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ABSTRACT 

DEVELOPMENT OF IN VITRO MODELS TO STUDY THE RAPID EXTRAINTESTINAL 
DISSEMINATION OF SALMONELLA 

Adarsh Gopinath 

April 7, 2020 

Salmonella appears in the bloodstream of mice in as little as 15 minutes after oral 

inoculation and establishes persistent colonies in the spleen and liver. While its pathway 

to blood is undetermined, this phenomenon is dependent on the activity of Salmonella 

pathogenicity island 2 (SPI-2) coded type III secretion system (T3SS) and CD18+ 

phagocytes. We hypothesize that dendritic cells associated with the basal face of the gut 

epithelium, that are naturally migratory and known to sample for luminal antigens 

directly transport Salmonella to the bloodstream. This process comprises of at least two 

phases, dissociation and reverse transmigration. We define dissociation as the process 

were intraepithelial dendritic cells separate from the epithelium after picking up 

Salmonella from the gut. This is followed by reverse transmigration, a normal host process 

in which dendritic cells can reenter the bloodstream by traversing the vascular 

endothelium in the basal to apical direction. In vitro models of the two processes were 

developed to help identify T3SS effectors that could affect rapid extraintestinal 
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dissemination of Salmonella in mice. Chronologically the in vitro reverse transmigration 

assay was developed first and allowed dendritic cells to migrate from the basal to apical 

face of endothelial cell monolayers cultured on filters with small pores. The T3SS effector 

SpvC was found to play an important role in the SPI-2 mediated in vitro reverse 

transmigration of dendritic cells and along with SrfH was demonstrated to greatly 

promote early extraintestinal dissemination of Salmonella in mice. However, SrfH failed 

to stimulate reverse transmigration in vitro. We were able to demonstrate that SrfH 

triggered dissociation of dendritic cells bound to the basal side of epithelial cell 

monolayers cultured on tissue culture inserts with small pores. The presence of a glycine 

residue at position 103 of SrfH was vital for dissociation and could potentially trigger this 

process through its association with the host adaptor protein TRIP6. These results 

combined with the observation that the srfH Gly103 and the spv operon are conserved 

amongst strains of non-typhoidal Salmonella capable of causing bacteremia in people 

suggests that this pathway to the bloodstream could be important for understanding 

human infections.  
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CHAPTER 1 

GENERAL INTRODUCTION 

Bacteria belonging to the genus Salmonella, are facultative anaerobic gram-negative 

rods that possess multiple flagella arranged in a peritrichous fashion. Ninety nine percent 

of Salmonella mediated disease in mammals is propagated by the species Salmonella 

enterica. S. enterica can be subdivided into six subspecies and around 2600 serotypes 

based on variations in the somatic O antigen, capsular K antigen and flagellar H antigens 

(Brenner et al., 2000). Three major diseases are caused by S. enterica in humans namely 

non-typhoidal salmonellosis, invasive non-typhoidal salmonellosis and typhoid or enteric 

fever. 

Epidemiology and clinical manifestations 

Non-typhoidal salmonellosis is a broad term that encompasses all the diseases 

caused in humans by all S. enterica serovars but for those implicated in enteric fever. Non-

typhoidal Salmonella (NTS) serovars usually result in enterocolitis, an acute inflammation 

of the small intestine and colon and inflammatory diarrhea. It is transmitted via the fecal 

oral route through the consumption of contaminated food and water and around 50,000 

bacteria are enough to manifest disease in as little as six hours (Blaser & Newman 1982). 

The disease mediated by NTS is self-limiting and often resolves itself without medical
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intervention in less than a week in adults. Seemingly healthy individuals can shed virulent 

Salmonella in their feces for up to three months and in rare cases for a year.  

Globally NTS mediated disease affects at least 1.3 billion individuals and contributes to 

the death of at least a million people per year (Majowicz et al., 2010). Mortality associated 

with salmonellosis is the highest in the developing world where infrastructure pertaining 

to healthcare, sanitation and water supply are inadequate. However even in the 

developed world NTS are the most commonly isolated pathogens in fresh fruits and 

vegetables (Hanning et al., 2009). 

Invasive non-typhoidal Salmonella (iNTS) cause a systemic disease characterized by 

high fever and bacteremia that can eventually develop into extra-intestinal focal 

infections such as septic aortitis, meningitis, pneumonia, septic arthritis, osteomyelitis or 

cholangitis (Chen et al., 2005). Unlike NTS infections, iNTS infections are marked by a 

distinct absence of enterocolitis. iNTS infections usually occur in immunocompromised 

individuals with an estimated 3.4 million cases recorded each year (Balasubramanian et 

al., 2019). There is a significant link between iNTS disease and adults suffering from AIDS, 

indicating a reliance on the immune response mediated by CD4+ T helper cells to clear 

infection. However, iNTS infections have been recorded in children suffering from 

malnourishment or infected with malaria, pneumonia and tuberculosis prior to the spread 

of the AIDS epidemic. Based on clinical data pertaining to iNTS infections in Sub-Saharan 

Africa between 2000-2010, Feasy and colleagues conclude that for every 100,000 

individuals, iNTS affects as much as 388 children and up to 7500 HIV positive adults 

(Feasey et al., 2012). Twenty to Twenty-five percent of these cases are fatal. 
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In humans, non-typhoidal bacteremia is caused by a host of S. enterica serovars 

including Typhimurium, Enteritidis, Choleraesuis and Dublin. Of these, emergent 

multidrug resistant (MDR) strains derived from serovar Typhimurium sequence type 313 

(ST313) have resulted in an ongoing pandemic in sub-Saharan Africa. ST313 and its various 

geographical offshoots within the African continent exhibit genomic degradation patterns 

associated with host restriction and most have acquired resistance to first line antibiotics 

ampicillin, trimethoprim and chloramphenicol with some strains in Malawi and Kenya 

acquiring resistance towards extended spectrum β-lactamases (Van Puyvelde et al., 

2019). There are currently no vaccines targeting antigens in a broad spectrum of NTS 

serovars. 

Typhoid or enteric fever is caused by the human restricted S. enterica serovars Typhi 

and Paratyphi transmitted via the fecal-oral route through contaminated food and water 

(Goldberg & Rubin, 1988). Annually around 21 million individuals worldwide are infected 

by typhoidal Salmonella and at least one percent of these cases results in fatality (Crump 

& Mintz, 2010). The bulk of these infections are restricted to regions endemic to this 

disease that include parts of Asia and Africa. A feature unique to typhoidal strains of 

Salmonella is an extracellular polysaccharide capsule known as the Vi antigen that helps 

the bacterial cell survive the acidic environment of the gastric tract (Waddington et al., 

2014). Typhoidal Salmonella invade and survive within cells of the reticuloendothelial 

system (RES) such as mononuclear phagocytic cells during the acute phase of infection 

and colonizes RES organs such bone marrow, spleen and liver (Gunn et al., 2014). Initially 

the patient typically suffers from a brief bout of fever, bacteremia, rash, weight loss and 
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headache. In most patients Typhi infections resolves itself within six months but in 2-5% 

of the cases the individual fails to clear the bacteria within a year and end up maintaining 

a carrier state where the typhoidal Salmonella is constantly shed into the blood and 

excrement from persistent colonies in the bile duct and gallbladder (Levine et al.,1982). 

Due to the systemic nature of infection, Salmonella Typhi infections are treated 

immediately with antibiotics. Similar to iNTS, several MDR strains of typhoidal Salmonella 

have emerged preventing the use of first line antibiotics and in some cases, bacteria have 

been isolated that are even resistant to fluoroquinolone derivatives such as ciprofloxacin 

(Qamar et al., 2014). There are currently two vaccines in use, namely Ty21a, a live 

attenuated vaccine, and another targeting the capsular Vi antigen. Ty21a is effective in 

preventing disease in 50% of cases but cannot be used in children under the age of six, 

which is a demographic that is highly susceptible to enteric fever (Loetcher et al., 2012). 

The vaccine targeting the Vi antigen protects 60% of recipients but has a limited efficacy 

of three years, with immunity unable to be boosted through supplementary 

immunizations (Anwar et al., 2014). 

Mouse model of Salmonella pathogenesis 

The prevalence of MDR strains of both typhoidal and iNTS serovars and the lack of an 

effective long lasting broad spectrum vaccine for both diseases have prompted the 

significant investment of time and effort into the development of in vivo and in vitro 

models to better understand the minutiae of host-pathogen interactions at the 

molecular, cellular and organismal levels. Several animal models have been developed 

that try to emulate the symptoms associated with all three diseases caused by Salmonella 
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species in humans. Non-human primates and bovine species are examples of models 

where Salmonella pathogenesis is the closest to that of their human counterparts. At 

extremely high doses, human-restricted S. Typhi can cause systemic illness in 

chimpanzees, while iNTS infections observed in AIDS patients can be simulated through 

co-infection of Salmonella in simian immunodeficiency virus infected rhesus macaques 

(Raffatellu et al., 2008). Unfortunately, the ethical and financial constraints associated 

with the general upkeep of primate and bovine species coupled with their poor genetic 

tractability make them unsuitable model organisms. A reasonable compromise is the use 

of widely available inbred lab mice strains such as C57BL/6 and BALB/C. 

S. enterica serovar Typhimurium causes a systemic illness in mice that is reminiscent 

of typhoid fever in humans. The acute phase of enteric fever can be simulated in 

“susceptible” mice strains carrying a loss of function SNP in the natural resistance-

associated protein 1 (Nramp1) gene. Loss of Nramp1, a transport protein involved in iron 

metabolism, predisposes C57BL/6 and BALB/C mice strains to infection with S. 

Typhimurium and other intracellular pathogens such as Leishmania donovani and 

Mycobacterium bovis (Blackwell et al., 2000). Virulent Typhimurium strains replicate 

unchecked in the macrophages of susceptible mice and result in rapid systemic spread 

and death within a week or two from infection. The chronic phase of S. Typhi can be 

simulated in resistant mice carrying functional copies of Nramp1. The mouse strains 

129Sv and C57Bl/6×129x1/sv can assume a carrier state where they survive the initial 

acute phase of disease and shed virulent Salmonella into the gut and feces from colonies 

in the spleen and liver (Govoni et al., 1996; Monack et al., 2004). Mice do not exhibit 
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inflammation of the gut associated with NTS disease. This has been attributed to 

colonization immunity afforded by a robust gut microflora. However, acute inflammation 

of the small intestine characterized by neutrophil invasion of the lumen and lamina 

propria can be achieved by pretreating mice with streptomycin (Barthel et al., 2003).  

Molecular pathogenesis 

Salmonella codes for a host of virulence factors spread across six pathogenicity 

islands that help manifest various aspects of its virulence traits. The most important of 

these are effector proteins secreted by independently regulated type III secretion systems 

(T3SS) coded for on Salmonella pathogenicity island 1 (SPI-1) and Salmonella 

pathogenicity island 2 (SPI-2). In vitro and in vivo studies in mouse models have indicated 

that functional SPI-1 T3SS is essential for the manifestation of symptoms reminiscent of 

the enterocolitis associated with NTS while SPI-2 is required for the establishment of 

extraintestinal disease similar to typhoid fever (Galan & Curtiss, 1989; Hensel et al., 1999).  

Type III secretion system 

The T3SS apparatus otherwise referred to as an injectisome is highly conserved in 

Gram-negative bacteria. These include human pathogens such as Pseudomonas 

aeruginosa, Shigella flexneri, Yersinia pestis, enteropathogenic Escherichia coli (EPEC) and 

those that infect plants such as Pseudomonas syringae and Xanotomonas species (Buttner 

2012). The T3SS injectisome complex is a secretion apparatus that forms part of an 

elaborate basal structure made up of several pairs of rings that span the inner and outer 

membranes of the bacterial cell wall. After assembly of the cytoplasmic components, 

protein subunits are then secreted that form a hollow needle like structure that protrudes 
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outwards. This is followed by the secretion of translocon proteins through the channel 

formed by the needle like filament. Translocon proteins form pores on the host 

membrane, facilitating the secretion of effector proteins. 

Effector proteins possess a highly variable 10 to 25 amino acid long N-terminal signal 

sequence for T3SS export that is rich in polar residues and sparse in charged and 

hydrophobic amino acids (Samudrala et al., 2009). The signal sequence is flanked by a 

domain that helps bind effector to a specific chaperone protein (Stebbins & Galan, 2001). 

The chaperones play an important role in not just directing the effector proteins to the 

T3SS injectisome but also prevent the degradation of the effector by bacterial cytosolic 

proteases and prevents the accidental translocation of effectors within the bacteria by 

binding to and masking signal sequences and transmembrane domains meant for 

subcellular localization inside the host cells (Tucker & Galan, 2000; Krampen et al., 2018). 

Effector molecules are injected into the host cell through the filament and translocon 

channel in an unfolded state through a single step ATP and proton-motive force driven 

mechanism. 

Salmonella pathogenicity island 1 (SPI-1) 

SPI-1 is 40kb in length and codes for a cluster of 39 genes (Hansen-Wester & Hensel, 

2001). These range from components for a complete T3SS injectisome complex, effector 

proteins secreted by T3SS, chaperones associated with T3SS effectors and proteins that 

regulate the expression of T3SS effectors located on SPI-1 and those on genetic loci 

independent of SPI-1 (Hansen-Wester & Hensel, 2001; Zhang K. et al., 2018). Several roles 

have been assigned to the SPI-1 T3SS effectors and the most important of these is its 
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ability to mediate the invasion of host epithelial cells and phagocytes of the innate 

immune system. A combination of 10 T3SS effectors are injected directly into the 

cytoplasm of the host cell, triggering actin cytoskeletal rearrangement that causes 

membrane ruffling that leads to engulfment and internalization off bacterial cells into 

epithelial and phagocytic cells. This process along with pathogen associated molecular 

patterns (PAMPS) such as components of the bacterial flagella and cell wall trigger an 

inflammatory response in an NF-κB dependent manner (Lawrence et al., 2009). The 

resulting localized inflammation helps Salmonella thrive and outcompete gut microflora 

in several ways.  

