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ABSTRACT 

EPITHELIAL RESPONSES TO PORPHYROMONAS GINGIVALIS IN THE COMMUNITY 
CONTEXT 

Zackary Ray Fitzsimonds 

July 14, 2020 

Porphyromonas gingivalis, a keystone pathogen for periodontal disease, initiates 

a complex molecular dialogue with gingival epithelial cells, leading ultimately to 

disruption of host signaling pathways. Dysbiotic host responses are also thought to 

contribute to the initiation and progression of oral squamous cell carcinomas.  Recently, 

the homeostatic commensal Streptococcus gordonii has been shown to antagonize P. 

gingivalis-induced epithelial cell signaling events in host cells, such as proliferation and 

migration. The aim of this study was to characterize pathways that P. gingivalis targets to 

disturb host signaling, with a specific focus on pathways that S. gordonii can restore to 

homeostatic levels in the presence of P. gingivalis. RNAseq analysis of gingival epithelial 

cells challenged with P. gingivalis revealed a transcriptional pattern reflecting activation 

of Notch signaling.  Signaling is activated by proteolytic cleavage of Notch and Jag1 by 

gingipain proteases and leads to upregulation of Olfactomedin 4 (OLFM4). This activation 

is antagonized by S. gordonii through the secretion of hydrogen peroxide, which 

inactivates the gingipains, preventing proteolytic cleavage of Notch1 and Jag1, ultimately 

blocking OLFM4 upregulation. OLFM4 is required for P. gingivalis-induced epithelial cell 
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migration. RNAseq analysis identified an OLFM4-independent immune signature that 

included increased expression of CXCL8, CXCL10, and CXCL11 in epithelial cells 

transfected with siRNA and then challenged with P. gingivalis. In addition, a tissue culture 

model revealed that OLFM4 was required for P. gingivalis-induced epithelial cell 

migration. OLFM4 therefore represents a new axis by which P. gingivalis disturbs 

homeostasis at the mucosal barrier, as well as an additional mechanism for ameliorating 

this disruption by S. gordonii. This study provides insight into the complex molecular 

dialogue at the mucosal-microbe interface, and as a result expands on the need for new 

therapeutic approaches to prevent and identify those at high-risk for oral squamous cell 

carcinoma. 
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CHAPTER 1 INTRODUCTION 

Worldwide, approximately 405,000 patients are diagnosed with oral cancer each 

year with a the 5-year survival rate of just 50% [1]. This poor prognosis can be partially 

explained by the characteristic asymptomatic presentation in the early stages; by the time 

the patient has developed painful symptoms the carcinoma is in its late stages [2].  Oral 

cancers can originate as lymphomas in the lymphatic tissue of the tonsils and base of 

tongue; as carcinomas within salivary gland tissue; but most commonly as squamous cell 

carcinomas in areas of the mouth containing stratified squamous epithelium.  Carcinomas 

of the oropharynx (including the base of the tongue) are generally referred to as 

oropharyngeal squamous cell carcinomas (OPSCC), and in OPSCC human papillomavirus 

(HPV) infection is a major risk factor [3].  Cancers of the oral squamous cells (OSCC), which 

account for about 90% of oral carcinomas, present most frequently on the tongue, lips, 

floor of the mouth, and gingiva [4].  Around 75% of OSCC can be attributed to tobacco 

smoking, which increases the risk for developing oral cancer by 6-fold [2]. Smoking also 

provides an encouraging environment for periodontal pathogens, and is an independent 

risk factor for periodontal disease [3]. Alcohol is another significant risk factor for oral 

cancer, and the combined risk for those who smoke and drink is increased fifteen-fold [2]. 

Gingival squamous cell carcinoma (GSCC) is particularly interesting because the 

traditional risk factors of smoking and alcohol consumption are not associated with this 

malignancy, and as the lesions mimic the appearance of periodontal disease they tend to 
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go untreated [5].  Tooth loss as a result of bone loss in periodontal disease is an 

independent risk factor for head and neck, gastric, and colorectal cancer [6, 7]. 

Additionally, colonization by periodontal pathogens has recently been identified as a risk 

factor for OSCC independent of alcohol, smoking, and HPV [3], and increased colonization 

by the periodontal pathogen Porphyromonas gingivalis has been correlated with GSCC 

[8]. The association between the oral microbiota (the collection of microorganisms found 

in the oral cavity) and cancers of the head and neck region has been extensively studied 

in recent years, using both culture dependent and independent methodology [9,10]. 

What has emerged is a picture of enrichment of particular organisms such as 

Fusobacterium nucleatum, Treponema denticola, and P. gingivalis, along with a decrease 

in the oral streptococci (with the exception of S. anginosus) [9, 10]. 

The notion that bacteria may be involved in the development of oral tumors is not 

new. For example Treponema pallidum was considered an etiological agent of OSCC back 

in the early part of the 20th century.  However, with the subsequent recognition of the 

importance of viruses in carcinogenesis the idea fell in to abeyance, and it was not until 

Helicobacter pylori was established as a cause of gastric cancer in the 1990s that the 

potential for a carcinogenic role of bacteria became rehabilitated [11, 12].  

Mechanistically, there are a number of broadly defined categories by which bacteria could 

contribute to tumor growth and development.  These include modulation of the balance 

of host cell proliferation and death; disruption of immune surveillance; and alteration of 

the metabolism of host produced compounds, nutritional substrates or pharmaceuticals 

[13].  Oral bacteria such as P. gingivalis, F. nucleatum and T. denticola exhibit properties 
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consistent with these criteria, and can increase epithelial cell proliferation while inhibiting 

apoptosis, alter the inflammatory microenvironment and produce carcinogenic 

metabolites. These organisms will be discussed and referenced below due to their 

positive correlation with OSCC, as well the availability of mechanistic studies that have 

shown cancer-associated phenotypes.  

Porphyromonas gingivalis 

P. gingivalis is a keystone pathogen in periodontitis [14, 15] and many of the 

pathogenic mechanisms that impinge upon tissue integrity and disrupt protective 

immune responses are potentially relevant to tumorigenesis. These pathogenic 

mechanisms are summarized in Fig. 1. 

 Moreover, immunohistochemistry and other detection methods have identified 

increased colonization of P. gingivalis in OSCC, esophageal squamous cell carcinoma 

(ESCC), and GSCC [8, 16, 17]. In vitro, P. gingivalis engages gingival epithelial cells (GECs) 

in a complex molecular dialogue, a major thread of which involves subversion of host 

signaling pathways by bacterial effectors, such as the FimA-component fimbriae and the 

SerB serine phosphatase, to promote bacterial entry, intracellular trafficking and survival 

[18-20].  Comprehensive analyses of host transcriptional response to P. gingivalis invoke 

a pattern of enhanced cell survival and proliferation [21-23] phenotypes that have been 

verified by a number of laboratories.   
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Figure 1: Summary of P. gingivalis virulence factors involved in host signaling 
manipulation and their targets. 

  Indeed, P. gingivalis utilizes multiple mechanisms to suppress host cell death and 

stimulate proliferation.  In primary cultures of GECs, P. gingivalis activates the 

Jak1/Akt/Stat3 signaling hub that controls intrinsic mitochondrial apoptosis pathways [24, 

25], and at the mitochondrial membrane the activity of proapoptotic effectors such as 

Bad is reduced, while the ratio of antiapoptotic factors, such as Bcl2, to proapoptotic 
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factors is increased [26].  Downstream caspases including caspase-9 and the executioner 

caspase-3 are consequently suppressed.  Additionally, P. gingivalis can modulate 

expression of microRNAs (miRs) in epithelial cells, and up-regulation of miR-203 leads to 

reduction of the proapoptotic signaling molecule SOCS3 [27].  A major antiapoptotic 

effector molecule of P. gingivalis is the secreted enzyme nucleoside diphosphate kinase 

(NDK), which can function as an ATPase and prevent ATP-dependent apoptosis mediated 

through the purinergic receptor P2X7 [28].  Another antiapoptotic function of NDK 

involves phosphorylation of Heat-shock-protein-27 (HSP27) which curtails cytochrome C 

release and caspase-9 activation [29].  Recently it has become apparent that P. gingivalis 

possesses a variety of kinase and phosphatase enzymes, some of which can function 

within host cells.  Of particular relevance to cell survival, activation of the multi-purpose 

transcriptional regulator FOXO1 by dephosphorylation of serine residues induces 

antiapoptotic programs in epithelial cells, and knockdown of FOXO1 abrogates P. 

gingivalis-induced resistance to cell death [30]. 

Along with prolonged cell survival, increased proliferation is a feature of P. 

gingivalis infected epithelial cells.  Signaling induced by the FimA fimbrial protein 

accelerates progression of primary GECs through the S-phase of the cell cycle by 

manipulation of cyclin/CDK (cyclin-dependent kinase) activity and by reducing the level 

of the p53 tumor suppressor [31].  The gingipains of P. gingivalis may also contribute to 

cell proliferation through proteolytic activation of β-catenin and disassociation of the β-

catenin destruction complex.  The accumulation of active β-catenin fragments in the 

nucleus drives the activity of the β-catenin-dependent, pro-proliferative TCF/LEF 
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promoter [32].  In oral squamous carcinoma cells, P. gingivalis can increase cell 

proliferation by regulating cyclin D1 expression through the miR-21/PDCD4/AP-1 negative 

feedback signaling pathway [33].  Additionally, in oral tumor cells P. gingivalis can 

increase expression of α-defensins which have been found to elevate proliferation 

through effects on epidermal growth factor receptor (EGFR) signaling [34].   

Another role for P. gingivalis in carcinogenesis relates to its ability to influence the 

epithelial to mesenchymal transition (EMT) in GECs, as shown in Fig. 2. EMT is a cellular 

program through which epithelial cells shed their tight junctions in favor of an individual, 

mesenchymal phenotype.  EMT is important for embryogenesis, and wound healing, but, 

if uncontrolled, ultimately leads to increased migration/invasion and cancer cell 

stemness. As befits its importance to the cell, EMT is controlled by a complex regulatory 

network involving a series of transcription factors such as Zinc Finger E-Box Binding 

Homeobox 1 (ZEB1), Zinc Finger E-Box Binding Homeobox 2 (ZEB2), Snail Family 

Transcriptional Repressor 1 (SNAI1), and Twist Family BHLH Transcription Factor 1 

(TWIST1). These factors induce EMT by downregulating epithelial cell tight junction 

proteins (e.g. E- cadherin (CDH1), Zona Occludens Protein 1 (ZO-1)) while upregulating 

mesenchymal characteristics (e.g. N-cadherin (CDH2), matrix metallopeptidase (MMP) 9 

Vimentin (VIM)) [17, 35-38]. 
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Figure 2: Potential mechanisms by which P. gingivalis (dark green rods) could impact 
cancer associated processes in gingival epithelial cells.  Peach healthy epithelial cells, Blue 
epithelial cells that have acquired an anti-apoptotic phenotype, Purple epithelial cells that 
have acquired an accelerated proliferation phenotype, and Green epithelial cells that 
have undergone EMT, and have acquired an invasive phenotype. For simplicity other 
contributing host and environmental factors are not depicted. 

ZEB1 is upregulated in a FimA-dependent manner through a pathway that involves 

GSK-3β in primary GECS [17, 37].  ZEB2, on the other hand, is regulated in a FimA-

independent manner involving gingipain processing and activation of β-catenin along 

with dephosphorylation and activation of FOXO1 [38].  Although the extent and duration 

of EMT induced by P. gingivalis remains to be determined, epithelial cell infection leads 

to an increase in stemness, as evidenced by upregulation of the stem cell markers CD44 

and CD133 and enhanced migration [17, 35-38]. Invasion, and potentially metastasis of 



8 

epithelial cells, can be facilitated by host MMP enzymes which degrade extracellular 

matrix and basement components.  P. gingivalis has been shown to upregulate 

production of several MMPs including MMP-1, MMP-2, MMP-7, MMP-9 and MMP-10 

from primary and transformed oral epithelial cells [17, 36, 37, 39, 40]. In invasive OSCC 

lines, P. gingivalis gingipains can stimulate proteinase-activated receptor 2 (PAR2) and 

PAR4 to increase MMP-9 proenzyme expression through ERK1/2-Ets1, p38/HSP27, and 

NF-kB pathways [40]. Subsequently, in a two-hit mechanism, gingipains process the 

proenzyme to active MMP9 ensuring an increase in cellular invasion [40, 41] 

P. gingivalis has also been shown to activate Notch signaling through its secreted 

gingipains. Notch signaling is another pathway that can be activated to inhibit apoptosis, 

accelerate cell cycle progression, and induce EMT. Al-Attar et al. have shown that P. 

gingivalis activates Notch signaling specifically through Notch1, and the triple gingipain 

knockout mutant was unable to stimulate the pathway [42]. These investigators primarily 

focused on Notch activation leading to secretion of PLA2-IIA, which is an anti-microbial 

peptide utilized by P. gingivalis to shift to a more pathogenic microbial community [42].

