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ABSTRACT 

TOBACCO ENHANCES BACTERIAL-INDUCED PERIODONTAL BONE 

LOSS IN MICE 

Mina Iskander 

July 30, 2020 

Background: Tobacco smoking is the leading environmental risk factor for periodontal 

diseases. Delineation of the mechanisms underlying tobacco-induced or exacerbated 

periodontitis is hampered by the lack of an appropriate and reliable animal model.  

Hypothesis: We hypothesized that Porphyromonas-gingivalis-infected, cigarette smoke-

exposed mice would represent reproducible models of acute (ligature model) and chronic 

(oral gavage model) tobacco-enhanced periodontitis that reflect multiple aspects of the 

disease noted in human smokers. 

Methods: In a chronic oral gavage disease model, Balb/c mice (6-8 weeks, 4 groups of n 

= 6 per group) were exposed to smoke produced by a Teague-10 smoking machine from 

1R6F research cigarettes (20 cigarettes per day over 3 hours; mean carbon monoxide 

(CO), 150 ppm; mean particulate exposure, 4.9 mg/m3) or exposed to ambient air, over 

68 days. The mice were repeatedly orally inoculated with Streptococcus gordonii and 

Porphyromonas gingivalis or sham inoculated. At euthanasia, the IgM and IgG response 

to infection; systemic inflammatory mediators; specific local gingival inflammatory indices 

(IL-1β, MMP-8, MMP-9, CD14and CD45);  as well as alveolar bone  loss were assessed. 
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In an acute ligature-induced disease model, Balb/c mice (6-8 weeks, 4 groups of n = 7 per 

group) were exposed to smoke (20 cigarettes per day over 3 hours; mean CO, 200 ppm; 

mean particulate exposure, 9.8 mg/m3) or exposed to ambient air,  over 14 days. The mice 

were repeatedly orally inoculated with P. gingivalis or sham inoculated. At euthanasia, IgM 

and IgG response to infection, alveolar bone loss was assessed. Plans to assess local 

and systemic inflammatory indices were curtailed by the Covid-19 outbreak. 

Results: In a chronic model of periodontitis, tobacco smoke exposure enhanced bacteria-

induced bone loss (p< 0.01). Systemic innate immune suppression was also apparent, as 

indicated by reduced levels of systemic CCL2, CXCL1, MIP-1b,GM-CSF,IL-13, and IL-10 

(all p< 0.05), while local expression of MMP-8 was augmented in infected mice (p< 0.05). 

However, tobacco smoke exposure did not influence murine mass, IgM or IgG ,or the 

mRNA signal of inflammatory mediator’s in murine gingiva. 

In the acute model of periodontitis, tobacco smoke exposure, again, enhanced bacteria-

induced bone loss (p< 0.01). Body mass differentials were also influenced by smoke 

exposure (p<0.001). However, no significant differences between groups were noted in 

the IgM and IgG responses. 

Conclusions: Tobacco-enhanced periodontitis, as assessed by alveolar bone resorption, 

in both acute and chronic murine models. Such models will facilitate multiple studies that 

can provide mechanistic insights into increased susceptibility to periodontal diseases in 

smokers.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

I. Smoking 

1.1 Smoking prevalence and ill-health: 

Tobacco smoking is a primary preventable driver of morbidity and mortality 

globally accounting for 7 million deaths per annum, including the 480,000 fatalities 

associated with passive smoking [1]. In 2018, the prevalence of smoking in the 

U.S. population remains significant, with the number adult cigarette smokers 

estimated at > 34 million adults [2] despite campaigns to minimize or eliminate 

consumption. According to the World Health Organization (W.H.O.), there were 

around 1.3 billion smokers worldwide in 2003, primarily residing in middle-and low-

income countries, a number that is expected to rise to 1.7 billion by the end of 2020 

[3]. U.S. smoking prevalence is highest among in middle-aged individuals (45-64 

years) at 18.0%, is 17.6% in adults of 25-44 years, 13.1% in young adults (18-24 

years), and 8.8% in the elderly (65 years or older) [4]. The W.H.O. suggests 

tobacco use is responsible for the annual deaths of 6 million people worldwide, a 

number projected to rise to 7 million in 2020 and to >8 million by 2030, assuming 

unabated smoking rates [5]. 

Smoking imposes a heavy economic burden, particularly in North America and 

Europe, where the tobacco epidemic is most advanced [6] estimated to be 
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approximately 0.5 trillion dollars annually all over the world[5]. In 2010, smoking 

was estimated to account for 8.7% of the aggregated annual healthcare spending 

in U.S. Approximately two-thirds of this cost was met through Medicaid, Medicare 

or other governmental programs [7]. In the United States the percent attributable 

fraction of deaths due to smoking in U.S. adults in 2014 was highest in Kentucky 

(22.1%) followed by Arkansas (21.5%), Nevada (21.3%), Tennessee (21.1%), 

West Virginia (20.6%), Oklahoma (20.2%) and Missouri (20.1%) [8]. 

About half of all smokers suffer from serious smoking related diseases [9]. 

Smoking is the major driver of at least 30% of all cancer deaths and is associated 

with 80% of early deaths from cardiovascular disease and chronic obstructive 

pulmonary diseases [10]. Furthermore, smokers are more susceptible than 

nonsmokers to premalignant lesions, systemic lupus erythematosus, 

hypertension, osteoporosis, diabetes, Crohn’s disease, impotence and destructive 

periodontal diseases [11-13]. 

The most common product smoked is cigarettes but also smoking can include 

electronic cigarettes, water pipes, pipes, cigar and cigarillos [14]. Indeed, more 

than 7000 constituents that are toxic to human health are contained in cigarettes 

and at least 69 are carcinogenic. Some of these constituents are naturally found 

in tobacco (e.g., nicotine), some are added during the manufacturing process (e.g., 

ammonia), but most are generated during the burning process (e.g., acrolein) [15, 

16]. 
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1.2  Smoking and infectious diseases: 

Smoking, either active or secondhand, increases susceptibility to a multitude 

of infectious, including tuberculosis [17], nasopharyngeal and respiratory tract 

infections [18], surgical infections [19], bacterial meningitis [20] and, of particular 

importance here, periodontal diseases [21, 22]. Whereas the evidence to correlate 

the harmful consequences of smoking to infectious diseases is clear, the 

underlying mechanisms of predisposition require elucidation [23]. To summarize, 

tobacco smoking could enhance the risk of bacterial infection through three 

general mechanisms: (a) tobacco-induced host structural and physiological 

changes, and / or (b) enhancement of bacterial virulence, and/ or (c) immune 

dysregulation [12]. 

The structural changes induced by tobacco smoke may be dependent on the 

specific tissue. For example, cerebral vessels dilate upon exposure to smoke [24], 

whereas, peripheral arterial vessels constrict [25]. In the gingival and periodontal 

tissues, smoking leads to suppression of the gingival inflammation characterized 

by a compromised bleeding response to plaque associated with angiogenesis 

impairment rather than any acute vasoactive activity [26]. 

With respect to bacterial virulence, it was recently reported that cigarette smoke 

promotes the pathogenicity of variant species, such as Staphylococcus aureus 

[27], Haemophilus influenzae, Streptococcus pneumoniae [28]and, the subject of 

this research project, Porphyromonas gingivalis [22, 29]. While there is still much 
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research performed on this topic, smoking alters the phenotypic and genotypic 

virulence traits, to be addressed later. 

Tobacco smoking affects both innate and adaptive immunity [30]. The innate 

immunity is significantly deregulated by smoke. For example, cigarette smoke 

negatively influences differentiation, viability and function, such as phagocytic 

capacity, of neutrophils and monocytes, aiding pathogenic colonization and 

infection [31, 32]. Tobacco smoke components also negatively regulates the 

maturation and function of dendritic cells, the primary antigen presenting cells 

required for adaptive immune function against pathogens [30, 33]. Indeed, T cell 

proliferation,  antigen-mediated T-cell signaling and B cell responsiveness are all 

compromised by smoke exposure. function is compromised in smokers [34, 35]. 

There is a decrease in CD4 lymphocytes and increase in CD8 lymphocytes CD8 

in heavy smokers [36]. Because CD4 lymphocytes stimulate B-cell proliferation 

and differentiation as well as synthesis of immunoglobulins, serum levels of 

Immunoglobulin G (IgG), an important anti-microbial antibody, in smokers are 

reduced when compared to non-smokers [35]. 

1.3 Smoking and the microbiome: 

In recent years, the effects of smoking on the oral microbiome were extensively 

studied and the oral microbiome shift occurs in response to this environmental 

stress [37-39]. However, after periodontal nonsurgical treatment and smoking 

cessation, a vast number of health associated species recolonize in the 
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subgingival microbiome while a significantly lower abundance and prevalence of 

putative periodontal pathogens exists [40]. Smoking develops commensal-poor, 

pathogen-rich microbial ecosystem, allowing pathogen to proliferate  even in 

clinically healthy individuals that closely resemble disease-associated 

communities [41, 42]. Smoking also may promote an anaerobic oral environment 

and a bacterial community with reduced capacity of xenobiotic degradation [37]. 

As mentioned early different infectious diseases are associated with smoking, we 

will focus on periodontal diseases.
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II. Periodontal diseases

2.1 Periodontal disease classification: 

Periodontal diseases include a wide variety of chronic inflammatory conditions 

of the bone, ligament (the connective tissue collagen fibers that anchor a tooth to 

alveolar bone) and soft tissues supporting the teeth and/or the gingiva. Periodontal 

diseases begin with localized inflammation of the gingiva, or gingivitis, 

characterized by reversible redness, swelling, and bleeding [43]. This inflammatory 

response is induced by dental plaque, a complex bacterial biofilm attached to the 

teeth and gingival surface. Further, periodontal disease initiation and progression 

is thought to be associated with dysbiotic ecological changes in the oral 

microbiome composition that occurs due to fluctuations in available nutrients 

including tissue breakdown products, interspecies microbial interactions and 

immune system subversion [44]. Host-derived proteinases are a key factor among 

the multifaceted aspects of an overall inflammatory response, particularly matrix 

metalloproteinases and related destructive enzymes which are thought to be 

upregulated, activated, and involved in soft and hard tissue destruction. Among 

other consequences, such proteases lead to loss of periodontium fibers helping 

the bacterial biofilm to migrate along the root surface [45]. The classification 

periodontal disease subtypes depend on severity of the disease (e.g., periodontal 

pocket depth magnitude, clinical attachment loss and alveolar bone loss at the 

affected site) and the geographical context (the number of affected teeth) [46]. 
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2.2  Periodontal disease prevalence: 

The high prevalence of periodontitis reported in adolescents, adults and older 

people makes it a dominant public health concern [47]. It is considered the sixth 

most common human disease [48]. Globally >500 million people suffer from severe 

periodontal disease, while total tooth loss has been reported in > 270 million people 

[49]. However, in USA, periodontitis has been reported to affect almost half of 

population aged over 30 years, representing over 60 million people [50]. 

Periodontitis-associated expenses comprise a significant part of the annual global 

economic burden over $400 billion for oral diseases [51].  

2.3  Systemic disease and periodontal disease association: 

 

A consistent body of evidence supports a negative association between 

periodontal diseases and systemic diseases, such as pulmonary infections and 

chronic obstructive pulmonary disease (COPD) [52-54], poor glycemic control and 

diabetes [55, 56], cardiovascular diseases and stroke [57, 58], rheumatoid arthritis 

[59-62],  poor pregnancy outcome [63] And specific cancers. As an example, 

negative associations between periodontal disease pancreatic, esophageal, 

gastric and head and neck cancer have been reported  [64-68]. Interestingly, each 

millimeter of alveolar bone loss, a common measure of periodontal disease 

severity, has been estimated to increase the risk of tongue cancer > 5.23 times 

[65]. 
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2.4  Periodontal disease prevention and treatment modalities: 

Good oral hygiene, which includes, regular tooth brushing and flossing, is 

crucial in preventing periodontal diseases [69]. Since smoking is a, or perhaps the, 

major risk factor for destructive forms of periodontal disease [26], smoking 

cessation can prevent a considerable proportion of periodontitis cases [70]. 

Indeed, the gingival bleeding response, suppressed in cigarette users [71], 

recovers rapidly following smoking cessation, indicating a recovery of the innate 

immune response to plaque bacteria [26]. Although the role of diet in dental caries 

is more significant compared to periodontal disease, poor diet can, nevertheless, 

negatively affect periodontal tissue homeostasis leading to disease progression 

[72]. For example, vitamin C scavenges excessive ROS, this nutrient is considered 

an important dietary oxidant in the periodontium [73]. Vitamin C also plays a key 

role in preventing and slows down the progression of periodontal disease by 

inducing the differentiation of periodontal ligament progenitor cells [74]. insufficient 

vitamin C intake increases periodontal disease risk in a dose-related manner [75]. 

