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ABSTRACT

STATISTICAL APPROACHES OF GENE SET ANALYSIS WITH 

QUANTITATIVE TRAIT LOCI FOR HIGH-THROUGHPUT GENOMIC STUDIES 

Samarendra Das 

November 20, 2020 

Recently, gene set analysis has become the first choice for gaining insights into 

the underlying complex biology of diseases through high-throughput genomic 

studies, such as Microarrays, bulk RNA-Sequencing, single cell RNA-Sequencing, 

etc. It also reduces the complexity of statistical analysis and enhances the 

explanatory power of the obtained results. Further, the statistical structure and 

steps common to these approaches have not yet been comprehensively 

discussed, which limits their utility. Hence, a comprehensive overview of the 

available gene set analysis approaches used for different high-throughput genomic 

studies is provided. The analysis of gene sets is usually carried out based on gene 

ontology terms, known biological pathways, etc., which may not establish any 

formal relation between genotype and trait specific phenotype. Further, in plant 

biology and breeding, gene set analysis with trait specific Quantitative Trait Loci 

data are considered to be a great source for biological knowledge discovery. 

Therefore, innovative statistical approaches are developed for analyzing, and 
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interpreting gene expression data from Microarrays, RNA-sequencing studies in 

the context of gene sets with trait specific Quantitative Trait Loci. The utility of the 

developed approaches is studied on multiple real gene expression datasets 

obtained from various Microarrays and RNA-sequencing studies. 

The selection of gene sets through differential expression analysis is the 

primary step of gene set analysis, and which can be achieved through using gene 

selection methods. The existing methods for such analysis in high-throughput 

studies, such as Microarrays, RNA-sequencing studies, suffer from serious 

limitations. For instance, in Microarrays, most of the available methods are either 

based on relevancy or redundancy measures. Through these methods, the ranking 

of genes is done on single Microarray expression data, which leads to the selection 

of spuriously associated, and redundant gene sets. Therefore, newer, and 

innovative differential expression analytical methods have been developed for 

Microarrays, and single-cell RNA-sequencing studies for identification of gene sets 

to successfully carry out the gene set and other downstream analyses. 

Furthermore, several methods specifically designed for single-cell data have been 

developed in the literature for the differential expression analysis. To provide 

guidance on choosing an appropriate tool or developing a new one, it is necessary 

to review the performance of the existing methods. Hence, a comprehensive 

overview, classification, and comparative study of the available single-cell 

methods is hereby undertaken to study their unique features, underlying statistical 

models and their shortcomings on real applications. Moreover, to address one of 

the shortcomings (i.e., higher dropout events due to lower cell capture rates), an 
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improved statistical method for downstream analysis of single-cell data has been 

developed. From the users’ point of view, the different developed statistical 

methods are implemented in various software tools and made publicly available. 

These methods and tools will help the experimental biologists and genome 

researchers to analyze their experimental data more objectively and efficiently. 

Moreover, the limitations and shortcomings of the available methods are reported 

in this study, and these need to be addressed by statisticians and biologists 

collectively to develop efficient approaches. These new approaches will be able to 

analyze high-throughput genomic data more efficiently to better understand the 

biological systems and increase the specificity, sensitivity, utility, and relevance of 

high-throughput genomic studies. 
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CHAPTER 1

INTRODUCTION 

Gene Set Analysis for High-Throughput Genomic Studies 

Recent advancement in genome sequencing technologies, such as Microarrays, 

bulk RNA-sequencing (RNA-seq), single cell RNA-sequencing (scRNA-seq), 

etc.  leads to generation of tremendous volume of biological data [1]. Further, 

exploiting these data and drawing valid biological knowledge has posed a great 

challenge to researchers across the globe. For instance, in a genome wide 

expression study, the expression levels of several thousand(s) of genes for a 

tissue sample are measured in a single experiment and further used for 

identifying the group of genes which are relevant to the condition under study. 

The selected genes are expected to have major causal role for the phenotypic 

trait under study [2,3]. Earlier, biologists considered this Differential Expression 

(DE) analysis as the end of their analysis [4]. However, such analysis is the 

starting point of a complex process of drawing valid biological insights into high-

throughput genomic data [5]. Earlier, the Gene Expression (GE) studies focused 

on univariate gene analysis, i.e., testing the role of a single gene in the 

phenotypic trait under study (single gene testing) [6,7]. The scope of such 

studies is limited as the genes do not act individually; rather, genes work as an 

intricate network of a set of genes [8]. Therefore, to study such phenomena, a
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 set of secondary tools have been developed that place results from the 

expression studies in a broader biological context. One such approach is Gene 

Set Analysis (GSA) and one of its popular forms is called pathway analysis [9].  

Traditional GSA methods used annotation information like pathways, 

Gene Ontology (GO), DE score, co-expression [8,10,11]. The enrichment 

analysis of gene sets based on such annotations does not establish any link 

between the selected gene sets and phenotypic trait, under which the data are 

being generated. Therefore, performing analysis of gene sets based on trait 

specific Quantitative Trait Loci (QTLs) through a computational approach 

instead of traditional GO or pathways information will be very helpful in 

unraveling genotype-phenotype relationships in plants and complex disease 

biology. Hence, the purpose of this project is to develop statistical 

approach(s)/framework(s) for analyzing gene sets based on genetically trait 

enriched QTL information. At the outset, this framework will consist of two major 

steps a) selection of gene sets (or DE analysis); and b) analysis of gene sets 

with QTL data. Here, we used expression data from Microarrays, RNA-seq and 

scRNA-seq studies. As the nature and underlying distributional properties of 

these datasets are significantly different, so, we have developed separate 

innovative statistical approaches for performing GSA with QTL for Microarrays 

and for RNA-seq/scRNA-seq studies. As, no web tools/R packages are available 

so far for performing analysis of gene sets with QTLs, we have developed the R 

packages for each of the considered high-throughput genomic studies, such as 

Microarrays, RNA-seq/scRNA-seq. 
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Innovative Aspects of the Project 

This project is innovative in proposing the development of different 

statistical approaches for performing GSA with genetically rich trait specific loci 

data for various high-throughput genomic studies. It is well known that most of the 

traits (or diseases) are complex in nature because multiple genes (polygenes) 

contribute to the phenotype either individually or through interactions with each 

other or the environment. However, available univariate gene analysis approaches 

may not be helpful in drawing valid biological interpretations. Several statistical 

approaches, algorithms and tools have been developed to analyze gene sets 

instead of single genes. In the existing literature, gene sets are analyzed based on 

the annotation libraries like GO, KEGG pathways, DE score or MIPS functional 

categories. However, such approaches fail to tell the trait specific enrichment 

analysis of gene sets, which are essential for studying the biology of complex traits. 

Therefore, statistical approaches of GSA with QTL instead of traditional annotation 

categories will provide innovative ways to perform enrichment analysis of gene 

sets with highly popular QTL data. Further, this study will lead to identification of 

QTL candidate genes or QTL-enriched gene sets, helpful for plant biologists and 

genome researchers for framing further hypothesis to design crop breeding 

experiments or molecular designing of drugs. This project has provided an 

innovative and efficient platform for analyzing gene sets derived from wide range 

high-throughput studies, such as Microarrays, RNA-seq/scRNA-seq, with trait 

specific QTLs. Further, this study will provide valuable platforms for integrating 

various genomic datasets with QTL information. 



4 
 

Contributions and Layouts 

Over the last decade, GSA approaches have been extensively used complex 

disease/plant biology to reduce the complexity of statistical analysis and enhance 

the explanatory power of the obtained results. Although a wide range of GSA 

approaches have been extensively reported in the literature, the statistical 

structures, and steps common to these approaches have not yet been 

comprehensively discussed, and this limits their utility. Therefore, Chapter 2 

provides a comprehensive overview, statistical structure, steps, and generation 

wise evolution of GSA approaches used for Microarrays, RNA-seq and genome 

wide association data analysis. Further, the GSA approaches, and tools are 

classified based on the type of genomic study, null hypothesis, sampling model, 

and nature of the test statistic, etc., along with their relative merits and limitations. 

Moreover, the Chapter 2 identifies the key biological, and statistical challenges in 

current gene set testing, which will be addressed by statisticians, and biologists 

collectively in order to develop the next generation of GSA approaches. 

The preparation of ranked gene list is key part of the GSA, which involves 

the DE analysis of genes across the two conditions (case and control). For this 

purpose, several methods have been developed in the literature, which are either 

based on relevancy or redundancy measure(s). Through these methods the 

ranking of genes was done on a single high-dimensional expression data, which 

leads to the selection of spuriously associated and redundant genes. Hence, 

Chapter 3 provides a hybrid statistical approach for the selection of biologically 

relevant genes. Here, the genes are selected through statistical significance values 
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computed using a Non-Parametric (NP) test statistic under a bootstrap based 

subject sampling model. Further, the reported approach (Chapter 3) outperformed 

the competitive existing methods on multiple real datasets. After the preparation 

of the ranked gene list, gene sets are analysed with trait specific QTLs, which 

require further innovative statistical advancements. Such approaches may be 

considered as a great source for biological knowledge discovery in plant/disease 

biology and breeding. Hence, Chapter 4 proposes an innovative statistical 

approach called Gene Set Analysis with QTLs for interpreting gene expression 

data in the context of gene sets with traits. The reported approach (Chapter 4) was 

more innovative and effective in performing gene set analysis with underlying 

QTLs and identifying QTL candidate genes than the existing approach. 

scRNA-seq is gradually replacing bulk RNA-seq and Microarrays for high-

throughput studies of gene expression dynamics. The DE analysis or the ranking 

of genes is the major downstream analysis undertaken prior to GSA. The DE 

analysis in the presence of noise, from biological and technical sources, remains 

a key challenge in scRNA-seq. Several approaches have been reported in the 

literature to address this problem. Further, to provide guidance on choosing an 

appropriate tool or developing a new one, it is necessary to review, classify, 

evaluate, and compare the performance of DE analysis methods for scRNA-seq. 

Therefore, Chapter 5 provides a brief review of the existing practices in DE 

analysis of scRNA-seq data. Further, this Chapter also presents a detailed 

classification and comparative study of the available techniques. The 

shortcomings for each method, the best practices for DE analysis in single-cell 
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studies are well reported in Chapter 5. These findings are new. Hence, Chapter 5 

provides a guideline for selecting the proper DE tool, best performing under 

particular experimental settings in the context of scRNA-seq. Among the reported 

challenges in scRNA-seq (Chapter 5), the presence of dropout events (excess 

zeros) due to low capture rates of cells severely biases the results, and this needs 

to be studied in detail. To address this problem, Chapter 6 presents an improved 

method for DE, and other downstream analysis that considers the molecular 

capture process of the cell in scRNA-seq data modeling. Further, the Chapter 6 

also demonstrates that the reported method outperformed the existing methods on 

several public scRNA-seq datasets generated using different scRNA-seq 

protocols. The external spike-ins data can be used in the developed method to 

enhance its performance (Chapter 6). 

After the DE analysis, gene sets selected from the ranked gene list need to 

be analyzed with the underlying trait specific QTLs for RNA-seq/scRNA-seq 

studies. This process requires newer and advanced statistical methods and tools. 

However, the GSAQ approach, reported in Chapter 3, only considers the selected 

gene set but ignores the DE scores of the genes present in the gene set. Therefore, 

Chapter 7 reports another innovative GSA approach for performing the analysis of 

gene sets with QTLs through considering the significant genes along with their 

respective DE scores for RNA-seq studies. To make all the developed approaches, 

reported in Chapters 3, 4, 6 and 7, user friendly, four different R software packages 

are developed and reported in Chapter 8.  Finally, Chapter 9 provides the general 

discussion and conclusion of the findings reported in Chapters 2 – 8.
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CHAPTER 2

FIFTEEN YEARS OF GENE SET ANALYSIS: A REVIEW OF STATISTICAL 

APPROACHES AND FUTURE CHALLENGES 

Background 

The term GSA refers to an analysis of set of genes and does not specifically mean 

modelling of the relations among genes in the gene set. Formally, the GSA is 

defined as a secondary statistical approach used to test the enrichment of the gene 

sets with any biological process or pre-existing bio-knowledge base or quantitative 

trait. In other words, genes are aggregated into gene sets based on shared 

biological or functional properties or any pre-existing bio-knowledge base [5]. 

These bio-knowledge bases include databases of molecular knowledge, i.e., 

molecular interactions, regulation, molecular product(s), and even phenotype 

associations. In other words, GE and Single Nucleotide Polymorphism (SNP) 

datasets are used as input for GSA (in the presence of a annotation database) to 

provide valid biological insights into various complex diseases (Figure 2.1) [9,12]. 

In fact, GSA can be used for all the genomic studies, where the output is a long list 

of genes or transcripts. For instance, that long list of genes can even come from 

any upstream analysis including signatures of co-expressed genes from weighted 

gene co-expression network analysis [3].
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Figure 2.1. Outlines and classification of gene set analysis approaches. A: Outlines 

of gene set analysis approaches; B: Classification of gene set analysis approaches for high-
throughput sequencing studies. 

Units of Gene Set Analysis 

The functional unit of GSA is the gene set, which can be defined as any group of 

genes that share a particular property, i.e., involvement in a common biological 

process or any pre-existing bio-knowledge base [12,13]. Through GSA, a gene set 

that shares a common property is tested for its association with the trait or 

phenotype under study [8]. For this purpose, a wide range of GSA approaches and 

tools are available for high-throughput sequencing studies. These tools have 

differences in underlying statistical principles and practices, but there are 

similarities among the available tools in terms of statistical structure. For instance, 

GSA for GE studies has a two-tier structure [13,14]: a) computation of gene level 

statistic(s); and b) bi-variate statistical testing to compute the test statistic or p-

value for the gene set. However, GSA for Genome Wide Association Study 

(GWAS) has a three-tier structure: a) computation of SNP level statistics; b) 

associating SNPs (linkage between SNPs) to genes and computing gene-level 

statistics from SNP statistics; and c) computation of enrichment statistic or p-value 

or False Discovery Rate (FDR) for the gene set. 
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Hypotheses in Gene Set Analysis 

The available statistical approaches for GSA vary greatly with respect to underlying 

statistical tests, and hence depend on the formulation of the null hypothesis 

[5,9,15]. These null hypotheses can be grouped as self-contained and competitive 

[16]. In the usual set up of GE studies (or GWAS), genes (or SNPs) that are 

significantly associated with a trait/phenotype are identified and then evaluated, 

whether the significantly associated genes (or SNPs) tend to cluster in predefined 

gene sets or not. For instance, the self-contained null hypothesis can be framed 

as, H0: genes/SNPs in predefined gene sets are not associated with the underlying 

trait (phenotype) against the alternate H1: genes/SNPs in predefined gene sets are 

associated with the trait (phenotype). The statistical approaches with a self-

contained null hypothesis are called as self-contained approaches of GSA and 

they only consider the genes (SNPs) in the predefined gene sets. Statistical tests 

of GSA with a competitive null hypothesis are known as competitive GSA 

approaches, and the underlying null hypothesis can be expressed as, H0: 

genes/SNPs in predefined gene sets are associated with the underlying trait 

(phenotype) as much as are genes/SNPs outside the predefined gene set, against 

H1: genes/SNPs in predefined gene sets are more associated with the trait 

(phenotype) than genes outside predefined gene set. Here, the competitive GSA 

approaches consider genes (SNPs) from both the predefined gene set and the 

outside gene set [5,17]. The self-contained null hypothesis is invariably more 

restrictive than the competitive null hypothesis. 

 



10 
 

Sampling Models in Gene Set Analysis 

The enrichment significance of a gene set is assessed through p-value or adjusted 

p-value or FDR after multiple testing correction (i.e., lower values indicate more 

enrichment and vice-versa) computed from a statistical test. Further, these 

statistical tests are commonly based on experimental designs having 

subjects/genes as units. On such statistical designs, different sampling procedures 

are rigorously used to obtain the distribution of the test statistic(s). Here, two types 

of sampling models are used in GSA: i) subject sampling model; and ii) gene 

sampling model. 

Subject Sampling Model 

Classical statistical tests are based on an experimental design having 

microarray/RNA-seq samples as subjects, where each subject has the same set 

of (GE) measurements [5,8,17]. In the usual supervised setting, the sampling 

model consists of M independent realizations (for M subjects) of (X1, y1), (X2, y2), 

…, (Xs, ys), …, (XM, yM), where, Xs represents the N-dimensional vector (N: total 

number of genes) of the GE levels for s-th subject and ys is the corresponding class 

label (e.g., case: +1 vs. control: −1), s=1, 2, …, M. Therefore, M expression levels 

of different subjects are assumed to be independently and identically distributed 

(iid), but expression levels of genes within the same subject may be correlated for 

a given condition. Usually, resampling procedures like bootstrap and permutation 

procedures are used on such models for gene [3,18] as well as gene set testing 

[5,19]. The statistical combination of subject sampling model and a self-contained 
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null hypothesis provides a reliable platform for valid computation of p-values with 

easy interpretation and close relation(s) with single gene (or SNP) testing [20]. 

Gene Sampling Model 

In GSA, 2×2 tables are extensively used to statistically fit a Hypergeometric 

distribution [5,21]. The underlying model of a 2×2 table is a gene sampling model. 

Further, each cell of such a table is filled with a sample of genes, each of which is 

drawn at random from the gene space (i.e., set of genes in the data). Here, in this 

sampling model, each sampling unit (i.e., gene) can be subjected to two fixed set 

of indicator measurements, i.e., (A, B), where, (i) A (1 or 0) indicates whether the 

gene is a part of the predefined gene set or not and (ii) B (1 or 0) indicates whether 

that gene is in the list of DE genes or not [5,17]. Further, the gene space can be 

formalized into a population having N units (for N genes) and shown as: (A1, B1), 

(A2, B2), …, (Ai, Bi), …, (AN, BN). The competitive null hypothesis is popular and 

easy to formulate in a gene-sampling model setup [9]. Here, the gene sampling 

model may be considered as a mirror image of classical subject sampling model 

[18]. The gene sampling model considers the sampling units as iid, which assumes 

that genes are independent. Such assumptions are highly unrealistic, and the p-

values computed using such models are statistically invalid for further 

interpretations. Hence, gene sampling models are quite complex and delicate as 

compared to a subject sampling model. 

GSA Approaches for High-Throughput Genomic Studies 

The GSA approaches can be grouped based on different high-throughput genomic 

studies, as the underlying nature and distributions of the datasets are different. A 
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classification of GSA approaches with respect to their application to genomic 

studies is shown in Figure 2.1. Initially, the GSA approaches were developed for 

Microarrays (i.e., Microarrays GSA) and subsequently extended to RNA-seq and 

GWAS data analysis (Figure 2.1). For instance, gene set enrichment analysis 

(GSEA) was originally developed for Microarrays, and subsequent extensions of 

GSEA, i.e., SeqGSEA and GSEA-SNP were introduced to analyze RNA-seq and 

SNP datasets, respectively. 

Microarrays GSA 

Huge amounts of GE data from Microarrays are available in public domain 

databases, which need to be analyzed for drawing valid biological insights into 

such datasets. Therefore, several GSA methodologies have been developed for 

this purpose. The classification of Microarrays GSA is shown in Figure 2.2, which 

illustrates the evolution of GSA approaches over time in terms of the requirements 

of annotation information, sampling model, and various null hypotheses under 

statistical tests. Moreover, the work on GSA started with the immediate need for 

functional analysis of Microarray data based on GO that gave rise to over 

representation analysis (ORA), which evaluates the statistical significance of gene 

sets in a particular pathway/functional category [22]. It is also referred to as a 2×2 

table method [5], due to the fact that ORA approaches are mostly based on 2×2 

tables and gene sampling models. The most commonly used statistical tests in 

ORA approaches/tools are hypergeometric, chi-square or binomial tests [23–25] . 

However, despite the extreme popularity and ease of execution, the ORA 

approaches also suffer from limitations, as listed in Table 2.1. The ORA form of 

analysis of gene sets can also be labelled as first generation of Microarrays GSA. 
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Figure 2.2 Classification of gene set analysis approaches and tools 
available for Microarrays. Schematic representation of the breakup of GSA methods 

available for microarrays data analysis based on statistical tests (i.e., null hypothesis, test 

statistic(s)) and requirement of annotation databases. G: Gene set. (LIMMA, SAM-GS, 

eBayes, etc. generate inputs to GSA, not GSA themselves) 

In most of the cases, the gene annotation information is either incomplete 

or totally unavailable; therefore, another class of GSA approaches was developed. 

These approaches include the Enrichment Score (ES) form of GSA [11], starting 

with the landmark work on enrichment analysis of gene sets (i.e., GSEA) [8,26]. 

Subsequently, several other statistical approaches, and tools were developed for 

assessing the significance of gene sets in interpreting the high-throughput data. 

The ES based GSA approaches greatly vary among themselves with respect to 

underlying statistical tests and sampling models. The major steps for such 

approaches include initial computation of the gene-level statistic(s) using GE data 

under two contrasting conditions. For instance, correlation of expression 

measurements with phenotypes/traits [27], ANOVA [28], Q-statistic [16], signal-to-
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noise ratio [8], t-statistic [6], Fold Change (FC) [29], Z-score [30], etc., are 

implemented in contemporary ES based tools. There is a wider choice for gene-

level statistic(s), ranging from parametric to NP, for GSA. However, the selection 

of a gene-level statistic has a negligible effect on identification of significantly 

enriched gene sets [21]. When there are few biological replicates available, a 

regularized statistic may be preferred [21]. The second step is the aggregation of 

gene-level statistic(s) for all genes in a gene set into a single gene-set level statistic 

(Figure 2.3). This includes the computation of gene-set level statistic using 

multivariate or univariate techniques (Figure 2.2). The former accounts for 

interdependencies among genes, while the latter disregards the same among 

genes distributed across the gene set. The currently available ES based GSA 

approaches/tools include Kolmogorov-Smirnov (KS) statistic, weighted KS statistic 

[8,11], sum, mean, or median of gene-level statistic [31], Wilcoxon rank sum [32], 

Max-mean statistic [26], etc., under the univariate category. Moreover, the 

multivariate category includes global test, ANCOVA, etc., for computing the gene-

set level statistic [16]. Interestingly, multivariate statistic(s) are expected to have 

higher statistical power, but univariate statistic(s) actually show more power at a 

higher level of significance (e.g., 0.1%) in real biological data, and equal power as 

the former at lower level of significance (e.g., 5%) [33]. The third step is 

computation of statistical significance (p-value) or adjusted p-value or FDR to 

assess the enrichment of gene sets (for gene-set level statistic). This step requires 

the formulation, as well as testing of the null hypothesis against alternate one. 

Based on the null hypothesis, the ES-based GSA approaches can be broadly 
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divided into: i) competitive approaches, and ii) self-contained approaches (Figure 

2.2). Moreover, the competitive approaches can be further subdivided into two 

categories based on the available outcome information of class: i) supervised 

approaches and ii) unsupervised approaches (Figure 2.2). 

 

Figure 2.3. Classification of gene set analysis approaches and tools available 
for RNA-seq data analysis. Schematic representation of the breakup of GSA methods 

available for RNA-seq data analysis based on statistical tests and requirement of annotation 

databases. G: Gene set. *Tools require normalization of data prior to application. 

Mostly, the supervised competitive approaches use the subject sampling 

model to randomly sample the class labels of each sample and compare the genes 

in the gene set with those of its complement. Here, it may be noted that the 

supervised term is used as the class labels are known and these approaches use 

these class labels for sampling purposes. However, unsupervised competitive 

approaches used the gene sampling model to compute the p-value through 

comparing genes in gene set with the genes outside gene set. But self-contained 

ES-based GSA approaches use the permutation procedure to compute the p-
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values by permuting the class labels for each sample and comparing the genes in 

the gene set with itself, while ignoring the genes outside gene set. Here, it is 

evident that competitive ES-based GSA approaches have more statistical power 

as compared to self-contained approaches [26]. This may be due to the fact that 

competitive approaches require information on both genes in the gene set as well 

as genes not in the gene set [5]. The ES form of GSA may constitute the second 

generation of Microarrays GSA (Table 2.1). 

Table 2.1. Generation-wise evolution of GSA approaches for microarray studies. 

Approach Methods Advantages Limitations Tools/algorithms 

ORA 
 
(First 
generation   
microarray 
GSA) 

  
Hypergeo
metric 
distributio
n/Fisher’s 
test  
Binomial 
distributio
n, Chi-
square 
distributio
n, etc. 

• Easiness in 
execution. 

• Assigns easily 
interpretable 
measure like p-
values to the whole 
gene set.  

• Highly dependent on threshold/cutoff 
value, which is at user’s discretion and 
hard to determine. 

• Test statistic independent of genes 
differential expression score. 

• Uses only most significant genes 
based on hard threshold and discards 
others, lead to information loss. 

• Assumes each gene contribute 
equally to phenotype/trait. 

• Assumes each gene as independent 
and ignores the correlation or 
redundancy among genes in gene set. 

• Assumes that each predefined gene 
set is independent of others, which is 
erroneous. 

DAVID [34], AgriGO [24], 
Onto-Express [22], 
GenMAPP [35], GoMiner 
[36], FatiGO [37], GOstat 
[25], FuncAssociate [38], 
GOToolBox [39], 
GeneMerge [40], GOEAST 
[41], ClueGO [42], 
FunSpec [43], GARBAN 
[44], GO:TermFinder [45], 
WebGestalt [46], GOFFA 
[47], WEGO [48], GOTM 
[49], EASE, GSAQ [17], 
Pathview [50], 
Wholepathwayscope 
[51], ShinnyGO 

Enrichment 
Statistic 
Analysis 
 
(Second 
generation 
microarray 
GSA) 

Wilcoxon 
signed 
rank test, 
Sum, 
Mean, or 
Median of 
gene-level 
statistic(s)
, Wilcoxon 
signed 
rank sum, 
Max-
Mean 
Statistic 

• Do not require a 
threshold/ cutoff 
value for dividing 
gene space into 
selected and non-
selected part. 

• Considers 
dependence among 
genes in gene set. 

• Test statistic is 
based on the 
differential GE score 
of genes in gene set. 

• Analyzes each gene set 
independently. 

• Considers only the number of genes 
in a gene set (pathway) for 
performing GSA but ignores the 
additional information available from 
the bio-knowledge bases. 

• Assumes the predefined gene sets 
mutually exclusive, but in biology, 
these gene sets are overlapping. 

• Most ESA methods use differential GE 
to rank genes/compute test statistic 
but discard this information from 
further analysis. 

GSEA [8], SAFE [32], GSA 
[26], Random set [52], 
sigPathway, Category, 
GlobalTest [16], PCOT2 
[53], SAM-GS [54], LIMMA 
[55], Catmap [56], T-
profiler [57], FunCluster 
[58], GeneTrail [59], Gazer 
[60], GSAQ [17], ANCOVA 
test, CAMERA [61], PAGE 
[30], GAGE [62], SGSE 
[63], GSNCA [64], GSA-
SDR [65], GenePattern 
[66], plantGSEA [67], 
GSAR [20] 

Topology 
Analysis 
 
(Third 
generation 
microarray 
GSA) 
 

Graph/ne
twork 
theory 

• Considers both 
genes relation 
/dependency with 
other genes as well 
as experimental 
condition changes. 

• Considers the 
topology of the 
pathways/gene sets 
in modeling. 

• Dependent on the type of 
cell due to cell-specific GE profiles and 
condition being studied, which is rarely 
available. 

• Not so popular as require more rarely 
available information and 
computationally intensive. 

• Unable to consider interactions 
between gene sets (pathways).  

• Heavily dependent on annotations. 

PathwayExpress [68], 
ScorePAGE [69], SPIA [70], 
NetGSA [71],   TopoGSA 
[72],  CliPPER [73] 
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RNA-seq GSA 

Recently, transcriptome deep sequencing has surpassed Microarrays by providing 

better quantification of GE for high expressed genes (in terms of read counts), and 

higher levels of accuracy and reproducibility [15,74,75]. Hence, it is highly pertinent 

to adapt the existing Microarrays GSA to RNA-seq data with the help of data 

transformation along with new approaches being developed (Figure 2.1B). The 

first approach of GSA for RNA-seq data (RNA-seq GSA), GOseq, was suggested 

by Young et al. a decade ago [76]. It performs over-representation of GO 

categories enriched with a long list of highly expressed genes in RNA-Seq data. 

Further, an easy-to-use web application, integrated differential expression and 

pathway (iDEP) analysis was developed for in-depth analysis of RNA-seq data 

[77]. Detailed descriptions of the available RNA-seq GSA approaches, background 

methodologies, execution tools, and their features are listed in Table 2.2. 

Moreover, the ORA-based RNA-seq GSA may be considered as the first 

generation of RNA-seq GSA. 

To tackle the limitations of ORA approaches (Table 2.2), ES-based RNA-

seq GSA approaches have been developed, and these constitute the second 

generation of RNA-seq GSA. Here, the read counts are given as input for 

computation of different test statistic(s) for GSA, which depend on the nature and 

distribution of the data. For instance, Microarrays GSA (i.e., ES-based GSA) deal 

with continuous data expected to follow a Gaussian distribution [74]. However, 

RNA-seq involves measurements that are non-negative counts ranging from zero 

to millions and are expected to follow Negative Binomial Distribution (NBD) [15,75]. 
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Therefore, Microarrays GSA approaches may not be directly applicable to RNA-

Seq data. Hence, some authors suggested normalization of the count data prior to 

the use of Microarrays GSA [15]. For instance, VOOM-normalization is used for 

normalizing the read counts for sequence-depths, then Microarrays GSA are 

applied on the normalized RNA-seq data [78]. The Goeman and Buhlmann 

formulation can be applied to classify the ES-based RNA-seq GSA approaches 

into either competitive or self-contained [5], based on the underlying null 

hypotheses (Figure 2.3). Further, a competitive GSA approach, i.e., gene set 

variation analysis (GSVA), was developed and demonstrated highly correlated 

results between Microarrays and RNA-Seq sets for samples of lympho-blastoids 

cell lines [79]. This high correlation may be due to the fact that GSVA as a NP 

approach does not depend on the distributional nature of data obtained from the 

studies. Fridley et al. proposed a GSA approach, Gamma method, with a soft 

truncation threshold to determine the significant gene set, while a generalized 

linear model is used to assess significance [80]. Subsequently, GSEA, the first 

ever competitive approach of RNA-seq GSA, was used for RNA-seq data analysis 

after normalization of the count data [80]. Thereafter, several modifications were 

made in GSEA by integrating both DE and differential splicing (DS) information in 

the analyses to develop SeqGSEA and has better performance over GSEA [19]. 

Table 2.2. Generation-wise evolution of GSA approaches for RNA-seq studies. 

Approach Methodology Advantages Limitations Tools 

ORA 
 
(First 
generation 
RNA-seq 
GSA) 

  
Hypergeomet
ric 
distribution, 
Fisher’s exact 
test 

• Simple to use. 

• Assigns easily 
interpretable 
measure like p-value 
to the whole gene set. 

• Use hard threshold approach to select 
gene sets. 

• Assumes each transcript as independent 
and ignores the correlation or gene-gene 
interaction. 

GOs
eq 
[76], 
iDEP 
[77] 
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• Less time consuming 
to interpret huge 
RNA-seq data. 

• Mostly dependent on annotation bases, 
but RNA-seq transcripts are not well 
annotated.  

GS 
Enrichment 
Analysis  
 
(Second 
generation 
of RNA-seq 
GSA) 

Wilcoxon 
signed rank 
test, Max-
Mean Statistic 
(with count 
normalization 
technique) 

• Do not require a 
threshold for dividing 
gene space into 
selected and non-
selected part. 

• Considers dependence 
among genes in gene 
set. 

 

• Use normalization technique to get 
microarray like data, hence, loss of the 
count nature of RNA-seq data 

• Through data transformation, dispersion 
and other inherent nature of RNA-seq data 
are lost  

• ES based tools/algorithms use differential 
score to prepare ranked transcript list but 
ignore this information for gene set 
testing. 

• GSEA based tools like seqGSEA are 
computationally intensive, time 
consuming and and only offers the single 
gene set-level statistic. 

• GSVA is not designed for gene set-based 
differential expression analysis 

between two phenotypically distinct 
sample groups. 

• ES based GSA approaches do not consider 
the inherent zero inflation in the RNA-seq 
data.  

AbsFilte
rGSEA 
[81],  
GSAAse
qSP 
[82], 
seqGSE
A [83], 
ssGSEA, 
EGSEA 
[84], 
GSVA 
[79], 
GSEPD 
[85], 
RNA-
Enrich 
[86] 

 

The self-contained GSA approaches can be divided into a) univariate or 

gene-level; and b) multivariate or gene set-level based on the distributional nature 

of the test statistic (Figure 2.3). The gene-level GSA approaches test a null 

hypothesis that the gene-set associated score does not differ between 

phenotypes/traits. Further, the univariate approaches are executed in two steps: i) 

computation of gene level statistic(s) from the count data; and ii) combining gene-

level statistics to compute gene set level statistic or p-value or adjusted p-value. 

For the former case, the gene-level test statistic(s) of Microarrays GSA were used 

in a recent study for RNA-seq GSA [80], which is quite straight forward and easy 

to implement. For the latter step, the gene-level statistic(s) can be combined into 

a single gene set statistic/p-value through Fisher’s method, Stoufer’s method, 

Meanp, logit method, etc. [17]. Moreover, the self-contained multivariate GSA 

approaches jointly model the genes to compute the gene set-level statistic(s) 
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(Figure 2.3). These tests include multivariate generalization of the KS statistic 

[8,11], N-statistic [74], ROAST [78], etc. Further, the application of these tests 

requires the normalization of the RNA-seq data over varying sequencing depths 

[78]. Moreover, statistical significance is computed by comparing the observed 

statistics of gene sets with its null distribution, obtained by permuting the sample 

labels. Then, the enrichment significance of the gene set is assessed through the 

computed p-value or adjusted p-value or FDR after multiple testing correction. 

GWAS GSA 

GWAS has been successfully applied to identify many novel loci for complex traits, 

which are quantitative (polygenic) in nature. Therefore, to understand the 

underlying genetic architecture, GSA approaches that place GWAS results in a 

broader biological context have been used [87]. Initially, GSA methods for GWAS 

(i.e., GWAS GSA) were borrowed from Microarrays [8,11] and subsequent new 

approaches were developed exclusively for GWAS (Figure 2.1). The classification 

of GWAS GSA approaches is shown in Figure 2.4. The first step for classification 

of GWAS GSA approaches can be their source of origin, including: i) GSA 

Microarrays adapted to GWAS; and ii) those developed exclusively for GWAS. 

Further, based on the requirement of annotation libraries, the GWAS GSA 

approaches can also be classified as: a) GSA requiring pre-defined gene sets; or 

b) GSA not requiring pre-defined gene sets. These approaches are based on the 

principle of over-representation of genes in those predefined gene sets obtained 

from different bio-knowledge bases. Moreover, such ORA approaches constitute 

the first generation of GWAS GSA. 
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Figure 2.4. Classification of gene set analysis approaches and tools available 
for SNP data analysis. Schematic representation of the breakup of GSA methods 

available for SNP data analysis based on statistical tests and requirement of annotation 
databases. 

Due to the limitations of ORA-based GWAS GSA approaches, ES-based 

GWAS GSA approaches came into use, which we may call the second generation 

of GSA in GWAS. Further, the second generation of GWAS GSA starts with the 

enrichment analysis of gene sets for SNP data, i.e., GSEA-SNP [14,88] using 

weighted KS statistics [89]. Later approaches, based on other tests, viz. weighted-

sum test [90], simple-sum test [91], collapsing test in combined multivariate and 

collapsing method [92] and sequence kernel association test [93], are used for 

computation of the gene-set enrichment score. Moreover, varieties of ES-based 

methods with similar ideas have been developed, such as the gene set based 

testing of polymorphism [94], GSA-SNP [88], SNP-ratio test [95], etc. 
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A class of GWAS GSA approaches have been developed by considering 

the topology of the gene sets/pathways, and this constitutes the third generation 

of GWAS GSA. This includes methods to parse the internal information of the 

pathway (e.g., signaling pathway impact analysis (SPIA) [70] and CliPPER [73]). 

Further, the second and third generation GWAS GSA methods focus on statistical 

results such as p-values or ES, as input rather than the original data. Thus, the 

fourth generation of GWAS GSA approaches have been developed by providing 

original data as input. Further, the underlying principle of these approaches is 

testing of the multivariate distribution of the multi-loci data or extracting the 

principal components from the original data. This includes linear combination test 

[96], supervised principal component analysis (SPCA) [96], Smoothed functional 

PCA [97], etc. Other model-based methods include LRpath [98], a logistic 

regression-based method, and MAGMA [99], linear model based method. 

Recently, the Generalized Berk-Jones statistic, a permutation-free parametric 

framework, was used for GSA [99], and this incorporates information from multiple 

signals in the same gene. The descriptions of the available GWAS GSA 

approaches, tools, their background methodologies pertaining to various 

generations are listed in Table 2.3. 

Table 2.3. Generation-wise evolution of GWAS GSA approaches. 

Approach Method Advantages Limitations Tools/Algorithm 

ORA 
 
(First 
generation 
GWAS GSA) 

  
Hypergeo
metric 
distributio
n, Fisher’s 
exact test, 
Binomial 
test 
 

• Simple to use and easy to 
interpret 

• Assigns statistically 
convincing measure like p-
value for SNP set, which is 
biologically meaningful 

• Computationally not so 
expensive  

• Hard threshold (arbitrary) divides the 
SNP list into selected and not 
selected SNP set. For instance, if 
threshold value for p-value is 0.05, 
means SNP with value 0.051 is not 
included in SNP list 

• Uses only most significant SNP and 
discards others, lead to information 
loss 

SNPtoGO [100], 
ALIGATOR [101], 
ATRP [102], 
MetaCore [103], 
PARIS [104], SET 
SCREEN test 
[105], SNP ratio 
test [95], GLOSSI, 
GeSBAP [94], 
INRICH [106], 
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• Test statistic is independent of SNP 
data (based on only SNP count), and 
ignores the strength of association 

• Considers each SNP independent and 
ignores the linkage disequilibrium 

• Assumes each SNP contribute 
equally, which is not true as there are 
common and rare variants 

• Dependent on pre-defined bio-
knowledge base, which is mostly 
incomplete or unavailable 

GeneSetDB 
[107], MAGENTA 
[108], KGG-HYST 
[109], PLINK 
[110], JAG [111], 
FORGE [112] 

Enrichment 
Statistic(s) 
Analysis  
 
(Second 
generation 
GWAS GSA) 

Wilcoxon 
signed 
rank test, 
Sum test, 
Weighted 
Sum test  
(Enrichme
nt score 
like 
statistic) 

• Do not require hard 
threshold for dividing 
SNP list into selected and 
non-selected part 

• Jointly consider multiple 
contributing factors in 
the same gene set, might 
complement the most-
significant SNPs/genes 
approach 

• Test statistic is computed 
from the data considering 
linkage disequilibrium 

• Analyzes each gene set 
independently. 

• Only considers data for selecting 
SNPs and after ignores the data from 
gene-set testing. 

•   Treat all genes in a gene set 
independently and do not account 
for the relationships between genes. 
 
 

GSA-SNP [88], 
GSA-SNP2, GSEA-
SNP [113], GSEA-
P [10] 
GenGen [114], 
ICSNPathway 
[115], i-
GSEA4GWAS[116
], i-GSEA4GWAS2 
[117] 

Topology 
Analysis 
 
(Third 
generation 
GWAS GSA) 

Graph/Ne
twork 
theory 

• Relationships between 
genes are used to assign 
different levels of 
“importance” to genes in 
the set 

• Helps in integrate gene 
set membership 
information with 
interaction data from a 
separate source 

• Difficult to generalize 

• True topology is dependent on the 
type of cell and experimental 
condition, which are rarely available 

• Cannot model the dynamicity of the 
cellular system 

• Heavily dependent on annotations, 
which is either missing or incomplete 

dmGWAS[118], 
Ingenuity 
Pathway Analysis 
(IPA)[119], 
PINBPA[120], 
PathVisio[121], 
Cytoscape[122] 

Multivariate/
Model/ 
Regression 
Analysis  
 
(Fourth 
generation 
GWAS GSA) 

Linear 
regressio
n Model, 
Ridge 
regressio
n, Logistic 
regressio
n, Linear 
models 

• Consider both SNP and 
gene set information 
simultaneously in same 
model 

• Jointly consider linkage 
disequilibrium and gene-
gene interaction in gene 
set for modeling 

• Future behavior of the 
system can be predicted 

• Dynamicity of the 
biological system can also 
be modeled and studied 

• Computationally intensive 

• High dimensionality of genomic data 
raises serious concerns 

• Ignores the non-linear interactions 
among biomolecules  

LRpath [98], 
SPCA[96], 
SFPCA[97], 
MAGMA[123], 
GRASS, 
Generalized 
Berk-Jones 
statistic[99],  

The formulations based on underlying statistical tests [5] can also be used for 

classifying GSA GWAS, i.e., self-contained and competitive approaches (Figure 

2.4). Self-contained GWAS GSA considers only the SNPs in the gene set and tests 

the null hypothesis that none of those SNPs are associated with the phenotype. 
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Competitive GSA considers all SNPs in the data and tests the null hypothesis that 

the genes in the gene set are no more strongly associated with the phenotype than 

other genes [124]. Further, the competitive GWAS GSA approaches can be 

divided into: i) two-step approach(s), in which SNPs (in each gene) are first used 

to evaluate association with the gene, then gene-level statistic(s) are aggregated 

to gene-set level enrichment value to test its association with the phenotype; and 

ii) a one-step approach, in which all SNPs in a gene set are simultaneously 

considered in the analysis without consideration of gene-level effects (e.g., 

MAGMA) (Figure 2.4). For the former categories, the univariate statistical 

approaches are used, while multivariate techniques such as joint modelling are 

used for latter. Moreover, the self-contained GWAS GSA approaches can also be 

grouped based on the type of gene-set test statistic used for testing (Figure 2.4). 

This can be broadly subdivided into three classes: i) mean-based, (i.e., mean or 

sum of the gene-association scores); ii) count-based, (i.e., classifying genes as 

‘significant’ or ‘not significant’ by applying a threshold to the gene-association 

scores and using the number of ‘significant’ genes in the gene set as a test 

statistic); and; iii) rank-based, first ranking the genes according to their gene-

association score and computing overrepresentation of the gene-set genes at the 

top of that ranking. 

Limitations and Future Challenges of GSA 

Here, we report the existing limitations as well as the key challenges observed in 

the available GSA approaches that should be kept in mind while using them. These 
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existing limitations and challenges can be divided into two broad categories: i) 

biological annotation challenges and ii) methodological challenges. 

Biological Annotation Challenges 

The classification of GSA approaches for high-throughput genomic studies 

(Figures 2.2–2.4) shows that GSA approaches require annotation information for 

analyzing gene sets. It is expected that the next generation GSA will require 

improvement of the existing annotations as well as new high-throughput annotation 

information [21,53]. Therefore, it is important to create accurate, high resolution 

bio-knowledge bases with specific emphasis on cell dynamics and condition, along 

with tissue information to annotate genes studied in an experiment. These 

knowledge bases will allow us to model the inherent organism’s response to any 

extraneous condition as a dynamic system and will help in predicting the system’s 

behavior at different times as well as in relation to various factors (e.g., mutation, 

disease, environmental conditions, etc.). 

Limited annotation information: The contemporary GSA approaches mostly 

use GO and pathways information for analyzing gene sets 

[24,25,34,36,37,67,76,100,101], but there is enough other annotation information 

available or will soon be available in public domain databases that can be 

effectively used for GSA to gain biological insights into the etiology of complex 

diseases in humans as well as other organisms. For instance, Das et al. used the 

QTL data as annotation information to develop a GSA approach to analyze the 

gene sets obtained from Microarrays [17]. This approach has immense use for 

performing trait/QTL enrichment analysis of gene sets and further, QTL enriched 
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gene sets can be used for molecular breeding programs for biotic/abiotic stress 

engineering in plants. Moreover, this annotation information can also be used in 

the future for developing new generation GSA approaches for analysis of RNA-

seq and GWAS data. Such advances in GSA will open new avenues to understand 

the molecular complexity behind complex diseases in humans and other 

organisms including crop plants. 

Low resolution knowledge bases: Recent advancements in genomics and 

proteomics lead to a paradigm shift in data generation, with unprecedented high 

resolution. At the same time, there is a demand for high resolution annotation bio-

knowledge bases to perform GSA. For instance, during the early period of GE 

genomics, Microarrays were the key experiment to obtain a global view of GE in 

the human genome. To perform GSA, GO [125] and KEGG [126] annotation bases 

were developed in parallel and implemented in several web tools. Further, such 

databases specify which genes (in terms of probe id/Entrez id) are active in each 

GO category/pathway/ predefined gene sets. However, microarray technology has 

been replaced with RNA-seq and single cell RNA-seq (scRNA-seq) technologies. 

Hence, the current annotation databases need to be updated with respect to these 

high-resolution techniques. It is essential that they also begin specifying other 

information, such as transcripts (or scRNA-seq transcript) and SNPs that are active 

in each predefined pathway, GO category. 

Missing or incomplete annotation: Although enormous annotation bases are 

available in the public domain, some annotations are either missing or incomplete 

for certain genes. For instance, the current release of GO contained entries for 
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19,649 human genes annotated with at least one GO term. Many of these genes 

are hypothetical, predicted or pseudogenes. For example, the number of protein-

coding genes in the human genome is estimated to be 20,000–25,000, which 

shows that annotation information of hundred(s) of genes is still missing, and this 

may have a crucial role in various diseases. In addition to the missing annotations, 

most of the current databases have lower resolution (i.e., lesser information on 

transcript and SNP) [21,127], which leads to biased results from GSA. Further, 

current knowledge bases are built by curating experiments performed in different 

cell types at different time points under different conditions/locations. However, 

these details are typically not available in these knowledge bases. Thus, these 

databases need to be updated for future dynamic or cell specific GSA. 

Methodological Challenges 

Lack of benchmark/gold standard: In simulation, it is expected that multivariate 

approaches outperform the univariate counterparts, as the former considers inter-

variable correlations. However, in biology, it is observed that univariate statistic(s) 

are equal to or better than multivariate statistic(s) [33]. This observation raises 

several questions about the performance assessment of GSA approaches using 

simulated datasets as a benchmark. It is likely that biology is more complicated 

than simulated scenarios and is influenced by factors such as the absence of 

exclusive division into classes, presence of outliers, experimental or technical 

hidden factors, environmental influence(s), random errors, etc. Therefore, one way 

to handle such a situation is to use benchmark/gold standard datasets with a valid 

biological basis. For instance, Ballard et al. (2010) compared two GSA methods 
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based on their applications to three Crohn's disease benchmark GWAS datasets 

with well-known biological basis [9,13,114]. Further, a combination of both 

benchmark biological datasets with statistically strong criteria can provide a 

suitable platform for comparative performance analysis of GSA approaches. 

Criteria for comparing GSA approaches: When the performance of a GSA 

approach is assessed, it is expected to have certain proportions of false positives 

from the test. The ES-based GSA approaches compare the observed ES statistic 

with its null distribution as generated by random sampling/permuting the sample 

labels/disease outcomes or permuting genes/genotypes information [12,99]. 

Usually, through permutation, p-values are computed for assessing the enrichment 

significance of gene sets [5,16]. Then, -log10(p-value) and power of the statistical 

tests are used to assess the performance of GSA approaches [17]. However, 

alternate measures may also be used for comparative performance analysis of 

GSA approaches. In one such measure, the above computed p-values may be 

used to plot the histogram for the null gene sets, and that is expected to follow a 

uniform distribution. This phenomenon may be used to compute type-I error rates 

for GSA approaches, which can then be used as an efficient criterion for 

performance analysis of GSA approaches along with statistical power and FDR. In 

other words, GSA approaches with lower type-I error rates will be considered as 

better and vice-versa. These criteria can be computed on benchmark/gold 

standard datasets, which will provide a suitable platform to compare GSA 

approaches. 
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Improvement in terms of statistical power: In ORA-based GSA approaches, 

the test statistic(s) are computed by treating each gene equally. But in biology, 

some genes contribute more toward the disease/trait development. Treating all 

genes as equal in computing the test statistic reduces the statistical power of the 

GSA approach. Hence, one powerful strategy may be to consider the DE scores 

of genes [8,11,128,129] or ranks of the genes in a gene list while constructing the 

test statistic(s). This mechanism will attribute more statistical power to GSA 

approaches as compared to the existing ones. This approach needs to be well 

studied on benchmark data in the future to assess its rigor and reproducibility. 

Further, other a priori biological information, viz. eQTL, network topology, co-

expression scores, etc., can be used as auxiliary information in GSA approaches 

to improve their performance. 

Selection of null hypotheses: The competitive GSA approaches use a gene 

sampling model to compute the p-values for gene sets [5,16]. In the gene sampling 

model, it is assumed that genes are iid, which is highly unrealistic from a biological 

standpoint. Hence, the test statistic computed based on such assumptions from 

the gene sampling model leads to biased and misleading results. Therefore, 

methods, such as GSEA [8,11] and SAFE [32] use a hybrid concept, i.e., compute 

their test statistic(s) based on a gene-sampling model but calculate their p-values 

using the subject sampling model. The discrepancy between these two models 

makes the statistical properties of the test unclear and its interpretation very 

difficult. These problems are unavoidable, as the definition of the competitive null 

hypothesis is intimately tied to the gene-sampling model, whereas valid p-values 
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are easily available for subject sampling only. This type of problem may provide 

impetus to future research in GSA. 

Inability to model and analyze a dynamic response: It is well known that 

biological systems are dynamic. There has been a long debate about the feasibility 

of using static models to model the inherent dynamics of biological systems. 

However, in GSA, only static approaches (linear, gamma, generalized linear and 

regression models) [80,98,99] have been used to date. This raises a serious 

concern about the use of GSA approach in assessing living systems. The lack of 

methods that analyze gene sets as a dynamic system is partly due to the limitations 

of current molecular measurement technologies. These technologies can only 

quantify a snapshot of a biological system because they are unable to: (i) 

determine the protein states in a high-throughput fashion, or are severely restricted 

in this regard; and (ii) detect signals that propagate without affecting GE. 

Therefore, we encourage researchers in the future to use dynamic models such 

as time-series models, auto-regressive models, dynamic Bayesian models, etc. for 

GSA from time-dependent GE or association data. 

Redundancy among genes in gene sets: In GE data analysis, redundancy 

among genes (i.e., genes may not be related to a case/disease but ranked in the 

top due to high correlation with other top ranked genes) is a serious issue [18]. 

During the process of ranked gene list preparation, redundant genes may be 

included and further, do not give valid p-values for the gene set testing, as genes 

in gene lists are correlated. In other words, p-values may easily be falsely 

significant when the genes in the gene set are correlated, even when none of the 
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genes is truly significant. One strategy may be to use such a GE data analysis 

approach [18] which minimizes the redundancy among genes during the gene 

ranked list preparation. Other approaches may include avoiding the use of gene-

sampling models in gene set testing for p-value computation [5]. 

Develop threshold-free approach(s): ORA based GSA approaches are mostly 

threshold dependent [14]. Further, other GSA methods such as mGSZ (based on 

Gene Set Z-scoring function) requires a threshold value for DE score to divide the 

ranked gene list into member genes and non-member genes (i.e., two gene 

groups) [128]. Gene set testing (e.g., Z-test) is then performed on these gene 

groups [8,11,114,128]. The determination of an optimal threshold is often a 

cumbersome task. Therefore, the obtained analytical results from such approach 

are unstable and irreproducible [8,14,89]. Hence, researchers use a set of 

threshold values to compute enrichment significance of gene sets and then select 

the threshold that gives the most significant results [5,130]. This approach seems 

inelegant. A more comprehensive and computationally intensive approach for 

choosing a threshold will be a reasonable compromise among power, type I error, 

and reproducibility of results, using a cross validation technique. Another strategy 

may be development of threshold-free GSA approaches to improve the stability of 

results. 

Proper permutation procedure: Current GSA approaches mostly use 

permutation procedures that compute p-values by comparing the observed test 

statistic with its null distribution generated from the permuted datasets 

[5,26,69,130]. It is expected to reflect chance-based confounding effects, including 
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biases introduced by the gene set. However, the permutation procedures (if not 

designed properly) can produce misleading results and introduce bias in the 

resulting inference. For instance, permutation of SNPs, which is often used in p-

value based approaches, may disrupt the linkage disequilibrium pattern, and may 

not generate the correct null distribution. For gene-based approaches, permutation 

of sample labels may not generate the correct null distribution, as the samples are 

generated from tissues of same or related individuals [9,131]. Furthermore, 

whether the SNPs or genes or phenotypes are being permuted, the sampling units 

are assumed to be iid, which may not be the case; SNPs may be correlated due 

to linkage disequilibrium or gene-gene interactions. Therefore, proper care should 

be taken before choosing the permutation procedure for computing the p-values 

for gene sets. 

GSA approach(s) for alternate annotations: The existing ORA based GSA 

approaches have mostly focused on whether the selected gene sets are over-

represented by known pathways or GO terms [24,25,34,36,37,67,76,100,101]. 

However, in plant and complex disease biology, such approaches may not be able 

to establish any formal relation between the underlying genotypes and the 

trait/phenotype, as most of the traits are quantitative in nature and controlled by 

polygenes [13,17,132,133]. For this purpose, a statistical approach and R package 

of GSA with QTL has recently been developed [17], which is useful for obtaining 

QTL-enriched gene sets. Moreover, there is a lot of genomic annotation 

information, such as tissue information, QTL, etc., available in the public domain, 

which can be used to develop new and innovative GSA approaches and tools. 
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Stability of gene set testing results: The statistical power and FDR are used 

for performance analysis of GSA approaches [12,15,26,74]. It is well known that 

different samples (on which the test is based) would give different results due to 

sampling errors. One way to deal with such a problem is to draw different sub-

samples from a relative homogenous population, and the approach with small 

variance and uniform results over sub-samples can be termed as stable [134]. This 

principle can be applied to GSA, i.e., first, sub-samples can be taken from all 

samples, and then GSA can be applied on each sub-sample to compute the p-

value for the gene sets. Finally, one can evaluate the stability of the approach by 

comparing a change in ranks over different sub-samples. The approach with the 

least change in ranks can be termed as the stable approach and can be easily 

implemented in simulation analysis. In biology, several factors may be responsible 

for causing instabilities to the results; these include gene-gene correlations, 

genetic heterogeneity, and patient-to-patient variability. To address this problem, 

several researchers have hypothesized that testing gene sets rather than 

individual gene/marker will be more stable across different samples [26,135,136]. 

More relevant, and specialized studies and methodologies are needed to validate 

such claims. 

 

 

“In 21st century all the biological investigations will be done in silico…” 

                                                                                     Walter Gilbert, Nobel laureate
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CHAPTER 3

STATISTICAL APPROACH FOR BIOLOGICALLY RELEVANT GENE SET 

SELECTION FROM GENE EXPRESSION DATA 

Background 

Emergence of high-throughput sequencing technologies exponentially increased 

the size of output data in biological sciences with respect to a number of features 

[137]. For example, GE studies generate the expression measurements of several 

thousand(s) of genes for tissue samples over two contrasting conditions in a single 

study [138,139]. These huge amounts of expression data being generated for 

complex traits, have been deposited in public domain databases, such as NCBI, 

ArrayExpress, etc., over the years by different researchers across the globe 

[3,140]. Moreover, these huge publicly available high-throughput datasets need to 

be analyzed for gaining valid biological insights. One such aspect of research may 

be to select genes which are highly relevant to the phenotype/trait under study 

from the several thousands of genes in the data. This is called feature selection in 

machine learning in general and gene selection in genomics [2,3,141]. Gene 

selection has been the focused area of research in functional genomics, and thus, 

several statistical, and machine learning approaches have been developed for this 

purpose [142,143]. The main aim of gene selection is to reduce the problem of 

high-dimensionality in expression data [2–4,144]. 
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Further, these selected genes are used as predictors for further predictive analysis, 

i.e., subjects/patients classification [141,142,144], regression modeling [145], 

gene network analysis [2,3], etc.  

The gene selection methods can be grouped into: (i) filter; and (ii) wrapper 

methods [143,146]. Filter methods select individual genes or evaluate a gene 

subset based on a performance measure, i.e., relevance or redundancy measure 

computed from the data with respect to class variables regardless of the predictive 

modeling algorithm [147]. Further, these methods include univariate approaches 

such as t-test [6,148], FC [148], F-score [149,150], Volcano plot [6], Wilcoxon’s 

statistic (Wilcox) [151,152], Information Gain (IG) [143,153], Gain Ratio (GR) 

[143,153], symmetric uncertainty [19], etc. These methods select genes by only 

considering their relevance within a level of the experimental condition/trait. 

However, these approaches may not sufficient to discover some complex 

relationships among genes (i.e., gene-gene interactions) for certain 

conditions/traits, under which the data are generated [4]. Multivariate filter 

approaches, i.e., Pearson’s Correlation (PCR), Spearman’s rank correlation 

[143,153], Maximum Relevance and Minimum Redundancy (MRMR)  

[149,154,155], etc. have been developed to select genes from GE data [143,146]. 

Further, the wrapper methods select gene subsets through assessing the 

performance of the predictive modelling algorithm [156]. For instance, in 

classification, a wrapper will evaluate gene subsets based on the classifier’s 

performance on GE data. Wrapper methods of gene selection are embedded in 

the classification process, better in performance over filter methods [143,146], but 
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are more complex and computationally expensive [156]. Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) [142,157], Multiple SVM-RFE (MSVM-

RFE) [158] and Random Forest (RF) [144], etc. are classic examples of wrapper 

methods. Furthermore, hybrids of filter and wrapper methods are also reported in 

the literature (known as embedded methods [143]) such as linear combination of 

SVM-RFE and MRMR weights (SVM-MRMR) to select relevant genes from GE 

data [159]. In addition, other embedded methods were also developed by 

hybridizing SVM with other gene selection methods [150]. 

 Gene selection methods were used to select cancer responsible genes 

from GE datasets, and subsequently used for patient classification (e.g., with and 

without cancer) [18,141,142,144]. However, it is important and highly necessary to 

systematically explore the performance of gene selection methods on crop GE 

datasets. Further, the existing methods (e.g., SVM-RFE, MRMR, SVM-MRMR, 

etc.) select genes through the weights (i.e., gene ranking criteria) computed from 

single high-dimensional GE data, which lead to selection of spuriously associated 

genes [2,3]. Therefore, the permutation tests are used to compute statistical 

significance values for gene selection [2], which are highly sensitive to small 

permutations of experimental conditions (i.e., class labels) [2,3], computationally 

slow [160,161], cannot possibly give any significant p-values after multiple testing 

adjustments [161,162], and large number of permutations are required to get a 

significant p-value [161]. Moreover, the performance of the existing methods were 

usually assessed through computation of post selection Classification Accuracy 

(CA) [18,141,142,159,163,164]. Here, it is worthy to note, this traditional criterion 



37 
 

is statistically sound but may not be biologically relevant for performance 

evaluation of gene selection methods [17,18]. Hence, it is pertinent to evaluate the 

gene selection methods with respect to biology and traditional classification-based 

criteria on multiple real crop GE datasets. 

