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ABSTRACT 

INVESTIGATING A NOVEL FUNCTION FOR PHOSPHOSERINE AMINOTRANSFERASE 1 

(PSAT1) IN EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)-MEDIATED LUNG 

TUMORIGENESIS 

 Rumeysa Biyik-Sit 

March 18, 2021 

 

Phosphoserine aminotransferase 1 (PSAT1) catalyzes the second enzymatic step within 

the serine synthetic pathway (SSP) and its expression is elevated in numerous human cancers, 

including non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutant 

NSCLC is characterized by activating mutations within its tyrosine kinase domain and accounts for 

17% of lung adenocarcinomas. Although elevated SSP activity has been observed in EGFR-mutant 

lung cancer cells, the involvement of PSAT1 in EGFR-mediated oncogenesis is still unclear. 

Here, we explore a putative non-canonical function for PSAT1 using biochemical 

approaches to elucidate unknown interacting proteins and genomic RNA-seq profiling to identify 

cellular processes impacted by PSAT1. We further determined the cellular phenotypes affected by 

PSAT1 loss, which were verified by experimental rescue studies, including metabolite 

supplementation and restoration of protein expression/localization. 

Initially, we identified PKM2 as a novel PSAT1 associating protein. Although PSAT1 

selectively induced the pyruvate kinase (PK) activity of recombinant PKM2, its loss in NSCLC cells 

did not alter cellular PK activity or expression of PKM2.  However, fractionation studies revealed 

that PSAT1 localized to the nucleus and was required for EGFR-mediated nuclear PKM2 

translocation. Phenotypically, PSAT1 loss led to a defect in EGFR-activated cell motility, which was 

partially restored by a nuclear expression of an acetyl-mimetic PKM2 mutant, but not wild-type 



 

vi 

 

PKM2 or metabolite supplementation. To get insight into cellular mechanisms downstream of 

PSAT1 activity, we conducted RNA-seq profiling. Consistent with the reported function of PSAT1, 

E2F targets and nucleotide metabolism genes were decreased upon PSAT1 silencing. Accordingly, 

the anchorage-independent growth was impacted by PSAT1 silencing and rescued by metabolite 

supplementation, but not by nuclear PKM2 expression. The correlation between decreased 

expression of actin-related genes and F-actin formation upon PSAT1 silencing suggested a role for 

PSAT1 in actin cytoskeleton rearrangements. Furthermore, identified PSAT1-associated gene 

signatures were predictive towards survival outcomes in EGFR-mutant NSCLC. Together, our data 

suggest multiple roles for PSAT1 in promoting EGFR-mutant NSCLC involving not only canonical 

SSP activity but also a non-canonical nuclear function through mediating protein localization. These 

findings have laid the foundation for future studies to fully define PSAT1’s response under EGFR-

activation.    
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CHAPTER 1 

INTRODUCTION 

Tumor cells require metabolic reprogramming to fulfill the high energy demand and 

macromolecule synthesis necessary for tumor growth. This also allows for cell survival under 

unfavorable conditions, including nutrient deprivation and hypoxia, which are commonly found in 

tumors (5, 6). Aerobic glycolysis, also known as the Warburg effect, is classically defined as 

glycolytic metabolism to lactate even in the presence of oxygen (9). This was the earliest 

demonstration of altered metabolism in cancer made by Otto Warburg in the 1920’s. Within this 

phenomenon, tumor cells consume high amounts of glucose that allows for not only glycolytic ATP 

production but also the production of the required biosynthetic precursors, such as nucleotides, 

that stem from glycolytic metabolites. Although the importance of glucose metabolism has been 

appreciated for some time, elucidation of changes within other metabolic pathways is an intense 

area of study and a target for  developing new anti-cancer drugs. 

Recently, changes in serine metabolism have been a focus of extensive work due to its 

role in the biosynthesis of many biological molecules, including nucleic acid synthesis, lipid 

synthesis, and other amino acids (15, 16). In certain tumor cells, depletion of intracellular serine 

through culture media manipulation leads to decreased cell proliferation, which can be rescued by 

the addition of downstream metabolites (17, 18).   However, limiting extracellular serine may not 

impact some types of tumors as they exhibit activated de novo serine biosynthesis (19). For 

example, inhibition of the serine biosynthetic pathway by small-molecule antagonists suppresses 

tumor cell proliferation even under serine proficient media, suggesting that activation of the serine 

biosynthetic pathway may go beyond the requirement for general serine production for tumor 

progression (20). 
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In this introduction, we will discuss the contribution of serine metabolism to biosynthetic 

pathways, cellular mechanisms leading to activation of serine biosynthesis, the cellular  

consequences of pathway activation, and the importance of glycolytic enzyme function that 

impinges on serine biosynthesis. Specifically, we will discuss the connection between glycolysis 

and serine synthesis in non-small cell lung cancer (NSCLC) and review the reports investigating 

the requirement of serine synthesis pathway (SSP) genes in lung cancer. As a substantial portion 

of existing literature examines these metabolic changes in different subtypes of NSCLC, we will 

provide a brief introduction about epidermal growth factor receptor (EGFR)-mutant lung cancer, 

which comprises a significant percentage of NSCLC adenocarcinoma. Since phosphoserine 

aminotransferase (PSAT1) catalyzes the second step in serine biosynthesis and is the focus of this 

study, we will also review current reports related to its tumorigenic function. Lastly, we will highlight 

recent reports implicating non-canonical functions for metabolic enzymes; specifically, those within 

glycolytic, tricarboxylic acid (TCA) cycle, and serine synthetic pathways, all culminating with the 

specific aims used to test the overall hypothesis of this work.
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Serine metabolism in cancer 
 

  Serine as a central donor for macromolecule synthesis 

Serine functions as a central donor for many anabolic reactions that promote tumor growth 

and survival (15, 28) (Fig. 1). Beyond the requirement for protein synthesis, cells can utilize serine 

for the synthesis of other amino acids such as glycine and cysteine, which can then be used for the 

production of glutathione for the maintenance of cellular redox homeostasis. Serine also contributes 

to cell membrane formation via incorporation into sphingosine and phosphatidylserine. 

In tumors, serine also impacts RNA/DNA synthesis through providing one-carbon units to 

the folate cycle. 5,10-methylenetetrahydrofolate (CH2-THF), which is synthesized from 

tetrahydrofolic acid (THF) methylation from the conversion of serine to glycine, contributes to 

thymidine and purine synthesis (16, 28).  Under serine starvation, cells convert glycine into serine 

at the expense of one-carbon metabolism, which leads to inhibition of purine synthesis. This 

underscores the importance of serine for cell proliferation. In addition to glutathione biosynthesis, 

serine also promotes redox balance via nicotinamide adenine dinucleotide (NADH) synthesis within 

the folate cycle (28). 

Serine further contributes to S-adenyl-methionine (SAM) production within the methionine 

cycle via its functional interaction with the folate cycle. Although the contribution of serine to 

homocysteine’s re-methylation to methionine is controversial, serine is required for the de novo 

biosynthesis of ATP. This is utilized for the adenylation of methionine, thereby highlighting a 

putative requirement for SAM production (38). Furthermore, global decreases in DNA and histone 

methylation upon serine depletion implicate cellular serine in maintaining the epigenetic landscape 

of cells (38, 39). 
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Figure 1. Serine contributes to many aspects of biomolecule synthesis.  
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Contribution of serine biosynthesis to tumor progression 

Serine is a non-essential amino acid that can be synthesized from the glycolytic 

intermediate, 3-phosphoglycerate (3-PG) (Fig. 2). Phosphoglycerate dehydrogenase (PHGDH) is 

the rate-limiting enzyme that catalyzes the first reaction of 3-PG and NAD+ to 3-

phosphohydroxypyruvate (3-PHP) and NADH. PSAT1 then transfers the amino group from 

glutamate to 3-PHP to generate phosphoserine and α-ketoglutarate (α-KG). The final reaction in 

the SSP pathway is the production of serine through dephosphorylation of phosphoserine by 

phosphoserine phosphatase (PSPH) (28).  Although serine is one of the most abundant amino 

acids in the serum, many tumor types exhibit elevated serine biosynthetic activity. The importance 

of serine in cellular biosynthesis and the elevated expression of the biosynthetic enzymes prompted 

researchers to investigate a potential role for the SSP in tumorigenesis (15). 

PHGDH amplification, frequently observed in melanoma and triple-negative breast cancer 

(TNBC), accounts for the increased serine biosynthesis observed in these tumors (19, 40).  While 

this provides a growth advantage under serine-limiting conditions, it also makes them vulnerable 

to PHGDH inhibitors (41). Stratification of NSCLC based on PHGDH expression found that 

increased PHGDH correlates with elevation of downstream SSP genes and activity, supporting the 

correlation between high PHGDH expression and serine biosynthesis (42). In addition, upregulation 

of PHGDH and PSAT1 expression correlates with poor patient outcomes in various tumor types, 

including NSCLC, colon, and estrogen receptor (ER) negative breast cancer (40, 43, 44). 

It is obvious that activation of serine biosynthesis can provide a growth advantage to tumor 

cells when serine is limiting. Yet, as serine is abundant in the serum, it is unclear why tumors exhibit 

high SSP expression when they can readily obtain serine from the extracellular environment (15). 

