complex comprised of TAK1, TAK1-binding protein 1 (TAB1), and 

TAB2/3. Downstream of the TAK1 complex is the initiation of the MAPK and NF-𝜅B 
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pathways, which culminate in the activation of several transcription factors like AP-1, 

CREB, and NF- B (comprising subunits p50 and p65) [334].  

 
 

FIGURE 3.1: Toll-like Receptor (TLR) signaling cascades. Adapted from [334].    

 

Activation of TLR2 results in multiple phenotypic and functional changes in 

neutrophils. First, TLR2 ligation can increase adhesion and chemotaxis in neutrophils. 

Stimulation of human neutrophils with the TLR2 agonist, Pam3CysSerLys4 (PAM3CSK4), 

resulted in the shedding of L-selectin (CD62L), upregulation of CD11b, and 

downregulation of chemotactic receptors, CXCR2 and CXCR1, on the plasma membrane 
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[327, 336]. This was also the case in our hands, where neutrophil interaction with F. alocis 

through TLR2 ligation resulted in defects in neutrophil chemotaxis [275]. However, TLR2 

agonists also induce neutrophil activation. PAM3CSK4 stimulation increased phagocytosis 

of opsonized latex beads, induced ROS production and primed formyl methionyl leucyl 

phenylalanine (fMLF)-induced ROS production as well [327, 336]. Granule exocytosis can 

also be induced through ligation of TLR2. Previous publications from our laboratory have 

also showed that F. alocis induces granule exocytosis through ligation of TLR2 [275]. 

TLR2 agonists also induce the production and release of cytokines and chemokines from 

neutrophils through the phosphoinositide 3-kinase (PI3K) and the protein kinase B (Akt) 

signaling pathway [327, 336, 337]. Literature on TLR2 stimulation and apoptosis has 

yielded conflicting results, but overall, it appears that TLR2 stimulation has some pro-

survival effects [338, 339].  

For greater versatility and specificity, TLR2 forms heterodimers with TLR1 and 

TLR6. TLR2/1 recognizes triacylated lipopeptides and TLR2/6 recognizes diacylated 

lipopeptides and zymosan from Saccharomyces cerevisiae [338, 340, 341]. 

Experimentally, synthetic and microbe-derived specific ligands for TLR2/1 (PAM3CSK4) 

and TLR2/6 (FSL-1, MALP-2) are available, but much of the information known about 

TLR2 signaling in human neutrophils has been conducted with the TLR2/1 agonist. What 

is known using the TLR2/6 agonist, FSL-1, is that TLR2/6 ligation also increases CD11b 

expression, induces exocytosis of specific granules, can prime ROS generation and induces 

cytokine release [342, 343]. Previous work showed that F. alocis activates TLR2/6 in 

HEK293 cells [253], but this has not been proven in human neutrophils.   
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Pathogenic bacteria have evolved elaborate strategies to block intracellular 

signaling pathways that activate the host immune response. In fact, virtually every step of 

the TLR2 signaling pathway can be inhibited through bacterially derived proteases, 

acetyltransferases, kinases/phosphatases, deubiquitinases, proteins that act as TIR mimics, 

etc. (Reviewed in [344]). Additionally, bacteria have also developed ways to activate 

signaling pathways at different stages of infection to their advantage. For example, the oral 

pathogen, P. gingivalis, evades clearance by neutrophils and promotes a pro-inflammatory 

environment by stimulating cross-talk between TLR2/1 and C5aR that results in the 

degradation of MyD88 [158, 244]. This reroutes signaling through Mal, which activates 

the PI3K pathway instead of the MAPK pathway and increases the release of pro-

inflammatory cytokines while decreasing the efficiency of neutrophil microbicidal 

mechanisms. Ultimately, this results in the impaired clearance of systemic bacteria.  

Little to nothing is known about the TLR signaling cascade elicited or influenced 

by F. alocis, whose pathogenic potential continues to be defined. However, based on the 

impaired neutrophil effector functions previously observed, it is clear that F. alocis has 

devised a mechanism to escape killing by the immune system while stimulating 

inflammation. In this exploratory chapter, I sought to determine the initial steps of 

neutrophil intracellular signaling after challenge with F. alocis, and to determine how the 

bacteria modulates intracellular signaling to control neutrophil functions. Our data shows 

that F. alocis signals through TLR2/6 in human neutrophils, and that the oral bacterium 

induces cytokine release through TLR2 and MyD88 dependent pathways. However, F. 

alocis is modulating TLR2 signaling to survive within neutrophils by inhibiting phagosome 

maturation. Our results are the first to delineate the F. alocis strategies to control neutrophil 
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effector functions by interrupting intracellular signaling and will enhance our 

understanding of how oral bacteria undermine the innate immune system. 

 

Materials & Methods 

Neutrophil isolation: Human donor recruitment, blood draws, and materials required for 

this procedure were in accordance with the guidelines approved by the Institutional Review 

Board of the University of Louisville. Neutrophils were isolated from venous blood of 

healthy donors using plasma‐Percoll gradients, as described previously [297].  

 

Mouse strains: Bone marrow neutrophil isolations were completed on legs from male and 

female mice between 8 to 12 weeks of age. TLR2-/- and C57BL/6 control mice were 

originally obtained from the Jackson Laboratory and bred in the University of Louisville 

animal facilities. MyD88-/- and wild-type albino C57BL/6J mice (B6(Cg)-Tyrc-2J/J) were a 

gift from Dr. Jonathan Warawa and bred in-house. The procedures used for our animal 

studies were reviewed and approved by the University of Louisville Institutional Animal 

Care and Use Committee. 

 

Bone Marrow Neutrophil isolation: Mice were sacrificed by CO2 and the tibia and femur 

were extracted and cleaned from excess flesh. The ends of each tibia and femur were 

clipped with dissecting scissors and the bone marrow cells were flushed with PBS 

supplemented with 1% glucose and 0.1% bovine serum albumin (PBS-BG) using a syringe 

with 22G needle. The pooled bone marrow was then separated by gentle pipetting with the 

22G needle followed by filtration through a sterile 70-µm nylon cell strainer to remove cell 
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clumps and bone particles. For assays where cytokines were measured, positive selection 

was performed using the MACS mouse Anti-Ly-6G MicroBead Kit (Miltenyi Biotec Inc., 

CA, USA) according to manufacturer’s instructions. For all other experiments, a percoll 

density gradient protocol by the Mócsai laboratory was used [345, 346]. Briefly, the red 

blood cells from the bone marrow prep were lysed hypotonically using a 0.2% NaCl 

solution. Osmolarity was restored with 1.6% NaCl and after a wash, cells were resuspended 

in PBS-BG and carefully pipetted on a 62.5% Percoll gradient and cells were centrifuged 

for 30 min at 1000xg, brake off.  A loose pellet of neutrophils will form at the bottom of 

62.5% gradient. By flow cytometry analysis after staining for Ly6G and CD11b, 80% or 

more of the cells will be neutrophils.  

 

Bacterial strains and growth conditions: F. alocis ATCC 38596 was cultured in brain heart 

infusion (BHI) broth supplemented 5 mg/mL yeast extract, L-cysteine (0.05%) and 

arginine (0.05%) for 7 days anaerobically at 37 °C as previously described [275, 276]. 

Serum opsonization was performed by incubating F. alocis at 37 °C for 20 min in 10% 

normal human serum (Complement Technology, Inc., Tyler, TX, USA). Heat 

killed F.alocis was generated by incubation at 90 °C for 60 min. Non-viability was 

confirmed by incubation in culture media at same conditions used for the live organism. P. 

gingivalis ATCC 33277 was cultured anaerobically at 37 °C in trypticase soy broth 

supplemented with yeast extract (1 mg/mL), hemin (5 µg/mL) and menadione (1 µg/mL) 

as previously described [253]. 
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Extracellular respiratory burst response: Human neutrophils (4 x 106 cells/mL) were 

pretreated with PAM3CSK4 (1 µg/mL, Invivogen), FSL-1 (100 ng/mL, Invivogen), or 

opsonized F. alocis for 30 mins at 37°C, followed by stimulation with fMLF (300 nM) for 

5 min. After stimulation, the samples were centrifuged for 10 min at 600 x g and 4 °C, and 

supernatants were collected. Superoxide anion release was measured 

spectrophotometrically at 550 nm as the superoxide dismutase-inhibitable reduction of 

ferricytochrome c as previously described [297]. 

 

Granule exocytosis: Human neutrophils (4 × 106 cells/ml) were unstimulated (basal), pre-

treated with TLR6 neutralizing antibody (50 ug/mL, Invivogen) or Rat IgG isotype control 

(50 ug/mL, Invivogen) for 60 minutes and/or TLR2 neutralizing antibody (50 g/ml; clone 

TL2.1; BioLegend) or isotype control IgG2a kappa (50 g/ml; clone MOPC-173; 

BioLegend) for 30 minutes. Then, cells were stimulated with FSL-1 (100 ng/mL, 

Invivogen), or F. alocis (MOI 10) at 37 °C for 30 min. Exocytosis of specific granules and 

secretory vesicles was determined by measuring the increase in plasma membrane 

expression of membrane-associated receptors using antibodies: FITC-conjugated anti 

human CD66b (Biolegend, clone G10F5) and PE-conjugated anti-human CD35 

(Biolegend, clone E11), respectively. After treatment, the samples were washed with 0.5% 

sodium azide, fixed with 1% paraformaldehyde, and analyzed by flow cytometry using a 

BD FACSCalibur.  

 

BacLight assay:  As previously described [284, 322], the two DNA dyes, membrane-

permeable Syto9 (stains all bacteria) and membrane-impermeable propidium iodide (PI) 
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(stains only nonviable bacteria), were used to determine bacteria viability associated with 

mouse neutrophils. Bone marrow neutrophils (1 x 106 cells/mL) were allowed to settle on 

poly-L-lysine-coated coverslips for 30 minutes, followed by challenge with opsonized F. 

alocis (MOI 10) that was centrifuged at 600 x g for 4 min at 14 °C to synchronize 

phagocytosis. Following challenge of 1 hour in a cell culture incubator at 37°C, mixed dye 

solutions (AlexaFluor 670-Phallodin, 5 µM Syto9, 30 µM PI in 0.1 MOPS 

(morpholinepropanesulfonic acid) (pH 7.2)–1 mM MgCl2) were added to samples. Z-stack 

confocal images were acquired within 30 min using a Fluoview FV1000 confocal 

microscope and analyzed by FV-10ASW software. Quantification was performed by 

counting the total viable and nonviable bacteria both intracellularly from 100 neutrophils 

in 3 independent experiments. 

 

Phagocytosis assay and Myeloperoxidase staining:  Bone marrow neutrophils (1 x 106 

cells/mL) were allowed to settle on poly-L-lysine-coated coverslips for 30 minutes, 

followed by challenge with opsonized F. alocis (MOI 10) that was centrifuged at 600 x g 

for 4 min at 14 °C to synchronize phagocytosis. After an hour of challenge, cells were fixed 

with 4% paraformaldehyde, 10 min at room temperature. Extracellular bacteria were 

stained using F. alocis antibodies (1:1000) and Alexa Fluor 647-labeled (1:1000) 

secondary antibodies for 1 hour each and antibodies were fixed in place with 4% 

paraformaldehyde for 10 min, room temperature. Cells were permeabilized and blocked 

with 3% bovine serum albumin with 0.02% saponin. Then, intracellular F. alocis was 

stained using F. alocis antibodies (1:1000) and Alexa Fluor 488-labeled (1:1000) 

secondary antibodies for 1 hour each. For experiments where myeloperoxidase was stained, 

the same protocol as above was followed, except cells were blocked with 4% goat serum 
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and incubated with a FITC-labeled mouse myeloperoxidase antibody (1:50, Hycult 

Biotech) overnight. Z-stack confocal images were acquired using a Fluoview FV1000 

confocal microscope and analyzed by FV-10ASW software. Quantification for 

phagocytosis was performed by counting 100 neutrophils and determining the number of 

neutrophils that had intracellular F. alocis. Quantification for myeloperoxidase was 

performed by counting 100 infected neutrophils and determining the number of neutrophils 

that had F. alocis that co-localized 50% or more with the myeloperoxidase.  

 

F. alocis Colony Forming Units: F. alocis was co-cultured with isolated bone marrow 

neutrophils at a MOI of 10 in RPMI + 5% fetal bovine serum in a 37°C, 5% CO2 incubator. 

At the end of each timepoint, F. alocis and neutrophils were centrifuged (6000g, 2 min, 4 

°C) to pellet all bacteria and immune cells. The pellets were lysed for 1 minute in 0.02% 

saponin and serially diluted in sterile PBS. These dilutions were plated in duplicate 10 µL 

drop aliquots on anaerobic BHI plates (BHI media (7.4g/200ml), L-cysteine (0.1g/ 200ml), 

yeast extract (1g/200ml), agar powder (3g/200ml), 0.05% arginine and 5% sheep blood). 

The plates were transferred into an anaerobic chamber and allowed to grow for 72 hours. 

Colonies that grew were counted and Gram stained.  

 

Intracellular ROS generation: ROS generation time courses with BMN were monitored by 

luminol chemiluminescence. Plate 50 L of a 2 × 106 BMN/ml stock in triplicate and 

incubate with luminol (125 M) with superoxide dismutase (15 nM) for 10 minutes. 

Stimulate with opsonized zymosan (2 mg/mL), viable or heat-killed F. alocis (MOI 10). 

After a short centrifugation to synchronize phagocytosis, plates were placed in a 
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Spectramax L Luminometer (Molecular Devices) and readings were taken every minute 

for the duration of 90 minutes. Single timepoint measurements of the phagocytosis-

stimulated respiratory burst response in human neutrophils was measured by 2′, 7′-

dichlorofluorescein (DCF, 5 μM) and analyzed by a BD FACSCalibur flow cytometer as 

previously described [284]. In experiments with the MyD88 inhibitor (ST-2825, Med 

Chem Express), 1-25 M were tested, but all subsequent experiments used a pre-treatment 

of 20 M for 60 minutes.  

 

Murine Bone Marrow Neutrophil Lysis & Western Blotting: After incubation in RPMI-

1640 + 5% fetal bovine serum or with viable or heat-killed F. alocis (MOI 10) for 4 or 24 

hours in a 37 °C, 5%CO2 incubator, 2 × 106 cells/mL were lysed directly into 50 L of 

SDS-sample buffer. 5 µL of the total cell lysates were separated by 12% SDS-PAGE and 

immunoblotted with antibodies for F. alocis (1:1000) or −actin (1:1000, Cell Signaling, 

Danvers, MA, USA). The appropriate secondary antibodies were used at 1:2000 dilution 

(Cell Signaling, Danvers, MA, USA). The ECL system (Amersham Pharmacia Biotech, 

Little Chalfont, United Kingdom) or the SuperSignal West Femto Maximum Sensitivity 

Substrate (Thermo Scientific,Waltham, MA, USA) was used to visualize antigen-antibody 

reactions. Densitometric values of each band were calculated using Image Lab software 

(BioRad, Hercules, CA, USA). 

 

Intracellular staining of IB After stimulation with FSL-1 (100 ng/mL), live or heat-

killed opsonied F. alocis, human neutrophils (2 × 106 cells/mL for each timepoint) were 

fixed with 4% paraformaldehyde, permeabilized and blocked with 0.02% saponin in 3% 
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BSA for 1 hour. Primary antibodies for IB (1:800, Cell signaling) were incubated with 

cells overnight followed by 3 washed with PBS. An alexa fluor 488 secondary antibody 

(1:1000, Life Technologies) or FITC-IgG1 isotype control mAb (1:1000, Cell Signaling) 

was incubated with the cells for 1 hour. After washing 3 times with PBS, cells were read 

on a BD FACSCalibur flow cytometer.  

 

Cytokine collection from bone marrow neutrophils: Highly pure (99%+) bone marrow 

neutrophils (1 x 106 cells/mL) were allowed to settle in the wells of a 96 well plate for 30 

minutes in RPMI 1640 + 5% fetal bovine serum, followed by challenge with opsonized F. 

alocis or non-opsonized P. gingivalis (MOI 10) that was centrifuged at 600 x g for 4 min 

at 14 °C to synchronize phagocytosis. After 24 hours, supernatants were collected from the 

wells, centrifuged (10000g for 5 min) to remove any bacteria or cells and transferred to 

sterile microcentrifuge tubes with 1% protease and phosphatase inhibitors. Supernatants 

were stored at -80 °C until analyzed by multiplex assays.  

 

Human Neutrophil Western Blotting: Human neutrophils (10 × 106 cells/mL) were cultured 

at 37 °C, 5% CO2 in RPMI-1640 + 5% heat inactivated human serum and left unstimulated, 

stimulated with FSL-1 (100 ng/mL), or challenged with live F. alocis for 3, 6, 10, or 20 

hours. Then, cells were centrifuged at 6,000 ×g for 30 s and lysed for 30 min on ice in ice-

cold lysis buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1% [vol/vol] Triton X-100, 

0.5% [vol/vol] Nonidet P-40, 20 mM NaF, 20 mM NaVO3, 1 mM EDTA, 1 mM EGTA, 

5 mM phenylmethylsulfonyl fluoride [PMSF], 21 μg/ml aprotinin, 5 μg/ml leupeptin, and 

4mM Diisopropyl fluorophosphates [DFP]). After protein estimation using the Pierce BCA 
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protein assay kit (Thermo Scientific, Waltham, MA, USA), samples were adjusted to a 

concentration of 2 µg/µL. Unless otherwise noted, 20 µg/µL of total cell lysates were 

separated by 12% SDS-PAGE and immunoblotted with antibodies for MyD88, 

phosphorylated IRAK4, total IRAK4, and −actin (1:1000, Cell Signaling, Danvers, MA, 

USA). The appropriate secondary antibodies were used at 1:2000 dilution (Cell Signaling, 

Danvers, MA, USA). The ECL system (Amersham Pharmacia Biotech, Little Chalfont, 

United Kingdom) or the SuperSignal West Femto Maximum Sensitivity Substrate (Thermo 

Scientific,Waltham, MA, USA) was used to visualize antigen-antibody reactions. 

Densitometric values of each band were calculated using Image Lab software (BioRad, 

Hercules, CA, USA). 

 

Results 

F. alocis challenge induces differential gene expression in the TLR2 pathway 

Using the Metacore software, a list of genes involved in the TLR2/TLR4 signaling 

pathway was compiled to assess the pattern of differential gene expression (Figure 3.2 A). 

The expression of two genes (iNOS and TAB2) was downregulated and upregulated so 

much that they were plotted separately (Figure 3.2 B). Overall, there is a pervasive 

downregulation of genes in this pathway. Many of the signaling intermediates from the 

MAPK pathway like ERK1/2, p38, NIK, and MEK4 and -6 show downregulation. 

Moreover, proteins involved in the initial signaling mechanisms of TLR were also 

downregulated, like TLR6 and 1, Mal, MyD88, and Tab 1. Out of the proteins that were 

upregulated, many of them relate to inflammatory processes like IL-12beta, IL-6, IRF5, 

NF-B, and TNF It is interesting that TAB2 is so highly upregulated because in addition 
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to its role in the transduction of TLR2 signaling, it is also involved in the pathway that 

senses bacterial double stranded DNA [347]. The inducible nitric oxide synthase (iNOS) 

system is more developed in mice than in humans, but it can be found in human neutrophils 

in azurophilic granules and phagosomes, and have been proposed to have roles as signaling 

molecules and in bacterial killing [348-351]. In our dataset the expression of iNOS was 

increased over the time course tested, but the biological significance of this increase in 

gene expression remains to be examined. Taken together, I conclude that challenge of 

human neutrophils with F. alocis results in significant changes to the expression of 

components in the TLR2 signaling pathway.  

 

Human neutrophils recognize F. alocis through TLR2/6 

Previous work from our laboratory showed that F. alocis activates TLR2/6 in 

HEK293 cells [253], but this has not been demonstrated in human neutrophils yet. 