In this chapter, we propose an improved statistical approach 

(BSM=Bootstrap-SVM-MRMR) that combines MRMR filter with SVM wrapper 

methods to minimize the redundancy among genes and improve the relevancy of 

genes with the traits/phenotype under a sound statistical setup. Through this, 

relevant genes are selected from a high-dimensional GE data through the 

statistical significance values computed using a NP test statistic on bootstrap 

samples. Further, the comparative performance analysis of the proposed BSM 

approach is carried out, and compared with nine existing methods (i.e. IG 

[143,153], GR) [143,153] , t-test [6,148], F-score [149,150], MRMR [149,165] , 

SVM-RFE [142,157], SVM-MRMR [159], PCR [143,153] and Wilcox [151,152]). 

The comparative performance measures include, CA along with its standard error 

computed through varying sliding windows size technique, and two biological 

criteria based on QTL [166], and GO [167] terms. We demonstrate these 

procedures on six, publicly available, independent crop GE datasets, and find that 

the BSM approach outperforms in terms of classification and biological relevance 

criteria compared to the existing methods. Moreover, the developed approach 

provides an effective statistical framework for combining filter, and wrapper 

methods for gene selection from high dimensional GE data.  
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Material and Methods 

Motivation for using Crop datasets 

The datasets related to expression of genes from various experiments, conducted 

to understand the behavior of biological mechanisms, are widely available in public 

domain databases. For example, GE datasets generated for 125,376 series 

(experiments) over 19,893 Microarray platforms consist of GE data on 3,406,218 

samples that are available in NCBI Gene Expression Omnibus (GEO) database till 

January 2020. Usually, researchers used data from a single experiment to test 

their methodology or select genes for further study. For instance, Wang et al. 

(2013) used the salinity stress GE samples from GSE14403 to test their 

methodology, and selected salinity responsive genes to understand salinity 

tolerance mechanism(s) in rice [2]. Such type of study is important but may not be 

sufficient to test the hypothesis of salinity tolerance in rice.  Hence, the real 

challenge is to integrate or combine the GE datasets generated for same or cross 

platforms over different experimental conditions and test the methodology(s) on 

the meta-data. For instance, we have collected GE datasets related to drought 

stress from five different experiments and performed meta-analysis to integrate the 

datasets, and further tested the performance of gene selection methods on the 

meta-data, shown in Table 3.1. The outlines of meta-analysis are given in Figure 

3.1A. Moreover, meta-analysis of data generated by GE experiments for the same 

or related stress(es) will be essential to enhance the sensitivity of the hypothesis 

under consideration for drawing valid biological conclusions. 
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Data source 

Rice GE experimental datasets were collected from NCBI GEO database for 

platforms GPL2025 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2025) 

[140]. Here, we used the rice data, as it is a model crop plant, and because a huge 

amount GE and other related biological (QTL and GO) datasets are available 

publicly, and its genome is well annotated. The selected GE datasets were 

generated under biotic (bacterial (Xanthomonas), fungal (Blast), insect (Brown 

plant hopper)), and abiotic (salinity, cold and drought) stresses in rice. The 

summary and details of these datasets are given in Table 3.1. Initially, the raw CEL 

files of the collected samples were processed using Robust Multichip Average 

(RMA) algorithm available in affy Bioconductor package of R [168]. This procedure 

involves background correction, quantile normalization, and summarization by 

median polish approach. Further, the log2 scale transformed expression data for 

the collected experimental samples were used for meta-analysis to remove the 

outliers. The GE samples from three, four, five, three, and two independent studies 

for salinity, cold, drought, bacterial, and fungal stresses respectively, were 

integrated (Table 3.1) through the meta-analysis to obtain the meta-data. For 

instance, the salinity stress dataset, originated from three independent studies, are 

available in GEO database under the accession numbers GSE14403, GSE16108, 

and GSE6901 and consists of expression measurements over 45 samples. Then 

these meta-datasets for the respective stresses were further used to remove the 

control and irrelevant features through the preliminary genes selection to reduce 

the computational complexity, and dimensions of the datasets. For instance, out 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2025
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of 57381 genes in drought stress, control (123), and irrelevant (48180) genes are 

filtered out by setting the FC, and p-values (from t-test) parameters as 1, and 0.05 

respectively through the preliminary gene selection. Then, the processed datasets 

(Table 3.1) were used for further data analysis. Further, the QTL datasets for the 

stresses in rice, viz. salinity, drought, cold, insect, fungal and bacterial, were 

collected from the Gramene QTL database (http://www.gramene.org/qtl/) [169]. 

The GO annotations data of the rice genome were collected from AgriGO database 

[24]. 

Table 3.1. Rice gene expression datasets used in the study. 

Descriptions #Series Series Id #Genes #Samples Type 

Salinity stress 3 GSE14403, GSE16108, 

GSE6901 6637 45 (23, 22) 

Abiotic 

Cold stress 4 GSE31077, GSE33204 

GSE37940, GSE6901 8840 28 (15, 13) 

Abiotic 

Drought stress 5 GSE6901, GSE26280 

GSE21651, GSE23211 

GSE24048 9078 70 (35, 35) 

Abiotic 

Bacterial stress 3 GSE19239, GSE36093 

GSE36272 8356 74 (37, 37) 

Biotic 

Fungal stress 2 GSE41798, GSE7256 7072 26 (13, 13) Biotic 

Insect stress 1 GSE29967 
7241 18 (12, 6) 

Biotic 

#Series: Number of GEO series for each dataset; #Genes: Number of genes; #Samples: Number of GEO samples; (x, y): 

number samples for case and control respectively 

Notations 

Let, XN X M = [xim] be the GE data matrix, where xim represents the expression of ith 

(i=1, 2, …, N) gene in mth (m = 1, 2, …, M) sample/subject; xm be the N-dimensional 

vector of expression values of genes for mth sample; 𝑦𝑚 be the outcome variable 

for target class label of mth sample and takes values, {+1, -1} for case  and control 

conditions respectively; M1 and M2 be the number of GE samples in case and 

control classes respectively (𝑀1 +𝑀2 = 𝑀); (𝑥̅𝑖1, 𝑆 𝑖1
2 ) and (𝑥̅𝑖2, 𝑆 𝑖2

2 ) be the mean 

http://www.gramene.org/qtl
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and variance of ith gene for case and control classes respectively; 𝑥̅𝑖 be the mean 

of ith gene across all M samples; 𝑆𝑖𝑗 be the co-variance between ith and jth genes. 

MRMR Filter Method 

MRMR method aims at selecting maximally relevant and minimally redundant set 

of genes for discriminating the tissue samples (e.g. case vs. control). This method 

is extensively used for selection of cancer responsible genes from high-

dimensional GE data for patient classification (i.e. with and without cancer) 

[149,155,165]. For continuous GE data (e.g. Microarrays), the relevance measure 

for ith gene over the given classes (i.e. case and control), is computed through F-

statistic [165] and is expressed as: 

𝐹(𝑖) =
𝑀1(𝑥̅𝑖1−𝑥̅𝑖)

2+𝑀2(𝑥̅𝑖2−𝑥̅𝑖)
2

{(𝑀1−1)𝑆𝑖1
2 +(𝑀2−1)𝑆𝑖2

2 }/(𝑀−2)
                                                       (3.1)                             

Further, the redundancy measure in the MRMR method is computed through 

Pearson’s correlation (ignoring the class information) for continuous GE data [165] 

and is given as: 

𝑅(𝑖, 𝑗) = 𝐶𝑜𝑟𝑟(𝒙𝑖, 𝒙𝒋) =
𝑆𝑖,𝑗

𝑆𝑖𝑆𝑗
=

∑ (𝑥𝑖𝑚−𝑥̅𝑖)(𝑥𝑗𝑚−𝑥̅𝑗)
𝑀
𝑚=1

√∑ (𝑥𝑖𝑚−𝑥̅𝑖)
2𝑀

𝑚=1 √∑ (𝑥𝑗𝑚−𝑥̅𝑗)
2𝑀

𝑚=1

             (3.2)                                                      

In MRMR method, genes are ranked by the combination of relevance, and 

redundancy measures under F-score with Correlation Quotient scheme for 

continuous GE data [149,155,165]. The weights computed through MRMR method 

for gene ranking can be expressed in terms of Eq. 3.1 and 3.2, and are given as: 

𝑤𝑖 = 𝐹(𝑖)/{
1

𝑁−1
∑ |𝑅(𝑖, 𝑗)|}            ∀    𝑖 = 1, 2, . . . , 𝑁𝑁
𝑗=1
𝑗≠𝑖

                          (3.3) 

where, wi (≥ 0) is the weight associated with ith gene. The functions F(i) and R(i, j) 

in Eq. 3.3 represent F-statistic for ith gene and Pearson’s correlation co-efficient 
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between ith and jth genes. In other words, ith gene weight is F-statistic adjusted with 

average absolute correlation of ith gene with the remaining genes.   

SVM Method 

SVM method is used for selection of genes (in a two group case) from high 

dimensional GE data [157]. Let, {𝒙𝑚, 𝑦𝑚 } 𝜖 𝑅
𝑁x {−1, 1} be the input given to SVM. 

Here, we wish to find out a hyperplane that divides the GE samples/subjects for 

case (𝑦𝑚 = 1) from that of control class (𝑦𝑚 = −1) in such a way that the distance 

between the hyperplane and the point, 𝒙𝑚, is maximum. Then the hyperplane can 

be written as:  

∑ 𝑘𝑖𝒙𝑖𝑚
𝑁
𝑖=1 + 𝑏 = 0              ∀ 𝑚 = 1, 2, … ,𝑀                                (3.4)                                                                                                         

where, ki and b are the weight of ith gene and bias, respectively. Here, we assume 

that the GE samples for two classes are linearly separable. In other words, we can 

select two parallel hyperplanes that separate the case, and control classes in such 

a way that the distance between them is maximum. 

For case class, the hyperplane becomes: 

 ∑ 𝑘𝑖𝑥𝑖𝑝
𝑁
𝑖=1 + 𝑏 = 1                  for any 𝑝 = 1, 2, … ,𝑀1                     (3.5)                                               

For control class, the hyperplane becomes: 

∑ 𝑘𝑖𝑥𝑖𝑞
𝑁
𝑖=1 + 𝑏 = −1                for any 𝑞 = 1, 2, … ,𝑀2                     (3.6)                                                 

The expressions in Eq. 3.5, and 3.6 can be combined as: 

𝑦𝑚(∑ 𝑘𝑖𝒙𝑖𝑚
𝑁
𝑖=1 + 𝑏) = 1               ∀ 𝑚 = 1, 2, … ,𝑀                           (3.7)                              

Here, we wish to maximize the distance between the case, and control 

hyperplanes in Eq. 3.5 and 3.6 respectively under the constraint that there will be 
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no GE samples between these two hyperplanes given in Eq. 3.7. Mathematically, 

it can be written as: 

∑
𝑘𝑖

∑𝑘𝑖
2

𝑁
𝑖=1 |𝑥𝑖𝑝 − 𝑥𝑖𝑞| =

𝟐

 ∑𝑘𝑖
2                                                         (3.8)                                                                             

So, to maximize the distance between the planes in Eq. 3.8, we need to minimize 

∑𝑘𝑖
2

 2
 under the constraint of Eq. 3.7. Mathematically, it can be written as: 

Lp= min
𝑘𝑖

∑𝑘𝑖
2

 2
+ ∑ 𝜑𝑚{1 − 𝑦𝑚(∑ 𝑘𝑖𝑥𝑖𝑚

𝑁
𝑖=1 + 𝑏)}𝑀

𝑚=1    ∀ 𝑚 = 1, 2, … ,𝑀     (3.9)                                   

where, 𝜑𝑚 (≥  0): Lagrange multiplier. Here, ki’s are obtained by minimizing the 

objective function in Eq. 3.9. Through the principle of maxima-minima, we have: 

𝜕𝐿𝑝

𝜕𝑘𝑖
= ∑ 𝑘𝑖𝑖 − (∑ 𝜑𝑚𝑦𝑚𝑥𝑖𝑚)

𝑀
𝑚=1 = 0  and   

𝜕𝐿𝑝

𝜕𝑏
= ∑ 𝜑𝑚

𝑀
𝑚=1 𝑦𝑚 = 0                   (3.10)                                         

The value of 𝑘𝑖  can be obtained through solving the system of linear equations 

given in Eq. 3.10 and is expressed as: 

𝑘𝑖 = ∑ 𝜑𝑚𝑦𝑚𝑥𝑖𝑚
𝑀
𝑚=1      with ∑ 𝜑𝑚

𝑀
𝑚=1 𝑦𝑚 = 0 and 𝜑𝑚 ≥  0            (3.11)                                                                                                                         

Here, |𝑘𝑖| (≥  0) in Eq. 3.11 is used as a metric for ranking of genes in the GE data 

[157]. Alternatively, 𝑘𝑖
2 as a gene ranking metric can also be derived by using 

Taylor series approximation [170], which is given in Appendix II. 

Proposed BSM approach of gene selection 

MRMR method may not yield optimal CA because it performs independent of the 

classifier and is only involved in selection of genes [159]. On the other hand, the 

SVM method of gene selection does not consider the redundancy among genes 

(i.e., gene-gene correlations) while selecting genes [159]. Hence, Mundra and 

Rajapakse (2010) have developed a gene selection method by taking linear 
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combination of weights computed through MRMR, and SVM methods [159], and 

this is given as: 

𝑆𝐿𝑖 = 𝛿𝑤𝑖 + (1 − 𝛿)|𝑘𝑖|                                                     (3.12)                                     

where, parameter 𝛿 ∈ [0, 1] decides the trade-off between SVM and MRMR 

weights. The 𝑆𝐿𝑖 in Eq. 3.12 is highly dependent on the value of 𝛿. In other words, 

the choice of 𝛿 may alter the order of genes by MRMR (wi) or by SVM (ki); 

especially when wi and ki are negatively correlated. Hence, we propose a statistical 

approach by combining SVM and MRMR weights under sound statistical 

framework, where genes are selected through p-values computed using the NP 

test statistic, which is described as follows. 

First, we normalized the 𝑤𝑖, and ki’s through minimax normalization. Then 

𝑤𝑖 and ki are ranked based on the ascending order of their magnitudes and assign 

ranks 𝛾𝑖
𝑀𝑅and 𝛾𝑖

𝑆𝑉 for ith gene, respectively. Then, we developed a technique, i.e., 

quadratic integration, for integrating the gene scores based on ranks, which 

automatically assigned more weights to the higher value of wi and ki.  Now, the 

quadratic integration score can be expressed as: 

𝑆𝐷𝑖 =
𝛽𝛾𝑖

𝑀𝑅𝑤𝑖
𝑛𝑜𝑟𝑚+(1−𝛽)𝛾𝑖

𝑆𝑉|𝑘𝑖|
𝑛𝑜𝑟𝑚

𝛽𝛾𝑖
𝑀𝑅+(1−𝛽)𝛾𝑖

𝑆𝑉                                      (3.13)                                              

where, 𝑤𝑖
𝑛𝑜𝑟𝑚 and |𝑘𝑖|

𝑛𝑜𝑟𝑚 are the normalized values, expressed in Eq. 3.14 and 

3.15, respectively. 

   𝑤𝑖
𝑛𝑜𝑟𝑚 = (𝑤𝑖 −min

𝑖
𝑤𝑖)/(max

𝑖
𝑤𝑖 −min

𝑖
𝑤𝑖)                          (3.14)                     

 |𝑘𝑖|
𝑛𝑜𝑟𝑚 = (|𝑘𝑖| − min

𝑖
|𝑘𝑖|)/(max

𝑖
|𝑘𝑖| − min

𝑖
|𝑘𝑖|)               (3.15)                         
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Further,  𝛽(∈ (0, 1)) in Eq. 3.13 is determined empirically from the data through 

five-fold cross validation technique. If SDi in Eq. 3.13 is alone used for ranking of 

genes, it will become a filter approach and lead to selection of spuriously 

associated genes. Hence, we used bootstrap procedure under a subject sampling 

model setup to obtain the empirical distribution of SDi for computation of statistical 

significance value for ith (i=1, 2, …, N) gene. Here, the bootstrap procedure is 

described below. 

The M samples (as columns) in the GE data matrix either belong to case or 

control class, and can be considered as subjects/units in a population model, as 

shown in Eq. 3.16. 

(𝒙1, 𝑦1), (𝒙2, 𝑦2), … , (𝒙𝑚, 𝑦𝑚),… , (𝒙𝑀−1, 𝑦𝑀−1), (𝒙𝑀, 𝑦𝑀)                (3.16)                               

Here, we assume that the subjects are independent and identically distributed, but 

the genes within each subject may be correlated. In the bootstrap procedure, M 

units are randomly drawn from M population units in Eq. 3.16 with replacement to 

constitute a bootstrap GE data matrix, i.e. 𝑋𝑁𝑋𝑀
(𝑏)

 (M units serve as M columns of 

X). This process is repeated B times to get B bootstrap GE data matrices, 

i.e. 𝑋𝑁𝑋𝑀
(1)

, 𝑋𝑁𝑋𝑀
(2)

, … , 𝑋𝑁𝑋𝑀
(𝑏)

, … , 𝑋𝑁𝑋𝑀
(𝐵)

 . Here, B (i.e. number of bootstrap samples) 

depends on several factors such as, number of units in the population model in 

Eq. 3.16 and must be sufficiently large. So, we set B=200 as several empirical 

studies showed that the number of bootstrap samples required for an estimation 

procedure is ~ 200 [2,171]. 
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Now, the B bootstrap GE data matrices are given as input to Eq. 3.3, 3.11, 

and 3.13 to compute the SD scores, and subsequently gene ranking is performed 

on each of the B bootstrap GE data matrices.  

Let, Pib, be a random variable (rv) shows the position of ith gene in bth 

bootstrap GE matrix. Then, another rv can be defined based on Pib (without loss 

of generality), given as: 

𝑅𝑖𝑏 =
𝑁+1−𝑃𝑖𝑏

𝑁
 ; 0 ≤ 𝑅𝑖𝑏 ≤ 1                                                           (3.17)                                

where, 𝑅𝑖𝑏 in Eq. 3.17 is the rank score of ith (i=1, 2, …, N) gene in bth (b=1, 2, …, 

B) bootstrap GE matrix. Here, it may be noted that the distribution of the rank 

scores of genes, computed from a bootstrap GE data matrix, is symmetric around 

the median value (as rank scores are function of ranks). The values of median and 

the third quartile (𝑄3) are given as 0.5 and 0.75, respectively.  

To decide, whether ith gene is biologically relevant or not to the 

condition/trait under study, the following null hypothesis can be tested. 

𝐻0: 𝑅𝑖 ≤ 𝑄3 (𝑖 − 𝑡ℎ gene is not so relevant to the trait) 

𝐻1: 𝑅𝑖 > 𝑄3 (𝑖 − 𝑡ℎ gene is relevant to the trait) 

where, 𝑅𝑖 is the rank score for ith gene over all possible bootstrap samples. 

To obtain the distribution of test statistic under H0, we define another rv 𝑍𝑖𝑏, as: 

𝑍𝑖𝑏 = {
1  (𝑅𝑖𝑏 − 𝑄3) > 0
0  (𝑅𝑖𝑏 − 𝑄3) < 0

                                                                  (3.18)                                 

Let, 𝑟𝑖𝑏 be another rv represents the rank assigned to (𝑅𝑖𝑏 − 𝑄3) (after arranging 

in ascending order of their magnitudes). To test H0 vs. H1 the test statistic for ith 

gene, 𝑊𝑖, is developed, and is given as: 

𝑊𝑖 = ∑ 𝑍𝑖𝑏𝑟𝑖𝑏
𝐵
𝑏=1 = ∑ 𝑈𝑖𝑏 

𝐵
𝑏=1 (𝑠𝑎𝑦)                                             (3.19)                                  
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In other words, Wi in Eq. 3.19 is the sum of the ranks of positive signed scores for 

ith gene over B bootstrap samples. Further, 𝑈𝑖𝑏 in Eq. 3.19 is a Bernoulli rv, and its 

Probability Mass Function (PMF) can be given as: 

𝑃[𝑈𝑖𝑏 = 𝑢𝑖𝑏] = {

3

4
     𝑖𝑓 𝑢𝑖𝑏 = 0

1

4
     𝑖𝑓 𝑢𝑖𝑏 = 1

                                                   (3.20)                                 

Here, the expected value and variance of Wi, in Eq. 3.19, under H0 can be 

obtained as: 

𝐸(𝑊𝑖) = ∑ 𝐸(𝑈𝑖𝑏 )
𝐵
𝑏=1 = ∑ (0.

3

4
+𝐵

𝑏=1 𝑏.
1

4
) =

1

4
∑ 𝑏𝐵
𝑏=1 =

𝐵(𝐵+1)

8
      (3.21)                       

The variance becomes: 

𝑉(𝑊𝑖) = 𝐸(𝑊𝑖
2) − [𝐸(𝑊𝑖)]

2 = ∑ (
𝑏2

4
−

𝑏

16

2
) =

𝐵(𝐵+1)(2𝐵+1)

32

𝐵
𝑏=1      (3.22) 

As B is sufficiently large, then under the central limit theorem, the distribution of Wi 

in Eq. 3.19 becomes: 

𝑍𝑖 =
𝑊𝑖−𝐸(𝑊𝑖)

√𝑉(𝑊𝑖)

𝑑
→  𝑁(0, 1)                                       (3.23)                                          

Through the Eq. 3.23, the p-value for ith (i=1, 2, …, N) gene is computed and this 

testing procedure is similarly repeated for the remaining N-1 genes. Let, 

𝑝1, 𝑝2, … , 𝑝𝑁 be the corresponding p-values for all the genes in GE data, and α be 

the level of significance. Here, we assume that all genes in the GE data are equally 

important for the trait development; hence, we employed the Hochberg procedure 

[172] for correcting the multiple testing, and to compute the adjusted (adj.) p-values 

for genes. It is worthy to note that Hochberg’s procedure is computationally simple, 

quite popular in genomic data analysis [173] and more powerful than Holm’s 

procedure [174]. The algorithm for Hochberg’s procedure [172] is as follows. 
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Step 1. If 𝑝(𝑙) > α, then retain corresponding null hypothesis (𝐻(𝑙)) and go to the 

next step. Else reject it and stop. 

Step 𝑖 = 2, 3, … , 𝑁 − 1. If 𝑝(𝑁−𝑖+1) > α/𝑖, then retain  𝐻(𝑁−𝑖+1) and go to the next 

step. Else reject all remaining hypotheses and stop. 

Step N. If 𝑝(1) > α/𝑁,  then retain (𝐻(1)). Else reject it. 

Now, the adj. p-values are given recursively beginning with the largest p-value 

[172]: 

𝑝(𝑖)̃ = {
𝑝(𝑖)     𝑖𝑓 𝑖=𝑁                                               
min ( 𝑝 ̃ (𝑖 + 1), (𝑁 − 𝑖 + 1)𝑝(𝑖+1)

 𝑖𝑓 𝑖 = 𝑁 − 1,… ,1                               (3.24) 

Further, based on the computed adj. p-values, the relevant genes are selected 

from the GE data. In other words, a lesser value of adj. p-value indicates more 

relevance of the gene for the target trait, and vice-versa. The outlines and key 

analytical steps of the proposed BSM approach are shown in Figure 3.1B. 

 

 

 

 

 

 

 

 

Figure 3.1. Operational procedure for data integration and the use of proposed 
BSM approach. (A) Outlines for the data integration used in this study for the application of BSM 

approach. The first step indicates the integration and meta-analysis of GE datasets obtained from 
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various GE studies. Then gene selection methods are applied on the meta GE data. (B) Flowchart 
depicting the implemented algorithm of BSM approach. Wi

(S)’s and Wi
(M)’s are the N-dimensional 

vectors of weights computed through SVM and MRMR approach, respectively.   Gi’s and Ri’s are 
the N-dimensional vectors of gene lists and corresponding gene rank scores. SVM, MRMR stand 
for Maximum Relevance and Minimum Redundancy and Support Vector Machine algorithms. pi-
value is the statistical significance value for ith gene. α is the desired level of statistical significance. 

Comparative performance analysis of the proposed approach 

The comparative performance analysis of the proposed BSM approach with 

respect to 9 competitive gene selection methods was carried out on 6 different rice 

GE datasets (Table 3.1). For this purpose, different gene sets (G) of sizes 100, 

200, …, 2000, were selected through the 10 gene selection methods including 

proposed BSM approach. Then, these gene sets were validated with respect to 

subject classification, QTL testing, and GO analysis. 

Performance analysis with subject classification 

Under this comparison setting, the performance of the gene selection methods 

including the proposed approach, were assessed in terms of subject classification 

using mean CA, and Standard Error (SE) in CA as computed through a varying 

sliding window size technique [3,18]. Here, we used the varying window size 

technique to study the impact of gene ranking on classification of subjects. In other 

words, genes in G were validated with their ability to discriminate the class labels 

of subjects/samples between case (+1), and control (-1). Further, the gene set 

selected through a method which provides maximum discrimination between the 

subjects of two groups (i.e., case vs. control) through CA will be considered as 

highly relevant gene sets. The expressions for mean CA, and SE in CA computed 

through varying window size technique are given in Eq. 3.25 and 3.26. 

Let, n be the size of G, S be the size of the windows (i.e., size refers to 

number of ranked genes), and L be the sliding length. Then, the total number of 
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windows becomes, 𝐾 = (𝑛 − 𝑆) 𝐿 ⁄ . The genes in G, arranged in different windows 

along with their expression values, were then used in SVM classifiers with four 

basis-functions, i.e., linear (SVM-LBF), radial (SVM-RBF), polynomial (SVM-PBF), 

and Sigmoidal (SVM-SBF) to compute CA over a five-fold cross validation. Let, 

CA1, CA2, …, CAK be the CA’s for each sliding windows, then the mean CA and 

SE in CA can be defined as: 

𝜇𝐶𝐴
𝐺 =

(∑ 𝐶𝐴𝑘
𝐾
𝑘=1 )

𝐾
⁄                                                          (3.25)                              

𝑆𝐸𝐶𝐴
𝐺 = √∑ (𝐶𝐴𝑘 − 𝜇𝐶𝐴

𝐺 )2𝐾
𝑘=1

𝐾
⁄                                           (3.26)                           

Here, we took different combinations of n, S, and L to compute 𝜇𝐶𝐴
𝐺  and 𝑆𝐸𝐶𝐴

𝐺  for 

the comparative performance analysis of the gene selection methods. The higher 

value of 𝜇𝐶𝐴
𝐺 , and a lower value of 𝑆𝐸𝐶𝐴

𝐺  indicate the better performance of the gene 

selection method, and vice-versa. 

Performance analysis with QTL testing 

The comparative criteria based on subject classification are popularly used for 

assessing the performance of gene selection methods [18,141,142,159,163–165]. 

However, these criteria fails to tell the biological relevancy of the genes selected 

through the gene selection methods [17]. Hence, under this comparative setting 

we assessed the performance of the proposed and existing methods through their 

ability to select genes which are associated with QTL regions. For this purpose, 

the criteria given in Eq. 3.27 and 3.28 were developed as: 

    𝑄𝑠𝑡𝑎𝑡 = ∑ ∑ 𝐼𝑞𝑡( 𝑔𝑖)
𝑛
𝑖=1

|𝑄|
𝑡=1                                                (3.27)                                  

where, G: gene set selected by a method, Qstat: rv whose values represent the 
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number of genes covered by QTLs, Q: set of associated QTLs, and the indicator 

function present in Eq. 3.27 is represented in Eq. 3.28. 

  𝐼𝑞𝑡( 𝑔𝑖) = {
1       𝑖𝑓 𝑔𝑖

𝑐[𝑎, ] ≥ 𝑞𝑡
𝑐[𝑑, ] 𝑎𝑛𝑑 𝑔𝑖

𝑐[, 𝑏 ] ≤ 𝑞𝑡
𝑐[, 𝑒 ] 

0      𝑒𝑙𝑠𝑒
                                (3.28) 

where, gi
c [a, b] ϵ G (a and b represent start and stop positions in terms of bp of 

the gene gi on chromosome c) and qt
c[d, e] ϵ Q (d and e represents the start and 

stop positions of the QTL qt on  chromosome c). Here, the 𝑄𝑠𝑡𝑎𝑡 rv follows a hyper-

geometric distribution and its distribution function is given in Eq. 3.29.  

P[𝑄𝑠𝑡𝑎𝑡 = 𝑣] = 1 − (𝑉
𝑣
)(𝑁−𝑉
𝑛−𝑣

) (𝑁
𝑛
)⁄                                      (3.29)                            

where, V: total number of genes covered by the QTLs in the whole GE data and v: 

number of genes in G that are covered by QTLs. Further, using the Eq. 3.29, the 

statistical significance value (p-value) associated with the G can be computed. In 

other words, this p-value reveals the enrichment significance of G with trait specific 

QTLs. Here, the higher values of 𝑄𝑠𝑡𝑎𝑡 and −𝑙𝑜𝑔10(𝑝 − 𝑣𝑎𝑙𝑢𝑒) indicate the better 

performance of the gene selection method, and vice-versa. 

Performance analysis with GO enrichment 

GO analysis involves with annotation of gene functions under three taxonomic 

categories, i.e. Molecular Function (MF), Biological Process (BP), and Cellular 

Component (CC) [167]. This analysis helps in evaluating the functional similarities 

among the genes in G [175], as there exists a direct relationship between semantic 

similarity of gene pairs with their structural (sequence) similarity [176,177]. Under 

this comparison setting, we assessed the performance of 10 gene selection 

methods including the proposed method using GO based biologically relevant 

criterion. In other words, first different gene sets are selected through these 
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methods, then GO based criterion is computed for each selected gene set. For this 

purpose, we developed a GO based semantic distance measure to assess the GO 

based biologically relevancy of G selected thorough the proposed and existing 

gene selection methods. The GO based semantic distance measure (dij) between 

ith and jth genes can be expressed in Eq. 3.30, as:  

𝑑𝑖𝑗 (𝑖≠𝑗)
𝐺𝑂 = 1 −

|𝐺𝑂𝑖 ∩ 𝐺𝑂𝑗|

|𝐺𝑂𝑖 ∪ 𝐺𝑂𝑗|
                  ∀ 𝑖, 𝑗 = 1, 2, … , 𝑛                  (3.30)                                                                                                     

where, GOi = {goi1, goi2, …, goiI} and GOj = {goj1, goj2, …, gojJ} are the two sets of 

GO terms that annotate ith and jth genes in G, respectively. Further, the GO based 

average biologically relevant score for G (for a gene selection method) can be 

developed based on Eq. 3.30 and is shown in Eq. 3.31.             

𝐷𝐺
𝑎𝑣𝑔

=
2

𝑛(𝑛−1)
∑ 𝑑𝑖𝑗

𝐺𝑂𝑛
𝑖,𝑗=1
𝑖≠𝑗

                                                             (3.31)                                                                                      

where, 𝐷𝐺
𝑎𝑣𝑔

 in Eq. 3.31 represents is the average biologically relevant score for G 

based on GO annotations. Using Eq. 3.31, the 𝐷𝐺
𝑎𝑣𝑔

 scores under MF, BP, and CC 

taxonomies were computed for each of the gene sets selected through different 

methods. A lower value of 𝐷𝐺
𝑎𝑣𝑔

 indicates better performance of the gene selection 

method and vice-versa. 

Results and Discussion 

Computation of genes selection criteria through proposed approach 

The distributions of weights computed from SVM-MRMR method [159] and adj. p-

values for genes computed from the proposed BSM approach for abiotic and biotic 

stresses in rice are shown in Figure 3.2. The distributions of SVM-MRMR weights 

of genes for salinity stress data contained values, which are not so clearly 
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separated (i.e., higher values from lower values) (Figure 3.2A). In other words, the 

genes relevant to the salinity stress condition were not well visualized from Figure 

3.2A. However, from the distribution of adj. p-values computed through the 

proposed approach, it was observed that the relevant genes were found to be well 

separated from the irrelevant genes, and a small number of genes were found to 

be statistically significant (i.e., relevant to salinity stress) (Figure3.2A1). Thus, for 

the salinity stress data, the separation between relevant, and irrelevant genes can 

be well visualized from Figure 3.2A1 as compared to Figure 3.2A. Similar 

interpretations can be observed for other stress datasets, viz. cold, drought, 

bacterial, fungal, and insect (Figure 3.2). Hence, the comparative graphical 

analysis showed a clear distinction between relevant, and irrelevant genes through 

the proposed BSM approach as compared to the existing SVM-MRMR approach. 

In summary, this comparative analysis showed the improvement of BSM approach 

over SVM-MRMR method (Figure 3.2), at least in terms of visualization. Further, 

the relevant genes selection using adj. p-values computed through the NP test 

statistic is more statistically sound as it is independent from the distribution of GE 

data, and corrected over multiple hypothesis testing. These metrics (values 

between 0 and 1) are scientifically well defined, and statistically calculated 

biologically interpretable values to genome researchers, and experimental 

biologists as compared to gene ranks/weights. In the BSM approach, a significant 

p-value gives confidence that the given gene is relevant for the target 

condition/trait. 
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Figure 3.2. Graphical analysis of the proposed BSM approach with SVM-MRMR 
approach for abiotic stress datasets. Distribution of gene weights computed from SVM-

MRMR approach for the abiotic stresses. The distributions of gene weights from the SVM-MRMR 
are shown for (A) Salinity; (B) Cold; and (C) Drought stress datasets in rice.  Distribution of adjusted 
p-values computed from the proposed BSM approach for the abiotic stresses. The distributions of 
the adjusted p-values are shown for (A1) Salinity; (B1) Cold; and (C1) Drought stress datasets. 

Comparative performance analysis based on subject classification 

We used 𝜇𝐶𝐴
𝐺  and 𝑆𝐸𝐶𝐴

𝐺  computed through the varying sliding window size 

technique as statistically necessary criteria for performance analysis of the 

proposed BSM approach on 6 different GE datasets. Here, these measures were 

computed over five-fold cross validations through training the SVM-LBF, SVM-

PBF, SVM-RBF, and SVM-SBF classifiers. The results are shown in Figures 3.3 

and 3.4 for abiotic stresses and in Figure 3.5 for biotic stresses. For cold stress 
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data in rice, the 𝜇𝐶𝐴
𝐺  computed through SVM-LBF classifier for the proposed BSM 

approach was observed to be higher than other gene selection methods followed 

by SVM-RFE and SVM-MRMR over all selected gene sets (Figure 3.3). This 

indicated a better performance of the BSM approach in terms of its ability to classify 

the subjects/samples through selecting relevant genes from cold stress GE data. 

Further, the values of 𝑆𝐸𝐶𝐴
𝐺  from SVM-LBF classifier for the BSM approach was 

found to be much lower (over all the gene sets) than those of the 9 existing gene 

selection methods considered in this study. This shows that the genes selected 

through the proposed BSM approach are much more relevant (informative) and 

robust than other methods. For instance, the gene set of size 50 (i.e., optimum 

gene set) provided satisfactory results in terms of higher 𝜇𝐶𝐴
𝐺  and lower 𝑆𝐸𝐶𝐴

𝐺 , 

irrespective of the gene selection method used. For cold stress data, similar 

interpretations can be made for SVM-PBF, SVM-RBF, and SVM-SBF classifiers 

from Figures 3.3 and 3.4. 

For salinity stress data, the 𝜇𝐶𝐴
𝐺   (except gene sets of sizes 500, 1000 and 

1500) computed for the proposed BSM approach through the SVM-LBF classifier 

were found to be higher than other methods followed by SVM-RFE, and SVM-

MRMR (Figure 3.3). This indicated the proposed approach was better and was 

competitive with the popular methods, i.e., SVM-RFE, SVM-MRMR. Moreover, for 

SVM-PBF classifier, the 𝜇𝐶𝐴
𝐺  over all gene sets for the BSM approach was higher 

than all other considered gene selection methods followed by SVM-RFE (Figure 

3.3). Furthermore, the 𝑆𝐸𝐶𝐴
𝐺  computed through SVM-LBF, and SVM-PBF 

classifiers for the BSM approach was found to be the least followed by SVM-RFE, 
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indicating the selection of robust, and relevant gene sets. Similar interpretation can 

be made for SVM-RBF and SVM-SBF classifiers from Figure 3.4. It was observed 

that the 𝜇𝐶𝐴
𝐺  from the SVM-SBF classifier was found to be the least (with high 𝑆𝐸𝐶𝐴

𝐺 ) 

among the four classifiers for all the datasets (Figure 3.4). Here, it is pertinent to 

note that the sigmoid basis function may not be recommended to use in SVM 

training for real crop GE datasets. Furthermore, similar interpretations can be 

made for other abiotic (i.e. drought) and biotic (i.e. bacterial, fungal and insect) 

stress GE datasets (Figures 3.3-3.5). 

The classification-based performance metrics can be considered as 

statistically necessary to check the informativeness, and robustness of the 

selected genes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Classification based comparative performance analysis of gene 
selection methods through SVM-LBF and SVM-PBF Classifiers for abiotic stress 
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datasets. The horizontal axis represents the gene selection methods. The vertical axis represents 

post selection classification accuracy obtained by using varying sliding window size technique. The 
classification accuracies over the window sizes are presented as boxes. The bars on the boxes 
represent the standard errors. The distributions of classification accuracies are shown for Cold 
stress with SVM-LBF (A1), and SVM-PBF (A2) classifiers. The distributions of classification 
accuracies are shown for Salinity stress with SVM-LBF (B1), and SVM-PBF (B2) classifiers. The 
distributions of classification accuracies are shown for Drought stress with SVM-LBF (C1), and 
SVM-PBF (C2) classifiers. 

Figure 3.4. Classification based comparative performance analysis of gene 
selection methods through SVM-RBF and SVM-SBF Classifiers for abiotic stress 
datasets. The horizontal axis represents the gene selection methods. The vertical axis represents 

post selection classification accuracy obtained by using varying sliding window size technique. The 
classification accuracies over the window sizes are presented as boxes. The distributions of 
classification accuracies are shown for Cold stress with SVM-RBF (A1), and SVM-SBF (A2) 
classifiers. The distributions of classification accuracies are shown for Salinity stress with SVM-
RBF (B1), and SVM-SBF (B2) classifiers. The distributions of classification accuracies are shown 
for Drought stress with SVM-RBF (C1), and SVM-SBF (C2) classifiers. 

Figure 3.5. Classification based comparative performance analysis of gene 
selection methods in biotic stresses. The distributions of classification accuracies are shown 

for Bacterial stress dataset with SVM-LB (D1), SVM-PBF (D2) SVM-RBF (D3), and SVM-SBF 
classifiers (D4); The distributions of classification accuracies are shown for rice Fungal stress 
dataset with SVM-LBF (E1), SVM-PBF (E2) SVM-RBF (E3), and SVM-SBF (E4) classifiers; The 
distributions of classification accuracies are shown for rice Insect stress dataset with SVM-LBF 
(F1), SVM-PBF (F2), SVM-RBF (F3), and SVM-SBF (F4) classifiers. 
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Through such analysis, it was found that the BSM approach performed 

better in terms of selecting informative, and robust genes from the high-
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dimensional GE data as compared to other competitive methods such as SVM-

RFE, MRMR, SVM-MRMR, and the information theoretic measures. The reason 

may be attributed to the inclusion of bootstrap based subject sampling model along 

with the self-contained statistical tests, which reduces the spurious association of 

genes with the target trait as well as with other genes. Further, the performance of 

BSM approach, in terms of the ability to classify the GE samples, found to be better 

as compared to multivariate approaches, i.e., MRMR, SVM-MRMR, univariate 

approaches, (t-test, F-score, Wilcox, and informative theoretic measures, i.e., IG 

and GR). Here, it is worthy to note that the multivariate approaches performed 

better compared to the univariate approaches when assessed under classification-

based criteria, as the former considers gene-gene associations. 

Comparative performance analysis based on QTL testing 

We used publicly available QTL data to statistically measure the biological 

relevancy of the genes selected through the proposed and existing gene selection 

method(s). The main rationale behind such analysis is that the genes selected for 

a stress condition (through a gene selection method) are expected to overlap with 

that stress specific QTL regions. Therefore, the QTLs and genes selected through 

these 10 gene selection methods, including the proposed BSM, are mapped to the 

whole rice genome using MSU rice genome browser [178]. 

The biological relevance of the selected genes through both proposed and 

existing gene selection methods were measured through two criteria, i.e., Qstat 

and -log10(p-value). The distributions of Qstat and -log10(p-value) over the 
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selected genes for the 6 different datasets in rice are given in Figures 3.6 and 3.7, 

respectively.  

Figure 3.6. Comparative performance analysis of gene selection methods through 
distribution of Qstat statistic. The horizontal axis represents the informative gene sets 

obtained through gene selection methods. The vertical axis represents the value of Qstat statistic. 
The distribution of Qstat statistic are shown for (A) Salinity; (B) Cold; (C) Drought; (D) Bacterial; (E) 
Fungal, and (F) Insect stress datasets in rice. The lines in different colors represent different gene 
selection methods. 

For salinity stress data, the values of Qstat over all the gene sets of sizes 

(<1000) selected through the proposed BSM approach were found to be higher 

than those of SVM-MRMR, SVM-RFE, MRMR, IG, F, Wilcox, and PCR (Figure 
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3.6A). Further, it may be noted that the proposed approach was equally 

competitive with the univariate gene selection method such as t-test, while they 

are assessed in terms of Qstat (Figure 3.6A). For higher gene set sizes (>1000), 

the values of Qstat for the Wilcox method was found to be higher than those of the 

proposed, and existing approaches (Figure 3.6A) in the same data. This may be 

attributed to the fact that the Wilcox method is NP and does not depend on the 

distribution of GE data.  

For cold stress data, the values of Qstat statistic for all the selected gene 

sets through the BSM approach were higher than those of other existing methods 

(Figure 3.6B). This indicates that the performance of the proposed BSM approach 

is better in terms selecting cold stress related biologically relevant genes that are 

mostly overlapped with cold stress QTL regions in rice. Similar interpretations can 

be made for other abiotic (drought), and biotic (bacterial, fungal and insect) stress 

datasets in rice (Figure 3.6). Here, it is worthy to note that the Qstat is a linear 

function of the number of genes selected (through a selection approach), number 

of QTLs reported for that stress, and length of the QTL regions (Figure 3.6). 

Further, for salinity stress data, the -log10(p-value) from hypergeometric 

test over all the selected gene sets for the proposed BSM approach was observed 

to be higher than other existing gene selection methods (except t and GR) (Figure 

3.7). In other words, genes selected by the BSM approach were enriched with the 

underlying salinity responsive QTLs as compared to other existing methods. 

Similar interpretations can be made for other abiotic (i.e., cold and drought), and 

biotic (i.e., bacterial, fungal and insect) stress datasets in rice (Figure 3.7). 
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Moreover, it is interesting to note that the values of Qstat and -log10(p-value) for 

(univariate) methods, such as t, F, PCR, Wilcox, IG, and GR were found to be 

higher than those of the existing (multivariate) methods (i.e., MRMR, SVM-MRMR) 

(Figures 3.6, 3.7). This indicates the better, and equally competitive performance 

of univariate over multivariate methods of gene selection, when evaluated through 

QTL based biological relevancy criteria. Such observations are not expected in 

statistics, but well established in  biology through previous studies [33]. 

Figure 3.7. Comparative performance analysis of gene selection methods through 
distribution of p-values from QTL-hypergeometric test. The horizontal axis represents 

the gene sets obtained through gene selection methods. The vertical axis represents the value of 
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-log10(p-value) from QTL-hypergeometric test. The distribution of -log10(p-value) are shown for 
(A) Salinity; (B) Cold; (C) Drought; (D) Bacterial; (E) Fungal, and (F) Insect stress datasets in rice. 
The lines in different colors represent different gene selection methods. 

Judging the performance of gene selection methods based on only 

classification, might lead to the selection of biologically irrelevant genes. Therefore, 

we used criteria based on QTLs to test the biological relevancy of the selected 

genes through proposed, and existing gene selection methods. Through this 

performance analysis, it was found that BSM approach selects more biological 

relevant genes measured in terms of overlapping of the selected genes with given 

QTL regions compared to multivariate approaches, i.e. MRMR, SVM-MRMR and 

machine learning approach such as SVM-RFE. The proposed BSM approach was 

equally competitive (and better) using the univariate approaches, i.e., t-test, F-

score, and Wilcox, and information theoretic measures, i.e., IG and GR, when QTL 

based criteria were considered. Through the QTLs-hypergeometric test analysis, 

it was evident that genes selected through the proposed BSM approach were more 

statistically enriched with the underlying QTL regions. 

Comparative performance analysis based on GO analysis 

The comparative performance analysis of the proposed BSM approach with 9 

competitive gene selection methods was carried out through GO based distance 

analysis on 6 different rice GE datasets. Here, we set n (i.e. number of selected 

genes) as 10, 20, 50, 100, 150, 200 and 500. Then, the selected genes, through 

the 10 gene selection methods including the proposed BSM, were annotated with 

the GO terms under MF, BP, and CC categories using AgriGO database [24]. The 

results from this analysis for abiotic stresses under MF, BP, and CC GO categories 

are given in Tables 3.2-3.4 respectively. 
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Table 3.2. Comparative Performance analysis of the gene selection methods 

through GO (MF) based biologically relevant score for abiotic stresses in rice. 

Methods 

MRMR SVM 

SVM-

MRMR IG GR Wilcox t PCR F BSM 

Salt stress in rice 

10 0.98 0.95 0.97 0.92 0.89 0.93 0.93 0.96 0.96 0.88 

20 0.97 0.89 0.93 0.92 0.86 0.89 0.89 0.91 0.91 0.86 

50 0.92 0.91 0.92 0.90 0.90 0.87 0.87 0.92 0.92 0.85 

100 0.92 0.90 0.89 0.90 0.88 0.87 0.88 0.92 0.91 0.83 

150 0.90 0.89 0.90 0.89 0.88 0.87 0.87 0.90 0.91 0.83 

200 0.90 0.89 0.88 0.89 0.87 0.88 0.88 0.90 0.90 0.84 

500 0.90 0.90 0.89 0.90 0.90 0.89 0.90 0.89 0.89 0.83 

Cold stress in rice 

10 0.82 0.84 0.82 0.92 0.99 0.92 0.87 0.77 0.77 0.75 

20 0.93 0.88 0.93 0.95 0.93 0.88 0.90 0.91 0.88 0.71 

50 0.91 0.88 0.91 0.93 0.90 0.91 0.91 0.92 0.92 0.73 

100 0.91 0.90 0.91 0.90 0.88 0.91 0.91 0.91 0.91 0.74 

150 0.90 0.89 0.90 0.89 0.89 0.89 0.90 0.91 0.91 0.72 

200 0.90 0.89 0.90 0.89 0.88 0.89 0.90 0.90 0.90 0.73 

500 0.90 0.88 0.90 0.90 0.89 0.88 0.89 0.88 0.89 0.73 

Drought stress in rice 

10 0.82 0.86 0.81 0.90 0.93 0.65 0.76 0.76 0.76 0.71 

20 0.79 0.86 0.78 0.91 0.90 0.80 0.81 0.81 0.81 0.75 

50 0.88 0.84 0.87 0.88 0.90 0.84 0.88 0.89 0.89 0.75 

100 0.89 0.89 0.88 0.89 0.89 0.88 0.88 0.88 0.88 0.76 

150 0.88 0.88 0.87 0.89 0.88 0.88 0.88 0.88 0.88 0.76 

200 0.88 0.88 0.87 0.88 0.89 0.89 0.88 0.88 0.88 0.74 

500 0.88 0.88 0.87 0.88 0.88 0.89 0.88 0.87 0.87 0.73 
Values marked as bolds represent dissimilarity scores obtained from proposed BSM approach 

Table 3.3. Comparative Performance analysis of the gene selection methods 

through GO (BP) based biologically relevant score for abiotic stresses in rice. 

Methods 

MRMR SVM 

SVM-

MRMR IG GR Wilcox t PCR F BSM 

Salt stress in rice 

10 0.86 0.94 0.86 0.92 0.97 0.90 0.90 0.88 0.88 0.83 

20 0.90 0.91 0.90 0.89 0.91 0.92 0.92 0.84 0.85 0.84 

50 0.89 0.90 0.88 0.88 0.90 0.88 0.89 0.88 0.88 0.82 

100 0.88 0.89 0.86 0.89 0.89 0.85 0.86 0.89 0.87 0.82 

150 0.87 0.89 0.90 0.88 0.89 0.85 0.85 0.89 0.89 0.83 

200 0.87 0.89 0.86 0.88 0.89 0.84 0.85 0.89 0.88 0.82 

500 0.87 0.89 0.87 0.87 0.89 0.86 0.86 0.86 0.86 0.82 

Cold stress in rice 

10 0.79 0.82 0.79 0.86 0.94 0.91 0.90 0.79 0.79 0.79 

20 0.93 0.89 0.93 0.90 0.88 0.86 0.88 0.90 0.86 0.82 

50 0.88 0.89 0.88 0.90 0.88 0.88 0.87 0.89 0.90 0.71 
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100 0.88 0.89 0.88 0.89 0.87 0.90 0.88 0.89 0.89 0.74 

150 0.89 0.88 0.89 0.88 0.88 0.88 0.87 0.88 0.88 0.73 

200 0.89 0.87 0.89 0.87 0.87 0.87 0.87 0.88 0.84 0.73 

500 0.88 0.86 0.88 0.86 0.86 0.84 0.86 0.87 0.83 0.71 

Drought stress in rice 

10 0.86 0.79 0.85 0.81 0.89 0.62 0.83 0.83 0.83 0.73 

20 0.84 0.79 0.83 0.89 0.90 0.80 0.84 0.84 0.84 0.72 

50 0.88 0.81 0.87 0.88 0.88 0.81 0.88 0.88 0.88 0.72 

100 0.87 0.84 0.86 0.88 0.88 0.84 0.86 0.87 0.87 0.72 

150 0.86 0.84 0.85 0.88 0.88 0.84 0.87 0.87 0.87 0.71 

200 0.86 0.84 0.85 0.87 0.87 0.85 0.86 0.86 0.86 0.72 

500 0.87 0.85 0.86 0.86 0.87 0.87 0.86 0.85 0.83 0.72 

Values marked as bolds represent dissimilarity scores obtained from proposed BSM approach 

Table 3.4. Comparative Performance analysis of the gene selection methods 

through GO (CC) based biologically relevant score for abiotic stresses in rice. 

 

MRMR SVM 

SVM-

MRMR IG GR Wilcox t PCR F BSM 

Salt stress in rice 

10 0.77 0.71 0.70 0.94 0.97 0.93 0.93 0.95 0.95 0.78 

20 0.88 0.87 0.85 0.92 0.90 0.91 0.91 0.88 0.88 0.81 

50 0.88 0.89 0.86 0.92 0.92 0.90 0.90 0.89 0.89 0.84 

100 0.88 0.90 0.8 0.91 0.89 0.86 0.86 0.88 0.88 0.83 

150 0.87 0.90 0.87 0.90 0.89 0.86 0.87 0.88 0.88 0.83 

200 0.87 0.89 0.85 0.90 0.90 0.88 0.89 0.88 0.88 0.83 

500 0.88 0.90 0.88 0.89 0.90 0.88 0.89 0.87 0.87 0.82 

Cold stress in rice 

10 0.78 0.80 0.78 0.96 0.81 0.87 0.86 0.70 0.70 0.70 

20 0.88 0.86 0.88 0.96 0.87 0.87 0.89 0.81 0.83 0.71 

50 0.86 0.89 0.86 0.90 0.85 0.84 0.85 0.89 0.90 0.73 

100 0.88 0.90 0.88 0.90 0.81 0.83 0.84 0.87 0.87 0.74 

150 0.88 0.89 0.88 0.90 0.82 0.82 0.86 0.87 0.88 0.74 

200 0.87 0.90 0.87 0.90 0.84 0.85 0.86 0.87 0.85 0.73 

500 0.88 0.89 0.88 0.89 0.86 0.97 0.86 0.88 0.87 0.73 

Drought stress in rice 

10 0.82 0.86 0.81 0.91 0.89 0.83 0.87 0.87 0.87 0.74 

20 0.89 0.85 0.88 0.93 0.90 0.87 0.89 0.89 0.89 0.74 

50 0.86 0.88 0.85 0.91 0.87 0.87 0.88 0.88 0.88 0.73 

100 0.87 0.87 0.86 0.89 0.86 0.87 0.88 0.88 0.88 0.74 

150 0.87 0.87 0.86 0.90 0.85 0.85 0.87 0.87 0.87 0.74 

200 0.87 0.87 0.86 0.89 0.86 0.86 0.87 0.87 0.87 0.73 

500 0.87 0.86 0.86 0.89 0.87 0.88 0.87 0.86 0.85 0.72 

Values marked as bolds represent dissimilarity scores obtained from proposed BSM approach 

For salinity stress data, under the MF category, the values of GO based 

average distance scores for the proposed BSM approach were found to be the 
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least compared to the 9 existing methods over all the selected gene sets (Table 

3.2). This indicated that the proposed approach selected more (molecular) 

functionally similar genes which are responsible salinity tolerance in rice. Similar 

results can be found for BP, and CC GO based distance analysis for the same 

stress data (Table 3.2). In other words, the proposed BSM approach selects more 

biologically relevant genes attributed to each GO category for salinity stress as 

compared to the other 9 competitive methods (Table 3.2). For bacterial stress, the 

values of GO based average distance score under MF, BP, and CC GO categories 

for the proposed BSM approach were found to be least among other gene 

selection methods. Similar interpretations can be made for other abiotic (i.e., cold 

and drought) and biotic (i.e., fungal and insect) datasets in rice (Tables 3.2-3.4). 

Through this analysis, it was found that the proposed BSM approach performed 

better in terms of selecting more functionally relevant genes, which conferred biotic 

and abiotic stresses tolerance in rice. 

The GO based distance analysis showed that higher functional similarities 

(which may have biological functions important to stress tolerance) exist among 

the genes selected by the BSM, as compared to existing methods. The 

performance of the BSM was found to be better and equally competitive with the 

univariate approaches, viz. t-score, F-score, Wilcox, and correlation-based 

approach in terms of selecting genes which are biologically relevant (in terms of 

GO annotations) for the target trait/condition. It is worthy to note that the univariate 

approaches performed better compared to the multivariate approaches under the 

biology-based criteria, but the former performed worse than latter under 
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classification-based criteria. This indicates the real biological complexity for 

assessing the performance of gene selection approaches on real data. Therefore, 

we used the comprehensive framework of performance analysis of the gene 

selection methods under both statistical necessary, and biological relevant criteria. 

The comparative performance analysis revealed that the proposed BSM approach 

is better as well as competitive under the classification, QTL and GO based criteria. 

Comparative performance analysis based on runtime 

The recursive feature elimination algorithms-based gene selection methods 

such as SVM-RFE, and SVM-MRMR are computationally intensive and time 

consuming. Thus, we used the runtime criterion to evaluate the performance of 

gene selection methods. Here, the runtime refers to the amount of computational 

time required to analyze the GE data through running the codes of the respective 

methods in R software (v. 4.0.1). The detail results from the runtime-based 

evaluation of gene selection methods is given in Table 3.5. 

Table 3.5.  Runtime based analysis of gene selection methods in Salinity dataset. 

SN. Methods Symbol Tools Run time Ranks Score 

01 BSM BSM BSM 15 Min 8 0.3 

02 SVM (RFE)-MRMR SVM-
MRMR 

BSM, 
e1071 

75 Min 10 0.1 

03 MRMR MRMR BSM 10 Min 7 0.4 

04 SVM with Recursive 
Feature Elimination 

SVM-
RFE 

e1071 70 Min 9 0.2 

05 t-score t stats 1.5 Min 1 1 

06 F-score F stats 2 Min 2 0.9 

07 Pearson’s Linear 
Correlation 

PCR FSelector 4 Min 4 0.7 

08 Information Gain IG FSelector 4.5 Min 5 0.6 

09 Gain Ratio GR FSelector 5 Min 6 0.5 

10 Wilcoxon Statistic Wilcox stats 2.5 Min 3 0.8 

Tool: R packages used for each method 
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 For  stress salinity data (with 6636 genes over  45 samples), SVM-RFE and 

SVM-MRMR took ~75 and 70 Minutes respectively to analyze on a 2-core DELL 

PC with 8 GB RAM with Intel(R) Core (TM) i3-6100U CPU @ 2.30GHz (Table 3.5). 

In contrast, the BSM approach took ~15 minutes to analyze the same GE data to 

obtain biologically informative genes. The BSM method required less 

computational time than popular methods of gene selection such as SVM-RFE and 

with much better performance in terms of obtaining biologically informative gene 

sets. Similar interpretations can be made for the gene selection methods based on 

the runtime criterion to analyze the remaining 5 datasets. 

The BSM approach is based on the NP test statistic(s) and does not depend 

on the distribution of the GE data, unlike the t-test. Further, the bootstrap 

procedure in the BSM can minimize the redundancy among genes as well as 

reduce the spurious association of genes with traits during gene selection. The 

proposed BSM approach is also less computationally expensive compared to 

SVM-RFE, and SVM-MRMR and can be implemented on a personal or workstation 

computer for analyzing large GE datasets The comparative analysis revealed the 

BSM approach has the features of an ideal technique of gene selection, as it 

performed better under both statistically necessary, and biologically relevant 

criteria. 

 

 

“Data is the new oil of the twenty-first century…” 

Clive Humby 
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CHAPTER 4

STATISTICAL APPROACH FOR GENE SET ANALYSIS WITH TRAIT 

SPECIFIC QUANTITATIVE TRAIT LOCI 

Introduction 

The recent advancement in genome sequencing technologies leads to generation 

of tremendous volume of high-throughput biological data [137]. Meanwhile, 

exploiting these data and drawing valid biological knowledge has posed a great 

challenge to scientists across the globe. For instance, in genome wide expression 

study, the traditional objectives are: (a) obtaining the expression levels of several 

thousand(s) of genes for the samples belonging to at least two different contrasting 

phenotypic/ environmental conditions; and (b) identifying the genes which are 

relevant to these conditions under study among the large pool of genes. Moreover, 

for the latter objective, several statistical and machine learning approaches have 

been developed [3,143]. Further, the selected genes are expected to have major 

causal role for the phenotypic trait under study [2]. 

The focus in GE data analysis has been shifted from single gene to the gene 

set level, as a gene does not work alone; rather, it works as an intricate network of 

a set of genes [8]. Analysis of GE data in terms of gene sets has numerous 

computational advantages over single gene studies [26]. Keeping in view this fact, 

a variety of methods for GSA have been developed and used in GE analysis.  
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The popular GSA methods include GSEA [8,179,180], SAFE [32] and Random set 

methods [52]. These competitive methods compare the gene set with its 

complement in terms of association with previous biological knowledge base, i.e., 

pathways, GO terms, differential expression, etc., under the framework of the 

statistical hypothesis [5,124]. 

