
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2020

Evaluation of tracing techniques in the rat spinal cord using a Evaluation of tracing techniques in the rat spinal cord using a

custom MATLAB application. custom MATLAB application.

Rachel M. Zalla
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Anatomy Commons, and the Systems and Integrative Engineering Commons

Recommended Citation Recommended Citation
Zalla, Rachel M., "Evaluation of tracing techniques in the rat spinal cord using a custom MATLAB
application." (2020). Electronic Theses and Dissertations. Paper 3349.
https://doi.org/10.18297/etd/3349

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/903?utm_source=ir.library.louisville.edu%2Fetd%2F3349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/237?utm_source=ir.library.louisville.edu%2Fetd%2F3349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3349
mailto:thinkir@louisville.edu

EVALUATION OF TRACING TECHNIQUES IN THE RAT SPINAL CORD USING A

CUSTOM MATLAB APPLICATION

By

Rachel M. Zalla

B.S., University of Louisville, 2019

A Thesis

Submitted to the Faculty of the

University of Louisville

J.B. Speed School of Engineering

as Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Bioengineering

May 2020

iv

5-19-2020

EVALUATION OF TRACING TECHNIQUES IN THE RAT SPINAL CORD USING A

CUSTOM MATLAB APPLICATION

Submitted by: __________________________________

Rachel M. Zalla

A Thesis Approved On

(Date)

by the Following Reading and Examination Committee

David S.K. Magnuson, PhD, Thesis Director

Guruprasad A. Giridharan, PhD, Thesis Co-Director

v

ACKNOWLEDGEMENTS

 The author is grateful to the committee of David S.K. Magnuson, PhD, Guruprasad

Giridharan, PhD, Jonathan Kopechek, PhD, and Scott R. Whittemore, PhD, for their support

throughout the research process. The author is also grateful to the members of the labs of Dr.

Magnuson and Dr. Whittemore, especially Brandon Brown, for their guidance in completing this

research project.

vi

ABSTRACT

The objective of this research project is to evaluate the efficiency of traditional chemical

tracing compared to dual-viral tracing for labeling long ascending propriospinal neurons

(LAPNs) in the uninjured rat spinal cord, and to develop a MATLAB program which will

quantify this labeling efficiently. Chemical tracers such as fluorescent dextrans have traditionally

been used to retrogradely label projection neurons in the nervous system, however, these tracers

lack specificity and can label fibers of passage. To label a specific population of long-range

projection neurons, such as LAPNs, we show here that dual-viral systems are necessary.

An animal experiment was performed to directly compare the efficiency of chemical

tracers versus dual-viral systems to label LAPNs. To evaluate chemical tracing, Fluoro-Ruby

(FR) was injected at the level of the axons terminals, cervical level 5/6 (C5/6), and the number of

ipsilateral labeled cell bodies at lumbar level 2/3 (L2/3) was quantified. Similarly, two dual-viral

systems were evaluated, by either injecting retro-AAV-Cre or HiRet-Lenti-Cre unilaterally at

C5/6 in combination with a Cre-dependent adeno-associated virus (AAV2-FLEx-EGFP) injected

unilaterally at L2/3, the level of the LAPN cell bodies. We hypothesized that 1) the HiRet-Lenti

group would label and identify greater numbers of LAPNs than retro-AAV group, 2) the HiRet-

Lenti group would provide greater specificity than FR, and 3) FR would label more neurons than

either dual-viral labeling group.

 The HiRet-Lenti and FluoroRuby groups labeled significantly greater numbers of LAPNs

than the retro-AAV group. These results show that despite the retro-AAV being a robust tool for

tracing corticopontine neurons, retro-AAV is inefficient for labeling long propriospinal neurons

such as LAPNs. The similar numbers of LAPNs labeled by HiRet-Lenti and FR is likely due to

similar rostral-caudal spread of FR and viruses at the injection site(s). However, the HiRet-Lenti

vii

dual-viral system provides a greater specificity of labeling, as the expression of EGFP is

dependent on the presence of both injected viruses, while FR can be taken up by fibers of

passage, and labeling neurons that were not directly targeted for tracing. Despite the number of

LAPNs labeled being similar, the dual-viral labeling utilizing HiRet-lentiviruses is preferred due

to greater specificity and more prominent labeling.

Methods to quantify labeled spinal cord neurons include either manual counting or the

utilization of available image processing software. Current imaging processing software are

difficult for users to navigate and are not optimized for counting cells in spinal cord tissue

sections. Manual counting is highly accurate, but it is inefficient and biased. To automate the cell

counting process, a MATLAB program was developed to accurately determine the number of

ipsilateral cell bodies labeled by each of the tracing techniques analyzed in this experiment. To

validate the accuracy of the MATLAB program, the number of labeled cells counted for each

tracing technique by manual counting was compared to the number generated by the MATLAB

program.

The number of LAPNs counted manually did not significantly differ from the number of

LAPNs counted by the MATLAB application for any of the labeling groups, and there was a

highly significant correlation between the two methods. Based on these results, the custom

MATLAB application accurately determines the number of ipsilateral cell bodies labeled by each

of the tracing techniques analyzed in this experiment. Overall, the interactive application

provides an automated, efficient, and unbiased method of counting cells in spinal cord tissue

sections.

viii

TABLE OF CONTENTS

 Page

APPROVAL PAGE………………………………………………………………………… iv

ACKNOWLEDGMENTS…………………………………………………………………… v

ABSTRACT…………………………………………………………………………………. vi

NOMENCLATURE…………………………………………………………………………. ix

LIST OF TABLE AND FIGURES………………………………………………………… x

I. INTRODUCTION……………………………………………………………. 1

A. Rat Locomotion and Propriospinal Neurons……………………….….…. 1

B. Tracing Techniques………………………………………………………. 3

C. Quantifying the Number of Labeled Neurons……………………………. 6

II. METHODS…………………………………………………………………… 8

A. Evaluating Efficiency of Chemical and Viral Tracing...............…………. 8

B. Chemical and Viral Tracer Injections….…………………………………. 8

C. Tissue Processing and Imaging…………………...………………………. 10

D. MATLAB Programming…………..……………...………………………. 11

 i. Startup Function and Application Interface………………………… 13

 ii. Browse Image and Trace ROI Functions ……...………………...… 14

iii. Color Thresholding and Manual Processing Functions…………… 17

iv. Lamina Overlay and Count Functions …………………….……… 19

III. RESULTS…………………………………………………………………….. 25

A. Evaluating Efficiency of Chemical and Viral Tracing…………….….…. 25

B. MATLAB Application Validation……………………...………..………. 27

IV. DISCUSSION………………………………………………………………… 31

REFERENCES CITED………………………………………………………………………. 35

APPENDIX I – MATLAB Programming..……………………………………………………. 37

ix

NOMENCLATURE

 SCI = spinal cord injury

 CPG = central pattern generator

 LAPN = long ascending propriospinal neuron

 LDPN = long descending propriospinal neuron

 KSCIRC = Kentucky Spinal Cord Injury Research Center

 FLEx = flip excision switch

 Cre = Cre-recombinase

 EGFP = enhanced green fluorescent protein

 retro-AAV = retrograde adeno-associated virus

 HiRet-Lenti = highly efficient retrograde lentivirus

 ROI = region of interest

 FR = FluoroRuby

 PBS = phosphate-buffered saline

 PFA = paraformaldehyde

 ANOVA = analysis of variance

 CTB = cholera toxin b

x

LIST OF TABLES AND FIGURES

TABLES Page

 TABLE I – List and Description of MATLAB Functions……………….…………….. 12

TABLE II – List and Description of MATLAB Properties …………………………… 13

TABLE III – Percent Changes Between Counting Methods…………………………… 29

FIGURES

FIGURE 1 – Visualization of FLEx Switch……………….……………………….….. 5

FIGURE 2 – Injections for the three different tracing techniques ……………………. 10

FIGURE 3 – Screenshot of Application Interface …..…….……………………….….. 14

FIGURE 4 – Selected Image and File Name Displayed ………….…………………… 15

FIGURE 5 – Screenshot with Traced Image and Drop-Down List Displayed …….….. 16

FIGURE 6 – Screenshot of Binary Image ……………….……….…………………… 18

FIGURE 7 – Screenshot of Manual Processing Figure Window…………………..….. 19

FIGURE 8 – Screenshot of Resize and Position Edit Fields …………………......…… 20

FIGURE 9 – Original Image with Lamina Overlay …………………..………………. 21

FIGURE 10 – Lamina Overlay and Image Regions with Boundaries ………………… 23

FIGURE 11 – Screenshot of Directions Pop-up Window ……………………......…… 23

FIGURE 12 – Total LAPNs labeled by labeling group …………...…..………………. 26

FIGURE 13 – LAPNs labeled per spinal cord tissue section by labeling group ….…… 27

FIGURE 14 – Comparison of manual and MATLAB counting of LAPNs ………...… 28

FIGURE 15 – Correlation between manual and MATLAB counting methods ………. 30

FIGURE 16 – Laminar distribution of LAPNs ………………………………………... 32

1

I. INTRODUCTION

There are approximately 18,000 new cases of spinal cord injury (SCI) per year in the

United States and < 1% of SCI patients achieve complete neurological recovery.1 The majority

of patients experience incomplete tetraplegia, incomplete or complete paraplegia, or complete

tetraplegia. To develop novel treatments for SCI, the structure and function of the spinal cord

must be further understood at a systems, network, and cellular level. Animal models of SCI are

being used to address this lack of knowledge, with the ultimate goal of translating effective

treatment strategies from animal models to human patients in the clinic.