Neutrophils can undergo a sequential activation process called priming that results in 

phenotypic changes enhancing the cell functional responses [352]. Whitmore et al. noted 

that while stimulation with FSL-1, a TLR2/6 ligand, could prime the neutrophils from all 

their human donors, only a subset of these donors could be primed with the TLR2/1 agonist, 

Pam3CSK4 due to a single nucleotide polymorphism on TLR1 [342]. Based on this work, 

I compared the priming capabilities of F. alocis in donors who had low or high priming 

response to Pam3CSK4 (Figure 3.3A). Priming was measured as the ability to generate 

extracellular superoxide by the colorimetric reduction of ferricytochrome c as previously 

described [353]. As Whitmore reported, in our hands, Pam3CSK4 only primed a subset of 

donors, which are color coded as high priming, whereas FSL-1 could prime all donors. 
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Neutrophils primed by F. alocis produced a significantly higher superoxide concentration 

than Pam3CSK4 low primers, suggesting that F. alocis is recognized through TLR2/6, like 

FSL-1 (Figure 3.3A). Notably, F. alocis-primed neutrophils still produced significantly 

lower amounts of superoxide than the FSL-1-primed neutrophils, which could be due to 

the affinity of the receptor for either one of the ligands and the strength of subsequent 

downstream signaling. To strengthen this observation, I tested granule exocytosis, which 

is another neutrophil function that has been linked to TLR2 signaling [275, 342, 343]. 

Human neutrophils were pre-treated with media, neutralizing antibodies for TLR2 and -6, 

or corresponding antibody isotype controls, followed by stimulation with FSL-1 or F. 

alocis. When the release of secretory vesicles (Figure 3.3B) and specific granules (Figure 

3.3C) was assessed, both FSL-1 and F. alocis stimulated exocytosis, but this was 

significantly decreased when the cells were pre-treated with the neutralizing antibodies for 

TLR2/6 while the isotype control had no effect. In conclusion, this data strongly suggests 

that human neutrophils use the heterodimer receptors TLR2/6 to recognize F. alocis, and 

that F. alocis-induced neutrophil degranulation depends on TLR2/6 activation.  

 

F. alocis modulates TLR2 signaling to survive within neutrophils 

Data published by our group as well as the data presented in this thesis so far, 

strongly indicate that F. alocis can manipulate neutrophil functional responses. Thus, I 

wanted to assess if F. alocis was modulating the TLR2 signaling pathway to interrupt 

neutrophil functions and favor its survival. To do this, the functional responses were 

compared between bone marrow neutrophils (BMN) from WT or TLR2-/- mice.  
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First, the microbicidal capacity of these BMN was assessed using several methods. 

The first of these, BacLight, is a confocal microscopy-based assay that uses the dyes Syto9 

to label all bacteria and propidium iodide to label dead bacteria that have compromised cell 

membranes as previously shown in neutrophils [284, 322]. Figure 3.4A shows 

representative images from the BacLight assay on WT or TLR2-/- BMN that were 

challenged with F. alocis for 1 hour. Like the data observed in human neutrophils, BMN 

were also not able to completely eliminate intracellular F. alocis within the first hour of 

challenge (Figure 3.4B). Moreover, TLR2-/- BMN were able to kill F. alocis slightly better 

than their WT counterparts (15-20% decrease), suggesting that F. alocis is manipulating 

TLR2 signaling to remain viable in neutrophils. Notably, this difference was not due to 

discrepancies in phagocytosis between the mouse genotypes (Figure 3.4C-D). Using F. 

alocis antibodies to differentiate between intracellular (green) or extracellular 

(magenta/white) bacteria (Figure 3.4C), there was no difference in the number of BMN 

that phagocytized F. alocis (Figure 3.4D). The disparity in F. alocis killing was also tested 

by colony forming units (CFU) (Figure 3.4E). After 1 hour of challenge, the F. alocis that 

was cultured with TLR2-/- BMN produced significantly fewer CFU than the bacteria 

cultured with WT cells. By 4 hours, TLR2-/- BMN still had slightly fewer CFU, but the 

difference between the genotypes was not statistically significant. This data demonstrates 

that TLR2 is not involved in the phagocytosis of F. alocis, which is to be expected since 

TLR2 is not a phagocytic receptor. The data also points to the idea that while TLR2 

signaling is required for the maximal intracellular survival of the oral pathogen, but that 

there are likely other mechanisms at play since the killing capacity of neutrophils was not 

completely restored in the TLR2 null mice.  
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TLR2 signaling is involved in phagosome maturation but not ROS generation  

To determine why TLR2-/- BMN are able to eliminate F. alocis more efficiently 

than WT BMN, differences in neutrophil microbicidal mechanisms were measured in both 

of these genotypes. Intracellular ROS generation was detected during a time course luminol 

assay, which is represented in Figure 3.5A. Based on the quantification of the area under 

the curve, it is possible to observe that similar to human neutrophils, BMN were able to 

quickly generate ROS in response to opsonized zymosan and heat-killed F. alocis, but 

viable F. alocis induced minimal ROS production (Figure 3.5B). This trend was the same, 

regardless of whether the cells expressed TLR2. This suggests that both the robust ROS 

generation induced by heat-killed F. alocis, as well as the dampened ROS response by the 

viable bacteria, are independent of TLR2. In the case of opsonized zymosan, host cells 

recognize the yeast particle through TLR2/6, opsonic receptors, and C-type lectin receptors 

such as dectin-1[354]. Signaling through these other receptors is responsible for the ROS 

production observed with zymosan and in the case of F. alocis, other PRR may be involved 

in the ROS response.  

Oxygen independent microbicidal mechanisms are characterized by the deposition 

of granule antimicrobial proteins into the phagosome to establish a hostile, non-physiologic 

environment. Myeloperoxidase (MPO) is found in azurophilic granules and is a key 

enzyme in the development of a noxious phagosome due to its catalytic activity. As a 

measure of phagosome maturation and granule fusion with the phagosome, I evaluated the 

co-localization of MPO with F. alocis phagosomes from WT and TLR2-/- BMN after 1 

hour of challenge by confocal microscopy (Figure 3.6A). Fewer than 40% of F. alocis 

phagosomes in WT BMN co-localized with MPO, and while TLR2-/- BMN had a 
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significantly greater number of MPO+ F. alocis phagosomes, a majority of phagosomes 

remained negative for MPO (Figure 3.6B). This partial increase in MPO fusion with the F. 

alocis phagosome may be the reason for the marginal increase in F. alocis killing. As a 

measure of total bacterial degradation, I collected whole cell lysates from WT and TLR2-/- 

BMNs that were untreated or challenged with viable or heat-killed F. alocis for 4 and 24 

hours (Figure 3.6C). The F. alocis antibody did not considerably detect proteins in 

untreated cells from either  WT or TLR2-/- BMNs, suggesting that the bands detected by 

the antibody in the other conditions corresponded solely to F. alocis and not homologous 

sequences in neutrophil proteins. The densitometry analysis of these western blots 

demonstrated that in WT BMN, there is a time-dependent decrease in F. alocis proteins, 

indicating degradation of F. alocis (Figure 3.6D). This degradation process started earlier 

and progressed much faster in WT BMN that were challenged with heat-killed F. alocis, 

indicating that much like in human neutrophils, viable F. alocis is actively delaying the 

maturation of its phagosome in BMNs. In TLR2-/- BMNs, there was more degradation of 

F. alocis proteins at the earlier timepoint tested, but by 24 hours WT and TLR2-/- BMN 

had comparable levels of F. alocis proteins. The enhanced degradation of heat-killed F. 

alocis compared to viable bacteria was similar between WT and TLR2-/- BMN. Taken 

together, this data demonstrates that viable F. alocis requires TLR2 signaling to actively 

delay the recruitment of azurophilic granules to its phagosome.  

 

TLR2 signaling activates F. alocis pro-inflammatory cytokine production  

TLR2 stimulation results in the activation of the MAPK and NF-B pathways. 

Although F. alocis activation of MAPK through TLR2 and the production of cytokines in 
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response to F. alocis has been shown [253, 275], the activation of NF-B or the role TLR2 

plays in cytokine production had not been determined. The activation of NF-B was 

determined indirectly by measuring the amount of IB In naïve cells, the inhibitory 

IB is bound to NF-B to prevent its inadvertent activation. Upon stimulation, IB will 

be phosphorylated, ubiquitinated and degraded by the proteasome, freeing the now active 

NF-κB subunits to translocate into the nucleus and perform their effector functions [355]. 

IB was quantified by flow cytometry in human neutrophils that were untreated (basal) 

or stimulated with FSL-1, F. alocis or heat-killed F. alocis for a short time course 

experiment (Figure 3.7A). Within 15 minutes of stimulation, the cellular stores of 

IB began to be depleted, and by 30 minutes of challenge with all three stimulants, 

intracellular IB was significantly degraded compared to the basal expression. The 

kinetics of activation of NF-κB by F. alocis was comparable to the TLR2/6 agonist, FSL-

1, and since F. alocis challenge quickly induced IB degradation regardless of viability, 

I conclude that viable F. alocis is not inhibiting the activation of NF-κB at the initial stages 

of infection.  

Subsequently, the role of TLR2 in F. alocis-induced cytokine (Figure 3.7B) and 

chemokine (Figure 3.7C) production was directly determined by using WT and TLR2-/- 

BMN. When challenged with F. alocis, WT BMN significantly released all pro-

inflammatory cytokines and the anti-inflammatory cytokine, IL-10 (Figure 3.7B). 

Similarly, F. alocis induced significant release of chemokines, such as CCL2, CCL3, CCL4 

and KC which are involved in monocyte and neutrophil chemotaxis, respectively by WT 

BMNs (Fig 3.7C) However, the release of all these cytokines and chemokines was 

abrogated in TLR2-/- conditions, indicating that TLR2 signaling is essential to produce 
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cytokines and chemokines in F. alocis infection. In conclusion, this data indicates that F. 

alocis manipulates TLR2 signaling to prevent microbicidal mechanisms, but requires this  

signaling pathway to induce cytokine and chemokine release. 

 

Role of MyD88 in antimicrobial responses against F. alocis challenge 

 MyD88 is the canonical adaptor protein for signaling pathways downstream of 

TLRs. As a central node of inflammatory pathways and a bottleneck for multiple neutrophil 

functional responses, it is a prime target for manipulation by pathogens. Burns et al. 

conducted in vivo infections with P. gingivalis that proved that while TLR2-mediated 

production of pro-inflammatory cytokines was independent of MyD88, MyD88 signaling 

was required for controlling bacterial load [244]. Thus, I explored the possibility that F. 

alocis was manipulating TLR2 signaling like P. gingivalis and assessed the role of MyD88 

in F. alocis challenge.  

 Initially, the role of MyD88 was tested in the phagocytosis of F. alocis by confocal 

microscopy as previously shown. Both WT and MyD88-/- BMN phagocytized the oral 

pathogen to a similar extent after 1 hour of challenge (Figure 3.8A). Analysis of the killing 

capacity of these BMN by BacLight demonstrated that F. alocis was able to survive equally 

well in WT and MyD88-/- BMN (Figure 3.8B). Around 80% of the intracellular F. alocis 

was viable after an hour of culture with WT or MyD88-/- BMN (Figure 3.8C). Preliminary 

experiments by CFU also confirmed this finding (Figure 3.8D).  Together, this data shows 

that MyD88 is not required for the internalization or intracellular survival of F. alocis.  

 Next, the ROS generation by WT and MyD88-/- BMN was tested. Using a time 

course luminol based assay, it appeared that there was a slight decrease in MyD88-/- BMN’s 
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ability to produce ROS in response to F. alocis (Figure 3.9A). However, when the area 

under the curve was combined from several mice, there was no significant difference in the 

ROS generation between mouse genotypes (Figure 3.9B). In human neutrophils, I 

confirmed this data by optimizing the use of a MyD88 inhibitor (ST2825). Figure 3.9C 

shows the dose response curve where FSL-1 was used as the agonist and the readout was 

ROS production. The chosen concentration, 20 M, which reduced the FSL-1 ROS 

production by half, was tested in human neutrophils against viable and heat-killed F. alocis 

(Figure 3.9D). However, pre-treatment of neutrophils with the MyD88 inhibitor had no 

effect on the minimal production of ROS by viable F. alocis. In contrast to the results from 

MyD88-/- BMNs, the MyD88 inhibitor decreased ROS generation by heat-killed F. alocis. 

Overall, this data shows that MyD88 is not involved in the minimal ROS production by 

viable F. alocis. 

 Since the killing capacity of MyD88-/- BMNs was equal to WT, I expected the F. 

alocis phagosome maturation to be similar between genotypes. By confocal microscopy, 

after 1 hour of challenge, less than 40% of F. alocis phagosomes had co-localized with 

myeloperoxidase in both WT and MyD88-/- BMNs (Figure 3.10A-B). This suggests that F. 

alocis does not interfere with neutrophil signaling through MyD88 to delay the maturation 

of the phagosome at early timepoints. However, MyD88 may be playing a role in 

phagosome maturation at longer timepoints. The whole cell lysates from WT and MyD88-

/- BMNs that were challenged with live or heat-killed F. alocis for 4 and 24 hours were 

processed for western blots to determine the degradation of F. alocis (Figure 3.10C). In 

WT BMN, both viable and heat-killed F. alocis were degraded in a time-dependent 

manner, albeit heat-killed F. alocis was degraded to a greater extent (Figure 3.10D). In the 
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case of MyD88-/- BMN, heat-killed F. alocis was degraded with similar kinetics as in WT 

BMN, but viable F. alocis in MyD88-/- BMN was not degraded as much as in WT cells by 

24 hours of culture. These results indicate that while MyD88 signaling may not play a role 

in the initial phagosome maturation, it may be essential to the degradation of the oral 

pathogen at longer timepoints, though this finding requires more characterization.  

 

Role of MyD88 in inflammatory responses to F. alocis challenge 

 The dogma in the field is that MyD88 signaling predominantly leads to the 

production of inflammatory cytokines (e.g., TNF, IL-6, IL1) and chemokines (e.g., C-

C motif ligand 4, CCL4) [356], however, Burns et. al reported that P. gingivalis challenge 

results in MyD88 independent cytokine release [244]. Therefore, I challenged WT and 

MyD88-/- BMNs with F. alocis or P. gingivalis for 24 hours and measured the resultant 

cytokine release (Figure 3.11). In WT mice, both P. gingivalis and F. alocis induced the 

release of pro-inflammatory cytokines (G-CSF, IL-1, and TNF) and chemokines (IL-

17, CCL2, CCL3, CCL4, and CCL5). Interestingly, F. alocis induced significantly less 

anti-inflammatory IL-10 than P. gingivalis, but greater release of pro-inflammatory 

immune cell recruitment cytokines like IL-17, CXCL10, CCL3, and CCL4. In our hands, 

both F. alocis and P. gingivalis required MyD88 signaling to induce the release of all 

cytokines and chemokines. In the case of P. gingivalis, this could be explained by strain 

differences between the studies. Therefore, in our system, MyD88 did not play a large role 

in antimicrobial functions, but it was critical for F. alocis-induced inflammation. 

 

F. alocis may be inducing non-canonical MyD88 signaling 



 

 129 

 Burns et. al showed that P. gingivalis causes the degradation of MyD88 to block 

MyD88-dependent antimicrobial mechanisms [244], so I tested whether this was taking 

place in our system by measuring the levels of MyD88 in F. alocis-challenged human 

neutrophils (Figure 3.12A). The normalized densitometry of MyD88 showed that although 

levels of MyD88 steadily decreased as the time course progressed, there was no difference 

in the MyD88 protein expression between untreated (basal) or F. alocis-challenged human 

neutrophils (Figure 3.12B). Together with our functional analysis of MyD88-/- BMNs, these 

results demonstrate that F. alocis is not inducing the same mechanism as P. gingivalis 

strain ATCC strains 381 and 53,977. P. gingivalis infection leads to the degradation of 

MyD88 to inhibit bacterial killing and promotes inflammation through MyD88-

independent cytokine production. However, F. alocis challenge did not change MyD88 

abundance and required MyD88 to be present for cytokine production.  

 Downstream of MyD88 signaling is the activation of IRAK4 by phosphorylation, 

a key step in the canonical TLR signaling pathway. To continue evaluating the F. alocis 

activation of TLR2 signaling, western blots for the phosphorylation of IRAK4 were 

performed on human neutrophils that were stimulated with the TLR2/6 agonist, FSL-1, or 

F. alocis (Figure 3.12C). FSL-1 stimulation resulted in the transient phosphorylation of 

IRAK4 that started after 5 min of challenge, and peaked at 30 min. To our surprise, F. 

alocis did not induce phosphorylation at any point in the 90-minute challenge (Figure 

3.12D). This response suggests that F. alocis is inducing non-canonical signaling from 

neutrophils, but its full impact on neutrophil functional responses will need more testing.   

 

Discussion 
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 Periodontal pathogens have evolved mechanisms to escape killing by the immune 

system while stimulating inflammation; however, much of the current literature on the 

signaling interactions between periodontal pathogens and the innate immune system 

centers around long-established pathogens such as P. gingivalis [357].  The results shown 

here characterize how F. alocis may be modulating TLR2 signaling to block or induce 

neutrophil effector functions. Moreover, this is the first study to assess the functional 

mechanisms of murine neutrophils against F. alocis, which will be useful in the context of 

animal models.  

In addition to species differences, one of the concerns of these experiments was that 

since the mouse neutrophils were isolated from the bone marrow, they would be less 

responsive than human cells, which are fully differentiated when isolated from peripheral 

blood. However, the responses of wild-type bone marrow neutrophils (BMN) showed 

similar trends as their human cell counterpart. When challenged with F. alocis, both mouse 

and human neutrophils phagocytize F. alocis efficiently but are unable to eliminate the 

intracellular oral pathogen. This is because F. alocis blocks neutrophils’ phagosome 

maturation in both species by inducing minimal ROS generation and inhibiting the fusion 

of azurophilic granules.  Therefore, mouse neutrophils provided a suitable model to study 

F. alocis challenge, especially neutrophils with genetic modifications. Early signaling 

through TLR2 is associated with neutrophil migration, phagocytosis, cytokine production, 

and direct microbicidal functions like the generation of reactive oxygen species, and 

granule exocytosis [327, 358]. Previous work from our laboratory showed that TLR2 

ligation by F. alocis has a direct impact on neutrophil migration and granule exocytosis 

[275], but it was unknown if TLR2 played a role in phagocytosis or killing of F. alocis.  
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Although TLR2 is not a phagocytic receptor, ligation of TLR2 will activate 

signaling pathways that enhance the efficiency of phagocytosis and inflammatory 

responses in macrophages [359, 360]. However, in our experimental system, TLR2 did not 

have an effect on phagocytosis of F. alocis. A caveat to this finding is the fact that  

phagocytosis was synchronized to increase the interaction between cells and used 

complement opsonized bacteria, which already initiates an efficient mechanism of uptake. 

I also did not observe a difference in the ROS generation between WT and TLR2-/- 

neutrophils, which is consistent with a study that used human neutrophils, TLR2 blocking 

antibodies and Paracoccidioides brasiliensis [361].  

 Studies of mice deficient in either TLR2 or MyD88 have found that loss of either 

of these proteins results in impaired ability to clear several types of bacteria, fungi and 

parasites from infected macrophages or mice [362-368]. This defect was attributed to 

decreased phagocytosis, defective phagosome maturation, or decreased oxidative burst, 

suggesting that both TLR2 and MyD88 are indispensable in innate immune defense against 

pathogens. However, when TLR2 is absent, neutrophils lose their ability to generate 

cytokines, but can kill and degrade viable F. alocis more efficiently due to a partial 

restoration of myeloperoxidase recruitment to the phagosome. Also, MyD88 did not affect 

phagocytosis, killing, ROS generation or degradation at early timepoints.  

I speculate that F. alocis may be modulating the TLR2 pathway to block 

antimicrobial mechanisms, but when TLR2 is not available, a redundant pathway is 

activated to enhance elimination of F. alocis. It has previously been shown that TLR2 and 

TLR9 can synergize to enhance immune responses [369, 370], but it has not been assessed 

whether TLR9 is involved in F. alocis-induced signaling. TLR9 can be activated by 
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unmethylated CpG containing DNA from bacteria or mitochondria [371], so while F. 

alocis may not be recognized by its DNA after lysis by the neutrophil phagosome, TLR9 

could still be activated. Notably, TLR9 signaling is MyD88-dependent but IRAK-4 

independent [372], hinting at a possible role in the neutrophil response against F. alocis. 

