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ABSTRACT 

 

 

 The objective of this thesis is to develop a mathematical model characterizing the 

behavior of a microfluidic sonoporation device in order to understand how standing wave 

conditions influence molecular delivery to cells and determine whether the model 

predicts device performance. A prior model based on an ultrasonic separation cell that 

uses standing waves to separate particles is adapted for translation to the microfluidic 

device. This study generates data on acoustic pressure profiles across the cell as well as 

identifying optimal driving frequencies. This model is validated and the equations and 

methods for developing this model are translated to the microfluidic device. An 

investigation into the variation of cell layer parameters and driving frequencies is 

conducted to understand their influence on acoustic pressure profiles and resonant 

frequencies across the cell. These data are compared to experimental trials which 

measure cellular uptake of fluorescence when driven through the microfluidic device 

exposed to different ultrasound frequencies. Results suggest that the 6 MHz driving 

frequency generates the largest pressure profile across the cell but does not correlate with 

high molecular delivery efficiency during experimental trials. Additional conclusions 

regarding the acoustic pressure profile dependency on density, thickness, and speed of 

sound within the layers show a significant effect for specific frequencies. The large 

variation in results for differing material and geometric parameters shows the need for 
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further refinement of these parameters for the laboratory device. Once additional 

experimental trials are conducted, more iterations of the model are tested, and cell 

parameters are more precisely determined, the translated model can be used for extensive 

characterization of acoustic pressure profiles across the cell for future design iterations of 

the device.
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I. INTRODUCTION 

 

 

Objective  

The objective of this thesis is to develop a mathematical model to characterize the 

behavior of a microfluidic sonoporation device in an effort to understand how standing 

wave conditions influence molecular delivery to cells and determine whether the model 

predicts device performance. 

Overview of Transfection and Molecular Delivery 

 Cell transfection is a technique in which genetic material is delivered into cells to 

express specific proteins. These proteins are used to treat diseases by targeting specific, 

disease-causing cells. Molecular delivery is similar to transfection, but small molecules 

are delivered to the cell as opposed to genetic material. Originally, the most prevalent 

method of transfection was viral transfection, known as transduction [1]. This method 

uses the inherent ability of viruses to deliver genetic material to cells and has been shown 

to be highly efficient in this task [1]. However, this method also has issues with 

specificity, safety, and manufacturing among others [1, 2]. In light of these limitations, 

non-viral methods were developed which employ different techniques to deliver genetic 

material inside the cell. Reagent based transfection techniques package genes in 
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liposomes, proteins, or polymers which penetrate the cell membrane [2]. This method has 

been shown to have low toxicity and induces fewer immune responses, but it also has 

issues with efficiency and optimization for different cell types [1, 2]. Electroporation is 

another non-viral transfection method which uses electrical pulses to open temporary 

pores in cell membranes for gene delivery [2]. This method has been shown to work for 

both transient and stable transfection objectives for different cell types. However, it also 

suffers from issues with efficiency when scaled up and issues with throughput when it is 

scaled down [1, 2]. Additionally, electroporation requires specific buffers that conduct 

current efficiently and some cells do not survive well in those conditions [2]. Another 

disadvantage of electroporation is that it relies on passive diffusion of molecules into the 

cells. Electroporation opens pores in cells but it does not have an active mechanism for 

transporting nearby molecules into the cell [2]. The main focus of the experimental 

portion of this study is on the molecular delivery of small fluorescent molecules to red 

blood cells, but it should be stated that transfection applications are also important for 

future work. 

 An emerging method of non-viral transfection which aims to combat all these 

issues is sonoporation. Sonoporation does not require buffers or viruses or large amounts 

of reagent and is capable of developing transient pores in cells while inducing active 

diffusion through a phenomenon known as microstreaming.  

Overview of Sonoporation 

Sonoporation is a method which uses acoustic waves to increase the permeability 

of the cell membrane to genetic material or other biomolecules [3]. This technique (Figure 
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1) employs the use of microbubbles to improve efficiency, which are lipid-shelled, gas-

filled spheres that often contain the molecular or genetic material for insertion [2, 3]. 

When exposed to a rapid change in pressure from ultrasonic pulses these microbubbles 

oscillate, rapidly expand and compress, and eventually rupture resulting in the generation 

of a shock wave [3]. This phenomenon, known as inertial cavitation, creates transient 

pores in nearby cell membranes and induces a microjet (microstreaming) which can drive 

the genetic material inside the cell [3]. These pores reseal quickly which makes this a 

promising technique for a wide range of in-vivo targeted transfection treatments [3]. 

Similar to reagent-based transfection and electroporation, this method can suffer from 

issues with efficiency and optimization of parameters for different cell types and 

throughput objectives. Development of ultrasound-integrated microfluidic devices could 

address those limitations. 

Microfluidic Sonoporation System 

 One system that utilizes the microbubble enhanced sonoporation technique is the 

system currently in development in Dr. Jonathan Kopechek’s laboratory at the University 

of Louisville. The first iteration of this device used a clinical ultrasound probe directed at 

a conical tube in a water tank to treat cells with ultrasonic waves. This setup proved to be 

 

Figure 1: An ultrasonic transducer sends pulses through a solution of microbubbles, cells, and genetic 
material. The pulses cause the bubbles to oscillate and collapse resulting in a shock wave that drives 

genetic material into the cells. 

Ultrasound Transducer
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inefficient as many of the cells in the bulk setup were shielded by other cells and the 

ultrasonic pulses had attenuated too much before reaching them to provide effective 

treatment [2]. Due to this, a more targeted, smaller scale version of the device was 

created which uses a microfluidic setup. The current iteration of the system (Figure 2) 

uses a PDMS (polydimethylsiloxane) or 3D printed chip etched with a microfluidic 

channel to focus the area of inertial cavitation and transfection. Connected to this chip is 

an ultrasonic transducer which is driven by a microcontroller to deliver ultrasonic pulses 

at specified frequencies and amplitudes. The fluid system is driven by syringe pumps 

running at a specified flow rate, which force the microbubble-cell solution through tubing 

that connects to the microfluidic channel. As the cell solution passes through the 

microchannel etching, ultrasonic pulses from the lead zirconate titanate (PZT) transducer 

increase cell permeability, cause the microbubbles to burst, and the genetic material to 

 

Figure 2: Microfluidic sonoporation system in Dr. Kopechek’s lab at the University of Louisville. 
Elements are encased in a 3D printed box. 
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enter the cells. This treated solution of cells is collected in vials for post-processing and 

viability assessment. 

 The PDMS-based version of the microfluidic chip (Figure 3) contains multiple 

layers. The PZT transducer oscillates against a layer of silicone. This layer of silicone is 

connected to a glass slide which is laid over the top of the microfluidic channel. The 

microfluidic channel is etched into a layer of PDMS. This image is not to scale, but the 

size of the transducer should be larger than the width of the microchannel to ensure 

longitudinal waves are the dominant acoustical characteristics within the channel. 

Sonoporation System Applications 

This device has the potential to be highly efficient, in terms of both transfection 

effectiveness and throughput capabilities. It has already been tested on a variety of cell 

types including cancer cells, red blood cells, and immune cells. This system shows 

 

Figure 3: Layered microfluidic chip. PDMS based version 
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promising applications in blood drying technology, and has recently focused on gene 

therapy applications, specifically CAR-T therapy.  

CAR-T therapy is an immunotherapy treatment in which the T-cells of a cancer 

patient are collected and genetically modified to express the chimeric antigen receptor 

(CAR) [4]. This therapy programs these immune cells to attack specific tumor cells and 

eradicate the cancer in a targeted approach. This method has been approved to treat Acute 

Lymphoblastic Leukemia (ALL) and other types of B cell lymphomas [5]. Viral 

transfection methods have been shown to be fairly effective for this type of gene therapy, 

but the manufacturing process for this technique is slow and highly regulated for quality 

control purposes [4]. The entire process of blood extraction, apheresis for T-cell isolation, 

T-cell activation, transduction, proliferation, and packaging for transport can take several 

weeks [4, 5]. Additionally, the viral transduction method used for this therapy can result 

in random insertion of the CAR-expressing gene into the T-cell genome [5]. Random 

insertion could result in toxic immune responses within the patient including cytokine 

release syndrome and immune effector cell-associated neurotoxicity syndrome [6]. These 

limitations demonstrate the need for a gene therapy technique that can load T-cells more 

directly and consistently while cutting down on manufacturing time. With the proper 

optimization, the microfluidic sonoporation system could be used as an alternative 

method of T-cell transfection to address these issues. 

Problem 

The limitations of both viral and other non-viral transfection techniques 

demonstrate the need to optimize the microfluidic sonoporation system. Although this 
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system has been used experimentally to test the transfection efficiency of various cell 

types, the optimal parameters for specific cell types and specific applications has yet to 

be finalized. In order to accomplish this, a characterization of the ultrasound pressures 

within the microfluidic channels of the device under different driving conditions and chip 

material/geometric properties is necessary.  

To understand how the device performs under different conformations could be 

accomplished by conducting numerous experimental trials. However, this is a costly and 

inefficient approach. A better tactic would be to attempt to create a mathematical model 

characterizing the behavior of the system under different conditions. If the mathematical 

simulation is robust and accounts for the nuances of the system, it could potentially be 

used to predict the outcomes of numerous experimental trials almost instantaneously.  

Modeling Background  

 The basis for the mathematical model developed in this thesis comes from the 

paper “Modeling of Layered Resonators for Ultrasonic Separation” by Hill et. al. This 

 

Figure 3: Equivalent-circuit for representing the transducer as a resonance circuit, image from Hill et. 
al 
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paper uses an “equivalent-circuit transducer model... coupled with acoustic impedance 

transfer relationships” to model the electrical and resonance characteristics of a layered 

cell used for particle separation [7]. The authors represented the behavior of a 

piezoelectric transducer by modeling it after a resonance circuit (Figure 4). C0 represents 

the static capacitance of the transducer, Cm, Lm, and Rm, are the mechanical capacitance, 

inductance, and resistance of the transducer respectively [7]. The most important 

parameter in this circuit is the variable Z0, which represents the input mechanical 

impedance to the matching layer (layer in contact with transducer) of the resonator cell. 

Calculating this variable allows force transfer relationships to be calculated, which leads 

to the generation of a pressure distribution equation showing the values for pressure 

across the transverse plane of the cell. 

