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ABSTRACT 

 

AQUEOUS REDOX FLOW BATTERIES WITH BORON DOPED DIAMOND AS AN 

ELECTRODE 

 

Alex M. Bates 

July 24, 2020 

As the interest and implementation of renewable energy accelerates, so does that of 

grid energy storage. It is widely believed that a cost-effective energy storage technology 

will bring about the proliferation of renewable energy. Redox flow battery (RFB) 

technology represents a promising solution to cost-effective grid energy storage. Compared 

to other technologies, RFBs have a long lifetime, high efficiency, are non-flammable, 

significantly reduce cost, and separately scale power and energy. The separation of power 

and energy enables increased energy capacity by simply adding electrolyte volume. 

Of the challenges facing RFB technology, one readily apparent is the cost of the 

active species in the all-vanadium RFB, the most commercialized of the RFB iterations. 

One route aimed at answering this challenge is the examination of a wide range of low-

cost active species. The aim of this dissertation is to extend that search through the 

utilization of an electrode material not previously considered for RFBs. 

This dissertation will examine the utilization of boron doped diamond (BDD) as an 

alternative electrode in aqueous RFBs with the potential for a longer lifetime, higher 

efficiency, and lower cost active species compared to traditional RFB electrodes. The 
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benefits of BDD include high conductivity, low capacitive currents, inertness, fouling and 

corrosion resistance, and high overpotential to gas evolution. 

The growth of BDD using microwave plasma-assisted chemical vapor deposition 

is investigated using different growth recipes and substrates. Characterization includes 

scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), 

Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). The viability of 

various redox chemistries is examined using electrochemical methods including 

charge/discharge cycling, cyclic voltammetry (CV), and electrochemical impedance 

spectroscopy (EIS). 

It is found that Ce3+/Ce4+ and Mn2+/Mn3+ are promising redox couples on a BDD 

electrode. Based on peak-to-peak separations of 254.8 mV for cerium and 140 mV for Mn, 

low overpotentials are evident. High reversibility and long lifetimes are apparent based on 

peak current ratios nearing unity and cycling data exceeding 300 cycles with improved 

peak current densities. In addition, the ability to scale up BDD was shown via growth on 

various materials including porous graphite and quartz fibers. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Motivation 

Due to the climate crisis, the trend in energy research worldwide is a movement 

from non-renewable to renewable energy sources. In contrast with non-renewable energy 

sources, which generate power on demand, renewables, such as wind and solar, are 

inherently intermittent. As a result, renewable energy sources require grid energy storage 

to store excess energy when generation exceeds demand, and make available energy when 

demand exceeds generation. Reduction in the cost of grid energy storage is necessary for 

the proliferation of renewable energy. 

There exists a wide number of grid energy storage technologies competing for the 

prize of widespread commercialization. Currently, pumped-storage hydroelectricity 

commands ~96 % of the world’s energy storage due to its maturity and longevity [37]. 

However, due to its extreme location dependence, it is not suitable for widespread use in 

terms of renewable energy. In fact, in locations prime for renewable energy, which have 

an absence of significant elevation change, pumped hydro falls flat.  

Another serious competitor in recent years is the Li-ion battery. Spurred by 

advancements in the electric vehicle industry, Li-ion has received significant attention, 

along with increases in efficiency, reliability, and production methods. As a result, Li-ion 

for grid energy has begun rapid expansion into the category of grid energy storage. There 
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are two primary downfalls to Li-ion technology, precious material costs and safety. Li-ion 

batteries require several precious materials that are speculated to increase significantly in 

cost in the coming years. With expansion into the grid energy storage domain, the increase 

in materials cost is likely to accelerate. Safety is a major concern due to the reactivity of 

the electrolyte with oxygen. Small discrepancies in manufactured materials can lead to 

defects in the 10s of thousands of battery cells required for grid energy storage. Breakdown 

of one Li-ion cell can release a tremendous amount of heat and lead to a cascading effect 

with adjacent cells. This domino effect results in the rapid and catastrophic destruction of 

any cells in proximity. Due to the scale of grid energy storage, this is a significant issue 

that cannot be ignored. 

Aside from the two grid energy storage technologies referred to previously, only 

one other has reached commercial success, the redox flow battery (RFB). RFBs are 

uniquely fit for grid energy storage of intermittent renewable energy. RFB technology 

offers the ability to separately scale power and energy, are very flexible in location 

requirements, can achieve high efficiency, and have demonstrated long cycle life. The 

major obstacle to the widespread adoption of the RFB is cost. Currently, the most 

promising iteration of RFB technology is the all-vanadium system, which has seen 

commercial success. A substantial portion of the capital cost for an all-vanadium RFB is 

the vanadium species itself. To overcome this obstacle, an alternative active species is 

required. Although many alternatives have been tried, all have failed for various reasons.  

The goals outlined for grid energy storage by the U.S. Department of Energy 

include the metrics of capital cost, levelized cost, efficiency, and lifetime [38]. A redox 

flow battery meets these goals handedly in the areas of efficiency and lifetime. The all-
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vanadium RFB has significant ground to cover to reduce costs. The Zn/Br RFB, another 

iteration of the RFB that has seen some commercial success, is closer at achieving the cost 

goals but falters a bit in the area of efficiency. The Zn/Br RFB includes a plating reaction 

which suffers from the issues of dendrite formation, electrode shape change, and the 

recoupling of energy and power in a RFB system. For these reasons, the Zn/Br system, 

which is far cheaper than the all-vanadium system, has not received as much commercial 

success. 

The current state of the art in all-vanadium RFBs can achieve energy efficiencies 

greater than 95 %, with coulombic efficiencies greater than 99 %, at a current density of 

25 mA cm-2 [35]. Even with increasing current density, which is desirable as it increasing 

the operating power density, a RFB can achieve an energy efficiency of 80 % at 

300 mA cm-2 [101]. The Zn/Br system has demonstrated an energy efficiency of 82 % at a 

current density of 40 mA cm-2 [104]. BDD has never been examined for use in RFBs; 

however, it has received attention in a large number of other applications which marked 

success including, chemical sensors, reduction of CO2, and power systems, among many 

others [49; 82]. 

How can an alternative, low-cost active species be employed in RFBs while 

maintaining the attractive benefits of the all-vanadium system? Pondering this question 

lead to consideration of the electrode material. In all RFBs, there exists a common theme, 

the utilization of various carbon allotropes including graphite, amorphous carbon, and 

carbon nanotubes, as electrode materials. To date, perhaps the most well-known allotrope 

of carbon, diamond, has not been considered for use in a RFB. The benefits of traditional 

carbon-based electrodes (conductivity, inertness, and durability) can be realized in 
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diamond through boron doping. In addition, in an aqueous electrolyte, boron doped 

diamond (BDD) exhibits one of the widest solvent windows of any known electrode 

material.  

The solvent window is one of the key features of BDD ripe for exploitation in 

realizing an alternative, low-cost active species. The solvent window is the potential 

separation between the onset of solvent breakdown. Solvent breakdown in an aqueous 

solution results in gas evolution, specifically oxygen and hydrogen gas. Gas evolution is 

fundamentally in kinetic competition with the redox reactions of the active species. This 

means, if gas evolution is occurring, the coulombic efficiency of the RFB is reduced. The 

wide solvent window of BDD extends the boundary at which gas evolution occurs in an 

aqueous solution. This boundary extension permits the inclusion of redox couples often 

seen as impractical on traditional carbon-based electrodes due. These redox couples, 

included by the advantages of BDD, may be low-cost and competitive electrochemically 

with existing technologies. 

The other substantial benefit of BDD is its ability to withstand extreme potentials 

and highly acidic environments without exhibiting corrosion. Traditional carbon-based 

electrodes have been shown to corrode when under a high-potential environment. This 

corrosion coincides with the solvent window of the traditional carbon-based electrode due 

to the significant presence of oxygen at the cathode, which increases the rate of corrosion. 

Electrode corrosion results in a shortening of the RFB lifetime and may result in a short 

circuit of the RFB itself or leaking of the electrolyte solution. Leaking of the electrolyte 

could lead to loss of life or severe adverse effects on the surrounding environment. In 

addition, like gas evolution, corrosion is in kinetic competition with the active species 
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redox reactions, leading to decreased efficiency. By allowing for the utilization of a high 

potential redox couple, without sacrificing efficiency or electrode integrity, BDD can 

catapult RFBs into the forefront of grid energy storage. 

 

1.4. Proposed Concept 

This dissertation seeks to expand the domain of redox chemistries that are of 

practical use in aqueous RFBs. By doing so, redox chemistries that are low-cost and high 

potential can be realized without limited coulombic efficiency or electrode degradation. 

This dissertation contains the demonstration and electrochemical characterization of two 

low-cost and high potential redox couples, Ce3+/Ce4+ and Mn2+/Mn3+, on a BDD electrode. 

The fabrication and characterization of BDD has been shown, along with material and 

electrochemical characterization of the BDD electrode itself. In addition, other redox 

chemistries have been explored, with various benefits, on BDD. In this manner, the 

viability of BDD as an electrode for RFB has been established. Last, an examination of 

what is necessary to bring BDD to full scale was conducted, including pathways to 

increased surface area. 

The continuation of this research will primarily include extending this technology 

to full cell RFB testing. In doing so, the coulombic, voltage, and energy efficiencies can be 

obtained, allowing direct comparison to other RFB systems. This will require further 

refinement of the full electrochemical cell and a method of reliably increasing BDD surface 

area that does not result in significant non-diamond carbon content. Another important 

extension of this dissertation is the further examination of additional redox chemistries, 

potentially including expansion into non-aqueous chemistries. 
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1.3. Objectives and Intellectual Merit 

The goal of this research is to enable the development an aqueous redox flow 

battery (RFB) that is low cost, efficient, and has a long cycle life. To achieve that goal, this 

research will focus on the use of boron doped diamond (BDD) as an electrode in RFBs. 

BDD offers high conductivity, low capacitive currents, inertness, resistance to degradation, 

and high overpotential to gas evolution. BDD can enable access to cheap redox chemistries 

previously thought to be unviable due to low efficiency, corrosion, and/or decreased 

longevity. To date, BDD has not been explored as an electrode for use in RFBs. Research 

will be focused on fabrication, physical characterization, and electrochemical 

characterization to determine the viability of BDD thin films as an electrode in RFBs, with 

a focus on underexplored redox couples. 

This research demonstrates the Mn2+/Mn3+ and Ce3+/Ce4+ redox couples using a 

BDD electrode which exhibits low overpotential to redox reactions, good kinetics, good 

reversibility, improved longevity, and a high overpotential to gas evolution. Manganese 

and cerium are earth abundant and low-cost compared to the already commercialized 

vanadium. Other potential redox couples, with promise due to low-cost, high energy 

density, and/or good system characteristics are explored.  

This dissertation seeks to develop and examine BDD electrodes for use in a RFB. 

To achieve that aim, various objectives, shown below, have been determined. BDD 

electrodes will be grown under various conditions and characterized physically and 

electrochemically. Characterization will include morphology, boron doping concentration, 

non-diamond carbon (NDC) content, solvent window, reaction kinetics, and reversibility 

of RFB active species on BDD electrodes. Fouling and degradation resistance of BDD 
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electrodes will be investigated as this is an important aspect of their cycle life. Several 

redox couples will be explored on the BDD electrode to determine their viability for use in 

a RFB. Redox couples to be tested will be chosen based on their bulk cost, electrochemical 

potential, novelty, and reversibility on BDD electrodes. Finally, this study will validate the 

scalability of BDD electrodes by demonstrating operation of full electrochemical cell using 

a BDD electrode in at least one of the half-cells. Methods to increase the surface area of 

BDD electrodes will also be explored as this is important to the scalability of BDD 

electrodes. These goals will be achieved through the competition of three objectives: 

 

Objective 1: The Mn2+/Mn3+ and Ce3+/Ce4+ redox couples as catholytes for RFBs 

Objective 2: Exploration of other economical redox couples on a BDD electrode 

Objective 3: Scalability demonstration of BDD as an electrode for RFBs 

 

The goal of Objective 1 is to demonstrate, through material and electrochemical 

characterization, the viability of a low-cost and high potential redox couple on a BDD 

electrode. The success of this objective will spur the continuing research of BDD as an 

electrode for RFBs. Objective 2 seeks to further develop the usefulness of BDD in a RFB 

setting by outlining additional redox couples, with other advantages, on a BDD electrode. 

In addition, this objective explores the surface electrochemistry of BDD. The next step in 

the development of BDD as an electrode for RFBs is showing a pathway to scaleup from 

a 2D electrode to a full scale RFB electrode with high surface area, Objective 3. 

The realization of objectives in this study stands to explode the advancement of 

intermittent renewable energy by increasing profitability through low-cost, efficient, and 

long cycle life grid energy storage. In making renewable energy cost effective, a means for 
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significantly reducing global emissions of greenhouse gases that are contributing to climate 

change is realized. 

The impact and intellectual merit of this study may be summarized as follows: 

1. Advancement in the field of BDD research focusing on thin film 

characteristics and their use in electrochemistry 

2. Development of a novel RFB electrode that is resistant to gas evolution, 

fouling, and degradation in highly corrosive and extreme potential 

environments 

3. Initiation of a new domain of possible advancements in the RFB research 

field 

4. Proliferation of intermittent renewable energy by increasing profitability 

through low-cost, efficient, and long cycle life grid energy storage 

Exploration of the viability of BDD as an electrode for RFBs will advance the 

knowledge of diamond thin film characteristics and their use in electrochemistry as applied 

to RFBs. Development of BDD as a novel RFB electrode will expand the domain of 

practical redox couples in aqueous RFB research by increasing energy efficiency through 

the reduction of gas evolution and increasing longevity through fouling and degradation 

resistance in highly corrosive and extreme potential environments. In doing so, this study 

will have a significant impact on the RFB research community, opening a new realm for 

possible advancements in the field in terms of decreased costs and increased longevity, 

power, and energy density. 
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1.4. Outline 

This dissertation will begin with a background of RFBs and BDD in chapter 2 

followed by experimental methods in chapter 3. Chapter 4 covers the Mn2+/Mn3+ and 

Ce3+/Ce4+ redox couples along with the durability and fouling resistance of BDD. Chapter 5 

demonstrates other potential redox couples and the electrochemical properties of BDD. 

Chapter 6 explores the scale up of BDD through increased surface area. Chapter 7 

concludes the dissertation results and chapter 8 offers recommendations for future research. 

A background to grid energy storage, RFBs, and BDD is provided in section 2.1 

and 2.2.  The current state-of-the-art in RFBs and BDD, along with their challenges, and 

the current outlook of the technology with be presented in section 2.3, 2.4, and 2.5, 

respectively. Section 3.1, 3.2, and 3.3 will present all experimental methods, including 

electrochemical cell designs, along with the materials and instruments utilized. Section 3.4 

will describe the fabrication of a full RFB electrochemical cell followed by a demonstration 

of that cell with various chemical compositions, as part of a preliminary study. 

In chapter 4, the Mn2+/Mn3+ and Ce3+/Ce4+ redox couples are explored on BDD. 

Section 4.1 presents a background and the current state-of-the-are on these redox couples 

with respect to RFBs. Section 4.2 develops the reason for exploring these two redox 

couples in particular. Section 4.3 gives the method of fabrication for BDD and results from 

physical characterization. The electrochemical performance of the Mn2+/Mn3+ and 

Ce3+/Ce4+ redox couples on BDD is given in section 4.4. Section 4.5 discusses the 

durability and fouling resistance of BDD. The chapter is concluded in section 4.6. 

Chapter 5 examines other possible redox couples on BDD. The chapter begins with 

a background and state-of-the-art in section 5.1 followed by the reason for the redox couple 
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selections in section 5.2. Section 5.3 presents the results of electrochemical testing for the 

selected redox couples. Section 5.4 examines the electrochemical properties of BDD in an 

aqueous electrolyte solution. The chapter is concluded in section 5.5. 

Chapter 6 looks at scale up of the BDD electrode to a full RFB electrochemical cell 

through increasing surface area beyond a 2D layer. Section 6.1 and 6.2 provide a 

background and rationale for scalability of BDD. Section 6.3 discusses the electrochemical 

cell requirements for demonstrating a full cell. Section 6.4 explores modifying BDD to 

increase surface area, through several techniques. The chapter is concluded in section 6.5. 

Chapter 7 offers a wrap up of the dissertation results. Chapter 8 looks to the future and 

offers results for continuing research. 
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CHAPTER 2 

BACKGROUND 

 

2.1. Redox Flow Batteries 

Traditional, non-renewable energy sources can meet demand by scaling the 

production of electricity. When demand is high, generation of electricity is increased 

through the consumption of more fuel (coal, natural gas, etc.). Renewable energy sources 

are inherently intermittent. The two most widespread renewable energy sources include 

wind and solar. Wind refers to the capture of wind energy using wind turbines connected 

to electrical generators. If the wind is not blowing, wind turbines cannot generate 

electricity. Solar refers to the capture of solar energy by conversion of sunlight into heat 

and then electricity or directly to electricity through photovoltaics. Like wind energy, solar 

energy can only be captured when sunlight is available. Due to the inherent intermittency 

of renewable energy sources, grid energy storage is required to complete a renewable 

energy system. 

Grid energy storage refers to the large-scale storage of energy for use within a 

power grid. All grid energy storage devices consist of two major components, storage and 

power conversion. Grid energy storage is necessary for load balancing, the storage of 

energy when generation is in excess of demand and the release of energy when demand is 

in excess of generation. There exists a wide range of energy storage technologies, each 

with a different set of advantages and disadvantages. Currently, there is no clear winner in  
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the competition for best energy storage device. As a result, grid energy storage research is 

widespread and fast paced. Energy storage is often separated into five broad categories: 

mechanical, chemical, electrochemical, electrical, and thermal. Some technologies can 

straddle two or more of these categories (e.g. electrochemical capacitors and 

thermochemical energy storage). Examples of grid energy storage technologies in each 

category are shown in Table 1. 

 

Table 1. Categorization and examples of grid energy storage. 

 

Mechanical 

Pumped-storage hydroelectricity 

Compressed air energy storage 

Flywheel energy storage 

Gravitational potential energy storage 

Chemical 
Power to gas 

Hydrogen storage 

Electrochemical 

Redox flow battery 

Li-ion battery 

Sodium-ion battery 

Lead acid battery 

Molten-state battery 

Electrical 
Superconducting magnetic energy storage 

Capacitors 

Thermal 
Pumped heat electricity storage 

Molten salt 

 

 

The U.S. Department of Energy (DOE) released a set of goals for grid energy 

storage in 2013 which has been widely used as a source of comparison for current research 

endeavors. The near-term goals include a system capital cost under 250 $ kWh-1, a 
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levelized cost of 0.20 $ kWh-1 cycle-1, a system efficiency over 75 %, and a cycle life 

greater than 4,000 cycles [38]. For grid energy storage, a cycle is generally considered 

about one day. In this way, 4,000 cycles are roughly equivalent to a 10-year lifetime. A 

summary of various grid energy storage technologies and their characteristics is given in 

Table 2. The technologies presented in Table 2 represent the leading technologies based on 

maturity and current/theoretical cost. These technologies are briefly detailed in the 

following paragraphs to demonstrate the unique benefits and challenges present in grid 

energy storage research. 

 

Table 2. Characteristics of grid energy storage technologies [19; 37; 79; 90]. 

 

Technology 
Typical power rating 

(MW) 

Lifetime 

(years) 

Cost 

($ kWh-1) 

Efficiency 

(%) 

Pumped hydro 500 30 – 60 420 – 430 75 – 82 

CAES 100 20 – 30 60 – 125 60 – 70 

Li-ion battery 10 5 – 20 400 – 600 85 – 95 

Lead-acid battery 10 3 – 4 65 – 120 70 – 80 

NaS battery 30 15 – 25 520 – 550 75 – 80 

Vanadium flow battery 50 20 – 30 620 – 740 80 – 90 

Zn/Br flow battery 50 20 – 30 290 – 350 70 – 80 

 

 

Mechanical grid energy storage technologies viable for grid energy storage include 

pumped-storage hydroelectricity and compressed-air energy storage (CAES). Pumped-

storage hydroelectricity, or pumped hydro, stores energy by pumping a volume of water 
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into a reservoir through a significant elevation change. A schematic of pumped hydro 

energy storage is shown in Figure 1(a). The reservoir of water represents a substantial 

amount of stored energy which is recovered by allowing the water to flow back down 

through turbines, converting the waters potential energy into electricity. Pumped hydro is 

the most widespread grid energy storage technology, accounting for ~96 % of the world’s 

energy storage [37]. Pumped hydro is a mature technology with energy efficiency ranging 

from 70 to 85 %, a lifetime of 50 – 60 years, and is currently the most cost effective despite 

its high capital cost [37; 38]. 

CAES stores energy by compressing a volume of air using excess energy when 

generation exceeds demand. A schematic of a CAES system, where compressed air is 

stored underground, is shown in Figure 1(b). For grid energy storage, it is often proposed 

to store the compressed air in a large carven such as a natural or mined cave. CAES offers 

efficiency from 60 to 70 %, has a lifetime of 20 – 30 years, and low maintenance costs 

comparable to a simple cycle combustion engine [19]. Pumped hydro and CAES have very 

specific geographical requirements and so, are not in direct competition with each other. 

 

 
 

(a) (b) 

 

Figure 1. Schematic of a (a) pumped hydro system and (b) CAES system [25; 42]. 
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Chemical energy storage is the storage of a fuel, in any phase, which contains 

potential energy in the form of chemical bonds. An example of a grid energy storage 

technology in this category is power-to-gas. Surplus energy is utilized to convert a low 

potential energy substance, such as water or carbon dioxide, into an energy rich substance, 

such as hydrogen gas or methane, respectively. The energy rich fuel is then stored using 

traditional methods until demand exceeds generation. In general, chemical energy storage 

allows for transportation and storage of fuel, with minimal energy loss long-term, utilizing 

existing infrastructure. 

The category of electrochemical energy storage includes a wide variety of 

secondary batteries and is continuously expanding due to unceasing demand for 

applications ranging from cell phones to grid energy storage. Lithium-ion (Li-ion) batteries 

have recently attracted the most interest the area of grid energy storage as they are an 

established technology with advanced production methods driven by the electric vehicle 

industry. Li-ion batteries utilize Li ions as the main energy carrier. During charge and 

discharge, Li ions move through an electrolyte toward an electrode. Once at the electrode 

surface, Li ions proceed into the electrode via intercalation. Intercalation is the reversible 

incorporation of an ion or molecule into the layered structure of a material. A schematic of 

a Li-ion battery is shown in Figure 2(a) illustrating the intercalation of Li ions into the 

cathode during charge and anode during discharge. Li-ion batteries have a very high energy 

and power density compared to other grid energy storage methods which results in a much 

smaller system footprint. Li-ion batteries also exhibit good cyclability and high energy 

efficiency, greater than 85 % [24; 79]. The lead-acid battery, perhaps one of the most 

widespread and well-known secondary battery, has been considered for grid energy storage 
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due to its low capital cost and the maturity of the technology in terms of research and 

production [62]. In a lead-acid battery, hydrogen ions are the charge carriers, moving 

through an electrolyte solution. During charge, lead(II) sulfate is converted to solid lead at 

the anode and lead(IV) dioxide at the cathode. 

For grid energy storage, another secondary battery type being heavily researched is 

the sodium-sulfur (NaS) battery. This battery technology utilizes a molten salt as its 

electrolyte, transporting ions and containing the active species. Unlike Li-ion or lead-acid, 

the electrodes are liquid (sodium as the anode and sulfur as the cathode) and simultaneously 

act as the current collector and active species transport media. During discharge, a sodium 

atom donates an electron to the external circuit and the resulting sodium ion moves through 

the liquid sodium anode, across a separator, and into the liquid sulfur cathode resulting in 

a sodium tetrasulfide compound. In this type of battery, a separator is required to avoid 

self-discharge through reaction of the anode and cathode, while allowing for ion transport. 

A schematic of a NaS battery is shown in Figure 2(b). Beta alumina is the separator that 

only allows for the passage of Na+ ions. The materials required for a NaS battery are 

inexpensive compared to Li-ion. In addition, the NaS battery exhibits a long cycle life, high 

efficiency, and high energy density. 

 



 

17 

 

 
(a) (b) 

 

Figure 2. Schematic of a (a) Li-ion battery and a (b) NaS battery [39; 59]. 

 

The redox flow battery (RFB) is another type of electrochemical energy storage. In 

this technology, the active species is present in a liquid electrolyte that flows through the 

electrochemical cell. Both anode and cathode are stationary within the electrochemical cell 

and in most iterations, a separator is required. The flowing electrolyte supplies active 

species to the electrode to undergo electrochemical oxidation or reduction. In this way, the 

portion of the battery containing the potential energy, the liquid electrolyte, can be stored 

outside of the electrochemical cell itself. That is the key feature difference between RFB 

technology and other secondary batteries. The RFB is the focus of this dissertation and as 

such, will be detailed more thoroughly in the following chapter. A schematic of a RFB is 

shown in Figure 3. RFBs offer a long cycle life (>20 years), high efficiency (75 – 85 %), 

no location dependence, and the ability to scale power and energy separately 

[2; 80; 90; 108; 112]. 
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A RFB operates via an exchange of energy through the simultaneous 

electrochemical reduction and oxidation of redox couples in half-cells. A redox couple 

consists of an oxidizing species and its corresponding reducing species. For example, V5+ 

is an oxidizing species because it wants to accept an electron and V4+ is a reducing species 

because it wants to give up an electron. Together, V5+ and V4+ make up a redox couple. 