Surprisingly, the phosphorylation of IRAK4 was absent in F. alocis challenge but appeared 

normally after FSL-1 stimulation. While more experiments are needed to determine if this 

response has biological significance in the context of periodontitis and is actively caused 

by the viable bacterium, defective IRAK4 signaling has substantial implications for disease 

progression in other pathologies. For example, the kinase activity of IRAK4 is a 

prerequisite for mounting innate immune responses against intracellular bacteria like 

Listeria monocytogenes, Pseudomonas aeruginosa, S. aureus or Mycobacterium 

smegmatis [373, 374]. IRAK4 and TLR9 have also both been linked to neutrophil granule 

movement [375, 376]. 

Alternatively, F. alocis could be inducing crosstalk between TLR2 and another 

receptor or signaling pathway that is disrupted when TLR2 is not present. F. alocis and 

other oral pathogens are notorious for disrupting the complement system [64, 377]. P. 

gingivalis, evades clearance by neutrophils and promotes a pro-inflammatory environment 

by stimulating cross-talk between TLR2/1 and C5aR that results in the degradation of 

MyD88 [158, 244]. This reroutes signaling through another adaptor protein, MyD88 

adaptor-like (Mal, also known as TIRAP), which activates the PI3K pathway instead of the 

MAPK pathway and increases the release of pro-inflammatory cytokines while decreasing 

the efficiency of neutrophil microbicidal mechanisms. The TLR2-PI3K signaling resulted 

in the bacterial phagosome escaping lysosomal degradation, so ultimately, this results in 
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impaired clearance of systemic bacteria. However, when I tested this possibility in our 

system, F. alocis challenge did not cause MyD88 to be degraded, and cytokine production 

was completely dependent on MyD88 expression, indicating that the mechanism of 

pathogenicity is not the same between both of these oral pathogens. Nonetheless, at this 

time I cannot rule out the possibility that PI3K activation or complement receptor cross 

talk is happening during F. alocis infection.  

Similarly, complex mechanisms regulate signaling by TLR2 from multiple cellular 

locations. TLR2 and its heterodimer partners, TLR1 and -6, can be found on phagosomes 

containing zymosan particles, Chlamydia, and Borrelia species [378-381]. TLR2 

heterodimers employ several accessory molecules like mannose binding lectin (MBL) and 

CD36, that can synergize with TLR2/6 to recognize new ligands and drastically increase 

the inflammatory responses downstream of TLR2 ligation [379, 382-384]. Through the 

actions of these accessory molecules, TLR2/6 will be internalized in the process of 

phagocytosis and can continue to signal from the phagosome, especially to enhance the 

production of cytokines and phagosome maturation in macrophages [366, 378, 385]. 

Although they could be playing a role in F. alocis modulation of signaling, I have not 

assessed either one of these accessory proteins.  

 Overall, I demonstrate that like other oral pathogens, F. alocis is blocking 

microbicidal mechanisms in neutrophils while promoting inflammation through the release 

pro-inflammatory cytokines; a phenotype that hinges on signaling from TLR2 and MyD88. 

As the first study to delineate the F. alocis strategies to control neutrophil effector functions 

by interrupting intracellular signaling and demonstrates that this topic is a rich source of 
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knowledge that will enhance our understanding of how oral bacteria undermine the innate 

immune system.    
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Figure 3.2: F. alocis induces changes in gene expression of genes in TLR signaling 

pathway. 
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Figure 3.2: (A) Heatmap shows the differential expression of genes in the TLR2 Signaling 

Pathway from MetaCore. Gene expression data was generated from Illumina RNA 

sequencing performed on human neutrophils from 4 individual healthy donors that were 

either left unstimulated or challenged with F. alocis for 1, 3 or 6 hours. (B) From the list 

of genes from A, the two genes plotted had extremely large changes in gene expression 

and are plotted separately.  
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FIGURE 3.3: F. alocis is recognized by TLR2/6 heterodimers.  
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FIGURE 3.3: (A) Human neutrophils were incubated with buffer (basal), PAM3CSK4 

(TLR2/1 agonist), FSL-1 (TLR2/6 agonist), or F. alocis (MOI 10:1) or followed by fMLF 

stimulation. Superoxide release was measured by spectrophotometer as the colorimetric 

reduction of ferricytochrome C. Dotted line indicates the cut-off used for high and low 

priming donors. Data shows the mean ± superoxide release from 7 total high and low 

priming donors. A two-way ANOVA with Bonferroni post hoc tests was performed. 

Human neutrophil were untreated or pre-treated with TLR2/6 blocking antibodies or 

isotype controls before stimulation with FSL-1 for 30 min or F. alocis for 60 min. Then, 

cells were analyzed by flow cytometry for expression of (B) secretory vesicles (CD35) or 

(C) specific granules (CD66b) as a measure of granule mobilization. Data are plotted as 

the average mean channel fluorescence from 4-7 independent experiments. A one-way 

ANOVA with Tukey post-hoc tests was performed on graphs B and C. * = p > 0.05, **=p 

> 0.01, ***= p > 0.001.  
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FIGURE 3.4: F. alocis survival is partially linked to TLR2 signaling. 
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FIGURE 3.4: Bone marrow neutrophils (BMN) were isolated from WT or TLR2-/- mice 

and challenged with F. alocis (MOI 10) for 1 hour followed by staining with BacLight 

dyes, Syto9 and Propidium Iodide (PI), to determine bacterial viability. (A) Representative 

images show the BMN cortical actin (Blue), the syto9-labeled F. alocis (green), and PI-

labeled non-viable bacteria (red/yellow/orange). Yellow arrows point to intracellular viable 

F. alocis while white arrowheads point to intracellular, non-viable F. alocis. (B) The 

viability of intracellular F. alocis was assessed in Z-stacks from 100 infected cells. Data 

are plotted as the mean ± SEM of the % viable F. alocis from 3 mice each over two 

independent experiments. (C) BMN from WT or TLR2-/- mice were challenged with viable 

F. alocis (MOI 10) for 1 hour. Following incubation, cells were fixed and differentially 

stained for extracellular (purple or white bacteria, white arrow) or intracellular (green 

bacteria, yellow arrow) bacteria using anti-F. alocis antibodies. (D) 100 neutrophils from 

2-3 mice in a single independent experiment were assessed for phagocytosis of F. alocis 

and graphed as the % F. alocis+ cells ± SEM. (E) BMN from WT or TLR2-/- mice were 

challenged with F. alocis (MOI 10) for 1 and 4 hours followed. The total pellets of this 

interaction were plated in duplicates and grown anaerobically for 72 hours. Data are shown 

as the average ± SEM of colony forming units from 3 mice completed over 2 independent 

experiments. An unpaired student’s T test was used to determine statistical significance in 

B and D. A two-way ANOVA with Bonferroni post-hoc tests were used to determine the 

significance of E. * = p > 0.05, **=p > 0.01, ***= p > 0.001.   
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FIGURE 3.5: F. alocis induces minimal ROS generation from both WT and TLR2-/- 

bone marrow neutrophils. BMN from WT and TLR2-/- mice were left unstimulated 

(basal) or stimulated with opsonized zymosan or F. alocis in the presence of luminol, and 

the light output was measured each minute during a 90-minute kinetic experiment. (A) 

Shows a representative kinetic output curve for one experiment. (B) Shows the area under 

the curve from 3 independent experiments where each dot is a mouse. A two-way ANOVA 

with Bonferroni post-hoc tests was used to determine the statistical significance of B. No 

differences were detected between mouse strains, so the lines indicate significance between 

the conditions for both mice. * = p > 0.05, **=p > 0.01, ***= p > 0.001 
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FIGURE 3.6: F. alocis modulates TLR2 signaling to block phagosome maturation.  
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FIGURE 3.6: (A) BMN from WT and TLR2-/- mice were challenged with F. alocis for 1 

hour. Staining shows myeloperoxidase (MPO, azurophilic granules, red), extracellular F. 

alocis (purple/white), and intracellular F. alocis (green). The phagosomes of 100 infected 

neutrophils from 3 mice of each genotype were assessed for 50% co-localization of 

intracellular F. alocis and myeloperoxidase. Yellow arrows show MPO negative 

phagosomes while the white arrows indicate MPO positive phagosomes. (B) Data show 

the average % of F. alocis phagosomes that co-localized with myeloperoxidase ± SEM 

from 3 mice in one independent experiment. An unpaired student’s T test was used to 

determine statistical significance. (C) The representative western blot shows the whole cell 

lysates from WT and TLR2-/- BMN that were left untreated (UT), challenged with F. alocis 

(Fa), or heat-killed F. alocis (HK Fa) for 4 or 24 hours and probed for F. alocis and β actin. 

(D) Shows the mean normalized densitometry ± SEM of F. alocis proteins from * mice 

completed over 3 independent experiments. A two-way ANOVA with Bonferroni post-hoc 

tests was used to determine the statistical significance. * = p > 0.05, **=p > 0.01, ***= p 

> 0.001 
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FIGURE 3.7: F. alocis activates NF-κB and induces the production of cytokines 

through TLR2.  
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 FIGURE 3.7: (A) Activation of NF-κB was tested indirectly by intracellular staining of 

human neutrophils for IkBα after no stimulation (untreated) or stimulation with LPS, or F. 

alocis (MOI 10). Data shows the mean channel fluorescence (MCF) ± SEM of IκBα in 

samples from 4 independent experiments. Asterisks denote significance compared to basal 

levels of IκBα. WT and TLR2-/- BMN were untreated or challenged with F. alocis for 24 

hours. Supernatants were collected and tested for the presence of cytokines (B) and 

chemokines (C) using a multiplex assay. Data shows the cytokine & chemokine production 

by neutrophils from 5-10 animals, conducted over 3-4 experiments. Error bars show SEM. 

Two-way ANOVAs with Bonferroni post-hoc tests were completed on all plots to 

determine statistical significance. * P <0.05; ** P <0.01; *** P<0.001. 
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FIGURE 3.8: MyD88 signaling is not required for F. alocis viability.   
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FIGURE 3.8: (A) BMN from WT or MyD88-/- mice were challenged with viable F. alocis 

(MOI 10) for 1 hour. Following incubation, cells were fixed and differentially stained for 

extracellular or intracellular bacteria using anti-F. alocis antibodies. 100 neutrophils were 

assessed for phagocytosis of F. alocis over the course of 3 independent experiments. Data 

are graphed as the % F. alocis+ cells ± SEM from 5-6 mice. (B) Representative images 

show BMN from WT or MyD88-/- mice that were challenged with F. alocis (MOI 10) for 

1 hour and then the viability of F. alocis was verified as described in Figure 4.4A. Yellow 

arrows point to intracellular viable F. alocis while white arrowheads point to intracellular, 

non-viable F. alocis. (C) The viability of intracellular F. alocis was quantified from Z-

stacks of 100 infected cells. Data are plotted as the mean ± SEM of the % viable F. alocis 

from 2 mice in one independent experiment. (D) CFU were plated from an inoculum of F. 

alocis that was cultured either with WT or MyD88-/- mice for 2 hours from a single 

experiment with one mouse per genotype. An unpaired student’s T test was used to 

determine statistical significance in A and C.  
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FIGURE 3.9: F. alocis induces minimal ROS generation from both WT and MyD88-

/- bone marrow neutrophils.  
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FIGURE 3.9:  BMN from WT and MyD88-/- mice were left unstimulated (basal) or 

stimulated with opsonized zymosan or F. alocis in the presence of luminol, and the light 

output was measured each minute during a 90-minute kinetic experiment. (A) Shows a 

representative kinetic output curve for one experiment. (B) Shows the area under the curve 

from 4-5 independent experiments where each dot is a mouse. A two-way ANOVA with 

Bonferroni post-hoc tests was used to determine the statistical significance of B. No 

differences were detected between mouse strains, so the lines indicate significance between 

the conditions for both mice. (C) Human neutrophils were pre-treated with increasing 

concentrations of ST-2825, a MyD88 inhibitor for 60 minutes, followed by stimulation 

with FSL-1 for * minutes. The decrease in ROS production was measured via flow 

cytometer. Data are plotted as the average mean channel fluorescence ± SEM from 3-4 

independent experiments. Numbers above each condition indicate the average inhibition 

by the concentration shown. A one-way ANOVA with Tukey post-hoc tests was used to 

determine the statistical significance of C. (D) Using 20 µM of the MyD88 inhibitor as pre-

treatment, human neutrophils were stimulated with viable or heat-killed F. alocis and tested 

for ROS generation. Data are plotted as the average mean channel fluorescence ± SEM 

from 3-5 independent experiments. An unpaired student’s T test was used to determine 

statistical significance between the pairs of conditions. * = p > 0.05, **=p > 0.01, ***= p 

> 0.001 
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FIGURE 3.10: F. alocis phagosome maturation requires MyD88 at long timepoints.  
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FIGURE 3.10: (A) BMN from WT and MyD88-/- mice were challenged with F. alocis for 

1 hour. Staining shows myeloperoxidase (MPO, azurophilic granules, red), extracellular F. 

alocis (purple/white), and intracellular F. alocis (green). Yellow arrows show MPO 

negative phagosomes while the white arrows indicate MPO positive phagosomes.  (B) The 

phagosomes of 100 infected neutrophils from 2 mice of each genotype were assessed for 

50% co-localization of intracellular F. alocis and myeloperoxidase. Data show the average 

% of F. alocis phagosomes that co-localized with myeloperoxidase ± SEM from 2 mice in 

one independent experiment. An unpaired student’s T test was used to determine statistical 

significance. (C) The representative western blot shows the whole cell lysates from WT 

and MyD88-/- BMN that were left untreated (UT), challenged with F. alocis (Fa), or heat-

killed F. alocis (HK Fa) for 4 or 24 hours and probed for F. alocis and β actin. (D) Shows 

the mean normalized densitometry ± SEM of F. alocis proteins from 5 mice for each 

genotype completed over 2 independent experiments. A two-way ANOVA with 

Bonferroni post-hoc tests was used to determine the statistical significance. * = p > 0.05, 

**=p > 0.01, ***= p > 0.001  
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FIGURE 3.11: F. alocis-induced cytokine production is MyD88-dependent. WT and 

MyD88-/- BMN were untreated or challenged with P. gingivalis or F. alocis for 24 hours. 

Supernatants were tested for cytokines and chemokines using a multiplex assay. Data 

shows cytokine & chemokine release from 5 mice, conducted over 2 experiments. Error 

bars show SEM. Two-way ANOVAs with Bonferroni post-hoc tests were completed on all 

plots to determine statistical significance. * P <0.05; ** P <0.01; *** P<0.001. 
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FIGURE 3.12: F. alocis does not affect MyD88 protein levels and does not activate 

IRAK4.  

  



 

 154 

FIGURE 3.12: (A) Western blot showing MyD88 expression in human neutrophils 

cultured in media or stimulated with F. alocis for 3, 6, 10 or 20 hours. (B) Pooled 

normalized densitometry from 4 independent experiments was plotted ± SEM. A two-way 

ANOVA with Bonferroni post-hoc tests determined statistical significance. (C) 

Phosphorylation of IRAK4 in whole cell lysates from human neutrophils cultured in media 

or stimulated with F. alocis for 3, 6, 10 or 20 hours. (D) Normalized densitometry from 2 

independent experiments was pooled and plotted ± SEM. A two-way ANOVA with 

Bonferroni post-hoc tests determined statistical significance for B and D. * = p > 0.05, 

**=p > 0.01, ***= p > 0.001.  
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CHAPTER 4: 

 

‘TIL DEATH DO US PART: F. ALOCIS EFFECT ON NEUTROPHIL LIFESPAN. 

 

 

Introduction:   

 

  Neutrophils are generated in the bone marrow at a rate of 1011 cells/day, and in the 

bloodstream they are the most abundant leukocyte in circulation [386, 387]. To maintain 

homeostasis, this large-scale production must be counteracted by efficient removal since 

dysregulated neutrophil presence leads to profound and devastating conditions ranging 

from neurologic defects to increased susceptibility to infections [76, 93, 388]. One of the 

most successful mechanisms for the normal turnover of neutrophils is programmed cell 

death, or apoptosis, which occurs in circulating neutrophils after 24 hours [389]. Apoptosis 

is a non-inflammatory process, and in neutrophils it is characterized by membrane 

blebbing, cell body shrinkage, cytoplasmic vacuolation, condensation of DNA, and 

changes in the nuclear morphology from multi-lobulated to a round, dense shape [389-

391]. Neutrophils that have become apoptotic can be detected by using end-point 

measurements like changes in nuclear morphology, DNA fragmentation, and accumulation 

of phosphatidylserine (PS) in the outer membrane leaflet.   

The molecular regulation of neutrophil apoptosis is a sophisticated process, but 

generally, whether a neutrophil lives or dies is determined by the ratio of pro-survival or 
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pro-apoptotic regulatory factors [392]. This ratio can change when apoptosis is activated 

through one of three main pathways: intrinsic, extrinsic, or phagocytosis-induced cell death 

(PICD). Both the intrinsic and extrinsic apoptosis pathways are mediated through the 

actions of a family of cysteine proteases called caspases.  The initiator caspases, caspase 8 

(extrinsic pathway) and caspase 9 (intrinsic pathway), both converge at the activation of 

caspase 3, which is called the executioner caspase. Caspase 3 activation is essential for 

programmed cell death because its activation is required to initiate the defining 

biochemical and biophysical changes that occur during apoptosis. In healthy cells, caspases 

are in the cytosol as pro-enzymes that further stay in their inactive state through association 

with proteins of the inhibitor of apoptosis (IAP) family (such as XIAP, cIAP, cIAP2). For 

example, XIAP binds directly to caspases 9 and 3 and inhibits their processing and 

activation [393, 394]. Once the pro-caspases are cleaved into their active form, their 

protease activity will organize and set apoptosis processes in motion.  

The intrinsic pathway is activated for both constitutive and stimulated apoptosis 

and is regulated at the level of the mitochondria. The key step in this pathway is the 

permeabilization of the mitochondrial outer membrane (MOMP) by pro-death proteins Bax 

and Bak, which oligomerize and are inserted into the membrane. This disrupts the 

organelle’s membrane potential and causes cytochrome C, Smac/DIABLO, and Htra2/Omi 

to be released from the intermembrane space into the cell’s cytosol [395-397]. The released 

cytochrome C  will bind to apoptosis protease activating factor (APAF) to form a complex 

that recruits and cleaves inactive procaspase-9 into its active form. The other mitochondria-

derived proteins will also augment the cell death signal by directly inactivating pro-survival 

factors [397]. Bax and Bak are pro-apoptotic members of the BCL-2 family, but within the 
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same family of proteins are Myeloid Leukemia Cell Differentiation Protein (MCL)1 and 

BCL2-Related Protein A1 (A1, also known as Bfl-1), which have pro-survival effects. 

MCL-1 and A1 have short half-lives and require continuous synthesis to carry out their 

pro-survival effects, whereas Bax and Bak have long half-lives [398-400]. Consistent with 

this, the mRNA and protein expression of MCL-1 and A1 is high in healthy neutrophils to 

prevent the disruption of the mitochondrial membrane, but as neutrophils age, levels of 

MCL-1 and A1 decline while pro-death factors remain, initiating spontaneous apoptosis 

[401-404].  

The extrinsic apoptotic pathway is activated by the ligation of surface death 

receptors that recognize Fas ligand, TRAIL, or TNF. Upon ligation, the receptors will 

oligomerize and form a complex that recruits and activates caspase 8. In neutrophils the 

extrinsic pathway is not sufficient to induce cell death [405]. In fact, the signal has to also 

be amplified by the intrinsic pathway through Bid, a pro-apoptotic protein that links both 

pathways together.  Caspase 8 activation by the extrinsic pathway will activate Bid, which 

will translocate to the mitochondria and activate Bax and Bak to initiate the intrinsic 

pathway [406]. Finally, literature suggests that the extrinsic pathway does not appear to 

play a role in the constitutive apoptosis pathways, but has a more important role in 

neutrophil apoptosis during infection and inflammation [405, 407-410].  