 One of the goals of this study was to generate data representing the pressure 

profile across the cell at different transducer driving frequencies. Additionally, Hill et. al 

generated data to predict filtration performance by calculating the energy-frequency 

product across a range of frequencies. The authors also validated this data experimentally 

to determine the model’s accuracy and found it matched well with performance data and 

electrical characteristics [7]. This data is of interest because when translated to the 

microfluidic sonoporation system it can predict the positions of pressure nodes within the 

microfluidic channel. Additionally, the model could predict which frequencies show 

resonant behavior within the device.  
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Research Objective  

 While translating the Hill model to the microfluidic sonoporation system is one 

objective of this thesis, another is determining the influence of standing wave behavior on 

molecular delivery efficiency. The position and number of pressure nodes could be an 

influential factor in transfection efficiency, and to date no research exists that investigates 

this question for a microfluidic sonoporation application. The initial hypothesis for this 

study is that resonant frequencies will create standing waves within the microchannel and 

the frequencies with the largest acoustic pressures will correlate with high molecular 

delivery efficiency. By altering the frequency of the transducer and the impedance 

characteristics of the layers, the standing wave profile can be adjusted to match the real-

world behavior of the microfluidic cell. Investigating the effect of pressure nodes on 

transfection performance is a major focus of this thesis.  

Outline  

 This thesis consists of three main parts. Part one is the re-creation and validation 

of the Hill paper model. Through the use of the MATLAB environment, the relevant 

equations, mechanical and geometric parameters, and electrical values from the Hill 

study are replicated. The data and graphs of interest are simulated to determine if the 

same results from the Hill paper can be produced to validate the model’s legitimacy. 

 Part two is the translation of this model to the microfluidic sonoporation system. 

This step includes applying the same impedance and force transfer equations that were 

described in the Hill paper, but with altered electrical characteristics and values for 

material and geometric parameters to represent the PDMS-based prototype device. The 
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same graphs of interest from the Hill paper are generated for a variety of parameters 

relevant to the prototype design in order to investigate their effect on the system’s 

behavior.  

 Part three is the experimental comparison of the translated model. Experimental 

trials testing the molecular delivery efficiency are conducted at specified driving 

conditions to compare the results to those predicted by the model. Following this is a 

presentation and discussion of the results from each step. The paper concludes with 

closing remarks, limitations, and future works outlining where this research fits in the 

spectrum of literature and what steps should be taken next.
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II. METHODS 

 

 

Hill Paper Validation 

The Hill paper is a relevant model for translation to the microfluidic system because 

the authors investigate the behavior of a layered resonator in which “a piezoelectric 

transducer is bonded to a carrier or matching layer which in turn drives a fluid layer...and 

which is terminated by a reflector layer” [7]. As shown in Figure 3, the microfluidic chip 

is a layered cell with a PZT transducer bonded to a silicone layer which drives into a 

microfluidic channel layer and is terminated by a reflector layer (PDMS). The authors of 

the Hill paper wish to understand how the material and geometric parameters influence 

the performance of ultrasonic particle separation, while the investigative goal of this 

paper is to understand those parameters’ influence on the efficiency of molecular 

delivery. Although the objectives are different, the focus on standing wave behavior 

within an ultrasonic resonator is the same.  

The Hill paper validation required understanding how the equivalent-circuit 

transducer model was developed. The critical element of the circuit is the component Z0 

because this represents the mechanical input impedance to the matching layer of the 

resonator. Calculating the input impedance to the matching layer will allow subsequent 

equations to be developed which culminate in an equation that describes the spatial 
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variation of acoustic pressure across the cell. The spatial variation of acoustic pressure 

through the microchannel is the most important equation because it predicts the positions 

at which there are positive and negative pressure nodes. Nodal positioning will influence 

particle location and is expected to have an impact on the cell’s performance. Developing 

the acoustic pressure equation requires an understanding of how the preceding equations 

were developed which follows here. All equations are given by Kinsler et. al [9] as 

referenced in the Hill study.  

Mechanical Input Impedance:  

𝑍 = 𝑟𝑆
ାௌ ୲ୟ୬ ௧

ௌା ୲ୟ୬ ௧
 Eq. (1)

  

This equation represents the input mechanical impedance to the matching layer. 

The term rm is the specific acoustic impedance of the matching layer, S is the cross-

sectional area of the cavity, Zf is the mechanical impedance looking into the layer 

adjacent to the matching layer, km is the wavenumber in the matching layer, and tm is the 

thickness of the matching layer. This is a complex number as shown by the element j, to 

allow for losses through the layer. If the material and geometric properties of the 

matching layer are known, then every variable in this equation can be determined aside 

from Zf. To calculate Zf, an impedance transfer relationship is used in which Zf is the 

variable on the left-hand side of eq. (1) and the layer adjacent to that layer would be the 

new unknown impedance value. This transfer relationship would continue until an 

acoustic free-field boundary is reached (region where no reflections occur). This field, 

typically air, has a mechanical input impedance equal to its specific acoustic impedance 
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which can be calculated from the material properties of air. Once this quantity is known, 

the mechanical impedance values can be worked through backwards starting with the 

terminating layer adjacent to the free field until the matching layer is reached. This 

process is shown in the diagram below for a representative cell (Figure 5). 

 

 The acoustic impedance equation equates to the density of the material (ρair) times 

the speed of sound through that material (cair). This value can be plugged into the 

equation for Zref.plate, and that solution can be plugged into the equation for Zfluid whose 

 

Figure 5a: Schematic diagram of basic resonator cell, image from Hill et. al 

 

 

Figure 5b: Impedance transfer relationship process shown for figure 5a example 
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result will allow for the calculation of the input mechanical impedance into the matching 

layer. Once this solution is determined, the force generated by the transducer acting on 

the matching layer can be calculated. 

Force generated by transducer: 

𝐹 =
ఝబ

ାబ
  Eq. (2) 

In this equation, φ is the transformation ratio between mechanical and electrical 

quantities, V is the input voltage to the transducer and Zet is the mechanical impedance of 

the transducer at the output terminals when they are short-circuited. This force in turn 

generates a force between the matching layer and the layer next to it. In the schematic 

from the Hill paper, this would be the fluid layer, Ff. 

Force acting on layer adjacent to matching layer: 

𝐹 =
ிబ

 ୡ୭ୱ ௧ାௌ ୱ୧୬ ௧
 Eq. (3) 

 The variables in this equation represent the same quantities as in previous 

equations where the subscript f is for the fluid layer and the subscript m is for the 

matching layer. If there are multiple layers between the transducer and the fluid layer, as 

is the case for the Hill study’s experimental cell, the force transfer relationship can be 

used on successive layers to calculate the force at the fluid boundary. 

 Once the force at the fluid boundary is determined, then the spatial variation of 

the acoustic pressure through the fluid layer can be calculated. If x = 0 at the boundary 
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between the layer adjacent to the fluid layer and the fluid layer, then the pressure can be 

expressed as follows. 

Spatial variation of acoustic pressure: 

𝑝(𝑥) =
ி

ௌ

ೝ ୡ୭ୱ (௧ି௫)ାௌ ୱ୧୬ (௧ି௫)

ೝ ୡ୭ୱ ௧ାௌ ୱ୧୬ ௧
 Eq. (4) 

 In eq. (4), Zr is the mechanical impedance looking into the reflector layer which 

follows the fluid layer. The subscripts and variable representations are the same as in the 

other equations.  

 Additional equations applied in the development of this model include the 

equations for calculating angular frequency (eq. 5), wavenumber (eq. 6), and acoustic 

impedance (eq. 7). 

𝜔 = 2 ∗ 𝜋 ∗ 𝑓 Eq. (5) 

𝜆 =  𝜔/𝐶 Eq. (6) 

𝑟 =  𝜌 ∗ 𝐶 Eq. (7) 

 In the equations above, f represents the driving frequency of the transducer, ω is 

the angular frequency, c is the acoustic velocity of the material, and ρ is the density of the 

material. 

 The authors of Hill et. al applied these equations to their experimental layered 

resonator, taken from Hawkes and Coakley [10], shown in (Figure 6).  
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 Validating the Hill paper began with determining the value of eq. (1) and working 

towards eq. (4) by applying the transfer relationships to the cell in Figure 6. The steps to 

reach that point are described as follows: 

1. Determine acoustic impedance of air backing (free-field boundary) 

2. Calculate mechanical impedance (eq. 1) of stainless-steel reflector layer using 

value from step 1 

3. Calculate mechanical impedance of fluid layer using value from step 2 

4. Calculate mechanical impedance of initial stainless-steel layer using value from 

step 3  

5. Calculate mechanical impedance of epoxy resin layer using value from step 4 

6. Calculate mechanical impedance of silver electrode (matching layer) using value 

from step 5 

7. Calculate force generated by transducer (eq. 2) acting on matching layer using 

value from step 6 and estimates of other quantities 

 

Figure 6: Schematic of Hawkes and Coakley ultrasonic resonator, image from Hill et. al 
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8. Calculate force acting on epoxy resin layer (eq. 3) using value from step 7 

9. Calculate force acting on first stainless-steel layer with transfer relationship (eq. 

3) using value from step 8 

10. Calculate force acting on the fluid layer at the stainless-steel/fluid layer boundary 

using value from step 9 

11. Determine the spatial variation of acoustic pressure with eq. (4) using value from 

step 10 

The known material and geometric parameters are presented in the table below (Table 1). 

Table 1: Material and geometric parameters for Hill layered cell 

 

 

        Parameters 
 

Layers 

Thicknes
s (t) 

(mm) 

Densit
y (ρ) 

(kg/m3

) 

Acousti
c 

Velocit
y (c) 

(m/s) 

Wavenumbe
r (k) (rad/m) 

Acoustic Impedance 
(r) (kg/s*m2)  

Air ∞ 1.204 343 N/A Cair*ρair = 412.972 

Stainless Steel 
Backing 2.5 7800 6200 ω/CSSB  CSSB*ρSSB = 48,360,000 

Fluid Channel 
(Water) 0.25 1000 1500 ω/CWater 

CWater*ρWater = 
1,500,000 

Stainless Steel Initial 3.1 7800 6200 ω/CSSI  CSSI*ρSSI = 48,360,000 

Epoxy Resin 0.015 2000 2440 ω/CER  CER*ρER = 4,880,000 

Silver Electrode 0.002 10,400 3650 ω/CSE  CSE*ρSE = 37,960,000 
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 Additional values used to calculate the force generated by the transducer and the 

wavenumber are presented in Table 2. 