SPI-1 mediated recruitment of neutrophils to the site of infection results in damage to 

the gut microflora which would have otherwise competed for electron acceptors such as 

iron and substrates for fermentation and in the process provided colonization resistance 

(Sekiro et al., 2010; Chiu et al., 2017). Secondly inflammation damages the gut epithelium 

resulting in the generation of tetrathionate which can be selectively used by Salmonella 

as an electron acceptor and substrates such as mucin and phosphatidylinositol from the 

enterocytes that are broken off the microvilli (Winter et al., 2010; Thiennimitr et al., 

2011). An important strategy employed by the mammalian innate immune system is the 

use of proteins such as lipocalins to target bacterial iron scavenging molecules known as 

siderophores. Most Salmonella serovars code for the iron gene cluster (iroBCDE) which 

encodes a lipocalin-resistant siderophore, yet another advantage in the inflamed gut 

(Fishbach et al., 2006). Enterocolitis results in diarrhea, which further helps with the 
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clearance of microflora and their preferred substrate and helps propagate NTS to new 

hosts. 

Salmonella pathogenicity island 2 (SPI-2)   

The term Salmonella pathogenicity island 2 (SPI-2) was first coined by Shea and 

colleagues in 1995. It was used to describe a segment of DNA 40kb in length located 30 

centisomes on the chromosomal DNA. Mutations at this locus resulted in the generation 

of strains that require ID50 value 100 times greater than wild type Typhimurium to 

establish systemic infection in mice (Hensel et al., 1995, Shea et al., 1999). SPI-2 was found 

to have a net GC content of 44%, which is significantly lower than the 52.2% associated 

with the rest of the genome. SPI-2 also shares a sequence homology of around 50% with 

SP-1 (Shea et al., 1996). This supports the hypothesis that the entire pathogenicity island 

was acquired independently of SPI-1 through horizontal gene transfer (HGT) (Shea et al., 

1996). It is postulated that SPI-2 was acquired in two phases. The first event involved the 

acquisition of one large segment of DNA comprising the genes coding for the T3SS 

apparatus, translocon proteins and the effector proteins SseF and SseG (Hensel et al., 

1999). A second HGT event led to the acquisition of the rest of SPI-2, which includes genes 

that help Salmonella utilize tetrathionate (Hensel et al., 1999).  

While SPI-1 is required for the invasion of host cells and triggers enterocolitis in the 

process, it is negligible for the establishment of extra-intestinal disease in mice (Galan & 

Curtiss, 1989). SPI-2 plays a role in the gastrointestinal phase and is essential for 

intracellular survival, growth and dissemination to distal sites (Hensel et al., 1995; Carnell 

et al., 2007). Invasion of Salmonella into host macrophages results in the formation of a 
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membrane bound compartment containing the bacteria called the Salmonella containing 

vacuole (SCV). Initially the SCV acidifies to a pH around 4-5 (Rathmann et al., 1996). This 

sudden drop in pH combined with scarce nutrients and other signals within the 

phagolysosomal compartment triggers the shutdown of SPI-1 gene expression and the 

activation of SPI-2 genes through the actions of two component regulatory systems 

OmpR-EnvZ and the SPI-2 coded SsrA-B (Feng et al., 2004; Garmendia et al., 2003). The 

newly assembled SPI-2 T3SS apparatus secretes a host of SPI-2 effector molecules directly 

across the SCV membrane. These effectors remodel the surface of the SCV and through 

their manipulation of the cytoskeleton prevent the fusion of the SCV to lysosomes, traffic 

nutrients to the SCV and facilitate the intracellular replication of Salmonella (Bakowski et 

al., 2008, Haraga et al., 2008).  

Salmonella is known to secrete 48 effector proteins into the host cell. Of these 10 are 

exclusively secreted by SPI-1 T3SS, 23 by the SPI-2 coded T3SS and 10 by both systems 

(Kidwai et al., 2013). The remaining eight effectors are translocated into the host cell by 

outer membrane vesicles (Kidwai et al., 2013). Of the 33 effectors that are secreted by 

the SPI-2 T3SS, seven are consistently found in all S. enterica serovars and have thus been 

dubbed core effectors (Jennings et al., 2017). The distribution of the other effectors is 

limited by host range and the type of disease inflicted. For instance, a set of effectors 

termed accessory effectors that include SrfH and SpvC are coded for on mobile genetic 

elements or around remnants of mobile genetic elements that are distributed 

sporadically amongst various serovars.  
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The spv locus 

The spv (Salmonella plasmid virulence) locus codes for the spvABCD operon and one 

upstream transcriptional regulator SpvR. The spv locus, though absent in most typhoidal 

strains is found in S. enterica subspecies I, II, IIIa, IV, and VII (Boyd & Hartl, 1998). In recent 

years a strong correlation has been established between the spv locus and iNTS serovars 

causing extraintestinal disease in immunocompromised individuals (Montenegro et al., 

1991; Fierer et al., 1992; Guiney et al., 1995).  

Despite its link to iNTS mediated disease, the molecular mechanisms or the functions 

of all four structural genes is yet to be fully elucidated. SpvR is a transcriptional activator 

that binds to inverted repeats upstream to spv structural genes (Krause et al., 1995; Grob 

et al., 1997). SpvC and SpvD are secreted by the T3SS coded in both pathogenicity islands, 

while SpvB is exclusively secreted by the SPI-2 T3SS (Kidwai et al., 2013). SpvA is predicted 

to be an outer membrane protein. Unfortunately, its contribution towards bacterial 

virulence has not been reproduced consistently and is the least understood of the spv 

proteins. SpvD, a cysteine hydrolase contributes towards the establishment of persistent 

infection in the Nramp1 positive 129/SvJ mice strain (Monack et al., 2004). Unfortunately, 

SpvD is not required for virulence in BALB/c mice strain that are acutely sensitive to 

Salmonella owing to the lack of Nramp1 (Matsui et al., 2001). However, SpvD was shown 

to contribute to an anti-inflammatory effect by downregulating the effects of p65-

mediated transcription of inflammatory cytokines in Tlr-4 negative macrophages (Rolhion 

et al., 2016). 
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P65 belongs to NF-ĸB family of dimeric transcription factors that are involved in the 

upregulation of genes that have an influence on a broad range of processes including 

immune response, stress response, cell survival and development (Stewart., 2007). 

Usually found in an inactivated state bound to IĸBα proteins that masks its nuclear 

localization sequence. Inflammatory cytokines or extracellular triggers of PAMPs such as 

bacterial LPS trigger a signaling cascade that results in the degradation of the IĸBα protein 

attached to p65 (Stewart., 2007). These proteins then form a complex with adaptor 

proteins importin-α and importin-β, which facilitate transport of the transcription factor 

to the nucleus via the nuclear pore complex (Stewart., 2007). Once within the nucleus, 

p65 is released from the import complex with the interaction of importin β and importin 

α with RanGTP and a complex comprising RanGTP and β-karyopherin exportin-2 (Xpo2). 

The importin proteins are recycled back to the cytoplasm to facilitate another round of 

p65 import (Stewart., 2007). SpvD sequesters Xpo2, preventing the export of importin α 

back to the cytoplasm. This in turns reduces the amount of p65 imported into the nucleus, 

contributing towards the decrease of inflammatory cytokines (Rolhion et al., 2016).  

Of the four structural proteins, SpvB and SpvC are the two spv effectors that have been 

consistently shown to be required for the bacterial virulence phenotype associated with 

the spv locus (Roudier et al., 1992). SpvB codes for a N-terminal domain (NTD) that is 

separated from the C-terminal domain (CTD) by a space of 7 proline residues. The NTD 

shares some sequence homology with Photorhabdus Luminescens Tc toxin, however its 

function is yet to be determined (Otto et al., 2000). The CTD has ADP ribosylase activity. 

At the molecular level SpvB covalently modifies G-actin monomers and abrogates the 
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formation of F-actin filaments in a CTD-dependent manner (Otto et al., 2000). The 

conversion of actin from monomer to filament and back again is a constantly occurring 

process. The loss of F-actin filament formation results in the loss of F-actin cytoskeleton 

(Libby et al., 2000, Lesnick et al., 2001; Browne et al., 2002). F-actin cytoskeleton acts as 

a support structure during the assembly of the integral membrane protein NADPH oxidase 

(Tamura et al., 2006). NADPH oxidase gene expression is upregulated by inflammatory 

cytokines and in phagocytic cells such as macrophages. This protein localizes to the 

phagolysosome where it catalyzes the conversion of oxygen to superoxide, which is a 

reactive oxygen species that contributes to oxidative killing (Vazquez-Torres et al., 2001). 

Loss of F-actin results in decreased recruitment of NADPH oxidase to the SCV and a loss 

in actin cytoskeleton. These factors combined with an increase in SpvB-mediated 

activation of Caspase-3 is believed to  contribute towards the detachment and late stage 

apoptosis of macrophages (Libby et al., 2000; Lesnick et al., 2001; Browne et al., 2008; 

Guiney & Fierer, 2011). 

SpvC codes for a phosphothreonine lyase that shares 63% amino acid sequence 

identity with Shigella-encoded T3SSE OspF (Li et al., 2007). It can be secreted by both the 

SPI-1 and SPI-2 T3SSs during the intestinal phase of infection; however, once engulfed by 

a phagocytic cell, it is secreted exclusively through the SPI-2 T3SS (Mazurkiewicz et al., 

2008; Haneda et al., 2012). SpvC inactivates MAP kinases such as p38, ERK 1/2 and JNK 

through dephosphorylation of threonine residue from a TYX motif (Li et al., 2007; 

Mazurkiewicz et al., 2008). However, in rat caecum, the effects of the SpvC catalyzed 

phosphothreonine lyase activity could only be detected in ERK 1 and 2 (Haneda et al., 
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2012). Loss of SpvC was also shown to result in increased production of proinflammatory 

cytokines such as TNFα, IL8, Kc, MCP1 and MIP2 which in turn resulted in a net reduction 

in the weight of the cecum resulting from submucosal edema, epithelial erosion, loss of 

goblet cells and an increased levels of invasion by neutrophil (Haneda et al., 2012). 

Activated MAP kinases trigger signaling cascades that result in the upregulation of several 

anti-apoptotic factors and proinflammatory cytokines and chemokines. By inactivating a 

subset of MAP kinases, SpvC contributes to an anti-inflammatory effect that mollifies the 

effects of inflammatory SPI-1 T3SS effectors such as SptP, AvrA and SspH1 that have 

evolved to establish an inflamed environment in the gut, which in turn helps Salmonella 

outcompete gut microbiota that offer colonization resistance (Fu & Galán, 1999; Murli et 

al., 2001). Haneda and colleagues believe this reduction in inflammation at the site of 

infection helps spv positive Salmonella to evade the initial immune response and help 

establish a systemic infection (Haneda et al., 2012). 

How does Salmonella rapidly disseminate to distant tissue? 

In mouse models, Salmonella acquired orally can enter the bloodstream in less than 

30 minutes and establish colonies in the spleen and liver in less than 60 minutes (Vazquez-

Torres et al., 1999, Spadoni et al., 2015). Three possible routes of entry have been 

postulated to explain this phenomenon. The commonly accepted mode of entry is 

through its invasion of specialized epithelial cells known as Microfold cells (M cells) that 

line the Peyer’s patches of the distal ileum (Neutra et al., 1996). Most epithelial cells in 

the cecum are unfavorable towards the fimbriae-mediated attachment and subsequent 

invasion of Salmonella owing to a microvilli rich brush border covered in mucus and 
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individual cells separated through tight junctions. M cells are specialized cells that 

transport antigens through the process of transcytosis to be sampled by underlying 

phagocytic cells such as dendritic cells. As a result, they have a relatively flatter luminal 

surface with sparse microvilli, distinct glycocalyx and are surrounded by fewer mucus 

producing goblet cells. Once attached invasion of Salmonella occurs in a SPI-1 dependent 

manner. The bacterial cells are then picked up by phagocytic cells in the upper dome of 

the Peyer’s patches and are eventually transported to secondary lymphoid organs such 

as mesenteric lymph nodes (MLN) for the presentation of antigen to T cells. In a SPI-2 

dependent manner Salmonella can survive and replicate inside these phagocytic cells and 

eventually enter the bloodstream from MLNs through thoracic ducts. This is a process 

that relies largely on the passive dissemination of dendritic cells and is estimated to take 

12-24 hours. Several observations prevent this model from being the most likely route of 

systemic Salmonella dissemination. Firstly, the removal of MLNs significantly increases 

bacterial burden and decreases the amount of time it takes for Salmonella to migrate to 

the spleen and liver (Voedish et al., 2009). This indicates that MLNs play an important role 

in containing the spread of Salmonella. While the presence of migratory dendritic cells is 

a factor that limits migration, the modulation of dendritic cell number and migratory 

kinetics within the lymphatic system does not prevent the establishment of Salmonella 

colonies in the liver and spleen (Vasques-Torres et al., 1999; Voedish et al., 2009). The 

loss of Salmonella’s ability to invade M cells through SPI-1 T3SS secreted invasion genes 

or the complete lack of Peyer’s patches does not diminish the ability of Salmonella to 

colonize the spleen and liver (Barnes et al., 2006; Coburn et al., 2005). 
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A second route of entry depends on the capacity of Salmonella to perturb β-catenin-

dependent signaling in gut endothelial cells, disrupting a gut vascular barrier to gain 

access to the bloodstream through the portal vein (Spadoni et al., 2015). The authors 

suggest that blood vessels associated with the gut mucosa function similar to the blood-

brain barrier and demonstrate its capacity to prevent the translocation of bacteria and 

solutes larger than 70kda. SPI-2 T3SS activity was correlated with the deactivation of the 

endothelial cell associated adherens junction protein β-catenin and the up-regulation of 

plasmalemma vesicle–associated protein-1 (PV-1). PV-1 is associated with increased 

permeability of the blood-brain barrier and this led the authors to conclude that 

Salmonella facilitates systemic spread by penetrating this gut vascular barrier through a 

yet undiscovered T3SS effector. The third pathway involves Salmonella ferried to the 

bloodstream in CD18+ phagocytic cells. 