While a role for P. gingivalis induced Notch signaling has been defined in terms of 

anti-microbial peptide regulation, traditional Notch regulated phenotypes associated 

with transformation of epithelial cells have not been characterized.   Notch signaling has 

also been shown to regulate Olfactomedin 4 (OLFM4), which is a secreted glycoprotein 

that was first characterized by its role in inhibition of apoptosis through binding of the 

mitochondrial protein GRIM19 [43]. Since that initial study, OLFM4 has been shown to 
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additionally accelerate cell-cycle progression, activate EMT, positively regulate MMPs, 

and dampen the innate immune response [44-47].  

Liu et. al. showed that H. pylori upregulates OLFM4 in the stomach, and this 

regulation allows for efficient colonization [47]. Moreover, upon deletion of OLFM4, H. 

pylori was efficiently cleared by an unimpaired innate immune response. Another study 

sought to characterize the secretome of non-neoplastic, immortalized epithelial cells and 

neoplastic oral derived cell lines [48]. OLFM4 was the most secreted protein (12-fold 

increase) in tested supernatants of neoplasm-derived cell lines compared to the 

supernatant of non-neoplasm, immortalized cells, although its extracellular function has 

not been characterized [48] .  

Chronic inflammation has emerged as a major contributor to tumor growth and 

metastasis, mainly through modulation of the tumor microenvironment by cytokines and 

chemokines, and through differential receptor expression [49].  The ability of P. gingivalis 

to incite prolonged, dysregulated inflammation could also contribute to the 

epidemiological associations between periodontitis and OSCC [49, 50].  In both OSCC cell 

lines and primary GECS P. gingivalis can upregulate programmed death-ligand 1 (PD-L1, 

B7-H1) and B7-DC, receptors that lead to anergy and apoptosis of activated T cells, and 

contribute to tumor cells’ resistance to host immune responses [51].  In OSCC cells P. 

gingivalis stimulates the release of a variety of chemokines/cytokines including IL-8, IL-6, 

TGF-β1, and TNF-α [35, 39, 52]. IL-8 can increase MMP production and cell invasiveness, 

as well as stimulate proliferation through transactivation of the Epidermal growth factor 

(EFG)receptor [53].  In addition, the IL-23/IL-17 axis, which is strongly pro-tumorigenic in 
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colorectal cancer [54], can be induced by P. gingivalis [55]. Interestingly, in primary GECs 

P. gingivalis adopts a more stealth-like behavior through a process known as localized 

immune paralysis [56].  Release of a serine phosphatase (SerB) intracellularly results in 

antagonism of IL-8 production through dephosphorylation of the serine 538 residue of 

the p65 subunit of NF-κB [57].  Dephosphorylation of the p65 subunit prevents 

dimerization of the subunits, thus inactivating NF-κB. While this may restrain tumor 

progression, the effect may be offset by inhibition of the angiostatic chemokines CXCL9, 

CXCL10 and CXCL11 that would otherwise promote neovascularization of tumors and 

increased tumor growth or metastasis [49, 58]. 

In vivo evidence also supports a role for P. gingivalis in the development of oral 

carcinomas.  In the 4-nitroquinoline-1-oxide (4NQO) tongue squamous cell carcinoma 

model, P. gingivalis-treated mice developed more and larger tumors on the tongue 

compared to the carcinogen alone group [59-62]. The development of squamous cell 

carcinoma was associated with enhanced free fatty acid production both in the tongue 

and in the serum of 4NQO treated mice, which is a shift also seen in oral cancer.  

Fusobacterium nucleatum 

While F. nucleatum is prevalent in a healthy microbiota, several studies have 

found that F. nucleatum is significantly enriched in patients with disease, whether that be 

periodontal disease, preterm delivery of low birth weight infants, head and neck cancer, 

or colorectal cancer (CRC) [63].  The potential role of F. nucleatum in cancers has been 

investigated in both in vitro and in vivo studies.  F. nucleatum produces an adhesin, FadA, 

which is crucial for attachment and subsequent invasion of epithelial cells [64].  FadA is 
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thought to play a major role in CRC by binding to E–cadherin on CRC cells, thus activating 

β-catenin signaling and differentially regulating inflammatory and oncogenic responses 

[65]. The FadA-E-cadherin axis also upregulates Annexin A1, a modulator of Wnt/β-

catenin-based proliferative signaling in CRC cells [66].  Localization of what is primarily an 

oral organism with developing tumors in the GI tract may be accomplished by another 

fusobacterial adhesin, Fap2, which binds to Gal-GalNac, abundant on CRC cell surfaces 

[67].  Fap2 can also immunosuppress tumor infiltrating lymphocytes, which are essential 

for immune responses to tumors.  Specifically, Fap2 binds and activates the inhibitory 

immunoreceptor TIGIT which is expressed by T and Natural Killer (NK) cells [68]. Further 

compromising anti-tumor immunity, F. nucleatum activates the human inhibitory 

receptor CEACAM1 which also suppresses T and NK cells activities [69]. Clearly then, F. 

nucleatum can significantly impact cell signaling and tumor immunity with relevance to 

CRC.  The extent to which these properties may pertain to OSCC is a vein of information 

ready to be mined.  Studies that have been performed establish the ability of F. nucleatum 

to induce nuclear localization of NF-κB in GECs, while also increasing secretion of IL-1β via 

activation of the NLRP3 inflammasome and caspase-1 [70].  Release of endogenous 

danger-associated molecular patterns (DAMPs) such as apoptosis-associated speck-like 

protein (ASC) and high-mobility group box 1 protein (HMGB1) further amplifies 

inflammation. P38 is also activated by F. nucleatum, which leads to increased secretion of 

MMP9 and MMP13 [71].  Moreover, F. nucleatum can induce an EMT program in OSCC 

cells through upregulation of TGF-β, TNFα, and EGF signaling [35]. In conclusion, F. 
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nucleatum induces proliferation of CRC cells, suppresses T and NK cell activity, and 

increases secretion of MMP9 and MMP13, all of which contribute to carcinogenesis. 

Coinfection with F. nucleatum and P. gingivalis exacerbated in vivo tumor 

development in the murine 4NQO tongue squamous cell carcinoma model [60]. The 

infected group had larger, more invasive tumors, with increased expression of cell cycle 

progression marker Cyclin D1 [60]. There was also an increase in phosphorylation of 

STAT3 in the infected group, which led to increased expression of IL-6 [60].  Further, in a 

colorectal cancer model F. nucleatum increases the size and number of tumors which 

develop in C57Bl/6 Apcmin/+ mice [72].  In summary, F. nucleatum enhances tumorigenesis 

in OSCC and CRC murine models, and with P. gingivalis is of critical importance in 

understanding microbial contributions to oral carcinogenesis. 

Treponema denticola 

In a healthy person’s oral cavity, T. denticola is found in low abundance; however, 

in periodontal disease, T. denticola is one of the most abundant organisms [73]. Similarly, 

an increased abundance of T. denticola has been associated with ESCC and OSCC, and 

similarly correlated with an increased risk of CRC [74]. T. denticola is highly proteolytic, 

with dentilisin (chymotrypsin-like proteinase) being the primary secreted protease [75].  

The presence of dentilisin is strongly correlated with early-stage mobile tongue squamous 

cell carcinoma, and high expression of dentilisin is associated with increased tumor 

invasion, tumor size, and recurrence in patients less than 60 years old [76]. Dentilisin can 

degrade IL-8 and TNFα [77, 78], and cleaves pro-MMP8 and pro-MMP9 to their active 

forms [10].  In a two-hit mechanism, dentilisin also degrades tissue inhibitors of MMPs, 
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TIMP1 and TIMP2, contributing to overall more proteolytic environment favoring invasion 

of epithelial cells. To summarize the above, T. denticola is associated with ESCC, OSCC, 

and CRC, and its secreted protease dentilisin is responsible for degradation of IL-8, TNFα, 

TIMP1, and TIMP2, all of which could contribute to an environment capable of inducing 

transformation of epithelial cells. 

Oral Microbial Communities 

The preceding text describes how individual species impact carcinogenesis; 

however, in the oral cavity, bacteria assemble into multi-species, spatially constrained 

communities known as biofilms.  Within these communities, functional specialization of 

bacterial species emerges, and in periodontitis it is pathogenicity at the community level, 

or nososymbiocity, which is thought to determine the potential for disease [15]. 

Metabolic interactions can drive the spatial and temporal arrangement of organisms in 

the oral polymicrobial community, and individual species tend to associate with partners 

that are physiologically compatible [79]. Interestingly, a bioinformatics study of 11 oral 

bacteria identified a large redundancy in the metabolic potential of the community, and 

metabolic capabilities varied among early and late colonizers [80]. Furthermore, a recent 

meta- transcriptomic analysis of diseased periodontal sites as compared with patient 

matched healthy sites determined the metabolic profile of the community was highly 

conserved, whereas individual species associated with this profile were interchangeable. 

In other words, the overall metabolic profile is more consistent than the presence or 

absence of individual species. These studies suggest that the overall metabolic potential 

of the community may correlate  better with disease than the presence of individual 
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species [81]. Overall metabolic stability is likely driven by shared ecology and stresses, 

and community homeostasis is a balance between metabolic redundancy and metabolic 

cross-feeding. If the metabolic capabilities and community metabolic necessities 

overlapped to a large extent, this would result in constant competition among individual 

species for nutrients. Instead, the conservation of core metabolic functions and 

mutualistic metabolism reduces antagonistic interactions between integral community 

participants and promotes community homeostasis.  

Spatial Determinants Between Oral Microbes 

Within a subgingival biofilm, the stable environment and intimate proximity 

facilitate nutrient transfer mechanisms among microbial constituents. For example, 

spatial imaging of plaque biofilms shows that Porphyromonas gingivalis and 

Fusobacterium nucleatum are often in close association [82]. In addition, F. nucleatum 

enhances the growth of P. gingivalis in the presence of oxygen, which suggests that the 

more aerotolerant F. nucleatum consumes oxygen, thereby providing a 

microenvironment with lower redox potential to benefit the growth of more oxygen-

sensitive organisms [83].  

In a study by Palmer et al. [84], Actinomyces naeslundii was incubated in minimal 

medium that did not support its growth; however, it displayed robust growth and 

coaggregation when cocultured with Streptococcus oralis. Streptococcus gordonii and 

related mitis group streptococci participate in several instances of cooperative 

metabolism. S. gordonii catabolizes carbohydrates and secretes H2O2 and L-lactate, a

major carbon source for lactate-utilizing bacteria such as Veillonella atypica and 
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Aggregatibacter actinomycetemcomitans [85, 86]. Consequently, S. gordonii and related 

organisms can promote A. actinomycetemcomitans growth, biofilm formation, and in vivo 

pathogenicity [87, 88]. V. atypica induces expression of the amyB gene, encoding an α-

amylase, of S. gordonii [89]; and thus S. gordonii grows better in association with V. 

atypica and secretes more lactate due to carbohydrate utilization, to the benefit of both 

organisms. Moreover, cooperative metabolism may have global benefits to other 

community members, as the lactate-utilizing V. atypica and A. actinomycetemcomitans 

neutralize acidification of the oral environment, thus protecting more acid-sensitive 

species, such as P. gingivalis.  

Metabolic Cooperation between A. actinomycetemcomitans and S. gordonii  

The relationship between A. actinomycetemcomitans and S. gordonii is more 

complex and involves a balance between synergistic cross-feeding and antagonistic 

interactions. Stacy et al. [90] demonstrated that A. actinomycetemcomitans spatially 

positions itself far enough away to allow detoxification of H2O2 through the production

of catalase, but close enough to S. gordonii to benefit from the secretion of L-lactate. 