The fundamental RFB consists of two electrolytes (which contain two different redox 

couples), two electrodes, and an ion-exchange membrane, as shown in Figure 3. The 

electrolytes are stored in external tanks and are typically cycled through the 

electrochemical cell via pumps. The electrolyte with a redox couple that has a more positive 

potential compared to a reference is termed the catholyte. The electrolyte with a redox 

couple that has a less positive compared to the same reference is termed the anolyte. 

Additionally, by convention utilized in published literature, the side in which the catholyte 

flows contains the cathode (regardless of its function during charge and discharge). In the 

same manner, the side in which the anolyte flows contains the anode. 

As the electrolytes flow, redox species are brought to the electrode surface where 

they will either give or receive an electron from an external source. During this process, 

the electrochemical cell is either charged or discharged and the converted species flow back 

to the storage tanks. The purpose of the ion-exchange membrane is to electrically separate 

the two half-cells while allowing preservation of charge balance through the migration of 

ions. The migration of active redox species would lead to self-discharge and a reduction in 

the efficiency and longevity of the cell. The ion-exchange membrane must block the 

transfer of the active species. Typically, preservation of charge balance is performed by a 

hydrogen ion, or hydron, which is provided by a supporting electrolyte such as H2SO4. The 
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supporting electrolyte also supports the cells function by maintaining high ionic 

conductivity, pH, and assisting in the prevention of active species crossover due to 

migration in the electric field. 

 

 
 

Figure 3. Schematic of a RFB. 

 

The first recorded notion resembling the modern day RFB was found in a patent by 

Pierre André Pissoort, published in 1933 [77]. The next mention of the RFB, which 

describes the concept explicitly as it is thought of today, comes from a patent by Walther 

Kangro published in 1954 [52]. Following this was a publication in 1955 by Posner titled 

“Redox Fuel Cell” and a hybrid zinc-air flow battery with a flowing liquid electrolyte was 

tested in 1966  by Vertes et al. [78; 97]. In the 1970s, RFB research really began to take 

off with research by the National Aeronautics and Space Administration (NASA) in the 

USA, as well as groups in Japan and France [6; 7; 8; 17; 31; 71; 93]. In the 1980s the, now 

commercialized, all-vanadium RFB by Maria Skyllas-Kazacos made its debut [88]. Today, 
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the number of publications exploring different aspects of RFBs is ever increasing. There 

exists a wide variety of RFB types. RFBs can utilize different redox species, aqueous or 

non-aqueous electrolytes, plating reactions, gas phase electrolyte solutions, etc. The focus 

of this dissertation is on a wide variety of redox couples, configurations, material 

improvements, and optimizations. 

As RFB technology has advanced and grown, categorizing different types of RFBs 

became necessary. To date, the best way to categorize RFBs is based on some key aspect 

of their operation instead of focusing on what redox couples they use. However, not all 

configurations fit neatly into a category and some fall completely outside the currently 

referenced categories. The three main categories separating RFB configurations are all-

liquid, hybrid, and, semi-solid. 

In an all-liquid RFB, which includes the well-known all-vanadium RFB developed 

by Skyllas-Kazacos, both anolyte and catholyte remain in the liquid state during charge 

and discharge. For the vanadium example, vanadium ions transfer between the (II) and (III) 

oxidation states in the anolyte and the (IV) and (V) oxidation states in the catholyte; the 

ions remain in solution during the process. Some all-liquid RFBs employ a single chemical 

species, such as V, as both the anolyte and catholyte active species, which avoids cross 

contamination due to crossover. 

The hybrid RFB category includes configurations in which one or both electrolytes 

exist in any phase other than liquid. One or both electrolytes may undergo a plating reaction 

during charge or discharge so that a solid phase exists. In some embodiments of RFBs a 

gas phase exists in one half cell. In the hybrid RFB with deposition, one or both electrolytes 

are electroplated. Often the electrolyte undergoing electrodeposition is the anolyte during 
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charge, while the catholyte remains a solution during charge and discharge. A well-

researched example of a hybrid RFB redox couple is zinc-bromine. The anolyte solution 

containing Zn2+ ions in its discharged state, undergoes electrodeposition at the anode to 

become solid zinc, Zn0. At the cathode, bromine remains as a solution. 

The semi-solid category of RFBs is an emerging field of research with intriguing 

prospects. The semi-solid RFB, sometimes referred to as semiflow or slurry, uses a network 

of electrically conductive particles suspended in the anolyte and/or catholyte to act as the 

electrodes. When the concentration of particles is above some threshold, it forms an 

electrically conductive network allowing for the transfer of electrons from reaction to a 

current collector and out of the cell or vice versa. This slurry of electrically conductive 

particles can flow through the cell introducing fresh particles for reaction. With a redox 

couple that involves a plating chemistry, the cycling of particles through the cell is the key 

feature of the semi-solid RFB. The plating reaction can take place on the electrically 

conductive particles, or electrodes, and be removed from the cell; again, separating power 

and energy. So, systems that showed promise in safety and cost; but, where prohibited by 

a plating reaction, are now back on the playing field. Additionally, this flowing network of 

electrodes can offer increased reaction area compared to stationary electrodes. 

The three previously described categories can be subdivided further by key aspects 

of their design. Often, the electrolyte solvent is categorized as aqueous or non-aqueous. 

Due to the low energy density of a RFB and the volume required for grid energy storage, 

this is an important categorization. Especially in recent years as research in non-aqueous 

RFBs have exploded primarily due to the Aziz group out of Harvard. Using water as a 

solvent is beneficial because it is cheap and accessible in large volumes. The drawback is 
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the limited solvent window, outside of which the breakdown of water into hydrogen and 

oxygen occurs. Additionally, the solubility of some active species is limited in aqueous 

solutions. Non-aqueous solvents are, in general, significantly more expensive than aqueous 

solvents; however, they offer the ability to increase the solvent window and energy density 

well above that of an aqueous electrolyte RFB. 

RFBs can also be categorizes by classifying the active species as non-organic or 

organic. Redox couples existing in non-organic active species, typically metals, tend to be 

cheaper to mass produce into electrolyte solutions and have a more facile reaction process. 

In fact, some redox couples react via outer sphere electron transfer in which the species is 

not required to adsorb onto the electrode surface for electron transfer to occur. This feature 

tends to result in increased kinetics and decreased overpotentials which leads to better 

energy efficiency. Organic active species are more complex and, in general, more 

expensive to produce with complex reaction steps. However, organic materials are tunable 

in that they can be “manufactured” to exhibit certain features such as high solubility, high 

reversibility, multi-electron transfer, etc. 

Another commonly used categorization is based on the type of separator utilized, 

cation exchange membrane (CEM) or anion exchange membrane (AEM). RFBs utilizing 

CEMs must supply mobile cations to be transported through the separator, maintaining the 

charge balance in the electrochemical cell. CEMs are a well-researched technology due to 

their use in hydrogen/oxygen fuel cells. Unfortunately, they represent a large portion of the 

capital cost for RFBs. Recent research has been devoted to developing low cost CEMs but, 

they often come with a tradeoff of reduced energy efficiency and/or increased active 

species crossover. In recent years, AEMs have gained interest. With this type of membrane, 
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an anion must be supplied in the electrolyte solution to balance charge. This is often a 

hydroxyl ion which results from a basic solution. AEMs offer increased resistance to active 

species crossover but, typically result in reduced conductivity, decreasing coulombic 

efficiency. Different variations of these separates have been utilized; however, they all 

operate using the same general principle of allowing the charge balancing species to cross. 

Beyond these categories are some unique RFB configurations including the 

membraneless RFB. Membraneless RFBs were developed to remove the expensive ion-

exchange membrane from the cell and typically operate by utilizing a laminar flow regime 

so that minimal mixing occurs between the two redox couples; however, charge balancing 

can still move via migration. Another configuration utilizes a cheap separator filled with 

some form of ion exchange resin to facilitate charge balancing ion transfer. This method 

may result in significantly cheaper electrolyte separation; however, these separators also 

contain active species and the lack of a physical barrier may result in irreversible side 

reactions [36]. In addition to RFB, there are several types of flow batteries which store and 

release energy without using redox species. The concentration gradient flow battery stores 

and releases energy based on a concentration gradient, such as the separation and mixing 

of salt water [95]. A acid-base junction battery utilizes the energy involved in the separation 

of two solutions with a significant difference in pH levels [47]. 

 

2.2 Boron Doped Diamond 

Carbon-based materials, such as glassy carbon, graphite, carbon nanotubes, etc., 

have been widely popular in the field of energy storage for years. These materials tend to 

be highly conductive, inert in a wide range of environments, and mechanically strong. In 
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addition, some forms are carbon-based materials are relatively cheap and easy to fabricate 

into a wide variety of forms. In Li-ion batteries, graphite is universally employed as the 

anode material. During charge, Li ions intercalate in the graphite structure and are stored 

there until discharge. Graphite is beneficial due to its low voltage, reversibility, and 

mechanical strength during intercalation expansion. Carbon-based materials are also 

extensively utilized in RFBs. Although, intercalation does not occur in RFBs. 

In RFBs, the electrode must be highly conductive, inert, mechanically strong, low-

cost, and have a wide solvent window. The electrode must be highly conductive to facilitate 

the movement of electrons away from or toward the active species so that oxidation or 

reduction can occur, respectively. The electrode must be inert so that it does not interfere 

with the oxidation and reduction of the active species, creating unwanted side reactions 

which may degrade the integrity of the electrode. Mechanical strength is required so that 

the electrode can be fabricated into a structure with the ability to contain the liquid 

electrolyte. This typically entails significant pressure being applied to the structure itself. 

Stacks, which consist of multiple electrochemical cells, must have good electrical contact 

between each cell to allow for electron flow. 

A key electrode feature required for RFBs is the solvent window of the electrode. 

The solvent window is the potential range between the onset of solvent breakdown at the 

anode and cathode. Every solvent has a potential at which the molecules making up the 

solvent breakdown. In aqueous solutions, with water as the solvent, breakdown consists of 

hydrogen evolution at the anode and oxygen evolution at the cathode. Based on the 

standard electrode potential, hydrogen evolution occurs at 0 V vs. SHE and oxygen 

evolution occurs at 1.23 V vs. SHE. These are the ideal values and are dependent on several 



 

25 

factors including the pH of the solution, the contents of the solution, and the material at 

which reaction may occur. 

In RFBs there is a balance between the electrochemical cells operating potential 

and the occurrence of gas evolution. The operating potential should be as high as possible 

while resulting in a minimum amount of gas evolution. In Li-ion batteries, gas evolution 

typically results in catastrophic failure of the battery because the seal, which prevents 

infiltration by atmospheric air, is compromised. RFBs can safely tolerate gas evolution but, 

it should be limited as it is an unwanted side reaction, leaching energy which could 

otherwise be stored, resulting in lower energy efficiencies. On the other hand, a higher 

potential electrochemical cell means a higher energy and power density which correlates 

with the cost of the energy storage system in terms of $ kWh-1. 

In RFBs, other electrode materials have been tested, typically metals, but, so far, 

nothing has rivaled the ability of traditional carbon-based materials. Many carbon-based 

materials have been utilized, each with a wide variety of modification; however, one 

allotrope of carbon that has not been considered is diamond. From here on, all carbon-

based materials utilized in RFBs except for diamond will be referred to as “traditional” 

carbon-based materials. Diamond is a very intriguing material and, in recent years, has 

attracted increasing attention for applications in electronics and electrochemistry. To make 

diamond useful as an electrode, it must be conductive. There are several ways to modify 

diamond resulting in conductivity, mainly doping methods. The most often used dopant 

which results in conductivity for diamond is B, which can substitutionally replace a C in 

the diamond lattice. B is to the left of C on the periodic table meaning it is deficient one 

electron, resulting in P-type conductivity in diamond. 
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Currently, boron doped diamond (BDD) has not been considered as an electrode 

for use in RFBs; however, its application has been noticed for other electrochemical 

systems. The advantages of BDD include one of the widest solvent windows in aqueous 

solutions, low background and capacitive currents, reduced fouling compared to 

conventual electrodes, and the ability to withstand extreme potentials, corrosive, and high 

temperature/pressure environments [61]. For these reasons, BDD has gained popularity for 

electrochemical applications in the fields of electroanalysis, sensor technology, 

electrosynthesis, water treatment, and more [73]. Siuzdak et al. have utilized 

nanocrystalline BDD electrodes for the detection of the influenza virus [87]. He et al. 

explored the use of BDD electrode for the oxidation of organic pollutants to treat 

wastewater and remove toxins from drinking water [40]. Xu et al. are using BDD to reduce 

CO2 byproducts resulting from fossil fuel combustion into formic acid and hydrogen [107]. 

Of key interest to RFBs is BDD’s wide electrochemical window, reduced fouling, 

and ability to withstand high potential and corrosive environments. The way BDD 

electrodes are fabricated has a significant effect on material properties including dopant 

density, non-diamond-carbon (NDC) content, grain morphology, and surface chemistry 

[61]. These features can in turn significantly affect the way the BDD electrode interacts 

with the electrolyte of a RFB. Boron content effects the electrical conductivity of diamond 

by acting as an acceptor, attracting electrons from neighboring bonds, creating a pathway 

for electrons to travel. With a high enough doping concentration, > 1020 atoms cm-3, BDD 

shows metal-like conductivity [46]. According to Macpherson, metal-like conduction in 

BDD exhibits a resistivity of <10 mΩ cm [61].  Increasing the dopant concentration can 

lead to higher capacitance and the likelihood of NDC. So, an optimal doping concentration 
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exists which gives high conductivity without significantly increasing NDC content. 

Hutton et al. found the optimum concentration to be ~3 x 1020 B atoms cm-3 [46]. Increased 

NDC content results in a more electrocatalytically active electrode which reduces the 

solvent window and increases the surface’s susceptibility to fouling [61]. The changing 

solvent window of BDD due to changes in boron content are seen in Figure 4(a) where an 

increase in boron content results in a reduction of the solvent window. The effect of 

changes in boron content on the ability of the BDD electrode for the ferri/ferrocyanide 

redox couple is shown in Figure 4(b). An increase in boron content results in a lower peak-

to-peak potential separation which indications higher electrochemical reactivity. 

 

  

(a) (b) 

 

Figure 4. Effect of varying the boron content in BDD shown by (a) CV in 0.1 M sulfuric 

acid with a scan rate of 100 mV s-1 and (b) CV in 1 mM K3[Fe(CN)6] and 1 M KCl at a 

scan rate of 100 mV s-1 [107]. 

 

Surface termination of the BDD electrode has a strong influence on electron 

transfer kinetics and wetting properties [61]. Surface termination of BDD electrodes has 

been studied by many groups; however, it remains a source of contention. To date, a 
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standard methodology does not exist for the determination of the surface functionality of 

diamond. This is due to several factors including the difficulty in determining the presence 

of hydrogen termination. Hydrogen surface termination causes semiconducting BDD to 

behave metal-like due to increased surface conductivity [46]. This behavior can make 

characterizing BDD difficult as a semi-conductive material can appear to be metal-like 

until the surface termination changes. The difficulties present in characterizing surface 

groups on BDD additionally influence the interpretation of results often creating confusing 

or contradictory findings amongst groups studying similar phenomena. 

 

2.3. State-of-the-art 

The current state of the art in RFB technology is the all-vanadium RFB which 

utilizes a vanadium redox couple in both electrolytes. The catholyte and anolyte redox 

couple chemical reactions and their standard electrode potentials are, respectively, 

 

 VO2
+ + 2H+ + 𝑒− ↔ VO2+ +H2O 0.991 (vs. SHE) (1) 

 

 V3+ + 𝑒− ↔ V2+ -0.255 (vs. SHE) (2) 

 

where the overall standard cell potential is 1.246 V [96]. In the literature, all-vanadium 

RFB energy efficiencies range from 80 % up to 96 % with varying current densities. 

Typically, energy efficiency goes down as current density goes up. This is an important 

point to take into consideration when examining RFB data. If the energy density is too low, 

the size of the electrochemical cell needed to produce a specific power output will be 
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prohibitive. Gonzales et al. reported an energy efficiency of 95.8 % at a current density of 

25 mA cm-2 [35]. The reported energy efficiency is wonderful; however, the current density 

is quite low. Without factoring in overpotentials, pumping losses, or other sources of 

inefficiencies, an all-vanadium RFB system operating at 25 mA cm-2 would require 

3,210 m2 (34,552 ft2) of active area to generate 1 MW. At that current density, the capital 

cost of the electrochemical cell stack may become prohibitively expensive. Wei et al. 

achieved an energy efficiency of 80.1 % at a current density of  300 mA cm-2 [101]. The 

results of Wei et al. show that more practical current densities are achievable while 

maintaining an energy efficiency comparable to pumped hydro [101]. 

The zinc/bromine flow battery (ZBFB) has had commercial success as well [53]. 

The ZBFB is considered a hybrid RFB due to the electroplating of zinc during charge. The 

ZBFB has a high energy density and low electrolyte cost; however, the electroplating of 

zinc means that energy and power are no longer separated, and the storage capacity is 

limited to the volume available for electroplating. Another drawback of the ZBFB is zinc 

dendrite formation, which can puncture the ion exchange membrane causing an electrical 

short and total malfunction of the RFB. Even so, ZBFB have been commercialized and are 

available for purchase from several companies. In the literature, the ZBFB has achieved 

energy efficiencies and charge/discharge current densities comparable to the all-vanadium 

RFB. Wu et al. reported an energy efficiency of 81.8 % at a current density of 

40 mA cm-2 with a maximum operational current density of 80 mA cm-2 [104]. Suresh et al. 

reported similar results with an energy efficiency of 79.4 % at a current density of 

40 mA cm-2 [92]. Besides the all-vanadium and ZBFB, other RFBs have been 

commercialized with limited success. 
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A slurry electrode was developed by Petek et al. utilizing Fe redox couples in both 

half-cells [76]. The Fe redox couple in the anode half-cell undergoes a plating reaction 

during charge. The slurry electrode allows for the charged, plated Fe species to flow out of 

the cell and be stored in tanks for later use, decoupling energy and power in a hybrid RFB. 

The slurry particles were multiwalled carbon nanotubes (MWCNTs) with a surface area of 

40 m2 g-1. The MWCNT loading was 4.8 vol%. The RFB was able to operate at current 

densities >200 mA cm-2 [76]. This is a much higher current density then typically reported, 

even for the all-vanadium RFB. At this stage in development, reported voltage efficiency 

is quite low at about 50 % [76]. This results in a low energy efficiency; however, the group 

believes significant improvements are possible in future iterations. 

A wide variety of non-aqueous RFBs have been explored due to the ability to 

engineer wider solvent windows, faster electron-transfer kinetics, and operation in 

extended temperature ranges [45]. Non-aqueous RFBs can employ a wide variety of redox 

couples including organic molecules and metal-ligand complexes. Typical solvents 

employed in non-aqueous RFBs include propylene carbonate and acetonitrile, which has a 

solvent window of 5 V [45]. Like aqueous RFBs, non-aqueous RFBs require a supporting 

electrolyte. Typical supporting electrolytes include TEABF4 and EMIPF6 due to their 

solubility in organic solvents [45]. 

Ding et al. explored the use of ferrocene and cobaltocene as redox couples in a non-

aqueous RFB with N,N-dimethylformamide (DMF) as the solvent [113]. This RFB 

exhibited a reaction rate up to 10-3 cm s-1, two orders of magnitude greater than the reaction 

rates found in aqueous RFBs [113]. The discharge potential was shown to be between 1.6 

and 1.7 V, ~35 % higher than that of an all-vanadium RFB [113]. The RFB developed by 
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Ding et al. achieved an energy efficiency 85 % at a current density of 1.5 mA cm-2 [113]. 

The cell potential and energy efficiency of this RFB meets the current standard in RFBs in 

general. 

An all-iron non-aqueous RFB was with an open circuit voltage (OCV) of 1.34 V 

was proposed by Zhen et al. [115]. The solubility of the limiting redox couple was found 

to be 0.37 M in the supporting electrolyte tetraethylammonium 

bis(trifluoromethylsulfonyl)imide (TEATFSI) [115]. The RFB showed good cyclability 

over 100 cycles with an average energy efficiency of 83.4 % at 10 mA cm-2 [115]. This 

non-aqueous RFB demonstrates a cheap and abundant active species, Fe, with a high 

energy efficiency and OCV. 

Organic redox couples have been increasingly explored in recent years fueled by 

the ability to tailor organic molecules to meet specific needs such as high solubility, fast 

kinetics, and high cell voltage. In addition, organic molecules tend to be composed of 

abundant, low-cost elements. Organic RFBs include those which utilize an organic species 

in one or both half-cells. The types of organic species can include organometallic materials 

and organic ligand complexes which can exist in aqueous and non-aqueous solvents. For 

these reasons, the number of possible electrolyte solutions consisting of one or more 

organic species is vast and rich for exploration. 

An organic, quinone-based RFB using water as a solvent was demonstrated by 

Yang et al. [110]. As this RFB avoids expensive heavy metals and is water based, it has 

the potential to meet DOE cost targets while being non-flammable. Yang et al. were able 

to achieve an energy efficiency of 70 % over 100 cycles with a current density of 100 mA 

cm-2; however, the power density was 55 mW cm-2 and the discharge potential was <0.7 V 
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[110]. Xing et al. demonstrated an all-organic RFB with a high theoretical solubility using 

acetonitrile as the solvent [106]. The organic redox couples showed an OCV of 2.89 V and 

achieved an energy efficiency of 66 % at a current density of 7.5 mA cm-2 [106]. The 

kinetics of the anolyte redox couple was found to be 6.92 x 10-6 cm2 s-1 [106]. 

A membraneless RFB concept was presented by Gong et al. using the immiscible 

nature of an aqueous and non-aqueous electrolyte solutions [34]. In this RFB, the Zn2+/Zn 

redox couple in an aqueous electrolyte is used as the anolyte and a ferrocene (Fc+/Fc) redox 

couple in butyl acetate is use as the catholyte [34]. The Zn was supplied using a ZnCl2 salt, 

from which the Cl- ions become the charge balancing species and can cross the immiscible 

boundary via migration. This RFB demonstrated an energy efficiency of 51 % at 

0.1 mA cm-2 that was stable over 20 cycles [34]. 

As stated previously, BDD exhibits a wide solvent window, low capacitance, 

reduced fouling, mechanical strength, corrosion resistance in high temperature, pressure, 

and corrosive environments, and biocompatibility [61]. These features make BDD 

attractive for a wide variety of applications including power electronics and 

electrochemistry. A recently popular use for BDD in the field of electrochemistry as an 

electrochemical sensor due to its negligible adsorption phenomenon, low background 

current, and resistance to contamination [49]. Jevtić et al. utilized BDD to accurately 

determine the existence of bentazone, an herbicide with suspected toxicity in humans, at 

levels as low as 0.5 μM [49]. The study determined BDD was an ideal sensor showing 

good selectivity without requiring electrochemical pretreatment or additives. Looking at 

published literature in recent years, a wide variety of electrochemical sensing applications 

have been found which utilize BDD well. 
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Another intriguing application for BDD is the reduction of CO2 into a useful 

byproduct. CO2 is considered a greenhouse gas at high concentrations; however, it is the 

byproduct in most power plants and many industrial processes. The ability to control CO2 

levels by conversion into a useful byproduct may prove vital to the welfare of human 

beings. A major challenge in CO2 reduction is product selectivity and competition with 

hydrogen evolution. Roy et al. demonstrated the selective reduction of CO2 into CO with 

minimal HER using a BDD electrode modified with Cu in an ionic liquid [82]. Other areas 

of interest using BDD electrodes include electro-organic synthesis, bio-sensor applications, 

electroanalysis, and nanoscale materials [18; 58; 67; 99; 111]. 

BDD offers a wide solvent window in aqueous solutions, low capacitance, 

mechanical strength, high fouling resistance, and corrosion resistance. The wide solvent 

window allows for a higher potential electrochemical cell compared to traditional carbon-

based electrodes while reducing the amount of gas evolution. This can lead to increased 

energy and power density, as well as increased energy efficiency. 

In a RFB, low capacitance means a thinner double layer boundary and a lower 

potential barrier to reaction. The thinner double layer boundary allows for active species 

to diffuse closer to the electrode surface and the lower potential barrier requires less energy 

to force an electron from the active species to the electrode or vice versa. This results in 

higher voltage efficiency. High mechanical strength allows for assembly of stacks without 

destroying the electrode material. High fouling resistance is beneficial in some 

implementations of RFBs such as with the Mn2+/Mn3+ redox couple which can result in 

MnO2. Because of the high fouling resistance of BDD, the MnO2 does not stick to and 

accumulate on the surface which would degrade the batteries performance. 
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Corrosion resistance results in a battery with a long lifetime. Compared to 

traditional carbon-based electrodes, this is an important feature. When oxygen evolution 

occurs on traditional carbon-based electrodes, carbon corrosion tends to occur, reducing 

the lifetime of the material. In addition, as carbon corrosion occurs, this leads to increased 

oxygen evolution which, in turn, results in more corrosion. The strength of the diamond 

bond is such that it is highly resistant to carbon corrosion. Theoretically, a BDD electrode 

in a RFB can last forever. When the maintenance cost of a RFB is considered over its useful 

lifetime, the longevity of materials is very important. If an electrochemical cell can be built 

that seldom requires maintenance or replacement of its internal components, the projected 

cost over the lifetime of the battery is significantly reduced. 

 

2.4. Challenges 

The primary challenge with any grid energy storage technology boils down to cost. 