Inhibition of PHGDH activity via depletion or small-molecule inhibitors diminishes cell proliferation 

in vitro and tumor growth in vivo (20, 45). Since NSCLC cells with high SSP activity produce more 

RNA/DNA precursors, suppression of PHGDH leads to DNA damage, which can be partially 

rescued by nucleoside addition (42). Another mechanistic study found a reduction in extracellular 

13C-labeled serine into AMP and dTMP in PHGDH inhibited cells (20). They found that inhibition of  
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Figure 2. The schematic illustration of serine synthesis pathway (SSP) and 

contribution to tumor metabolism. Pathway inhibition via siRNA gene targeting or 

inhibitor impacts downstream metabolite production even in the presence of exogenous 

serine. Supplementing SSP downstream metabolites can, in some cases, mitigate the 

siRNA/inhibitor affect. 
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serine synthesis leads to active cytosolic serine hydroxymethyl transferase 1 (SHMT1), which 

“wastes” the one-carbon unit in order to regenerate serine from glycine at the expense of nucleotide 

synthesis. Yet, depletion of SHMT1 restores the nucleotide production in SSP inhibited cells. This 

strongly suggests that serine biosynthesis is necessary to promote the forward reaction in serine-

glycine one-carbon metabolism via suppressing SHMT1 activity. 

Active serine synthesis has also been reported to be required for other pro-tumorigenic 

processes. Serine production is necessary to maintain the epigenetic landscape in a Kras-activated 

pancreatic cancer mouse model with loss of Lkb1 functions (46). Loss of Psat1-mediated SAM 

production impacts DNA methylation, which is rescued by SAM addition.  Further, elevated PHGDH 

expression in EGFR-mutant NSCLC cells participates in erlotinib-resistance (47). While either 

siRNA or pharmacological inhibition sensitizes resistant cells to erlotinib treatment via inducing 

DNA damage, supplementation of the reactive oxygen species (ROS) scavenger, N-acetyl-cysteine 

(NAC), is protective and indicates that serine biosynthesis may contribute to drug resistance 

through redox balancing. Lastly, in addition to impacting downstream serine-derived metabolites, 

SSP suppression also negatively impacts intermediary metabolism in tumors. As PSAT1 catalyzes 

the conversion of glutamate to α-KG, it is an active player in glutamine anaplerosis in providing a 

key TCA cycle intermediate. In TNBC cells, the SSP was found to contribute 50% of glutamine-

derived α-KG (40). In short, serine biosynthesis has been found to be crucial for efficient 

biosynthetic reactions, glutamine anaplerosis, and tumor growth. 

Regulators of SSP transcription  

Increased gene expression of serine biosynthetic enzymes primarily accounts for the 

activation of serine biosynthesis in tumors. Transcriptional regulation of SSP genes has been 

observed under various conditions but is primarily induced by two main causes: oncogenic 

activation and nutrient/oxidation stress (Fig. 3). 
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Figure 3. Transcriptional regulation of SSP genes in cancer. A) Oncogenic activation: 

(i) NRF2-ATF4; (ii) KDM4C-ATF4; (iii) G9A; (iv) EGFR mutant-ATF4; (v) MYCN-ATF4. B) 

Stress-induced activation: (i) Serine starvation-GCN2-ATF4; (ii) nutrient stress 

(Glucose/Glutamine/Serine-Glycine starvation)-c-MYC; (iii) Serine starvation/oxidative 

stress/ inhibition of PKM2-MDM2-ATF4 

A 

B 



9 
 

The analysis of serine biosynthesis activity using 13C-labeled glucose metabolomics 

coupled to transcriptomic analysis of a large panel of NSCLC tumors found that the transcription 

factor nuclear factor erythroid-2-related factor 2 (NRF2) is an upstream regulator of SSP gene 

expression (45).  Silencing of NRF2 leads to down-regulation of SSP genes through decreased 

activating transcription factor 4 (ATF4), as ATF4 restoration in NRF2 depleted cells rescues SSP 

expression in NSCLC cells (Fig. 3A(i)).  Lysine-specific demethylase 4C (KDM4C) functions as a 

histone demethylase via removing methyl groups from the tri/di-methylated histone H3 lysine 9 

(H3K9me3/2). Separately, the euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9A) 

acts as monomethylase and accounts for the mono-methylation of H3K9. Both KDM4C and G9A 

action results in the generation of a known epigenetic activation mark, H3K9me1, which leads to 

transcriptional induction. KDM4C-mediated H3K9me1 at the ATF4 proximal promoter induces 

ATF4 transcription (48). Subsequently, an ATF4-KDM4C interaction promotes SSP expression 

(Fig. 3A(ii)). Another report demonstrated that G9A facilitates SSP gene expression via mono-

methylation of H3K9 at the promoter sites (Fig. 3A(iii)) (49). Although it remains unknown whether 

KDM4C and G9A act together to promote SSP expression, the mechanism is not mutually 

exclusive. 

Investigation of the role of receptor tyrosine kinases in metabolic reprogramming has found 

that activating mutations in EGFR lead to increased glucose-derived serine biosynthesis (Fig. 

3A(iv)) (50). Bioinformatic analysis suggests both c-Myc and ATF4 as candidate transcription 

factors responsible for EGFR-activated SSP transcription. However, siRNA loss of function studies 

found activation of SSP expression was due to ATF4 and not c-MYC. Another study compared the 

transcriptomic profiles of MYCN amplified neuroblastoma cells and non-amplified cells and 

demonstrated elevated expression of SSP genes in MYCN amplified cells (51). Further functional 

studies revealed that MYCN actually induces ATF4 expression via binding to the promoter region, 

and subsequently, MYCN and ATF4 stimulate SSP transcription (Fig. 3A(v)). Taken together, these 

reports demonstrate that SSP enzymes in cancer cells are elevated through various oncogenic 

pathways, but induction of ATF4 expression seems a pre-requisite to promote SSP expression. 
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In addition to oncogenic activation, limited nutrient availability and oxidative stress are able 

to induce SSP expression in order to mediate the cellular stress response (Fig. 3B). Serine 

starvation induces general control nonderepressible 2 (GCN2)-mediated translation of ATF4, which 

as described above leads to ATF4-dependent SSP transcription (Fig. 3B(i)) (52). Simultaneously, 

decreased pyruvate kinase activity in pyruvate kinase M2 (PKM2)-expressing cells results in 

accumulation of the glycolytic intermediate 3-phosphoglycerate for serine biosynthesis. Also, the 

mouse double minute 2 homolog (MDM2) can localize to the SSP promoter under oxidative stress, 

serine starvation, or PKM2 inhibition to facilitate SSP expression (Fig. 3B(ii)) (53). However, MDM2 

mediated SSP transcription still requires ATF4 transactivation. Nutrient deprivation such as 

glucose, glutamine, or serine/glycine triggers c-MYC transcription in hepatocellular carcinoma 

(HCC) cells (Fig. 3B(iii)) (54). c-MYC can promote SSP transcription via binding to their proximal 

promoters to adapt the cells to the stress conditions, while the involvement of ATF4 in this scenario 

is unclear. Together, these findings indicate the relevance of oncogenic drivers and stress 

responses to coordinately activate SSP transcription and serine biosynthesis in various tumors. 

Functional cross-talk between glycolysis and serine biosynthesis 

As described above, oncogenic activation or nutrient-limitations can induce SSP gene 

expression. However, serine biosynthesis not only depends on the expression of SSP genes but 

also on the availability of substrate, mainly glycolytic derived 3-phosphoglycerate. Therefore, 

alteration in glycolytic flux can substantially influence activity through the SSP. 

In maximizing high glucose uptake, tumor cells promote the accumulation of glycolytic 

intermediates for anabolic processes through reducing glycolytic flux through pyruvate (55). 

Specifically, tumor glycolytic flux can be regulated by pyruvate kinases that catalyze the final and 

irreversible step in glycolysis: ATP and pyruvate production from phosphoenolpyruvate (PEP) via 

phosphate transfer to ADP.  Mammals have four different kinds of pyruvate kinases. While PKL 

and PKR are transcribed from the same gene, they are driven from different promoters and 

expressed in liver and red blood cells, respectively. PKM1 and PKM2 are transcribed from the PKM 

gene and arise via alternative splicing of exons 9 and 10, which leads to differential expression in 
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tissues. While other pyruvate kinases form constitutively active tetrameric enzymes, PKM2 can be 

found in either a highly active tetrameric or low active dimeric state. Tumor cells predominantly 

express PKM2, as low active dimeric PKM2 allows for the accumulation of glycolytic intermediates. 

In addition, tumor cells have developed a variety of mechanisms to disrupt tetramer formation and 

preserve the low active PKM2 dimer, including allosteric regulation by metabolites, post-

translational modifications, and protein:protein interactions (56).  