Optimal positioning of A. actinomycetemcomitans within the biofilm matrix is achieved 

through the production of dispersin B, an enzyme that hydrolyzes polysaccharides and is 

upregulated in the presence of S. gordonii [91]. Additionally, S. gordonii increases the 

availability of oxygen for A. actinomycetemcomitans to use as a terminal electron 

acceptor. In this way, S. gordonii shifts the metabolism of A. actinomycetemcomitans 

from fermentative to oxidative respiration [92]. This process, termed “cross-respiration,” 

also enhances the growth and fitness of A. actinomycetemcomitans. Similar homeostatic 
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mechanisms to maximize energy gains from metabolic cross-feeding, while reducing 

antagonistic interactions, may represent a fundamental force in shaping the spatial 

organization of dental plaque. A. actinomycetemcomitans possesses the capability to 

influence global regulation of community development, and its presence in an in vitro 

multispecies biofilm was shown to modulate the proteomic profile of the entire complex 

community [95]. Further investigation identified the community regulator as the histone-

like family of nucleoid-structuring (H-NS) proteins of A. actinomycetemcomitans. H-NS 

proteins act as translational silencers with global regulatory potential in many Gram-

negative bacteria. In Escherichia coli, deletion of the hns gene attenuates biofilm 

development [93], similar to its role in A. actinomycetemcomitans, where it promotes 

biofilm development as well as adhesin production [94]. Proteomic analysis of an in vitro 

polymicrobial community with the hns deletion strain of A. actinomycetemcomitans 

suggested that H-NS globally regulates community metabolic pathways involved in 

peptide, carbohydrate, and malate metabolism [95].  

Metabolic Cooperation Between Oral Streptococci and P. gingivalis 

Oral streptococci also have a significant impact on the properties and pathogenic 

potential of P. gingivalis, and these organisms are located in close proximity in vivo [82]. 

Interactions occur on multiple levels and many involve metabolic communication. Oral 

streptococci efficiently metabolize sugars, and a reduction in galactose in the biofilm 

milieu could alter physiology, cell shape, and intracellular granulation of P. gingivalis [96]. 

S. gordonii promotes increased biofilm development and synergistic pathogenicity in 

rodent models of periodontitis with P. gingivalis [97-99]. The S. gordonii genes spxB and 
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cbe are among those instrumental in promoting biofilm development with P. gingivalis 

[100]. SpxB (pyruvate oxidase) produces acetyl phosphate and H2O2 from pyruvate under 

aerobic conditions, but its role in promoting biofilm development with P. gingivalis 

remains unclear. Cbe (chorismate- binding enzyme) synthesizes para-aminobenzoic acid 

(pABA) for secretion and folate biosynthesis. Recently, pABA was determined to promote 

fitness and colonization of P. gingivalis in vivo with a mouse oral model [101]. Moreover, 

pABA reduced the overall stress of P. gingivalis while promoting fimbrial production. 

Metabolic and proteomic analyses of P. gingivalis responses to pABA showed that P. 

gingivalis can utilize pABA for folate biosynthesis. Surprisingly, pABA reduced the 

production of exopolysaccharide and attenuated the virulence of P. gingivalis. These 

metabolic interactions may regulate community density and spatial configuration, again 

supporting the developing narrative that metabolic communication promotes structure 

and polymicrobial synergy within the oral biofilm [102]. It is important to note that 

individual species of oral streptococci can affect P. gingivalis synergistically or 

antagonistically through distinct process. For example, Streptococcus cristatus and 

Staphylococcus intermedius are antagonistic to P. gingivalis [103, 104], in part through 

removal of the biofilm-promoting amino acid arginine by streptococcal arginine 

deiminase enzymes [103].  

T. denticola and P. gingivalis Metabolic Interactions 

Most of the examples discussed so far involve early colonizing commensal bacteria 

and more pathogenic later colonizers; however, interactions among these secondary 

colonizers are also manifold [105]. One example of cooperative metabolism between 
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periodontal pathogens is the metabolic cross-talk between Treponema denticola and P. 

gingivalis. When cultured together, P. gingivalis and T. denticola coaggregate and display 

enhanced growth [106-108]. Gas-liquid chromatography analysis of culture supernatants 

demonstrated that P. gingivalis produces isobutyric acid, which stimulates the growth of 

T. denticola, while T. denticola secretes succinate, which is utilized by P. gingivalis [106]. 

Additional studies demonstrated that T. denticola induces the production and secretion 

of glycine by P. gingivalis to promote its own growth in mixed culture [107]. 

Transcriptome analysis also suggests that P. gingivalis produces thiamine pyrophosphate, 

an essential nutrient for T. denticola; however, direct cross-feeding of this metabolite has 

yet to be established. Recently, in vivo metatranscriptomic studies showed that these 

cooperative metabolic interactions occur during periodontitis and may be a significant 

contributor to synergistic pathogenicity [109, 110].  

Polymicrobial Synergy and Dysbiosis in Cancer 

One current theory of periodontal disease etiology, the polymicrobial synergy and 

dysbiosis (PSD) model, holds that synergistic interactions within the polymicrobial 

community shape and stabilize a dysbiotic microbiota which perturbs host homeostasis. 

Disease is caused by reciprocally reinforced interactions between such physically and 

metabolically integrated polymicrobial communities and a dysregulated host 

inflammatory response [102].  While periodontitis and cancer are clearly distinct diseases, 

they share an underlying similarity in that they are, in essence, wounds that fail to heal 

[111].  Community perturbations consistent with a PSD model have been proposed for 

tumor development [112, 113].  Combinations of oral bacterial species are consistently 
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identified in OSCC lesions, resonating with the idea that community-wide properties may 

promote tumorigenesis.   

In the 4NQO model, F. nucleatum and P. gingivalis synergistically promote cancer 

progression [60].  Another feature of the PSD model is that the microbial roster is of less 

relevance to nososymbiocity than the presence of combinations of functional genes, as 

communities of different compositions can exhibit similar functions [102].  Support for 

this concept in OSCC comes from a study of the microbiota and transcriptome in the 

4NQO mouse model.  Whereas variability in community dynamics was observed, the 

metatranscriptome revealed patterns of metabolic signatures consistently present in 

OSCC.  These include nitrogen transport, response to stress, interspecies interactions, 

Wnt pathway modulation, and amino acid and lipid biosynthesis [62].  Similarly, a pilot 

study of human OSCC tumors found metabolic activities better correlated with disease 

than did community microbial composition [114], and a comparison of microbiotas 

associated with OSCC in different countries reveals functional rather than compositional 

similarities [115]. Fig. 3 summarizes a proposed role for PSD in OSCC. 
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Figure 3: Schematic representation of polymicrobial synergy and dysbiosis model for oral 
squamous cell carcinoma.  In health, host cell responses to homeostatic communities are 
a eubiotic balance of proliferation with programmed cell death. Driver mutations lead to 
dysregulation of host processes, which can also be manipulated by organisms associated 
with a dysbiotic community. As the tumor microenvironment is established anaerobic, 
gram-negative organisms are enriched as a result of hypoxic, pro-inflammatory 
conditions. As organisms such as P. gingivalis, F. nucleatum and T. denticola accumulate, 
the tumor cells can acquire an invasive phenotype through EMT, as well as increased 
resistance to chemotherapeutic drugs. 

Interactions among bacterial constituents of communities can be antagonistic as 

well as synergistic, and numerous cases of antagonisms have been documented among 

oral bacteria [38, 102, 116]  Although there are conflicting reports in the literature [117], 

in general, most oral streptococcal species tend to be underrepresented in the 

microbiotas associated with OSCC [62, 118].  This can be interpreted to indicate reduced 

fitness of these organisms in a tumorigenic environment.  However, a further 
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interpretation is that these organisms are eubiotic and help maintain homeostasis at 

mucosal membranes; in their absence the microbiota becomes increasingly tumorigenic.  

In that regard, S. gordonii can reprogram epithelial cell global transcriptional patterns 

such that the subsequent response to P. gingivalis is diminished, and, further, S. gordonii 

can prevent P. gingivalis-induced gingival epithelial cell proliferation [102].  Moreover, S. 

gordonii can antagonize P. gingivalis-induced ZEB2 production and associated cell 

migration by inhibiting the activation of the FOXO1 transcription factor through the TAK1-

NLK negative regulatory pathway, as shown in Fig. 4 [38].   Hence, while S. gordonii is an 

accessory pathogen in periodontal disease [102], this species may be a homeostatic 

commensal in oral cancer, an illustration of the importance of environmental context for 

bacterial functionality.   

The goal of this study was to identify signaling events manipulated by periodontal 

pathogen P. gingivalis that contribute to homeostatic disruption, specifically focusing on 

pathways overridden by homeostatic commensal S. gordonii in gingival epithelial cells. 

We hypothesized that P. gingivalis would activate genes involved in tissue disruption and 

dampen innate immune signaling, whereas S. gordonii would either program the cells to 

resist this activation or interact with other inhibitory pathways.  We characterized the 

differences in transcriptomic responses of epithelial cells challenged with P. 

gingivalis and/or S. gordonii using RNAseq.  The transcriptome data revealed OLFM4, a 

gene involved in apoptosis, proliferation, migration, and dysregulation of innate 

immunity, all of which are differentially influenced by the microbes, as a potential axis 

that is disturbed by P. gingivalis and restored by S. gordonii. The initial identification of 
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OLFM4 was followed by characterization of the mechanism for upregulation by P. 

gingivalis, inhibition by S. gordonii, and ultimately the phenotypic outcome of this 

differential regulation. 

Figure 4: Antagonistic interactions of S. gordonii on P. gingivalis through activation of the 
TAK1-NLK host kinase cascade.  P. gingivalis can dephosphorylate FOXO1 on serine 
residues which prevents translocation form the nucleus to the cytoplasm thus enhancing 
activity.  When S. gordonii is present the TAK1-NLK1 pathway is activated which 
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supersedes the effect of P. gingivalis and increases phosphorylation of FOXO1 on Ser329 
thus allowing translocation of FOXO1 to the cytoplasm where it is inactive.   
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CHAPTER 2 MATERIALS AND METHODS 

Eukaryotic Cells, Bacterial Strains, Growth and Infection Conditions. Telomerase 

immortalized gingival keratinocytes (TIGKs) [119] and OKF6/TERT2 cells [120] were 

maintained with Dermalife-K Serum free culture medium supplemented with DermaLife 

K LifeFactors Kit. SCC9 cells from ATCC were grown in 1:1 DMEM: Ham’s F12 medium 

supplemented with 400 ng/ml hydrocortisone and 10% fetal bovine serum. ESCC9706 

cells [121] were grown using DMEM supplemented with 10% fetal bovine serum. Cells 

were cultured at 37°C with 5% CO2.  Porphyromonas gingivalis ATCC 33277, HG66, W83, 

381, A1A7-28, and low passage clinical isolate MP4-504 were grown in trypticase soy 

broth (TSB) supplemented with 1 mg/mL yeast extract, 5 μg/mL hemin and 1 ug/mL 

menadione. Deletional mutants ΔfimA, Δmfa1, ΔserB, and ΔporK [57, 122-124] were 

grown in the presence of 10 μg/mL erythromycin, Δkgp was grown in the presence of 20 

ug/mL chloramphenicol, Δltp1/Δphp1 and ΔrgpA/B were grown in the presence of 

erythromycin and 1ug/mL tetracycline, and Δkgp/rgpA/B were grown in the presence of 

erythromycin, tetracycline, and chloramphenicol [125]. Streptococcus gordonii DL1, S. 

mutans KSPK2, S. oralis 10557, S. constellatus ATCC 27823, and S. sanguinis 10556 were 

grown in brain heart infusion broth (BHI) supplemented with 5 mg/ml yeast extract, S. 

gordonii ΔspxB CΔspxB, ΔsspA/B, Δcbe, [100] were grown in the presence of 5 µg/mL 

erythromycin, and CΔspxB was grown with 10 µg/mL tetracycline. Fusobacterium 

nucleatum ATCC 25586 was grown in BHI supplemented with 1 mg/mL yeast extract, 5 
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μg/mL hemin, and 1 μg/mL menadione. Treponema denticola ATCC 35405 was grown in 

new oral spirochete broth (NOS), and Filifactor alocis ATCC 35896 was grown in BHI 

supplemented with 5 mg/mL yeast extract, 5 μg/mL hemin, 1 μg/mL menadione, and 20% 

L- arginine.  All bacteria were grown to mid-log phase at 37°C under standard anaerobic 

conditions of 85% N2, 10% H2, 5% CO2. 