The current market leaders in renewable energy are intermittent by nature. This 

disadvantage in renewable energy, intermittency, is the major driver for grid energy 

storage. If the cost of renewable energy sources were cheap enough, perhaps an increased 

cost in grid energy storage could be offset. Unfortunately, this is not the current status of 

the field. Solar and wind technology are improving, leading to cost reductions; however, 

these technologies are relatively mature and so, require a significant technological 

breakthrough to significantly reduce costs. As it stands now, without subsidies, renewable 

energy is still not cost effective when compared to non-renewables. For these reasons, 

researchers have turned to grid energy storage as the source of cost reductions necessary 

to allow renewable energy to take command of the world’s energy needs. If a sufficiently 
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cheap and high efficiency grid energy storage technology is available, it can increase the 

effectiveness of renewable energy sources while reducing the overall cost of a renewable 

energy system. 

Each energy storage technology has its own unique advantages and disadvantages 

when applied to grid scale energy storage. The disadvantages of pumped-storage 

hydroelectricity include a large capital cost, location dependence, low energy density, and 

environmental concerns [11; 13; 60]. Pumped hydro has a low energy density so, a pumped 

hydro system is large and requires a significant initial capital investment and a long 

timeframe to develop and build. Pumped hydro also requires very specific geological 

features to be present, namely a large elevation change near a water source with a proper 

climate. Building a manmade reservoir with the proper elevation difference is cost 

prohibitive. If the water in the reservoir turns to ice and/or evaporates, that results in a loss 

of stored energy. Also, pumped hydro stations can have a significant impact on the 

surrounding wildlife by adversely affecting their natural habitat. Even though pumped 

hydro represents the most cost effective and mature grid energy storage technology, the 

disadvantages make it unusable in a vast majority of locations around the globe. 

CAES is a promising technology in terms of cost and efficiency; however, it suffers 

from a similar location dependence as pumped hydro. There must be a large cavern present 

into much a pressure gradient can be established. These caverns can result from manmade 

activities but, building a cavern for this specific use is cost prohibitive without the benefit 

of mining a sellable product. In that regard, the development and building of a grid energy 

storage CAES system is very long-term. Interest in above ground CAES systems has grown 

in recent years, unfortunately when applied to grid energy storage, the cost of vessels to 
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store pressurized gas become prohibitive. In addition, CAES systems significantly alter the 

habitat in which they are developed which may have a profound effect on the local wildlife. 

Li-ion has received more attention in recent years than any other energy storage 

technology due to the advancement of electric vehicles. Li-ion does not have the location 

dependence concerns of pumped hydro and CAES; however, there are environmental 

concerns due to the flammability of the Li-ion batteries themselves. Li-ion batteries have 

had catastrophic failures in cell phones, e-cigarettes, and electric vehicles. On a grid energy 

storage scale, the result could be even more devastating. Currently, Li-ion technology is 

relatively cost effective and so, has been deployed in several locations for grid energy 

storage. This is a result of the maturity of the technology and significant push by Tesla in 

the fabrication of Li-ion batteries with its Giga facility. Unfortunately, current iterations of 

Li-ion batteries require materials that are not abundant, including the Li itself. As the 

number of electric vehicles continue to grow and if the technology advances in the grid 

energy storage field, material costs will only increase. However, concerns over the 

availability for cost-effective lithium (among other required rare materials) of sufficient 

quality and the safety of the Li-ion battery in a large grid scale structure, strongly point to 

the need for alternative solutions [54; 66; 81]. Since there is little left to gain in terms of 

efficiency, this technology appears to some to be a dead end in terms of grid energy storage. 

NaS batteries answer the challenges of location dependence and material 

abundance issues; however, it presents its own special set of challenges. Sodium and sulfur 

are abundant but, in their molten liquid form, extremely dangerous. Pure sodium 

spontaneously burns on contact with air and moisture. In 2011, the Japan Mitsubishi 

Materials Corporation plant caught fired due to a 2000 kW NaS battery [102]. The danger 
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inherent with a NaS battery requires special consideration in the plant design, increasing 

cost. To compound that challenge, the harsh environment of a NaS battery is extremely 

corrosive. In addition, dendritic sodium growth can occur leading to damage in the ceramic 

separator and a battery short. 

RFBs were tailor made for stationary, long-term, and high capacity energy storage 

making them ideal for grid energy storage. Unfortunately, RFBs are not without their own 

set of challenges. There are many different iterations of the RFB, which will be outlined in 

more detail in the following chapter. In some iterations, the redox active species themselves 

are too expensive to be cost competitive on a grid energy storage platform. On the 

sentiment of cost, the separator utilized in most aqueous RFBs is expensive. Much research 

has gone into driving down that cost but, it always comes with a sacrifice in efficiency. In 

other iterations, the primary challenge is dendritic growth of one or both active species as 

cycling continues. After some time, the dendrite can pierce the separator resulting in an 

short circuit of the battery where both electrodes are in contact. Methods have been 

developed to limit or reverse dendrite growth; however, none completely solve the problem 

while considering overall system cost and longevity. 

The use of RFBs to solve the problem of grid energy storage is promising regarding 

their ability to separate energy and power, along with published results of high energy 

efficiency and a long lifetime; however, several hurdles remain in the push to control the 

market. According to Soloveichik, current research in RFBs should focus on the following 

challenges: finding a better redox couple, fundamental understanding of electrochemical 

processes, evaluation of environmental concerns, and further development of ion-exchange 

membranes, cell/stack design, and computational models [90]. 
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The major disadvantage with a hybrid RFB is that now, power and energy are no 

longer decoupled. The amount of energy stored is dependent on the accessible plating 

volume which is dependent on the size of the electrochemical cells and stack. Some 

additional plating volume can be obtained by increasing the gap between electrode and ion-

exchange membrane; however, this comes with an efficiency cost due to ion transport and 

electrolyte conductivity that varies with the charge state. 

A slurry electrode shows promise in again separating the power and energy of a 

hybrid RFB while providing additional reactant surface area. Unfortunately, slurry 

electrode must balance high viscosity with conductivity. The slurry particles must exist at 

a concentration that crosses the conductivity threshold. Unfortunately, this conductive 

slurry electrode tends to be highly viscous with increasing viscosity as the particles are 

plated. Viscosity creates two problems, first it causes more pump work reducing system 

efficiency and second, it brings about a new failure mode which is clogging of the 

electrochemical cell. Another challenge is that of plating distribution. For the slurry RFB 

to function properly, plating should occur on the slurry particles. However, plating can 

occur on the stationary current collector, resulting in a hybrid RFB instead of a slurry RFB.  

A non-aqueous RFB can obtain a desirable energy efficiency and cell potential as 

observed in the examples above. However, the operating current density, and so the power 

density is generally much lower than their aqueous counterparts. Additionally, non-

aqueous solvents tend to flammable, harmful to the environment, and expensive compared 

to water. Difficulties facing organic RFBs include limitations in cost, safety, environmental 

friendliness, electrode materials, and large-scale fabrication methods. Theoretically, 

organic molecules are cheap in terms of the elements that make them up but, considering 
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the equipment and fabrication methods required to make them, they are considered 

expensive. This price should be driven down substantially with large-scale fabrication 

methods but, those methods are yet to be determined. 

Membraneless RFBs remove one of the significant cost factors in a RFB, the ion 

exchange membrane. The price paid for reducing RFB cost is efficiency. As shown in the 

example above and in other literature, energy efficiency in membraneless RFBs tends to 

be extremely low. Additionally, they operate at very low current densities resulting in low 

power densities. These factors make membraneless RFBs impractical for grid energy 

storage currently. 

For the widely commercialized all-vanadium RFB, the cost of the active species, 

V, is the largest contributors to the capital cost of the system, see Figure 5 [21; 103]. The 

cost of the active redox species significantly effects the capital cost of a RFB system due 

to the volume of electrolyte necessary for grid energy storage. Currently, most research on 

the all-vanadium RFB is attempting to increase system performance by modifying the 

electrodes to increase overall energy efficiency and power density. These improvements 

will help to further reduce costs; but, only in small increments. Therefore, to continue the 

drive toward widespread commercialization of RFBs, another redox couple, that is cheaper 

than V, should be studied and optimized to produce a comparable system performance. 
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Figure 5. Component cost for a 1 MW, 4 MWh RFB of the listed chemistries [20]. 

 

The potentials at which the redox couples operate is one of the most important 

aspect of choosing active species. The potential difference of the two redox couples should 

be as high as possible to increase the power density of the RFB, which results in a smaller 

system size. The limit on the position of the redox couples’ potentials is set by the potential 

at which solvent breakdown occurs. In aqueous solutions, this is referred to as water 

electrolysis. The potential range bounded by solvent breakdown is termed the solvent 

window. At a pH of zero, the gas evolution half reactions in water are as follows 

 

 O2 + 4H+ + 4𝑒− ⇌ 2H2O 1.229 V (vs. SHE) (3) 

 

 2H+ + 2𝑒− ⇌ H2 0.00 V (vs. SHE) (4) 

 

In RFB research, gas evolution is typically considered an unwanted side reaction 

and represents a loss in energy efficiency. Capturing and utilization of evolved gases can 

be done; however, it adds another level of complexity to an RFB system that is typically 

avoided as it increases system cost in terms of capital cost and maintenance. The potential 
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at which redox couples operate should, theoretically, be within the limits, shown above, set 

by gas evolution. However, it is not this unequivocal as there are other contributions to the 

potential at which gas evolution occurs. That is, the electrode can have a significant effect 

on the potential of gas evolution by introducing overpotentials to the gas evolution reaction. 

An overpotential is any extra potential, above the standard potential, required for a reaction 

to proceed. The traditional electrode chosen for RFBs is the graphite felt electrode which 

has a high overpotential to gas evolution in aqueous solutions. As a result, the potential at 

which a redox couple operates can extend well beyond its standard potential and cross over 

into the gas evolution territory. For example, in the all-vanadium cell, the standard potential 

of the V2+/V3+ redox couple is -0.255 (vs. SHE) which is below that of HER at low pH. 

Because of this, the reaction at the anode of an all-vanadium RFB competes with HER. 

Finding suitable redox chemistries for use in a RFB is complex. Redox couples 

must be low cost, have good energy density, high reversibility, good reaction kinetics, have 

reasonable potentials (which are inside the gas evolution potentials of aqueous solutions 

on the electrode of choice), and be resistant to and/or amenable to crossover. Energy 

density is dependent on the solubility of the active species, the number of electrons 

transferred per reaction, and the overall potential difference of the electrochemical cell. 

The redox species need to have high solubility. Solubility is not only limited by the 

solubility limit of the active species but, also by the viscosity of the solution. A highly 

viscous solution is undesirable as it will decrease ionic conductivity be increasing the 

diffusion coefficient and increase the cost of the pumping system beyond practical values. 

Multi-electron transfer reactions are preferred as they increase the effective energy density; 

however, they are often limited by reaction kinetics as multi-electron transfer reactions are 
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more complex. Good reaction kinetics correlates to a higher charge and discharge current 

density. Also, high reversibility generates high efficiencies. Both characteristics, kinetics 

and reversibility, are dependent on the relationship between the active species and the 

electrode. High efficiency and good reaction kinetics contribute significantly to cost by 

reducing the size of the RFB system necessary to fit specific energy and power 

requirements. 

Several challenges exist in the use of BDD electrodes for RFBs. Perhaps the most 

glaring is the ability to fabricate BDD films in a cost-effective way. Diamond is notorious 

for the price tag it carries. However, several factors point to a promise of low-cost BDD 

electrodes. First and foremost is the abundance of carbon. Carbon is readily available in 

many shapes and forms. The form commonly utilized as a carbon source for microwave 

plasma-assisted chemical vapor deposition (MPCVD) is methane. Methane is relatively 

abundant and even exists in the atmosphere. We can obtain it from many sources from 

dairy farms to the reduction of CO2. Additionally, the diamond used as an electrode can 

exist as a thin film, with a thickness of several nm, on a more easily fabricated substrate, 

such as graphite. Boron, on the other hand, is higher cost then methane, fortunately the 

amount of B required in BDD is very small compared to C, less than 0.06 % B atoms by 

at.% to achieve metal-like conductivity. 

The fabrication method used in this manuscript, MPCVD, requires a significant 

amount of energy and time to produce BDD films. However, other methods for fabricating 

BDD already exist. Hot filament chemical vapor deposition (HFCVD) can be used to make 

BDD films and can be engineered to grow thin films in a conveyer belt fashion. HFCVD 

does not typically generate the purity to produce gem quality, single crystal diamond but, 
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the quality is acceptable for large scale fabrication acceptable electrode BDD thin films. In 

addition, the diamond industry is pushing the advancement of fabrication technology as 

each company fights for a market share of the ever-growing industry. From gem quality 

diamond to power electronics and even power tools, diamond is emerging in many facets 

of everyday life. Based on the maturity of the technology and the demand for its products, 

it is imagined the cost of thin film BDD fabrication will be continually drive down for 

years to come. 

 

2.5. Current Outlook 

Grid energy storage is currently a hot topic with no clear front runner to solving the 

demand in place by intermittent renewable energy sources. There is a wide variety of 

potential grid energy storage technologies, as demonstrated previously. Each of these 

technologies is being explored by multiple groups worldwide with some technologies, such 

as Li-ion and RFB, commanding the attention of hundreds of researchers. 

In addition to energy storage of intermittent renewable energy sources, grid energy 

storage technologies are in demand for other reasons. Grid energy storage can increase the 

value of renewable energy by utilization as a load leveling device. Grid energy storage 

technologies can help augment power from renewable sources to maintain the proper 

specifications needed for entry into the power grid. Grid energy storage can assist the aging 

power infrastructure in the US and other countries by keeping energy storage on the load 

side of transmission constraint points, which makes the grid more secure, reliable, and 

responsive [38]. Grid energy storage also assists the aging infrastructure by reducing line-

congestion and line-loss through moving electricity at off-peak times, which reduces 



 

44 

generation requirements during peak times [38]. This effect reduces the power load of 

transmission and distribution lines during peak hours which can extend the life of existing 

infrastructure. 

Grid energy storage may also benefit the advancement of electric transportation. 

Grid energy storage technologies are generally non-polluting and, in some cases, non-

destructive to the environment. This allows for more relaxed regulations on the placement 

of grid energy storage sites. As a result, they can be placed closer to cities and residential 

areas. This would greatly facilitate the movement of transportation services to electricity 

power by extending the spread of “plug-in” points throughout the country. Grid energy 

storage may also be significant in emergency preparedness by increasing the vitality of our 

power grid. In addition, grid energy storage can enhance the resilience and robustness of 

our power grid when considering weather outages and other potential disruptions. For the 

reasons outlined here, grid energy storage is poised to grow dramatically in the coming 

years. 

Currently, pumped hydro and CAES systems have the lowest cost in terms of 

$ kWh-1, while pumped hydro is a mature technology with a high energy efficiency [63]. 

However, the maturity of the technology and the long timeline for development means the 

cost of pumped hydro is unlikely to be significantly reduced in the short term. Grid scale 

demonstration of CAES is still necessary to prove its viability. It also requires a significant 

timeline for development. Li-ion offers the best grid energy storage option when 

considering together cost, cycle life, and maturity [63]. The maturity of Li-ion is attractive 

in that, it is well known what to expect from these systems; however, realizing cost 

reductions may be difficult. NaS batteries are expected to significantly reduce capital costs 
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associated with grid energy storage. Unfortunately, this technology is still in its infancy 

and, considering the associated hazards, the future is unknown. 

RFBs are often considered the up and coming front runner to Li-ion technology. It 

is well known that, due to its efficiency, lifetime, and maturity, pumped hydro will be 

around for years to come; however, based on its location dependence and environmental 

impact, widespread use of this technology in terms of grid scale energy storage for 

intermittent renewable energy is unlikely. In terms of maturity, RFB technology is in 

between Li-ion and NaS batteries. It is mature enough to have already been implemented 

as a grid scale energy device in multiple locations throughout the world. Yet, there is still 

room for significant improvement in terms of technological advancements as well as 

optimization of the electrochemical cell itself and the battery management system. Rapid 

improvements in cost, performance, life, and technological and manufacturing readiness 

are expected in the coming years [63]. 

The outlook for RFBs is extremely promising. Pumped hydro storage, which 

currently holds the lion’s share of energy storage applications, cannot support grid energy 

storage for the expanding renewable energy sector due to its location dependence. As a 

result, renewable energy producers are increasingly turning to emerging technologies as an 

alternative. These alternatives have primarily been Li-ion batteries and RFBs. Li-ion 

batteries are a good choice for the reasons outlined previously in Chapter 2; however, they 

do not currently result in a cost competitive overall grid energy system when compared to 

non-renewable sources. In addition, the maturity of the technology leaves little room for 

significant improvement in terms of functionality and more importantly cost. As electric 

vehicles gain popularity and more Li-ion batteries are fabricated, cost will become an ever-
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increasing concern due to the relative rarity of Li on Earth. So, renewable energy producers 

are poised to embrace RFBs in terms of grid energy storage. 

RFB technology has matured to the level of several grid scale implementations 

throughout the world. Even so the technology has a vast amount of room to grow due to 

technological advancements as well as optimization. Currently, RFB technology leans 

heavily on materials and processes that were developed for other technologies such as the 

Nafion membrane from hydrogen/oxygen fuel cells. These membranes are expensive and 

focus on the transfer of hydrogen ions while rejecting all other species transport. However, 

a RFB utilizes liquid phase electrolytes instead of gases and these electrolytes can be made 

from a wide variety of active species, solvents, and supporting electrolytes. As a result, 

Nafion may be far from ideal for a RFB system. There are an overwhelming number of 

avenues to explore when considering RFB research. In addition, optimization of RFBs has 

only scratched the surface. Advancements are continually being made in the proper 

charge/discharge regimes implemented into real world applications. Flow cell shapes and 

designs are another source of optimization, along with the method of electrode 

incorporation. 

Utilizing a low-cost active species would significantly drive the price of the RFB 

system down. Finding suitable redox chemistries for use in a RFB is complex. Redox 

couples must be low cost, have good energy density, high reversibility, good reaction 

kinetics, have reasonable potentials (which are inside the gas evolution potentials of 

aqueous solutions on the electrode of choice) and be resistant to and/or amenable to 

crossover. Energy density is dependent on the solubility of the active species, the number 
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of electrons transferred per reaction, and the overall potential difference of the 

electrochemical cell. 

The redox species need to have high solubility. Solubility is not only limited by the 

solubility limit of the active species but, also by the viscosity of the solution. A highly 

viscous solution is undesirable as it will decrease ionic conductivity be increasing the 

diffusion coefficient and increase the cost of the pumping system beyond practical values.  

Multi-electron transfer reactions are preferred as they increase the effective energy 

density; however, they are often limited by reaction kinetics as multi-electron transfer 

reactions are more complex. Good reaction kinetics correlates to a higher charge and 

discharge current density. Also, high reversibility generates high efficiencies. Both 

characteristics, kinetics and reversibility, are dependent on the relationship between the 

active species and the electrode. High efficiency and good reaction kinetics contribute 

significantly to cost by reducing the size of the RFB system necessary to fit specific energy 

and power requirements. 
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CHAPTER 3 

EXPERIMENTAL 

 

3.1. Electrochemical testing setups 

Several testing setups will be utilized including a full RFB system, epoxied 

electrodes, and multi-port boiling flask. Epoxied electrodes will be used as a 

straightforward method for electrochemical testing of BDD thin films. They allow for 

standard electrochemical tests such as CV and EIS; however, this method is limited in its 

ability to represent scale up. The multi-port boiling flask testing setup was developed to 

avoid using epoxy, which is impossible to remove without damaging or at least modifying 

the electrode surface. The multi-port boiling flask testing setup has the same abilities as 

the epoxied electrodes method but, the electrodes can be removed after testing and 

recharacterized to determine changes brought on by electrochemical methods. The full 

RFB system will allow for charge/discharge testing of an actual RFB. In this research, the 

RFB will be limited to a single cell. Scale up to multiple cells can be realized with similar 

results; however, additional considerations outside of the scope of this research must be 

accounted for. These included leaching currents across cells, ohmic resistances, and sealing 

of multiple cells.  
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3.1.1. Epoxied electrodes 

To begin initial testing on BDD electrodes, an alternative to a typical RFB 

electrochemical cell must be utilized. BDD electrode samples fabricated for this research 

are around 1 cm2 in size. Modifying them for use in a full RFB and assembling the RFB 

each time a new test is performed is not practical. So, the BDD samples are modified by 

affixing a conductive wire to them and attaching them to a glass tube with epoxy, an 

example electrode is shown in Figure 6. For BDD on silicon substrates, the back of the 

electrode, where bare silicon resides, is scratched with a diamond scribe to remove the 

oxide layer. A gallium and indium eutectic is placed on the scratched surface forming 

ohmic contact with the conductive silicon substrate. Then a coiled wire is placed in the 

gallium and indium eutectic and silver paste is painted on top. The silver paste serves as a 

conductive and protective layer to cover and hold the coiled wire in the gallium and indium 

eutectic so that a stronger epoxy can be layered on top. A chemically and electrically 

resistant epoxy is used to cover the BDD sample while attaching it to a glass tube that also 

contains the wire. The wire runs through and out of the glass tube and is used as the 

electrical connection to the testing equipment. Additionally, the epoxy forms a window on 

the BDD surface which defines the electrochemical surface area available for reaction. The 

result is a stick like electrode that can be inserted into an electrolyte solution for testing 

and easily removed. Metal substrates were prepared in almost the same way, less the oxide 

layer scratching and eutectic. 
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Figure 6. Example of an epoxied electrode. The active surface area on the left side is 

defined by the applied epoxy. 

 

3.1.2. Multi-port boiling flask 

The epoxied electrode works well for electrochemical testing; however, its 

limitation is in the permanence of the epoxy. It is impossible to remove the epoxy without 

damaging the sample itself. As a result, non-electrochemical characterization of the BDD 

sample is difficult or impractical to perform. To solve this issue, another testing apparatus 

was developed which utilizes a boiling flask with multiple ports, shown in Figure 7. Two 

of these ports are used for filling the electrolyte, depending on the orientation of the flask. 

Three ports are used for reference and counter electrodes as well as an optional gas bubble 

or blanket to prevent reaction of the electrolyte with the outside air. The last port is an O-

ring joint that is placed on top of the BDD sample. A Viton O-ring and a horseshoe clamp 

will allow for sealing of the BDD sample against the boiling flask. The O-ring joint defines 

the active area of the BDD electrode surface which is exposed to the electrolyte. This 

testing apparatus does not permanently affix and/or deform the BDD sample so, it can 

easily be taken out and characterized before and after each test. 
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Figure 7. Multi-port boiling flask with 3 ports for reference electrode, counter electrode, 

and gas flow, 2 ports for filling of electrolyte solution, and one port for the working 

electrode. 

 

3.1.3. Full cell 

The full RFB system includes everything that is used in a real RFB system ending 

at the external source/sink. That is, the full RFB system includes end plates, conduction 

plates, flow plates, gaskets, electrodes, an ion exchange membrane, storage reservoirs, 

tubing, and all necessary connections. The full RFB, shown in Figure 8, used for testing in 

this study was completely designed and fabricated in house. The primary function of the 

end plates is to compress the cell assembly to ensure good electrical contact between 

components and to seal the liquid electrolyte so that it does not leak. In this design, the end 

plates are made of thick PVC. The conduction plate, made of copper here, is used to 

connect the cell to an external source/sink for charge/discharge. The flow plates are made 

of graphite, as they contact the electrolyte fluid; they must be inert and conductive. The 

flow plates route the flow of electrolyte to the electrode and move electrons in/out of the 

electrolyte from the source/sink. In the design shown in Figure 8, the flow pattern is a 
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simple open pocket. Inside the pocket, the electrode, such as graphite felt, is placed. 

Compression of the electrode leads to good electrical contact with the flow plate. Other 

common flow plate designs include serpentine and interdigitated channels. 

The gaskets in this RFB are Viton, which is compressible and chemically resistant. 

The storage reservoirs hold the electrolyte after charge/discharge and are simple 

polypropylene bottles. They come in various volumes and are chemically resistant. Only 

one storage reservoir is used for the anolyte and one for the catholyte. This means, during 

charge and discharge, the full volume of the electrolyte is cycled through several times. 

This is useful as all the ions are not reduced or oxidized during a single pass unless the 

flow rates are slow enough; however, slow flow rates result in a lower efficiency due to 

low diffusion. Higher flow rates promote turbulence, which results in more active species 

reaching reaction sites. A peristaltic pump was employed as the pump components do not 

contact the fluid, only the tubing. 

 

 
 

Figure 8. Full RFB designed and fabricated at the University of Louisville. 
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3.2. Materials 

BDD electrodes were prepared by microwave plasma-enhanced chemical vapor 

deposition (MPCVD) using H2, CH4, and B2H6 as the plasma gas, C source, and B doping 

source, respectively. The substrate was p-type, <100>, highly conductive Si with a 

resistivity of 0.001 – 0.005 Ω cm. The BDD sample quality was characterized by Raman 

spectroscopy to verify the Raman shift peak is at the correct wavenumber (1332 cm-1) and 

scanning electron microscopy (SEM) to verify the diamond crystal morphology. A new 

BDD sample, each grown using the same pressure, power, flow rates, and duration, was 

used for each redox couple to prevent possible cross contamination issues. Analysis of 

randomly chosen samples from different growth batches verified there was no observable 

change in properties. 