Along with the development of GSA methods and expression measurement 

technology, the availability of other biological data such as QTLs is also growing 

rapidly in public domain databases. QTLs are segments of genomic regions either 

containing or linked to genes that correlate with variation in a phenotype 

(quantitative trait) [166]. Moreover, it is a classical and widely used molecular 

breeding method and can be a potential source for understanding the genotype-

phenotype relationships in plant biology. Further, the causal relation between 

variations in a specific trait and differences in the underlying genotypic level is of 

paramount importance for understanding genome function and evolution [181], 

which is the basis for targeted molecular breeding.  

 Therefore, performing analysis of gene sets based on trait specific QTLs 

through a computational approach instead of traditional GO or pathways 

information will be very helpful in unraveling genotype-phenotype relationships. 

The enrichment analysis of gene sets is well developed in human disease 

genetics, where, GO terms and known biological pathways are taken into account 

[8]. These approaches may not be useful to establish any formal relation between 

genotype and trait specific phenotype in plants. Thus, in plant biology and 

breeding, analysis of gene sets with trait specific QTLs breeding, analysis of gene 
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sets with trait specific QTLs requires innovative and advanced statistical 

techniques. 

 In this chapter, we propose an innovative statistical approach for analysis 

of gene sets with trait specific QTLs (GSAQ) under a sound computing framework. 

Further, its utility was evaluated on five complex abiotic and biotic stresses in rice 

(Oryza sativa L.), as the rice genome is well annotated. The performance analysis 

of the GSAQ approach indicated its effectiveness and efficiency in performing the 

trait specific enrichment analysis of gene sets through incorporating background 

QTL information. This proposed technique integrated the GE data with QTL data 

to provide effective gene sets enriched with the QTL information. Further, we also 

illustrated the application of the developed GSAQ approach as a biological relevant 

criterion to evaluate the performance of gene selection methods based on high 

dimensional GE data. For this purpose, we used ten different gene selection 

methods, viz. SVM-RFE [142,157], t-score[6,148], F-score[3], MRMR [149,165], 

Random Forest (RF) [144], IG [143,153], GR [143,153], Symmetrical Uncertainty 

(SU) [143,153], PCR [143,153], and Spearman’s Rank Correlation (SRC) 

[143,153]. Our results showed that the GSAQ approach provided two biologically 

relevant criteria for evaluating the performance of gene selection methods on GE 

data. 

Material and Methods 

The performance analysis of the proposed GSAQ approach was carried out on 

rice, as it is a model crop plant and a huge amount of GE and QTL datasets are 

publicly available. Therefore, five different GE datasets related to two biotic 
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stresses (blast (fungal) and brown plant hopper (insect)) and three abiotic stresses 

(salinity, cold and drought) for rice were collected. These GE datasets were 

obtained from GEO database of NCBI (http://www.ncbi.nlm.nih.gov) with platform 

GPL2025, as this platform contains 191 GE experiments (series) comprising 3096 

samples/subjects of rice. Among these samples, 304 experimental samples 

related to these biotic and abiotic stresses for rice were taken in this study through 

performing meta-analysis individually for each of the stresses. The summary and 

detail descriptions of the GE datasets are given in Table 4.1. Further, the trait 

specific QTLs for the stresses, viz. fungal, insect, salinity, drought and cold (for 

each of the GE datasets) for rice were collected from the Gramene QTL database 

(http://www.gramene.org/qtl) [169]. 

Table 4.1. Summary of datasets used in this study. 

SN Descriptions #Series #Genes #Sample #Class #QTL # UQTL 

A Salinity Stress 6 6637 70 2 17 13 

B Cold Stress  5 8840 100 2 37 21 

C Drought Stress 5 9078 90 2 77 20 

D Blast Stress 2 7071 26 2 183 77 

E Brown Plant Hopper  1 7240 18 2 93 57 
#Series: Number of GEO series for each dataset; #Genes: Number of genes; #Sample: Number of GEO 
samples; #S: Number of GE samples belonging to 2 classes (control vs. stress); #QTL: Number of QTLs found 
for each stress; #UQTL: Number of unique QTLs found in rice for each stress. 

Data preprocessing 

The preprocessing of the data is intended to remove noises, including missing 

probes and mislabeled probes [2]. For this purpose, the analysis was conducted 

by using Bioconductor platform of R. Initially, the raw CEL files of the collected 

samples were processed using the RMA algorithm available in the affy 

Bioconductor package of R [168,182]. This includes background correction, 

quantile normalization and summarization by the median polish approach [183]. 

http://www.ncbi.nlm.nih.gov/
http://www.gramene.org/qtl
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Further, the log2 scale transformed expression data from RMA for the selected 

experimental samples were used for further selection of relevant gene sets. 

Preliminary gene selection for dimension reduction 

For tens of thousands of genes in GE data, it would be of high computational 

complexity to use the gene set selection methods directly [3]. Hence, we first 

employed t-test and FC criteria to filter out unlikely genes to reduce the dimension 

of the GE datasets. In our preliminary selection, we assigned 1 and 0.05 as the 

|FC| and p-value thresholds respectively, resulting in selection of several 

thousands of genes. Further, GE data on these selected genes (Table 4.1) (at the 

preliminary stage) were further used for final gene set selection using different 

gene set selection methods. 

Selection of gene sets 

Among the thousand(s) of genes in GE datasets, it is challenging from a systems 

biology point of view to choose those genes that are most relevant to the specific 

trait [143]. Here, we have taken eight statistical methods, viz. t-score, F-score, 

MRMR, IG, GR, SU, PCF, SRC and two machine-learning methods, viz. RF and 

SVM-RFE to select relevant gene sets. These ten gene selection methods were 

applied to high dimensional GE datasets related to five different stresses for 

selection of pertinent gene sets of rice. For all gene selection methods, the gene 

lists were prepared by arranging the genes based on the descending order of the 

respective computed metrics. The gene sets of different sizes were selected from 

the prepared gene lists through each gene selection method for each stress. 
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Proposed approach for Gene Set Analysis with QTL (GSAQ) 

Let Ω be the whole gene space (set of genes in a genome), G be a selected gene 

set obtained by using a gene selection method for a particular condition/ trait, G

(i.e., Ω - G) be the set of not selected genes i.e., complement of G. Let, N and n 

be the number of elements in Ω and G, respectively. Let Q be the set of associated 

QTLs for the same trait. Suppose for a member gene (ith gene) in G, i.e., gi
c [a, b] 

ϵ G, where a and b represent start and stop positions (in terms of base pairs) of 

the gene gi in chromosome c. Similarly, a member QTL (tth QTL) in Q, i.e., qt
c[d, e] 

ϵ Q, where, d and e represent the start and stop positions of the QTL qt on 

chromosome c.  The complete overlap of the genomic regions of the gene gi
c with 

that of a QTL qt
c
 can be expressed by using an indicator function, which is shown 

as: 

 𝐼𝑞𝑡( 𝑔𝑖) = {
1       𝑖𝑓 𝑔𝑖

𝑐[𝑎, 𝑏] ∈ 𝑞𝑡
𝑐[𝑑, 𝑒] 

0      𝑖𝑓 𝑔𝑖
𝑐[𝑎, 𝑏] ∉ 𝑞𝑡

𝑐[𝑑, 𝑒]
                                        (4.1)                                                                                                                                 

In other words, the selected gene would have a QTL hit, if its genomic 

regions completely overlapped with that of a QTL for a particular trait (both belong 

to the same chromosome). Further, the total number of genes in G overlapped with 

QTL regions can be defined by a statistic called as total number of QTL hits 

(NQhits) in G and given as: 

𝑁𝑄ℎ𝑖𝑡𝑠 = ∑ ∑ 𝐼𝑞𝑡( 𝑔𝑖)
𝑛
𝑖=1

|𝑄|
𝑡=1                                                           (4.2)                          

In addition, the proportions of genes those got QTL hits (PrGQ) in G can also be 

computed through Eq. 4.3.  

    𝑃𝑟𝐺𝑄 =
𝑁𝑄ℎ𝑖𝑡𝑠

𝑛
                                                                             (4.3) 
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Similarly, proportions of genes with QTL hits in G ( G QPr  ) can be expressed as:                

𝑃𝑟𝐺′𝑄 =
𝑁𝑄ℎ𝑖𝑡𝑠′

𝑁−𝑛
                                                                              (4.4) 

where, NQhits is the total number of QTL hits in G .  

The expressions in Eq. 4.1 and 4.2 can be used to show whether a gene had a 

QTL hit or not, and to compute the NQhits statistic for all genes in G respectively. 

The developed statistic may not be sufficient to evaluate the statistical significance 

of selected gene set related with the specific trait. To this end, Wang et al. (2013) 

proposed the Gene Set Validation with QTLs (GSVQ) (or Microarray-QTL) test 

using Hypergeometric distribution to validate the selected salinity responsive 

genes in rice with salinity QTLs [2]. However, the GSVQ test is unique, but it is not 

statistically sound as it violates the basic assumptions of Hypergeometric 

distribution (i.e. sampling without replacement) and fails to state the underlying null 

hypothesis. 

Therefore, to perform the gene set analysis with the underlying trait specific 

QTLs under a sound computing framework, we developed the GSAQ approach. 

This approach can be used to evaluate the statistical significance of selected gene 

sets related to specific trait based on available QTL information. Under this 

approach, the following hypothesises can be constructed for testing purpose.  

H0: Genes in G are at most as often overlapped with the QTL regions as the genes 

in G (𝑃𝑟𝐺𝑄 = 0) 

H1: Genes in G are more often overlapped with the QTL regions as compared to 

genes in G  (𝑃𝑟𝐺′𝑄 > 0) 
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In other words, the above constructed null hypothesis is a competitive one as it 

considers the genes from both G and G  [5]. 

The proposed GSAQ approach is based on formation of 2×2 contingency tables 

and a Hypergeometric distribution. Further, the 2×2 tables have been extensively 

used in differential expression analysis, GO and pathways enrichment analysis 

[5,28,32]. The basic concept behind this 2×2 table method is a gene sampling 

model. Moreover, each cell of such table is filled with a sample of genes, each of 

which is drawn at random from the gene space. Here, in this sampling model, each 

sampling unit (i.e., gene) can be subjected to two fixed set of indicator 

measurements, i.e., (A, B), where: (i) A (1 or 0) indicates whether the gene is a 

part of the selected gene set or not; and (ii) B (1 or 0) indicates whether that gene 

had the QTL hit or not. Further, the gene space can be formalized into a population 

having N units (for N genes) and shown as: 

(A1, B1), (A2, B2), …, (Ai, Bi),…, (AN, BN)                                                                       (4.5) 

where, ith unit in Eq. 4.5, i.e., (Ai, Bi), shows that whether ith gene is a part of the 

gene set or not and whether it also got a QTL hit or not. 

Here, the gene sampling model (where genes are taken as sampling units) 

is quite different from the usual classical subject sampling model (where the GE 

profiles are considered as sampling units) [5]. Through this gene sampling model 

(by fixing Ai=1), K gene samples, i.e. G1, G2, …, GK, each of size m (≤ n) are 

randomly drawn from the population with equal probability by using simple random 

sampling without replacement procedure. For each Gk (k=1, 2, …, K), a 2×2 table, 

as shown in Table 4.2, was constructed. Similarly, using this procedure, K, 2×2 
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contingency tables were obtained for K gene samples. The NQhits statistic 

computed through Eq. 4.2 from 2×2 table (Table 4.2) constructed for kth gene 

sample follows a Hypergeometric distribution [2] and given in Eq. 4.6.  
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where, X is a random variable representing the value of NQhits (N QG
k

) for k-th 

gene sample (k=1, 2, …, K), NQ is total number of QTL hits in Ω and m is the size 

of kth gene sample. 

      Table 4.2. 2 × 2 contingency table for gene set enrichment test with QTL. 

Ω: gene space; nG
(k): number of genes in G(k)

; nG
(k)C

: number of genes in G(k)C;nQ: number of QTL hit genes in 
gene space: nQ

C: number of non-QTL hit genes in gene space. G(k): k-th gene sample from selected gene 
set; G(k)C: Ω -G

(k) 

Through the Hypergeometric distribution (Eq. 4.6), the statistical significance value 

or p-value (pk) for k-th gene sample can be computed by using Eq. 4.7. 

pk = P [Xk ≥ x | H0] = 1- P [Xk ≤ x | H0]                                                              (4.7)                                                 

For assessing the final statistical significance of the test, the individual p-values 

needs to be combined. 

Methods for combining p-values 

Suppose there are K independent tests (for K random gene samples) and their 

associated p-values are p1, p2, …,pK. Under H0, the p-values from individual gene 

samples are uniformly distributed between 0 and 1 (i.e., pk ~ U [0, 1]) [184]. To 

 Overlapped 
with QTL 
regions 

Not overlapped with 
QTL regions 

Total 

Selected gene set nG
(k)

Q n G
(k)

Q
C n G

(k)
 

Not selected gene set n G
(k)C

Q n G
(k)c

Q
c n G

(k)C 

Total nQ nQ
C

 N 
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obtain the overall statistical significance value for the test (H0 vs. H1), the individual 

p-values for each gene samples can be combined. For this purpose, the methods 

described in Table 4.2 can be used. 

Table 4.2. List of methods used for combining p-values to assess final enrichment 
significance.  

pk: statistical significance value of k-th gene sample; Φ, Φ−1: standard normal cumulative distribution function 
and its inverse respectively; K: Number of random gene samples; df: degrees of freedom; H0: Competitive null 
hypothesis; N(): Normal distribution; t: Central t-distribution; χ²: Central Chi-square-distribution. 

Using the above approach, the final statistical significance values (p-values) 

and FDR values for the selected gene sets were computed. In this case, the gene 

sets were selected using ten existing gene selected methods.  For the computation 

of p-values, we took different combinations of m and K for selected gene sets. The 

performance analysis of the proposed GSAQ approach and gene selection 

methods was carried out on complex abiotic and biotic stresses, viz. salinity, cold, 

drought, fungal and insect, in rice. Moreover, for the computation of FDR for each 

selected gene set, we executed the fdrtool function implemented in fdrtool R 

package [189] which is based on the approach developed by Strimmer (2008) 

[190]. The operational procedure of the GSAQ approach and its implemented 

algorithm are shown in Figure 4.1. 

Methods Transformed variable Test statistic Dist. under 
H0 

Reference 

Inverse 
Normal  

𝑍𝑘 = Φ
−1(𝑝𝑘) 

𝑇 = ∑𝑤𝑘𝑍𝑘

𝐾

𝑘=1

 
N (0, 1) [185] 

Meanp 
𝑝̅ = ∑𝑝𝑘

𝐾

𝑘=1

𝐾⁄  
𝑊 = (0.5 − 𝑝̅)√12𝐾 N (0, 1)  [186] 

Inverse 
Chi-
Square 

𝑍𝑘 = −2log𝑝𝑘 
𝐿 = 2∑𝑍𝑘

𝐾

𝑘=1

 
χ²2k df [186,187] 

 
Logit  

𝑆𝑘 = log [𝑝𝑘 (1 − 𝑝𝑘)⁄ ]
 𝑆 = ∑𝑆𝑘

𝐾

𝑘=1
 

t 5K+4  df 
  

[188] 
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Figure 4.1. Operational procedure and algorithm of GSAQ approach. (a) 
Operational procedures involved in GSAQ are shown in pictorial form. (b) 
Flowchart of the computational algorithm implemented in GSAQ approach. G(k)’s 

represents random gene samples and pk-values represent corresponding statistical significance for 
each G(k). SRSWOR represents simple random sampling without replacement. 

Results 

Selection of gene sets 

Using high dimensional GE datasets pertaining to various biotic and abiotic 

stresses, we selected different gene sets of sizes, viz. 100, 200, 300, …, 2000 

through a two-stage approach of preliminary gene selection and ten different gene 

selection methods, which are relevant to individual traits/stresses in rice. Further, 

we mapped the QTLs and genes in each selected gene set (for each gene 

selection methods) in the whole genome using MSU rice genome browser [178]. 
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Figure 4.2. Distribution of NQhits statistic over the selected gene sets. The horizontal 

axis represents the gene sets obtained by each of the ten gene selection methods. The vertical 

axis represents NQhits statistic obtained through GSAQ approach. Distribution of NQhits are shown 

for (a) salinity, (b) cold, (c) drought, (d) fungal and (e) insect stress datasets in rice. 
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Distribution of NQhits statistic 

The distributions of NQhits statistic over gene sets obtained by ten different gene 

selection methods for each of these five stresses are shown in Figure 4.2. For all 

these stresses, the value of NQhits statistic is found to be directly proportional to 

size of the gene set (Figure 4.2). In other words, the value of the NQhits statistic 

depends on the factors such as length of QTLs and number of genes in a gene set 

linked to QTLs for a given stress. This observation is true for all gene selection 

methods irrespective of stresses. Moreover, the developed NQhits statistic can 

also be used as a metric for evaluating the performance of gene selection 

methods. The performance of different gene selection methods based on NQhits 

statistic for the abiotic stresses, viz. salinity, cold and drought are at par for 

selection of smaller gene sets, as the value of NQhits for relatively smaller gene 

set sizes (e.g. 100-500) are almost equal (Figure 4.2). But, in the case of larger 

gene sets, the performance based on NQhits statistic is found to be better for t-

score, F-score, MRMR, SU, LCF, SRC and SVM-RFE as compared to IG, GR and 

RF. However, for the biotic stresses (fungal and insect) most of the gene selection 

methods performed equally well over various gene sets in terms of NQhits statistic 

(Figure 4.2). This variation in performance of gene selection methods under abiotic 

stresses may be due to the complex/polygenic nature of abiotic stresses (due to 

non-living climatic factors) as compared to biotic stresses (living factors). 

Gene sets analysis with QTLs 

Although the NQhits statistic can be used as a performance evaluation metric but, 

it failed to tell the trait-specific enrichment of gene sets or association of genotype-
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phenotype relation. Therefore, we proposed the GSAQ approach to test the trait 

specific enrichments of the gene sets with underlying QTLs. For this purpose, gene 

sets were selected from the high dimensional GE data by using ten different 

methods. Further, we explored the ability of the proposed GSAQ approach along 

with existing GSVQ approach to provide biologically meaningful insights (e.g. 

establishing genotype-trait specific phenotype associations) in five complex abiotic 

and biotic stresses in rice. For both the approaches, we searched significantly 

associated gene sets enriched with underlying QTLs, which were selected by a 

particular gene selection method in each of the stresses. 

The distribution of p-values computed from both existing GSVQ and 

proposed GSAQ approaches are shown in Figures 4.3, 4.4. For salinity stress, the 

distribution of p-values computed from GSAQ using Inverse normal method for all 

gene sets (through all gene selection methods) are shown in Figure 4.3A1. It has 

been observed that except IG, GR and RF, all gene selection methods provided 

gene sets which were highly statistically significant at 0.001% level of significance 

(as p-values < 10E-5) (Figure 4.3A1). These findings clearly indicate that the gene 

sets obtained by most of the methods are enriched with underlying trait specific 

QTLs through our GSAQ approach. Similar interpretations can be made for all 

other methods as given in Table 4.2 for GSAQ test for same stress considered in 

this study. 
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Figure 4.3. Performance analysis of GSAQ approach with GSVQ for abiotic 
stresses. The horizontal axis represents the gene sets obtained by each of the ten gene selection 

methods. The vertical axis shows the negative logarithm of statistical significance values computed 
from existing GSVQ approach for (a) salinity, (b) drought, (c) cold stresses and proposed GSAQ 
approach (with Inverse normal method) for (a1) salinity, (b1) drought, (c1) cold stresses. 
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Figure 4.4. Performance analysis of GSAQ approach with GSVQ for biotic 
stresses. The horizontal axis represents the gene sets obtained by each of the ten gene selection 

methods. The vertical axis shows the negative logarithm of statistical significance values computed 
from existing GSVQ approach for (a) fungal, (b) insect stresses and proposed GSAQ approach 
(with Inverse normal method) for (a1) fungal, (b1) insect stresses in rice. 

On the contrary, when the existing GSVQ approach was used for 

performing salinity trait specific enrichment analysis, none of the gene sets 

selected by any method (except gene sets of sizes 900-1200 from SRC) was found 

to be significant at the same level of significance (Figure 4.3A). Such findings may 

not be valid as per our expectation, as these gene sets are selected by the most 
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powerful contemporary gene selection methods like SVM-RFE, RF, GR, SU, t-

score, etc.  

Further, the magnitude of –log10 (p-values) from GSAQ enrichment 

analysis for salinity stress (Figure 4.3A1) is found to be much higher than that of 

existing GSVQ test (Figure 4.3A). In other words, GSAQ approach more often 

rejects H0 (i.e. equal salinity QTL enrichment of both selected and not selected 

gene sets) as compared to GSVQ test. Therefore, it is found that the salinity trait- 

specific gene set enrichment analysis was better through GSAQ as compared to 

GSVQ. In order to cross validate these findings on the same datasets related to 

salinity stress, we computed FDR for both GSAQ and GSVQ for all gene sets. The 

results are given in Table 4.3. It has been observed that the FDR values from the 

proposed GSAQ approach for all these gene sets irrespective of gene selection 

methods are far below than that of existing GSVQ test (Table 4.3). Therefore, it 

can be concluded that the proposed GSAQ is more efficient than the GSVQ for 

performing gene set enrichment testing with salinity trait specific QTLs.  

Table 4.3. Performance analysis of GSAQ and GSVQ approaches. 

Methods 100 200 300 400 500 1000 2000 

t < 0.5 < 0.01 < 0.001 < 0.001 < 0.001 < 0.0001 < 0.0001 

 (> 0.5) (> 0.01) (> 0.01) (> 0.01) (> 0.01) (> 0.1) (> 0.01) 

F < 0.5 < 0.01 < 0.001 < 0.001 < 0.001 < 0.0001 < 0.0001 

 (> 0.5) (> 0.01) (> 0.01) (> 0.01) (> 0.01) (> 0.01) (> 0.01) 

MRMR < 0.01 < 0.01 < 0.01 < 0.01 < 0.0001 < 0.0001 < 0.0001 

 (> 0.1) (> 0.1) (> 0.01) (> 0.01) (> 0.01) (> 0.1) (> 0.01) 

SU < 0.1 < 0.1 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

 (> 0.1) (> 0.1) (> 0.1) (> 0.2) (> 0.01) (> 0.01) (> 0.5) 

PCF < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.0001 < 0.0001 

 (> 0.01) (> 0.01) (> 0.01) (> 0.01) (> 0.01) (> 0.5) (> 0.5) 

SRC < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.0001 < 0.0001 

 (> 0. 01) (> 0.1) (> 0.01) (> 0.01) (> 0.01) (> 0.001) (> 0.001) 

SVM < 0.01 < 0.01 < 0.01 < 0.01 < 0.0001 < 0.0001 < 0.01 

 (> 0.1) (> 0.01) (> 0.01) (> 0.01) (> 0.1) (> 0.1) (> 0.1) 
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FDR: False discovery rate; Gene sets: gene sets obtained from each method; (.): the values in parentheses 
indicate the FDR value computed through GSVQ approach; t: t-score; F: F-score; MRMR: Maximum 
Relevance Minimum Redundancy; SU: Symmetrical Uncertainty; PCF: Pearson’s Correlation Filter; SRC: 
Spearman’s Rank Correlation filter; SVM: Support Vector Machine with recursive Feature Elimination. 

For drought and cold stresses, none of the gene sets selected by any of the 

ten gene selection methods considered in this study, was found to be enriched 

with the respective stress specific QTLs, when enrichment analysis was performed 

through the GSVQ approach (Figures 4.3B and 4.3C). However, all selected gene 

sets (for drought and cold stresses), irrespective of the gene selection methods 

(except GR), were found to be more enriched with underlying QTLs through the 

proposed GSAQ approach using Inverse normal method (Figures 4.3B1 and 

4.3C1). Further, the –log10 (p-values) computed through GSAQ approach 

(Figures 4.3B1 and 4.3C1) were found to be much higher than those of the GSVQ 

test for drought and cold stresses (Figures 4.3B and 4.3C). Subsequently, it was 

also verified that the FDR values for all the gene sets from the GSAQ approach 

was found to be less than those from the GSVQ for these stresses (Table 4.3). 

Similar interpretations can be made from the results obtained for other methods 

used in the GSAQ approach.  

Therefore, it can also be concluded that as with salinity stress, the proposed 

GSAQ approach was found to be better and more efficient than GSVQ for 

performing QTLs-specific gene set enrichment testing for drought and cold stress. 

Further, similar interpretations for the GSVQ and GSAQ approaches can be made 

for the biotic stresses (insect and fungal) (Figure 4.4). Therefore, we observed that 

the GSAQ approach performs QTL enrichment analysis of gene sets more 

successfully and efficiently as compared to existing GSVQ test when there is 

sufficient background QTL information available. Our analysis showed that we find 
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much greater consistency in QTL specific gene set enrichment analysis across five 

different stress scenarios, viz. salinity, cold, drought, fungal and insect, by using 

GSAQ than GSVQ (Figures 4.3, 4.4). 

Performance analysis of gene set selection methods based on GSAQ  

Apart from assessing the significance of the genotype (gene set) to phenotype 

(trait) enrichment test, GSAQ can also be used as a performance evaluation metric 

of gene selection methods for high dimensional GE data. For instance, in salinity 

stress, 7 different methods, viz. t-score, F-score, MRMR, SU, LCF, SRC and SVM-

RFE, performed equally well in terms of statistical significance of the GSAQ 

enrichment testing using Inverse normal method (Figure 4.3A1). For other 

methods, such as RF and GR, the gene sets of sizes 100-300 are more statistically 

enriched through the GSAQ approach as compared to larger gene sets. However, 

all gene sets selected by IG are not enriched with the underlying salinity QTLs 

(Figure 4.3A1). It can be noted that simple univariate gene selection methods, i.e., 

t-score and F-score, are equally competitive with multivariate (MRMR) and 

machine learning approaches such as SVM-RFE and RF for providing salinity trait 

enriched gene sets (Figure 4.3A1). 

Further, the –log10 (p-values) from the GSAQ approach for SRC was found 

to be greater than those of other methods followed by t-score, F-score, MRMR and 

SVM-RFE. This indicates that gene sets selected by SRC are much more enriched 

with background salinity QTLs. The superiority of SRC in terms of performance 

may be expected due to its NP nature. Further for SRC, the –log10 (p-value) for 

the gene set of size 1200 is quite a bit higher than those of other gene sets (Figure 
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4.3A1), which indicates the maximal enrichment of the same gene set with QTLs. 

Similar interpretations can be made for other abiotic and biotic stresses (Figures 

4.3, 4.4). Similar interpretations can be made for other methods used in GSAQ 

approach. 

Chromosome and QTL-wise distributions of genes 

Along with the trait-specific enrichment analysis of gene sets, the proposed GSAQ 

approach can also be used to get the chromosome- and QTL-wise distributions of 

genes in selected gene sets. For instance, chromosomal distributions of genes in 

the gene set of size 1000 across all the five-different abiotic and biotic stresses 

can be shown using GSAQ. For salinity stress, majority of these salinity responsive 

genes selected by any gene selection method belong to chromosome numbers 2, 

3, 4, 5 and 12. Similar interpretations can also be made for cold, drought, fungal 

and insect stresses. 

The proposed GSAQ approach was able to identify and prioritize QTL 

candidate genes (i.e., genes having QTL hits) from the selected gene set. In case 

of salinity stress, most of the QTL candidate genes selected by t-score belong to 

8 different QTLs from 13 unique QTLs. For other gene selection methods, the 

majority of the QTL candidate genes overlapped within the 7 salinity responsive 

QTLs. Further, it has been found that the QTL with id AQEM001 has the largest 

number of salinity QTL candidate genes followed by AQEM007 and AQEM009 and 

this trend is true irrespective of gene selection method used. Similar interpretations 

can be made for cold, drought, fungal and insect stresses.  
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Discussion 

Traditional strategies for single gene analysis involve expression analysis of a 

single gene and is mainly focused on identifying individual genes that exhibit 

differences between two contrasting traits of interest. Although they are useful, but 

they fail to consider the underlying trait-specific enrichment of the genes that are 

distributed across an entire network of genes in the selected gene set [8]. The 

existing GSA approaches mostly focused on whether the selected gene sets are 

over-represented by differentially expressed genes, known pathways or GO terms 

through over representation analysis [13,31,38,124]. However, in plant biology, 

QTLs are considered as a great source of information for conducting an effective 

breeding experiment, as most of the traits are quantitative in nature and controlled 

by polygenes. Therefore, we proposed the GSAQ approach as an innovative and 

efficient way to conduct enrichment analysis of gene sets with trait specific QTLs. 

The proposed GSAQ approach is a new way to perform the enrichment 

analysis of gene sets to establish genotype (polygenes)-phenotype (quantitative 

trait) association testing with the help of genetically rich trait specific loci data. 

Further, it is more biologically appealing to establish the association of genes 

(genotype) in the selected gene set with underlying QTLs (traits/phenotypes). 

However, in the existing GSVQ approach, the genes are taken as input to the 

Hypergeometric distribution for performing trait enrichment analysis [2]. This 

approach violates the basic assumptions (i.e., sampling units must be drawn 

without replacement) of this distribution and expected to have poor performance 

in terms of gene set enrichment. Further, it also fails to state the underlying null 
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hypothesis on which the test is based. Hence, the proposed GSAQ approach is 

found to be more successful and effective to detect trait specific QTLs enriched 

gene sets as it is based on statistically strong null hypothesis.  

Further, the proposed GSAQ approach is based on testing a competitive 

null hypothesis using resampling procedure for possible rejection of competitive 

H0. In this approach, H0 was tested against H1 with the help of the 2×2 table method 

and gene sampling model. This allows one to statistically test the selected gene 

set for enrichment with the underlying QTLs (i.e., rejection of null hypothesis of 

random association of selected genes with QTLs). Further, a p-value was 

computed for a selected gene set, which is more scientific and statistically 

meaningful to the genome researchers and experimental biologists (as value lies 

between 0 and 1). The gene sets with lower p-values are considered as more 

enriched with the underlying trait specific QTLs and vice-versa. The comparative 

analysis has shown that the proposed GSAQ approach performs better than 

existing GSVQ technique for trait specific gene sets enrichment testing. Further, 

GSAQ approach is more statistically sound, as it satisfied the underlying 

assumptions of the Hypergeometric distribution and 2×2 contingency tables. 

Moreover, the developed GSAQ R package is also flexible in detecting QTL 

enriched gene sets, as four statistically strong options are available to obtain the 

p-values for selected gene sets.  

We also demonstrated the performance of the proposed GSAQ approach 

for performing QTL enrichment test for the selected gene sets on real crop data 

sets subjected to various complex abiotic and biotic stresses. There are both 
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challenges and advantages in analyzing these crop datasets. For crops, there are 

typically limited experimental data available and relatively little literature is 

available for guidance [2]. The application of GSAQ on complex abiotic and biotic 

stress scenarios indicated that, it consistently and successfully detects the QTLs 

enriched gene sets as compared to the existing approach, when the background 

QTL data is well defined and sufficiently available. It may be noted that the 

proposed GSAQ approach is a two-stage approach. First, it deals with the 

selection of gene sets from large gene space by using gene selection methods. 

Second, it assesses the QTL enrichment significance of gene sets by using the 

resampling procedure under a gene sampling model and thus provides a suitable 

statistical framework for testing competitive null hypothesis. 

Further, the GSAQ approach has several advantages when compared with 

single gene-QTL analysis. First, it eases the interpretation of a large-scale 

experiment by identifying trait-specific enriched gene sets. Therefore, rather than 

focusing on individual QTL hit genes, researchers can focus on gene sets 

(polygenes), which tend to be more reproducible and more interpretable (for real 

world applicability). Further, the multiple testing of hypothesis problem is well 

tackled in the proposed approach, as it takes the gene set as a functional unit for 

enrichment analysis. Second, GSAQ is statistically sound, as it is based on a 

competitive null hypothesis and gene sampling model. It considers the genes 

present in both selected as well as not selected gene sets, while performing trait 

specific enrichment analysis. Third, the GSAQ approach helps in prioritizing QTL 

candidate genes or QTL enriched gene sets under a sound computational 
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arrangement, which would be very helpful in unraveling genotype-to-phenotype 

relationships. Gene set enrichment testing is well developed in human genetics, 

where known biological pathways or ontology are considered. However, in plant 

biology and breeding, QTL candidate genes or trait specific enriched gene sets 

identified through this proposed GSAQ technique will be more effective for 

developing specific trait or stress tolerant crop cultivars. Fourth, the NQhits statistic 

and statistical significance values computed through the GSAQ approach may be 

considered as biologically relevant criteria for performance analysis of gene 

selection methods. Previously, subject classification accuracy was a widely used 

criterion for performance evaluation of gene selection methods 

[6,18,141,159,163,165,191]. This may be a statistically necessary but may not be 

a biologically sufficient criterion. Therefore, the proposed GSAQ approach 

provided two excellent biological relevant criteria for evaluation of gene selection 

methods under a strong statistical framework. GSAQ approach provides a valuable 

platform for integrating the GE data with genetically rich QTL data to identify 

potential QTL enriched gene sets or set of QTL candidate genes, which may act 

as valuable input or hypothesis for the plant breeders for designing breeding 

experiments. In this chapter, we have statistically established the credibility of the 

proposed GSAQ by comparing its performance with the GSVQ on multiple 

datasets in rice. But, in case of crop biotechnology and breeding, very little amount 

of work has been done to confirm these results. 

 

“Statistics is the grammar of Science…” 

                                                                                                   Karl Pearson
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CHAPTER 5

DIFFERENTIAL EXPRESSION ANALYSIS OF SINGLE CELL RNA-SEQ DATA: 

AN OVERVIEW AND COMPARATIVE ANALYSIS 

Background 

RNA-seq technique measures the aggregated expression levels of thousand(s) of 

genes from the tissue samples, i.e., a collection of thousand(s) of cells. This 

technology cannot capture cell-cell heterogeneity since there is no cell-specific 

information available [192,193]. Hence, scRNA-seq technique is developed for 

studying the expression dynamics of genes at the single-cell level resolution [194]. 

Through scRNA-seq, the expression is quantified by mapping reads to a reference 

genome, followed by counting the number of reads mapped to each gene [195]. 

Here, individual transcript molecules are attached with a Unique Molecular 

Identifier (UMI) tag, and subsequently, counting the UMIs yield the number of 

transcripts for each gene in a cell [196]. Moreover, the scRNA-seq has unique 

features, such as low library sizes of cells, stochasticity of gene expression, high-

level noises, low capturing of mRNA molecules, high dropouts, amplification bias, 

multi-modality of data. The addition of UMIs during the library preparation step 

reduces the inherent amplification bias [197] but has no effect on the noises. The 

noises in scRNA-seq data are mainly due to biological (e.g., stochasticity of gene 

expression, heterogeneous cell types, cell cycle) and technical factors (e.g.,
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 dropout events, zero-inflation, low input mRNA molecules, low cell capture rates, 

amplification bias). These biological and technical factors contribute higher 

proportions of zeros (i.e., zero inflation) or low read counts in the data, 

characterized as true zeros and dropout zeros, respectively [198–200]. 

The most commonly performed downstream analysis on scRNA-seq data 

is DE analysis, which is schematically shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. A schematic overview of scRNA-seq Differential Expression analysis. 
scRNA-seq data are inherently noisy with confounding factors. After sequencing, alignment and 
de-duplication are performed to quantify an initial gene expression profile matrix. Next, 
normalization is performed with raw expression data using various statistical methods to remove 
the amplification bias. Additional quality check can be performed when using spike-ins by 
inspecting the mapping ratio to discard low-quality cells. Finally, the normalized matrix is then 
subjected to main analysis through clustering of cells to identify subtypes. Cell trajectories can be 
inferred based on these data and by detecting DE genes between clusters. DE genes can be further 
to unravel the biological processes of the underlying complex phenotypes through pathway, gene 
set and network analyses. 
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The DE analysis is necessary for the identification of gene markers for 

different cell types, which establishes the molecular basis for phenotypic variation 

[201]. Further, the detected genes can be used as input for other secondary 

analyses, such as gene network modeling, pathways, or gene set analysis [202]. 

Although DE analysis methods for bulk RNA-seq are well reported, these 

approaches may not be suitable for single-cell data given the special features, 

such as high-level noise, multi-modality, dropout events, zero inflation (i.e., excess 

of zeros) [203].  For instance, bulk RNA-seq methods, such as edgeR [204] and 

DESeq2 [205,206] (based on NBD model), are extensively used for the analysis 

of scRNA-seq data. Further, the utility of such tools may raise serious concerns 

about their validity due to higher zero dropouts [203], transcriptional bursting [207], 

lower molecular capturing in cells [208,209], higher dispersion [210], etc. 

Therefore, dedicated scRNA-seq DE methods are developed, which use 

different sets of strategies to cope with the above concerns [202,203,208,209,211–

213]. For instance, SCDE uses a mixture model (i.e., Poisson for dropout and NB 

for amplification part) to capture the observed abundance of a given transcript in 

each cell [214]. There is a lot of DE methods and tools available in the literature, 

which greatly vary from each other with respect to distributional assumptions of the 

data, DE test statistic(s), etc. [192,193,201,215–217]. Hence, it is pertinent to 

review the available approaches and tools to understand their statistical theory, 

unique features, and their limitations. Without sufficient understanding of the 

underlying statistical principles of these approaches, we may risk drawing 

erroneous biological interpretations and statistical conclusions. However, there are 
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minimal studies on classification and rigorous comparative study of the scRNA-

seq DE methods in the literature. 

In this chapter we, therefore, aim to present a comprehensive review of the 

up-to-date statistical methods for DE analysis of scRNA-seq data. There are many 

methodologies developed for bulk RNA-seq, collectively named bulk RNA-seq DE 

methods, which are extended to single-cell data analysis. Overall, the purpose of 

these methods is to analyze the data to provide an expansive view of the 

underlying biological processes, which lead to phenotypic differences (Figure 5.1). 

The review is organized as follows. In the first part, we overview DE analysis 

approaches that can be adapted from RNA-seq practice to fit scRNA-seq data as 

well as those specifically designed for scRNA-seq. While there are plenty of DE 

approaches, they can be distinguished based on the type of distributional models 

they fit the data. For instance, the popular DE methods such as DEseq2, edgeR, 

SAMseq, etc. assume that the read counts follow the NB model, while the methods 

such as DEsingle, DECENT, ZINB-wave, etc. assume the read counts follow Zero 

Inflated Negative Binomial (ZINB) model. Subsequently, we also classify the 

available approaches into different classes, along with their special features and 

limitations. 

In the second part of this chapter, we attempt to provide a meaningful 

comparison of several approaches; those are intrinsically statistically different in 

terms of the model they fit. This includes 19 methods such as DEGseq [218], 

edgeRLRT [204], edgeRQLF [204], DESeqLRT [206], DESeqNB [205], LIMMA 

[161], NBPSeq [219], EBSeq [220], BPSC [221], MAST [202], Monocle [213], scDD 
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[222], NODES [223], DEsingle [211], DECENT [209], T-test [224], Wilcoxon rank 

sum test (Wilcox) [225], ROTS [226], and EMDomics [227]. Among those, the first 

8 methods are designed for bulk-cell RNA-seq, and the next 7 methods are 

developed for single-cell, and the remaining are general-purpose methods. We 

compare these methods based on different criteria, such as Area Under Receiver 

Operating Characteristics (AUROC) curve, FDR, 10 other performance metrics, 

and runtime on multiple real single-cell datasets.  Not surprisingly, the performance 

of various DE analysis approaches depends on the statistical models they fit and 

the DE test statistic they use. The findings indicate that the bulk RNA-seq DE 

methods are competitive and even better compared to some of the single-cell 

specific methods. Besides, we also assess the performance of the methods under 

Multiple Criteria Decision Making (MCDM) and combined data setups, which 

indicated that DECENT and EBSeq are the best options for DE analysis of scRNA-

seq data. The similarity analysis of the methods revealed that there exist 

similarities among the tested methods in terms of detecting common DE genes. 

These findings were unknown before. Hence, our evaluation provides a proper 

guideline for selecting the proper DE tool, best performing under particular 

experimental settings in the context of scRNA-seq. 

Overview and Classification of scRNA-seq DE Methods 

The available DE analysis approaches used in single-cell data analytics, including 

bulk RNA-seq DE methods, are listed in Table 5.1. Table 5.1 also presents a 

comparative overview of the methods in terms of distributional assumptions, 
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original data motivation (utility), input data type, the test statistic(s), runtime, and 

their availability platform.  

Table 5.1. Description about the potential DE methods used in scRNA-seq study. 

SN Method Distribution Utility Input DE Test Stat. Runtime Availability Ref. 

01 DESeq2 NBD Bulk cell Counts Wald Low Bioconductor [206] 
02 edgeR NBD Bulk cell Counts Quasi-

Likelihood F-
test, LRT 

Low Bioconductor [204] 

03 LIMMA Linear 
Model 

Bulk cell Norm. Emp. Bayesian 
Wald t-test 

Low Bioconductor [161,
228] 

04 DEGseq Poisson 
Model 

Bulk cell Counts Z-score Low Bioconductor [218] 

05 t-test t-test General Norm. t-test statistic Low CRAN [224,
229] 

06 Wilcox Wilcoxon 
test 

General Counts Wilcoxon 
signed rank 

Low CRAN [225,
229] 

07 baySeq NBD Bulk cell Counts Posterior prob. Low Bioconductor [230] 
08 NBPseq NBD Bulk cell Counts Fisher’s exact 

test 
Low CRAN [219] 

09 EBSeq NBD Bulk cell Counts Bayesian High Bioconductor [220] 
10 Cuffdiff Beta-NBD Bulk cell sam   Low Linux [231] 
11 SAMseq NP Bulk cell Counts Mann-Whitney 

statistic 
Low CRAN [232] 

12 Ballgown Linear 
Model 

Bulk cell Counts Lin. Mod. test 
statistic 

Medium Bioconductor [233] 

13 TSPM Poisson 
Model 

Bulk cell Counts  Low R code [234] 

14 ROTS NP Bulk cell Norm. Z- statistic 
(bootstrap)  

Medium Bioconductor [226,
235] 

15 metagen
omeSeq 

 Bulk cell   Medium  [236] 

16 SCDE Mixture 
Model 

SC UMI Bayesian Stat. High Bioconductor [214] 

17 scDD Multi-Modal 
Bayesian 

SC Norm. Bayesian Stat. High  Bioconductor [222] 

18 D3E NP SC UMI Cramér-von 
Mises test/ 
KS test 

High GitHub, 
Python 

[237] 

19 BPSC Beta-
Poisson 

SC UMI LRT Medium GitHub [221] 

20 MAST Hurdle SC Norm. LRT Medium Bioconductor [202] 
21 Monocle GAM SC Norm. LRT Medium Bioconductor [213] 
22 DEsingle ZINB SC UMI LRT High Bioconductor, 

GitHub 
[211] 

23 DECENT ZINB SC UMI LRT High GitHub [209] 
24 DESCND PD SC UMI  High GitHub [208] 
25 EMDomi

cs 
NP SC Norm. Euclidean 

distance 
High Bioconductor [227] 

26 Sincera NP SC Norm. Welch t-test(L) 
Wilcox (S) 

High GitHub [238] 

27 ZIAQ Logistic 
Regression 

SC Norm. Fisher’s test Medium GitHub [239] 
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28 sigEMD NP SC Norm. Distance 
measure 

High GitHub [240] 

29 TASC Logistic, 
Poisson 
Models 

SC UMI LRT High GitHub [241] 

30 ZINB-
Wave 

ZINB SC UMI LRT High Bioconductor, 
GitHub 

[203,
242] 

31 NODES Wilcox SC Norm. Wilcoxon test Medium *Dropbox [223] 
32 BASiCS Poisson-

Gamma 
SC Norm. Posterior prob. High Bioconductor [243] 

33 NBID NBD SC UMI LRT Medium R code [244] 
34 tradeSeq NBD (GAM) SC UMI Wald test Medium GitHub [245] 
35 SC2P ZIPD SC UMI Posterior prob. High GitHub [246] 

Bulk: bulk RNA-seq; SC: Single Cell methods; ZINB: Zero Inflated Negative Binomial; UMI: Unique Molecular 

Identification counts; scRNA-seq: Single cell RNA-seq; Norm.: Normalized counts (Continuous); Ref.: Reference 

cited; GAM: Generalized Additive Model; LRT: Likelihood Ratio Test; L: Large number of Samples; S: Small number 

of Samples; KS: Kolmogorov-Smirnov’s test 

Instead of reviewing them individually, we classified these methods based on 

different factors, which is shown in Figure 5.2.  

Figure 5.2. Schematic Representation of Classification of DE Methods and Tools. 
Schematic overview illustrating the breakup of the DE methods that can be adapted from RNA-seq 
practice to fit scRNA-seq data (Class I) as well as those specifically designed for single-cell 
(Classes II, III) based on different distribution models that they fit for DE analysis. Different example 
tools belonging to each category are listed in pink color boxes.1Methods use the external RNA 
spike-ins and 2Parametric approaches but can handle multi-modality of the data.  
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In other words, Figure 5.2 illustrates different distribution models used to fit the 

count data, DE test statistic(s), ability to use external spike-ins, etc. and utility of 

the different scRNA-seq DE methods. The available methods can be classified 

based on origin, i.e., methods originally developed for bulk RNA-seq but later 

extended to scRNA-seq and methods exclusively designed for single-cell (Figure 

5.2). Further, the bulk RNA-seq methods can be classified into Parametric and NP 

(Figure 5.2). The former class assumes that the data follows certain count data 

models, while the latter is distribution-free. For instance, the parametric class 

methods mostly assume the read counts are obtained from Poisson or NB 

distribution and based on this, software packages, such as edgeR [204], DESeq2 

[205,206], BaySeq [230], DEGseq [218], TSPM [234] are developed. On the 

contrary, NP (i.e., distribution-free) DE methods estimate the parameters that can 

quantify the distribution of expression profiles and make comparisons between 

case vs. control groups. The tools for this category includes SAMseq [232], 

TOISeq, ROTS [226,235], to name a few, which are developed for bulk RNA-seq, 

but later extended to scRNA-seq (Figure 5.2).  

The bulk RNA-seq DE methods suffer from serious limitations, as listed in 

Table 5.2, when they are extended to the scRNA-seq. Likewise, the methods 

specially developed for single-cell data can be grouped into parametric and NP 

based on the assumption of the underlying distributions of the UMI counts data. 

The parametric methods assume that the UMI counts follow count models, such 

as zero inflated models, (ZINB, Zero Inflated Poisson (ZIPD)), Mixture Models, 

(Beta-Poisson, Poisson-NB, NB-Logistic, and Hurdle models). The R packages, 



101 
 

such as DEsingle, DECENT, ZINB-wave, BPSC, SCDE, and MAST, listed a few, 

belong under this category. Further, the NP methods are implemented in software 

packages, such as D3E [237], sigEMD [240], Sincera [238], NODES [223], and 

EMDomics [227]. These approaches estimate the parameters that can quantify the 

distribution of the distribution of expression profiles and can handle the multi-

modality of scRNA-seq data but limited only to two groups comparisons. The 

special features, pros, and limitations for various classes of methods are listed in 

Table 5.2. 

Table 5.2. Classification of methods used for detection of DE genes in scRNA-seq 
data. 

SN. Classes Descriptions 

01 Class I 
 
 

Underlying Models:  
Negative Binomial Model; Linear Model; Poisson Model; Bayesian 
Model* 

Features:  

Computationally simple; Require less run time; Applicable to both 
counts and normalized data 

Limitations: 

• Do not consider the multi-modality, dropout events, zero-inflation 
• Overestimate the dispersion parameter 
• Underestimate the mean (difference in mean across cellular 

groups) 
• Less statistical power to detect DE genes  
• Do not consider the higher technical and biological variations 
• Cannot handle the long-tailed (skewed) distributions 
• Cannot handle high sparsity 

Tools:   

DEseq2[205,206], edgeR[204], Limma[161], SAMseq[232], 
DEGSeq[218], baySeq[230], NBPseq[219], Cuffdiff[231], 
Ballgown[233], TSPM[234], metagenomeSeq[236], ROTS[226,235], 
NOISeq[247] EBSeq[220], ShrinkSeq[248], GPseq[249], 
DeGPS[250] 

02 Class II 
 

NP methods 

Features: 

• Distribution free approaches 
• Considers the multi-modality of the data 
• Computationally not cumbersome (less runtime) 
• Without fitting the distribution of genes and estimate the parameters 
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• Performs DE analysis with distance like metrics across two 
conditions for genes 

• Performed well when lesser proportions of zeros 

Limitations: 

• Mostly focused on two cellular groups comparison 
• Computationally complex for multi-groups 
• Performance severely affected due to high dropouts (some 

methods exclude dropouts) 
• Cannot separate between true/biological and false/dropout zeros 
•  Sensitive to sparsity 
• Methods like D3E, scDD failed to consider UMI count nature of data 
• Cannot separate technical from biological sources of variation 

Tools: 
D3E[237], scDD[222], sigEMD[240], NODES[223], EMDomics[227], 
Sincera[238], ZIAQ[239], Wilcoxon signed rank test  

03 Class III 
 

Models:  

• Zero inflated Models; Hurdle Models; Mixture Models; GLM, GAM 

Features: 

• Parametric approaches 
• Capture the bimodality of the scRNA-seq data 
• Easily applicable to multi-cellular groups 
• Considers the zero inflations, dropout events in scRNA-seq data 
• Methods like TASC, DECENT, etc. make use of external spike-in 

data for model building 
• Mostly uses the GLM framework to compute DE statistics 

Limitations: 

• Cannot capture the multimodality (> 2) of scRNA-seq data 
• Methods like MAST failed to consider UMI count nature of data and 

excludes the dropout events 
• Methods like SCDE and MAST does not differentiate between 

true/biological and dropout zeros during the model building 
• Computationally intensive and require more runtime 
• Most of them do not distinguish biological from technical factors 

that are causing zero-inflation. 
• Assumes the dropout events to be linear, however, the effect of 

dropout events is likely to be non-linear, especially for genes with 
low to moderate expression 

Tools: 

SCDE [214], NBID [244], MAST[202], Monocle[212], Monocle2[251], 
BPSC[221], ZINB-Wave[203], DEsingle[211], DECENT[209], 
DESCEND[208], TASC[241], BASiCS[243], Random Hurdle Model 
[252], SC2P [246] 

 Besides, classification of DE methods can be made based on the nature of 

input data to the concerned tools, such as discrete/counts (UMI reads) or 

continuous (Fragments Per kilo-base per Million reads (FPKM) or, Counts-Per-
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Million reads (CPM), normalized data). The methods which are specialized to 

handle the UMI counts include DEsingle, DECENT, DESCEND, ZINB-wave, to 

name a few. Other methods based on continuous data or transform the original 

UMI counts include scDD, MAST, Monocle2, EMDomics, ROTS, etc. (Table 5.1). 

However, such methods ignore the original nature of UMI counts, and 

subsequently, there is a chance of losing some information. Another classification 

of DE methods can be possible through the use of the type of test statistic(s) they 

use for DE testing. This includes methods, e.g., DESeq2, edgeR, DECENT, BPSC, 

MAST, Monocle2, etc. based on the Likelihood Ratio Test (LRT) statistic computed 

in the Generalized Linear Model (GLM) framework. The other class of DE methods, 

such as D3E, NODES, EMDomics, Sincera, sigEMD, where the DE test statistic(s) 

are computed from the NP testing procedure. Moreover, the UMI data provides an 

opportunity to integrate the molecular capturing process with the parametric DE 

testing models, which improve the performance of the DE methods [209]. In other 

words, the available scRNA-seq DE methods can also be classified based on the 

requirement of external spike-ins (e.g., External RNA Controls Consortium (ERCC) 

spike-ins) for fitting the models. The class of methods explicitly considers technical 

variation and molecular capturing process based on external spike-ins data. This 

includes methods such as TASC [253], BASiCs [243], DECENT [209], and 

DESCEND [208]. Here, the spike-ins data is used for the computation of cell 

capture rates, subsequently integrated into the count data modeling process. 
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Real ScRNA-seq datasets 

To assess the performance of the methods, we used the publicly available real 

scRNA-seq datasets to study their real data behaviors. This process starts with the 

collection of these scRNA-seq datasets from the GEO NCBI database 

(https://www.ncbi.nlm.nih.gov/geo). In our comparative analysis, we included the 

11 UMI count gene expression datasets derived from 9 independent scRNA-seq 

studies. The main rationale behind selecting the count expression data, as they 

are well quality checked and preprocessed by the authors of these original 

publications. Further, these datasets were generated over protocols, including 

SmartSeq, DropSeq, NextSeq, HiSeq, MARSseq, and SCRBSeq. The selected 

datasets include scRNA-seq data from lung cancer cells, pluripotent stem cells, 

liver cells, adipose stem/stromal cells, HEK cells, breast cancer cells from humans, 

and embryonic stem cells, blood cells, embryonic fibroblasts cells, and cells from 

mice. A brief description of the selected real datasets is given in Table 5.3. For 

instance, Islam data consists of 22928 genes over 92 cells (48: mouse embryonic 

stem cells; 44 mouse embryonic fibroblasts cells), available at the GEO database 

with accession GSE29087 was taken in this study. Then, to reduce the dimension 

of the data, we filtered out the low expressed genes, i.e., genes which do not have 

non-zero expressions in at least 5 cells and cell library sizes below 1000. Further, 

the reference genes for the same cell lines were collected from the Microarray 

study available at http://carlosibanezlab.se//Data/Moliner_CELfiles.zip [254] to 

assess the performance of the methods. Similar descriptions about other real 

datasets including Tung data [197], Soumillon1 data [255], Soumillon2 data [255], 

https://www.ncbi.nlm.nih.gov/geo
http://carlosibanezlab.se/Data/Moliner_CELfiles.zip
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Soumillon3 data [255], Klein data [256], Gierahn [257], Chen data [244], Savas 

data [258], Grun data [259], Ziegenhain data [260] are given in Table 5.3. 

Table 5.3. List of the scRNA-seq datasets used in this study. 

Data Description Ref. gen. Protocol #Genes #Cell Ref 

Tung  Human induced Pluripotent 
stem cell lines. 

Bulk RNA-

seq 
HiSeq 18938  

 
576 [197] 

Islam single-cell transcriptional 
landscape by highly multiplex 
RNA-Seq 

Microarray Smartseq 22928     
 

92 [196] 

Soumillon1 Differentiating adipose cells 
by scRNA-Sequencing (Day 
1 vs 2) 

scRNA-seq HiSeq 23895 1835 [255] 

Soumillon2 Differentiating adipose cells 
by scRNA-Sequencing (Days 
1 vs 3) 

scRNA-seq HiSeq 23895 2268 [255] 

Soumillon3 Differentiating adipose cells 
by scRNA-Sequencing (Days 
2 vs 3) 

scRNA-seq HiSeq 23895   
 

1613 [255] 

Klein Mouse embryonic stem cells scRNA-seq Droplet 24174   1481 [256] 
Gierahn Single-cell RNA sequencing 

experiments of HEK cells 
scRNA-seq NextSeq 24176   

 
1453 [257] 

Chen ScRNA-seq of Rh41 using 
10x Genomics 

Bulk RNA-

seq 
HiSeq 33694  

 
7261 [244] 

Savas Breast cancer cells using 10x 
Genomics 

Bulk RNA-

seq 
HiSeq 33694 6311 [258] 

Grun Mouse embryonic stem 
single cells using CEL-seq 
technique 

scRNA-seq HighSeq 12467  320 [259] 

Ziegenhain Sc-RNA sequencing of 
Mouse embryonic stem cells  

scRNA-seq A* 39016    583 [260] 

#genes: number of genes, #cells: number of cells; A: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq 
and Smart-seq2; Ref.: cited reference; Ref. gen.: type of study from which reference genes are obtained. 

Notations: 𝑌𝑖𝑗: rv represents observed read (UMI) counts of ith (i = 1, 2, …, N) gene 

in jth (j = 1, 2, …, M) cell; N: total number of genes; M: total number of cells; 𝜇𝑖𝑗: 

mean of ith gene in jth cell for NB distribution (count part of the model); 𝜃𝑖𝑗 (= 𝜑𝑖𝑗
−1) 

and 𝜑𝑖𝑗: size and dispersion parameters respectively of ith gene in jth cell for NB 

distribution; 𝜋𝑖𝑗: mixture probability (zero inflation probability) of ith gene in jth cell; 

𝑠𝑗: size factor of jth cell; 𝑍𝑖𝑗: rv represents the true (unknown) concentration of reads 

for ith gene of jth cell; 𝑿: design matrix for cell group information, the jth row of X,  
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𝑋𝑗 = [𝑋𝑗1, 𝑋𝑗2, … , 𝑋𝑗𝑁]; 𝑊𝑖𝑗: indicator rv representing the rate of expression for ith 

gene in jth cell, i.e. 𝑊𝑖𝑗 = 0: 𝑌𝑖𝑗 = 0; 𝑊𝑖𝑗 = 1: 𝑌𝑖𝑗 > 0.  

Count Data Models for scRNA-seq Data 

NBD Model  

The PMF of the NB distribution is expressed as: 

𝑓𝑁𝐵(𝑦) = 𝑃[𝑌𝑖𝑗 = 𝑦] =
𝐺(𝑦+ 𝜃𝑖𝑗)

𝐺(𝑦+1)𝐺(𝜃𝑖𝑗)
(

𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝜃𝑖𝑗

(
𝜇𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝑦

  ∀ 𝑦 = 0, 1, 2, …    (5.1)                      

where, 𝜇𝑖𝑗 ≥ 0; 𝜃𝑖𝑗 > 0 are the parameters of NB distribution, G(.): Gamma 

function. Then, the expected value and variance of 𝑌𝑖𝑗 is shown as: 

𝐸(𝑌𝑖𝑗) = 𝜇𝑖𝑗                                                                                   (5.2)                                       

𝑉(𝑌𝑖𝑗) = 𝜇𝑖𝑗 +
𝜇𝑖𝑗

2

𝜃𝑖𝑗
= 𝜇𝑖𝑗 + 𝜑𝑖𝑗                                                           (5.3)                              

If 𝜑𝑖𝑗 → 0 (𝑁𝑜 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛)  
.
⇒𝑁𝐵(𝜇𝑖𝑗, 𝜃𝑖𝑗)  → 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗) 

ZINB Model 

For any 𝜋𝑖𝑗 ∈ [0, 1], 𝑌𝑖𝑗 is assumed to follow a ZINB distribution [203,209,211]. The 

PMF of the ZINB Distribution is expressed as follows. 