 

Cells were grown to ~80% confluence and challenged with bacteria at an MOI of 100 for 

1 h, followed by 23 h culture in fresh medium, unless otherwise noted.  

 

Antibodies and Reagents 

OLFM4, Activated Notch1, and GAPDH antibodies were from Abcam. Phalloidin- Texas 

Red, Alexa Fluor 488, and DAPI were from Thermofisher. OLFM4 and Notch1 ELISAs were 

from Abcam, and Jagged1 ELISA was from Thermofisher. OLFM4, Notch1, Notch2, Notch3, 

Notch4, Jagged1, Jagged2, DLL1, DLL3, DLL4, SMAD3, SMAD7, ZEB2, FOXO1, β-catenin, 

GSK3β, ADAM10, ADAM17, and NLK siRNA were from Origene. TLCK, FH535, and 

chromogenic substrate L-BAPNA were from Sigma Aldrich. Recombinant chimera 

Jagged1-FC was from RND systems. Gamma secretase inhibitor LY-374973 (DAPT) was 

from Sigma Aldrich, and ADAM/TACE inhibitor TAPI-2 was from Tocris. 

 

Quantitative Reverse Transcription-PCR 

Cells were harvested, and RNA was purified using RNAeasy plus kit from Qiagen. 2ug RNA 

was reverse transcribed using high capacity reverse transcription kit (Thermofisher). 



 26 

Applied Biosystems Taqman fast universal master mix and Taqman gene expression 

assays for OLFM4, GAPDH, HES5, Notch1, Notch2, Notch3, Notch4, Jagged1, Jagged2, 

DLL1, DLL3, DLL4, SMAD3, SMAD7, ZEB2, FOXO1, β-catenin, GSK3β, ADAM10, ADAM17, 

and NLK were from Thermofisher. qRT-PCR was performed using an Applied Biosystems 

QuantStudio 3. Thresholds were automatically calculated using Applied Biosystems 

software, and Cycle threshold (Ct) values were normalized to GAPDH. Fold changes were 

calculated using 2-(delta delta)Ct. 

Immunoblots and ELISAs 

Cells were lysed using RIPA buffer containing Protease and PhosSTOP phosphatase 

inhibitor (Roche). Protein concentration was estimated by a bicinchoninic acid (BCA) 

assay. Proteins (20 μg) were separated on a 10% SDS-PAGE gel, and transferred to a 

nitrocellulose membrane (0.2 μm) by electroblotting for 1h at 100V. Nitrocellulose 

membranes were blocked with 5% bovine serum albumin (BSA) in Tris buffered saline 

with 0.1% Tween 20 (TBST) for 1 h at room temperature. The membrane was probed with 

primary antibodies in TBST overnight at 40C. Membranes were washed 3 times with TBST, 

and probed with HRP-conjugated secondary antibody at room temperature for 1 h. ECL 

substrate (ThermoFisher) was used to visualize the proteins, and images were generated 

using a ChemiDoc XRS Plus (BioRad). 
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Cell culture supernatant was centrifuged for 20 min at 20,000xg at 40C, filtered (0.4 μm), 

and concentrated using Amicon Ultra concentrators.  For ELISA, 25 μl of supernatant per 

well was used per manufacturer’s guidelines.  

 

Plasmid preparation, RNA interference, Transfections, and Luciferase assay 

OLFM4 promoter-luciferase reporter construct was made by amplification of a 500 bp 

fragment upstream of the OLFM4 coding sequence, which was cloned into pGL3-basic 

plasmid (Promega). All constructs were confirmed by sequencing at the University of 

Louisville Sequencing Core. The internal control reporter was pRL vector that provides 

constitutive expression of Renilla luciferase (Promega).  For siRNA cells were grown to 50-

60% confluence, and cells for plasmid transfection were grown to 60-70% confluence. 

Transfection was for 48 h using Lipojet transfection agent (SignaGen), and after 24h 

medium was changed to allow cells to recover before bacterial challenge. Confirmations 

of knockdowns can be found in Fig. S1. Luciferase reporter assays were performed using 

a Stop & Glo Dual luciferase reporter kit from Promega. Luciferase activity was measured 

using a 10s integration time in a Luminometer (Molecular Devices).  Firefly luciferase 

activity was normalized to Renilla luciferase activity from the same lysates.    
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Figure S1: Confirmation of siRNA transfections. Target genes for qRT-PCR were 
normalized to GAPDH, and fold changes were calculated using the ΔΔCT method. 
Significance was calculated using a One-way ANOVA, and *** P<.005 and **** P<.001. 

Immunofluorescence and Confocal Laser Scanning Microscopy 

TIGK cells were grown on Lab-Tek II chamber slides, and after bacterial challenge cells 

were washed twice with phosphate buffered saline (PBS), fixed and permeabilized with 

4% paraformaldehyde and 0.1% Triton x-100 for 10 min at room temperature. Goat serum 

(10%) in TBST was used to block the cells for 20 min at room temperature.  Cells were 

incubated with primary antibody in TBST with 10% goat serum overnight at 4OC. Cells 

were washed 3 times with TBST, then incubated with Alexa Fluor 488 secondary antibody 

(1:200) for 2 h at room temperature in the dark.  After washing as before and blocking 

with 10% goat serum, cells were incubated with Texas Red-Phalloidin (1:100) for 2 h at 

room temperature in the dark. Cells were washed 3 times, and coverslips were mounted 

using ProLong Gold (Invitrogen) with 4’6-diamidino-2-phenylindole (DAPI) overnight. 

Slides were scanned with a Leica SP8 confocal microscope, and images were analyzed 

with Volocity 6.3 Software (PerkinElmer). 

Nuclear localization was quantified using the 3D image processing software IMARIS 

(Bitplane AG).  The Surfaces function in IMARIS was used to create a 3D model of the 

nuclei from the DAPI channel. IMARIS surfaces then calculated Alexa Fluor 488 voxels 

within each nucleus, which was normalized to the volume of the nucleus.  Total 

normalized Alexa Fluor 488 was then divided by the number of cells analyzed.    
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Transwell Assays 

For studying bacterial interactions with the epithelial cells, 1x105 cells were grown only in 

the lower chamber of a 0.4 μm transwell filter plate.  Cells were challenged with P. 

gingivalis, and the upper chamber contained cell culture media and either S. gordonii, S. 

mutans, or S. oralis.  

For studying epithelial cell to epithelial cell interactions, TIGKs were cultured in both the 

lower chamber and on the transwell insert in the upper chamber. P. gingivalis was added 

to the upper chamber only.  

To measure the motility of TIGK cells we used a matrigel migration assay (BD Biosciences). 

Cells (2x105) cells were seeded onto the matrigel insert in the upper chamber, with cell 

culture medium in the lower chamber, and cultured for 18 h. The filter was removed, and 

the surface was scraped with a cotton swab to remove any cells that did not migrate. Cells 

that migrated through the filter were fixed with 1% methanol, and stained with toluidine 

blue. Cells were counted from 3 random fields at 20x using a Nikon Eclipse T100 

microscope.  

RNAseq 

RNA was extracted using the RNAqueous-Micro Total RNA Isolation kit (ThermoFisher). 

The TruSeq Stranded Total RNA with RiboZero Plus kit (Illumina) was used to generate a 

sequencing library from 1 µg of total RNA. Paired-end sequencing was performed on an 
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Illumina Nextseq 500 at the University of Louisville Core using the Nextseq 500 High-

Output Kit (150 cycles) (Illumina). Base calls were made using the BaseSpace FastQ 

Version 1.0.0 application (Illumina, Inc.).  Raw gene counts with a minimum of two counts 

per million in at least one sample were used as the initial dataset for downstream RNASeq 

analyses.  These raw counts were used for the determination of differentially expressed 

genes via the DESeq2 Bioconductor/R package (DOI: 10.18129/B9.bioc.DESeq2) using the 

recommended guidelines.  Output was in the form of log2 fold change expression values 

and p-values adjusted for multiple comparisons using the Benjamini-Hochberg procedure. 

Differentially expressed genes were defined using cutoffs of 1 for the log2 fold change 

and an adjusted p-value of 0.05.  This output was used as input for the generation of 

volcano plots using the EnhancedVolcano Bioconductor/R package (DOI: 

10.18129/B9.bioc.EnhancedVolcano).  This output was also used as input for functional 

enrichment analysis through the String Database version 11 using an FDR stringency of 1 

percent and a minimum interaction confidence score of 0.400 for network generation. 

For principal component analysis (PCA) and heatmap generation, the raw count data were 

made homoscedastic using a regularized logarithm transformation.  PCA was conducted 

using base R and PCA plots generated using the ggfortify R package.  Gene count data for 

heatmap generation was further converted into z-scores and used as input into the 

ComplexHeatmap Bioconductor/R package. 

Gingipain Activity Assay 
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Culture supernatant from P. gingivalis was filtered (0.4 μm) and combined with filtered 

supernatant from with either aerobic or anaerobic cultures of S. gordonii or S. mutans.  

For experiments using H2O2, culture supernatant from P. gingivalis was incubated with 

H2O2 for 30 min. Gingipain activity was visualized using the chromogenic substrate L-

BAPNA.  The rate of substrate hydrolysis and the accumulation of p-nitroanilide were 

monitored spectrophotometrically at 405 nm over time in a Spectramax M5 reader 

(Molecular Devices).  

Statistical Analysis 

Each analysis is representative of at least 3 biological replicates with technical duplicates, 

and confocal images are representative of 3 biological replicates with at least 3 randomly 

scanned areas of the chamberslide. ANOVA with Tukey’s multiple comparison test were 

conducted using GraphPad Prism V8.  Statistical analyses of RNA-Seq data are described 

above.  
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CHAPTER 3 RESULTS 

To characterize the interplay between P. gingivalis and S. gordonii at the epithelial 

barrier we first employed RNAseq to identify host genes that are differentially regulated 

in the presence of each organism alone versus the two species present together. 

Telomerase immortalized gingival keratinocytes (TIGKs) were challenged with either P. 

gingivalis, S. gordonii, or a dual infection with both organisms. Fig. 5A shows the PCA plot 

for the RNAseq, where we observed tight clustering of samples within the same group 

and separation between each of the groups, indicating distinct transcriptional responses. 

We enriched for genes involved in Notch signaling in Fig. 5B, which was recently shown 

to be activated by P. gingivalis [42]. We found in Fig. 5B that the Notch1 and Notch3 

receptors, Jagged1 ligand (Jag1), and downstream targets OLFM4 and Hes5 were all 

upregulated by P. gingivalis.  

OLFM4 is an antiapoptotic glycoprotein which promotes tumor growth [43], and 

is selectively expressed in inflamed epithelium [47].   In the dual infection group, 

expression of all of these genes was significantly reduced compared P. gingivalis alone, 

and differential expression of the Notch pathway in response to P. gingivalis (Pg) did not 

occur in the presence of S. gordonii (Sg). The results for the Pg vs. NI, Pg+Sg vs. Pg, Pg+Sg 

vs. Sg, and Pg vs. Sg comparisons from the RNAseq were also summarized as a volcano 

plot in Fig. 5C-F, and shared differentially expressed genes summarized as upset charts in 

Fig. 5G-H.   The transcriptome data on P. gingivalis induction of OLFM4 was corroborated 
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in a dose and time dependent manner at the transcriptional (Fig. 6A) level, and at 24 h 

the  protein level by Western blotting (Fig. 6B ), ELISA (Fig. 6C) and confocal microscopy 