The Ce-based electrolytes were prepared by dissolving Ce(NO3)3·xH2O (Alfa 

Aesar, Haverhill, MA, USA, 99.998 %) in HNO3 (Sigma-Aldrich, St. Louis, MO, USA, 

ACS reagent) or H2SO4 (VWR, Radnor, PA, USA, 95-98 %), and Ce2(CO3)3 (Acros 

Organics, Pittsburgh, PA, USA, 99.9 %) and Ce(SO4)2 (Acros Organics, Pittsburgh, PA, 

USA, 99 %) in H2SO4. The Mn-based electrolytes were prepared by dissolving 

MnSO4·H2O (Sigma-Aldrich, St. Louis, MO, USA, ≥98 %) in HNO3 or H2SO4, 

Mn(NO3)2·4H2O (Sigma-Aldrich, St. Louis, MO, USA, ≥97 %) in HNO3, and 

Mn(ClO4)2·xH2O (Sigma-Aldrich, St. Louis, MO, USA, 99 %) in HClO4 (Sigma-Aldrich, 

St. Louis, MO, USA, ACS reagent). The Fe-based electrolyte was prepared by dissolving 

Fe2(SO4)3·xH2O (VWR, Radnor, PA, USA, reagent) in 1 M H2SO4. The I-based electrolyte 

was prepared by dissolving KI (Alfa Aesar, Haverhill, MA, USA, 99 %) in 1 M KCl 

(Sigma-Aldrich, St. Louis, MO, USA, 99.99 %). The Fe(CN)6-based electrolyte was 
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prepared by dissolving K3[Fe(CN)6] (Sigma-Aldrich, St. Louis, MO, USA, 99 %) in 1 M 

KCl (Sigma-Aldrich, St. Louis, MO, USA, 99.99 %). The Cu-based electrolyte was 

prepared by dissolving CuSO4·5H2O (VWR, Radnor, PA, USA, ACS reagent) in 3 M 

H2SO4. All electrolytes were prepared with DI water (>18.2 MΩ cm). All electrolyte 

solutions were bubbled with N2 for 30 min to remove dissolved O2 prior to measurements. 

 

3.3. Instruments 

BDD samples were grown using a MPCVD reactor (SEKI Technotron-ASTeX 

AX5200S-ECR or SEKI Technotron-ASTeX AX5010). Images of the samples were first 

obtained using an optical microscope (Zeiss Axio Imager.A2m). The samples were then 

imaged with a scanning electron microscope (SEM) to better determine the morphology, 

crystal size, and thickness/growth rate (FEI Nova600 FEG-SEM or TESCAN Vega3 

SEM). To qualitatively determine the purity and B doping concentration of the BDD 

samples, they were characterized with Raman (Reinshaw inVia confocal Raman/PL) and 

FTIR (PerkinElmer Spectrum BX FTIR). Electrochemical testing was done using two 

different potentiostats (Biologic SP200, PGSTAT 128N) both with electrochemical 

impedance spectroscopy (EIS) capabilities. After charge/discharge testing of the all-

vanadium RFB, electrolyte samples were examined using UV-vis (Perkin Elmer 

Lambda 950). After electrochemical testing of the BDD samples using the Mn2+/Mn3+, the 

samples were characterized using energy-dispersive X-ray spectroscopy (EDS) (TESCAN 

Vega3 SEM with EDAX) to determine the amount and/or presence of MnO2 on the BDD 

surface. 
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3.4. Fabrication and demonstration of a RFB 

To understand the challenges involved in the operation and optimization of a RFB, 

it is necessary to build and test a RFB. Therefore, the first objective is to demonstrate the 

ability to fabricate and operate a RFB. To this end, a RFB was designed and fabricated in-

house. The full RFB testing setup is seen in Figure 9. Achieving published values for the 

all-vanadium RFB is essential to beginning research on RFBs in general. This 

accomplishment will give a better understanding of RFBs while building up confidence to 

continue more detailed analysis and modification of RFB systems. 

 

 
 

Figure 9. Full RFB testing setup complete with two storage reservoirs and a peristaltic 

pump. 

 

3.4.1. All-vanadium 

The all-vanadium chemistry was chosen to explore the full RFB test setup as it is 

the most published redox chemistry in the RFB field and so, it provides the most data to be 

utilized for exploration, comparison, and troubleshooting. The overall theoretical potential 
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of this system is 1.246 V. This work will lay the groundwork for the achievement of other 

objectives and provide a basis for comparison using alternate chemistries and electrodes. 

The starting material to make the electrolyte for the all-vanadium RFB is typically 

vanadyl sulfate (VOSO4, which provides the V4+ species) hydrate. This is used as it comes 

in a powder form that readily dissolves in water and does not release any extra chemical 

species then are already present in the H2SO4 solution. It is possible to begin with V5+ in 

the form of V2O5; however, this requires an additional step using a strong reducing agent 

as V2O5 is not readily soluble in water. Reducing V2O5 may be more economical, as V2O5 

is cheap compared to VOSO4 but, it is not ideal for testing as it requires more chemical 

species, the reducing agent, to be introduced into the system. 

The all-vanadium RFB system works by cycling two vanadium redox couples: 

V2+/V3+ in the anolyte and V4+/V5+ in the catholyte. To obtain V3+ from V4+, 

electrochemical reduction at the anode, via constant current or constant voltage charging, 

must be performed. Figure 10 shows electrochemical reduction of V4+ to V3+ and then V3+ 

to V2+ via constant current charging. The transition point where all V4+ has converted to 

V3+ and, V2+ begins to be produced, appears as a noticeable bump in charge curve, resulting 

in an increased potential. At the cathode, during the charging process, V4+ is converting to 

V5+. Because of that, there must be twice the volume of V4+ in the cathode to start. After 

this process is performed, the system now contains charged species in the anode, V2+, and 

cathode, V5+. To bypass this initial charging step, vanadium chloride may be purchased 

with vanadium in the V2+ or V3+ oxidation state. Vanadium chloride is readily soluble in 

water; however, it releases chlorines into the solution which may not be ideal. For the 
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purposes of this study, all starting solutions were made from vanadyl sulfate and sulfuric 

acid for use in the full RFB. 

 

 
 

Figure 10. Initial charge curve to convert V(IV) to V(II). 

 

The electrodes used for this testing were AvCarb G100 graphite felt with an area of 

10 cm2, and the ion-exchange membrane was Nafion NRE 212. A common metric used to 

compare energy storage systems is the energy efficiency. Energy efficiency for a RFB is 

calculated using 

 

 EE = CE ∗ VE (5) 

 

where CE is the coulombic efficiency and VE is the voltage efficiency. When using the 

same charge and discharge current, the coulombic efficiency is calculated using 
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 CE =
td

tc
 (6) 

 

where td is the total discharge duration and tc is the total charge duration. Voltage 

efficiency is calculated using 

 

 VE =
Vavg,d

Vavg,c
 (7) 

 

where Vavg,d is the average discharge potential and Vavg,c is the average discharge potential. 

This flow battery exhibited great performance, achieving energy efficiencies as high as 

86 % at 20 mA cm-2. That is equal to, or better than, results from recent published literature, 

without optimization. Figure 11 shows the coulombic, voltage, and energy efficiency for 

the in-house fabricated RFB which underwent 49 cycles. The coulombic efficiency stayed 

near 94 % for the duration of the cycling. The slight increase in the first few cycles is due 

to conditioning of the ion-exchange membrane. The voltage efficiency continually 

declined, losing about 1 % over the duration of 49 cycles. This is a result of decreased ionic 

conductivity in the ion-exchange membrane, resulting from mass transport via migration 

of active species at high and low SOC. Active species transport through the ion-exchange 

membrane blocks transport pathways of H+ ions, decreasing the ionic conductivity with 

each cycle. 
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Figure 11. Coulombic, voltage, and energy efficiency of the in-house fabricated flow 

battery which underwent 49 charge/discharge cycles. 

 

Capacity fade over the duration of 49 cycles for the in-house fabricated RFB is 

shown in Figure 12. Capacity fade is due to crossover of vanadium species from anolyte to 

catholyte, or vice versa. Crossover occurs in both directions in a RFB; however, the net 

flow is from anolyte to catholyte in the all-vanadium RFB due to the smaller particle size 

of the V2+ and V3+ ions. When an active species crosses the membrane, it will react with 

particles on the other side to equilibrate. Particles from the anolyte will want to oxidize and 

give up electrons when they move to the catholyte. This results in either the reduction of 

catholyte active species or the neutralization of the H+ ions back into water molecules. The 

electrolyte volume for this RFB was 25 mL. The initial capacity is small, and the capacity 

fade appears exaggerated. 
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Figure 12. Charge and discharge capacity over 49 cycles using the in-house fabricated 

all-vanadium RFB. 

 

The following images demonstrate the ability of UV-vis to determine the oxidation 

state of vanadium present in a sample. With this data the concentration of each species can 

be determined and, by extension, the state of charge of the electrolyte. Figure 13 shows 

UV-vis of a discharged anolyte. The anolyte, in its fully discharged state, should contain 

only V3+ ions. The UV-vis result is compared to a result derived from literature. The UV-

vis spectra compare well with literature and confirms the discharged state of the anolyte 

contains primarily the V3+ ion. 
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Figure 13. UV-vis of the discharged anode electrolyte. expected to be V3+, compared to 

literature [12]. 

 

The next image demonstrates the use of cyclic voltammetry (CV) in electrolyte 

analysis. Figure 14 shows five cycles of CV simultaneously, with a scan rate of 5 mV/s, of 

the vanadium catholyte using graphite felt as the electrode. Any difference in the cycles 

are nearly imperceptible, indicating good stability while cycling. In this setup the counter 

electrode is a graphite rod and the reference electrode is Ag/AgCl. This test was performed 

with the electrodes suspended in a beaker filled with the electrolyte solution. Each of the 

five cycles overlaps the others very closely, this is indicative of good cyclability. The 

average potential of the two peaks gives the potential for the redox couple. For Figure 14, 

this value is 0.890 V vs. Ag/AgCl (1.089 V vs. SHE). Using the potential for the cathode 

and anode redox couples, the expected potential for the full RFB is determined from CV 

analysis of the anolyte and catholyte. The peak separation indicates the reversibility of the 

electrode. The peak separation for the CV in Figure 14 was found to be 0.85 V. The peak 
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ratio of a CV curve can qualitatively indicate the coulombic efficiency of the system. Peak 

ratio is difficult to determine as it depends on the scan rate and the potential at which the 

curve changes direction. The peak ratio of the CV was calculated using 

 

 
𝑖pa

𝑖pc
=

(𝑖pa)0

𝑖pc
+

0.485(𝑖sp)0

𝑖pc
+ 0.086 (8) 

 

where 𝑖𝑝𝑎 is the anodic current peak and 𝑖𝑝𝑐 is the cathodic current peak, and 𝑖sp is current 

at which the CV scan direction changes [9]. The peak ratio for the CV in Figure 14 was 

found to be 1.97. A peak ratio of unity is desired and indicates a high columbic efficiency 

can be obtained. The poor performance of the graphite felt in this CV analysis was a result 

of poor wetting of the graphite felt (due to a no flow condition). This has since been 

corrected by applying a vacuum to the graphite felt while it is in the electrolyte solution, 

which pulls out any air trapped in the porous felt. After this was done, the peak separation 

and peak ratio significantly reduced. 
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Figure 14. Five cycle CV of an unmodified graphite felt at a scan rate of 5 mV s-1 with 

Ag/AgCl as the reference electrode. 

 

3.4.2. Vanadium/manganese 

The V2+/V3+ and Mn2+/Mn3+ redox couples will be used in the full RFB test setup 

to explore manganese as a cathode redox chemistry. Vanadium will be used as the anode 

redox chemistry because it is a well-known chemistry. Manganese is a favorable redox 

couple due to its low cost and high potential. The overall theoretical potential of this system 

is 1.797 V. In preliminary findings it was found that manganese is a promising redox couple 

on a BDD electrode, warranting its exploration in a full RFB with a graphite electrode. 

Using the well know vanadium anolyte redox couple allows for a better understanding of 

the challenges present employing the Mn2/Mn3+ redox couple as the catholyte. This 

objective will aid in the understanding and use of manganese as a redox couple for RFBs. 

The anolyte of the vanadium/manganese RFB was made up of 0.5 M VOSO4 in 

3 M H2SO4. The manganese catholyte was 0.5 M MnSO4 in 3 M H2SO4. Charge and 
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discharge cycles were performed with a current density of 20 mA cm-2. The electrodes and 

ion-exchange membrane were the same as previously used, graphite felt and Nafion, 

respectively. Figure 15 shows charge and discharge curves for 4 cycles. It is seen from the 

cycle data that the capacity reduces significantly with each cycle as the charge and 

discharge durations get lower. The average charge capacity over the 4 cycles is 163.7 mAh 

while the average discharge capacity is 83.1 mAh. This is attributed to active species 

crossover and precipitation of MnO2 in the catholyte which decreases the concentration of 

active species. 

 

 
 

Figure 15. Charge/discharge cycles for the RFB using vanadium as the anolyte and 

manganese as the catholyte. 

 

The coulombic, voltage, and energy efficiency for the RFB using vanadium as the 

anolyte and manganese as the catholyte are shown in Figure 16. The average coulombic 

efficiency was 51.04 %, the average voltage efficiency was 92.08 %, and the average 
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energy efficiency was 46.99 %. The efficiencies are relatively stable over four cycles; 

however, the coulombic efficiency is low. Like capacity fade, this is a result of active 

species crossover and precipitation of MnO2. The voltage efficiency is reasonably high 

indicating the system has enough ionic and electrical conductivity. 

 

 
 

Figure 16. Coulombic, voltage, and energy efficiency for an RFB using vanadium as the 

anolyte and manganese as the catholyte. 

 

The vanadium anolyte and manganese catholyte, with the same composition as 

before, was tested again with a current density of 50 mA cm-2. Increasing the current 

density can increase the coulombic efficiency by allowing less time for crossover to occur. 

Figure 17 shows a 5-cycle charge/discharge test. Capacity loss is seen by the reduced 

charge and discharge duration as the cycle numbers increase. The average charge capacity 

was 33.6 mAh and the average discharge capacity was 27.1 mAh. This test was performed 

using the same volume of electrolyte as the previous test. The capacity was already reduced 
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after the test cycles shown in Figure 15. Additionally, running at a higher current density 

results in reduced charge capacity as the cutoff conditions are met before the SOC reaches 

the same state as a lower current density. The discharge power density was 73 mW cm-2; 

over double the previous test, as expected. 

 

 
 

Figure 17. Charge/discharge cycles for an RFB using vanadium as the anolyte and 

manganese as the catholyte with a charge/discharge current density of 50 mA cm-2. 

 

The coulombic, voltage, and energy efficiency of the vanadium anolyte and 

manganese catholyte test at 50 mA cm-2 are shown in Figure 18. The average coulombic 

efficiency over the 5 cycles was 80.35 %, the average voltage efficiency 79.58 %, and the 

average energy efficiency 63.95 %. The efficiencies remain relatively constant over the 5 

cycles. Compared to the previous test at 20 mA cm-2, the coulombic efficiency increased 

significantly while the voltage efficiency dropped significantly. The energy efficiency 

increased by ~17 %. The decrease in voltage efficiency is a direct result of increased current 
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density. As voltage efficiency is affected by resistance in the cell components, an increase 

in current intrinsically results in a decrease in voltage efficiency. The gradual decline of 

voltage efficiency as the cycle number increases are attributed to coating of the graphite 

felt with the precipitate MnO2, resulting in increased ohmic losses. 

 

 
 

Figure 18. Coulombic, voltage, and energy efficiency for an RFB using vanadium as the 

anolyte and manganese as the catholyte with a charge/discharge current density of 

50 mA cm-2. 

 

3.4.3. Zinc/manganese 

Testing of the zinc and manganese redox couples together is a step into the 

unknown as these redox couples have never been tested together. The zinc redox couple is 

 

 Zn2+ + 𝑒− ↔ Zn -0.7618 V (vs. SHE) (9) 
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The overall theoretical potential of this system is 2.303 V. There is no published literature 

on this system together; however, publications exist on each separately with a large amount 

of information on the zinc anolyte. Zinc and manganese are cheap compared to vanadium 

and with such a high theoretical potential, this system could be substantially better than the 

all-vanadium system in terms of cost, energy density, and power density. 

The same catholyte composition as previous testing was used, 0.5 M MnSO4 in 

3 M H2SO4. The anolyte composition was 0.5 M ZnSO4 in 3 M H2SO4. The electrodes and 

ion-exchange membrane were the same as previously used, graphite felt and Nafion, 

respectively. The current density used for charge/discharge testing was 20 mA cm-2. The 

charge/discharge cycle results are shown in Figure 19. It is obvious from the 

charge/discharge curve durations that the discharge capacity, 10.08 mAh, was not close to 

the charge capacity, 33.11 mAh. The cell was taken apart after cycling and no zinc was 

observable on the graphite felt electrode through an optical microscope. The low discharge 

capacity is due to poor plating of the zinc on the graphite felt. The discharge power density 

was 39.2 mW cm-2, which is higher than the vanadium and manganese system at the same 

current density, due to the high discharge potential. At the onset of discharge the potential 

difference of the cell was above 2.1 V, in close agreement with the anticipated potential 

difference based on standard redox potentials. With controlled plating and good kinetics, 

this RFB could exhibit a very high energy density. 
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Figure 19. Charge/discharge cycles for an RFB using zinc as the anolyte and manganese 

as the catholyte with a charge/discharge current density of 20 mA cm-2. 

 

The coulombic, voltage, and energy efficiency are shown in Figure 20. The voltage 

efficiency was a respectable 86.26 %; ionic and electrical conductivity are not a large issue. 

The coulombic efficiency was 30.16 % resulting in an energy efficiency of 26.02 %. This 

is attributed to the poor plating of zinc onto the graphite felt electrode, which means that 

little zinc is available to take place in discharge reactions. 
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Figure 20. Coulombic, voltage, and energy efficiency for an RFB using zinc as the 

anolyte and manganese as the catholyte with a charge/discharge current density of 

20 mA cm-2. 

 

After testing, the vanadium/manganese and zinc/manganese cells were taken apart 

and the graphite felt was examined using a SEM. Figure 21(a) shows a sample of untested 

graphite felt. The graphite in graphite felt is structured into fine uniform hairs randomly 

intertwined throughout the sample with little impurities visible. Figure 21(b) shows the 

anode of the vanadium/manganese RFB. The vanadium anolyte does not have any chemical 

reaction avenues to precipitate so, the particles present are a result of manganese ion 

crossover. After crossover, some of the manganese ions that reached the electrode surface 

participated in electrochemical reactions until forming the MnO2 precipitate. Figure 21(c) 

shows the cathode of the zinc and manganese RFB. The precipitated MnO2 has attached to 

and agglomerated on the hairs of the graphite felt. This is the source of the capacity and 

coulombic efficiency loss. Figure 21(d) is the same cathode but, magnified further. From 
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this image, it is clear the coating of precipitate is thick and will reduce the number of 

reaction sites on the carbon felt.  

 

  
(a) (b) 

  
(c) (d) 

 

Figure 21. SEM images of graphite felt (a) before testing, (b) after testing of the anode in 

the vanadium manganese RFB, (c) after testing of the cathode in the zinc/manganese 

RFB, and (d) higher magnification after testing of the cathode in the zinc/manganese 

RFB. 
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Additional testing and optimization of the all-vanadium RFB and zinc redox couple 

is outside of the scope of this research. Although, great results were obtained with the all-

vanadium RFB. It is desired with this study to push the envelope of RFB research. The zinc 

anolyte is promising due to its low cost and low potential; however, this is a plating 

reaction. Plating reactions remove the fundamental advantage of RFB by reconnecting 

energy and power. Recent research has shown that the separation of energy and power in 

plating reactions can be achieved by introducing a conductive slurry into the electrolyte 

and plating onto that slurry [75]. The conductive slurry is flowable so, the charged active 

species can flow out of the electrochemical cell and into storage tanks. 
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CHAPTER 4 

THE Mn2+/Mn3+ AND Ce3+/Ce4+ REDOX COUPLES AS CATHOLYTES FOR RFBs 

 

4.1. Background and state-of-the-art 

The use of the manganese redox couple, Mn2+/Mn3+, has been proposed recently 

and tested in both aqueous and non-aqueous electrolyte solutions. The manganese redox 

couple chemical reaction and standard electrode potential is 

 

 Mn3+ + 𝑒− ↔ Mn2+ 1.5415 V (vs. SHE) (10) 

 

where this redox couple is used in the catholyte of an aqueous RFB [96]. A primary issue 

with the manganese redox couple is the spontaneous disproportionation of Mn3+ to the 

precipitate MnO2 according to the following reaction 

 

 2Mn3+ + 2H2O ↔ Mn2+ +MnO2 + 4H+ (11) 

 

Kaku et al. studied the effect of the Ti4+ ion on the manganese redox couple [51]. 

They found that by mixing Ti4+ with the manganese redox couple, disproportionation of 

Mn3+ to MnO2 was suppressed and the morphology of MnO2 improved by maintaining a 

small particle size that has the ability to flow through the battery without clogging, and 

reduce back to Mn2+ on the electrode surface [51]. In this study, the Ti4+/Ti3+ redox couple 
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was used as the anolyte. The anolyte and catholyte were combined, forming a mixed 

electrolyte. The use of a mixed electrolyte has the benefit of reducing crossover effects by 

decreasing the concentration gradient across the ion-exchange membrane [51]. The 

drawback to using a mixed electrolyte is a possible decrease in solubility of the active 

species. 

To study the effects of Ti4+ on the disproportionation of Mn3+, the samples of Kaku 

et al. contained varying concentrations of titanium (0, 0.25, 0.5, 0.75, and 1 M) with a fixed 

concentration of manganese and sulfuric acid, 1 M and 3 M, respectively [51]. Each sample 

was charged to a 50 and 90 % SOC and then stored for 1 week at room temperature. The 

samples were analyzed by inductively coupled plasma atomic emission spectroscopy 

(ICP-OES), scanning electron microscopy (SEM) with energy dispersive X-ray 

spectroscopy (EDX), and X-ray diffraction (XRD). After one week, the precipitate in the 

stored sample was separated and the SOC of the supernate was obtained by ICP-OES. 

Comparing this with the original SOC allows for the calculation of MnO2 which has 

precipitated. With a high Ti4+ concentration and 50 % SOC, the amount of precipitate 

decreased significantly, close to zero with 1 M titanium [51]. With a 90 % SOC, the 

decrease in MnO2 precipitation was less dramatic [51]. Kaku et al. found that increasing 

the Ti4+ concentration, at 90 % SOC, lead to a decrease in MnO2 particle size, from over 1 

μm at low titanium concentration to less than 100 nm at high titanium concentration, shown 

in Figure 22(a and b) [51]. 
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(a) (b) 

 
(c) 

 

Figure 22. Morphology of MnO2 precipitates after charging to 90 % SOC in a 1 M 

manganese and 3 M sulfuric acid solution with (a) 0 M titanium and (b) 1 M titanium; (c) 

cyclic voltammetry of a 1 M manganese and 3 M sulfuric acid solution with a varying 

concentration of titanium (Ti 100 % being 1 M titanium) [51]. 

 

With a high concentration of titanium, the main phase found was gamma-MnO2, 

which is more reactive compared to alpha-MnO2, found at lower titanium concentrations 

[51]. It was determined that the presence of Ti4+ ions affect the crystal structure of MnO2 

resulting in a more reactive phase and lower crystallinity [51]. UV-visible spectroscopy 

(UV-vis) showed that in the mixed electrolyte, the Ti4+ ion makes a complex with the Mn3+ 
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ion [51]. Figure 22(c) shows a decrease in peak separation and asymmetry of the CV curves 

with increased titanium content. 

Dong et al. explored the use of a mixed Ti4+ and Mn2+ aqueous electrolyte in a RFB 

[22; 23]. The titanium redox couple chemical reaction and standard electrode potential is 

 

 TiO2+ + 2H+ + 𝑒− ↔ Ti3+ + H2O 0.1 V (vs. SHE) (12) 

 

where the standard theoretical potential of the titanium and manganese redox reactions is 

1.41 V; high compared to other aqueous systems [22; 23]. Dong et al. prepared the mixed 

electrolyte using up to 1 M MnSO4, up to 1.5 M TiOSO4, and 3 M H2SO4 [22; 23]. The 

cell used for electrochemical testing had an electrode area of 0.785 cm2 and used carbon 

felt for both the anode and cathode [22; 23]. For the manganese only electrolyte, potential 

varies with SOC and peaks at a SOC of 40 %, after which disproportionation to MnO2 

decreases the concentration of Mn3+ resulting in a lower potential [22; 23]. With the mixed 

electrolyte, potential continues to increase up to 90 % SOC, indicating the suppression of 

MnO2 precipitation [22; 23]. A flow cell using graphite felt with an active area of 9 cm2 

was used for charge/discharge testing, Figure 23(a) [22; 23]. 
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(a) (b) 

 

Figure 23. (a) Charge/discharge testing of a full RFB using a mixed titanium and 

manganese electrolyte [22]. (b) EIS of a symmetric cell [22]. 

 

The cell exhibited an energy efficiency of 88.7 % with a coulombic efficiency of 

99.5 % and a voltage efficiency of 89.2 % at a current density of 50 mA cm-2 [22; 23]. 

Carbon corrosion was observed at the cathode [22; 23]. To improve durability of the 

electrode, high-temperature oxidation resistant carbon paper was used [22; 23]. The carbon 

paper was pretreated by heat treating it in air at 700 °C for 0.5 to 2 hours [22; 23]. 