The universal approach to treating periodontal disease is the instrumental 

debridement of dental plaque, sometimes accompanied by an antibiotic regimen. 

However, in case of severe subgingival pockets, surgical intervention can be 

necessary [76-78]. While mechanical debridement has been successfully 

implanted in the treatment of periodontal diseases, this technique has many 

drawbacks, for instance patient response is not ideally, universally  and the 

outcome is multifactorial dependent [79]. Deep subgingival pockets may not be 
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completely accessed by scaling devices, mechanical debriding might also be 

inefficient against all periodontal pathogens, as well as other negative impacts, 

particularly dentin hypersensitivity and teeth loss, reduce the efficiency of 

mechanical treatment approaches [80]. Consequently, in conjunction with 

mechanical debridement, antimicrobial therapy has been suggested to inhibit 

pathogenic bacterial colonization and enhance clinical results [81, 82]. Considering 

the benefits of conjunctional localized or systemic antibiotics to the mechanical 

approach, these strategies reveal non-specific activity and affect beneficial 

organisms living in the oral cavity. In addition, there are many other potential 

threats including the growth of resistant bacteria, possible allergic reactions and 

development of opportunistic fungal infections, suggesting careful consideration 

[83]. Indeed, various non-surgical and surgical options are available to treat 

periodontitis. However, no periodontal treatment option has shown superiority over 

another option [84]. 

2.5 The etiology of periodontal diseases: 

The onset and development of periodontal diseases are promoted by several 

factors, including the oral microbiome, the immune system, oral hygiene, systemic 

health, genetics and environmental risk factors, such diet, stress and – the focus 

of this work – tobacco use. Traditionally, two major hypotheses have been 



10 

considered. The non-specific plaque theory posited that specific bacteria did not 

play a role in the development of periodontitis. Rather, the combined bacterial 

insult was considered the primary etiological factor [85]. The specific plaque 

theory, on the other hand, posited that there are specific microbial organisms 

correlated with the development of periodontitis [85].  In the latter years of the 20th 

century, this developed into what is known as “red complex theory” which stated 

that a group of three bacterial species, Treponema denticola, Tannerella forsythia 

and Porphyromonas gingivalis, are most frequently associated with disease and 

so, treatment and prevention was aimed at their eradication [86]. However, this 

theory was based on assessments of bacterial species that were defined a priori. 

In other words, red complex theory is not a genuine reflection of the oral 

microbiome, which contains multiple uncultivable species and, more importantly, 

potential pathogens unrecognized at the time. In either case, the molecular probes 

that have been employed were highly selective. 

The current paradigm, based on modern, total microbiome analyses in 

periodontal disease is based on the polymicrobial synergy and dysbiosis model, 

where periodontitis results from dysbiosis of the microbiome [87]. A diverse 

microbiota colonizes the gingival crevice where compatible organisms assemble 

into heterotypic communities. Normally, these communities are in balance with the 

host. The community’s microbial components can vary over time, from site to site 

and from one individual to another. Theoretically, colonization even at low levels 

by a keystone pathogen, such as P. gingivalis, can negatively influence host 

defense mechanisms and enhance the virulence of the entire community [88]. 
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Such microbial dysbiosis is associated with a disruption of tissue homeostasis and 

ultimately leads to periodontal tissue destruction. 

III. 3. Smoking and periodontal disease 

3.1 Risk Factors: 

Non-modifiable risk factors 

Genetics is key to the noted variations in predisposition to periodontal diseases 

[46] and may explain approximately half the population variance in periodontitis 

susceptibility [89]. Genetic variations contributing to functional defects in 

neutrophils and in genes involved in cytokine production are of particular 

importance [90-92]. For instance, the intrafamilial occurrence of Papillon-Lefèvre 

syndrome (PLS), which is a rare autosomal recessive disorder, is associated with 

onset of periodontitis at childhood and early loss of both deciduous and permanent 

teeth. This syndrome caused by mutation in the cathepsin C gene [93, 94]. 

Prepubertal periodontitis in some families could represent partly penetrant  PLS 

[95]. Another example, gene polymorphism of IL-1 has been associated with 

about four-fold increase in IL-1 protein levels in sever periodontitis patients [96]. 

IL-1 is a potent stimulators of bone resorption, and as hyperproduction of this 

cytokines following infection by periodontal pathogens is believed to be one of the 

mechanism of periodontal tissue destruction [97]. 
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Different racial and ethnic groups frequently exhibit great variations in the 

outcome of periodontal diseases. Among the three largest race-ethnicity groups in 

the United States, adult blacks show the highest prevalence of periodontitis and 

the most periodontal tissue loss, followed by Mexican Americans, whereas whites 

show the lowest prevalence of disease and tissue loss [98]. 

Periodontal disease is regularly reported to be more prevalent or more severe 

in men than in women at compatible ages signifying a possible sex/gender 

entanglement in the disease pathogenesis [99-101]. Men exhibit poorer oral 

hygiene and report fewer visits to the dentist than do women. However, when 

correcting of oral hygiene, socioeconomic status, visits to the dentist and age, 

being male is still associated with more severe disease when either attachment 

loss or bone height is used as a measure of periodontal disease[102, 103]. 

Advancing age is another major non-modifiable risk factor [104], with clinical 

attachment loss significantly higher in patients aged 60-69 years compared to 

those in the 40-50 age bracket. [105]. 

Modifiable risk factors 

Poor oral hygiene is associated with periodontal disease, and absence of 

sufficient tooth brushing and other oral hygiene measures may promote bacterial 

deposition and dental plaque buildup on teeth surface that can pave the way for 

inflammatory changes in periodontal tissue [46, 106]. 

Diabetes and periodontitis are complex chronic diseases, related by a close 

and bidirectional association. The risk of periodontitis in diabetic patients is 
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increased up to three times relative to healthy individuals. Moreover, the degree of 

glycemic control is essential in evaluating the risk since the risk for periodontitis 

increased with poor glycemic control [55, 107]. Periodontal disease is considered 

to be one of the six major complications of diabetes and the majority of evidence 

demonstrates a direct relationship between diabetes mellitus and periodontal 

disease [108].  Adult patients with type 2 diabetes or type 1 diabetic patients at all 

ages have more severe periodontal disease than age-matched healthy individuals 

[109-111]. 

It is also apparent that stress reduces salivary flow secretion which, in turn, can 

enhances plaque development [112]. A positive association was observed 

between stress scores, clinical attachment loss and tooth exfoliation [113]. Further, 

academic stress has been associated with poor oral hygiene and gingival 

inflammation, including elevated gingival crevicular levels of  IL-1 [112]. 

Depression may be an additional risk factor for periodontal disease. Various 

clinical studies imply a causal correlation between depression and periodontitis 

[114, 115]. Moreover, periodontal disease may contribute to the onset of 

depression through psychosocial effects (e.g. shame, isolation, embarrassment, 

loneliness) of poor oral hygiene and halitosis, frequent characteristics of patients 

with periodontal disease [115].  

Marijuana, which is used widely for medical and recreational purposes in the 

United States, is a major emerging risk factor for chronic periodontitis. Multiple 

human studies showed increased alveolar bone loss in people using cannabis. 

Data from the National Health and Nutrition Examination Survey (2011-2012) verify 
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that frequent recreational cannabis use is associated with an increase in both 

pocket depth and clinical attachment loss, and higher chances of severe 

periodontitis [116]. Also, a recent meta-analysis demonstrated that cannabis use 

is associated with higher prevalence of periodontitis [117]. 

Cigarette smoking is perhaps the most significant environmental risk factors for 

periodontitis. Smoking alone may account for most cases of periodontitis in 

developed nations [26]. Smokers exhibits earlier disease onset [118], elevated 

rates of diseases progression [119], increased severity and prevalence of the 

disease [118, 120], and less favorable response to treatment [121], compared to 

non-smokers. Further, studies suggest that smoking has a strong dose-related 

influence on periodontal disease [122]. Clinical evidence shows increased gingival 

recession and greater periodontal ligament attachment loss and also deeper 

periodontal pocket depth formation and fewer teeth in smokers than non-smokers 

[21, 123, 124]. Compared to nonsmokers, young adult smokers aged 19 to 30 

years have a higher prevalence and severity of periodontitis when controlled for 

plaque levels [125]. Nicotine, a major component of tobacco smoke, has been 

reported to contribute to degradation of periodontal collagen, and other key 

architectural proteins, by increasing expression and activity of matrix 

metalloproteinases (MMPs), and associated periodontal ligament detachment 

[126, 127]. Multiple studies have also indicated that nicotine and one of its major 

metabolites, cotinine, adversely affect human periodontal fibroblasts proliferation, 

attachment and chemotactic responsive in a dose-related manner [128, 129]. 

Acrolein, another harmful component of smoke may be an impactful player in 
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periodontal tissue destruction, producing a dose-related cytotoxic effect on human 

gingival fibroblasts, with complete inhibition of proliferation and attachment 

apparent at high concentrations [130]. In the inflamed area of periodontium in 

chronic periodontitis patients, a significant decrease in the number of vessels and 

a significant reduction in the intensity of the vascular reaction was observed in 

smokers versus nonsmokers [131].  These data suggest that smoking may induce 

angiogenesis suppression, providing a possible explanation of reduced gingival 

bleeding on probing (a common characteristics of periodontitis) in smokers 

compared to nonsmokers among periodontitis patients [26]. 

In sum, tobacco smokers are not only more susceptible to periodontal disease, 

but they are also more likely to develop a severe form of infection which is often 

times refractory to treatment [12, 21]. Moreover, the clinical parameters of 

periodontitis (redness, edema and gingival bleeding) don't correlate to the disease 

level in tobacco smokers, who consistently manifest a reduced inflammatory 

response [21, 132]. 

3.2 Quantification of smoking-related periodontitis risk: 

Worldwide, there are approximately 1.1 billion smokers, most of whom live in 

low- and middle-income countries, where the morbidity and mortality burden of 

smoking is higher [133]. In a study in New York State, involving 1361 people aged 

25 to74 years, smokers where at greater risk of experiencing severe bone loss 

than nonsmokers, with odds ratios ranging from 3.25 (95% CI: 2.33 to 4.54) to 7.28 
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(95% CI: 5.09 to 10.31) for light and heavy smokers, respectively [103]. Data 

derived from the Third National Health and Nutrition Examination Survey, 

conducted in 1988 to 1994 on 12,329 adults conclude that smoking may be 

responsible for more than half of periodontitis cases among adults in the United 

States [70]. A recent meta-analysis, pooled adjusted risk ratio estimate that 

smoking increases the risk of periodontitis by 85% with risk ratio1.85 (95% CI1: 5 

to 2.2) [134]. All of these findings and others [135, 136] provide extensive evidence 

that smoking may be the major preventable risk factor for periodontitis. 

3.3 Potential mechanisms of tobacco-enhanced periodontal disease: 

Smoking compromises multiple and varied aspects of the innate and adaptive 

immune responses [13, 137]. Neutrophils are the primary leukocytes involved in 

host defense against bacterial invasion [91]. However, both in vivo and in vitro 

studies show that smoking impairs chemotaxis and phagocytosis in neutrophils in 

periodontal tissues [138, 139], leading to defective bacterial clearance and 

increased pathogen colonization. 

Cigarette smoke exposure also causes T cell unresponsiveness. Nicotine 

impairs antigen mediated signal transduction in lymphocytes and induces a state 

of T cell anergy [140]. Nicotine inhibits the antibody forming cell responses through 

impairment of antigen mediated signaling in T cells by suppressing the intracellular 

calcium responses [36]. Besides affecting T cell responses, nicotine modulates the 
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production of inflammatory cytokines by alveolar macrophages [141]. Higher levels 

of TNF- have been reported in smoker’s gingival cervical fluid (GCF) compared 

with non-smokers [142, 143]. Also, elevation in interleukin (IL)-1, IL-6 and IL-8 

levels in gingival cervical fluids was observed in periodontally diseased subjects 

as compared to healthy subjects [144]. In addition, higher concentration of matrix 

metalloproteinase (MMP)-8 [145] and MMP-9 in GCF, key host-derived destructive 

proteolytic enzymes, has been described [145, 146].  Smokers have a vast 

increase in ratio between the receptor activator of nuclear factor-κβ ligand 

(RANKL) and its inhibitor osteoprotegerin (OPG) [147]. Osteoclast which 

considered the key player in tissue degradation, differentiated from 

macrophage/monocyte precursor under the regulation of RANKL. Osteoclastic 

activity is promoted by TNF-α and IL-1 especially in inflammatory osteolysis states 

such as those seen in periodontitis [148]. Furthermore, smoking has been found 

to be inversely associated with levels of serum IgG antibodies specific to certain 

periodontal pathogens [35, 149], including P. gingivalis [150, 151]. Additionally, 

smoke can inhibit the reactive oxygen species in phagocytic innate cells, which are 

important in bacterial killing [152]. 