(Fig. 6D), all showed an increase in OLFM4 protein in response to P. gingivalis. These 

mRNA and protein analyses identify that P. gingivalis-induced upregulation of OLFM4 

through Notch signaling is reduced when S. gordonii is present. 
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Figure 5: RNAseq of TIGK cells challenged with P. gingivalis and/or S. gordonii 
TIGK cells were challenged with P. gingivalis (MOI 100) and/or S. gordonii (MOI 50) for 1h, 
then the media was changed to remove any non-adherent bacteria. Cells were harvested 
at 24h, at which point RNA was harvested, and libraries were prepared for RNAseq. The 
PCA plot (A) shows distinct separation of non-infected (NI), P. gingivalis (Pg), S. gordonii 
(Sg), and P. gingivalis co-challenged with S. gordonii (Pg+Sg) groups, as well as a tight 
clustering of individual samples within each group. Notch signaling is transcriptionally 
regulated by P. gingivalis, and S. gordonii interrupts activation by P. gingivalis, specifically 
reducing Notch1, Notch3, Jagged1, Hes5, and OLFM4 (B). Graphical comparisons of gene 
expression are represented by volcano plots for P. gingivalis vs. NI (C), P. gingivalis + S. 
gordonii vs. P. gingivalis alone (D), P. gingivalis + S. gordonii vs. S. gordonii alone (E), and 
P. gingivalis alone vs. S. gordonii alone (F). A summary of the shared upregulated (G) and 
downregulated (H) genes for each comparison have been presented as upset charts. 
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Figure 6: Regulation of OLFM4 by P. gingivalis 
TIGK cells were challenged with P. gingivalis ATCC 33277 at an MOI of either 10, 50, or 
100 for 6 h, 24 h, or 48 h, then RNA was harvested and reverse transcribed into cDNA for 
qRT-PCR (A). OLFM4 upregulation was first observed at 24 h, and significantly increases 
in a dose and time dependent manner. Cells were harvested as previously described at 
24 h, and western blot confirmed increases OLFM4 protein expression (B). As OLFM4 is a 
secreted protein, verification of increased secretion was investigated by ELISA of cell 
culture supernatants. Cells were challenged with P. gingivalis at indicated MOIs, then 
supernatants were collected, filtered, and concentrated (C). Cells were grown on chamber 
slides and challenged for 24h at an MOI 100, then probed with OLFM4 antibodies (green), 
phalloidin labeling actin (red), and lastly the nucleus was stained with DAPI (blue). P. 
gingivalis significantly increased OLFM4 intensity, which was normalized to the size of 
each nucleus (D). 500 bp upstream of OLFM4 was cloned into the promoterless PGL3-
Firefly luciferase construct, and was used to measure promoter activity of TIGK cells 
challenged with P. gingivalis at an MOI of 100 for the indicated times. P. gingivalis 
increases promoter activity at 6 h, with the greatest increase at 24 h (E). Multiple strains 
of P. gingivalis were tested at an MOI of 100 for 24 h, including the encapsulated W83 
and low passage clinical isolate MP4-504 (F). Each strain was equally able to stimulate 
OLFM4 expression. P. gingivalis upregulated OLFM4 in OKF6/TERT1 cells, which are 
immortalized non-cancerous mucosal cells (G), as well as the esophageal cancer derived 
cell line ESCC9706 (H) and tongue squamous cell carcinoma derived SCC9 cell line (I). 
Target genes for qRT-PCR were normalized to GAPDH, and fold changes were calculated 
using the ΔΔCT method. Significance was calculated using a One-way ANOVA, and *P<.05, 
** P< .01, *** P<.005, and **** P<.001. 

To confirm regulation of OLFM4 at the transcriptional level, TIGKs were 

transfected with a luciferase-reporter construct containing the regulatory fragment 

spanning 500bp upstream of the coding region [126].  In a luciferase assay challenge with 

P. gingivalis increased OLFM4 promoter activity beginning at 6 h (Fig. 6E).  We explored 

multiple P. gingivalis strains to verify upregulation of OLFM4 is a property conserved 

across the species.   In Fig. 6F we show all tested strains of P. gingivalis induced elevated 

OLFM4 expression, including the fimbriated/non-encapsulated lineage (33277, 381, and 

the gingipain hypersecreting HG66), the encapsulated/afimbrial lineage (W83), the 

fimbriated/encapsulated lineage (A7A128) and the low-passage clinical isolate MP4-504 
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[127-130].  Next, we determined whether OLFM4 regulation by P. gingivalis is specific to 

gingival epithelial cells.  The OKF6 line are telomerase immortalized buccal mucosa cells, 

and we found that P. gingivalis upregulates OLFM4 in these cells, albeit to lower levels 

than occur in TIGKs in Fig. 6G. Tongue (SCC9) and esophageal (ESCC9706) squamous cell 

carcinoma cells also displayed an increase in OLFM4 expression in response to P. 

gingivalis challenge, again at a substantially lesser magnitude compared to TIGK cells in 

Fig. 6H-J.   These results indicate that epithelial cells of the gingiva, which is the primary 

in vivo habitat of P. gingivalis, are more responsive to challenge with the organism, at 

least in terms of OLFM4 regulation, as compared to cells derived from other sites in the 

oral and esophageal regions.   

Because genes involved in Notch signaling and OLMF4 were coordinately 

upregulated by P. gingivalis exposure, and normalized when S. gordonii was present, we 

further explored the role of Notch signaling in the regulation of OLFM4 in TIGK cells. There 

are four Notch receptors which initiate signaling through the pathway, and quantitative 

(q) RT-PCR showed that expression of Notch1 and Notch3 is enhanced by infection with 

P. gingivalis in Fig. 7A.  To elucidate the role of these Notch receptors in OLFM4 

upregulation, expression of each receptor was suppressed using siRNA.  Knock down of 

Notch1 led to significantly decreased OLFM4 mRNA levels in the P. gingivalis challenged 

cells in Fig. 7B, indicative of a role for Notch1 in the signaling pathway exploited by P. 

gingivalis to regulate OLFM4.  Knock down of Notch 2 and 4 had no effect on OLFM4 

expression, whereas knock down Notch3 significantly increased the level of OLFM4, 

possibly due to increased availability or expression of Notch1.  Notch signaling is activated 
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by the ligands Jag1, Jag2, DLL1, DLL3, and DLL4, and by qRT-PCR P. gingivalis upregulates 

expression of Jag1 and downregulates Jag2 in Fig. 7C. As shown in Fig. 7D knock down of 

Jag1 led to decreased induction of OLFM4 by P. gingivalis, whereas knocking down Jag2 

increased OLFM4, indicating that Jag2 expression may interfere with signaling through 

Notch1.  Suppression of DLL 1, 3, or 4 did not negatively influence OLFM4 mRNA levels in 

response to P. gingivalis.  Knock down of Notch1 and Jag1 also diminished P. gingivalis-

dependent regulation of an additional target of the Notch signaling pathways, Hes5 (Fig. 

7E),.  Collectively these data corroborate the importance of the Jag1-Notch1 signaling 

pathway in TIGK responses to P. gingivalis.   
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Figure 7: Regulation of Notch signaling by P. gingivalis 
P. gingivalis upregulates Notch1 and Notch3 receptors, but not Notch2 and Notch4 at 
MOI 100 for 24 h in TIGK cells by qRT-PCR (A). Notch1-4 receptors were individually 
knocked down through siRNA transfection, and scrambled siRNA was used as a control. 
P. gingivalis requires Notch1, but not Notch2-4 for OLFM4 upregulation (B). Similarly, we 
investigated regulation of Notch ligands Jag1, Jag2, DLL1, DLL3, and DLL4 by P. gingivalis 
as in (A) and found P. gingivalis significantly upregulates Jag1, downregulates Jag2, and 
does not regulate DLL1, DLL3, and DLL4 (C). Employing siRNA transfections as in (B) for 
Notch ligands we found that Jagged1 was required for OLFM4 upregulation by P. 
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gingivalis, but not Jag2, DLL1, DLL3, or DLL4 (D). HES5 is also a downstream target of 
Notch signaling, and in a similar fashion to OLFM4 requires Notch1 and Jag1 for optimal 
regulation of HES5 mRNA (E). Target genes for qRT-PCR were normalized to GAPDH, and 
fold changes were calculated using the ΔΔCT method. Significance was calculated using a 
One-way ANOVA, and ** P< .01, *** P<.005, and **** P<.001. 
 

It has been shown that endothelial cells are able to cleave Jag1 and release a soluble form 

of Jag1 that can then bind to Notch receptors on colorectal cancer cells and activate 

signaling [131]. To explore whether a similar mechanism of activation occurs in our model, 

we utilized a transwell system to determine whether challenge with P. gingivalis causes 

release of soluble signaling factors. TIGKs were cultured both on the transwell filter in the 

upper chamber, as well as in the lower chamber.  When cells in the upper chamber were 

challenged with P. gingivalis, OLFM4 transcription was upregulated in the lower chamber 

cells in Figure 8. 

Figure 8: P. gingivalis induces paracrine activation of Notch signaling through soluble 
Jagged1 
TIGK cells were grown in the lower chamber of a 0.4um transwell plate, as well as on top 
of the transwell filter. Only cells above the transwell filter were transfected with either 
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control siRNA or siJag1. Cells were then challenged with P. gingivalis either above or 
below the transwell filter as indicated, and only cells below the transwell filter were 
harvested for RNA and reverse transcribed for qRT-PCR. P. gingivalis alone was not 
enough to stimulate the lower TIGK cells in the upper chamber of the transwell filter, but 
when TIGK cells were seeded onto the upper chamber activation of OLFM4 in the lower 
chamber was maintained. Additionally, specifically knocking down Jag1 reduced OLFM4 
activation in the lower chamber cells, which implicates a soluble form of Jag1 being 
involved in this paracrine activation mechanism. Target genes for qRT-PCR were 
normalized to GAPDH, and fold changes were calculated using the ΔΔCT method. 
Significance was calculated using a One-way ANOVA, and  **** P<.001. 

To evaluate the role of Jag1 in this regulation Jag1 was knocked down by siRNA in 

cells in the upper chamber.  After challenge of upper chamber cells with P. gingivalis there 

was significantly less OLFM4 expression in the lower chamber cells compared to the 

siControl condition as shown in Figure 8. These results indicate that P. gingivalis can 

activate the Notch pathway in a paracrine manner by increasing production of Jag1.   

OLFM4 is also a target gene of the Wnt/β-catenin pathway and of the NF-κB 

transcription factor [126]. As P. gingivalis can activate Wnt/β-catenin signaling, but not 

NF-κB [32, 57], we thus questioned whether the Wnt/β-catenin pathway is also involved 

in P. gingivalis-induced expression of OLFM4.  However, neither pharmacological 

inhibition of Wnt nor siRNA knockdown of β-catenin had an affect on OLFM4 induction in 

response to P. gingivalis as shown in Fig. 9 A-B.   
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Figure 9: Wnt/β-catenin and ZEB2 are not required for activation of OLFM4 by P. gingivalis 
P. gingivalis activates Wnt/B-catenin signaling, and this pathway has been implicated in 
OLFM4 regulation. We utilized siRNA targeting β-catenin (A) and a pharmacological 
inhibitor of Wnt signaling, FH535 (B) in TIGK cells. Cells were then challenged with P. 
gingivalis at an MOI of 100 for 24 h, and RNA was harvested for QRT-PCR. β-catenin knock 
and pharmacological inhibition of Wnt signaling did not impede the regulation of OLFM4. 
P. gingivalis also activates the epithelial to mesenchymal transition transcription factor 
ZEB2, which could potentially bind the promoter region based on a consensus sequence 
found upstream of the coding region of OLFM4. Knocking down ZEB2 did not prevent 
regulation of OLFM4 by P. gingivalis (C). Target genes for qRT-PCR were normalized to 
GAPDH, and fold changes were calculated using the ΔΔCT method. Significance was 
calculated using a One-way ANOVA,  **** P<.001. 
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In silico interrogation of the promoter region of OLFM4 using the eukaryotic 

promoter database, revealed the presence of a Zeb2 consensus binding element. Zeb2 

activity is enhanced by P. gingivalis, hence we examined its potential involvement in 

OLFM4 regulation.  As shown in Fig. 9C, siRNA knock down of Zeb2 did not prevent 

increased OLFM4 mRNA production in response to P. gingivalis.  This finding further 

supports the importance of Notch signaling in the regulation of OLFM4 by P. gingivalis.   

One mechanism for transcriptional regulation of Jag1 is through the integration of 

Notch and TGF-β signaling. SMAD3, a component of the TGF-β transcriptional activation 

complex, has been shown to activate Notch signaling through upregulation of Jag1 and 

Hey1 [132]. We show in Fig. 10 that SMAD3 is involved in P. gingivalis-induced Jag1 

transcriptional regulation. 

Figure 10: SMAD3 enhances upregulation of Jagged1 by P. gingivalis 
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TGF-β signaling intersect at the SMAD3-Jag1 signaling axis. SMAD3 has been shown to 
transcriptionally regulate Jag1, leading to activation of Notch signaling. Here we knocked 
down SMAD3 with siRNA in TIGK cells, and used scrambled siRNA as a control. TIGK cells 
were then challenged with P. gingivalis for 24 h, and RNA was harvested for qRT-PCR. 
SMAD3 knockdown significantly reduced Jag1 transcript, which implicates TGF-β signaling 
as a potential activator of Notch signaling. SMAD3 transcript was normalized to GAPDH, 
and fold changes were calculated using the ΔΔCT method. Significance was calculated 
using a One-way ANOVA,  *** P<.005, and **** P<.001. 