 

 The cross-sectional area of the fluid channel is given by Hawkes and Coakley 

[10] who originally developed the layered chip. The transformation ratio is a unitless 

transducer specific value and dependent on the input frequency to the transducer, but it is 

not provided by Hill et. al. During validation, this value is originally approximated as 1 

then altered to scale the resultant data to match that found by Hill et. al. As this value is 

frequency dependent, the transformation ratio was altered slightly for each driving 

frequency to better match the data. The mechanical impedance across the shorted 

transducer terminals is unknown and estimated as 1 throughout validation. The values for 

voltage correspond to the values for frequency, i.e. V = 1.05 volts corresponds to f = 2.75 

MHz and so on. These values come from a figure (Figure 7) in Hill et. al that shows 

modeled and measured voltages across the transducer across a range of frequencies.  

Table 2:Additional values for developing resonator model 

Cross-sectional 
Area of Fluid 
Channel (m2) 

Transducer 
Output 

Voltage (V) 

Frequency 
(MHz) 

Transformation 
Ratio (φ)  

Transducer 
Shorted 
Terminal 

Impedance (ZET) 

0.01*0.00025 = 
2.5 x 10-6 

V(f) = [1.05, 
1.6, 1.075, 

1.95] 

f = [2.75, 
2.92, 3.00, 

3.09] 
Variable [0.1 -1]  ~ 1 
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 The frequencies at which the voltage values are determined are based on another 

figure (Figure 8) from Hill et. al which shows the modelled energy-frequency product and 

measured clearance across a range of frequencies. These terms measure the performance 

of the cell and for the authors this was a measure of filtration/separation efficiency 

(clearance).  

 

Figure 7: Voltage across the transducer terminals for the layered resonator filled with water, image 
from Hill et. al 
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 Figure 8 shows two peaks where the clearance is most efficient, one at 2.92 MHz 

and the other at 3.09 MHz. The authors used these two frequencies as well as the 

frequency at the dip between peaks, 3.0 MHz, and a random frequency of 2.75 MHz to 

model the acoustic pressure profile across the cell as shown in Figure 9. The method used 

to determine the voltages corresponding to these select frequencies from Figure 7 is 

shown in Figure 10. 

 

 

 

 

 

 

 

Figure 8: Normalized clearance or Ef*f product for the resonator, image from Hill et. al 
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 Figures 8 and 9 are the relevant graphs for replication from this model. The 

acoustic pressure profile in Figure 9 can be applied to the microfluidic device to determine 

 

Figure 9: Acoustic pressure profile across the cell at peak clearance frequencies and 2, image from Hill 
et. al 

 

Figure 10: Method for determining voltages corresponding to select frequencies. Rulers were used as a 
representative scale on each axis to determine the quantities between tick marks. 
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the location of standing waves and the pressure magnitudes expected at these locations 

for specific frequencies. Additionally, Figure 8 can be replicated in the microfluidic 

device by calculating the maximum pressure across a range of frequencies from eq. (4) 

and plotting those values against their corresponding frequencies.  

 After determining all relevant quantities, steps 1-11 are programmed within 

MATLAB to generate an acoustic pressure profile across the cell at the select 

frequencies. The normalized clearance graph is replicated by running the acoustic 

pressure equation across a range of frequencies. The graphs developed within MATLAB 

are compared to Figures 8 and 9 to determine the validity of the Hill model. These results 

are presented in section III.   

Microfluidic Sonoporation System Translation  

 After the relevant data from the Hill study is validated, the same modelling 

process is applied to the microfluidic sonoporation system. Translating the same 

equations and transfer relationships to the microfluidic device requires information about 

the material and geometric properties of the layered chip, as well as information about the 

transducer voltage output at specific frequencies. Figure 3 shows the order of layers for 

the sonoporation resonator cell; in this figure the silicone layer is the matching layer, 

adjacent to that is a glass slide layer which forms a boundary with the microfluidic 

channel, and the terminating/reflection layer is composed of PDMS. Geometric 

parameters for these layers were determined by measurement or knowledge of chip 

dimensions. Densities are sourced from a material database referenced later. Acoustic 
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velocities are taken from additional sources and scientific literature that conducted 

studies on the acoustic velocity of the materials used in the microfluidic chip.   

 The constitution of the fluid layer is complex as it composed of a buffered saline 

solution that contains microbubbles and a dilute concentration of cells. The properties of 

this layer are estimated as both water and whole blood for purposes of simplifying the 

calculations. Table 3 shows the geometric and material parameters for the microfluidic 

chip. 

 

 As shown in Table 3, both silicone and PDMS exhibit variability in their acoustic 

impedance values. This arises from the range of acoustic velocities reported for each 

material and the range of densities reported for silicone. The values for silicone acoustic 

Table 3: Material and geometric parameters for the microfluidic device. Fluid channel properties are 
estimated as both water and whole blood. 

           
Parameters 

 
Layers 

Thickness 
(t) (mm) 

Density 
(ρ) 

(kg/m3) 

Acoustic 
Velocity 
(c) (m/s) 

Wavenumber 
(k) (rad/m) 

Acoustic 
Impedance (r) 

(kg/s*m2)(x105) 

Silicone 1.0 

700 - 
3800 
Avg: 
1250 

960 - 
1110 
Avg: 
1035 

ωSi/cSi 
ρSi*cSi = [7.245; 
12.9375; 39.33; 

12; 13.875] 

Borosilicate 
Glass 1.0 2400 5640 ωBG/cBG ρBG*cBG = 135.36 

Microchannel 
Fluid: Water 0.2 1000 1481 ωwater/cwater ρwater*cwater = 14.81 

Microchannel 
Fluid: Whole 

Blood 
0.2 1060 1578 ωblood/cblood ρblood*cblood = 

16.7268 

PDMS 4.0 965 

1076.5 - 
1250 
Avg: 
1119 

ωPDMS/cPDMS 

ρPDMS*cPDMS = [min: 
10.38822; avg: 
10.79835; max: 

12.0625] 
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impedance are calculated by taking the minimum, average, and maximum reported values 

for density and multiplying by the average value for acoustic velocity. The same thing is 

done with the three values for silicone acoustic velocity by multiplying by the average 

silicone density to attain the other impedance values. The average value for silicone 

density comes from the averaged densities over a dataset of silicone materials. The 

average value for acoustic velocity through silicone is calculated by averaging the 

minimum and maximum values. The average value for acoustic velocity through PDMS 

is taken as the value reported most consistently throughout the literature. A similar 

approach was taken for the PDMS impedance values but with a constant density value. 

This table shows large variability in the possible properties for the chip layers so an 

investigation of the impact of changing these parameters is conducted.  

 The output voltage of the transducer at specific driving frequencies is determined 

by a calibration of the transducer using a hydrophone-water tank setup. A hydrophone 

measures acoustic wave pressure and converts it to a voltage. The experimental setup 

(Figure 11) connected a function generator to the transducer which was suspended in a 

tank of water. The hydrophone was placed several centimeters away from the transducer; 

this distance was held constant throughout the calibration. The hydrophone was 

connected to the oscilloscope which displayed the voltage waveform and quantities. 
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 A test was conducted to determine the output voltage of the transducer across a 

range of driving frequencies. An applied 20 volts was maintained while the frequency 

was altered by increments of 0.5 MHz beginning at 3 MHz and ending at 8 MHz. The 

output of the hydrophone is presented in Figure 12. 

 

Figure 11: Transducer hydrophone calibration setup 

 

Figure 12: Hydrophone output (transducer output) across a range of frequencies 
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 Additional values used to calculate eq. (2) for the microfluidic device and the 

wavenumber are shown in Table 4.  

            

 The values for transformation ratio and the terminal impedance of the transducer 

when shorted are unknown. Unlike in the Hill validation, the transformation ratio cannot 

be scaled for adjustment because there are no results to match the new data to. The values 

for frequency are chosen because they match the driving frequency of the transducer in 

experimental trials of calcein delivery.  

 The same steps that were taken in the Hill validation for developing equations 1-4 

are applied to the microfluidic device. The microfluidic chip is surrounded by a field of 

air, so the acoustic impedance of air is used to work backwards through the layers 

beginning with PDMS and ending with silicone to determine the input mechanical 

impedance of the silicone (matching) layer. This input mechanical impedance is applied 

to eq. (2) to determine the transducer force driving into the matching layer. The force 

transfer relationship from eq. (3) is applied to the glass slide layer and subsequently the 

Table 4: Electrical values for the PZT transducer and the driving frequencies as well as fluid channel 
cross sectional area. 

Cross-Sectional 
Area of Fluid 
Channel (m2)  

Transducer 
Output Voltage 

(V) 

Frequency 
(MHz) 

Transformation 
Ratio (φ) 

Transducer 
Shorted Terminal 
Impedance (ZET) 

(200x10-6)2 = 
4x10-8 

V(f) = [2.4x10-3; 
6.6x10-3; 
1.8x10-3] 

f= [4; 6; 8] 1 1 
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fluid layer to determine the force driving into the fluid layer. This fluid force is input into 

eq. (4) to determine the acoustic pressure profile across the microfluidic channel.  

 As mentioned earlier, the variation in reported values for some of the layers 

prompted an investigation into the impact of these differences. This investigation is 

conducted by creating a control of all variables except one, using their average, modal, or 

singularly reported values, and altering the other variable to understand how it impacts 

the pressure profile across the cell. An investigation of the impact of the fluid layer 

properties is also included by running the model at water values and then at whole blood 

values. The pressure profile for each iteration of the study was analyzed at 4, 6, and 8 

MHz with the corresponding output voltage for each frequency.  

 The first variable studied was the density of silicone. The model was evaluated at 

the minimum, average, and maximum values for silicone density, at 4, 6, and 8 MHz, for 

both water and blood fluid layers. All other values were held at their average or 

singularly reported values.  

 The second variable studied was the acoustic velocity of silicone. The model was 

evaluated at the minimum, average, and maximum values for silicone acoustic velocity, 

at 4, 6, and 8 MHz, for both water and blood fluid layers. All other values were held at 

their average or singularly reported values. 

 The third variable studied was the acoustic velocity of PDMS. The model was 

evaluated at the minimum, average, and maximum values for PDMS acoustic velocity, at 

4, 6, and 8 MHz, for both water and blood fluid layers. All other values were held at their 

average or singularly reported values. 
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 The fourth variable studied was the impact on thickness alterations. Although the 

layer thicknesses are constant right now, a variation in layer thicknesses was expected in 

future iterations of this design and is therefore important to investigate. The silicone, 

glass, and PDMS layers were scaled to both half and double thickness independently as 

the microfluidic channel thickness was held constant to show how the position of 

pressure nodes changes. All other variables were held at their averages.  

