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ABSTRACT 

 

 

The objective of this research project is to evaluate the efficiency of traditional chemical 

tracing compared to dual-viral tracing for labeling long ascending propriospinal neurons 

(LAPNs) in the uninjured rat spinal cord, and to develop a MATLAB program which will 

quantify this labeling efficiently. Chemical tracers such as fluorescent dextrans have traditionally 

been used to retrogradely label projection neurons in the nervous system, however, these tracers 

lack specificity and can label fibers of passage. To label a specific population of long-range 

projection neurons, such as LAPNs, we show here that dual-viral systems are necessary.  

An animal experiment was performed to directly compare the efficiency of chemical 

tracers versus dual-viral systems to label LAPNs. To evaluate chemical tracing, Fluoro-Ruby 

(FR) was injected at the level of the axons terminals, cervical level 5/6 (C5/6), and the number of 

ipsilateral labeled cell bodies at lumbar level 2/3 (L2/3) was quantified. Similarly, two dual-viral 

systems were evaluated, by either injecting retro-AAV-Cre or HiRet-Lenti-Cre unilaterally at 

C5/6 in combination with a Cre-dependent adeno-associated virus (AAV2-FLEx-EGFP) injected 

unilaterally at L2/3, the level of the LAPN cell bodies. We hypothesized that 1) the HiRet-Lenti 

group would label and identify greater numbers of LAPNs than retro-AAV group, 2) the HiRet-

Lenti group would provide greater specificity than FR, and 3) FR would label more neurons than 

either dual-viral labeling group.  

 The HiRet-Lenti and FluoroRuby groups labeled significantly greater numbers of LAPNs 

than the retro-AAV group. These results show that despite the retro-AAV being a robust tool for 

tracing corticopontine neurons, retro-AAV is inefficient for labeling long propriospinal neurons 

such as LAPNs. The similar numbers of LAPNs labeled by HiRet-Lenti and FR is likely due to 

similar rostral-caudal spread of FR and viruses at the injection site(s). However, the HiRet-Lenti 
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dual-viral system provides a greater specificity of labeling, as the expression of EGFP is 

dependent on the presence of both injected viruses, while FR can be taken up by fibers of 

passage, and labeling neurons that were not directly targeted for tracing. Despite the number of 

LAPNs labeled being similar, the dual-viral labeling utilizing HiRet-lentiviruses is preferred due 

to greater specificity and more prominent labeling. 

Methods to quantify labeled spinal cord neurons include either manual counting or the 

utilization of available image processing software. Current imaging processing software are 

difficult for users to navigate and are not optimized for counting cells in spinal cord tissue 

sections. Manual counting is highly accurate, but it is inefficient and biased. To automate the cell 

counting process, a MATLAB program was developed to accurately determine the number of 

ipsilateral cell bodies labeled by each of the tracing techniques analyzed in this experiment. To 

validate the accuracy of the MATLAB program, the number of labeled cells counted for each 

tracing technique by manual counting was compared to the number generated by the MATLAB 

program. 

The number of LAPNs counted manually did not significantly differ from the number of 

LAPNs counted by the MATLAB application for any of the labeling groups, and there was a 

highly significant correlation between the two methods. Based on these results, the custom 

MATLAB application accurately determines the number of ipsilateral cell bodies labeled by each 

of the tracing techniques analyzed in this experiment. Overall, the interactive application 

provides an automated, efficient, and unbiased method of counting cells in spinal cord tissue 

sections. 
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I. INTRODUCTION 

 

 

 

There are approximately 18,000 new cases of spinal cord injury (SCI) per year in the 

United States and < 1% of SCI patients achieve complete neurological recovery.1 The majority 

of patients experience incomplete tetraplegia, incomplete or complete paraplegia, or complete 

tetraplegia. To develop novel treatments for SCI, the structure and function of the spinal cord 

must be further understood at a systems, network, and cellular level. Animal models of SCI are 

being used to address this lack of knowledge, with the ultimate goal of translating effective 

treatment strategies from animal models to human patients in the clinic.  

The rat model of SCI has been used to better understand the pathology of SCI as well as 

evaluate treatment strategies.2 For example, rat models have led to the development of tests to 

assess the locomotor and sensory functional recovery. Rat models have also resulted in a better 

understanding of the changes in the neuronal circuity following SCI, and how the enhancement 

of spontaneous regenerative mechanisms can promote recovery. The therapeutic impact of 

manipulating myelination, glial scarring, and/or inflammation have also stemmed from studies 

utilizing rat models.  

 

A. Rat Locomotion and Propriospinal Neurons 

 

Rat locomotion is characterized by the precise coordination of muscle activity to produce 

regular patterned stepping based on rhythm and pattern of locomotion. At the heart of this 

control are central pattern generators (CPGs), which are neuronal circuits that produce rhythmic 
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neural outputs to control rhythmic behaviors, such as walking or breathing. The four spinal CPGs 

(one for each limb) for locomotion are housed within the cervical and lumbar spinal 

enlargements, and produce and stepping behaviors of the forelimbs and hindlimbs, respectively.3 

Communication between the locomotor CPGs is carried out by propriospinal neurons, which are 

neurons housed completely within the spinal cord.  

Propriospinal axons make-up approximately one-third of axons/fibers in the rat lateral 

and ventral spinal white matter. Most propriospinal neurons are short in length, projecting only 

four spinal segments or less. However, there are also long propriospinal neurons that project 

more than four spinal segments. These long propriospinal neurons, can either ascend or descend 

within the spinal cord, and if they project to and from the spinal enlargements they are 

anatomically suited to mediate coordination between the forelimb and hindlimb CPGs.4,5 The 

pathway(s) most anatomically suited for this coupling of the lumbar and cervical CPGs, and in 

turn the mediation of interlimb coordination of the forelimbs and hindlimbs are long ascending 

(LAPNs) and the reciprocal pathway, long descending (LDPNs) propriospinal neurons.5,6 

LAPNs, which are the focus of this thesis, are defined herein as having cell bodies in the rostral 

lumbar spinal cord (L1-3) and having at least one projection to cervical level 5-6 (C5/6).7 Both 

anatomical and electrophysiological studies support the concept of reciprocal long propriospinal 

neurons communicating between the cervical and lumber CPGs to mediate the rhythm and 

pattern of locomotion. Additionally, these long propriospinal neurons have become increasingly 

important following SCI as reorganization of these propriospinal connections has been suggested 

to contribute to functional recovery after SCI.8  

To determine the specific role of LAPNs in functional recovery, the laboratories of Dr. 

David S.K. Magnuson and Dr. Scott R. Whittemore at the Kentucky Spinal Cord Injury Research 
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Center (KSCIRC) have performed studies to determine the behavioral role of LAPNs in rats 

before and after contusive SCI. Using a dual-viral system described in more detail below, they 

were able to conditionally and reversibly silence LAPNs and analyze the resultant locomotor 

behavior.3,9 These studies showed that when LAPNs were silenced in uninjured rats, left-right 

hindlimb alternation during stepping is disrupted, resulting in a “bounding” gait that is not 

normally seen at the lower speeds at which the rats were locomoting. Surprisingly, when LAPNs 

are silenced after contusive SCI, locomotor outcomes were improved. These results have led to 

specific questions about the role of LAPNs in functional recovery and their inherent anatomical 

plasticity after SCI. Methods developed during this thesis work are essential to answering that 

latter question. 

 

B. Tracing Techniques 

 

Work is currently being done to specifically label LAPNs for somatic and dendritic 

characterization, as well as determine the monosynaptic inputs of LAPNs. The tracing techniques 

available to label neurons include transgenics, traditional chemical tracers, single virus tracers, 

and multi-viral systems.10 Transgenic tracing utilizes genetically modified mice to express genes 

targeted to specific organelles, cells, or tissues.11 Through specific genetic modification to the 

mouse germ line, robust fluorescent labeling is available which enables the labeling of a specific 

subset of cells such as neurons. However, current transgenic rat models are not yet capable of 

such tracing.  
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Traditional chemical tracers, such as FluorogoldTM and similar fluorescent inorganic 

compounds and single virus tracers can act as either anterograde or retrograde tracers, but lack 

specificity of labeling. Anterograde tracers are taken up by neuronal cell bodies at the injection 

site, while retrograde tracers are taken up any/all axon terminals at the injection site and traverse 

back to the cell body. Chemical tracers such as fluorescent dextrans can be taken up by axon 

terminals and retrogradely transported. Chemical tracers are also known to inadvertently label 

fibers of passage.12,13 Similarly, single virus tracers involve injecting a single virus, that may be 

taken up by cell bodies and/or axon terminals at the injection site, and ultimately does not offer 

more specificity than chemical tracers.  