The rat model of SCI has been used to better understand the pathology of SCI as well as

evaluate treatment strategies.2 For example, rat models have led to the development of tests to

assess the locomotor and sensory functional recovery. Rat models have also resulted in a better

understanding of the changes in the neuronal circuity following SCI, and how the enhancement

of spontaneous regenerative mechanisms can promote recovery. The therapeutic impact of

manipulating myelination, glial scarring, and/or inflammation have also stemmed from studies

utilizing rat models.

A. Rat Locomotion and Propriospinal Neurons

Rat locomotion is characterized by the precise coordination of muscle activity to produce

regular patterned stepping based on rhythm and pattern of locomotion. At the heart of this

control are central pattern generators (CPGs), which are neuronal circuits that produce rhythmic

2

neural outputs to control rhythmic behaviors, such as walking or breathing. The four spinal CPGs

(one for each limb) for locomotion are housed within the cervical and lumbar spinal

enlargements, and produce and stepping behaviors of the forelimbs and hindlimbs, respectively.3

Communication between the locomotor CPGs is carried out by propriospinal neurons, which are

neurons housed completely within the spinal cord.

Propriospinal axons make-up approximately one-third of axons/fibers in the rat lateral

and ventral spinal white matter. Most propriospinal neurons are short in length, projecting only

four spinal segments or less. However, there are also long propriospinal neurons that project

more than four spinal segments. These long propriospinal neurons, can either ascend or descend

within the spinal cord, and if they project to and from the spinal enlargements they are

anatomically suited to mediate coordination between the forelimb and hindlimb CPGs.4,5 The

pathway(s) most anatomically suited for this coupling of the lumbar and cervical CPGs, and in

turn the mediation of interlimb coordination of the forelimbs and hindlimbs are long ascending

(LAPNs) and the reciprocal pathway, long descending (LDPNs) propriospinal neurons.5,6

LAPNs, which are the focus of this thesis, are defined herein as having cell bodies in the rostral

lumbar spinal cord (L1-3) and having at least one projection to cervical level 5-6 (C5/6).7 Both

anatomical and electrophysiological studies support the concept of reciprocal long propriospinal

neurons communicating between the cervical and lumber CPGs to mediate the rhythm and

pattern of locomotion. Additionally, these long propriospinal neurons have become increasingly

important following SCI as reorganization of these propriospinal connections has been suggested

to contribute to functional recovery after SCI.8

To determine the specific role of LAPNs in functional recovery, the laboratories of Dr.

David S.K. Magnuson and Dr. Scott R. Whittemore at the Kentucky Spinal Cord Injury Research

3

Center (KSCIRC) have performed studies to determine the behavioral role of LAPNs in rats

before and after contusive SCI. Using a dual-viral system described in more detail below, they

were able to conditionally and reversibly silence LAPNs and analyze the resultant locomotor

behavior.3,9 These studies showed that when LAPNs were silenced in uninjured rats, left-right

hindlimb alternation during stepping is disrupted, resulting in a “bounding” gait that is not

normally seen at the lower speeds at which the rats were locomoting. Surprisingly, when LAPNs

are silenced after contusive SCI, locomotor outcomes were improved. These results have led to

specific questions about the role of LAPNs in functional recovery and their inherent anatomical

plasticity after SCI. Methods developed during this thesis work are essential to answering that

latter question.

B. Tracing Techniques

Work is currently being done to specifically label LAPNs for somatic and dendritic

characterization, as well as determine the monosynaptic inputs of LAPNs. The tracing techniques

available to label neurons include transgenics, traditional chemical tracers, single virus tracers,

and multi-viral systems.10 Transgenic tracing utilizes genetically modified mice to express genes

targeted to specific organelles, cells, or tissues.11 Through specific genetic modification to the

mouse germ line, robust fluorescent labeling is available which enables the labeling of a specific

subset of cells such as neurons. However, current transgenic rat models are not yet capable of

such tracing.

4

Traditional chemical tracers, such as FluorogoldTM and similar fluorescent inorganic

compounds and single virus tracers can act as either anterograde or retrograde tracers, but lack

specificity of labeling. Anterograde tracers are taken up by neuronal cell bodies at the injection

site, while retrograde tracers are taken up any/all axon terminals at the injection site and traverse

back to the cell body. Chemical tracers such as fluorescent dextrans can be taken up by axon

terminals and retrogradely transported. Chemical tracers are also known to inadvertently label

fibers of passage.12,13 Similarly, single virus tracers involve injecting a single virus, that may be

taken up by cell bodies and/or axon terminals at the injection site, and ultimately does not offer

more specificity than chemical tracers.

To overcome the limitations of chemical and single virus tracing, and specifically label

an anatomically defined population of long-range projection neurons such as LAPNs, dual-viral

systems were developed and further modified.14,15,16. For specific LAPN labeling, the dual-viral

systems used in this project involve two viruses and two sets of injections: one at the level of the

cell bodies for the pathway of interest (L2/3), and one virus at the level of the axon terminals

(C5/6).

The virus injected at the level of the cell bodies (L2/3) contains a Flip-Excision Switch

(FLEx), which allows for Cre-recombinase (Cre)-dependent expression of enhanced green

fluorescent protein (EGFP) to label and visualize neurons. The FLEx switch utilizes site-specific

recombination to conditionally manipulate gene expression, allowing the expression of a gene of

interest in the presence of Cre.14 The FLEx switch used in this experiment relies on the

orientation specificity of Cre-recombinase, which binds lox P sites to induce recombination.

More specifically, the DNA coding sequence for EGFP is flanked by target sites in opposing

orientations, so the DNA sequence is first inverted by Cre, allowing for expression of the gene of

5

interest, EGFP here. Cre then excises the heterotypic lox P sites in the same orientation, resulting

in stable EGFP expression, and cell specific labeling. The virus injected at the level of the axon

terminals (C5/6) must code for Cre, infect axon terminals, and be retrogradely transported to the

cell bodies so that EGFP is expressed. The FLEx switch for Cre-dependent expression of EGFP

is detailed in Figure 1 below.

FIGURE 1 – Visualization of FLEx switch: 1) Cre-mediated inversion of coding

sequence via either of the heterotypic antiparallel lox sites 2) Excision of lox P sites

results in orthogonal and antiparallel lox sites that are incapable of further recombination

and allows for stable EGFP expression.

While this dual-viral system provides high specificity, robust labeling of the pathway of

interest is also paramount. For robust labeling, Cre delivery to the cell body must be high.

Numerous virus that may confer robust Cre delivery have been well characterized in the brain,

but have yet to be used and characterized in the rat spinal cord. One candidate for robust Cre

delivery is a retrograde adeno-associated virus (retro-AAV) which provides efficient labeling

6

when targeting cortical neurons.16 A second candidate for robust Cre delivery is a highly

efficient retrograde lentivirus (HiRet-Lenti), which our laboratories have used previously.3 A

major goal of this thesis was to compare these chemical tracer labeling with both retro-AAV-cre-

and HiRet-Lenti-cre-mediated labeling.

C. Quantifying the Number of Labeled Neurons

Current methods to quantify labeled spinal cord neurons include either manual counting

or the utilization of available image processing software. Open source image processing software

such as ImageJ (National Institutes of Health / https://imagej.nih.gov) or CellProfiler (Broad

Institute / https://cellprofiler.org) have a wide variety of functions. These open source software

programs are often difficult for users to navigate and are not optimized for counting cells in

spinal cord tissue sections. Other image analysis software packages, such as MetaMorph

(Biovision Technologies Inc. / https://www.biovis.com/metamorph), are expensive and not often

utilized. Due to the non-specificity of current image processing software, manual counting is

often used when analyzing spinal cord section images. While the accuracy of manual cell

counting is high, it also inefficient and biased, as it relies on the counter’s perception of what

defines a cell.

To automate the cell counting process, a MATLAB program was developed to accurately

determine the number of ipsilateral cell bodies labeled by each of the tracing techniques analyzed

in this experiment. The program utilizes MATLAB image processing techniques, including color

thresholding and boundary determination, to automatically determine the number of labeled cells

within a user-specified region of interest (ROI). The program is integrated within an interactive

7

application, which enables the user to load an image of a spinal cord section, select a ROI, count

only the labeled cells within that region, and overlay lamina to determine where the cells are

located in the spinal cord. The interactive application enables users to seamlessly navigate

through a large number of images, while the automated cell counting function both eliminates

variability between users and significantly reduces counting time. To validate the accuracy of the

MATLAB program, the number of labeled cells counted for each tracing technique by manual

counting was compared to the number generated by the MATLAB program.