Taken all together, the neutrophils impairment, T-cell anergy, elevated TNF-

α, higher destructive enzymes in GCF, inhibited immunoglobulins and ROS, and 

higher ratio of RANKL/OPG ultimately leads to upregulation of bone resorption and 

increase severity of periodontitis. 
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Nicotine and periodontitis 

Smokers oral tissues are exposed to high concentrations of nicotine which may 

have a negative impact on local cell population. The nicotine concentration in GCF 

has been reported to be almost 300 times that of plasma  in smokers  [153]. In 

smokers, nicotine binds to the root surface [154] and in vitro experiments indicate 

that it causes alteration of the fibroblast attachment [155] and integrin expression 

[156] as well as reduceing collagen production and enhancing collagenase 

synthesis [157]. Smokers root surfaces show reduced attachment of PDL 

fibroblasts compared to those of non-smokers [158]. Higher amounts of the 

proinflammatory cytokines IL-6 and IL-1 are produced from cultured fibroblasts 

[159] and keratinocytes [160] , in contrast to the innate suppression widely reported 

in innate immune cells. 

Moreover, there is strong evidence of a synergistic effect of nicotine and 

bacterial lipopolysaccharide [159, 161]. Animal studies have clarified some of the 

negative impacts on bone healing following local nicotine exposure [162] being 

positively correlated to delayed revascularization [163] and inhibition of specific 

cytokines [164]. During hard and soft tissue wound recovery, smoking has been 

found to inhibit revascularization [163, 165], which is a crucial component of 

periodontal regeneration, dental implant success and plastic surgery procedures. 

Tobacco smoke toxicity 

The smoke generated from tobacco burning represents a dynamic, complex 

and reactive mixture of over 5000 chemicals [63, 166], including carbon monoxide, 
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carbon dioxide, tar, ammonia, acrolein, formaldehyde, acetone, benzopyrenes, 

hydroxyquinone, cadmium, nitrogen oxides, and the primary neuroactive 

compound, nicotine [167]. Nicotine has been shown to be able to alter specific 

cellular functions. For example, nicotine exposure to human fibroblasts derived 

from periodontium affects cell growth, as well as attachment [168]. Both gingival 

fibroblasts (GFs) and periodontal ligament fibroblasts (PDLFs) exhibit lower cell 

viability with greater nicotine and cigarette smoke extract  (CSE) concentrations 

[169], while. PDLFs are more sensitive to nicotine compared to GFs [170] and 

hence, nicotine induce cytotoxicity on PDLFs by inhibiting cell growth, proliferation 

and protein synthesis [168, 171]. 

 

Dysbiosis 

There is a significant difference in the microbial profiles of smokers and 

nonsmokers. The microbial communities are more highly diverse and commensal-

poor in smokers, versus non-smokers [172, 173]. However, in another study, the 

overall oral microbiome composition of former smokers did not differ significantly 

from that of never smokers; indicating that smoking-related changes to the oral 

microbiome are not permanent [37]. Several important periodontal pathogens, 

including Treponema denticola, Fusobacterium nucleatum and P. gingivalis, are 

over-represented in cigarette users, relative to non-smokers [174], while  

commensal species, such as Streptococcus species, may be in higher abundance 

in non-smokers compared to smokers [38]. Several mechanisms were proposed 

to clarify how smoking may alter microbial ecology, including significantly low 
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oxygen tension within the periodontal pockets in smokers, which might favor the 

growth of anaerobic periodontal pathogens even in shallow pockets [175]. This 

was supported by the clinical findings that smoking creates a favorable habitat for 

bacteria, such as P. gingivalis at shallow sites (≤5 mm) [138], increasing the acidity 

of saliva [176], influencing bacterial adherence to mucosal surfaces [177] and 

impairing host immunity [178]. 

4. Porphyromonas gingivalis

4.1  Porphyromonas gingivalis characteristics: 

P. gingivalis is a Gram-negative, rod-shaped, asaccharolytic bacterium that is 

a secondary colonizer of subgingival plaque, forming black colonies on blood agar 

due to its potent hemin-acquisition capacity [179]. The primary site of P. gingivalis 

in the human oral cavity is the subgingival sulcus. P. gingivalis depends on the 

fermentation of amino acids for the production of energy and, thus, for its existence 

in deep periodontal pockets [180]. P. gingivalis possesses a variety of virulence 

factors that are important in colonization and persistence in the oral cavity [181]. 

The onset and progression of periodontal tissue damage is a complex process 

involving plaque deposition and dysbiosis, secretion of bacterial products and the 

inflammatory response of the host. 
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4.2 P. gingivalis and periodontal disease: 

The oral cavity houses the second most diverse microbial community in the 

body containing over 700 species of bacteria, only a small number of which have 

been associated with disease [181]. Of these, P. gingivalis is heavily implicated in 

periodontal disease development and progression. Undesirable shifts in 

periodontal biofilm communities, such as pathogenic P. gingivalis growth, drive the 

dysregulation of host homeostasis.  P. gingivalis is the archetypal periodontal 

pathogen and, as such, will be used herein to induce periodontitis in mice. Indeed,  

P. gingivalis has been considered as a keystone pathogen of periodontitis, at least 

in mice [182].  P. gingivalis can be commonly isolated from plaque biofilms in 

periodontal disease patients but is rarely isolated from healthy individuals [183]. P. 

gingivalis has also been strongly associated with the extent of gingival pocket 

depth.  There is an estimated 10-fold rise in the number of P. gingivalis cells for 

every 1- millimeter increase in pocket depth at human diseased sites [184]. 

An animal study [185] supports the evidence that P. gingivalis, even at low 

abundance, is capable of inducing significant alteration to host commensal 

microbiota in a way that supports its own viability while promoting pathogenesis of 

the disease.  In this study, specific pathogen free mice infected with  P. gingivalis 

exhibited significant bone loss, which is a major characteristic of periodontal 

disease. In contrast, germ free mice infected with P. gingivalis mono-infection 

showed no significant bone loss indicating that P. gingivalis cannot induce bone 

loss by itself. 
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4.3 P. gingivalis virulence factors: 

Capsule 

The polysaccharide-rich external capsule of P. gingivalis serves a role in 

microbial adhesion to the teeth or mucosal surface. The capsule also provides 

protection from phagocytic clearance by neutrophils [186]. P. gingivalis shows at 

least six capsular antigen serotypes, K1-K6 [187]. Studies using mouse infection 

models showed that encapsulated P. gingivalis strains are much more virulent than 

non-capsulated. Non-encapsulated strains are mostly responsible for non-

invasive, localized abscesses, whereas encapsulated strains are responsible for 

destructive lesions and systemic spreading. The non-encapsulated strains also 

suffer increased phagocytosis and are quickly removed by dendritic cells and 

macrophages [187]. Further, a decreased level of pro-inflammatory cytokines (IL-

1,IL-6, and IL-8) was detected when human gingival fibroblast was infected with 

a P. gingivalis mutant which lacks a capsule as opposed to a wild-type strain which 

produces a capsule [188]. Therefore, the capsule appears to be a key activator of 

the inflammatory response. 

Gingipains 

The RgpA, RgpB (arginine specific) and Kgp (Lysine specific) gingipains are a 

primary virulence factor of P. gingivalis [189] [190]. Gingipains are detected at high 

concentrations in GCF collected from deep pockets that are infected with P. 

gingivalis [191]. Their major roles in periodontitis pathogenicity are related to their 
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ability to manipulate host immune defense and degrade host proteins. The broad 

specificity of gingipains means that they target multiple mammalian structural 

proteins (e.g., collagens and fibronectin, and laminin) and immune effector proteins 

(e.g., cytokines, antibodies, complement components, antimicrobial peptides and 

leukocytes surface receptors) [192, 193]. In addition, RgpB activity is essential for 

assembly of fimbriae, another major virulence factor of P. gingivalis [194]. 

Treatment with a specific gingipain inhibitor strongly attenuates P. gingivalis 

virulence [195]. Importantly, gingipains are an attractive therapeutic target as 

immunization with purified gingipains or DNA vaccines protects against P. 

gingivalis infection in mice [196] . 

 

Fimbriae: 

Fimbriae are protein-like, filamentous appendages that protrude from the cell 

surface of bacteria. They play a vital role in virulence by promoting bacterial 

attachment to the host cell and other bacteria. P. gingivalis possesses both major 

fimbriae, largely comprised of the FimA protein [197], and minor fimbriae, largely 

comprised of Mfa1 protein [198].  

P. gingivalis major fimbriae are crucial virulence to colonization, facilitating 

adhesion to several host proteins such as laminin, fibronectin, collagen and 

salivary proteins [199] and to other bacteria, such as oral streptococci species 

[197]. Fimbriae also help in the invasion of oral epithelial cells and gingival 

fibroblasts [200] and induce the expression several pro-inflammatory cytokines 

such as IL-1,IL-6 and TNF-, thus priming the immune system [201]. 
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The minor fimbriae are key in adhesion to the primary periodontal colonizer, S. 

gordonii  through specific interaction between Mfal and the SspB protein expressed 

on the surface of S. gordonii  [202]. Unlike FimA [203], Mfa1 is highly inflammatory 

and induces IL-6,IL-1, TNF- in mouse peritoneal macrophages and is 

associated with alveolar bone loss in various mouse models of periodontitis [204]. 

Lipopolysaccharide 

Another virulence component of P. gingivalis is the lipopolysaccharide (LPS) 

that makes up outer leaflet of the bacterial outer membrane. LPS is a hybrid 

molecule of lipids and carbohydrates that is abundant in, and adds structure 

integrity to, the outer membrane [205, 206]. LPS plays a crucial role in initiation of 

inflammation, triggering macrophage [207], neutrophils [208] and gingival 

fibroblasts [209] to secret inflammatory cytokine on interaction with cognizant 

innate receptor molecules. P. gingivalis LPS, as well as LPS from other Gram-

negative species, induce the production of cytokines and other inflammatory 

mediators, through LPS-Toll-like receptor-4 (TLR-4)- nuclear factor-κB (NF-κB) 

axis [210]. P. gingivalis LPS has also been implicated in increasing the risk of 

important systemic conditions, such as atherosclerosis via the induction of foam 

cell formation in murine macrophages [211]. P. gingivalis LPS can directly activate 

osteoclasts and causes the release of the cytokines IL-1 and TNF- from 

macrophages, monocytes, and fibroblasts [212]. These compounds are potent 

local mediators of bone resorption and, moreover, can inhibit collagen synthesis 
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by osteoblasts and induce the production of host metalloproteases that destroy  

bone and connective tissue [148]. 

4.4 Smoking and P. gingivalis prevalence: 

A correlation between cigarette smoking and subgingival infection with 

periodontal pathogens has been long established. P. gingivalis is found in 

significantly higher numbers in smokers compared to non-smokers and the 

infection is more persistent [213]. In a sample of 272 adults with periodontal 

disease, it was confirmed a significant difference in proportions of red-complex 

bacteria including P. gingivalis, in current smokers compared to those in former 

smokers and never smokers [214]. Another self-reported data on 1426 subjects 

aged 25 to 74, showed a  significantly higher proportions of smokers harbored 

Aggregatibacter actinomycetemcomitans, Tanmirella forsythia and P. gingivalis 

than were non-smokers [215]. Eggert et al. showed that smoking extends a 

favorable habitat for bacteria such as P. gingivalis to shallow sites (≤5 mm) [216]. 

Also, based on the results of qPCR, 40 smokers showed significantly higher 

amount of P. gingivalis than 40 nonsmokers in chronic periodontitis with equal 

probing depths [217]. From all these finding we conclude that the evidence for 

tobacco smoke increasing susceptibility to P. gingivalis infection and increasing 

the P. gingivalis infectious load is particularly strong. 
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4.5 Smoking and alterations to P. gingivalis virulence: 

Nicotine and its major metabolite, cotinine, do not influence the growth of P. 

gingivalis even at concentrations of  400µg/mL, which are higher than their 

physiological levels in saliva and GCF [218]; and indicative of profound resistance 

t these antimicrobial alkaloids [219]. Similarly, P. gingivalis growth showed to be 

unaffected by whole cigarette smoke extract (CSE) exposure at concentrations of 

0.5, 2, and 4 µg/mL nicotine equivalents [29, 220] . While P. gingivalis growth is 

not directly influenced by smoke, some changes in the virulence factors of bacteria 

are observed. For example; CSE influences the cell-bound Kgp and RgP gingipain 

production in a strain-specific manner (suppression in P. gingivalis ATCC 33277 

but augmentation in P. gingivalis W83) [221]; CSE exposure decreased the 

proinflammatory capacity (TNF-a, IL-6) of P. gingivalis biofilms [22]; CSE exposure 

altered multiple gene expression profiles (such as DNA repair and oxidative stress-

related  genes) [29]; CSE up-regulated the expression of FimA, suppressed the 

production of capsular polysaccharides, altered the proinflammatory response to 

CSE-exposed bacteria, and induced the expression of the outer membrane 

virulence factors, RagA and RagB [29, 201]. However, many of these effects were 

reversed when bacteria exposed to CSE were sub-cultured in fresh medium 

without CSE [29]. Therefore, smoking may profoundly influence the P. gingivalis 

phenotype and its subsequent interactions with the immune system. 