To overcome the limitations of chemical and single virus tracing, and specifically label 

an anatomically defined population of long-range projection neurons such as LAPNs, dual-viral 

systems were developed and further modified.14,15,16. For specific LAPN labeling, the dual-viral 

systems used in this project involve two viruses and two sets of injections: one at the level of the 

cell bodies for the pathway of interest (L2/3), and one virus at the level of the axon terminals 

(C5/6).  

The virus injected at the level of the cell bodies (L2/3) contains a Flip-Excision Switch 

(FLEx), which allows for Cre-recombinase (Cre)-dependent expression of enhanced green 

fluorescent protein (EGFP) to label and visualize neurons. The FLEx switch utilizes site-specific 

recombination to conditionally manipulate gene expression, allowing the expression of a gene of 

interest in the presence of Cre.14 The FLEx switch used in this experiment relies on the 

orientation specificity of Cre-recombinase, which binds lox P sites to induce recombination. 

More specifically, the DNA coding sequence for EGFP is flanked by target sites in opposing 

orientations, so the DNA sequence is first inverted by Cre, allowing for expression of the gene of 
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interest, EGFP here. Cre then excises the heterotypic lox P sites in the same orientation, resulting 

in stable EGFP expression, and cell specific labeling. The virus injected at the level of the axon 

terminals (C5/6) must code for Cre, infect axon terminals, and be retrogradely transported to the 

cell bodies so that EGFP is expressed. The FLEx switch for Cre-dependent expression of EGFP 

is detailed in Figure 1 below. 

 

 

 

 

 

 

 

 

FIGURE 1 – Visualization of FLEx switch: 1) Cre-mediated inversion of coding 

sequence via either of the heterotypic antiparallel lox sites 2) Excision of lox P sites 

results in orthogonal and antiparallel lox sites that are incapable of further recombination 

and allows for stable EGFP expression. 

 

While this dual-viral system provides high specificity, robust labeling of the pathway of 

interest is also paramount. For robust labeling, Cre delivery to the cell body must be high. 

Numerous virus that may confer robust Cre delivery have been well characterized in the brain, 

but have yet to be used and characterized in the rat spinal cord. One candidate for robust Cre 

delivery is a retrograde adeno-associated virus (retro-AAV) which provides efficient labeling 
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when targeting cortical neurons.16 A second candidate for robust Cre delivery is a highly 

efficient retrograde lentivirus (HiRet-Lenti), which our laboratories have used previously.3 A 

major goal of this thesis was to compare these chemical tracer labeling with both retro-AAV-cre- 

and HiRet-Lenti-cre-mediated labeling. 

 

C. Quantifying the Number of Labeled Neurons 

 

 

 

Current methods to quantify labeled spinal cord neurons include either manual counting 

or the utilization of available image processing software. Open source image processing software 

such as ImageJ (National Institutes of Health / https://imagej.nih.gov) or CellProfiler (Broad 

Institute / https://cellprofiler.org) have a wide variety of functions. These open source software 

programs are often difficult for users to navigate and are not optimized for counting cells in 

spinal cord tissue sections. Other image analysis software packages, such as MetaMorph 

(Biovision Technologies Inc. / https://www.biovis.com/metamorph), are expensive and not often 

utilized. Due to the non-specificity of current image processing software, manual counting is 

often used when analyzing spinal cord section images. While the accuracy of manual cell 

counting is high, it also inefficient and biased, as it relies on the counter’s perception of what 

defines a cell.  

To automate the cell counting process, a MATLAB program was developed to accurately 

determine the number of ipsilateral cell bodies labeled by each of the tracing techniques analyzed 

in this experiment. The program utilizes MATLAB image processing techniques, including color 

thresholding and boundary determination, to automatically determine the number of labeled cells 

within a user-specified region of interest (ROI). The program is integrated within an interactive 
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application, which enables the user to load an image of a spinal cord section, select a ROI, count 

only the labeled cells within that region, and overlay lamina to determine where the cells are 

located in the spinal cord. The interactive application enables users to seamlessly navigate 

through a large number of images, while the automated cell counting function both eliminates 

variability between users and significantly reduces counting time. To validate the accuracy of the 

MATLAB program, the number of labeled cells counted for each tracing technique by manual 

counting was compared to the number generated by the MATLAB program.  
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II. METHODS 

 

 

 

 

A. Evaluating Efficiency of Chemical and Viral Tracing 

 

An animal experiment was performed to directly compare the efficiency of chemical 

tracers - which have been traditionally used for labeling neurons and their projections in the 

nervous system – with dual-viral systems to label LAPNs, in uninjured (non-SCI) rats. To 

evaluate the efficiency of a commonly used retrograde chemical tracer, FluoroRuby (FR) was 

injected at cervical level 5/6 (C5/6) on the animals’ left side, and the number of ipsilateral cell 

bodies at lumbar level 2/3 (L2/3) was quantified. To evaluate the dual-viral systems, either two 

boluses of retro-AAV-Cre or two boluses of HiRet-Lenti-Cre were injected unilaterally at C5/6. 

In the same surgery, two boluses of AAV2-FLEx-EGFP were injected unilaterally at L2/3. Based 

on preliminary work, we hypothesized that: 1) HiRet-Lenti would label and identify greater 

numbers of LAPNs than retro-AAV, 2) HiRet-Lenti would have greater specificity than FR, and 

3) FR would label more neurons than either dual-viral labeling group. The number of ipsilateral 

cell bodies at L2/3 was quantified for each set of injections by both manual counting and 

automatic counting utilizing a custom MATLAB program.  

 

B. Chemical and Viral Tracer Injections 

 

 A total of N = 12 adult female Sprague Dawley rates (220-250 g; Envigo, City, IN) were 

used in this experiment. Animals were housed two per cage with ad libitum food and water under 

12 h light/dark cycle. Procedures were performed in accordance with the University of Louisville 



9 
 

Institutional Animal Care and Use and Institutional Biosafety Committees, as well as the Public 

Health Service Policy on Humane Care and Use of Laboratory Animals.    

 For the chemical tracer injections, rats (n = 4) were anesthetized (ketamine/xylazine/ 

acepromazine, 0.5 ml/250 g i.p.), placed into a spinal stabilization unit, and received a C5/6 

laminectomy to expose C6. FluoroRuby was ipsilaterally injected (0.25 µl, 1.3 mm rostrocaudal) 

into the intermediate gray matter (0.55 mm mediolateral, 1.2 mm dorsoventral) using a 

stereotaxic device. Injections were given in one 0.25 µl bolus with the needle left in place for 

another 2 minutes to allow for tracer uptake and to prevent leakage out the needle track. The 0.25 

µl volume was used for FR injections, as this volume provided the same rostral-caudal spread 

within the spinal gray matter as the volume of virus that was injected (outlined below). 