 After developing graphs showing the pressure profile across the cell for different 

parameters, Figure 8 (normalized clearance) was replicated by evaluating the model at the 

frequency steps and corresponding voltages from Figure 12. At each step, the pressure 

equation was calculated and the maximum pressure value across the cell was recorded. 

Voltages are interpolated between 3 and 8 MHz at 450 times the sampling rate of the 

original data set from calibration.  Material and geometric parameters were taken as their 

average values. After iterating through each step, a graph displaying the maximum 

pressures vs. their corresponding frequency was created which shows the frequencies at 

which the model predicts resonant behavior.  

Experimental Trials 

 To understand how this model relates to the experimental results, an experiment 

was conducted to measure fluorescence intensity within red blood cells (RBCs). This 

experiment uses calcein as the molecular component for delivery and flow cytometry to 

measure cellular uptake of the compound. The steps for conducting this experiment at 

different ultrasonic frequencies is shown below.  

1. Keep all samples at room temperature during experiment 
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2. Dilute human RBCs in 17mL PBS to a final concentration of 50 million/mL 

1. Aliquot 3mL for no calcein control group (group "a") 

2. Aliquot 13.5mL for calcein-groups: 

a. Add 1.5 mL of calcein (from 1 mg/mL calcein stock solution) to the 

13.5mL aliquot 

3. Divide calcein groups into 3-mL aliquots 

4. Experiment groups (n=3/group, you can run 3 mL through device using 50-mL 

conical vials then divide into 1-mL samples for measurements): 

1. No calcein control (no flow, no ultrasound) 

2. No treatment (calcein added but no flow, no ultrasound) 

3. Flow through spiral-channel microfluidic device using the 600mL/h 

setting for an empty 60mL syringe (27.6mm diameter), without 

ultrasound (with calcein added) 

4. Flow through spiral-channel microfluidic device using the 600mL/h 

setting for an empty 60mL syringe (27.6mm diameter), with 25 µL/mL 

of cationic microbubbles + 4 MHz ultrasound at 20 setting on function 

generator (with calcein added) 

5. Flow through spiral-channel microfluidic device using the 600mL/h 

setting for an empty 60mL syringe (27.6mm diameter), with 25 µL/mL 

of cationic microbubbles + 6 MHz ultrasound at 20V setting on function 

generator (with calcein added) 

6. Flow through spiral-channel microfluidic device using the 600mL/h 

setting for an empty 60mL syringe (27.6mm diameter), with 25 µL/mL 
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of cationic microbubbles + 8 MHz ultrasound at 20V setting on function 

generator (with calcein added) 

5. After treatment wash all samples 3x (including control groups) 

a.      Centrifuge with program #3 (1500g for 5min) 

b.      Aspirate supernatant, resuspend in 1mL PBS 

c.       Centrifuge with program #3 (1500g for 5min) 

d.      Aspirate supernatant, resuspend in 1mL PBS 

e.      Centrifuge again with program #3 (1500g for 5min) 

f.        Aspirate supernatant, resuspend in 250 µL PBS 

6. Run flow cytometry on samples 

 

 A chart was generated which shows the relative fluorescence intensity within the 

RBCs for no calcein and no ultrasound, calcein with no ultrasound and no flow, calcein 

with flow and no ultrasound, and calcein with flow and ultrasound at 4, 6, and 8 MHz. 

ANOVA tests to determine statistical significance were conducted between these groups. 
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III. RESULTS AND DISCUSSION 

 

 

Hill Paper Validation  

 The first portion of the Hill study validation was replicating Figure 9. Shown in 

Figure 13 is the acoustic pressure profile across the cell with a transformation ratio set to 

1.  

 

 The values on the left boundary (y-axis) of the cell were compared to the values 

on the left boundary for Figure 9 and ratios were developed to produce more specific 

 

Figure 13: Acoustic pressure profile across cell with non-specific transformation ratios and left 
boundary values shown. Left boundaries used to scale for specific transformation ratios. 
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transformation ratios (scaling factors) for each frequency. Table 5 shows the 

transformation ratio used for each frequency. 

Table 5: Specific transformation ratios for each driving frequency from Figure 13. Values to calculate 
transformation ratio taken from Figure 13b and left boundary values of Figure 9. 

 

 

  

The same acoustic profile was then generated using the specific transformation 

ratios from Table 5. This graph, as well as a comparison to Figure 9, is shown below in 

Figure 14.  

 

 Figure 14 shows a good match between the replicated model on the left and the 

graph from Hill et. al on the right. The magnitudes of the pressures match well on the 

boundaries, the shapes of the curves match well, and the position of the low-pressure 

Frequency 
(MHz) 2.75 2.92 3.00 3.09 

Transformation 
Ratio 

0.1/0.8905 = 
0.112 

2.1/8.904 = 
0.236 

0.75/4.423 = 
0.17 

2.1/7.532 = 
0.28 

 

Figure 14: (Left) Graph generated by replicated model using specific transformation ratios (Right) Figure 9 
from Hill being replicated. 
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nodes match well also. The low-pressure node for 3.09 MHz lies to the right of the 

middle of the cell in both graphs, for 2.92 MHz and 2.75 MHz it lies to the left in both 

graphs, and for 3.00 MHz it lies in the center for both graphs.  

 The next step of the Hill study validation was replicating Figure 8. The maximum 

pressure across the cell was found across a range of frequencies from 2-4 MHz stepping 

up by 1000 Hz each time. The voltages for 21 points on Figure 7 starting with 2 MHz and 

stepping up by 0.1 MHz were determined with the same method shown in Figure 10. 

Voltages for frequencies between these steps were found by interpolation at a sampling 

rate that matched a frequency step of 1000 Hz. Figure 15 shows the maximum pressure 

across the cell using this method.  

 

 The value corresponding to the peak around 2.9 MHz was used to normalize the 

curve. This is shown in Figure 16 along with a comparison to Figure 8. 

 

Figure 15: Maximum pressure across the cell across a range of frequencies using interpolation to match 
voltages with frequencies. 
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 The graph on the left displays the results from the replicated model and is 

compared to the graph on the right from the Hill study. There is good match showing 

peaks at frequencies right above and below 3 MHz. The larger of the two peaks is 

opposite in these graphs and the dip between the two peaks isn’t as low or detailed, but 

this is still a good match considering that the interpolation was only over 2100 points and 

there were no specific transformation ratios used for this graph replication. Assigning a 

transformation ratio to each frequency step would likely produce a more well-matched 

result, but this would require a much more complex method than that used in Table 5.  

 Considering Figures 14 and 16, the replicated model is a good match to the model 

developed by Hill et. al. This is reason to translate and develop the model for the 

microfluidic sonoporation system. 

 

Figure 16: (Left) Normalized max pressure across cell for a range of frequencies. (Right) Figure 8 from 
Hill study showing normalized clearance 
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Microfluidic Sonoporation System Translation 

 The first variable that was studied was variation in silicone density. Acoustic 

pressure profiles for minimum, average, and maximum silicone density values for water 

and whole blood are shown below in Figures 17-22. 

           WATER           BLOOD 

 

 

Figure 17: (Left) Minimum silicone density 700 kg/m3 water fluid layer 

Figure 18: (Right) Minimum silicone density 700 kg/m3 blood fluid layer 

 

Figure 19: (Left) Average silicone density 1250 kg/m3 water fluid layer 

Figure 20: (Right) Average silicone density 1250 kg/m3 blood fluid layer 
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 The number of high-pressure and low-pressure nodes within the microchannel for 

each frequency, independently, are the same between charts. The locations of these nodes 

are relatively the same across all densities as well, except for a slight difference in 

location between the water and blood charts. The range of pressure magnitudes across the 

charts vary, but all lie within the range of a few thousand pascals. For each chart, the 6 

MHz frequency has a much larger magnitude than the 4 and 8 MHz frequencies, which 

remain very close to each other in maximum pressure values. Between water and blood, 

the maximum pressure magnitude of the 6 MHz frequency increased greatly in 

comparison to the other frequencies when using blood parameters. Between the 4 and 8 

MHz frequencies, using blood parameters caused the 8 MHz frequency’s max-pressure 

nodes to shift above those of the 4 MHz. Increasing silicone density shows an increase in 

pressure across the cell, the same as increasing fluid density appears to increase pressure 

across the cell. 

 

Figure 21: (Left) Maximum silicone density of 3800 kg/m3 with water fluid layer 

Figure 22: (Right) Maximum silicone density of 3800 kg/m3 with blood fluid layer 
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 The second variable studied was the variation in silicone acoustic velocity. 

Acoustic pressure profiles for minimum, average, and maximum silicone acoustic 

velocity values for water and whole blood are shown below in Figures 23-28. The title of 

each chart has SoS (speed of sound) in the title as a replacement for acoustic velocity. 

           WATER          BLOOD 

 

 

Figure 23: (Left) Minimum silicone speed of sound of 960 m/s with water fluid layer 

Figure 24: (Right) Minimum silicone speed of sound of 960 m/s with blood fluid layer 

 

Figure 25: (Left) Average silicone speed of sound of 1035 m/s with water fluid layer 

Figure 26: (Right) Average silicone speed of sound of 1035 m/s with blood fluid layer 
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 Similarly, to Figures 17-22, the number of max-pressure and low-pressure nodes 

predicted by the model within the cell is the same between charts. The 6 MHz frequency 

still shows greater pressure magnitudes across the cell, indicating strong resonant 

behavior at that frequency. The scale on the y-axis is much less varied when changing the 

acoustic velocity of the silicone layer; three charts have the same maximum pressure on 

the y-axis and the other three are within 1500 pascals. The variation between 4 and 8 

MHz frequency maximum pressure node values is much less patterned in the charts 

above. The 4 and 8 MHz frequencies switch between having the larger max-pressure 

node magnitude between water and blood and across the silicone SoS values randomly. 

In these charts as in the previous ones, switching between water and blood increased the 

acoustic pressure for the 6 MHz frequency significantly and the 8 MHz frequency 

slightly. 

 

Figure 27: (Left) Maximum silicone speed of sound of 1110 m/s with water fluid layer 

Figure 28: (Right) Maximum silicone speed of sound of 1110 m/s with blood fluid layer 
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 The third variable studied was the variation in PDMS acoustic velocity. Acoustic 

pressure profiles for minimum, average, and maximum PDMS acoustic velocity values 

for water and whole blood are shown below in Figures 29-34. 