27 

5. Animal models of periodontitis:

To gain better insight into the mechanisms underlying periodontal diseases, 

animal models that replicate key aspects of this human disease set will be useful. 

Despite the limitation of utilizing animal models, its often less severe than those 

encountering during in vitro experiments, in which cells are examined on plastic 

surface with limited number if cells types presented. Moreover, animal models 

often allow more definitive analysis of course and effect relationships than human 

clinical studies [222]. Animal periodontal disease models that have been employed 

include mice, rats, dogs and non-human primates [223]. Animal models generate 

substantial and relevant data on the interactions between soft and hard tissue, 

especially during inflammation, and hence periodontal inflammatory models, can 

be simulated and tested in animals. Another major advantage is that the potential 

mechanisms of systemic inflammation and its impact on periodontal healing 

processes can be studied in vivo using genetically produced transgenic and 

knockout animals [224]. A crucial aspect in animal models is the opportunity to 

explore complex interactions between bacteria and host which cannot be carried 

out under artificial laboratory conditions using single cell populations. 

 In contrast, animal models such as rodents differ substantially from humans in 

that their incisors lack a root structure and grow continuously throughout life, with 

only the front of the incisors having enamel and provide minute amount of gingival 

tissue. Therefore, relatively large numbers of animals per group are needed. Also, 

it is important to keep in mind these anatomical differences and similarities when 
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considering which aspects of oral anatomy and health can be appropriately 

modeled in periodontitis [225]. 

However, tobacco-specific disease mechanisms have received relatively little 

attention in in vivo systems [26]. Characteristics of smoking-enhanced periodontitis 

in humans include a tobacco-specific microbial dysbiosis [226], dysregulated 

cytokine networks [30], amended neutrophil and other innate cell function [152], a 

protease-antiprotease imbalance [13], and an altered adaptive immune response 

[178], most notably reflected in a profound suppression of IgG production [227]. All 

of these phenomena culminate in increased soft and hard tissue destruction [228]. 

An ideal animal model, which does not exist, would encompass all of these 

disease-related traits. 

5.1 Mouse models of periodontitis: 

A model was developed in which mice were orally infected for studying the 

effect of host response on P. gingivalis-induced alveolar bone loss [229, 230]. It 

has been hypothesized that P. gingivalis initiates experimental periodontitis, at 

least in part, by alternating the endogenous subgingival biofilm to acquire 

increased virulence properties [231]. On one hand, this model may not reproduce 

all aspects of human periodontitis as the use of a single is not represenetive of the 

complex microflora that comprises the dental plaque biofilm [232]. On the other 

hand, the use of P. gingivalis in murine models provides many advantages such 

as allowing the study of natural history of periodontal tissue destruction, 
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comparison of the level of virulence of P. gingivalis and other oral pathogens 

including ), a controlled environmental conditions, and estimations of efficacy of 

periodontal therapeutic strategies [234].  

In an alternative periodontitis model, a silk ligature is be placed around the 

molar teeth in the gingival sulcus which enhances biofilm accumulation in addition 

to disturbing the gingival epithelium,which results in enahnced osteoclastogensis 

and bone loss [223]. A major benefit of the ligature-induced periodontitis model is 

that disease can be initiated in a matter of days with a predictable sequence of 

events culminating in alveolar bone loss [235]. However, in small animals such as 

mice, the possibility for mechanical trauma by the ligatures, might contribute to 

bone loss cannot be excluded [236].  

 

5.2 Rat models of periodontitis: 

 

Rats periodontal anatomy in the molar region shares some similarities with that 

of humans. So, they are often used in models of experimental periodontitis. Also, 

rats are easy to handle and can be obtained with different genomes and microbial 

status. Periodontitis can be induced by placing a bacterial plaque-retentive silk or 

cotton ligature in the gingival sulcus around the molar teeth [61]. In addition, 

injection of P. gingivalis can induce alveolar bone loss in rats [62]. Previous studies 

have shown the influence of smoking on the periodontal disease induced in rats. 

It has been found that cigarettes smoking potentiated bone loss in ligature‐induced 
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periodontitis in rats [237]. Also, smoke exposure cessation seems to reverse its 

impact on mandibular bone [238]. 

 In sum, rodents include some unique features for evaluating microbial and host 

response to complement primate and human periodontal studies. Rodents have in 

each quadrant three molars  and one incisor only [223]. 

One of periodontal disease aspects is bacterial colonization of the tooth surface 

and connective tissue invasion. A challenge with many rodent models of 

periodontal diseases is that the bacteria employed to induce the infection 

development only infect the oral cavity transiently, because rodents are not natural 

host for many human bacteria [230]. The presentation of human bacterial strains 

into the oral cavity and consequent effects on periodontal tissue has been studied 

in varies rodent models  [239, 240]. Different human bacterial strains were used in 

animal models such as Treponema denticola [241], A. actinomycetemcomitans 

[242], Tannerella forsythia  [243] and P. gingivalis [229, 244]. In many cases, the 

oral infection by human bacteria is transient. Nevertheless, T. denticola has been 

detected 71 days after inoculation in mice [241]and P. gingivalis has been detected 

at up to 11 weeks [245]; 45% of rats exposed to P. gingivalis and 80% exposed to 

T. forsythia or T. denticola were found to harbor these bacteria after 4-6 weeks 

[246]. 

Another hallmark of periodontal diseases is the alveolar bone resorption [44]. 

Significant bone loss can be measured histologically, by macroscopic analysis or 

by micro-computed tomography. Alveolar bone resorption often assessed around 

the maxillary molars since bone resorption in lower molars is slower due to wider 
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buccolingual dimensions and thicker cortical alveolar bone [230]. In many reports 

bone resorption was detectable 6 weeks after the final inoculation [229, 247], 

although other studies have shown a detectable alveolar bone loss as early as 3 

weeks after first infection or 2 weeks after the final bacterial challenge  [248]. Both 

mice and rats are susceptible to alveolar bone loss however there are differences 

in the susceptibility to experimental periodontal disease among various strains. 

BALB/c, DBA/2J and C3H/HEN are more susceptible than C57/B16, SJL/J and 

C3H/HeJ  [249]. These differences are correlated to genetic variation in the strains 

affecting components of the immune response. For example, the point mutation 

on Toll-like receptor 4 (TLR4) in C3H/HeJ mice or differences in adaptive immunity 

[250]. Normal variation in the genetics, in addition to modification by genetic 

engineering, in mice creates a potentially valuable option for developing a cause-

and-effect association with both aspects of the host response and periodontal 

disease. 

Bacterial inoculation-induced immune response in mice might be comparable 

to that associated with periodontitis in humans. Downregulation of the innate 

immune response promotes host-microbe homeostasis and highly orchestrated 

expression of certain host defense cytokines and mediators is associated with 

healthy periodontal tissues [251]. Virulence factors produced by some oral 

pathogens might inhibit neutrophils transmigration into the periodontium; cytotoxic 

to recruited neutrophils; or promote leukocytic longevity [91]. For example, P. 

gingivalis secrets a serine phosphatase enzyme (SerB), may play an important 

role in preventing granulocyte recruitment to the periodontal tissues as, in a rat 
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model [245]. SerB also responsible for inhibition of interluiken-8 secretion from 

epithelial cells infected with P. gingivalis, so in the absence of SerB more 

neutrophils are recruited into the gingival tissue [245]. Also, in rats ligature induce 

periodontitis model, administration of nicotine enhanced alveolar bone loss 

concomitant with a reduced pro- and anti- acute inflammatory cytokine response 

to LPS (TNF, transforming growth factor- β, IL- 10) [252]. Chronic exposure of rats 

to nicotine inhibits antibody-forming cell responses and this immunosuppression 

appears to be the result of impairment of antigen mediated T cell signaling [253, 

254]. 

A variety of proteolytic enzymes are involved in the normal homeostatic 

remodeling of the periodontium including natural turnover and pathological 

degradation of the alveolar bone. In periodontal disease, degradation of ligament 

and alveolar bone can be excessive and lead to progressive break down of the 

periodontal supportive tissue [255]. Matrix metalloproteinase 8 (MMP-8), a 

collagenolytic enzyme responsible for  pathological degradation of type I collagen, 

the predominant type of collagen in periodontium. The role of MMP-8 was 

investigated in mouse model study, where MMP-8 knockout mice and wild type 

mice were orally infected by P. gingivalis to induce periodontitis [256]. A 

histological analysis showed that bone loss was significantly higher  in the P. 

gingivalis-infected Mmp-8−/−group compared to the P. gingivalis-infected WT 

group. The study concluded that MMP-8 plays a protective role in alveolar bone 

loss during periodontal infection, possibly by inactivating pro-inflammatory 

cytokines. 
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5.3 Canine models of periodontitis: 

Dogs provide a suitable model for testing naturally occurring gingivitis and 

periodontitis [257]. The genera isolated from the oral cavities of dogs were typical 

of those found in human dental plaque included Actinomyces, Porphyromonas, 

Fusobacterium, Neisseria, and Streptococcus [258]. Also, periodontal disease in 

dogs is highly correlated with aging and thus the etiopathology is closely related to 

humans [259]. A study to investigate deleterious effect of nicotine on the canine 

periodontium, oral or systemic nicotine administration to dogs has been associated 

with increased blood flow to the anterior gingiva, relative to untreated controls 

[260]. Another study noted that applying a solution of tobacco smoke to gingiva of 

dogs might suppress crevicular innate cell migration in neutrophils isolated from 

both inflamed and healthy sites [261]. 

As a limitation, some major difference exists between humans and dogs  as the 

lack of lateral movements, presence of open contacts between teeth and no 

occlusal contacts for all premolars [262]. Other important differences between 

dogs and humans are lack off gingival sulcus and cervical fluids, and a different 

composition of periodontal plaque and calculus [263]. 

5.4 Non-human primate models of periodontitis 

Monkeys have the advantage of probably being phylogenetically similar to 

humans. Most of species have same dental formula as human and have naturally 
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occurring dental plaque, calculus, oral microbial pathogens (e.g., P. gingivalis), 

and periodontal disease [223, 262]. Microbiologically, in Macaca fascicularis 

(cynomolgus monkeys), the composition of the plaque is Gram positive rods and 

cocci for supragingival plaque and anaerobic Gram negative rods for subgingival 

plaque [264, 265]. The inflammatory response to periodontal disease is quite 

similar to that found in humans wherein connective tissues are infiltrated by plasma 

cells, lymphocytes and neutrophils [262]. To study periodontitis and promote 

plaque formation, sutures or orthodontic elastics are commonly placed around 

selected molars until pocket formation is confirmed by probing [266]. Another 

alternative modification to use primates for periodontitis, 

Cynomolgus monkeys with no previously detectable P. gingivalis have been 

treated with the bacteria. About 5 months later, infection by P. gingivalis was 

confirmed and plaque formation leading to bone loss was observed [267]. 

The disadvantages of non-human primate models are difficulty in obtaining a 

large number of animals to perform adequate statistical analysis of the results , 

high cost to provide special husbandry requirements, animals are prone to 

systemic infections and diseases. Moreover, ethical considerations and 

regulations must be fulfilled in order to prevent any trafficking of protected species 

[268]. Collectively, these limitations make non-human primates a less practical 

model for periodontal disease. 

In conclusion, relevant similarities in gingival and tooth anatomy between 

humans and mice, availability of mouse smoke-exposure chambers , existing 

literature on rodent models of periodontal disease and the need to prioritize the 
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use of lower vertebrates, all collectively suggested mice as the most appropriate 

model to experimentally advance our knowledge of smoking-related periodontal 

disease mechanisms. 
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Hypothesis and Aims 

We hypothesized that Porphyromonas-gingivalis-infected, cigarette smoke-

exposed mice would represent  reproducible models of acute (ligature model) and 

chronic (oral gavage model) tobacco-enhanced periodontitis that reflect multiple 

aspects of the disease noted in human smokers. 

Aims 

We set out to examine if tobacco-smoke exposure, in two murine bacterial-

induced periodontitis models, was associated with: 

• A suppressed local and / or systemic innate response,

• A suppressed anti-bacterial IgG response.