 For the viral injections,  rats (n = 8) were anesthetized (ketamine/xylazine/acepromazine, 

0.5 ml/250 g i.p.), placed into a spinal stabilization unit, and received a C5/6 laminectomy and 

T12 laminectomy to expose C6 and L1/2, respectively. For retro-AAV2-Cre, rats (n = 4) were 

ipsilaterally injected (0.5 µl/site, 1.3 mm rostrocaudal) into the intermediate gray matter (0.55 

mm mediolateral, 1.2 mm dorsoventral) of C5/6 at two sites. For HiRet-Lenti-Cre, rats (n = 4) 

were ipsilaterally injected (0.5 µl/site, 1.3 mm rostrocaudal) into the intermediate gray matter 

(0.55 mm mediolateral, 1.2 mm dorsoventral) of C5/6 at two sites. All rats receiving viral 

injections at C5/6 (n = 8) were then given ipsilateral injections of AAV2-FLEx-EGFP at L2/3 

(0.5 µl/site, 1.3 mm rostrocaudal) into the intermediate gray matter (0.5 mm mediolateral, 1.35 

mm dorsoventral) of L2/3 at two sites. All injections were given in 0.25 µl boluses with the 

needle left in place for another 2 minutes to allow for viral uptake. Injection sites are 

schematized in Figure 2. 
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FIGURE 2 - Injections for the three different tracing techniques: 

A) Fluoro-Ruby    B) retro-AAV    C) Hi-Ret 

 

For all animals, the incision site(s) was/were sutured in layers and the wound closed with 

surgical staples. Buprenorphine (0.1 mg/kg, 0.37 ml, subcutaneous) was provided every 12 hours 

for the first 48 hours post-surgery for pain management, and gentamicin (20 mg/kg, 0.23 ml, s.c.) 

was administered once daily for 7 days. Saline solution was administered every 12 hours for the 

first 48 hours post-surgery and then once a day for the next 4 days for hydration. All animals 

recovered voluntary bladder control within 24 hours post-surgery.  

 

 

C. Tissue Processing and Imaging 

 

 Two weeks following FR injections, and three weeks following viral injections, animals 

were sacrificed with an overdose of ketamine/xylazine/acepromazine, then transcardially 

perfused with 0.1 M phosphate-buffered saline (PBS) (pH 7.4) followed by 4% 
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paraformaldehyde (PFA) in PBS. Spinal cords were dissected, post-fixed in PFA for 1 hour, 

transferred to 30% sucrose, and stored at 4 °C. Spinal segments L1-3 were dissected, embedded 

in tissue freezing medium, cryosectioned at 30 µm, slide mounted, and stored at −20 °C. Slides 

were cover-slipped with Fluoromount (Company, City, ST) and air dried overnight. 

 Images of spinal cord sections were captured using a Nikon (Mellville, NY) TiE 300 

inverted microscope with the 10× objective and TxRed filter settings for FR labeling and GFP 

settings for viral labeling. Every other tissue section with labeled cell bodies was imaged to 

prevent double counting of neurons. The number of labeled cells was manually counted, and 

Inkscape (https://inkscape.org), a free graphics software, was used to overlay a lamina map to 

record which spinal lamina the labeled neurons were found. The number of labeled neurons and 

location within the laminae was recorded in Excel. Along with manual counting, the number of 

cells in each imaged section was run through the custom MATLAB program. 

 

 

D. MATLAB Programming 

 

 Using MATLAB, a program was developed to automatically detect and count labeled 

cells. Image processing functions and MATLAB’s AppDesigner were utilized to create a 

functional and user-friendly application for automatic cell counting. The various functions of the 

program are listed in Table 1 below. 
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TABLE I 

LIST AND DESCRIPTION OF MATLAB FUNCTIONS 

MATLAB Function Brief Description 

startupFcn Application runs and is maximized to full screen 

BrowseImageButtonPushed 

Enables user to select desired image using the file 

selector, displays selected image within axes and file 

name in adjacent edit box  

TraceROIButtonPushed 
Enables user to trace region of interest within selected 

image, new traced image replaces selected image  

ColorThresholdSliderValueChanged 

Pixels of selected image are thresholded based upon 

chosen value, image is converted to binary, thresholded 

image is displayed in axes above slider 

ManualProcessingButtonPushed 

Provides user with option to trace image artifacts and 

eliminate them from thresholded image, check box is 

filled if button is pushed 

SelectLaminaButtonPushed 
Enables user to select lamina overlay, displays file 

name in adjacent edit box 

DisplayOverlayButtonPushed 
Figure window appears displaying original image with 

selected lamina overlay  

CountButtonPushed 

Number of cells is automatically counted, figure 

window displayed with two axes- original image with 

lamina overlay on the left, thresholded image with 

boundaries traced around the counted cells on the right 

DirectionsButtonPushed 
Figure window appears with directions detailing 

application use 

 

 

Properties within the application programming contain object data and are stored and 

called throughout the different functions. These properties including a brief description are listed 

in Table II below. 
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TABLE II 

LIST AND DESCRIPTION OF MATLAB PROPERTIES 

Property Brief Description 

Image Image data corresponding to image selected by user 

full_img Image object created from display of selected image 

ROI Image data corresponding to traced image  

thresholdedImage Image data corresponding to image after thresholding 

full_threshold Image object created from display of thresholded image 

processedROI 
Image data corresponding to image after manual 

processing 

overlay Image data corresponding to selected lamina overlay 

 

The various functions and properties of the custom MATLAB application will be further 

discussed by utilizing an example image from the chemical tracing vs. dual-viral tracing 

experiment. This image is a lumbar section from an animal injected with the retro-AAV2-Cre 

virus at C5/6 and AAV2-FLEx-EGFP at L2/3. 

 

i. Startup Function and Application Interface 

 

When the application is first opened, it is programmed to become full screen 

automatically, without the user having to manually maximize the application window. The 

application interface is shown in Figure 3 below. 
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FIGURE 3 – Screenshot of Application Interface 

 

ii. Browse Image and Trace ROI Functions 

 

The first interactive function of the application is the ‘BrowseImageButtonPushed’ 

function. When the button labeled “Browse Image” is pushed, the file selector is displayed, 

allowing the user to select an image of a spinal cord section. The file selector enables 8-bit 

images of file type ‘png’, ‘jpeg’, ‘bmp,’ and ‘tif’ to be selected. The selected image is then 

displayed within the axes under the label “Original Image,” and the image data are stored as the 

property ‘Image.’ The image object is stored as the property ‘full_img.’ The name of the file is 

also displayed in the ‘Edit Text’ box next to the “Browse Image” button. The displayed image 

within the application interface is shown below in Figure 4. 



15 
 

 

FIGURE 4 – Selected Image and File Name Displayed 

The next function is the ‘TraceROIButtonPushed’ function. When the “Trace ROI” 

button is pushed, a separate figure window with the selected image is displayed. The user can 

then trace the region of interest in which labeled cells should be counted. For the images in this 

tracing study, the right side of the gray matter should be outlined because the injections were 

unilateral. Once the ROI has been traced, each pixel outside of that outline is programmed to turn 
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black, eliminating extraneous background. The new image with eliminated background is 

displayed within the separate figure window, and the original image in the axis below the 

“Original Image” label is replaced with the new image. The new traced image data are stored as 

the property ‘ROI.’ Next to the “Trace ROI” button, there is a drop-down list used to select the 

type of labeling being analyzed. The two options on the list are ‘GFP’ and ‘FluoroRuby.’ The 

selection will determine how the color thresholding is performed in the next step. The interface 

with the new traced image and the drop-down list options displayed is shown in Figure 5 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

FIGURE 5 – Screenshot with Traced Image and Drop-Down List Displayed 
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iii. Color Thresholding and Manual Processing Functions 

 

The image must be further processed before cells can be automatically detected and 

counted. The ‘ColorThresholdSliderValueChanged’ function enables the user to eliminate the 

remaining background, leaving only the labeled cells. The traced image is originally stored as an 

RGB, or “truecolor” image within the property ‘ROI.’ RGB image data includes m-by-n-by-3 

data array that defines red, green, and blue color components of each individual pixel. When the 

value of the color threshold slider is changed, the program first extracts the image pixels within 

the color channel that correspond to the labeling selected using the drop-down list. If ‘GFP’ is 

selected, only the pixels within the green channel are extracted. If ‘FluoroRuby’ is selected, only 

the pixels within the red channel are extracted.  