Dong et al. also used electrochemical impedance spectroscopy (EIS) with a symmetric cell 

to test the internal resistance when using the mixed electrolyte with different electrodes, 

Figure 23(b) [23]. The EIS response indicated heat treatment reduces charge transfer 

resistance. This is believed to be a result of improved wettability [23]. Power density 

reached a maximum of 357 mW cm-2 at 50 % SOC [22; 23]. At high SOC the concentration 

of Mn3+ is increased resulting in increased precipitation of MnO2, which disturbs reactant 

transport [23]. Using carbon felt, the power density increased to 640 mW cm-2; however, 

significant oxidation and corrosion of the electrode occurred [23]. With carbon paper as 

the cathode and carbon felt as the anode, Dong et al. were able to achieve an energy 
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efficiency of 83.2 %, coulombic and voltage efficiency of 99.8 and 83.4 %, respectively, 

at a current density of 100 mA cm-2 [23]. 

Hong et al. studied the use of the manganese redox couple (Mn2+/Mn3+) as the 

catholyte and the vanadium redox couple (V2+/V3+) as the anolyte [41]. The standard 

theoretical potential of theses redox couples is 1.77 V, high compared to other aqueous 

systems (all-vanadium 1.26 V, iron-chromium 1.18 V) [41]. The electrolyte used for 

charge/discharge testing was composed of 1.2 M Mn2+ in 3 M H2SO4 as the catholyte and 

1.2 M V3+ in 3 M H2SO4 as the anolyte [41]. The flow battery cell employed 

polyacrylonitrile (PAN) based carbon felt electrodes with an electrode area of 8 cm2 [41]. 

The electrodes were pretreated by immersion in sulfuric acid for 5 h, washed to neutral pH, 

and then heat treated for 2 h at 450 °C [41]. Nafion 117 was used as the membrane and the 

electrolyte flow rate was 6 mL min-1 [41]. During CV with a SCE reference electrode, an 

oxidation peak was observed at 1.29 V and two reduction peaks at 1.11 and 0.76 V [41]. It 

was found, by using a transient potential-step experiment and the Butler-Volmer equation, 

that the reduction peak at 1.11 V is associated with reduction of Mn3+ to Mn2+ and the 

reduction peak at 0.76 V is associated with disproportionation of MnO2 to Mn2+ [41]. 

The diffusion coefficient of Mn2+ was found by Hong et al. to be 

0.236 x 10-6 cm2 s-1 using the Levich equation 

 

 𝑖𝑑 = 0.0620𝑛𝐹𝐴𝐷
2
3⁄ 𝜐−

1
6⁄ 𝐶𝜔

1
2⁄  (13) 

 

where 𝑖𝐷 is the limiting current density, 𝑛 is the number of electrons transferred, 𝐹 is 

Faraday’s constant, 𝐴 is the electrode area, 𝐷 is the diffusion coefficient, 𝜐 is the kinematic 
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viscosity, 𝐶 is the active species concentration, and 𝜔 is the angular rotation rate of a 

rotating disc electrode (RDE) [41]. Figure 24(a) shows the linear polarization of a 

manganese electrolyte at different rotation rates. The limiting currents at different 

potentials were plotted against the square root of angular velocity, shown in Figure 24(b).  

Using EIS, Hong et al. determined that a 3 M sulfuric acid concentration was optimum as 

a higher concentration results in mass transport difficulties due to an increase in 

viscosity [41]. A degradation in the cycle performance became apparent after 8 cycles; 

however, the average discharge voltage was 1.66 V, substantially higher than the all-

vanadium RFB [41]. Hong et al. achieved an energy efficiency of 81.2 % at 80 mA cm-2 

with a coulombic efficiency of 92.5 % and a voltage efficiency of 85.3 % [41]. 

 

  
(a) (b) 

 

Figure 24. (a) Linear polarization of a manganese electrolyte at different rotation rates 

[41]. (b) Limiting current at different potentials plotted against the square root of the 

angular velocity for a manganese electrolyte [41]. 

 

Xue et al. studied the Mn2+/Mn3+ redox couple to explore a suitable electrode 

material, supporting electrolyte, and the electrochemical reaction mechanism [109]. 
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Polyacrylonitrile (PAN) based carbon felt and spectral pure graphite were used as the 

electrode for testing [109]. Xue et al. found that when running charge/discharge cycles with 

spectral pure graphite, no deposition of MnO2 occurred; however, with carbon felt, some 

deposition was found and tested using XRD to confirm it was MnO2 [109]. During CV an 

oxidation peak was seen at 1.29 V vs. a saturated calomel electrode (SCE) and found to 

correspond with the oxidation of Mn2+ to Mn3+ [109]. Two reduction peaks were seen at 

1.11 V and 0.76 V and found to correspond to the reduction of Mn3+ to Mn2+ and 

disproportionation of MnO2 to Mn2+, respectively [109]. At 5 M sulfuric acid, the ratio of 

peak current was about 1.036, showing high reversibility [109]. With an increase in sulfuric 

acid concentration, the solubility of manganous sulfate quickly decreased to 0.17 M at 6 M 

sulfuric acid [109]. Such a low active species concentration severely limits energy density 

and is not practical. Using EIS, at 5 M sulfuric acid the electrolyte resistance was found to 

be 0.240 Ω and the charge transfer resistance was found to be 0.980 Ω [109]. Xue et al. 

demonstrated an energy efficiency of 62.7 % with a current density of 20 mA cm-2 [109]. 

The coulombic efficiency was 69.4 % and the voltage efficiency was 90.4 % with an 

average discharge voltage of 1.66 V [109]. 

Sleightholme et al. developed a non-aqueous flow battery using 0.05 M manganese 

acetylacetonate, with the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples, in acetonitrile with  

0.5 M tetraethylammonium tetrafluoroborate as the supporting electrolyte [89]. The 

coulombic efficiency of this flow battery was 74 % after 3 cycles with an energy efficiency 

of 21 % due to a low voltage efficiency [89]. The low voltage efficiency was contributed 

to the large electrode separation in the H-cell, 10 cm, and the use of an anion-exchange 

membrane which results in significant ohmic overpotentials [89]. Chen et al. developed a 
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manganese-hydrogen hybrid battery using the Mn2+/MnO2 redox couple at the cathode 

[15]. The battery exhibited a discharge voltage of 1.3 V at a current density of 

100 mA cm-2 with a lifetime of more than 10,000 cycles without decay [15]. With a 

4 M Mn2+ solution, the energy density was found to be 210 Wh L-1 [15]. Using 1 M MnSO4 

with 0.05 M H2SO4, an energy efficiency of 71 % was obtained [15]. XRD of the MnO2 

coated carbon felt confirmed the gamma phase [15]. Chen et al. fabricated a cylindrical 

cell to demonstrate scale-up of the Mn-H battery, shown in Figure 25. The cylindrical cell 

was composed of a cylindrical steel vessel lined with a layer of carbon felt as the cathode 

with a platinum coated carbon felt anode at the center of the vessel [15]. The chamber was 

filled with the Mn2+ electrolyte; no membrane was utilized [15]. The cylindrical cell 

achieved a coulombic efficiency of 96.7 % after 50 cycles and retained 94.2 % of its charge 

capacity after 1,400 cycles [15]. 

 

 
 

Figure 25. Schematic and photograph of cylindrical cell used to operate a manganese-

hydrogen hybrid battery. 
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Pan et al. demonstrated a non-flowing zinc/manganese battery using the Zn/Zn2+ 

redox couple combined with a α-MnO2 nanofiber cathode and zinc metal anode [72]. The 

system exhibited a capacity retention of 92 % after 5,000 cycles [72]. The prepared MnO2 

cathode exhibited a highly crystalline structure seen using a high-resolution transmission 

electron microscopy (HRTEM) [72]. After the first discharge cycle, the micrometer-long 

nanofibers changed to short nanorods and nanoparticle aggregates [72]. This was found to 

be beneficial as it enhanced the structural mechanics and kinetics of the cathode by 

releasing strain and reducing diffusion distance [72]. Using TEM and XRD, Pan et al. 

found that, instead of Zn2+ intercalation, MnO2 reacts with water to form MnOOH and 

ZnO2 reacts with water to form large flake-like ZnSO4[Zn(OH)2]3 [72]. 

The difficulties in using the Mn2+/Mn3+ redox couple in a RFB is fouling of the 

electrode, gas evolution, active species crossover, and spontaneous precipitation of MnO2 

that comes from the charged manganese active species Mn3+. The MnO2 precipitate results 

in reduced capacity of the catholyte, a passivating layer on the electrode surface, and 

potential clogging of the fluid flow system. Currently, only a handful of studies have been 

published which report the use of manganese as the cathode redox couple in a 

RFB [23; 41; 51; 109]. Some work has been done to alleviate issues resulting from the 

precipitation of MnO2, with promising results; however, still little is known about the 

mechanism of this reaction. The higher potential of manganese results in significant 

amounts of oxygen evolution and fouling of the standard RFB electrode, graphite, 

compared to the vanadium catholyte.  

The Ce3+/Ce4+ redox couple shows promise in RFB due to its good reversibility, 

high kinetics, high solubility in some solvents, high potential, and cost compared to 
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vanadium. Upon its inception, platinum-based electrodes were often used for the Ce3+/Ce4+ 

redox couple because they allow high current densities without degrading. The cost of 

platinum-based electrodes; however, is prohibitive. The challenge in selecting an electrode 

for cerium is activity of the redox couple on its surface, degradation due to corrosion at 

high potentials, activity toward hydrogen evolution, and cost. Several different electrode 

materials were tested for use in a Zn/Ce RFB including different graphite felt modifications 

and platinized titanium mesh [55]. Leung et al. used methanesulfonic acid as a solvent due 

to the high solubility of cerium ions. Using a platinized titanium mesh electrode, an energy 

efficiency of 43 % was obtained at a current density of 50 mA cm-2 [55]. With a carbon 

felt electrode the energy efficiency was 63 % at 50 mA cm-2 [55]. Leung et al. found no 

evidence of corrosion using the platinized titanium mesh; however, corrosion was observed 

on the graphite electrode and carbon particles were observed in the electrolyte solutions 

after operation [55]. 

The addition of chloride ions in the methansulfonate anolyte solution was explored 

by Amini et al. [3]. The electrodes utilized in this iteration of the Zn/Ce RFB were 

platinized titanium mesh as the cathode and a copper current collector, on which Zn is 

deposited, as the anode. The addition of chloride ions increased energy efficiency from 

38.8 to 51.9 % under the same conditions and the number of cycles increased from 97 to 

166 [3]. The Zn/Ce RFB offers extremely high cell potential; however, the primary 

challenges it faces are low energy efficiency, low current density, carbon corrosion when 

using traditional carbon-based electrodes, and high electrode cost when using a platinized 

electrode. 
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Na et al. developed a cerium/lead flow battery using methanesulfonic acid as the 

supporting electrolyte and achieved an energy efficiency of 86 % over 800 cycles with a 

coulombic efficiency of 92 % at a current density of 5 mA cm-2 [65]. The cerium-lead RFB 

utilizes the Pb/Pb2+ redox couple in the anolyte and the Ce3+/Ce4+ redox couple in the 

catholyte. This chemistry offers high redox potential from Ce, which increases power 

density, and an anolyte that suppresses hydrogen evolution. This is a hybrid RFB as the 

anolyte undergoes a plating reaction during charge. 

Chen et al. demonstrated another hybrid RFB using an aqueous ionic liquid 

electrolyte, 1-butyl-3-methylimidazolium chloride (BMImCl)-H2O, with Zn and cerium 

redox couples [14]. The zinc-cerium RFB uses the Zn/Zn2+ redox couple in the anolyte and 

the Ce3+/Ce4+ redox couple in the catholyte. In this system, BMImCl offers high stability 

against hydrolysis, allowing an expanded electrochemical window of 3 V. In addition, the 

chlorine ion from BMImCl can act as the charge carrier with the use of an AEM. Arenas 

et al. tested different platinum/titanium electrode structures (plate, micromesh, and felt) for 

use in a zinc/cerium hybrid flow battery [4]. They found that platinized-titanium 

micromesh is a more effective electrode material and titanium felt with high platinum 

coverage has the best volumetric mass transport characteristics. Testing was performed at 

low current densities, 0.025 to 0.075 mA cm-2, to reduce the impact of ohmic losses due to 

the AEM [14]. 

 

4.2. Rationale 

To advance the agenda of RFB technology, it is necessary to develop a low-cost 

redox chemistry that can compare to the performance metrics of the all-vanadium RFB 
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while avoiding the poor performance and longevity of plating reactions. Based on current 

research, which heavily utilizes traditional carbon-based electrodes, it is clear a new 

electrode material is needed. Several low-cost redox couples have been explored; however, 

each suffers from two primary downfalls. One is an insufficient potential, such as the 

Fe2+/Fe3+ redox couple with a standard electrode potential of 0.77 V. A low operating 

potential results in a low power density. This requires more and larger electrochemical cells 

to meet power requirements, significantly increasing the systems capital cost. The second 

primary downfall is the existence of carbon corrosion and oxygen evolution at high 

potentials. The study by Leung et al. makes clear that traditional carbon-based electrodes 

cannot maintain their integrity in the environment imposed by a Ce3+/Ce4+ redox couple. 

Additionally, the low energy efficiency shows evidence of significant efficiency loss due 

to gas evolution at the cathode electrode. 

BDD can answer both challenges presented above through its significantly larger 

solvent window and extreme resistance to corrosion. With these traits, redox couples such 

as Ce3+/Ce4+ and Mn2+/Mn3+ can be utilized without corrosion and with less gas evolution, 

increasing the service life of the electrode and the energy efficiency of the system. The aim 

of Chapter 5 is the demonstration of BDD’s viability with high potential, low-cost redox 

couples in a RFB.  

 

4.3. Fabrication and characterization of BDD 

To test BDD as an electrode in electrochemical systems, BDD must be obtained. 

Currently, there are several manufacturers of BDD samples that can be readily purchased 

and tested. However, the user has very little control over the key characteristics of these 
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samples. The ability to fabricate these samples in-house offers extensive benefits. 

Fabrication allows for control of crystal size, crystal purity, graphitic content, boron doping 

levels, thickness, and surface functionalization. The quantification and verification of each 

characteristic allows for intelligent reasoning to be applied to the optimization of BDD for 

use as an electrode in electrochemical systems. Two reactors are used for the grow of BDD 

and are referred to as the small Seki and the big Seki; both purchased from Seki Diamond 

Systems. The big Seki is capable of a higher power and has a heated stage. 

Microwave-assisted plasma (MAP) chemical vapor deposition (CVD) was used to 

grow thin films of BDD onto various substrates. Hydrogen was used as the carrier gas, 

which also serves the purpose of preferentially etching sp and sp2 carbon phases, allowing 

for a more pure crystal phase [61]. Hydrogen plasma also etches sp3 carbon (diamond); 

however, the etch rate of sp3 is slower than sp and sp2. As a result, hydrogen supports the 

growth of sp3 carbon. Methane was used as the carbon source for diamond growth. 

Operating in a methane starved environment results in larger crystal sizes and less NDC 

content. Boron powder or diborane gas (B2H6) provides the doping source and is 

implemented into the diamond crystal structure as it grows producing conductive, P-type, 

BDD.  Figure 26 shows an SEM image of BDD, grown with boron powder as the dopant 

source, on a conductive silicon substrate. 
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Figure 26. SEM image of a boron doped diamond surface showing continuous crystal 

growth across a silicon wafer surface. 

 

The crystallinity of the diamond is clear from this image, as is the continuous 

diamond structure, absent gaps or pinholes. The drawback of using boron powder is the 

inability to control the boron doping content and difficulty in keeping the substrate surface 

clear of debris prior to commencement of the plasma. 

BDD electrode were also fabricated using tungsten and molybdenum as substrates 

to determine the difficulty of growing on metal substrates and the resulting advantages and 

disadvantages. Growth on a metal substrate, which has a higher conductivity than p-type 

silicon, resulted in a reduction of the peak separation observed by CV; this data is presented 

in section 5.4. A BDD thin film on a tungsten substrate at different magnifications is show 

in Figure 27. These images show good coverage of microcrystalline BDD. After repeated 

use, delamination of the BDD film was observed on the molybdenum and tungsten 

substrates. This is a result of mechanical strain at the interface of the substrate and BDD 
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thin film, which is due to the different thermal expansion coefficient of the contacting 

materials. During fabrication, temperatures in the plasma have been observed to range from 

600 to 1000 °C. 

 

  

(a) (b) 

  

(c) (d) 

 

Figure 27. SEM images of a BDD thin film on a tungsten substrate at (a) 5,000x, 

(b) 10,000x, (c) 30,000x, and (d) 50,000x magnification. 

 

Fabrication of BDD in the small Seki was done using a microwave power of 1.2 

kW with a chamber pressure of 40 torr. The growth rate of this configuration was found to 

be ~800 nm in 40 hours or 20 nm hour-1, shown in Figure 28. This is relatively slow 
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compared to other growth recipes and conditions. When the BDD films are too thin, 

pinholes may be present. Pinholes are locations were diamond has not completely grown 

together, leaving the substrate exposed. Pinholes can become a catalyst to delamination, 

which is disastrous to the BDD electrode. Additionally, it is not desirable to have the 

substrate exposed to the electrolyte solution during testing as it can corrode or result in 

undesired side reaction. To combat the slow growth rate of BDD in the small Seki, alleviate 

concerns of polluting the big Seki with boron, and remove any possibility of pinholes; 

nitrogen incorporated growth of diamond was performed. Introducing nitrogen into 

diamond growth has been shown to substantially increase the growth rate [5]. Nitrogen 

incorporated diamond on a silicon substrate is shown in Figure 29(a). Growth with nitrogen 

results in a different morphology, dependent on the amount of nitrogen present. Increased 

nitrogen content results in the involvement of secondary nucleation sights and an increase 

in porosity [94]. The growth rate of nitrogen incorporated diamond in the big Seki reactor 

with a microwave power of 1.6 kW and chamber pressure of 60 torr is ~24 µm in 60 hours 

of growth or 400 nm hour-1, shown in Figure 29(b). Additionally, the big Seki reactor has 

a heated stage which was set to 850 °C and results in a much higher growth temperature. 
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Figure 28. SEM images showing the cross section of a BDD film on silicon substrate 

grown in the small Seki reactor with a microwave power of 1.2 kW and chamber pressure 

of 40 torr. 

 

  

(a) (b) 

 

Figure 29. SEM images showing the (a) surface and (b) cross section of nitrogen 

incorporated diamond on a silicon substrate grown in the big Seki reactor with a 

microwave power of 1.6 kW, chamber pressure of 60 torr, and stage temperature of 

850 °C. 

 



 

91 

To vary the boron doping concentration, the amount of boron entering the reaction 

chamber must be controllable. This is accomplished by utilizing diborane gas as opposed 

to boron powder.  The flow rate of diborane gas can be controlled, thus controlling the 

amount of boron entering the reaction chamber. This will allow for variation of the boron 

content and optimization of the BDD electrode to have the highest conductivity possible 

while keeping NDC content to a minimum. Figure 30 shows BDD grown on a silicon 

substrate using diborane gas as opposed to boron powder. 

 

  

(a) (b) 

  

(c) (d) 

 

Figure 30. BDD grown on a silicon substrate using diborane gas at (a) 5,000x, (b) 

10,000x, (c) 30,000x, and (d) 50,000x. 
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Additional characterization of BDD was done using Raman spectroscopy. Raman 

was preformed of a BDD thin film on a tungsten substrate, shown in Figure 31. This figure, 

showing Raman scans at multiple positions, exhibits a strong peak at 1332 cm-1, which 

corresponds to the sp3 peak of diamond. There are no other peaks or shoulders evident in 

these scans, indicating a pristine diamond film with minimal NDC content. 

 

 
 

Figure 31. Raman of a BDD thin film on a tungsten substrate showing the diamond, sp3 

peak, at random positions on the diamond surface. 

 

Advancing this objective requires repeatability in the fabrication of BDD while 

using diborane gas as the boron source. Previous fabrication methods employed boron 

powder as the boron source, which does not allow for control of the boron content in the 

BDD samples. Mass flow controllers with a sufficient resolution to control the diborane 

gas flow were recently obtained. Repeatability will be confirmed through SEM, Raman, 

and electrochemical testing of the solvent window in a sulfuric acid solution. Once 
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repeatable fabrication of the BDD electrodes is verified, the modification of the BDD 

recipe can move forward. 

To explore the effects of BDD modification, different samples must be fabricated 

and tested under the same conditions. Different modifications include varying growth 

conditions and utilizing nitrogen incorporated diamond as a substrate for BDD. Growth 

conditions that can be varied include power, temperature, pressure, time, and gas flow 

rates. These conditions control crystal size, crystal purity, graphitic content, boron doping 

levels (conductivity), thickness, and surface functionalization. As the primary concern of 

this objective is the effect of modification on BDD’s ability as a RFB electrode, the primary 

means of testing should be electrochemical; however, non-electrochemical 

characterization can offer a fast and easy comparison. Electrochemical testing will include 

CV to show the solvent window and CV with an active species in the electrolyte to see if 

the reversibility and/or reaction kinetics have been affected. SEM will allow comparison 

of crystal sizes and morphology. Raman will show qualitative differences in NDC content, 

crystallinity of the diamond itself, and boron doping content. Secondary ion mass 

spectrometry (SIMS) will be performed on select samples to determine the boron content 

quantitatively. This will give a deeper meaning to results obtained by Raman. Additionally, 

XPS may be viable to show changing surface functional groups based on different 

modifications. 

To test BDD as an electrode in electrochemical systems, BDD must first be 

fabricated. Currently, there are several manufacturers of BDD samples that can be readily 

purchased and tested. However, the user has very little control over the key characteristics 

of these samples. The ability to fabricate these samples in-house offers extensive benefits. 
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Fabrication allows for control of crystal size, crystal purity, graphitic content, boron doping 

levels, thickness, and surface functionalization. The quantification and verification of each 

characteristic allows for intelligent reasoning to be applied to the optimization of BDD for 

use as an electrode in electrochemical systems. Two reactors are used for the growth of 

BDD and are referred to as the small Seki and the big Seki; both purchased from Seki 

Diamond Systems. The big Seki is capable of a higher power and has a heated stage. 

FTIR spectra is shown in Figure 32. for an as-grown BDD sample. The strong 

absorption peaks at 1980, 2030, 2160, and 2360 cm-1 are intrinsic diamond peaks and 

appear in the spectra of all diamonds [27; 28; 44]. The small peak at 2450   cm-1 represents 

the ground state to first excited state electronic transition of neutral boron acceptors [16]. 

A peak at 2800 cm-1, indictive of the ground state to second excited state electronic 

transition of neutral boron acceptors, is not observed due to hydrogen passivation [16]. The 

peak at 2850 and 2920 represent sp3 bonded CH3 and sp3 bonded CH2, respectively [26]. 

Nitrogen impurity peaks would be observed at 1130 cm-1, C-form, and 1344 cm-1, A-

form [43]. These peaks are not evident in the FTIR spectra presented in Figure 32 

indicating little to no nitrogen impurities in the BDD samples used in this work. 
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Figure 32. FTIR spectra of as-grown BDD. 

 

4.4. Performance of the Mn2+/Mn3+ and Ce3+/Ce4+ redox couples on BDD 

The manganese redox couple, Mn2+/Mn3+, has shown promise to replace the all-

vanadium catholyte in RFBs. The Mn2+/Mn3+ redox couple has a higher potential then the 

V4+/V5+ catholyte with a comparable solubility, which allows for better power and energy 

density. manganese has been shown to be highly reversible, with a very small peak-to-peak 

separation in CV curves and a peak height ratio near one [23]. The biggest benefit to 

manganese is its cost compared to vanadium. Replacing vanadium with manganese will 

substantially lower the capital cost of RFB systems and make them appealing for grid 

energy storage from a financial perspective. 

Previously, the Mn2+/Mn3+ redox couple was tested for use in a RFB using graphite 

felt electrodes [23]. The results of testing were positive in terms of reversibility and energy 

efficiency; however, at the potentials required for the Mn2+/Mn3+ redox couple to operate 

are known to corrode graphite. The corrosion of graphite in a RFB will decrease longevity 
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and can lead to catastrophic failure through leaking of the highly corrosive electrolyte. 

Figure 33 shows CV curves for the Mn2+/Mn3+ redox couple on BDD using a silicon and 

substrate. These CV curves are compared to CV curves using platinum foil as a working 

electrode. This comparison was done due to the catalytic nature of platinum; reactions 

typically proceed very fast on its surface making it the ideal case. From Figure 33, it is seen 

that the Mn2+/Mn3+ redox couple on BDD compares very well with platinum. The oxidation 

peak of the BDD electrode is within 10 mV of the platinum electrode. The peak-to-peak 

separation of Mn2+/Mn3+ on platinum was found to be 144 mV while the peak-to-peak 

separation of Mn2+/Mn3+ on BDD was found to be 180 mV. The peak height ratio of 

Mn2+/Mn3+ on platinum was calculated to be 2.62 with the peak height ratio on BDD 

calculated as 1.74. A peak height ratio close to one indicates excellent reversibility and the 

low peak-to-peak separation indicates low overpotentials required for reactions to proceed. 

Low overpotentials for reduction and oxidation leads to high energy efficiencies. 