 To identify the effector molecules of P. gingivalis responsible for activating Notch 

signaling, we examined a panel of strains with mutations in established virulence or 

colonization factors.  As shown in Fig. 11A, loss of fimbrial adhesins or of serine and 

tyrosine phosphatases did not impact the ability of P. gingivalis to regulate OLFM4.  In 

contrast, the ΔrgpABΔkgp mutant, which is deficient in the production of the arginine 

specific (RgpA and RgpB) and lysine specific (Kgp) gingipain proteases, was unable to 

stimulate OFLM4 production.   
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Figure 11: Activation of Notch signaling by P. gingivalis gingipains 
TIGK cells were challenged for 24 h at an MOI of 100 with ATCC 33277 wildtype (WT), as 
well as deletional mutants of adhesins (mfa1, fimA), tyrosine and serine phosphatase 
network (ltp1/php1, serB), and type 9 secretion system (T9SS) machinery and effectors 
(porK, kgp/rgpA/rgpB). Loss of P. gingivalis adhesins or phosphatases did not interfere 
with regulation of OLFM4, but loss of T9SS regulatory protein PorK and T9SS cargo 
kgp/rgpA/rgpB significantly reduced levels of OLFM4 (A). We then challenged TIGK cells 
with P. gingivalis wildtype treated with the gingipain inhibitor TLCK, as kgp, rgpA/B, and 
kgp/rgpA/rgpB deletional mutants (B). RNA was harvested, and OLFM4 transcript 
measured by qRT-PCR. TLCK treated P. gingivalis was unable to stimulate OLFM4 
transcription, and an unimpaired proteolytic load was required for OLFM4 regulation. The 
Notch receptors are sequentially cleaved after binding Notch ligands first by extracellular 
ADAM10/17 proteases, then by intracellular gamma-secretase. TIGK cells were treated 
with a pharmacological inhibitor of the extracellular ADAM10/17 proteases TAPI-2 at 
indicated concentrations, then challenged with P. gingivalis for 24 h (C). Pharmacological 
inhibition of ADAM10/17 (C) nor siRNA knockdown of ADAM10 and/or ADAM17 (D) 
impeded P. gingivalis induced OLFM4 by qRT-PCR, implicating P. gingivalis produced 
extracellular gingipain proteases in activation of Notch signaling. P. gingivalis can also 
invade epithelial cells, so we also investigated the potential role of intracellular gingipains 
in cleavage of intracellular Notch. Gamma-secretase inhibitor DAPT was used at indicated 
concentrations, and in a dose dependent manner reduced P. gingivalis induction of 
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OLFM4 in TIGK cells (E). This excludes the role of gingipains involvement of Notch 
activation in an intracellular capacity. Target genes for qRT-PCR were normalized to 
GAPDH, and fold changes were calculated using the ΔΔCT method. Significance was 
calculated using a One-way ANOVA,  ** P< .01, *** P<.005, and **** P<.001. 

Gingipains are secreted through the type IX secretion system, and loss of PorK, 

which is required for formation of a functional secretion pore [133] also abrogated the 

ability of P. gingivalis to enhance OLFM4 transcription.  We further investigated the role 

of gingipains by challenging cells with individual gingipain mutants, which revealed that 

loss of either Kgp or RgpA/B was sufficient to prevent upregulation of OLFM4 (Fig. 11B).  

Additionally, pretreatment of parental P. gingivalis with the gingipain inhibitor TLCK 

prevented OLFM4 synthesis.  Engagement of the Notch receptor by Jag1 induces a 

conformational change in the Notch which exposes an extracellular region of that can be 

cleaved by the extracellular proteases ADAM10 and ADAM17 [134].  On the basis of 

results with gingipains, we hypothesized that these proteolytic enzymes of P. gingivalis 

activate signaling through cleavage of the extracellular domain of Notch.  To test this 

notion, we used TAPI-2, a pharmacological inhibitor of the ADAM10 and ADAM17 

proteases [135].  We found that P. gingivalis remained capable of activating Notch in the 

presence of TAPI-2 as shown in Fig. 11C, suggesting that the gingipains can functionally 

compensate for the loss of the ADAM10 and ADAM17 proteases. This was corroborated 

by siRNA targeting ADAM10 and ADAM17, which also failed to prevent activation of Notch 

and upregulation of OLFM4 (Fig. 11D).  In contrast, DAPT, which is an inhibitor of gamma 

secretase, the enzyme that cleaves the intracellular domain of the Notch receptors, 

completely inhibited stimulation of OLFM4 and HES5 transcription by P. gingivalis (Fig. 
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11E).  Thus, the gingipains are unable to complement cleavage of the intracellular domain 

of Notch, and function extracellularly to activate Notch.  Although P. gingivalis can 

internalize and survive inside gingival epithelial cells [136], production of the gingipains is 

downregulated intracellularly [137] and may be insufficient function on a membrane 

protein.  Collectively, the results show that P. gingivalis can activate Notch1 signaling in a 

two-hit mechanism, by proteolytic cleavage of the extracellular domain and by increasing 

production of the Jag1 agonist.   

The ecosystem of the oral cavity in which P. gingivalis resides is a complex because 

multispecies community partners engage P. gingivalis in multilevel interspecies 

interactions, which can be either synergistic or antagonistic [102].  Hence, we next 

investigated the impact of several community partners of P. gingivalis on OLFM4 

regulation.  Co-infection of P. gingivalis with either Filifactor alocis, Fusobacterium 

nucleatum, or Treponema denticola, had no influence on regulation of OLFM4 by P. 

gingivalis (Fig. 12A).   
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Figure 12: Antagonism of P. gingivalis induced OLFM4 by S. gordonii 
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P. gingivalis is generally found in communities, so we investigated the role these 
interactions in regulation of OLFM4 in TIGK cells. Cells were challenged with an MOI of 
100 of either P. gingivalis and/or Filifactor alocis (Fa), Fusobacterium nucleatum (Fn), 
Treponema denticola (Td), and Streptococcus gordonii (Sg). Regulation of OLFM4 was 
unaffected by Fa, Fn, or Td, but S. gordonii significantly reduced OLFM4 regulation by P. 
gingivalis (A). We also investigated the role of multispecies interactions by challenging 
TIGK cells with Pg (MOI 50), Fn (MOI 50), and Sg (MOI 10), and found that Sg maintained 
the ability to inhibit OLFM4 (B). Confirmation of protein expression was verified by using 
either cell lysates (C) or supernatants (D) with an OLFM4 ELISA. P. gingivalis significantly 
increased protein expression in both cell lysates and supernatants, and S. gordonii 
significantly reduced OLFM4 protein in both cell lysates and supernatants in combination 
with P. gingivalis. Activated Notch localizes to the nucleus, so we then investigated 
localization of Notch1 with P. gingivalis and/or S. gordonii (E). P. gingivalis significantly 
increased localization of Notch1 to the nucleus, but S. gordonii prevented activation and 
localization of Notch (F). We then investigated the role of other potential oral streptococci 
in manipulation of P. gingivalis signaling. We found that organisms that produce H2O2 i.e. 
S. gordonii, S. oralis, and S. sanguinis significantly reduced P. gingivalis mediated OLFM4 
upregulation, whereas Streptococci that are unable to produce H2O2 showed a reduced 
ability to inhibit OLFM4 (G). Target genes for qRT-PCR were normalized to GAPDH, and 
fold changes were calculated using the ΔΔCT method. Significance was calculated using a 
One-way ANOVA, *** P<.005, and **** P<.001. 

However, co-infection with S. gordonii impeded OLFM4 induction by P. gingivalis, 

and in a three species consortium of P. gingivalis, F. nucleatum and S. gordonii, the 

antagonistic effect of S. gordonii was dominant (Fig. 12B).  We verified OLFM4 expression 

changes at the protein level using an ELISA, which showed that S. gordonii can antagonize 

production of OLFM4 as reflected both the intracellular and extracellular amounts of the 

protein (Fig. 12C-D).    

Following cleavage by (gamma)-secretase the intracellular domain of the Notch 

receptor localizes to the nucleus, where it binds and activates the transcription factor 

RBP-JK, leading to upregulation of Notch target genes.  We utilized confocal microscopy 

to determine the localization pattern of cleaved Notch in TIGK cells challenged with P. 

gingivalis and/or S. gordonii. Fig. 12E-F shows that P. gingivalis induces nuclear 



 
 

53 

localization of Notch, which is antagonized in the presence of S. gordonii.  These results 

suggest that S. gordonii prevents P. gingivalis-induced upregulation of OLFM4 by blocking 

activation of Notch signaling.  S. gordonii is one of several species of oral streptococci with 

the potential to coaggregate with P. gingivalis in vivo.  A number of additional oral 

streptococcal species were thus tested for antagonistic properties, and we found that S. 

oralis and S. sanguinis were also capable of inhibiting OLFM4 expression (Fig. 12G).  In 

contrast, S. constellatus and S. mutans did not suppress P. gingivalis-induction OLFM4 

upregulation.  One phenotypic property of these streptococcal species which tracks with 

antagonism of P. gingivalis, is production of hydrogen peroxide (H2O2) as a metabolic by 

product [138, 139].   

We have previously shown that S. gordonii can antagonize the action of P. 

gingivalis by activating Nemo-like Kinase (NLK) which in turn suppresses the FOXO1 

pathway.  We confirmed that the antagonistic action of S. gordonii is independent of NLK 

by siRNA knockdown.  As shown in Fig. 13, a reduction in NLK levels did not impact the 

ability of S. gordonii to prevent P. gingivalis induction of OLFM4. Additionally, we 

investigated the role of exogenous Jag1 in the role of OLFM4 transcriptionally activation, 

and determined whether S. gordonii could prevent activation through host cell 

manipulation. Exogenous treatment with recombinant Jag1 was enough to stimulate 

OLFM4 transcription (Fig. 14), however S. gordonii was unable to impede this activation, 

which indicates this inhibition could be driven through P. gingivalis-S.gordonii signaling, 

rather than S. gordonii-host signaling.  
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Figure 13: NLK-FOXO1 signaling is not required for inhibition of OLFM4 
S. gordonii inhibits manipulation of host signaling by P. gingivalis through activation of 
host kinase NLK, which then phosphorylates and inactivates transcription factor Foxo1 
(activated by P. gingivalis). TIGK cells were transfected with siRNA targeting NLK, then 
challenged with P. gingivalis (MOI 100) and/or S. gordonii (MOI 50) for 24h. RNA was then 
harvested, and expression of OLFM4 measured by qRT-PCR. Knocking down NLK had no 
effect on OLFM4 inhibition by S. gordonii. OLFM4 was normalized to GAPDH, and fold 
changes were calculated using the ΔΔCT method. Significance was calculated using a One-
way ANOVA, *** P<.005, and **** P<.001. 
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Figure 14: S. gordonii cannot inhibit Notch signaling activated with exogenous Jagged1 
TIGK cells were seeded on wells either coated with protein G or Jag1-FC, then at 24h 
challenged with S. gordonii. Exogenous Jag1 was enough to stimulate OLFM4 
transcription, however S. gordonii was unable to impede this activation. OLFM4 CT values 
were normalized to GAPDH, and fold changes were calculated using the ΔΔCT method. 
Significance was calculated using a One-way ANOVA, ** P< .01  

To test whether secreted metabolites were sufficient to inhibit OLFM4 expression, 

we utilized a transwell assay. TIGK cells in the lower chamber were challenged with P. 

gingivalis in the lower chamber along with either S. gordonii, S. oralis, or S. mutans in the 

upper chamber.  Both S. gordonii and S. oralis were able to inhibit P. gingivalis-induced 