The rapid dissemination phenotype of Salmonella was shown to be dependent on the 

activity of both SPI-2 and the host CD18 protein (Vazquez-Torres et al., 1999; Worley et 

al., 2006). CD18 is a cell surface marker found on phagocytic cells such as macrophages, 

dendritic cells and neutrophils and the bulk of Salmonella isolated from systemic tissue 

have been found within macrophages (Mastreoni et al., 2009). This pathway to the 

bloodstream is not conventionally thought to enhance microbial virulence (Vazquez-

Torres & Fang 2000; Vazquez-Torres et al., 1999). Rather it was proposed that this is a 

host-controlled process that takes Salmonella cells to the spleen, which filters the 

bloodstream, to engender a systemic immune response against the bacteria to combat 

subsequent, delayed invasion of deeper tissue through the lymphatic system (Vazquez-
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Torres & Fang 2000, Vazquez-Torres et al., 1999). We have uncovered evidence however, 

which suggests that Salmonella can actively exploit reverse transmigration to bypass the 

lymphatic system, expediting its colonization of internal organs (Worley et al., 2006; 

Thornbrough & Worley, 2012). The reliance of Salmonella on its intracellular phase for 

systemic dissemination is further highlighted by the fact that mice are more susceptible 

to Salmonella infection when they are depleted of T cell producing inflammatory 

cytokines such as IFNγ than with B cells incapable of producing antibodies (Nanton et al., 

2012). This has also been observed in humans were iNTS infections are prevalent in AIDS 

patients who are naturally depleted of CD4+ T cells. IFNγ triggers the IFNγR receptor on 

phagocytic cells and leads to the activation of JAK/STAT signaling that results in the 

regulation of antimicrobial molecules toxic to intracellular bacteria such as iNOS 

(Blanchette et al., 2003). We propose that Salmonella is trafficked to systemic tissue 

through phagocytic cells that bypass the lymphatic system and enter the blood stream 

immediately after uptake of Salmonella from the lumen of the small intestine. Owing to 

their distribution and migratory properties, dendritic cells are an excellent candidate to 

facilitate this process. 

Dendritic cells play an important role in the mediation of innate, adaptive immunity 

and tolerogenic responses to self and oral antigens. The ability to freely migrate between 

their site of origin to disparate peripheral tissue such as the skin, lungs and intestines and 

several secondary lymphoid organs through the use of the circulatory and lymphatic 

system plays an important role in their ability to mediate immune responses. The classical 

dendritic cell was discovered in 1973 and is described to possess stellate morphology, 
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express copious amounts of MHC-II molecule on its surface and functions as an antigen 

presenting cell to T and B cells. However, there is a huge overlap in function, morphology 

and surface markers between classical dendritic cells and various other cells of the 

mononuclear phagocyte system (MPS) such as macrophages and monocytes. The 

plasticity of MPS cells, specifically monocytic lineages that can differentiate to dendritic 

cells is, largely affected by tissue type and inflammatory stimuli. For decades this has 

muddied what constitutes a dendritic cell and the trend in immunology seems to migrate 

towards classifying the various classical dendritic cell and dendritic cell like lineages based 

on ontogeny (Guilliams et al.,2014).  

Dendritic cells are distributed throughout the gut mucosa and are not just restricted 

to Peyer’s patches. Of interest are a subset of immature CD11c+ dendritic cells that 

migrate to the lamina propria. These cells can insert themselves between intestinal 

epithelial cells and have been shown to express a complement of tight junction proteins 

that help project dendrites into the lumen of the intestine and sample for antigens 

without disrupting the epithelia (Rescigno et al., 2001). Given the migratory nature of 

dendritic cells and the surface area covered by the gut epithelia, there is huge potential 

for dendritic cells to be infected by Salmonella either accidentally or in a process mediated 

by bacterial effectors. We hypothesize that the cellular machinery of infected dendritic 

cells gets reprogrammed by SPI-2 effectors to dissociate from the epithelia and reverse 

transmigrate directly into the bloodstream. This is partly supported by the fact that 

monocytes that differentiate to dendritic cells positive for CD11c and HLA-DR are capable 

of reverse transmigrating in vitro across primary blood vessel endothelial cell monolayers 
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but those that differentiate to macrophages are not (Randolph & furie 1996; Randolph et 

al.,1998). 

 

 

 

Figure 1.1 Reverse transmigration. Reverse transmigration is the movement of dendritic 
cells from the basal to the apical face of a vascular endothelial cell monolayer. 
 

Reverse transmigration 

Reverse transmigration, intravasation and reverse transendothelial migration are 

interchangeable terms used to describe the movement of leukocytes or metastatic cells 

across blood or lymphatic endothelia from the side facing the connective tissue known as 

the basal face into the lumen containing the apical face of endothelial cells. It is a process 

regularly associated with growth, development, inflammation and metastasis. In 

succeeding chapters of this work, we use the term reverse transmigration to describe the 

process of dendritic cells reentering the bloodstream by traversing endothelium in the 

basal to apical direction (Figure 1.1).  
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Reverse transmigration of dendritic cells 

While an exact mechanism is yet to be determined, reverse transmigration of 

dendritic cells seems to involve three phases. The early stages of reverse transmigration 

are induced by cytokines such as tumor necrosis factor α (TNFα) that trigger the 

upregulation of chemokines, chemokine receptors and adhesion molecules on the surface 

of both endothelial cells and dendritic cells. Chemokines promote the migration of 

dendritic cells towards a vessel layered with endothelial cells. This is followed by binding 

of the dendritic cell to the basal face of the endothelium and the last phase involves 

invasion of the dendritic cell into the lumen of the endothelium in a paracellular manner. 

Throughout this process the integrity and structure of the endothelial vessel is maintained 

through the preservation of cellular junctions. 

Several chemokines and their corresponding receptors expressed on the surface of 

dendritic cells and endothelial cells play an important role in the early stages of reverse 

transmigration. For leucocytes to reverse transmigrate, they need to initially migrate 

towards the blood or lymphatic vessel from deeper tissue. This important first step 

towards reverse transmigration is regulated by a well-studied chemokine-receptor 

pairing. Dendritic cells, T and B lymphocytes express several combinations of sphingosine-

1 phosphate receptors (S1PR) on their cell surface that interact with the chemokine 

Sphingosine-1 phosphate (S1P). Owing to constant degradation, S1P concentration is 

lower in tissue compared to that of the blood stream. This results in a chemokine gradient 

towards the endothelial vessel, that contributes towards an S1P dependent migration and 

subsequent reverse transmigration of dendritic cells resident to the lamina propria of the 
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gut mucosa to the mesenteric lymph nodes (Rathinasamy et al., 2010). S1P aids in the 

motility of dendritic cells by activating the Rac/Cdc42 pathway that promotes the 

generation of filopodia and lamellipodia (Rathinasamy et al., 2010).   

 

Activation of immature dendritic cells usually contributes towards the upregulation of 

the chemokine receptor CCR7 on its surface. CCR7 and its ligands play an important role 

in directing the migration of classical dendritic cell, monocyte derived dendritic cell and 

plasmacytoid dendritic cell lineages from the skin, lungs and intestines into afferent 

lymphatic vessels (Worbs et al., 2017). However, CCR7 also plays a role in the reverse 

transmigration of dendritic cells into the bloodstream (Roufeil et al., 2016). Myeloid cells 

with dendritic cell-like features local to the arterial intima were shown to reverse 

transmigrate into circulating blood in a CCL19-CCR7 dependent manner. CCL19 was 

secreted by intimal myeloid cells in response to systemic Chlamydia infection in mice, this 

chemokine activated CCR7 on the surface of other myeloid cells in the intima in an 

autocrine manner and resulted in their transmigration into the blood. This eventually 

contributed towards the clearing of the bacterial infection in the intima and highlights the 

importance of reverse transmigration with regards to the rapid mobilization of leukocytes 

associated with the innate immune system (Roufeil et al., 2016).  

Several cell surface proteins have been shown to facilitate either the adhesion of 

dendritic cells to the endothelia or the process of invasion into the lumen of the 

endothelia or in some cases both. Tissue factor and CD99 are examples of proteins that 

only facilitate adhesion. CD99 is a ubiquitous membrane spanning type 1 glycoprotein 
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expressed on the surface of monocyte derived dendritic cells and either the cell junction 

or the luminal surface of endothelial cells (Mamadouh et al., 2009; Torzicky et al., 2012). 

A protein previously implicated in the process of diapedesis, Torzicky and colleagues 

speculate that CD99 might facilitate the adhesion of dendritic cells to endothelial cells 

through homotypic interactions. Tissue factor (TF) is an important component of the 

blood coagulation cascade and is expressed on the surface of mononuclear phagocytes 

such as dendritic cells. TF mediates the adhesion of mononuclear cells through an 

unidentified receptor on the basal surface of the endothelia and facilitates exit from the 

inflamed tissue through reverse transmigration (Randolph et al., 1998).  

Several cellular adhesion molecules including vascular cell adhesion protein-1 (VCAM-

1), L1 cell adhesion molecule (LICAM) and Intercellular adhesion molecule-1 (ICAM-1) play 

an important role in both adhesion and the reverse transmigration of dendritic cells 

across vascular endothelia. ICAM1 is one of six ligands to the integrin protein lymphocyte 

function-associated antigen-1 (LFA-1). Usually found on both apical and basal faces of 

endothelial cells, the interaction between ICAM-1 and LFA-1 contributes to the migration 

of lymphocytes and mononuclear cells from tissue to blood (Randolf & furie, 1996). ICAM-

1 and VCAM-1 were shown to be upregulated on the surface of lymphatic endothelial 

cells in response to stimulation with inflammatory cytokines TNFα, TNFβ and IL1 and  

blocking of these CAMs resulted in a significant decrease in the cytokine mediated reverse 

transmigration of dendritic cells across endothelial cells (Johnson et al., 2006). LICAM is 

expressed on the surface of certain subsets of dendritic cells and on endothelial cells in 

response to inflammatory stimuli. LICAM is capable of engaging with other CAMs, growth 



23 
 

factor receptors and activating signaling cascades through their C-terminal tail. 

Homotypic interaction between LICAM molecules is postulated to facilitate the adhesion 

and invasion of dendritic cells across lymphatic and blood vessel endothelial cells 

(Maddaluno et al., 2009). 

Other proteins associated with the regulation of reverse transmigration include MDR-

1 and semphorin 3A. Antibody blocking of P-glycoprotein otherwise known as MDR-1, an 

ATP binding cassette transport protein associated with multiple drug resistance in cell 

culture and cancerous cells, prevented the migration of dendritic cells  across HUVECs and 

dendritic cells  and T lymphocytes from skin explants into lymphatic vessels (Randolph et 

al., 1998). A defect in the reverse transmigration of dendritic cells into draining lymph 

nodes was observed in double knockout mutations for the axonal guidance molecule 

semaphorin 3A and its receptor plexin A1. This led the authors to conclude that 

Semaphorin 3A might induce the reverse transmigration of dendritic cells through the 

induction of myosin II contractions at its trailing edge (Takamatsu et al., 2010). 

Reverse transmigration in disease 

Reverse transmigration of neutrophils 

The process of inflammation can be equally damaging to both host tissue and 

pathogen. Inflammatory responses are usually resolved by reducing the activated state 

of lymphocytes such as T and B cells or through apoptosis and clearance by macrophages 

in the case of granulocytes. An exception to the latter seems to be neutrophils high in 

ICAM-1 and low in CXCR1. These cells are capable of dispersing from the site of 

inflammation through reverse transmigration into the bloodstream. It was shown in vitro 



24 
 

with HUVEC monolayers that ICAM-1 highCXCR1 low neutrophils could migrate in both 

directions. In the same study it was verified that neutrophils with this phenotype were 

found in relatively large numbers in the blood of patients suffering from chronic 

inflammatory conditions such as rheumatoid arthritis and atherosclerosis (Buckley et al., 

2005).  

Reverse transmigration of metastatic cancer 

Reverse transmigration plays an important role in the dissemination of metastatic 

tumors to distal sites. Given the sheer diversity of metastatic cell types, several disparate 

mechanisms of reverse transmigration have been delineated. Some of the most 

noteworthy include the reliance on chemoattractants, creation of leaky blood vessels and 

the secretion of proteases that cleave endothelial cell junctions (Weis & Cheresh, 2011; 

Escribese et al., 2007; Kveiborg et al.,2008). Epidermal growth factor (EGF) secreted by 

endothelial cell associated macrophages serve as a chemoattractant that recruits 

cancerous cells. EGF also stimulates the formation of invadopodia through its activation 

of phosphatidylinositol 3-kinase (PI3K)-Akt cascade and its downstream effector proteins 

such as neural Wiskott–Aldrich syndrome protein (NWASP) and Ras homolog family 

member A (RhoA) that have been known to affect the migration of leukocytes (Roh-

Johnson et al.,2014;  Gligorijevic., et al., 2012). 

Research goals 

We hypothesize that one or several SPI-2 effectors could potentially reprogram gut 

epithelia associated dendritic cells to disassociate from the epithelium and migrate 

towards gut vasculature. In a potentially SPI-2 mediated process the dendritic cell with 
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intracellular Salmonella binds to the basal face of the blood vessel and reverse 

transmigrates into to the bloodstream and rapidly disseminates to systemic tissue such 

as the spleen and liver that are rich in nutrition and devoid of endogenous microflora. 

This allows Salmonella to set up persistent colonies that constantly shed bacteria into the 

gastrointestinal tract and feces through the lymphatic system before the infection is 

potentially cleared through the development of a pathogen specific adaptive immune 

response. 

The goal of this project was to develop in vitro assays that would help delineate SPI-2 

T3SS effectors and host factors involved in the SPI-2 dependent dissemination of 

Salmonella from the gut to systemic tissue in mice. Two assays were developed. 