• Enhanced alveolar bone loss.
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CHAPTER 2: MATERIALS AND METHODS 

Carboxymethyl cellulose (CMC) was purchased from Sigma Aldrich 

Corporation (St. Louis MO, USA). Phosphate Buffered Saline (PBS) was 

purchased from Life Technologies (Grand Island NY, USA). Streptococcus 

gordonii (S . gordonii) DL-1 and P. gingivalis 33277 were purchased from the 

American Type Culture Collection (Manassas, VA) and maintained as frozen 

stocks. BD BBL Brain-heart infusion broth, Mitis Salivarius agar and Difco 

bacteriological agar were purchased from Difco Laboratories Inc.  Potassium 

tellurite was from SIGMA (St. Louis, MO). Gifu anaerobic medium was from (GAM; 

Nissui Pharmaceutical, Tokyo, Japan). Oral gavage needles were obtained from 

Cadence Science Inc. Cranston, RI). Puritan swabs were from (25-800 D 50) 

(Puritan Medical Products Co., Guilford, ME). Gentamicin solution was purchased 

from SIGMA (St. Louis, MO). Sheep blood was purchased from Lampire Biological 

Laboratories (Pipersville, PA). Midori Green was from Bulldog-Bio (Portsmouth, 

NH). Methylene Blue and Eosin were obtained from Ricca Chemical Company (TX, 

USA). RNeasy mini kit and RLT buffer were from QIAGEN (Hilden, Germany). Taq 

2X Master Mix (M0270) was from NEW ENGLAND BIOLABS (MA, USA). qScript 

XLT reverse transcriptase was from (Quantabio, USA). Real-Time PCR Master 

Mix and mouse primers were from TaqMan Thermo Fisher Scientific, USA. BD 

Microtainer blood collection tubes were from Becton Dickenson. Trizol™ Reagent 

https://www.google.com/search?rlz=1C1SQJL_enUS814US814&sxsrf=ALeKk02Asb_7u37uNAuGQNhlv-UQTqls3g:1591904803099&q=Hilden&stick=H4sIAAAAAAAAAOPgE-LUz9U3sDQ2z7JQAjON401yk7S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxYtY2Twyc1JS83awMgIAWRJGP1AAAAA&sa=X&ved=2ahUKEwjF9LfCw_rpAhXGKM0KHR6yBnQQmxMoATAbegQIEBAD
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was from Thermo Fisher Scientific, USA). Mouse/Rat Cotinine ELISA was from 

CALBIOTECH (CA, USA). Genomic DNA Purification kits were from Promega 

(Madison, WI). 16s PCR primers were purchased from Bio-Synthesis Inc. 

(Lewisville, TX, USA). Anti- mouse IgM-HRP antibody was purchased from 

BETHYL Laboratories (Montgomery, TX) and horse anti-mouse IgG-HRP antibody 

from Cell Signaling Technology (Danvers, MA). Mouse Cytokine / Chemokine 

Magnetic Bead Panel was purchased from (MiliporeSigma, USA). Immunocal was 

purchased from StatLab Medical Products (McKinney TX, USA). Research 

cigarettes (1R6F) were purchased from University of Kentucky. Membrane filters 

were from Pall life sciences (Port Washington, NY). 6–0 black non absorbable 

surgical silk (SURGICAL SPECIALTIES LOOK Co, USA). DEXDOMITOR was 

from Zoetis, USA. Ketamine was from Henry Schein, Inc Co. Puralube Vet 

Ointment was from (1-800-PetMeds, Delray Beach, FL). Heat Pad from K & H Pet 

Products. Ligature holders were from University of North Carolina [269] and the 

modified design was from University of Louisville Oral Health and Rehabilitation 

Department. CO2 was provided by Welders Supply Co. (Louisville, KY).  Nikon 

SMZ 800 dissecting microscope (40X, Nikon Instruments Inc., Melville,35 NY, 

USA) fitted with a Boeckeler VIA-170K video image marker measurement system 

was from Boeckeler Instruments Inc, Tucson, AZ, USA. 
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Mice 

White BALB/c mice, 6-8 weeks old, females, were purchased from Jackson 

laboratory. All the experimental procedures were performed in accordance with the 

Guidelines of the Institutional Animal Care and Use Committee of University of 

Louisville, as described in the Federal Guidelines for the Care and Use of 

Laboratory Animals. Animals were housed and maintained at the University of 

Louisville, School of Dentistry in a room maintained by the Research Resources 

Facility. Cages for animal housing were changed weekly, unlimited food and water 

provided throughout the duration of the experiment with a 12-hour light/dark cycle 

and controlled temperature and humidity. 

Smoking machine and cigarettes : 

Teague TE-10 whole body smoke inhalation exposure system was utilized to 

conduct the mouse exposures (Teague Enterprises; Davis, CA) [270]. 1R6F 

research cigarettes were from University of Kentucky (8.58mg of tar/cigarette; 

0.721mg nicotine/cigarette; additives). 
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Smoking Machine Teague Enterprises TE-10C : 

Figure 1: The smoking machine Teague  Enterprises TE-10C 

The TE-10c is a microprocessor-controlled cigarette smoking machine that 

produces smoke from research cigarettes. From one to ten cigarettes can be 

smoked at a time. The machine’s applications include use with animal and cell 

culture exposure systems and serial animal exposure chambers. The machine is 

composed of four sections: cabinet, cigarette handling, chimney, and ash 

collection tray. 
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We performed two different in vivo experiments. Firstly, a modified Baker Model 

was utilized where an S. gordonii infection was added along with an increase in 

the number of P. gingivalis infections with smoke/no smoke exposure for 68 days. 

Secondly, we utilized a ligature model with P. gingivalis infection with smoke/no 

smoke exposure for 14 days.   

 

Growth of Bacterial Strains  

 

S. gordonii was cultured anaerobically for 16 hr. at 37°C without shaking in 

brain-heart infusion supplemented with 1% yeast extract. P. gingivalis was cultured 

in Gifu medium under anaerobic conditions (80% N2, 10% H2, and 10% CO2) at 

37oC. Growth was monitored by tracking optical density at a wavelength of 600 

nm. The oral infection of mice by S. gordonii and/or P. gingivalis was performed as 

showed in Figure 2 timeline strategy. 

 

Animal Exposure to Smoke 

Female white BALB/C mice were placed into either a cigarette smoke exposure 

(CSE) chamber or a sham exposure chamber (ambient filtered room air) of the 

Teague TE-10C exposure apparatus chamber for a period of 3 hours daily. 

Cigarettes were smoked using the standard Federal Trade Commission method: 

a two second, 35 cm3 puff, once a minute for a total of 9 minutes. One pack of 20 

research cigarettes was used per day. In order to monitor the daily cigarette smoke 

levels, carbon monoxide (CO) concentration and total suspended particulates 
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(TSPs) were measured twice daily.  The level of CO within each exposure chamber 

was determined using a carbon monoxide detector with a digital readout in parts 

per million. TSPs were recorded twice daily by drawing a known volume of air 

during a 5-minute period from the exposure chamber via a sampling port and 

collecting TSPs on a piece of filter paper. The difference in weight pre- and post-

sampling was divided by the volume of air that was drawn from the chamber during 

an interval of five minutes while sampling the exposure chamber. After the smoke 

exposure, animals were returned to their home cages. Food and water were 

changed daily in smoke cages. 

For the Baker model, mice were exposed to ambient air or cigarette smoke, 20 

cigarettes per day over 3 hours, 7 days per week for 68 days. CO levels during the 

exposure were kept at an average of 150 ppm. Mean TSP throughout the 

experiment was 4.9 mg/m3. For the ligature model, mice were exposed to ambient 

air or cigarette smoke 20 cigarettes per day over 3 hours, 7 days per week for 14 

days. CO levels during the exposure were kept at an average of 200 ppm. TSP 

mean was 9.8 mg/m3. 
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Modified Baker Model: 

The Baker Model of bacterially initiated periodontal disease [229] describes a 

method of orally infecting mice with P. gingivalis leading to alveolar bone loss. It is 

aimed at allowing mice to naturally develop periodontitis over a period of time 

similar to development of periodontitis in humans. It closely mimics the chronic 

nature of periodontitis. Alveolar bone loss is detected after 10 weeks. 

In our modified Baker Model, mice were repeatedly orally inoculated with S. 

gordonii and P. gingivalis (109 colony-forming units (CFU) in 100 ml 2% 

carboxymethylcellulose) or sham inoculated (vehicle alone) as shown in Figure 2. 
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Timeline strategy for Baker model bacterial inoculation 

Figure 2: Bacterial inoculation timeline for smoke- or ambient air-exposed mice. 

Days of inoculation are represented by green arrows for S. gordonii  (109 CFU) 

and red arrows for  P. gingivalis (109 CFU). 

72 
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Day 0 

There were 4 groups: 

1. Group 1  (Sham infection / no smoking exposure),

2. Group 2 (Bacteria infection / no smoking exposure),

3. Group 3 (Sham infection / smoking exposure),

4. Group 4 (Bacteria infection / smoking exposure).
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Mice group assignment for Baker model 

Figure 3: Baker model  group assignment: Female Balb/c mice (6-8 weeks) 

distributed in four groups (n=6). Group 1, sham infection and no smoking exposure; 

Group 2, bacterial infection and no smoking exposure; Group 3, sham infection 

and smoking exposure and Group 4, bacterial infection and smoking exposure. 
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Day 0 through Day 4 

Mice acclimated to the surrounding environment; no smoking exposure or 

infection was done at this time.  

Day 5 

Mice were exposed to ambient air or cigarette smoke (20 cigarettes per day 

over 3 hours), continued daily until euthanasia. 

Day 12 though Day 18 

Mice were infected orally with S. gordonii in PBS and carrier CMC at a 

concentration of 109 CFU/mouse in 100 l PBS and 2% CMC. A gavage needle 

was used to infect mice locally in the buccal vestibule around the molar area. Sham 

infected mice received 2% CMC in 100 μl PBS with 2% CMC. The mice were 

infected with S. gordonii for a total of four times. The infection was done every 

other day.  

Day 20 through Day 55 

Mice were infected orally with P. gingivalis in PBS and carrier CMC at a 

concentration of 109 CFU/mouse in 100 l PBS and 2% CMC. A gavage needle 

was used to infect mice locally in the buccal vestibule around the molar area. Sham 

infected mice received 2% CMC in 100 μl PBS. The infection was done every other 

day for six times followed by two subsequent infections every two weeks for a total 

of ten times infection. The sham-infected mice were treated in the same manner 

as the bacterial infected mice except that they received just PBS and CMC. 
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Day 72 

Mice were euthanized 42 days after the last P. gingivalis infection. Inhalation 

of carbon dioxide was used as the standard method to euthanize the mice. The 

flow of carbon dioxide was maintained at (1.5 liters) until at least 1 minute after 

respiratory arrest. The secondary method was decapitation/exsanguination. 

Oral swabs for S. gordonii and P. gingivalis: 

Oral swabs were obtained from all mice by swabbing the buccal vestibule molar 

area of the gingiva using Puritan polyester tipped swabs. This was done to detect 

the presence of S. gordonii in the oral cavity, to assess the effectiveness of S. 

gordonii infection, to monitor the prevalence of S. gordonii in the different treatment 

groups, to detect the presence of P. gingivalis in the oral cavity, to assess the 

effectiveness of P. gingivalis infection and to monitor the prevalence of P. gingivalis 

in the different treatment groups. Oral swabs were collected for S. gordonii 

detection one day after the second infection, one day after the third infection, one 

day after the six rounds of P. gingivalis infection, then every two weeks until the 

final swab at the time of euthanasia. 
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Oral swabs time frame for Baker model. 

Figure 4: Oral swabs time frame for Baker model represented by blue arrows. 
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S. gordonii detection was performed by two methods: 

1. Plate culture:

The periodontal microbiota was sampled by swabbing the buccal vestibule 

around the molars, then streaked directly onto Mitis Salivarius agar plates 

supplemented with 0.1% potassium tellurite solution (1%) for aerobic culture at 

37oC for 1-2 days. 

Plates were examined for appearance of colonies and those with small deep 

dense colonies believed to be more representative of S. gordonii colonies. Entire 

plates scraped into 200 l nuclease free water. 5 µl suspension used in the gftG 

PCR. 

2. . Standard Polymerase Chain Reaction for S. gordonii:

Entire plates scraped into 200 l nuclease free water.  5 l suspension used for 

Standard PCR procedure and run on 2% agarose gel electrophoresis at 120V to 

detect the presence of the amplified glucosyltransferase Gene (gftG) [271]. 

• gftG  primers, Fragment size is 440 (bp);

gftG upstream     5⸍-CTATGCGGATGATGCTAATCAAG-3⸍ 

gftG downstream   5⸍-GGAGTCGCTATAATCTTGTCAGA-3⸍ 

and the cycling conditions: 10min at 95oC, 35 cycles of 15 sec at 95oC, 35 

cycles of 15 sec at 50oC, 35 cycles of 30 sec at 68oC, 5min at 68oC and holding at 

4oC. This assay was done to detect presence of S. gordonii only using a crude 

preparation. No attempt was made for quantification. 
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P. gingivalis detection: 

 Mice were sampled by swabbing the maxillary gingiva using Puritan swabs. 