           WATER               BLOOD 

 

 

Figure 29: (Left) Minimum PDMS speed of sound of 1076.5 m/s with water fluid layer 

Figure 30: (Right) Minimum PDMS speed of sound of 1076.5 m/s with blood fluid layer 

 

Figure 31: (Left) Average PDMS speed of sound of 1119 m/s with water fluid layer 

Figure 32: (Right) Average PDMS speed of sound of 1119 m/s with blood fluid layer 
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 The charts above show much larger variation than the charts developed for the 

silicone investigation. The most prominent feature is once again the 6 MHz frequency 

showing resonant behavior and having the largest pressure magnitudes across the cell as 

compared to the other two frequencies. The number of pressure nodes stays the same for 

each frequency in the minimum and average SoS value charts, but when the model is 

evaluated at the maximum PDMS acoustic velocity the 6 MHz frequency develops an 

additional low-pressure node at the far end of the cell and the high-pressure node nearer 

to the transducer gets shifted out of the microchannel. Between water and blood, the 

pressure magnitude increased when using blood parameters for the 6 MHz frequency 

except in the maximum PDMS SoS charts. When PDMS is at its maximum acoustic 

velocity, the pressure within the cell for the 6 MHz frequency is higher for a water like 

fluid layer as opposed to blood. The large changes that occur when PDMS is at maximum 

value indicates one of two things: this reported value is incorrect or the acoustic velocity 

of the reflector layer has a large impact on the pressure profile within the cell. The 4 and 

 

Figure 33: (Left) Maximum PDMS speed of sound of 1250 m/s with water fluid layer 

Figure 34: (Right) Maximum PDMS speed of sound of 1250 m/s with blood fluid layer 
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8 MHz frequencies behaved similar to each other throughout adjustments and did not 

vary much in pressure magnitude or nodal positioning, except for one instance where the 

8 MHz nodal position was shifted to the right for the minimum SoS value with a water 

layer. 

 The fourth variable investigated was layer thickness. Each iteration of the model 

is evaluated at average values for each material parameter using a water layer, while the 

thicknesses are doubled or halved for one layer at a time. Figures 35-37 show the 

variation in silicone layer thickness, Figures 38-40 show the variation in glass layer 

thickness, and Figures 41-43 show the variation in PDMS layer thickness. 

Silicone Thickness Variation: 

 

 

 

 

Figure 35: (Left) Half silicone layer thickness of 0.5 mm with water fluid layer 

Figure 36: (Right) Double silicone layer thickness of 2 mm with water fluid layer 
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Glass Thickness Variation:  

 

 

 

Figure 37: Normal silicone layer thickness of 1 mm with water fluid layer 

 

Figure 38: (Left) Half glass thickness of 0.5 mm with water fluid layer 

Figure 39: (Right) Double glass layer thickness of 2 mm with water layer 
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PDMS Thickness Variation: 

 

 

 

 

Figure 40: Normal glass layer thickness of 1 mm with water fluid layer 

 

Figure 41: (Left) Half PDMS layer thickness of 2 mm with water fluid layer 

Figure 42: (Right) Double PDMS layer thickness of 8 mm with water fluid layer 
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 When varying thickness for the silicone (matching) and glass layers, the nodal 

positioning remains the same for all frequencies. However, when varying the thickness 

for the PDMS (reflector layer) there was a large shift in nodal positioning for all 

frequencies. For the silicone layer, both halving and doubling the thickness increased the 

maximum pressure for both 6 and 8 MHz. There was a significant jump in pressure for 

the 8 MHz frequency when doubling the matching layer thickness. For the glass layer, 

doubling the thickness decreased the maximum pressure for every frequency except 4 

MHz, which greatly increased. Halving the glass thickness nearly doubled the 6 MHz 

pressure while having little effect on the other frequencies. Halving the PDMS thickness 

greatly increased the pressure of the 6 MHz profile while nearly eliminating the pressure 

of the other two frequency profiles. This change also shifted the low-pressure node of the 

6 MHz profile from right of cell center to the left of it, which has only been seen in 

iterations of the model where the acoustic velocity of the PDMS layer was altered. 

Doubling PDMS thickness had little effect other than to slightly increase pressure for the 

 

Figure 43: Normal PDMS thickness of 4 mm with water fluid layer 



45 
 

6 MHz profile and shift the nodal positioning of the 8 MHz profile more symmetrically 

across the cell. 

 The replication of Figure 8 for the microfluidic system required finding the 

maximum pressure across the cell for the range of calibrated values from the transducer-

hydrophone calibration. Figures 44 and 45 show the results using interpolation of 

voltages for each frequency step with both water and blood fluid layer parameters.  

 

 Normalized charts for the figures above were created by dividing by the largest 

pressure in each graph and are shown in Figures 46 and 47.  

 

 

 

 

Figure 44: (Left) Maximum pressure vs. frequency for interpolated range of frequencies from 3-8 MHz 
water layer 

Figure 45: (Right) Maximum pressure vs. frequency for interpolated range of frequencies from 3-8 
MHz blood layer 
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 These graphs show resonant spikes at multiple frequencies throughout the cell. 

The most prominent resonances occur around 4, 5, 6, and 7.5 MHz for the water layer 

while they occur between 4-5 MHz and at 6 MHz for the blood layer. For these results to 

agree with Figures 17-43, the largest resonance is expected to occur around 6 MHz with 

smaller resonances around 4 and 8 MHz. These results agree with the figures and also 

correspond with the hydrophone calibration which shows the transducer having the 

largest resonance at 6 MHz. 

Experimental Trials 

 The experimental trials measured the cellular uptake of calcein (a fluorescent 

agent) into RBCs at different ultrasound frequencies. The results of this experiment are 

displayed below in Figure 48.  

 

 

Figure 46: (Left) Normalized max pressure vs. frequency water layer 

Figure 47: (Right) Normalized max pressure vs. frequency blood layer 
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 The relative fluorescence is greatest at the 4 MHz frequency and followed closely 

by the 6 MHz frequency. The 8 MHz frequency shows even lower cellular uptake than 

the control group with no flow or ultrasound. A 2-way ANOVA test was conducted (p= 

0.04) that determined that the 4 MHz ultrasound group was statistically different from the 

8 MHz ultrasound group. An additional ANOVA was conducted (p = 0.003) that found 

the 4 MHz group was statistically different from the flow only (no ultrasound) group as 

well. These results do not correlate with the modelled data from Figures 17-43 in that the 

6 MHz driving frequency shows the largest pressures across the cell while the 4 MHz 

frequency shows the highest cellular uptake during experimental trials.  

 

Figure 48: Relative fluorescence within RBCs after being treated with different system conditions and 
at different driving frequencies 
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IV. CONCLUSIONS 

 

 

 The Hill study replication proved to be a valid model to translate to the 

microfluidic sonoporation system based on the replicated graphs. Improving the 

replicated model would require more information about the electrical characteristics of 

the transducer used in the Hill study so that specific, rather than estimated, transformation 

ratios could be determined.  

 The translation of the Hill model to the microfluidic sonoporation system showed 

results that did not agree with experimental trials. Most significantly, the model predicted 

the 6 MHz profile to have the greatest pressure magnitude across the cell for multiple 

variations in parameters. This does not correlate with the 4 MHz frequency having the 

greatest uptake in fluorescence during experimental trials. Large resonant behavior does 

not appear to be directly related to transfection effectiveness in this sonoporation system, 

although further experimental trials are necessary to confirm this hypothesis. 

 The model predicted node spacing correctly. The spacing of nodes is expected to 

a multiple of the half wavelength of the driving frequency, so at higher frequencies the 

spacing between nodes should be smaller. This can be seen in the model as the 8 MHz 

frequency has the smallest node spacing, followed by 6 and then 4 MHz.  
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The actual location of the nodes rarely varied with parameter alteration, except 

when the PDMS (reflector layer) is altered. As this is the case, the impact of the reflector 

layer on the acoustic profile seems to be significant. A possible explanation for the 

variation in node spacing and positioning could be the effect of interference patterns 

caused by waves reflected off the PDMS layer. When acoustic waves hit the reflector, a 

phase shift occurs and the reflected waves interfere destructively with the transmitted 

waves. This interference can eliminate or space out low- and high-pressure regions and 

create a more even pressure profile across the cell as seen with the 4 MHz frequency 

profile in many of the figures. Depending on the phase shift, this interference could also 

cause node shifts as seen in the 6 and 8 MHz frequencies when altering PDMS 

parameters.  

 The investigation into parameter alteration showed some interesting results. 

Except for one iteration of the model, the pressure increased for the 6 MHz profile when 

using blood parameters for the fluid layer. A denser fluid within the microchannel 

predicts an increase in the maximum pressure of the standing waves for the resonant 

frequency. The variation in silicone acoustic velocity showed little impact on the 

magnitude of pressures within the cell or the position and number of nodes. Increasing 

silicone density appears to increase the pressure across the cell, just as increasing fluid 

layer density increases pressure across the cell. Varying the layer thickness had a 

significant impact across all tested layers. Doubling and halving the thickness of different 

layers changed the magnitudes of the pressure profiles for all frequencies, but the most 

significant figure is the doubling of the glass layer thickness. When doubling the glass 

layer thickness from 1 to 2 mm, the pressure profile across the cell correlates strongly 
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with experimental results. The 4 MHz frequency has the largest pressure followed by the 

6 MHz frequency, and the 8 MHz frequency shows very low pressure. Changing the 

thickness of the glass layer is an important parameter for investigation in future works. 

Additionally, the effects of changing matching layer thickness are significant. Shifts in 

pressure for the underperforming frequencies are apparent when the matching layer 

thickness is altered.  

 The maximum pressure figures (Figures 44-47) seem to correlate well with results 

predicted by the model but not with results seen in experimental trials. This is the result 

of how the model was developed. The modeled data correlates well with other modeled 

data because it is based on the transducer calibration. The transducer shows resonance at 

6 MHz during calibration and this effect translates to high pressures within the model. 

Figures 44-47 are choppy, but a greater sampling rate during transducer calibration may 

help to improve the interpolation process for the unknown frequency voltages. However, 

it is possible there are resonances at all of these predicted frequencies and interpolation 

will only further refine the exact frequency these occur at.   