When the pixels are extracted, the RGB image is automatically converted to grayscale, 

and the values of the pixels are converted based upon the selected threshold value. The threshold 

value is determined by the position of the slider labeled “Color Threshold.” The color threshold 

slider values range from 0-255. A pixel value of 0 is equivalent to the color black in a grayscale 

image, while 255 is equivalent to white. Every pixel value below the threshold value is converted 

to a pixel value of 0, so that the pixels are converted to black. Finally, the thresholded image is 

converted to binary so that every pixel with a non-zero value is converted to a value of 1. The 

binary image data is then stored within the property ‘thresholdedImage’ and displayed within the 

second axis placed above the color threshold slider as shown below in Figure 6. The image 

object is stored as the property ‘full_threshold.’ 
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FIGURE 6 – Screenshot of Binary Image 

 

 After the traced image has been thresholded and converted to binary, the 

‘ManualProcessingButtonPushed’ function can be utilized to remove artifacts in the image that 

could be mistaken for labeled cells. When the manual processing button is pushed, a separate 

figure window appears containing the thresholded image. The user can then trace around the 

artifact, and the pixels inside the outlined region will be converted to black, with a pixel value of 

0. The image with the blacked-out region will then replace the thresholded image in the second 

axis above the color threshold slider. If an image has been manually processed, the image data 
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for the processed image is stored in the property ‘processedROI,’ and the check box adjacent to 

the manual processing button becomes filled. In order to display the functionality of the manual 

processing button, an object that is not a clear artifact has been outlined to be removed from the 

image. The figure window with the outlined region is shown in Figure 7 below.  

  

 

 

 

 

 

 

 

 

 

 

FIGURE 7 – Screenshot of Manual Processing Figure Window 

 

iv. Lamina Overlay and Count Functions 

 

 The next function is the ‘SelectLaminaButtonPushed’ function. When the button labeled 

“Select Lamina” is pushed, the file selector is displayed, allowing the user to select a lamina 

overlay image. The file selector enables 8-bit images of file type ‘png’, ‘jpeg’, ‘bmp,’ and ‘tif’ to 

be selected. Once the lamina overlay has been selected, the file name is displayed in the edit field 
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adjacent to the “Select Lamina” button. The image data of the lamina overlay are stored as the 

property ‘overlay.’ Any lamina image can be uploaded to the program, but will only work as 

overlay if the background of the image has been removed previously. Lamina images ready to be 

used currently include laminae T12 – L4. 

The ‘DisplayOverlayButtonPushed’ function enables the user to view the selected lamina 

overlaid onto the original spinal cord section image. When the “Display Overlay” button is 

pushed, a figure window appears displaying the original image with a lamina overlay, positioned 

according to the size and coordinate values specified by the user. The numeric edit fields 

pictured in Figure 8 allow the user to specify the “Width” and “Height” of the lamina overlay, 

the coordinate position of the overlay within the x and y axes, and the rotation of the overlay in 

degrees. The width and height correspond to the row and column dimensions of the overlaid 

image. 

 

FIGURE 8 – Screenshot of Resize and Position Edit Fields 

 

Once the dimensions and position of the lamina overlay have been specified, the original image 

with a lamina overlay is displayed, as shown in Figure 9. The size and coordinates of the lamina 

overlay can be updated, and the image re-displayed as needed.  
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FIGURE 9 – Original Image with Lamina Overlay 

  

 The ‘CountButtonPushed’ function automatically detects and counts labeled cells based 

on the thresholded binary image. When the “Count” button is pushed, the application is 

programmed to utilize image region properties and MATLAB’s ‘ncount’ function to only count 

regions that have a pixel area greater than 100 and an eccentricity less than 0.97. Pixel area is the 

actual number of pixels within a region, while eccentricity is the ratio of the distance between the 

foci of the ellipse and its major axis length. Eccentricity values range from 0 to 1, 0 being a 

perfect circle and 1 being a line segment. The eccentricity threshold value was included in the 
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count function so that dendrites without a visible cell body are not miscounted as labeled cells, 

because dendrite shape resembles a line segment. The threshold values for pixel area and 

eccentricity were determined after 10 test images were run through the application, and the 

number and location of automatically counted cells was directly compared to the number and 

location of manually counted cells for each image. The number of counted cells is displayed in 

the numeric edit field adjacent to the “Count” button. An elseif expression is programmed within 

the ‘CountButtonPushed’ function so that the data stored in the ‘thresholdedImage’ property is 

called when the check box adjacent to the manual processing button is not filled, indicating that 

the image has not been manually processed. If a check appears in the box, indicating an image 

has been manually processed, the image data stored in the ‘processedROI’ will be called and 

counted.   

After the number of regions, or cells, has been counted, MATLAB’s ‘bwboundaries’ 

function is utilized to trace the exterior boundaries of the counted cells. A for loop is utilized so 

that for every region in the image, the properties are called to determine the pixel area and 

eccentricity, and then the regions that have an area >100 pixels and an eccentricity < 0.97 are 

both counted and traced with a red boundary outline. A new figure is then displayed with two 

subplots. The subplot on the right of the figure displays the thresholded (or thresholded and 

manually processed) image with the image regions, or labeled cells, outlined. The subplot on the 

left of the figure displays the original spinal section image with the lamina overlay, as is 

displayed when the “Display Overlay” button is pushed. As shown in Figure 10, the user can 

zoom in on either subplot to determine in which lamina of the spinal cord the cells are located.   
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FIGURE 10 – Lamina Overlay and Image Regions with Boundaries 

 

 Finally, the ‘DirectionsButtonPushed’ function enables the user to view directions 

detailing application use. When button labeled “Directions” is pushed, a figure appears with an 

information icon and detailed directions for reference, as shown in Figure 11 below. 

 

  

 

 

 

 

 

 

 

 

FIGURE 11 – Screenshot of Directions Pop-up Window 
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            To validate the accuracy of the custom MATLAB application, every image that was 

manually counted was also run through the application. The number and location of labeled cells 

for each image analyzed using the application was recorded in Excel and then directly compared 

to the number and location of labeled cells from manual counting.  
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III. Results 

 

A. Evaluating Efficiency of Chemical and Viral Tracing 

 

 To directly compare the efficiency of chemical tracers versus dual-viral systems for 

labeling LAPNs, both the total number of neurons from each group and the number of neurons 

per section for each group were compared. One animal from the HiRet-Lenti-Cre virus group 

was removed from analysis, as labeling at the lumbar injection site of this animal only spanned 

one-half the rostral-caudal distance seen in all other viral labeled animals, it is likely that one of 

the lumbar injection sites was missed. The statistical differences seen between groups were not 

altered by removing this animal from analysis. 

An analysis of variance (ANOVA) and Tukey post-hoc test were performed using the 

program ‘R’ to compare the total number of LAPNs labeled from each group (group mean ± 

standard deviation; retroAAV: 31.5 ± 10.15, HiRet: 125.33 ± 45.796, FR: 135.5 ± 52.29). The 

total number of neurons labeled was significantly lower in the retro-AAV-Cre virus group 

compared to both the HiRet-Lenti-Cre virus group and the FR group (retroAAV vs. HiRet: p = 

.000507, retroAAV vs. FR: p = .000116). The mean number of neurons was not significantly 

different between the HiRet-Lenti-Cre virus group and the FR group (HiRet vs. FR: p = 

.953487). These comparisons are displayed in Figure 12 below. 
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FIGURE 12 – Total LAPNs labeled by labeling group. Blue dots represent group means, red dots 

represent data from individual animals, and error bars represent 1 SD, **p<.01 

 

An ANOVA and Tukey post-hoc test were also performed using the program ‘R’ to 

compare the number of neurons labeled per section for each group (group mean ± standard 

deviation; retroAAV: 0.5025 ± 0.134, HiRet: 2.35 ± 0.466, FR: 2.117 ± 0.764). The mean 

number of neurons per section was significantly lower in the retro-AAV-Cre virus group 

compared to both the HiRet-Lenti-Cre virus group and the FR group (retroAAV vs. HiRet: p = 

.0001, retroAAV vs. FR: p = .0001). The mean number of neurons per section was not 

significantly different between the HiRet-Lenti-Cre virus group and the FR group (HiRet vs. FR: 

p = .832). These comparisons are displayed in Figure 13 below. 
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FIGURE 13 – LAPNs labeled per spinal cord tissue section by labeling group. Blue dots 

represent group means, red dots represent data from individual animals, and error bars represent 

 1 SD, **p<.01 

 

B. MATLAB Application Validation 

 

 All images that were manually counted were also run through the custom MATLAB 

application to determine the accuracy of the program. Difference scores were calculated by 

subtracting the number of cells counted by the MATLAB program from the number of cells 

counted manually. An analysis of variance (ANOVA) was performed using the program ‘R’ to 

compare the difference scores between groups, and determine if there was greater error in any of 

the groups (mean of difference scores  standard deviation; retroAAV: -1.75 ± 6.95, HiRet: -0.5 
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± 13.18, FR: 2.75 ± 12.84). The number of LAPNs counted manually was not significantly 

different from the number of LAPNs counted by the MATLAB application in any labeling group 

(ANOVA p = .848) . An animal-by-animal comparison of counting methods is shown in Figure 

14 below. 