8

II. METHODS

A. Evaluating Efficiency of Chemical and Viral Tracing

An animal experiment was performed to directly compare the efficiency of chemical

tracers - which have been traditionally used for labeling neurons and their projections in the

nervous system – with dual-viral systems to label LAPNs, in uninjured (non-SCI) rats. To

evaluate the efficiency of a commonly used retrograde chemical tracer, FluoroRuby (FR) was

injected at cervical level 5/6 (C5/6) on the animals’ left side, and the number of ipsilateral cell

bodies at lumbar level 2/3 (L2/3) was quantified. To evaluate the dual-viral systems, either two

boluses of retro-AAV-Cre or two boluses of HiRet-Lenti-Cre were injected unilaterally at C5/6.

In the same surgery, two boluses of AAV2-FLEx-EGFP were injected unilaterally at L2/3. Based

on preliminary work, we hypothesized that: 1) HiRet-Lenti would label and identify greater

numbers of LAPNs than retro-AAV, 2) HiRet-Lenti would have greater specificity than FR, and

3) FR would label more neurons than either dual-viral labeling group. The number of ipsilateral

cell bodies at L2/3 was quantified for each set of injections by both manual counting and

automatic counting utilizing a custom MATLAB program.

B. Chemical and Viral Tracer Injections

 A total of N = 12 adult female Sprague Dawley rates (220-250 g; Envigo, City, IN) were

used in this experiment. Animals were housed two per cage with ad libitum food and water under

12 h light/dark cycle. Procedures were performed in accordance with the University of Louisville

9

Institutional Animal Care and Use and Institutional Biosafety Committees, as well as the Public

Health Service Policy on Humane Care and Use of Laboratory Animals.

 For the chemical tracer injections, rats (n = 4) were anesthetized (ketamine/xylazine/

acepromazine, 0.5 ml/250 g i.p.), placed into a spinal stabilization unit, and received a C5/6

laminectomy to expose C6. FluoroRuby was ipsilaterally injected (0.25 µl, 1.3 mm rostrocaudal)

into the intermediate gray matter (0.55 mm mediolateral, 1.2 mm dorsoventral) using a

stereotaxic device. Injections were given in one 0.25 µl bolus with the needle left in place for

another 2 minutes to allow for tracer uptake and to prevent leakage out the needle track. The 0.25

µl volume was used for FR injections, as this volume provided the same rostral-caudal spread

within the spinal gray matter as the volume of virus that was injected (outlined below).

 For the viral injections, rats (n = 8) were anesthetized (ketamine/xylazine/acepromazine,

0.5 ml/250 g i.p.), placed into a spinal stabilization unit, and received a C5/6 laminectomy and

T12 laminectomy to expose C6 and L1/2, respectively. For retro-AAV2-Cre, rats (n = 4) were

ipsilaterally injected (0.5 µl/site, 1.3 mm rostrocaudal) into the intermediate gray matter (0.55

mm mediolateral, 1.2 mm dorsoventral) of C5/6 at two sites. For HiRet-Lenti-Cre, rats (n = 4)

were ipsilaterally injected (0.5 µl/site, 1.3 mm rostrocaudal) into the intermediate gray matter

(0.55 mm mediolateral, 1.2 mm dorsoventral) of C5/6 at two sites. All rats receiving viral

injections at C5/6 (n = 8) were then given ipsilateral injections of AAV2-FLEx-EGFP at L2/3

(0.5 µl/site, 1.3 mm rostrocaudal) into the intermediate gray matter (0.5 mm mediolateral, 1.35

mm dorsoventral) of L2/3 at two sites. All injections were given in 0.25 µl boluses with the

needle left in place for another 2 minutes to allow for viral uptake. Injection sites are

schematized in Figure 2.

10

FIGURE 2 - Injections for the three different tracing techniques:

A) Fluoro-Ruby B) retro-AAV C) Hi-Ret

For all animals, the incision site(s) was/were sutured in layers and the wound closed with

surgical staples. Buprenorphine (0.1 mg/kg, 0.37 ml, subcutaneous) was provided every 12 hours

for the first 48 hours post-surgery for pain management, and gentamicin (20 mg/kg, 0.23 ml, s.c.)

was administered once daily for 7 days. Saline solution was administered every 12 hours for the

first 48 hours post-surgery and then once a day for the next 4 days for hydration. All animals

recovered voluntary bladder control within 24 hours post-surgery.

C. Tissue Processing and Imaging

 Two weeks following FR injections, and three weeks following viral injections, animals

were sacrificed with an overdose of ketamine/xylazine/acepromazine, then transcardially

perfused with 0.1 M phosphate-buffered saline (PBS) (pH 7.4) followed by 4%

11

paraformaldehyde (PFA) in PBS. Spinal cords were dissected, post-fixed in PFA for 1 hour,

transferred to 30% sucrose, and stored at 4 °C. Spinal segments L1-3 were dissected, embedded

in tissue freezing medium, cryosectioned at 30 µm, slide mounted, and stored at −20 °C. Slides

were cover-slipped with Fluoromount (Company, City, ST) and air dried overnight.

 Images of spinal cord sections were captured using a Nikon (Mellville, NY) TiE 300

inverted microscope with the 10× objective and TxRed filter settings for FR labeling and GFP

settings for viral labeling. Every other tissue section with labeled cell bodies was imaged to

prevent double counting of neurons. The number of labeled cells was manually counted, and

Inkscape (https://inkscape.org), a free graphics software, was used to overlay a lamina map to

record which spinal lamina the labeled neurons were found. The number of labeled neurons and

location within the laminae was recorded in Excel. Along with manual counting, the number of

cells in each imaged section was run through the custom MATLAB program.

D. MATLAB Programming

 Using MATLAB, a program was developed to automatically detect and count labeled

cells. Image processing functions and MATLAB’s AppDesigner were utilized to create a

functional and user-friendly application for automatic cell counting. The various functions of the

program are listed in Table 1 below.

12

TABLE I

LIST AND DESCRIPTION OF MATLAB FUNCTIONS

MATLAB Function Brief Description

startupFcn Application runs and is maximized to full screen

BrowseImageButtonPushed

Enables user to select desired image using the file

selector, displays selected image within axes and file

name in adjacent edit box

TraceROIButtonPushed
Enables user to trace region of interest within selected

image, new traced image replaces selected image

ColorThresholdSliderValueChanged

Pixels of selected image are thresholded based upon

chosen value, image is converted to binary, thresholded

image is displayed in axes above slider

ManualProcessingButtonPushed

Provides user with option to trace image artifacts and

eliminate them from thresholded image, check box is

filled if button is pushed

SelectLaminaButtonPushed
Enables user to select lamina overlay, displays file

name in adjacent edit box

DisplayOverlayButtonPushed
Figure window appears displaying original image with

selected lamina overlay

CountButtonPushed

Number of cells is automatically counted, figure

window displayed with two axes- original image with

lamina overlay on the left, thresholded image with

boundaries traced around the counted cells on the right

DirectionsButtonPushed
Figure window appears with directions detailing

application use

Properties within the application programming contain object data and are stored and

called throughout the different functions. These properties including a brief description are listed

in Table II below.

13

TABLE II

LIST AND DESCRIPTION OF MATLAB PROPERTIES

Property Brief Description

Image Image data corresponding to image selected by user

full_img Image object created from display of selected image

ROI Image data corresponding to traced image

thresholdedImage Image data corresponding to image after thresholding

full_threshold Image object created from display of thresholded image

processedROI
Image data corresponding to image after manual

processing

overlay Image data corresponding to selected lamina overlay

The various functions and properties of the custom MATLAB application will be further

discussed by utilizing an example image from the chemical tracing vs. dual-viral tracing

experiment. This image is a lumbar section from an animal injected with the retro-AAV2-Cre

virus at C5/6 and AAV2-FLEx-EGFP at L2/3.

i. Startup Function and Application Interface

When the application is first opened, it is programmed to become full screen

automatically, without the user having to manually maximize the application window. The

application interface is shown in Figure 3 below.

14

FIGURE 3 – Screenshot of Application Interface

ii. Browse Image and Trace ROI Functions

The first interactive function of the application is the ‘BrowseImageButtonPushed’

function. When the button labeled “Browse Image” is pushed, the file selector is displayed,

allowing the user to select an image of a spinal cord section. The file selector enables 8-bit

images of file type ‘png’, ‘jpeg’, ‘bmp,’ and ‘tif’ to be selected. The selected image is then

displayed within the axes under the label “Original Image,” and the image data are stored as the

property ‘Image.’ The image object is stored as the property ‘full_img.’ The name of the file is

also displayed in the ‘Edit Text’ box next to the “Browse Image” button. The displayed image

within the application interface is shown below in Figure 4.