The third pathway that induces apoptosis is phagocytosis-induced cell death 

(PICD), which was first described in 1992 [411]. While the mechanism is still poorly 

understood, PICD requires the production of ROS, and is independent of death receptor 

ligation [107, 412, 413]. Phagocytosis of bacterial pathogens, including Burkholderia 

cepacia, Borrelia hermsii, Staphylococcus aureus, Streptoccocus pyogenes, and Listeria 
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monocytogenes, is followed by global changes in neutrophil gene expression [109]. Cells 

undergoing PICD have differentially affected pathways related to metabolism, cytokine 

production, receptors, signal transduction, transcription, and host defense. As a 

consequence of the changes in gene expression, cells undergoing PICD have a restricted 

proinflammatory capacity via a general impairment in chemotaxis, phagocytosis and 

degranulation [392]. Thus, in the context of infection, PICD represents a non-inflammatory 

mechanism to clear tissues of effete neutrophils that contain non-viable or partially 

degraded microbes.   

 When neutrophils migrate into sites of tissue inflammation, they display a 

prolonged lifespan and become resistant to FAS- and TNF- induced apoptosis, likely to 

promote a robust early response to infection [263]. This phenotype can be due to hypoxia 

in inflamed tissues [414, 415], or cues at the site of infection, since both host and microbe-

derived factors can increase neutrophil lifespan. For example, the same cytokines (IL-1, 

TNF, GM-CSF, G-CSF, and IFN) that can recruit neutrophils to a site of infection will 

also delay their apoptosis [127, 416-419]. Similarly, the anaphylatoxin C5a, LPS, and 

lipoteichoic acid (LTA) are powerful chemotactic agents for neutrophils and protects them 

from apoptosis [416, 420]. In the context of infection, PICD is desirable for the resolution 

of inflammation, but many pathogens have evolved means to disrupt normal apoptotic 

processes to promote pathogenesis [421, 422]. Generally, intracellular pathogens like 

Anaplasma phagocytophilum, Chlamydia pneumoniae, and Francisella tularensis promote 

neutrophil viability to protect their replicative niche whereas extracellular microbes like S. 

pyogenes, S. aureus, and Pseudomonas aeruginosa accelerate apoptosis, trigger neutrophil 

lysis, or redirect cell death towards necrosis to evade intracellular killing [89]. All of these 
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outcomes can delay resolution of inflammation because (1) prolonged neutrophil lifespan 

results in the accumulation of cells with increased pro-inflammatory potential, (2) 

accelerated neutrophil lifespan promotes bacterial colonization or dissemination, and (3) 

necrosis or lysis of neutrophils results in the release of toxic neutrophil components and 

other DAMPS that exacerbate inflammation. Therefore, precise regulation of neutrophil 

cell death is essential for curbing inflammatory responses. 

 In the context of periodontitis, not much is known about how periodontal pathogens 

affect neutrophil lifespan. Most of the published data on apoptosis of neutrophils with 

periodontal pathogens has been limited to very short timepoints (less than 3 hours), where 

the full extent of neutrophil survival cannot be gauged. Moreover, defects in apoptosis 

could be contributing to the progression of periodontitis, but this possibility has not been 

explored much.  

In this chapter, I demonstrate that contact of neutrophils with F. alocis results in an 

upregulation of anti-apoptotic proteins, dampening of caspase activity, and delay of 

neutrophil apoptosis. The F. alocis cultured neutrophils retained their pro-inflammatory 

effector functions at longer timepoints as compared to untreated neutrophils.  

 

Materials & Methods:   

 

Neutrophil isolation: Human donor recruitment, blood draws, and materials required for 

this procedure were in accordance with the guidelines approved by the Institutional Review 

Board of the University of Louisville. Neutrophils were isolated from venous blood of 

healthy donors using plasma‐Percoll gradients, as described previously [297].  
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Bacterial strains and growth conditions: F. alocis ATCC 38596 was cultured in brain heart 

infusion (BHI) broth supplemented 5 mg/mL yeast extract, L-cysteine (0.05%) and 

arginine (0.05%) for 7 days anaerobically at 37 °C as previously described [275, 276]. 

Serum opsonization was performed by incubating F. alocis at 37°C for 20 min in 10% 

normal human serum (Complement Technology, Inc., Tyler, TX, USA). F. alocis was heat-

killed by incubation at 90 °C for 60 min. Non-viability was confirmed by incubation in 

culture media at same conditions used for the live organism. After opsonization, F. 

alocis was labeled with carboxyfluorescein succinimidyl ester (CFSE; 40 ng/μl) for 30 min 

at room temperature in the dark and washed 3 times with PBS prior to use. 

 

Cell culture and infection: Neutrophils (4 × 106 cells/mL) were cultured at 37°C, 5%CO2 

in RPMI-1640 with L-glutamine or with cycloheximide (1 nM, Sigma), opsonized F. alocis 

(multiplicity of infection (MOI) 10, 50, 100), or opsonized heat-killed F. alocis (MOI 10). 

After 24 hours of culture, cells were split and processed as cytospins and stained with 

HEMA or stained for Annexin V/7-AAD testing using the commercially available APC 

Annexin V Apoptosis Detection Kit with 7-AAD (BioLegend, San Diego, CA, USA). 

Samples were read on a BD FACSCelesta flow cytometer and analyzed using the FlowJo 

software (Ashland, OR, USA). In experiments using neutralizing antibodies, neutrophils 

were pre-treated with TLR6 neutralizing antibody (50 ug/mL, Invivogen) or isotype control 

(Rat IgG,50 ug/mL, Invivogen) for 60 minutes and/or TLR2 neutralizing antibody (50 

g/ml; clone TL2.1; BioLegend) or isotype control IgG2a kappa (50 g/ml; clone MOPC-

173; BioLegend) for 30 minutes.    
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Neutrophil Western Blotting: Neutrophils (10 × 106 cells/mL) were cultured at 37°C, 

5%CO2 in RPMI-1640 and left unstimulated, stimulated with soluble FasL (500 ng/mL, 

BioLegend), or challenged with live opsonized F. alocis for 3, 6, 12, or 24 hours. Then, 

cells were centrifuged at 6,000 ×g for 30 s and lysed for 30 min on ice in ice-cold lysis 

buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1% [vol/vol] Triton X-100, 0.5% 

[vol/vol] Nonidet P-40, 20 mM NaF, 20 mM NaVO3, 1 mM EDTA, 1 mM EGTA, 5 mM 

phenylmethylsulfonyl fluoride [PMSF], 21 μg/ml aprotinin, 5 μg/ml leupeptin, and 4mM 

Diisopropyl fluorophosphates [DFP]). After protein estimation using the Pierce BCA 

protein assay kit (Thermo Scientific, Waltham, MA, USA), samples were adjusted to a 

concentration of 2 µg/µL. Unless otherwise noted, 10-20 µg/µL of total cell lysates were 

separated by 12% SDS-PAGE and immunoblotted with antibodies for MCL-1 (1:500, 

Proteintech, Rosemont, IL), XIAP, Caspase 3 and −actin (1:1000, Cell Signaling, 

Danvers, MA, USA. The appropriate secondary antibodies were used at 1:2000 dilution 

(Cell Signaling, Danvers, MA, USA). The ECL system (Amersham Pharmacia Biotech, 

Little Chalfont, United Kingdom) or the SuperSignal West Femto Maximum Sensitivity 

Substrate (Thermo Scientific,Waltham, MA, USA) was used to visualize antigen-antibody 

reactions. Densitometric values of each band were calculated using Image Lab software 

(BioRad, Hercules, CA, USA). 

 

Luminescent Caspase Activity Assays: Neutrophils were left untreated or treated with 

staurosporine (1 M), Fas L (500 ng/mL), or opsonized F. alocis ( MOI 10:1) for 0, 3, 6, 

12, 24 hours at 37 °C, 5%CO2 in RPMI-1640. The activity of caspase 3/7, 8, and 9 was 

assayed using manufacturer’s protocol from the Caspase-Glo assay kits from Promega 
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(Madison, WI). Briefly, 100 L aliquots containing 5 × 104 neutrophils were transferred to 

white, flat bottomed 96-well plates in triplicates. Equal volume of the Caspase Glo-reagent 

was mixed into each well and left to incubate at room temperature for 45 minutes. Activity 

was assessed as by an end-point measurement of the luminescence generated from the 

cleavage of the Caspase-Glo reagent.   

 

Fluorescence Caspase 3/7 Activity Assay: Neutrophils (1 × 106 cells in 500 L) were left 

to adhere to serum-covered coverslips in 24 well plates for 30 minutes before they were 

untreated or stimulated opsonized F. alocis ( MOI 10:1). The infection was “synchronized” 

by a centrifugation step (4 min, 600g, 14 °C) and the cells were cultured for 6, 12, 24 hours 

at 37°C, 5%CO2 in RPMI-1640. At the indicated timepoints, 1 drop of CellEvent™ 

Caspase-3/7 Green ReadyProbes™ Reagent (Invitrogen) was added per well (each 

containing 500 uL) and left to incubate at room temperature for 30 minutes. The wells were 

washed 3x with sterile PBS and the cells fixed with 4% paraformaldehyde for 10 min at 

room temperature. After once more wash with PBS, the coverslips were mounted onto 

glass slides and imaged with a confocal microscope. 100 cells from throughout the 

coverslip were counted and evaluated for expression of GFP.   

 

Assessment of DNA fragmentation: Neutrophils (4 × 106 cells/mL) were stimulated with 

viable opsonized F. alocis (MOI 10:1) or were left untreated for 0, 3, 6, 12, 24, or 48 hours 

at 37 °C, 5%CO2 in RPMI-1640. DNA fragmentation was determined using the ApoBRDU 

apoptosis detection kit (BD Biosciences), a modified TUNEL assay. Samples were labeled 

according to the manufacturer’s instructions with minor modifications. PMNs were fixed 
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with 4% paraformaldehyde for 60 min at 4 ˚C, washed, and stained for 90 min. Samples 

were read on a BD FACSCelesta flow cytometer and analyzed using the FlowJo software 

(Ashland, OR, USA).  

 

Transwell experiments: Neutrophils (2 × 106 cells in 600 L of RPMI) were added to the 

wells of a 24 well plate with transwells containing a 0.4 M filter in duplicates. In the top 

chamber, 100 L of either media or the opsonized F. alocis inoculum was added. A 

separate well received F. alocis into the well with the neutrophils for the “same” control. 

Then, the plate was cultured in an incubator at 37 °C, 5%CO2. After 24 hours of culture, 

the duplicates were combined and stained for Annexin V and 7AAD as previously 

described.  

 

Generation of Conditioned Media: Neutrophils from the percoll gradient separation were 

further enriched to obtain highly pure cells (>99%) by negative magnetic selection using 

the Easy Eights EasySep Magnet and human neutrophil enrichment kit (Stemcell 

Technologies, Vancouver, BC, Canada), as previously described [298]. Cell purity was 

assessed by simultaneously staining with FITC‐conjugated anti‐CD66b (clone G10F5; 

BioLegend, San Diego, CA, USA) and APC‐conjugated anti‐CD16 (clone CB16; 

eBioscience, San Diego, CA, USA) antibodies and determining the percentage of 

CD66b+CD16+ cells using BD Celesta flow cytometer (BD Biosciences, San Jose, CA, 

USA). After purification, cells were resuspended the cells in clear RPMI medium 

supplemented with 5% heat inactivated human serum (Atlanta Biologicals, Flowery 

Branch, GA, USA) for a concentration of 4 × 106 cells/mL. Neutrophils were distributed 
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into 12 well plates in triplicates. If needed, neutralizing antibodies were added for 30-60 

minutes as listed above. Then, opsonized F. alocis (MOI 10) was added and phagocytosis 

synchronized (600g for 4 min at 14°C). After incubation for 24 hours in 37 °C incubator, 

5% CO2, supernatants were collected, centrifuged at 6000g for 30 sec at room temperature, 

and triplicate conditions combined. Finally, supernatants were filtered by passing them 

through 0.22 m filter, aliquoted and stored at -80 0C until use. 

 

Imagestream Assays: A stock of neutrophils (10 × 106 cells/mL) was cultured at 37 °C, 

5%CO2 in media (RPMI-1640 with L-glutamine), or with opsonized F. alocis (MOI 10) 

for 1, 18, or 24 hours.  

For phagocytic experiments, 4 × 106 neutrophils/mL from the aged neutrophil stocks 

were challenged with human serum opsonized Alexa Fluor 488 heat-killed S. 

aureus (Invitrogen; MOI 10) in a shaking water bath at 37 °C for 30 min. After this 

timepoint, neutrophils were pelleted at 6000g for 30 seconds followed by fixing in the dark 

with 4% paraformaldehyde for 10 min. After washing the cells with PBS, the membranes 

of neutrophils were stained for 10 minutes with Alexa Flour 647-conjugated wheat germ 

agglutinin (2 µg/mL, WGA, Molecular probes). Excess WGA was washed off with PBS 

and the cells were read on the imaging flow cytometer. Phagocytosis was determined using 

the internalization wizard from the IDEAS software.   

For ROS production assays, 4 × 106 neutrophils/mL from the aged neutrophil stocks 

were put into clean microcentrifuge tubes and 2′, 7′-dichlorofluorescein (DCF, 5 μM) was 

added to each tube for 10 minutes in a shaking water bath at 37 °C. Half of the volume 

from each tube was aliquoted into a new microcentrifuge tube: one was used to measure 
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basal ROS production and the other one was further challenged with human serum 

opsonized Alexa Fluor 488 heat-killed S. aureus (Invitrogen; MOI 10) for 30 min. After 

30 minutes, the cells were washed with 0.05% sodium azide and fixed with 1% 

paraformaldehyde. Samples were read on the imaging flow cytometer and analysis 

completed on the IDEAS software. First, the percentage of cells that were positive for S. 

aureus was determined. Next, the mean fluorescence intensity of DCF was quantified for 

these S. aureus positive cells.  

 

Statistical Analysis: Statistical differences among experimental conditions and time points 

were analyzed using GraphPad Prism Software (Graphpad San Diego, CA, USA). 

Differences were considered significant at the level P < 0.05. The specific statistical test 

for each experiment is listed in their respective figure legend. If results represent data from 

multiple experiments, mean values ± standard error of mean (SEM) are shown. 

 

Results:   

F. alocis extends neutrophil lifespan  

 One of the distinguishing features of neutrophils is their unique nuclear 

morphology. In viable neutrophils, the nucleus is a multi-lobular structure that resembles 

flower petals, but as the cells age and undergo constitutive apoptosis, their nucleus will 

condense into a dense, round shape; therefore, I tested if opsonized F. alocis affects nuclear 

morphology as a way to asses viability (Figure 4.1A). Cytospins of freshly isolated cells 

showed the distinctive multi-lobular nuclear structure of neutrophils, and culture of 

neutrophils in media with no serum for 24 hours resulted in the condensation of nuclei in 
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the majority of cells. Similarly, addition of the pro-apoptotic translation inhibitor, 

cycloheximide (CHX), resulted in the majority of neutrophils undergoing changes in 

nuclear morphology. However, neutrophils co-cultured with F. alocis at a multiplicity of 

infection (MOI) of 10 bacteria per neutrophil resulted in the retention of nuclear shape after 

24 hours.  

 This finding was confirmed by measuring via flow cytometry the cell surface 

expression of phosphotidyl serine (PS) and nuclear membrane permeabilization using 

Annexin V and 7-AAD, respectively (Figure 4.1B). Flow cytometry dot plots show that 

freshly isolated cells are negative for both 7-AAD and Annexin V (Q4: Annexin V-, 7AAD-

). However, as cells enter early apoptosis, they will become positive for Annexin V (Q3: 

Annexin V+, 7AAD-) followed by becoming double positive for both stains (Q2: Annexin 

V+, 7AAD+) during the late stages of apoptosis. Necrotic cells would only be positive for 

7-AAD staining (Q1: Annexin V-, 7AAD+). When neutrophils are cultured in media for 24 

hours, few cells are in the viable double negative quadrant, the majority of neutrophils 

became Annexin V positive, and a few cells advanced further into the double positive 

quadrant, indicating that a large proportion of neutrophils became apoptotic. The CHX-

treated cells almost entirely advanced into the apoptotic quadrants, but in F. alocis-treated 

cells, a large fraction of cells remained viable (Q4: Annexin V-, 7AAD-). Moreover, almost 

no cells were in the late apoptosis quadrant (Q2: Annexin V+, 7AAD+) or the necrotic cell 

quadrant (Q1: Annexin V-, 7AAD+; Fig. 4.1.B). When the percentages of cells in the viable 

(Q4: Annexin V-, 7AAD-) quadrant were combined from 4-6 independent experiments, 

there was a significantly larger percentage of F. alocis- stimulated cells that remained 

viable as compared to their media cultured-counterparts (Figure 4.1C).  
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 Furthermore, by cytospin (Figure 4.1D) and flow cytometry (Figure 4.1E), the F. 

alocis-dependent prolonged viability of neutrophils appears to be dose dependent, since 

using a larger MOI of 50 increased the percentage of cells that retained their nuclear 

morphology and stained negative for Annexin V and 7-AAD. At a MOI of 100, there was 

still a significant percentage of viable cells compared to media-treated cells, but not larger 

than a MOI of 50 (Figure 4.1 D-E). To continue the characterization of this response, I 

sought to determine if extending neutrophil lifespan was an active process by F. alocis. 

Thus, neutrophils were cultured in media alone or media with CHX, F. alocis, or heat-

killed F. alocis for 24 hours followed by assessment of apoptosis by cytospin (Figure 4.1F) 

and flow cytometry (Figure 4.1G). Based on nuclear morphology, heat-killed F. alocis can 

delay apoptosis as well as the viable bacterium (Figure 4.1F). By flow cytometry, culture 

of neutrophils with heat-killed F. alocis elevated the percentage of cells that were viable, 

but this number was slightly less than viable F. alocis (Figure 4.1G). Together, this data 

indicates that whether its viable or not, F. alocis can induce a dose-dependent delay in the 

constitutive apoptosis of neutrophils.  

 

F. alocis induces changes in the transcriptome to extend neutrophil lifespan  

 Based on the analysis of the RNAseq data, 11% of differentially expressed genes 

are functionally categorized under the cellular process of apoptosis (Figure 2.2). For this 

chapter, these genes were pooled for a heatmap to assess global changes in their expression 

(Figure 4.2). The expression of several members of the inhibitor of apoptosis (IAP) family 

like BIRC8, XIAP, cIAP1/2, Livin, NAIP was differentially regulated. Moreover, members 

of the extrinsic pathway of apoptosis were downregulated, including caspase 8 and FADD. 
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Notably, caspase 9 of the intrinsic pathway was also downregulated. Together, this data 

indicates that F. alocis may be acting on multiple branches of apoptosis.  

From the pathogens that can extend neutrophil lifespan, only Anaplasma 

phagocytophilum can exert anti-apoptotic effects when it is viable and heat-killed [294]. 

Borjesson et. al published a microarray study of human neutrophils that were challenged 

with A. phagocytophilum for 1, 3, 6, 9, 12, and 24 hours [294]. Based on the microarray 

data, they compiled a list of genes upregulated and dowregulated by A. phagocytophilum 

that relate to apoptosis and cell fate. Using that list, I built a heatmap to assess whether 

these genes were also differentially expressed in our dataset (Figure 4.3). From our dataset, 

the genes upregulated by A. phagocytophilum were also upregulated by F. alocis and the 

genes downregulated by A. phagocytophilum were also downregulated by F. alocis, 

suggesting F. alocis may be inducing a similar mechanism to extend neutrophil lifespan.  