𝑓𝑍𝐼𝑁𝐵(𝑦) = 𝑃[𝑌𝑖𝑗 = 𝑦] = 𝜋𝑖𝑗𝛿0(𝑦) + (1 − 𝜋𝑖𝑗)𝑓𝑁𝐵(𝑦)     ∀ 𝑦 = 0, 1, 2, …       (5.4)                 

where, 𝑓𝑁𝐵(. ): PMF of NB distribution (Eq. 5.1); 𝛿0(. ): Dirac’s delta function. Here, 

𝛿0(. ) used to model the excess zeros in the data, and its PMF is expressed as: 

  𝛿0(𝑌𝑖𝑗 = 𝑦) : = {
1;     𝑦 = 0
0;     𝑦 ≠ 0

                                                                     (5.5)                                      

Now, the PMF of the ZINB distribution to model the read counts from scRNA-seq 

data is given in Eq. 5.6. 
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𝑃[𝑌𝑖𝑗 = 𝑦] =

{
 

 𝜋𝑖𝑗 + (1 − 𝜋𝑖𝑗) (
𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝜃𝑖𝑗

                                    𝑤ℎ𝑒𝑛 𝑦 = 0

(1 − 𝜋𝑖𝑗)
𝐺(𝑦+ 𝜃𝑖𝑗)

𝐺(𝑦+1)𝐺(𝜃𝑖𝑗)
(

𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝜃𝑖𝑗

(
𝜇𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝑦

;   𝑦 > 0

             (5.6)                 

Now, 𝑌𝑖𝑗~𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝜇𝑖𝑗 , 𝜃𝑖𝑗), then the expected value and variance of 𝑌𝑖𝑗 can be 

obtained as follows: 

𝐸(𝑌𝑖𝑗) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗                                                                               (5.7)                                     

 𝑉(𝑌𝑖𝑗) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗 (1 + 𝜋𝑖𝑗𝜇𝑖𝑗 +
𝜇𝑖𝑗

𝜃𝑖𝑗
)                                                    (5.8)                                  

If 𝜋𝑖𝑗 = 0 
.
⇒ 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝜇𝑖𝑗, 𝜃𝑖𝑗) → 𝑁𝐵(𝜇𝑖𝑗, 𝜃𝑖𝑗) 

If 𝜑𝑖𝑗 → 0 (𝑁𝑜 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛)
.
⇒  𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝜇𝑖𝑗, 𝜃𝑖𝑗)  → 𝑍𝐼𝑃(𝜋𝑖𝑗 , 𝜇𝑖𝑗) 

Poisson Distribution 

Poisson Distribution (PD) are also extensively used for analysis of count data 

obtained from bulk RNA-seq or scRNA-seq experiments. The PMF of PD can be 

expressed as: 

𝑓𝑃𝐷(𝑦) = 𝑃[𝑌𝑖𝑗 = 𝑦] =   
𝑒
−𝜇𝑖𝑗𝜇𝑖𝑗

𝑦

𝐺(𝑦+1)
  ∀ 𝑦 = 0, 1, 2, …                  (5.9)                                          

𝐸(𝑌𝑖𝑗) = 𝑉𝑎𝑟(𝑌𝑖𝑗) = 𝜇𝑖𝑗                                                      (5.10) 

Zero Inflated Poisson Distribution (ZIPD) 

Poisson model has very strict assumptions, i.e., mean equals the variance, which 

is often violated in scRNA-seq data analysis. When the variance is too large 

because there are many 0s as well as a few very high values for expression counts 

[261]. In this case, a better solution is often the ZIPD model.   

The PMF of ZIPD distribution can be expressed as: 

𝑓𝑍𝐼𝑃𝐷(𝑦) = 𝑃[𝑌𝑖𝑗 = 𝑦] = 𝜋𝑖𝑗𝐼(𝑦 = 0) + (1 − 𝜋𝑖𝑗)𝑓𝑃𝐷(𝑦)         ∀ 𝑦 = 0, 1, 2, …         (5.11)  
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= {
𝜋𝑖𝑗 + (1 − 𝜋𝑖𝑗)𝑒

𝜇𝑖𝑗                                     𝑤ℎ𝑒𝑛 𝑦 = 0

(1 − 𝜋𝑖𝑗)
𝑒
−𝜇𝑖𝑗𝜇𝑖𝑗

𝑦

𝐺(𝑦+1)
;   𝑦 > 0

                   (5.12)                           

The mean and variance of ZIPD model is shown in Eq. 5.13 and 5.14, respectively. 

𝐸(𝑌) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗                                                                                                         (5.13) 

𝑉𝑎𝑟(𝑌) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗(1 + 𝜋𝑖𝑗𝜇𝑖𝑗)                                                          (5.14)                                   

Hermite Distribution 

Hermite Distribution (HD) can be used to model the counts data [262]. Further, the 

PMF of HD is given in Eq. 5.15. 

𝑓𝐻𝐷(𝑌𝑖𝑗 = 𝑦|𝛼𝑖𝑗  , 𝛽𝑖𝑗) = 𝑒
−(𝛼𝑖𝑗+𝛽𝑖𝑗)∑

 𝛼𝑖𝑗
𝑦−2𝑘𝛽𝑖𝑗

𝑘

𝐺(𝑦−2𝑘+1)𝐺(𝑘+1)

[
𝑦

2
]

𝑘=0  ∀ 𝑦 = 0, 1, 2, …    (5.15)          

where, [.]: integral part. The mean, variance, and dispersion index (i.e., ratio 

between variance and mean) of rv 𝑌𝑖𝑗~HD (𝛼𝑖𝑗  , 𝛽𝑖𝑗) is given in Eq. 5.16 – 5.18. 

𝐸(𝑌𝑖𝑗) = 𝑓(𝛼𝑖𝑗 , 𝛽𝑖𝑗) = (𝛼𝑖𝑗 + 2𝛽𝑖𝑗)                                                                          (5.16) 

𝑉𝑎𝑟(𝑌𝑖𝑗) = (𝛼𝑖𝑗 + 4𝛽𝑖𝑗)                                                                                                (5.17) 

 𝜑 = 𝑔(𝛼𝑖𝑗 , 𝛽𝑖𝑗) = 1 + 2𝛽𝑖𝑗/(𝛼𝑖𝑗 + 2𝛽𝑖𝑗)                                                     (5.18)   

The good-ness of fit of the above count data models were assessed through 

Akaike Information (AIC) and Bayesian Information (BIC) Criteria.                              

Statistical Tests for Zero inflation and Overdispersion for scRNA-seq Data 

For simplicity we assume that the parameters for each gene remain same over the 

cells, i.e., 𝜇𝑖1 = 𝜇𝑖2 = ⋯ = 𝜇𝑖𝑀 = 𝜇𝑖;  𝜃𝑖1 = 𝜃𝑖2 = ⋯ = 𝜃𝑖𝑀 = 𝜃𝑖;  𝜋𝑖1 = 𝜋𝑖2 = ⋯ =

𝜋𝑖𝑀 = 𝜋𝑖. For testing the statistical significance of the dispersion parameter of ith 

gene, 𝜃𝑖, we adopt the following LRT procedure. Here, for the testing purpose, we 

define the following null hypothesis. 
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Hypothesis for overdispersion: 𝐻10: 𝜃𝑖 = 0 𝑣𝑠.  𝐻11: 𝜃𝑖 ≠ 0   

  Hypothesis for Zero Inflation: 𝐻20: 𝜋𝑖 = 0 𝑣𝑠.  𝐻21: 𝜋𝑖 ≠ 0   

where, 𝐻.0: null hypothesis; 𝐻.1: alternate hypothesis. Here, 𝐻10 tells us that ith gene 

is not overdispersed, means the mean is same as the variance and subsequently, 

the scRNA-seq count data is obtained from a Poisson model. Further, if we fail to 

reject 𝐻0, then we can say the UMI counts data is not overdispersed and simply 

fitting a Poisson model will give satisfactory results. Further, 𝐻20 speaks that ith 

gene is not zero inflated, and the scRNA-seq data structure is same as bulk RNA-

seq data. If we fail to reject 𝐻0, then the RNA-seq DE tools can be used for DE 

analysis of scRNA-seq data with the expectation of satisfactory results. 

The above tests can be tested through the LRT statistic(s) given in Eq. 5.19. 

 −2𝑙𝑛𝛼 = −2{𝑙(𝛀𝑖 = 𝛀̂𝑖0;  𝑌𝑖𝑗) −  𝑙(𝛀𝑖 = 𝛀̂𝑖;  𝑌𝑖𝑗)}                                              (5.19) 

where, 𝛀̂𝑖0: MLE of 𝛀𝑖 for ith gene under the constraint of H0 and 𝛀̂𝑖: unconstrained 

MLE of 𝛀𝑖 for ith gene, 𝛀𝑖: parametric space for ith gene, i.e. 𝛀𝑖 = {𝜇𝑖, 𝜃𝑖 , 𝜋𝑖}. The 

test statistic in Eq. 5.19 is asymptotically distributed as Chi-square distribution with 

1 degree of freedom (df) under H0. 

Methods for scRNA-seq DE Analysis 

NBD Model based Methods 

DESeq 

DESeq [205] assumes that 𝑌𝑖𝑗 follows a NB model (Eq. 5.1). In other words, the 

read counts are modeled by the NB distribution with 𝜇𝑖𝑗 and 𝑉(𝑌𝑖𝑗) estimated from 

the scRNA-seq data. For each gene, the 𝜇𝑖𝑗 (Eq. 5.2) is modeled as the product of 
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the 𝐸(𝑍𝑖𝑗), and 𝑠𝑗 (accounts for sequencing depth of the cell). Further, the 𝑌𝑖𝑗 can 

be described with the NB GLM framework through the following expressions. 

                                                     𝑌𝑖𝑗~𝑁𝐵(𝜇𝑖𝑗 , 𝜃𝑖𝑗)     (5.20)                                

𝜇𝑖𝑗 = 𝑠𝑗𝐸(𝑍𝑖𝑗)                                               (5.21)                                 

                                          𝑙𝑜𝑔2 𝐸(𝑍𝑖𝑗) = 𝛽0𝑖 + 𝛽1𝑖𝑋𝑗    (5.22)         

where, 𝑋𝑗 is simply the binary indicator of cellular group, 𝛽0𝑖: logarithm of mean 

parameter for ith gene in the reference cell type, 𝛽1𝑖: log fold-change parameter for 

ith gene. DESeq first estimates the size factors that account for the differences in 

the library size, then estimates the dispersion, and lastly, fits a GLM for each gene. 

The DESeq uses various test statistic(s) to compute the p-value and size effect 

estimate for the log2 FC. For DESeq, we used two methods based on LRT and NB 

test statistic(s) through executing nbinomTest, and DESeq functions respectively 

implemented in DESeq2 R package [206]. 

edgeR 

Like DESeq, edgeR [204] also models 𝑌𝑖𝑗 using a NB distribution (Eq. 5.1). For 

each gene, the 𝜇𝑖𝑗is assumed to be the product of the total number of reads and 

the (unknown) relative abundance of that gene in the current experimental 

condition. Here, 𝑉(𝑌𝑖𝑗) is a function of 𝜇𝑖𝑗, as shown in Eq. 5.2 and which requires 

the estimation of the overdispersion parameter (𝜑𝑖𝑗). So, edgeR estimate 𝜑𝑖𝑗 using 

a conditional Maximum Likelihood Estimation (MLE) procedure, conditioning on 

the total read count of each gene and an empirical Bayes procedure to shrink the 

dispersions toward a consensus value [263]. For each gene, DE test statistic(s) 

are computed through the GLM based LRT [264] or Quasi-Likelihood F test (QLF). 
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Here, we used two methods based on LRT, and QLF test statistic(s), i.e., 

edgeRLRT and edgeRQLF through executing glmLRT and glmQLFTest 

implemented in edgeR R package [204]. 

NBPSeq 

NBPSeq [219] method (or NBSeq) was originally developed for RNA-seq data to 

detect the DE of genes, which assumes the read counts follow NB distribution. The 

DE testing procedure is based on the NBP parameterization of the NB distribution 

and uses the extended version of the exact test proposed by Robinson and Smyth 

(2007) [263]. Through this test, the constant dispersion parameter is used to model 

the count variability between biological replicates and introduced an additional 

parameter to allow the dispersion parameter to depend on the mean. To implement 

the NBPSeq method, we executed the nbp.test function implemented in NBPSeq 

R package [219]. 

EBSeq 

EBSeq [220] assumes the true (unknown) read counts follow the NB model and 

uses a Beta prior distribution to model the fluctuations in technical and biological 

variations. For RNA-seq data with two biological conditions, EBSeq tests the 

hypothesis, 𝐻0: 𝜇𝑖1 = 𝜇𝑖2,  using Bayesian approaches through incorporating prior 

probability of DE of counts (modelled by the mixture distribution). Here, means and 

variances of genes are obtained through the method-of-moments, and the four 

global hyperparameters are computed using Expected Maximization (EM) 

algorithm. With these parameter estimates, the posterior probability of DE of genes 

obtained using Bayes’ rule and subsequently DE genes are detected. To execute 
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this method, the EBTest function implemented in EBSeq R package [220] was 

used. 

Poisson Model based Method 

DEGSeq 

DEGSeq [218] assumes the read counts follow a PD model [265], PMF given in  

Eq. 5.9. The model parameters were estimated using the MLE method by 

maximizing the concave joint likelihood function [265]. Further, with the estimates 

of PD parameters, the DE genes in bulk RNA-seq data are identified through 

Fisher’s exact and the LRT statistic(s) [265]. Here, we used only the LRT statistic 

to detect DE genes in scRNA-seq data through executing the DEGexp function 

implemented in DEGSeq R package [218]. 

DEsingle 

DEsingle [211] is a Zero Inflated Model (ZIM) based approach that employs the 

ZINB model given in Eq. 5.6 to discriminate the observed zero values into two parts 

dropout and true zeros (i.e., from NB distribution). Under this model formulation, 

DEsingle is designed to overcome the issues of the excessive zeros observed in 

the scRNA-seq data. To detect DE genes between two cell groups, DEsingle first 

calculates the MLE of two ZINB populations parameters in Eq. 5.6. Then detects 

the DE genes using the LRT statistic through the constrained MLE of the two 

models’ parameters under the null hypothesis. Here, the p-values for the genes 

were computed through executing DEsingle function implemented in DEsingle R 

package [211]. 
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DECENT 

DECENT [209] is based on ZIM, precisely use the ZINB model given in Eq. 5.6 for 

fitting scRNA-seq data, which also explicitly and accurately models the molecular 

capture process using a Beta-Binomial model. Here, the unobserved true UMI 

counts, 𝑍𝑖𝑗, are assumed to follow ZINB model (Eq. 5.6).  Further, DECENT 

assumes the following models for different processes. 

𝑍𝑖𝑗; 𝜋𝑖𝑗 , 𝑠𝑗 , 𝜇𝑖𝑗 , 𝜃𝑖𝑗  ~ 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝑠𝑗𝜇𝑖𝑗, 𝜃𝑖𝑗)                             (5.23)                           

𝑌𝑖𝑗|𝑍𝑖𝑗 = 𝑘; 𝑝𝑖𝑗 ~ 𝐵(𝑘, 𝑝𝑖𝑗)                                                  (5.24)                          

𝑝𝑖𝑗 ~ 𝐵𝑒𝑡𝑎(𝑎𝑖𝑗, 𝑏𝑖𝑗)                                                             (5.25)                          

where, 𝑝𝑖𝑗 be the transcriptional capture rate for ith gene of jth cell, B(.): Binomial 

distribution, 𝑎𝑖𝑗 , 𝑎𝑛𝑑 𝑏𝑖𝑗 in Eq. 5.25 are the parameters of the beta distribution. 

DECENT uses the Expected Conditional Maximization (ECM) algorithm to 

calculate MLE of the ZINB model parameters (Eq. 5.23) using the observed data 

through integrating molecular capturing procedure in the presence of external 

RNA-spike ins. To detect DE genes, DECENT uses the GLM framework in Eq. 

5.26 to model the 𝜇𝑖𝑗. 

𝑙𝑜𝑔 𝜇𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑋𝑗 + 𝜏𝑖
′𝑈𝑗                                              (5.26)                                  

where, 𝛽0𝑖,  𝛽1𝑖, 𝑋𝑗 has the usual meaning as in Eq. 5.22 and 𝜏𝑖: the regression 

coefficient of ith gene for jth cell-level auxiliary, 𝑈𝑗 . The p-values for each gene are 

computed through LRT statistic under the GLM (Eq. 5.19), which is executed 

through decent function implemented in DECENT R package [209]. 

Mixed Model based Methods 

BPSC 
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BPSC [221] is an analytical method based on Beta-Poisson (BP) mixture model, 

designed to capture the distributional features of the scRNA-seq data, i.e., non-

integer expression or low expression values. Through this, the normalized data, 

such as FPKM or CPM, are modeled by using a four parameters BP model given 

in Eq. 5.27. 

𝐵𝑃4(𝑌𝑖𝑗|𝛼, 𝛽, 𝜗1, 𝜗2) = 𝜗2𝑃(𝑌𝑖𝑗|𝜗1𝐵𝑒𝑡𝑎(𝛼, 𝛽))                   (5.27)                                

where, 𝑌𝑖𝑗: normalized value of the read counts; P(.): Poisson PMF; 𝛼, 𝛽, 𝜗1, 𝜗2 are 

the parameters of the BP model. The expected value and variance of 𝑌𝑖𝑗 is 

expressed in Eq. 5.28 and 5.29, respectively. 

𝐸(𝑌𝑖𝑗) = 𝜇𝑖𝑗 = 𝜗1𝜗2
𝛼

𝛼+𝛽
                                                     (5.28)                                                       

𝑉(𝑌𝑖𝑗) = 𝜇𝑖𝑗𝜗2 + 𝜇𝑖𝑗
2 𝛽

𝛼(𝛼+𝛽+1)
                                             (5.29)                                

The MLEs of the parameters in Eq. 5.29 are estimated using the iterative weighted 

least-squares algorithm [221]. The DE analysis of the genes was carried out under 

the GLM frameworks given in Eq. 5.19 and 5.22. Further, p-values for the genes 

are computed through the LRT statistic by executing BPglm function implemented 

in the BPSC R package [221]. 

scDD 

scDD [222] method based on Logistic- Dirichlet mixture model, which is designed 

to model the scRNA-seq data under a Bayesian modeling framework. It models 

the excess zeros in scRNA-seq data using logistic regression and also models the 

non-zero counts using the conjugate Dirichlet model of normal distributions. Here, 

the UMI counts are transformed to CPM measures through cpm function 

implemented in edgeR R package [204] followed by log-transformation. scDD uses 
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a Bayesian modeling approach to detect DE genes between the two cellular 

groups. For this purpose, it computes an approximate Bayes factor score that 

compares the probability of DE with the probability of non-DE for each gene. The 

empirical gene p-values for the DE tests are computed using a permutation 

method. To execute this method, we used scDD function implemented in scDD R 

package [222]. 

Normal based methods 

LIMMA 

LIMMA [161,228], based on linear modelling, was originally designed for 

Microarrays but recently extended to bulk RNA-seq data. For expression counts, 

LIMMA uses Voom transformations [228]. It considers gene-specific linear models 

to model the transformed expression values of counts, 𝑌𝑖𝑗
𝑣, given as: 

𝐸(𝑌𝑖𝑗
𝑣) = 𝑿𝝎𝒊                                                                               (5.30)                                  

𝑉𝑎𝑟(𝑌𝑖𝑗
𝑣) = 𝐿𝑖𝜎𝑖

2𝐼                                                                          (5.31)                                 

where, 𝝎𝒊: regression coefficient vector for ith gene, 𝐿𝑖: known weight matrix for ith 

gene, and 𝜎𝑖
2: variance of ith gene. For performing the DE analysis of scRNA-seq 

data, the empirical Bayes approach was used by incorporating the expected value-

variance relationship [161]. In this study, voom, lmFit, and eBayes functions 

implemented in limma R package are executed for data transformations, model 

fitting, and DE analysis, respectively. 

MAST 

MAST [202] uses a hurdle model approach for DE analysis and assumes 

conditional independence between expression rate (𝑊𝑖𝑗) and expression levels 
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(𝑌𝑖𝑗) for each gene. It fits a logistic regression for 𝑊𝑖𝑗 and fits a Gaussian linear 

model for the continuous variable (𝑌𝑖𝑗 | 𝑊𝑖𝑗 = 1), which can be summarized as: 

𝑙𝑜𝑔𝑖𝑡[Pr(𝑊𝑖𝑗  =  1)] = 𝑿𝒋𝜷𝒊                                                       (5.32)                                   

𝑃𝑟(𝑌𝑖𝑗 = 𝑦|𝑊𝑖𝑗 = 1) = 𝑁(𝑿𝒋𝜷𝒊, 𝜎𝑖
2)                                            (5.33)                             

In order to improve the inference for genes with sparse expression, the model 

parameters are fitted using an empirical Bayesian framework [202]. Finally, DE 

testing for genes is performed across the two cellular groups through the LRT 

statistic(s), given in Eq. 5.19. For this purpose, we executed zlm, and summary 

functions for hurdle model fitting and DE analysis respectively implemented in 

MAST R package [202]. 

Monocle 

Monocle [212,213] (updated as Monocle2 [213]), a specially designed method for 

DE analysis, i.e. identifying DE genes that vary across different cell types or 

pseudo-times in scRNA-seq data. It uses a generalized additive model (GAMs) to 

model 𝜇𝑖𝑗 under the GLM framework, i.e. relating 𝜇𝑖𝑗 to one or more predictors 

through GAMs for each gene and is expressed as: 

𝑙𝑜𝑔𝜇𝑖𝑗 = 𝛽0𝑖 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯+ 𝑓𝑀(𝑥𝑀)                              (5.34)                                  

where, 𝛽0𝑖: regression co-efficient; 𝑥𝑗: predictor variable that represents group 

memberships of the cells; 𝑓𝑗(. ): smoothing functions, e.g., cubic splines. 

Specifically, 𝑌𝑖𝑗 across the cells are modeled using a Tobit model (approximately); 

thus, Monocle’s GAM becomes: 

𝜇𝑖𝑗 = 𝑠 (𝛿𝑡(𝑏𝑥, 𝑓𝑗)) + 𝜀                                                                    (5.35)                                
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where, 𝛿𝑡(𝑏𝑥, 𝑓𝑗): pseudo-time or cell type of a cell; 𝑓𝑗: cubic smoothing function 

(with three effective df), and 𝜀: error term, follow a standard normal distribution. 

Further, Monocle performs DE testing of genes across cell groups through LRT 

statistic(s) through comparing full GLM with additional effects to a reduced GLM 

based on the NB model. For this purpose, differentialGeneTest function 

implemented in monocle R package [213] is executed. 

T-test 

T-test [224] is a general-purpose method, used to compare the mean expressions 

of genes across two cellular groups. Traditionally, the scRNA-seq UMI data 

violates the T-test’s normality assumptions, so, we used TMM method to transform 

the data. The test statistic for the T-test is expressed as: 

𝑡𝑖 =
𝑦̅𝑖1−𝑦̅𝑖2

𝜎𝑖
                                                                                    (5.36)                                     

𝜎𝑖 = √
𝑆𝑖1
2

𝑀1
+
𝑆𝑖2
2

𝑀2
                                                                                  (5.37)                                 

where, 𝑦̅𝑖𝑘, 𝑆𝑖𝑘
2  be the mean and variance of the normalized expression values of 

ith gene for kth (k=1,2) cell group, Mk: number of cells in kth cell group. Empirically, 

scRNA-seq data are highly (positively) skewed, but the T-test is known to have 

certain robustness against skewness. Therefore, it is worthy to compare its 

performance against sophisticated bulk and single-cell methods. This method is 

executed through t.test function implemented in stats R package. 

NP methods 

EMDomics 
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EMDomics [227], general-purpose NP method based on Earth Mover’s Distance 

(EMD), developed for DE analysis of genomics data to test the mean expressions 

difference of genes between two cell groups significantly different from zero. Let, 

𝑃𝑖 = {(𝑝𝑖1, 𝑤𝑝1), (𝑝𝑖2, 𝑤𝑝2)… , (𝑝𝑖𝑀1 , 𝑤𝑝𝑀1)} and 𝑄𝑖 =

{(𝑞𝑖1, 𝑤𝑞1), (𝑞𝑖2, 𝑤𝑞2)… , (𝑞𝑖𝑀2 , 𝑤𝑝𝑀2)} be the signatures of ith gene across two cell 

groups; 𝑝𝑖𝑚 (m = 1, 2, …, M1) and 𝑞𝑖𝑛 (n = 1, 2, …, M2) are the centers of mth and 

nth histogram in two cell groups;  𝑤𝑝𝑚 and 𝑤𝑞𝑛 are weights for mth and nth cell in 

two groups. The EMD score for ith gene is computed through Eq. 5.38. 

𝐸𝑀𝐷𝑖 =
∑ ∑ 𝑓𝑚𝑛

𝑖 𝑑𝑚𝑛
𝑖𝑀2

𝑛=1
𝑀1
𝑚=1

∑ ∑ 𝑓𝑚𝑛
𝑖𝑀2

𝑛=1
𝑀1
𝑚=1

                                                              (5.38)                                 

where, 𝑑𝑚𝑛
𝑖 : Euclidean distance between mth and nth cell across two groups for ith 

gene and 𝑓𝑚𝑛
𝑖 : coefficient of flow from mth to nth cell for ith gene and determined 

through minimizing the cost function in Eq. 5.39. 

𝐶𝑜𝑠𝑡𝑖(𝑃, 𝑄, 𝐹) = ∑ ∑ 𝑓𝑚𝑛
𝑖 𝑑𝑚𝑛

𝑖𝑀2
𝑛=1

𝑀1
𝑚=1                                             (5.39)                     

Here, the EMD test statistic reflects the overall difference between two normalized 

distributions (for two cell groups), usually assessed through statistical significance 

using permutation test. For this purpose, calculate_emd function implemented in 

EMDomics R package [227] was executed. 

NODES 

NODES [223], a NP method used for detecting DE genes across two cell groups 

through using normalized scRNA-seq data. Here, normalization is done through 

Pseudo-Count Quantile Normalization method [223]. The test statistic for ith gene 

(𝑑𝑖) is given in Eq. 5.40. 
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𝑑𝑖 =
|𝑦̅𝑖1−𝑦̅𝑖2|

𝑎0+𝜎𝑖
                                                                                 (5.40)                                     

where, 𝑎0: computed as a fixed percentile (e.g., 50th) of the standard errors {𝜎𝑖; 𝑖 =

1,2, … ,𝑁}, and 𝑦̅𝑖1, 𝑦̅𝑖2, and 𝜎𝑖 are defined in Eq. 5.37. The p-values for the genes 

are computed using permutation test through executing the NODES function 

implemented in NODES R package [223].  

Wilcoxon signed rank test (Wilcox) 

Wilcox method [225] (Mann-Whitney test) is a NP method used to test whether the 

expression of the genes across the two cell groups significantly different or not. 

The test's main idea is to compare the ranks for the observations that come from 

the two cell groups. This rank-based test mostly ignored the magnitude of 

expression deviation of genes between the two cell groups but maybe a potential 

method compared to others. To execute this method, we used wilcox.test function 

available in stats R package. 

ROTS 

Like T-test, Wilcox, and EMDomics, ROTS [226] does not have any single-cell or 

sequencing-specific functions. It optimizes the parameters among a family of 

modified t-statistics by maximizing the detections' reproducibility across bootstrap 

samples. In other words, ROTS maximizes the scaled reproducibility, in Eq. 5.41, 

over the parameters 𝛼 = (𝛼1, 𝛼2); 𝛼1𝜖[0,∞), 𝛼2𝜖{0,1} and k (> 0). 

𝑅𝑘(𝑑𝛼)−𝑅𝑘
0(𝑑𝛼)

𝑆𝑘(𝑑𝛼)
                                                                       (5.41)                                

where, 𝑆𝑘(𝑑𝛼): estimated standard deviation of the bootstrap distribution of the 

observed reproducibility, 𝑅𝑘(𝑑𝛼) and 𝑅𝑘
0(𝑑𝛼): reproducibility for observed and 
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random data. It is calculated as the average reproducibility over randomized data 

sets, which are permuted from the real samples. The reproducibility is defined as: 

𝑅𝑘(𝑑𝛼) =
1

𝐵
∑ 𝑅𝑘

(𝑏)(𝑑𝛼)
𝐵
𝑏=1                                                   (5.42)                           

where B is the number of bootstrap samples, and 𝑑𝛼is the test statistic defined in 

Eq. 5.40. This method was executed through ROTS function implemented in 

ROTS R package [226]. 

Comparative Performance Evaluation 

Performance metrics 

Under this setting, we evaluate the performance of the 19 tested methods for 

identifying genuine DE genes through 13 performance metrics, such as the 

number of True Positives (TP) genes, False Positive (FP), True Negative (TN), 

False Negative (FN), True Positive Rate (TPR), False Positive Rate (FPR), FDR, 

Positive Prediction Rate (PPV), Negative Prediction value (NPV), Accuracy (ACC), 

F1 score (F1), and AUROC, defined in Eq. 5.43 – 5.50, and runtime criteria. We 

evaluate the performance of the 19 methods on 11 real publicly available scRNA-

seq datasets (Table 5.3). Further, the performance metrics (Eq. 5.43–5.50) are 

computed by comparing the DE genes obtained through each method with the 

reference genes (i.e., true DE genes) for each dataset. For instance, we defined 

TP in Eq. 5.43 as the genes that are called the true DE genes and FP as the genes 

that were found significant but were not true DE genes. Similarly, TN were defined 

as genes that were not true DE and were not found significant, and FN were 

defined as genes that were true DE but were not found significant.                                                  

𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                      (5.43) 
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𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑃
                                                                                   (5.44)                                               

𝑃𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                   (5.45)                                                     

𝑇𝑃𝑅 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (5.46)                                               

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                                                                                  (5.47)                                                   

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                        (5.48)                                                   

𝐹1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                               (5.49)                                                 

 AUROC = Area under Sensitivity vs. (1-Specificity) curve         (5.50)                                     

The criteria defined in Eq. 5.43, and 5.44, FP, FN and runtime have “–” impact on 

the performance of the tested methods, while the criteria in Eq. 5.45 – Eq. 5.50, 

TP, and TN have “+” impact. For instance, a higher value of ACC or TPR (“+”) 

indicates that the method performs better and vice-versa. Similar interpretations 

can be made for other criteria.  

Performance evaluation under MCDM setup 

We emphasized to comparative performance analysis of the 19 methods under the 

simultaneous consideration of all the 13 criteria. In operational research, such a 

performance evaluation setting is called as MCDM setup [266], where the main 

idea is to consider a set of criteria and choose the best performing method over a 

list of methods [267]. Under this MCDM set up, Technique for Order Performance 

by Similarity to Ideal Solution (TOPSIS) [268] has been extensively used [18]. 

However, we used this approach for the first time in single-cell data analytics. Here, 

the basic idea is to choose the best method out of the 19 tested methods based 

on the simultaneous consideration of the 13 decision criteria, Eq. 5.43-5.50. 
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Through TOPSIS, it is expected that the best identified method should have 

shortest geometric distance from the positive ideal solution (PIS) and the longest 

geometric distance from the negative ideal solution (NIS) [269]. The detailed 

method and major analytical steps for the MCDM-TOPSIS analysis are given as 

follows. 

Let U be the resultant decision matrix used under MCDM setup, i.e. U = 

((urs)), where urs represents the value of Mr (rth method) (r = 1, 2, …, 19) under Cs 

(sth decision criteria) (s = 1, 2, …, 13) and Ws ‘s are the criteria weights indicate the 

relative importance among them. Further, the Ws are calculated using the entropy 

technique through the following steps. 

Step 1: Normalization of the decision matrix (U): The resulted values in U are first 

transformed to normalized values (Prs) through: 𝑃𝑟𝑠 =
𝑢𝑟𝑠

∑ 𝑢𝑟𝑠
19
𝑟=1

⁄                        (5.51)   

Step 2: Calculation of entropy measure (Es) for sth criterion is calculated using: 

𝐸𝑠 = −𝑎∑ 𝑃𝑟𝑠𝑙𝑛
13
𝑟=1 (𝑃𝑟𝑠)                                                                                   (5.52) 

where a = 1/ln19. Further, the degree of diversity (Ds) for sth criterion can be 

computed as: Ds= 1 – Es                                                                                     (5.53)                                 

Step 3: Calculation of weights (Ws) for each criterion: Ws are computed for sth 

criterion through: 𝑊𝑠 = 𝐷𝑠 ∑ 𝐷𝑠
13
𝑠=1⁄                                                                    (5.54)   

After obtaining criteria weights, they are incorporated in the usual TOPSIS 

technique to calculate the overall scores for each tested method. The major steps 

for the TOPSIS technique in this context are briefly given as: 

[1] Construct the normalized decision matrix (Z) by vector normalization: 

 𝑧𝑟𝑠 =
𝑢𝑟𝑠

∑ 𝑢𝑟𝑠2𝑟
⁄                                                                  (5.55) 
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[2] Calculate weighted normalized decision matrix using: 𝑣𝑟𝑠 = 𝑊𝑠 × 𝑧𝑟𝑠          (5.56) 

[3] Determine the PIS, V+, and NIS, V−, by using: 

V+ = {V1
+, V2

+, …, Vs+}={〈max(𝑣𝑟𝑠|𝑟 = 1, 2, … , 19)|𝑠 ∈ 𝐶−〉, 〈min(𝑣𝑟𝑠|𝑟 =

1, 2, … , 19)|𝑠 ∈ 𝐶+)〉}  

V−  = { V1
−, V2

−, …, VS
−}= {〈max(𝑣𝑟𝑠|𝑟 = 1, 2, … , 19)|𝑠 ∈ 𝐶+〉, 〈min(𝑣𝑟𝑠|𝑟 =

1, 2, … , 19)|𝑠 ∈ 𝐶−)〉}  

where 𝐶+ = {𝑠 = 1, 2, … , 8|𝑠  associated with the criteria having a positive impact 

and 𝐶− = {𝑠 = 1, 2, … ,5|𝑠  associated with the criteria having a negative impact. 

[4] Calculate the L2 distance for PIS (dr
+) and NIS (dr

-) using: 

𝑑𝑟
+ = (∑ (𝑣𝑟𝑠 − 𝑉𝑠

+)28
𝑠=1 )1/2                                                                 (5.57)                           

  𝑑𝑟
− = (∑ (𝑣𝑟𝑠 − 𝑉𝑠

−)25
𝑠=1 )

1

2                                                             (5.58) 

[5] Determine the relative closeness of the tested method to the ideal solution using 

Eq. 5.59.                𝑅𝑟 =
𝑑𝑟
−

𝑑𝑟
−+𝑑𝑟

+     ∀ 𝑟 = 1, 2, … , 19                                               (5.59)                                     

Through this, the methods with higher Rr (0 ≤ Rr ≤ 1) are preferred and considered 

as better over the multiple criteria and vice-versa. 

Results and Discussion 

Count data models for fitting of scRNA-seq data 

The results from the statistical tests for zero inflation and overdispersion are shown 

in Figure 5.3. The statistical significance values computed for the genes through 

LRT statistic(s), given in Eq. 5.3, found to be significant for most of the genes. The 

findings indicated that most of the genes are zero inflated and overdispersed 

(Figure 5.3). 
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Figure 5.3. Overdispersion and zero inflation analysis of scRNA-seq data. 

Though it was well established, still our analytical findings showed that the scRNA-

seq data is zero inflated and overdispersed. Most of the DE methods and tools 

assume certain count models for fitting the underlying data. Hence, we considered 

5 count models, such as NB, ZINB, PD, HD, and ZIPD [270,271] to show their 

suitability and goodness of fit for zero inflated and overdispersed count (scRNA-

seq) data.  

Table 5.4. Fitting of well-known discrete models to over-dispersed and zero-

inflated cyst count data. 

Read Obs. 
Freq. 

Exp. Freq. 
NBD 

Exp. Freq. 
ZINBD 

Exp. 
Freq. PD 

Exp. Freq. 
ZIPD 

Exp. 
Freq. HD 

0 65 63.29 64.99 25.1 65.03 45.36 

1 14 17.56 14.01 37.32 5.1 13.75 

2 10 8.98 9.11 27.74 8.87 28.92 

3 6 5.72 6.27 13.74 10.28 8.35 
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4 4 3.91 4.44 5.11 8.93 9.19 

5 2 2.79 3.2 1.52 6.21 2.53 

6 2 2.04 2.33 0.38 3.6 1.94 

7 2 1.52 1.71 0.08 1.79 0.51 

8 1 1.15 1.26 0.01 0.78 0.31 

9 1 0.88 0.93 0 0.3 0.08 

10 1 0.68 0.69 0 0.1 0.04 

11 2 0.52 0.52 0 0.03 0.01 

12 1 0.41 0.38 0 0.01 0 

Total 111 110.95 110.84 111 111.03 110.99 

Parameter
s (MLE) 

 

𝜇=1.49 

𝜃=0.31 
 
 

𝜇 = 2.285 

𝜃 = 0.698 
𝜋 = 0.349 

 

𝜇 = 1.486 
 
 
 

𝜇 = 3.476 

𝜋 = 0.572 
 
 

𝜇 = 1.487 

𝜑 = 1.796 
 
 

#Paramet
ers  2 3 1 2 2 

Likelihood   -175.22 -172.8 -263.25 -191.9 -202.84 

AIC  354.44 351.60 528.50 387.80 409.68 

BIC  354.53 351.74 528.55 387.89 409.77 

#Parameters: number of parameters; 𝜇: Mean; 𝜃: size; 𝜋: zero-inflation probability; 𝜑: dispersion index 

(ratio of variance to mean); AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; Obs. 

Freq: Observed Frequency; Exp. Freq. NBD: computed expected frequency through NB model; Exp. 

Freq. ZINB: computed expected frequency through ZINB model; Exp. Freq. PD: computed expected 

frequency through Poisson model; Exp. Freq. ZIPD: computed expected frequency through ZIPD model; 

Exp. Freq. HD: computed expected frequency through HD model 

Table 5.5. Fitting of well-known discrete models to over-dispersed and zero-

inflated European red mite data. 

Read Obs. Freq. NBD ZINBD PD ZIPD HD 

0 70 68.49 69.1 47.65 69 64.65 

1 38 37.6 35.01 54.64 28.67 34.71 

2 17 20.1 20.65 31.33 25.68 29.02 

3 10 12.7 11.21 11.97 15.34 12.25 

4 9 5.69 5.91 3.43 6.87 6.07 

5 3 3.02 3.06 0.79 2.46 2.14 

6 2 1.6 1.57 0.15 0.74 0.81 

7 1 0.85 3.79 0.02 1.19 0.25 

8 0 0.6 0.1 0.1 0.67 0.02 

Total 150 150.65 150.4 150.08 150.62 149.92 

Parameter 

Estimates 

(MLE) 

 

µ=1.147 

ᶿ=1.025 

 

 

 

µ=1.283 

ᶿ=1.39 

Π=0.107 

 

µ 

=1.146 

𝜇 = 1.791 

 𝜋 = 0.367 

 

 

 

𝜇 = 1.147 

 𝜑 =

1.757 

 

#Parameter  2 3 1 2 2 
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Likelihood   -224.71 -223.43 -242.8 -226.44 -225.98 

AIC  453.40 452.80 487.72 456.80 455.95 

BIC  453.75 453.33 487.90 457.15 456.31 

Our analytical results indicated that the expected frequencies computed from the 

ZINB were much closer to their observed counterparts, followed by NB models as 

compared to other models (Tables 5.4, 5.5). Further, the AIC and BIC values for 

ZINB were lowest followed by NB model for the given zero inflated and over 

dispersed datasets as compared to PD, ZIPD and HD (Tables 5.4, 5.5). This 

indicates, for fitting over-dispersed and zero inflated datasets like scRNA-seq, 

ZINB model provides a better fit as compared to other count models (Figure 5.4).  

Figure 5.4. Data Characteristics, Distributions and Fitting of Various Count Data 
Models. (A) Glimpse of the Tung’s scRNA-seq (UMI) read count data matrix. Here, rows represent 

the genes and columns represent the cell lines. The values represent the number of read of 
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sequences mapped to each gene. (B) Distribution of zero percentages of genes in scRNA-seq 
data. X-axis represents the various zero percentages and Y-axis represents the number of genes. 
Here, the approx. (C) Distribution of scRNA-seq read counts of ENSG00000176022 gene (from 
Tung’s data). X-axis represents the reads and Y-axis represents the frequency of the reads. (D) 
Fitting of Various Discrete Data Models to scRNA-seq read counts of ENSG00000162585 gene 
(from Tung’s data). X-axis represents the read counts and Y-axis represents the density. The fitting 
of observed density and densities from the NB, ZINB, PD, ZIP and Hermite HD to the observed 
data are shown in different colors. (E) Cumulative Distribution Function (CDF) plot for scRNA-seq 
data of ENSG00000176022 gene (Tung’s data). Here, X-axis represents the read counts and Y-
axis represents the cumulative density of read counts. Observed CDF, and CDFs from NB and 
ZINB models are shown. (F) Density plots for scRNA-seq data of ENSG00000176022 gene (Tung’s 
data). Observed density plot, and density plots from NB and ZINB models are shown.  

At this stage, we inferred that ZINB and NB model best suit for fitting the 

scRNA-seq count data as compared to other models (Tables 5.4, 5.5, Figure 5.4). 

To be more specific, we also tested the NB and ZINB models' ability to estimate 

the mean and dispersion parameters for scRNA-seq data through simulation. The 

results are shown in Table 5.6. Our analytical results indicated that the NB model 

underestimated the mean and overestimated the dispersion parameter for scRNA-

seq data (Table 5.6).  

Table 5.6. Comparative analysis of NBD and ZINBD for estimation of parameters 

from Tung’s data. 

  NBD ZINBD 

Parameter True 
value 

MLE Bias MSE 95% 
CI 

MLE Bias MSE 95% 
CI 

Mean (𝜇) 2.28 1.483 -
0.797 

0.649 (1.325, 
1.641) 

2.328 0.046 0.132 (2.254, 
2.410) 

Dispersion 

(𝜃−1) 
1.45 3.315 1.865 3.597 (2.943, 

3.687) 
1.433 0.048 0.263 (1.333, 

1.534) 

Zero 
inflation 
prob. (𝜋) 

0.35 - - - - 0.353 0.003 0.011 (0.331, 
0.371) 

Number of cells: 500; number of simulations: 100; MSE: Mean Standard Error; CI: Confidence 

Interval 

Contrarily, the ZINB model provided better estimates of mean and 

dispersion, which are close to their true values for scRNA-seq data. Further, ZINB 

model has lower bias and MSE as compared to NBD model (Table 5.6). It is 

interesting to note that 95 % confidence interval of parameters for NBD does not 
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contain the true values of the parameters. While this observation was quite 

satisfactory for ZINB model. This indicated the better suitability of ZINB model for 

modeling the zero inflated and overdispersed scRNA-seq count data and provides 

better estimates of the parameters. The reason may be attributed as NBD thus 

accommodates excess zeros by underestimating the mean and overestimating the 

dispersion parameters. This phenomenon may jeopardize the statistical power of 

NBD based DE tools to discover DE genes in the presence of zero inflation, when 

applied to scRNA-seq data.  

Comparative performance analysis of scRNA-seq DE methods 

We compared the performance of the 19 methods for detecting DE genes on 11 

real publicly available scRNA-seq datasets (Table 5.3) under the condition of 

comparing two groups of cells. However, the real studies involve more complex 

experimental designs, which some of the tested methods do not accommodate. 

Specifically, the T-test, Wilcox, ROTS, DEsingle, scDD, NODES are limited to two-

group comparisons, whereas EMDomics can perform a limited number of analysis 

types. The remaining methods implement statistical frameworks that can 

accommodate more complex designs, including comparison across the multiple 

cellular groups, accommodation of cell covariates and adjustments for batch 

effects, and cell capture rates. To make the comparisons fully reproducible, we 

provide the R codes, processed scRNA-seq datasets, and reference genes in 

https://github.com/sam-uofl/RoopSeq. 

Comparative assessment based on performance metrics 

https://github.com/sam-uofl/RoopSeq
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The single-cell datasets and their respective comparison designs were used to 

detect the DE genes through each of the 19 tested methods. For instance, Islam 

data [196], the experimental design involves DE analysis of genes between 48 

mouse embryonic stem cells and 44 mouse embryonic fibroblast cells through the 

methods. In other words, we selected the DE gene sets of sizes 200, 400, …, 3000 

through the tested methods from the Islam data (Table 5.3). Then, the performance 

metrics such as TP, FP, PPR, TPR, FPR, ACC, and F1, were computed by 

comparing the detected DE genes with the reference genes for each dataset, and 

the results are shown in Figures 5.5 – 5.15.  

Figure 5.5. Comparative performance evaluation of the methods through 
the performance metrics for Soumillion2 data. The tested methods are evaluated on 
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the Soumillion2 data through performance metrics, i.e., TP, FP, TPR, FPR, PPR, FDR, Accuracy, 
F1 score, and AUROC. The 19 tested methods are shown in the X-axis. The Violin plots are shown 
for the evaluation of the methods through (A) TP; (B) FP; (C) PPR; (D) TPR; (E) FPR; (F) Accuracy; 
(G) FDR; (H) F1 score; and (I) AUROC. The violin plot shows the full distribution of the performance 
metrics computed through each tested method. The box represents inter-quartile range, the 
horizontal line represents median, the bars on the boxes shows the 1.5 x inter-quartile range. 

 

Figure 5.6. Comparative performance evaluation of the methods through the 
performance metrics for Islam data. The tested DE methods are evaluated through the 

performance evaluation metrics, such as TP, FP, TPR, FPR, PPR, FDR, Accuracy, F1 score, and 
AUROC. The 19 tested methods are shown in the X-axis. The Violin plots are shown for 
comparative evaluation of tested methods through (A) TP; (B) FP; (C) PPR; (D) TPR; (E) FPR; (F) 
Accuracy; (G) FDR; (H) F1 score; and (I) AUROC. The violin plot shows the full distribution of the 
performance metrics computed through each tested method. The box represents inter-quartile 
range, the horizontal line represents median, the bars on the boxes shows the 1.5 x inter-quartile 
range. 
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 Figure 5.7. Comparative performance evaluation of the DE methods through the 
performance metrics for Tung data.  

Figure 5.8. Comparative performance evaluation of the DE methods through the 
performance metrics for Soumillon1 data.  
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Figure 5.9. Comparative performance evaluation of the DE methods on 
Soumillon3 data.  

Figure 5.10. Comparative performance evaluation of the DE methods on Klein 
data.  
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Figure 5.11. Comparative performance evaluation of the DE methods on Gierahn 
data. 

Figure 5.12. Comparative performance evaluation of the DE methods on Chen 
data.  
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Figure 5.13. Comparative performance evaluation of the DE methods on Savas 
data.  

 

Figure 5.14. Comparative performance evaluation of the DE methods on Grun 
data.  
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Figure 5.15. Comparative performance evaluation of the methods through the 

performance metrics for Zigenhein data. The tested DE methods are evaluated on the 

Zigenhein scRNA-seq data through the performance evaluation metrics, such as TP, FP, TPR, 

FPR, PPR, FDR, Accuracy, F1 score, and AUROC. The 19 tested methods are shown in the X-

axis. The Violin plots are shown for comparative evaluation of tested methods through (A) TP; (B) 

FP; (C) PPR; (D) TPR; (E) FPR; (F) Accuracy; (G) FDR; (H) F1 score; and (I) AUROC. The violin 

plot shows the full distribution of the performance metrics computed through each tested method. 

The box represents inter quartile range, the horizontal line represents median, the bars on the 

boxes shows the 1.5 x inter-quartile range. 

In this comparison setting for Soumillon2 data, the DECENT provided the 

highest (median) TP values, followed by DESeqNB, LIMMA, edgeRQLF (Figure 

5.5A). Similar findings were observed when assessed through TPR. Further, we 

found lowest values of the FP and FPR for these methods compared to others 

(Figure 5.5B). For instance, for the DE gene set of size 3000, the DECENT 

detected 1674 genes as truly DE, followed by DESeqNB (1653) and LIMMA (1612) 
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(Table 5.7). In other words, DECENT detected the fewer FP genes with higher 

probabilities along with DESeqNB, LIMMA, and edgeRQLF as compared to others. 

The accuracy-based performance analysis of the tested DE methods indicated that 

the DECENT was found to detect true (both positive and negative) genes more 

accurately, followed by DESeqNB and edgeRQLF compared to others (Figure 

5.5C). Among the tested methods, EMDomics, and scDD were found to have the 

lowest rates of sensitivities and specificities for detecting true DE genes, therefore 

performed worst for Soumillon2 data (Figure 5.5). Similar interpretations can be 

made about the tested methods through PPR and F1 score (Figure 5.5, Table 5.7). 

Table 5.7. Evaluation of DE methods based on performance metrics for Soumillon2 data. 

Methods TP FP TPR FPR FDR PPR NPV ACC F1 AUC 

    DEG = 1000      

BPSC 639 361 0.213 0.029 0.361 0.639 0.839 0.826 0.320 0.529 

DECENT 914 86 0.305 0.007 0.086 0.914 0.857 0.861 0.457 0.641 

DEGseq 368 632 0.123 0.050 0.632 0.368 0.820 0.791 0.184 0.461 

DESeqNB 813 187 0.271 0.015 0.187 0.813 0.851 0.848 0.407 0.586 

DESeqLRT 555 445 0.185 0.035 0.445 0.555 0.833 0.815 0.278 0.509 

DEsingle 620 380 0.207 0.030 0.380 0.620 0.837 0.823 0.310 0.513 

EBSeq 553 447 0.184 0.035 0.447 0.553 0.833 0.815 0.277 0.487 

edgeRLRT 650 350 0.217 0.028 0.350 0.650 0.839 0.827 0.325 0.525 

edgeRQLF 761 239 0.254 0.019 0.239 0.761 0.847 0.842 0.381 0.557 

EMDomics 461 539 0.154 0.043 0.539 0.461 0.827 0.803 0.231 0.521 

LIMMA 683 317 0.228 0.025 0.317 0.683 0.842 0.832 0.342 0.516 

MAST 591 409 0.197 0.032 0.409 0.591 0.835 0.820 0.296 0.511 

Monocle 573 427 0.191 0.034 0.427 0.573 0.834 0.817 0.287 0.497 

NBSeq 638 362 0.213 0.029 0.362 0.638 0.839 0.826 0.319 0.519 

NODES 433 567 0.144 0.045 0.567 0.433 0.825 0.800 0.217 0.474 

ROTS 472 528 0.157 0.042 0.528 0.472 0.827 0.805 0.236 0.479 

scDD 325 675 0.108 0.053 0.675 0.325 0.817 0.786 0.163 0.459 

T-test 627 373 0.209 0.030 0.373 0.627 0.838 0.824 0.314 0.514 
Wilcox 594 406 0.198 0.032 0.406 0.594 0.836 0.820 0.297 0.509 

    DEG = 2000      

BPSC 1131 869 0.377 0.069 0.435 0.566 0.863 0.825 0.452 0.631 

DECENT 1400 600 0.467 0.047 0.300 0.700 0.883 0.859 0.560 0.784 

DEGseq 746 1254 0.249 0.099 0.627 0.373 0.835 0.776 0.298 0.523 
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DESeqNB 1341 659 0.447 0.052 0.330 0.671 0.878 0.852 0.536 0.716 

DESeqLRT 948 1052 0.316 0.083 0.526 0.474 0.850 0.801 0.379 0.595 

DEsingle 1107 893 0.369 0.071 0.447 0.554 0.861 0.822 0.443 0.618 

EBSeq 928 1072 0.309 0.085 0.536 0.464 0.848 0.799 0.371 0.588 

edgeRLRT 1167 833 0.389 0.066 0.417 0.584 0.866 0.829 0.467 0.634 

edgeRQLF 1189 811 0.396 0.064 0.406 0.595 0.867 0.832 0.476 0.679 

EMDomics 661 1339 0.220 0.106 0.670 0.331 0.828 0.765 0.264 0.557 

LIMMA 1321 679 0.440 0.054 0.340 0.661 0.877 0.849 0.528 0.633 

MAST 1028 972 0.343 0.077 0.486 0.514 0.855 0.812 0.411 0.606 

Monocle 1080 920 0.360 0.073 0.460 0.540 0.859 0.818 0.432 0.597 

NBSeq 1138 862 0.379 0.068 0.431 0.569 0.863 0.826 0.455 0.625 

NODES 836 1164 0.279 0.092 0.582 0.418 0.841 0.787 0.334 0.554 

ROTS 841 1159 0.280 0.092 0.580 0.421 0.842 0.788 0.336 0.551 

scDD 561 1439 0.187 0.114 0.720 0.281 0.821 0.752 0.224 0.508 

T-test 1144 856 0.381 0.068 0.428 0.572 0.864 0.827 0.458 0.623 

Wilcox 1073 927 0.358 0.073 0.464 0.537 0.859 0.817 0.429 0.607 

    DEG = 3000      

BPSC 1478 1522 0.493 0.120 0.507 0.493 0.880 0.805 0.493 0.722 

DECENT 1674 1326 0.558 0.105 0.442 0.558 0.895 0.830 0.558 0.857 

DEGseq 1228 1772 0.409 0.140 0.591 0.409 0.860 0.773 0.409 0.585 

DESeqNB 1653 1347 0.551 0.107 0.449 0.551 0.893 0.828 0.551 0.811 

DESeqLRT 1247 1753 0.416 0.139 0.584 0.416 0.861 0.776 0.416 0.666 

DEsingle 1428 1572 0.476 0.124 0.524 0.476 0.876 0.799 0.476 0.709 

EBSeq 1110 1890 0.370 0.150 0.630 0.370 0.850 0.758 0.370 0.654 

edgeRLRT 1537 1463 0.512 0.116 0.488 0.512 0.884 0.813 0.512 0.729 

edgeRQLF 1506 1494 0.502 0.118 0.498 0.502 0.882 0.809 0.502 0.758 

EMDomics 844 2156 0.281 0.171 0.719 0.281 0.829 0.724 0.281 0.594 

LIMMA 1612 1388 0.537 0.110 0.463 0.537 0.890 0.822 0.537 0.768 

MAST 1337 1663 0.446 0.132 0.554 0.446 0.868 0.787 0.446 0.685 

Monocle 1454 1546 0.485 0.122 0.515 0.485 0.878 0.802 0.485 0.691 

NBSeq 1497 1503 0.499 0.119 0.501 0.499 0.881 0.808 0.499 0.718 

NODES 1173 1827 0.391 0.145 0.609 0.391 0.855 0.766 0.391 0.620 

ROTS 1170 1830 0.390 0.145 0.610 0.390 0.855 0.766 0.390 0.618 

scDD 697 2303 0.232 0.182 0.768 0.232 0.818 0.705 0.232 0.547 

T-test 1501 1499 0.500 0.119 0.500 0.500 0.881 0.808 0.500 0.719 
Wilcox 1413 1587 0.471 0.126 0.529 0.471 0.874 0.797 0.471 0.695 

TP: True Positives; FP: False Positives; TN: True Negatives; FN: False Negatives; TPR: True 
Positive Rate; FPR: False Positive Rate; FDR: False Discovery Rate; PPR: Positive Prediction 
Rate; NPV: Negative Prediction Value; ACC: Accuracy; F1: F1 score; AUC: Area Under Receiver 
Operating Curve 

For Islam data, the edgeRQLF and DESeqNB methods had the highest TP 

values with lower FP, followed by edgeRLRT, DECENT and EMDomics methods 
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(Figure 5.6). The performance of the methods such as NODES, LIMMA, and 

DEGseq was extremely poor in terms of lower TP and higher FP values (Figure 

5.6). This finding indicated these methods detected fewer true DE genes with 

higher probability. Among the single-cell methods, DECENT's performance was 

found to be superior, followed by DEsingle and BPSC (Figure 5.6). Further, the 

median TPR value for DESeqNB and edgeRQLF was found to be highest, followed 

by edgeRLRT and DECENT (Figure 5.6). This observation indicated that these 

tested methods identified genes that are truly DE at higher rates compared to 

others. The lower values of FPR also indicated the better performance of 

edgeRQLF, DESeqNB, edgeRLRT, and DECENT over other methods. In other 

words, these methods had higher probabilities of detecting a lower number of FP 

genes. While LIMMA, NODES, scDD, and DEGseq had the highest numbers and 

rates of FP genes compared to other tested methods. Similar interpretations can 

be made for all the tested methods through other performance metrics, such as 

PPR, ACC, NPV, and F1 measures (Figure 5.6). 

For other datasets, such as Tung, Chen, Savas, Soumillon1, Grun, 

Ziegenhain, Soumillon3, Gierahn, and Klein, a similar interpretation can be made 

for the tested methods (Figures 5.7 – 5.15). It can be observed that the 

performance of the tested methods varies differently across the datasets when 

assessed through each of the 10-performance metrics. For instance, EBSeq, 

edgeRQLF performed better for Tung data, while DECENT, EMDomics, provided 

better results for Soumillon3 data. In other words, the tested methods' performance 

was mostly data specific (no method best fit for all datasets) when assessed 
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through individual performance metrics. However, we found that bulk RNA-seq 

methods are quite competitive and even performed better (for some cases) than 

single-cell methods under the two cellular groups comparison. 

Performance assessment based on ROC 

Under this comparison setting, the performance of the DE methods was 

tested on multiple real datasets through AUROC, and the results are shown in 

Figures 5.5 – 5.15. For Soumillon2 data, DECENT provided the highest AUROC 

values, followed by DESeqNB, LIMMA, and edgeRQLF (Figure 5.5I), which 

indicated that the underlying model of DECENT, i.e., ZINB fits well to the 

underlying data (Figure 5.5). For instance, for DE gene set size 3000, an AUROC 

value of 0.857 was observed for DECENT followed by DESeqNB (0.811), LIMMA 

(0.768), and edgeRQLF (0.758) (Table 5.7). In other words, the DECENT has 

higher sensitivity and specificity rates to detect true DE genes in real Soumillon2 

data compared to other methods. The single-cell specific tools scDD and MAST 

performed worst in this comparison, while DEGSeq followed by EBSeq and 

DESeqLRT showed the overall poor performance among bulk RNA-seq methods 

along with EMDomics (Figure 5.5I, Table 5.7). 

For Islam data, the DESeqNB method produced the highest AUROC value, 

followed by edgeRQLF, edgeRLRT, DECENT, and EMDomics (Figure 5.6). The 

lowest AUROC values were observed for NODES, LIMMA, scDD, and DEGseq 

with higher probabilities than others (Figure 5.6). Here, the bulk RNA-seq methods 

performed extremely well, even better than single-cell tools like DECENT, 

Monocle, MAST, etc. The simple methods, such as T-test, and Wilcox, performed 
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relatively well with moderately high sensitivities and specificities for detecting DE 

genes (Figure 5.6). Similar interpretations can be made for the other 9 datasets 

based on the AUROC from Figures 5.7 – 5.15. Through sensitivity-specificity 

analysis, it was observed that the performance of the tested methods varies 

differently across the considered real datasets. For instance, EMDomics and 

MAST performed very well in Klein data, while LIMMA and EBSeq were better 

suited to Chen data. However, scDD, NODES, and ROTS consistently performed 

worst across all the datasets, while methods such as DEGSeq, DESeqLRT, and 

MAST performed very badly for some of the datasets. Similar conclusions can be 

made for other datasets. Hence, it can be noted that a single method may not be 

chosen to provide the best results for DE analysis in scRNA-seq and mostly 

depend on the data and performance evaluation metric.   