This was done to detect the presence of P. gingivalis in the oral cavity, to assess 

the effectiveness of infection and to monitor the prevalence and persistence of P. 

gingivalis in the different treatment groups. Oral swabs were collected for P. 

gingivalis detection one day after each infection and then every two weeks after 

last infection. 

P. gingivalis detection was performed by two methods: 

1. Plate culture. 

 The periodontal microbiota was sampled by swabbing the buccal vestibule 

around molars, then the swab tips were submerged into 300l anaerobic balanced 

GAM broth followed by plating onto blood agar plates (100 μl/plate) and CFU were 

enumerated following anaerobic growth for 1 month and examined at 1, 2 and 4 

weeks. P. gingivalis was identified by black pigmented colonies and Gram staining. 

 

2. Standard PCR procedure and 2% agarose gel electrophoresis at 120V to 

detect the presence of  the amplified P. gingivalis 16S Gene [272]. 

• P. gingivalis 16S  primers, Fragment size is 404 (bp); 

P. gingivalis 16S  upstream              5⸍-AGGCAGCTTGCCAT ACTGCG-3⸍ 

P. gingivalis 16S   downstream         5⸍-ACTGTTAGCAACTA CCGATGT-3⸍ 

and the cycling conditions: 30 sec at 95oC, 30 cycles of 15 sec at 95oC, 30 

cycles of 15 sec at 48oC, 30 cycles of 1 min at 68oC, 5min at 68oC and holding at 

4-10oC. 
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Specimen collection and analysis: 

1. Tissue harvest

Gingival tissue of the entire maxilla was excised around the molar area and 

was immersed in RLT buffer (Qiagen). Samples were flash frozen on dry ice then, 

stored at -80ºC. The tissue was disrupted by sonication and RNA prepared using 

RNeasy kit following the manufacturer’s protocol. RNA concentration was 

determined using a NanoDrop nucleic acid quantification instrument (Thermo 

Fisher) and equalized before cDNA preparation using qScript XLT (Quanta bio). 

Real-time quantitative PCR (qPCR) analysis of gingival tissue was performed 

using the TaqMan system to determine cytokine mRNA expression of inflammatory 

markers (IL-1, MMP-8, MMP-9, CD14, CD45) with GAPDH housekeeping gene. 

2. Serum:

Cardiac puncture was used to collect blood from each mouse, which was added 

to gel tubes (BD Microtainer) and allowed to clot at room temperature for 30 

minutes followed by centrifuging according to the protocol.  Sera were aliquoted 

and stored at -80°C for later assessment of systemic inflammatory mediators by 

multiplex ELISA and IgG and IgM. P. gingivalis reactive antibodies were 

quantified by ELISA. 



53 

Serum P. gingivalis immunoglobulin detection protocol 

Serum was tested for P. gingivalis cognizant IgG and IgM antibodies, as 

determined by ELISA.  Briefly, P. gingivalis was fixed in formalin and washed three 

times in PBS and diluted to an OD600nm of 0.3 and plated in 96 well microtiter plate 

after blocking for 12 hours at 4°C as described [245]. Diluted mouse sera (1:200) 

were reacted with bacteria for 2h at room temperature. After washing, goat anti-

mouse IgM or horse anti-mouse IgG (both conjugated to HRP) (1:1000) were 

added to the plate. After washing 7 times, TMB was applied and incubated for 

5min. The assay reactions were terminated by the addition of 1N H2SO4 and 

analyzed at an OD450nm using a Bio-Rad microplate reader. 

3. Alveolar bone loss evaluation:

Freshly harvested skulls were submerged in tap water and boiled for 8 minutes. 

After de-fleshing gently with micro brushes and running water, the skulls were 

immersed overnight in 3% hydrogen peroxide. The following day, the skulls were 

immersed for 1 min in 1% bleach, washed and air dried. The maxillae were stained 

with 0.5% eosin for 5 min followed by 1% methylene blue for 1 minute. Alveolar 

bone loss was measured using a SMZ 800 dissecting microscope fitted with a VIA-

170K video image marker measurement system. Bone loss was measured at 14 

predetermined points on the maxillary molars of de-fleshed maxillae, determined 

as the distance from the cementoenamel junction (CEJ) to the alveolar bone crest 

(ABC). Bone loss was calculated by subtracting the mean CEJ-ABC distance of 

the control group from the CEJ-ABC distance of each experimental group. 
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Microscopic image of mice maxillary teeth 

Figure 5: Microscopic image of mice maxillary teeth showing the seven sites 

of measurement from the CEJ to ABC (depicted by yellow stars) on the left 

buccal  side after staining with methylene blue for visualization of the CEJ. 
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Ligature model: 

The ligature-induced periodontitis model is another method of modeling 

periodontal disease.  This model has the advantage of being initiated at a known 

time with a predictable sequence of events culminating in alveolar bone loss within 

a few days [235]. In the present study, mice were repeatedly orally inoculated with 

P. gingivalis (109 colony-forming units (CFU) in 100 ml 2% carboxymethylcellulose) 

or sham inoculated (vehicle alone) as in Figure 6. 
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Timeline strategy for ligature model bacterial inoculation 

Figure 6: Ligature placement and bacterial inoculation strategy for smoke- or 

ambient air-exposed mice. Days of inoculation are represented by red arrows 

where P. gingivalis (109 CFU) or sham infections (CMC) were administered orally 

3 times/as shown in the timeline. 

Tobacco smoke exposure 20 cigarettes daily over 3 hours(or sham exposure) 
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Day 0 

Upon arrival of mice, mice were randomized and distributed in groups (n=7 per 

group). Mice tails were marked for identification of groups and individual animals. 

Mice weights were recorded every other day till the end of experiment. 

There were 4 groups of mice: 

1. Group 1  (Sham infection / no smoking exposure / Ligature),

2. Group 2 (Bacteria infection / no smoking exposure/ Ligature),

3. Group 3 (Sham infection / smoking exposure/ Ligature),

4. Group 4 (Bacteria infection / smoking exposure / Ligature).
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Mice group assignment for Ligature model 

Figure 7: Ligature model mouse group assignment: female Balb/c mice (8 

weeks) distributed in four groups (n=7). Group 1 ligature, sham infection and no 

smoking exposure, Group 2 ligature, Bacteria infection and no smoking exposure, 

Group 3 ligature, sham infection and smoking exposure and Group 4 ligature, 

Bacteria infection and smoking exposure. 
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All four experimental groups had their right maxillary second molar ligated by 

6–0 black non absorbable surgical silk positioned around the tooth with the ligature 

holder [269] and then tied gently with a lingual side knot to prevent damage to the 

periodontal tissue. The contralateral molar tooth in each mouse was left unligated 

to serve as baseline control for bone height measurements.  

 

Day 0 through Day 3 

Mice acclimated to the surrounding environment. No smoking exposure or 

infection was done at this time. 

Day 3 through Day 7 

Mice were exposed to ambient air or cigarette smoke 20 cigarettes per day 

over 3 hours till the day of euthanasia. 

Day 8 

Mouse groups number 1 and 3 were anesthetized for the placement of the 

ligature around the right maxillary second molar with Ketamine/ Dexmedetomidine. 

Dosing was as follows: 

Ketamine dose is 65 mg/kg. 

Dexmedetomidine dose is 0.65 mg/kg. 

Mice were placed on a heating bed until recovered from anesthesia, and eye 

ointment was applied to protect against eye dryness. Mice were sham infected 

locally around maxillary molars with 100 µl PBS (2% CMC) as described 

previously. Sham infection was repeated on alternate days for three times (Days 

8, 10 and 12). 
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Day 9 

Mouse groups 2 and 4 were anesthetized for the placement of the ligature 

around the right maxillary second molar with the same previously mentioned dose 

followed by oral infection with P. gingivalis (109 CFU/mouse) in 100 l PBS/2% 

CMC. The infection was repeated every other day for three days (Days 9, 11 and 

13). 

Day 15 

Mouse groups number 1 and 3 were euthanized 7 days after the ligature 

placement. Inhalation of carbon dioxide was used as the standard method to 

euthanize the mice. The flow of carbon dioxide was to 1.5 liters per minute. Carbon 

dioxide flow was maintained for at least 1 minute after respiratory arrest. The 

secondary method was decapitation/exsanguination. 

Day 16 

Mouse groups number 2 and 4 were euthanized 7 days after the ligature 

placement. Inhalation of carbon dioxide was used as the standard method to 

euthanize the mice. The flow of carbon dioxide at 1.5 liters per minute was 

maintained for at least 1 minute after respiratory arrest. The secondary method 

was decapitation/exsanguination. 
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Specimen collection: 

1. Tissue harvest

Gingival tissue of the entire maxilla was excised around the molar area and 

immersed in buffer (Trizol 500 l). Samples were stored at -80ºC until used for 

RNA isolation following the manufacturers protocol. Real-time quantitative PCR 

(qPCR) analysis of gingiva is planned to determine cytokine mRNA expression of 

inflammatory markers using TaqMan system. However, this was not possible due 

to lab and core facilities closure associated with the COVID-19 outbreak. 

2. Serum:

Cardiac puncture was used to collect blood from each mouse. Serum was 

stored at 80°C for later assessment. Serum was tested for P. gingivalis exposure 

by analyzing total P. gingivalis cognizant IgG and IgM antibodies, as determined 

by ELISA. Analysis of systemic inflammatory mediators by multiplex ELISA is 

planned. However, this was not possible due to lab and core facilities closure 

associated with the COVID-19 outbreak 

3. Alveolar bone loss evaluation:

Freshly harvested skulls were submerged in deionized water and boiled for 8 

minutes, followed by de-fleshing, and gentle cleaning with micro brushes and 

running water. Skulls were then soaked overnight in 3% hydrogen peroxide before 

being immersed for 1 min in 1% bleach, washed and air dried. The maxillae were 

stained with 0.5% eosin for 5 min followed by 1% methylene blue for 1 minute. 

Alveolar bone loss was measured in millimeters at 14 predetermined points on the 
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maxillary molars of de-fleshed maxillae as the distance from the cementoenamel 

junction (CEJ) to the alveolar bone crest (ABC). 

     Statistical analysis: 

Data were evaluated by ANOVA or t-test, as appropriate, using InStat v3.06 

program (GraphPad, San Diego, CA), unless otherwise described. Significance 

was set at the p < 0.05. 
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CHAPTER 3 RESULTS 

We examined the influence of cigarette smoke exposure on oral health in two 

different murine models of periodontitis. First, 68 days, bacterial-induced, chronic 

disease model was exploited. Second, a 14 day, acute disease model in which 

bacterial-induced bone loss was accelerated by the placement of molar ligatures 

was utilized. 

3.1 Chronic Disease (Baker) Modeling 

As detailed in the Materials and Methods section, mice were randomly 

assigned into 4 groups (6 mice per group): uninfected and sham smoked controls; 

uninfected, smoke-exposed (68 days, 20 cigarettes/day, 3 hrs. per day); mice 

orally inoculated multiple times with S. gordonii then P. gingivalis and sham 

smoked; and mice both infected and smoke-exposed. Mass was assessed at 

baseline (Figure 7) and prior to euthanasia (Figure 8). Weight gain was also 

monitored (Figure 9). The IgM and IgG response to infection (Figures 10 and 11); 

systemic inflammatory mediators (Table 1); specific local gingival inflammatory 

indices, IL-1β (Figure 12), MMP-8 (Figure 13), MMP-9 (Figure 14), CD14 (Figure 

15) and CD45 (Figure 16); as well as alveolar bone loss (Figure 17) were

assessed. 
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Figure 8: Equal murine body mass at baseline in the chronic smoke exposure 

model. 

6-8-week-old, female Balb/c mice were randomly divided into 4 groups (n = 6 / 

group) and weighed prior to induction, or not, of bacterial-induced chronic 

periodontal disease in the presence or absence of mainstream stream smoke. 

Data is presented as mean ± s.d. 

There were no significant differences in baseline mass between groups, as 

determined by ANOVA (p > 0.05). 
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Figure 9: Chronic smoke exposure does not influence murine body mass. 

Balb/c mice were weighed at 68 days following the induction, or not, of 

bacterial-induced chronic periodontal disease in the presence or absence of 

mainstream stream smoke (n = 6 / group). 

Data are presented as mean ± s.d. 

There were no significant differences in murine mass between groups at 

euthanasia, as determined by ANOVA (p > 0.05). 
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Figure 10: Chronic smoke exposure does not influence murine body mass 

differentials. 

Difference of Balb/c mice body mass between base line weight and the weight 

at 68 days following the induction, or not, of bacterial-induced chronic periodontal 

disease in the presence or absence of mainstream stream smoke (n = 6 / group). 

Data are presented as mean ± s.d. 

There were no significant differences in murine mass differentials between groups, 

as determined by ANOVA (p > 0.05). 
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Table 1: Bacterial colonization of the oral cavity of mice in the absence of cigarette 

smoke.  