 

 
 

Figure 33. CV of a BDD electrode at a scan rate of 3 mV s-1 in an electrolyte solution 

consisting of 0.1 M MnSO4 and 0.5 M H2SO4. 
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Figure 34 shows CV results for the 1st and 180th scan of the Mn2+/Mn3+ redox couple 

on a BDD electrode. The oxidation peak height remains nearly the same as the first scan 

with the peak potential moving in slightly. The reduction peak height is slightly reduced; 

however, the peak height ratio in the 180th scan is closer to one as compared to the first 

scan; 1.29 and 1.70, respectively. This indicates good cyclability with no degradation in 

performance of the Mn2+/Mn3+ redox couple while operating on BDD. 

 
 

Figure 34. CV scans of 10 mM Mn(NO3)2 in 1 M HNO3 at a scan rate of 1 mV s-1 before 

and after 180 cycles. 

 

Replacing the catholyte of the all-vanadium RFB with manganese would 

substantially change the game for RFBs in industry with regard to capital costs. Still, 

consideration must be taken into which redox couple will be paired with manganese to 

form the anolyte. A big advantage to the all-vanadium flow battery is low cross over of the 

active species between the anolyte and catholyte. Because the same chemical species is 

present, there are no substantial concentration gradients forcing crossover. Some crossover 

still occurs due to migration; however, it is not severely detrimental to the lifetime of the 

RFB system and is relatively easily reversed by mixing and redistribution of the anolyte 
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and catholyte. A manganese catholyte and vanadium anolyte system is possible, as has 

been shown in literature but, it may not be practical due to issues arising from crossover 

concerns [41]. So, it would be beneficial to find an anolyte redox couple, such as Ti, that 

can operate with manganese as a mixed electrolyte. 

The use of the Ce3+/Ce4+ redox couple in RFBs has been more extensively studied 

compared to manganese [55; 64; 68; 98; 105]. The Ce3+/Ce4+ redox couple is cost-effective 

relative to V, has a high positive standard potential 

 

 Ce4+ + 𝑒− ↔ Ce3+ 1.61 V (vs. SHE) (14) 

 

and does not undergo a disproportionation reaction like Mn. However, it does suffer from 

low solubility which restricts the electrolyte energy density [69]. Figure 35 shows CV scans 

of 1 mM Ce(NO3)3 in 1 M H2SO4 at a scan rate of 1 to 5 mV s-1. The peak-to-peak 

separation was 254.8 mV at a scan rate of 1 mV s-1 with a formal potential of 1.406 V vs. 

RHE. The formal potential for the Ce3+/Ce4+ redox couple agrees well with the standard 

thermodynamic potential in H2SO4 [10]. The peak-to-peak separations achieved on BDD 

are consistent with those reported in literature. Na et al. examined the Ce3+/Ce4+ redox 

couple with 50 mM Ce(CH3SO3)3 in 1 M CH3SO3H using surface-functionalized graphite 

felt [64]. The peak-to-peak separation obtained by Na et al. was ~222 mV, at a scan rate of 

3 mV s-1, for each graphite felt electrode tested [64]. In a study by Nikiforidix et al., the 

peak-to-peak separation for the Ce3+/Ce4+ redox couple was found to be 290 mV at room 

temperature, on a Pt-Ti mesh, in an electrolyte containing 800 mM Ce in 4.4 M CH3SO3H 

at a scan rate of 40 mV s-1  [68]. 
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Figure 35. CV scans of BDD working electrodes in 1 mM Ce(NO3)3 in 1 M H2SO4 at 

scan rates from 1 to 5 mV s-1. 

 

Figure 36 shows CV scans of 50 mM Ce2(CO3)3 and 50 mM Ce(SO4)2 in 1 M 

H2SO4, to achieve a 50/50 solution of Ce3+ and Ce4+ ions, enable comparison with a 

published study by Wang et al., and demonstrate operation with higher active species 

concentration [98]. The peak-to-peak separation was 350.7 mV at a scan rate of 1 mV s-1 

with a formal potential of 1.417 V vs. RHE. The peak-to-peak separation is consistent with 

published data. Wang et al. reported a peak-to-peak separation of 476 mV on glassy carbon 

at a scan rate of 20 mV s-1 in the same electrolyte composition [98]. CV of an electrolyte 

consisting of 1 mM Ce(NO3)3 and 1 M HNO3 on a BDD electrode is shown in Figure 37. 

In HNO3, the formal potential of the Ce3+/Ce4+ redox couple shifts to 1.67 V vs. SHE. The 

formal potential shift is more than 200 mV compared to cerium in H2SO4. That represents 

a large increase in the possible energy and power densities; however, there is a problem of 

solubility when using HNO3 that must be overcome to take advantage of the larger 

potential. 
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Figure 36. CVs of BDD working electrodes in a 50 mM Ce2(CO3)3, 50 mM Ce(SO4)2, 

and 1 M H2SO4 electrolyte. 

 

 
 

Figure 37. CVs of a BDD working electrode in a 1 mM Ce(NO3)3 and 1 M HNO3 

electrolyte. 

 

The manganese redox couple, Mn2+/Mn3+, has shown promise to replace the all-

vanadium catholyte in RFBs. The manganese redox couple has a higher potential then the 

vanadium catholyte, which allows for better power density. The solubility of manganese is 

comparable to vanadium, which means energy density will not suffer. Manganese has been 

shown to be highly reversible, with a very small peak to peak difference in CV curves and 
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a peak height ratio near one [23]. The biggest benefit to manganese is its cost compared to 

vanadium. Replacing vanadium with manganese will substantially lower the capital cost of 

RFB systems and make them appealing for grid scale energy storage from a financial 

perspective. 

When beginning this study, it was unknown which, if any, redox couples would be 

successful on a BDD electrode. Prior to work on BDD electrodes, the manganese redox 

couple was explored on graphite felt due to the benefits accessible using manganese. So, 

manganese was one of the first redox couples tested on a BDD electrode and, coincidently, 

it has been the most successful. Figure 38 shows CV curves for the manganese redox couple 

on BDD using a silicon and tungsten substrate. These CV curves are compared to CV 

curves using platinum foil as a working electrode. This comparison was done due to the 

catalytic nature of platinum; reactions typically proceed very fast on its surface. From 

Figure 38, it is seen that the manganese redox couple on BDD compares very well with 

platinum. The oxidation peak of the BDD electrode, on a tungsten substrate, is within 

10 mV of the platinum electrode. The sharp peaks and small peak to peak potential 

difference indicate a reversible reaction. 
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Figure 38. CV of a BDD electrode at a scan rate of 3 mV s-1 in an electrolyte solution 

consisting of 0.1 M manganese and 0.5 M sulfuric acid. Two BDD substrates, silicon and 

tungsten, are compared along with platinum foil. 

 

Replacing the catholyte of the all-vanadium RFB with manganese would 

substantially change the game for RFBs in industry with regard to capital costs. Still, 

consideration must be taken into which redox couple will be paired with manganese to 

form the anolyte. A big advantage to the all-vanadium flow battery is low cross over of the 

active species between the anolyte and catholyte. Because the same chemical species is 

present, there are no substantial concentration gradients forcing crossover. Some crossover 

still occurs due to migration; however, it is not severely detrimental to the lifetime of the 

RFB system and is relatively easily reversed by mixing and redistribution of the anolyte 

and catholyte. A manganese catholyte and vanadium anolyte system is possible, as has 

been shown in literature but, it may not be practical due to issues arising from crossover 
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concerns [41]. So, it would be beneficial to find an anolyte redox couple that better matches 

with manganese as the catholyte. 

Although some success has been seen in using the manganese redox couple on 

BDD, this reaction must be more thoroughly examined. This includes exploration into why 

it was successful and ways to improve on its function. A combination of electrochemical 

testing techniques, including the rotating disk electrode, CV, and EIS, will be utilized to 

gain insight on the reaction mechanism of the manganese redox couple on the BDD 

electrode. The amount of MnO2 precipitate that occurs on the BDD electrode should be 

quantified and compared to the amount that occurs on a graphite electrode. This will 

determine if there is any benefit to the precipitation reaction from using BDD as an 

electrode. Also, the precipitate will be dried and tested using XRD to determine its phase 

and compare that to the published literature. The anolyte redox couple has not been chosen; 

however, it will undergo testing similar to the catholyte redox couple presented above. It 

is desired to understand the reaction mechanism on the BDD electrode surface to facilitate 

optimization of the RFB. Additional testing of the anolyte will include determination of 

the solubility in varying concentrations of acid and optimization of the active species and 

supporting electrolyte ratios. 

 

4.5. Durability of BDD as an electrode in RFBs 

Graphite based electrodes are commonly used in aqueous electrochemical systems, 

especially RFBs, as they work great in low potential settings. They are conductive, inert, 

and resist fouling in most corrosive environments. However, when potentials increase 

beyond a point, fouling becomes very apparent as the graphite surface is oxidized. This 
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causes graphite to corrode resulting in severe pitting and eventual degradation of the entire 

surface. Within the potential window of the all-vanadium RFB, graphite is reasonably 

stable; however, venturing outside of those potentials is detrimental to the lifetime of 

graphite, which in turn is devastating to the RFBs’ use as a grid scale energy storage device. 

Maintenance costs for replacing electrodes in a RFB are substantial, as the entire RFB 

would need to cease operation and be disassembled. Also, contamination of the electrolyte 

would need to be dealt with. Degradation of graphite used as flow fields would result in 

chemical leaks which is dangerous to human life as well as the surrounding environment. 

Other electrodes have been tested for use in RFBs but, none have exhibited the abilities of 

graphite. BDD has been shown to resist fouling in high temperature, corrosive, and high 

potential environments [61]. Because BDD has previously not been used as an electrode 

for RFBs, its fouling resistance must be examined in the environments utilized by RFBs. 

A BDD electrode on a silicon substrate was used to preform CV in a manganese 

electrolyte. SEM showed a significant amount of material on the electrode surface, which 

was verified to be manganese through EDX, shown in Figure 39. Figure 39 (a and b) were 

taken at a location with only diamond observable in the SEM. As a result, the main EDX 

peak corresponds to carbon which makes up 89.84 % by weight of the locations 

composition. Another 8.17 % by weight consists of oxygen and 1.29 % by weight silicon. 

The oxygen and silicon are believed to be mainly artifacts of the silicon substrate, which 

EDX can partially see, underneath the BDD thin film. Figure 39 (c and d) were taken at a 

location with no observable diamond crystals and a large amount of some other substance. 

EDX results found this substance to be mainly manganese, with 45.88 % by weight. Carbon 

and oxygen are also present with 33.59 % and 19.62 % by weight, respectively. The form 
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of the manganese present is expected to be MnO2, which correlates well with the increase 

in oxygen content at this location. The carbon content is believed to be a result of the 

diamond layer underneath this material deposit. 

 

  

(a) (b) 

  

(c) (d) 

 

Figure 39. SEM and EDX of a BDD thin film on a silicon substrate after CV cycling in a 

manganese electrolyte. (a and b) were taken at a location with only diamond observable 

on the electrode surface. (c and d) were taken at a location with significant deposits of 

non-diamond material. 
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A Raman spectrum, after CV cycling in a manganese electrolyte, was taken of the 

same electrode shown in Figure 40. The Raman spectrum, shown in Figure 40, was taken 

at multiple locations on the electrode surface, including locations which might include 

possible fouling. The Raman spectra exhibit a large sharp peak at the 1332 cm-1, with a 

small broad peak around 1500 cm-1. The broad peak indicates the possibility of NDC 

content; however, compared to published data, this sample is mostly pristine BDD [107]. 

After a thorough cleaning, it is expected that this Raman spectra will improve. 

 

 
 

Figure 40. Raman of a BDD thin film on a silicon substrate. 

 

BDD electrodes have been tested using CV for many cycles from -2 V to 3 V 

(vs. Ag/AgCl) in 0.5 M sulfuric acid and shown negligible fouling based on little 

degradation of peak magnitudes and position in CV results, as well as visual inspection of 

the electrodes. Moreover, the degradation of a graphite electrode has been observed after 

CV cycling in a manganese electrolyte. The electrolyte solution color turned black and 
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after removing the graphite working electrode, an observable amount of material has been 

removed. The graphite electrode appears to have pitting corrosion. 

To demonstrate the fouling of graphite, a before and after test should be performed 

in the manganese electrolyte. Characterization of morphology changes in the graphite by 

SEM will be sufficient to demonstrate pitting corrosion. The graphite sample will also be 

weighed before and after testing. Weight loss of the graphite rod represents material lost to 

the electrolyte during electrochemical testing. For the BDD, CV will be performed for a 

number of cycles and the sample will be characterized before and after. Morphology 

changes can be observed by SEM. Proper cleaning of the BDD surface is required to 

remove any precipitated materials so that the morphology of the diamond can be obtained. 

Raman spectra will give insight into the presence of NDC. Care must be taken; however, 

not to confuse results with those of changing surface functionality. To that end, the BDD 

electrode should be characterized between large sets of cycles in only sulfuric acid to 

determine if any stabilization of the electrode occurs. Once stabilized, the above stated 

methodology should be applied in a manganese electrolyte. 

Graphite based electrodes are commonly used in aqueous electrochemical systems, 

especially RFBs, as they work great in low potential settings. They are conductive, inert, 

and resist fouling in most corrosive environments. However, when potentials increase 

beyond a point, carbon corrosion becomes very apparent as the graphite surface is oxidized. 

This results in severe pitting and eventual degradation of the entire surface. Within the 

potential window of the all-vanadium RFB, graphite is reasonably stable; however, 

venturing outside of those potentials is detrimental to the lifetime of graphite, which in turn 

is devastating to the RFBs’ use as a grid scale energy storage device. Maintenance costs 
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for replacing electrodes in a RFB are substantial, as the entire RFB would need to cease 

operation and be disassembled. Also, contamination of the electrolyte by carbon particles 

would need to be dealt with. Degradation of graphite used as flow fields can result in 

chemical leaks which are dangerous to human life as well as the surrounding environment. 

Other electrodes have been tested for use in RFBs but, none have exhibited the abilities of 

graphite. BDD has been shown to resist fouling in high temperature, corrosive, and high 

potential environments [61]. Because BDD has previously not been used as an electrode 

for RFBs, its corrosion and fouling resistance must be examined in the environments 

utilized by RFBs. 

To compare the corrosion resistance of BDD in a high potential and highly 

corrosive environment, chronoamperometry at 1.8 V vs. Ag/AgCl was performed using 

fuel cell grade graphite as the electrode. The voltage was maintained for 10 days in an 

electrolyte solution consisting of 1 mM Ce2(CO3)3 and 1 M H2SO4. The results are shown 

in Figure 41. Clearly, the graphite did not hold up well. After 10 days, a hole was etched 

straight through the graphite material. The exact same test was performed on a BDD 

sample. After 10 days, the BDD sample retained its integrity, shown in Figure 42. any 

difference in the two images are a result of a surface termination shift from the as-grown 

hydrogen to oxygen as well as a reduction in non-diamond carbon at the grain boundaries. 

It is important to note that a substantial reduction in gas evolution was observed on the 

BDD surface compared to the graphite surface. This indicates a significantly improved 

faradaic efficiency can be achieved with BDD. Figure 43 shows Raman spectroscopy 

testing results before and after the previously described electrochemical test. There is no 

significant shift in the Raman spectra before and after long-term testing, indicating the 
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BDD retained its integrity. Additionally, there is no peak associated with non-diamond 

carbon, or sp2, before or after testing. 

 

 
 

Figure 41. Before and after images of fuel cell grade graphite showing a hole 

electrochemically etched through the graphite. 

 

 
 

Figure 42. SEM images before and after long-term charging at high potential on BDD. 
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Figure 43. Raman spectra before and after long-term charging at high potential. 

 

Cyclic voltammetry was performed in a 1 mM Ce(NO3)3 and 1 M HNO3 solution 

to demonstrate the ability of BDD compared to graphite with the Ce3+/Ce4+ redox couple. 

The oxidation and reduction peaks of this redox couple are clear, Figure 44(a), on the BDD 

sample. On the graphite sample, the reduction peak can be seen; however, with a higher 

overpotential compared to BDD (shifted more negative in potential). The oxidation peak 

on graphite is not clearly observable as it overlaps with C corrosion and gas evolution. The 

current density on graphite is higher compared to BDD. This is believed to be, at least in 

part, a result of a higher surface area, due to the surface morphology inherent in graphite. 

It may also indicate the reaction rate is faster on graphite compared to BDD. 

Figure 44(b) shows potentiodynamic anodic polarization of BDD and graphite. 

There is no clear oxidation peak, expected around 1.8 V. Instead, the current density 

sharply rises, beginning near 1.2 V, because of C corrosion and gas evolution. The current 

density achieved on graphite, combined with the liberation of C particles observed in the 

electrolyte solution, indicates a significant amount of C corrosion and gas evolution 
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occurred. The potentiodynamic anodic polarization of BDD is quite different. A clear 

oxidation peak is seen at about 1.7 V and the current density does not sharply increase until 

nearly 2 V. Clearly the BDD electrode is superior in terms of corrosion and gas evolution 

resistance. Figure 44(c) demonstrates the increasing current density of the oxidation and 

reduction peaks resulting from increased concentration of active species. 

 

  
(a) (b) 

 
(c) 

 

Figure 44. 1 mM Ce(NO3)3 in 1 M HNO3 on fuel cell grade graphite and BDD compared 

using (a) cyclic voltammetry at 1 mV s-1, (b) potentiodynamic anodic polarization, and 

(c) cyclic voltammetry at different active species concentration. 
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The fouling resistance of BDD is demonstrated with testing of the Mn2+/Mn3 redox 

couple. The Mn3+ ion is known to disproportionate to MnO2 spontaneously in solution. 

This can lead to a buildup of MnO2 on the electrode surface, clogging the electrode and 

preventing further reaction. Figure 45 shows CV scan of the 1st, 200th, and 320th scan of 

100 mM MnSO4 and 500 mM H2SO4 on a BDD electrode. From Figure 45, it is observed 

that the peak height of the 200th scan is significantly reduced compared to the 1st scan. This 

is a result of MnO2 precipitation buildup on the electrode surface. After this, the 

electrochemical experiment was paused, and a pipette was used to gently spray fluid across 

the electrode surface. The electrochemical experiment was resumed and the 320th scan is 

shown in Figure 45. The peak height of oxidation and reduction not only returned to their 

initial position but, exceeded them indicating better reaction kinetics. 

 

 
 

Figure 45. CV scans of 100 mM MnSO4 in 500 mM H2SO4 on a BDD electrode. 

 

4.6. Conclusion 

In this chapter, the fabrication and characterization methods for BDD are 

demonstrated. SEM images show highly crystalline BDD with crystal sizes on the order of 
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a micron, Figure 30. SEM images indicate continuous growth of BDD thin films without 

the existence of pin holes which may compromise the substrate material. SEM imaging of 

cleaved samples indicate BDD thicknesses of hundreds of nm to tens of microns is easily 

achievable with the demonstrated fabrication technique, Figures 28 and 29. Good 

adherence of the BDD to silicon substrates is also demonstrated as the cleaved samples do 

not simply delaminate from the silicon. Instead, the silicon underneath the diamond tends 

to crack first, leaving some of the silicon substrate attached to the BDD layer. 

Characterization by Raman indicates high quality diamond with little observance 

of non-diamond carbon (NDC) content. Comparison of the Raman spectra with published 

literature, for which the B content was quantified, shows the BDD fabricated for this 

dissertation is highly doped resulting in metal-like conductivity. After testing in a high 

potential and highly corrosive environment, Raman shows little to no diamond peak shift 

and the presence of NDC content is still absent, Figure 43. This illustrates the extreme 

corrosion resistance of BDD. In fact, SEM images before and after testing with the 

Ce2+/Ce3+ redox couples suggest the removal of any NDC content that may have been 

present, Figure 42. Additionally, FTIR data, Figure 32, confirms the existence of pristine 

BDD samples. FTIR data also shows little to no N impurities. 

Chapter 4 demonstrates the electrochemical ability of BDD to function as an 

electrode using the Ce3+/Ce4+ and Mn2+/Mn3+ redox couples. The kinetics of the redox 

couples on BDD are shown to be comparable to the ideal catalyst, platinum. Figure 38 

shows a direct comparison of BDD and platinum using the Mn2+/Mn3+ redox couple. The 

peak heights and peak separations of the BDD electrodes and platinum are very close. The 

peak height and peak separation are good indicators of kinetics and reversibility. Good 
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reaction kinetics tends to result in higher current density at the peak and lower 

overpotentials, or lower peak separation. 

The cycling ability of BDD is shown in Figure 45. After 320 cycles using the 

Mn2+/Mn3+ redox couple, the BDD electrode demonstrates improved performance. 

Additional testing further demonstrates the cycling ability of BDD and exemplifies the 

corrosion resistance of BDD through a long term, constant voltage charging regime. In 

Figure 41, the extreme degradation of a traditional carbon-based electrodes is shown by 

the etching of a hole completely through the material. BDD remains unaffected under the 

same conditions. 

In this chapter, it is made clear that BDD may be applied as an electrode material 

in RFBs to good effect. The wide solvent window results in less observed gas evolution 

with no indication of corrosion. In addition, good reaction kinetics and reversibility were 

demonstrated. Together, the outcome of the research demonstrates an electrode with a long 

lifetime, extreme corrosion resistance, good reversibility and kinetics to low-cost, high 

potential redox couples, and high efficiency resulting from a decrease in gas evolution. 
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CHAPTER 5 

EXPLORATION OF OTHER ECONOMICAL REDOX COUPLES ON A BDD 

ELECTRODE 

 

5.1. Background and state-of-the-art 

The I-/I3
- redox couple is promising due to its low cost compared to vanadium and 

its two-electron transfer process, allowing for a higher energy density at similar solubilities. 

Li et al. fabricated a polysulfide/iodide redox flow battery to achieve a high energy density 

(43.1 W h L-1, based on catholyte and anolyte volume) [57].  This battery employs the 

S2-/S2
2- couple in the anolyte and the I-/I3

- couple in the catholyte. The RFB exhibited a 

coulombic efficiency of 90 % at a current density of 25 mA cm-2 and offers cost savings 

($85.4 kW h-1 active materials cost) when compared to traditional vanadium systems 

($152.0 kW h-1 active materials cost) [57]. A Zn/I RFB was developed and tested by 

Zhang et al. [50]. This RFB achieved an energy density of 330.5 Wh L-1, far higher than 

any other aqueous RFB to date [50]. The standard potential for the Zn/I RFB is 1.796 V. 

At 20 mA cm-2, an energy efficiency of ~70 % was achieved [50]. The energy efficiency 

significantly fluctuated during operation due to dendrite formation and electrode shape 

change. An energy density of 200 Wh L-1 was maintained after 200 h of testing [50]. 

Fe redox couples, including the all-iron RFB, have been explored due to the 

extreme low cost of Fe. One of the major challenges facing the Fe2+/Fe0 redox couple at 

the anode is the evolution of hydrogen, a parasitic reaction. Zn metal is innately resistant  
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to hydrogen evolution. As Zn plates at the anode, hydrogen evolution is not as much of a 

concern, even at the low standard potential of the Zn2+/Zn0 redox couple. Fe does not have 

this advantage. As the Fe plates, creating a solid Fe anode regardless of the starting anode 

material, hydrogen evolution significantly reduces coulombic efficiency. Jayathilake et al. 

found that by controlling the temperature and pH of the anolyte, the kinetics of the Fe 

deposition reaction could be improved so that it is favored over hydrogen evolution [48]. 

This discovery allowed for a coulombic efficiency of 97.9 % at 20 mA cm-2 [48]. The 

research also found that the codeposition of cadmium, which is immiscible with Fe, can 

improve coulombic efficiency due to its high overpotential to hydrogen evolution [48]. 

An aqueous all-iron RFB was tested by Wei et al. and achieved an energy density 

of 76 % at 2 mA cm-2 [100]. The expected active material cost was found to be 

22 $ kWh-1, significantly less than that of vanadium at 118 $ kWh-1 [100]. The anode was 

composed of a Fe3O4 nanoparticle and carbon black slurry pasted onto a nickel foam [100]. 

The cathode was graphite felt and both electrolyte solutions contained 3 M KOH as the 

supporting electrolyte [100]. Another all-iron RFB, using a non-aqueous solvent, was 

tested by Zhen et al. [115]. The OCV was determined to be 1.34 V and an energy efficiency 

of 83.4 % was obtained at 10 mA cm-2 [115]. Graphite felt electrodes were used in both 

half-cells [115]. Many more iterations of RFBs utilizing one or both Fe redox couples exist 

due to the low-cost and many oxidation states of Fe. 

An all-copper RFB has been proposed and tested by Sanz et al. due to the many 

oxidation states of Cu and its reduced cost, 50 $ kWh-1 compared to vanadium [83]. The 

hybrid all-copper RFB achieved an energy efficiency of 93 % at 5 mA cm-2, reducing to 

74 % at 20 mA cm-2 [84]. The high solubility of copper allows for an energy density of 
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20 Wh L-1, comparable to the all-vanadium RFB system [84]. The supporting electrolyte 

was HCl with calcium chloride added to increase the number of free Cl ions [84]. Graphite 

electrodes were used in both half-cells [84]. A non-aqueous all-copper RFB was 

demonstrated by Li et al. utilizing the same redox couples as the previous examples [56]. 

This RFB achieved an energy efficiency of 44 % at 5 mA cm-2 [56]. The challenges facing 

the all-copper RFB include dendrite formation, electrode shape change, low power density, 

and low efficiency at higher current densities. 