Performance assessment based on FDR rates 

The results from the tested methods' performance assessed through FDR 

across the 11 datasets are shown in Figures 5.5G – 5.15G. For Soumillon2 data, 

DECENT's median FDR value was found to be lowest, followed by DESeqNB and 

edgeRQLF (Figure 5.5G). For instance, DE gene set 3000; the FDR value was 

observed to be 0.442 for DECENT and 0.448 for DESeqNB, whereas methods 

including scDD, EMDomics provided the highest FDR values (Table 5.7). This 

indicates that the UMI-based specialized DECENT tool's performance was 

superior and robust compared to count-based bulk RNA-seq tools (Figure 5.5G). 

Further, normalized data-based tools, i.e., scDD, EMDomics and ROTS, 

performed not so well in terms of robustness for detecting true DE genes. 
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For Islam data, the findings indicated that the performance of DESeqNB, 

edgeRQLF, edgeRLRT, and DECENT was observed to be robust among the 

competitive methods (Figure 5.6G). Specifically, DECENT’s performance was 

better and robust among the single-cell methods, followed by Monocle and MAST. 

However, bulk RNA-seq methods, such as DESeqNB, edgeRQLF, and 

edgeRLRT, performed better and robust even compared to single-cell methods for 

Islam data having fewer cells (Figure 5.6G). Further, among all methods, DEGSeq, 

LIMMA, and NODES performed worst in terms of robustness for detecting true DE 

genes. Similar interpretations can be made for other datasets through the 

computed FDR metric (Figures 5.7G -5.15G). Through such analysis, we observed 

that the tested methods' performance varied differently across the real datasets for 

detecting robust DE genes (Table 5.8). For instance, EBSeq performed well in 

terms of robustness for Savas, Soumillon1, Chen, Geinhein, and Tung data but 

performed poorly in the remaining datasets. While scDD, NODES, and ROTS 

consistently worst performed methods over the datasets (Table 5.8). Hence, we 

can infer that not a single method was found globally best for robust DE analysis 

scRNA-seq data, and mostly the performance is data specific. 

Table 5.8. Ranking of DE methods across all datasets based on the FDR metric. 

Methods D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Rank Score 

BPSC 15 12 11.5 1 14 16 12 12 6 16.5 17.5 4.55 

DECENT 4 5 13 5 3 2 4 1 1 3 2 9.32 

DEGSeq 16 18 16 14 11 4 14 15 18 13 5 4 

DESeqLRT 6 11 9 13 19 15 18 18 13 18 9 3.74 

DESeqNB 1 8.5 2 6 6 11 17 7 2 10 7 7.5 

DEsingle 10 6.5 3 10 10 8 11 13 9 11 17.5 5.84 

EBSeq 9 2 14 8 1 13 1 10 14 1 1 7.68 

edgeRLRT 3 3 10 4 8 10 8.5 5 5 7 14.5 7.47 

edgeRQLF 2 1 11.5 2 2 5 5 4 4 4.5 14.5 8.66 
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EMDomics 5 8.5 4 19 13 1 10 2 17 9 7 6.55 

LIMMA 18 10 19 11 15 17 8.5 3 3 2 4 5.76 

MAST 14 4 15 3 5 3 16 11 12 15 12 5.79 

Monocle 12 16 7.5 15 7 9 2 14 11 6 3 6.18 

NBSeq 11 15 7.5 18 4 6 3 8 8 12 7 6.34 

NODES 19 13 6 16 16 18 13 16 15 14 11 3.32 

ROTS 13 17 18 9 17 14 15 17 16 16.5 14.5 2.79 

scDD 17 19 17 17 18 19 19 19 19 19 10 1.42 

Ttest 8 14 5 12 9 12 7 6 7 8 14.5 6.18 

Wilcox 7 6.5 1 7 12 7 6 9 10 4.5 19 6.89 
D1: Islam; D2: Tung; D3: Zigenhein; D4: Grun; D5: Soumillion1; D6: Klein; D7: Savas; D8: Soumillion3; 

    D9: Soumillion2; D10: Chen; D11: Geinhein 

Performance assessment based on runtime 

Under this setting, we evaluated the tested methods' performance based on 

runtime criterion, where the runtime refers to the computational time required to 

analyze the data. Through this, the method which requires less runtime was 

considered to be better and vice-versa. To measure this, we ran the code written 

in R (v 4.0.2) for each tested method by following the instructions and 

recommendations of their respective R software packages. The required average 

CPU time (over 50 runs for each program) was observed for each of the methods 

for analyzing a count data with 10000 genes with 500 cells (250 cells in each cell 

group). All these analyses were performed on a 16 GB RAM computer with 

Windows 10 OS and Intel(R) Core (TM) i3-6100U CPU clock rate as 2.93 GHz. It 

was found that DECENT is the slowest and more computationally intensive method 

followed by DEsingle due to the implementation of an iterative ECM algorithm to 

estimate the model parameters. For instance, the UMI data (10000 genes over 500 

cells), DECENT took ~20 hours, followed by DEsingle (~12 hours) to detect the 

DE genes. Among the methods, T-test, Wilcox, and LIMMA are the fastest to run; 

MAST, edgeR, and DESeq are also relatively fast. Further, the methods, such as 
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EBSeq, ROTS, EMDomics, and NODES, are relatively computationally intensive 

due to the implementation of permutation and bootstrap procedures, which are 

usually time-consuming processes. The remaining methods do not include any 

heavily time-consuming steps, therefore considered as computationally efficient. 

Performance assessment based on MCDM-TOPSIS analysis 

We observed conflicts among the 13 criteria through which the tested methods' 

performance was assessed. For instance, DECENT performed better among the 

methods specially designed for single cell studies, when assessed through most 

of the performance metrics (Figure 5.5-5.15) but performed worst based on 

runtime criterion. Due to such conflicts in the performance evaluation, the TOPSIS 

approach was necessary to choose the best option over the available 19 options 

under the simultaneous consideration of 13 decision criteria (i.e., MCDM). The 

results from the MCDM-TOPSIS analyses are shown in Figures 5.16 – 5.26. 
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Figure 5.16. Performance evaluation of DE methods under MCDM setup for Soumillion2 
data. The results are shown for (A) MCDM-TOPSIS analysis of the methods are shown for 13 

performance metrics including runtime criterion; (C) Average similarities between the evaluated DE 
methods based on the 13-performance metrics. The dendrogram was obtained by average-linkage 
hierarchical clustering; (B) MCDM-TOPSIS analysis of the DE methods based on 12 performance 
metrics excluding runtime criterion; (D) Similarity analysis among methods based on their ability to detect 
common DE genes. The p-values for each comparison were computed through Binomial test (color 
shows value significant at 1% level of significance and white cells represents non-significant values). 

 

Figure 5.17. Performance evaluation of the methods under MCDM for Islam data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.18. Performance evaluation of the methods under MCDM for Tung data.  
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Figure 5.19. Performance evaluation of methods under MCDM setup for Soumillion1 data.  

 

 

Figure 5.20. Performance evaluation of methods under MCDM setup for Soumillion3 data.  
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Figure 5.21. Performance evaluation of the methods MCDM setup for Klein data. 

Figure 5.22. Performance evaluation of methods under MCDM for Gierahn data.  
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Figure 5.23. Performance evaluation of the methods under MCDM for Chen data. 

 

Figure 5.24. Performance evaluation of the methods under MCDM for Savas data. 
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Figure 5.25. Performance evaluation of the methods under MCDM for Grun data. 

Figure 5.26. Performance evaluation of methods under MCDM for Zigenhein data. 
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For Soumillon2 data, DECENT provided the highest TOPSIS score followed 

by DESeqNB and LIMMA compared to other tested methods (Figure 5.16) under 

MCDM analysis without considering the runtime criterion. In contrast, we found the 

methods, including scDD, EMDomics, and EBSeq, performing worst among others 

under these multi-criteria setting. Further, when runtime criterion was included in 

MCDM-TOPSIS analysis, the tested methods' rankings were found to be 

significantly changed (Figure 5.16). For instance, the rank of DECENT slipped to 

13 (Figure 5.16B) under runtime based MCDM analysis from rank 1 (without 

runtime-MCDM analysis) (Figure 5.16A). This indicated that the performance of 

the best methods (when assessed under MCDM analysis) was compromised when 

their runtime was integrated into the analysis. Here, it is interesting to note that the 

bulk RNA-seq methods such as LIMMA, DESeqNB, and edgeRQLF performed 

better under the MCDM settings (Figure 5.16). 

Through MCDM analysis of tested methods on Islam data, edgeRQLF was 

found to be the best option to detect true DE genes, followed by DESeqNB and 

edgeRLRT (Figure 5.17). Surprisingly, general methods such as T-test and Wilcox 

methods ranked as 4 and 6, respectively, due to their lesser runtime (Figure 5.17). 

Among all the tested methods, NODES performed worst (rank:19) for this data, 

followed by scDD (rank:18), DEsingle (rank:17), and LIMMA (16). Under the 

MCDM-TOPSIS (without runtime) settings, the DECENT performed better (rank: 

4) (computationally intensive), followed by Monocle, MAST, DEsingle, and BPSC 

in the single-cell categories. Similar interpretations can be made from the MCDM-

TOPSIS analysis for the other 9 datasets (Figures 5.18 – 5.26). 



150 
 

Under this multi-criteria setting, it was found that the performance of tested 

methods varies differentially across the datasets and mostly depends on the data 

characteristics, such as the number of cells in the data and number of cells per 

group (Table 5.9). For instance, count-based NB tools, including edgeRQLF, 

DESeqNB, and edgeRLRT, performed better when the total number of cells in the 

data is relatively small and performed poorly for data with a large number of cells 

(Table 5.9). Further, the specially designed UMI-based DECENT performed better, 

particularly when there is a sufficient number of cells present in data (e.g., > 1000) 

(Table 5.9). However, the normalized data-based LIMMA performed exceptionally 

well for scRNA-seq data having many (e.g. >2000) cells but performed poorly 

under a small and medium number of cell situations. 

Table 5.9. Effect of the number of cells on performance of the DE methods 
assessed through AUROC. 

Methods Small Score Medium Score Large Score 

BPSC 15 12 11.5 1 2.13 14 16 12 17.5 1.08 12 6 16.5 1.34 

DECENT 4 5 13 5 2.79 3 2 4 2 3.63 1 1 3 2.89 

DEGSeq 16 18 16 14 0.84 11 4 14 5 2.42 15 18 13 0.74 

DESeqLRT 6 11 9 13 2.16 19 15 18 9 1.00 18 13 18 0.58 

DESeqNB 1 8.5 2 6 3.29 6 11 17 7 2.05 7 2 10 2.16 

DEsingle 10 6.5 3 10 2.66 10 8 11 17.5 1.76 13 9 11 1.42 

EBSeq 9 2 14 8 2.47 1 13 1 1 3.37 10 14 1 1.84 

edgeRLRT 3 3 10 4 3.16 8 10 8.5 14.5 2.05 5 5 7 2.26 

edgeRQLF 2 1 11.5 2 3.34 2 5 5 14.5 2.82 4 4 4.5 2.50 

EMDomics 5 8.5 4 19 2.29 13 1 10 7 2.58 2 17 9 1.68 

LIMMA 18 10 19 11 1.16 15 17 8.5 4 1.87 3 3 2 2.74 

MAST 14 4 15 3 2.32 5 3 16 12 2.32 11 12 15 1.16 

Monocle 12 16 7.5 15 1.55 7 9 2 3 3.11 14 11 6 1.53 

NBSeq 11 15 7.5 18 1.50 4 6 3 7 3.16 8 8 12 1.68 

NODES 19 13 6 16 1.37 16 18 13 11 1.16 16 15 14 0.79 

ROTS 13 17 18 9 1.21 17 14 15 14.5 1.03 17 16 16.5 0.55 

scDD 17 19 17 17 0.53 18 19 19 10 0.74 19 19 19 0.16 

T-test 8 14 5 12 2.16 9 12 7 14.5 1.97 6 7 8 2.05 
Wilcox 7 6.5 1 7 3.08 12 7 6 19 1.89 9 10 4.5 1.92 



151 
 

Small number of cells (< 600) in scRNA-seq; Medium number of cells (1000 – 2000) scRNA-seq; 
Large number of cells (> 2000); score: Average of the rank scores computed through Eq. 32 based 
on the AUROC measure 

Between-methods Similarity Analysis 

The similarity analysis of the tested DE methods, based on the computed 

performance metrics, revealed the similarities in performance among the methods. 

We also compared the overlaps in terms of the detections of DE genes between 

any pair of methods (i.e., degree of similarity) by extracting 1000 DE genes through 

each of them. For the Soumillon2 dataset, the results from such analysis are 

shown in Figure 5.5C and 5.5D. Here, we observed that bulk RNA-seq methods, 

i.e., DESeqNB, edgeRQLF, NBPSeq, and LIMMA, are grouped together, have 

similar performance with single-cell methods, such as DECENT, DEsingle, BPSC, 

MAST, and Monocle along with general T-test and Wilcox methods (Figure 5.5C). 

Further, these methods shared a greater degree of similarity in terms of detecting 

more common DE genes compared to other methods (Figure 5.5D). This finding 

was well supported with higher correlations among themselves. In contrast, the 

methods which performed moderately well were clustered together, which are 

overrepresented by the methods, such as DEGSeq, ROTS, EBSeq, etc. Whereas 

the poorly performed methods (scDD and EMDomics), capable of dealing with the 

data's multi-modal nature, were grouped together and shared fewer common DE 

genes with other methods (Figure 5.5). 

For Islam data, it was observed that the count-based bulk RNA-seq 

methods, such as edgeRQLF, DESeqNB, and edgeRLRT, are clustered together 

and have superior performance (Figure 5.6). While normalized data-based DE 

methods, i.e., LIMMA, NODES, and scDD, are grouped together and found to have 
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lower TOPSIS scores indicating their poor performance (Figure 5.6A). Further, 

general methods (ROTS, Wilcox, EMDomics, and T-test) were clustered together, 

which had similar performance with the robust count based single-cell methods 

(BPSC, MAST, Monocle, DEsingle, and DECENT) and several bulk RNA-seq DE 

methods (DESeqLRT, EBSeq, and NBPSeq) (Figure 5.6A). It is interesting to note 

that the degree of similarity between DESeqNB and DESeqLRT was found to be 

low, indicating that the DE test statistic has a significant effect on the performance 

of the methods. The degree of similarity in terms of sharing common genes 

between any given pair of methods varied widely (Figure 5.6D) within and across 

datasets and mostly depends on the real data characteristics (i.e., total number of 

cells and cells per group) (Figures 5.5-5.15, Table 5.9). These findings were in 

agreement with the previous studies [201,215]. Similar interpretations can be 

made for the other 9 datasets from Figures 5.16–5.26. 

Combined-data Methods Analysis 

The performance of the tested methods was found to be highly inconsistent across 

the datasets (Figures 5.16-5.26). Therefore, we performed a combined-data 

analysis of the assessed methods through the TOPSIS technique. For instance, 

edgeRQLF performed better in Islam data but not in Ziegenhain data when 

assessed through ACC metric (Figures 5.16, 5.26). However, their performance 

was somewhat positively associated with the total number of cells and the number 

of cells per group [216] (Table 5.9). To be more precise, on the selection of the 

best method across the multiple datasets, we performed TOPSIS analysis of the 
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methods based on the performance metrics, such as F1 score, FDR, TPR, FPR, 

and AUROC, and the results are shown in Figures 5.27-5.29. 

Figure 5.27. Combined data analysis of the DE methods based on F1 score 
through TOPSIS Approach. The comparative performance evaluation of the DE methods was 

performed based on F1 score through TOPSIS approach under multi-data setup. This analysis was 
performed on data matrix having F1 scores of the tested methods across the 11 considered 
datasets. (A) Shows results from TOPSIS analysis of the tested DE methods; (B) Correlation 
analysis of the evaluated DE methods through Rank correlation. The correlation plot was obtained 
by Spearman’s rank correlation method based on the matrix of average (over DE gene sets) F1 
scores across all data sets. (C) Weighted similarity analysis of the tested methods (Supp. 
Document S14) based on their ability to detect common genes. Here, the nodes represent the 
tested methods and edges represent the shared degree of similarity between the pair of methods. 
Further, the red color edges (with scores > 0.7) among the methods indicated highest similarity, 
blue color edges indicate higher similarity ([0.5, 0.7]), green color edges represent with low 
similarity ([0.2, 0.5]) and magenta color edges represent lowest degree of similarity ([0, 0.2]) among 
the methods. The nodes in the network abbreviated as, EMD: EMDomics; LIM: LIMMA; EBS: 
EBSeq; scD: scDD; DEG: DEGSeq; DSN: DESeqNB; NOD: NODES; BPS: BPSC; NBS: NBSeq; 
Wil: Wilcox; Mon: Monocle; DEC: DECENT; MAS: MAST; Tst: T-test; DEs: DEsingle; ROT: ROTS; 
DSL: DESeqLRT; edQ: edgeRQLF; edL: edgeRLRT   (D) Similarity analysis of the evaluated DE 
methods through clustering. The dendrogram was obtained by average-linkage hierarchical 
clustering based on the matrix of average (over DE gene sets) F1 scores across all data sets. 
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Through F1 based TOPSIS analysis of methods, it was found that the 

TOPSIS score of EBSeq and DECENT was highest, followed by edgeRQLF 

compared to others (Figure 5.27). This indicates that both are better options for 

DE analysis of scRNA-seq data over others across all datasets, but highly 

computationally intensive and required several hours even for a small dataset 

(Figure 5.27). Further, through F1-based similarity analysis, the UMI based 

parametric methods, such as DECENT, EBSeq, Monocle DEGSeq, are grouped 

together and have similar performance with LIMMA across the datasets (Figure 

5.27C). However, EMDomics is the only (NP) method clustered separately, as it is 

a general-purpose method (i.e., origin is out of RNA-seq context). Also, its 

performance was negative correlated with other methods (Figure 5.27). Moreover, 

count-based bulk RNA-seq methods, such as DESeqNB, DESeqLRT, edgeRQLF, 

edgeRLRT, and NBSeq are clustered together and were found to be similar with 

single-cell methods (i.e., BPSC, scDD, NODES, MAST and DEsingle) and general-

purpose methods (T-test, Wilcox, and ROTS) (Figure 5.27).     

Figure 5.28. Combined data analysis of the DE methods based on FDR and 
Accuracy metrics through TOPSIS Approach. The comparative performance evaluation 

of the DE methods was performed based on FDR and Accuracy metrics through TOPSIS approach 
under multi-data setup. This analysis was performed on data matrix having FDR and Accuracy 
scores of the tested methods across the 11 considered datasets. (A) Shows results from TOPSIS 
analysis of the tested DE methods based on FDR; (B) Similarity analysis of the evaluated DE 
methods based on FDR through clustering. The dendrogram was obtained by average-linkage 
hierarchical clustering based on the matrix of average (over DE gene sets) FDR scores across all 
data sets. (C) Similarity analysis of the evaluated DE methods based on FDR through correlation. 
The correlation plot was obtained by Spearman’s rank correlation method based on the matrix of 
average (over DE gene sets) FDR scores across all data sets; (D) Shows results from TOPSIS 
analysis of the tested DE methods based on Accuracy; (E) Similarity analysis of the evaluated DE 
methods based on Accuracy through clustering. The dendrogram was obtained by average-linkage 
hierarchical clustering based on the matrix of average (over DE gene sets) Accuracy across all 
data sets. (F) Similarity analysis of the evaluated DE methods based on Accuracy metrics through 
correlation. The correlation plot was obtained by Spearman’s rank correlation method based on the 
matrix of average (over DE gene sets) Accuracy scores across all data sets. 
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FDR and ACC-based TOPSIS analysis of the 19 methods over the 11 real 

datasets was also performed, and the results are shown in Figure 5.28. It was 

found that the TOPSIS score (for both FDR and ACC) of DECENT was highest, 

followed by EBSeq compared to others (Figure 5.28). Further, averaging ACC 

measure across the DE gene sets and ranking of the methods revealed that 

DECENT's performance is somewhat consistently better, followed by edgeRQLF 

and EBSeq (Figure 5.5F – 5.15F). DECENT considers the cell capture rates, cell 

auxiliaries, and employs an efficient ECM algorithm for parameter estimation, 

hence capable of detecting more true and robust DE genes. Further, it is also well 

equipped to handle the molecular capture process, cell sizes, extra zero inflation, 

and overdispersion present in the data. DECENT uses the ZINB model to fit the 

(scRNA-seq) UMI data, which accurately estimates the mean and dispersion 
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parameters unlike NB based tools, thus having more statistical accuracy in 

detecting DE genes (Table 5.4-5.6, Figure 5.4). In this comparison, the 

performance of NP methods, such as NODES, EMDomics, ROTS, and scDD, was 

found to be consistently bad across the datasets. Similar interpretations can be 

made for the other performance metrics, such as TPR, FPR, FDR, AUROC, given 

in Figures 5.16-5.26. 

Among all the tested methods, the single-cell methods, such as scDD, 

NODES, and DEsingle, performed poor along with the general methods, i.e., 

EMDomics ad ROTS, and bulk RNA-seq methods (DESeqLRT, NBSeq, and 

LIMMA) in terms of accuracy and robustness in detecting true DE genes (Figure 

5.28). Under this setting, simple methods, such as T-test and Wilcox, performed 

reasonably well with the least computational times (Figures 5.27, 5.28) to get better 

and robust results. Expressly, these methods, along with DEsingle, NODES, and 

ROTS, are limited to only two cell groups comparisons and cannot accommodate 

cell capture rates, cell covariates, etc. whereas EMDomics can perform a limited 

number of analysis types. The remaining methods implement statistical 

frameworks that can accommodate more complex (fixed effect) designs, including 

comparisons across multiple groups and adjustments for batch effects and cell-

level covariates. Further, there are specific methods, including Monocle, and 

LIMMA, which accurately detected the true DE genes but are prone to higher error 

rates (Figure 5.28). 

Through Sensitivity-Specificity-based TOPSIS analysis of tested methods 

across the datasets indicated that DECENT and EBSeq performed exceptionally 
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well with higher rates of sensitivities and specificities (higher AUROC) for detecting 

true DE genes (Figure 5.29).  

Figure 5.29. Combined data analysis of the methods based on Sensitivity-
Specificity through TOPSIS Approach. (A) Shows results from TOPSIS analysis of the 

tested DE methods based on TPR; (B) Similarity analysis of the evaluated DE methods based on 
TPR through clustering. (C) Similarity analysis of the evaluated DE methods based on TPR through 
correlation. (D) Shows results from TOPSIS analysis of the tested DE methods based on FPR; (E) 
Similarity analysis of the evaluated DE methods based on FPR through clustering; (F) Similarity 
analysis of the evaluated DE methods based on FPR metrics through correlation; (G) Shows results 
from TOPSIS analysis of the tested DE methods based on AUROC; (H) Similarity analysis of the 
evaluated DE methods based on AUROC through clustering. The dendrogram was obtained by 
average-linkage hierarchical clustering based on the matrix of average (over DE gene sets) 
AUROC scores across all data sets. (I) Similarity analysis of the evaluated DE methods based on 
AUROC through correlation. 
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The group of methods, including Monocle, LIMMA, EMDomics, were observed to 

have higher rates of sensitivities, but compromised the specificities for detecting 

DE genes and have similar performance with NBSeq and DEGSeq (Figure 5.29). 

Further, the count-based bulk RNA-seq methods (i.e., edgeRQLF, edgeRLRT, and 

DESeqNB) had higher specificities along with general DE methods (i.e., T-test and 

Wilcox). Still, they compromised the sensitivities for detecting true DE genes in 

scRNA-seq data (Figure 5.29). Surprisingly, the specially designed single-cell 

methods, such as BPSC, MAST, DEsingle, and NODES, were found to have lower 

sensitivities and specificities for DE analysis and have similar performance with 

ROTS. These findings were also supplemented by AUROC-based TOPSIS 

analysis (Figure 5.29G). 

FDR-based similarity analysis indicated that the EMDomics and NBSeq 

were clustered together with similar performance, whereas the bulk and single-cell 

methods (i.e., EBSeq, LIMMA, DECENT, and Monocle) were clustered together. 

The count-based bulk RNA-seq methods (i.e., edgeRQLF, edgeRLRT, DESeqNB, 

and DESeqLRT) were clustered together with poorly performed UMI-based 

methods (BPSC, DEsingle, MAST, NODES, scDD), which had similar performance 

with the general two-class methods (Wilcox, T-test, ROTS) (Figure 5.28). 

However, the EMDomics was negatively correlated with some of the methods, as 

it is a general-purpose NP genomic method and does not consider the RNA-seq 

data features (Figure 5.28C). Similar interpretations can be made for ACC, TPR, 

FPR, and AROC based similarity analysis (Figures 5.28, 5.29). 
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The combined analysis through the TOPSIS method allowed us to select 

the best option for DE analysis over the tested methods, simultaneously 

considering multiple real datasets. Through such analysis, DECENT, EBSeq, and 

edgeRQLF were consistently performed better, whereas the group methods, such 

as scDD, NODES, ROTS, EMDomics, and DEsingle always performed extremely 

poor over the datasets irrespective of the performance criteria used. The remaining 

tested methods' performance varied differently across the datasets under different 

performance metrics (Figures 5.15 – 5.25). It is mostly positively related to the total 

number of cells present in the data (Table 5.9). Interestingly, the performance of 

popular count-bulk RNA-seq methods, such as edgeRQLF and DESeqNB, were 

found to be consistently better over edgeRLRT and DESeqLRT, respectively 

(Figures 5.27-5.29). This observation indicated that the performance of the DE 

methods, such as edgeR and DESeq2, mostly depends on the test statistic(s) they 

use to perform DE analysis of genes. Moreover, in agreement with previous 

comparative studies [192,193,201,215], DE methods developed bulk RNA-seq 

analysis did not perform worse than those specially designed for scRNA-seq data, 

even performed better for some cases. 

 

 

 

“The purpose of statistical models is not to fit the data but to sharpen the question..” 

                                                                                                           Samuel Karlin 
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CHAPTER 6

AN IMPROVED STATISTICAL APPROACH FOR DIFFERENTIAL 

EXPRESSION ANALYSIS OF SINGLE-CELL RNA-SEQ DATA 

Background 

Advent of scRNA-seq technologies have revolutionized transcriptomics through 

generating gene expression data at the single cell resolution level [195,272]. It has 

numerous advantages over bulk RNA-seq technology, which only characterize the 

global expression dynamics of genes in a tissue sample, while ignoring the 

inherent cell-cell heterogeneity [273,274]. Thus, it is pertinent to assess the 

variability that exists among the cells in a tissue sample as this is crucial to 

understand the complexity and dynamicity of biological processes such as 

embryogenesis [195,256], cancer [275], etc. Through scRNA-seq technology, 

expression is quantified by mapping reads to reference genome followed by 

counting the number of reads mapped to each gene [195]. Here, individual 

transcript molecules are attached with an UMI tag; subsequently, counting the 

UMIs usually yield the number of transcripts for each gene in a cell [196]. Further, 

huge amount of UMI count data are generated for several thousand(s) of genes 

across thousand(s) of cells and subsequently deposited in public domain 

databases by researchers across the globe. Hence, it is necessary to develop new, 
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and innovative statistical approaches and tools for such data analysis to harness 

the potential of this new technology. 

Small amounts of the mRNA molecules and imperfect procedures for 

capturing them in individual cells, lead to dropout events, i.e. genes show zero or 

very low expression, though they are expressed in cells [202,209]. Further, it is 

well established, that the capture rates vary between cells for a given scRNA-seq 

protocol, showing a major source of unwanted technical variation that adds to the 

dropout events [276,277]. Addition of UMIs during the library preparation step 

reduces the amplification bias but has no effects on dropout events [197]. Further, 

the dropout events add more zeros to the output data, and can be attributed as: 

true/biological zeros (gene is not expressed in the cell); or false/technical zeros 

(gene is expressed but not detected) [203]. The presence of higher proportions of 

zeros and technical noise in scRNA-seq data can severely affect the performance 

of downstream DE analysis.  

Bulk RNA-seq DE methods such as edgeR [204], and DESeq2 [205,206] 

were used extensively for DE analysis of scRNA-seq data. These models use the 

NB model to capture the distributional nature of read counts under a GLM 

framework. Further, Limma-Voom  considers linear models for log-transformed 

counts data and observation-level weights to account for the dispersion nature of 

the transformed data [161,228], while DEGseq assumes the Poisson distribution 

of the read counts [218]. The utility of such approaches raises serious concerns 

about their validity due to high dropout events [203], transcriptional bursting [207], 

lower molecular capturing in cells [208,209], and higher dispersion, etc. Therefore, 
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dedicated scRNA-seq DE methods have been developed which use different 

strategies to cope with the above concerns [202,203,208,209,211–213]. For 

instance, SCDE uses a mixture model (i.e. Poisson for dropout part and NB for 

amplification part) to capture the observed abundance of a given transcript in each 

cell [214]. SCDE always assumes that the observed zero-count belongs to the 

dropout events with certainty. Further, MAST uses a hurdle model, i.e. logistic 

regression for the level of gene expression and a Gaussian linear model for rate 

of expression conditioned on expression levels [202]. However, SCDE and MAST 

do not differentiate between biological and technical zeros during the model 

building. BPSC approach [221] was developed for performing DE analysis of 

scRNA-seq data through integrating Beta-Poisson model in the GLM framework. 

The BPSC approach does not consider the count nature of UMI data, and severely 

affected by the dropout events [215]. These methods specifically consider the bi-

modal distributional nature of the scRNA-seq data. Hence, a class of methods 

including D3E [237] and scDD [222] was developed to address the multimodal 

distributions of transformed scRNA-seq data, but they failed to consider the UMI 

count nature of the data and excluded the dropout events. Further, methods such 

as Monocle [212], Monocle2 [251], and NBID [244] were designed to handle the 

unique features of UMI in scRNA-seq experiments. They fit NB models directly to 

the observed UMI count data without any explicit focus on dropout events. Next, 

another class of specialized methods, such as ZINB-WaVE [203,242], DEsingle 

[211], and DECENT [209], were developed to handle excess zero inflation in 

scRNA-seq data. These methods are based on fitting of ZINB models to the UMI 
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counts data. To be more specific, ZINB-WaVE [203] estimates observational level 

weights through EM algorithm for adjusting bulk DE methods, i.e. edgeR [204], 

DESeq2 [206]. The DEsingle [211] approach assumes ZINB models for observed 

scRNA-seq UMI count data to estimate the parameters through MLE method for 

two cellular populations separately. However, DECENT [209] assumes ZINB 

model for observed UMI count data and considers a Beta-Binomial model for the 

molecule capturing process with the option to use cell-level auxiliary information. 

These methods ignore multimodal distributions of the observed expression data, 

estimate the DE parameters under parametric model assumptions, and are mostly 

focused on two-groups comparisons. Further, there is another class of DE 

methods which explicitly considers technical variation and molecular capturing 

processes, based on external spike-ins data. This class includes methods such as 

TASC [253], BASiCs [243], DECENT [209], and DESCEND [208]. Moreover, 

several comprehensive reviews and comparative analysis of DE methods covering 

all the above classes can be found in literature [192,193,201,215–217]. 

It is evident that cells in scRNA-seq data behave differentially and tend to 

be in different cell clusters [278], due to cell-cell heterogeneity. Biologically, these 

cell clusters are often different cell-types (e.g. neurons and glia in brain sample) 

and correspond to different active states of cell types. Hence, descriptive data 

mining strategies (i.e. clustering) have been adapted for scRNA-seq data analytics. 

In this study, we argue that the underlying cell clusters may have a significant effect 

on the means of non-zero counts of genes, and subsequently may influence the 

power of detection of DE genes. Further, there are limited methods available to 
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date which consider the molecular capturing process, cell cluster information, and 

other cell-level auxiliary information for DE analysis. The incorporation of these 

data into the DE methods, may enhance the performance. This process requires 

building specific statistical models in order to perform statistical tests reliably. 

In this chapter, we therefore, propose a novel statistical approach, i.e. 

SwarnSeq, for the DE analysis of UMI count scRNA-seq data. Here, we integrate 

the parametric ZINB model with binomial molecular capture process in the 

presence of cell-level data. This allows us to detect DE genes and Differential 

Zero-Inflated (DZI) genes under a GLM framework. SwarnSeq can also classify 

the influential genes from scRNA-seq study into various groups. SwarnSeq can 

use external RNA spike-in data to adjust the distribution of the observed UMI 

counts with capture rates; however, it also works without spike-ins. In this Chapter, 

we describe SwarnSeq approach and benchmark it against 11 other existing 

methods, i.e., DEGseq [218], edgeR [204], DEseq2 [205,206], LIMMA [161], 

Monocle2 [213], MAST [202], BPSC [221], SCDD [222], DEsingle [211], DECENT 

[209], and NODES [223], using 10 real scRNA-seq datasets. The detail 

descriptions about these methods are given in Chapter 5. Our analytic results 

indicate that the SwarnSeq approach outperformed the competing existing 

methods on multiple real datasets, when assessed under 3 comparative settings. 

Material and Methods 

Motivational data example 

In scRNA-seq DE analysis, the cells are clustered, and these cell clusters are 

further divided into two groups (for example: group 1 has cluster M and group 2 
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has remaining clusters). In existing analyses, this cell cluster information is kept 

out of the model building, and this may have a significant influence on the mean of 

non-zero counts. To validate this claim, we took a subset of scRNA-seq dataset 

having 200 genes and 150 cells (Group 1: 50; Group 2: 100) from publicly available 

human preimplantation embryonic cells data [279]. Then, we model the mean of 

non-zero counts under a GLM framework by providing group and cell cluster 

information as auxiliaries. The results are shown in Table 6.1. 

Table 6.1. Effect of cell clusters and groups on mean of non-zero scRNA-seq 

counts.  

 #cells Max Min #Zeros Avg. Exp. Co-efficient Z-value Sig.a  

Intercept - -   - 7.35 11.81 *** 

Group 1 50     Ref. Ref. Ref. 

Group 2  100 -   - -2.8016 1.703 * 

Cell Clust. 1 16 179 0 8 27.9375 -2.1 -1.875 * 

Cell Clust. 2 47 437 0 30 23.70213 -3.55 -4.277 *** 

Cell Clust. 3 3 45 0 2 15 -2.8527 -1.626 NS 

Cell Clust. 4 8 145 0 6 23 -2.97 -2.78 ** 

Cell Clust. 5 6 3496 466 0 1557.167 -2.18 -1.356 NS 

Cell Clust. 6 14 13 0 11 1.857 -3.005 -3.84 *** 

Cell Clust. 7 32 497 0 23 24.375 -4.67 -3.7 *** 

Cell Clust. 8 16 308 0 6 49.937 -3.041 -3.89 *** 

Cell Cluster 9 8 20 0 5 3.125 -3.477 -2.735 ** 

log(theta) -     -0.841 -2.706 ** 
Cell Clust.: Cell cluster; Max: Maximum read count; Min: Minimum read count; Avg. Exp.: Average expression 
values; a: comparing group 1 vs. remaining Cell clusters (e.g. Cell cluster 1 vs. Cell clusters 2-9) *, **, *** 
represents values significant at 5%, 1% and 0.1 % level of significance; (.,.): number of cells in a: 

Our preliminary analysis indicates that cellular group 2 has significant 

effects on the mean counts of the gene, which means that the gene is expressed 

differentially with respect to group 1 (Table 6.1). Further, most of the cell clusters 

have significant effects on the mean read count the gene. Specifically, all the cell 

clusters except cell clusters 3 and 5 have significant effects on mean count (Table 

6.1). The Table 6.1 describes the analysis for a single gene, if there are N genes 
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N such tables can be formulated. Also, if there are K cell clusters, there will be 

K(K-1)/2 grouping combinations and there will be KN(K-1)/2 such tables. 

Therefore, we can hypothesize that the cell clusters may influence the DE analysis 

of genes in scRNA-seq data. This toy data example motivates us to develop 

statistical approach and tool for DE analysis of scRNA-seq data by integrating cell 

cluster information other cell-level auxiliaries, and cell capture rates into the model 

building process under a GLM framework. 

Single cell RNA-seq datasets 

Our comprehensive analysis includes benchmarking of the proposed SwarnSeq 

method against 11 competitive existing methods (given in Chapter 5) on multiple 

real scRNA-seq datasets. This process starts with collection of publicly available 

scRNA-seq datasets from the GEO NCBI database 

(https://www.ncbi.nlm.nih.gov/geo). In our comparative analysis, we included the 

10 UMI count gene expression datasets derived from 8 independent scRNA-seq 

studies. Further, the selected datasets were generated for lung cancer cells, 

pluripotent stem cells, liver cells, adipose stem/stromal cells, HEK cells from 

human, and embryonic stem cells, blood cells, and cells from mice. There are 

limited studies, where transcript molecular concentration and external spike-in 

data are publicly available. Hence, we used molecular concentration and ERCC 

spike-in data available from Tung et al.’s experiment to estimate the cell capture 

rates, while for other data cases, cell capture rates are estimated from the data per 

se. The selected datasets are briefly described as follows. 

 

https://www.ncbi.nlm.nih.gov/geo
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Lung cancer data (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111108)  

This dataset is publicly available from GEO repository with accession GSE111108 

[275]. The ScRNA-seq data are generated for an equal mixture of cells from the 3 

Human Lung Adenocarcinoma cell lines (H2228, NCI-H1975 and HCC827) 

through 10X Genomics protocol and sequenced with Illumina NextSeq 500. This 

data consist expression counts of 33456 genes over 4000 cells. At preliminary 

stage, we removed the cells whose library size is less than 1800 and also further 

removed the genes which have non-zero expressions in ≤ 5 cells. Through this 

process, we selected expression counts of 17326 genes over 2126 cells for further 

analysis. Further, we used the OptimCluster function implemented in SwarnSeq R 

package to decide the number of optimum cell clusters. For this purpose, we set 

the seed value as 1712 and, found that the 2126 cells are clustered into 8 optimum 

cell clusters (Figure 6.1). For DE analysis, we took cell cluster 3 (987 cells) as 

group 1 and remaining cell clusters as cell group 2 (1139). 

Pluripotent stem cell data  

This dataset is publicly available in GEO database with accession id GSE77288 

[197]. We downloaded the filtered UMI count matrix from their GitHub repository 

(https://github.com/jdblischak/singleCellSeq). The full dataset contains three 

Yoruba induced pluripotent stem cell lines, with three 96-well plates per individual. 

Here, we used the ERCC spike-ins, UMI and molecular concentration data were 

used. We only used data of two individual cell lines NA19101 (288 cells) and 

NA19239 (288 cells) (for 18938 genes) for further analyses. Here, we have not 

removed any cells from analysis. also further removed the genes which have non-

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111108
https://github.com/jdblischak/singleCellSeq


168 
 

zero expressions in ≤ 5 cells. Through this process, we selected expression counts 

of 15955 genes over 576 cells for further analysis. Further, we used the 

OptimCluster function implemented in SwarnSeq R package to decide the number 

of optimum cell clusters. For this purpose, we set the seed value at 108 and, found 

that the 576 cells are clustered into 10 optimum cell clusters (Figure 6.1). Further, 

for DE analysis, we took the two given cell lines (i.e. NA19101 and NA19239) as 

two cellular groups. 

Mouse blood cell data 

This dataset is publicly available in NCBI GEO database with accession 

GSE109999 [275]. For this experiment, we downloaded the count expression data 

as it has undergone rigorous preprocessing by the authors of the original 

publication. Here, the blood cells are derived from B lymphocytes, erythroblasts, 

granulocytes, high-end progenitor/stem and T cells from the bone marrow of a 

C57BL/6 10-13-week-old female. Here, expression counts of 19903 genes over 

383 cells were generated through a modified CEL-seq2 protocol. Here, we have 

not removed any cells from analysis, but removed the genes which have non-zero 

expressions in ≤5 cells. Through this, we selected expression counts of 13055 

genes over 383 cells for further analysis. Further, we found that the 383 cells are 

clustered into 9 optimum cell clusters through SwarnSeq R package (seed=110). 

For DE analysis, we took cell cluster 2 (180 cells) as one group and remaining cell 

clusters (203 cells) as other group.  

Liver cell data  
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We downloaded counts expression dataset from the NCBI GEO database with id 

GSE115469 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115469) 

[280]. We directly took the count data, as it has undergone rigorous pre-

processing, mapping, and other data analysis procedures by the authors of the 

original publication. In this study, the fractionated fragile, fresh hepatic tissue from 

human livers was obtained to get viable parenchymal and non-parenchymal cells. 

Then, expression profiling of cells is done by high throughput sequencing. The 

data consists the counts expression data of 20007 genes over 8444 cells. To 

reduce the size of the data, we removed the cells whose sizes are less than 1500 

and genes which have non-zero counts in 5 cells. Through this, the expression 

data of 17316 genes over 5466 cells retained for further analysis. For fitting 

SwarnSeq model, the 5466 cells are clustered into 16 optimum cell clusters 

through executing the OptimCluster function (seed=222) implemented in 

SwarnSeq R package. Further, for DE analysis, we took cell cluster 3 (1852 cells) 

as one group and remaining cell clusters (3614 cells) as other group.  

Mouse cell data  

The dataset is publicly available in NCBI GEO database with accession GSE29087 

[196] (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29087) and widely used 

for benchmarking of scRNA-seq DE tools. scRNA-Seq expression profiles were 

generated for 22928 genes over 96 cells, (48 mouse ES cells, 44 mouse 

embryonic fibroblasts and 4 negative controls) were analyzed by single cell tagged 

reverse transcription. Negative control cells are removed from the further analysis. 

For DE analysis, ES and MEF cell lines are considered as two cellular groups. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115469
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29087
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Here, we have not removed any cells from analysis, and further removed the genes 

which have non-zero expressions in ≤ 5 cells. Through this, we selected counts of 

11436 genes over 92 cells with 8 optimum cell clusters.  

Adipose stem/stromal cell data 

This dataset is publicly available from GEO database with Accession GSE53638 

[255] (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53638). Here, cells are 

collected during directed differentiation of human adipose-derived stem/stromal 

cells and further, 11,116 cells are profiled by the authors of the original publication. 

Here, the cells were collected at different stages and different time points (day 0, 

day 3 and day 7) and sequenced using the SCRB-seq protocol with UMI. To study 

the performance of scRNA-seq DE tools, we used two group comparison settings 

based on different time points, i) Data 1 (Day 0 (1245 cells, baseline) vs. Day 3 

(590 cells), (ii) Data 2 (Day 0 (1245 cells) vs. Day 7 (1023 cells), and (iii) Data 3 

(Day 7 (1023 cells) vs. Day 3 (590 cells). Here, we have not removed any cells 

from analysis, and further removed the genes which have non-zero expressions in 

≤ 5 cells. Through this process, we selected UMI counts of 14863, 15637, and 

15015 genes (from 23895 genes) over 1835, 2268, 1613 cells for Data 1, Data 2, 

and Data 3, respectively. The optimum number of cell clusters was determined as 

11, 10 and 8 for each dataset through executing the OptimCluster function. 

Mouse embryonic cell data  

This data is  publicly available in NCBI GEO database with accession id GSE65525 

[256]. Here, the mouse embryonic stem cells expressions were profiled through 

high throughput sequencing using a droplet-microfluidic approach. The UMI count 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53638
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data with 24174 genes over 1481 cells was used in this study. Further, at the 

preliminary stage, we removed the cells whose library size is less than 1500 and 

also removed the genes which have non-zero expressions in ≤ 5 cells. Through 

this process, we selected expression counts of 23971 genes over 1481 cells for 

further analysis. For fitting SwarnSeq model, the 1481 cells are clustered into 11 

optimum cell clusters (seed =108) (Figure 6.1). Further, for DE analysis, we took 

day 4 (cells 683) as group 1 and day 7 (798 cells) as group 2. 

HEK cell data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92495) 

This dataset is publicly available in NCBI GEO database with accession id 

GSE92495 [257]. Here, we considered count dataset for HEK cells, as it has 

expressions of 24176 genes over 1453 cells. Further, at the preliminary stage, we 

removed the cells whose library size is less than 1500 and also removed the genes 

which have non-zero expressions in ≤5 cells. Through this process, we selected 

expression counts of 15524 genes over 1453 cells for further analysis. Here, 1453 

cells are clustered into 8 optimum cell clusters (seed=208) (Figure 6.1). Further, 

for DE analysis, we took cell cluster 8 (537 cells) as group 1 and remaining cell 

clusters (916 cells) as group 2. 

Model formulations 

Notations: Let, 𝑍𝑖𝑗𝑘: rv representing the true (unknown) read (UMI) counts of kth 

(k = 1, 2, …, K) gene of jth (j = 1, 2, …, Mi) cell in ith (i = 1, 2, …, N) cell cluster/cell 

type; K: total number of genes; Mi: number of cells in ith cell cluster; 𝑀(= ∑ 𝑀𝑖
𝑁
𝑖=1 ): 

total number of cells; N: number of cell clusters; 𝜇𝑖𝑗𝑘: mean of kth gene of jth cell in 

ith cell cluster for NB distribution; 𝜃𝑖𝑗𝑘: size (=1/dispersion) parameter of kth gene of 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92495
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jth cell in ith cell cluster for NB distribution; 𝜋𝑖𝑗𝑘: mixture probability (i.e. the 

probability for a count to be an excess zero in a cell) parameter for kth gene of jth 

cell in ith cell cluster (usually cell clusters are detected through clustering). 

In bulk RNA-seq, the counts are usually modelled by using a NB distribution. 

Further, the PMF of the NB distribution is expressed as: 

𝑓𝑁𝐵(𝑧) = 𝑃[𝑍𝑖𝑗𝑘 = 𝑧] =
𝐺(𝑧+ 𝜃𝑖𝑗𝑘)

𝐺(𝑧+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝑧

    ∀ 𝑧 = 0, 1, 2, …    (6.1) 

where, 𝜇𝑖𝑗𝑘 ≥ 0; 𝜃𝑖𝑗𝑘 > 0 are the parameters of NB distribution, G(.): Gamma 

function. The NB distribution becomes Poisson, when 𝜃𝑖𝑗𝑘 →  ∞. 

For any 𝜋𝑖𝑗𝑘 ∈ [0, 1], the true read counts in scRNA-seq study is assumed to follow 

a ZINB distribution [203,209,211]. Now, the PMF of the ZINB distribution to model 

the read counts from scRNA-seq data can be given as: 

𝑃[𝑍𝑖𝑗𝑘 = 𝑧] =

{
 

 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

 𝑤ℎ𝑒𝑛 𝑧 = 0

(1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑧+ 𝜃𝑖𝑗𝑘)

𝐺(𝑧+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝑧

;   𝑧 > 0

   (6.2)                  

Now, 𝑍𝑖𝑗𝑘~𝑍𝐼𝑁𝐵(𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘), then the expected value and variance of 𝑍𝑖𝑗𝑘 can 

be obtained as (proof given in Appendix III): 

𝐸(𝑍𝑖𝑗𝑘) = (1 − 𝜋𝑖𝑗𝑘)𝜇𝑖𝑗𝑘 and 𝑉(𝑍𝑖𝑗𝑘) = (1 − 𝜋𝑖𝑗𝑘)𝜇𝑖𝑗𝑘 (1 + 𝜋𝑖𝑗𝑘𝜇𝑖𝑗𝑘 +
𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘
)        (6.3)         

If 𝜋𝑖𝑗𝑘 = 0; 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘) → 𝑁𝐵(𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘) 

If 𝜃𝑖𝑗𝑘 → ∞ (𝑁𝑜 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛);  𝑍𝐼𝑁𝐵(𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘)  → 𝑍𝐼𝑃(𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘) 

Proposed SwarnSeq Method 

Model adjustment for cell capture rates 
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Theorem: Let,  𝑌𝑖𝑗𝑘 be the rv for observed (known) read (UMI) counts of kth gene 

of jth cell in ith cell cluster and 𝜌𝑖𝑗𝑘 be the transcriptional capture rate rv for kth gene 

of jth cell in ith cell cluster. If 𝑍𝑖𝑗𝑘 follows a 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘) distribution, and 𝜌𝑖𝑗𝑘 

follows a binomial model with parameter 𝑝𝑖𝑗𝑘 (0 ≤ 𝑝𝑖𝑗𝑘 ≤ 1), then 𝑌𝑖𝑗𝑘 will also 

follow 𝑍𝐼𝑁𝐵 distribution with parameters (𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘). 

Proof: Given that, 𝑍𝑖𝑗𝑘~ 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘) and 𝜌𝑖𝑗𝑘 = (𝑌𝑖𝑗𝑘|𝑍𝑖𝑗𝑘 = 𝑧)~ 𝐵(𝑧, 𝑝𝑖𝑗𝑘) 

Now, the PMF of 𝑍𝑖𝑗𝑘 is given in Eq. 6.2 and the PMF of 𝜌𝑖𝑗𝑘 can be expressed in 

Eq. 6.4:                     𝑃[𝑌𝑖𝑗𝑘 = 𝑦|𝑍𝑖𝑗𝑘 = 𝑧] = (
𝑧
𝑦
) 𝑝𝑖𝑗𝑘

𝑦(1 − 𝑝𝑖𝑗𝑘)
𝑧−𝑦

                                 (6.4)                               

The joint probability distribution of 𝑌𝑖𝑗𝑘 and 𝑍𝑖𝑗𝑘 can be written as: 

𝑃[𝑌𝑖𝑗𝑘 = 𝑦, 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘] 

                              = 𝑃[𝑌𝑖𝑗𝑘 = 𝑦|𝑍𝑖𝑗𝑘 = 𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘]        (6.5)                          

Now, the marginal probability distribution of 𝑌𝑖𝑗𝑘 can be given as: 

𝑃[𝑌𝑖𝑗𝑘 = 𝑦|𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘] = ∑ 𝑃[𝑌𝑖𝑗𝑘 = 𝑦|𝑍𝑖𝑗𝑘 =𝑧

                                                        𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘]                    (6.6)     

Case-1: For zero count (𝑌𝑖𝑗𝑘 = 0) 

𝑃[𝑌𝑖𝑗𝑘 = 0|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘] = 𝑃[𝑌𝑖𝑗𝑘 = 0|𝑍𝑖𝑗𝑘

= 𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 0|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘]

+∑𝑃[𝑌𝑖𝑗𝑘 = 0|𝑍𝑖𝑗𝑘 = 𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘]

∞

𝑧=1

 

= 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘
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= 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇
′
𝑖𝑗𝑘

)
𝜃𝑖𝑗𝑘

  (𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘 = 𝜇′𝑖𝑗𝑘 (𝑠𝑎𝑦))  (6.7)                                                  

Case-2: For non-zero counts, i.e. 𝑌𝑖𝑗𝑘(> 0) = 𝑡 = 1, 2, 3, …   

𝑃[𝑌𝑖𝑗𝑘 = 𝑡|𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘]

= ∑𝑃[𝑌𝑖𝑗𝑘 = 𝑡|𝑍𝑖𝑗𝑘 = 𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘]

𝑧≥𝑡

 

= (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

∑(
𝑧

𝑡
) 𝑝𝑖𝑗𝑘

𝑡(1

𝑧≥𝑡

− 𝑝𝑖𝑗𝑘)
𝑧−𝑡 𝐺(𝑧 + 𝜃𝑖𝑗𝑘)

𝐺(𝑧 + 1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑧

 

= (1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑡+ 𝜃𝑖𝑗𝑘)

𝐺(𝑡+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘
)
𝑡

                                                        

= (1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑡+ 𝜃𝑖𝑗𝑘)

𝐺(𝑡+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇
′
𝑖𝑗𝑘

)
𝜃𝑖𝑗𝑘

(
𝜇′𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇
′
𝑖𝑗𝑘

)
𝑡

                       (6.8)                                 

Now, Eq. 6.7 and 6.8 are in the form of Eq. 6.2, which indicates the distribution of 

𝑌𝑖𝑗𝑘 is also 𝑍𝐼𝑁𝐵 (𝜋𝑖𝑗𝑘, 𝜇
′
𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘). Kindly see Appendix III for proof. When 𝑝𝑖𝑗𝑘 = 1 

(under full capture rates), then 𝑍𝐼𝑁𝐵 (𝜋𝑖𝑗𝑘 , 𝜇
′
𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘) → 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗𝑘, 𝜇𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘).  

GLM Framework in presence of Cell Capture Rates 

Here, we estimate the parameters of ZINB model from the observed scRNA-seq 

count data under a GLM framework. We have shown that the observed scRNA-

seq data, 𝑌𝑖𝑗𝑘 (for kth gene) as a ZINB rv with parameters 𝝁𝑘
′ =

(𝜇11𝑘
′ , … , 𝜇1𝑀1𝑘

′ , … 𝜇𝑁1𝑘
′ , … , 𝜇𝑁𝑀𝑁𝑘

′ ); 𝝅𝑘 = (𝜋11𝑘, … , 𝜋1𝑀1𝑘, … , 𝜋𝑁1𝑘, … , 𝜇𝑁𝑀𝑁𝑘); 𝜽𝑘 =

(𝜃11𝑘, … , 𝜃1𝑀1𝑘, … , 𝜃𝑁1𝑘, … , 𝜃𝑁𝑀𝑁𝑘) and further following GLMs (Eq. 6.9 – 6.11) are 

considered to model these parameters. 
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𝜶𝒌 = log𝝁𝑘
′ = 𝑿𝜸𝑘 + 𝑹𝒘𝑘 + 𝑪𝒔𝑘 + 𝑶𝝁                           (6.9)                                             

 𝝉𝒌 = logit 𝝅𝑘 = = 𝑿𝜷𝑘 + 𝑹𝒖𝑘 + 𝑪𝒗𝑘 + 𝑶𝝅                          (6.10)                                              

𝝋𝑘 = log𝜽𝑘                                                                                            (6.11) 

where, 𝑙𝑜𝑔𝑖𝑡(𝜋) = 𝑙𝑜𝑔 (
𝜋

1−𝜋
); 𝜶𝒌, 𝝉𝒌 and 𝝋𝒌: M×1 vector of parameters for kth gene; 

X: M×G design matrix providing group information (first column consists of 1’s to 

include intercept term); G: number of cellular groups (cell clusters are divided into 

G groups, if group is unknown); R: M×N design matrix providing cell cluster 

information; C: M×C design matrix providing cell level auxiliary information; 𝜸𝑘 and 

𝜷𝒌: G×1 vectors of cellular groups effects for kth gene; 𝒘𝑘 and 𝒖𝑘: N×1 vectors of 

cell cluster effects for kth gene; 𝒔𝑘 and 𝒗𝑘: C×1 vectors of effects for cell level co-

variates like cell cycle, cell phase, etc. for kth gene; C: Levels of cell level 

auxiliaries. 𝑶𝝁, 𝑶𝝅: offsets for 𝝁𝑘
′  and 𝝅𝑘respectively. 

Estimation of Model Parameters with EM Algorithm 

The parameters in Eq. 6.9 – 6.11 for kth gene, i.e. 𝛀𝑘 = {𝜶𝑘, 𝝉𝑘,  𝝋𝑘} can be 

estimated by using the MLE Method. However, no closed form solutions exist for 

the resulting log-likelihood equation in Eq. 6.12 Hence, we developed an EM 

algorithm to estimate the parameters for the given observed scRNA-seq count data, 

i.e. 𝑌𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘. Now, the incomplete data likelihood function for kth gene can be 

expressed as: 

  𝐿(𝛀𝑘; 𝑌𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘) = ∏ ∏ {𝜋𝑖𝑗𝑘𝛿0(𝑦𝑖𝑗𝑘) + (1 − 𝜋𝑖𝑗𝑘)𝑓𝑁𝐵(𝑦𝑖𝑗𝑘)}
𝑀𝑖
𝑗=1

𝑁
𝑖=1         (6.12)                    

Further, the EM algorithm recasts the ZINB model into a missing data problem by 

introducing a latent rv, 𝑉𝑖𝑗𝑘. Now, the 𝑉𝑖𝑗𝑘 can be defined as: 
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  𝑉𝑖𝑗𝑘 = {
1  if the observed count data comes from the zero componet
0   if the observed count data comes from the count component

  

Now, the joint likelihood function for complete data, i.e. (𝑌𝑖𝑗𝑘, 𝑉𝑖𝑗𝑘) can be expressed 

in Eq. 6.13, as: 

𝐿(𝛀𝑘; 𝑌𝑖𝑗𝑘, 𝑉𝑖𝑗𝑘) = ∏ ∏ [{𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

}

𝑉𝑖𝑗𝑘

{(1 −
𝑀𝑖
𝑗=1

𝑁
𝑖=1

                             𝜋𝑖𝑗𝑘)
𝐺(𝑧+ 𝜃𝑖𝑗𝑘)

𝐺(𝑧+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝑦𝑖𝑗𝑘

}

1−𝑉𝑖𝑗𝑘

]                        (6.13)                                             

Then, the log-likelihood function in Eq. 6.13 becomes: 

𝑙(𝛀𝑘; 𝑌𝑖𝑗𝑘, 𝑉𝑖𝑗𝑘) = ∑ ∑ 𝑉𝑖𝑗𝑘𝑙𝑜𝑔 {𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

}
𝑀𝑖
𝑗=1

𝑁
𝑖=1 + ∑ ∑ (1 −

𝑀𝑖
𝑗=1

𝑁
𝑖=1

𝑉𝑖𝑗𝑘)𝑙𝑜𝑔 {(1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑧+ 𝜃𝑖𝑗𝑘)

𝐺(𝑧+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝑦𝑖𝑗𝑘

}                                 (6.14) 

   = 𝑙1(𝛀𝑘; 𝑉𝑖𝑗𝑘) + 𝑙2(𝛀𝑘; 𝑌𝑖𝑗𝑘, 𝑉𝑖𝑗𝑘)                                                 (6.15)                      

where, 𝑙1(. ): log-likelihood due to the zero-component of the model and 𝑙2(. ): log-

likelihood due to the count-component of the model. Now, the expected value of 

the log-likelihood function, Eq. 6.14, can be expressed as: 

 𝑄 = 𝐸[𝑙(𝛀𝑘; 𝑌𝑖𝑗𝑘, 𝑉𝑖𝑗𝑘)] = ∑ ∑ 𝐸(𝑉𝑖𝑗𝑘|𝑌𝑖𝑗𝑘, 𝛀𝑘)𝑙𝑜𝑔 {𝜋𝑖𝑗𝑘 + (1 −
𝑀𝑖
𝑗=1

𝑁
𝑖=1

𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

} + ∑ ∑ 𝑤𝑖𝑗𝑘𝑙𝑜𝑔 {(1 −
𝑀𝑖
𝑗=1

𝑁
𝑖=1

𝜋𝑖𝑗𝑘)
𝐺(𝑧+ 𝜃𝑖𝑗𝑘)

𝐺(𝑧+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝑦𝑖𝑗𝑘

}                                                    (6.16) 

Further, the posterior probabilities in Eq. 6.16 for the observations originate from 

the count component of the model can be given as: 
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  𝑤𝑖𝑗𝑘 = 𝑃[𝑉𝑖𝑗𝑘 = 0|𝑌𝑖𝑗𝑘, 𝛀𝑘] =
(1−𝜋𝑖𝑗𝑘)𝑓𝑁𝐵(𝑦𝑖𝑗𝑘;𝜇𝑖𝑗𝑘,𝜃𝑖𝑗𝑘)

𝜋𝑖𝑗𝑘𝛿0(𝑦𝑖𝑗𝑘)+(1−𝜋𝑖𝑗𝑘)𝑓𝑁𝐵(𝑦𝑖𝑗𝑘;𝜇𝑖𝑗𝑘,𝜃𝑖𝑗𝑘)
              (6.17)                  

where, 𝑓𝑁𝐵(. ) is the PMF of NB distribution given in Eq. 6.1. 