15

FIGURE 4 – Selected Image and File Name Displayed

The next function is the ‘TraceROIButtonPushed’ function. When the “Trace ROI”

button is pushed, a separate figure window with the selected image is displayed. The user can

then trace the region of interest in which labeled cells should be counted. For the images in this

tracing study, the right side of the gray matter should be outlined because the injections were

unilateral. Once the ROI has been traced, each pixel outside of that outline is programmed to turn

16

black, eliminating extraneous background. The new image with eliminated background is

displayed within the separate figure window, and the original image in the axis below the

“Original Image” label is replaced with the new image. The new traced image data are stored as

the property ‘ROI.’ Next to the “Trace ROI” button, there is a drop-down list used to select the

type of labeling being analyzed. The two options on the list are ‘GFP’ and ‘FluoroRuby.’ The

selection will determine how the color thresholding is performed in the next step. The interface

with the new traced image and the drop-down list options displayed is shown in Figure 5 below.

FIGURE 5 – Screenshot with Traced Image and Drop-Down List Displayed

17

iii. Color Thresholding and Manual Processing Functions

The image must be further processed before cells can be automatically detected and

counted. The ‘ColorThresholdSliderValueChanged’ function enables the user to eliminate the

remaining background, leaving only the labeled cells. The traced image is originally stored as an

RGB, or “truecolor” image within the property ‘ROI.’ RGB image data includes m-by-n-by-3

data array that defines red, green, and blue color components of each individual pixel. When the

value of the color threshold slider is changed, the program first extracts the image pixels within

the color channel that correspond to the labeling selected using the drop-down list. If ‘GFP’ is

selected, only the pixels within the green channel are extracted. If ‘FluoroRuby’ is selected, only

the pixels within the red channel are extracted.

When the pixels are extracted, the RGB image is automatically converted to grayscale,

and the values of the pixels are converted based upon the selected threshold value. The threshold

value is determined by the position of the slider labeled “Color Threshold.” The color threshold

slider values range from 0-255. A pixel value of 0 is equivalent to the color black in a grayscale

image, while 255 is equivalent to white. Every pixel value below the threshold value is converted

to a pixel value of 0, so that the pixels are converted to black. Finally, the thresholded image is

converted to binary so that every pixel with a non-zero value is converted to a value of 1. The

binary image data is then stored within the property ‘thresholdedImage’ and displayed within the

second axis placed above the color threshold slider as shown below in Figure 6. The image

object is stored as the property ‘full_threshold.’

18

FIGURE 6 – Screenshot of Binary Image

 After the traced image has been thresholded and converted to binary, the

‘ManualProcessingButtonPushed’ function can be utilized to remove artifacts in the image that

could be mistaken for labeled cells. When the manual processing button is pushed, a separate

figure window appears containing the thresholded image. The user can then trace around the

artifact, and the pixels inside the outlined region will be converted to black, with a pixel value of

0. The image with the blacked-out region will then replace the thresholded image in the second

axis above the color threshold slider. If an image has been manually processed, the image data

19

for the processed image is stored in the property ‘processedROI,’ and the check box adjacent to

the manual processing button becomes filled. In order to display the functionality of the manual

processing button, an object that is not a clear artifact has been outlined to be removed from the

image. The figure window with the outlined region is shown in Figure 7 below.

FIGURE 7 – Screenshot of Manual Processing Figure Window

iv. Lamina Overlay and Count Functions

 The next function is the ‘SelectLaminaButtonPushed’ function. When the button labeled

“Select Lamina” is pushed, the file selector is displayed, allowing the user to select a lamina

overlay image. The file selector enables 8-bit images of file type ‘png’, ‘jpeg’, ‘bmp,’ and ‘tif’ to

be selected. Once the lamina overlay has been selected, the file name is displayed in the edit field

20

adjacent to the “Select Lamina” button. The image data of the lamina overlay are stored as the

property ‘overlay.’ Any lamina image can be uploaded to the program, but will only work as

overlay if the background of the image has been removed previously. Lamina images ready to be

used currently include laminae T12 – L4.

The ‘DisplayOverlayButtonPushed’ function enables the user to view the selected lamina

overlaid onto the original spinal cord section image. When the “Display Overlay” button is

pushed, a figure window appears displaying the original image with a lamina overlay, positioned

according to the size and coordinate values specified by the user. The numeric edit fields

pictured in Figure 8 allow the user to specify the “Width” and “Height” of the lamina overlay,

the coordinate position of the overlay within the x and y axes, and the rotation of the overlay in

degrees. The width and height correspond to the row and column dimensions of the overlaid

image.

FIGURE 8 – Screenshot of Resize and Position Edit Fields

Once the dimensions and position of the lamina overlay have been specified, the original image

with a lamina overlay is displayed, as shown in Figure 9. The size and coordinates of the lamina

overlay can be updated, and the image re-displayed as needed.

21

FIGURE 9 – Original Image with Lamina Overlay

 The ‘CountButtonPushed’ function automatically detects and counts labeled cells based

on the thresholded binary image. When the “Count” button is pushed, the application is

programmed to utilize image region properties and MATLAB’s ‘ncount’ function to only count

regions that have a pixel area greater than 100 and an eccentricity less than 0.97. Pixel area is the

actual number of pixels within a region, while eccentricity is the ratio of the distance between the

foci of the ellipse and its major axis length. Eccentricity values range from 0 to 1, 0 being a

perfect circle and 1 being a line segment. The eccentricity threshold value was included in the

22

count function so that dendrites without a visible cell body are not miscounted as labeled cells,

because dendrite shape resembles a line segment. The threshold values for pixel area and

eccentricity were determined after 10 test images were run through the application, and the

number and location of automatically counted cells was directly compared to the number and

location of manually counted cells for each image. The number of counted cells is displayed in

the numeric edit field adjacent to the “Count” button. An elseif expression is programmed within

the ‘CountButtonPushed’ function so that the data stored in the ‘thresholdedImage’ property is

called when the check box adjacent to the manual processing button is not filled, indicating that

the image has not been manually processed. If a check appears in the box, indicating an image

has been manually processed, the image data stored in the ‘processedROI’ will be called and

counted.

After the number of regions, or cells, has been counted, MATLAB’s ‘bwboundaries’

function is utilized to trace the exterior boundaries of the counted cells. A for loop is utilized so

that for every region in the image, the properties are called to determine the pixel area and

eccentricity, and then the regions that have an area >100 pixels and an eccentricity < 0.97 are

both counted and traced with a red boundary outline. A new figure is then displayed with two

subplots. The subplot on the right of the figure displays the thresholded (or thresholded and

manually processed) image with the image regions, or labeled cells, outlined. The subplot on the

left of the figure displays the original spinal section image with the lamina overlay, as is

displayed when the “Display Overlay” button is pushed. As shown in Figure 10, the user can

zoom in on either subplot to determine in which lamina of the spinal cord the cells are located.

23

FIGURE 10 – Lamina Overlay and Image Regions with Boundaries

 Finally, the ‘DirectionsButtonPushed’ function enables the user to view directions

detailing application use. When button labeled “Directions” is pushed, a figure appears with an

information icon and detailed directions for reference, as shown in Figure 11 below.

FIGURE 11 – Screenshot of Directions Pop-up Window

24

 To validate the accuracy of the custom MATLAB application, every image that was

manually counted was also run through the application. The number and location of labeled cells

for each image analyzed using the application was recorded in Excel and then directly compared

to the number and location of labeled cells from manual counting.

25

III. Results

A. Evaluating Efficiency of Chemical and Viral Tracing

 To directly compare the efficiency of chemical tracers versus dual-viral systems for

labeling LAPNs, both the total number of neurons from each group and the number of neurons

per section for each group were compared. One animal from the HiRet-Lenti-Cre virus group

was removed from analysis, as labeling at the lumbar injection site of this animal only spanned

one-half the rostral-caudal distance seen in all other viral labeled animals, it is likely that one of

the lumbar injection sites was missed. The statistical differences seen between groups were not

altered by removing this animal from analysis.

An analysis of variance (ANOVA) and Tukey post-hoc test were performed using the

program ‘R’ to compare the total number of LAPNs labeled from each group (group mean ±

standard deviation; retroAAV: 31.5 ± 10.15, HiRet: 125.33 ± 45.796, FR: 135.5 ± 52.29). The

total number of neurons labeled was significantly lower in the retro-AAV-Cre virus group

compared to both the HiRet-Lenti-Cre virus group and the FR group (retroAAV vs. HiRet: p =

.000507, retroAAV vs. FR: p = .000116). The mean number of neurons was not significantly

different between the HiRet-Lenti-Cre virus group and the FR group (HiRet vs. FR: p =

.953487). These comparisons are displayed in Figure 12 below.