Chronologically the first to be developed was the in vitro reverse transmigration assay to 

emulate the process of dendritic cells reverse transmigrating across an endothelial cell 

monolayer into the bloodstream. The second assay dubbed the in vitro dissociation assay 

was developed to model the process of dissociation of infected intraepithelial dendritic 

cells from the basal face of the gut epithelia. 
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CHAPTER 2 

THE SALMONELLA TYPE III EFFECTOR SpvC TRIGGERS THE REVERSE TRANSMIGRATION OF 

INFECTED CELLS INTO THE BLOODSTREAM1 

Introduction 

A key component in the virulence of many successful pathogens is the ability to 

spread from the initial site of infection to deeper tissue. Following oral ingestion, 

Salmonella can disseminate from the gastro-intestinal (GI) tract to the blood and 

subsequently internal organs through three independent pathways. In what is believed 

to be the primary pathway, Salmonella as well as numerous other enteropathogens 

adhere to and invade the M cells of Peyer’s patches and are subsequently internalized by 

the underlying phagocytes. The infected phagocytes can then migrate to the mesenteric 

lymph nodes, where they can orchestrate immune responses against the microbes. As 

Salmonella, like many pathogens, can withstand the microbicidal activities of these cells, 

the bacteria are conventionally thought to passively spread throughout the host after the 

infected cells drain from the mesenteric lymph nodes through the thoracic duct into the 

bloodstream. As ingrained as this model is, there is recent evidence, which indicates that 

the mesenteric lymph nodes act as a firewall, largely containing oral infections, allowing 

 
1 As appears in: Gopinath et al., 2019 
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for the generation of a local immune response, while shielding the host from 

systemic,   microbial dissemination (Voedisch et al., 2009; Barnes et al., 2006). In fact, 

even though the availability of migratory dendritic cells is the rate-limiting step in 

mesenteric lymph node colonization, modulation of dendritic cell numbers or migratory 

properties within the lymphatic system does not affect colonization of the spleen and 

liver (Voedisch et al., 2009). Moreover, Salmonella and Yersinia colonize these tissues in 

mice that completely lack Peyer’s patches with nearly identical kinetics as they do in 

congenic control mice (Barnes et al., 2006; Coburn et al., 2005). Thus, it is curious that 

passive, ordered dissemination through the lymphatic system to the bloodstream 

remains the prevailing model to explain the spread of enteropathogens to deeper tissue. 

In another recently described pathway, Salmonella perturbs β-catenin-dependent 

signaling in gut endothelial cells, disrupting a gut vascular barrier to gain access to the 

bloodstream (Spadoni et al., 2015). 

In an alternative pathway, CD18 expressing phagocytes, presumably dendritic cells, 

can ferry Salmonella directly into the bloodstream, also bypassing the lymphatic system 

(Vazquez-Torres et al., 1999; Worley et al., 2006). These cells send processes across the 

epithelium to engage in intestinal antigen sampling (Rescigno et al., 2001). Normally, after 

microbe internalization, they presumably mature, become responsive to CCL19 and 

CCL21 via up-regulation of CCR7 and follow the chemotactic gradients into the lymphatic 

system. When Salmonella enters them however, the infected cells sometimes rapidly 

penetrate the bloodstream, through an as of yet, largely uncharacterized mechanism. 

Traversing the blood vascular endothelium in the basal to apical direction is referred to 
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as reverse transmigration. This pathway to the bloodstream is not conventionally thought 

to enhance microbial virulence (Vazquez-Torres & Fang 2000; Vazquez-Torres et al., 

1999). Rather it was proposed that this is a host-controlled process that takes Salmonella 

cells to the spleen, which filters the bloodstream, to engender a systemic immune 

response against the bacteria to combat subsequent, delayed invasion of deeper tissue 

through the lymphatic system (Vazquez-Torres & Fang 2000; Vazquez-Torres et al., 1999). 

We have uncovered evidence however, which suggests that Salmonella can actively 

exploit reverse transmigration to bypass the lymphatic system, expediting its colonization 

of internal organs (Worley et al., 2006; Thornbrough & Worley, 2012).  

Reverse transmigration is likely relevant to numerous infectious processes including 

the spread of pathogenic microbes from the GI tract, lung tissue and the oral mucosa to 

the systemic circulation. Here we report on our studies of how Salmonella manipulates 

reverse transmigration. Salmonella infection leads to millions of deaths world-wide every 

year (Pang et al., 1995). 

Salmonella enterica serovar Typhimurium (S. Typhimurium) causes gastrointestinal 

illness in humans, which often is not serious, but can be fatal in infants, the elderly and 

the immunocompromised. Also, S. Typhimurium can sometimes cause bacteremia and 

even septicemia in otherwise healthy individuals, which is a growing public health threat, 

especially in immunodeficient people, such as those infected with HIV. Salmonella 

enterica serovar Typhi (S. Typhi) on the other hand can cause typhoid fever, a serious 

systemic illness. S. Typhimurium causes a typhoid fever like disease in mice as S. Typhi 

does in humans. In addition to public health concerns, Salmonella is also studied because 
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it is a convenient model pathogen. Salmonella harbors two primary pathogenicity islands, 

termed Salmonella pathogenicity island one (SPI-1) and Salmonella pathogenicity island 

two (SPI-2). SPI-1 is used to invade host cells and invoke an inflammatory response and 

can kill host cells (Groisman et al., 1993; Galyov et al., 1997; Hobbie et al., 1997; Van der 

Velden et al., 2003). SPI-2 on the other hand promotes intracellular growth (Cirillo et al., 

1998; Hensel et al., 1998; Ochman et al., 1996) and we have previously demonstrated 

that it is required for the rapid appearance of infected cells in the bloodstream following 

oral inoculation of mice (Worley et al., 2006). We showed that one allele of the SPI-2 

associated type III effector SrfH/SseI accelerates the appearance of Salmonella-infected 

cells in the bloodstream potentially through an interaction with the host protein TRIP6 

(Thornbrough & Worley, 2012). 

Some Salmonella serovars carry plasmids, which share a highly conserved locus called 

the spv (Salmonella plasmid virulence) operon (Boyd et al., 1998). It has been suggested 

that spv genes are important for human pathogenesis as spv-carrying strains dominate 

among clinical isolates from patients with non-typhoidal bacteremia (Montenegro et al., 

1991; Fierer et al., 1992). SpvC is a phosphothreonine lyase that dephosphorylates Erk1/2, 

p38 and JNK (Mazurkiewicz et al., 2008; Li et al., 2007). An spvC mutant is not defective 

in replication within macrophages but is attenuated in mice (Mazurkiewicz et al., 2008). 

Here, we describe the development of an in vitro reverse transmigration assay to model 

the rapid colonization of the bloodstream by Salmonella-infected cells following oral 

ingestion. We demonstrate that microbial components down regulate reverse 

transmigration and that Salmonella overcomes this by secreting SpvC and at least one 
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additional unknown SPI-2 associated type III effector into infected dendritic cells that 

stimulate reverse transmigration. These results suggest that the reverse transmigration 

pathway to the bloodstream could be an important component of Salmonella 

pathogenesis.  

Results 

Development of an in vitro reverse transmigration assay 

We used blind wells to establish an in vitro reverse transmigration assay adapted 

from Bianchi et. al. (Bianchi et al., 2001) that models how dendritic cells can reenter the 

bloodstream in the basal to apical direction (Figure 2.1). Blind wells consist of two 

compartments that you can sandwich membranes in between. In our assay, C166 murine 

endothelial-like cells were grown into monolayers on PVP-free polycarbonate 

membranes with 5μm pores. The formation of confluent monolayers was confirmed with 

diff-kwik staining. One membrane was placed upside-down over the top of the bottom 

compartment of the blind well, which was filled with media. Another membrane with a 

monolayer of cells was stripped, revealing a natural extracellular matrix and was placed 

right side up on top of the first membrane. The device was then screwed together. Murine 

bone marrow-derived cells were differentiated into dendritic cells with GMCSF, IL-4 and 

TGF-ß. The cytokine treatment routinely produced a heterogenous population of cells of 

which 30%-40% were CD11c+, presumably a mixture of macrophages and dendritic cells. 

Dendritic cells are the only cell type capable of reverse transmigration (D’Amico et al., 

1998; Randolph et al.,1998). After seven days of cytokine treatment, we added the cells 
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to the top compartment and after one hour of incubation, the device was disassembled 

and the liquid withdrawn from the bottom compartment and dendritic cells were counted 

with a hemocytometer. One hundred thousand cells were added to the top compartment 

and in 1 hour, about 20% had reverse transmigrated through the endothelial monolayer 

(Figure 2.2). 

 

Figure 2.1. An in vitro reverse transmigration assay. In our in vitro reverse transmigration 
assay, two PVP-free polycarbonate membranes with 5μm pores are sandwiched in 
between the upper and lower compartments of a blind well. Media is placed in the 
bottom compartment and then the bottom membrane is placed over the liquid which 
contains an upside-down confluent monolayer of endothelial cells. The upper membrane 
is then placed on top of the bottom membrane right side up. It is coated with extracellular 
matrix. The device is then screwed together and dendritic cells are added to the upper 
compartment. The devices are incubated at 37˚C for 1 hour. Then the liquid is carefully 
aspirated from the top compartment, the device disassembled, and the membranes 
discarded. The media from the bottom compartment is withdrawn and reverse 
transmigration measured by either counting uninfected dendritic cells with a 
hemocytometer or lysing infected dendritic cells and recovering CFU on agar plates. 

 

The presence of bacteria deters reverse transmigration 

The rapid appearance of Salmonella in the bloodstream following oral ingestion was 

initially proposed to be passive on the part of the bacteria (Vazquez-Torres et al., 1999). 
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However, it seems as though the host would have a vested interest in denying bacteria 

access to the bloodstream and deeper tissue. Accordingly, we tested whether heat-killed 

Salmonella might deter the reverse transmigration of dendritic cells. We incubated cells 

with or without heat killed Salmonella for thirty minutes and then applied them to the 

endothelial monolayers in the blind wells. After one hour of incubation, we disassembled 

the blind wells and enumerated the number of dendritic cells that migrated through the 

endothelial monolayer into the bottom compartment with a hemocytometer. Treating 

the dendritic cells with dead Salmonella inhibited reverse transmigration five-fold (Figure 

2.2). 

SPI-2 stimulates reverse transmigration  

We next tested whether or not live Salmonella could up-regulate reverse 

transmigration. In these experiments we infected dendritic cells with either wild type 

bacteria, a SPI-2 structural mutant that could not secrete any SPI-2 effectors, or one with 

a transposon disruption in srfH. We deleted sipB from all three strains as it was previously 

reported to kill dendritic cells (Van der Welden et al., 2003). In agreement with this report, 

in initial experiments using a wild type background, we observed that Salmonella killed 

some of the dendritic cells (unpublished observation). We chose to perform the 

experiments with strains lacking sipB simply to reduce the number of dendritic cells 

required for our assays. In subsequent mouse experiments, we did not find it necessary 

to use the sipB mutant background. The inclusion of gentamicin in our in vitro assay  
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Figure 2.2. Bacterial components inhibit reverse transmigration. Dendritic cells were 
treated with either LB or LB containing heat-killed S. Typhimurium and the reverse 
transmigration assay performed. Heat-killed bacteria decreased reverse transmigration 
five-fold. This experiment was performed in triplicate on three different occasions. Error 
bars represent the standard deviation. ** p-value <0.01. 

 

selectively killed the extracellular bacteria. We infected dendritic cells separately with the 

three strains and incubated them for six hours prior to performing the reverse 

transmigration component of the assay. While in vivo, SPI-2 associated genes can be 

expressed in as little as 15 minutes post-infection prior to penetrating the intestine, in 

vitro, in cell culture models of infection, it takes four hours for them to be induced and 

expression peaks at six hours post infection (Brown et al., 2005). Unlike the experiments 

with uninfected dendritic cells, we could not count the number of dendritic cells that 

reverse transmigrated with a hemocytometer because the majority of the cells were not 

infected and the uninfected ones would also reverse transmigrate and dilute the 

phenotypes. Accordingly, in order to specifically look at infected dendritic cells, we lysed 
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the dendritic cells with dilute detergent and recovered CFU on agar plates. We tried to 

detect reverse transmigrating cells infected with strains of bacteria expressing the green 

fluorescent protein but found it was not feasible to scale up to the point where we had 

enough reverse transmigrating cells to enter the linear range of a flow cytometer. CFU is 

actually more informative anyway since it readily distinguishes between live and dead 

bacteria. Prior to adding the infected dendritic cells to the blind wells, we lysed a small 

aliquot and plated for CFU to determine the input. After the reverse transmigration assay, 

we lysed the host cells present in the bottom compartment and similarly recovered CFU 

on agar plates. In control experiments we did survival assays on the three strains within 

dendritic cells for the entire length of the assay (including the one hour they were in the 

blind wells) and observed no differences (Figure 2.S1), indicating that differences in CFU 

recovered with the three strains was not due to differences in persistence. 

    We were unable to detect a defect in our reverse transmigration assay for the srfH 

mutant, which we previously reported has about a five-fold defect in penetrating the 

bloodstream of mice following oral infection (Worley et al., 2006) (Figure 2.3). In fact, the 

srfH mutant was more efficient than wild type at triggering reverse transmigration, 

although the difference was not statistically significant. We observed a very large 10.5-

fold defect however in our reverse transmigration assay for the mutant that could not 

secrete any SPI-2 effectors (Figure 2.3). This result indicated that Salmonella actively 

manipulates reverse transmigration by secreting at least one type III effector into infected 

dendritic cells that stimulates the process. We cannot rigorously exclude the possibility 

that the monolayers lost confluence during the course of the assay as there is no way to  
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Figure 2.3. SPI-2 stimulates reverse transmigration. Dendritic cells were infected with 
either SPI-2 + or SPI-2 – bacteria or a srfH mutant. Surprisingly, the srfH mutant had no 
defect in triggering reverse transmigration and in fact was a little more efficient at it than 
wild type but the difference was not statistically significant. The strain defective in all SPI-
2 secretion on the other hand triggered reverse transmigration over an order of 
magnitude less efficiently than wild type. This experiment was performed in 
quadruplicate on two independent occasions. Error bars depict the standard deviation. 
** p-value <0.01. 

 

get an electrode into the bottom compartment of an assembled blind well. However, this 

possibility seems very unlikely because if the dendritic cells were going through holes in 

the monolayer, you would expect them to go through at roughly the same rate, regardless 

of what strain of bacteria they were infected with. Regardless, we excluded the possibility 

that the dendritic cells were getting though holes in the monolayer with FITC-labeled 

dextran beads. In figure 2.S2, we demonstrate that greater than 99.9% of the beads are 

excluded from the bottom compartment of a blind well by the endothelial monolayers. 