 

FIGURE 14 – Comparison of manual counting and MATLAB counting of LAPNs for each 

animal.  

 

The percent changes between counting methods were also calculated for each animal and are 

shown in Table III. Negative percentages indicate a decrease in the number of LAPNs counted 

by the MATLAB application, and positive percentages indicate an increase in the number of 

LAPNs counted by the MATLAB application. 
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TABLE III 

PERCENT CHANGES BETWEEN COUNTING METHODS 

 

 

 

 

 

 

 

 

 

          The relationship between the two counting methods was directly analyzed using a 

correlation, as shown in Figure 15 (Pearson R value = 0.99; p = 3.8x10-9). There was a strong 

relationship between manual counting and MATLAB counting, as well as a statistically 

significant correlation.    

 

Animal         

Number
Labeling Group

Percent Change from Manual to 

MatLab Counting

1 Fluororuby 1.99%

2 Fluororuby -9.27%

3 Fluororuby 11.01%

4 Fluororuby -16.05%

5 HiRet-Cre 7.26%

6 HiRet-Cre -16.67%

7 HiRet-Cre 8.65%

8 HiRet-Cre -7.02%

9 retroAAV -10.00%

10 retroAAV -23.08%

11 retroAAV 15.38%

12 retroAAV 21.95%

Individual Percent Changes Between Counting Methods 
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FIGURE 15 – Correlation between manual and MATLAB counting methods. Black line 

indicates trend line, and light gray represents 95% confidence interval.  
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III. Discussion 

 

 Based on preliminary work and previous literature, we hypothesized that 1) the HiRet-

Lenti group would label and identify greater numbers of LAPNs than retro-AAV group, 2) the 

HiRet-Lenti group would provide greater specificity than FR, and 3) FR would label more 

neurons than either dual-viral labeling group.  As expected, both the HiRet-Lenti and 

FluoroRuby groups labeled significantly greater numbers of LAPNs than the retro-AAV group. 

These results show that despite the retro-AAV being a robust tool for tracing cortical neurons 

and their projections16, retro-AAV is inefficient for labeling propriospinal neurons such as 

LAPNs. However, dual-viral labeling utilizing the HiRet-lentiviruses, such as the HiRet-Cre 

used here, are a more robust and reliable means of labeling propriospinal neurons than retro-

AAV.  

Unexpectedly, there was no difference between the number of LAPNs labeled between 

the FluoroRuby and HiRet-Lenti groups. This is likely due to the similar rostral-caudal spread of 

the volumes/doses of FluoroRuby and the viruses that were injected. During preliminary work, a 

0.25 µl bolus of FluoroRuby was injected ipsilaterally into the C5/6 intermediate spinal gray 

matter of one animal. The animal was sacrificed after one week after the injection, and the spinal 

cord was dissected. The C5/6 segment was then cryosectioned longitudinally and slide mounted. 

Microscopy images acquired using the Nikon TiE 300 inverted microscope revealed that the 

volume of FluoroRuby injected spread rostral-caudally one spinal segment at the injection site, 

approximately 1.1mm. This is an equivalent rostral-caudal spread to the spread of the of the viral 

doses injected. For consistency between the FluoroRuby and viral tracing groups, 0.25 µl of 

FluoroRuby was injected in the chemical tracing group (n = 4).  
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Although HiRet-Lenti labeled the same number of neurons as FR, dual-viral tracing 

utilizing the HiRet-lentivirus provides more specificity than traditional chemical tracing with FR. 

Previous work from our lab compared the laminar distribution of LAPNs using dual-viral 

labeling with HiRet-Lenti-Cre versus chemical tracing with cholera toxin b (CTB) (Figure 16 

A&B). Heat maps and contour plots were generated using a different custom MATLAB program 

to show the laminar distribution of LAPNs (Figure 16 C-F). The laminar distributions were 

similar between the two groups, however virus labeling was more specific. Most of the neurons 

labeled by HiRet-Lenti were in lamina 6,7,8, while the distribution of neurons labeled by CTB 

varied between laminas 5,6,7, and 8 (Figure 16 G).  

FIGURE 16 – a. CTB injection. b. Dual-virus injection of HiRet-Lenti-Cre and AAV2. c, 

d. MATLAB generated heat maps. e, f. MATLAB generated contour plots. g. Laminar 

distribution of LAPNs. 

 

The similar numbers of LAPNs labeled by HiRet-Lenti and FR seen here is likely due to 

similar rostral-caudal spread of FR and viruses at the injection site(s). However, the HiRet-Lenti 
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dual-viral system provides a greater specificity of labeling, as the expression of EGFP is 

dependent on the presence of both injected viruses, while FR can be taken up by fibers of 

passage in addition to the axon terminals of the target neuronal population.12,13 Additionally, 

LAPNs labeled by HiRet-Lenti were brighter, more prominent, and typically easier to identify 

than LAPNs labeled by FR. Thus, despite the number of LAPNs labeled being similar, the dual-

viral labeling utilizing HiRet-lentiviruses is preferred due to greater specificity and more 

prominent labeling. Although chemical tracers such as FR or CTB are less specific than the dual-

viral systems, chemical tracers can be useful for studies that combine axonal tract tracing with 

electrophysiological recording, such as in facial nerves.18  

We also found that dual-viral systems utilizing retro-AAVs, such as the retro-AAV2-Cre 

virus used here, do not provide robust labeling when tracing long propriospinal neurons in rats. 

This is somewhat expected as the goal of the directed evolution of the retro-AAV was to infect 

the axon terminals of corticopontine neurons in mice and label the somata of these corticopontine 

neurons.16 The low number of LAPNs labeled by the dual-viral system utilizing the retro-AAV is 

likely attributed to either low infectivity of propriospinal axon terminals and/or poor retrograde 

transport of the virus. LAPN axons in rats are 7 cm long, which is approximately 10 times longer 

than of the mouse corticopontine axons (6-7mm long) that the retro-AAV was developed to 

target.16 This finding emphasizes the need to empirically test, characterize, and optimize 

individual viruses used for labeling a neuronal population of interest. However, the retro-AAV is 

still an effective tracing tool when targeting cortical neurons with short projections, such as 

corticopontine neurons.16 Based on our findings, dual-viral systems utilizing a HiRet-Lentivirus 

at the level of the axon terminals and AAV2 containing a FLEx switch at the level of the cell 
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bodies confers robust, specific, and prominent labeling compared to other tracing methods when 

targeting propriospinal neurons such as LAPNs.                 