 

F. alocis induces changes in the expression of pro-survival proteins  

 Neutrophil survival relies heavily on the expression of the MCL-1, an anti-

apoptotic member of the Bcl-2 family [423]. MCL-1 has a short half-life and requires 

continuous synthesis to carry out its pro-survival effects; however, based on the RNAseq 

data, the gene expression of MCL1 is significantly decreased in F. alocis stimulated cells 

(Figure 4.4A). Next, whole lysates from neutrophils cultured in media, with the extrinsic 

apoptosis inducer Fas ligand (FasL) or with F. alocis for 0, 3, 6, 12, or 24 hours were run 

on western blots, probed for MCL-1, and the intensity of the band quantified by 

densitometric analysis (Figure 4.4B-C). Media-cultured cells had a steady, time-dependent 

decrease in MCL-1protein levels, while treating the cells with FasL accelerated the 
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degradation of MCL-1. However, despite not showing statistical significance, cells treated 

with F. alocis had a milder decrease in the expression of MCL-1. These results suggest that 

while F. alocis may not be increasing the expression of MCL-1 at the level of transcription, 

it protects the anti-apoptotic protein from degradation to retain a pro-survival phenotype.       

   Another important pro-survival protein in neutrophils is XIAP, which binds to 

caspase 3 to inhibit its activation. Gene expression data from the RNAseq dataset showed 

that after 3 and 6 hours of challenge, F. alocis induces the upregulation of XIAP in human 

neutrophils (Figure 4.5A). The gene expression was matched at the protein level where 

XIAP was more abundant in cells that were challenged with F. alocis that those cultured 

in media alone (Figure 4.5B-C). The increased XIAP protein expression was detectable as 

early as 3 hours and remained significantly elevated until 12 hours. Due to the augmented 

expression of XIAP, I hypothesized that the activation of the executioner protease, caspase 

3 may be impaired in F. alocis-treated cells.  

 

F. alocis dampens Caspase 3 activation   

 To determine activation of the executioner caspase, western blotting was used to 

measure the amount of inactive zymogen pro-caspase 3 and active cleaved caspase 3 forms 

in neutrophils cultured in media or stimulated with FasL or F. alocis during a time course 

of 3, 6, 12, 24 hours (Figure 4.6A-B). Media treated cells showed a time-dependent 

decrease in pro-caspase 3 and an increase in the expression of the cleaved caspase 3 

fragment, which was faintly detectable at 6 hours. FasL treatment accelerated the 

accumulation of cleaved caspase 3, which was detectable as early as 3 hours of stimulation. 
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On the other hand, F. alocis-challenged neutrophils had dimly detectable cleaved caspase 

3 only until 12 hours, which suggests that F. alocis delays caspase 3 cleavage.  

 While processing of procaspases into their mature forms is essential for their 

activation, it not sufficient to induce maximal activity because their enzymatic function is 

further modulated through association of cytoplasmic regulatory factors [424]. Thus, the 

direct activity of caspase 3 was tested in the same experimental conditions by two different 

assays: one with a chemiluminescent output and the other with a fluorescence output. The 

theory behind both is similar in that at each timepoint desired, neutrophils will be incubated 

with a probe that contains a specific cleavage site for active caspase 3. When caspase 3 

cleaves the probe, luminescence or fluorescence will be emitted, and thus the intensity of 

the signal can be correlated to enzyme activity. Like all previous experiments in this 

chapter, the stimulation of neutrophils with F. alocis was done in suspension for the 

chemiluminescence-based assay (Figure 4. 6C). The kinetics of cleavage of caspase 3 

correlated closely with enzyme activity, since FasL-induced activation of caspase 3 had 

measurable enzyme activity between 3 and 6 hours, with a steep incline in activity after 

that. Media-cultured cells had caspase 3 cleavage as early as 6 hours and in the activity 

assay, caspase 3 produced the first increase in light production between 6 and 12 hours. On 

the other hand, F. alocis induced mild caspase 3 cleavage that resulted in significantly 

diminished protease activity as compared to media or FasL stimulated cells at 12 and 24 

hours (Fig 4.6 C).  

When infections are carried out in suspension, the output is an average of the 

responses of neutrophils at different stages in their bacterial interaction kinetics: some may 

have not interacted with bacteria yet, others may be in the process of phagocytosis, and 
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other may have already engulfed and degraded their cargo. Therefore, for the fluorescence-

based assay, the neutrophils were attached on glass coverslips and the infection with F. 

alocis was synchronized through a centrifugation step (Figure 4. 6D-E). Overall, the trend 

of caspase activity was similar to the chemiluminescence assay, where F. alocis induced 

decreased caspase 3 activity. However, it is important to note that adhesion in itself 

prolongs the lifespan of neutrophils [425], so the timing of caspase 3 activation is delayed 

in all conditions, and why I assessed caspase 3 activity as late as 48 hours. In conclusion, 

F. alocis delays the cleavage and activation of procaspase 3, followed by a decrease in 

caspase 3 activity that ultimately results in prolonged neutrophil survival.  

    

F. alocis delays DNA fragmentation    

 The final outcome of caspase 3 activation is the destruction of cellular structures 

like cytoskeletal protein degradation or DNA fragmentation [426]. Specifically, during the 

final stages of apoptosis, caspase3-activated DNAses cleave nuclear DNA, which can be 

detected experimentally through terminal deoxynucleotidyl transferase dUTP nick end 

labeling (TUNEL) staining. TUNEL staining will fluorescently label exposed 3’hydroxyl 

ends that occur as a result of DNA strand cleavage, and the increase in fluorescence can be 

detected via flow cytometry.  Using this technique, I tested DNA fragmentation in our 

experimental conditions (Figure 4.7A-B). Representative flow cytometry histograms from 

each condition were superimposed to show differences in DNA fragmentation at 6-24 

hours of culture (Figure 4.7A).  At 6 hours, the majority of untreated and F. alocis 

stimulated neutrophils were negative for DNA fragmentation like freshly isolated cells.  

However, as the timecourse progressed, a larger population (~40%) of media-cultured 
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neutrophils became positive for the TUNEL probe at 12 hours, whereas only ~20% of F. 

alocis treated neutrophils had detectable DNA fragmentation (Figure 4.7B). The difference 

in these values increased to statistical significance at 24 hours, where ~60% of media 

neutrophils became positive for TUNEL while only ~40% F. alocis stimulated cells were 

TUNEL positive. By 48 hours of ex-vivo culture, all cells became TUNEL +. Collectively, 

this data supports the idea that relative to untreated cells, F. alocis markedly delayed DNA 

fragmentation to retain neutrophil viability.   

 

F. alocis meekly activates initiator caspases 

 Caspase 8 is the initiator caspase of the extrinsic apoptosis pathway that is initiated 

upon ligation of surface death receptors and caspase 9 is the driver of the intrinsic pathway 

that is activated through the release of mitochondrial factors into the cytoplasm [392].  

Having established that caspase 3 activation is delayed in neutrophils stimulated with F. 

alocis, I sought to determine which pathway is triggered upstream of caspase 3 activation 

through the same chemiluminescence-based activity assays employed to detect caspase 3 

activation. In untreated cells, caspase 8 (Figure 4.8A) and caspase 9 (Figure 4.8B) activity 

peaked between 12 and 24 hours. Fas L was used as an extrinsic apoptosis pathway 

activator and staurosporine was used as an inducer of the intrinsic apoptotic pathway. Both 

of these positive controls induced activity of caspase 8 and -9, respectively, at earlier 

timepoints than untreated cells. Contrastingly, neutrophils treated with F. alocis had a 

gradual minimal increase in the activity of both caspases. Overall, the activity of caspases 

8 and 9 was markedly lower in F. alocis treated cells as compared to untreated cells, which 

suggests that the oral pathogen may be influencing the apoptotic cascade at multiple points. 
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Furthermore, since caspase 3 activation and DNA fragmentation is detected at 24 hours of 

culture with F. alocis, it is possible that caspase 3 is being activated through an alternative, 

initiator caspase independent mechanism.   

 

F. alocis pro-survival effect depends on contact with neutrophils through TLR2/6 

 Since neutrophil programmed cell death can be delayed by host derived factors like 

DAMPS and pro-inflammatory cytokines or bacteria-derived components, I tested whether 

contact with the bacterium is necessary to induce the prolonged lifespan of neutrophils. 

First, I conducted a crude flow cytometry Annexin V/7-AAD assay where neutrophils were 

stimulated with CFSE-labeled F. alocis. This allowed for an initial gate where neutrophils 

were separated by their CFSE intensity as a measure of association with F. alocis (Figure 

4.9A). Here, the neutrophils were divided into two populations: F. alocis negative (low 

CFSE) or F. alocis positive (high CFSE), which were roughly the same size. Then, these 

two populations were plotted in a traditional Annexin V/7-AAD quadrant to assess their 

apoptotic state. It is possible to see from the flow cytometry dot plots that F. alocis (-) 

neutrophils progressed into early apoptosis (Q3: Annexin V+, 7-AAD-) at a higher 

percentage than F. alocis (+) cells, and that a larger portion of F. alocis (+) cells remained 

in the viable quadrant (Q4: Annexin V-, 7-AAD-). This viability trend reached statistical 

significance when two independent experiments were combined (Figure 4. 9B), suggesting 

that association with F. alocis directly enhances neutrophil viability.  

 To determine if manipulation of the neutrophil phenotype required the binding or 

phagocytosis of F. alocis, I used transwells with a pore size of 0. 4 m to quarantine the 

neutrophils (PMN) from the bacteria (Figure 4. 9C). When neutrophils and F. alocis were 
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in the same compartment, the viability of neutrophils increased as previously shown.   

However, this effect was reversed when the oral pathogen  and neutrophils were separated 

by the transwell’s filter, confirming that contact between both parties is essential to induce 

the pro-survival phenotype.  

 Since F. alocis is recognized by TLR2/6 receptors to initiate numerous neutrophil 

effector functions, I assessed if the apoptosis delay was also mediated through TLR2/6 

(Figure 4.9D).  For these experiments, neutrophils were pre-treated with neutralizing 

antibodies against TLR2 and TLR6 or corresponding isotype controls prior to stimulation 

with F. alocis for 24 hours. As expected, CHX treatment decreased neutrophil viability and 

F. alocis increased it.  Blocking access to  TLR2/6  decreased viability comparable to basal 

levels, while the isotype control did not affect the F. alocis driven survival effect. 

Combined, this data demonstrated that F. alocis contact with neutrophils through TLR2/6 

ligation is responsible for the prolonged neutrophil lifespan.  

 

Factors released during F. alocis & neutrophil interaction are pro-survival  

 Although contact of neutrophils with F. alocis through TLR2/6 is essential to 

initiate neutrophil survival, the pro-survival response could be due to a paracrine effect 

from cytokines or other pro-survival factors released by neutrophils downstream of TLR2/6 

ligation. Therefore, to test this possibility, the supernatants of neutrophils cultured in media 

or stimulated with F. alocis for 24 hours were collected and sterile filtered to generate 

conditioned media (Figure 4.10A). Then, naïve neutrophils were cultured in fresh or 

conditioned media for 24 hours and their apoptosis status assessed by cytospin (Figure 

4.10B). Neutrophils cultured in conditioned media from untreated cells developed nuclear 
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condensation whereas the multi-lobulated nuclear morphology was retained in neutrophils 

cultured in the conditioned media from F. alocis-stimulated cells. This was confirmed by 

flow cytometry where the progression into apoptosis of cells in the conditioned media 

versus direct stimulation in fresh media was compared (Figure 4.10C). Both sets on 

untreated cells, cultured in fresh or conditioned media, had the same percentage of viable 

cells. When neutrophils were cultured with F. alocis-conditioned media, there was an 

increase in the number of viable cells as compared to untreated cells, which indicates that 

the interaction between F. alocis and neutrophils generates pro-survival factors. However, 

this percentage of viable cells was not as robust as when neutrophils are stimulated with F. 

alocis in fresh media, suggesting that both the bacteria-neutrophil interaction and the 

secreted pro-survival factors are necessary to induce maximal neutrophil survival.  

To determine the contribution of TLR2/6 signaling to the generation of these pro-

survival factors, a new set of conditioned media was collected where neutrophils were pre-

treated with neutralizing antibodies against TLR2/6 or isotype controls prior to stimulation 

with F. alocis for 24 hours. The supernatants were collected, sterile filtered, and used to 

culture naïve neutrophils for 24 hours (Figure 4.10D). Assessment of apoptosis via flow 

cytometry determined that while culturing cells in the F. alocis-conditioned media is not 

as potent as stimulation with F. alocis, when neutrophils are pre-treated with inhibitors for 

TLR2/6, the pro-survival effect is lost completely. Therefore, I conclude that the contact 

between neutrophils and F. alocis through TLR2/6 initiates a signaling cascade that 

produces pro-survival factors with paracrine effects on non-infected cells. However, this 

pro-survival soup is not sufficient to elicit the maximal neutrophil survival possible in this 

context and requires the presence of the bacterium.  
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Neutrophils with F. alocis-mediated survival retain their functional capacity 

As a non-inflammatory type of cell death, cells undergoing apoptosis have 

restricted proinflammatory capacities like an impairment in chemotaxis, phagocytosis and 

degranulation [392]. Since neutrophils challenged with F. alocis remain viable for longer 

periods of time, I sought to determine whether they were also still capable of performing 

their effector functions. Neutrophils were aged in media or media with opsonized F. alocis 

for 18 or 24 hours, followed by the addition of non-viable, fluorescent S. aureus at a MOI 

of 10 bacteria per neutrophil. These S. aureus particles are known to be ingested easily and 

induce a robust ROS generation. The phagocytic capacity of these aged cells was tested via 

imaging flow cytometry after fluorescently labeling the neutrophil membrane. Fig. 4.11A 

shows representative neutrophils that were classified as S. aureus negative and S. aureus 

positive. At 18 hours of culture, F. alocis-challenged neutrophils were significantly more 

efficient at phagocytizing the opsonized S. aureus (Figure 4.11B). The neutrophils from 

the same donors were also tested after 24 hours, and while the trend was the same, there 

was no statistical significance between media-aged neutrophils and their F. alocis-

challenged counterparts.  

Using imaging flow cytometry, the ability of aged neutrophils to produce ROS was 

also assessed. The culture protocol was the same as above, but this time, aged neutrophils 

were incubated with 2’,7’-dichlorodihydrofluorescein diacetate (DCF) prior to S. aureus 

challenge. The ROS-reduced form of DCF will emit fluorescence, so increases in the 

intensity of fluorescence can be attributed to ROS production, which is demonstrated in 

the representative images (Figure 4.11C). By comparing the mean fluorescence intensity 
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(MFI) of DCF at 1 hour, there is no significant difference between media or F. alocis 

cultured neutrophils. However, as the cells age for 18 hours, the untreated cells lose some 

of their capacity to produce ROS against S. aureus whereas F. alocis stimulated cells 

produced a significantly higher amount of ROS (Fig 4.11 C-D). This difference was lost at 

24 hours, where F. alocis cultured cells also begin to lose their functional capacity. Thus, 

it becomes clear that F. alocis-challenged neutrophils were able to also retain their ability 

to produce ROS for longer timepoints than media treated cells. Ultimately, this prolonged 

lifespan and functional capacity could result in increased neutrophil-driven inflammation, 

which is a hallmark of periodontal disease.  

 

Discussion:   

 

 Despite their reputation as “pathogen busters,” neutrophil functions extend beyond 

eliminating invading bacteria. Neutrophils will undergo controlled cell death through 

apoptosis to diminish their pro-inflammatory potential and become targets for efferocytic 

clearance by macrophages. The clearing of spent neutrophils initiates inflammation 

resolution protocols and tissue repair; in fact, neutrophil apoptosis at sites of infection is a 

characteristic of effective immune response [427]. In periodontitis, there is an extensive 

accumulation of neutrophils, which are found at different stages of cell death [210, 264, 

428]. This suggests that there is modulation of neutrophil lifespan and/or a defect in the 

efficient clearing of dying neutrophils. However, there are only a few publications that 

have addressed neutrophil viability after encounters with oral bacteria, and they have 

focused on extremely short timepoints (three hours or less). Since the majority of studies 

on cell death after interaction with periodontal pathogens have been done on epithelial cells 
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and macrophages, this work fills an important gap in the knowledge of the scientific 

community. To this point, F. alocis challenge induces apoptosis in normal oral 

keratinocytes and epithelial cells [67, 73].  

To assess apoptosis in neutrophils, I chose to use serum-free media in our 

experimental design to eliminate the confounding effects of growth factors and serum 

components as previously described [407, 429]. Even in these limiting conditions, F. alocis 

was able to delay neutrophil constitutive apoptosis pathways. Specifically, our results show 

that relative to control cells, neutrophils challenged with F. alocis retained their nuclear 

morphology, showed decreased phosphatidylserine externalization by Annexin V staining, 

and had diminished DNA fragmentation as tested by TUNEL. This phenotype could be 

explained by a marked delay in the processing and subsequent activity of the executioner 

caspase, caspase 3; an effect that has been previously observed for other intracellular 

pathogenic bacteria like Francisella tularensis [407]. It is likely that in the case of F. alocis 

challenged neutrophils, the delayed processing of caspase 3 is partially linked to the 

increased gene and protein expression of XIAP, a protein that physically binds to Caspase 

3 and prevents its activation. This is similar to the mechanism deployed by Neisseria 

gonorrhoeae, which transiently delays the onset of apoptosis in parallel to the upregulation 

of cIAP2 and XIAP [430]. Compounding on this inhibitory effect was a defect in the 

activity of initiator caspases 8 and 9, suggesting that F. alocis is able to modulate the 

activation of the intrinsic and extrinsic pathways. It would be important to also test the 

processing of both these caspases via western blotting, as was done with Caspase 3 to 

determine where F. alocis is impacting the activity of these caspases.  
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Of note, all of these apoptosis assays were conducted under aerobic conditions, 

where the presence of oxygen inactivates the majority of F. alocis in the culture between 

4 and 10 hours (Shown in Chapter 6). Incidentally, after 6 hours of culture, the levels of 

XIAP begin to decrease, procaspase 3 is cleaved, and DNA fragmentation becomes 

detectable. While this suggests that viable F. alocis may be actively inducing XIAP 

expression, heat-killed F. alocis also had a net pro-survival phenotype. This was surprising 

given the fact that heat-killed F. alocis results in efficient phagosome maturation and 

induces robust ROS production, which is an initiating factor in the phagocytosis-induced 

cell death program. Our results also demonstrated that contact with F. alocis is required for 

the pro-survival effect to take place. Both viable and heat-killed F. alocis activate TLR2/6, 

which was necessary to induce neutrophil survival. Furthermore, the conditioned media 

from neutrophils stimulated with F. alocis had pro-survival effects on naïve neutrophils, 

likely through the release of pro-inflammatory cytokines that extend paracrine neutrophil 

survival effects. Other than IL-8 production, the differences in cytokine output after 

challenge with viable or heat-killed F. alocis has not been assessed. Changes in neutrophil 

signaling between viable and heat-killed F. alocis may be responsible for these differences 

and is an ongoing area of research in our laboratory.  

Interaction with intracellular microbes can extend neutrophil lifespan, sometimes 

to the advantage of the microbial agenda. For example, Chlamydia pneumoniae and the 

fungal pathogen, Paracocciodes brasiliensis, that delay apoptosis by stimulating 

neutrophil secretion of IL-8 [431, 432]. The Gram-negative Anaplasma phagocytophilum 

also delays apoptosis for up to 90 hours [294, 433, 434], and shares similarities with F. 

alocis. Much like F. alocis, A. phagocytophilum reduces proinflammatory cytokine release, 
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fails to induce ROS production, and delays apoptosis whether the bacterium is viable or 

not [435-440]. Additionally, when the differential apoptosis gene expression profile from 

A. phagocytophilum was assessed in our transcriptome data, the F. alocis-induced pattern 

of gene expression generally mirrored the one from A. phagocytophilum, suggesting the 

bacteria may have overlapping virulence strategies against neutrophils. It is known that A. 

phagocytophilum inhibits cell apoptosis through the activation of the Janus kinase/signal 

transducers and activators of transcription (JAK/STAT) pathway and type IV secretion 

system (T4SS)-secreted proteins [441]; but I have not assessed whether F. alocis activates 

these pathways and it is unknown whether the oral pathogen has a secretion system that is 

relevant to human infection.  