 Overall, this model could be used in the future for predicting the acoustic pressure 

profile across the microfluidic channel. For this model to be used in the future, more 

iterations of the model need to be evaluated with greater precision of parameter variation. 

The results of these iterations need to be compared to experimental trials to determine the 

exact cell parameters which predict real-world behavior. Once the model is improved and 

the actual cell parameters are determined, the model could be used to design the desired 

ultrasound pressure profile across the cell for specific applications. 
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V. LIMITATIONS 

 

 

 The Hill paper had a few limitations that were taken into account. The model 

assumes that the acoustical characteristics within the resonator are dominant in the 

thickness direction of the transducer. This means that the model neglects to consider 

shearing affects and models the acoustic waves as longitudinal waves. Additionally, there 

was a lack of information about the electrical characteristics of the transducer, which 

required estimation of numerous values used in the model validation. The method for 

determining transformation ratios is valid but could be improved if the modeled voltage 

data was provided by the authors for the frequencies being investigated. The authors 

included values for “q factors” in their diagrams saying they represented losses within the 

model, but how these factors were included is unknown and not present in the model 

validation. Additionally, the authors used a method to estimate cell performance based on 

ultrasonic particle separation, whereas the microfluidic sonoporation system is mainly 

used for cell transfection or molecular delivery.  

 The limitations of the translated model arose from limitations with the Hill model 

as well as some lack of information about the microfluidic chip parameters. The 

translated model also only considered effects in the thickness direction, but as the flow 

profile is fairly laminar this may not have much of an impact on the microfluidic channel. 

The electrical characteristics of the PZT transducer for the microfluidic device were not 
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exactly known either. The impedance of the transducer when shorted, as well as the 

transformation ratio at each frequency, was unknown. Exact measurements of the layer 

thicknesses were not made either. A ruler was used to estimate layer thickness whereas a 

laser-based method may be more appropriate for the scale of the layers. The complexity 

of the fluid layer was also a limitation of the developed model. Using water and blood 

parameters to estimate the fluid density is not exact and has a significant impact as seen 

in the variation of results between water and blood layers. Lastly, the calibration of the 

transducer was conducted within a free-field of water and limited to a few data points 

which could have affected the voltages used to generate both the pressure profile and 

maximum pressure charts. 
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VI. FUTURE WORKS 

 

 

 Considering the results and limitations of this study, some areas for improvement 

and investigation are suggested. The model should be improved by iterating through 

higher precision of material parameters within the ranges suggested by the tables. These 

iterations should be compared to experimental trials to determine which parameters 

match most closely with those of the microfluidic chip. A more in-depth investigation 

into thickness variation is suggested to determine if the desired pressure profile can be 

generated across the cell. The measurement of layer thicknesses needs to be conducted in 

a more precise manner for more accurate results to be predicted. A method for calibrating 

the transducer voltage output (and terminal impedance when shorted) while connected to 

the cell should be created to develop a smoother and more accurate set of data. The 

complex fluids that flow through the microfluidic device should have their densities 

determined more accurately as well. 
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APPENDIX 

 

 

Hill Pressure Profile Validation Code: 

%Author: Chris Holton 
%Advised by: Dr. Jonathan Kopechek  
%Dr. Kopechek Laboratory University of Louisville 
  
clear all 
close all 
  
frequency = [2.75e6, 2.92e6, 3.00e6, 3.09e6];        %Frequency in Hz 
Voltage = [1.05, 1.6, 1.075, 1.95];                  %Voltage across 
Transducer terminals  
phi = [0.112, 0.236, 0.170, 0.28];                         
%Transformation Ratio for Transducer, frequency dependent. Different 
constant for each driving frequency 
%phi = 1; 
Final_Pressure = {0 0 0 0}; 
  
  
for i = 1:4 
  
omega = 2*pi*frequency(i);          %Angular Frequency (rad/s)  
CS_Area = (10e-3)*(0.25e-03);       %Cross-Sectional Area (m2) 
TR = phi(i);                        %transformation ratio  
%TR = phi; 
Z_transducer = 1;                   %Mechanical Impedance when 
Transducer Terminals Shorted 
  
%Material Properties for Air  
rho_air = 1.204;             %Density of Air at NTP (kg/m3) 
c_air = 343;                 %Speed of Sound in Air at NTP(m/s) 
AI_air = c_air*rho_air;      %Acoustic Impedance for Air  
Z_air = AI_air;              %Mechanical Impedance for Air 
  
%Material Properties for Stainless Steel Backing Layer 
t_SSB = 2.5e-03;             %Thickness of the SS Backing Layer (m) 
rho_SSB = 7800;              %Density of SS Backing (kg/m3) 
c_SSB = 6200;                %Speed of Sound in SS Backing (m/s) 
k_SSB = omega/c_SSB;         %Wavenumber in the SS Backing Layer 
AI_SSB = rho_SSB*c_SSB;      %Acoustic Impedance of SS Backing 
(kg/m2*s) 
%Mechanical Impedance for Stainless Steel Backing Layer 
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Z_SSB = (AI_SSB*CS_Area)*((Z_air + 
j*AI_SSB*CS_Area*tan(t_SSB*k_SSB))/(AI_SSB*CS_Area + 
j*Z_air*tan(t_SSB*k_SSB))); 
  
%Material Properties for Water 
t_water = 250e-06;              %Thickness of the Water Layer (m) 
rho_water = 1000;               %Density of Water (kg/m3) 
c_water = 1500;                 %Speed of Sound in Water (m/s) 
k_water = omega/c_water;        %Wavenumber in the Water Layer 
AI_water = rho_water*c_water;   %Acoustic Impedance of Water (kg/m2*s) 
%Mechanical Impedance of the Water Layer 
Z_water = (AI_water*CS_Area)*((Z_SSB + 
j*AI_water*CS_Area*tan(t_water*k_water))/(AI_water*CS_Area + 
j*Z_SSB*tan(t_water*k_water))); 
  
%Material Properties for Initial Stainless Steel Layer 
t_SSI = 3.1e-03;             %Thickness of the Initial SS Layer (m)  
rho_SSI = 7800;              %Density of Initial SS Layer (kg/m3) 
c_SSI = 6200;                %Speed of Sound in Initial SS Layer (m/s) 
k_SSI = omega/c_SSI;         %Wavenumber in the Initial SS Layer  
AI_SSI = rho_SSI*c_SSI;      %Acoustic Impedance of Initial SS Layer 
(kg/m2*s) 
%Mechanical Impedance of Initial SS Layer 
Z_SSI = (AI_SSI*CS_Area)*((Z_water + 
j*AI_SSI*CS_Area*tan(t_SSI*k_SSI))/(AI_SSI*CS_Area + 
j*Z_water*tan(t_SSI*k_SSI))); 
  
%Material Properties for Epoxy Resin Layer 
t_ER = 15e-06;               %Thickness of the Epoxy Resin Layer (m)   
rho_ER = 2000;               %Density of Epoxy Resin Layer (kg/m3) 
c_ER = 2440;                 %Speed of Sound in Epoxy Resin Layer (m/s) 
k_ER = omega/c_ER;           %Wavenumber in the Epoxy Resin Layer 
AI_ER = rho_ER*c_ER;         %Acoustic Impedance of Epoxy Resin Layer 
(kg/m2*s) 
%Mechanical Impedance of Epoxy Resin Layer 
Z_ER = (AI_ER*CS_Area)*((Z_SSI + 
j*AI_ER*CS_Area*tan(t_ER*k_ER))/(AI_ER*CS_Area + 
j*Z_SSI*tan(t_ER*k_ER))); 
  
%Material Properties for Silver Electrode Layer 
t_SE = 2e-06;                %Thickness of the Silver Electrode Layer 
(m) 
rho_SE = 10400;              %Density of Silver Electrode Layer (kg/m3) 
c_SE = 3650;                 %Speed of Sound in Silver Electrode Layer 
(m/s) 
k_SE = omega/c_SE;           %Wavenumber in the Silver Electrode Layer 
AI_SE = rho_SE*c_SE;         %Acoustic Impedance of Silver Electrode 
Layer (kg/m2*s) 
%Mechanical Impedance of Silver Electrode Layer  
Z_SE = (AI_SE*CS_Area)*((Z_ER + 
j*AI_SE*CS_Area*tan(t_SE*k_SE))/(AI_SE*CS_Area + 
j*Z_ER*tan(t_SE*k_SE))); 
  
%Force Generated by Transducer Acting on Silver Electrode Layer  
V = Voltage(i);         %in volts (V) 
F_transducer = (TR*V*Z_SE)/(Z_transducer + Z_SE);  
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%Force Acting on Epoxy Resin Layer 
F_ER = (F_transducer*Z_ER)/(Z_ER*cos(k_SE*t_SE) + 
j*AI_SE*CS_Area*sin(k_SE*t_SE)); 
  
%Force Acting on Initial Stainless Steel Layer 
F_SSI = (F_ER*Z_SSI)/(Z_SSI*cos(k_ER*t_ER) + 
j*AI_ER*CS_Area*sin(k_ER*t_ER)); 
  
%Force Acting on Water Layer 
F_water = (F_SSI*Z_water)/(Z_water*cos(k_SSI*t_SSI) + 
j*AI_SSI*CS_Area*sin(k_SSI*t_SSI)); 
  
%Pressure Equation  
x = [0:1e-06:250e-06];    %Position within fluid layer (x = 0 at 
SSI/water boundary) (m) 
Pressure = abs((F_water/CS_Area)*((Z_SSB*cos(k_water*(t_water - x)) + 
j*AI_water*CS_Area*sin(k_water*(t_water - 
x)))/(Z_SSB*cos(k_water*t_water) + 
j*AI_water*CS_Area*sin(k_water*t_water)))); 
  
Final_Pressure{i} = Pressure; 
  
figure(1) 
plot(x, Final_Pressure{i}) 
hold on  
   
end 
  
title('Pressure Vs. Position'); 
xlabel('Position (m)'); 
ylabel('Pressure (Pa)'); 
axis([0 2.5e-4 0 2.5e5]); 
lgd = legend('2.75 MHz' , '2.92 MHz', '3.00 MHz', '3.09 MHz'); 
set(lgd, 'Location', 'North'); 
 

Hill Normalized Clearance Validation Code: 