 

5.2. Rationale 

The additional redox couples explored in this chapter, each having their own set of 

unique problems from high gas evolution rates to low kinetics, are promising examples of 

low-cost redox actives species. Many of the problems inherent to each system may be 

solved by introducing a new electrode material. Use of a BDD electrode with these 

additional redox couples may expose a redox reaction with high kinetics on BDD that is 

low-cost. This will set the path for another avenue of exploration in RFB technology. In 

addition, as BDD is a new electrode to RFBs, additional information on the function of 

BDD is necessary to discern a method of progress. This chapter will also exhibit the 

superiority of BDD as a RFB in terms of its wide solvent window compared to platinum 

and a traditional carbon-based electrode. This further solidifies the usefulness of BDD as 

an electrode for RFBs. 
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5.3. Testing of various redox couples on a BDD electrode 

There is an endless supply of redox couples in the world of chemistry to explore; 

however, they will not all work on any electrode surface. That is to say, the reaction kinetics 

of some redox couples on a given electrode surface may be so small that it is regarded as 

non-existent. If reaction kinetics are slow, the maximum operating current density will be 

low. A low current density requires a larger RFB cell to produce a set amount of power 

output. Additionally, if the reaction is not facile on the electrode surface, large 

overpotentials will be required for the reaction to proceed.  For a RFB to be competitive in 

the grid scale energy storage market, it must have a high energy efficiency. It is impossible 

to have a high efficiency battery when large overpotentials are present. These criteria 

significantly limit the field of available redox couples. 

The BDD electrode provides a wide solvent window to work with. It achieves this 

by inhibiting the oxygen and hydrogen evolution reactions. Evolution reactions are 

inhibited by making it difficult for molecules to adsorb on the surface of BDD [61]. Water 

molecules must adsorb to the surface of an electrode for the necessary steps involved in 

gas evolution to take place. Similarly, many redox species must also adsorb to the surface 

for reaction to take place. Unfortunately, what BDD does to prevent gas evolution, it also 

does to other chemical species. As a result, significant reaction kinetics may only be found 

with redox couples that exhibit outer sphere reactions. In these reactions, the chemical 

species does not have to specifically adsorb to the electrode surface, electron transfer can 

take place over a finite distance. The key then, is to find highly reversible redox couples 

that can react on the BDD surface with sufficient reaction kinetics. BDD electrodes have 
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never been tested on redox chemistries used for RFBs. Because of this, it is not known 

which redox couples will work and which will not. 

Iodine has shown promise in RFB technology due to its high energy density 

resulting from its high solubility and two electron transfer reaction. The iodine redox 

couple is 

 

 I3
− + 2𝑒− ⇌ 3I− 0.536 V (vs. SHE) (15) 

 

The electrolyte was made by dissolving 0.1 M potassium iodide (KI) in DI water. In this 

way, potassium ions can act as the mobile ions, passing through the ion-exchange 

membrane, to balance charge in the RFB. As a result, the electrolyte solution remains 

neutral in pH. This is a benefit as special materials are not required and safety and 

environmental concerns are lower. Figure 46 shows CV results of the iodine electrolyte on 

two BDD samples and a graphite rod. One BDD sample was previously used in testing 

with manganese and so, had been partially fouled. This resulted in much larger 

overpotential as compared to the graphite rod. When a fresh BDD sample was employed, 

BS13, the CV results compared closely with the graphite rod. 
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Figure 46. CV of a BDD electrode at a scan rate of 20 mV s-1 in an electrolyte solution 

consisting of 0.1 M potassium iodide. Two BDD samples are compared, one used and the 

other new, along with a graphite rod. 

 

Iron is the most abundant element on earth by mass [29]. This makes it attractive 

for use in energy storage as it will be cheaper than most competing options. An iron redox 

couple which is inside the solvent window of water is 

 

 Fe3+ + 𝑒− ⇌ Fe2+ 0.771 V (vs. SHE) (16) 

 

The results of CV testing with a BDD sample on a silicon substrate is shown in Figure 47. 

The iron redox couple is observable through the CV on BDD; however, large 

overpotentials are present compared to the iron redox couple on platinum wire. 
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Figure 47. CV of a BDD electrode at a scan rate of 20 mV s-1 for platinum and 5 mV s-1 

for the BDD electrode in an electrolyte solution consisting of 0.1 M iron and 2 M sulfuric 

acid. A BDD electrode is compare to platinum wire. 

 

The copper redox couple 

 

 Cu2+ + 𝑒− ⇌ Cu+ 0.153 V (vs. SHE) (17) 

 

potential is comparable to the vanadium anolyte redox couple. With the price of copper 

lower than vanadium, the copper redox couple is attractive. Additionally, there is another 

copper redox couple 

 

 Cu3+ + 𝑒− ⇌ Cu2+ 2.4 V (vs. SHE) (18) 
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which may be used as a catholyte redox couple and paired with the copper anolyte redox 

couple. The overall potential of these redox couples, based on standard potentials, is 

2.247 V, much higher than the all-vanadium RFB. Additionally, the use of copper in both 

anolyte and catholyte offers the benefits to crossover present in the all-vanadium RFB. This 

make an all-copper RFB a promising endeavor to pursue. CV of the copper anolyte redox 

couple is shown in Figure 48. A significant shift in the CV curve exists as the cycle number 

increases; however, the overpotentials on BDD are reasonable considering other results 

presented in this study. CV of the copper redox couple using BDD on a silicon substrate at 

different scan rates is shown in Figure 49. 

 

 
 

Figure 48. CV of a BDD electrode on a tungsten substrate at a scan rate of 20 mV s-1 in 

an electrolyte solution consisting of 0.1 M copper and 2 M H2SO4. 
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Figure 49. CV scans of 10 mM CuSO4 and 3 M H2SO4 on a BDD electrode. 

 

In electrochemistry, the most used standard for research is the ferri/ferrocyanide 

redox couple 

 

 [Fe(CN)6]
3− + 𝑒− ⇌ [Fe(CN)6]

4− 0.358 V (vs. SHE) (19) 

 

The potential of this redox couple is not desirable for RFBs but, it is a stable and highly 

reversible couple making it a good candidate for comparison and testing. Figure 50 shows 

CV of 500 cycles of the ferri/ferrocyanide redox couple, after performing over 1,000 

cycles. The CV curves have good symmetry, low peak potential difference, and good 

repeatability. 
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Figure 50. CV of a BDD electrode on a tungsten substrate at a scan rate of 10 mV s-1 in 

an electrolyte solution consisting of 3 mM ferricyanide and 1 M potassium chloride. 

 

Tests will be continued in the same manner as previously reported in section 2.3.1. 

while also varying the concentration of the active species and the supporting electrolyte to 

determine if this plays an important role. Varying the pH of the electrolyte may stabilize 

certain redox couples, allowing for reaction to take place and be sustained; this aspect must 

be further examined. Reaction kinetics are highly dependent on the quality and surface 

functionality of the BDD electrodes. Although some success has been achieved, especially 

on the manganese redox couple, with a recent bad run of sample fabrication, it is difficult 

to strongly claim a redox couple was not effective. Retesting of redox couples will be done 

after better BDD electrode samples are fabricated. Additionally, there are many more redox 

couples available for testing than presented in this study; so, more will be tested. The 

efficacy of the redox couples will be determined by CV. The peak ratio and peak difference 

of the CV data will show the reversibility of the redox couples on BDD. Any peak shift 
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and/or introduction of new peaks during repeated CV runs will show irreversibility in the 

chemical species. Finally, variable scan rate CV will be used to determine the rate constant 

of viable redox couples. 

There is an endless supply of redox couples in the world of chemistry to explore; 

however, they will not all work on any electrode surface. That is to say, the reaction kinetics 

of some redox couples on a given electrode surface may be so small that it can be regarded 

as non-existent. If reaction kinetics are slow, the maximum operating current density will 

be low. A low current density requires a larger RFB cell to produce a set amount of power 

output. Additionally, if the reaction is not facile on the electrode surface, large 

overpotentials will be required for the reaction to proceed.  For a RFB to be competitive in 

the grid energy storage market, it must have a high energy efficiency. It is impossible to 

have a high efficiency battery when large overpotentials are present. These criteria 

significantly limit the field of available redox couples. 

The BDD electrode provides a wide solvent window to work with. It achieves this 

by inhibiting the oxygen and hydrogen evolution reactions. Evolution reactions are 

inhibited by making it difficult for molecules to adsorb on the surface of BDD [61]. Water 

molecules must adsorb to the surface of an electrode for the necessary steps involved in 

gas evolution to take place. Similarly, many redox species must also adsorb to the surface 

for reaction to take place. Unfortunately, what BDD does to prevent gas evolution, it also 

does to other chemical species. As a result, significant reaction kinetics may only be found 

with redox couples that exhibit outer sphere reactions. In these reactions, the chemical 

species does not have to specifically adsorb to the electrode surface, electron transfer can 
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take place over a finite distance. The key then, is to find highly reversible redox couples 

that can react on the BDD surface with enough reaction kinetics. 

Figure 51 shows CV results of the I3
−/I− redox couple on BDD. For the 1 mV s-1 

scan rate, the peak-to-peak separation is only 102.9 mV, approaching the ideal peak-to-

peak separation of 57 mV [9]. This indicates a highly reversible redox couple. 

 

 
 

Figure 51. CV scans of 1 mM KI and 1 M KCl on a BDD electrode. 

 

Fe is the most abundant element on earth by mass [29]. This makes it attractive for 

use in energy storage as it will be cheaper than most competing options. The results of CV 

testing with a BDD sample on a silicon substrate in a 1 mM Fe2(SO4)3 and 1 M H2SO4 is 

shown in Figure 52. At a scan rate of 5 mV s-1, the peak-to-peak separation of the Fe3+/Fe2+ 

redox couple was found to be 487 mV. This peak separation is relatively high. It is likely 

a catalyst would need to be found to make the Fe3+/Fe2+ redox couple more efficiency on 

BDD.  
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Figure 52. CV scans of 1 mM Fe2(SO4)3 and 1 M H2SO4 on a BDD electrode. 

 

Table 3 gives a summary of the values found during electrochemical 

experimentation on BDD compared to published literature for traditional carbon-based 

electrodes.



 

 

1
2
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Table 3. Comparison of electrochemical values obtained from this work and those from published literature along with operating 

conditions. 

 

Redox 

Couple 
Ref. 

Working 

Electrode 

Thermo. 

Potential 

(V vs. SHE) 

Formal 

Potential 

(V vs. SHE) 

Supporting 

Electrolyte 

Active 

Species 

Conc. 

(mM) 

Scan Rate 

(mV s-1) 

Peak-to-

peak 

Separation 

(mV) 

Peak 

Current 

Ratio 

Mn2+/Mn3+ 

a BDD 

1.51 

1.374 H2SO4 100 3 180.2 1.401 
a BDD 1.449 HNO3 10 1 232.2 1.123 

[109] Graphite Disc ~1.323 H2SO4 300 5 140 1.465 

[51] Carbon Felt ~1.337 H2SO4 1,000 3 ~488.8 ~0.840 

Ce3+/Ce4+ 

a BDD 

1.61 

1.406 H2SO4 1 1 254.8 3.671 
a BDD 1.395 H2SO4 10 1 308.1 1.864 
a BDD 1.417 H2SO4 100 1 350.7 1.173 
a BDD 1.670 HNO3 1 1 288.2 1.875 

[64] Graphite Felt ~1.619 CH3SO3H 50 3 ~222.2 ~0.810 

[98] Glassy Carbon ~1.355 H2SO4 100 20 476 ~1.450 

[68] Pt-Ti Mesh ~1.589 CH3SO3H 800 40 290 ~1.821 

Cu+/Cu2+ 
a BDD 

0.153 
0.199 H2SO4 10 1 187.1 1.844 

[83] Graphite Rod ~0.570 HCl 2,000 10 ~281.6 ~0.526 

Fe2+/Fe3+ 
a BDD 

0.771 
0.619 H2SO4 1 5 486.9 0.415 

[116] Glassy Carbon ~0.678 HCl 25 10 ~86.3 ~1.555 

I−/I3
− 

a BDD 
0.536 

0.701 KCl 1 1 102.9 0.316 

[114] Glassy Carbon ~0.487 None 100 50 ~1,232 ~0.747 

Fe(CN)6
4−

/Fe(CN)6
3− 

a BDD 

0.358 

0.462 KCl 1 1 73.6 1.074 
a BDD 0.478 KCl 10 5 81.3 0.967 

[33] BDD ~0.439 KOH 25 8 ~132.9 ~1.008 
aThis work
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5.4. Electrochemical properties of BDD 

The surface functional groups present on BDD are very important to the 

functionality of BDD as an electrode. The surface functional groups are the bonds that 

attach to the dangling carbon bonds on the BDD surface, typically hydrogen and/or oxygen. 

A hydrogen terminated surface is hydrophobic and unstable in air. An oxygen terminated 

surface is hydrophilic and stable in air. Literature has also shown surface termination of 

BDD with nitrates and hydroxyls [30; 70]. Currently surface termination is known to 

significantly affect the functionally of BDD as an electrode; however, some contradiction 

exists among publications, and the causes and effects are not clearly understood. Because 

BDD has not been tested for use in RFBs, there is little known about the effects of surface 

termination on redox couples used in RFBs. This must be further explored to advance the 

utilization of BDD as a RFB electrode. 

Differences in surface functionality have been observed electrochemically through 

changes in cyclic voltammetry from a freshly fabricated electrode to a used electrode. Also, 

there exist methods of electrochemical cleaning and functionalization of BDD electrodes. 

One of which that has been examined is, maintaining a fixed potential above the OER 

potential or below the HER potential for a fixed amount of time. This was observed to have 

a significant effect on the resulting CV scans of the solvent window. 

Of the beneficial BDD characteristics presented previously, the wide solvent 

window is outstanding when considering its use in RFBs. Some redox chemistries tested 

for RFBs resulted in low energy efficiencies due to high rates of gas evolution; BDD 

electrodes make the reexamination of those redox chemistries possible. The wide solvent 

window also allows for consideration of redox couples previously untested for use in RFBs 
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due to their unacceptably high or low potential. A comparison of the solvent window for 

BDD (fabricated at the University of Louisville), glassy carbon (similar in function to 

graphite), and platinum electrodes is shown in Figure 53. The comparison was made by 

running several CV cycles with each electrode in 0.5 M H2SO4. It is clear from Figure 53 

that BDD outperforms glassy carbon and platinum foil in terms of overpotentials to gas 

evolution. 

 

 
 

Figure 53. Solvent window comparison of BDD, glassy carbon, and platinum electrodes 

by CV in 0.5 M H2SO4. 

 

In addition to the solvent window, electrochemical testing can determine 

efficiencies, reaction kinetics, reversibility, and resistances. Coulombic, voltage, and 

energy efficiency will be determined through charge/discharge testing of a full cell setup; 

a test involving both half-cells of the RFB. Electrochemical impedance spectroscopy (EIS) 

will be used to obtain ohmic and charge-transfer resistance. Reversibility of each redox 

couple was explored through CV by evaluating the oxidation and reduction peak difference 

and peak ratio. The peak difference is a measure of overpotentials present as a result of the 
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electrode and active species interface. The peak ratio establishes the reversibility of the 

system, with a peak ratio of one being desired. 

Figure 54 shows the Randles-Sevcik plot for 50 mM Ce2(CO3)3 and 50 mM 

Ce(SO4)2 in 1 M H2SO4. The data follows a linear trend for anodic and cathodic peak 

currents. This linear relationship indicates the CV scans are undergoing a diffusion-

controlled process. Diffusion values obtained using the Randles-Sevcik equation are shown 

in Table 4 and are consistent with published literature [98]. Diffusion coefficients for other 

electrolyte compositions involving the Ce3+/Ce4+ redox couple and the 

[Fe(CN)6]
4-/[Fe(CN)6]

3- redox couple are also shown in Table 4. 

 

 
 

Figure 54. Current density versus the square root of scan rate for 50 mM Ce2(CO3)3 and 

50 mM Ce(SO4)2 in 1 M H2SO4. 
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Table 4. Diffusion coefficients for cerium and Fe(CN)6. 

 

Electrolyte Configuration Reaction Type Diffusion Coefficient (cm2/s) 

1 mM Ce(NO3)3 in 1 M H2SO4 
Oxidation 8.22E-07 

Reduction 4.01E-07 

10 mM Ce(NO3)3 in 1 M H2SO4 
Oxidation 6.48E-07 

Reduction 3.56E-07 

50 mM Ce2(CO3)3 and 

50 mM Ce(SO4)2 in 1 M H2SO4 

Oxidation 5.14E-07 

Reduction 3.13E-07 

1 mM Ce(NO3)3 in 1 M HNO3 
Oxidation 2.14E-06 

Reduction 1.03E-06 

1 mM Fe(CN)6 in 1 M KCl 
Oxidation 1.12E-06 

Reduction 1.70E-06 

10 mM Fe(CN)6 in 1 M KCl 
Oxidation 1.13E-06 

Reduction 2.11E-06 

 

 

5.5. Conclusion 

This chapter demonstrates the ability of BDD as an electrode for RFBs based on its 

wide solvent window and reaction kinetics for various redox couples. The wide solvent 

window was determined electrochemically and shown in Figure 52. Glassy carbon was 

chosen as it represents the widest solvent window capability of traditional carbon-based 

electrodes. BDD demonstrated a >0.5 V increase in the positive potential of oxygen 

evolution and significantly reduced side reactions compared to glassy carbon. This 

represents the potential for high efficiency based on low gas evolution and low parasitic 

currents. 

The ability of BDD as an electrode was demonstrated with various redox couples. 

Testing with the [Fe(CN)6]
4-/[Fe(CN)6]

3- redox couple shows that BDD can achieve an 

almost ideal reversibility with very low overpotentials. With this redox couple, BDD 
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showed a peak-to-peak separation of only 73.6 mV with a peak current ratio of 1.074. 

These results suggest BDD may be an ideal electrode in terms of reaction kinetics and 

reversibility for other redox couples. 

BDD also showed low peak-to-peak separation compared to literature values for 

the Cu+/Cu2+, Fe2+/Fe3+, and I-/I3
- redox couples as shown in Table 3. Of particular interest 

is the I-/I3
- redox couple. With this redox couple, BDD resulted in a peak-to-peak separation 

of only 102.9 mV where the published literature value was 1,232 mV on glassy carbon 

[114]. This result indicates the reaction is facile for the I-/I3
- redox couple on the BDD 

surface. Given the high energy density of I due to its superior solubility and two electron 

transfer, this active species may exceed the performance of other aqueous redox couples 

when used in conjunction with BDD. 
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CHAPTER 6 

SCALABILITY DEMONSTRATION OF BDD AS AN ELECTRODE FOR RFBS 

 

6.1. Background and state-of-the-art 

RFBs require high surface area electrodes to enable high operating current density 

which results in high power density. High power density reduces the required system size 

and thus, capital cost. There are several methods to increase the surface area of BDD 

including deposition on high surface area substrates and etching of BDD films. Glesenar 

et al. deposited BDD on a tungsten mesh, with a thickness of 35 to 40 μm, using hot 

filament CVD [32]. The BDD quality was verified by SEM and Raman. Almeida et al. 

coated carbon fibers with BDD, using hot filament CVD [1]. Carbon cloths were coated 

with BDD by Silva et al. using hot filament CVD, resulting in capacitance values 180 times 

higher than on a 2D Si substrate [86]. Shi et al. increased BDD surface area by catalytic 

etching using electrodeposited Ni nanoparticles and a hydrogen-argon plasma [85]. This 

method resulted in capacitance values 22 times higher than BDD on a 2D Si substrate [85]. 

 

6.2. Rationale 

For BDD to be utilized in RFBs for grid energy storage, a high-power density must 

be achieved. This requires a high current density. BDD is primarily grown on 2D structures 
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resulting in a limited surface area; however, a high surface area is necessary to allow for 

high current densities. Previous methods have shown the ability of BDD to be grown on 

3D substrates such as a tungsten mesh or carbon cloth. This significantly increases the 

electrodes surface area; however, under compression, some of the BDD layer my break, 

exposing the substrate. Current research involving growth of BDD on a 3D substrate, 

utilizes a conductive substrate. If this substrate is exposed in a RFB, the electrochemical 

reaction my preferentially occur there, limiting the corrosion resistance capabilities of the 

BDD layer. Etching methods may be preferable in this regard; however, they do not 

produce the high surface area of growth on a 3D substrate. As a result, etching methods 

may not allow for enough current density. In addition, etching methods will likely be 

substantially more expensive due to the growth thickness required and the additional 

fabrication steps. 

BDD has never been tested for use in a RFB so, a novel testing apparatus must be 

fabricated that can employ the BDD samples for full cell testing. With full cell testing, 

determination of voltage, coulombic, and energy efficiency are enabled.  

 

6.3. Utilize a full cell testing setup to demonstrate the capability of BDD 

The next logical step in the demonstration of BDD as an electrode for RFBs is its 

utilization in a full flow battery configuration. To achieve that, an electrochemical cell was 

designed, shown in Figure 55, to contain two electrodes, pockets for fluid flow, and 

separation by an ion-exchange membrane. The flow battery consists of two PVC endplates 

and two PVC flow plates. In the flow plates, a hole is cut through the thickness allowing 

for fluid flow in and out. An additional pocket is cut in the center of the flow plate allowing 
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for a region of fluid to accumulate and flow. At the center of the flow plate is a hole which 

will contain the BDD surface to act as the RFB electrode. Viton gaskets will be used to 

seal the electrodes as well as the membrane. Copper current collectors will contact the 

electrodes on the outside. This configuration will allow for an In/Ga eutectic to reside 

between the BDD electrode and copper current collector, forming ohmic contact with the 

conductive silicon substrate. 

 

 

 
(a) (b) 

 
(c) 

 

Figure 55. Evolution of fuel cell testing configurations using a (a) 2D BDD sample on a 

silicon substrate, (b) BDD grown on a porous graphite substrate with a CNC milled 

pocket or channels, and (c) BDD grown on a 2D but, porous graphite substrate. 
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Testing of the BDD in the full RFB configuration will allow for the attainment of 

coulombic, voltage, and energy efficiencies. Energy efficiency is of key importance in 

RFBs as it tends to determine the cost effectiveness of the RFB system. Additionally, the 

full RFB setup will allow for demonstration of the corrosion resistance of BDD when 

cycled with a high potential redox couple such as Mn2+/Mn3+ or Ce3+/Ce4+. One of the 

electrodes can easily be replaced with a 2D graphite electrode surface so that a direct 

comparison can be made between BDD and a traditional graphite electrode. 

 

6.4. Modify the BDD electrode to increase surface area 

One of the benefits of the use of graphite as an electrode material is its ability to be 

fabricated with any thickness and high porosity, providing high surface area. A high surface 

area results in many sites for reaction to take place, allowing for charge and discharge at 

higher current densities. With a limited surface area, current densities will remain low and 

cell sizes must increase substantially to achieve a desired power output. As a result, 

exploration of methods to increase the surface area of BDD electrodes is desired. There are 

many possible methods; however, three methods, which are within the capabilities 

available at the University of Louisville, include growth of BDD on silicon nanowires, 

growth on a porous substrate such as nickel foam, and selective etching of the BDD surface. 

Growth of BDD thin films on silicon nanowires offers a substantial increase in surface area 

and this growth has been demonstrated in previous publications [74]. Growth of BDD on 

nickel foam is promising as this can mimic the current functionality of graphite felt 

electrodes [91]. Etching of BDD has been shown in create porosity and increase surface 

area [85]. Etching is an encouraging method because with it, complete coverage of BDD 
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is insured. With growth of BDD on silicon nanowires or nickel foam, obtaining coverage 

on all surfaces is difficult. If only partial coverage is achieved, the acidic electrolyte in an 

electrochemically charged environment will attack the substrate resulting in a damaged 

electrode. Exploration of methods to increase the surface area of BDD is a necessary step 

in the use of BDD as an electrode for electrochemical battery systems. 

There are many possible methods; however, three methods which are within the 

capabilities of the University of Louisville include growth of BDD on silicon nanowires, 

growth on a porous substrate such as nickel foam, and selective etching of the BDD surface. 

Growth of BDD thin films on silicon nanowires offers a substantial increase in surface area 

while maintaining a similar volume and this growth has been demonstrated in previous 

publications [74]. Growth of BDD on nickel foam is promising as this can mimic the 

current functionality of graphite felt electrodes [91]. Etching of BDD has been shown in 

create porosity and increase surface area [85]. This is a promising method because with it, 

complete coverage of BDD is insured. With growth of BDD on silicon nanowires or nickel 

foam, complete coverage will be difficult. If only partial coverage is achieved, the acidic 

electrolyte in an electrochemically charged environment will attack the substrate resulting 

in a damaged electrode. Sample morphology and the presence of pin holes will be 

determined by SEM. Brunauer–Emmett–Teller (BET) theory will be used to determine the 

specific surface area of samples. Finally, electrochemical methods will be used to 

determine the solvent window and ability of the electrode with a give redox couple. 