OLFM4 expression whereas S. mutans had no effect (Fig. 15A).  These results show that 

functional activity resides in a product secreted from S. gordonii and S. oralis.   
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Figure 15: Inhibition of gingipains by Streptococci produced H2O2 
To follow up the role of H2O2 in the inhibition of OLFM4 by P. gingivalis we utilized the 0.4 
um transwell system. TIGK cells were grown in the lower chamber, then challenged with 
P. gingivalis (MOI 100) in the lower chamber where indicated and S. gordonii (Sg), S. oralis 
(So), or S. mutans (Sm) in the upper chamber (A). S. gordonii and S. oralis were able to 
inhibit OLFM4 independent of contact with either P. gingivalis or TIGK cells, and S. mutans 
did not affect P. gingivalis induced OLFM4. S. gordonii interacts with P. gingivalis through 
direct binding with adhesins (SspA/B), as well as through secreted metabolites pABA and 
H2O2. Inhibition of OLFM4 expression by P. gingivalis was not ameliorated with adhesin 
or pABA secretion deficient mutants (sspA/B, cbe), however the H2O2 deficient mutant 
(spxB) showed significantly less inhibition. This inhibition was restored by complementing 
spxB (B). The role of secreted H2O2 was confirmed by utilizing 0.4um transwell filters. TIGK 
cells were grown in the lower chamber, then challenged with P. gingivalis in the lower 
chamber or the indicated strains of S. gordonii in the upper chamber. The deletional spxB 
mutant was unable to inhibit OLFM4, whereas the complemented strain was partially 
restored to wildtype level inhibition (C). Gingipains require a reduced environment for 
optimal protease activity, so we investigated the role of H2O2 in oxidizing and therefore 
inhibiting activity of RgpA/B using a chromogenic substrate assay. Supernatant was taken 
from P. gingivalis grown to mid-log phase by spinning the cells down and filtering the 
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supernatant. P. gingivalis supernatant was then incubated with metabolically active 
anaerobic or aerobic S. gordonii or S. mutans. Supernatant was then collected and 
filtered, then activity of RgpA/B was measured through cleavage of a chromogenic 
substrate (D). Anaerobic cultures did not impact activity of RgpA/B, but aerobically grown 
S. gordonii did reduce activity of RgpA/B by about 50%. This inhibition was ameliorated in 
the spxB deletional mutant, and partially restored by the complemented spxB strain. S. 
mutans did not inhibit RgpA/B activity in either anaerobic or aerobic cultures. We then 
confirmed inhibition of RgpA/B activity by H2O2 by incubating P. gingivalis supernatant 
with indicated concentrations, and measuring activity by cleavage of a chromogenic 
substrate. Significant inhibition is observed at 800 μm, and activity is reduced in a dose 
dependent manner until 4 mM (E). Target genes for qRT-PCR were normalized to GAPDH, 
and fold changes were calculated using the ΔΔCT method. Significance was calculated 
using a One-way ANOVA, and *P<.05, *** P<.005, and **** P<.001. 

To provide additional evidence of a role for H2O2 we utilized a pyruvate oxidase 

mutant (ΔspxB), in which H2O2 production is reduced by approximately 90% through loss 

of conversion of pyruvate to acetate with H2O2 as a byproduct.  As shown in Fig. 15B, the 

ΔspxB mutant was unable to suppress OLFM4 transcription in a co-infection assay.  In 

contrast, mutants of S. gordonii unable to bind (ΔsspA/B) or accumulate (Δcbe) with P. 

gingivalis retained the ability to impede the increase in OLFM4.  Similarly, in a transwell 

assay with P. gingivalis in the lower chamber and S. gordonii in the upper chamber, the 

ΔspxB mutant had no impact on induction of OLFM4 mRNA by P. gingivalis, whereas 

parental and complemented ΔspxB mutant were antagonistic (Fig. 15C).  

Complementation of the mutation with the spxB gene in trans (CΔspxB) restored the 

antagonistic phenotype. Collectively, these results strongly implicate secreted H2O2 as the 

effector of streptococcal antagonism of P. gingivalis-induced OLFM4 regulation.   

Interestingly, gingipains require a reduced environment for activity to maintain 

the cysteine catalytic domain [140]. Thus, we hypothesized that oxidation by H2O2 was 

impairing the activity of the gingipains. To test this, we used a chromogenic assay to 
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measure gingipain activity in the supernatant of P. gingivalis cultures incubated with 

streptococci either capable or unable to produce H2O2 (Fig. 15D). Aerobically cultured S. 

gordonii WT and the complemented mutant CΔspxB significantly reduced gingipain 

activity.  Activity was partially reduced by the ΔspxB mutant, possibly due to residual H2O2

production, and was unaffected by S. mutans.  In contrast, following anaerobic culture of 

the streptococcal strains, in which H2O2 is not produced, there was no inhibition of 

gingipain activity in any condition.  We then sought to test concentrations of H2O2 that 

could inhibit gingipain activity. As shown in Fig. 15E, 800 μM was the lowest dose at which 

significant inhibition of gingipain activity was observed, with the greater reduction 

occurring between 1-2 mM, which is the range of H2O2 amounts that can be produced 

extracellularly by streptococci [141].  Taken together, our data support the concept that 

H2O2 produced by certain species of oral streptococci such as S. gordonii inhibit the 

activity of gingipains and consequently impede activation of the Notch pathway by P. 

gingivalis.   

Many of the epithelial cell responses to P. gingivalis revolve around the axis of 

survival/proliferation/migration [12].  OLFM4 is an antiapoptotic factor that promotes 

tumor growth [43].  Thus, we next investigated the extent to which OLFM4 participates 

in epithelial cell responses to P. gingivalis by knocking down OLFM4 and performing RNA 

Seq.  The PCA plot for this RNA seq showed clustering of individual biological replicates in 

each group, as well as distinct separation between conditions (Fig. 16A).  
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Figure 16: Knocking down OLFM4 reveals altered inflammatory transcriptomic profile 
TIGK cells were transfected with either scrambled siRNA or siOLFM4, then challenged 
with P. gingivalis for 24h. Libraries were prepped as described in Figure 5. The PCA plot 
(A) shows tight clustering of individual samples within groups, and distinct clustering of 
each group. A heatmap of pro-inflammatory cytokines/chemokines reveals significantly 
upregulated pro-inflammatory markers in the siOLFM4 Pg group compared to the 
siControl Pg group (B). (C) shows a volcano plot that graphically depicts differential gene 
expression in siOLFM4 Pg and siControl Pg cells, and (D) summarizes the comparison of 
each individual group for upregulated and down regulated genes. 

Enrichment for pro-inflammatory gene within each group in Fig. 16B revealed a 

distinct signature in the siOLFM4 conditions, specifically genes that were are known to be 

downregulated by P. gingivalis were upregulated, including CXCL8, CXCL10, and CXCL11. 

We have summarized the transcriptional changes in the siOLFM4 P. gingivalis treated cells 

and siControl P. gingivalis treated cells as a volcano plot in Fig. 16C and shared 

differentially expressed genes are summarized as upset charts in Fig. 16D. 

OLFM4 manipulates multiple host processes through protein-protein interactions 

that P. gingivalis is also known to impact, such as migration. We investigated the role for 

OLFM4 in migration of the epithelial cells. In Fig. 17, we knocked down OLFM4 in epithelial 
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cells, then challenged with P. gingivalis. We found that reduction of OLFM4 significantly 

diminished migration of TIGKs in response to P. gingivalis.  .  

Figure 17: P. gingivalis promotes migration of epithelial cells through OLFM4 
TIGK cells were transfected with either scrambled siRNA or siRNA targeting OLFM4. 48 h 
after transfection cells were challenged with an MOI of 100 P. gingivalis, then seeded over 
a Matrigel transwell insert for 18h. After incubation cells were scraped off the surface of 
the membrane, and the cells that had invaded were fixed with methanol and stained with 
toluidine blue. Cells were enumerated in at least 3 fields, and percentages calculated in 
comparison to an insert without Matrigel coating. Significance was calculated using a 
One-way ANOVA, *** P<.005, and **** P<.001. 

The regulatory mechanism for OLFM4 by P. gingivalis, as well as the method for 

antagonism by S. gordonii is summarized in Figure 18. 
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Figure 18: Graphic summarizing the pathway by which P. gingivalis activates Notch 
signaling, and OLFM4 as a downstream target of activation. S. gordonii inhibits this 
activation through secretion of H2O2, which inhibits RgpA/B activity, preventing activation 
and downstream activation of OLFM4.  
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CHAPTER 4 DISCUSSION 

The idea of bacteria causing cancer has been fervently studied since the 

classification of Helicobacter pylori as a causative agent for stomach cancer in 1984. Oral 

squamous cell carcinoma has a 5-year mortality rate of approximately 50%, in part 

because diagnosis tends to be elusive due to its asymptomatic progression. Identification 

of microorganisms, or a microbial profile, that increases the probability of OSCC would 

help in identifying those who are high risk, and would represent a unique preventative 

treatment modality. One candidate bacterium that has been associated with OSCC for 

decades is P. gingivalis, which has the capacity to inhibit apoptosis, enhance proliferation, 

and induce an epithelial-to-mesenchymal like invasive phenotype in epithelial cells. P. 

gingivalis has been characterized as a keystone pathogen for periodontal disease by its 

ability to directly manipulate the immune response through its own virulence factors, as 

well as by driving changes in the microbial community that leads to a dysbiotic 

relationship with the host immune system, leading to persistent inflammation. This 

changing microenvironment can be a driving force in the transformation of epithelial cells, 

as byproducts of inflammation produces a nutrient rich environment and dysregulates 

the tumor immune microenvironment, which favors persistent colonization by 

anaerobes. Recent studies have focused on relative abundance of bacteria on sites of 

OSCC compared to contralateral healthy controls and have reported that numbers  of 

periodontal pathogens like P. gingivalis tend to be higher, whereas commensals such as 
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some streptococci tend to be decreased [142] .  While this likely reflects fitness within the 

tumor microenvironment, in the absence of homeostatic commensals such as S. gordonii, 

the tumorigenic potential of P. gingivalis will be unconstrained. For example, P. gingivalis 

regulates EMT factor ZEB2 through dephosphorylation of host transcription factor FoxO1.  

This interaction is antagonized by S. gordonii which induces phosphorylation of FOXO1 

through activation of host TAK/NLK kinase cascade. These properties are made more 

interesting because these organisms interact directly to enhance each other’s virulence 

through attachment and metabolic synergy. However, in the host epithelial environment, 

these organisms antagonize one another through dysregulation of host signaling 

cascades. 

The goal of this study was to identify signaling events impacted by periodontal 

pathogen P. gingivalis that contribute to homeostatic disruption, specifically focusing on 

pathways overridden by homeostatic commensal S. gordonii in gingival epithelial cells. 

We hypothesized that P. gingivalis would activate genes involved in tissue disruption and 

dampening of innate immune signaling, whereas S. gordonii would either program the 

cells to resist this activation or interact with other inhibitory pathways.  We approached 

this by characterizing differences in transcriptomic responses of epithelial cells challenged 

with P. gingivalis and/or S. gordonii using RNAseq, revealing OLFM4, a gene involved in 

apoptosis, proliferation, migration, and dysregulation of innate immunity, all of which are 

differentially influenced by the microbes, as a potential axis that is disturbed by P. 

gingivalis and restored by S. gordonii. The initial identification of OLFM4 was followed by 
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characterization of the mechanism for upregulation by P. gingivalis, inhibition by S. 

gordonii, and ultimately the phenotypic outcome of this differential regulation. 

Currently, there are few studies that characterize the complete transcriptional 

fingerprint left by oral microbes on gingival epithelial cells. Hasegawa et. al. focused on 

transcriptional changes using  a microarray of epithelial cells challenged with either F. 

nucleatum or S. gordonii, which identified activation of MAPK signaling by both organisms 

[143].  However, they reported that F. nucleatum increased IL-6 and IL-8 production, 

whereas S. gordonii inhibited production of both. Handfield et. al. focused on the 

individual challenge of epithelial cells with either P. gingivalis or A. 

actinomycetemcomitans [23]. This report showed that P. gingivalis activated p53 

signaling, leading to inhibition of apoptosis, whereas A. actinomycetemcomitans 

inactivated p53 signaling, thereby inducing apoptosis [23]. Using gene array analysis in 

human immortalized gingival keratinocytes (HIGKs), Mans et. al. [144] reported that S. 

gordonii overrides transcriptional changes in cell cycle regulatory genes, opposing P. 

gingivalis mediated cell cycle progression in favor of cell cycle arrest. While this study 

provided significant insight into the regulatory mechanisms for cell cycle activity, 

microarray technology has since been superseded by deep sequencing approaches, and 

thus new, previously unknown targets can be identified. Additionally, as S. gordonii can 

antagonize activation of transcription factor FOXO1 by P. gingivalis in gingival epithelial 

cells (discussed above), there are likely to be comprehensive transcriptional changes 

when P. gingivalis and S. gordonii are co-infected.   
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In this study, we identified unique complete transcriptomic profiles between 

gingival epithelial cells challenged with P. gingivalis and/or S. gordonii through RNAseq, 

which characterized the interaction between the co-infected group to be more similar to 

the individual S. gordonii group than the P. gingivalis alone group. We started by 

investigating genes that were differentially regulated by P. gingivalis, but the opposite 

trend was observed in the P. gingivalis + S. gordonii group. This led us to OLFM4, which 

was upregulated by P. gingivalis, downregulated by S. gordonii, and was significantly 

reduced compared to the P. gingivalis alone group.  