%Author: Chris Holton 
%Advised by: Dr. Jonathan Kopechek  
%Dr. Kopechek Laboratory University of Louisville 
  
clear all 
close all 
  
  
Voltage = [1.3, 0.25, 1.75, 1.5, 1.4, 1.3, 1.2, 1.1, 0.95, 0.3, 1.075, 
1.95, 1.3, 1.15, 1.0, 0.85, 0.45, 1.15, 1.9, 1.4, 1.3];                  
%Voltage across Transducer terminals  
phi = [1];                         %Transformation Ratio for 
Transducer, frequency dependent. Different constant for each driving 
frequency 
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V_interpolated = interp(Voltage, 100); 
  
for i = 1:2100 
  
frequency(i) = 1.9e6 + i*0.1e4;     %Frequency (Hz) 
omega = 2*pi*frequency(i);          %Angular Frequency (rad/s)  
CS_Area = (10e-3)*(0.25e-03);       %Cross-Sectional Area (m2) 
TR = phi;                        %transformation ratio  
Z_transducer = 1;                   %Mechanical Impedance when 
Transducer Terminals Shorted 
  
%Material Properties for Air  
rho_air = 1.204;             %Density of Air at NTP (kg/m3) 
c_air = 343;                 %Speed of Sound in Air at NTP(m/s) 
AI_air = c_air*rho_air;      %Acoustic Impedance for Air  
Z_air = AI_air;              %Mechanical Impedance for Air 
  
%Material Properties for Stainless Steel Backing Layer 
t_SSB = 2.5e-03;             %Thickness of the SS Backing Layer (m) 
rho_SSB = 7800;              %Density of SS Backing (kg/m3) 
c_SSB = 6200;                %Speed of Sound in SS Backing (m/s) 
k_SSB = omega/c_SSB;         %Wavenumber in the SS Backing Layer 
AI_SSB = rho_SSB*c_SSB;      %Acoustic Impedance of SS Backing 
(kg/m2*s) 
%Mechanical Impedance for Stainless Steel Backing Layer 
Z_SSB = (AI_SSB*CS_Area)*((Z_air + 
j*AI_SSB*CS_Area*tan(t_SSB*k_SSB))/(AI_SSB*CS_Area + 
j*Z_air*tan(t_SSB*k_SSB))); 
  
%Material Properties for Water 
t_water = 250e-06;              %Thickness of the Water Layer (m) 
rho_water = 1000;               %Density of Water (kg/m3) 
c_water = 1500;                 %Speed of Sound in Water (m/s) 
k_water = omega/c_water;        %Wavenumber in the Water Layer 
AI_water = rho_water*c_water;   %Acoustic Impedance of Water (kg/m2*s) 
%Mechanical Impedance of the Water Layer 
Z_water = (AI_water*CS_Area)*((Z_SSB + 
j*AI_water*CS_Area*tan(t_water*k_water))/(AI_water*CS_Area + 
j*Z_SSB*tan(t_water*k_water))); 
  
%Material Properties for Initial Stainless Steel Layer 
t_SSI = 3.1e-03;             %Thickness of the Initial SS Layer (m)  
rho_SSI = 7800;              %Density of Initial SS Layer (kg/m3) 
c_SSI = 6200;                %Speed of Sound in Initial SS Layer (m/s) 
k_SSI = omega/c_SSI;         %Wavenumber in the Initial SS Layer  
AI_SSI = rho_SSI*c_SSI;      %Acoustic Impedance of Initial SS Layer 
(kg/m2*s) 
%Mechanical Impedance of Initial SS Layer 
Z_SSI = (AI_SSI*CS_Area)*((Z_water + 
j*AI_SSI*CS_Area*tan(t_SSI*k_SSI))/(AI_SSI*CS_Area + 
j*Z_water*tan(t_SSI*k_SSI))); 
  
%Material Properties for Epoxy Resin Layer 
t_ER = 15e-06;               %Thickness of the Epoxy Resin Layer (m)   
rho_ER = 2000;               %Density of Epoxy Resin Layer (kg/m3) 



60 
 

c_ER = 2440;                 %Speed of Sound in Epoxy Resin Layer (m/s) 
k_ER = omega/c_ER;           %Wavenumber in the Epoxy Resin Layer 
AI_ER = rho_ER*c_ER;         %Acoustic Impedance of Epoxy Resin Layer 
(kg/m2*s) 
%Mechanical Impedance of Epoxy Resin Layer 
Z_ER = (AI_ER*CS_Area)*((Z_SSI + 
j*AI_ER*CS_Area*tan(t_ER*k_ER))/(AI_ER*CS_Area + 
j*Z_SSI*tan(t_ER*k_ER))); 
  
%Material Properties for Silver Electrode Layer 
t_SE = 2e-06;                %Thickness of the Silver Electrode Layer 
(m) 
rho_SE = 10400;              %Density of Silver Electrode Layer (kg/m3) 
c_SE = 3650;                 %Speed of Sound in Silver Electrode Layer 
(m/s) 
k_SE = omega/c_SE;           %Wavenumber in the Silver Electrode Layer 
AI_SE = rho_SE*c_SE;         %Acoustic Impedance of Silver Electrode 
Layer (kg/m2*s) 
%Mechanical Impedance of Silver Electrode Layer  
Z_SE = (AI_SE*CS_Area)*((Z_ER + 
j*AI_SE*CS_Area*tan(t_SE*k_SE))/(AI_SE*CS_Area + 
j*Z_ER*tan(t_SE*k_SE))); 
  
%Force Generated by Transducer Acting on Silver Electrode Layer  
%V = Voltage(i);         %in volts (V) 
V = V_interpolated(i);  
F_transducer = (TR*V*Z_SE)/(Z_transducer + Z_SE);  
  
%Force Acting on Epoxy Resin Layer 
F_ER = (F_transducer*Z_ER)/(Z_ER*cos(k_SE*t_SE) + 
j*AI_SE*CS_Area*sin(k_SE*t_SE)); 
  
%Force Acting on Initial Stainless Steel Layer 
F_SSI = (F_ER*Z_SSI)/(Z_SSI*cos(k_ER*t_ER) + 
j*AI_ER*CS_Area*sin(k_ER*t_ER)); 
  
%Force Acting on Water Layer 
F_water = (F_SSI*Z_water)/(Z_water*cos(k_SSI*t_SSI) + 
j*AI_SSI*CS_Area*sin(k_SSI*t_SSI)); 
  
%Pressure Equation  
x = [0:1e-06:250e-06];    %Position within fluid layer (x = 0 at 
SSI/water boundary) (m) 
Pressure = abs((F_water/CS_Area)*((Z_SSB*cos(k_water*(t_water - x)) + 
j*AI_water*CS_Area*sin(k_water*(t_water - 
x)))/(Z_SSB*cos(k_water*t_water) + 
j*AI_water*CS_Area*sin(k_water*t_water)))); 
  
MaxPressure(i) = max(Pressure);  
  
end 
  
MaxPressure = MaxPressure/1086000; 
figure(1) 
plot(frequency, MaxPressure) 
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title('Maximum Pressure vs. Frequency'); 
xlabel('Frequency (Hz)'); 
ylabel('Normalized Max Pressure'); 
axis([2e6 4e6 0 1.2]); 
 

Microfluidic System Parameter Variation Code: 

%Author: Chris Holton 
%Advised by: Dr. Jonathan Kopechek  
%University of Louisville Master's Thesis in Bioengineering  
  
clear all 
close all 
  
CS_Area = (200e-06)^2;       %Cross-sectional area of channel (m^2) 
frequency = [4.0e6; 6.0e6; 8.0e6]   %Frequency of ultrasonic wave (Hz) 
Final_Pressure = {0; 0; 0}; %Preallocating final pressure cell array 
  
for i = 1:3 
    omega = 2*pi*frequency(i);  %angular frequency  
     
%Material Properties for Air  
rho_air = 1.204;             %Density of Air at NTP (kg/m^3) 
c_air = 343;                 %Speed of Sound in Air at NTP(m/s) 
AI_air = c_air*rho_air;      %Acoustic Impedance for Air  
Z_air = AI_air;              %Mechanical Impedance for Air 
  
for k = 1:3 
     
%Material Properties for PDMS (polydimethylsiloxane)  
t_PDMS = 4.0e-03;             %Thickness of PDMS Layer (m) 
rho_PDMS = 965;               %Density of PDMS (kg/m^3) 
c_PDMS = 1119;                %Speed of Sound in PDMS (m/s) 
k_PDMS = omega/c_PDMS;         %Wavenumber in PDMS  
AI_PDMS = rho_PDMS*c_PDMS;      %Acoustic Impedance of PDMS (kg/m^2*s) 
%Mechanical Impedance for PDMS Layer 
Z_PDMS = (AI_PDMS*CS_Area)*((Z_air + 
j*AI_PDMS*CS_Area*tan(t_PDMS*k_PDMS))/(AI_PDMS*CS_Area + 
j*Z_air*tan(t_PDMS*k_PDMS))); 
  
%Material Properties for Fluid Channel 
t_fluid = 0.2e-03;             %Thickness of Fluid Channel (m) 
rho_fluid = 1000;              %Density of Fluid (water) (kg/m^3) 
c_fluid = 1481;            %Speed of Sound in Fluid (m/s) 
k_fluid = omega/c_fluid;           %Wavenumber in Fluid 
AI_fluid = rho_fluid*c_fluid;       %Acoustic Impedance of Fluid 
(kg/m^2*s) 
%Mechanical Impedance for Fluid Channel 
Z_fluid = (AI_fluid*CS_Area)*((Z_PDMS + 
j*AI_fluid*CS_Area*tan(t_fluid*k_fluid))/(AI_fluid*CS_Area + 
j*Z_PDMS*tan(t_fluid*k_fluid))); 
  
%Material Properties for Fluid Channel 
%t_fluid = 0.2e-03;             %Thickness of Fluid Channel (m) 
%rho_fluid = 1060;              %Density of Fluid (blood) (kg/m^3) 
%c_fluid = 1578;                 %Speed of Sound in Fluid (m/s) 
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%k_fluid = omega/c_fluid;           %Wavenumber in Fluid 
%AI_fluid = rho_fluid*c_fluid;       %Acoustic Impedance of Fluid 
(kg/m^2*s) 
%Mechanical Impedance for Fluid Channel 
%Z_fluid = (AI_fluid*CS_Area)*((Z_PDMS + 
j*AI_fluid*CS_Area*tan(t_fluid*k_fluid))/(AI_fluid*CS_Area + 
j*Z_PDMS*tan(t_fluid*k_fluid))); 
  