In conclusion, this is the first report to do an in-depth characterization of the 

apoptotic effect the emerging oral pathogen, F. alocis has on human neutrophils. Although 

more work will be needed to establish the in vivo relevance of this data, I speculate that the 

extended neutrophil lifespan will have serious implications in disease progression by 

extending the window of time where neutrophils can promote dysbiotic inflammation in 

the oral cavity.  
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Figure 4.1: F. alocis delays neutrophil apoptosis.  
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Figure 4.1: (A, D, F) Nuclear morphology changes were assessed by light microscopy 

using images of HEMA-stained cytospins from freshly isolated neutrophils, neutrophils 

cultured in media, or neutrophils stimulated with cycloheximide (CHX), F. alocis (MOI 

10, 50 or 100), or heat-killed (HK) F. alocis for 24 hours. (B) Flow cytometry dot plot and 

gating strategy of AnnexinV/7AAD stained neutrophils treated with the same conditions 

as A. (C, E, G) Plots shows the % viable (Q4: Annexin V-, 7AAD-) neutrophils ± SEM 

from 2-7 independent experiments. A one-way ANOVA with Tukey post-hoc tests was 

performed on graphs C, E, and G. * p > 0.05, **p > 0.01, ***p > 0.001.    
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Figure 4.2: F. alocis induces changes in gene expression of apoptotic genes.   
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Figure 4.2: Heatmap shows the differential expression of genes in the apoptosis process 

cluster from MetaCore. Gene expression data was generated from Illumina RNA 

sequencing performed on human neutrophils from 4 individual healthy donors that were 

either left unstimulated or challenged with F. alocis for 1, 3 or 6 hours.  
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Figure 4.3: F. alocis induces a pattern of apoptosis gene expression like Anaplasma 

phagocytophilum. A list of upregulated and downregulated genes related to apoptosis was 

acquired from a microarray study by Borjesson et. al. The expression of these genes was 

assessed in our data set. The heat map depicts our data from neutrophils challenged with 

F. alocis for 1, 3 or 6 hours, but the genes are clustered based on whether they were 

upregulated or downregulated by A. phagocytophilum. 
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Figure 4.4: F. alocis upregulates gene expression of anti-apoptotic MCL-1 and delays 

its degradation. Line graphs show the average Fragments Per Kilobase of transcript per 

Million mapped reads (FPKM) of the gene for MCL-1 (A) in unstimulated (Basal) 

neutrophils and F. alocis challenged neutrophils from 4 healthy donors. Representative 

images show the western blots of whole cell lysates from media-cultured cells or cells 

stimulated with Fas L or F. alocis that were probed for MCL-1 (B). Normalized western 

blot densitometries are summarized from 4 and 7 independent experiments, respectively, 

and plotted ± SEM (C). Two-way ANOVAs with Bonferroni post-hoc testing was 

performed on all graphs. * = p > 0.05, **=p > 0.01, ***= p > 0.001 
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Figure 4.5: F. alocis upregulates genes & protein expression of XIAP. Line graphs 

show the average Fragments Per Kilobase of transcript per Million mapped reads (FPKM) 

of the gene for XIAP (A) in unstimulated (Basal) neutrophils and F. alocis challenged 

neutrophils from 4 healthy donors. Representative images show the western blots of whole 

cell lysates from media-cultured cells or cells stimulated with Fas L or F. alocis that were 

probed for XIAP (B). Normalized western blot densitometries are summarized from 4 and 

7 independent experiments, respectively, and plotted ± SEM (C). Two-way ANOVAs with 

Bonferroni post-hoc testing was performed on all graphs. * = p > 0.05, **=p > 0.01, ***= 

p > 0.001 
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Figure 4.6: F. alocis delays Caspase 3 activation.  
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Figure 4.6: (A) Representative blot of time-dependent Caspase 3 processing from whole 

cell lysates of untreated (media), Fas L or F. alocis treated neutrophils. (B) Data are plotted 

as the mean ± SEM of the normalized densitometry of cleaved caspase 3 from 8 

independent experiments. Asterisk denotes statistical significance in comparison to both F. 

alocis and Fas L. (C) Caspase 3 activity was tested in suspension using a chemiluminescent 

assay on neutrophils that were untreated (Media) or stimulated with Fas L or F. alocis 

(MOI 10) for 3, 6, 12 or 24 hours. Data are plotted as the mean ± SEM of the luminescence 

produced for each condition from 4 independent experiments. (D) Attached neutrophils in 

media or challenged with F. alocis for 0, 6, 24, or 48 hours were examined for caspase 

activity by a fluorescence-based assay and imaged using confocal microscopy. Cells that 

express green fluorescence have active caspase 3 activity. (E) 100 cells were counted from 

each condition and qualified on whether they became fluorescence as a measure of caspase 

activity. Data are plotted as the percent ± SEM of neutrophils that became Caspase 3 

positive at each timepoint from 5 independent experiments. Asterisk denotes statistical 

significance between media and F. alocis conditions. A two-way ANOVA with Bonferroni 

post-hoc testing was performed on all graphs. * = p > 0.05, **=p > 0.01, ***= p > 0.001 

  



 

 190 

 

Figure 4.7: F. alocis delays DNA fragmentation. A flow cytometry based TUNEL assay 

was conducted on neutrophils cultured in media or with F. alocis (MOI 10) for 3, 6, 12, 

24, and 48 hours. DNA fragmentation was detected as an increase in fluorescence by the 

BrdU-FITC antibody. (A) Shows flow cytometry histograms of freshly isolated 

neutrophils, media cultured neutrophils, or neutrophils challenged with F. alocis after 6, 

12, and 24 hours. Gating was made to delineate the rightward shift in the populations that 

became BrdU positive due to DNA fractionation. (B) The percent of TUNEL+ neutrophils 

represents the number of cells ± SEM that migrated into the right gate in 4 independent 

experiments. A two-way ANOVA with Bonferroni post-hoc testing was performed where 

* = p > 0.05, **=p > 0.01, ***= p > 0.001.  
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Figure 4.8: F. alocis minimally activates the initiator caspases, 8 and 9. Caspase 8 (A) 

and Caspase 9 (B) activity was tested in suspension using a chemiluminescent assay on 

neutrophils that were untreated (Media), stimulated with positive controls Fas L or 

staurosporine, or F. alocis (MOI 10) for 3, 6, 12 or 24 hours. Data are plotted as the mean 

± SEM of the luminescence produced for each condition from 4 independent experiments. 

A two-way ANOVA with Bonferroni post-hoc testing was performed on A and B where * 

= p > 0.05, **=p > 0.01, ***= p > 0.001.  
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Figure 4.9: Contact with F. alocis through TLR2/6 is necessary for prolonged 

neutrophil lifespan.   
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Figure 4.9:Annexin V/7AAD staining was performed on neutrophils that were challenged 

with CFSE-expressing F. alocis for 24 hours. (A) Shows the flow cytometry gating strategy 

employed. First the neutrophils were first sorted into F. alocis negative or positive based 

on their CFSE intensity, followed by classical Annexin V/7AAD gating. (B) Shows the 

mean percent viable (Q4: Annexin V-, 7AAD-) neutrophils ± SEM from the F. alocis 

negative or positive cells from two independent experiments. A two-tailed student T-test 

was performed to determine statistical significance. (C) Neutrophils (PMN) were cultured 

in transwells as depicted with or without F. alocis for 24 hours followed by Annexin 

V/7AAD staining. Data are plotted as the mean percent viable (Q4: Annexin V-, 7AAD-) 

neutrophils ± SEM from two independent experiments. (D) Neutrophils were untreated 

(Basal) or stimulated with F. alocis after pre-treatment with media, neutralizing TLR2/6 

antibodies or isotype controls. Data are plotted as the mean percent viable (Q4: Annexin 

V-, 7AAD-) neutrophils ± SEM from 6 independent experiments. A one-way ANOVA 

with Tukey post-hoc testing was performed on C & D to determine statistical significance. 

* = p > 0.05, **=p > 0.01, ***= p > 0.001.  
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Figure 4.10: Factors released during F. alocis & neutrophil interaction are pro-

survival.  
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Figure 4.10: (A) Graphic depicting how conditioned media was generated. (B) HEMA-

stained cytospins of naïve neutrophils cultured in the conditioned media from untreated 

cells or F. alocis treated cells. (C) Neutrophils were cultured in fresh media (blue dots) and 

left untreated (UT) or stimulated with F. alocis, or cultured in the conditioned media 

(orange dots) of untreated (UT) of F. alocis-stimulated cells for 24 hours followed by 

staining for Annexin V and 7AAD. Data are plotted as the mean percent viable (Q4: 

Annexin V-, 7AAD-) neutrophils ± SEM from 5-10 independent experiments. (D) Naïve 

neutrophils were cultured in fresh media and left untreated (UT) or stimulated with F. 

alocis, or they were cultured in the conditioned media from untreated cells or cells 

stimulated with F. alocis after pre-treatment with media, neutralizing TLR2/6 antibodies 

or isotype controls. After culture for 24 hours, the cells were stained for Annexin V and 

7AAD. Data are plotted as the mean percent viable (Q4: Annexin V-, 7AAD-) neutrophils 

± SEM from five independent experiments. One-way ANOVAs with Tukey post-hoc 

testing was performed on C & D to determine statistical significance. * = p > 0.05, **=p > 

0.01, ***= p > 0.001. 
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Figure 4.11: F. alocis-challenged neutrophils retain functional capacity for longer 

timepoints.  
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Figure 4.11: Neutrophils were aged for 18 or 24 hours in media or stimulation with F. 

alocis followed by a 30-minute challenge with S. aureus. First, the phagocytic capacity of 

these cells was tested via imaging flow cytometer. (A) Images from the imaging flow 

cytometer depict neutrophils that did or did not internalize S. aureus. (B) Summary from 3 

independent experiments shows the mean percentage of neutrophils that phagocytosed S. 

aureus. (C) Representative images from the imaging flow cytometer show the ROS 

production in response to S. aureus challenge by cells aged for 18 hours with media or F. 

alocis. (D) Represents the average mean fluorescence intensity ± SEM from media-aged 

cells or F. alocis-aged cells that internalized S. aureus from 3 independent experiments. 

Two-way ANOVAs with Bonferroni post-hoc testing was performed on B & D to 

determine statistical significance. * = p > 0.05, **=p > 0.01, ***= p > 0.001. 
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CHAPTER 5: 

 

THE FINAL FRONTIER: CLEARANCE OF NEUTROPHILS AFTER F. ALOCIS 

CHALLENGE 

 

 

Introduction:   

After the activation of a local inflammatory response due to infection, the proper 

termination of the inflammatory cascade is important because it initiates a phase of tissue 

repair and resolution responses. Improper resolution of inflammation results in excessive 

scarring, organ damage, chronic inflammation, and loss of self-tolerance, which 

contributes to multiple pathologies like cardiovascular disease, auto-immunity, and cancer 

[442-444]. An important initiating step in this pathway is the clearing of dead or spent cells 

through a process called efferocytosis.  

In vivo, efferocytosis of apoptotic cell corpses occurs extremely quickly; for 

example, when six million apoptotic cells are injected into the peritoneum of mice, the cells 

are taken up by phagocytes within 15-30 min [445]. However, in a number of non-

resolving, chronic inflammatory diseases, defects in efferocytosis develop and result in an 

accumulation of dead cells [443]. When cells undergo apoptosis, they undergo a non-

inflammatory cell death because the cells maintain their membrane integrity for a limited 

period of time. Nevertheless, they need to be cleared quickly to prevent secondary necrosis, 

which will release their cytotoxic molecules into the extracellular space.  
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In order to orchestrate efferocytosis, four main steps must take place. First, 

chemotactic “find-me” signals are produced by dying neutrophils to attract efferocytic 

cells. These signals include the nucleotides ATP and UTP, the chemokine fractalkine 

(CX3CL1), and the lipids lysophosphatidylcholine (LPC) and sphingosine-1-phosphate 

(S1P) [446]. Next, “eat-me” signals on the surface of the apoptotic cell mediate recognition 

by macrophages. To distinguish them from viable cells, apoptotic cells downregulate 

expression of “don’t eat me” signals like CD47, CD61, CD46 and CD31 and upregulate 

expression of lipids (phosphatidylserine), proteins (ICAM-3), or modified carbohydrates 

[442]. The third step involves the uptake and degradation of the apoptotic body in the 

phagolysosomal compartment by proteases, DNAses and lipases. Finally, efferocytic 

phagocytes release a number of anti-inflammatory mediators including PGE2, TGF-, IL-

10, and lactate, among others to initiate the resolution of inflammation [445].  

In the context of periodontitis, not much was known about how periodontal 

pathogens affect efferocytosis. However, pervasive defects in efferocytosis could be 

contributing to the progression of periodontitis and the chronicity of inflammation in the 

oral cavity. In chapter 2, I observed that F. alocis challenge induces significant differential 

expression of pathways related to apoptosis and in chapter 4 our results demonstrated that 

F. alocis prolongs the functional lifespan of neutrophils. Therefore, I hypothesized that F. 

alocis interferes with efferocytosis to inhibit resolution of inflammation.  Paradoxically, 

neutrophils that were cultured with F. alocis were efferocytosed with greater frequency 

than untreated neutrophils. However, once internalized, the F. alocis-challenged 

neutrophils were not degraded as quickly as efferocytosed untreated neutrophils. 



 

 200 

Ultimately, I believe that under the right conditions, F. alocis could be using neutrophils 

as “trojan horses” to gain access into a longer-lived host cell. 

 

Materials & Methods:   

Neutrophil isolation: Human donor recruitment, blood draws, and materials required for 

this procedure were in accordance with the guidelines approved by the Institutional Review 

Board of the University of Louisville. Neutrophils were isolated from venous blood of 

healthy donors using plasma‐Percoll gradients, as described previously [297].  

 

Bacterial strains and growth conditions: F. alocis ATCC 38596 was cultured in brain heart 

infusion (BHI) broth supplemented 5 mg/mL yeast extract, L-cysteine (0.05%) and 

arginine (0.05%) for 7 days anaerobically at 37 °C as previously described [275, 276]. 

Serum opsonization was performed by incubating F. alocis at 37°C for 20 min in 10% 

normal human serum (Complement Technology, Inc., Tyler, TX, USA). Heat killed F. 

alocis was generated by incubation at 90 °C for 60 min. Non-viability was confirmed by 

incubation in culture media at same conditions used for the live organism. After 

opsonization, F. alocis was labeled with carboxyfluorescein succinimidyl ester (CFSE; 40 

ng/μl) for 30 min at room temperature in the dark and washed 3 times with PBS prior to 

use. 

 

Aging and staining of neutrophils: The membranes of neutrophils were stained with PKH-

26 using the manufacturer’s protocol (Sigma). After several washes with PBS to remove 

excess dye, neutrophils were cultured in clear RPMI-1640 with L-glutamine and 5% heat 
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inactivated human serum with or without opsonized F. alocis (MOI 10) at 37 °C, 5%CO2 

for 18 hours. After 18 hours of culture neutrophils were stained for CD47 and CD31 

(Biolegend, Carlsbad, CA, USA). Aged neutrophils were washed before adding to cultured 

macrophages.  

 

Mice and peritoneal macrophage extraction: All experiments were completed on male and 

female C57Bl/6 wild-type mice between 8 to 12 weeks of age. The institutional animal 

care and use committees at University of Louisville approved all animal experiments. As 

previously described, mice were injected with 5 mM sodium periodate, sacrificed after 72 

to 96 hours, and peritoneal cavities lavaged with phosphate-buffered saline containing 2 

mM EDTA [447, 448]. Total lavage cells were plated in tissue-culture plates or chamber 

slides in Iscove modified Dulbecco medium with 10% heat-inactivated fetal bovine serum 

for 2 hours. Nonadherent cells were removed, and adherent macrophages cultured 

overnight before use in experiments. 

 

Human Macrophage culture: The mononuclear cell layer fraction from peripheral blood of 

healthy donors was washed thrice using Krebs buffer. Then, the cells were plated in 6 well 

plates at density of 2 million cells per well in krebs buffer containing 2mM HEPES and 

allow to settle for 2 hours. The unsettled cells were removed and settled cells were washed 

with krebs buffer. Next, the settled cells were gently scraped, plated on 6 well low 

attachment plate in RPMI with 20% FBS, and incubated at 37 oC in a 5% CO2 incubator. 

On the fourth day, the number of big cells was counted followed by plating the cells at the 

density of 0.2 million cells on coverslips in 24 well in RPMI with 10% FBS. The media 
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was changed in the wells on day sixth to RPMI with 5% FBS and on day seventh to RPMI 

with 1% FBS. The human monocytes derived macrophages were used for experiment on 

eighth day, when 60% or more of the cells were expressing CD68, a marker for 

differentiated macrophages.  

 

Macrophage phagocytosis assays: Macrophages that were seeded overnight onto on 8-well 

glass chamber slides or 12 well plates were pulse fed (centrifuged 1 min, 800g, 25 °C) 

neutrophils incubated in media for 18 hours or opsonized F. alocis-cultured neutrophils at 

a MOI of 10 neutrophils per macrophage for 30 or 60 minutes at 37 °C. The slides or wells 

were then washed 3 times with sterile PBS, which removed any uningested neutrophils.  

For myeloperoxidase (MPO) staining, the 8-well chamber slides were fixed using 

4% paraformaldehyde. Then, macrophages were stained for MPO by adding 3,3′-

diaminobenzidine (DAB) as previously shown [447, 448]. 100 cells were counted for each 

experimental condition and qualified based on whether they were positive for MPO from 

phagocytized neutrophils.  

For flow cytometry experiments, antibodies for F4/80 (Mouse, BioLegend, #123118) 

and CD16 (Human, BioLegend, #302012) were added to the wells to stain the cells on ice 

for 20 minutes. Cells were then scraped and 20,000 cells were collected on a on a BD 

FACSCelesta flow cytometer and analyzed using the FlowJo software (Ashland, OR, 

USA). To obtain the % ingestion figure, the percentage of F4/80+, CD16+ cells (which 

represents macrophages with attached neutrophils) was subtracted from the percentage of 

F4/80+, PKH-26+ cells.  
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For confocal imaging, macrophages were seeded overnight onto on 8-well glass 

chamber slides and then fed aged PKH-26-labeled neutrophils that had been challenged 

with CFSE-labeled, opsonized F. alocis. After feeding for an hour, the neutrophils were 

washed off and the macrophages were processed for confocal staining or left for another 

23 hours of culture. Upon completion of each timepoint, the cells were stained with 

antibodies against F4/80. The cells were fixed with 4% paraformaldehyde and imaged by 

confocal microscopy to assess whether the neutrophils and/or F. alocis ingested by the 

macrophages had been degraded.  

 

Macrophage Supernatant and Lysate Collection: Macrophages that were seeded overnight 

on 12 well plates in duplicates were left untreated or fed neutrophils for an hour as 

previously described. The washes to remove uningested neutrophils were pooled, pelleted 

and lysed on ice for 30 minutes in the lysis buffer described above. Fresh, warmed media 

was added to the wells with macrophages, and the cells were incubated for an additional 

hour (for total of 2 hours with PMN) or 23 hours (for a total of 24 hours with PMN). At 

each indicated timepoint, 25 L of lysis buffer was added to each well. Then, the cells were 

scraped into the lysis buffer, the duplicates were combined and placed on ice for 30 

minutes. The lysates and their respective western blots were generated as described for 

neutrophils above, with the exception that 20 µg of the cell lysates were separated by 12% 

SDS-PAGE and immunoblotted with antibodies for F. alocis (1:2000, generated by Pocono 

using UV killed F. alocis), elastase (1 µg/ml, Abcam), or -actin (1:1000, Cell Signaling). 

Additionally, at the completion of the 24-hour timepoint, the supernatants were saved from 

the wells, centrifuged to remove any cell debris and 1% protease and phosphatase inhibitors 
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were added to the supernatants to protect them from degradation. These supernatants were 

run on a 32-analyte multiplex assay to determine the cytokine profile.  