Mechanistically, PKM2 functions as a key node between glycolysis and serine 

biosynthesis.  As serine is an allosteric activator of PKM2, serine binding to PKM2 induces tetramer 

formation and consequently increases pyruvate kinase activity to promote glycolytic flux to lactate 

(57). Conversely, serine starvation reduces the pyruvate kinase activity in PKM2 expressing cells 

to divert the glycolytic flux into serine biosynthesis through 3-phosphoglycerate availability. When 

the intracellular serine level is restored, glycolytic flux is re-established by elevated activity of 

PKM2. Therefore, PKM2 acts as a sensor for intracellular serine levels. To explore the relationship 

between PKM isoforms and serine, Ye et al. generated ectopic PKM1 or PKM2 expressing cells in 

endogenous PKM2 depleted H1299 cells (52). While the proliferation rate of PKM1 expressing cells 

is comparable to PKM2 expressing cells in serine replete conditions, PKM2 expressing cells 

displays better survival ability than PKM1 expressing cells under serine depleted conditions. This 

supports the concept that PKM2 links the glycolytic pathway to serine metabolism. Further, receptor 

tyrosine kinase activity contributes to serine biosynthesis via blocking tetramer formation by 

phosphorylating PKM2 at Tyr105 (58). However, induction of tetramer formation of PKM2 by 

CARM1 methylation impacts serine biosynthesis in MEF cells, further highlighting the link between 

serine biosynthesis and PKM2 oligomeric status (59). 

Given the reported pro-tumorigenic effects of diminished activity of dimeric PKM2, different 

PKM2 activators have been developed as anti-cancer therapeutics. These small molecules induce 

tetramer formation and block the phospho-tyrosine protein interaction induced dimer formation (60, 

61). Interestingly, although these activators induced tetramer formation of PKM2 in tumor cells, no 

significant cell proliferation difference was observed between activator-treated and untreated cells 
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under standard cell culture conditions in vitro (62). However, PKM2 activators blocked cell 

proliferation when serine is depleted from the media. Mechanistic studies demonstrated that PKM2 

activators induce an acute increase in pyruvate kinase activity that led to a reduction in intracellular 

glucose-derived biomolecules, including serine. This, in turn, induced expression of SSP genes 

and serine transporters, SLC1A4 and SLC1A5, to restore the intracellular serine level (60, 61). As 

serine biosynthetic activity is limited by lack of substrate production (low 3-PG levels due to high 

PKM2 activity), tumor cells become dependent on exogenous serine to survive, thereby explaining 

why the anti-tumorigenic actions of PKM2 activators require serine-limited conditions in vitro. In 

short, the metabolic link between PKM2-regulated glycolysis and serine metabolism is mutual as 

serine biosynthesis needs low active PKM2 while serine itself can act as an allosteric activator of 

PKM2.  

Phosphoserine aminotransferase 1 

Since PHGDH is the rate-limiting enzyme in the SSP, there is considerable literature 

describing its tumorigenic activities. Yet, the contribution of other SSP enzymes, including PSAT1, 

is just now being investigated, which is the focus of this dissertation. As stated above, PSAT1 is 

the second enzyme within the serine synthesis pathway that catalyzes the amino transfer from 

glutamate to synthesize phosphoserine. Neu–Laxova syndrome (NLS) is a rare autosomal 

recessive serine deficiency disorder with a broad range of manifestations. Several mutations in 

PSAT1 have been discovered in NLS patients (63). Computational modeling of PSAT1 with patient-

derived mutations has found that while the A99V mutation is related to protein instability, S179L 

affects the cofactor binding sites (64). Sirr et al. has conducted yeast complementation assays to 

explore the functions of patient-derived PSAT1 mutations in SER1 (yeast ortholog of PSAT1) 

knockout yeast and categorize the mutations based on survival effects (65). Consistent with 

computational modeling, expression of S179L-PSAT1 mutant fails to rescue the growth of SER1 

knockout yeast cells under serine-deprived media, demonstrating the importance of PSAT1 

function in serine biosynthesis. 

PSAT1 correlates with clinical outcomes  
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Upregulation of PSAT1 expression has been discovered in a variety of tumor types in 

comparison with normal tissue (1, 43, 66-72). Furthermore, higher PSAT1 correlates with 

metastasis, advanced tumor stage, and poorer overall survival in ovarian cancer, triple-negative 

breast cancer, ER-negative breast cancer, nasopharyngeal carcinoma, and esophageal squamous 

cell carcinoma (ESCC) (43, 67, 69, 73). These clinical data strongly suggest a role for PSAT1 in 

tumor progression.  As colorectal cancer (CRC) patients with chemoresistance and breast cancer 

patients with tamoxifen resistance display higher PSAT1 expression than patients with 

chemosensitive lesions, elevated PSAT1 expression can serve as a prognostic marker for 

chemotherapy (66, 74-76). 

Regulation of PSAT1 expression in tumorigenesis 

Coordinated regulation of SSP gene expression was detailed in earlier sections within this 

introduction. Apart from these, other reported mechanisms directly regulate PSAT1 expression 

(Fig. 4). 

Elevated Psat1 expression has been observed in genetic models used in cancer research. 

In mouse models for Kras mutant lung cancer, deletion of neurofibromin 1 (Nf1) leads to 

upregulation of Psat1 expression (68). Further analysis has found that hyperactivation of focal 

adhesion kinase 1 (Fak1) upon Nf1 deletion accounts for the upregulation of Psat1, which was 

validated by Fak1 activator treatment of Nf1 wild-type cells. These findings were also recapitulated 

with NF1 mutant and wild-type human patient-derived xenograft (PDX) cells.  In the Kras mutant 

pancreatic cancer model, deletion of liver kinase b1 (Lkb1) tumor suppressor gene was found to 

increase Psat1 expression through AMPK/mTOR pathway activation (46). 

Apart from these oncogene-driven cancer models, PSAT1 expression can also be 

regulated epigenetically. Up-regulation of PSAT1 expression in CRC cells is mediated by G9A 

histone H3K9 methyltransferase (77). Increased monomethylation of histone H3K9 in the PSAT1 

promoter region activates PSAT1 transcription. G9A-mediated PSAT1 expression contributes to 

several oncogenic processes, including cell migration, invasion, and cell proliferation.  An 

investigation  
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Figure 4. Regulation of PSAT1 expression in cancer. A) Genetic drivers that induce 

PSAT1 expression. B) Epigenetic regulation of PSAT1. C) miRNA-mediated regulation of 

PSAT1. 
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conducted with ER-positive breast cancer patients found that the PSAT1 promoter is 

hypermethylated and correlates with low PSAT1 expression, thereby implying the involvement of 

epigenetic mechanisms on PSAT1 expression in ER-positive breast cancer (75). Survival analysis 

demonstrated that both PSAT1 promoter hypermethylation and low mRNA expression are 

associated with better outcomes after tamoxifen treatment. 

MicroRNAs can participate in tumorigenesis via regulating mRNA translation and can be 

oncogenic or tumor suppressive depending on their target proteins and expression ratio between 

tumor and normal tissue. Down-regulated miRNAs in tumor tissue are expected to function as 

tumor suppressers and miRNA-mediated PSAT1 expression has been reported in some cancers.   

Mir-340 and miR-365 are two low expressed miRNAs in ESCC that may regulate PSAT1 and their 

expression negatively correlate with PSAT1 in tumor tissue (77, 78). Ectopic expression of these 

miRNAs in ESCC cells decreases cell proliferation, invasion, and colony formation in vitro and 

tumor growth in vivo, as well as PSAT1 expression. Restoration of PSAT1 expression in miRNA 

overexpressed cells mitigates their tumor suppressive functions. miR-195-5p has been identified 

as a tumor suppressor miRNA in ovarian cancer due to loss of expression in tumor tissue and 

restoration of chemosensitivity to cisplatin upon overexpression (79). PSAT1 has been found as a 

direct target of miR-195-5p.  While PSAT1 silencing recapitulates the miR-195-5p overexpression 

mediated phenotype, increased PSAT1 reverts it, suggesting that loss of miR-195-9p contributes 

to elevated expression of PSAT1 in ovarian cancer. PSAT1 in CRC cells is not only subjected to 

epigenetic regulation by G9A histone H3K9 methyltransferase but also loss of miR-424 (80, 81). A 

negative correlation between miR-424 expression and PSAT1 expression has been shown in CRC 

tissue. While miR424 expression leads to growth inhibition and apoptosis induction, overexpression 

of PSAT1 impacts the miR424-mediated anti-tumorigenic phenotype. 

PSAT1 metabolic function in tumorigenesis 

Several studies have reported an oncogenic function of PSAT1, but few provide direct 

evidence for its metabolic function through a rescued phenotype by metabolite supplementation. 
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According to gene expression analysis from the TCGA database, high levels of PSAT1 

correlates with the proliferation rates of many types of tumors (82). As Lkb1 loss in the Kras mutant 

pancreatic cancer mouse model induces Psat1 expression, Psat1 depletion affects the cell 

proliferation and anchorage-independent growth in these cells but not in Lkb1 wild-type cells (46). 

Rescue studies with down-stream metabolite supplementation reveal that Psat1 is crucial in 

supplying SAM for cell proliferation but not to maintain nucleoside pools or redox homeostasis. 

Suppression of PSAT1 in ovarian cancer cells induces apoptosis and cell cycle arrest and 

impairs clonogenic growth (73). Consistent with these findings, silencing leads to reduction in cyclin 

D1 and CDK4 expression and increased in BAX and cleaved caspase3 levels. Further analysis of 

PSAT1 mediated-metabolic pathways has shown decreased reduced glutathione (GSH)/ oxidized 

glutathione (GSSG) ratio and increased ROS levels under PSAT1 silencing, which is restored via 

GSH supplementation. 

As mentioned above, loss of Nf1 tumor suppressor in Kras mutant lung cancer mouse 

model increases the Psat1 expression (68). While inhibition of Psat1 activity with transaminase 

inhibitor severely affects cell proliferation, preincubation of the cells with α-KG abolishes the effect 

of inhibitor treatment, suggesting an anaplerotic requirement of Psat1 expression in these cells.  