For MATLAB application validation, each image that was manually counted was run 

through the custom MATLAB application. The number of LAPNs counted manually did not 

differ from the number of LAPNs counted by the MATLAB application between labeling 

groups. The significant correlation between manual counting and MATLAB counting also 

indicated a strong relationship between methods, and further emphasizes the accuracy of the 

MATLAB application. The calculated percentage changes per animal were highest for the retro-

AAV group, which is to be expected as the overall number of LAPNs counted was the lowest for 

that group. Based on these results, the custom MATLAB application accurately determined the 

number of ipsilateral cell bodies labeled by each of the tracing techniques analyzed in this 

experiment. The interactive application is also free and user-friendly, allowing the user to 

navigate through a large number of images and overlay different laminae with ease. Overall, the 

program provides an automatic, efficient, and unbiased method of counting cells in spinal cord 

tissue sections. 
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APPENDIX I 

MATLAB Programming 

classdef MEng_AppDesigner < matlab.apps.AppBase 
    % Properties that correspond to app components 
    properties (Access = public) 
        UIFigure                    matlab.ui.Figure 
        UIAxes_2                    matlab.ui.control.UIAxes 
        BrowseImageButton           matlab.ui.control.Button 
        FileName                    matlab.ui.control.EditField 
        DirectionsButton            matlab.ui.control.Button 
        TraceROIButton              matlab.ui.control.Button 
        ColorThresholdLabel         matlab.ui.control.Label 
        ColorThresholdSlider        matlab.ui.control.Slider 
        CountButton                 matlab.ui.control.Button 
        DropDown                    matlab.ui.control.DropDown 
        UIAxes                      matlab.ui.control.UIAxes 
        AutomatedCellCountingLabel  matlab.ui.control.Label 
        EditField                   matlab.ui.control.NumericEditField 
        ManualProcessingButton      matlab.ui.control.Button 
        CheckBox                    matlab.ui.control.CheckBox 
        OriginalImageLabel          matlab.ui.control.Label 
        ProcessedImageLabel         matlab.ui.control.Label 
        Labeling                    matlab.ui.control.Label 
        SelectLaminaButton          matlab.ui.control.Button 
        EditField_2                 matlab.ui.control.EditField 
        WidthEditFieldLabel         matlab.ui.control.Label 
        WidthEditField              matlab.ui.control.NumericEditField 
        HeightEditFieldLabel        matlab.ui.control.Label 
        HeightEditField             matlab.ui.control.NumericEditField 
        ResizeLabel                 matlab.ui.control.Label 
        XEditField                  matlab.ui.control.NumericEditField 
        XEditFieldLabel             matlab.ui.control.Label 
        YEditField                  matlab.ui.control.NumericEditField 
        YEditFieldLabel             matlab.ui.control.Label 
        PositionLabel               matlab.ui.control.Label 
        DisplayOverlayButton        matlab.ui.control.Button 
        RotationdegEditFieldLabel   matlab.ui.control.Label 
        RotationdegEditField        matlab.ui.control.NumericEditField 
    end 
    properties (Access = private) 
        Image %Browsed image 
        full_img %img before tracing ROI 
        ROI %image after tracing 
        folder %folder with lamina overlay images 
        thresholdedImage %image after being thresholded 
        full_threshold %image before processing 
        processedROI %image after processing 
        overlay %browsed lamina overlay 
    end 
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    % Callbacks that handle component events 
    methods (Access = private) 
        % Code that executes after component creation 
        function startupFcn(app) 
            %starts the app at fullscreen automatically 
            drawnow; 
            app.UIFigure.WindowState = 'maximized'; 
        end 
        % Button pushed function: BrowseImageButton 
        function BrowseImageButtonPushed(app, event) 
            [filename, pathname] = uigetfile({'*.png';'*.jpg';'*.bmp'; 
'*.tif'},'File Selector'); 
            select_image = strcat(pathname, filename); 
            I = imread(select_image); 
            img = imshow(I,'Parent',app.UIAxes_2);             
            app.Image = I; 
            app.full_img = img;             
            assignin('base','filename',filename); 
            assignin('base','pathname',pathname);             
            %display pathname and filename             
            app.FileName.Value = filename        
        end 
        % Button pushed function: DirectionsButton 
        function DirectionsButtonPushed(app, event) 
            % Directions on how to use app 
            f = uifigure; 
            message = sprintf(['Click "Browse Image" to select a spinal cord 
section image.' ... 
                '\nSelect "Trace ROI" to trace the region in which the cells 
should be counted.' ... 
                '\nNext, select which type of labeling was performed from the 
drop down list.' ... 
                '\nTo begin counting, use the slider bar to select a color 
threshold.' ... 
                '\nIf there are clear artifacts in the image, you can select 
"Manual Processing"' ... 
                'and trace the artifact to black it out.\nWhen you are ready to 
overlay lamina,' ... 
                'click "Select Lamina" to choose the overlay. \nFinally, click 
"Count" to automatically ' ... 
                'count the labeled cells and display the lamina overlay.']); 
            uialert(f,message,'Directions','Icon','info'); 
        end 
        % Button pushed function: TraceROIButton 
        function TraceROIButtonPushed(app, event)             
            %drawing freehand ROI 
            imshow(app.Image)             
            h = drawfreehand            
            h.FaceAlpha = 0; 
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            h.FaceSelectable = false; 
            %blacking out non-ROI portion of image 
            BW = createMask(h,app.full_img); 
            BW(:,:,2) = BW; 
            BW(:,:,3) = BW(:,:,1); 
            ROI = app.Image;             
            ROI(BW == 0) = 0;             
            %showing ROI in App Axes             
            imshow(ROI);             
            imshow(ROI,'Parent',app.UIAxes_2); 
            imwrite(ROI,'tracedImage.png');                         
            traced_ROI = imread('tracedImage.png'); 
            app.ROI = traced_ROI; 
                     
        end 
        % Button pushed function: CountButton 
        function CountButtonPushed(app, event)                     
            value = app.EditField_2.Value; 
            figure; 
            subplot(1,2,1) 
            imshow(app.Image)           
            overlay = imread(app.overlay);             
            height = app.HeightEditField.Value; 
            width = app.WidthEditField.Value; 
            xval = app.XEditField.Value; 
            yval = app.YEditField.Value; 
            rot = app.RotationdegEditField.Value;                       
            overlay = imresize(overlay, [height width]); 
            overlay2 = imrotate(overlay, rot,'crop'); 
            hold on 
            J = imtranslate(overlay2,[xval, yval],'OutputView','full'); 
            f3 = imshow(J) 
            set(f3,'AlphaData',0.2);              
          if app.CheckBox.Value == 1             
            subplot(1,2,2)             
            imdata_threshold = app.processedROI;            
            imshow(imdata_threshold); 
            %Traces region boundaries  
            [B,L] = bwboundaries(imdata_threshold);             
            hold on;             
            ncount = 0; 
            stats2 = regionprops(L,'Area'); 
            for k=1:length(B)  
                boundary = B{k}; 
                obj_area2 = stats2(k).Area; 
                if obj_area2 > 200  
                    plot(boundary(:,2),boundary(:,1),'r','LineWidth',1); 
                    ncount = ncount + 1 
                end 
            end          
            app.EditField.Value = ncount                         
          elseif app.CheckBox.Value == 0               
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            subplot(1,2,2) 
            imdata_threshold = app.thresholdedImage; 
            imshow(imdata_threshold); 
            %Traces region boundaries  
            [B,L] = bwboundaries(imdata_threshold);             
            hold on;             
            ncount = 0; 
            stats2 = regionprops(L,'Area'); 
            stats3 = regionprops(L,'Eccentricity'); 
        for k=1:length(B)  
            boundary = B{k}; 
            obj_area2 = stats2(k).Area; 
            obj_area3 = stats3(k).Eccentricity; 
            if obj_area2 > 100 & obj_area3 < .97 
               plot(boundary(:,2),boundary(:,1),'r','LineWidth',1); 
               ncount = ncount + 1 
            end 
        end             
            app.EditField.Value = ncount 
          end                               
        end 
        % Value changed function: ColorThresholdSlider 
        function ColorThresholdSliderValueChanged(app, event) 
            value = app.ColorThresholdSlider.Value;             
            if strcmp(app.DropDown.Value,'GFP')             
            %Extracting image in green channel 
            imdata = app.ROI;                      
            imdata_green = imdata(:,:,2);             
            %Changing every gray level value less than selected value to black 
            imdata_green(find(imdata_green<value)) = 0;             
            full_threshold = imshow(imdata_green,'Parent',app.UIAxes);                      
            imwrite(imdata_green,'thresholdedImage.png');                         
            thresholded_image = imread('thresholdedImage.png'); 
            app.thresholdedImage = thresholded_image; 
            app.full_threshold = full_threshold;             
            elseif strcmp(app.DropDown.Value,'FluoroRuby')             
            %Extracting image in green channel 
            imdata = app.ROI;                      
            imdata_green = imdata(:,:,1);             
            %Changing every gray level value less than selected value to black 
            imdata_green(find(imdata_green<value)) = 0;             
            full_threshold = imshow(imdata_green,'Parent',app.UIAxes);          
            imwrite(imdata_green,'thresholdedImage.png');                         
            thresholded_image = imread('thresholdedImage.png'); 
            app.thresholdedImage = thresholded_image; 
            app.full_threshold = full_threshold;             
            end             
        end 
        % Button pushed function: ManualProcessingButton 
        function ManualProcessingButtonPushed(app, event) 
            %addressing the problem of double counting cells  
            %blacking out ROI portion of the image 
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            ax = axes('Parent', uifigure) 
            imshow(app.thresholdedImage,'Parent',ax) 
             