A. E-step: The E-step in the EM algorithm involves evaluating the expected value 

of the log-likelihood of the complete data (Eq. 6.16), given the observed data with 

the current estimates of the parameters. In our proposed approach, for each gene, 

given the observed data and a current estimate of the ZINB parameters, the 

expected value of the log-likelihood is calculated. Let, 𝛀̂𝑘
𝑐
= {𝜶̂𝑘

𝑐 , 𝝉̂𝑘
𝑐, 𝝋̂𝒌

𝑐} be the 

given current estimate of the parameters, then the expected value of log likelihood 

in Eq. 6.16 at step (c + 1), i.e. 𝑄𝑐+1 is calculated. The conditional expectation, i.e. 

𝐸(𝑉𝑖𝑗𝑘|𝑌𝑖𝑗𝑘, 𝛀̂𝑘
𝑐
) in Eq. 6.16 can be given as: 

  𝐸(𝑉𝑖𝑗𝑘|𝑌𝑖𝑗𝑘 , 𝛀̂𝑘
𝑐
) =

𝜋̂𝑖𝑗𝑘+(1−𝜋̂𝑖𝑗𝑘)(
𝜃̂𝑖𝑗𝑘

𝜃̂𝑖𝑗𝑘+𝜇̂𝑖𝑗𝑘
)

𝜃̂𝑖𝑗𝑘

𝜋̂𝑖𝑗𝑘𝛿0(𝑦𝑖𝑗𝑘)+(1−𝜋̂𝑖𝑗𝑘)𝑓𝑁𝐵(𝑦𝑖𝑗𝑘|𝜇̂𝑖𝑗𝑘,𝜃̂𝑖𝑗𝑘)
                                   (6.18)               

B. M-step: Maximize 𝑄𝑐+1 to update the parameter estimates 

i. The parameters from the count component of the model, {𝝁̂𝑘
′ , 𝜽̂𝑘} are updated 

within the GLM framework, and can be expressed as: 

log 𝝁𝑘
′ = 𝑿𝜸𝑘 + 𝑹𝒘𝑘 + 𝑪𝒔𝑘 + 𝑶𝝁                                                             (6.19)                       

The updated value of the estimates of parameters at step (c + 1) is obtained by 

providing the observation wise weights, 𝑤̂𝑖𝑗𝑘𝑖𝑗𝑘
(𝑐)

, given in Eq. 6.17 and parameters 

estimates at c-step. For this purpose, the glm.nb function in MASS R package is 

executed. 

ii. The zero-inflation probability, 𝜋̂𝑖𝑗𝑘, is updated with the logistic regression, can 

be expressed as: 
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𝑙𝑜𝑔𝑖𝑡(𝝅𝑘) =𝑿𝜷𝑘 + 𝑹𝒖𝑘 + 𝑪𝒗𝑘 + 𝑶𝝅                                                                        (6.20) 

The updated value of 𝜋̂𝑖𝑗𝑘 at step (c + 1) is obtained by incorporating the 

observation level weights, 𝑤̂𝑖𝑗𝑘𝑖𝑗𝑘
(𝑐)

given in Eq. 6.17 and the parameters estimate at 

c-step. For this, glm(…, family= ‘binomial’) function in stat R package is executed. 

C. Starting values for EM algorithm 

The success of an iterative algorithm, e.g. EM, depends on the provision of 

supplying initial values for the parameters. In our SwarnSeq method, we provide 

the initial values for the estimators for each gene by estimating through 

Generalized Linear (GL) Poisson and GL Binomial models for non-zero and zero 

counts, respectively. For this purpose, the glm function implemented in stats 

package is executed.   

D. Assessing convergence 

The EM algorithm iterates over an Expectation (E) step and Maximization (M) step 

for each gene until convergence achieved [203,210,281]. Let, 𝛀̂𝑘
𝑐
= {𝜶̂𝑘

𝑐 , 𝝉̂𝑘
𝑐, 𝝋̂𝒌

𝑐} 

be the vector parameter estimates for kth gene. The criteria for convergence can be 

expressed as: 

            |𝑄 (𝛀̂𝑘
𝑐+1
; 𝑌𝑖𝑗𝑘, 𝑉𝑖𝑗𝑘) − 𝑄(𝛀̂𝑘

𝑐
; 𝑌𝑖𝑗𝑘, 𝑉𝑖𝑗𝑘)| < 𝜖                    (6.21)                      

where, 𝜖 is the threshold for convergence (e.g. in SwarnSeq R package, the default 

for 𝜖 = 10−10 and maximum iteration is 103). It is worthy to note that for some genes 

the EM algorithm may fail to converge or may be not successful; therefore, we used 

Nelder’s optimization algorithm [282] implemented in optim function of stats R 

package to estimate the MLE of parameters. 
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Differential expression analysis 

The gene-wise mean parameter depends on the cellular groups through the model 

given in Eq. 6.9. Further, the factors such as cell clusters and cell co-variates are 

included in the model to remove the unwanted effects. For DE analysis, two group 

comparisons are made and the model in Eq. 6.9 can be expanded as: 

𝑙𝑜𝑔(𝜇𝑖𝑗𝑘) = 𝛾0𝑘 + 𝛾1𝑘𝑥𝑖𝑗𝑘 + 𝑤1𝑘𝑟1𝑗𝑘 +⋯+𝑤𝑁𝑘𝑟𝑁𝑗𝑘 + 𝑠1𝑘𝑐1𝑗𝑘 +⋯+ 𝑠𝑚𝑘𝑐𝑚𝑗𝑘 + 𝑂𝜇𝑘                                                           

(6.22)     

where, 𝑥𝑖𝑗𝑘: binary indicator for cellular group membership, 𝛾0𝑘: (intercept term) 

logarithm of mean parameter for gene k in the reference cellular group, 𝛾1𝑘: log FC 

parameter for gene k, 𝑤𝑖𝑘: regression co-efficient for ith cell cluster for kth gene, 𝑟𝑖𝑗𝑘: 

indicator variable for cell cluster membership of jth cell in ith cluster for kth gene, 𝑠𝑚𝑘: 

regression co-efficient for mth cell co-variates of kth gene, 𝑐𝑚𝑗𝑘: indicator variable for 

mth co-variates of jth cell for kth gene and 𝑂𝜇𝑘: offset term. 

To decide whether, the kth gene is DE or not, the following hypotheses are tested. 

𝐻0: 𝛾1𝑘 = 0 𝑣𝑠. 𝐻1: 𝛾1𝑘 ≠ 0 

The above test can be performed by using LRT statistic, and can be expressed as: 

    𝐷𝑆𝑘 = −2{𝑙(𝛀𝑘 = 𝛀̂𝑘0) −  𝑙(𝛀𝑘 = 𝛀̂𝑘)}   (6.23)       

where, 𝛀̂𝑘0: MLE of 𝛀𝑘 for kth gene under the constraint of H0 and 𝛀̂𝑘: unconstrained 

MLE of 𝛀𝑘 for kth gene. The test statistic, 𝐷𝑆𝑘, follows a Chi-square distribution with 

1 degree of freedom (for 2 groups) under H0. Further, based on the distribution of 

𝐷𝑆𝑘, the p-value, adjusted p-value and FDR for kth gene can be computed after 

adjustment for multiple hypothesis testing. Then, the DE genes were detected 

through the computed FDR or adjusted p-values of the genes. 
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Testing for differential zero inflation 

Through LRT statistic(s), we have shown that genes in scRNA-seq data are highly 

zero inflated (Figure 5.3 in Chapter 5). Therefore, to facilitate DZI analysis in the 

SwarnSeq method, the gene-wise zero inflation parameter depends on the cellular 

groups through the model given in Eq. 6.10. Further, factors such as cell clusters 

and other cell-level auxiliaries are included in the model to remove the unwanted 

effects. For DZI analysis, two group comparisons are made and the model in Eq. 

6.10 can be written as: 

  𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗𝑘) = 𝛽0𝑘 + 𝛽1𝑘𝑥𝑖𝑗𝑘 + 𝑢1𝑘𝑟1𝑗𝑘 +⋯+ 𝑢𝑁𝑘𝑟𝑁𝑗𝑘 + 𝑣1𝑘𝑐1𝑗𝑘 +⋯+ 𝑣𝑚𝑘𝑐𝑚𝑗𝑘 +

𝑂𝜋𝑘                                                                                                                     (6.24) 

where, 𝑥𝑖𝑗𝑘: binary indicator for cellular group membership, 𝛽0𝑘: logarithm of mean 

parameter for gene k in the reference cellular group, 𝛽1𝑘 is the logFC parameter 

for gene k, 𝑢𝑖𝑘: the regression co-efficient for ith cell cluster for kth gene,  𝑟𝑖𝑗𝑘: 

indicator variable for cell cluster membership of jth cell in ith cluster for kth gene, 

𝑣𝑚𝑘: regression co-efficient for mth cell co-variates of kth gene, 𝑐𝑚𝑗𝑘: indicator 

variable for mth co-variates of jth cell and 𝑂𝜋𝑘: offset term. 

To decide whether, kth gene is DZI or not, the following hypotheses are tested. 

𝐻10: 𝛽1𝑘 = 0 𝑣𝑠. 𝐻1: 𝛽1𝑘 ≠ 0 

A similar test statistic to that given in Eq. 6.23 can also be developed for testing of 

DZI of genes. 

Classification of influential genes 

The SwarnSeq method can divide the detected influential genes into different 

classes, as shown in Table 3. For instance, the 𝐻0: 𝛾1𝑘 = 0 detects all the genes 
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that are DE across two cellular groups, while 𝐻10: 𝛽1𝑘 = 0 detects the DZI genes. 

Further, it detects the first type of influential genes with both H0 and H10 rejected, 

which indicates there is a significant difference in the number of cells with zero 

values for genes across the cellular groups, but the (non-zero counts) expressions 

in the remaining cells also show significant differences. We call such a group of 

influential genes as ‘DEZIG’.  

Table 6.2. Classification of influential genes using SwarnSeq method. 

 Differentially Expressed  

Differentially Zero 

Inflated 

 Yes No 

Yes DEZIG DZIG 

No DEG None 
DEZIG: Differentially Expressed and Differentially Zero Inflated Genes; 

DZIG: Differentially Zero Inflated Genes; DEG: Differentially Expressed Genes 

The second type of genes are those for which H0 is rejected, but H10 is not. This 

means that there is no significant difference in the number of cells whose 

expressions are zeros across cellular conditions for genes, but they are expressed 

differentially. We call this type of genes as ‘DEG’. Further, the third type (DZIG) of 

genes is that for which H10 is rejected, but H0 is not. It includes genes for which, 

there is a significant difference in the number of cells with real zero values across 

the two cellular conditions, but the expression in the remaining cells shows no 

significant difference. 

Estimation of capture rates parameter 

The distribution of the observed scRNA-seq read counts (UMI) depends on the cell 

specific transcriptional efficiency parameter, pijk. For computational simplicity, we 

assume 𝑝𝑖𝑗1 = 𝑝𝑖𝑗2 = ⋯ = 𝑝𝑖𝑗𝐾 = 𝑝𝑖𝑗, i.e., the cell specific efficiency parameters 
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remain same across all the genes. The proposed procedure for estimation of cell 

capture rate parameters is described as follows. 

Case 1: When RNA spike-ins are available 

Suppose n RNA spike-ins are added to each cell’s lysate and spike-in transcripts 

are processed in parallel, which will result a set of read (UMI) read counts for spike-

in transcripts. Let, 𝐶1, 𝐶2, … , 𝐶𝑛 be the respective mRNA concentrations of n spike-

in transcripts added to jth (j=1, 2, …, Mi) cell of ith (i=1, 2, …, N) cell cluster and 

𝑅𝑖𝑗1, 𝑅𝑖𝑗2, … , 𝑅𝑖𝑗𝑛 be the observed UMI counts of the n RNA spike-in transcripts for 

jth cell. Now, the transcriptional capture rate for jth cell in ith cell cluster can be 

estimated through a linear regression equation, given in Eq. 6.25. 

𝑅𝑖𝑗𝑘 = 𝑝𝑖𝑗0 + 𝑝𝑖𝑗1𝐶𝑘 + 𝜖𝑘                                                              (6.25)                                             

Here, 𝑝̂𝑖𝑗1, regression co-efficient, is the estimate of the capture rate for jth cell in 

ith cell cluster. 

Case 2: When RNA spike-ins are not available 

Transcriptional capture efficiency parameters of cells are the key factors for 

variation in the observed cell specific library sizes [260]. Hence, the observed cell 

library sizes can be used to empirically compute the cell specific capture rate, 

which is given as:  

Let, (𝜌1, 𝜌2) be the range of capture rates and 𝑆𝑖𝑗 be the library size of jth cell in ith 

cell cluster and , 𝐿𝑖𝑗 = 𝑙𝑜𝑔10(𝑆𝑖𝑗)  ∀ 𝑖, 𝑗  

Now, 𝐿𝑚𝑖𝑛 = min
𝑗
𝐿𝑖𝑗 and 𝐿𝑚𝑎𝑥 = max

𝑗
𝐿𝑖𝑗 

𝑝̂𝑖𝑗 = 𝜌1 + (𝜌2 − 𝜌1)
𝐿𝑖𝑗−𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛
                                                                     (6.26) 
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Determination optimal number of cell clusters from scRNA-seq data 

Let, 𝑌𝑖𝑗.: mean expression value of jth cell in ith cell cluster, 𝑌𝑖..: mean expression 

value of ith cell cluster, and 𝑌… be the over-all mean. Then, the Total Sum of 

Squares (TSS) can be expressed as: 

𝑇𝑆𝑆 =∑ ∑ (𝑌𝑖𝑗. − 𝑌…)
2𝑀𝑖

𝑗=1

𝑁

𝑖=1
 

=∑ ∑ (𝑌𝑖𝑗. − 𝑌𝑖..)
2𝑀𝑖

𝑗=1

𝑁

𝑖=1
+∑ 𝑀𝑖

𝑁

𝑖=1
(𝑌𝑖.. − 𝑌…)

2 

= 𝑊𝑆𝑆 + 𝐵𝑆𝑆                                     (6.27)              

where, 𝑊𝑆𝑆: Within cluster Sum of Squares, 𝐵𝑆𝑆:  Between cluster Sum of 

Squares. Now, the proposed index can be given as: 

𝑟ℎ =
𝑊𝑆𝑆

𝐵𝑆𝑆
                                                                                                  (6.28) 

For different values of number of clusters (h) in the scRNA-seq data, the r-measure 

is computed through Eq. 6.28.  The h value which provides the maximum value for 

r, can be chosen as the estimator for optimum cell clusters for the observed 

scRNA-seq data. The optimum number of cell clusters for all the 10 datasets are 

determined through the above technique, and the results are shown in Figure 6.1. 

Performance evaluation metrics 

The performance of SwarnSeq method for identifying genuine DE genes was 

evaluated with respect to 11 existing competitive methods using the AUROC (i.e. 

TPR vs. FPR), and other performance metrics on 10 real scRNA-seq datasets (see 

Materials section). These metrics include TP, FP, TN, FN, TPR, FPR, PPR, FDR, 

NPV, ACC, and F1, which are defined in Eq. 5.43 – 5.50 of the Chapter 5. 
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Figure 6.1. Cluster analysis and determination of optium number of cell clusters 
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for real scRNA-seq datasets. Clustering analysis is performed on the scRNA-seq datasets 

through k-means algorithm. The optimum number of cell clusters is determined for each scRNA-
seq datasets through above proposed method (Eq. 6.28) implemented in OptimCluster function 
implemented in SwarnSeq R package. X-axis represents number of cell clusters. Y-axis represents 
clustering index. Here, the number of cell clusters is kept in the range of [2, 50]. Vertical lines 
represent the optimum number of cell clusters with k value. The graphs are shown for for (A) 
GSE53638 (Data 1); (B) GSE77728; (C) GSE53638 (Data 3); (D) GSE53638 (Data 2); (E) 
GSE29087; (F) GSE65525 (G) GSE111108; (H) GSE92495; (I) GSE115469; (J) GSE109999. 

Results 

Preliminary analytical results 

In the Chapter 5, we considered two publicly available zero inflated and 

overdispersed datasets to show the suitability and goodness of fit of different count 

data models, viz. NB, ZINB, PD, HD and ZIPD [270,271]. Besides, in this chapter 

we used one real scRNA-seq data to fit the above models and the results are 

shown in Table 6.3.  

Table 6.3. Fitting of well-known discrete models to scRNA-seq read count data. 

Reads Obs. 
Freq. 

Pred. Freq. 
NB 

Pred. Freq. 
PD 

Pred. Freq. 
HD 

Pred. Freq. 
ZINB 

Pred. Freq. 
ZIP 

0 115 108.05 0.09 4.82 126.82 115 

1 84 57.92 0.78 3.34 56.96 0.06 

2 45 42.58 3.37 20.33 39.79 0.36 

3 33 34.13 9.73 13.54 31.11 1.34 

4 31 28.48 21.03 42.8 25.61 3.73 

5 18 24.34 36.39 27.48 21.73 8.32 

6 12 21.13 52.46 59.94 18.79 15.44 

… … … … … … … 

19 7 5.41 0.47 2.74 5.2 3.71 

20 5 4.95 0.2 2.19 4.8 2.06 

21 5 4.53 0.08 1.11 4.43 1.09 

22 4 4.15 0.03 0.83 4.1 0.55 

23 5 3.8 0.01 0.41 3.8 0.27 

24 6 3.49 0 0.29 3.53 0.12 

25 4 3.21 0 0.14 3.27 0.06 

26 7 2.95 0 0.09 3.04 0.02 

… … … … … … .. 

29 3 2.29 0 0.01 2.45 0 

42 3 0.81 0 0 1.01 0 
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43 1 0.75 0 0 0.94 0 

46 3 0.59 0 0 0.78 0 

47 1 0.55 0 0 0.73 0 

49 2 0.47 0 0 0.64 0 

50 2 0.44 0 0 0.6 0 

Paramet
ers 

(MLE) 

 
µ=8.14 
𝜃=0.574 

µ=8.65 µ=8.651 
𝜑=1.92 

µ=8.652 
𝜃=0.47377 

𝜋=1.17e-05 

µ=11.1373 
𝜋=0.224 

Our analytical results indicated that the expected frequencies computed from ZINB 

are much closer to their observed counter parts as compared to other models 

(Table 6.3). At this preliminary stage, we can infer that ZINB model best suits to 

the zero inflated and overdispersed scRNA-seq data as compared to NB model 

extensively used in RNA-seq data analysis. 

Proposed Model overview 

Figure 6.2 gives an overview of the SwarnSeq method framework. The observed 

counts in the scRNA-seq are noisy reflection of the true expression of genes due 

to low transcriptional capturing (Figures 5.1, 6.2). We modelled the observed read 

counts, Yijk of kth gene in jth cell in ith cluster, as the joint distribution of kth gene’s 

true expression Zijk and transcriptional capture rate (𝑝𝑖𝑗𝑘) of jth cell in ith cluster. In 

other words, after incorporating the transcriptional capturing procedure in the 

modeling process, the mean of non-zero counts in ZINB distribution depends on 

cell capturing rate parameter. 

Figure 6.2. Illustration of the operational framework of the SwarnSeq method. (A) 

cross-cell distribution of observed scRNA-seq counts; (B) cross-cell distribution of true/adjusted 
scRNA-seq counts with capture efficiency with respect to spike-ins information; (C) Auxiliary 
information such as cell cluster and cell level co-variates as inputs to the SwarnSeq; (D) Details of 
SwarnSeq method fitted for each gene; (E) For each gene, the output of SwarnSeq includes the 
distribution characterization (i.e. mean, dispersion and zero inflation) over cell populations, 
differential expression testing between two cell populations, differential zero inflation testing 
between two cell populations, effects of cell clusters on zero-inflation parameter and mean of non-
zero counts, effects of cell level auxiliary information on zero-inflation parameter and mean of non-
zero counts. 
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The relation between the capture efficiency with the distribution of the observed 

read counts is shown in Figure 6.3. 
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Figure 6.3. Data structures, Models, and Distributions used in the SwarnSeq 
method. (A) Structure of the observed scRNA-seq data; (B) Input structure of the true scRNA-seq 

data adjusted with capture efficiency; (C) Input structure of the normalized true scRNA-seq data; 
(D) ZINB and transcriptional capture models used in SwarnSeq approach; (E) Histogram of zero 
percentages of all expressed genes in a real scRNA-seq dataset; (F) An example of ZINB model 
fitting for scRNA-seq data. The fitting of observed and theoretical ZINB models are shown for real 
scRNA-seq data for a gene; (G) Cumulative distribution function fitting for observed and theoretical 
ZINB models; (H) Theoretical ZINB distribution of observed scRNA-seq counts of a gene with 
different random capture efficiency. The distributions are shown for capture efficiencies 100%, 
70%, 50%, 30%, 20% and 10%. Here, the 100% capture efficiency represents the distribution of 
true scRNA-seq counts; (I) The histograms of zero probabilities for different capture efficiencies are 
shown. The red color bars represent the probability density of real true zero expressions. The blue 
bars represent the probability density of the NB part of the ZINB model. (J) The plot shows the 
relation between the probability of drop-out events and capture efficiencies of cells. (K) The relation 
between the library sizes and the capture efficiencies of the cells is shown. (L) Deciding the number 
of optimum cell clusters for a real scRNA-seq data. CE: Capture Efficiency. 

The relation among means of count part in ZINB model before and after 

incorporation of the transcriptional capturing procedure is found to be 𝜇𝑖𝑗𝑘 > 𝜇′𝑖𝑗𝑘 

(Eq. 6.29). In other words, the distribution of observed scRNA-seq read counts 

shift more towards zeros after incorporation of the transcriptional capturing process 

(Figure 6.3). This means that more zeros are found in observed data and will be 

from the count part of the model. Further, the expected value and variance of 

observed read counts of genes depends (i.e., directly proportional) on the cell 

capture rate (Appendix IV) and can be expressed in Eq. 6.29 and 6.30. Here, when 

𝑝𝑖𝑗𝑘 becomes smaller both mean and variance of 𝑌𝑖𝑗𝑘 also becomes smaller. 

𝐸(𝑌𝑖𝑗𝑘) = (1 − 𝜋𝑖𝑗𝑘)𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘                                                         (6.29) 

𝑉(𝑌𝑖𝑗𝑘) = (1 − 𝜋𝑖𝑗𝑘)𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘 (1 + 𝜋𝑖𝑗𝑘𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘 +
𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘

𝜃𝑖𝑗𝑘
)               (6.30) 

The relations between the expected value and variance of the observed read 

counts, the estimated parameters of the SwarnSeq Model, Eq. 6.5 – 6.8, and the 

cell capture parameters (Eq. 6.25, 6.26) are shown in Figures 6.4 – 6.6. 

Figure 6.4. Relation among expected value, variance, and co-efficient variation of 
the SwarnSeq model. (A) Expected value vs. Variance plot. The relation between the expected 

value and variance of the SwarnSeq model given in Eq. 6.29, 6.30 is shown. X-axis represents the 
log transformed expected value and Y-axis represents the log transformed variance. (B) Expected 
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value vs. Co-efficient of Variation (CV) plot. X-axis represents the log transformed expected value 
and Y-axis represents the log transformed value of CV. (C) CV vs. Zero inflation plot. The relation 
between the CV and Zero inflation probability parameter of the SwarnSeq model is shown. X-axis 
represents the log transformed CV and Y-axis represents the log transformed value of Zero inflation 
probability. (D) CV vs. Dispersion plot. X-axis represents the log transformed CV and Y-axis 
represents the log transformed value of Dispersion. (E) Variance vs. Zero inflation plot. X-axis 
represents the log transformed Variance and Y-axis represents the log transformed value of Zero 
inflation probability. (F) Variance vs. Dispersion plot. X-axis represents the log transformed 
Variance and Y-axis represents the log transformed value of the dispersion 

Figure 6.5. Relation among gene parameter estimates of SwarnSeq model. Here, 

the parameters of the ZINB model shown in Eq. are estimated through MLE method. (A) Mean of 
count parts vs. Dispersion plot. X-axis represents the log transformed value of mean count parts 
and Y-axis represents the log transformed value of the estimated dispersion parameter. (B) Mean 
of count parts vs. Zero inflation probability plot. The relation between the mean count parts (NB 
part) with the zero inflation probability parameters of the SwarnSeq model is shown. (C) Dispersion 
vs. Zero inflation parameter plot. The relation between the dispersion parameter from the NB part 
of the ZINB model with zero inflation probability parameters of the SwarnSeq model is shown. (D) 
Observed zero proportions vs. Estimated zero inflation probability plot. The relation between the 
Zero inflation probability parameter of the SwarnSeq model with the observed zero proportions 
present in the scRNA-seq data is shown (E) Observed zero proportions vs.  (Observed zero - zero 
inflation) probability plot. The relation between the observed zero proportions present in the scRNA-
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seq data and the (Observed zero - zero inflation) probability is shown (F) Dropout zeros vs. True 
Zeros plot.  The relation between the Dropout zeros, i.e. excess zeros present in scRNA-seq data 
modeled through Dirac’s delta function in Eq. 5.3, and the True zeros from the NB model is shown. 

Figure 6.6. Relation among cell specific parameters estimated through the 
SwarnSeq model. (A) Cell library size distribution over cells. In X-axis, the ranks of the cells are 

shown, and Y-axis shows the library sizes of the cells. Here, the underlying distribution is S-shaped. 
(B) Zero inflation vs. Cell library sizes plot.  Relationship between the cell library sizes and the zero 
counts in cell are shown. Here, X-axis represents the cell library sizes and Y-axis represents the 
zero counts percentages in the cells. It can be shown that every cell has higher zero counts (>40%) 
as expression of genes, due to the availability of lower concentration of mRNA molecules. Further, 
the cell library sizes are inversely proportional to the zero percentage in cells. In other words, the 
cells with higher library sizes contain lesser percentages of zeros and vice-versa. (C) Cell library 
size vs. Cell capture rates plot. The relation between the library sizes and the capture efficiencies 
of the cells estimated from SwarnSeq model is shown. The library sizes and mRNA molecules 
capture rates of the cells are represented in X-axis and Y-axis, respectively. Here, the library sizes 
are directly proportional to the capture rate of cells (D) The log-transformation of cell library sizes 
is plotted with log transformation of cell capture rates and a curve is fitted shown in red color. (E) 
Mean non-zero counts of cells vs. zeros percentage in cells plot. The relation between the mean 
non-zero counts and zero percentages in cells is shown. Here, the relation between the zero 
percentages and mean non-zero counts in cells is reciprocal. (F) Zeros percentage in cell vs. Cell 
capture rates plot. The relation between the zeros present in the cell with the cell capture rates is 
shown. X-axis represents the Zeros percentage in cell and Y-axis represents the cell capture rates. 
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Here, the relation is inversely proportional, means cells with higher capture rates have lesser zeros 
as counts expression the cell. 

 

 

The mixture probability and dispersion parameters (Eq. 6.29 and 6.30) for the 

observed read counts remain unchanged after the incorporation of transcriptional 

capture efficiency parameter in the modelling process. For instance, when 𝑝𝑖𝑗𝑘 =

1 (100% capture), the genes in a cell will have zero counts which are not truly 

expressed (i.e. biological zeros); this is expected under a perfect deep sequencing 

scenario. In other words, observed read counts are the true expected counts of 
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genes in a cell under a perfect deep sequencing scenario. When 𝑝𝑖𝑗𝑘 <

1 (𝑟𝑒𝑎𝑙 𝑐𝑎𝑠𝑒), the zeros in the observed scRNA-seq read counts are the mixture of 

drop-out and true zeros. It may be noted that 𝜋𝑖𝑗𝑘 remain unaffected by the capture 

rate parameter, hence, the 𝜋̂𝑖𝑗𝑘 from observed data can be used to measure the 

proportions of true zeros of genes in the data. 

SwarnSeq allows the modeling of the effects of cellular groups, cell clusters 

and other cell-level covariates on both the zero-inflation probability and mean of 

non-zero read counts. When cell level auxiliary information is specified, SwarnSeq 

uses a log-linear model for the covariate effect on mean and a logit model for the 

covariate effect on zero-inflation in a GLM framework. Further, SwarnSeq performs 

for DE analysis of genes for a given two groups situation and can be generalized 

to multiple groups situation. The DZI analysis of genes of scRNA-seq data is 

allowed in the SwarnSeq method, which leads to the identification of severely zero-

inflated genes over the cellular populations. Additionally, genes in scRNA-seq data 

are classified into different gene types based on DE and DZI analysis (Table 6.2). 

SwarnSeq as Differential Expression tool 

We benchmarked the proposed SwarnSeq method against 11 existing methods 

for DE analysis (described in Chapter 5) on a wide range of real scRNA-seq 

datasets. The problem in benchmarking of scRNA-seq DE methods on real 

scRNA-seq datasets is the unavailability of reference genes. Hence, to obtain a 

credible list of reference genes, we used FC criterion (i.e. ratios of mean 

expressions of genes over the two groups). For each of the 10 datasets, we 

selected the top 3000 genes based on the FC criterion as reference gene lists.  
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The 12 scRNA-seq DE methods, including SwarnSeq, were benchmarked 

using all the 10 datasets, and the SwarnSeq method was also applied to data from 

Tung et al., where ERCC spike-ins are available. We used the processed UMI 

count data for these scRNA-seq studies as these datasets have gone through 

careful quality control steps by the authors of the original publications.  

Benchmarking based on Receiver Operating Characteristic 

This comparison setting used the experimental designs and the count datasets for 

performance analysis of DE methods. For instance, Mouse cell data (GSE29087) 

[196] was used to detect DE genes between 48 mouse embryonic stem cells and 

44 mouse embryonic fibroblast cells. Then, the 12 competitive methods, including 

SwarnSeq, were compared in terms of their AUC using the identified reference 

gene lists. Basically, through each of the method, DE gene sets of size 3000 are 

selected for each of the datasets. Then, the AUC values were computed by 

executing proc function implemented in pROC R package [283] using the output 

(i.e. p-values or adjusted p-values) of each method as predictor, and a binary 

vector, indicating whether a gene belongs to the reference gene list, as response. 

The ROC curves of different methods are shown in Figures 6.7, 6.8 along with 

corresponding AUC values.  
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Figure 6.7.  Differential expression analysis of real scRNA-seq data (Part I). 
Receiver Operating Characteristic curves for differential expression methods on different 
real scRNA-seq data. Evaluation of the performance of different methods based on 
AUROC is shown for (A) GSE53638 (Data 1); (B) GSE77728; (C) GSE53638 (Data 3); 
(D) GSE53638 (Data 2); (E) GSE29087; (F) GSE65525. Different goldstandard gene lists 
are prepared based on the FC values for benchmarking various differential expression 
analysis methods on different real scRNA-seq datasets.  
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Figure 6.8.  Differential expression (DE) analysis of real scRNA-seq data (Part II). 
Receiver operating characteristic curves for differential expression methods on different real 
scRNA-seq data. Evaluation of the performance of different methods based on Area Under 
Receiver Operating Characteristic Curves (AUC) is shown for (A) GSE111108; (B) 
GSE92495; (C) GSE115469; (D) GSE109999. Different goldstandard gene lists are 
prepared based on the fold change values for benchmarking different differential 
expression analysis methods on different real scRNA-seq datasets. Swarnseq achieves 
competitive and better accuarcy for identifying genuine differential gene lists in all four 
different real datasets. DE methods are denoted by different colors. 

In this comparison setting for GSE53638 (data 1), the SwarnSeq 

(0.76) produced highest AUC values followed by DECENT (0.66), MAST 

(0.61), DESingle (0.61), Monocle (0.54), and BPSC (0.52) among single cell 
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specific tools (Figure 6.7A). The scDD performed the worst among the scRNA-seq 

DE tools for this data. Further, edgeR (0.54) had higher AUC values followed by 

Limma (0.52), DEGseq (0.51) and DESeq2 (0.48) in the bulk RNA-seq tool 

category (Figure 6.7A). Importantly, it was found that the SwarnSeq performed 

better than other methods of both bulk and scRNA-seq DE tools. For GSE53638 

(data 3) data, SwarnSeq (0.73) had the highest AUC values followed by DECENT 

(0.70) and performed best among bulk and scRNA-seq DE tools (Figure 6.7C). 

Moreover, among bulk RNA-seq DE tools, edgeR (0.54) had higher AUC followed 

by Limma (0.52), DEGseq (0.51) for the GSE53638 (3) data (Figure 6.7C). 

Similarly, for GSE29087 data, the AUC for SwarnSeq method was highest (0.83) 

among other competitive bulk and single cell RNA-seq DE tools (Figure 6.7B). 

Among the bulk RNA-seq DE tools, Limma had higher AUC (0.62), when applied 

to GSE29087 scRNA-seq data. Similar interpretations can be made for other 

datasets, as shown in Figures 6.7 and 6.8. Our analysis indicated that under 

AUROC settings, our SwarnSeq method performed better in 8 datasets (with rank 

1) and competitive with other methods in remaining 2 datasets (rank 2 and 3) 

(Figures 6.7 and 6.8). In other words, the performance of SwarnSeq method is 

consistently better than other competitive methods on real scRNA-seq datasets. 

Benchmarking based on FDR 

The second comparison setting included assessment of the 12 methods through 

computation of FDRs for different DE gene sets on the 10 different real scRNA-

seq datasets. For this purpose, different DE gene sets of sizes 100, 200, 300, …, 

3000 were selected based on the p-values/adjusted p-values computed through 
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each of the 12 methods. Then, the selected DE genes were compared with respect 

to the reference gene list to compute FDRs for each of the 10 datasets. The results 

are shown in Figures 6.9 and 6.10. 

 

Figure 6.9. FDR based Performance analysis of  DE methods on real scRNA-seq 
data. FDR curves for differential expression methods on different real scRNA-seq data are shown. 

Evaluation of the performance of different methods based on false discovery rate is shown for (A) 
GSE53638 (Data 1); (B) GSE77728; (C) GSE53638 (Data 3); (D) GSE53638 (Data 2); (E) 
GSE29087; (F) GSE65525. Different reference gene lists are prepared based on the FC values for 
benchmarking different differential expression analysis methods on different real scRNA-seq 
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datasets. SwarnSeq achieves competitive and better accuarcy for identifying genuine differential 
gene lists in all four different real datasets. DE methods are denoted by different colors. 

 

Figure 6.10. FDR based Performance analysis of  DE methods on real scRNA-
seq data (part II). FDR curves for differential expression methods on different real scRNA-seq 

data are shown. Evaluation of the performance of different methods based on false discovery rate 
is shown for (A) GSE111108; (B) GSE92495; (C) GSE115469; (D) GSE109999. 

In this comparison setting, it was found that the FDR computed for the 

SwarnSeq method was found to be lower as compared to other competitive 

methods for GSE53638 (data 1) (Figure 6.9A). Similar findings were observed 

across all the selected DE gene sets for the same data (Figure 6.9). This indicates 

that the proposed SwarnSeq performed better to detect DE genes as compared to 

other competitive methods. Also, its performance was found to be robust 

compared to methods across all DE gene sets. Similar interpretations can be made 

for other remaining datasets (Figures 6.9, 6.10). Under this FDR based 

comparison setting on multiple real scRNA-seq datasets, we demonstrated our 



199 
 

SwarnSeq method was consistently better and more robust to detect the DE genes 

of various sizes with respect to other bulk and scRNA-seq DE tools.   

Benchmarking based on other performance metrics 

This comparison setting included the performance evaluation of the 12 scRNA-seq 

DE tools based on performance metrics, viz. TP, TN, FN, FP, FPR, NPV, F1, and 

ACC on the10 scRNA-seq datasets. For this purpose, the DE methods were 

applied to each dataset following the instructions and recommendations of their 

respective software packages. Genes were declared as DE based on their 

computed p-values/adjusted p-values and subsequently DE gene sets of sizes 

500, 1000, 1500, …, 3000 were selected for each of the datasets. Then, the 

performance metrics were computed for the DEGs from different datasets and the 

results are given in Tables 6.4, 6.5 – 6.10. 

In this comparison setting, for a DE gene set of size 500, the SwarnSeq 

method identified more TP genes, followed by DECENT as compared to other 

competitive methods in GSE29087 data (Table 6.4). Further, the value of FP, FN, 

and FPR for the SwarnSeq was observed to be lower than other competitive 

methods. Moreover, the values of TPR, NPV, ACC, and F1 for SwarnSeq method 

were found to be higher than from other methods (Table 6.4).  

Table 6.4. Performance evaluation metrics for GSE29087 scRNA-seq data. 
    

NDEG = 500 
     

Methods TP FP TN FN TPR FPR PPR NPV ACC F1 

SwarnSeq 500 0 8436 2500 0.167 0.000 1.000 0.771 0.781 0.286 

DEGSeq 181 319 8140 2819 0.060 0.038 0.362 0.743 0.726 0.103 

DESeq2 346 154 8282 2654 0.115 0.018 0.692 0.757 0.754 0.198 

DESingle 344 156 8280 2656 0.115 0.018 0.688 0.757 0.754 0.197 

EdgeR 364 136 8302 2636 0.121 0.016 0.728 0.759 0.758 0.208 

Limma 182 318 8188 2818 0.061 0.037 0.364 0.744 0.727 0.104 
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DECENT 355 145 8291 2645 0.118 0.017 0.710 0.758 0.756 0.203 

MAST 258 242 8195 2742 0.086 0.029 0.516 0.749 0.739 0.147 

Monocle 275 225 8212 2725 0.092 0.027 0.550 0.751 0.742 0.157 

NODES 174 326 8110 2826 0.058 0.039 0.348 0.742 0.724 0.099 

scDD 202 298 8138 2798 0.067 0.035 0.404 0.744 0.729 0.115 

BPSC 308 192 8244 2692 0.103 0.023 0.616 0.754 0.748 0.176     
NDEG = 1000 

     

SwarnSeq 1000 0 8436 2000 0.333 0.000 1.000 0.808 0.825 0.500 

DEGSeq 357 643 7846 2643 0.119 0.076 0.357 0.748 0.714 0.179 

DESeq2 641 359 8077 2359 0.214 0.043 0.641 0.774 0.762 0.321 

DESingle 585 415 8021 2415 0.195 0.049 0.585 0.769 0.753 0.293 

EdgeR 718 282 8164 2282 0.239 0.033 0.718 0.782 0.776 0.359 

Limma 198 802 8126 2802 0.066 0.090 0.198 0.744 0.698 0.099 

DECENT 706 294 8142 2294 0.235 0.035 0.706 0.780 0.774 0.353 

MAST 449 551 7894 2551 0.150 0.065 0.449 0.756 0.729 0.225 

Monocle 495 505 7934 2505 0.165 0.060 0.495 0.760 0.737 0.248 

NODES 301 699 7737 2699 0.100 0.083 0.301 0.741 0.703 0.151 

scDD 362 638 7798 2638 0.121 0.076 0.362 0.747 0.714 0.181 

BPSC 481 519 7917 2519 0.160 0.062 0.481 0.759 0.734 0.241      
NDEG = 1500 

    

SwarnSeq 1242 258 8178 1758 0.414 0.031 0.828 0.823 0.824 0.552 

DEGSeq 510 990 7539 2490 0.170 0.116 0.340 0.752 0.698 0.227 

DESeq2 886 614 7822 2114 0.295 0.073 0.591 0.787 0.761 0.394 

DESingle 782 718 7718 2218 0.261 0.085 0.521 0.777 0.743 0.348 

EdgeR 1037 463 7997 1963 0.346 0.055 0.691 0.803 0.788 0.461 

Limma 212 1288 8052 2788 0.071 0.138 0.141 0.743 0.670 0.094 

DECENT 1025 475 7961 1975 0.342 0.056 0.683 0.801 0.786 0.456 

MAST 630 870 7589 2370 0.210 0.103 0.420 0.762 0.717 0.280 

Monocle 720 780 7663 2280 0.240 0.092 0.480 0.771 0.733 0.320 

NODES 403 1097 7339 2597 0.134 0.130 0.269 0.739 0.677 0.179 

scDD 513 987 7449 2487 0.171 0.117 0.342 0.750 0.696 0.228 

BPSC 671 829 7607 2329 0.224 0.098 0.447 0.766 0.724 0.298      
NDEG = 2000 

    

SwarnSeq 1320 680 7803 1680 0.440 0.080 0.660 0.823 0.794 0.528 

DEGSeq 682 1318 7238 2318 0.227 0.154 0.341 0.757 0.685 0.273 

DESeq2 1117 883 7553 1883 0.372 0.105 0.559 0.800 0.758 0.447 

DESingle 946 1054 7382 2054 0.315 0.125 0.473 0.782 0.728 0.378 

EdgeR 1242 758 7678 1758 0.414 0.090 0.621 0.814 0.780 0.497 

Limma 228 1772 7978 2772 0.076 0.182 0.114 0.742 0.644 0.091 

DECENT 1314 686 7757 1686 0.438 0.081 0.657 0.821 0.793 0.526 

MAST 795 1205 7289 2205 0.265 0.142 0.398 0.768 0.703 0.318 

Monocle 925 1075 7376 2075 0.308 0.127 0.463 0.780 0.725 0.370 

NODES 485 1515 6925 2515 0.162 0.180 0.243 0.734 0.648 0.194 

scDD 633 1367 7069 2367 0.211 0.162 0.317 0.749 0.673 0.253 
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BPSC 832 1168 7268 2168 0.277 0.138 0.416 0.770 0.708 0.333      
NDEG = 2500 

    

SwarnSeq 1601 899 7612 1399 0.534 0.106 0.640 0.845 0.800 0.582 

DEGSeq 874 1626 6966 2126 0.291 0.189 0.350 0.766 0.676 0.318 

DESeq2 1327 1173 7263 1673 0.442 0.139 0.531 0.813 0.751 0.483 

DESingle 1103 1397 7039 1897 0.368 0.166 0.441 0.788 0.712 0.401 

EdgeR 1242 1258 7178 1758 0.414 0.149 0.497 0.803 0.736 0.452 

Limma 255 2245 7915 2745 0.085 0.221 0.102 0.742 0.621 0.093 

DECENT 1548 952 7499 1452 0.516 0.113 0.619 0.838 0.790 0.563 

MAST 945 1555 6973 2055 0.315 0.182 0.378 0.772 0.687 0.344 

Monocle 1114 1386 7071 1886 0.371 0.164 0.446 0.789 0.714 0.405 

NODES 556 1944 6517 2444 0.185 0.230 0.222 0.727 0.617 0.202 

scDD 744 1756 6680 2256 0.248 0.208 0.298 0.748 0.649 0.271 

BPSC 999 1501 6935 2001 0.333 0.178 0.400 0.776 0.694 0.363      
NDEG = 3000 

    

SwarnSeq 1837 1163 7386 1163 0.612 0.136 0.612 0.864 0.799 0.612 

DEGSeq 1055 1945 6681 1945 0.352 0.225 0.352 0.775 0.665 0.352 

DESeq2 1502 1498 6938 1498 0.501 0.178 0.501 0.822 0.738 0.501 

DESingle 1249 1751 6685 1751 0.416 0.208 0.416 0.792 0.694 0.416 

EdgeR 1450 1550 6886 1550 0.483 0.184 0.483 0.816 0.729 0.483 

Limma 279 2721 7813 2721 0.093 0.258 0.093 0.742 0.598 0.093 

DECENT 1754 1246 7217 1246 0.585 0.147 0.585 0.853 0.783 0.585 

MAST 1074 1926 6651 1926 0.358 0.225 0.358 0.775 0.667 0.358 

Monocle 1303 1697 6769 1697 0.434 0.200 0.434 0.800 0.704 0.434 

NODES 633 2367 6106 2367 0.211 0.279 0.211 0.721 0.587 0.211 

scDD 845 2155 6281 2155 0.282 0.255 0.282 0.745 0.623 0.282 

BPSC 1181 1819 6617 1819 0.394 0.216 0.394 0.784 0.682 0.394 
TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative; TPR: True Positive 
 Rate; FPR: False Positive Rate; PPR: Positive Prediction Rate; NPV: Negative Prediction Value;  
ACC: Accuracy; F1: F-score 

This finding indicates the better performance of our proposed method in 

terms of various computed metrics for the GSE29087 dataset. Further, we 

demonstrated consistently similar findings for our method over other DE gene sets 

of sizes 500, 1000, 1500, …, 3000 (Table 6.4). Similar interpretations can be made 

for other datasets, as shown in Table 6.5 – 6.10. The comparative analysis under 

this setting gave us confidence that our SwarnSeq method can detect the genes, 

which are truly DE in wide range of real datasets. Furthermore, its performance 
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was consistently better over the considered competitive scRNA-seq DE methods, 

when assessed through various performance metrics. 

Table 6.5. Performance evaluation metrics for GSE92495 scRNA-seq data. 

      NDEG = 500    
Methods TP FP FN TPR FPR FDR PPR NPV ACC F1 

SwarnSeq 292 208 2708 0.097 0.017 0.416 0.584 0.820 0.812 0.167 

DEGSeq 193 307 2807 0.064 0.025 0.614 0.386 0.813 0.799 0.110 

DESeq2 45 455 2955 0.015 0.036 0.910 0.090 0.803 0.780 0.026 

DESingle 150 350 2850 0.050 0.028 0.700 0.300 0.810 0.794 0.086 

EdgeR 1 499 2999 0.000 0.040 0.998 0.002 0.800 0.775 0.001 

Limma 226 274 2774 0.075 0.022 0.548 0.452 0.818 0.806 0.129 

DECENT 310 190 2690 0.103 0.015 0.380 0.620 0.821 0.815 0.177 

MAST 9 491 2991 0.003 0.039 0.982 0.018 0.801 0.776 0.005 

Monocle 273 227 2727 0.091 0.018 0.454 0.546 0.819 0.810 0.156 

NODES 18 482 2982 0.006 0.038 0.964 0.036 0.802 0.777 0.010 

ScDD 29 471 2971 0.010 0.038 0.942 0.058 0.802 0.778 0.017 

BPSC 1 499 2999 0.000 0.040 0.998 0.002 0.800 0.775 0.001 

      NDEG=1000    

SwarnSeq 506 494 2494 0.169 0.039 0.494 0.506 0.828 0.808 0.253 

DEGSeq 423 577 2577 0.141 0.046 0.577 0.423 0.823 0.797 0.212 

DESeq2 55 945 2945 0.018 0.075 0.945 0.055 0.797 0.749 0.028 

DESingle 150 850 2850 0.050 0.068 0.850 0.150 0.804 0.762 0.075 

EdgeR 1 999 2999 0.000 0.080 0.999 0.001 0.794 0.742 0.001 

Limma 435 565 2565 0.145 0.044 0.565 0.435 0.827 0.802 0.218 

DECENT 595 405 2405 0.198 0.032 0.405 0.595 0.835 0.819 0.298 

MAST 12 988 2988 0.004 0.079 0.988 0.012 0.794 0.744 0.006 

Monocle 550 450 2450 0.183 0.036 0.450 0.550 0.831 0.813 0.275 

NODES 37 963 2963 0.012 0.077 0.963 0.037 0.796 0.747 0.019 

ScDD 52 948 2948 0.017 0.076 0.948 0.052 0.797 0.749 0.026 

BPSC 1 999 2999 0.000 0.080 0.999 0.001 0.794 0.742 0.001 

      NDEG=1500    

SwarnSeq 813 687 2187 0.271 0.055 0.458 0.542 0.844 0.815 0.361 

DEGSeq 631 869 2369 0.210 0.069 0.579 0.421 0.831 0.792 0.280 

DESeq2 61 1439 2939 0.020 0.115 0.959 0.041 0.790 0.718 0.027 

DESingle 150 1350 2850 0.050 0.108 0.900 0.100 0.797 0.729 0.067 

EdgeR 1 1499 2999 0.000 0.120 0.999 0.001 0.786 0.710 0.000 

Limma 678 822 2322 0.226 0.064 0.548 0.452 0.839 0.803 0.301 

DECENT 862 638 2138 0.287 0.051 0.425 0.575 0.848 0.821 0.383 

MAST 21 1479 2979 0.007 0.118 0.986 0.014 0.788 0.713 0.009 

Monocle 775 725 2225 0.258 0.058 0.483 0.517 0.842 0.810 0.344 

NODES 68 1432 2932 0.023 0.114 0.955 0.045 0.791 0.719 0.030 
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ScDD 74 1426 2926 0.025 0.114 0.951 0.049 0.791 0.720 0.033 

BPSC 1 1499 2999 0.000 0.120 0.999 0.001 0.786 0.710 0.000 

      NDEG = 2000    

SwarnSeq 1113 887 1887 0.371 0.071 0.444 0.557 0.860 0.821 0.445 

DEGSeq 846 1154 2154 0.282 0.092 0.577 0.423 0.841 0.787 0.338 

DESeq2 189 1811 2811 0.063 0.144 0.906 0.095 0.793 0.703 0.076 

DESingle 150 1850 2850 0.050 0.148 0.925 0.075 0.789 0.697 0.060 

EdgeR 1 1999 2999 0.000 0.160 1.000 0.001 0.778 0.678 0.000 

Limma 936 1064 2064 0.312 0.082 0.532 0.468 0.852 0.804 0.374 

DECENT 1085 915 1915 0.362 0.073 0.458 0.543 0.859 0.819 0.434 

MAST 30 1970 2970 0.010 0.157 0.985 0.015 0.780 0.682 0.012 

Monocle 988 1012 2012 0.329 0.081 0.506 0.494 0.852 0.806 0.395 

NODES 102 1898 2898 0.034 0.152 0.949 0.051 0.786 0.691 0.041 

ScDD 99 1901 2901 0.033 0.152 0.951 0.050 0.785 0.691 0.040 

BPSC 3 1997 2997 0.001 0.159 0.999 0.002 0.778 0.678 0.001 

      NDEG = 2500    

SwarnSeq 1550 950 1450 0.517 0.076 0.380 0.620 0.889 0.845 0.564 

DEGSeq 1066 1434 1934 0.355 0.114 0.574 0.426 0.852 0.783 0.388 

DESeq2 275 2225 2725 0.092 0.177 0.890 0.110 0.792 0.682 0.100 

DESingle 150 2350 2850 0.050 0.188 0.940 0.060 0.781 0.665 0.055 

EdgeR 1 2499 2999 0.000 0.200 1.000 0.000 0.770 0.646 0.000 

Limma 1174 1326 1826 0.391 0.102 0.530 0.470 0.865 0.803 0.427 

DECENT 1367 1133 1633 0.456 0.090 0.453 0.547 0.875 0.823 0.497 

MAST 43 2457 2957 0.014 0.196 0.983 0.017 0.773 0.651 0.016 

Monocle 1171 1329 1829 0.390 0.106 0.532 0.468 0.860 0.797 0.426 

NODES 133 2367 2867 0.044 0.189 0.947 0.053 0.780 0.663 0.048 

ScDD 129 2371 2871 0.043 0.189 0.948 0.052 0.780 0.662 0.047 

BPSC 5 2495 2995 0.002 0.199 0.998 0.002 0.770 0.646 0.002 

      NDEG = 3000    

SwarnSeq 2050 950 950 0.683 0.076 0.317 0.683 0.924 0.878 0.683 

DEGSeq 1277 1723 1723 0.426 0.137 0.574 0.426 0.863 0.778 0.426 

DESeq2 371 2629 2629 0.124 0.209 0.876 0.124 0.791 0.663 0.124 

DESingle 150 2850 2850 0.050 0.228 0.950 0.050 0.772 0.633 0.050 

EdgeR 2 2998 2998 0.001 0.239 0.999 0.001 0.761 0.614 0.001 

Limma 1395 1605 1605 0.465 0.123 0.535 0.465 0.877 0.799 0.465 

DECENT 1641 1359 1359 0.547 0.108 0.453 0.547 0.892 0.826 0.547 

MAST 64 2936 2936 0.021 0.234 0.979 0.021 0.766 0.622 0.021 

Monocle 1328 1672 1672 0.443 0.133 0.557 0.443 0.867 0.786 0.443 

NODES 178 2822 2822 0.059 0.225 0.941 0.059 0.775 0.636 0.059 

ScDD 162 2838 2838 0.054 0.227 0.946 0.054 0.773 0.634 0.054 

BPSC 5 2995 2995 0.002 0.239 0.998 0.002 0.761 0.614 0.002 
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Table 6.6. Performance evaluation metrics for GSE53638 (Data 1). 

     NDEG = 500     
Methods TP FP FN TPR FPR FDR PPR NPV ACC F1 

SwarnSeq 475 25 3525 0.119 0.002 0.050 0.950 0.769 0.775 0.211 

DEGSeq 220 280 3780 0.055 0.024 0.560 0.440 0.752 0.742 0.098 

DESeq2 26 474 3974 0.007 0.040 0.948 0.052 0.739 0.717 0.012 

DESingle 207 293 3793 0.052 0.025 0.586 0.414 0.751 0.740 0.092 

EdgeR 181 319 3819 0.045 0.027 0.638 0.362 0.749 0.737 0.080 

Limma 102 398 3898 0.026 0.034 0.796 0.204 0.744 0.727 0.045 

DECENT 177 323 3823 0.044 0.028 0.646 0.354 0.749 0.737 0.079 

MAST 236 264 3764 0.059 0.022 0.528 0.472 0.753 0.744 0.105 

Monocle 271 229 3729 0.068 0.020 0.458 0.542 0.755 0.749 0.120 

NODES 225 275 3775 0.056 0.023 0.550 0.450 0.752 0.743 0.100 

scDD 122 378 3878 0.031 0.032 0.756 0.244 0.746 0.730 0.054 

BPSC 164 336 3836 0.041 0.029 0.672 0.328 0.748 0.735 0.073 

     NDEG = 1000     

SwarnSeq 907 93 3093 0.227 0.008 0.093 0.907 0.790 0.798 0.363 

DEGSeq 396 604 3604 0.099 0.051 0.604 0.396 0.755 0.733 0.158 

DESeq2 33 967 3967 0.008 0.082 0.967 0.033 0.731 0.687 0.013 

DESingle 307 693 3693 0.077 0.059 0.693 0.307 0.749 0.721 0.123 

EdgeR 275 725 3725 0.069 0.062 0.725 0.275 0.747 0.717 0.110 

Limma 150 850 3850 0.038 0.072 0.850 0.150 0.739 0.701 0.060 

DECENT 274 726 3726 0.069 0.062 0.726 0.274 0.747 0.717 0.110 

MAST 366 634 3634 0.092 0.054 0.634 0.366 0.753 0.729 0.146 

Monocle 429 571 3571 0.107 0.049 0.571 0.429 0.758 0.737 0.172 

NODES 373 627 3627 0.093 0.053 0.627 0.373 0.754 0.730 0.149 

scDD 189 811 3811 0.047 0.069 0.811 0.189 0.741 0.706 0.076 

BPSC 249 751 3751 0.062 0.064 0.751 0.249 0.746 0.714 0.100 

     NDEG = 1500     

SwarnSeq 1264 236 2736 0.316 0.020 0.157 0.843 0.808 0.811 0.460 

DEGSeq 556 944 3444 0.139 0.080 0.629 0.371 0.758 0.721 0.202 

DESeq2 37 1463 3963 0.009 0.125 0.975 0.025 0.722 0.655 0.013 

DESingle 410 1090 3590 0.103 0.093 0.727 0.273 0.748 0.703 0.149 

EdgeR 390 1110 3610 0.098 0.095 0.740 0.260 0.747 0.700 0.142 

Limma 195 1305 3805 0.049 0.111 0.870 0.130 0.733 0.675 0.071 

DECENT 364 1136 3636 0.091 0.097 0.757 0.243 0.745 0.697 0.132 

MAST 493 1007 3507 0.123 0.086 0.671 0.329 0.754 0.713 0.179 

Monocle 593 907 3407 0.148 0.077 0.605 0.395 0.761 0.726 0.216 

NODES 540 960 3460 0.135 0.082 0.640 0.360 0.757 0.719 0.196 

scDD 287 1213 3713 0.072 0.103 0.809 0.191 0.739 0.687 0.104 

BPSC 341 1159 3659 0.085 0.099 0.773 0.227 0.743 0.694 0.124 

     NDEG = 2000     

SwarnSeq 1554 446 2446 0.389 0.038 0.223 0.777 0.822 0.816 0.518 
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DEGSeq 687 1313 3313 0.172 0.112 0.657 0.344 0.759 0.706 0.229 

DESeq2 41 1959 3959 0.010 0.167 0.980 0.021 0.712 0.624 0.014 

DESingle 497 1503 3503 0.124 0.128 0.752 0.249 0.745 0.682 0.166 

EdgeR 522 1478 3478 0.131 0.126 0.739 0.261 0.747 0.685 0.174 

Limma 243 1757 3757 0.061 0.150 0.879 0.122 0.727 0.650 0.081 

DECENT 465 1535 3535 0.116 0.131 0.768 0.233 0.743 0.678 0.155 

MAST 622 1378 3378 0.156 0.117 0.689 0.311 0.754 0.698 0.207 

Monocle 737 1263 3263 0.184 0.108 0.632 0.369 0.763 0.713 0.246 

NODES 757 1243 3243 0.189 0.106 0.622 0.379 0.764 0.715 0.252 

scDD 385 1615 3615 0.096 0.138 0.808 0.193 0.737 0.668 0.128 

BPSC 452 1548 3548 0.113 0.132 0.774 0.226 0.742 0.676 0.151 

     NDEG = 2500     

SwarnSeq 1792 708 2208 0.448 0.060 0.283 0.717 0.833 0.815 0.551 

DEGSeq 826 1674 3174 0.207 0.143 0.670 0.330 0.760 0.692 0.254 

DESeq2 54 2446 3946 0.014 0.208 0.978 0.022 0.702 0.594 0.017 

DESingle 618 1882 3382 0.155 0.160 0.753 0.247 0.745 0.666 0.190 

EdgeR 655 1845 3345 0.164 0.157 0.738 0.262 0.748 0.670 0.202 

Limma 308 2192 3692 0.077 0.187 0.877 0.123 0.721 0.626 0.095 

DECENT 573 1927 3427 0.143 0.164 0.771 0.229 0.741 0.660 0.176 

MAST 761 1739 3239 0.190 0.148 0.696 0.304 0.756 0.684 0.234 

Monocle 899 1601 3101 0.225 0.136 0.640 0.360 0.766 0.701 0.277 

NODES 948 1552 3052 0.237 0.132 0.621 0.379 0.770 0.708 0.292 

scDD 476 2024 3524 0.119 0.172 0.810 0.190 0.734 0.648 0.146 

BPSC 589 1911 3411 0.147 0.163 0.764 0.236 0.742 0.662 0.181 

     NDEG = 3000     

SwarnSeq 2003 997 1997 0.501 0.085 0.332 0.668 0.843 0.810 0.572 

DEGSeq 988 2012 3012 0.247 0.171 0.671 0.329 0.764 0.681 0.282 

DESeq2 79 2921 3921 0.020 0.249 0.974 0.026 0.692 0.565 0.023 

DESingle 736 2264 3264 0.184 0.193 0.755 0.245 0.744 0.649 0.210 

EdgeR 813 2187 3187 0.203 0.186 0.729 0.271 0.750 0.659 0.232 

Limma 372 2628 3628 0.093 0.224 0.876 0.124 0.715 0.603 0.106 

DECENT 701 2299 3299 0.175 0.196 0.766 0.234 0.741 0.645 0.200 

MAST 890 2110 3110 0.223 0.179 0.703 0.297 0.756 0.669 0.254 

Monocle 1039 1961 2961 0.260 0.167 0.654 0.346 0.768 0.687 0.297 

NODES 1164 1836 2836 0.291 0.156 0.612 0.388 0.777 0.703 0.333 

scDD 608 2392 3392 0.152 0.204 0.797 0.203 0.734 0.633 0.174 

BPSC 731 2269 3269 0.183 0.193 0.756 0.244 0.743 0.648 0.209 

Table 6.7. Performance evaluation metrics for GSE53638 (Data 2) scRNA-seq 

data. 