OLFM4, also known as GW112, was originally characterized by its function in 

binding the mitochondrial protein GRIM19 [43], and attenuating interferon-β mediated 

apoptosis in prostate cancer cells [43]. OLFM4 has since been implicated in EMT, cell cycle 

activity, and modulation of innate immune signaling [44, 45, 47, 126]. In non-small cell 

lung cancer, under hypoxic conditions, OLFM4 is significantly upregulated, and can then 

positively regulate HIF-1α to promote EMT [45]. In hepatocellular carcinoma, OLFM4 

enhances activation of STAT3, which then increases proliferation and induces EMT in 

HepG2 cells [145]. H. pylori induces OLFM4 regulation in gastric epithelial cells, which 

upon stimulation binds NOD1/NOD2, inhibiting activation of NF-κB. Knockout OLFM4 

mice could effectively eliminate H. pylori from the stomach, whereas wildtype mice 

experienced persistent colonization [47]. Further investigation revealed a unique cytokine 

profile in OLFM4 knockout mouse stomach, specifically increased transcriptional and 

protein levels of IL-1β, IL-5, IL-12, and MIP-1α [47]. In summary, OLFM4 inhibits apoptosis, 

increases proliferation and invasion, and manipulates host immune signaling, which are 
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all characteristic phenotypes of epithelial cells challenged with P. gingivalis. Additionally, 

S. gordonii inhibits P. gingivalis induced proliferation and invasion in epithelial cells, which 

points the potential role for an OLFM4 regulatory axis.  

 OLFM4 is primarily regulated through the Notch1-Jagged1 signaling cascade. 

Notch signaling was significantly enriched in the P. gingivalis alone RNAseq, with, for 

example, Notch1, Jagged1, and the Notch target gene Hes5 were upregulated. 

Interestingly, Notch1, Jagged1, and Hes5 were all significantly lower in the P. gingivalis + 

S. gordonii compared to the P. gingivalis alone group. Recently, Al-Attar et. al. found that 

P. gingivalis activates Notch signaling in oral mucosal and gingival epithelial cells, leading 

to increased transcription, translation, and secretion of the anti-microbial protein PLA2-

IIA, which is one factor responsible for the dysbiotic shift observed after colonization by 

P. gingivalis. We similarly observed that P. gingivalis induces nuclear localization of 

Notch1 in epithelial cells.  In contrast, not only does S. gordonii not induce nuclear 

localization, but it inhibits Notch localization by P. gingivalis. Al-Attar et. al. found that P. 

gingivalis induced nuclear localization of Notch1, whereas S. gordonii and F. nucleatum 

did not. This study also revealed upregulation of HES1 and HEY1 by P. gingivalis in mucosal 

cells, which is recapitulated in our epithelial cell RNAseq. Additionally, the gingipain 

deficient P. gingivalis could not stimulate Notch1 in OKF6 cells. Previously, OLFM4 had 

been shown to require Notch1, and stimulation with exogenous Jagged1 in order to 

increase OLFM4 protein. We corroborated this finding, and additionally we excluded 

Notch ligands Jagged2 and DLL1-4, as well as Notch2-4 from a role in regulating OLFM4.  
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P. gingivalis produced proteolytic enzymes, the Kgp, RgpA, and RgpB gingipains, 

are key virulence factors in the manipulation of host immunity and tissue homeostasis. 

Each of the gingipains is capable of inhibiting classical, lectin, and alternative pathways of 

the complement cascade through the proteolytic degradation of C3. The gingipains also 

target C5b, which attenuates the formation of the membrane attack complex. P. gingivalis 

induces non-canonical activation of β-catenin through cleavage by the gingipains into 

functional fragments, which are able to translocate to the nucleus. Functional β-catenin 

and gingipains are required for upregulation of ZEB2, and β-catenin is also likely involved 

in the regulation of proliferation and production of MMP7. Additionally, P. gingivalis 

cleaves MMP-1, -3, and -9 into their active forms with the gingipains, which leads to 

increased destruction of the host periodontium and potentially increased motility of 

epithelial cells. P. gingivalis induces a local chemokine paralysis through degradation of 

CXCL8, CXCL9, and CXCL10, which is mediated through a secreted proteolytic enzyme 

(likely the gingipains.)  Additionally, the gingipains have been shown to proteolytically 

degrade β-catenin into its functional form, which is capable of nuclear localization. This 

proteolytic activation was capable of being induced with purified gingipains, in the 

absence of any whole cell P. gingivalis whole cells. β-catenin regulates cell proliferation, 

as well as MMPs, which implicates an additional role for the gingipains in these 

phenotypes. P. gingivalis gingipains activate PAR2 and PAR4, leading to the 

phosphorylation of IκB, the nuclear translocation of NF-κB, and increased transcription of 

proMMP9 (50, 51). In addition, gingipains can cleave proMMP9, generating the mature 

active enzyme (52), which is important for cancer cell invasion and metastasis. Gingipains 
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can also proteolytically process proteins on the epithelial cell surface, causing release and 

redistribution, with consequent effects on signal transduction and inflammatory 

responses (53, 54). Intracellularly, P. gingivalis gingipains can degrade mammalian target 

of rapamycin (mTOR), thus disrupting the mTOR pathway which regulates the 

cytoskeleton, as well as cleave β-actin directly (55, 56). In trophoblasts, gingipains can 

degrade p53 and the E3 ubiquitin protein ligase homolog protein (MDM2) and modulate 

the activity of multiple signaling pathways, resulting in both cell cycle arrest and cell death 

(57). The capacity of gingipains to regulate the expression of inflammatory mediators at 

the mRNA level has also been demonstrated. In gingival fibroblasts, gingipains increase 

TGFβ gene expression, while suppressing the expression of CXCL8 (58).  Elevated signaling 

through TGFβ and STAT3 could also contribute to tumorigenesis. 

We found here that the gingipains are required for the activation of Notch 

signaling through a previously unknown mechanism. Our data support a role for each of 

the gingipains in cleaving the transmembrane protein Jagged1 into a soluble form, 

allowing for paracrine activation of Notch signaling, as well as acting in place of the 

extracellular ADAM10/17 proteases in cleaving Notch1 into its active form. We propose 

a role for OLFM4 in the regulation of invasion in gingival epithelial cells, as well as 

dampens epithelial pro-inflammatory genes, which are both functions that require 

gingipains. Fig. 19 integrates OLFM4 signaling into the context of other epithelial cell 

signaling pathways dysregulated by P. gingivalis. 
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Figure 19: Graphic summarizing signaling pathways manipulated by P. gingivalis 

While studying organisms individually reveals phenotypes specific to the 

organisms, studying interactions in the context of communities provides greater 

biological relevance, as it is more similar to the organization of microbes in the oral cavity. 

Communities in the oral cavity tend to be complex, reducing the possibility for rogue, 

individual species to interact with host cells. There are many advantages to this lifestyle, 

such as protection from environmental stresses, metabolic cross-feeding, antibiotic 

resistance, increased protection from immune surveillance, and an increased ability to 

colonize the host through binding the biofilm substratum and community members 
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through adhesins. P. gingivalis interacts with multiple bacteria in the oral cavity, 

specifically F. alocis, S. gordonii, and T. denticola. A key feature for colonization is the 

ability to attach to members of the community, and benefit each other through metabolic 

cross-feeding. F. alocis is an emerging pathogen that is capable of localizing to gingival 

epithelial cells, as well as attaching to and developing a heterotypic community with P. 

gingivalis. These organisms have opposing interactions with epithelial cells, specifically in 

regards to apoptosis and inflammation. Similar to F. alocis, T. denticola also interacts with 

epithelial cells and P. gingivalis. T. denticola has been shown to interact with epithelial 

cells through the secretion of a chymotrypsin like protease capable of degrading host 

cytokines and activating MMPs. Interestingly, this protease was not sufficient to activate 

Notch signaling in gingival epithelial cells, alluding to a more specific interactions being 

required for Notch1 cleavage by P. gingivalis.  

As a primary colonizer, S. gordonii interacts with a multitude of organisms. S. 

gordonii plays a key role in the structure and regulation of pathogenicity in oral biofilms 

through its secretion of H2O2. While this would normally be toxic to the anaerobic 

organisms that are prevalent in periodontal diseases, there are organisms within the 

biofilm that are able to detoxify H2O2, such as A. actinomycetemcomitans. A. 

actinomycetemcomitans senses H2O2 through the oxygen sensitive OxyR transcriptional 

regulator, which then activates catalase (KatA) and Dispersin B. Catalase detoxifies H2O2, 

and Dispersin B is used to optimally distance itself from S. gordonii. Oral streptococci can 

be stratified into health-associated species that produce H2O2, such as S. gordonii and S. 

oralis, and cariogenic species that do not produce H2O2, such as S. mutans. S. gordonii and 
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S. oralis contribute to a healthy community through H2O2 induced cell death of S. mutans 

[146].  Liu et. al. characterized the production of H2O2 in a biofilm by S. gordonii, 

specifically finding that H2O2 is produced at 0.7 mM-1.6 mM over a period of 2-8 h which 

is sufficient to significantly impair RgpA/B activity, with inhibition starting at 0.8 mM and 

maximal inhibition occurring at 2 mM. Not only does H2O2 modulate the composition of 

biofilms, but it is also impacts survival and pathogenicity of other organisms. In defined 

media, P. gingivalis survives in up to 3 mM of H2O2, with S. gordonii and S. oralis producing 

H2O2 at about 1-2 mM. P. gingivalis has two characterized tyrosine phosphatases, which 

respond differently to H2O2. Ltp1 activates the transcriptional regulator CdhR, which 

inhibits mfa1 and luxS, having an overall net reduction in community development. H2O2

inhibits Ltp1 activity, inactivating CdhR, promoting mfa1 and luxS, leading to an overall 

net gain in community development. Additionally, P. gingivalis controls community 

development with S. gordonii through another tyrosine phosphatase Php1. Php1 

positively regulates exopolysaccharide (EPS) production, which is an important feature of 

biofilm substrata, acting a glue for monospecies and multispecies interactions. This 

enzyme dephosphorylates Ptk1, a P. gingivalis tyrosine kinase, which is another key 

regulator of EPS production and community development.   

Gingipains are cysteine proteases that require a reducing environment for optimal 

activity. Because H2O2 would oxidize the disulfide bonds, leading to inactivation of the 

gingipains, we characterized and titrated this inhibition. Consistent with our hypothesis, 

the gingipains were inactivated by the H2O2-producing S. gordonii, but not S. mutans. 

This inhibition of gingipain activity is pivotal for the antagonism of Notch activation by S. 
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gordonii. The communication via secreted metabolites is interesting in that there needn’t 

be direct contact with the microbes to each other, or to the epithelial cells.   

 With an increased interest in pathogenic microorganisms, or microbial profiles, 

that can act as carcinogenic agents, investigators up until now have generally overlooked 

the role of commensal organisms maintaining homeostatic interactions in the host. Here 

we provide additional evidence for the role of S. gordonii as a homeostatic commensal in 

the context of epithelial cell transformation, whereas in periodontal disease it is 

considered an accessory pathogen. This system is unique in that these organisms do not 

necessarily need to be directly associated with the epithelial cells, but instead can 

mediate host signaling through secreted proteases/metabolites. It’s particularly 

interesting that P. gingivalis can perpetuate Notch signaling through cleavage of Jagged1, 

so cells that had never interacted with P. gingivalis are able to induce Notch signaling and 

OLFM4 expression. Interestingly, recent studies have found that not only is P. gingivalis 

significantly enriched in OSCC, but Streptococci are significantly underrepresented under 

the same conditions. This study provides insight on the complex molecular dialogue 

between the commensals and pathogens of the microbiome, and particularly expands on 

the role of S. gordonii through direct inactivation of P. gingivalis secreted proteases, in 

addition to the previously studied subversion of host pathways to impede P. gingivalis 

induced signaling.  
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