            %drawing freehand ROI                                  
            h = drawfreehand(ax)             
            h.FaceAlpha = 0; 
            h.FaceSelectable = false; 
            %blacking out non-ROI portion of image             
            BW = createMask(h,app.full_threshold);             
            insideMasked = app.thresholdedImage; 
            insideMasked(BW) = 0;             
            %showing ROI in App Axes             
            imshow(insideMasked,'Parent',ax);            
            imshow(insideMasked,'Parent',app.UIAxes); 
            imwrite(insideMasked,'processedImage.png');                         
            processed_ROI = imread('processedImage.png'); 
            app.processedROI = processed_ROI; 
            %app.processedROI = app.thresholdedImage             
            app.CheckBox.Value = 1         
        end 
        % Button pushed function: SelectLaminaButton 
        function SelectLaminaButtonPushed(app, event) 
            [filename, pathname] = 
uigetfile({'*.png';'*.jpg';'*.bmp';'*.tif'},'File Selector'); 
            select_lamina = strcat(pathname, filename); 
            app.overlay = select_lamina; 
            app.EditField_2.Value = filename  
        end 
        % Button pushed function: DisplayOverlayButton 
        function DisplayOverlayButtonPushed(app, event) 
            figure 
            imshow(app.Image) 
            overlay = imread(app.overlay);             
            height = app.HeightEditField.Value; 
            width = app.WidthEditField.Value; 
            xval = app.XEditField.Value; 
            yval = app.YEditField.Value; 
            rot = app.RotationdegEditField.Value;                       
            overlay = imresize(overlay, [height width]); 
            overlay2 = imrotate(overlay, rot,'crop'); 
            hold on 
            J = imtranslate(overlay2,[xval, yval],'OutputView','full'); 
            f3 = imshow(J) 
            set(f3,'AlphaData',0.2);            
        end 
    end 
    % Component initialization 
    methods (Access = private) 
        % Create UIFigure and components 
        function createComponents(app) 
            % Create UIFigure and hide until all components are created 
            app.UIFigure = uifigure('Visible', 'off'); 
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            app.UIFigure.Color = [0 0 0]; 
            app.UIFigure.Position = [100 100 796 654]; 
            app.UIFigure.Name = 'UI Figure'; 
            % Create UIAxes_2 
            app.UIAxes_2 = uiaxes(app.UIFigure); 
            title(app.UIAxes_2, '') 
            xlabel(app.UIAxes_2, '') 
            ylabel(app.UIAxes_2, '') 
            app.UIAxes_2.Box = 'on'; 
            app.UIAxes_2.XTick = []; 
            app.UIAxes_2.YTick = []; 
            app.UIAxes_2.BackgroundColor = [0 0 0]; 
            app.UIAxes_2.Position = [24 321 366 281]; 
            % Create BrowseImageButton 
            app.BrowseImageButton = uibutton(app.UIFigure, 'push'); 
            app.BrowseImageButton.ButtonPushedFcn = createCallbackFcn(app, 
@BrowseImageButtonPushed, true); 
            app.BrowseImageButton.FontWeight = 'bold'; 
            app.BrowseImageButton.Position = [54 271 100 22]; 
            app.BrowseImageButton.Text = 'Browse Image'; 
            % Create FileName 
            app.FileName = uieditfield(app.UIFigure, 'text'); 
            app.FileName.FontSize = 14; 
            app.FileName.Position = [163 271 169 22]; 
            % Create DirectionsButton 
            app.DirectionsButton = uibutton(app.UIFigure, 'push'); 
            app.DirectionsButton.ButtonPushedFcn = createCallbackFcn(app, 
@DirectionsButtonPushed, true); 
            app.DirectionsButton.FontWeight = 'bold'; 
            app.DirectionsButton.Position = [54 23 100 22]; 
            app.DirectionsButton.Text = {'Directions'; ''}; 
            % Create TraceROIButton 
            app.TraceROIButton = uibutton(app.UIFigure, 'push'); 
            app.TraceROIButton.ButtonPushedFcn = createCallbackFcn(app, 
@TraceROIButtonPushed, true); 
            app.TraceROIButton.FontWeight = 'bold'; 
            app.TraceROIButton.Position = [54 197 100 22]; 
            app.TraceROIButton.Text = 'Trace ROI'; 
            % Create ColorThresholdLabel 
            app.ColorThresholdLabel = uilabel(app.UIFigure); 
            app.ColorThresholdLabel.HorizontalAlignment = 'right'; 
            app.ColorThresholdLabel.FontWeight = 'bold'; 
            app.ColorThresholdLabel.FontColor = [1 1 1]; 
            app.ColorThresholdLabel.Position = [402 271 98 22]; 
            app.ColorThresholdLabel.Text = {'Color Threshold'; ''}; 
            % Create ColorThresholdSlider 
            app.ColorThresholdSlider = uislider(app.UIFigure); 
            app.ColorThresholdSlider.Limits = [0 255]; 
            app.ColorThresholdSlider.ValueChangedFcn = createCallbackFcn(app, 
@ColorThresholdSliderValueChanged, true); 
            app.ColorThresholdSlider.FontColor = [1 1 1]; 
            app.ColorThresholdSlider.Position = [521 280 254 3]; 
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            % Create CountButton 
            app.CountButton = uibutton(app.UIFigure, 'push'); 
            app.CountButton.ButtonPushedFcn = createCallbackFcn(app, 
@CountButtonPushed, true); 
            app.CountButton.FontWeight = 'bold'; 
            app.CountButton.Position = [609 23 100 22]; 
            app.CountButton.Text = 'Count'; 
            % Create DropDown 
            app.DropDown = uidropdown(app.UIFigure); 
            app.DropDown.Items = {'GFP', 'FluoroRuby', ''}; 
            app.DropDown.FontWeight = 'bold'; 
            app.DropDown.BackgroundColor = [0.9412 0.9412 0.9412]; 
            app.DropDown.Position = [285 197 47 22]; 
            app.DropDown.Value = 'GFP'; 
            % Create UIAxes 
            app.UIAxes = uiaxes(app.UIFigure); 
            title(app.UIAxes, '') 
            xlabel(app.UIAxes, '') 
            ylabel(app.UIAxes, '') 
            app.UIAxes.Box = 'on'; 
            app.UIAxes.XTick = []; 
            app.UIAxes.YTick = []; 
            app.UIAxes.TitleFontWeight = 'normal'; 
            app.UIAxes.BackgroundColor = [0 0 0]; 
            app.UIAxes.Position = [402 321 366 281]; 
            % Create AutomatedCellCountingLabel 
            app.AutomatedCellCountingLabel = uilabel(app.UIFigure); 
            app.AutomatedCellCountingLabel.HorizontalAlignment = 'center'; 
            app.AutomatedCellCountingLabel.FontSize = 16; 
            app.AutomatedCellCountingLabel.FontWeight = 'bold'; 
            app.AutomatedCellCountingLabel.FontColor = [1 1 1]; 
            app.AutomatedCellCountingLabel.Position = [35 622 198 22]; 
            app.AutomatedCellCountingLabel.Text = 'Automated Cell Counting'; 
            % Create EditField 
            app.EditField = uieditfield(app.UIFigure, 'numeric'); 
            app.EditField.HorizontalAlignment = 'center'; 
            app.EditField.FontWeight = 'bold'; 
            app.EditField.Position = [732 23 31 22]; 
            % Create ManualProcessingButton 
            app.ManualProcessingButton = uibutton(app.UIFigure, 'push'); 
            app.ManualProcessingButton.ButtonPushedFcn = createCallbackFcn(app, 
@ManualProcessingButtonPushed, true); 