26

FIGURE 12 – Total LAPNs labeled by labeling group. Blue dots represent group means, red dots

represent data from individual animals, and error bars represent 1 SD, **p<.01

An ANOVA and Tukey post-hoc test were also performed using the program ‘R’ to

compare the number of neurons labeled per section for each group (group mean ± standard

deviation; retroAAV: 0.5025 ± 0.134, HiRet: 2.35 ± 0.466, FR: 2.117 ± 0.764). The mean

number of neurons per section was significantly lower in the retro-AAV-Cre virus group

compared to both the HiRet-Lenti-Cre virus group and the FR group (retroAAV vs. HiRet: p =

.0001, retroAAV vs. FR: p = .0001). The mean number of neurons per section was not

significantly different between the HiRet-Lenti-Cre virus group and the FR group (HiRet vs. FR:

p = .832). These comparisons are displayed in Figure 13 below.

27

FIGURE 13 – LAPNs labeled per spinal cord tissue section by labeling group. Blue dots

represent group means, red dots represent data from individual animals, and error bars represent

 1 SD, **p<.01

B. MATLAB Application Validation

 All images that were manually counted were also run through the custom MATLAB

application to determine the accuracy of the program. Difference scores were calculated by

subtracting the number of cells counted by the MATLAB program from the number of cells

counted manually. An analysis of variance (ANOVA) was performed using the program ‘R’ to

compare the difference scores between groups, and determine if there was greater error in any of

the groups (mean of difference scores standard deviation; retroAAV: -1.75 ± 6.95, HiRet: -0.5

28

± 13.18, FR: 2.75 ± 12.84). The number of LAPNs counted manually was not significantly

different from the number of LAPNs counted by the MATLAB application in any labeling group

(ANOVA p = .848) . An animal-by-animal comparison of counting methods is shown in Figure

14 below.

FIGURE 14 – Comparison of manual counting and MATLAB counting of LAPNs for each

animal.

The percent changes between counting methods were also calculated for each animal and are

shown in Table III. Negative percentages indicate a decrease in the number of LAPNs counted

by the MATLAB application, and positive percentages indicate an increase in the number of

LAPNs counted by the MATLAB application.

29

TABLE III

PERCENT CHANGES BETWEEN COUNTING METHODS

 The relationship between the two counting methods was directly analyzed using a

correlation, as shown in Figure 15 (Pearson R value = 0.99; p = 3.8x10-9). There was a strong

relationship between manual counting and MATLAB counting, as well as a statistically

significant correlation.

Animal

Number
Labeling Group

Percent Change from Manual to

MatLab Counting

1 Fluororuby 1.99%

2 Fluororuby -9.27%

3 Fluororuby 11.01%

4 Fluororuby -16.05%

5 HiRet-Cre 7.26%

6 HiRet-Cre -16.67%

7 HiRet-Cre 8.65%

8 HiRet-Cre -7.02%

9 retroAAV -10.00%

10 retroAAV -23.08%

11 retroAAV 15.38%

12 retroAAV 21.95%

Individual Percent Changes Between Counting Methods

30

FIGURE 15 – Correlation between manual and MATLAB counting methods. Black line

indicates trend line, and light gray represents 95% confidence interval.

31

III. Discussion

 Based on preliminary work and previous literature, we hypothesized that 1) the HiRet-

Lenti group would label and identify greater numbers of LAPNs than retro-AAV group, 2) the

HiRet-Lenti group would provide greater specificity than FR, and 3) FR would label more

neurons than either dual-viral labeling group. As expected, both the HiRet-Lenti and

FluoroRuby groups labeled significantly greater numbers of LAPNs than the retro-AAV group.

These results show that despite the retro-AAV being a robust tool for tracing cortical neurons

and their projections16, retro-AAV is inefficient for labeling propriospinal neurons such as

LAPNs. However, dual-viral labeling utilizing the HiRet-lentiviruses, such as the HiRet-Cre

used here, are a more robust and reliable means of labeling propriospinal neurons than retro-

AAV.

Unexpectedly, there was no difference between the number of LAPNs labeled between

the FluoroRuby and HiRet-Lenti groups. This is likely due to the similar rostral-caudal spread of

the volumes/doses of FluoroRuby and the viruses that were injected. During preliminary work, a

0.25 µl bolus of FluoroRuby was injected ipsilaterally into the C5/6 intermediate spinal gray

matter of one animal. The animal was sacrificed after one week after the injection, and the spinal

cord was dissected. The C5/6 segment was then cryosectioned longitudinally and slide mounted.

Microscopy images acquired using the Nikon TiE 300 inverted microscope revealed that the

volume of FluoroRuby injected spread rostral-caudally one spinal segment at the injection site,

approximately 1.1mm. This is an equivalent rostral-caudal spread to the spread of the of the viral

doses injected. For consistency between the FluoroRuby and viral tracing groups, 0.25 µl of

FluoroRuby was injected in the chemical tracing group (n = 4).

32

Although HiRet-Lenti labeled the same number of neurons as FR, dual-viral tracing

utilizing the HiRet-lentivirus provides more specificity than traditional chemical tracing with FR.

Previous work from our lab compared the laminar distribution of LAPNs using dual-viral

labeling with HiRet-Lenti-Cre versus chemical tracing with cholera toxin b (CTB) (Figure 16

A&B). Heat maps and contour plots were generated using a different custom MATLAB program

to show the laminar distribution of LAPNs (Figure 16 C-F). The laminar distributions were

similar between the two groups, however virus labeling was more specific. Most of the neurons

labeled by HiRet-Lenti were in lamina 6,7,8, while the distribution of neurons labeled by CTB

varied between laminas 5,6,7, and 8 (Figure 16 G).

FIGURE 16 – a. CTB injection. b. Dual-virus injection of HiRet-Lenti-Cre and AAV2. c,

d. MATLAB generated heat maps. e, f. MATLAB generated contour plots. g. Laminar

distribution of LAPNs.

The similar numbers of LAPNs labeled by HiRet-Lenti and FR seen here is likely due to

similar rostral-caudal spread of FR and viruses at the injection site(s). However, the HiRet-Lenti

33

dual-viral system provides a greater specificity of labeling, as the expression of EGFP is

dependent on the presence of both injected viruses, while FR can be taken up by fibers of

passage in addition to the axon terminals of the target neuronal population.12,13 Additionally,

LAPNs labeled by HiRet-Lenti were brighter, more prominent, and typically easier to identify

than LAPNs labeled by FR. Thus, despite the number of LAPNs labeled being similar, the dual-

viral labeling utilizing HiRet-lentiviruses is preferred due to greater specificity and more

prominent labeling. Although chemical tracers such as FR or CTB are less specific than the dual-

viral systems, chemical tracers can be useful for studies that combine axonal tract tracing with

electrophysiological recording, such as in facial nerves.18

We also found that dual-viral systems utilizing retro-AAVs, such as the retro-AAV2-Cre

virus used here, do not provide robust labeling when tracing long propriospinal neurons in rats.

This is somewhat expected as the goal of the directed evolution of the retro-AAV was to infect

the axon terminals of corticopontine neurons in mice and label the somata of these corticopontine

neurons.16 The low number of LAPNs labeled by the dual-viral system utilizing the retro-AAV is

likely attributed to either low infectivity of propriospinal axon terminals and/or poor retrograde

transport of the virus. LAPN axons in rats are 7 cm long, which is approximately 10 times longer

than of the mouse corticopontine axons (6-7mm long) that the retro-AAV was developed to

target.16 This finding emphasizes the need to empirically test, characterize, and optimize

individual viruses used for labeling a neuronal population of interest. However, the retro-AAV is

still an effective tracing tool when targeting cortical neurons with short projections, such as

corticopontine neurons.16 Based on our findings, dual-viral systems utilizing a HiRet-Lentivirus

at the level of the axon terminals and AAV2 containing a FLEx switch at the level of the cell

34

bodies confers robust, specific, and prominent labeling compared to other tracing methods when

targeting propriospinal neurons such as LAPNs.

For MATLAB application validation, each image that was manually counted was run

through the custom MATLAB application. The number of LAPNs counted manually did not

differ from the number of LAPNs counted by the MATLAB application between labeling

groups. The significant correlation between manual counting and MATLAB counting also

indicated a strong relationship between methods, and further emphasizes the accuracy of the

MATLAB application. The calculated percentage changes per animal were highest for the retro-

AAV group, which is to be expected as the overall number of LAPNs counted was the lowest for

that group. Based on these results, the custom MATLAB application accurately determined the

number of ipsilateral cell bodies labeled by each of the tracing techniques analyzed in this

experiment. The interactive application is also free and user-friendly, allowing the user to

navigate through a large number of images and overlay different laminae with ease. Overall, the

program provides an automatic, efficient, and unbiased method of counting cells in spinal cord

tissue sections.

35

REFERENCES

1. “Spinal Cord Injury Facts and Figures at a Glance.” National Spinal Cord Injury Statistical

Center, The University of Alabama at Birmingham, 2020, www.nscisc.uab.edu/.