The oncogenic role of PSAT1 via mediating glycogen synthase kinase 3 beta (GSK3β) 

pathway 

Despite the presence of several reports showing the oncogenic function of PSAT1, the 

involvement of PSAT1 in downstream signaling pathways requires further investigation. According 

to previous studies, PSAT1 is linked to a GSK3β-dependent pathway.  Increased phosphorylation 

of GSK3β at Ser9 upon elevation of PSAT1 has been found in many tumor cell types even though 

the downstream effector may be context-dependent.  In general, phosphorylation of GSK3β at Ser9 

inhibits its serine/threonine kinase activity and phosphorylation-dependent proteasomal 

degradation of target proteins (83, 84). Figure 5 summarizes the PSAT1-GSK3β pathway in 

tumorigenesis. 
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Figure 5. The oncogenic function of PSAT1 mediated by GSKβ pathway.  
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Yang et al. found that cyclin D1 expression at the protein level decreases in PSAT1 

silenced NSCLC cells and increases upon overexpression, which is independent of transcriptional 

regulation (1). Further analysis shows that high PSAT1 leads to increased phosphorylation of 

GSK3β at Ser9 and inhibits GSK3β-dependent cyclin D1 phosphorylation at T286. Decreased 

phosphorylation protects cyclin D1 from proteasomal degradation, resulting in the accumulation of 

cyclin D1, which increases cell cycle progression via enhancing E2F activity. 

The role of PSAT1 in ER-negative breast cancer cells has been investigated via both 

silencing and ectopic expression (43). PSAT1 mediates cell proliferation, cell cycle progression, 

and colony formation in vitro and tumor growth in vivo. A mechanistic study revealed that high 

PSAT1 expression correlates with the inhibitory phosphorylation level of GSK3β (Ser9). Inhibition 

of GSK3β activity leads to accumulation and nuclear localization of -catenin in breast cancer cells 

and subsequently increases expression of cyclin D1. Therefore, PSAT1 is involved in ER-negative 

breast cancer proliferation and cell cycle progression, in part, via regulation of the GSK3β/β-

catenin/cyclin D1 pathway. 

Dai et al. also demonstrated the connection between PSAT1 and GSK3β/β-catenin 

pathway in ovarian cancer (79). Restoration of low expressed miR-195-5p in ovarian cancer 

reduces phosphorylated GSK3β levels and β-catenin. As PSAT1 has been found as a direct target 

of miR-195-5p, overexpression of PSAT1 in miR-195-5P expressing cells reconstitutes 

phosphorylated GSK3β and β-catenin expression.  Reduced sensitivity to cisplatin treatment upon 

PSAT1 overexpression or β-catenin agonist treatment indicates that this PSAT1/GSK3β/β-catenin 

pathway is involved in chemoresistance in ovarian cancer. 

Liu et al. examined the role of PSAT1 function in ESCC cells via loss and gain of function 

studies (69). Modulation of PSAT1 expression in ESCC alters cell proliferation and invasion in vitro 

and tumor growth in vivo. PSAT1 expression correlates with inhibitory phosphorylation of GSK3β 

and downstream SNAIL-mediated expression of E-cadherin and vimentin. Consistent with this 

finding, observation from PSAT1 targeting miRNAs, miRNA-340 and miR-365, suggest that PSAT1 

has an oncogenic function in ESCC cells via regulating the GSK3β/SNAIL pathway (69, 77, 78). 
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PSAT1 contribution to lung tumorigenesis 

Integrative transcriptomic and proteomic analyses of samples derived from both primary 

and PDX lung tumors have been performed in attempts to discover genes with prognostic value 

(85). Increased PSAT1 has been observed in both primary and PDX NSCLC tumors, and it is 

upregulated in NSCLC tumor-initiating cells and induces cellular transformation of 3T3 cells (86). 

Together, these suggest PSAT1’s involvement in lung tumorigenesis. 

Within the serine-one carbon metabolic pathway, Yang et al. found that PSAT1 is the most 

upregulated enzyme in NSCLC tumors (1). Immunohistochemistry (IHC) staining of lung cancer 

tissue validates the upregulation of PSAT1 in NSCLC and its association with poorer patient 

outcomes. E2F has been identified as a potential downstream regulator of PSAT1, which is evident 

from reporter assays with decreased E2F transactivation upon PSAT1 silencing in lung cancer 

cells. Consistent with this, suppression of PSAT1 impairs cell proliferation and cell cycle 

progression and correlates with hypo-phosphorylated retinoblastoma (RB) protein.  Further 

examination shows that PSAT1 leads to the accumulation of cyclin D1 in NSCLC cells through 

inhibiting GSK3β-induced phosphorylation and degradation. Therefore, they conclude that PSAT1 

can mediate cell cycle progression, cell proliferation, and colony formation in vitro and tumor growth 

in vivo through regulating the GSK3β /cyclin D1/RB/E2F pathway in NSCLC cells. 

Chan et al. investigated the role of PSAT1 in lung adenocarcinoma metastasis (2). 

Evaluation of publicly available datasets demonstrated that high expression of PSAT1 expression 

is associated with poorer overall and disease-free survival of patients with lung adenocarcinoma. 

Highly metastatic CL1-5 cells have increased PSAT1, while depletion of PSAT1 impacts this 

invasion capacity both in vitro and in vivo (2, 87).  The involvement of PSAT1’s metabolic activity 

in cell invasion has been tested via altering glucose, glutamine, and serine. After observing 

unaffected cell invasion upon metabolic manipulations, they concluded that PSAT1 mediated cell 

invasion is independent of its metabolic function.  PSAT1-mediated genome-wide gene expression 

profiling suggested that PSAT1 participates in lung cancer metastasis by suppressing 

STAT1/IRF1/IFIH1 pathway.  
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EGFR mutant lung cancer 

In this work, we investigated a role for PSAT1 under EGFR activation. Activating mutations 

within EGFR are found in a substantial percentage of NSCLC and were used as the model system 

for these studies. For this, the following section briefly introduces the function of EGFR mutations 

in lung tumorigenesis.  

EGFR mutations in NSCLC 

Lung cancer is the leading cause of cancer-related deaths in the US with an overall five-

year survival rate of 19% (88). NSCLC accounts for 84% of lung cancer cases with another 13% of 

cases classified as small cell carcinoma. Surgery is the primary treatment option for NSCLC 

patients diagnosed at early stage, but more than 55% of new cases are diagnosed at advanced 

stages with distant metastasis (89). 

Smoking is a major risk factor for developing lung cancer and is responsible for 80% of 

lung cancer deaths in the US (88). However, approximately 20% of lung cancer cases are observed 

in never-smokers. Adenocarcinoma is the most common histologic sub-type of NSCLC and 60% 

of the cases are related to oncogenic-driver mutations. Among these, activation mutations within 

the EGFR tyrosine kinase region constitute 17% of genetic alterations in adenocarcinoma and are 

significantly found in never smokers (90).  

EGFR belongs to the ErbB family of tyrosine kinase receptors, which is genetically 

localized to chromosome 7p12 (91). It is comprised of an N-terminal extracellular ligand-binding 

domain, single-span transmembrane domain, intracellular tyrosine kinase domain, and regulatory 

C-terminal region (92). Epidermal growth factor (EGF), transforming growth factor α (TGFα), and 

amphiregulin (AREG) are all ligands that bind to and induce receptor dimerization, resulting in 

tyrosine kinase activation. Subsequently, several tyrosine residues at the C-terminal region are 

transphosphorylated and function as docking sites for proteins involved in the activation of 

downstream pathways such as PI3K/AKT/mTOR, RAS/MAPK, and the JAK/STAT (92-95). 
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Activation of EGFR signaling promotes several tumorigenic processes, including cell proliferation, 

survival, migration, angiogenesis, and metastasis (91, 92). 

The observation of dysregulated EGFR signaling in multiple tumor types led to the 

development of targeted therapies (92, 96, 97). Inhibition of ligand binding by monoclonal EGFR 

antibody or blocking tyrosine kinase activity by small-molecule antagonists are two distinct 

approaches to suppress EGFR signaling. Although monoclonal antibody treatment improves 

patient outcomes within colorectal and laryngeal cancers, the effect on lung cancer is controversial 

(98).  Gefitinib and erlotinib are first-generation EGFR tyrosine kinase inhibitors (TKI).  Gefitinib 

was initially developed as a tyrosine kinase inhibitor in 2003. It was initially administered to 

unselected lung cancer patients,  with only 10% of them demonstrating any response to therapy 

(92). Stratification of the gefitinib-treated patients found that a subgroup of NSCLC patients with 

adenocarcinoma histology and never-smoking status from East Asian females are associated with 

the higher response rate to treatment. Further investigation within this group led to the discovery of 

mutations in the EGFR tyrosine kinase region that predicts gefitinib response (91, 92, 94). The 

discovery of mutated EGFR and the presence of small-molecule inhibitors have provided the 

opportunity to explore EGFR signaling, particularly as it relates to the metabolic enzyme functions 

highlighted in this dissertation. 