     NDEG = 500     
Methods TP FP FN TPR FPR FDR PPR NPV ACC F1 

SwarnSeq 258 242 2742 0.086 0.019 0.484 0.516 0.819 0.809 0.147 
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DEGSeq 145 355 2855 0.048 0.028 0.710 0.290 0.811 0.795 0.083 

DESeq2 20 480 2980 0.007 0.038 0.960 0.040 0.803 0.779 0.011 

DESingle 122 378 2878 0.041 0.030 0.756 0.244 0.810 0.792 0.070 

EdgeR 72 428 2928 0.024 0.034 0.856 0.144 0.807 0.785 0.041 

Limma 54 446 2946 0.018 0.035 0.892 0.108 0.805 0.783 0.031 

DECENT 14 486 2986 0.005 0.038 0.972 0.028 0.803 0.778 0.008 

MAST 130 370 2870 0.043 0.029 0.740 0.260 0.810 0.793 0.074 

Monocle 89 411 2911 0.030 0.033 0.822 0.178 0.808 0.788 0.051 

NODES 51 449 2949 0.017 0.036 0.898 0.102 0.805 0.783 0.029 

ScDD 130 370 2870 0.043 0.029 0.740 0.260 0.810 0.793 0.074 

BPSC 55 445 2945 0.018 0.035 0.890 0.110 0.805 0.783 0.031 

     NDEG = 1000     

SwarnSeq 585 415 2415 0.195 0.033 0.415 0.585 0.835 0.819 0.293 

DEGSeq 272 728 2728 0.091 0.058 0.728 0.272 0.814 0.779 0.136 

DESeq2 26 974 2974 0.009 0.077 0.974 0.026 0.797 0.747 0.013 

DESingle 214 786 2786 0.071 0.062 0.786 0.214 0.810 0.772 0.107 

EdgeR 129 871 2871 0.043 0.069 0.871 0.129 0.804 0.761 0.065 

Limma 81 919 2919 0.027 0.073 0.919 0.081 0.801 0.755 0.041 

DECENT 17 982 2983 0.006 0.078 0.983 0.017 0.796 0.746 0.009 

MAST 242 758 2758 0.081 0.060 0.758 0.242 0.812 0.775 0.121 

Monocle 155 845 2845 0.052 0.067 0.845 0.155 0.806 0.764 0.078 

NODES 84 916 2916 0.028 0.072 0.916 0.084 0.801 0.755 0.042 

ScDD 248 752 2752 0.083 0.060 0.752 0.248 0.812 0.776 0.124 

BPSC 89 911 2911 0.030 0.072 0.911 0.089 0.801 0.756 0.045 

     NDEG = 1500     

SwarnSeq 767 733 2233 0.256 0.058 0.489 0.511 0.842 0.810 0.341 

DEGSeq 417 1083 2583 0.139 0.086 0.722 0.278 0.817 0.766 0.185 

DESeq2 40 1460 2960 0.013 0.116 0.973 0.027 0.791 0.717 0.018 

DESingle 303 1197 2697 0.101 0.095 0.798 0.202 0.809 0.751 0.135 

EdgeR 208 1292 2792 0.069 0.102 0.861 0.139 0.802 0.739 0.092 

Limma 100 1400 2900 0.033 0.111 0.933 0.067 0.795 0.725 0.044 

DECENT 35 1464 2965 0.012 0.116 0.977 0.023 0.790 0.717 0.016 

MAST 363 1137 2637 0.121 0.090 0.758 0.242 0.813 0.759 0.161 

Monocle 224 1276 2776 0.075 0.101 0.851 0.149 0.804 0.741 0.100 

NODES 94 1406 2906 0.031 0.111 0.937 0.063 0.794 0.724 0.042 

ScDD 342 1158 2658 0.114 0.092 0.772 0.228 0.812 0.756 0.152 
BPSC 128 1372 2872 0.043 0.109 0.915 0.085 0.797 0.729 0.057 

     NDEG = 2000     

SwarnSeq 904 1096 2096 0.301 0.087 0.548 0.452 0.846 0.796 0.362 

DEGSeq 533 1467 2467 0.178 0.116 0.734 0.267 0.819 0.748 0.213 

DESeq2 71 1929 2929 0.024 0.153 0.965 0.036 0.785 0.689 0.028 

DESingle 403 1597 2597 0.134 0.126 0.799 0.202 0.810 0.732 0.161 

EdgeR 287 1713 2713 0.096 0.136 0.857 0.144 0.801 0.717 0.115 
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Limma 128 1872 2872 0.043 0.148 0.936 0.064 0.789 0.697 0.051 

DECENT 86 1913 2914 0.029 0.151 0.957 0.043 0.786 0.691 0.034 

MAST 482 1518 2518 0.161 0.120 0.759 0.241 0.815 0.742 0.193 

Monocle 316 1684 2684 0.105 0.133 0.842 0.158 0.803 0.721 0.126 

NODES 108 1892 2892 0.036 0.150 0.946 0.054 0.788 0.694 0.043 

ScDD 449 1551 2551 0.150 0.123 0.776 0.225 0.813 0.738 0.180 

BPSC 190 1810 2810 0.063 0.143 0.905 0.095 0.794 0.705 0.076 

     NDEG = 2500     

SwarnSeq 1031 1469 1969 0.344 0.116 0.588 0.412 0.850 0.780 0.375 

DEGSeq 628 1872 2372 0.209 0.148 0.749 0.251 0.819 0.729 0.228 

DESeq2 115 2385 2885 0.038 0.189 0.954 0.046 0.780 0.663 0.042 

DESingle 520 1980 2480 0.173 0.157 0.792 0.208 0.811 0.715 0.189 

EdgeR 411 2089 2589 0.137 0.165 0.836 0.164 0.803 0.701 0.149 

Limma 159 2341 2841 0.053 0.185 0.936 0.064 0.784 0.669 0.058 

DECENT 185 2314 2815 0.062 0.183 0.926 0.074 0.786 0.672 0.067 

MAST 609 1891 2391 0.203 0.150 0.756 0.244 0.818 0.726 0.221 

Monocle 426 2074 2574 0.142 0.164 0.830 0.170 0.804 0.703 0.155 

NODES 117 2383 2883 0.039 0.189 0.953 0.047 0.781 0.663 0.043 

ScDD 568 1932 2432 0.189 0.153 0.773 0.227 0.815 0.721 0.207 

BPSC 271 2229 2729 0.090 0.176 0.892 0.108 0.792 0.683 0.099 

     NDEG = 3000     

SwarnSeq 1145 1855 1855 0.382 0.147 0.618 0.382 0.853 0.763 0.382 

DEGSeq 717 2283 2283 0.239 0.181 0.761 0.239 0.819 0.708 0.239 

DESeq2 192 2808 2808 0.064 0.222 0.936 0.064 0.778 0.641 0.064 

DESingle 648 2352 2352 0.216 0.186 0.784 0.216 0.814 0.699 0.216 

EdgeR 552 2448 2448 0.184 0.194 0.816 0.184 0.806 0.687 0.184 

Limma 213 2787 2787 0.071 0.221 0.929 0.071 0.779 0.643 0.071 

DECENT 368 2628 2632 0.123 0.208 0.877 0.123 0.792 0.664 0.123 

MAST 724 2276 2276 0.241 0.180 0.759 0.241 0.820 0.709 0.241 

Monocle 564 2436 2436 0.188 0.193 0.812 0.188 0.807 0.688 0.188 

NODES 136 2864 2864 0.045 0.227 0.955 0.045 0.773 0.634 0.045 

ScDD 659 2341 2341 0.220 0.185 0.780 0.220 0.815 0.701 0.220 

BPSC 398 2602 2602 0.133 0.206 0.867 0.133 0.794 0.667 0.133 

Table 6.8. Performance evaluation metrics for GSE53638 (Data 3) for scRNA-

seq data. 

     NDEG = 500     
Methods TP FP FN TPR FPR FDR PPR NPV ACC F1 

SwarnSeq 136 364 2864 0.045 0.030 0.728 0.272 0.803 0.785 0.078 

DEGSeq 114 386 2886 0.038 0.032 0.772 0.228 0.801 0.782 0.065 

DESeq2 21 479 2979 0.007 0.040 0.958 0.042 0.795 0.770 0.012 

DESingle 213 287 2787 0.071 0.024 0.574 0.426 0.808 0.795 0.122 

EdgeR 151 349 2849 0.050 0.029 0.698 0.302 0.804 0.787 0.086 
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Limma 161 339 2839 0.054 0.028 0.678 0.322 0.804 0.788 0.092 

DECENT 14 486 2986 0.005 0.040 0.972 0.028 0.794 0.769 0.008 

MAST 145 355 2855 0.048 0.030 0.710 0.290 0.803 0.786 0.083 

Monocle 94 406 2906 0.031 0.034 0.812 0.188 0.800 0.779 0.054 

NODES 88 412 2912 0.029 0.034 0.824 0.176 0.799 0.779 0.050 

scDD 42 458 2958 0.014 0.038 0.916 0.084 0.796 0.772 0.024 
BPSC 81 419 2919 0.027 0.035 0.838 0.162 0.799 0.778 0.046 

     NDEG = 1000     

SwarnSeq 374 626 2626 0.125 0.052 0.626 0.374 0.813 0.783 0.187 

DEGSeq 249 751 2751 0.083 0.063 0.751 0.249 0.804 0.767 0.125 

DESeq2 49 951 2951 0.016 0.079 0.951 0.049 0.789 0.740 0.025 

DESingle 342 658 2658 0.114 0.055 0.658 0.342 0.810 0.779 0.171 

EdgeR 271 729 2729 0.090 0.061 0.729 0.271 0.805 0.770 0.136 

Limma 253 747 2747 0.084 0.062 0.747 0.253 0.804 0.767 0.127 

DECENT 52 948 2948 0.017 0.079 0.948 0.052 0.790 0.740 0.026 

MAST 257 743 2743 0.086 0.062 0.743 0.257 0.804 0.768 0.129 

Monocle 184 816 2816 0.061 0.068 0.816 0.184 0.799 0.758 0.092 

NODES 163 837 2837 0.054 0.070 0.837 0.163 0.798 0.755 0.082 

scDD 57 943 2943 0.019 0.078 0.943 0.057 0.790 0.741 0.029 
BPSC 140 860 2860 0.047 0.072 0.860 0.140 0.796 0.752 0.070 

     NDEG = 1500     

SwarnSeq 656 844 2344 0.219 0.070 0.563 0.437 0.827 0.788 0.292 

DEGSeq 358 1142 2642 0.119 0.095 0.761 0.239 0.804 0.748 0.159 

DESeq2 100 1400 2900 0.033 0.117 0.933 0.067 0.785 0.714 0.044 

DESingle 469 1031 2531 0.156 0.086 0.687 0.313 0.813 0.763 0.208 

EdgeR 397 1103 2603 0.132 0.092 0.735 0.265 0.807 0.753 0.176 

Limma 316 1184 2684 0.105 0.099 0.789 0.211 0.801 0.742 0.140 

DECENT 136 1364 2864 0.045 0.114 0.909 0.091 0.788 0.718 0.060 

MAST 373 1127 2627 0.124 0.094 0.751 0.249 0.806 0.750 0.166 

Monocle 286 1214 2714 0.095 0.101 0.809 0.191 0.799 0.738 0.127 

NODES 250 1250 2750 0.083 0.104 0.833 0.167 0.796 0.734 0.111 

scDD 62 1438 2938 0.021 0.120 0.959 0.041 0.783 0.709 0.028 
BPSC 229 1271 2771 0.076 0.106 0.847 0.153 0.795 0.731 0.102 

     NDEG =2000     

SwarnSeq 847 1153 2153 0.282 0.096 0.577 0.424 0.835 0.780 0.339 

DEGSeq 433 1567 2567 0.144 0.130 0.784 0.217 0.803 0.725 0.173 

DESeq2 178 1822 2822 0.059 0.152 0.911 0.089 0.783 0.691 0.071 

DESingle 593 1407 2407 0.198 0.117 0.704 0.297 0.815 0.746 0.237 

EdgeR 541 1459 2459 0.180 0.121 0.730 0.271 0.811 0.739 0.216 

Limma 390 1610 2610 0.130 0.134 0.805 0.195 0.799 0.719 0.156 

DECENT 260 1740 2740 0.087 0.145 0.870 0.130 0.789 0.702 0.104 

MAST 505 1495 2495 0.168 0.124 0.748 0.253 0.808 0.734 0.202 

Monocle 426 1574 2574 0.142 0.131 0.787 0.213 0.802 0.724 0.170 

NODES 357 1643 2643 0.119 0.137 0.822 0.179 0.797 0.714 0.143 
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scDD 69 1931 2931 0.023 0.161 0.966 0.035 0.775 0.676 0.028 
BPSC 351 1649 2649 0.117 0.137 0.825 0.176 0.796 0.714 0.140 

     NDEG = 2500     

SwarnSeq 1005 1495 1995 0.335 0.124 0.598 0.402 0.841 0.768 0.365 

DEGSeq 562 1938 2438 0.187 0.161 0.775 0.225 0.805 0.709 0.204 

DESeq2 260 2240 2740 0.087 0.186 0.896 0.104 0.781 0.668 0.095 

DESingle 717 1783 2283 0.239 0.148 0.713 0.287 0.818 0.729 0.261 

EdgeR 689 1811 2311 0.230 0.151 0.724 0.276 0.815 0.725 0.251 

Limma 482 2018 2518 0.161 0.168 0.807 0.193 0.799 0.698 0.175 

DECENT 416 2084 2584 0.139 0.173 0.834 0.166 0.793 0.689 0.151 

MAST 635 1865 2365 0.212 0.155 0.746 0.254 0.811 0.718 0.231 

Monocle 558 1942 2442 0.186 0.162 0.777 0.223 0.805 0.708 0.203 

NODES 469 2031 2531 0.156 0.169 0.812 0.188 0.798 0.696 0.171 

scDD 75 2425 2925 0.025 0.202 0.970 0.030 0.766 0.644 0.027 
BPSC 478 2022 2522 0.159 0.168 0.809 0.191 0.798 0.697 0.174 

     NDEG = 3000     

SwarnSeq 1146 1854 1854 0.382 0.154 0.618 0.382 0.846 0.753 0.382 

DEGSeq 685 2315 2315 0.228 0.193 0.772 0.228 0.807 0.692 0.228 

DESeq2 317 2683 2683 0.106 0.223 0.894 0.106 0.777 0.643 0.106 

DESingle 844 2156 2156 0.281 0.179 0.719 0.281 0.821 0.713 0.281 

EdgeR 862 2138 2138 0.287 0.178 0.713 0.287 0.822 0.715 0.287 

Limma 577 2423 2423 0.192 0.202 0.808 0.192 0.798 0.677 0.192 

DECENT 618 2382 2382 0.206 0.198 0.794 0.206 0.802 0.683 0.206 

MAST 785 2215 2215 0.262 0.184 0.738 0.262 0.816 0.705 0.262 

Monocle 710 2290 2290 0.237 0.191 0.763 0.237 0.809 0.695 0.237 

NODES 578 2422 2422 0.193 0.202 0.807 0.193 0.798 0.677 0.193 

scDD 89 2911 2911 0.030 0.242 0.970 0.030 0.758 0.612 0.030 

BPSC 645 2355 2355 0.215 0.196 0.785 0.215 0.804 0.686 0.215 

Table 6.9. Performance evaluation metrics for GSE65525 scRNA-seq data. 

    NDEG = 500      
Methods TP FP FN TPR FPR FDR PPR NPV ACC F1 

SwarnSeq 500 0 2500 0.167 0.000 0.000 1.000 0.893 0.896 0.286 

DEGSeq 191 309 2809 0.064 0.015 0.618 0.382 0.880 0.870 0.109 

DESeq2 155 345 2845 0.052 0.016 0.690 0.310 0.879 0.867 0.089 

DESingle 221 279 2779 0.074 0.013 0.558 0.442 0.882 0.872 0.126 

EdgeR 206 294 2794 0.069 0.014 0.588 0.412 0.881 0.871 0.118 

Limma 38 462 2962 0.013 0.022 0.924 0.076 0.874 0.857 0.022 

DECENT 178 322 2822 0.059 0.015 0.644 0.356 0.880 0.869 0.102 

MAST 77 423 2923 0.026 0.020 0.846 0.154 0.875 0.860 0.044 

Monocle 134 366 2866 0.045 0.017 0.732 0.268 0.878 0.865 0.077 

NODES 59 441 2941 0.020 0.021 0.882 0.118 0.875 0.859 0.034 

scDD 72 428 2928 0.024 0.020 0.856 0.144 0.875 0.860 0.041 
BPSC 135 365 2865 0.045 0.017 0.730 0.270 0.878 0.865 0.077 
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    NDEG=1000      

SwarnSeq 1000 0 2000 0.333 0.000 0.000 1.000 0.913 0.917 0.500 

DEGSeq 294 706 2706 0.098 0.034 0.706 0.294 0.882 0.858 0.147 

DESeq2 226 774 2774 0.075 0.037 0.774 0.226 0.879 0.852 0.113 

DESingle 306 694 2694 0.102 0.033 0.694 0.306 0.883 0.859 0.153 

EdgeR 288 712 2712 0.096 0.034 0.712 0.288 0.882 0.857 0.144 

Limma 85 915 2915 0.028 0.044 0.915 0.085 0.873 0.840 0.043 

DECENT 326 674 2674 0.109 0.032 0.674 0.326 0.884 0.860 0.163 

MAST 255 745 2745 0.085 0.036 0.745 0.255 0.880 0.854 0.128 

Monocle 283 717 2717 0.094 0.034 0.717 0.283 0.882 0.857 0.142 

NODES 105 895 2895 0.035 0.043 0.895 0.105 0.874 0.842 0.053 

scDD 72 928 2928 0.024 0.044 0.928 0.072 0.872 0.839 0.036 
BPSC 204 796 2796 0.068 0.038 0.796 0.204 0.878 0.850 0.102 

     NDEG = 1500     

SwarnSeq 1442 58 1558 0.481 0.003 0.039 0.961 0.931 0.933 0.641 

DEGSeq 402 1098 2598 0.134 0.052 0.732 0.268 0.884 0.846 0.179 

DESeq2 263 1237 2737 0.088 0.059 0.825 0.175 0.878 0.834 0.117 

DESingle 371 1129 2629 0.124 0.054 0.753 0.247 0.883 0.843 0.165 

EdgeR 348 1152 2652 0.116 0.055 0.768 0.232 0.882 0.841 0.155 

Limma 123 1377 2877 0.041 0.066 0.918 0.082 0.872 0.822 0.055 

DECENT 438 1062 2562 0.146 0.051 0.708 0.292 0.886 0.849 0.195 

MAST 431 1069 2569 0.144 0.051 0.713 0.287 0.886 0.848 0.192 

Monocle 381 1119 2619 0.127 0.053 0.746 0.254 0.883 0.844 0.169 

NODES 146 1354 2854 0.049 0.065 0.903 0.097 0.873 0.824 0.065 

scDD 72 1428 2928 0.024 0.068 0.952 0.048 0.870 0.818 0.032 
BPSC 259 1241 2741 0.086 0.059 0.827 0.173 0.878 0.834 0.115 

     NDEG = 2000     

SwarnSeq 1442 558 1558 0.481 0.027 0.279 0.721 0.929 0.912 0.577 

DEGSeq 503 1497 2497 0.168 0.071 0.749 0.252 0.886 0.833 0.201 

DESeq2 294 1706 2706 0.098 0.081 0.853 0.147 0.877 0.816 0.118 

DESingle 440 1560 2560 0.147 0.074 0.780 0.220 0.883 0.828 0.176 

EdgeR 423 1577 2577 0.141 0.075 0.789 0.212 0.883 0.827 0.169 

Limma 200 1800 2800 0.067 0.086 0.900 0.100 0.872 0.808 0.080 

DECENT 532 1468 2468 0.177 0.070 0.734 0.266 0.888 0.836 0.213 

MAST 591 1409 2409 0.197 0.067 0.705 0.296 0.890 0.841 0.236 

Monocle 473 1527 2527 0.158 0.073 0.764 0.237 0.885 0.831 0.189 

NODES 173 1827 2827 0.058 0.087 0.914 0.087 0.871 0.806 0.069 

scDD 72 1928 2928 0.024 0.092 0.964 0.036 0.867 0.797 0.029 
BPSC 298 1702 2702 0.099 0.081 0.851 0.149 0.877 0.816 0.119 

     NDEG = 2500     

SwarnSeq 1442 1058 1558 0.481 0.050 0.423 0.577 0.927 0.891 0.524 

DEGSeq 589 1911 2411 0.196 0.091 0.764 0.236 0.888 0.820 0.214 

DESeq2 323 2177 2677 0.108 0.104 0.871 0.129 0.875 0.797 0.117 

DESingle 496 2004 2504 0.165 0.096 0.802 0.198 0.883 0.812 0.180 
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EdgeR 488 2012 2512 0.163 0.096 0.805 0.195 0.883 0.811 0.177 

Limma 351 2149 2649 0.117 0.103 0.860 0.140 0.877 0.800 0.128 

DECENT 617 1883 2383 0.206 0.090 0.753 0.247 0.889 0.822 0.224 

MAST 750 1750 2250 0.250 0.084 0.700 0.300 0.895 0.833 0.273 

Monocle 553 1947 2447 0.184 0.093 0.779 0.221 0.886 0.817 0.201 

NODES 199 2301 2801 0.066 0.110 0.920 0.080 0.869 0.787 0.072 

scDD 72 2428 2928 0.024 0.116 0.971 0.029 0.864 0.776 0.026 

BPSC 326 2174 2674 0.109 0.104 0.870 0.130 0.875 0.798 0.119 

     NDEG = 3000     

SwarnSeq 1442 1558 1558 0.481 0.074 0.519 0.481 0.926 0.870 0.481 

DEGSeq 719 2281 2281 0.240 0.109 0.760 0.240 0.891 0.810 0.240 

DESeq2 350 2650 2650 0.117 0.126 0.883 0.117 0.874 0.779 0.117 

DESingle 552 2448 2448 0.184 0.117 0.816 0.184 0.883 0.796 0.184 

EdgeR 545 2455 2455 0.182 0.117 0.818 0.182 0.883 0.795 0.182 

Limma 496 2504 2504 0.165 0.119 0.835 0.165 0.881 0.791 0.165 

DECENT 704 2296 2296 0.235 0.110 0.765 0.235 0.890 0.808 0.235 

MAST 906 2094 2094 0.302 0.100 0.698 0.302 0.900 0.825 0.302 

Monocle 632 2368 2368 0.211 0.113 0.789 0.211 0.887 0.802 0.211 

NODES 217 2783 2783 0.072 0.133 0.928 0.072 0.867 0.768 0.072 

scDD 72 2928 2928 0.024 0.140 0.976 0.024 0.860 0.756 0.024 
BPSC 364 2636 2636 0.121 0.126 0.879 0.121 0.874 0.780 0.121 

Table 6.10. Performance evaluation metrics for Tung’s (GSE77288) data. 

    NDEG = 500      
Methods TP FP FN TPR FPR FDR PPR NPV ACC F1 

SwarnSeq 482 18 2518 0.161 0.001 0.036 0.964 0.837 0.841 0.275 

DEGSeq 107 393 2893 0.036 0.030 0.786 0.214 0.813 0.794 0.061 

DESeq2 134 366 2866 0.045 0.028 0.732 0.268 0.815 0.797 0.077 

DESingle 227 273 2773 0.076 0.021 0.546 0.454 0.821 0.809 0.130 

EdgeR 199 301 2801 0.066 0.023 0.602 0.398 0.819 0.806 0.114 

Limma 292 208 2708 0.097 0.016 0.416 0.584 0.825 0.817 0.167 

DECENT 172 328 2828 0.057 0.025 0.656 0.344 0.817 0.802 0.098 

MAST 159 341 2841 0.053 0.026 0.682 0.318 0.816 0.801 0.091 

Monocle 96 404 2904 0.032 0.031 0.808 0.192 0.812 0.793 0.055 

NODES 187 313 2813 0.062 0.024 0.626 0.374 0.818 0.804 0.107 

scDD 141 359 2859 0.047 0.028 0.718 0.282 0.815 0.798 0.081 
BPSC 114 386 2886 0.038 0.030 0.772 0.228 0.813 0.795 0.065 

    NDEG = 1000      

SwarnSeq 946 54 2054 0.315 0.004 0.054 0.946 0.863 0.868 0.473 

DEGSeq 159 841 2841 0.053 0.065 0.841 0.159 0.810 0.770 0.080 

DESeq2 234 766 2766 0.078 0.059 0.766 0.234 0.815 0.779 0.117 

DESingle 426 574 2574 0.142 0.044 0.574 0.426 0.828 0.803 0.213 

EdgeR 347 653 2653 0.116 0.050 0.653 0.347 0.824 0.794 0.174 
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Limma 607 393 2393 0.202 0.030 0.393 0.607 0.840 0.825 0.304 

DECENT 351 649 2649 0.117 0.050 0.649 0.351 0.823 0.793 0.176 

MAST 330 670 2670 0.110 0.052 0.670 0.330 0.821 0.791 0.165 

Monocle 263 737 2737 0.088 0.057 0.737 0.263 0.817 0.782 0.132 

NODES 355 645 2645 0.118 0.050 0.645 0.355 0.823 0.794 0.178 

scDD 218 782 2782 0.073 0.060 0.782 0.218 0.814 0.777 0.109 
BPSC 213 787 2787 0.071 0.061 0.787 0.213 0.814 0.776 0.107 

    NDEG = 1500      

SwarnSeq 1311 189 1689 0.437 0.015 0.126 0.874 0.883 0.882 0.583 

DEGSeq 293 1207 2707 0.098 0.093 0.805 0.195 0.813 0.755 0.130 

DESeq2 338 1162 2662 0.113 0.090 0.775 0.225 0.816 0.760 0.150 

DESingle 612 888 2388 0.204 0.069 0.592 0.408 0.835 0.795 0.272 

EdgeR 486 1014 2514 0.162 0.077 0.676 0.324 0.828 0.782 0.216 

Limma 887 613 2113 0.296 0.047 0.409 0.591 0.854 0.829 0.394 

DECENT 518 982 2482 0.173 0.076 0.655 0.345 0.828 0.783 0.230 

MAST 497 1003 2503 0.166 0.077 0.669 0.331 0.827 0.780 0.221 

Monocle 398 1102 2602 0.133 0.085 0.735 0.265 0.820 0.768 0.177 

NODES 523 977 2477 0.174 0.075 0.651 0.349 0.829 0.784 0.232 

scDD 279 1221 2721 0.093 0.094 0.814 0.186 0.812 0.753 0.124 

BPSC 321 1179 2679 0.107 0.091 0.786 0.214 0.815 0.758 0.143 

    NDEG = 2000      

SwarnSeq 1532 468 1468 0.511 0.036 0.234 0.766 0.895 0.879 0.613 

DEGSeq 420 1580 2580 0.140 0.121 0.790 0.210 0.816 0.740 0.168 

DESeq2 426 1574 2574 0.142 0.121 0.787 0.213 0.816 0.740 0.170 

DESingle 758 1242 2242 0.253 0.096 0.621 0.379 0.839 0.782 0.303 

EdgeR 625 1375 2375 0.208 0.104 0.688 0.313 0.833 0.769 0.250 

Limma 1104 896 1896 0.368 0.069 0.448 0.552 0.864 0.825 0.442 

DECENT 664 1336 2336 0.221 0.103 0.668 0.332 0.833 0.770 0.266 

MAST 642 1358 2358 0.214 0.105 0.679 0.321 0.831 0.767 0.257 

Monocle 491 1509 2509 0.164 0.116 0.755 0.246 0.820 0.748 0.196 

NODES 636 1364 2364 0.212 0.105 0.682 0.318 0.831 0.766 0.254 

scDD 327 1673 2673 0.109 0.129 0.837 0.164 0.808 0.728 0.131 

BPSC 416 1584 2584 0.139 0.122 0.792 0.208 0.815 0.739 0.166 

    NDEG = 2500      

SwarnSeq 1713 787 1287 0.571 0.061 0.315 0.685 0.904 0.870 0.623 

DEGSeq 514 1986 2486 0.171 0.152 0.794 0.206 0.816 0.721 0.187 

DESeq2 525 1975 2475 0.175 0.152 0.790 0.210 0.816 0.721 0.191 

DESingle 901 1599 2099 0.300 0.123 0.640 0.360 0.844 0.768 0.328 

EdgeR 769 1731 2231 0.256 0.130 0.692 0.308 0.838 0.757 0.280 

Limma 1293 1207 1707 0.431 0.093 0.483 0.517 0.873 0.817 0.470 

DECENT 791 1709 2209 0.264 0.131 0.684 0.316 0.837 0.755 0.288 

MAST 772 1728 2228 0.257 0.133 0.691 0.309 0.834 0.752 0.281 

Monocle 598 1902 2402 0.199 0.147 0.761 0.239 0.821 0.730 0.217 
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NODES 752 1748 2248 0.251 0.135 0.699 0.301 0.833 0.750 0.273 

scDD 394 2106 2606 0.131 0.163 0.842 0.158 0.806 0.705 0.143 
BPSC 514 1986 2486 0.171 0.153 0.794 0.206 0.815 0.720 0.187 

    NDEG = 3000      

SwarnSeq 1846 1154 1154 0.615 0.089 0.385 0.615 0.911 0.855 0.615 

DEGSeq 611 2389 2389 0.204 0.183 0.796 0.204 0.817 0.702 0.204 

DESeq2 629 2371 2371 0.210 0.183 0.790 0.210 0.817 0.703 0.210 

DESingle 1024 1976 1976 0.341 0.152 0.659 0.341 0.848 0.752 0.341 

EdgeR 909 2091 2091 0.303 0.156 0.697 0.303 0.844 0.745 0.303 

Limma 1456 1544 1544 0.485 0.119 0.515 0.485 0.881 0.806 0.485 

DECENT 901 2099 2099 0.300 0.160 0.700 0.300 0.840 0.739 0.300 

MAST 886 2114 2114 0.295 0.163 0.705 0.295 0.837 0.735 0.295 

Monocle 698 2302 2302 0.233 0.178 0.767 0.233 0.822 0.711 0.233 

NODES 836 2164 2164 0.279 0.167 0.721 0.279 0.833 0.729 0.279 

scDD 461 2539 2539 0.154 0.196 0.846 0.154 0.804 0.682 0.154 
BPSC 614 2386 2386 0.205 0.184 0.795 0.205 0.816 0.701 0.205 
NDEG: Number of differentially expressed genes; TPR: True Positive Rate; FPR: False Positive Rate; FDR: False 

Discovery Rate; PPR: Positive Prediction Rate; NPV: Negative Prediction Value; ACC: Accuracy; F1: F-score 

Effect of spike-in on performance 

We evaluated the performance of the SwarnSeq method on data from GSE77288 

for which spike-in and molecular concentration data is publicly available. For this 

purpose, we considered the following comparison settings: (a) spike-in data 

available; (b) spike-in not available (capture rates estimated from the data); (c) 

data unadjusted with cell capture rates. In other words, this comparison setting 

allowed us to examine the impact of external spike-ins and further capture rates 

on the DE performance of SwarnSeq method. The results are shown in Figure 6.11 

and Table 6.11. It was observed that the SwarnSeq performed better when capture 

rates were estimated from external spike-ins as assessed in terms of AUC (Figure 

6.11). However, there was a decrease in AUC value when the capture rates of 

cells were estimated from the count data (Figure 6.11). Further, the SwarnSeq had 

the least AUC when the observed counts were not adjusted with cell capture rates. 
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Figure 6.11. Performance analysis of SwarnSeq method in presence of spike-ins. 
(A) Scatter plot showing the relationship of mean and dispersion parameters of the genes. 
(B) Scatter plot comparing the observed value of zero proportions and estimated zero 
inflation parameters of genes (C) ROC curves are shown for SwarnSeq method (i) when 
spike-in information is considered (red); (ii) when spike-in data are not considered and 
capture efficiencies are estimated from the data (green); and (iii) Unadjusted for capture 
efficiency. (D) FDR curves of SwarnSeq method are shown for: (i) when spike-in 
information is considered (red); (ii) when spike-in data are not considered and capture 
efficiencies are estimated from the data (green); (iii) Unadjusted for capture efficiency. (E) 
Various performance measures are listed for SwarnSeq method under different 
conditions.  

Table 6.11. Performance of SwarnSeq method under three different scenarios. 

 TP FP TN FN TPR FPR PPR NPV ACC F1 

   NDEG = 500     

With Spike 482 18 12937 2518 0.161 0.001 0.964 0.837 0.841 0.275 

Unadjusted 457 43 12912 2543 0.152 0.003 0.914 0.835 0.838 0.261 
Without spike 468 27 12928 2532 0.156 0.002 0.945 0.836 0.840 0.268 

     NDEG = 1000     

With Spike 946 54 12901 2054 0.315 0.004 0.946 0.863 0.868 0.473 
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Unadjusted 809 191 12764 2191 0.270 0.015 0.809 0.853 0.851 0.405 
Without spike 795 187 12768 2205 0.265 0.014 0.810 0.853 0.850 0.399 

     NDEG = 1500     

With Spike 1311 189 12766 1689 0.437 0.015 0.874 0.883 0.882 0.583 

Unadjusted 1008 492 12463 1992 0.336 0.038 0.672 0.862 0.844 0.448 
Without spike 1059 416 12539 1941 0.353 0.032 0.718 0.866 0.852 0.473 

     NDEG = 2500     

With Spike 1713 787 12168 1287 0.571 0.061 0.685 0.904 0.870 0.623 

Unadjusted 1342 1158 11797 1658 0.447 0.089 0.537 0.877 0.824 0.488 
Without spike 1414 1053 11902 1586 0.471 0.081 0.573 0.882 0.835 0.517 

     NDEG = 3000     

With Spike 1846 1154 11801 1154 0.615 0.089 0.615 0.911 0.855 0.615 

Unadjusted 1466 1534 11421 1534 0.489 0.118 0.489 0.882 0.808 0.489 
Without spike 1542 1424 11531 1458 0.514 0.110 0.520 0.888 0.819 0.517 

Under the FDR based comparison setting, the SwarnSeq had the smallest 

FDR values, when the capture rates of cells were estimated from the spike-in data 

(Figure 6.11). Further, SwarnSeq performed poorly when the observed counts 

were not adjusted with capture rates of the cells, as compared to the adjusted 

scRNA-seq counts. The results from the third comparison setting, i.e. comparative 

analysis based on performance metrics, are shown in Figure 6.11 and Table 6.11. 

It was found that when the capture rates were estimated from the spike-ins and 

incorporated in SwarnSeq, its performance was better as compared to other two 

situations (Figure 6.11, Table 6.11). Thus, we have convincingly demonstrated the 

viability of using the external spike-in capture rates for endogenous RNA in 

SwarnSeq modeling, and subsequently found its DE performance is both robust 

and better. 

SwarnSeq as Differential Zero Inflation tool 

The SwarnSeq method provides an excellent platform for performing DZI analysis 

of genes. DZI genes are detected using a ZINB model under a GLM framework. 

For identification of DZI genes on real dataset, we set 1E-10 as threshold for 
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adjusted p-values computed through the SwarnSeq. For instance, at this threshold 

we identified 2936 DZI genes for GSE29087 data. This means, 2936 genes have 

a significant difference in the number of cells whose expressions are zeros across 

two cellular groups. Similar interpretations can be made for other datasets. 

Our SwarnSeq model provides an opportunity to classify the influential 

genes into gene types with respect to their differential zero inflation and 

expression. Through this, the identified genes can be grouped into various gene 

types, and the results are shown in Table 6.12.  

                          Table 6.12 Classification of DE and DZI genes. 

Datasets DEG DEZIG DZIG Non-DEG 

GSE29087 4930 2789 149 3567 

GSE53638 (data1) 2406 278 408 11771 

GSE53638 (data 2) 1831 2789 5013 6004 

GSE53638 (data 3) 1733 3101 4673 5507 

GSE65525 2033 15194 5799 929 

GSE75790 3993 9874 2865 3852 

GSE92495 757 324 5 14438 

GSE109999 5694 6386 71 903 

GSE111108 27 7187 87 10021 

GSE115469 24 7745 6296 3231 

GSE77288 1426 119 619 13791 

                              DEG: Differentially Expressed; DZIG: Differentially Zero Inflated; 
                                                         DEZIG: Both DEG and DZIG 

For instance, the GSE29087 data, the SwarnSeq identified 4930 genes as DEG, 

2789 genes as DEZIG, and 149 as only DZIG (Table 6.12). This means that out of 

15234 genes, the mean expression of non-zero counts of 4930 genes are 

expressed differentially across the two cellular groups. While, for 2789 genes, 

there is a significant proportion of cells whose expressions are zero across two 

cellular populations (however the mean of non-zeros counts of these genes in the 

remaining cells are significantly different) and only 149 genes had a significant 
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number of cells as zero expressions across the cellular populations (Table 6.12). 

Similar type of interpretations can be made for other datasets from Table 6.12. 

Discussion 

In this Chapter, we presented SwarnSeq, an improved statistical method, for 

performing analysis on counts data derived from scRNA-seq study. Our method is 

capable of performing reliable statistical tests on gene mean abundance, zero 

inflation, and classification of influential genes derived from scRNA-seq counts 

expression data. It uses the ZINB model to model the observed UMI counts. 

Further, the UMI provides an excellent opportunity to model the transcriptional 

capturing process. In other words, the observed counts data are adjusted with cell 

capture rates through a simple binomial model. Moreover, RNA spike-ins data 

including the external RNA spike-ins [253], can give valuable insights into the 

technical variation in scRNA-seq study. This raises a key question of whether and 

how to use spike-ins in data analyses. For instance, when they are available, they 

can be used to estimate the capture rates for cells. This property is well integrated 

in our SwarnSeq approach. Thus, SwarnSeq is capable of modeling capture rates 

using spike-ins data, if they are available and can estimate the capture rates from 

the observed data, if spike-ins are not available. We established statistical a theory 

for adjusting the UMI counts data with the molecular capturing process derived 

from real scRNA-seq experiments. Moreover, the SwarnSeq operates through 

various analytical steps including, pre-processing, normalization, estimation of 

gene parameters, detection of DE genes, and DZI genes, selection of top genes, 

and classification of genes into sub-types. The SwarnSeq method employs 
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different normalization methods such as modified median normalization [206] and 

trimmed mean of M values [204] to remove the amplification bias from the data. 

Thus, SwarnSeq is compatible with different normalization strategies. 

 Here, we established the statistical basis for the distributional nature of the 

observed scRNA-seq count in presence of cell capture rates. Further, we have 

empirically shown the suitability of the ZINB model for fitting zero inflated, and 

overdispersed count data over other count models, such as NB, PD, HD, and 

ZIPD. Moreover, the study of ZINB over NB model for estimation of parameters 

indicated that the latter overestimated the dispersion to accommodate excess 

overdispersion and underestimated the mean to accommodate the extra zeros 

present in scRNA-seq data. In UMI data, factors such as technical noise, dropout 

events, and low molecule capturing have substantial overdispersion and zero-

inflation, and a NB model is not appropriate. Hence, we implemented a ZINB model 

in our SwarnSeq method to fit the observed scRNA-seq count data and to obtain 

better estimates of the gene-wise means and dispersions. 

The SwarnSeq method models the unwanted variation in mean transcript 

abundance of genes attributed to different sources, such as cellular groups, cell 

clusters, and other cell co-variates. This means, it provides reliable MLEs of the 

effects of the cellular groups, cell clusters, and cell co-variates using the EM 

algorithm. Further, it detects the influential genes which are DE under a GLM 

framework. Here, these genes are identified based on the statistical significance 

values adjusted over multiple hypothesis testing. This provides statistically 

meaningful and biologically interpretable values in [0, 1] for genes in scRNA-seq 
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data. The benchmarking of methods indicated the better performance of our 

SwarnSeq method over other methods. This comparative analysis was carried out 

on three different comparison settings, i.e., AUROC, FDR, and other performance 

metrics on multiple real scRNA-seq datasets. 

The SwarnSeq method can also be extended to carry out other types of 

tests, including the differential testing of zero proportions of genes across the cell 

populations. Here, we considered the zero-inflation parameter of genes as a 

function of the effects of cellular populations, cell clusters, and other cell co-

variates. Then, a linear logit model was used to test for biological differences in 

zero inflation. To statistically measure this, a statistical significance value adjusted 

over multiple hypothesis testing, was assigned to each gene. This measure 

provided biologically interpretable values to genes, which showed there was 

significant difference in the proportion of zero expressions across the cellular 

populations due to technical variation, dropout events, least transcript abundance, 

etc. The available scRNA-seq tools mostly focused on performing DE analysis of 

genes and ignores the zero-inflation analysis which is an integral part of the 

scRNA-seq experiments. Therefore, our SwarnSeq method can perform DZI 

analysis including DE analysis of genes using the observed scRNA-seq counts 

data adjusted over molecular capturing process. Additionally, it also provides 

option for classifying the detected influential genes into various gene types 

according to their differential expression and zero inflation.  

Multilevel statistical models fitted with an EM algorithm are computationally 

intensive and time consuming.  ZINB models are implemented in several tools like 
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DEsingle [211], DECENT [209], which are time consuming. For instance, a data 

with 500 cells and 3000 genes DECENT took 120 min, while the largest dataset 

(GSE115469: 5466 cells and 17316 genes) took time up to 24 hours to finish on a 

10-core DELL PC with 32 GB RAM with Intel(R) Xeon(R) v4 CPUS @ 2.60 GHz. 

The SwarnSeq method required less computational time than DECENT and 

DEsingle with much superior performance along with additional features. Besides, 

it can even be used on a PC or workstation computer for analyzing large scRNA-

seq datasets. The benchmarking of the SwarnSeq method on multiple real 

datasets over a wide range of statistical criteria indicated its better and robust 

performance over the existing methods. Further, the SwarnSeq method will surely 

help the experimental biologist and genome researchers to identify true DE genes 

for their experiments. 

 

 

 

 

 

“A single cell is regarded as the true biological atom…” 

                                                                                             G H Lewes 
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CHAPTER 7

STATISTICAL APPROACH FOR GENE SET ANALYSIS WITH QUANTITATIVE 

TRAIT LOCI FOR RNA-SEQUENCING DATA 

Background 

RNA-seq is a powerful technique for studying GE dynamics and regulation in 

human and nonhuman genomes. Recently, RNA-Seq has surpassed the 

Microarrays by providing better quantification of GE for very high and low 

expressed genes, and higher levels of accuracy and reproducibility [284]. Here, 

the expression of genes are measured in terms of discrete read counts obtained 

through mapping the sequence reads to reference genome followed by 

quantification of transcripts abundance [75]. Further, DE analysis is one of 

powerful downstream analysis performed on the RNA-seq count data to detect DE 

genes with higher resolution than Microarrays across the two different 

experimental conditions [205]. Besides, it also allows to study alternative splicing 

[285], new coding and noncoding RNA transcripts and long noncoding RNAs 

[286,287]. In other words, the RNA-seq is much more popular and efficient, as it 

answers a much wider range of questions than Microarrays. Moreover,  to interpret 

the long list DE genes in the context of the underlying phenotypic differences and 

to gain insights into biological mechanisms [8], secondary genomic analytics, such 

as GSA is usually popular practice. Expressly, the GSA allows to interpret the high-

throughput RNA-seq count data in the context of broader biological context.  
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GSA methods were initially developed for Microarrays, but later extended 

to RNA-seq [15]. Here, preparation of ranked gene list (i.e., DE analysis) is a major 

process, which depends on the nature and distributional properties of the data. For 

instance, GSA approaches for Microarrays deal with continuous data and expected 

to follow Gaussian distribution. Contrarily, GE in RNA-seq are non-negative counts 

(discrete in nature) and assumed to follow a NBD model. Therefore, it may be 

improper to use GSA techniques meant for Microarray data directly to RNA-seq 

data. Initially, GSA for RNA-eq data analysis was adopted from Microarrays with 

the help of data transformation, subsequently new approaches exclusively for 

RNA-seq were also developed [74]. For instance, VOOM-normalization was used 

for normalizing the read counts for sequence-depths, then Microarrays GSA 

approaches are applied on the normalized data [78]. Then, specialized GSA 

methods for RNA-seq were developed, which includes GOseq [76]. It performs 

over-representation of GO categories enriched with a long list of DE genes in RNA-

Seq data. Further, an easy-to-use web application, iDEP was developed for in-

depth analysis of RNA-seq data [77]. Both the methods belong to the ORA 

category of the GSA, which uses the GO and pathways information to analyze the 

RNA-seq data [76,77]. These GSA methods only consider the number of DE genes 

alone and ignore any values associated with them such as read counts, DE score, 

etc. By discarding this data, ORA treats each gene equally by assuming that each 

gene is independent of the others, which is quite unrealistic in biology [21]. Further, 

ORA typically focus on the genes in gene set and discards the others. Apart from 

this, GSA methods based on gene enrichment statistic(s), such as AbsFilterGSEA 
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[81,82], seqGSEA [83], ssGSEA [288], EGSEA [84], GSVA [79], GSEPD [85], and 

RNA-Enrich [86] were developed exclusively for RNA-seq data analysis. Further, 

the reviews of these methods and their comparison can be found in recent studies 

available in literature [15,289]. However, these techniques are also suffered from 

limitations, such as they only use DE score to prepare ranked transcript list but 

ignore this information for gene set testing. Also these approaches use data 

transformation technique, through which overdispersion, zero inflation, count 

nature and other inherent nature of RNA-seq data are lost [289]. 

The contemporary GSA approaches in RNA-seq mostly use GO and 

pathways information for analyzing gene set [76,77,79,81–86,288], and very useful 

in establishing links of gene sets with underlying biological processes. However, 

in plant and complex disease biology, such approaches may not able to establish 

any formal relation between the underlying genotypes and the trait/phenotype, as 

most of the traits are quantitative in nature and controlled by polygenes 

[13,17,132,133]. Apart from the GO and pathways, other biological annotations 

information, such as QTL, expression QTL, etc. are available in public domain 

databases that may be effectively used for GSA to gain biological insights into the 

etiology of complex diseases in humans as well as other organisms. For this 

purpose, a statistical approach and tool was developed to perform GSA with 

genetically enriched QTL data [17] for Microarrays. This approach has immense 

use for performing trait/QTL enrichment analysis of gene sets and further, QTL 

enriched gene sets can be used for molecular breeding programs for biotic/abiotic 

stress engineering in plants. However, it has some serious limitations, such as only 
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consider the genes which overlapped with the QTL regions, but failed to consider 

their corresponding DE scores, treats each gene equally by assuming each gene 

as independently and identically distributed which is contrary to the real biology. 

GSAQ uses only the most significant genes, while discards other genes. For 

instance, a gene input list from Microarray is obtained by setting the arbitrary 

threshold(s) for FC and p-values as 1.5 and 0.01, respectively. With this method, 

marginally less significant genes (e.g., FC ~1.499 and p-value ~ 0.011) are missed, 

resulting in information loss for some key genes. Under these circumstances, the 

statistical methodologies for GSA with QTL requires further improvements and 

advances, which will be very helpful in unraveling genotype-phenotype 

relationships in plants or in complex diseases. 

In this chapter, we propose an improved statistical approach, i.e. GSQSeq, 

for analyzing genes with trait enriched QTL data for RNA-seq studies. This 

approach considers the genes present in the gene set along with their 

corresponding scores to analyze in presence of the trait specific QTL data. Here, 

the enrichment significance of the gene sets was assessed through the p-values 

computed using the developed test statistic(s). Further, we assessed the 

performance of the proposed method with the existing ones using performance 

metrics such as FDR, and -log10(p-value) on multiple real crop datasets. For this 

purpose, we used 7 expression datasets derived from Microarrays and RNA-seq 

studies in rice. Our analytical findings indicate that the developed approach 

outperformed the existing method for detecting trait enriched gene sets. For the 
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benefit of users, we developed GSQSeq R package based on the developed 

methodology. 

Material and Methods 

Real Microarray Datasets 

Rice GE experimental datasets were collected from GEO database of NCBI for 

platforms GPL2025 [140]. Here, we used the rice data, as it is a model crop plant, 

huge amount GE and other related biological datasets are available publicly, and 

its genome is well annotated. These GE datasets were generated under biotic 

(fungal (Blast), and insect (Brown plant hopper)), and abiotic (cold and drought) 

stresses in rice. The QTL datasets for the stresses in rice, viz. drought, cold, 

insect, and fungal, were collected from the Gramene QTL database 

(http://www.gramene.org/qtl/) [169]. The detail description for the datasets is given 

in Chapter 4. 

Real RNA-seq dataset 

The raw sequence datasets of rice (Japonica Group) under salinity stress were 

collected from the Sequence Read Archive (SRA) database of NCBI 

(https://www.ncbi.nlm.nih.gov/sra/). The datasets were generated from Illumina 

HiSeq 2000 with platform GPL13834 (in GEO). This platform consists 323 samples 

and 29 series of Oryza sativa. Among these datasets, we used sequence data 

pertains to GSE109341, submitted by Formentin et al. in January 2018 and last 

updated June 2018 to test the proposed method [290]. Unlike other datasets, 

GSE109341 has quite sufficient large number (24; case 12: control: 12) of samples 

belonging two different contrasting rice cultivars. Further, the sequence datasets 

http://www.gramene.org/qtl
https://www.ncbi.nlm.nih.gov/sra/
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were generated from root and leaf tissue samples under untreated and treated 

plants. Each sample was made of 6 pooled plants with three biological replicates.  

RNA-seq preprocessing and read alignment 

The single-end illumina raw sequence reads were collected from SRA database 

using SRA toolkit (v. 2.9.1-1). Then the raw reads were preprocessed with 

Trimmomatic toolkit (v. 0.38), which involves removal of adapter sequences, 

quality filtering, etc. Further, the overall quality of preprocessed results was 

manually inspected using the quality reports generated by FastQC (v. 0.11.7). 

Moreover, the preprocessed reads were mapped with HISAT (v. 2.1.0) on the 

Oryza sativa v. Nipponbare reference genome, downloaded from the MSU Rice 

Genome Annotation Project version 7.0 (http://rice.plantbiology.msu.edu/) [291]. 

The mapping of sequence reads to the reference genome allows to identify their 

genomic positions. Gene coordinates file (.GFF3) was collected from  MSU rice 

genome browser [291], which also help to map the reads spanning splice junctions.  

Transcript assembly and quantification 

The success of analysis of RNA-seq data requires the accurate reconstructions 

and proper quantification of all the isoforms expressed from each gene. Here, we 

executed the StringTie tool (v. 1.3.4d) to assemble transcripts from the RNA-seq 

reads that have been aligned to the genome, which primarily involves two steps. 

First, grouping the reads into distinct gene loci and then assembling each locus 

into as many isoforms. After assembling the transcripts with StringTie, we used 

gffcompare tool to assess the success of matching the assembled transcript with 

pre-annotated genes, either fully or partially. 

http://rice.plantbiology.msu.edu/
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However, the given experiment involved multiple RNA-seq samples 

generated for two varieties (with two tissue samples) under two different 

contrasting conditions (salinity treated vs. untreated). Hence, genes and 

transcripts present in one sample rarely identical with other samples due to varied 

sequencing depth. So, they need to be assembled in a consistent manner for which 

the mapping results for individual samples can be compared. For this purpose, we 

executed the merge function implemented in StringTie tool, which prepares a final 

list of genes by merging all the genes found in any of the samples. 

Notations 

Let, 𝑌𝑖𝑗: read counts of ith (i = 1, 2, …, N) of gene in jth (j = 1, 2, …, M) sample/library; 

Ω: collection of all genes present in the RNA-seq data (i.e. whole gene list); G: 

gene set selected from Ω; N: size of Ω; M: number of samples/libraries; n: size of 

G; Q: set of associated QTLs; Di: differential gene expression score for ith gene; Ti 

be the threshold placed at the ith position in gene ranked list, which divides the 

gene list into G and Gc =(𝛀− 𝐺). 

Proposed GSQSeq Approach 

Earlier developed GSAQ approach was based on the over representation analysis 

of the QTL hit genes (i.e. genes overlapped with QTL regions) in the selected gene 

set through hypergeometric test [17]. This approach only considered the genes in 

the selected gene set but ignored their corresponding DE scores. Hence, we 

developed the GSQSeq approach which is capable of integrating the available DE 

scores of the selected genes with QTL analysis of the gene set. For this purpose, 

we developed a scoring function for the gene set, GSQ, that combines features 
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from over-representation and shifted expression-based approaches [292]. Here, 

GSQ is computed using hypergeometric distribution based on enrichment score 

weighted with the DE scores computed through tests such as t-test, FC, etc. In 

other words, GSQ feeds on gene list (preferably ordered based on DE score) along 

with the corresponding vector of DE scores and classification of genes in input list 

as G and Gc based on a threshold. Then, it calculates the GSQ score, given in Eq. 

7.1, for every gene set of the ordered gene list taken at each of the threshold values 

[128] by using the following procedure. 

Then, GSQ uses the following function to calculate the difference between the sum 

of differential gene expression test scores for G and Gc using Eq. 7.1. 

𝑆𝐷𝐺𝑄 = ∑ 𝐷𝑖𝑖∈𝐺
𝑖∈𝑄

− ∑ 𝐷𝑖𝑖∈𝐺′

𝑖∈𝑄

                                            (7.1)                                                                          

This calculation is repeated for each threshold value, Ti. 

Therefore, to perform the gene set analysis with the underlying trait specific 

QTLs for RNA-seq data under a sound computing framework, we developed the 

GSQSeq approach. In other words, it can be used to evaluate the statistical 

significance of selected gene sets related to specific trait based on available QTL 

information. Under GSQSeq approach, the following hypothesises can be 

constructed for testing purpose. 

H0: Genes in G are at most as often overlapped with the QTL regions as the genes 

in G (i.e. 𝑆𝐷𝐺𝑄 = 0) 

H1: Genes in G are more often overlapped with the QTL regions as compared to 

genes in G  (i.e. 𝑆𝐷𝐺𝑄 > 0) 
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The above constructed null hypothesis is a competitive one as it considers the 

genes from both G and G  [5]. In other words, the H0 tells that the QTL hit gene 

set members and non-members are distributed randomly across the gene list. 

Further, the QTL hits of the genes present in G can be determined through the 

indicator function given in Eq. 7.2. 

𝐼𝑞( 𝑔) = {
1       𝑖𝑓 𝑔𝑐[𝑎, 𝑏] ∈ 𝑞𝑐[𝑑, 𝑒] 

0      𝑖𝑓 𝑔𝑐[𝑎, 𝑏] ∉ 𝑞𝑐[𝑑, 𝑒]
                         (7.2)                                    

where, 𝑔 ∈ 𝐺; a and b represent start and stop positions (in terms of base pairs) in 

chromosome c of the gene g; 𝑞 ∈ 𝑄; d and e represent the start and stop positions 

(in base pairs) in the chromosome c of the QTL q.  

Further, 𝑆𝐷𝐺𝑄 cannot be used for GSA, as it is unstable due to different sizes of 

gene sets, 𝐺 and 𝐺′. Hence, GSQ uses a Z-score transformation given in Eq. 7.3. 

𝐺𝑆𝑄 =
𝑆𝐷𝐺𝑄−𝐸(𝑆𝐷𝐺𝑄)

√𝑉(𝑆𝐷𝐺𝑄)
                                                (7.3)                                  

where, 𝐸(𝑆𝐷𝐺𝑄) and 𝑉(𝑆𝐷𝐺𝑄) are the expected value and variance of the 𝑆𝐷𝐺𝑄  

respectively. Further, we obtained the distribution the test statistic, 𝑆𝐷𝐺𝑄, under the 

H0, and the expressions for the mean and variance of the test statistic can be 

obtained and is given in Eq. 7.4 and 7.5 respectively. 

 𝐸(𝑆𝐷𝐺𝑄) = 2𝐸(𝑋)𝐸(𝑁𝐺𝑄) − 𝑁𝐸(𝑋)                       (7.4)                                

𝑉(𝑆𝐷𝐺𝑄) = 4 (
𝑉(𝑋)

𝑁−1
(𝐸(𝑁𝐺𝑄)(𝑁 − 𝐸(𝑁𝐺𝑄)) − 𝑉(𝑁𝐺𝑄) + 𝐸(𝑋)

2𝑉(𝑁𝐺𝑄)      (7.5)    

where, X: differential gene expression test scores of the genes in the gene set, 

𝑁𝐺𝑄: Number of gene set members in G got QTL hits, E(.): expected value and 

𝑉(. ): variance.  
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The 𝑁𝐺𝑄 in Eq. 7.4 and 7.5 can be expressed using Eq. 7.2 and given in Eq. 7.6. 