2. Kjell, J., & Olson, L. (2016). Rat models of spinal cord injury: from pathology to

potential therapies. Disease models & mechanisms, 9(10), 1125–1137.

https://doi.org/10.1242/dmm.025833

3. Pocratsky, A. M., Burke, D. A., Morehouse, J. R., Beare, J. E., Riegler, A. S., Tsoulfas,

P., States, G., Whittemore, S. R., & Magnuson, D. (2017). Reversible silencing of

lumbar spinal interneurons unmasks a task-specific network for securing hindlimb

alternation. Nature communications, 8(1), 1963. https://doi.org/10.1038/s41467-

017-02033-x

4. Kiehn O. Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci.

2006;29:279‐306. doi:10.1146/annurev.neuro.29.051605.112910

5. Juvin L, Simmers J, Morin D. Propriospinal circuitry underlying interlimb

coordination in mammalian quadrupedal locomotion. J Neurosci.

2005;25(25):6025‐6035. doi:10.1523/JNEUROSCI.0696-05.2005

6. Laliberte AM, Goltash S, Lalonde NR, Bui TV. Propriospinal Neurons: Essential

Elements of Locomotor Control in the Intact and Possibly the Injured Spinal

Cord. Front Cell Neurosci. 2019;13:512. Published 2019 Nov 12.

doi:10.3389/fncel.2019.00512

7. Reed, W. R., Shum-Siu, A., Onifer, S. M., & Magnuson, D. S. (2006). Inter-

enlargement pathways in the ventrolateral funiculus of the adult rat spinal

cord. Neuroscience, 142(4), 1195–1207.

https://doi.org/10.1016/j.neuroscience.2006.07.017

8. Courtine, G., Song, B., Roy, R. R., Zhong, H., Herrmann, J. E., Ao, Y., Qi, J.,

Edgerton, V. R., & Sofroniew, M. V. (2008). Recovery of supraspinal control of

stepping via indirect propriospinal relay connections after spinal cord

injury. Nature medicine, 14(1), 69–74. https://doi.org/10.1038/nm1682

9. Kinoshita M, Matsui R, Kato S, et al. Genetic dissection of the circuit for hand

dexterity in primates. Nature. 2012;487(7406):235‐238. doi:10.1038/nature11206

10. Nassi JJ, Cepko CL, Born RT, Beier KT. Neuroanatomy goes viral!. Front

36

Neuroanat. 2015;9:80. Published 2015 Jul 1. doi:10.3389/fnana.2015.00080

11. Kumar TR, Larson M, Wang H, McDermott J, Bronshteyn I. Transgenic mouse

technology: principles and methods. Methods Mol Biol. 2009;590:335‐362.

doi:10.1007/978-1-60327-378-7_22

12. Dado, R. J., Burstein, R., Cliffer, K. D., & Giesler Jr, G. J. (1990). Evidence that

Fluoro-Gold can be transported avidly through fibers of passage. Brain

research, 533(2), 329-333.

13. Chen, S., & Aston-Jones, G. (1995). Evidence that cholera toxin B subunit (CTb) can

be avidly taken up and transported by fibers of passage. Brain research, 674(1),

107-111.

14. Atasoy D, Aponte Y, Su HH, Sternson SM. A FLEX switch targets

Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit

mapping. J Neurosci. 2008;28(28):7025‐7030. doi:10.1523/JNEUROSCI.1954-

08.2008

15. Kato S, Kobayashi K, Inoue K, et al. A lentiviral strategy for highly efficient

retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum

Gene Ther. 2011;22(2):197‐206. doi:10.1089/hum.2009.179

16. Tervo DG, Hwang BY, Viswanathan S, et al. A Designer AAV Variant Permits

Efficient Retrograde Access to Projection Neurons. Neuron. 2016;92(2):372‐382.

doi:10.1016/j.neuron.2016.09.021

17. Schofield BR. Retrograde axonal tracing with fluorescent markers. Curr Protoc

Neurosci. 2008;Chapter 1:. doi:10.1002/0471142301.ns0117s43

37

APPENDIX I

MATLAB Programming

classdef MEng_AppDesigner < matlab.apps.AppBase
 % Properties that correspond to app components
 properties (Access = public)
 UIFigure matlab.ui.Figure
 UIAxes_2 matlab.ui.control.UIAxes
 BrowseImageButton matlab.ui.control.Button
 FileName matlab.ui.control.EditField
 DirectionsButton matlab.ui.control.Button
 TraceROIButton matlab.ui.control.Button
 ColorThresholdLabel matlab.ui.control.Label
 ColorThresholdSlider matlab.ui.control.Slider
 CountButton matlab.ui.control.Button
 DropDown matlab.ui.control.DropDown
 UIAxes matlab.ui.control.UIAxes
 AutomatedCellCountingLabel matlab.ui.control.Label
 EditField matlab.ui.control.NumericEditField
 ManualProcessingButton matlab.ui.control.Button
 CheckBox matlab.ui.control.CheckBox
 OriginalImageLabel matlab.ui.control.Label
 ProcessedImageLabel matlab.ui.control.Label
 Labeling matlab.ui.control.Label
 SelectLaminaButton matlab.ui.control.Button
 EditField_2 matlab.ui.control.EditField
 WidthEditFieldLabel matlab.ui.control.Label
 WidthEditField matlab.ui.control.NumericEditField
 HeightEditFieldLabel matlab.ui.control.Label
 HeightEditField matlab.ui.control.NumericEditField
 ResizeLabel matlab.ui.control.Label
 XEditField matlab.ui.control.NumericEditField
 XEditFieldLabel matlab.ui.control.Label
 YEditField matlab.ui.control.NumericEditField
 YEditFieldLabel matlab.ui.control.Label
 PositionLabel matlab.ui.control.Label
 DisplayOverlayButton matlab.ui.control.Button
 RotationdegEditFieldLabel matlab.ui.control.Label
 RotationdegEditField matlab.ui.control.NumericEditField
 end
 properties (Access = private)
 Image %Browsed image
 full_img %img before tracing ROI
 ROI %image after tracing
 folder %folder with lamina overlay images
 thresholdedImage %image after being thresholded
 full_threshold %image before processing
 processedROI %image after processing
 overlay %browsed lamina overlay
 end

38

 % Callbacks that handle component events
 methods (Access = private)
 % Code that executes after component creation
 function startupFcn(app)
 %starts the app at fullscreen automatically
 drawnow;
 app.UIFigure.WindowState = 'maximized';
 end
 % Button pushed function: BrowseImageButton
 function BrowseImageButtonPushed(app, event)
 [filename, pathname] = uigetfile({'*.png';'*.jpg';'*.bmp';
'*.tif'},'File Selector');
 select_image = strcat(pathname, filename);
 I = imread(select_image);
 img = imshow(I,'Parent',app.UIAxes_2);
 app.Image = I;
 app.full_img = img;
 assignin('base','filename',filename);
 assignin('base','pathname',pathname);
 %display pathname and filename
 app.FileName.Value = filename
 end
 % Button pushed function: DirectionsButton
 function DirectionsButtonPushed(app, event)
 % Directions on how to use app
 f = uifigure;
 message = sprintf(['Click "Browse Image" to select a spinal cord
section image.' ...
 '\nSelect "Trace ROI" to trace the region in which the cells
should be counted.' ...
 '\nNext, select which type of labeling was performed from the
drop down list.' ...
 '\nTo begin counting, use the slider bar to select a color
threshold.' ...
 '\nIf there are clear artifacts in the image, you can select
"Manual Processing"' ...
 'and trace the artifact to black it out.\nWhen you are ready to
overlay lamina,' ...
 'click "Select Lamina" to choose the overlay. \nFinally, click
"Count" to automatically ' ...
 'count the labeled cells and display the lamina overlay.']);
 uialert(f,message,'Directions','Icon','info');
 end
 % Button pushed function: TraceROIButton
 function TraceROIButtonPushed(app, event)
 %drawing freehand ROI
 imshow(app.Image)
 h = drawfreehand
 h.FaceAlpha = 0;