 

Bacterium 
Detection 

method 

SWAB 

1 

SWAB 

2 

SWAB 

3 

Paper 

Point 

SWAB 

4 

SWAB 

5 

SWAB 

6 

S. gordonii 
PCR + +  - +    + 

Culture + +  + +  + 

P. gingivalis 

PCR           - - + - 

Culture          -     + - - 

 

A positive colonization score for S. gordonii, by PCR, was defined as the 

visualization of 440 bp amplicons in samples isolated from >3 / 6 mice. 

 

A positive colonization score for P. gingivalis, by PCR, was defined as the 

visualization of 405 bp amplicons in samples isolated from >3 / 6 mice. 

 

A positive colonization score for S. gordonii, by culture, was determined by the 

visualization of streptococcal-like colonies on Mitis Salivarius agar plates. 

 

A positive colonization score for P. gingivalis, by culture, was determined by 

the visualization of black pigmented colonies on blood agar plates. 
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Table 2: Bacterial colonization of the oral cavity of mice chronically exposed to 

cigarette smoke. 

Bacterium Detection 

method 

SWAB 

1 

SWAB 

2 

SWAB 

3 

Paper 

Point 

SWAB 

4 

SWAB 

5 

SWAB 

6 

S. gordonii PCR + + - + + 

Culture + + + + + 

P. gingivalis PCR - - - - 

Culture - - - 

A positive colonization score for S. gordonii, by PCR, was determined by the 

visualization of 440 bp amplicons in samples isolated from >3 / 6 mice. 

A positive colonization score for P. gingivalis, by PCR, was determined by the 

visualization of 405 bp amplicons in samples isolated from >3 / 6 mice. 

A positive colonization score for S. gordonii, by culture, was determined by the 

visualization of streptococcal-like colonies on Mitis Salivarius agar plates. 

A positive colonization score for P. gingivalis, by culture, was determined by 

the visualization of black pigmented colonies on blood agar plates. 
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Figure 11: P. gingivalis-cognizant IgM is elevated in infected, chronically smoke- 

exposed mice. 

IgM titers were measured by ELISA post-euthanasia. 

Differences between groups were determined by ANOVA. 

Data are presented as mean ± s.d. values (n = 6 per group). 

*p< 0.05.
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Figure 12: Infection induces a P. gingivalis-cognizant IgG response that is not 

influenced by chronic smoke exposure in mice.  

IgG titers were measured by ELISA post-euthanasia. 

Differences between groups were determined by ANOVA. 

Data are presented as mean ± s.d. values (n = 6 per group). 

***p < 0.001. 
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Table 3: Chronic smoke exposure alters aspects of the systemic immune response 

to P. gingivalis. 

Inflammatory Mediator Bacteria/Sham Smoked Bacteria/Smoke 

Mean (s.d.) [pg/ml] 

CCL2 52(14) 20(22)** 

CCL5 17(7) 17(6) 

CXCL1 133(23) 85(30)** 

CXCL10 499(74) 509(113) 

MIP-1a 73(21) 47(38) 

MIP-1b 104(16) 84(14)* 

G-CSF 375(168) 435(177) 

GM-CSF 35(14) 11(15)** 

IFN-g 6(2) 4(3) 

TNF-a 11(2) 9(1) 

IL-1a 755(163) 689(186) 

IL-5 21(8) 18(10) 

IL-10 21(3) 17(2)* 

IL-13 67(10) 57(5)* 

IL-15 18(29) 17(20) 

IL-17 3(3) 5(4) 

IL-9 198(45) 283(89)* 

Concentrations of inflammatory mediators in mouse serum were measured by 

multiplex ELISA following euthanasia. 

Differences between groups were determined by t-test. 

Data are presented as mean ± s.d. values (n = 6 per group). 
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(IL-12p40, IL-12p70, IL-7, IL-6, IL-4, IL-2, and IL-1b) fell outside the range of the 

standard curve. 

*p < 0.001, ** p < 0.01, respectively.

. 
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Figure 13: Chronic cigarette smoke exposure does not influence IL-β message in 

murine gingiva. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The IL-1β mRNA relative to that of glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) was measured post-euthanasia by qPCR in gingival tissues in (A) non-

infected exposed and (B) infected mice. 

Differences between groups were determined by t-test. 

Data are presented as mean ± s.d. values (n = 6 per group). 

p > 0.05. 
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Figure 14: Chronic cigarette smoke augments the MMP-8 signal in bacteria-

infected murine gingiva. 

The MMP-8 mRNA signal, relative to that of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was measured post-euthanasia by qPCR in gingival 

tissues in (A) non-infected exposed and (B) infected mice. 

Differences between groups were determined by t-test. 

Data are presented as mean ± s.d. values (n = 6 per group). 

*p < 0.05.
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Figure 15: Chronic cigarette smoke exposure does not influence the MMP-9 

message in murine gingiva. 

The MMP-9 mRNA signal, relative to that of glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) was measured post-euthanasia by qPCR in gingival tissues in (A) non-infected 

and (B) infected mice.  

Differences between groups were determined by t-test. 

Data are presented as mean ± s.d. values (n = 6 per group). 

*p > 0.05.
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Figure 16: Chronic cigarette smoke exposure does not influence CD14 message 

in murine gingiva. 

The CD14 mRNA signal, relative to that of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was measured post-euthanasia by qPCR in gingival 

tissues in (A) non-infected and (B) infected mice.  

 Differences between groups were determined by t-test. 

Data are presented as mean ± s.d. values (n = 6 per group). 

*p > 0.05.



77 
 

0

1

2

3

4

C
D

 4
5

 m
R

N
A

  
(f

o
ld

 c
h

a
n

g
e

)

 S m o k e d                  -                        +

B a c te r ia                  -                         -

A

0

1

2

3

4

5

C
D

 4
5

 m
R

N
A

  
(f

o
ld

 c
h

a
n

g
e

)

S m o k e d                  -                        +

B a c te r ia                  +                        +

B

Figure 17: Chronic cigarette smoke exposure does not influence the CD45 signal 

in murine gingiva. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CD14 mRNA signal, relative to that of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was measured post-euthanasia by qPCR in gingival 

tissues in (A) non-infected and (B) infected mice.  

 Differences between groups were determined by t-test. 

Data are presented as mean ± s.d. values (n = 6 per group). 

*p > 0.05. 
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Figure 18: Chronic tobacco smoke exposure enhances bacteria-induced alveolar 

bone loss in mice. 

 Alveolar bone loss was determined as the distance from the CEJ to ABC at 14 

predetermined maxillary buccal sites. 

Differences between groups were determined by ANOVA. 

Data are presented as mean ± s.d. values (n = 6 per group). 

* / ** p < 0.05, 0.01, respectively.
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3.2 Acute Disease (Ligature) Modelling 

As detailed in the Materials and Methods section, mice were randomly 

assigned into 4 groups (7 mice per group): Uninfected and sham smoked controls; 

uninfected, smoke-exposed (14days, 20 cigarettes/day, 3 hrs per day); mice orally 

inoculated multiple times with P. gingivalis and sham smoked; and mice both 

infected and smoke-exposed. Mass was assessed at baseline (Figure 18) and 

prior to euthanasia (Figure 19). Weight gain was also monitored (Figure 20) as 

were the IgM and IgG response to infection (Figures 21 and 22). As in the chronic 

disease model, it was planned to monitor systemic inflammatory mediators, and 

specific local gingival inflammatory indices. However, these experiments were 

curtailed by the COVID-19 outbreak. However, alveolar bone loss (Figure 23) was 

assessed. 
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Figure 19: Equal murine body mass at baseline in the acute periodontal disease 

model. 

6-8-week-old, female Balb/c mice were randomly divided into 4 groups (n = 7 / 

group) and weighed prior to induction, or not, of bacterial-induced acute 

periodontal disease in the presence or absence of mainstream stream smoke. 

Data is presented as mean ± s.d. 

There were no significant differences in baseline mass between groups, as 

determined by ANOVA (p > 0.05). 
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Figure 20: Bacterial infection increased murine body mass in smoke-exposed mice 

in an acute model of periodontitis. 

 

 

 

 

 

Balb/c mice were weighed at following the induction, or not, of bacterial-induced 

acute periodontal disease in the presence or absence of mainstream stream 

smoke (n = 7 / group).  

Differences between groups were determined by ANOVA. 

Data are presented as mean ± s.d. 

* p < 0.05. 
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Figure 21: Smoking suppressed body mass differentials in an acute periodontitis 

model in mice. 

Difference of Balb/c mouse body mass between the base line weight and the 

weight at time of euthanasia following the induction, or not, of bacterial-induced 

acute periodontal disease in the presence or absence of mainstream stream 

smoke (n = 7 / group). 

Differences between groups were determined by ANOVA. 

Data are presented as mean ± s.d. 

** / *** p < 0.01, 0.001, respectively. 
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Bacterial colonization of the oral cavity in acute periodontitis model in mice: 

 

Detection of bacterial colonization by culture and PCR in the acute periodontitis 

model was planned. However, this was not possible due to lab and core facilities 

closure associated with the COVID-19 outbreak. 
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Figure 22: Infection induces a P. gingivalis-cognizant IgM response that is not 

influenced by smoke exposure in an acute periodontitis model in mice. 

IgM titers were measured by ELISA post-euthanasia. 

Differences between groups were determined by ANOVA. 

Data are presented as mean ± s.d. values (n = 7 per group). 

* p < 0.05.
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Figure 23: P. gingivalis cognizant-IgG is not influenced by smoke exposure in an 

acute periodontitis model in mice.      

 

 

 

 

IgG titers were measured by ELISA post-euthanasia.  

Differences between groups were determined by ANOVA. 

Data are presented as mean ± s.d. values (n = 7 per group). 

All, p > 0.05. 
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The influence of smoke exposure on the systemic immune response to P. 

gingivalis in an acute model of periodontitis. 

Concentrations of inflammatory mediators in mouse serum were to be measured by 

multiplex ELISA following euthanasia. However, this was not possible due to lab and core 

facilities closures associated with the COVID-19 outbreak. 

The influence of smoke exposure on the gingival immune response to P. gingivalis 

in an acute model of periodontitis. 

Specific local gingival inflammatory mediators were planned to be measured 

post-euthanasia by qPCR in gingival tissue. However, this was not possible due to 

lab and core facilities closure associated with the COVID-19 outbreak. 



87 

Figure 24: Tobacco smokes enhances bacteria-induced alveolar bone loss in an 

acute model of periodontitis in mice. 

Alveolar bone loss was determined as the distance from the CEJ to ABC at 7 

predetermined buccal sites on contralateral sides of maxilla (ligated and non-ligated 

control sides). 

Differences from the non-ligated and ligation-only control groups were determined by 

ANOVA. 

Data are presented as mean ± s.d. values (n = 7 per group). 

* / **/ *** p < 0.05, 0.01, 0.001 respectively, compared to untreated group.

# / ##/ p < 0.05, 0.01, respectively, compared to compared to ligature only group. 
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CHAPTER 4 DISCUSSION 

Periodontal diseases are highly prevalent, chronic inflammatory diseases of the 

tissue surrounding the teeth that lead to significant oral depilation [273]. Disease 

initiates and progresses when the balance of a complex interplay between the host 

immune response and microorganisms of the dental biofilm – or homeostasis - is 

disrupted. P. gingivalis, a causative agent of periodontal disease, is a Gram-

negative, black pigmented, assacharolytic anaerobic bacteria that facilitates the 

subversion of the host immune response and, as a consequence, is thought to 

promote dysbiotic polymicrobial synergy  [187, 273, 274]. Tobacco smoking is 

considered the strongest modifiable environmental risk factor for periodontitis 

[138]. 

Finding a reliable and reproducible animal model of periodontal disease that 

reproduces all aspects of human disease is unlikely. However, we hypothesized 

that two murine models would reflect at least some of the tobacco-specific facets 

of periodontal disease in humans. Most importantly, enhanced alveolar bone loss. 

Mice are an attractive model due to relevant gingival and tooth anatomy relatively 

low cost, availability of extensive genetic tools, a large existing literature 
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and availability of rodent smoke-exposure chambers. When aligned with the 

prioritization of the use of lower vertebrates, mice appear to be the appropriate 

animal, to explore in the context of smoking-related periodontal disease 

mechanisms. 

There are key aspects of tobacco-enhanced human periodontal disease that 

differ from the disease in non-smokers i) enhanced and persistent infection with P. 

gingivalis and other periodontal pathogens [12, 138]; ii) a suppressed IgG 

response to pathogens [35, 149]; iii) a suppressed local and systemic pro-

inflammatory response [26]; iv) an elevated endogenous protease burden [146]; 

and, most critically, (v) exacerbated oral bone loss [123, 124]. In addition, we were 

cognizant of the reduced body mass apparent in human smokers. Thus, we 

evaluated these human disease traits in acute and, where possible, chronic, 

smoke-exposed disease models. 