One of the benefits of the use of graphite as an electrode material is its ability to be 

fabricated with any thickness and high porosity, providing high surface area. A high surface 

area results in many sites for reaction to take place, allowing for charge and discharge at 
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higher current densities. With a limited surface area, current densities will remain low and 

cell sizes must increase substantially to achieve a desired power output. As a result, 

exploration of methods to increase the surface area of BDD electrodes is desired. There are 

many possible methods; however, one method that will be explored in this work is the 

growth of BDD on silicon on a porous graphite substrate. BDD growth on a porous graphite 

substrate with serpentine channels is shown in Figure 56. This plate can be assembled in a 

full RFB assembly to test its ability as a RFB electrode. An identical electrode can be made 

without BDD to be used as a standard for comparison. Figure 57 shows SEM images of 

the graphite flow plate with BDD grown on top. It is seen that the BDD growth is 

continuous on the tops of the ribs, inside the channels, and deep in the pores that reside 

inside the channels. Complete coverage of the graphite substrate with BDD allows for the 

avoidance of carbon corrosion that results in graphite at high potentials. The growth of 

BDD on the porous graphite surface with serpentine channels significant increases the 

available number of reaction sites compared to the 2D surface that exists on a silicon 

substrate. Exploration of methods to increase the surface area of BDD is a necessary step 

in the scale-up of BDD as an electrode for electrochemical battery systems. 
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Figure 56. BDD grown on a porous graphite substrate with a serpentine channel. 

 

 
 

Figure 57. SEM images of BDD grown on a porous graphite plate showing growth of 

diamond on the top of the serpentine channels, inside the channels, and inside a pore in a 

channel. 

 

Another method for increasing the porosity of a BDD surface is changing the 

growth recipe. It was found, using a high-pressure recipe might promote ball-like structures 

of BDD, shown in Figure 58. These structures have a higher surface area then a 2D flat 

surface and result in a porous surface. In addition, this recipe promotes the growth of the 

diamond 100 plane, indicated by the square crystals in the middle image of Figure 58. 

Currently, it is unknown if the diamond plane orientation influences electrochemistry. This 
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growth recipe must be further explored to determine its effectiveness. There is a balance 

between promoting porous structures and allowing for leakage pathways. Also, the recipe 

used in this study resulted in non-uniform growth. As seen in the right image of Figure 58, 

growth at a different location on the same substrate resulted in non-porous, continuous 111 

diamond. 

 

 
 

Figure 58. Growth of BDD on a porous graphite substrate using a high-pressure growth 

recipe. 

 

Following in the vein of recent research, BDD growth on quartz fibers was 

attempted. Figure 59 shows SEM images of BDD growth on quartz wool. The left image 

is of bare quartz wool and the middle image of quartz wool after BDD growth, at the same 

magnification. It is clear, BDD has grown and significantly increased the diameter of the 

quartz fibers. The diamond crystal sizes remain small. Testing with a multimeter indicates 

low resistance in the BDD coated fibers, in the 100s of ohms range. Growing BDD on 

fibers with plasma is complicated by the concentration variation of radicals penetrating the 

fiber matrix. A systemic growth regime must be developed to promote continuous and 

uniform growth of BDD on a network of fibers. Other research has shown growth on fibers 



 

142 

of carbon or graphite. This has the drawback of allowing exposed non-diamond carbon to 

react with the active species present, as opposed to reaction on BDD. This negates the 

benefits of the BDD. As the quartz fibers are non-conductive, reaction should be isolated 

to only the BDD surface. 

 

 
 

Figure 59. BDD growth on quartz wool. The first image is quartz wool without any 

diamond growth. The middle and right images have significant diamond growth. 

 

BDD was also grown on quartz felt. Quartz felt and quartz wool are nearly the same 

thing; however, quartz felt includes a starch binder to stabilize the sheet structure, making 

it easier to form and cut. As Figure 60 indicates, this binder effects the morphology of the 

BDD growth. Figure 61(a) shows a Raman spectrum of the BDD grown on quartz felt, 

Figure 60. The Raman spectrum shows a diamond, sp3 peak at 1332 cm-1, along with small 

peaks at 460 and 1220 cm-1 representing boron doping. A sharp peak also exists at 

1580 cm-1, corresponding the sp2 or non-diamond carbon. The presence of non-diamond 

carbon is not ideal. To improve this, adjustment of the growth recipe and/or growth regime. 

CV was performed on the BDD coated quartz felt and compared to a platinum wire in 

1 mM Ce(NO3)3 and 2 M HNO3 electrolyte solution at 1 mV -1. A significant amount of 

gas evolution occurred on both structures. The key feature in this CV plot is the comparison 
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of current density. BDD on quartz has a much higher current density than the platinum 

wire, indicating the presence of significantly more surface area. No peak is observed for 

the Ce3+/Ce4+ redox couple, a result of the non-diamond carbon present. The Ce3+/Ce4+ 

redox reaction is in competition with gas evolution and carbon corrosion so, the peak is 

hidden. 

 

 
 

Figure 60. BDD growth on quartz felt. 

 

  

(a) (b) 

 

Figure 61. (a) Raman spectra of BDD grown on quartz felt and (b) CV of 

1 mM Ce(NO3)3 in 2 M HNO3 at 1 mV s-1 on platinum wire and BDD on quartz felt. 
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6.5. Conclusion 

Increased surface area was achieved by growth of BDD on a porous substrate with 

CNC milled channels. Channels have been shown to increase RFB efficiency and operating 

current density by better distributing the electrolyte solution across the BDD surface. The 

ability to grow BDD on graphite is promising as graphite has good mechanical strength in 

compression and is easy to machine. Graphite plates can also be fabricated in a mold under 

high pressure. This method of fabrication for graphite plates combined with hot filament 

CVD of BDD suggests cost effective manufacturing is possible. 

Growth of 3D structures was also shown to be possible using a specific growth 

recipe and by growth on quartz fibers. These 3D structures can result in increased surface 

area, which is necessary to confirm the viability of BDD as an electrode for RFBs. 

Increased surface area was demonstrated with BDD on quartz felt compared to a platinum 

wire. 
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CHAPTER 7 

CONCLUSION 

 

The research presented in this dissertation demonstrates that BDD is a viable 

electrode in a RFB environment with several advantages over traditional carbon-based 

electrodes when operating at high potentials. This is important because there exist several 

high potential redox couples, that are low-cost compared to vanadium but are not practical 

on traditional carbon-based electrodes. At high potentials, BDD does not show signs of 

corrosion and exhibits significant reduction in gas evolution. Reduced corrosion leads to 

increased longevity and coulombic efficiency. Reduction in gas evolution also leads to 

coulombic efficiency gains, as this reaction is in kinetic competition with the redox 

reactions of the active species. Operating at higher potentials is beneficial as it can result 

in higher energy and/or power densities. Increasing either energy or power density leads to 

reduced system costs through a reduction in the required electrolyte volume and/or 

electrochemical cell size/number. 

Other redox active species were demonstrated on BDD. The extremely low 

overpotential and high reversibility of ferri/ferrocyanide on BDD indicates there exists 

redox couples with great performance characteristics on BDD. The results using iodine 

area also intriguing as the overpotential for those redox reactions on BDD are low 

compared to a traditional carbon-based electrode. This shows improvement over traditional 

carbon-based electrodes may be realized even without a high potential redox couple. Iodine  
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is a high energy density alternative active species that can operate in a neutral solution, 

leading to additional cost reduction in system material constraints. 

Potential pathways to scale up of the BDD to a full RFB were demonstrated. To 

utilize BDD in a full cell RFB, as indicated by findings herein, surface area must be 

increased. Surface area can be increased through specific adjustment of the growth recipe, 

as shown, such as creating 3D structural morphologies. Growth of BDD on quartz fiber 

substrates was also demonstrated. Quartz offers advantages are carbon fiber substrates 

because it is non-conductive. In a full cell RFB configuration, due to compression, it is 

inevitable that the substrate will be exposed. If a carbon substrate is exposed, reaction may 

preferentially occur at those locations, negating the benefits of BDD. Using the methods 

presented in this work, it is shown that a significant increase in surface area of BDD is 

possible. 

BDD was fabricated and characterized by SEM, Raman spectroscopy, FTIR, and 

CV. SEM indicated a microcrystalline morphology that is continuous and uniform. Raman 

spectroscopy showed the presence of a high boron doping concentration and the absence 

of significant non-diamond carbon content. The absence of any significant nitrogen 

impurities is evident based on FTIR. CV was utilized with a wide variety of redox couples, 

indicating the usefulness of BDD in an aqueous electrolyte, RFB setting. Peak-to-peak 

separation and peak ratio of these redox couples on BDD is comparable to, and in some 

cases better than, traditional carbon-based electrodes. The durability of BDD in terms of 

corrosion was demonstrated through a long-term testing comparison with fuel cell grade 

graphite. Fouling resistance was shown with operation in a manganese electrolyte, which 
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results in a manganese oxide precipitate, by undergoing a high number of cycles before 

and after the surface is flushed. 

The electrochemical properties of the in-house grown BDD were presented, 

including solvent window and diffusion coefficients, determined through CV. These values 

compare well with published literature, indicating the electrochemical cell utilized for 

testing is appropriate. The difficulties of scale-up to a full cell RFB are demonstrated 

through several iterations, and the implementation of, several full cell designs. As a result, 

it was determined that a significant increase in surface area is required to actualize scale-

up. Several pathways to increased surface area were demonstrated through SEM and 

electrochemical testing. CV showed that BDD grown on quartz fiber and result in 

extremely high current densities compared to a 2D BDD electrode. 
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CHAPTER 8 

FUTURE RECOMMENDATIONS 

 

With the implementation of BDD as an electrode in a RFB, several directions can 

be taken to advance current research. The most obvious is to pick up where this work left 

off, continue the exploration of techniques to increase surface area and, ultimately, 

demonstrate a full cell RFB using BDD in one or both half-cells. With this demonstration 

comes the ability to directly compare key characteristics of RFBs. That is coulombic, 

voltage, and energy efficiency, energy density, and power density. Increasing the surface 

area of BDD can be done using several techniques. Some techniques include some type of 

etching or takeaway of BDD material after growth. This has been proven to increase 

surface area; however, the increase does not compare well with that of traditional carbon-

based electrodes, such as graphite felt. 

Some methods, such as presented in this work, include growth on some type of 

porous substrate. This can significantly increase surface area. The primary difficulty is in 

promoting BDD growth penetration into the porous material. Typically, after 10s of 

microns, radicals resulting from plasma have difficulty penetrating, and growth slows or 

stops. Improved fabrication techniques or growth recipes are necessary to improve the 

thickness of BDD grown on porous media and/or increase the penetration depth of plasma 

radicals. Another promising method of increasing surface area, also shown in this work, is 

growth of BDD on fiber structures. Fibers, such are quartz wool, come in a variety of  
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materials. The difficulty in growing on fibers tends to be the concentration of plasma on 

fibers that stick out from the surface. This results in poor growth uniformity. Unlike some 

porous structures, fibers can be grown in thin layers and stacked to negate issues of plasma 

penetration. 

Another promising research area is the exploration of other redox couples. This 

work has demonstrated several redox couples exist with low overpotentials to the active 

species and high reversibility. This indicates many more may exist. Based on the results 

from ferri/ferrocyanide, there may exist a redox couple that operates better than the cerium 

and manganese redox couples presented in this work. Some high potential redox couples 

not presented in this work include a series of multielectron transfer iron redox couples and 

cobalt. The achievement of any one of the high potential iron redox couples would be 

significant as iron is extremely low-cost and, it can be coupled with a low potential iron 

redox couple that has previously been demonstrated in other studies to be highly efficiency 

and reversible. 

There exists a nearly infinite amount of non-aqueous redox couples. Many of which 

can operate at more extreme potentials then exhibited in this study, due to the utilization 

of non-aqueous solvents. It may be prudent to examine some of the promising non-aqueous 

metallic or organic redox couples on BDD. These redox couples can have benefits rivaling 

those of aqueous redox couples, such as tunability, increased solubility, low rates of 

crossover, etc. With the inclusion of non-aqueous redox couples, research on BDD as an 

electrode for RFBs is nearly infinite for the foreseeable future. 
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APPENDIX 

 

The colors corresponding with the different oxidation states of vanadium are shown 

in Figure A1. This solution consisted of V2O5 and DI water with glycerol as an oxidant. 

The amount of glycerol can be controlled to control the number of ions reduced. With that, 

the overall oxidation state of the vanadium ions in solution can be controlled. The solution 

was continuously stirred with a magnetic stirrer and a nitrogen blanket was used so that the 

solution did not oxidize with the air. Yellow corresponds with VO2
+, blue with VO2+, green 

with V3+, and purple with V2+. 

 

  

(a) (b) 

  

(c) (d) 

 

Figure A1. Reduction of V2O5 in H2SO4 using glycerol as a reducing agent to exhibit the 

four oxidation states of vanadium (a) VO2
+, (b) VO2+, (c) V3+, and (d) V2+.



 

160 

The initial electrochemical cell setup is shown in Figure A2. An electrochemical 

cell designed for fuel cells was used. The tubes in with the electrolyte flows is transparent 

so the oxidation state can be qualitatively observed. The beginning solution is shown in 

Figure A2(a), that is VO2+ in both half-cells. VO2+ must be reduced twice electrochemically 

to achieve V2+, purple, which is observed in Figure A2(b and c). Figure A2(d) shows a 

green color (combination of yellow, VO2
+, and green, VO2+) which is transition to yellow 

while the other electrolyte is transitioning from blue to purple. 

 

  

(a) (b) 

  

(c) (d) 

 

Figure A2. Electrochemical reduction of vanadium starting with V2O5 in a sulfuric acid 

solution partially reduced to (a) VO2+, using a measured amount of glycerol, in both half 

cells, (b and c) V2+ and mixed VO2
+ and VO2+, and (d) VO2

+ and mixed V3 and V2+. 
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At the beginning, alternative redox couples were explored using graphite rods. A 

titanium redox couple, TiO2
+/Ti3+, was tested, shown in Figure A3(a). This redox couple 

showed good reversibility, low overpotential, and high kinetics on a graphite rod. An iodine 

redox couple I3
-/I- was also tested, Figure A3(b). This redox couple shows good 

reversibility but, high overpotential and lower kinetics compared to the titanium redox 

couple. 

 

  

(a) (b) 

 

Figure A3. Examination of alternative redox couples on a graphite rod using CV at 20 

mV s-1 (a) 1 M TiO(SO4) in 3 M H2SO4 and (b) 100 mM KI without a supporting 

electrolyte. 

 

The three-electrode setup for testing graphite felt is shown in Figure A4. This 

electrochemical cell consists of a beaker and a rubber stopper with holes for electrodes. 

The graphite felt was connected to the potentiostat by running a platinum wire through the 

middle of the structure. The platinum wire was fitted to a plastic cylinder with connected, 

embedded electric connector on which the alligator clips of the potentiostat clip. The 
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counter electrode was also graphite felt in Figure A4 and, the reference electrode was 

Ag/AgCl in saturated KCl. 

 

 
 

Figure A4. Three-electrode setup using a beaker, rubber stopper, graphite felt working 

and counter electrode, and Ag/AgCl reference electrode. 

 

BDD layers were grown using microwave plasma-assisted chemical vapor 

deposition in the “small” Seki reactor (“small” refers to the power limit which is less than 

the “big” Seki reactor). The following steps were taken during fabrication: 

1. Substrates were prepared into roughly 1 cm squares. Metal substrates, tungsten, 

and molybdenum were cut with either scissor or snips, with a focus on 

maintaining a flat structure. Silicon substrates were broken into 1 cm squares by 

utilizing a diamond scribe to initiate a crack that then propagates along a crystal 

plane (silicon conveniently has crystal planes at a 90 degree angle which can be 

taken advantage off to form squares). 
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2. The metal substates were sanded with 400 grit sandpaper to remove any high 

points, improving the flatness, and provided shallow crevices for nano-diamond 

seed powder to reside. Silicon substrates were not sanded. 

3. The substrates were cleaned with methanol. 

4. Nano-diamond powder, which acts as a seed for diamond growth, was applied to 

the substrates. In all instances, a cotton swab was dipped into a solution of nano-

diamond powder and methanol, then forcefully rubbed against the surface of the 

substrate. This creates additional scratches on the surface while deposited the 

nano-diamond seeds. In some instances, primarily with silicon substrates, two 

substrates, with growth surfaces facing each other, and after applying the nano-

diamond powder, were rubbed together. 

5. The substrates were placed in the container with methanol and nano-diamond 

powder and ultrasonicated for 1 hour. The substrates were placed with the growth 

surface facing up. 

6. The substrates were rinsed with methanol. 

7. The substrates were ultrasonicated for 1 hour in fresh methanol. 

8. The substrates were dried and then placed on the growth stage (a graphite or 

molybdenum disk) 

9. The growth stage was placed into the reactor and the reactor closed. Before 

closing, the gasket and mating surface were wiped clean with methanol to provide 

a good seal. 

10. A vacuum was applied to the reaction chamber using the small valve. 

11. Once below 20 torr, the large valve was opened. 
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12. After reaching full vacuum, both valves were closed to ensure there is no leak in 

the reaction chamber. 

13. Gases are turned on and the system is purged 3 times. The flow rates are 

dependent on the desired recipe. A standard for starting flow rates in this reactor 

is 250 sccm H2, 10 sccm CH4, and 0.2 B2H6. Purging is done by close the vacuum 

valves, allowing the chamber to reach ~100 torr, and then vacuum is again 

applied. The purpose of purging is to remove a significant portion of contaminant 

gas particles from the reaction chamber. 

14. The chamber is increased to the pressure at which the plasma will be initiated 

(typically 24 torr). 

15. The power of the microwave source is set to 300 W. While adjusting the reflected 

watts to zero. This step requires training from an experienced user. 

16. Once the system stabilizes, the main vacuum valve is briefly opened to initiate the 

plasma. 

17. The reflected watts are again adjusted to zero while the plasma position and size 

is checked. Any irregularity should be followed by shutdown of the reaction 

(power off and vacuum applied). 

18. The power, pressure, and gas flow rates were adjusted slowly, while maintaining 

close to zero reflected watts, until the desired recipe is achieved. A standard 

recipe used is 300 sccm H2, 5 sccm CH4, 0.2 sccm B2H6, 40 torr, and 1200 W. 

19. After the desired growth time (typically around 24 hours), the reactor is 

shutdown. Shutdown procedures can vary. In general, all gases other the H2 are 

stopped and the microwave power shutoff followed by application of a vacuum. 
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The substrate was then allowed to cool under hydrogen flow for a minimum of 1 

hour. 

20. The vacuum valves are closed, and the chamber is slowly vented to atmosphere 

pressure. 

21. The reaction chamber is opened and the growth stage with samples are removed. 

The first series of BDD samples were tested in the same configuration shown in 

Figure A4. To do this, the samples were encased in epoxy and affixed to a glass tube inside 

which a wire connects to the external connections. The wire is connected to the back of the 

sample and covered in epoxy. Figure A5(a) shows a platinum foil prepared in this way. 

The surface area of the platinum foil is well defined and so, it serves as a good comparison 

for the BDD samples. BDD samples were prepared by the following steps: 

1. The SiO2 layer on the surface without BDD was scratched off using a diamond 

scribe. 

2. This was cleaned with dry air and/or methanol. 

3. A small amount of indium/gallium eutectic was placed on the exposed Si, where 

the SiO2 layer was scratched off. This forms ohmic contact with the sample. 

4. A coiled (to increase surface area) wire was set in the indium/gallium eutectic. 

5. A layer of silver paste was placed on the indium/gallium eutectic to keep the 

eutectic in place and secure the wire. The paste dries hard. 

6. The silver paste was allowed to dry for a minimum of 30 minutes. 

7. Epoxy, Hysol 1C, was then coated over the silver paste, back of the sample, and 

sample edges with the wire running through a glass tube. The epoxy also 

connected the sample with the glass tube. 
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Figure A5(b) is BDD on a silicon substrate, Figure A5(c) is BDD on a tungsten 

substrate, and Figure A5(d) is BDD on a molybdenum substrate. The downfall of this 

method is that the electrode is permanently affixed with the epoxy and cannot be removed 

to be characterized after electrochemical testing. An epoxied electrode in an 

electrochemical cell is shown in Figure A6. The counter electrode is a platinum wire and 

the reference electrode Ag/AgCl. 

 

  

(a) (b) 

  

(c) (d) 

 

Figure A5. Electrodes encased in epoxy for three electrode testing (a) platinum foil, (b) 

BDD on a silicon substrate, (c) BDD on a tungsten substrate, and (d) BDD on a 

molybdenum substrate. 
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Figure A6. Three-electrode setup using a beaker and rubber stopper with a BDD working 

electrode, platinum wire counter electrode, and Ag/AgCl reference electrode. 

 

BDD grown on a metal substrate appeared well adhered before electrochemical 

testing. After electrochemical testing delamination was observed, shown in Figure A7. 

 

 
 

Figure A7. Delamination of BDD film on a tungsten substrate after extended use. 
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BDD electrodes operated in different supporting electrolytes, H2SO4 and HNO3, 

were characterized using XPS and compared to an as-grown sample. This was done in an 

effort to observe the surface functionality of BDD. There was no significant different in 

the XPS spectra of these samples. Likely, any change in surface functionality corresponds 

with a change in a hydrogen group, which cannot be observed by XPS. 

 

 
 

Figure A8. XPS spectra of an as-grown BDD sample, a BDD sample cycled in a sulfuric 

acid solution, and a BDD sample cycled in a nitric acid solution. 

 

Nitrogen incorporated diamond was grown using the “Big Seki” reactor, shown in 

Figure A9. Nitrogen incorporated diamond is fundamentally different then BDD but, 

conductive, making it a potential electrode. These samples were tested in an 

electrochemical cell. Unfortunately, no reasonable data was obtained. 
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Figure A9. Nitrogen incorporated diamond grown on a silicon substrate. 

 

Figure A10 shows the significant amount of MnO2 precipitation that occurs when 

using the Mn2+/Mn3+ redox couple. Initially this solution is clear, overtime it becomes 

cloudy, obtaining a rust like color. The precipitate coats the surface of the storage vessel 

and flow tubes. In Figure A10, there is no solution flowing, the color of the flow tubes is a 

result of the precipitate color alone. 

 

 
 

Figure A10. MnO2 precipitation coating tubes and turning electrolyte solution a rusty 

color. 
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Redox couples not included in the main body of this manuscript due to their poor 

performance are shown in figure A11. Figure A11(a) is a BDD electrode with a Co active 

species electrolyte. The presence of the Co2+/Co3+ redox couple is observed; however, the 

overpotentials to the oxidation and reduction reactions are large. Figure A11(b) is a BDD 

electrode with a Pb active species electrolyte. The Pb2+/Pb4+ redox couple is observed. The 

overpotentials present are quite high and the CV curves are highly asymmetric, indicating 

the presence of side reactions. Figure A11(c) is a BDD electrode with a Ag active species 

electrolyte. This was in an attempt to obtain the Ag2+/Ag3+ redox couple. A reduction peak 

is observed but, no oxidation peak. The oxidation peak may be concealed by oxygen 

evolution. Figure 11(d) is BDD with a Ti active species. The TiO2
+/Ti3+ redox couple is 

observed. High overpotentials to the oxidation and reduction reactions are present along 

with overlap in hydrogen evolution. 
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(a) (b) 

  
(c) (d) 

 

Figure A11. Alternative redox active species tested on a BDD electrode (a) 100 mM 

CoSO4 in 5 M H2SO4, (b) 10 mM Pb(NO3)2 in 1 M HNO3, (c) 100 mM AgNO3 in 1 M 

HNO3, and (d) TiO(SO)4 in H2SO4. 

 

A plating reaction, Zn/Zn2+, was attempted on the BDD surface, shown in 

Figure A12. After some time, a pellet of zinc formed. The zinc easily detached from the 

BDD surface, lending to the extreme fouling resistance of BDD. For a plating reaction, this 

is not desirable. In addition, the bottom of pellet was concave. It appears the pellet began 

growth around the edge of the Viton gasket. Had this not occurred, it is unlikely in solid 

deposition would adhere to the BDD surface. 



 

172 

 

 
 

Figure A12. A zinc pellet formed as a result of electrodeposition on a BDD electrode. 

 

Based on other research, it was thought a Lewis acid may catalyze some reactions 

on the BDD surface. Transition metal oxides tend to act as Lewis acids in an aqueous 

solution. So, many transition metal oxide powder suspensions were tested. Figure A13(a) 

shows the effect of TiO2 on the Pb2+/Pb4+ redox couple. The concentration of TiO2 appears 

to have an effect but, not in a beneficial way. Different concentrations of TiO2 was also 

tested with the Mn2+/Mn3+ redox couple on BDD. TiO2 appears to be somewhat beneficial 

in reducing overpotential and increasing current density. This was expected to a degree, 

based on published literature. 
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(a) (b) 

 

Figure A13. Increasing amounts of TiO2 as a potential catalyst in (a) 10 mM Pb(NO3)2 in 

1 M HNO3 at 20 mV s-1, and (b) 10 mM MnSO4 in 1 M H2SO4 at 1 mV s-1. 

 

The Ce3+/Ce4+ redox couple was observed to have potential in the main body of this 

manuscript. So, this redox couple was tested with various transition metal oxides in an 

effort to reduce overpotentials and/or increasing current density at the peak of oxidation 

and reduction. Figure A14(a) shows the Ce3+/Ce4+ redox couple with TiO2, which resulted 

in reduced performance. Figure A14(b) shows the Ce3+/Ce4+ redox couple with SnO2. 

There is no significant shift in performance. Figure A14(ac) shows the Ce3+/Ce4+ redox 

couple with Al2O3, resulting in reduced performance. Figure A14(d) shows the Ce3+/Ce4+ 

redox couple with ZrO2. There is no significant change in performance. 
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(a) (b) 

  
(c) (d) 

 

Figure A14. 10 mM Ce(NO3)3 in 1 M H2SO4 at 20 mV s-1 using increasing amounts of 

possible catalysts (a) TiO2, (b) SnO2, (c) Al2O3, and (d) ZrO2. 
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