Metabolic alterations are driven by mutant EGFR  

Makinoshima et al. examined glycolytic metabolism in EGFR mutant lung cancer via 

EGFR-TKI treatment (99).  Inhibition of EGFR signaling decreases glycolytic activity as 

demonstrated by lower lactate production, glucose consumption, and glucose-derived extracellular 

acidification rate (ECAR). Consistent with these results, hexokinase II (HK II) and glucose 

transporter 3 (GLUT3) expression are down-regulated in response to treatment. Metabolite 

analysis has found that the pentose phosphate pathway (PPP) and redox metabolism are also 

affected. Furthermore, EGFR signaling may contribute to pyrimidine biosynthesis via 

phosphorylating and activating CAD (carbamoyl-phosphate synthetase 2, aspartate 

transcarbamylase and dihydroorotase).  In another study, De Rosa et al. also found that TKIs 
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reduce lactate production, HK II expression, and phosphorylation of PKM2 at Y105 (100). Yet, they 

also observed increased oxygen consumption, expression of mitochondrial complexes, and ATP 

production that indicated increased oxidative phosphorylation, suggesting that activating mutations 

in EGFR impacts not only glycolysis but also oxidative phosphorylation. EGFR-mediated glycolysis 

was further confirmed via EGFR knockdown, which decreased many of the genes involved in 

glycolysis (101). Glycolysis is crucial to sustain TCA cycle intermediates in EGFR mutant cells and 

both glucose starvation and inhibition of mitochondrial activity induce apoptosis. Mechanistic 

studies found that inhibition of mitochondrial ATP production induces autophagy-mediated 

degradation of EGFR protein. Taken together, glycolytic activity is not only driven by EGFR 

oncogenic activity but is also required for EGFR stability in EGFR mutant lung cancer. 

The role of receptor tyrosine kinases (RTKs) in lung cancer metabolic reprogramming has 

been investigated via gain of function studies (50). Metabolic tracing experiments with 13C-labeled 

glucose, glutamine, and palmitate were done in BAF3 isogenic cells stably transfected with mutant 

forms of RTKs including EGFR, FGFR, RET, and MET. Among these, mutant EGFR yielded higher 

glucose-derived serine biosynthesis and inhibition of serine biosynthesis impairs cell proliferation. 

These findings were further corroborated with EGFR mutant cell lines using PHGDH inhibitor 

treatment, indicating that activation mutation in EGFR promotes serine biosynthesis. Further 

upregulation of PHGDH has been shown in erlotinib resistance cells and inhibition of activity via 

either inhibitor or silencing induces the sensitivity (47). Another study supports this via ectopic 

expression of PSAT1 in EGFR mutant HCC827 NSCLC cells, which induces resistance to EGFR-

TKI treatment (70). Thus, these reports imply that while EGFR mutation activates serine 

biosynthesis, it is further enhanced under TKI resistance. 

The relationship between glutamine metabolism and EGFR mutation has been 

demonstrated using glutaminase (GLS) inhibition (102). In a xenograft tumor model, suppression 

of GLS activity does not affect tumor growth but enhances the anti-tumor activity of erlotinib. 

Molecular analysis has found that glycolysis and glutaminolysis are inhibited by combination 
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therapy, which negatively impacts the cellular energetic status and subsequently results in AMPK-

mediated cell death. 

Monounsaturated fatty acid (MUFA) synthesis is associated with the activation of lipid 

metabolism in tumorigenesis. Investigation of molecular mechanism in lung cancer has found that 

stearoyl-CoA desaturase 1 (SCD1), which plays a role in MUFA synthesis, interacts with EGFR in 

EGFR mutant cells (103). This interaction contributes to SCD1 protein stability via EGFR-mediated 

phosphorylation at Y55 and promotes lipid synthesis for tumor growth. 

In short, mutant oncogenic activation of EGFR signaling modulates a variety of enzymes 

within metabolic pathways. These changes may not only involve manipulation of their canonical 

activities but also putative alternative functions, all of which may allow for the development of 

EGFR-TKI resistance. 

Metabolic enzymes with non-canonical functions in tumorigenesis 

The observation of metabolic reprogramming in tumor cells prompted researchers to 

examine specific enzyme function under varying conditions, including oncogenic activation, nutrient 

limitation, and hypoxia. This has provided significant insight into their involvement in tumorigenesis 

(104). In some cases, supplementation of downstream metabolites failed to rescue a loss of 

function phenotype, whereas restoration of a catalytically inactive enzyme rescued the cellular 

phenotype under specific conditions.  This implied that certain metabolic enzymes possess a novel 

tumorigenic function beyond their role in metabolic pathways (105-107). To date, non-canonical 

functions have been discovered for multiple metabolic enzymes, particularly those involved in the 

glycolytic and TCA cycle pathways (104). 

In many cases, non-canonical functions of enzymes are induced by post-translational 

modification, relocalization into a different cellular compartment, and /or interaction with non-

metabolic proteins. In other cases, elevated expression of the enzyme is sufficient to display non-

canonical functions (108). 
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Non-canonical functions can be categorized into two groups based on the requirement of 

catalytic activity. In the catalytic-dependent pathway, metabolic enzymes follow one of two routes 

to exert their non-canonical functions. Either they expand their substrate specificity from small 

metabolites to protein targets, resulting in protein modifications, or translocating to a different  

cellular compartment where their metabolic products are utilized as co-factors or substrates for 

posttranslational modifications (104, 108). In the catalytic-independent pathway, they can modify 

associating protein function via their physical interaction (104). 

Catalytic-dependent non-canonical functions 

i) Proteins, not metabolites, serve as substrates for metabolic enzymes 

Various metabolic enzymes with kinase activity can exhibit protein kinase function using 

proteins as a substrate instead of their defined metabolites (108, 109).  PKM2 has been the most-

studied metabolic enzyme with protein kinase activity that influences several tumorigenic 

processes. One distinction is that it transfers the phosphate from PEP to protein targets instead of 

ATP. Mitogenic and growth factor stimulation, particularly EGF, leads to nuclear localization of 

PKM2 by post-translational modifications (110). Nuclear PKM2 can phosphorylate STAT3 at 

Tyr705 and Histone H3 at Thr11 that subsequently induces the expression of genes involved in cell 

proliferation, migration, and the Warburg effect (111, 112).  Restoration of a catalytically inactive 

mutant of PKM2 in endogenous PKM2 depleted cells fails to restore the phosphorylation level of 

Histone H3 and the phenotype even though it can translocate into the nucleus (111, 113). Similarly, 

nuclear localization mutant forms of PKM2 decrease protein phosphorylation even though they 

have intact catalytic activity (110, 114). In the mitotic process, PKM2 participates in different steps, 

including phosphorylating Bub3 in chromosome segregation and phosphorylating MLC2 in 

cytokinesis (115, 116). In addition, the protein kinase activity of PKM2 contributes to cell survival 

in response to oxidative-stress induced apoptosis (117).  PKM2 can translocate into the 

mitochondria upon oxidative stress and phosphorylate BCL2. Phosphorylated BCL2 is resistant to 

proteasomal degradation and promotes cell survival. These are just a few examples of the non-
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canonical oncogenic functions of PKM2, whose roles can also be extended to tumor cell secretion, 

migration, and DNA damage response (108). 

Phosphoglycerate kinase 1 (PGK1) is another ATP generating enzyme within the glycolytic 

pathway that utilizes the intermediate 1,3-diphosphoglycerate (108). Like PKM2, PGK1 also 

displays protein kinase activity, but unlike PKM2, it uses ATP as a phosphate source. Hypoxic 

activation of ERK signaling, EGFR stimulation, expression of mutant KRAS and BRAF induce 

PGK1 phosphorylation at S203 and mitochondrial localization (118). Mitochondrial PGK1 activates 

pyruvate dehydrogenase kinase isozyme 1 (PDHK1) through phosphorylation at T388. 

Phosphorylated PDHK1 subsequently inhibits the activity of pyruvate dehydrogenase complex 

(PDC), resulting in decreased pyruvate oxidation in mitochondria and increased pyruvate 

conversion to lactate in the cytosol. This suggests that PGK1 not only contributes to glycolytic flux 

through its canonical activity but also by inhibiting the usage of pyruvate by the mitochondria.  

Separately, glutamine starvation and hypoxia lead to mTOR-dependent phosphorylation of ARD1, 

which results in binding to PGK1 and acetylation at K388 in glioblastoma (GBM) cells (119). 

Acetylated PGK1 initiates autophagosome formation via phosphorylating Beclin1 at S30.  The 

correlation between acetylated PGK1 and Beclin1 phosphorylation has been supported by GBM 

human tumor data and is associated with poor patient outcomes. 

ii) Metabolites serve as substrates or cofactors for other enzymes 

In some cases, nuclear-localized metabolic enzymes supply metabolic products that allow 

for global changes in histone modifications (108, 120). For example, acetyl-CoA for histone 

acetylation can be generated by nuclear ATP-citrate lyase (ACLY) using citrate or nuclear PDC 

using pyruvate (121, 122). While oncogenic signaling promotes nuclear localization of ACLY by 

AKT-dependent phosphorylation, serum and EGF stimulation can trigger the nuclear localization of 

PDC. 

Tumor cells can also utilize metabolic enzymes to regulate gene expression within a 

specific locus by their translocation into the nucleus and complex formation with specific chromatin-

modifying enzymes (108, 123). As further detailed below, metabolic enzymes within protein 
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complexes provide substrates for the chromatin-modifying enzymes and contribute to the 

regulation of gene expression. 