Even though we killed the extracellular bacteria with gentamicin prior to adding the 

infected dendritic cells to the blind wells, as an additional control we incubated eight blind 

wells with 10,000 non-invasive Escherichia coli cells and observed that the endothelial 
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monolayers excluded greater than 99.9% of the bacteria from the bottom compartment. 

Cumulatively, it seems safe to conclude that the vast majority of the bacteria that we 

recovered from the bottom compartment of the blind wells in our in vitro reverse 

transmigration assays were carried there by reverse transmigrating dendritic cells. Even 

if a minority of the dendritic cells got through holes in the monolayer this would only 

cause us to underestimate the magnitude of our phenotypes and would not actually alter 

our conclusions since again, presumably dendritic cells would get through holes in the 

monolayer at the same rate regardless of what strain of bacteria they were infected with. 

SpvC stimulates reverse transmigration in vitro 

In order to detect a potentially subtle effect of SrfH on reverse transmigration, we 

developed a competition assay that took advantage of the fact that the srfH mutant as 

well as the other ones we tested are resistant to the antibiotic kanamycin. In these 

experiments, we infected cells separately with either wild type Salmonella or a mutant, 

killed the extracellular bacteria with gentamicin and combined them and plated an aliquot 

onto Lura-Bertani (LB) agar and onto LB agar supplemented with kanamycin to determine 

the input ratio. We then performed the reverse transmigration assay with the remainder 

of the mixture and plated the output onto LB agar and LB agar augmented with 

kanamycin. Surprisingly, even in this assay, we could detect no effect of SrfH on reverse 

transmigration (Figure 2.4). We next turned our attention to the spv operon, which was 

reported to be conserved amongst strains of non-typhoidal Salmonella that cause 

bloodstream infections of humans (Fierer et al., 1992). We first tested an in-frame 
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deletion of spvB as SpvB was reported to depolymerize actin (Lesnick et al., 2001; Otto et 

al., 2001; Tezcan-Merdol et al., 2001) and thus could potentially play a role in facilitating 

 

 

Figure 2.4. spvC triggers reverse transmigration in a competition assay. Dendritic cells 
were separately infected with wild type bacteria or a kanamycin resistant mutant. After 
six hours, the two populations of infected cells were combined and a small aliquot lysed 
and CFU recovered on LB versus LB kanamycin plates to determine the input ratio, which 
was always close to 1:1. The remainder of the mixture was added to the top compartment 
of a blind well and incubated. After one hour, the blind well was disassembled and the 
infected cells in the bottom compartment lysed and CFU recovered again on LB versus LB-
kanamycin plates. In this competition assay, srfH and spvB had a negligible effect. ΔspvC 
however displayed a 4.2-fold defect. Five replicates of each competition assay were 
performed on four independent occasions. Error bars depict the standard error of the 
mean. * p-value <0.05. 

 

reverse transmigration. Surprisingly, as with SrfH, SpvB had a negligible effect on reverse 

transmigration. We proceeded to test an in-frame deletion of spvC, as SpvC was reported 

to deactivate signal transduction pathways whose activation might discourage reverse 

transmigration. An spvC in-frame deletion mutant displayed a 4.2-fold defect versus wild 
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type in a reverse transmigration competition assay (Figure 2.4). We were able to 

complement the phenotype with ectopic expression of SpvC in the mutant background. 

 

Figure 2.5. spvC triggers reverse transmigration in mice. Groups of 5–8 mice were orally 
inoculated by gavage with the indicated strains and peripheral blood recovered by heart 
puncture 30 minutes later. ΔspvC displayed a 6.5-fold defect versus wild type S. 
Typhimurium. The phenotype is complemented with ectopic spvC expression from a 
plasmid. In contrast, to the in vitro assay, in vivo, SPI-1 appears to enhance reverse 
transmigration, presumably by facilitating the invasion of the dendritic cells associated 
with the GI epithelium. These infections were performed on at least three independent 
occasions. Error bars depict the standard error of the mean. * p-value <0.05. 

 

SpvC promotes early extraintestinal dissemination 

We orally infected mice with either wild type Salmonella or a derivative that differed 

only in containing an in-frame deletion of spvC and thirty minutes later withdrew 

peripheral blood. We and others have previously shown that all bloodborne Salmonella 

at this time point are within CD18-expressing phagocytes. In fact, no Salmonella can be 

recovered from the bloodstream of CD18 deficient mice at 30 minutes post-infection 
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(Vazquez-Torres et al., 1999, Worley et al., 2006). CD18 is one of the host molecules 

required for reverse transmigration (D’Amico et al., 1998). We lysed the host cells with 

detergent and recovered Salmonella on XLD-agar plates. Consistent with in vitro 

experiments, we observed a 6.5-fold defect for a spvC deletion in early travel from the GI 

tract to the bloodstream (Figure 2.5). The phenotype is complemented with plasmid-

borne expression of spvC in the mutant background (Figure 2.5). We also tested a SPI-1 

mutant to explore how Salmonella overcomes SPI-1 mediated killing of dendritic cells. 

Surprisingly, impairing SPI-1 significantly reduced reverse transmigration suggesting that 

it functions differently in vivo than it does in vitro. Under our in vitro conditions SPI-1 

seemed predisposed towards killing the dendritic cells and impairing reverse 

transmigration. In vivo, however, SPI-1 appears to enhance reverse transmigration, 

presumably by facilitating the invasion of the dendritic cells associated with the GI 

epithelium (Figure 2.5). 
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Figure 2.6. ISO-1 rescues in vitro reverse transmigration phenotype in ∆spvC mutant. 
Dendritic cells were separately infected with wild type Salmonella or a kanamycin 
resistant spvC mutant. After five hours of incubation half the dendritic cell population 
infected with each strain received 25mM ISO-1 and the remaining cells received DMSO. 
After a one-hour incubation at 37oC, competition reverse transmigration assays were 
conducted. An equal number of wildtype and ∆spvC infected dendritic cells reverse 
transmigrated when treated with ISO-1 indicating a link between SPI-2 mediated reverse 
transmigration and the MMF induced pro-inflammatory signaling. Five replicates of each 
competition assay were performed on four independent occasions. Error bars depict the 
standard error of the mean. * p-value <0.05. 

 

ISO-1 rescues in vitro reverse transmigration phenotype in ∆spvC mutant  

SpvC functions as a phosphothreonine lyase that decreases MAP kinase signaling by 

preventing the activation of Erk1/2, JNK, and p38 kinases (Mazurkiewicz et al., 2008). In 

mice SpvC has been correlated with an anti-inflammatory effect at the site of infection in 

the colon through a reduced production of inflammatory cytokines such as TNFα (Haneda 

et al., 2012). Macrophage migration inhibitory factor (MIF) is expressed by a variety of 

eukaryotic cells including monocytes, macrophages and dendritic cells in response to 
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exposure to bacterial antigens and contributes towards the upregulation of inflammatory 

cytokines such as TNFα and IL-β1 in a CD74-dependent activation of ERK1/2 MAPK 

(Calandra et al., 1994). A cell permeable MIF antagonist (S,R)-3-(4-Hydroxyphenyl)-4,5-

dihydro-5-isoxazole acetic acid (ISO-1) was used to suppress the production of 

inflammatory cytokines and test if the anti-inflammatory nature of SpvC correlates with 

its capacity to stimulate reverse transmigration in vitro. 

 ISO-1 stock suspended in cell culture grade DMSO was diluted to 25µM in RPMI and 

added to the dendritic cell mixture infected with 14028s ΔsipB to sipB::km and 14028s  

ΔsipB to sipB::km, ΔspvC five hours post infection. The reverse transmigration assay was 

then finished as described previously. An equal number of wild type (14028s ΔsipB to 

sipB::km) and spvC mutant (14028s  ΔsipB to sipB::km, ΔspvC) was recovered when 

dendritic cells received ISO-1 (figure 2.6). This indicates that there is a significant link 

between SpvC mediated reverse transmigration and the MIF mediated activation of 

ERK1/2 MAPK. The major downside to this approach was the three-fold decrease in the 

reverse transmigration phenotype observed in the control samples that received DMSO 

only. This has been attributed towards the DMSO being cytotoxic towards dendritic cells. 

One way this experiment could be improved upon is to directly target the activity of MIF 

or its receptor CD74 through the use of neutralizing monoclonal antibodies or SiRNAs. 

The results could also be verified in vivo through the oral inoculation of 14028s ΔspvC into 

MIF or CD74 knockout mice, both of which have been documented to grown into 

adulthood and available for purchase from retailers such as The Jackson Laboratory (ME, 

USA) (Bikoff et al., 1993; Bozza et al., 1999). 
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Discussion 

This study identifies reverse transmigration as the likely process responsible for the 

rapid appearance of Salmonella-infected cells in the bloodstream of mice following oral 

infection that we previously observed (Worley et al., 2006; Thornbrough et al., 2012). Our 

results indicate that dendritic cells down regulate reverse transmigration in the presence 

of bacteria and that Salmonella in part overcomes this by secreting at least two SPI-2 

effectors into infected cells that encourage reverse transmigration. Enhancing our 

understanding of reverse transmigration is medically important for a variety of reasons. 

This process likely plays a role in pathologic conditions including the invasion of the 

bloodstream by cancerous cells and the resolution of excessive inflammation in addition 

to the inadvertent dissemination of intracellular pathogens from infected tissue into the 

bloodstream. This inadvertent dissemination may not only be from the GI tract to the 

blood but may also play a role in numerous infectious processes including the spread of 

pathogens from lung tissue and the oral mucosa to the systemic circulation (Kawakami et 

al., 2002; Zeituni et al., 2010). The potential role of reverse transmigration in cancer and 

infectious diseases raises the possibility of designing drugs that inhibit the process. The 

corollary is that drugs, which augment the process, might be useful in cases of chronic 

inflammation such as autoimmune or graft versus host disease. Remarkably, for all the 

implications for human pathological processes, reverse transmigration is very poorly 

understood. 

It is interesting to consider why S. Typhimurium seeds internal organs quickly. The 

speed with which the bacteria penetrate the liver and gallbladder of its animal reservoir 
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may be a component of its virulence. These are privileged sites of infection that are rich 

in nutrients and generally free of endogenous flora and thus can support the extensive 

replication of Salmonella, before the bacteria return to the GI tract through the 

lymphatics (connected to the liver) or the bile duct (connected to the gallbladder) for 

extra-host dissemination. The gallbladder is an extremely beneficial niche for Salmonella 

as 2–6% of the time, the bacteria become asymptomatic here and can potentially be shed 

intermittently for the lifetime of the host (Levine et al., 1982; Vogelsang & Boe 1948; 

Brooks 1996; Marr 1999). As Salmonella infections are often, however, ultimately 

resolved by an adaptive immune response (Vogelsang & Boe, 1948), the bacteria may be 

under time pressure to reach these organs as quickly as possible, and in essence, be in a 

race with the immune system. As penetrating the bloodstream through the lymphatic 

system can take days (MacPherson et al., 1995; Westermann et al., 1988), manipulating 

reverse transmigration may be a clever strategy through which Salmonella bypasses 

mesenteric lymph node confinement, accelerating its intra-host dissemination. This may 

increase the transmission rate by providing the bacteria with additional time to grow in 

their preferred sites of replication and also with more opportunities to establish a chronic, 

asymptomatic infection. SpvC is found in nontyphoidal strains of Salmonella and is likely 

a virulence factor in its animal reservoir where it does cause systemic disease. The fact 

that it can also rapidly colonize the bloodstream of humans where it does not typically 

cause systemic disease may be unintentional on the part of the bacteria. 

The pathway is inefficient at 30 minutes post-infection anyway with only about one in 

a million inoculated bacteria being translocated from the GI tract to the bloodstream in 
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this timeframe. Reverse transmigration could still play an important role in Salmonella 

pathogenesis however as the bacteria presumably disseminate to the bloodstream from 

the GI tract through this pathway throughout the course of infection. Also, very few S. 

typhi founder cells are needed to seed the spleen and liver to cause problems as they can 

grow extensively there and any non-typhoidal Salmonella organisms in the bloodstream 

can potentially cause health problems. The fact that the spv operon is conserved among 

non-typhoidal Salmonella strains that cause bacteremia in humans further suggests that 

this pathway to the bloodstream could be important for understanding human infections. 

It is interesting to consider potential molecular mechanisms underlying the ability of 

SpvC to promote reverse transmigration. SpvC deactivates, Erk1/2, p38 and JNK 

(Mazurkiewicz et al., 2008; Li et al., 2007). SpvC has been linked to having an anti-

inflammatory effect in the cecum. This coupled will the increased reverse transmigration 

of the SpvC mutant infected dendritic cells associated with the suppression of MIF activity 

indicates that SpvC might act downstream of the MIF initiated signaling cascade (Haneda 

et al., 2012). Another possible mechanism is that targeting the JNK pathway abrogates 

endothelin signaling. Endothelin is a ligand produced by vascular endothelial cells that 

upon binding its G protein coupled receptor transduces a signal through the JNK pathway 

that discourages migration (Yamauchi et al., 2002; Kedzierski et al., 2001; Christiansen et 

al., 2000). Endothelial cells likely secrete endothelin to discourage metastasis and perhaps 

also to regulate reverse transmigration.  

 It was surprising that we did not observe a defect in reverse transmigration for 

dendritic cells infected with a srfH mutant, as we have shown in the past that srfH is 
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involved in the early penetration of the bloodstream by Salmonella-infected cells 

following oral inoculation of mice (Worley et al., 2006; Thornbrough & Worley, 2012). It 

is possible that SrfH is involved in a step prior to reverse transmigration. Perhaps SrfH is 

involved in disassociating the dendritic cells from the GI epithelium before the cells 

become available for reverse transmigration. It is also of course possible that our model 

does not capture everything that occurs during reverse transmigration in vivo.  

Our results demonstrate that dendritic cells down regulate reverse transmigration in 

the presence of microbial components and that Salmonella in part overcomes this 

inhibition by secreting at least two SPI-2 effectors into them that stimulates the process 

by over an order of magnitude. This work provides some suggestive evidence that the 

CD18 expressing phagocyte pathway to the bloodstream involves reverse transmigration 

and that this may be an important component of the extraintestinal dissemination of 

Salmonella. The model described here may be useful in studying the dissemination of 

other pathogens and could also be used for studying metastasis and excessive 

inflammatory disorders.  