39

 h.FaceSelectable = false;
 %blacking out non-ROI portion of image
 BW = createMask(h,app.full_img);
 BW(:,:,2) = BW;
 BW(:,:,3) = BW(:,:,1);
 ROI = app.Image;
 ROI(BW == 0) = 0;
 %showing ROI in App Axes
 imshow(ROI);
 imshow(ROI,'Parent',app.UIAxes_2);
 imwrite(ROI,'tracedImage.png');
 traced_ROI = imread('tracedImage.png');
 app.ROI = traced_ROI;

 end
 % Button pushed function: CountButton
 function CountButtonPushed(app, event)
 value = app.EditField_2.Value;
 figure;
 subplot(1,2,1)
 imshow(app.Image)
 overlay = imread(app.overlay);
 height = app.HeightEditField.Value;
 width = app.WidthEditField.Value;
 xval = app.XEditField.Value;
 yval = app.YEditField.Value;
 rot = app.RotationdegEditField.Value;
 overlay = imresize(overlay, [height width]);
 overlay2 = imrotate(overlay, rot,'crop');
 hold on
 J = imtranslate(overlay2,[xval, yval],'OutputView','full');
 f3 = imshow(J)
 set(f3,'AlphaData',0.2);
 if app.CheckBox.Value == 1
 subplot(1,2,2)
 imdata_threshold = app.processedROI;
 imshow(imdata_threshold);
 %Traces region boundaries
 [B,L] = bwboundaries(imdata_threshold);
 hold on;
 ncount = 0;
 stats2 = regionprops(L,'Area');
 for k=1:length(B)
 boundary = B{k};
 obj_area2 = stats2(k).Area;
 if obj_area2 > 200
 plot(boundary(:,2),boundary(:,1),'r','LineWidth',1);
 ncount = ncount + 1
 end
 end
 app.EditField.Value = ncount
 elseif app.CheckBox.Value == 0

40

 subplot(1,2,2)
 imdata_threshold = app.thresholdedImage;
 imshow(imdata_threshold);
 %Traces region boundaries
 [B,L] = bwboundaries(imdata_threshold);
 hold on;
 ncount = 0;
 stats2 = regionprops(L,'Area');
 stats3 = regionprops(L,'Eccentricity');
 for k=1:length(B)
 boundary = B{k};
 obj_area2 = stats2(k).Area;
 obj_area3 = stats3(k).Eccentricity;
 if obj_area2 > 100 & obj_area3 < .97
 plot(boundary(:,2),boundary(:,1),'r','LineWidth',1);
 ncount = ncount + 1
 end
 end
 app.EditField.Value = ncount
 end
 end
 % Value changed function: ColorThresholdSlider
 function ColorThresholdSliderValueChanged(app, event)
 value = app.ColorThresholdSlider.Value;
 if strcmp(app.DropDown.Value,'GFP')
 %Extracting image in green channel
 imdata = app.ROI;
 imdata_green = imdata(:,:,2);
 %Changing every gray level value less than selected value to black
 imdata_green(find(imdata_green<value)) = 0;
 full_threshold = imshow(imdata_green,'Parent',app.UIAxes);
 imwrite(imdata_green,'thresholdedImage.png');
 thresholded_image = imread('thresholdedImage.png');
 app.thresholdedImage = thresholded_image;
 app.full_threshold = full_threshold;
 elseif strcmp(app.DropDown.Value,'FluoroRuby')
 %Extracting image in green channel
 imdata = app.ROI;
 imdata_green = imdata(:,:,1);
 %Changing every gray level value less than selected value to black
 imdata_green(find(imdata_green<value)) = 0;
 full_threshold = imshow(imdata_green,'Parent',app.UIAxes);
 imwrite(imdata_green,'thresholdedImage.png');
 thresholded_image = imread('thresholdedImage.png');
 app.thresholdedImage = thresholded_image;
 app.full_threshold = full_threshold;
 end
 end
 % Button pushed function: ManualProcessingButton
 function ManualProcessingButtonPushed(app, event)
 %addressing the problem of double counting cells
 %blacking out ROI portion of the image

41

 ax = axes('Parent', uifigure)
 imshow(app.thresholdedImage,'Parent',ax)

 %drawing freehand ROI
 h = drawfreehand(ax)
 h.FaceAlpha = 0;
 h.FaceSelectable = false;
 %blacking out non-ROI portion of image
 BW = createMask(h,app.full_threshold);
 insideMasked = app.thresholdedImage;
 insideMasked(BW) = 0;
 %showing ROI in App Axes
 imshow(insideMasked,'Parent',ax);
 imshow(insideMasked,'Parent',app.UIAxes);
 imwrite(insideMasked,'processedImage.png');
 processed_ROI = imread('processedImage.png');
 app.processedROI = processed_ROI;
 %app.processedROI = app.thresholdedImage
 app.CheckBox.Value = 1
 end
 % Button pushed function: SelectLaminaButton
 function SelectLaminaButtonPushed(app, event)
 [filename, pathname] =
uigetfile({'*.png';'*.jpg';'*.bmp';'*.tif'},'File Selector');
 select_lamina = strcat(pathname, filename);
 app.overlay = select_lamina;
 app.EditField_2.Value = filename
 end
 % Button pushed function: DisplayOverlayButton
 function DisplayOverlayButtonPushed(app, event)
 figure
 imshow(app.Image)
 overlay = imread(app.overlay);
 height = app.HeightEditField.Value;
 width = app.WidthEditField.Value;
 xval = app.XEditField.Value;
 yval = app.YEditField.Value;
 rot = app.RotationdegEditField.Value;
 overlay = imresize(overlay, [height width]);
 overlay2 = imrotate(overlay, rot,'crop');
 hold on
 J = imtranslate(overlay2,[xval, yval],'OutputView','full');
 f3 = imshow(J)
 set(f3,'AlphaData',0.2);
 end
 end
 % Component initialization
 methods (Access = private)
 % Create UIFigure and components
 function createComponents(app)
 % Create UIFigure and hide until all components are created
 app.UIFigure = uifigure('Visible', 'off');

42

 app.UIFigure.Color = [0 0 0];
 app.UIFigure.Position = [100 100 796 654];
 app.UIFigure.Name = 'UI Figure';
 % Create UIAxes_2
 app.UIAxes_2 = uiaxes(app.UIFigure);
 title(app.UIAxes_2, '')
 xlabel(app.UIAxes_2, '')
 ylabel(app.UIAxes_2, '')
 app.UIAxes_2.Box = 'on';
 app.UIAxes_2.XTick = [];
 app.UIAxes_2.YTick = [];
 app.UIAxes_2.BackgroundColor = [0 0 0];
 app.UIAxes_2.Position = [24 321 366 281];
 % Create BrowseImageButton
 app.BrowseImageButton = uibutton(app.UIFigure, 'push');
 app.BrowseImageButton.ButtonPushedFcn = createCallbackFcn(app,
@BrowseImageButtonPushed, true);
 app.BrowseImageButton.FontWeight = 'bold';
 app.BrowseImageButton.Position = [54 271 100 22];
 app.BrowseImageButton.Text = 'Browse Image';
 % Create FileName
 app.FileName = uieditfield(app.UIFigure, 'text');
 app.FileName.FontSize = 14;
 app.FileName.Position = [163 271 169 22];
 % Create DirectionsButton
 app.DirectionsButton = uibutton(app.UIFigure, 'push');
 app.DirectionsButton.ButtonPushedFcn = createCallbackFcn(app,
@DirectionsButtonPushed, true);
 app.DirectionsButton.FontWeight = 'bold';
 app.DirectionsButton.Position = [54 23 100 22];
 app.DirectionsButton.Text = {'Directions'; ''};
 % Create TraceROIButton
 app.TraceROIButton = uibutton(app.UIFigure, 'push');
 app.TraceROIButton.ButtonPushedFcn = createCallbackFcn(app,
@TraceROIButtonPushed, true);
 app.TraceROIButton.FontWeight = 'bold';
 app.TraceROIButton.Position = [54 197 100 22];
 app.TraceROIButton.Text = 'Trace ROI';
 % Create ColorThresholdLabel
 app.ColorThresholdLabel = uilabel(app.UIFigure);
 app.ColorThresholdLabel.HorizontalAlignment = 'right';
 app.ColorThresholdLabel.FontWeight = 'bold';
 app.ColorThresholdLabel.FontColor = [1 1 1];
 app.ColorThresholdLabel.Position = [402 271 98 22];
 app.ColorThresholdLabel.Text = {'Color Threshold'; ''};
 % Create ColorThresholdSlider
 app.ColorThresholdSlider = uislider(app.UIFigure);
 app.ColorThresholdSlider.Limits = [0 255];
 app.ColorThresholdSlider.ValueChangedFcn = createCallbackFcn(app,
@ColorThresholdSliderValueChanged, true);
 app.ColorThresholdSlider.FontColor = [1 1 1];
 app.ColorThresholdSlider.Position = [521 280 254 3];