𝑁𝐺𝑄 = ∑ ∑ 𝐼𝑞( 𝑔)𝑔∈𝐺𝑞∈𝑄                                           (7.6)  

  The 𝑁𝐺𝑄 in Eq. 7.6 follows hypergeometric model and its PMF can be given as: 

P[𝑁𝐺𝑄 = 𝑣] =
(𝑉𝑣)(

𝑁−𝑉
𝑛−𝑣)

(𝑁𝑛)
                                              (7.7)                               

where, V: total number of genes covered by the QTLs in the whole Ω and v: number 

of genes in G that are covered by QTLs. The expected value and variance of 𝑁𝐺𝑄, 

given in Eq.7.6, can be expressed in Eq. 7.8, and 7.9, respectively. 

𝐸(𝑁𝐺𝑄) =
𝑛𝑉

𝑁
                                                           (7.9)                                              

  𝑉(𝑁𝐺𝑄) =
𝑛𝑉(𝑁−𝑉)(𝑁−𝑛)

(𝑁−1)𝑁2
                                         (7.10)                           

Under H0, the GSQ statistic, given in Eq. 7.3, follows a standard normal distribution 

asymptomatically at least, i.e. 𝐺𝑆𝑄 ~ 𝑁(0,1). Through this property, the statistical 

significance value for the selected gene set, G, was computed. Similarly, this 

procedure was repeated for all the K gene sets obtained through placing the 

threshold, Tk, (k = 1, 2, …, K) at K different places in the ranked gene list. Then, 

we adjusted the statistical significance values for the gene sets through the 

multiple hypothesis testing correction, and the procedure is given as follows. 
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 Let, 𝑝1, 𝑝2, … , 𝑝𝐾 be the corresponding p-values for all the K gene sets, and 

α be the level of significance. Here, we assume that all gene sets are equally 

important for the trait development, hence, we employed Hochberg procedure 

[172] for correcting the multiple testing, and to compute the adjusted (adj.) p-values 

for gene sets. The detail procedure for computation of adj. p-values and FDR 

through Hochberg procedure is given in Chapter 3 (Eq. 3.24). Further, based on 

the computed adj. p-values, the underlying QTLs enrichment significance of the 

selected gene sets was assessed. In other words, lesser value of adj. p-value 

indicates more QTL enrichment of the selected gene set for the target trait 

development, and vice-versa. The outlines and key analytical steps of the 

proposed GSQSeq approach are shown in Figure 7.1. 

Figure 7.1. Outlines and analytical steps of the GSQSeq approach. (A) Various steps 

undertaken in RNA-seq data analysis. (B) Analytical steps in GSQSeq approach. 

Results and Discussion 

From the SRA database of NCBI, a total of 542,309,740 single end reads (with 50 

base pair length) were obtained for 24 libraries. Further, the average number of 
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reads per library was 22,596,239 with a CV 0.169 (=16.9 %). After pre-processing 

with Trimomatic, the above summary statistic reduced to 22,353,215 as mean 

library size with CV 0.171 (=17.1%). However, through pre-processing, the 

average library size was reduced as compared to that of raw sequence datasets. 

But the variability among the library remained unchanged. Then, most of the pre-

processed reads (94.3%) were successfully mapped to the rice reference genome. 

Of these, 2.87% were mapped more than one positions and were discarded from 

further analysis. 

Genes ranked list preparation 

Rice RNA-seq data 

The processed sequence count data was used for DE analysis for each 

samples/library belonging to two contrasting classes, i.e. treated vs. untreated. The 

DE analysis was performed through edgeR R package (v 3.30.3) implemented in 

R software (v. 4.0.1). The DE test statistic(s) for the genes were computed through 

LRT statistic(s). Based on the absolute value of the LRT statistic, the genes are 

arranged in descending order for the preparation of gene ranked list. Then, 

different values of the thresholds (Ti) are placed on the gene ranked list to select 

different gene sets. Through this process, gene sets of sizes such as 200, 300, 

400, …, 2000 are selected from the ranked gene list.  

Rice Microarray data 

The raw CEL files of these collected samples for the cold, drought, fungal and 

insect stresses were processed using RMA algorithm available 

in affy Bioconductor package of R. This includes background correction, quantile 
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normalization and summarization by the median polish approach. The log2 scale 

transformed expression data from the RMA for these selected experimental 

samples were used for the preparation of the gene ranked list through DE analysis. 

Here, the DE analysis was performed through t-test and the test statistic(s) for the 

genes computed through the t-test. The genes are arranged in descending order 

for the preparation of gene ranked list. Then, different values of the Ti are placed 

in various positions on the gene ranked list to select different gene sets. Through 

this process, gene sets of sizes such as 200, 300, 400, …, 2000 are selected from 

the ranked gene lists for each dataset.  

Distribution of GSQ statistic 

The distribution of the NQhits statistic computed through existing GSAQ approach 

(given in Chapter 4) over different selected gene sets for the different stresses are 

shown in Figure 7.2A. Further, the distribution of the GSQ statistic(s) computed 

from the GSQSeq approach is also shown on Figure 7.2B.  

Figure 7.2. Distribution of NQhits and GSQ test statistics(s). The distribution of 
NQhits (A) and GSQ (B) test statistic(s) over the selected gene sets  
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The distribution of the NQhits computed from the GSAQ approach indicated that 

the values of the NQhits statistic(s) was found to be higher for fungal stress 

followed by insect stress as compared to other datasets (Figure 7.2A). This is due 

to the fact that the higher number (76) of QTLs are reported for this stress followed 

by 57 in bacterial stress. In other words, the NQhits is a linear function of the 

number of genes present in gene sets, number of QTLs reported for that stress 

and length of the QTL regions (Figure 7.2A). Similar interpretations can be for the 

distribution of the GSQ statistic(s) (Figure 7.2B). However, the NQhits statistic did 

not consider the DE scores of the genes present in the gene set. Here, it is worthy 

to note that the GSQ is a function of the number of genes along with their 

respective DE scores in the gene set, number of QTLs reported for that stress and 

length of the QTL regions 

Proposed approach for Gene set analysis with QTLs 

The NQhits and GSQ statistics failed to tell the trait specific enrichment of gene 

sets or association of genotype-phenotype relation. Therefore, we proposed 

GSQSeq approach to test the trait specific enrichments of the gene sets with 

underlying QTLs. Further, we explored the ability of the proposed GSQSeq 

approach along with existing GSVQ and GSAQ approaches to provide biologically 

meaningful insights (e.g., establishing genotype-trait specific phenotype 

associations) in the real high-throughput GE datasets derived from RNA-seq and 

Microarrays studies. For all the three tested GSA approaches, we searched 

significantly associated gene sets enriched with underlying QTLs, which were 

selected by a particular gene selection method (e.g., t-test in Microarrays, edgeR 
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in RNA-seq) in each of the datasets. The results from such analysis are shown in 

Tables 7.1, 7.2.  

Table 7.1. Performance analysis of GSQSeq approach on real Microarray 
datasets. 

 Drought    Fungal   Insect  

GS GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq 

200 0.83 11.80 276.94 0.00 0.00 254.48 0.65 6.36 229.17 

300 0.64 9.29 252.76 0.31 0.87 220.28 0.94 13.44 234.13 

400 0.45 1.86 254.48 0.06 0.00 202.94 0.69 8.45 236.10 

500 0.81 11.66 252.28 0.22 0.02 190.28 1.08 18.20 228.86 

600 0.79 12.97 252.16 0.23 0.00 181.58 0.92 13.93 228.69 

700 0.49 2.75 252.06 0.34 0.62 219.58 1.23 21.99 228.56 

800 0.78 11.56 251.98 1.04 10.44 219.50 0.81 12.97 228.47 

900 0.70 10.90 251.92 0.98 5.69 219.43 1.09 17.49 228.39 

1000 0.93 14.56 251.86 0.14 0.16 219.38 1.09 15.47 228.32 

1100 1.01 15.11 251.81 0.00 0.00 219.33 1.43 23.98 228.26 

1200 1.08 19.30 251.76 0.00 0.00 219.28 1.62 25.14 228.21 

1300 1.00 18.04 293.50 0.04 0.00 219.24 1.43 24.35 228.17 

1400 0.93 15.60 276.15 0.19 0.37 219.20 2.28 28.35 228.12 

1500 1.01 13.95 252.76 0.34 1.22 219.17 1.99 27.67 228.09 

1600 0.69 9.23 254.48 0.94 6.27 219.13 1.50 21.05 228.05 

1700 1.01 14.48 220.28 2.29 19.08 219.10 1.62 21.52 228.02 

1800 1.09 16.36 202.94 0.14 0.03 219.08 1.04 16.17 227.99 

1900 1.10 17.91 190.28 0.00 0.00 219.05 1.19 20.39 227.96 

2000 1.04 19.27 181.58 0.01 0.00 219.02 1.08 13.90 227.94 
GSAQ: Gene Set Analysis with QTL; GSVQ: Gene Set Validation test with QTL; GSQSeq: Gene Set 
Analysis with QTL for RNA-seq 

Table 7.2. Performance analysis of GSQSeq approach on RNA-seq and 
Microarray datasets based on -log10(p-values). 

 Salinity   Cold   

Gene sets GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq 

200 1.05 18.85 222.71 0.05 1.00 222.46 

300 0.67 8.29 212.71 0.01 2.00 223.02 

400 0.69 8.02 211.71 0.08 2.00 224.30 

500 0.82 12.99 302.23 0.02 2.00 225.83 

600 0.62 5.85 270.66 0.02 2.00 226.60 

700 0.75 10.74 226.11 0.01 1.30 227.13 

800 0.77 13.23 197.34 0.00 1.30 228.46 

900 0.89 14.98 168.77 0.00 1.30 229.41 

1000 0.73 9.76 159.48 0.01 1.30 230.45 
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1100 0.85 14.63 138.47 0.02 1.30 231.46 

1200 0.71 11.52 132.49 0.03 1.30 302.59 

1300 0.91 17.85 112.50 0.02 1.30 249.00 

1400 0.85 14.15 105.22 0.02 0.00 236.69 

1500 0.72 8.29 101.95 0.03 1.19 232.29 

1600 0.83 11.51 89.95 0.04 1.30 219.10 

1700 0.71 8.09 87.65 0.02 1.46 213.22 

1800 0.82 10.50 77.54 0.01 1.70 196.50 

1900 0.93 14.24 68.47 0.01 2.30 203.26 

2000 0.81 10.89 67.15 0.00 2.00 180.41 
GSAQ: Gene Set Analysis with QTL; GSVQ: Gene Set Validation test with QTL; 

GSQSeq: Gene Set Analysis with QTL for RNA-seq 

For salinity stress RNA-seq data, the magnitude of −log10 (p-values) from 

GSQSeq was found to be much higher than that of existing GSVQ and GSAQ 

approaches (Table 7.2). This indicated that, GSQSeq approach more often 

rejected H0 (i.e. equal salinity QTL enrichment of both selected and not selected 

gene sets) as compared to GSVQ and GSAQ approaches. Therefore, it was found 

that salinity trait specific analysis of gene sets derived from RNA-seq study was 

successful through GSQSeq as compared to GSVQ and GSAQ. In other words, 

GSQSeq approach performed better in terms of detecting the QTL enriched gene 

sets compared to the existing approaches. In order to cross validate these findings 

on the same RNA-seq data related to salinity stress, we computed FDR for the 

GSQSeq, GSAQ and GSVQ approaches for all the gene sets. The results are 

given in Tables 7.3 and 7.4. It was observed that the value of FDR from proposed 

GSQSeq approach for all these gene sets are far below than that of existing GSAQ 

and GSVQ approaches (Table 7.3). Therefore, it can be inferred that the proposed 

GSQSeq is more robust than the GSAQ and GSVQ for performing gene set 

enrichment testing with salinity trait specific QTLs. 
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For cold stress data derived from Microarrays, the values of −log10 (p-

values) from GSQSeq was observed to be higher than that of existing GSVQ and 

GSAQ approaches over all the selected gene sets (Table 7.1). This indicated that, 

GSQSeq approach more often rejected H0 (i.e. equal salinity QTL enrichment of 

both selected and not selected gene sets) as compared to GSVQ and GSAQ 

approaches. Further, the FDR values computed through the proposed GSQSeq 

approach for all these selected gene sets were found to be least followed by GSAQ 

than GSVQ approach (Table 7.4). Similar findings were observed for drought, 

fungal and insect stress datasets in rice (Tables 7.1-7.4). Therefore, it can be 

concluded that the proposed GSQSeq is much better and robust than the GSAQ 

and GSVQ for performing gene set enrichment testing with the underlying QTLs 

for Microarrays based GE study. Furthermore, across all the considered datasets 

we found much greater consistency in QTL specific gene set enrichment analysis 

across five different stress scenarios, viz. salinity, cold, drought, fungal and insect, 

by using GSQSeq than GSVQ and GSAQ (Tables 7.1-7.4). 

Table 7.3. FDR based analysis of GSA approaches on RNA-seq and Microarray 
datasets. 

  Salinity   Cold   

Gene sets GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq GSVQ 

200 0.224 2.69E-18 6.99E-160 0.995 0.10 1.58E-249 0.226 

300 0.224 6.14E-09 6.50E-139 0.995 0.50 2.96E-237 0.254 

400 0.224 9.97E-09 5.63E-133 0.995 0.68 6.90E-233 0.352 

500 0.224 2.45E-13 2.82E-302 0.995 0.46 9.96E-220 0.226 

600 0.238 1.40E-06 8.31E-271 0.995 0.23 7.09E-214 0.226 

700 0.224 2.86E-11 2.46E-226 0.995 0.01 3.32E-197 0.344 

800 0.224 1.61E-13 1.23E-197 0.995 0.18 1.78E-236 0.226 

900 0.224 6.67E-15 4.08E-169 0.995 0.14 2.07E-236 0.241 

1000 0.224 2.37E-10 6.99E-160 0.995 0.10 2.37E-236 0.223 

1100 0.224 1.12E-14 6.50E-139 0.995 0.06 2.67E-236 0.223 

1200 0.224 5.87E-12 5.63E-133 0.995 0.02 4.47E-303 0.223 
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1300 0.224 1.35E-17 4.98E-113 0.995 0.02 1.58E-249 0.223 

1400 0.224 2.25E-14 8.88E-106 0.995 1 2.96E-237 0.223 

1500 0.224 6.14E-09 1.53E-102 0.995 1 6.90E-233 0.223 

1600 0.224 5.87E-12 1.43E-90 0.995 1 9.96E-220 0.241 

1700 0.224 9.00E-09 2.63E-88 0.995 1 7.09E-214 0.223 

1800 0.224 4.59E-11 3.22E-78 0.995 1 3.32E-197 0.223 

1900 0.224 2.19E-14 3.60E-69 0.995 1 6.10E-204 0.223 

2000 0.224 2.24E-11 7.10E-68 0.995 1 3.92E-181 0.223 
GSAQ: Gene Set Analysis with QTL; GSVQ: Gene Set Validation test with QTL; GSQSeq: Gene 
Set Analysis with QTL for RNA-seq 

Table 7.4. FDR based analysis of the GSA approaches on real Microarray 

datasets.  

 Drought   Fungal   Insect  

GS GSAQ GSQSeq GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq 

200 2.52E-12 1.04E-276 0.996 1 6.24E-221 0.224 4.33E-07 5.1E-230 

300 6.14E-10 2.20E-253 0.996 0.42 8.79E-253 0.141 4.36E-14 3E-225 

400 0.013834 4.47E-255 0.996 1.00 1.10E-252 0.215 3.77E-09 1.8E-220 

500 3.21E-12 6.24E-221 0.996 1.00 6.59E-249 0.121 1.19E-18 1.1E-215 

600 1.83E-13 8.79E-253 0.996 1.00 3.95E-245 0.141 1.58E-14 6.2E-211 

700 0.00188 1.10E-252 0.996 0.65 2.37E-241 0.121 3.24E-22 3.7E-206 

800 3.73E-12 1.32E-252 0.549 3.42E-10 1.42E-237 0.172 1.19E-13 2.2E-201 

900 1.61E-11 1.54E-252 0.549 9.63E-06 8.54E-234 0.121 5.55E-18 1.3E-196 

1000 6.61E-15 1.76E-252 0.996 1 5.12E-230 0.121 4.98E-16 7.5E-192 

1100 2.12E-15 1.98E-252 0.996 1 3.07E-226 0.101 4.01E-24 4.4E-187 

1200 5.11E-19 2.20E-252 0.996 1 1.84E-222 0.101 4.56E-25 2.6E-182 

1300 5.74E-18 4.96E-294 0.996 1 1.11E-218 0.101 2.13E-24 1.5E-177 

1400 7.92E-16 1.04E-276 0.996 1 6.64E-215 0.098 8.54E-28 9E-173 

1500 2.14E-14 2.20E-253 0.996 0.226411 3.98E-211 0.098 2.04E-27 5.3E-168 

1600 6.54E-10 4.47E-255 0.549 3.44E-06 2.39E-207 0.101 2.13E-21 3.1E-163 

1700 6.94E-15 6.24E-221 0.097 1.57E-18 1.43E-203 0.101 8.14E-22 1.9E-158 

1800 1.65E-16 1.30E-203 0.996 0.150939 8.61E-200 0.123 1.06E-16 1.1E-153 

1900 5.89E-18 5.57E-191 0.996 2.64E-01 5.16E-196 0.121 8.51E-21 6.4E-149 

2000 5.11E-19 2.65E-182 0.996 3.77E-01 3.10E-192 0.121 1.58E-14 3.8E-144 
 

The proposed GSQSeq approach is an improved way to perform the trait 

specific analysis of gene sets to establish genotype (polygenes)-phenotype 

(quantitative trait) association testing with the help of genetically rich QTL data. 

Further, it is more biologically appealing to establish association of genes 
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(genotype) in the selected gene set with underlying QTLs (traits/phenotypes). 

However, in the existing GSVQ and GSAQ approaches, the genes in gene sets 

are taken as input to the hypergeometric distribution for performing trait enrichment 

analysis. These approaches violate the basic assumptions (i.e. sampling units 

must be drawn without replacement) and did not consider the DE scores of the 

genes present in gene set. Thus, they expected to have poor performance in terms 

of gene set enrichment. Hence, the proposed GSQSeq approach was found to be 

more successful and effective to detect trait specific QTLs enriched gene sets than 

the existing approaches. 

The proposed GSQSeq approach allowed one to statistically test the gene 

set for enrichment with the underlying QTLs (i.e. rejection of null hypothesis of 

random association of selected genes with QTLs). Further, a p-value was 

assigned to each selected gene set, which is more scientific and statistically 

meaningful to genome researchers and experimental biologists (as value lies 

between 0 and 1). The gene sets with lower p-values are considered as more 

enriched with the underlying trait specific QTLs and vice-versa. It may be noted 

that the proposed GSQSeq technique is a two-stage approach. First, it deals with 

the selection of gene sets through DE analysis of large GE data. Second, it 

assesses the QTL enrichment significance of gene sets by using a developed 

parametric testing procedure. This analysis eases the interpretation of a large-

scale experiment by identifying trait specific enriched gene sets. Here, rather than 

focusing on individual QTL hit genes, researchers can focus on gene sets 
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(polygenes), which tend to be more reproducible and more interpretable (for 

quantitative traits).  

The proposed GSQSeq can be considered as a valuable tool for performing 

gene(s) enrichment analysis in molecular plant breeding context. Further, it 

provides a valuable tool for integrating the GE data from scRNA-seq or bulk RNA-

seq or Microarrays with genetically rich QTL data to identify potential QTL enriched 

gene sets or set of QTL candidate genes, which may act as valuable input or 

hypothesis for the plant breeders for designing breeding experiments. Due to the 

unavailability of scRNA-seq datasets for crops, we are unable to test the 

performance of GSQSeq approach on rice scRNA-seq datasets, which will be 

done in future. 

 

 

 

 

“Every experiment may be said to exist only in order to give the facts a chance of 

disproving the null hypothesis …” 

                                                                                                          R A Fisher 
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CHAPTER 8

DEVELOPED SOFTWARE PACKAGES 

Gene Selection using 'BSM’ R Software Package 

Selection of biologically relevant genes from high dimensional expression data is 

a key research problem in gene expression genomics. Most of the available gene 

selection tools are either based on relevancy or redundancy measure, which are 

usually adjudged through post selection classification accuracy. Through these 

tools, the ranking of genes was done on a single high-dimensional expression 

data, which leads to the selection of spuriously associated and redundant genes. 

Therefore, in Chapter 3, we developed a BSM statistical approach through 

combining SVM wrapper with MRMR under a sound statistical setup for the 

selection of biologically relevant genes. Here, the genes are selected through 

statistical significance values computed using a NP test statistic under a bootstrap 

based subject sampling model. Based on this, we developed an R software 

package which includes BSM R package and accompanying documentation with 

examples. This package is available at https://github.com/sam-uofl/BSM. This 

software is capable of computing weights for gene selection through MRMR and 

SVM, SVM-MRMR, and also provide functions for computing p-values, and 

adjusted p-values through BSM approach for different parameter options. Further, 

https://github.com/sam-uofl/BSM


242 
 

it also allowed different functions for selecting relevant gene sets through existing 

MRMR, SVM, SVM-MRMR, and proposed BSM gene selection approaches. 

Gene Set Analysis with ‘GSAQ’ R software package 

The analysis of gene sets is usually carried out based on gene ontology terms and 

known biological pathways. These approaches may not establish any formal 

relation between genotype and trait specific phenotype. Therefore, in Chapter 4, 

we proposed an innovative GSAQ statistical approach for interpreting expression 

data in context of gene sets with traits. To facilitate the use of the proposed 

approach, we have developed resources that are freely available from the CRAN 

site of R. This resource includes the GSAQ R package, accompanying 

documentation and model real data examples. This package can be freely 

downloaded from https://cran.r-project.org/web/packages/GSAQ. This software is 

capable of computing NQhits statistic and performing QTL specific gene set 

enrichment analysis through the proposed GSAQ and existing GSVQ approaches. 

Besides, it can also be used for selection of relevant gene sets from high-

dimensional GE data through different gene selection methods, obtaining QTL 

candidate genes and getting chromosome and QTL wise distributions of genes in 

selected gene set. 

Analysis of scRNA-seq data using ‘SwarnSeq’ R Package 

scRNA-seq is gradually replacing bulk RNA-seq and Microarrays for high-

throughput studies of gene expression. The DE analysis is the major downstream 

analysis of scRNA-seq data, used to detect DE genes to gain insights into the 

underlying complex biological processes. The DE analysis in presence of noises 

https://cran.r-project.org/web/packages/GSAQ
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from biological (e.g., stochasticity of gene expression, heterogeneous cell types, 

cell cycle) and technical sources (e.g., dropout events, zero-inflation, low input 

mRNA molecules, low cell capture rates, amplification bias) remain a key 

challenge in scRNA-seq. So, in Chapter 6 we present a novel statistical approach 

for DE, and other downstream analysis that considers the molecular capture 

process in scRNA-seq data modeling. Our novel approach is implemented in an R 

software package, namely, SwarnSeq. The developed R package can be availed 

at https://github.com/sam-uofl/SwarnSeq. Further, our SwarnSeq R package 

provides OptimCluster function for getting the optimum number of cell clusters from 

scRNA-seq count data. Additionally, it also provides option for estimation of 

capture rates of cells using different methods, e.g. MLE, regression, etc., whether 

RNA spike-in data is available or not. The function SwarnSeq implemented in 

SwarnSeq R package can be executed for estimating the parameters for each 

gene, i.e. mean, dispersion, zero inflation, effects of groups, cell clusters and cell 

level auxiliary information on zero-inflation as well as means of non-zero counts. 

SwarnSeqLRT function provides option for results from DE analysis and DZI 

analysis, when the observed UMI counts are adjusted for molecular capture rates. 

Moreover, functions like SwarnUnadjSeq and SwarnUnadjLRT are implemented 

for parameter estimation and DE, and DZI analyses respectively, when the users 

do not need to adjust the count data for capture efficiency. The top influential genes 

detected through SwarnSeq approach can be selected and classified through the 

implemented SwarnClass and SwarnTopTags functions, respectively. Different 

https://github.com/sam-uofl/SwarnSeq
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options are provided in the SwarnSeq R package for adjusting the capturing 

process and correcting amplification bias through different normalization methods. 

GSA for RNA-seq/scRNA-seq study using ‘GSQSeq’ R Package 

In chapter 7, we presented a statistical approach for performing gene set analysis 

with QTLs for RNA-seq/scRNA-seq data. This approach considers the genes 

present in the gene set along with their corresponding DE scores to analyze in 

presence of the trait specific QTL data. Here, the enrichment significance of the 

gene sets is assessed through the p-values computed using the developed test 

statistic(s). Based on this developed approach, we developed ‘GSQSeq’ R 

software package. This is available at https://github.com/sam-uofl/GSQSeq . This 

is capable of computing GSQ scores for gene sets, and statistical significance 

values for QTL enrichment of the sets. Further, it also provides function to perform 

the enrichment analysis of the gene sets with QTL through the existing GSVQ. 

The pre-processed scRNA-seq datasets, R codes and reference genes 

used in the comparative study (Chapter 5) are available in the RoopSeq GitHub 

project directory at https://github.com/sam-uofl/RoopSeq. 

 

 

 

“In the next 10 years, data science and software will do more for medicine than all of the 

biological sciences together…” 

                                                                                                                        Vinod Khosla 

 

 

https://github.com/sam-uofl/GSQSeq
https://github.com/sam-uofl/RoopSeq
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CHAPTER 9

GENERAL DISCUSSION AND CONCLUSION 

In the last 15 years since its inception, GSA has become an extremely popular 

approach for secondary analysis of high-throughput genomic data obtained 

Microarrays, RNA-seq and scRNA-seq studies. It has been successfully used to 

gain biological insights into the etiology of various complex diseases in humans as 

well as other model organisms, including mammals and other cellular organisms. 

GSA has immense benefits in terms of biological interpretation of results as well 

as numerous computational advantages over single gene studies [52]. It also 

enhances biologically meaningful interpretation of results and reproducibility of 

important gene lists yielded by independent studies [12,15,17,26,67]. In other 

words, the cumulative effects of the genes distributed in a gene set is considered 

in a single analysis, and has more statistical power as compared to the univariate 

counterparts [26]. Despite the wider usefulness of GSA, there are limited number 

of studies found in the literature, which consider the wider gamut of high throughput 

genomic studies. Hence, we have presented a detailed overview of GSA in high-

throughput genomic studies in Chapter 2. This also summarized the commonalities 

of GSA approaches used in key genomic studies in terms of their execution, 

underlying null hypotheses, nature of test statistic, sampling models, common 

execution, and analytical steps, etc.
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Over the years, a diverse set of methods for performing GSA has been 

proposed for Microarrays, RNA-seq and GWAS data analysis and the increased 

application of these methods has exposed several factors that affect the 

interpretations of GSA results. These factors include the null hypothesis being 

tested, the underlying sampling/permutation procedure, and the nature and 

distribution of test statistic(s). All of these factors play a significant role for choosing 

proper GSA for the data analysis. Researchers have also identified a variety of 

circumstances that can lead to faulty findings; hence, proper care is suggested to 

avoid misleading results. Several individual studies have been conducted over 

time to summarize GSA approaches for each type of genomic study. In Chapter 2, 

we summarize a comprehensive review of GSA approaches in terms of statistical 

structure, execution, and classification for three different high-throughput genomic 

studies. Several approaches and tools have evolved over time, individually for 

each type of genomic study. Thus, instead of individually reviewing them, we 

present the classification of GSA approaches for Microarrays, RNA-seq and 

GWAS into different generations along with underlying statistical 

methodologies/tests, and special features. Many earlier reviews of GSA are data 

independent studies [5,9,15], but our study is data dependent and comprehensive. 

This study presented in Chapter 2 will serve as a catalogue and provide 

guidelines to genome researchers and experimental biologists for choosing the 

proper GSA based on several factors. Here, we reported several challenges, which 

need to be addressed by statisticians and biologists collectively to develop the next 

generation of GSA approaches. These new approaches will be able to analyze 
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high-throughput data more efficiently in order to better understand the biological 

systems, and to increase the specificity, sensitivity, utility, and relevance of GSA. 

In GE genomics, the key step is to select relevant genes or gene sets for 

performing GSA. Further, the selected genes which can be used as predictors for 

the development of statistical/classification models to handle high dimensionality 

in GE data. Therefore, in Chapter 3, we present an improved statistical approach 

for gene selection from high-dimensional GE data, which is both effective in 

reducing redundancy among the genes and improves biological relevancy of 

genes with the target trait. Here, the genes are selected based on the assessment 

of the statistical significance of the self-contained null hypothesis under a sound 

computational framework. Usually, thousand(s) of null hypotheses are usually 

tested simultaneously in GE data analysis which increased the chance of selection 

of false positive genes. Hence, through the proposed BSM approach an adjusted 

p-value was assigned to each gene after multiple test adjustments, and relevant 

genes were selected based on the adjusted p-values. The BSM approach is based 

on the NP test statistic(s) which does not depend on the distribution of the GE data 

unlike t-test. Further, the bootstrap procedure in the BSM can minimize the 

redundancy among genes as well as reduce the spurious association of genes 

with traits during gene selection. The proposed approach is also less 

computationally expensive compared to SVM-RFE, and SVM-MRMR and can be 

implemented on a personal or workstation computer for analyzing large GE 

datasets. Furthermore, we used a comprehensive framework of performance 

analysis of the gene selection methods under statistical necessary, and biological 
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relevant criteria. More specifically the tested gene selection methods include SVM-

RFE from Wrapper, SVM-MRMR and proposed BSM from Hybrids (Embedded) 

and the remaining 7 from the filter categories. The comparative analysis revealed 

the proposed approach has the features of an ideal technique of gene selection, 

as it performed better under both statistically necessary, and biologically relevant 

criteria. Moreover, this study provides a systematic and rigorous evaluation of the 

gene selection methods under a multi-criteria decision setup on multiple real 

datasets. It will also provide a framework to the researchers to comparatively study 

the available methods, which will guide genome researchers and experimental 

biologists to select the best method(s) objectively. The proposed approach may 

provide a statistical template for combing other filter and wrapper gene selection 

methods under a sound, and effective computational environment. 

After obtaining the gene sets from high-throughput expression data, it is 

necessary to perform GSA with genetically rich QTL data to establish the 

genotype-phenotypes link. So, in Chapter 5, an innovative statistical approach for 

analyzing gene sets with QTL is presented. The proposed GSAQ approach is a 

new way to perform the enrichment analysis of gene sets to establish genotype 

(polygenes)-phenotype (quantitative trait) association testing with the help of 

genetically rich trait specific loci data. Further, it is more biologically appealing to 

establish association of genes (genotype) in the selected gene set with underlying 

QTLs (traits/phenotypes). The GSAQ approach has number of unique features, (i) 

eases the interpretation of a large scale experiment by identifying trait specific 

enriched gene set; (ii) provides a statistically sound a framework for performing 



249 
 

GSA with QTLS, as it is based on a competitive null hypothesis and gene sampling 

model; (iii) helps in prioritizing QTL candidate genes or QTL enriched gene sets 

under a sound computational setup, which would be very helpful in unraveling 

genotype-to-phenotype relationships; (iv) provides biologically relevant criteria for 

performance analysis of gene selection methods. 

The proposed GSAQ approach can be considered as a valuable tool for 

performing gene(s) enrichment analysis in plant breeding context. Further, the 

GSAQ approach provides a valuable platform for integrating the GE data with 

genetically rich QTL data to identify potential QTL enriched gene sets or set of QTL 

candidate genes, which may act as valuable input or hypothesis for the plant 

breeders for designing breeding experiments. In Chapter 4, we have statistically 

established the credibility of the proposed method (GSAQ) by comparing its 

performance with the only existing approach (GSVQ) through a statistically strong 

criterion, i.e. FDR, in five different stress scenarios in rice. But, in case of crop 

biotechnology and breeding, very little amount of work has been done to confirm 

these results. However, these results can provide guidelines to the 

biotechnologists and breeders to validate the in-silico results in a wet lab condition.  

RNA-seq and scRNA-seq have completely overtaken the Microarrays to 

study the expression dynamics of genes at the tissue and individual cell resolution 

level, respectively. Therefore, the GSA approaches need to be extended to these 

studies. More specifically, scRNA-seq is a rapidly growing field in gene expression 

genomics, and DE is a popular downstream analysis performed on such data. So, 

newer and better methods were or being introduced over the years in the literature, 
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which greatly vary based on their utility, basic statistical concepts, models fitted to 

the data, the test statistic(s) used, etc. It is pertinent for the users to be updated on 

the recent development, the current status of the available methods, and further to 

evaluate and choose the best method for their real data applications. Under these 

considerations, we presented a comprehensive study of the available DE methods 

for scRNA-seq data analysis in Chapter 5. Instead of individually reviewing them, 

we introduced the classification of the available methods, along with their unique 

features and limitations. Further, in our comparative study, we have performed a 

systematic comparison of popular methods/tools extensively used for DE analysis 

of scRNA-seq data, which broadly covers all the classes of the DE methods. These 

methods include seven from dedicated single-cell methods, four from the general 

category, and the remaining methods from bulk RNA-seq. In Chapter 5, we focus 

on the most straightforward experimental design (i.e., comparing two cell groups), 

but many real studies require more complex structures, which not all of the tested 

methods can accommodate. The main strengths of our comparative study include 

(i) use of multiple real scRNA-seq datasets with different cell sizes to capture true 

distributional nature and diversity of single-cell data; (ii) assessment of the 

methods based on the individual-centric performance metrics; (iii) performance 

analysis of techniques based on multi-criteria setup; (iv) combined data analysis 

through TOPSIS approach; (v) similarity analysis of the tested methods. Under the 

individual performance metric centric evaluations, it is not possible to find the 

globally best performing option for DE analysis of scRNA-seq data, as particular 

metric provides different results for different data. However, their performances are 
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data-dependent and mostly positively related to the total number of cells and cells 

per group in the data. Further, the tested methods' performance mostly depends 

on the type of test statistic(s) employed to compute the DE statistic for genes. To 

search for the best option for DE analysis in scRNA-seq, we first used the TOPSIS 

method under the MCDM setup and found that different methods performed well 

for different datasets. Moreover, our integrated data analysis through the TOPSIS 

technique ably revealed the consistently best practices for DE analysis of scRNA-

seq data irrespective of the evaluation criteria. The crucial conclusions from our 

work that was overlooked in all former studies can be summarized as (i) bulk RNA-

seq DE methods are competitive and even better than most of the single-cell 

methods; (ii) possible to find the globally best method through combined data 

analysis; (iii) there exist similarities among the performance of the DE methods.  In 

the future, the researchers may consider carrying out an extensive comparison of 

methods for DE analysis of scRNA-seq data under more complex experimental 

designs. This study will serve as a catalog and provide guidelines to genome 

researchers and experimental biologists to choose the best option objectively. In 

this chapter, we reported the existing limitations of the available methods which 

need to be addressed by statisticians and biologists collectively to develop 

innovative and efficient approaches. These new approaches will be able to analyze 

UMI data more efficiently to better understand the biological systems and increase 

the specificity, sensitivity, utility, and relevance of single-cell studies. 

As DE analysis is a key process in GSA, so, we present an improved and 

novel statistical approach for analysis of scRNA-seq counts data in Chapter 6. This 
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approach can perform analysis including DE, DZI, classification of genes, 

estimation of cell capture rates, and determination of optimum number of cell 

clusters with strong statistical basis. Here, we provided all the background 

statistical theory, data example, preliminary data and real experimental data 

analysis results for our SwarnSeq model. The benchmarking of the SwarnSeq 

method on multiple real datasets over a wide range of statistical criteria indicated 

its better performance over the existing methods. Further, the SwarnSeq method 

will surely help the experimental biologist and genome researchers to identify true 

DE genes for their experiments. Moreover, our comparison framework may be 

adopted for further comparative study of scRNA-seq DE tools. In future, parameter 

estimation procedure, like Empirical Bayes shrinkage method can be implemented 

in the SwarnSeq to estimate the gene specific dispersion, and that will enhance its 

performance. The SwarnSeq assumes the factors, such as cellular populations, 

cell clusters and other co-variates, have fixed effects on means and zero inflations. 

This assumption may be unrealistic from a biological standpoint (some may have 

random effects). Therefore, researchers may think of random or mixed effect 

models in SwarnSeq in the future to improve its performance. 

 After selection of the DE genes, the gene sets derived from RNA-seq 

studies are analyzed with QTL data. So, we present a statistical method for GSA 

of RNA-seq/scRNA-seq data in Chapter 7. This approach considers the genes 

present in the gene set along with their corresponding scores to analyze in 

presence of the trait specific QTL data. Here, the enrichment significance of the 

gene sets is assessed through the adjusted p-values computed using the 
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developed test statistic(s). GSAQ approach presented in Chapter 4 has some 

serious limitations, such as only consider the genes which overlapped with the 

QTL regions, but failed to consider their corresponding DE scores, treats each 

gene equally by assuming each gene as independently and identically distributed 

which is contrary to the real biology. Further, it uses only the most significant 

genes, while discards other genes. Unlike GSAQ, GSQSeq considers the 

significant genes along with their DE scores for performing GSA in RNA-seq data. 

This technique performs better than its predecessor to perform GSA in high-

throughput genomic studies. Such concepts are very useful in establishing links of 

gene sets with the underlying trait/phenotypes in plant and complex disease 

biology, as most of the traits are quantitative in nature and controlled by polygenes. 

In future attempts may be made by the computational biologists and 

bioinformaticians to develop next generations of (Topology based) GSA with QTLs 

approaches using Graph/network theory, multivariate and regression analytical 

techniques. Besides, the limitations and shortcomings of the available GSA and 

DE methods, reported in various Chapters 2-6, need to be addressed by 

statisticians and biologists collectively to develop efficient approaches. These new 

approaches will be able to analyze high-throughput genomic data more efficiently 

to better understand the biological systems and increase the specificity, sensitivity, 

utility, and relevance of high-throughput genomic studies, such as RNA-seq, 

scRNA-seq. 

“If you cannot do bioinformatics, then you may not do or understand the biology…” 

Anonymous
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APPENDIX I

ACRONYMS 

Acronyms Full form 

ACC Accuracy 
AIC Akaike Information Criterion 
AUC Area Under Curve 
AUROC Area Under Receiver Operating Characteristics curve 
BIC Bayesian Information Criterion 
BP Biological Process 
BSM Bootstrap-SVM-MRMR 
BSS Between cluster Sum of Squares 
CA Classification Accuracy 
CC Cellular Component 
DE Differential Expression 
DEG Differentially Expressed Genes  
DEZIG Differentially Expressed and Differentially Zero Inflated Genes 
df degree of freedom 
DZI Differential Zero-Inflated 
DZIG Differentially Zero Inflated Genes 
ECM Expected Conditional Maximization 
EM Expected Maximization 
EMD Earth Mover’s Distance 
ERCC External RNA Controls Consortium 
ES Enrichment Score  
F1 F1 score 
FC Fold Change 
FDR False Discovery Rate 
FN False Negative 
FP False Positive 
FP True Negative 
FPR False Positive Rate 
GAM Generalized Additive Model 
GE Gene Expression 
GEO Gene Expression Omnibus 
GL Generalized Linear  
GO Gene Ontology 
GR Gain Ratio 
GSA Gene Set Analysis 
GSAQ Gene Sets Analysis with trait specific QTLs  
GSEA Gene Set Enrichment Analysis  
GSQSeq Gene Set Analysis with QTL for RNA-seq 
GSVA Gene Set Variation Analysis 
GSVQ Gene Set Validation with QTLs 
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GWAS Genome Wide Association Study  
HD Hermite Distribution 
iDEP integrated Differential Expression and Pathway 
IG Information Gain 
iid independently and identically distributed 
KS Kolmogorov-Smirnov test 
LRT Likelihood Ratio Test 

MCDM Multiple Criteria Decision Making 
MF Molecular Function 
MLE Maximum Likelihood 
MRMR Maximum Relevance and Minimum Redundancy  
NB Negative Binomial 
NIS Negative Ideal Solution 
NP Non-Parametric  
NPV Negative Prediction value  
ORA Over Representation Analysis  
PCR Pearson’s Correlation 
PD Poisson Distribution 
PIS Positive Ideal Solution 
PMF Probability Mass Function  
PPV Positive Prediction Rate 
QLF Quasi-Likelihood F test 
QTL Quantitative Trait Loci  
RF Random Forest 
RMA Robust Multichip Average 
RNA-seq RNA-sequencing 
rv Random Variable 
scRNA-seq single cell RNA-sequencing 
SE Standard Error  
SNP Single Nucleotide Polymorphism 
SRA Sequence Read Archive 
SRC Spearman’s Rank Correlation 
SU Symmetrical Uncertainty  
SVM Support Vector Machine 
SVM-MRMR SVM-RFE with MRMR 
SVM-RFE Support Vector Machine-Recursive Feature Elimination 
TOPSIS Technique for Order Performance by Similarity to Ideal Solution 
TP True Positives 
TPR True Positive Rate 
TSS Total Sum of Squares 
UMI Unique Molecular Identifier 
Wilcox Wilcoxon Signed Rank Test 
WSS Within cluster Sum of Squares 
ZIM Zero Inflated Model 
ZINB Zero Inflated Negative Binomial  
ZIPD Zero Inflated Poisson Distribution 
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APPENDIX II

Objective function of Support Vector Machine 

To maximize the distance between the hyper planes in Eq. 3.5 (Chapter 3), the 

objective function 
‖𝑘‖2

 𝟐
 is minimized.  Hence, the objective function, J, for this case 

vs. control classification problem becomes. 

𝐽 = ‖𝑘‖2/2 

Through Taylor series expansion, the objective function, 𝐽, can be approximated 

as (at k=c): 

𝐽 =
1

2
{‖𝑐‖2 +

𝜕

𝜕𝑘
‖𝑘‖2𝑘=𝑐(𝑘 − 𝑐) +

1

2!

𝜕2

𝜕𝑘2
‖𝑘‖2𝑘=𝑐(𝑘 − 𝑐)

2 +
1

3!
‖𝑘‖2𝑘=𝑐(𝑘 − 𝑐)

3 +⋯}  

     =
1

2
{‖𝑐‖2 +

𝜕𝐽2

𝜕𝑘 𝑘=𝑐
(𝑘 − 𝑐) +

1

2!

𝜕2𝐽2

𝜕𝑘2 𝑘=𝑐
(𝑘 − 𝑐)2 +

1

3!

𝜕3𝐽2

𝜕𝑘3 𝑘=𝑐
(𝑘 − 𝑐)3 +⋯}                                             

Differentiating both sides with respect to k, and ignoring the second and higher 

order derivatives terms from the expression, we have 

𝜕𝐽

𝜕𝑘
=
1

2
{0 +

𝜕𝐽

𝜕𝑘
(
𝜕𝐽

𝜕𝑘𝑘=𝑐
(𝑘 − 𝑐))} 

𝜕𝐽

𝜕𝑘
=
1

2
{(𝑘 − 𝑐)

𝜕2𝐽

𝜕𝑘2
+
𝜕𝐽

𝜕𝑘
. 1)} 

𝜕𝐽

𝜕𝑘
=

1

2

𝜕2𝐽

𝜕𝑘2
(𝑘 − 𝑐)                                                                          

Replace k with ∆𝑘 in above expression and ignoring the constant c. Now, the above 

expression becomes, as below. 

lim
Δ𝑘

Δ𝐽

Δ𝑘
=
1

2

𝜕2𝐽

𝜕𝑘2
(Δ𝑘) 

Δ𝐽 =
1

2

𝜕2𝐽

𝜕𝑘2
(Δ𝑘)2                                                                        

Further, Δ𝐽 attributed to ith gene can be expressed as: 

                                                          Δ𝐽(𝑖) =
1

2

𝜕2𝐽2

𝜕𝑘𝑖
2 (Δ𝑘𝑖)

2   
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APPENDIX III

Distribution of observed scRNA-seq UMI counts 

In Chapter 6, 𝑍𝑖𝑗𝑘~ 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘) and 𝜌𝑖𝑗𝑘 = (𝑌𝑖𝑗𝑘|𝑍𝑖𝑗𝑘 = 𝑧)~ 𝐵(𝑧, 𝑝𝑖𝑗𝑘) 

The Probability Mass Function (PMF) of  𝑍𝑖𝑗𝑘 is expressed as: 

𝑃[𝑍𝑖𝑗𝑘 = 𝑧] =

{
 
 

 
 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

                                    𝑤ℎ𝑒𝑛 𝑧 = 0

(1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑧+ 𝜃𝑖𝑗𝑘)

𝐺(𝑧+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘
)
𝑧

;   𝑧 > 0

                  

𝑃[𝑌𝑖𝑗𝑘 = 𝑦|𝑍𝑖𝑗𝑘 = 𝑧] = (
𝑧
𝑦
) 𝑝𝑖𝑗𝑘

𝑦(1 − 𝑝𝑖𝑗𝑘)
𝑧−𝑦                                            

The joint PMF of 𝑌𝑖𝑗𝑘  and 𝑍𝑖𝑗𝑘 can be written as: 

𝑃[𝑌𝑖𝑗𝑘 = 𝑦, 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘] = 𝑃[𝑌𝑖𝑗𝑘 = 𝑦|𝑍𝑖𝑗𝑘 =

                                                                                      𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘]            

Now, the marginal probability distribution of 𝑌𝑖𝑗𝑘 can be given as: 

𝑃[𝑌𝑖𝑗𝑘 = 𝑦|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘] = ∑ 𝑃[𝑌𝑖𝑗𝑘 = 𝑦|𝑍𝑖𝑗𝑘 = 𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘]𝑧    

Case-1: For zero count (𝑌𝑖𝑗𝑘 = 0) case 

[𝑌𝑖𝑗𝑘 = 0|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘] =∑𝑃[𝑌𝑖𝑗𝑘 = 0|𝑍𝑖𝑗𝑘 = 𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘]

𝑧

 

= 𝑃[𝑌𝑖𝑗𝑘 = 0|𝑍𝑖𝑗𝑘

= 𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 0|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘]

+∑𝑃[𝑌𝑖𝑗𝑘 = 0|𝑍𝑖𝑗𝑘 = 𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘]

∞

𝑧=1
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= 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘)(
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

+∑{(1 − 𝑝𝑖𝑗𝑘)
𝑧(1

∞

𝑧=1

− 𝜋𝑖𝑗𝑘)
𝐺(𝑧 + 𝜃𝑖𝑗𝑘)

𝐺(𝑧 + 1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑧

} 

= 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

[∑{(1 − 𝑝𝑖𝑗𝑘)
𝑧

𝐺(𝑧 + 𝜃𝑖𝑗𝑘)

𝐺(𝑧 + 1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑧

}

∞

𝑧=0

] 

= 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

[∑
𝐺(𝑧 + 𝜃𝑖𝑗𝑘)

𝐺(𝑧 + 1)𝐺(𝜃𝑖𝑗𝑘)
(
𝜇𝑖𝑗𝑘(1 − 𝑝𝑖𝑗𝑘)

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑧∞

𝑧=0

(1

−
𝜇𝑖𝑗𝑘(1 − 𝑝𝑖𝑗𝑘)

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

] (1 −
𝜇𝑖𝑗𝑘(1 − 𝑝𝑖𝑗𝑘)

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

−𝜃𝑖𝑗𝑘

 

= 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

(1 −
𝜇𝑖𝑗𝑘(1 − 𝑝𝑖𝑗𝑘)

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

−𝜃𝑖𝑗𝑘

 

= 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘)(
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

 

Case-2: For non-zero counts, i.e. 𝑌𝑖𝑗𝑘(> 0) = 𝑡 = 1, 2, 3, …   

𝑃[𝑌𝑖𝑗𝑘 = 𝑡|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘] =∑𝑃[𝑌𝑖𝑗𝑘 = 𝑡|𝑍𝑖𝑗𝑘 = 𝑧, 𝑝𝑖𝑗𝑘]𝑃[ 𝑍𝑖𝑗𝑘 = 𝑧|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘]

𝑧≥𝑡

 

=∑(
𝑧

𝑡
) 𝑝𝑖𝑗𝑘

𝑡(1 − 𝑝𝑖𝑗𝑘)
𝑧−𝑡(1 − 𝜋𝑖𝑗𝑘)

𝐺(𝑧 + 𝜃𝑖𝑗𝑘)

𝐺(𝑧 + 1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑧

𝑧≥𝑡

 

= (1 − 𝜋𝑖𝑗𝑘) (
𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

∑(
𝑧

𝑡
) 𝑝𝑖𝑗𝑘

𝑡(1 − 𝑝𝑖𝑗𝑘)
𝑧−𝑡

𝐺(𝑧 + 𝜃𝑖𝑗𝑘)

𝐺(𝑧 + 1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑧

𝑧≥𝑡

 

=
(1 − 𝜋𝑖𝑗𝑘)

𝐺(𝑡 + 1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

(
𝑝𝑖𝑗𝑘

1 − 𝑝𝑖𝑗𝑘
)

𝑡

∑
𝐺(𝑧 + 𝜃𝑖𝑗𝑘)

𝐺(𝑧 − 𝑡 + 1)
(

𝜇𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑧

(1 − 𝑝𝑖𝑗𝑘)
𝑧

𝑧≥𝑡

 

Let, 𝑧′ = 𝑧 − 𝑡 

=
(1 − 𝜋𝑖𝑗𝑘)

𝐺(𝑡 + 1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

(
𝑝𝑖𝑗𝑘

1 − 𝑝𝑖𝑗𝑘
)

𝑡

∑
𝐺(𝑧′ + 𝑡 + 𝜃𝑖𝑗𝑘)

𝐺(𝑧′ + 1)
(
𝜇𝑖𝑗𝑘(1−𝑝𝑖𝑗𝑘)

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑧′+𝑡

𝑧′=0

 

= (1

− 𝜋𝑖𝑗𝑘)
𝐺(𝑡 + 𝜃𝑖𝑗𝑘)

𝐺(𝑡 + 1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑡

∑
𝐺(𝑧′ + 𝑡 + 𝜃𝑖𝑗𝑘)

𝐺(𝑧′ + 1)𝐺(𝑡 + 𝜃𝑖𝑗𝑘)
(
𝜇𝑖𝑗𝑘(1 − 𝑝𝑖𝑗𝑘)

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑧′

𝑧′=0
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= (1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑡 + 𝜃𝑖𝑗𝑘)

𝐺(𝑡 + 1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

𝑡

(1 −
𝜇𝑖𝑗𝑘(1 − 𝑝𝑖𝑗𝑘)

𝜃𝑖𝑗𝑘 + 𝜇𝑖𝑗𝑘
)

−(𝑡+𝜃𝑖𝑗𝑘)

 

= (1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑡+ 𝜃𝑖𝑗𝑘)

𝐺(𝑡+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘
)
𝑡

                                                      

So, the distribution of 𝑌𝑖𝑗𝑘 is also 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘). Now, the PMF of 𝑌𝑖𝑗𝑘 can be 

expressed as: 

Let, 𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘 = 𝜇
′
𝑖𝑗𝑘 

𝑃[𝑌𝑖𝑗𝑘 = 𝑦|𝜋𝑖𝑗𝑘 , 𝜇𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘] =

{
 
 

 
 𝜋𝑖𝑗𝑘 + (1 − 𝜋𝑖𝑗𝑘) (

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇
′
𝑖𝑗𝑘

)
𝜃𝑖𝑗𝑘

(1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑡+ 𝜃𝑖𝑗𝑘)

𝐺(𝑡+1)𝐺(𝜃𝑖𝑗𝑘)
(

𝜃𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇
′
𝑖𝑗𝑘

)
𝜃𝑖𝑗𝑘

(
𝜇′𝑖𝑗𝑘

𝜃𝑖𝑗𝑘+𝜇
′
𝑖𝑗𝑘

)
𝑦                             

The expected value and variance of observed read counts can be obtained as: 

𝐸(𝑌) = ∑ 𝑦

∞

𝑦=0

𝑓𝑧𝑖𝑛𝑏(𝑦) 

= 0𝑓𝑧𝑖𝑛𝑏(0) +∑𝑦

∞

𝑦=1

𝑓𝑧𝑖𝑛𝑏(𝑦) 

 = (1 − 𝜋𝑖𝑗𝑘)∑ 𝑦∞
𝑦=0 𝑓𝑁𝐵(𝑦) = (1 − 𝜋𝑖𝑗𝑘)𝜇                                                                                 

𝑉𝑎𝑟(𝑌) = 𝐸(𝑌2) − {𝐸(𝑌)}2 

𝐸(𝑌2) = ∑𝑦2𝑓𝑧𝑖𝑛𝑏(𝑦)

∞

𝑦=0

= (1 − 𝜋𝑖𝑗𝑘)(𝜇
′
𝑖𝑗𝑘 +

𝜇′𝑖𝑗𝑘
2

𝜃𝑖𝑗𝑘
+ 𝜇′𝑖𝑗𝑘

2
) 

Now, 𝑉𝑎𝑟(𝑌) = (1 − 𝜋𝑖𝑗𝑘) (𝜇
′
𝑖𝑗𝑘 +

𝜇′𝑖𝑗𝑘
2

𝜃𝑖𝑗𝑘
+ 𝜇′𝑖𝑗𝑘

2
) − (1 − 𝜋𝑖𝑗𝑘)

2
𝜇′𝑖𝑗𝑘

2
 

          = (1 − 𝜋𝑖𝑗𝑘)𝜇 (1 + 𝜋𝑖𝑗𝑘𝜇
′
𝑖𝑗𝑘 +

𝜇′𝑖𝑗𝑘

𝜃𝑖𝑗𝑘
)                                                                 

𝐸(𝑌𝑖𝑗𝑘) = (1 − 𝜋𝑖𝑗𝑘)𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘                                                                                            

 𝑉𝑎𝑟(𝑌𝑖𝑗𝑘) = (1 − 𝜋𝑖𝑗𝑘)𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘(1 + 𝜋𝑖𝑗𝑘𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘 +
𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘

𝜃𝑖𝑗𝑘
)                                         
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APPENDIX IV

Distribution of sample mean and variance of observed UMI counts 

The expected values of gene-wise sample mean, and sample variance of the observed 

scRNA-seq UMI count data can be obtained as follows.  

Here, we assume that the cell capture rates of the genes remain same, i.e.  𝑝𝑖𝑗1 = 𝑝𝑖𝑗2 =

⋯ = 𝑝𝑖𝑗𝐾 = 𝑝𝑖𝑗, and the model parameters, 𝜇𝑖𝑗𝑘 and 𝜃𝑖𝑗𝑘  for the genes remain same 

across the cells. Let, 𝑌̅..𝑘: sample mean expression values of kth gene and its expected 

values can be given as: 

𝐸(𝑌̅..𝑘) =
1

𝑁
∑

1

𝑀𝑖

𝑁

𝑖=1
∑ 𝐸(𝑌𝑖𝑗𝑘)

𝑀𝑖

𝑗=1
 

=
1

𝑁
∑

1

𝑀𝑖

𝑁

𝑖=1
∑ 𝐸{𝐸(𝑌𝑖𝑗𝑘|𝑍𝑖𝑗𝑘)

𝑀𝑖

𝑗=1
} 

     =
1

𝑁
∑

1

𝑀𝑖

𝑁
𝑖=1 ∑ 𝐸(𝑍𝑖𝑗𝑘𝑝𝑖𝑗𝑘)

𝑀𝑖
𝑗=1  

     =
1

𝑁
∑

1

𝑀𝑖

𝑁
𝑖=1 ∑ (𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘)

𝑀𝑖
𝑗=1                                     

Under the assumption, i.e. 𝑝𝑖𝑗1 = 𝑝𝑖𝑗2 = ⋯ = 𝑝𝑖𝑗𝐾 = 𝑝𝑖𝑗 , the above expression can be also 

written as: 

    𝐸(𝑌̅..𝑘) =
1

𝑁
∑

1

𝑀𝑖

𝑁
𝑖=1 ∑ (𝜇𝑘𝑝𝑖𝑗)

𝑀𝑖
𝑗=1  

    =
1

𝑁
𝜇𝑘 ∑

1

𝑀𝑖

𝑁
𝑖=1 ∑ 𝑝𝑖𝑗

𝑀𝑖
𝑗=1 = 𝜇𝑘𝑝̅..                                                                             

Further, the variance of the observed scRNA-seq data can be obtained as: 

𝑉(𝑌𝑖𝑗𝑘) = 𝐸{𝑉(𝑌𝑖𝑗𝑘|𝑍𝑖𝑗𝑘)} + 𝑉{𝐸(𝑌𝑖𝑗𝑘|𝑍𝑖𝑗𝑘)} 

= 𝐸(𝑍𝑖𝑗𝑘𝑝𝑖𝑗𝑘)(1 − 𝑝𝑖𝑗𝑘) + 𝑉(𝑍𝑖𝑗𝑘𝑝𝑖𝑗𝑘) 

= 𝑝𝑖𝑗𝑘(1 − 𝑝𝑖𝑗𝑘)𝜇𝑖𝑗𝑘 + 𝑝𝑖𝑗𝑘
2 (𝜇𝑖𝑗𝑘 +

𝜇𝑖𝑗𝑘
2

𝜃𝑖𝑗𝑘
⁄ ) 
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      = 𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘(1 +
𝜇𝑖𝑗𝑘𝑝𝑖𝑗𝑘

𝜃𝑖𝑗𝑘
⁄ )                                                                                                         

Under the above assumptions, the 𝑉(𝑌𝑖𝑗𝑘) becomes: 

    𝑉(𝑌𝑖𝑗𝑘) = 𝜇𝑘𝑝𝑖𝑗(1 +
𝜇𝑘𝑝𝑖𝑗

𝜃𝑘
⁄ )                                                                           

Let, 𝑆𝑘
2 be the sample variance of kth gene. Then its expected value can be derived as: 

    𝐸(𝑆𝑘
2) =

1

𝑁
∑

1

(𝑀𝑖−1)
𝑁
𝑖=1 ∑ {𝑉(𝑌𝑖𝑗𝑘) + 𝐸(𝑌𝑖𝑗𝑘)

2
}

𝑀𝑖
𝑗=1 −

                                                         
1

𝑁(𝑁−1)
∑

1

𝑀𝑖(𝑀𝑖−1)

𝑁
𝑖≠𝑖′=1 ∑ 𝐸(𝑌𝑖𝑗𝑘)𝐸(𝑌𝑖′𝑗′𝑘)

𝑀𝑖
𝑗≠𝑗′=1  

    = 𝜇𝑘𝑝̅.. +
𝜇𝑘

2

𝜃𝑘
𝑝𝑖𝑗2̅̅̅̅ + 𝜇𝑘

2𝑣𝑎𝑟(𝑝𝑖𝑗)                                                                          

where, 𝑝̅.., 𝑝𝑖𝑗
2̅̅̅̅  are the means of 𝑝𝑖𝑗 and 𝑝𝑖𝑗

2  respectively and 𝑣𝑎𝑟(𝑝𝑖𝑗) is variance of 𝑝𝑖𝑗
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