Materials and methods 

Ethics statement 

Animals were housed, cared for, and used strictly in accordance with the USDA 

regulations and the NIH guide for the care and use of laboratory animals (NIH publication 

no. 85–23, 1985). The University of Louisville is fully accredited by the American 

Association for the Accreditation of Laboratory Animal Care. A full-time, specialty-trained 
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veterinarian directs the program of animal care. The protocol was approved by the 

University of Louisville Institutional Animal Care and Use Committee (protocol # 12–090). 

All reasonable efforts were made to alleviate discomfort. 

Mice, cell culture and bacterial strains  

Six to eight-week-old female C57BL/6J mice were obtained from The Jackson 

Laboratory (Bar Harbor, ME). Bone marrow was harvested, and monocytes cryopreserved 

as previously described (Marim et al., 2010). For extraintestinal dissemination assays, 

groups of 5–8, 4–6-week-old female C57BL/6J mice were orally infected by gavage with 1 

X 109 bacterial cells suspended in 100μl of phosphate buffered saline (PBS). Food was 

withdrawn 12 hours prior to infection. Thirty minutes following infection, mice were 

euthanized with CO2 and blood recovered by heart puncture with a 25G needle attached 

to a 1mL syringe. Blood was collected in microtubes on ice containing 50 units of heparin 

sodium salt (Sigma Aldrich) in 100μl of water to prevent coagulation. 

Triton X-100 was added to a final concentration of 1% to lyse host cells and the tubes 

incubated at 4˚C with end over end rotation on a rotisserie for ten minutes. CFU were 

then recovered on xylose lysine deoxycholate agar plates, which are selective for 

Salmonella. C166 murine endothelial-like cells were cultured in DMEM (VWR) 

supplemented with 10% FBS (Sigma Aldrich) and sodium pyruvate (Life technologies) and 

passaged 1:10 every 4–5 days. Monocytes were cultured at a concentration of 1 X 106 

cells/mL in RPMI supplemented with 10% FBS and sodium pyruvate. They were 

differentiated into dendritic cells by culturing them in the presence of GM-CSF (Life 
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technologies) (20ng/mL) and IL-4 (Life technologies) (20ng/ mL) for three days. The media 

also included 55μM ß-mercapoethanol (Life technologies). On the third day, an equal 

volume of media supplemented with fresh GMCSF (40ng/mL), IL-4 (40ng/mL) and 110μM 

ß-mercapoethanol was added. On the sixth day, TGF-ß1 (R&D systems) was added to a 

final concentration of 10ng/mL to induce expression of CD16, which is associated with an 

enhanced ability to reverse transmigrate (Randolph et al., 2002). Assays were performed 

24 hours later. S. Typhimurium 14028s with an in-frame deletion of sipB described 

previously (Kidwai et al., 2013) was the parent strain for testing the effects of SPI-2 and 

srfH. We separately transduced with P22 HT int a srfH::MudJ allele (Worley et al., 2000) 

into this background and an ssaK::km allele (Geddes et al., 2005) with established 

techniques (Maloy et al., 1996). ssaK is part of an operon of structural genes that compose 

the type III secretion system. This mutant cannot secrete any effectors associated with 

SPI-2 (Geddes et al., 2005). Into previously described strains that separately contained in 

frame deletions of spvB and spvC (Kidwai et al., 2013), we transduced a previously 

described sipB::km allele (Kidwai et al., 2013). spvC was PCR amplified from the virulence 

plasmid of S. Typhimurium 14028s and cloned into the EcoRV and SalI sites of pACYC184, 

under the control of the constitutive tet promoter. The construct was sequence verified.  

Growing endothelial cells on membranes 

PVP-free polycarbonate membranes with 5μm pores were sterilized by autoclaving 

and individual membranes were submerged in 1mL of PBS (Life technologies) 

supplemented with 8μg of fibronectin from bovine plasma (Sigma Aldrich) in 24 well 

plates. The membranes were coated with fibronectin overnight at 4˚C. The following day, 
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the fibronectin solution was aspirated from the wells and 5 X 105 endothelial cells were 

added to each well. The endothelial cells were given 5 days to form confluent monolayers. 

Twenty-four hours before assays began, endothelial cell media was replaced with fresh 

media supplemented with TNFα (Life technologies) (20ng/mL). The formation of 

confluent monolayers under these conditions was confirmed with diff-kwik staining. 

Infections and individual reverse transmigration assays 

The three bacterial strains were grown overnight at 37˚C in LB. Approximately 1 X 106 

dendritic cells were infected at an MOI of 25 in quadruplicate with the three bacterial 

strains. The bacteria were given one hour to invade. Under the conditions used, 1–2% of 

the bacteria were internalized. Next, gentamicin (Life technologies) was added to a final 

concentration of 100μg/ mL to selectively kill the extracellular bacteria and the cells were 

incubated for one hour at 37˚C. After the one-hour incubation the mixture was dialyzed 

against PBS with Slidalyzer mini dialysis devices with a 2kDa molecular weight cutoff 

(Thermo Fischer). Following dialysis, the mixture was incubated in media supplemented 

with 10μg/mL gentamicin for five hours at 37˚C. After five hours, the mixture was again 

dialyzed against PBS and a small aliquot lysed with 1% triton X-100 for ten minutes and 

CFU recovered on agar plates to determine the input. Two-hundred microliters of media 

containing gentamicin was added to the bottom compartment of the blind wells. Then, a 

membrane coated with a confluent monolayer of endothelial cells was placed upside 

down in the device. A second membrane was then stripped by dipping it into a solution 

of PBS containing 0.5% triton X-100 and 20mM ammonium hydroxide (Sigma Aldrich) for 

30 seconds and then rinsed in DMEM, revealing a natural extracellular matrix (Bianchi et 
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al., 2001). This membrane was placed right side up on top of the first membrane. The 

device was then screwed together, and the infected dendritic cells added to the top 

compartment. The blind wells were incubated at 37˚C for one hour. Then, the liquid in 

the upper compartment was aspirated, the devices were disassembled, the membranes 

discarded and the media in the bottom compartment withdrawn and dialyzed against PBS 

as described for the input. The dendritic cells were then lysed in 1% triton X-100 and CFU 

recovered on agar plates. 

Reverse transmigration assay with heat killed bacteria 

In this experiment, an equal volume of either LB or a saturated LB overnight culture 

of S. Typhimurium was diluted 100-fold in cell culture media and heated to 95˚C for 15 

minutes. 1 X 105 dendritic cells were then resuspended in either the LB or the heat-killed 

Salmonella and incubated at 37˚C for 30 minutes. The dendritic cells were then counted 

on a hemocytometer to determine the input and applied to the blind wells. They were 

processed as described above except instead of recovering CFU, the number of dendritic 

cells that traversed the endothelial monolayer was determined by concentrating the 

media in the bottom compartment and counting the cells with a hemocytometer. 

Competition assays 

One million dendritic cells were infected with either wild type bacteria or a srfH, spvB, 

or spvC mutant. The infections were processed as described for the individual assays. 

After the five-hour incubation, the wild type bacteria and one of the mutants were 

combined and a small aliquot lysed and CFU recovered on LB-agar plates or LB-agar plates 
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supplemented with 60μg/mL kanamycin to determine the input ratio. The reverse 

transmigration assay was then performed with the remainder of the mixture as described 

for the individual assays except after lysis of the cells in the bottom compartment, CFU 

were recovered on LB-agar plates or LB-agar plates supplemented with kanamycin. The 

number of CFU present on kanamycin plates was subtracted from the number present on 

LB plates to determine how many wild type bacteria were present. The CFU counts of the 

kanamycin plates revealed how many mutant bacteria were present. 

Competition assays with ISO-1 

A 100mM stock of (S,R)-3-(4-Hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid 

(ISO-1) purchased from TOCRIS (Minneapolis, MN) was prepared in cell culture grade 

DMSO (VWR). One million dendritic cells were infected with either wildtype or spvC 

mutant. Five hours post invasion, ISO-1 stock solution was serially diluted in complete 

RPMI and added to the dendritic cell mixture at a final concentration of 25µM. The 

reverse transmigration assay was then performed as described for the competition assay. 

Survival assay 

In this experiment, 1.7 X 105 dendritic cells were infected at an MOI of 25 with the 

three bacterial strains and a gentamicin protection assay performed. The number of 

intracellular CFU at seven hours post-infection was determined by dialyzing the 

gentamicin and lysing the dendritic cells with triton X-100 and recovering bacteria on agar 

plates. 
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Supporting information 

 

Figure 2.S1. The three strains survive similarly within dendritic cells. Dendritic cells were 
infected separately with the three strains and a gentamicin protection assay performed. 
This assay was performed in triplicate on two independent occasions. There was no 
significant difference in the number of bacteria present with the different strains at seven 
hours post-infection.  

 

Figure 2.S2. Monolayers exclude FITC beads. On three occasions, blind wells with 
endothelial monolayers were incubated for one hour with 250μg/mL of FITC-labeled 
dextran beads (MW 70,000) and the fluorescence of the bottom compartment 
determined. The monolayers excluded greater than 99.9% of the beads. 
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CHAPTER 3 

THE SALMONELLA TYPE III EFFECTOR SrfH TRIGGERS THE DISSOCIATION OF INFECTED 

INTRAEPITHEIAL DENDRITIC CELLS 

Introduction 

Salmonella enterica strains cause a wide range of illnesses in humans than range from 

acute self-limiting gastroenteritis to long term systemic infections such as typhoid fever 

and invasive nontyphoidal salmonellosis that result in the death of millions of people 

around the world. Key aspects of its virulence are regulated by effector proteins secreted 

by type III secretion systems (T3SS) encoded by pathogenicity islands 1 (SPI-1) and 2 (SPI-

2). In brief SPI-1 mediates the induction of localized inflammation in the small intestine 

and helps Salmonella out compete local microflora. SPI-2 on the other hand plays an 

important role in the intracellular survival and systemic dissemination of the bacteria. 

SrfH is a SPI-2 T3SS effector found in the Gifsy-2 prophage of S. Typhimurium (Figueroa-

Bossi & Bossi, 1999). Once translocated into the host cell SrfH is palmitoylated at its 

cysteine 9 residue by host lipid transferases and localizes to the plasma membrane (Hicks 

et al., 2011). The SrfH C-terminal domain exhibits deamidase activity and is a key 

determinant of its virulence. SrfH was shown in vitro to deamidate the 205th glutamine 

residue of the α-subunit of hetero-trimeric Gi1-3 proteins. This results in the inhibition of 

the GTPase activity of the α-subunit and the release of the β and γ subunits that then 
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contribute to a decrease in cAMP levels and the activation of PI3 kinase (Brink et al., 

2018). 

Loss of srfH severely restricts the SPI-2 mediated rapid dissemination of Salmonella 

within CD18+ phagocytic cells from the gut to the bloodstream in C57BL/6 mice (Worley 

et al., 2006). However, the effects of SrfH in an in vitro reverse transmigration assay that 

studied the movement of Salmonella infected dendritic cells from the basal to the apical 

face of an endothelial cell monolayer was negligible (Gopinath et al., 2019). The rapid 

dissemination of Salmonella from the lumen of the gut to systemic sites such as the spleen 

and liver is a complex process and SrfH could easily play an important role in a step that 

is yet to be characterized in vitro.  

Dendritic cells are a subset of CD18+ phagocytic cells that serve as sentinels in tissue 

that form an interface with the external environment. They play an important role in 

mediating innate and adaptive immune responses and tolerogenic responses to self and 

oral antigens. Dendritic cells are distributed throughout the gut mucosa. Of interest to 

this study are a subset of immature dendritic cells that migrate to the lamina propria. 

These cells can insert themselves between intestinal epithelial cells and have been shown 

to express a complement of tight junction proteins that help project dendrites into the 

lumen of the intestine and sample for antigens without disrupting the gut epithelia 

(Rescigno et al., 2001). In this study we demonstrate that SrfH plays an important role in 

the dissociation of CD11c+ dendritic cells associated with the gut epithelia and that this 

process is dependent on the presence of a glycine residue at the 103rd position of the SrfH 

amino acid sequence. Dissociation could be the first step in the process of early extra-
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intestinal dissemination of Salmonella were an intraepithelial dendritic cell infected with 

Salmonella separates from the gut mucosa and eventually migrates towards a blood 

vessel and reverse transmigrates into the bloodstream. 

Results 

Development of an in vitro competition dissociation assay 

The in vitro dissociation assay was developed based on an experiment designed to 

demonstrate the capacity of CD11c+ immature intraepithelial dendritic cells to sample for 

antigens in the lumen of the small intestine without disruption of the epithelial monolayer 

(Rescigno et al., 2001). Corning Costar tissue culture inserts suspended in standard 24 

well tissue culture plates were used to simulate the environment surrounding the 

epithelial cell monolayer of the gut mucosa (Figure 3.1). An insert with a fully developed 

monolayer acts as a barrier that separates the contents of the 24 well plate from that of 

the insert. The goal of this assay was to compare the relative effects of two competing 

Salmonella strains on the apical side of an epithelial cell monolayer on the dissociation of 

dendritic cells tightly bound to the basal face of the monolayer. 

Upside down inserts were seeded with human colorectal carcinoma cell line Caco2 and 

transferred to a 24 well tissue culture plate with complete DMEM after a day of 

incubation. This allowed the cells to adhere to the bottom of the insert and let the apical 

face of the developing Caco2 monolayer face the media aliquoted into the 24 well plate. 

Confluency of the slow growing monolayer was determined through periodic 

Transepithelial electrical resistance (TEER) measurements. After a period of 11-15 days, 
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monolayers exhibiting a target resistance of 330ohms/cm2 were deemed confluent and 

selected for use in the assay (Rescigno et al., 2001). 

 

Figure 3.1. Competition in vitro dissociation assay. Caco2 epithelial cell monolayers were 
cultured on the bottom face of 3µm pore sized cell culture inserts. Primary dendritic cells 
were added to the basal face of this monolayer four hours prior to the start of the assay. 
The inserts were washed thoroughly to remove cells that did not bind and were 
transferred to 24 well plates that contained 108 CFU of two separate Salmonella strains 
suspended in cell culture media per well. The plates were incubated for an hour at 37oC 
and dendritic cells that dissociated were recovered through gentle wash steps. The effects 
of T3SS effectors on dissociation was quantified through the recovery of Salmonella CFU 
on LB-agar and LB-agar plates supplemented with antibiotics. 