43

 % Create CountButton
 app.CountButton = uibutton(app.UIFigure, 'push');
 app.CountButton.ButtonPushedFcn = createCallbackFcn(app,
@CountButtonPushed, true);
 app.CountButton.FontWeight = 'bold';
 app.CountButton.Position = [609 23 100 22];
 app.CountButton.Text = 'Count';
 % Create DropDown
 app.DropDown = uidropdown(app.UIFigure);
 app.DropDown.Items = {'GFP', 'FluoroRuby', ''};
 app.DropDown.FontWeight = 'bold';
 app.DropDown.BackgroundColor = [0.9412 0.9412 0.9412];
 app.DropDown.Position = [285 197 47 22];
 app.DropDown.Value = 'GFP';
 % Create UIAxes
 app.UIAxes = uiaxes(app.UIFigure);
 title(app.UIAxes, '')
 xlabel(app.UIAxes, '')
 ylabel(app.UIAxes, '')
 app.UIAxes.Box = 'on';
 app.UIAxes.XTick = [];
 app.UIAxes.YTick = [];
 app.UIAxes.TitleFontWeight = 'normal';
 app.UIAxes.BackgroundColor = [0 0 0];
 app.UIAxes.Position = [402 321 366 281];
 % Create AutomatedCellCountingLabel
 app.AutomatedCellCountingLabel = uilabel(app.UIFigure);
 app.AutomatedCellCountingLabel.HorizontalAlignment = 'center';
 app.AutomatedCellCountingLabel.FontSize = 16;
 app.AutomatedCellCountingLabel.FontWeight = 'bold';
 app.AutomatedCellCountingLabel.FontColor = [1 1 1];
 app.AutomatedCellCountingLabel.Position = [35 622 198 22];
 app.AutomatedCellCountingLabel.Text = 'Automated Cell Counting';
 % Create EditField
 app.EditField = uieditfield(app.UIFigure, 'numeric');
 app.EditField.HorizontalAlignment = 'center';
 app.EditField.FontWeight = 'bold';
 app.EditField.Position = [732 23 31 22];
 % Create ManualProcessingButton
 app.ManualProcessingButton = uibutton(app.UIFigure, 'push');
 app.ManualProcessingButton.ButtonPushedFcn = createCallbackFcn(app,
@ManualProcessingButtonPushed, true);
 app.ManualProcessingButton.FontWeight = 'bold';
 app.ManualProcessingButton.Position = [413 197 125 22];
 app.ManualProcessingButton.Text = 'Manual Processing';
 % Create CheckBox
 app.CheckBox = uicheckbox(app.UIFigure);
 app.CheckBox.Text = '';
 app.CheckBox.Position = [544 192 46 33];
 % Create OriginalImageLabel
 app.OriginalImageLabel = uilabel(app.UIFigure);
 app.OriginalImageLabel.HorizontalAlignment = 'center';

44

 app.OriginalImageLabel.FontSize = 16;
 app.OriginalImageLabel.FontWeight = 'bold';
 app.OriginalImageLabel.FontColor = [1 1 1];
 app.OriginalImageLabel.Position = [149 601 116 22];
 app.OriginalImageLabel.Text = 'Original Image';
 % Create ProcessedImageLabel
 app.ProcessedImageLabel = uilabel(app.UIFigure);
 app.ProcessedImageLabel.HorizontalAlignment = 'center';
 app.ProcessedImageLabel.FontSize = 16;
 app.ProcessedImageLabel.FontWeight = 'bold';
 app.ProcessedImageLabel.FontColor = [1 1 1];
 app.ProcessedImageLabel.Position = [544 601 137 22];
 app.ProcessedImageLabel.Text = 'Processed Image';
 % Create Labeling
 app.Labeling = uilabel(app.UIFigure);
 app.Labeling.FontWeight = 'bold';
 app.Labeling.FontColor = [1 1 1];
 app.Labeling.Position = [232 197 108 22];
 app.Labeling.Text = 'Labeling';
 % Create SelectLaminaButton
 app.SelectLaminaButton = uibutton(app.UIFigure, 'push');
 app.SelectLaminaButton.ButtonPushedFcn = createCallbackFcn(app,
@SelectLaminaButtonPushed, true);
 app.SelectLaminaButton.FontWeight = 'bold';
 app.SelectLaminaButton.Position = [413 155 100 22];
 app.SelectLaminaButton.Text = 'Select Lamina';
 % Create EditField_2
 app.EditField_2 = uieditfield(app.UIFigure, 'text');
 app.EditField_2.Position = [520 155 71 22];
 % Create WidthEditFieldLabel
 app.WidthEditFieldLabel = uilabel(app.UIFigure);
 app.WidthEditFieldLabel.HorizontalAlignment = 'right';
 app.WidthEditFieldLabel.FontSize = 14;
 app.WidthEditFieldLabel.FontWeight = 'bold';
 app.WidthEditFieldLabel.FontColor = [1 1 1];
 app.WidthEditFieldLabel.Position = [490 111 44 22];
 app.WidthEditFieldLabel.Text = 'Width';
 % Create WidthEditField
 app.WidthEditField = uieditfield(app.UIFigure, 'numeric');
 app.WidthEditField.Position = [544 111 48 22];
 % Create HeightEditFieldLabel
 app.HeightEditFieldLabel = uilabel(app.UIFigure);
 app.HeightEditFieldLabel.HorizontalAlignment = 'right';
 app.HeightEditFieldLabel.FontSize = 14;
 app.HeightEditFieldLabel.FontWeight = 'bold';
 app.HeightEditFieldLabel.FontColor = [1 1 1];
 app.HeightEditFieldLabel.Position = [660 111 49 22];
 app.HeightEditFieldLabel.Text = 'Height';
 % Create HeightEditField
 app.HeightEditField = uieditfield(app.UIFigure, 'numeric');
 app.HeightEditField.Position = [714 111 49 22];
 % Create ResizeLabel

45

 app.ResizeLabel = uilabel(app.UIFigure);
 app.ResizeLabel.FontSize = 14;
 app.ResizeLabel.FontWeight = 'bold';
 app.ResizeLabel.FontColor = [1 1 1];
 app.ResizeLabel.Position = [413 111 54 22];
 app.ResizeLabel.Text = {'Resize:'; ''};
 % Create XEditField
 app.XEditField = uieditfield(app.UIFigure, 'numeric');
 app.XEditField.Position = [544 73 46 22];
 % Create XEditFieldLabel
 app.XEditFieldLabel = uilabel(app.UIFigure);
 app.XEditFieldLabel.HorizontalAlignment = 'right';
 app.XEditFieldLabel.FontSize = 14;
 app.XEditFieldLabel.FontWeight = 'bold';
 app.XEditFieldLabel.FontColor = [1 1 1];
 app.XEditFieldLabel.Position = [509 73 25 22];
 app.XEditFieldLabel.Text = 'X';
 % Create YEditField
 app.YEditField = uieditfield(app.UIFigure, 'numeric');
 app.YEditField.Position = [714 73 49 22];
 % Create YEditFieldLabel
 app.YEditFieldLabel = uilabel(app.UIFigure);
 app.YEditFieldLabel.HorizontalAlignment = 'right';
 app.YEditFieldLabel.FontSize = 14;
 app.YEditFieldLabel.FontWeight = 'bold';
 app.YEditFieldLabel.FontColor = [1 1 1];
 app.YEditFieldLabel.Position = [673 73 25 22];
 app.YEditFieldLabel.Text = 'Y';
 % Create PositionLabel
 app.PositionLabel = uilabel(app.UIFigure);
 app.PositionLabel.FontSize = 14;
 app.PositionLabel.FontWeight = 'bold';
 app.PositionLabel.FontColor = [1 1 1];
 app.PositionLabel.Position = [413 73 65 22];
 app.PositionLabel.Text = 'Position:';
 % Create DisplayOverlayButton
 app.DisplayOverlayButton = uibutton(app.UIFigure, 'push');
 app.DisplayOverlayButton.ButtonPushedFcn = createCallbackFcn(app,
@DisplayOverlayButtonPushed, true);
 app.DisplayOverlayButton.FontWeight = 'bold';
 app.DisplayOverlayButton.Position = [410 23 106 22];
 app.DisplayOverlayButton.Text = 'Display Overlay';
 % Create RotationdegEditFieldLabel
 app.RotationdegEditFieldLabel = uilabel(app.UIFigure);
 app.RotationdegEditFieldLabel.HorizontalAlignment = 'right';
 app.RotationdegEditFieldLabel.FontSize = 14;
 app.RotationdegEditFieldLabel.FontWeight = 'bold';
 app.RotationdegEditFieldLabel.FontColor = [1 1 1];
 app.RotationdegEditFieldLabel.Position = [605 155 104 22];
 app.RotationdegEditFieldLabel.Text = 'Rotation (deg.)';
 % Create RotationdegEditField
 app.RotationdegEditField = uieditfield(app.UIFigure, 'numeric');

46

 app.RotationdegEditField.Position = [714 155 49 22];

 % Show the figure after all components are created
 app.UIFigure.Visible = 'on';
 end
 end
 % App creation and deletion
 methods (Access = public)
 % Construct app
 function app = MEng_AppDesigner
 % Create UIFigure and components
 createComponents(app)
 % Register the app with App Designer
 registerApp(app, app.UIFigure)
 % Execute the startup function
 runStartupFcn(app, @startupFcn)
 if nargout == 0
 clear app
 end
 end
 % Code that executes before app deletion
 function delete(app)
 % Delete UIFigure when app is deleted
 delete(app.UIFigure)
 end
 end
end

	Evaluation of tracing techniques in the rat spinal cord using a custom MATLAB application.
	Recommended Citation

	tmp.1590164192.pdf.v930Z