%Material Properties for Borosilicate Glass 
t_glass = 1.0e-03;             %Thickness of Glass Layer (m) 
rho_glass = 2400;              %Density of Glass (kg/m^3) 
c_glass = 5640;                %Speed of Sound in Glass (m/s) 
k_glass = omega/c_glass;         %Wavenumber in Glass 
AI_glass = rho_glass*c_glass;      %Acoustic Impedance of Glass 
(kg/m^2*s) 
%Mechanical Impedance for Glass Layer 
Z_glass = (AI_glass*CS_Area)*((Z_fluid + 
j*AI_glass*CS_Area*tan(t_glass*k_glass))/(AI_glass*CS_Area + 
j*Z_fluid*tan(t_glass*k_glass))); 
  
%Material Properties for Silicone Rubber 
t_silicone = 1.0e-03;             %Thickness of the Silicone Rubber 
Layer (m) 
rho_silicone = 1250;              %Density of Silicone Rubber (kg/m^3) 
c_silicone = 1035;               %Speed of Sound in Silicone Rubber 
(m/s) 
k_silicone = omega/c_silicone;         %Wavenumber in Silicone Rubber  
AI_silicone = rho_silicone*c_silicone;      %Acoustic Impedance of 
Silicone Rubber (kg/m^2*s) 
%Mechanical Impedance for Silicone Rubber Layer 
Z_silicone = (AI_silicone*CS_Area)*((Z_glass + 
j*AI_silicone*CS_Area*tan(t_silicone*k_silicone))/(AI_silicone*CS_Area 
+ j*Z_glass*tan(t_silicone*k_silicone))); 
  
  
phi = 1; 
Z_transducer = 1; 
%Transducer voltage output based on calibration curve  
V = [2.4e-3; 6.6e-3; 1.8e-3];       %at 4 and 6 MHz and 8 MHz 
respectively (volts)  
  
%Force Generated by Transducer Acting on Silicone Rubber Layer  
F_transducer = (phi*V(i)*Z_silicone)/(Z_transducer + Z_silicone);  
  
%Force Acting on Glass Layer 
F_glass = (F_transducer*Z_glass)/(Z_glass*cos(k_silicone*t_silicone) + 
j*AI_silicone*CS_Area*sin(k_silicone*t_silicone)); 
  
%Force Acting on Fluid Channel Layer 
F_fluid = (F_glass*Z_fluid)/(Z_fluid*cos(k_glass*t_glass) + 
j*AI_glass*CS_Area*sin(k_glass*t_glass)); 
  
%Pressure Equation 
x = [0:1e-06:200e-06];    %Position within fluid layer (x = 0 at 
glass/water boundary) (m) 
Pressure = abs((F_fluid/CS_Area)*((Z_PDMS*cos(k_fluid*(t_fluid - x)) + 
j*AI_fluid*CS_Area*sin(k_fluid*(t_fluid - 
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x)))/(Z_PDMS*cos(k_fluid*t_fluid) + 
j*AI_fluid*CS_Area*sin(k_fluid*t_fluid)))); 
  
Final_Pressure{i} = Pressure; 
  
figure(1) 
plot(x, Final_Pressure{i}) 
hold on 
  
end 
end 
  
title('Pressure Vs. Position Avg. PDMS SoS Water Layer'); 
xlabel('Position (m)'); 
ylabel('Pressure (Pa)'); 
xlim ([0 2e-4]); 
ylim auto 
lgd = legend('4 MHz', '6 MHz', '8 MHz'); 
set(lgd, 'Location', 'North', 'FontSize', 8); 

 

Microfluidic system max pressure interpolation code: 

%Author: Chris Holton 
%Advised by: Dr. Jonathan Kopechek  
%University of Louisville Master's Thesis in Bioengineering  
  
clear 
close all 
  
CS_Area = (200e-06)^2;       %Cross-sectional area of channel (m^2) 
  
voltage = [1.8, 2, 2.4, 2.8, 3.6, 5.2, 6.6, 3.4, 2.4, 1.6, 1.8]; 
V = voltage*1e-3; 
V_interpolated = interp(V, 455); 
frequency = zeros(1,5005);  
MaxPressure= zeros(1,5005);  
  
for i = 1:5005 
  
frequency(i) = 2.999e6 + i*0.1e4;     %Frequency (Hz)     
omega = 2*pi*frequency(i);  %angular frequency  
     
%Material Properties for Air  
rho_air = 1.204;             %Density of Air at NTP (kg/m^3) 
c_air = 343;                 %Speed of Sound in Air at NTP(m/s) 
AI_air = c_air*rho_air;      %Acoustic Impedance for Air  
Z_air = AI_air;              %Mechanical Impedance for Air 
  
for k = 1:3 
     
%Material Properties for PDMS (polydimethylsiloxane)  
t_PDMS = 4.0e-03;             %Thickness of PDMS Layer (m) 
rho_PDMS = 965;               %Density of PDMS (kg/m^3) 
c_PDMS = 1119;                %Speed of Sound in PDMS (m/s) 
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k_PDMS = omega/c_PDMS;         %Wavenumber in PDMS  
AI_PDMS = rho_PDMS*c_PDMS;      %Acoustic Impedance of PDMS (kg/m^2*s) 
%Mechanical Impedance for PDMS Layer 
Z_PDMS = (AI_PDMS*CS_Area)*((Z_air + 
j*AI_PDMS*CS_Area*tan(t_PDMS*k_PDMS))/(AI_PDMS*CS_Area + 
j*Z_air*tan(t_PDMS*k_PDMS))); 
  
%Material Properties for Fluid Channel 
%t_fluid = 0.2e-03;             %Thickness of Fluid Channel (m) 
%rho_fluid = 1000;              %Density of Fluid (water) (kg/m^3) 
%c_fluid = 1481;            %Speed of Sound in Fluid (m/s) 
%k_fluid = omega/c_fluid;           %Wavenumber in Fluid 
%AI_fluid = rho_fluid*c_fluid;       %Acoustic Impedance of Fluid 
(kg/m^2*s) 
%Mechanical Impedance for Fluid Channel 
%Z_fluid = (AI_fluid*CS_Area)*((Z_PDMS + 
j*AI_fluid*CS_Area*tan(t_fluid*k_fluid))/(AI_fluid*CS_Area + 
j*Z_PDMS*tan(t_fluid*k_fluid))); 
  
%Material Properties for Fluid Channel 
t_fluid = 0.2e-03;             %Thickness of Fluid Channel (m) 
rho_fluid = 1060;              %Density of Fluid (blood) (kg/m^3) 
c_fluid = 1578;                 %Speed of Sound in Fluid (m/s) 
k_fluid = omega/c_fluid;           %Wavenumber in Fluid 
AI_fluid = rho_fluid*c_fluid;       %Acoustic Impedance of Fluid 
(kg/m^2*s) 
%Mechanical Impedance for Fluid Channel 
Z_fluid = (AI_fluid*CS_Area)*((Z_PDMS + 
j*AI_fluid*CS_Area*tan(t_fluid*k_fluid))/(AI_fluid*CS_Area + 
j*Z_PDMS*tan(t_fluid*k_fluid))); 
  
%Material Properties for Borosilicate Glass 
t_glass = 1.0e-03;             %Thickness of Glass Layer (m) 
rho_glass = 2400;              %Density of Glass (kg/m^3) 
c_glass = 5640;                %Speed of Sound in Glass (m/s) 
k_glass = omega/c_glass;         %Wavenumber in Glass 
AI_glass = rho_glass*c_glass;      %Acoustic Impedance of Glass 
(kg/m^2*s) 
%Mechanical Impedance for Glass Layer 
Z_glass = (AI_glass*CS_Area)*((Z_fluid + 
j*AI_glass*CS_Area*tan(t_glass*k_glass))/(AI_glass*CS_Area + 
j*Z_fluid*tan(t_glass*k_glass))); 
  
%Material Properties for Silicone Rubber 
t_silicone = 1.0e-03;             %Thickness of the Silicone Rubber 
Layer (m) 
rho_silicone = 1250;              %Density of Silicone Rubber (kg/m^3) 
c_silicone = 1035;               %Speed of Sound in Silicone Rubber 
(m/s) 
k_silicone = omega/c_silicone;         %Wavenumber in Silicone Rubber  
AI_silicone = rho_silicone*c_silicone;      %Acoustic Impedance of 
Silicone Rubber (kg/m^2*s) 
%Mechanical Impedance for Silicone Rubber Layer 
Z_silicone = (AI_silicone*CS_Area)*((Z_glass + 
j*AI_silicone*CS_Area*tan(t_silicone*k_silicone))/(AI_silicone*CS_Area 
+ j*Z_glass*tan(t_silicone*k_silicone))); 
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phi = 1; 
Z_transducer = 1; 
%Transducer voltage output based on calibration curve  
%V = [2.4e-3; 6.6e-3; 1.8e-3];       %at 4 and 6 MHz and 8 MHz 
respectively (volts)  
V_final = V_interpolated(i);  
  
%Force Generated by Transducer Acting on Silicone Rubber Layer  
F_transducer = (phi*V_final*Z_silicone)/(Z_transducer + Z_silicone);  
  
%Force Acting on Glass Layer 
F_glass = (F_transducer*Z_glass)/(Z_glass*cos(k_silicone*t_silicone) + 
j*AI_silicone*CS_Area*sin(k_silicone*t_silicone)); 
  
%Force Acting on Fluid Channel Layer 
F_fluid = (F_glass*Z_fluid)/(Z_fluid*cos(k_glass*t_glass) + 
j*AI_glass*CS_Area*sin(k_glass*t_glass)); 
  
%Pressure Equation 
x = [0:1e-06:200e-06];    %Position within fluid layer (x = 0 at 
glass/water boundary) (m) 
Pressure = abs((F_fluid/CS_Area)*((Z_PDMS*cos(k_fluid*(t_fluid - x)) + 
j*AI_fluid*CS_Area*sin(k_fluid*(t_fluid - 
x)))/(Z_PDMS*cos(k_fluid*t_fluid) + 
j*AI_fluid*CS_Area*sin(k_fluid*t_fluid)))); 
  
MaxPressure(i) = max(Pressure); 
  
end 
end 
  
  
MaxPressure = MaxPressure/492800; 
figure(1) 
plot(frequency, MaxPressure) 
title('Normalized Maximum Pressure vs. Frequency Blood Layer'); 
xlabel('Frequency (Hz)'); 
ylabel('Normalized Max Pressure'); 
axis([3e6 8.5e6 0 1.2]); 
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