 

F. alocis Colony Forming Units: For each timepoint tested, three culture tubes were 

generated. The first one contained the F. alocis inoculum in the neutrophil culture media, 

the other two tubes had the F. alocis inoculum co-cultured with human neutrophils. At the 

end of each timepoint, the F. alocis inoculum tube and one of the tubes with F. alocis and 

neutrophils were placed on ice while the second tube containing F. alocis and neutrophils 

was centrifuged (300g, 5 min, 4 °C) and washed 3 times to remove extracellular bacteria. 

During the final wash of the intracellular bacteria condition, the F. alocis inoculum tube 

and the tube with the total F. alocis and neutrophils were centrifuged (6000g, 2 min, 4 °C) 

to pellet all bacteria and immune cells. The pellets from the inoculum, the total F. alocis 

and neutrophils, and the intracellular F. alocis were lysed for 1 minute in 0.02% saponin 

and serially diluted in sterile PBS. These dilutions were sterilely plated in duplicate 10 µL 

drop aliquots on anaerobic BHI plates (BHI media (7.4g/200ml), L-cysteine (0.1g/ 200ml), 

yeast extract (1g/200ml), agar powder (3g/200ml), 0.05% arginine and 5% sheep blood). 

The plates were transferred into an anaerobic chamber and allowed to grow for 72 hours. 

Colonies that grew were counted and Gram stained. In experiments where anaerobic and 

aerobic conditions were tested in parallel, the anaerobic neutrophil media was put into the 

anaerobic chamber and the aerobic media was left in an aerobic incubator the night before 

performing the assay.  
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Statistical Analysis: Statistical differences among experimental conditions and time points 

were analyzed using GraphPad Prism Software (Graphpad San Diego, CA, USA). 

Differences were considered significant at the level P < 0.05. The specific statistical test 

for each experiment is listed in their respective figure legend. If results represent data from 

multiple experiments, mean values ± standard error of mean (SEM) are shown. 

 

 

Results:   

Efferocytosis of neutrophils aged with F. alocis  

     Since F. alocis-challenged neutrophils have extended survival and retain their 

functional capabilities, I hypothesized that efferocytosis of these F. alocis neutrophils 

would be hampered.  To test this, I acquired mouse macrophages by inducing sterile 

peritonitis in wild-type mice. These peritoneal macrophages were pulse fed for 30-60 

minutes with 18 hours aged human neutrophils that were either untreated (media) or 

challenged  with F. alocis (MOI; 10 bacteria per neutrophil); the feeding ratio used was of 

10 neutrophils per macrophage. After 30 or 60 minutes, uningested neutrophils were 

washed off and the macrophages were stained for myeloperoxidase (MPO) as a way to 

visualize internalized neutrophils, which can be appreciated in the representative images 

(Figure 5.1A). 100 macrophages from each condition were tallied based on whether they 

ingested neutrophils, and at both 30 and 60 minutes, neutrophils challenged with F. alocis 

were efferocytosed by more macrophages compared to the untreated neutrophils (Figure 

5.1B). Ultimately, I chose to use the mouse macrophage/human neutrophil model for the 

rest of the efferocytosis experiments; however, I wanted to determine if the pattern of 

ingestion was the same in human monocyte derived macrophages (HMDM) (Figure 5.1C).  
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Only one replicate with one donor was conducted, but in HMDM, F. alocis-stimulated 

neutrophils were also efferocytosed more readily at both timepoints tested.  

 To confirm the MPO imaging data, I used flow cytometry as a high-throughput 

technique to evaluate the internalization of PKH-26 labeled neutrophils by F4/80 

expressing macrophages. Figure 5.1D depicts representative flow cytometry dot plots that 

show the gating strategy employed to determine uptake. The untreated macrophage control 

only stained positive for F4/80, but when macrophages were fed untreated neutrophils, 

there was a shift to the right, indicating neutrophil uptake. This shift was even more 

pronounced in macrophages that were fed F. alocis-stimulated neutrophils (Figure 5.1D). 

When the population of macrophages that ingested neutrophils was combined from several 

mice, ~20% of macrophages engulfed untreated neutrophils after 30 minutes and this value 

doubled when the ingestion time was increased to 60 minutes (Figure 5.1E). In the case of 

F. alocis-stimulated neutrophils, 40% of macrophages had ingested neutrophils at 30 min, 

and at 60 minutes this value rose to 80% of macrophages.  Thus, the enhanced ingestion of 

F. alocis-treated neutrophils observed by microscopy was also mirrored in the more robust 

flow cytometry approach (Figure 5.1E). 

 

Expression of “Don’t eat me” signals on F. alocis-stimulated neutrophils  

 The best characterized “eat me” signal on apoptotic cells is the expression of 

phosphatidyl serine (PS) on the cell surface. However, F. alocis stimulation results in 

decreased externalization of PS as compared to unstimulated cells (Chapter 4). Therefore, 

I hypothesized that instead of expressing more “eat me” signals than untreated controls, 

perhaps F. alocis neutrophils express fewer “don’t eat me” signals like CD47 (Figure 5.2A) 
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and CD31 (Figure 5.2B). Both CD47 and CD31 are shed naturally as neutrophils age, 

which is why there is a decrease in the expression of both of these markers between freshly 

isolated neutrophils and neutrophils aged for 18 hours. Concomitantly, stimulating the 

neutrophils with pro-apoptotic Fas L resulted in decreased expression of both CD47 and 

CD31 as compared to neutrophils cultured in media for 18 hours. In the case of CD47, F. 

alocis-stimulated cells expressed significantly more CD47 than untreated cells (Figure 

5.2A). On the other hand, F. alocis stimulated cells expressed significantly less CD31 than 

media-cultured cells (Figure5.2B). In fact, the expression of CD31 on F. alocis stimulated 

neutrophils was comparable to that of the pro-apoptotic stimulant, Fas L.  

Previous reports have shown that the secreted proteases of oral bacteria like P. 

gingivalis can cleave CD31 to induce the efferocytosis of viable cells [449, 450]. To assess 

if viable F. alocis is producing a protease that is cleaving of CD31 on viable cells, 

neutrophils were stimulated with heat-killed F. alocis. In terms of CD47 expression, both 

heat-killed and viable F. alocis resulted in comparable CD47 expression (Figure 5.2A). 

However, although it did not reach significance, treating the neutrophils with HK F. alocis 

resulted in a partial rescue of the CD31 expression (Figure 5.2B). Together, this suggests 

that the decreased expression of CD31 may be due to released F. alocis proteases. 

Additionally, neutrophils can release their own proteases through granule exocytosis that 

can also cleave off neutrophil membrane receptors [449]. To confirm the decreased CD31 

expression was due to the action of proteases, I cultured neutrophils with media or F. alocis 

in the presence of protease inhibitors (PI) and then quantified the expression of CD47 and 

CD31 (Figure 5.2C-D). The presence of PI restored CD47 expression to fresh cells levels 

for both untreated and F. alocis-stimulated neutrophils, indicating that proteases are part 
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of the cells normal CD47 downregulation, regardless of infection (Figure 5.2D). However, 

in the case of CD31, the inhibitors did not restore CD31 of any of the conditions to the 

level of fresh cells (Figure 5.2D). In media-cultured cells, the expression of CD31 was the 

same whether or not the inhibitors were present. In F. alocis stimulated cells, protease 

inhibitors restored CD31 levels to the media-cultured cells, suggesting that in F. alocis 

infection, proteases are responsible for the added shedding of CD31.  Taken together, this 

data suggests that macrophages are able to engulf viable, F. alocis-challenged cells more 

than apoptotic untreated cells because F. alocis causes a decrease in expression of CD31 

through proteases.  

 

Macrophage degradation of  F. alocis-cultured neutrophils  

 After recognizing dead cells, the efferocytic macrophages begin to digest the 

phagocytized cargo. In our system, I examined the digestion of neutrophils by confocal 

microscopy (Figure 5.3A-B). After feeding membrane-labeled neutrophils for an hour, the 

uningested granulocytes were washed off and the macrophages were either fixed for 

imaging or left to digest their neutrophil cargo for an additional 23 hours. Consistent with 

our previous results, after 1 hour of feeding, F. alocis-neutrophils were ingested more than 

media-cultured cells (Figure 5.1A). Notably, CFSE-labeled F. alocis could still be detected 

within neutrophils that were efferocytosed. Then, after 24 hours of culture between the 

neutrophils and the macrophages, the ingested media-cultured neutrophils had been almost 

entirely degraded whereas the F. alocis-stimulated neutrophils remained more intact, with 

F. alocis still detectable intracellularly. Figure 5.3B shows a zoomed portion of the merged 
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images shown in panel A, to better appreciate the architecture of the neutrophils within the 

macrophages.  

 To quantify this phenomenon, the same experiments were conducted, but this time, 

instead of viewing the cells on the confocal microscope, whole cell extracts were collected 

and western blots of these lysates were probed with polyclonal antibodies against F. alocis 

as a measure of bacterial proliferation or probed for elastase as a measure of neutrophil 

presence within the macrophage (Figure 5.4A). On the representative western blot shown, 

the first thing to appreciate is that the F. alocis antibody recognizes proteins from 

neutrophils (UT PMN) and macrophages (Mo) even when the bacterium is not present. 

Thus, quantification of these blots was done on the most prominent F. alocis protein band 

that could be detected, which is the one delineated by the blue box. Quantification that 

focused on this band showed an incremental decrease, but not a complete degradation, of 

F. alocis proteins within macrophages (Figure 5.4B). Next, the blots were probed for 

elastase as a measure of neutrophil presence. The first two lanes, which represent the 

lysates of neutrophils washed off the macrophages that were not ingested, the amount of 

elastase was less in the F. alocis-stimulated neutrophils, suggesting that more neutrophils 

were ingested by the macrophages, as has been shown previously. Unlike the elastase from 

untreated neutrophils inside the macrophages, the elastase from F. alocis-stimulated 

neutrophils could still be detected after 24 hours of culture, indicating that the efferosome 

is not as efficient at degrading F. alocis-stimulated neutrophils (Figure 5.4C).  

 

Neutrophils as “trojan horses” for F. alocis  
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 While some pathogens delay neutrophil death to maintain viability of their 

replicative niche and others will accelerate apoptosis or trigger PMN lysis to evade 

intracellular killing. Another proposed mechanism is the use of infected neutrophils as 

“Trojan horses” for infection of macrophages. Since F. alocis extends neutrophil lifespan 

and delays the degradation of neutrophils inside macrophages, I tested the possibility that 

F. alocis was using neutrophils to create another niche inside the longer-lived 

macrophages.  

 First, I assessed by flow cytometry how many macrophages internalized 

neutrophils that contained F. alocis to see if macrophages preferentially engulfed cells 

harboring bacteria. To accomplish this, PKH-26 labeled neutrophils were co-cultured with 

CFSE-labeled F. alocis for 18 hours followed by feeding of macrophages for 1 hour. Using 

the same gating strategy as Figure 5.1D, the population of macrophages that efferocytosed 

neutrophils was determined (Figure 5.5A). These PKH-26 positive macrophages (Q2: 

F4/80+, PKH+) were further characterized based on their intensity of CFSE as a measure 

of the percent of neutrophil+ macrophages that also contained F. alocis (Figure 5.5A). The 

summary figure of these experiments shows that as expected, 100% of the macrophages 

that phagocytized media-cultured neutrophils did not contain any F. alocis (CFSE negative 

(-)).  However, when macrophages were fed F. alocis-stimulated neutrophils, 50% of the 

macrophages internalized F. alocis-containing neutrophils (Figure 5.5B). In the condition 

where macrophaes were fed F. alocis-stimulated neutrophils, there was a small  (5-10%) 

difference between the CFSE(-) and the CFSE (+) macrophages; however, despite reaching 

statistical significance, is likely not biologically relevant. Together, this data demonstrates 

that macrophages are not preferentially efferocytosing F. alocis infected neutrophils.  



 

 211 

 The basis behind cellular “trojan horses” is that a viable microbe drives the uptake 

of their cell host by another cell that will provide a longer-lived or more permissive 

replicative niche. However, the viability of F. alocis in culture with neutrophils had only 

been tested up to 4 hours [284]. Therefore, the survival of F. alocis with neutrophils was 

tested for longer timepoints (Figure 5.5C).  At 1 and 4 hours of culture, neutrophils were 

responsible for an overall reduction of viable F. alocis as compared to the inoculum alone. 

However, at 10 hours both the inoculum and the neutrophil-cultured F. alocis were 

markedly affected in their CFU counts. Parallel to these experiments, extracellular F. alocis 

was extensively washed off and intracellular F. alocis was plated (Figure 5.5D). Data 

shows that neutrophils do not reduce F. alocis numbers within the first 4 hours of challenge.  

However, by 10 hours of culture the quantity of CFU dramatically decreased, same as the 

inoculum and the total culture of F. alocis with neutrophils. Since F. alocis is a strict 

anaerobe, I hypothesized that by 10 hours, the aerobic environment was inactivating the 

oral pathogen.  

 Due to their limited oxygen diffusion capacity, normal tissues are considered 

physiologically hypoxic [451]. Tissues can become increasingly hypoxic during infection 

through the activation of the NADPH oxidase complex [452], and as the depth of the 

periodontal pocket increases, the oxygen tension also decreases [453]. Neutrophils are 

likely exposed to profound levels of hypoxia as they are largely recruited to periodontal 

disease-associated tissues or trapped in areas of microcirculatory impairment. As a crude 

method to mimic the environment where neutrophils are exposed to F. alocis in vivo, 

neutrophils ± F. alocis were cultured in anaerobic media in an anaerobic chamber or in 

aerobic media in an incubator. First, the apoptotic status of these neutrophils was tested 
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after 24 hours (Figure 5.5E). Culturing neutrophils anaerobically results in enhanced 

neutrophil viability in untreated cells, but in both sets of cells, F. alocis extended the 

leukocytes’ survival even further. 

Then, the ability of these cells to kill F. alocis was tested (Figure 5.5F). At 1 and 4 

hours of culture, there was no difference in the killing efficiency of neutrophils cultured 

aerobically or anaerobically. After 10 hours and overnight incubations, F. alocis was 

eliminated in aerobic culture conditions as previously shown. Interestingly, under 

anaerobic conditions, only the F. alocis cultured with neutrophils at both of these 

timepoints produced CFUs, indicating that F. alocis lifespan is extended in the presence of 

neutrophils. F. alocis did not proliferate more than the inoculum at any timepoint tested. 

When the intracellular bacteria were plated, aerobically cultured bacteria perished by 10 

hours, but anaerobically cultured bacteria could form colonies even after overnight culture 

with neutrophils (Figure 5.5G). There was also no significant difference between the CFUs 

counts at 1, 4, and 10 hours, indicating that under anaerobic conditions, F. alocis is able to 

dampen neutrophil microbicidal mechanisms for long periods of time. Taken together, this 

data shows that under anaerobic conditions, F. alocis requires the presence of neutrophils 

to survive for extended periods of time, and also that the bacterium is able to remain viable 

within neutrophils for long periods of time. These findings are particularly exciting because 

they could mean that under hypoxic conditions, F. alocis could be using neutrophils as 

vehicles to enter macrophages as another niche.  

  

Efferocytosis of  F. alocis-cultured neutrophils induces a pro-inflammatory environment 
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The final step in efferocytosis is the release of anti-inflammatory mediators that 

will tip the scale towards the resolution of inflammation. To determine if this was the case, 

I collected supernatants for cytokine analysis from untreated macrophages or macrophages 

that efferocytosed untreated neutrophils or neutrophils exposed to F. alocis. The cytokine 

multiplex data showed that efferocytosing F. alocis-neutrophils results in macrophages 

releasing a significant amount of pro-inflammatory cytokines like G-CSF, IL-1, IL-

1 TNF, and IL-6 (Figure 5.6). There was also an upward trend in the release of the pro-

inflammatory cytokine IFN but this did not reach significance. Furthermore, the 

generation of chemokines like RANTES (CCL5), KC (CXCL1), IP-10 (CXCL10), LIX 

(CXCL5), MCP1 (CCL2), and MIP2 (CXCL2) was also amplified compared to 

macrophages alone or macrophages that received untreated neutrophils (Figure 5.7). 

Paradoxically, macrophages that internalized F. alocis-stimulated-neutrophils produced 

significant amounts of the anti-inflammatory cytokine, IL-10. Other cytokines like IL-17, 

MIG (CXCL9), MIP-1 (CCL3), and MIP-1 (CCL4), were not significant. Overall, the 

cytokine data shown here suggests that the resolution function of efferocytosis is corrupted 

when the macrophages ingest F. alocis challenged neutrophils. These efferocytosing cells 

will produce pro-inflammatory cytokines and chemokines that will recruit more immune 

cells. Together, this response will feed into the dysregulated chronic inflammation cycle of 

periodontal disease and prevent the resolution.  

 

Discussion 
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Since challenge with F. alocis delayed the externalization of phosphatidyl serine 

(PS), and the cells retained their functional capacity after 18 hours of challenge, I 

hypothesized that efferocytosis would also be defective. Surprisingly, this was not the case, 

since F. alocis challenged neutrophils were efferocytosed by macrophages significantly 

more than control cells. It has been previously demonstrated that PS expression is not 

absolutely necessary for the uptake of neutrophils by macrophages [449]. Thus, when the 

expression of “don’t eat me” signals was tested, F. alocis-neutrophils showed enhanced 

membrane expression of CD47 but decreased expression of CD31. CD47 on viable 

neutrophil membranes will be recognized by the macrophage receptor SIRPα (signal 

regulatory protein α) that activates inhibitory phosphatases (SHP-1 and SHP-2) via ITIMs 

(immunoreceptor tyrosine-based inhibition motifs) in SIRPα. Overall, this results in the 

inhibition of macrophage efferocytosis [454]. CD31 expression prevents phagocyte 

ingestion of viable cells by transmitting ‘detachment’ signals to the macrophage [455]. It 

is possible that despite the high expression of CD47 in F. alocis-neutrophils, this is not 

enough to overcome the lack of repulsive signaling from the diminished expression of 

CD31. In fact, when CD31 was cleaved off of freshly isolated neutrophils by P. gingivalis 

gingipains, the neutrophils were efficiently engulfed by macrophages [449].  

In our system, HK F. alocis induced a milder reduction in CD31, suggesting that 

like P. gingivalis, viable F. alocis is actively inducing the proteolytic cleavage of CD31. It 

will be interesting to test whether HK F. alocis-stimulated neutrophils are efferocytosed to 

similar levels as untreated cells, since they display comparable levels of CD31. Other 

proteinase activity sources that should be considered are elastase and cathepsin G, two 

neutrophil-derived proteases typically found in azurophilic granules and on the surface of 
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neutrophils when they are primed [456]. Previous results from our laboratory show that 

azurophilic granules are not released at early timepoints (30 min) [284], but the release of 

azurophilic granule content during longer challenge periods has not been determined. 

Importantly, both of these proteases have been linked to modifications that modulate 

efferocytosis. Elastase cleaves the phosphatidyl serine receptor on phagocytes, leading to 

defective apoptotic cell clearance [457] and cathepsin G cleaves CD31 on neutrophils to 

hinder uptake by macrophages [449]. Our studies used a pan-protease inhibitor cocktail, 

but it may be valuable to use specific inhibitors for each of the proteases to determine if 

they play a role in the CD31 shedding.  

In our experimental set up, F. alocis was cultured aerobically with neutrophils, 

meaning that by 10 hours most of the strictly anaerobic bacteria was no longer viable. 

Regardless of this, bacteria could still be visualized within neutrophils that were engulfed 

by macrophages up to 24 hours after efferocytosis. This brings up several important 

questions that revolve around the possibility of neutrophils as “trojan horses” for the 

infection of macrophages. After culture of neutrophils with F. alocis, how early can the 

neutrophils be internalized by efferocytes? If F. alocis is viable within the apoptotic cells, 

can the bacterium survive and/or proliferate within the apoptotic cell phagosome?  