Murine mass was equal in all groups at the start of the experimental period in 

both models.  In the acute, but not chronic model, bacterial infection was 

associated with increased body mass in smoke-exposed mice. 

A positive correlation between weight gain and periodontitis risk has been 

established in humans [275]. It is suggested that lipopolysaccharide (LPS) of 

Gram-negative periodontal bacteria could lead to hepatic dyslipidemia and insulin 

resistance [276]. On the other side, smoking is suggested to reduce weight by 

suppressing the appetite and/or increasing energy expenditure in humans [277, 
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278]. Also, cross-sectional studies clarify that body weight is lower in smokers than 

nonsmokers [279]. However, in our study, smoking by itself did not affect body 

mass. 

In the chronic model, persistent colonization with the commensal bacterium, S. 

gordonii, was readily established in both the sham-smoked and smoked groups, 

as determined by both PCR and culture. This is consistent with the literature, 

where multiple reports confirm colonization of Streptococcus species in the oral 

cavity of mice [280-282]. 

Unlike S. gordonii, we could not detect persistent P. gingivalis colonization, 

other than a single positive culture of black-pigmented rods early in the inoculation 

protocol. Therefore, we must think of our model as a series of transient infections 

rather than the established and persistent colonization by P. gingivalis seen in 

humans [230]. This is most likely explained by the fact that mice are not a natural 

host for P. gingivalis [230].The interaction between S. gordonii and P. gingivalis is 

well established [202, 283]. Therefore, we had hypothesized that an initial infection 

with S. gordonii would enhance colonization of P. gingivalis in our chronic model 

of periodontitis. However, while the P. gingivalis infections may have been 

transient, a robust adaptive immune response was nevertheless induced, as 

determined by the IgG response, while, critically, infection-associated differentials 

in alveolar bone loss were apparent, both phenomena to be discussed later. 
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A robust antibody response to P. gingivalis, reflective of colonization, is noted 

in patients with periodontitis [150, 151]. In our study we examined the association 

between smoking and levels of serum IgM and IgG. In the chronic and acute 

disease models, smoking did not influence the P. gingivalis-cognizant IgM or IgG 

titers. The IgM signal in the presence or absence of P. gingivalis infection likely 

reflects the presence of related Bacteroidetes or other bacteria that may share a 

sub-set of antigens with P. gingivalis. 

 

Such findings are in contrast to the situation in humans, where the overall and 

pathogen-specific IgG response is significantly suppressed in smokers compared 

to nonsmokers, both in general and specifically in patients with periodontal disease 

[35, 227, 284]. 

 

Cigarette smoking alters the development and effector function of innate 

immune cells [30]. However, due to prioritization of experimental outcome 

measures, only systemic and local inflammatory profiling was addressed herein. 

 

In the chronic model of periodontitis, we observed that smoke exposure altered 

specific aspects of the systemic immune response to bacterial infection, with 

significantly reduced levels of CCL2, CXCL1, MIP-1b, GM-CSF, IL-13, and IL-10 

noted in serum from smoked-exposed mice relative to non-smoked control 

animals. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine that can 

contribute to the maintenance of bone mass through inhibition of osteoclastic bone 
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resorption and regulation of osteoblastic bone formation [285]. Also, IL-10-deficient 

mice possess hyperinflammation and are highly susceptible to P. gingivalis-

induced periodontitis [286]. In addition, IL-13 prevents osteoclast precursors from 

differentiating into osteoclasts [287]. Moreover, Granulocyte-macrophage colony-

stimulating factor (GM-CSF) inhibits osteoclastogenesis by diverting osteoclast 

precursors to a macrophage lineage [288]. Among the infected groups, our results 

showed significant lower serum levels of GM-CSF, IL-10, and IL-13 in smoked 

mice relative to non-smoked mice in the chronic model of periodontitis. This can 

explain the associated bone loss in smoked mice discussed later in the current 

study. Our findings are consistent with clinical studies. For instance, it has been 

found that decreased salivary IL-10 level was significantly lower in patients with 

chronic periodontitis as compared with healthy controls [289] Also, Zein et al. 

reported that levels of IL-10, IL-13  were significantly lower in plasma of aggressive 

periodontitis patients compared with healthy [290].In addition, serum GM-CSF 

level was reduced insignificantly in chronic periodontitis patients compared to 

healthy control group [291]. 

We also analyzed the effect of smoking on the mRNA signal of the inflammatory 

markers, IL1, MMP-8, MMP-9, CD14 and CD45, in the maxillary gingiva of mice. 

IL-1β is an archetypal proinflammatory mediator, whose upregulation contributes 

to inflammation and the destructive sequelae that are characteristic features of 

periodontal diseases [292]. IL-1 is detected early in any  immune response to 

pathogens [293]. Therefore, elevated IL-1β levels have been suggested as a 

potentially sensitive aid in monitoring clinical disease activity [294]. In the chronic 
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model of periodontitis, tobacco smoke exposure was associated with reduced 

expression of IL-1β in the maxillary gingiva, regardless of infection, although the 

effect showed high variability and did not reach statistical significance. Rawlinson 

et al. (2003) have previously reported that the IL-1β signal is lower in gingival 

crevicular fluid of adult periodontitis smokers vs. nonsmokers [295]. Indeed, a 

recent review by Buduneli and Scott reported that a general suppression of the 

gingival innate immune response is a consistent conclusion of multiple clinical 

studies [26]. 

Matrix metalloproteinases (MMPs) are a group of enzymes that, in concert, are 

able to degrade most, if not all, extracellular matrix proteins and are considered 

key mediators of periodontal disease progression [296]. Indeed, MMP inhibitors, 

in the form of sub-antimicrobial tetracycline antibiotics, represent an important 

therapeutic tool for use in recalcitrant disease cases [297].  During periodontal 

disease, MMPs are secreted by multiple types of inflammatory cells, including 

macrophages and neutrophils [298, 299]. In smokers, higher concentrations of 

MMPs, in particular MMP-8 and MMP-9, have been reported in gingival crevicular 

fluid and periodontium connective tissue [145, 146]. 

In our chronic periodontitis experiments, smoking exposure significantly 

augments MMP-8 message in the infected group. This increase in the MMP-8 

signal is reflective of another key aspect of periodontitis that is seen in human 

smokers. 
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  CD14 is glycosylphosphatidylinositol-anchored receptor [300] expressed 

predominantly on monocytes and macrophages and, at 10-times lower levels, on 

neutrophils [301]. It is known to serve as a co-receptor for several Toll-like 

Receptors (TLRs) both at the cell surface and in the endosomal compartment. 

CD14, as a co-receptor with TLR4, facilitates cellular responses to low doses of 

bacterial lipopolysaccharide and activation of innate immunity [209, 302, 303]. 

CD45 is, a leukocyte-specific protein tyrosine phosphatase, an abundant cell 

surface protein on lymphocytes [304]. CD45 isoforms are present on all nucleated 

hematopoietic cells and appear to play an important role in the immune cell 

response to stimuli [305]. CD45 causes increase in cytokine production and T-cell 

proliferation [306]. As CD14 and CD45 are, present on the surface of particular 

leukocytes and their expression levels are considered, on this occasion, to act as 

surrogate markers for monocyte and pan-leukocytes infiltration, respectively, into 

the periodontal tissues In the chronic periodontitis model, smoking does not affect 

the expression of CD14 mRNA or CD45 expression in murine gingiva. This is 

consistent with previous studies. For instance, Chen et al. has reported that CD 14 

expression in alveolar macrophages did not differ in smokers versus nonsmokers 

[307]. In addition, smoking did not increase the level of CD 45 in healthy or 

periodontitis gingiva [308]. This can be explained by the masking effect of smoking 

on inflammatory cells infiltration in gingiva. Also, as recently reviewed by Buduneli 

and Scott, it has been found that smoking suppresses angiogenesis and this in 

turn leads to reduced inflammatory response [26, 309]. Further, a previous clinical 

study showed that smokers had a decreased blood vessel density and 
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inflammatory cells compared to nonsmokers although they have had an increased 

probing depth and overall increased clinical attachment loss [123]. This confirms 

the paradoxical action of smoking that it leads to reduced inflammation, however, 

apparent deleterious bone loss.  

 

The equivalent experiments in the acute model have not been completed due to 

the Covid-19 outbreak. 

 

A critical hall mark of periodontitis is alveolar bone resorption [44]. In both the 

chronic and acute models of periodontitis, smoke exposure significantly enhanced 

bacterial and/or ligature--induced alveolar bone loss. In the acute model, not only 

ligation enhances alveolar bone loss, but also infection and smoke exposure 

together had a synergistic effect on the alveolar bone. Successive representation 

of this aspect in-vivo is a reflective of a diagnostic key feature in periodontitis 

human smokers as confirmed by multiple studies [102, 310-312] and thus, in turn, 

validate these models as tools for study the association between P. gingivalis, 

smoking and periodontitis.  

 

In summary, reference cigarette smoke-exposure in a chronic model of 

periodontitis, altered aspects of systemic immune response to infection, 

augmented MMP-8 local expression and significantly enhanced bacterial-induced 

alveolar bone loss. While full analysis of the acute disease model was curtailed by 

the Covid-19 outbreak, smoke exposure clearly augmented alveolar bone loss. 
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Thus, both models reflect some, but not all, aspects of tobacco-enhanced 

periodontitis in humans. 

In the current study we presented two models of periodontitis. The acute model 

is less intensive and could be used to more rapidly screening for tobacco-

enhanced disease factors: e.g. P. gingivalis strains with mutants in tobacco-

essential genes; mice genetically manipulated in genes considered key to tobacco-

enhanced periodontitis. However, the chronic model, which better reflects the 

disease in humans, but is long-term and labor intensive, could subsequently be 

employed to examine relevant phenomena identified in the acute screening. 

These models could be improved by the following approaches: 

i) Polymicrobial infections: Periodontal diseases are multibacterial. This

model is amenable to both the minimalist approach presented herein as 

well as more complex infection protocols. IFurther, it has been 

previously shown that polymicrobial infection enhances colonization by 

P. gingivalis, T. denticola, and T. forsythia compared to their levels in 

monomicrobial infections [246]. 

ii) Wound healing: Incorporation of phase of ligature removal into the time

scheme of the acute model can be useful to assess the healing phase 

or to study the effect of anti-periodontitis medications [235]. 

iii) Optimize tobacco dosing: While our initial protocol was successful in

demonstrating tobacco-enhanced periodontal bone loss, it may be 
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possible to further exaggerate this phenomenon through optimizing 

exposure regimens. 

In conclusion, these models could be employed for: 

i) Study the association between gene mutations either in the pathogen or the

host and their relevance to periodontitis. For example, IL-10 knockout mice 

e hyperinflammation and are highly susceptible to P. gingivalis-induced 

periodontitis [286]. Also, clinical studies revealed that IL-10 gene 

polymorphism seems to be associated with severe chronic periodontitis 

[314]. 

ii) Alternate treatment regimens for smokers based on mechanistic insights

into smoke-enhanced bacterial induced periodontal diseases. For example, 

the Green tea catechin showed a bactericidal effect against Gram-negative 

rods and improved the periodontal status [315]. 

iii) Study tobacco-periodontitis-systemic disease exploitation. For instance,

utilizing these models to study periodontitis association with increased risk 

of cardiovascular diseases [316]. Also, the direct correlation between 

diabetes mellitus and periodontitis [317]. 

iv) Study tobacco-related microbial dysbiosis in a reproducible system.

Smoking showed a potential contribution in the alteration of microbial 
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equilibrium in subgingival tissues, thus worsening the severity of periodontal 

disease [226]. 

v) Adapt model to environmental tobacco smoke or passive smoking related

periodontal disease through use of side stream smoking machine [318]. 

vi) Adapt model to study marijuana-exacerbated disease: increasing evidence

suggests that inhalation of cannabis smoke is also negatively associated 

with periodontal health as recently reported [51]. 

vii) Evaluate the impact of smoking cessation to clinical and microbial variables

such as the bone loss and the bacterial colonization: studies show an early 

benefit of smoking cessation in terms of less reduction in pocket depth and 

gain in the level of clinical attachment in former smokers  compared to 

smokers [319].. 

viii) Delivery of electronic cigarettes aerosol through modified nebulizer to the

oral tissues to evaluate the effect of e-cigarettes in the current models [320]. 

Previous studies have shown the deleterious effects of e-cigarettes. For 

instance, E-cig containing nicotine affects oral myofibroblast differentiation 

in e-cig users; and hence may affect their ability to heal wounds by 

decreasing wound contraction by myofibroblasts[321]. Reactive 

aldehydes/carbonyls derived from e-cig aerosol can cause protein 

carbonylation and DNA adducts/damage, and carbonyls are cleaved by 

aldehyde dehydrogenase (ALDH). Protein carbonylation leads to 

autoantibody production, which may lead to destruction of matrix and bone 

loss during periodontitis [321].……………………………………………
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