 

On the day of the assay the media in the inserts was replaced with 400,000 immature 

CD11c+ dendritic cells that were derived from the treatment of mice bone marrow 

derived monocytes with recombinant mouse GMCSF and IL4 for a week. After a period of 

four hours the cells that did not bind to the monolayer were removed through rinsing of 

the inserts with cell culture media. The bottom compartment was replaced with DMEM 

resuspended with 108 CFUs of two Salmonella strains in triplicate. Prior to this step the 

Salmonella were incubated for one hour in MGM media at pH 7. MGM media induces the 
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expression of SPI-2 by simulating the milieu inside the SCV and is generally poor in divalent 

cations and nutrients (Deiwick et al., 1999). The 24 well plates were incubated in a water-

jacketed cell culture incubator for an hour. At the end of the incubation period the inserts 

were rinsed with extreme caution to only pick dendritic cells that had dissociated 

naturally and not disturb cells that were still bound to the monolayer. The supernatant 

was treated with dilute detergent that selectively lysed dendritic cells and this was 

followed by plating an equal volume of the lysate on LB agar and LB agar plates 

supplemented with a strain specific antibiotic to acquire Salmonella colony forming units 

(CFU). Transepithelial electrical resistance (TEER) measurements were recorded in 

between every wash step to determine if the integrity of the Caco2 monolayer was 

maintained.  

The amount of Salmonella CFU recovered is directly proportional to the amount of 

dendritic cells that dissociated. This was demonstrated by the control for this assay which 

comprised of cell culture inserts with confluent Caco2 monolayers that did not receive 

dendritic cells but were otherwise subject to the same conditions and placed in wells 

containing two Salmonella strains, one of which was the highly virulent S. Typhimurium 

strain 14028s. No Salmonella CFUs were recovered from the supernatant isolated from 

these inserts after the final set of washes (Figure 3.2). The gut epithelia is a natural barrier 

that contains the spread of gut microflora. Caco2 monolayers fulfilled this role and with 

no dendritic cells present to sample for bacteria through the projection of dendrites 

across the monolayer, Salmonella could not breach the barrier set by the Caco2 cells. 
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Figure 3.2. SrfH stimulates the dissociation of intraepithelial dendritic cells. In vitro 
competition dissociation assays were performed with wild type and srfH mutant in the 
presence and absence of dendritic cells on the basal face of the Caco2 epithelium. 
Salmonella could not breach the epithelium in the absence of dendritic cells. Four times 
as many wild type bacteria were shuttled across the epithelium by dendritic cells relative 
to the srfH mutant. This experiment had three replicates and was repeated on four 
independent occasions. Error bars represent standard error of mean, * indicates a p value 
<0.05 for the Student’s t-test. 

 

SrfH stimulates the dissociation of intraepithelial dendritic cells 

Orally inoculated Salmonella disseminates to the blood of C57BL/6 mice within host 

CD18+ phagocytic cells in less than 30 minutes in a SPI-2 dependent manner (Worley et 

al., 2006). In the same study it was demonstrated that the SPI-2 T3SS effector SrfH was 

shown to play a huge role in the extraintestinal dissemination of Salmonella in mice. 

However, SrfH failed to stimulate the reverse transmigration of CD11c+ dendritic cell in 

our in vitro reverse transmigration assay (Gopinath et al., 2019). Hence, we tested to see 

if SrfH contributed to the process of reverse transmigration by stimulating the 

dissociation of intraepithelial dendritic cells sampling for antigens across the Caco2 

monolayer. The expression of srfH was abrogated through transposon disruption with the 

bacteriophage p22HT int in 14028s. 14028s is a highly virulent strain of S. enterica 
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Typhimurium that causes a typhoid fever like disease in mice and carries the genetic 

material for all known T3SS effectors. A competition in vitro dissociation assay was 

performed in triplicate where 24 well plates were replaced with DMEM containing 108 

CFU each of 14028s (wild type) and the srfH mutant (Figure 3.2). The loss of srfH 

contributed towards a 4.5 fold decrease in the amount of Salmonella CFU recovered 

compared to wild type. 

 

 

Figure 3.3.  SrfH Gly103 promotes dissociation of dendritic cells while SrfH Asp103 has 
the opposite effect. The srfH mutant was complemented with a PCR amplified copy of 
the srfH allele from 14028s (Gly103) or SL1344 (Asp103). The srfH complemented strains 
were then used in in vitro competition dissociation assays against the srfH mutant parent 
strain. Complementation of srfH Gly103 resulted in the dissociation of twice as many 
dendritic cells relative to the srfH mutant, on the other hand dendritic cells picking up 
Salmonella secreting SrfH Asp103 exhibited a fourfold reduction in dissociation. This 
experiment had three replicates repeated on four independent occasions. Error bars 
represent standard error of mean, * indicates a p value <0.05 for the Student’s t-test. 

 

SrfH Gly103 promotes dissociation of dendritic cells 

In their original work Rescigno and colleagues used S. Typhimurium strain SL 7207 

(Rescigno et al., 2001). When compared to the non-virulent intestinal commensal 
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Streptococcus Gordonii, SL 7207 had a negligible effect on the dissociation of 

intraepithelial dendritic cells (Rescigno et al., 2001). SL 7207 is a derivative of the 

commonly used lab strain SL 1344 that is auxotrophic for ρ-aminobenzoic acid and 2,3-

dihydroxybenzoate resulting from a 1kb deletion in aroA (Denich et al., 1993). Despite 

having a reduced capacity to replicate, SL 7207 retains SL 1344’s capacity to colonize the 

gut mucosa (Rescigno et al.,2001). When compared to 14028s, SL 1344 carries a srfH allele 

with a SNP at position 103 of its amino acid sequence. The presence of either a glycine or 

an aspartic acid residue at this position was shown to affect the rapid dissemination of 

Salmonella into the bloodstream of C57BL/6 mice (Thornborough & Worley, 2012). SrfH 

Gly103 was shown to promote this process while SrfH Asp 103 inhibited it. (Thornborough 

& Worley, 2012). We performed the competition in vitro dissociation assay to determine 

if this SNP influenced the dissociation of intraepithelial dendritic cells (Figure 3.3). To 

achieve this, we complemented the 14028s srfH mutant with PCR amplified copies of each 

srfH allele cloned into a pACYC184 back bone. Dissociation assays comparing the effects 

of the srfH mutant with that of a similar strain complemented with either srfH Gly 103 or 

srfH Asp103 allele were performed in triplicate. srfH Gly103 contributed towards a two-

fold increase in dissociation relative to the srfH mutant. This reduction in phenotype 

compared to the wildtype 14028s strain could be a result of the plasmid vector having a 

metabolic burden and hence being toxic towards the bacterial strain. SrfH Asp103 had an 

adverse effect on the dissociation of CD11c+ dendritic cells. Four times as many of the 

srfH mutant infected dendritic cells dissociated compared to the ones infected with the 

same strain complemented with the srfH Asp103 allele.  
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Figure 3.4. TRIP6 recruits CAS and Crk proteins in the presence of SrfH. Macrophages 
were infected with wild type Salmonella positive for srfH Gly103 or a srfH mutant. The 
cells were lysed, and the lysate was subjected to pull down assays with either TRIP6 or 
CAS antibodies. This was followed by western blotting with either CAS or Crk antibody. 
Crk was not detected when SrfH was not produced by Salmonella. On the other hand, the 
blots were positive for CAS and Crk in the presence of SrfH Gly103. This indicates that CAS 
and Crk proteins are downstream of TRIP6 in the SrfH mediated dissociation of dendritic 
cells. 

 

TRIP6 recruits CAS and Crk proteins in the presence of SrfH 

SrfH Gly103 was shown to bind to the adaptor protein TRIP6 and colocalize with it to 

focal adhesions (Worley 2006; Thornborough & Worley, 2012). Pull down assays indicate 

that TRIP6 recruits p130cas (CAS) and Crk proteins in the presence of SrfH (Figure 3.4). In 

brief, the lysate from macrophages infected with 14028s wild type bacteria or the srfH 

mutant were subjected to affinity purification with either TRIP6 or CAS antibodies. Pull 

down was followed by western blots with CAS or Crk antibodies. The TRIP6 pull down for 

wild type infected macrophages gave a strong signal for both CAS and Crk blots but was 

negative for both proteins in the case of srfH Gly103 mutant. A similar result was observed 

for the CAS pull downs, the only exception here being that the SrfH mutant was positive 
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for CAS while negative for Crk. This indicates that TRIP6 promotes CAS-Crk coupling in the 

presence of SrfH Gly103.  

TRIP6 belongs to the zyxin family of adaptor proteins that contain a proline rich N-

terminal domain and three LIM binding domains towards their C-terminal. TRIP6 localizes 

to the plasma membrane at focal adhesion sites in a lysophosphatidic acid (LPA) 

dependent manner and participates in cellular signaling that promotes adhesion and 

motility. SrfH has been previously shown to localize to the plasma membrane after host 

cell mediated palmitoylation of its cysteine 9 residue (Hicks et al., 2011). We hypothesize 

that SrfH Gly103 acts as a molecular tether that binds TRIP6 and recruits a complex that 

drives pro-migration signaling from the focal adhesion (Figure 3.5). As SrfH Gly103 is 

secreted into the dendritic cell, it binds TRIP6. Palmitoylation of SrfH tethers the TRIP6-

SrfH complex to the host cell’s focal adhesion. TRIP6 serves as a scaffold that recruits the 

adaptor protein CAS and the regulatory protein Crk. CAS and Crk are abundant in focal 

adhesion sites and this CAS-Crk coupling has been previously associated with stimulation 

of motility through the activation of the RAC signaling pathway (Kain & Klemke, 2001). 

We propose this same pathway could trigger the dissociation of dendritic cells bound to 

the basal face of the gut epithelia. 
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Figure 3.5. Molecular tether model. SrfH is palmitoylated at its cysteine 9 residue on 
translocation into the dendritic cell cytoplasm. This modification helps anchor SrfH Gly103 
bound to TRIP6 at focal adhesions. TRIP6 helps recruit focal adapter protein CAS and focal 
regulatory protein Crk and this in turn triggers dissociation of the dendritic cells through 
the activation of the Rac signaling pathway. 

 

Discussion  

To date two SPI-2 T3SS effectors have been discovered that contribute towards early 

extraintestinal dissemination of Salmonella in mouse model. While SpvC was shown to 

facilitate reverse transmigration in vitro, SrfH did not seem to have an effect in stimulating 

the basal to apical migration of Salmonella infected dendritic cells across an endothelial 

cell monolayer (Gopinath et al., 2019).From the data presented here it is clear that SrfH 

plays an important role in an early phase of reverse transmigration, namely the 

dissociation of immature CD11c+ dendritic cells that associate with the epithelial cell 

monolayer and will serve as a vessel for the rapid dissemination of Salmonella to systemic 

tissue. This function is affected by the presence of a glycine residue at the 103rd position 

on the SrfH amino acid sequence. SrfH Gly103 was shown to bind TRIP6 while the Asp103 

isoform bound IQGAP1, a large scaffold protein that regulates cellular migration 

(Thornborough & Worley, 2012; McLaughlin et al., 2009). SrfH’s interaction with IQGAP1 
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results in the inhibition of the motility of Salmonella infected dendritic cells and 

macrophages in vitro and a significant reduction in the rapid dissemination phenotype in 

mice (McLaughlin et al., 2009, Thornborough & Worley, 2012). The coupling of SrfH 

Gly103 with TRIP6 could contribute towards the process of dissociation through the 

activation of the Rac signaling pathway. While the Gly103 allele is rare, it is found in highly 

virulent S. Typhimurium strains such as 14028s and Universal Killer-1 (Thornbrough & 

Worley, 2012). SrfH Gly103 is also found in the emergent invasive NTS strain serovar 4 

and on the Gifsy 2 prophage carried by the human adapted S. Typhi Dakar (Cirillo et al., 

1998; Hansen-wester et al., 2001; Thornbrough & Worley, 2012).   

Materials and Methods 

Generation of dendritic cells 

Bone marrow derived mononuclear cells (BMDM) were isolated from the femur of 6-

10-week-old C57BL/6. BMDMs were seeded at a ratio of 500,000 cells per ml of RPMI 

1640 (Corning) supplemented in 10% FBS, 2mM l-glutamine, 1mM sodium pyruvate, 

20ng/ml of recombinant mouse IL4 and GMCSF (Shenandoah Biotechnology) 55µM/ml 2-

mercaptoethanol and 100units/mL of penicillin and 100µg/mL of streptomycin. Fresh 

media with twice the concentration of cytokines and 2-mercaptoethanol was added after 

three days. One day prior to the reverse transmigration assay recombinant mouse TGF-

β1 (Biolegend). was added to the cells at a concentration of 20ng/ml of growth media. 

Loosely adherent dendritic cells were harvested on day seven. In brief, the media was 

pipetted up and down several times and pelleted in a 10-minute spin at 200g, 4oC. Ice 
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cold 2mM PBS-EDTA was added to the dish and agitated at 4oC for 15 minutes. The buffer 

was pipetted up and down several times and the cells were pelleted in a 10-minute spin 

at 200g, 4oC. The pellets from the two washes were resuspended in 1ml of RPMI and 

pooled together. A tenfold dilution of the resulting cell slurry was stained with trypan blue 

and enumerated on a Reichert Bright-Line hemocytometer (Hausser Scientific). 

Generation of Caco2 monolayers 

Human epithelial cell line Caco2 (ATCC) was raised in DMEM (Corning) supplemented 

with 20% FBS, 1mM sodium pyruvate, 2mM l-glutamine, 1X non-essential amino acids 

(Corning) and 100units/mL of penicillin and 100µg/mL of streptomycin to 80% confluency 

in tissue culture treated T175 flasks. Caco2 cells were passaged by rinsing the growth 

surface with 1xPBS (Corning) followed by treatment with 0.25% porcine trypsin for 5-15 

minutes. This was followed by quenching of the trypsin with complete growth media. 10% 

of the resulting cell slurry was placed back into flask with fresh complete DMEM. 