As a crude way to determine the role of atmospheric oxygen on the neutrophil-F. 

alocis interaction, I performed the infection under aerobic or anaerobic conditions. The 

basal length of neutrophil lifespan was prolonged, but F. alocis challenge increased the 

number of viable neutrophils even further. Of course, longer timepoints and more precise 

environmental oxygen controls will be necessary to assess the full impact of F. alocis-

mediated survival under hypoxic conditions. It was not surprising that anaerobic conditions 
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prolonged the survival of F. alocis, but it was unexpected that in the 10 hour and overnight 

timepoints, only the F. alocis conditions that received neutrophils had CFU formation, 

suggesting that the bacteria are able to survive better in the presence of neutrophil-driven 

inflammation. Intracellular CFU could be detected in the overnight cultures, but since these 

assays were done in suspension it is not possible to guarantee the intracellular bacteria 

detected were present in neutrophils the entire culture period. While it will need to be tested 

in our system, I believe that the decreased bacterial killing under anaerobic conditions 

cannot be attributed to defects in neutrophil functions because of decreased availability of 

oxygen. Studies that have specifically tested neutrophil functionality describe that hypoxia 

does not affect phagocytosis, but enhances neutrophil degranulation, the autophagic 

capacity of neutrophils, and the killing of some microbes like Escherichia coli and S. 

aureus [451, 458]. The only function that was impaired seemed to be the production of 

ROS, but in the case of F. alocis, the bacterium is able to grow better in the presence of 

hydrogen peroxide and at least aerobically, induces minimal ROS generation from 

neutrophils [58, 284].  

The fate of the pathogen and the immune cell in which it resides in will highly 

depend on the type of efferocyte, host factors like genetic polymorphisms, and the type of 

cell death the immune cell containing the bacterium underwent [443]. For example, low 

virulence strains of Mycobacterium tuberculosis induce apoptosis in cells and when 

macrophages engulf these cells, the lysosomal fusion with the apoptotic cell phagosomes 

promotes bacterial killing [459]. However, virulent M. tuberculosis strains induce necrosis 

in neutrophils and when the necrotic neutrophils are internalized by macrophages, M. 

tuberculosis intracellular growth is promoted [460]. Thus, it is possible that despite 
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efficiently engulfing F. alocis-challenged neutrophils, macrophages are not able to digest 

the cargo because the viable neutrophils did not trigger the signaling needed for full 

phagosome maturation and subsequent degradative capacity. To prove this, more studies 

are needed to characterize the macrophage phagosome that contains F. alocis-stimulated 

neutrophils. One of the first things to test would be ROS production and phagosome 

acidification, since they are essential for efficient proteolysis of apoptotic cells within 

efferosomes [447].  

 Instead of initiating a pro-resolution phenotype, the macrophages that ingested the 

F. alocis-laden neutrophils secrete a number of pro-inflammatory cytokines and 

chemokines that will likely contribute to drive the chronicity of periodontal inflammation. 

Another indirect consequence of defective efferocytosis is the development of autoimmune 

responses. Normally, efferocytosis helps mount an adaptive immune response against 

bacteria through the process of antigen cross-presentation [443]. However, when there is 

limited proteolysis of phagosomal cargo, there is enhanced presentation of antigens and 

increased potential for excessive activation of adaptive immune responses [443, 447]. To 

address this point, it will be interesting to see if the cross-presentation is different between 

macrophages that ingested untreated or F. alocis stimulated neutrophils.  

Efferocytosis in the oral cavity has also been ill-defined, especially when it comes 

to the contribution of emerging oral pathogens. Despite being functional and viable, 

neutrophils that interact with F. alocis will be efficiently ingested by efferocytic 

macrophages. However, instead of initiating the resolution of inflammation, the 

macrophages will add to the pro-inflammatory milieu by secreting more cytokines and 

chemokines. Ultimately, these result begin to delineate how engulfing F. alocis-stimulated 
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neutrophils can influence the action of efferocytic macrophages and how F. alocis may be 

contributing to the chronic dysregulated inflammation observed in periodontitis.  
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Figure 5.1: Efferocytosis of F. alocis-challenged neutrophils is more efficient than 

media-cultured neutrophils.  
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 Figure 5.1: Neutrophils were aged for 18 hours in media or with F. alocis followed by a 

30- or 60-minute pulse feeding of macrophages. (A) Representative images show MPO 

staining of mouse peritoneal macrophages after neutrophil feeding. Arrows indicate 

engulfed neutrophils. (B) 100 macrophages from each condition were qualified based on 

whether they had efferocytosed neutrophils. The percentage of myeloperoxidase (MPO) 

positive macrophages were plotted ± SEM where each dot represents the macrophages 

from one mouse, conducted over 3 experimental replicates. A two-tailed student T-test was 

performed to determine statistical significance at each timepoint. (C) The efferocytosis 

assay and MPO staining was completed for one replicate using human neutrophils and 

human macrophages. Data are plotted as in B. (D) Flow cytometry dot plots show the 

gating strategy to determine the uptake of PKH-26 labeled neutrophils by F4/80 labeled 

macrophages. (E) Summarizes the % macrophages that internalized neutrophils ± SEM 

where each dot represents the macrophages from one mouse, conducted over 2 

experimental replicates. A two-tailed student T-test was performed to determine statistical 

significance at each timepoint. * = p > 0.05, **=p > 0.01, ***= p > 0.001. 
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Figure 5.2: F. alocis-challenged human neutrophils expression of “don’t eat me” 

signals. Fresh neutrophils or cells aged for 18 hours in media or with FasL, F. alocis or 

heat killed (HK) F. alocis (MOI 10) were stained for (A) CD47 or (B) CD31 expression. 

Data show the mean channel fluorescence of expression ± SEM from 3-10 independent 

experiments. Then, In addition to the conditions from A and B, some neutrophils were also 

pre-treated with protease inhibitors (PI) followed by culture for 18 hours in media or with 

F. alocis and staining for (C) CD47 or (D) CD31 expression. One-way ANOVAs with 

Tukey post-hoc testing was performed on all plots to determine statistical significance. * = 

p > 0.05, **=p > 0.01, ***= p > 0.001.  
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Figure 5.3: F. alocis-challenged human neutrophils persist in macrophages after 24 

hours.  
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Figure 5.3:  PKH-26 labeled neutrophils (Red) were aged for 18 hours in media or with 

CFSE F. alocis (Green) and then fed to macrophages for 1 hour. After washing off non-

ingested neutrophils, the cells were left to culture for an additional 23 hours or fixed and 

macrophages stained for F4/80 (Blue). (A) Shows representative Z-stack images of 

macrophages from these conditions. (B) Shows zoomed sections from the merged images 

in A.  
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Figure 5.4: F. alocis challenged human neutrophils are not efficiently degraded by 

macrophages.  
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Figure 5.4: Neutrophils (PMN) were aged for 18 hours in media (UT) or with F. alocis 

(Fa), and then fed to macrophages (Mo) for 1 hour. After washing off non-ingested 

neutrophils, the cells were left to culture for 1 or 23 more hours. (A) Whole cell lysates 

were probed for F. alocis, Elastase, or β actin. Lysates are from the non-ingested 

neutrophils aged for 18 hours in media or with F. alocis, unchallenged macrophages (Mo), 

macrophages fed media-cultured neutrophils (Mo + UT PMN), or macrophages fed F. 

alocis-cultured neutrophils (Fa + UT PMN). Box highlights unique F. alocis protein used 

for blot quantification as region of interest (ROI). Data are plotted as the mean ± SEM of 

the normalized densitometry of (B) the boxed F. alocis protein or (C) elastase. Each dot 

represents a mouse and data was collected from 2 experimental replicates. One-way 

ANOVAs with Tukey post-hoc testing were performed on B & C to determine statistical 

significance.  
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Figure 5.5: F. alocis neutrophils as “trojan horses”.  



 

 227 

Figure 5.5: (A) Dot plots show gating strategy to determine the percent population of 

macrophages that engulfed neutrophils (F4/80+, PKH-26+, Q2). Q2 macrophages from 

both the media-treated neutrophils condition and CFSE-labeled F. alocis-treated neutrophil 

condition, were plotted by their CFSE intensity in a histogram. Two gates differentiate 

macrophages that ingested neutrophils that did not contain bacteria (CFSE(-)) and 

macrophages that ingested neutrophils that contained F. alocis (CFSE(+)). (B) Shows the 

% of Q2 macrophages ± SEM that ingested F. alocis negative CFSE(-) or F. alocis positive 

CFSE(+) neutrophils from both conditions. Each dot (N=6) represents a mouse from 2 

experimental replicates. (C) Data show the total colony forming units (CFU) from the 

aerobic culture of F. alocis inoculum and F. alocis cultured with neutrophils for 1, 4, 10 

hours and overnight. (D) Shows CFUs recovered from F. alocis cultured with neutrophils 

where extracellular bacteria was washed off. C and D show average CFUs ± SEM from 3 

independent experiments. (E) Neutrophil viability was assessed after 24 hours of aerobic 

or anaerobic culture in media or with F. alocis by Annexin V/7AAD staining. Data are 

plotted as the mean percent viable (Q4: Annexin V-, 7AAD-) neutrophils ± SEM from two 

independent experiments. (F) Shows total colony forming units (CFU) from the culture of 

F. alocis inoculum and F. alocis cultured with neutrophils under aerobic and anaerobic 

conditions for the times shown. (G) Shows intracellular CFUs recovered after aerobic and 

anaerobic culture. Both F and G represent the average CFUs ± SEM from 2 independent 

experiments. One-way ANOVAs with Tukey post-hoc testing was performed on B, D, and 

E to determine statistical significance. A two-way ANOVA with Bonferroni post-hoc 

testing was performed on C, F and G to determine statistical significance. * = p > 0.05, 

**=p > 0.01, ***= p > 0.001.  
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Figure 5.6: Cytokine profile of efferocytic macrophages after ingestion of F. alocis 

neutrophils. Neutrophils (PMN) were aged for 18 hours in media (UT) or with F. alocis 

(Fa), and then fed to macrophages (Mo) for 1 hour. After washing off non-ingested 

neutrophils, the cells were left to culture for 23 more hours. The supernatants were 

collected from 7 mice over 2 independent experiments and tested using a 32-analyte 

multiplex array. The targets that could be detected are shown here. One-way ANOVAs 

with Tukey post-hoc testing were performed to determine statistical significance. * = p > 

0.05, **=p > 0.01, ***= p > 0.001. 
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Figure 5.7: Chemokine profile of efferocytic macrophages after ingestion of F. alocis 

neutrophils. Neutrophils (PMN) were aged for 18 hours in media (UT) or with F. alocis 

(Fa), and then fed to macrophages (Mo) for 1 hour. After washing off non-ingested 

neutrophils, the cells were left to culture for 23 more hours. The supernatants were 

collected from 7 mice over 2 independent experiments and tested using a 32-analyte 

multiplex array. The targets that could be detected are shown here. One-way ANOVAs 

with Tukey post-hoc testing were performed to determine statistical significance. * = p > 

0.05, **=p > 0.01, ***= p > 0.001. 
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CHAPTER 6: 

DISCUSSION AND FUTURE DIRECTIONS 

 

Periodontitis is an irreversible, bacteria-induced, chronic inflammatory disease that 

compromises the integrity of tooth-supporting tissues and adversely impacts systemic 

health. Neutrophils are the immune system’s first line of defense against bacteria in the 

oral cavity, where their microbicidal functions typically protect the host against periodontal 

disease. However, periodontal pathogens have evolved mechanisms to resist neutrophil 

microbicidal mechanisms while still propagating inflammation, which provides essential 

nutrients for the bacteria to proliferate and cause disease. Advances in sequencing 

technologies have recognized several newly appreciated bacteria associated with 

periodontal lesions, like the Gram-positive anaerobic rod, Filifactor alocis.  

With the discovery of these emerging oral bacterial species, there is also a growing 

need to (1) assess their pathogenic potential and (2) determine their contribution to disease 

progression in order to develop adequate therapies against periodontal disease and its 

associated comorbidities. Previous research from our laboratory initially characterized 

some of the pathogenic behaviors of F. alocis toward neutrophils. The work from this 

dissertation is an extension of this goal and was also aimed at understanding how the 

neutrophil functions were modulated. To get a global picture of changes in neutrophils 

during F. alocis challenge, I conducted a time course transcriptome study. Analysis of this 

dataset demonstrated that F. alocis has a pervasive effect on neutrophil gene expression. 
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By combining results from the transcriptome and F. alocis-modulated neutrophil effector 

functions, here I will discuss our working model of how F. alocis may be contributing to 

the chronic inflammation and the progression of periodontal disease (Figure 6.1).  

First of all, F. alocis is recognized by human neutrophils through ligation of TLR2/6. 

The resultant signaling modulates neutrophil migration patterns [275] and induces granule 

exocytosis. Both of these functions have implications for tissue destruction in the 

periodontium. Compounding the inflammatory response is the fact that previous work 

showed that F. alocis could survive within neutrophils up to 4 hours [284]. Using colony 

forming units, I confirmed these findings and found that under anaerobic conditions, viable 

F. alocis can be recovered after 24 hours of culture with human neutrophils. Additionally, 

the bacteria’s survival is extended when neutrophils are present, suggesting that neutrophils 

contribute to favorable conditions for the bacterium and/or act as a niche for persistence.  

The intracellular persistence of F. alocis in human neutrophils has been attributed to 

minimal ROS production and a delay in phagosome maturation [284]. Both of these 

phenotypes were confirmed in murine neutrophils, which is an important detail for when 

studies progress into the animal models of periodontitis. Regardless of defective TLR2 or 

MyD88 signaling, ROS production was not restored nor further dampened. However, 

granule fusion with the phagosome showed some interesting differences. Compared to 

wild-type neutrophils, the maturation of the phagosome was accelerated in F. alocis 

phagosomes from TLR2 deficient mice, whereas neutrophils from MyD88-/- mice were not 

able to digest viable F. alocis after 24 hours. For optimal antimicrobial capacity, it is critical 

that both the NADPH oxidase is activated and neutrophil granules fuse with the phagosome 

[321].  Thus, more studies will be needed to tease apart the signaling cascades that lead to 
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minimal ROS generation and a delay in granule fusion with the phagosome. Of note, the 

data from the transcriptome shows that F. alocis challenge significantly downregulates  the 

expression of genes in the vesicle-mediated transport, regulated exocytosis and neutrophil 

degranulation. For example, multiple members of the Rab and Syntaxin families were 

differentially expressed, but it will be necessary to determine if their functions are 

impaired. Together with the measured decrease in granule mobilization due to F. alocis 

infection, this is a promising area that merits more research.  

One of the top hits from the transcriptome was inflammation, which is expected in 

the context of a chronic inflammatory bacterial infection. Amongst the significant 

upregulated pathways was NFκB signaling. Experimentally, I determined that NFκB is 

activated very quickly after F. alocis challenge, and that TLR2 and MyD88 signaling is 

critical for the production of cytokines and chemokines. These pro-inflammatory mediators 

are especially important in the context of periodontitis because the chemokines will recruit 

more inflammatory cells to the oral cavity, and the pro-inflammatory cytokines will prime 

incoming cells, further enhancing their capacity to drive tissue destruction. Additionally, I 

found that the interaction between neutrophils and F. alocis produces pro-survival soluble 

factors that extend the neutrophil lifespan, which also extends the time they can drive the 

dysregulated inflammatory environment.  

Despite driving a pro-inflammatory program, F. alocis also seems to be striking a 

balance between pro- and anti-inflammatory responses. For example, in comparison to 

other oral pathogens, F. alocis does not induce NETs production and inhibits the release 

of NETs by the potent neutrophil activator, PMA [276]. Neutrophils stimulated with the 

oral pathogen also produced a significant amount of the anti-inflammatory cytokine, IL-
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10. Similarly, in the transcriptome data, the upregulated inflammatory pathways from early 

timepoints became significantly downregulated during the later time points, suggesting that 

F. alocis may be gaining control of the cell and dampening inflammatory processes at later 

timepoints. Data from this dissertation exemplified this concept further by showing that F. 

alocis dampened the activation of TNF-mediated MAPK signaling and as a result, limited 

the production of IL-8. At later timepoints, F. alocis challenge resulted in the significant 

downregulation of signal transduction pathways like MAPK, GPCR, Rho GTPases, PI3K, 

PTEN, AKT, and PKA, which could have significant impacts on neutrophil functions 

towards secondary stimuli.  

I found that neutrophils stimulated with F. alocis for up to 18 hours retain their 

phagocytic capacity and their ability to generate ROS in response to secondary stimuli, like 

S. aureus. However, there are other neutrophil functions I have not assessed downstream 

of F. alocis stimulation. Furthermore, it would be interesting to assess whether neutrophil 

negative feedback loops are activated with different kinetics or to different magnitudes 

during F. alocis stimulation to enact the changes in responsiveness of these neutrophils. 

The microbiota associated with disease is influenced by the virulent traits of specialized 

microorganisms that raise the pathogenicity and survival of the entire community. While 

it has been shown that F. alocis can protect other species from complement killing [64], 

one of the aspects of F. alocis infection I have not addressed in depth is the bystander 

effects of F. alocis-influenced neutrophil functions. Are F. alocis-controlled neutrophils 

defective at eliminating other oral bacteria? At early timepoints, the dampened ROS 

response is limited to F. alocis phagosomes [284], but is the thwarted granule movement 

wide-spread in the cell and could it protect other internalized bacteria?   
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Neutrophils that encounter F. alocis have prolonged lifespans and retain their 

functional capabilities for a longer time than unstimulated cells. The next step in the 

apoptosis story is to determine how/where the apoptotic pathways are specifically targeted 

by F. alocis, since caspase 3, 8, and 9 were minimally activated in F. alocis treated 

neutrophils. Furthermore, can F. alocis pre-treatment of the neutrophils prevent activation 

of apoptotic pathways by known cell death agonists? The effect on neutrophil survival was 

even more pronounced in anaerobic conditions. Since neutrophils encounter hypoxic 

conditions as periodontitis develops and the periodontal pocket deepens, more work to 

elucidate their responses in this environment will give a better picture of neutrophils 

behavior in the progression of the disease. Despite the extended lifespan and functional 

capacity of neutrophils when challenged with F. alocis, to our surprise, the infected 

neutrophils were more avidly engulfed by macrophages compared to media-cultured 

neutrophils. I now believe this effect is due to the loss of CD31 expression on the surface 

of F. alocis-challenged neutrophils, which is driven by an F. alocis-derived protease. More 

experiments are needed to prove our hypothesis, as well as characterize this protease.  

The progression of neutrophil cell death into apoptosis and subsequent efferocytosis 

is supposed to be a non-inflammatory process. However, macrophages that engulfed F. 

alocis-challenged neutrophils produced a robust pro-inflammatory cytokine and 

chemokine response. Additionally, F. alocis-neutrophils were degraded to a lesser extent 

than media-cultured neutrophils. The differences in cargo degradation within efferosomes 

between untreated or F. alocis treated neutrophils is an area that warrants more 

characterization. Several markers are available to track the maturation of efferosomes like 

LC3, LAMP1, and lysotracker, so the presence of these should be assessed in our system. 
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Decreased efferosome maturation has two important implications that should also be 

tested. The first is that under the correct oxygen conditions, F. alocis may be using 

neutrophils as “trojan horses” to enter a longer-lived host. Corroborating this hypothesis is 

unpublished data from our laboratory shows that F. alocis can also establish a niche within 

human macrophages. The second implication is that if dysregulated clearance of apoptotic 

cells can accelerate the progression of autoimmune disorders [427]. There is a strong 

correlation between limited proteolysis of phagosomal cargo and cross-presentation of 

antigenic peptides by major histocompatibility complex proteins that activate adaptive 

immune responses [447, 461]. Pathways for autoinflammatory diseases like rheumatoid 

arthritis were significant hits in the transcriptome of F. alocis-challenged neutrophils. 

In conclusion, the data from this dissertation asserts that F. alocis manipulates 

neutrophil gene expression profiles, signaling cascades and antimicrobial mechanisms to 

survive intracellularly, extend neutrophil lifespan, and cause the release of pro-

inflammatory cytokines. The nefarious effects of F. alocis on neutrophils also trickle down 

to efferocytic macrophages and potentiate more inflammation in the oral cavity. Finally, 

our results are the first to delineate the F. alocis strategies to control neutrophil effector 

functions by interrupting intracellular signaling and will enhance our understanding of how 

oral bacteria undermine the innate immune system.   
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Figure 6.1 Working model of F. alocis effects on neutrophils. 
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