Sivanand et al. demonstrated that induction of DNA damage by ionizing radiation (IR) leads 

to phosphorylation of ACLY at S455 (124). This is required for histone acetylation near double-

strand breaks (DSB) and recruitment of BRCA1 for homologous recombination (HR) repair. 

Furthermore, reconstitution of neither inactive mutant ACLY nor nuclear export signal (NES) tagged 

ACLY in ACLY depleted cells are able to promote HR-dependent DBS repair, implicating the 

importance of nuclear-localized active ACLY function. Fumarate hydratase (FH) is an enzyme 

within the TCA cycle that catalyzes the reversible conversion of fumarate to malate (108).  However, 

a recent study reported a novel nuclear function for FH in IR-induced DSB repair (125). After 

nuclear localization of FH in response to IR treatment, DNA-PK phosphorylates FH at T236 that 

promotes its interaction with histone H2A.Z at the DSB site. Fumarate production by DSB localized 

FH inhibits the histone demethylase activity of KDM2B. This results in enhanced dimethylated 

H3K36 at DSB sites, which is required for non-homologous end-joining (NHEJ) DNA repair complex 

recruitment. While the addition of high levels of fumarate restores NHEJ-mediated DNA repair in 

FH depleted cells, the expression of an inactive mutant does not. Thus, these studies implicate the 

importance of a locally produced metabolite in DNA damage repair. 

Under glucose limitation, tumor cells can activate autophagy to survive. As nuclear acetyl-

CoA levels are impacted due to limited substrates for ACLY and PDC activity, activation of 

autophagy-related gene expression still requires histone acetylation. Li et al. found that glucose 

deprivation triggers AMPK-mediated phosphorylation of acetyl-CoA synthetase 2 (ACSS2) at S659, 

which leads to nuclear localization (126). Nuclear ACSS2 interacts with transcription factor EB 

(TFEB) and forms a transcription complex to initiate lysosomal and autophagy gene expression via 

binding to their promoter regions. ACSS2 within this complex locally produces acetyl-CoA for 

histone acetylation.  

Alpha-ketoglutarate dehydrogenase (α-KGDH) is another well-known TCA cycle enzyme 

that produces succinyl-CoA from α-KG and acetyl-CoA and has also been observed in the nucleus 

(127). Nuclear α-KGDH interacts with lysine acetyltransferase 2A (KAT2A) and leads to 
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succinylation of histone H3K79 near the promoter region. Inhibition of nuclear localization of α-

KGDH or disruption of the succinyl-CoA binding site of KAT2A (Y645A) suppresses gene 

expression, cell proliferation, and tumor growth, thereby showing the importance of nuclear α-

KGDH produced succinyl-CoA in tumorigenesis. 

Proteomic analysis of MafK associating partners found nuclear localization of methionine 

adenosyl transferase IIα (MatIIα), suggesting a mechanism for local SAM production (128). Mat IIA 

within the MafK-associated complex leads to gene repression of the heme oxygenase-1 gene (Ho-

1). Further, MatIIα forms a complex with chromatin-modifying proteins such as Swi/Snf and NuRD 

and provides SAM for histone methylation. 

In short, the relocalization of metabolic enzymes into a different cellular compartment can 

be exploited by tumor cells for the epigenetic regulation of gene expression and DNA-damage 

repair, resulting in cell survival and tumor growth. 

Catalytic-independent non-canonical functions 

Metabolic enzymes can also exert non-canonical functions via interacting with non-

metabolic proteins, relocalization into a different cellular compartment, or both in a catalytic 

independent manner (104). In this scenario, reconstituted expression of catalytically inactive 

mutant forms restores the phenotype in endogenous protein depleted conditions, while inhibition of 

metabolic activity by inhibitor treatment does not significantly affect the phenotype. 

 Dimeric PKM2 can bind to the phosphorylated-tyrosine residue of proteins (129). 

Changing the amino acid residue from K433 to 433E by site-directed mutagenesis leads to loss of 

this ability. In EGFR mutant lung cancer cells, the interaction between PKM2 and mutant EGFR 

sustains EGFR signaling by inhibition of proteasomal degradation of EGFR (130). While 

catalytically inactive PKM2 still contributes to EGFR stability, the half-life of mutant EGFR is 

reduced upon either PKM2 activator treatment or mutant PKM2 (K433E) expression. In GBM cells, 

nuclear PKM2 binding to HuR blocks HuR-dependent p27 translation via retaining HuR in the 

nucleus (131). Depletion of PKM2 leads to cell cycle arrest due to HuR-mediated p27 translation 

while reconstituted wild-type and catalytically inactive mutant PKM2, but not the K433E mutant, 
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can restore cell cycle progression. Phosphoglycerate mutase 1 (PGAM1) is another glycolytic 

enzyme with an identified non-canonical function, which is independent of its catalytic activity (107). 

While investigating a novel function for PGAM1, alpha-smooth muscle actin (ACTA2) was identified 

as a PGAM1 interacting protein. PGAM1 plays a key role in F-actin formation and cell migration via 

interacting with ACTA2 and inhibition of metabolic activity by either mutation or inhibitor treatment 

does not affect this interaction and cell motility. 

Contrary to oncogenic roles for non-canonical functions of metabolic enzymes, nuclear 

malate dehydrogenase 1 (MDH1) and nuclear fructose-1,6-bisphosphatase 1 (FBP1) exhibit tumor 

suppressor functions (106, 132). Glucose starvation induces nuclear localization of MDH1. Nuclear 

MDH1 interacts with p53 that results in decreased proteasomal degradation and induction of gene 

expression via acting as a co-activator for p53 (106). Transactivation of p53 target genes, including 

BAX, triggers apoptosis. Glucose deprivation-induced apoptosis has not been observed in MDH1-

silenced, p53 proficient cells or MDH1 overexpressed p53-deficient cells. However, reconstituted 

catalytically inactive MDH1 expression in p53 proficient cells exhibits increased apoptosis, 

confirming that nuclear MDH1-p53 interaction mediates apoptosis in glucose-limited conditions in 

a metabolic independent manner. Loss of FBP1 has been found to play a role in clear cell renal 

carcinoma (ccRCC) tumorigenesis and is associated with poor prognosis (132). Nuclear FBP1 

inhibits hypoxia-inducible factor (HIF) target gene expression via interacting with the inhibitory 

domain of HIF1α and HIF2α in VHL tumor suppressor deficient cells. While expression of 

catalytically inactive mutant FBP1 still abolishes HIF-dependent gene expression and cell 

proliferation under normoxia, expression of NES-tagged FBP1 cannot recapitulate the phenotype 

of wild-type FBP1 activity, indicating that the nuclear, catalytic-independent function blocks HIF 

transactivation.  

Non-canonical function of genes involved in the serine synthesis pathway 

As mentioned above, many reports have defined the non-canonical functions of glycolytic 

and TCA cycle enzymes in tumorigenesis. Although we speculate that SSP enzymes may also 

possess non-canonical functions, few reports have identified novel functions for the SSP proteins. 
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PHGDH has been found as a potential prognostic marker for GBM (133). Silencing of PHGDH 

inhibits cell proliferation, migration, and invasion. Further study has shown that PHGDH contributes 

to these oncogenic processes via increasing protein stability of FOXM1 by physical interaction that 

promotes the expression of genes involved in cell migration and invasion.  Another study found that 

PHGDH interacts with the translation initiation factors, eIF4A1 and eIF4E, in pancreatic 

adenocarcinoma and involves the translation initiation process via increasing complex stability, 

especially under nutrient-stress conditions (134). Pharmacological inhibition of PHGDH activity 

does not alter the interaction with this initiation complex and translation of mRNAs, including E-

cadherin and ZO-1, but the suppression of PHGDH expression abolishes complex formation and 

affects translation initiation of the relevant mRNAs. Separate from these non-canonical functions, 

PHGDH can produce the oncometabolite D-2-hydroxyglutarate (D-2-HG) from α-KG (135). D-2-HG 

acts to competitively inhibit α-KG-dependent dioxygenases, which results in reduced histone and 

DNA demethylation. Therefore, it will be intriguing to investigate whether PHGDH-produced 2-HG  

can alter the epigenetic landscape of tumor cells.  

PSPH is the final enzyme within the serine biosynthetic pathway and produces serine via 

removing phosphate from phosphoserine. A recent study has reported that PSPH also 

dephosphorylates serine phosphorylated peptides, implicating a potential protein phosphatase 

activity in vitro (105). Insulin Receptor Substrate 1 (IRS1) has been found as a protein substrate 

for PSPH phosphatase activity due to its interaction with PSPH and the reduction of S794 

phosphorylation level upon PSPH overexpression in NSCLC cells. Removal of inhibitory phosphate 

from IRS-1 (S794) initiates the activation of the AKT1-mTORC pathway and cell migration and 

invasion. Yet, the restoration of inactive mutant PSPH expression in PSPH silenced cells fails to 

dephosphorylate IRS-1 at S794 and rescue the cell migration defect, supporting a non-canonical 

function of PSPH. 