            app.ManualProcessingButton.FontWeight = 'bold'; 
            app.ManualProcessingButton.Position = [413 197 125 22]; 
            app.ManualProcessingButton.Text = 'Manual Processing'; 
            % Create CheckBox 
            app.CheckBox = uicheckbox(app.UIFigure); 
            app.CheckBox.Text = ''; 
            app.CheckBox.Position = [544 192 46 33]; 
            % Create OriginalImageLabel 
            app.OriginalImageLabel = uilabel(app.UIFigure); 
            app.OriginalImageLabel.HorizontalAlignment = 'center'; 
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            app.OriginalImageLabel.FontSize = 16; 
            app.OriginalImageLabel.FontWeight = 'bold'; 
            app.OriginalImageLabel.FontColor = [1 1 1]; 
            app.OriginalImageLabel.Position = [149 601 116 22]; 
            app.OriginalImageLabel.Text = 'Original Image'; 
            % Create ProcessedImageLabel 
            app.ProcessedImageLabel = uilabel(app.UIFigure); 
            app.ProcessedImageLabel.HorizontalAlignment = 'center'; 
            app.ProcessedImageLabel.FontSize = 16; 
            app.ProcessedImageLabel.FontWeight = 'bold'; 
            app.ProcessedImageLabel.FontColor = [1 1 1]; 
            app.ProcessedImageLabel.Position = [544 601 137 22]; 
            app.ProcessedImageLabel.Text = 'Processed Image'; 
            % Create Labeling 
            app.Labeling = uilabel(app.UIFigure); 
            app.Labeling.FontWeight = 'bold'; 
            app.Labeling.FontColor = [1 1 1]; 
            app.Labeling.Position = [232 197 108 22]; 
            app.Labeling.Text = 'Labeling'; 
            % Create SelectLaminaButton 
            app.SelectLaminaButton = uibutton(app.UIFigure, 'push'); 
            app.SelectLaminaButton.ButtonPushedFcn = createCallbackFcn(app, 
@SelectLaminaButtonPushed, true); 
            app.SelectLaminaButton.FontWeight = 'bold'; 
            app.SelectLaminaButton.Position = [413 155 100 22]; 
            app.SelectLaminaButton.Text = 'Select Lamina'; 
            % Create EditField_2 
            app.EditField_2 = uieditfield(app.UIFigure, 'text'); 
            app.EditField_2.Position = [520 155 71 22]; 
            % Create WidthEditFieldLabel 
            app.WidthEditFieldLabel = uilabel(app.UIFigure); 
            app.WidthEditFieldLabel.HorizontalAlignment = 'right'; 
            app.WidthEditFieldLabel.FontSize = 14; 
            app.WidthEditFieldLabel.FontWeight = 'bold'; 
            app.WidthEditFieldLabel.FontColor = [1 1 1]; 
            app.WidthEditFieldLabel.Position = [490 111 44 22]; 
            app.WidthEditFieldLabel.Text = 'Width'; 
            % Create WidthEditField 
            app.WidthEditField = uieditfield(app.UIFigure, 'numeric'); 
            app.WidthEditField.Position = [544 111 48 22]; 
            % Create HeightEditFieldLabel 
            app.HeightEditFieldLabel = uilabel(app.UIFigure); 
            app.HeightEditFieldLabel.HorizontalAlignment = 'right'; 
            app.HeightEditFieldLabel.FontSize = 14; 
            app.HeightEditFieldLabel.FontWeight = 'bold'; 
            app.HeightEditFieldLabel.FontColor = [1 1 1]; 
            app.HeightEditFieldLabel.Position = [660 111 49 22]; 
            app.HeightEditFieldLabel.Text = 'Height'; 
            % Create HeightEditField 
            app.HeightEditField = uieditfield(app.UIFigure, 'numeric'); 
            app.HeightEditField.Position = [714 111 49 22]; 
            % Create ResizeLabel 
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            app.ResizeLabel = uilabel(app.UIFigure); 
            app.ResizeLabel.FontSize = 14; 
            app.ResizeLabel.FontWeight = 'bold'; 
            app.ResizeLabel.FontColor = [1 1 1]; 
            app.ResizeLabel.Position = [413 111 54 22]; 
            app.ResizeLabel.Text = {'Resize:'; ''}; 
            % Create XEditField 
            app.XEditField = uieditfield(app.UIFigure, 'numeric'); 
            app.XEditField.Position = [544 73 46 22]; 
            % Create XEditFieldLabel 
            app.XEditFieldLabel = uilabel(app.UIFigure); 
            app.XEditFieldLabel.HorizontalAlignment = 'right'; 
            app.XEditFieldLabel.FontSize = 14; 
            app.XEditFieldLabel.FontWeight = 'bold'; 
            app.XEditFieldLabel.FontColor = [1 1 1]; 
            app.XEditFieldLabel.Position = [509 73 25 22]; 
            app.XEditFieldLabel.Text = 'X'; 
            % Create YEditField 
            app.YEditField = uieditfield(app.UIFigure, 'numeric'); 
            app.YEditField.Position = [714 73 49 22]; 
            % Create YEditFieldLabel 
            app.YEditFieldLabel = uilabel(app.UIFigure); 
            app.YEditFieldLabel.HorizontalAlignment = 'right'; 
            app.YEditFieldLabel.FontSize = 14; 
            app.YEditFieldLabel.FontWeight = 'bold'; 
            app.YEditFieldLabel.FontColor = [1 1 1]; 
            app.YEditFieldLabel.Position = [673 73 25 22]; 
            app.YEditFieldLabel.Text = 'Y'; 
            % Create PositionLabel 
            app.PositionLabel = uilabel(app.UIFigure); 
            app.PositionLabel.FontSize = 14; 
            app.PositionLabel.FontWeight = 'bold'; 
            app.PositionLabel.FontColor = [1 1 1]; 
            app.PositionLabel.Position = [413 73 65 22]; 
            app.PositionLabel.Text = 'Position:'; 
            % Create DisplayOverlayButton 
            app.DisplayOverlayButton = uibutton(app.UIFigure, 'push'); 
            app.DisplayOverlayButton.ButtonPushedFcn = createCallbackFcn(app, 
@DisplayOverlayButtonPushed, true); 
            app.DisplayOverlayButton.FontWeight = 'bold'; 
            app.DisplayOverlayButton.Position = [410 23 106 22]; 
            app.DisplayOverlayButton.Text = 'Display Overlay'; 
            % Create RotationdegEditFieldLabel 
            app.RotationdegEditFieldLabel = uilabel(app.UIFigure); 
            app.RotationdegEditFieldLabel.HorizontalAlignment = 'right'; 
            app.RotationdegEditFieldLabel.FontSize = 14; 
            app.RotationdegEditFieldLabel.FontWeight = 'bold'; 
            app.RotationdegEditFieldLabel.FontColor = [1 1 1]; 
            app.RotationdegEditFieldLabel.Position = [605 155 104 22]; 
            app.RotationdegEditFieldLabel.Text = 'Rotation (deg.)'; 
            % Create RotationdegEditField 
            app.RotationdegEditField = uieditfield(app.UIFigure, 'numeric'); 
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            app.RotationdegEditField.Position = [714 155 49 22]; 
 

            % Show the figure after all components are created 
            app.UIFigure.Visible = 'on'; 
        end 
    end 
    % App creation and deletion 
    methods (Access = public) 
        % Construct app 
        function app = MEng_AppDesigner 
            % Create UIFigure and components 
            createComponents(app) 
            % Register the app with App Designer 
            registerApp(app, app.UIFigure) 
            % Execute the startup function 
            runStartupFcn(app, @startupFcn) 
            if nargout == 0 
                clear app 
            end 
        end 
        % Code that executes before app deletion 
        function delete(app) 
            % Delete UIFigure when app is deleted 
            delete(app.UIFigure) 
        end 
    end 
end 
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