Two hundred thousand Caco2 cells were seeded onto upside down tissue culture 

treated Corning Costar transwell polycarbonate inserts with 3 µm pores (Corning) and 

incubated in a water-jacketed cell culture incubator set to 37oC, 5% CO2 for an hour. The 

next day tissue culture inserts were transferred to 24 well plates containing 600µL of 

complete DMEM and a further 100µL was added to the top compartment. Media was 

renewed every three days and transepithelial electrical resistance (TEER) resistance was 

measured using an EVOM2 volt/ohm meter (World Precision Instruments). Media renewal 

continued till the Caco2 monolayers exhibited a resistance of 330Ω/cm2. 
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Bacterial culture 

The wild-type and subsequently the parent strain used to test the loss of SPI-2 T3SS 

and SrfH was S. enterica serovar Typhimurium 14028s (ATCC). 14028s was transduced 

with P22 HT-int a srfH::MudJ allele (Worley et al., 2000) with established techniques 

(Maloy & Stewart, 1996).  

The srfH allele from S. Typhimurium strains 14028s and SL1344 were PCR amplified 

and cloned separately into the EcoRI site of pACYC184. One of each was electroporated 

into the 14028s srfH::MudJ to generate two new strains that complemented each srfH 

allele. 

Bacteria were cultured overnight in luria broth (VWR) and one hour prior to the start 

of the dissociation assay were rinsed thoroughly in MGM adjusted to pH 7 (100mM Tris-

Cl, 5mM KCl,  7.5mM (NH4)2SO4,  0.5mM K2SO4,  1mM KH2PO4, 8μM MgCl2, 38mM 

glycerol and 0.1% casamino acid).   

Dissociation assay 

Four hundred thousand monocytes were suspended in RPMI and cultured on the 

basolateral side of Caco2 monolayer for four hours. Bacterial o/n cultured in LB were 

washed and resuspended in SPI-2 inducing MGM media at pH 7.4. Right before the start 

of the assay the cell culture inserts were washed extensively to remove dendritic cells 

that did not attach and were transferred to a 24 well plate containing 1x108 CFU of 14028s 

srfH::MudJ and a second bacterial strain resuspended in 600µl of complete DMEM in 

triplicate. The plates were incubated for 60 minutes in a water jacketed cell culture 
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incubator set to 37oC, 5% CO2. At the end of the incubation period, the inserts were rinsed 

gently thrice to remove any dendritic cells that dissociated. The supernatant from these 

washes were lysed using 1% triton-X 100, serially diluted in PBS and plated on LB agar and 

LB agar plates supplemented with tetracycline. 

Generation of primary macrophage monolayers 

Bone marrow derived macrophages were generated as described previously (Marim 

et al., 2010). In brief monocytes were harvested from the femur of six to eight week-old 

C57BL/6 mice and seeded at a density of 1x 106 cells/ml into 24 well plates and 

differentiated into macrophages using the bone marrow differentiation media comprising 

of RPMI 1640 (Corning) supplemented with 20% FBS (Sigma Aldrich) and 30% L929 (ATCC) 

conditioned media and 2mM L-glutamine (Corning). An equal amount of bone marrow 

differentiation media was added to each well after four days of incubation. Cells were 

grown to confluency over a period of seven days. 

Pull down assay 

Bone marrow derived macrophages were infected with 14028s or 14028s srfH::MudJ 

at an MOI of one for a period of 10 hours. Cells were lysed using NP-40 lysis buffer (Sigma 

Aldrich) and the lysate used in a pull-down assay. Lysates were hybridized with anti-

mouse monoclonal antibodies for either TRIP6 (Santa Cruz Biotechnology), CAS (Santa 

Cruz Biotechnology) or an isotype control. The hybridized lysate was co-

immunoprecipitated with Protein G Sepharose 4 Fast Flow suspension (Sigma Aldrich) 

following the manufacturer’s directions, which can be found online: 
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https://www.sigmaaldrich.com/technical-documents/protocols/biology/purifying-

challenging proteins/pull-down-assays.html.  

Co-immunoprecipitated lysates were subjected to sodium dodecyl sulfate (SDS) – 

polyacrylamide gel electrophoresis (PAGE) on 10% polyacrylamide gels. The proteins on 

the SDS- PAGE gels were transferred to nitrocellulose membranes and hybridized with 

anti-mouse primary antibodies for either CAS (Santa Cruz Biotechnology, USA) or Crk 

(Santa Cruz Biotech) followed by secondary antibodies conjugated to alkaline 

phosphatase in triplicate. Samples that were initially co-immunoprecipitated with CAS 

antibodies were directly subjected to western blotting with an isotype specific secondary 

antibody in triplicate.  
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CHAPTER 4 

DISCUSSION 

The primary goal of our research project was to better understand the molecular 

mechanisms behind the rapid dissemination of Salmonella from the gut to systemic sites 

in mice. We hypothesized that Salmonella sampled by CD11c+ dendritic cells associated 

with the gut epithelia trigger the reverse transmigration of the host phagocytic cell across 

blood vessels to gain direct access to the bloodstream. To test our hypothesis, we initially 

developed the in vitro reverse transmigration assay described in chapter 2. Dendritic cells 

have been previously documented to be naturally capable of reverse transmigrating 

(D’Amico et al., 1998; Randolph et al., 1998). We were able to replicate this phenomenon 

in vitro with primary mice bone marrow derived dendritic cells and endothelial 

monolayers composed of the C166 mice endothelial cell line. Dendritic cells stopped 

migrating in the presence of heat killed Salmonella, but this was reversed when infected 

with live Salmonella. Intracellular Salmonella triggered reverse transmigration of 

dendritic cells in a SPI-2 dependent manner. SpvC a T3SS effector coded for on the 

virulence plasmid was identified to stimulate the process of reverse transmigration of 

dendritic cells in vitro and in vivo.  

SpvC functions as a phosphothreonine lyase that decreases MAP kinase signaling by 

preventing the activation of Erk1/2, JNK, and p38 kinases (Mazurkiewicz et al., 2008). In 
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mice SpvC has been correlated with an anti-inflammatory effect at the site of infection in 

the colon through a reduced production of inflammatory cytokines such as TNFα (Haneda 

et al., 2012). MIF is expressed by a variety of cells including monocytes, macrophages and 

dendritic cells in response to exposure to bacterial antigens and contributes towards the 

upregulation of inflammatory cytokines such as TNFα and IL-β1 in a CD74-dependent 

activation of ERK1/2 MAPK (Calandra et al., 1994). We used a cell permeable MIF 

antagonist (S,R)-3-(4-Hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (ISO-1) to down 

regulate the activity of MIF in dendritic cells used in the in vitro reverse transmigration 

assay. The use of ISO-1 increased the rate of reverse transmigration of dendritic cells 

infected with spvC mutant Salmonella, matching it to that of dendritic cells infected with 

wild type Salmonella. SpvC seems to act downstream of the MIF-CD74 initiated signaling 

cascade. This establishes a link between SpvC mediated reverse transmigration to the 

down regulation of the production of inflammatory cytokines.  

The SPI-2 mediated reverse transmigration of dendritic cells is a complex process and 

loss of spvC alone does not completely inhibit this process. This indicates that at least two 

or more SPI-2 effectors are implicated in this process. Our current study was set up to test 

for the effects of individual T3SS effectors on reverse transmigration, future studies could 

be modified to include Salmonella strains that have at least two effectors knocked out. 

The assay in its current form can also be used to discover mammalian factors implicated 

in the SPI-2 mediated reverse transmigration of dendritic cells. Neutralizing monoclonal 

antibodies or an SiRNA approach could be used to perturb a host of cell surface proteins 

expressed by dendritic cells and endothelial cells previously implicated in metastasis and 
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reverse transmigration such as ICAM-1, Tissue factor, PECAM-1, CD99, CXCR4 and 

Endothelin (Yamauchi et al., 2002; Trozicky et al., 2012; Kedzierski et al., 2001; 

Christiansen et al., 2000). 

While in vivo studies had previously associated the T3SS effector SrfH with the rapid 

dissemination phenotype, we were unable to establish a link between SrfH and reverse 

transmigration of dendritic cells in vitro. However, we were able to establish that SrfH had 

a significant effect over the dissociation of intraepithelial dendritic cells associated with 

the gut epithelia that had picked up Salmonella while sampling for antigens through 

epithelial cell junctions. SrfH has two prominent alleles distinguished by a single 

nucleotide polymorphism at amino acid position 103. The presence of a glycine residue 

at position 103 promotes the rapid dissemination of Salmonella in vivo while the presence 

of an aspartic acid residue at the same position results in an eight-fold decrease in the 

process (Thornbrough & Worley, 2012). Through the in vitro dissociation assay we were 

able to demonstrate that SrfH Gly103 is essential for the dissociation of CD11c+ 

intraepithelial dendritic cells while the Asp103 allele significantly reduced the process of 

dissociation. SrfH Asp103 was previously shown to bind with the scaffold protein IQGAP1 

and this interaction has been speculated to contribute towards an inhibitory effect on the 

motility of dendritic cells and phagocytes in vitro (McLaughlin et al., 2009). SrfH Gly103 

on the other hand binds the adaptor protein TRIP6 and colocalizes with this protein to the 

focal adhesion (Worley et al., 2006; Thornbrough & Worley, 2012). Through pull down 

assays we were able to demonstrate that TRIP6 is capable of recruiting CAS and crk 

proteins in the presence of SrfH Gly103. Dissociation of dendritic cells could be facilitated 
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by SrfH Gly103 acting as a molecular tether that anchors TRIP6 to the focal adhesion and 

promoting the coupling of CAS a focal adhesion adaptor protein with Crk, a focal adhesion 

regulatory molecule. Both proteins are abundant at the focal adhesion and have been 

shown to activate the RAC signaling pathway that promotes cellular migration (Kain & 

Klemke, 2001). We hypothesize this same pathway could trigger the dissociation of 

dendritic cells bound to the basal face of the gut epithelia. An siRNA knockdown approach 

can be used to test if TRIP6, CAS and Crk are indeed required for the SrfH stimulated in 

vitro dissociation of dendritic cells. 

 

Figure 4.1. The rapid dissemination of Salmonella in mice. We postulate that the SPI-2 
and CD18 dependent rapid dissemination of Salmonella in mouse model comprises three 
phases, namely, dissociation, adhesion and reverse transmigration. T3SS effectors 
translocated into infected intraepithelial dendritic cells manipulate cellular signaling and 
trigger dissociation of dendritic cells from the GI epithelium and promote migration 
towards a blood vessel. This is followed by adhesion of the dendritic cell to the basal face 
of vascular endothelial cells and the invasion of bloodstream via reverse transmigration. 
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Based on our work and current information available on the reverse transmigration of 

mammalian cells, the CD18 dependent rapid extraintestinal dissemination of Salmonella 

in mice potentially comprise of three phases, dissociation, adhesion and reverse 

transmigration (Figure 4.1). The first phase involves an immature CD11c+ dendritic cell 

associated with the lamina propria picking up Salmonella through the projection of 

dendrites across epithelial cell junctions into the lumen of the small intestine. SPI-2 

effectors including but not restricted to SrfH will trigger dissociation of the Salmonella 

containing dendritic cell from the intraepithelial space and trigger migration towards the 

nearest blood vessel through the activation of the Rac signaling pathway. Migration could 

also be influenced through the modulation of gene expression of chemokine receptors 

such as CXCR4 that would otherwise guide the dendritic cell towards the lymphatic 

system. Phase 2 of this process involves adhesion of the Salmonella infected dendritic cell 

to the basal face of vascular endothelia. In vitro this process could be simulated by 

culturing endothelial cell monolayers on a 24 well plate and stripping the cells using a 

weak detergent, leaving behind an extracellular matrix layer. We are yet to determine 

any SPI-2 effector that could potentially affect this process, but a host of cellular factors 

found on the surface of dendritic cells and endothelial cells such as tissue factor, PECAM-

1 and CD99 could potentially affect this process. The final phase is reverse transmigration 

and results in the invasion of bloodstream by the infected dendritic cell. This process 

involves the movement of the dendritic cell from the basal to apical face of the 

endothelial monolayer lining the blood vessel. SpvC and an unidentified set of effectors 
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could potentially manipulate host signaling pathways such as MAP kinase signaling to 

facilitate this process.  

The rapid dissemination of Salmonella through reverse transmigration is an inefficient 

process with only one in a million Salmonella making it to the bloodstream of mice 30 

minutes following oral inoculation. However, rapid entry into the bloodstream allows 

Salmonella to infect tissue types that are rich in nutrition and devoid of endogenous 

microflora such as the gallbladder, spleen and liver. This allows Salmonella to set up 

persistent colonies that constantly shed bacteria into the gastrointestinal tract and feces 

through the lymphatic system before the infection is potentially cleared through the 

development of a pathogen specific adaptive immune response. The speed with which 

the bacteria penetrate the liver and gallbladder of its animal reservoir may be a 

component of its virulence.  

Bacteremia caused by Salmonella Typhi and invasive NTS in humans is poorly 

understood. The emergence of multidrug resistant strains for both diseases have nullified 

the effectiveness of several first and second-line antibiotics (Van Puyvelde et al., 2019; 

Chatham-Stephens et al., 2019). Our in vitro model provides a genetically tractable and 

cost-effective way of discovering T3SS effectors that are potentially conserved amongst 

the various Salmonella serovars and host factors that could potentially contribute to the 

process of systemic dissemination of Salmonella. This could help pave the way for the 

discovery of novel drug targets that could perturb the process of reverse transmigration 

and contain the establishment of chronic infection of not just Salmonella but other 

intracellular pathogens capable of T3SS mediated systemic infection such as Yersinia 
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(Barnes et al., 2006; Coburn et al., 2005). A better understanding of reverse 

transmigration could also help develop strategies to minimize inflammation in patients 

suffering from chronic diseases such as rheumatoid arthritis or atherosclerosis positive 

for ICAM1high reverse transmigrating neutrophils or stem the metastasis of certain types 

of tumors (Buckley et al., 2005; Roh-Johnson et al.,2013;  Gligorijevic., et al., 2012). 
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