On the other hand, the oncogenic function of PSAT1 has been implicated in many types of 

cancer via loss and gain of functions, but a mechanistic study demonstrating a non-canonical 

function of PSAT1 has yet been reported. For example, elevated expression of PSAT1 has been 
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implicated in GSK3β mediated pathway in several cancer types but whether PSAT1’s canonical or 

non-canonical function is crucial in the regulation of this pathway is yet to be determined (1, 43, 69, 

79). The involvement of PSAT1 in epigenetic gene regulation has been shown in mouse embryonic 

stem cell maintenance via supplying α-KG for dioxygenases leading to histone and DNA 

demethylation, but then again, it is unknown whether PSAT1 displays such function for tumor cells 

or if the compartmental specific expression is required (136).  

As described above, non-canonical functions of metabolic enzymes have been observed 

under specific conditions and each enzyme is regulated separately in order to exert its novel 

function. This is highlighted by EGFR-mediated nuclear functions of PKM2 and PDC and indicates 

that EGFR signaling does not only promote metabolic reprogramming but also induces non-

canonical activities of target proteins (113, 122). Unraveling the non-canonical functions of 

enzymes is experimentally challenging, but it is necessary to develop new cancer therapies.  

We postulate that PSAT1 exhibits a non-canonical function in  EGFR-mediated lung tumor 

progression. This hypothesis was tested in multiple aims that utilized biochemical approaches to 

identify new PSAT1 associating proteins (Aim1) and the impact of PSAT1 loss on an interacting 

protein’s function and localization (Aim1). Aim 2 intended to define a cellular phenotype due to 

PSAT1 silencing in NSCLC and undertake rescue studies to evaluate a role for a novel interacting 

protein. Lastly, gene expression profiling was performed to characterize downstream genomic 

changes and prognostic relevance of a PSAT1 associated gene signature in EGFR-mutant NSCLC 

(Aim 3).     
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CHAPTER 2 

 
NUCLEAR PYRUVATE KINASE M2 (PKM2) CONTRIBUTES TO PHOSPHOSERINE 

AMINOTRANSFERASE 1 (PSAT1)-MEDIATED CELL MIGRATION IN EGFR-ACTIVATED LUNG 

CANCER CELLS 

 
Introduction 

The impact of metabolic reprogramming has been well accepted in cancer pathogenesis 

(6, 137). Mainly, the contribution of the Warburg effect and glutamine addiction has been 

extensively investigated in the growth and survival of multiple tumor types (138-140). More recently, 

several reports have described additional functions for glycolytic enzymes in tumor progression 

beyond their metabolic activities (141). For example, PKM2 can be translocated into the nucleus in 

response to a variety of oncogenic signals and regulate gene expression, particularly through direct 

interaction with transcription factors or by transcription factor phosphorylation by inherent PKM2 

protein kinase activity (110, 111, 113, 114, 142). Through an interaction with ACTA2, 

phosphoglycerate mutase 1 (PGAM1) mediates actin filament assembly and increases cell 

migration and invasion in breast cancer (107). Although pro-tumorigenic functions of glycolytic 

enzymes are well-established, the requirement for serine synthesis enzymes has only recently 

been described (1, 15, 45, 105, 133). 

De novo cellular production of serine may contribute to tumor growth by providing 

precursors for macromolecular production and one-carbon metabolism (15). Accordingly, multiple 

cancers exhibit increased expression of SSP enzymes (44, 71, 105, 133). For example, elevated 

PSAT1, which catalyzes the second step in converting 3-phosphohydroxypyruvate to 

phosphoserine, is associated with poorer clinical outcomes (1, 43, 67, 69, 70, 72, 74, 143, 144). 

Depending on tumor type, several reports have implicated PSAT1 in the proliferation, migration, 

invasion, and chemo-resistance of malignant cells (1, 43, 46, 69, 71, 74, 79, 143). Yet, the    
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complete mechanism by which the serine biosynthetic pathway facilitates metabolic or cellula 

changes necessary for tumor growth is still not fully understood (15). As observed with certain 

glycolytic proteins, studies have also described non-canonical activities of SSP enzymes. 

Phosphoglycerate dehydrogenase (PHGDH) contributes to glioma progression through direct 

interaction and stabilization of FOXM1(133). Separately, phosphoserine phosphatase (PSPH) can 

promote tumorigenesis through direct IRS1 dephosphorylation (105). While multiple studies 

indicate a pro-tumorigenic role for PSAT1, alternative functions for this SSP enzyme have yet to 

be fully described. 

We now report a novel direct interaction between PSAT1 and PKM2. While the loss of 

PSAT1 does not alter cellular PKM2 expression or activity, it disrupts PKM2 nuclear translocation 

in response to EGFR-activation in lung cancer cells.  In addition, PSAT1 silencing decreases 

migration in these cell types, while PSAT1 restoration or overexpression promotes cell motility and 

PKM2 nuclear localization. PSAT1 also undergoes nuclear translocation upon EGFR-activation, 

but it is still unclear whether disruption of the PSAT1:PKM2 association alters nuclear 

compartmentalization. Yet, re-expression of a nuclear localization signal (NLS) tagged PKM2 

acetyl-mimetic (K433Q) mutant partially restores cell migration in PSAT1 suppressed cells. Taken 

together, our findings suggest that PSAT1-promoted nuclear PKM2 translocation contributes, in 

part, to cell migration under EGFR-activation in lung cancer.  
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Materials and Methods 

Reagents and antibodies 

Erlotinib was purchased from (Selleckchem, OSI-744). Human recombinant proteins PKM2 

(SAE0021), PKM1 (SRP0415), and EGF (E9644), anti-β-actin (A2228) antibody, PSAT1 shRNA 

(TRCN0000291729), and control shRNA (SHC202) were purchased from Sigma-Aldrich. 

Antibodies against PKM2 (4053), PKM1 (7067), OCT1(8157), 𝑎-Tubulin (3873), DYKDDDDK-Tag 

(2368), and rabbit IgG (2729) were obtained from Cell Signaling Technology.  Anti-PSAT1 (10501-

1-AP) antibody was purchased from Proteintech Group Inc. The PSAT1 Double Nickase CRISPR 

Plasmid system (sc-403001-NIC) was purchased from Santa Cruz Biotechnology. 

GST-Pulldown and Mass Spectrometry 

PSAT1 cDNA was subcloned into the pGEX4T-1 plasmid (Amersham) to generate pGEX-

GST-PSAT1 and tagged PSAT1 was induced in BL21 cells with IPTG. GST-PSAT1 was incubated 

with one milligram of pre-cleared A549 lysate and columns were washed 3X and eluted with 

reduced glutathione. Dialyzed elutes were separated by SDS-PAGE and protein bands were 

detected by silver stain. Bands enriched in the GST-PSAT1 samples were excised and sent for 

protein identification by mass spectrometry. 

LC/MS data collection and analysis  

Tryptic peptides were prepared from excised gel bands and analyzed using a liquid 

chromatograph tandem mass spectrometry (LC-MS/MS) approach as previously described (145). 

Briefly, peptides were separated on a 10cm C-18 (Jupiter 5-μm RP300A (Phenomenex) packed 

needle tip using a 5% to 40% acetonitrile gradient at a flow rate of 200nl/min prior to 

nanoelectrospray into an LTQ linear ion trap mass spectrometer (Thermo Fisher Scientific). Data 

were acquired in a data-dependent fashion with a full MS scan (300-2000 m/z) followed by six 

MS/MS scans (35% collision energy) and a 1-min dynamic exclusion window. MS/MS data were 

searched by ProteomeDiscoverer (version 1.4) as previously described against a human refseq 

protein database (version HumanRef140722.fasta with 88,942 entries) using SEQUEST (version 

1.4.0.288) and Mascot algorithms (version 2.4) assuming 1.0Da fragment mass tolerance and 

1.2Da parent mass tolerance, fixed modification of cysteine (+57 for carbamidomethylation), 
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variable oxidation of methionine (+16 to methionine) and maximal two missed trypsin 

cleavages(146). High-probability peptide and protein identifications were assigned using the 

Peptide-/Protein-Prophet algorithms (http://tools.proteomecenter.org/software.php) and result 

quantitatively using Scaffold v4.3.4 (ProteomeSoftware) using a spectral counting method.  

Cell culture 

A549 NSCLC adenocarcinoma cells (ATCC) and HEK293T human embryonic kidney cells 

(provided by Dr. Geoffrey Clark after STR profiling) were maintained in DMEM (Gibco) 

supplemented with 10% FBS and 50 µg/ml gentamicin (Gibco). PC9  NSCLC adenocarcinoma cells 

(provided by Dr. Levi Beverly after STR profiling) were maintained in RPMI media (Gibco) 

supplemented with 10% FBS and 50 µg/ml gentamicin (Gibco). All cells were cultured in humidified 

incubators at 37 0C and 5% CO2. 

Plasmid construction and mutagenesis  

Full-length human PKM2 cDNA was amplified from A549 cells using primers forward:5’-

CTGGGGATCCATGTCGAAGCCCCATAGTGAAG-3’ and reverse:5’-GATCGAATTCTCA 

CGGCACAGGAACAACACGC-3’ and sub-cloned into the pcDNA 3.1/FLAG vector [FLAG-wild-

type (WT) PKM2]. FLAG-PKM2 WT plasmid was used to generate mutant PKM2 expression 

constructs using either the QuikChange site-directed mutagenesis kit (Stratagene) or Q5 site-

directed mutagenesis kit (New England Biolabs), respectively. Primers utilized for the PKM2 site-

directed mutagenesis study are listed in Table 1. All plasmid constructs were verified by sequencing 

analysis (Eurofins Genomics). 

Transient transfection 

HEK293T cells were transfected with FLAG-tagged empty vector (FLAG-EV) [FLAG-HA-

pcDNA3.1 (Addgene, # 52535)], PKM2 WT, or mutant PKM2 [MT(1-4)] vectors using jetPEI 

(PolyPlus) transfection reagents according to manufacturer’s protocols. Forty-eight hours post-

transfection, cells were lysed in IP lysis buffer (Pierce) and co-immunoprecipitation was performed. 

 

http://tools.proteomecenter.org/software.php
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Generation of stable cell lines 

PSAT1 stable knockdown: A549 or PC9 cells were transfected with shRNA (PSAT1 shRNA 

or Non-targeted Mammalian Control shRNA) using jetPEI and clonal cells were selected in 1 µg/ml 

puromycin. 

PSAT1 genetic knockout:  PC9 cells were transfected with the PSAT1 

CRISPR/Cas9n(D10A)-Puromycin nickase plasmid using jetPEI. Stably transfected cells were 

selected in 1 µg/ml puromycin. To achieve PSAT1 genomic deletion, puromycin selected PC9 cells 

were transfected with the PSAT1 CRISPR/Cas9n(D10A)-GFP nickase plasmid.  PSAT1 knockout 

cells were clonally expanded from GFP-positive cells and validated by immunoblotting. Puromycin 

selected cells without GFP-nickase transfection served as control knockout cells. 

Ectopic FLAG-tagged PSAT1 expression: PSAT1 cDNA (Forward: 5’-TGGGATCCATGG 

ACGCCCCCAGGCAGGTG-3’ and reverse: 5’-TGGAATTCTCATAGCTGATGCATCTCCAA-3’) 

was cloned into pcDNA 3.1/FLAG vector. PC9 cells were transfected with FLAG-tagged PSAT1 or 

FLAG-EV using jetPEI and selected in 200 µg/ml geneticin (Gibco).  

PSAT1 rescue studies: An shRNA-resistant FLAG-tagged PSAT1 expression plasmid was 

generated by site-directed mutagenesis (primers listed in Table 1). For these studies, the shRNA-

Primer ID Sequence (5’-3’) Mutagenesis 
Kit 

MT1-PKM2-F 
MT1-PKM2-R 

cagaggctgccatctaccacaggaaattatttgaggaactccgc 
gcggagttcctcaaataatttcctgtggtagatggcagcctctg 

QuikChange 
mutagenesis 
XL kit MT2-PKM2-F 

MT2-PKM2-R 
ctccgccgcctggcgagccataccagcgaccccac  
gtggggtcgctggtatggctcgccaggcggcggag 

MT3-PKM2-F 
MT3-PKM2-R 

gcgagccataccagcgaccccacagaa 
caggcggacgagttcctcaaataattgcaagtggtag 

Q5 
Site-Directed 
Mutagenesis MT4-PKM2-F 

MT4-PKM2-R 
tgaggaactcgtccgcctggcgc 
aataattgcaagtggtagatggc 

K433Q-PKM2-F 
K433Q-PKM2-R 

cgtcctcacccagtctggcag 
attatggccccactgcag 

shRNA-resistant-PSAT1 
 

PSAT1-F 
PSAT1-R 

tactgttagagatacaaaaggaattattagactacaaaggagttggcattag 
cactgtgcggcagcttggcggg 

 

Table 1: PCR primers for the site-directed mutagenesis. Point mutations are indicated in 

bold letters and underlined. 
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resistant FLAG-PSAT1 expression vector was co-transfected with PSAT1 shRNA into parental PC9 

cells. Alternatively, PC9 cells were co-transfected with either FLAG-EV and non-targeted shRNA 

or PSAT1 shRNA to serve as control and PSAT1-silenced PC9 cells, respectively.  Stably 

transfected cells were selected in 200 µg/ml geneticin (Gibco) and 1 µg/ml puromycin (Sigma). 

Nuclear PKM2 overexpression: PKM2 cDNA (Forward: 5’-TATTTAGGCGCG 

CCATGTCGAAGCCCCATAGTGAAG-3’ and reverse: 5’-GCCCGTTAATTAATCAC 

GGCACAGGAACAACACGC-3’) was subcloned into pcDNA-3xFLAG-NLS vector (Addgene, 

#53585). FLAG-PKM2NLS-K433Q expression plasmid was generated by site-directed 

mutagenesis (primers listed in Table 1). All constructs were verified by sequencing analysis. 

shPSAT1 PC9 cells were transfected with FLAG-PKM2NLS-WT, FLAG-PKM2NLS-K433Q, or FLAG-EV 

using jetPEI. Control PC9 cells were transfected with FLAG-EV only. Stably transfected cells were 

selected in 200 µg/ml geneticin and 1 µg/ml puromycin.  

FLAG-PKM2 WT or MT3 expression: Stable FLAG-PKM2 WT or MT3 expressing PC9 cells 

were generated via transfection and clonal expansion under 200 µg/ml geneticin (Gibco). Transient 

knockdown of endogenous PKM2 in these stable cells was performed by transfection with a pool 

of three siRNA duplex oligonucleotides against PKM2 3’UTR region (sense: 5’-

ccagatggcaagagggtgatt-3’, 5’-gatcaacgcctcactgaaatt-3’, and 5’-gagcctacctgtatgtcaatt-3’) 

(Dharmacon) using jetPEI. 

EGF and erlotinib treatment 

EGF Treatment: Stable A549 Control and shPSAT1 cells were serum-starved in serum-

free DMEM for 24 hours and subsequently treated with 100 ng/ml EGF or vehicle (10mM acetic 

acid) for 6 hours. Cells were then collected for subcellular fractionation or co-immunoprecipitation 

analysis. 

Erlotinib Treatment: Stable PC9 Control and shPSAT1 cells were treated with 1 µM of 

erlotinib or vehicle (DMSO) in serum-free RPMI media for 48 hours prior to sub-cellular fractionation 

analysis. 

Subcellular fractionation 
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Cytosolic and nuclear proteins were isolated using the NE-PER kit (Thermo Scientific, 

78835). 15 µg of cytoplasmic protein and 25 µg of nuclear protein were used for immunoblotting 

analyses. 

Co-immunoprecipitation (Co-IP) 

One milligram of cell lysate was incubated with 1 µg of anti-PSAT1 or anti-rabbit IgG 

(negative control) antibody. Immunoprecipitates were collected using Protein G Dynabeads 

(Invitrogen, 10004D) and the immunoprecipitated proteins were analyzed by immunoblot. 

For recombinant Co-IP experiments, 50 ng of recombinant PSAT1 protein was mixed with 

500 ng of recombinant PKM1 or PKM2 protein. Recombinant PSAT1 in IP lysis buffer alone was 

used as a negative control.  

Immunoblotting 

Protein extracts or co-immunoprecipitations were separated by SDS-PAGE and 

transferred to PVDF membrane. Blocked membranes were then incubated with the indicated 

primary antibodies. Protein detection was performed using HRP-conjugated secondary antibodies 

and visualized by chemiluminescence (GE Healthcare). 

Immunofluorescence staining 

Cells were plated in 4-well chamber slides, incubated in serum-free media for 24 hours, 

and fixed in 4% paraformaldehyde. After blocking, cells were incubated with primary anti-PKM2 

and Alexa Fluor 488- conjugated secondary antibodies. Slides were then mounted with SlowFade 

Diamond Antifade Mountant with DAPI (S36964) reagent. Images were captured by Olympus FV-

3000 confocal microscope equipped with Fluoview software under 40X magnification. 

Wound-healing assay  

All PC9 cell lines were plated at 106 cells/ well in 6 well-plate and grown in complete media 

overnight. Experimental conditions for motility assays were used to minimize the contribution of cell 

proliferation on wound healing, as described previously (147). After plating, cells were incubated in 

serum-free media for 24 hours. Confluent monolayer of cells was then wounded with a pipette tip, 

washed three times, and cultured in low serum-RPMI media (1%). Images were captured at 0 and 

24 hours and analyzed using Image J software with MRI wound healing tool (148). The migrated 
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area was calculated by subtraction of wound area (arbitrary unit) at 24 hours from the initial wound 

area. 

Transwell migration assay  

A549 Control and shPSAT1 stable cell lines were plated at 70% confluency and cultured 

in complete media for 24 hours. Cells were then serum-starved for 24 hours and 105 cells were 

plated in serum-free media in the Boyden chamber. Serum-free media supplemented with 100 

ng/ml EGF or vehicle (10 mM acetic acid) was added to the bottom chamber. After 24-hours, cells 

were fixed with 100% ice-cold methanol and non-migrated cells were removed. Migratory cells were 

stained with 0.05% crystal violet and washed with ddH20. The area of stained cells was quantified 

using Image J threshold tool as described (149).  

Pyruvate kinase activity assay 

Both A549 and PC9 Control and shPSAT1 stable cells were cultured to 70% confluency in 

6 well-plate. Intracellular pyruvate kinase activity was assessed using the Pyruvate Kinase Activity 

assay kit (Sigma, MAK072) according to the manufacturer’s protocol. 

Computational homology modeling of PKM1 and PKM2  

The human PKM1 sequence was obtained from the PKM1 crystal structure (Protein Data 

Bank entry 3SRF) and was mapped to the human PKM2 structure (Protein Bank entry 4FXJ) using 

the Prime-based Homology Modeling Module of the Schrödinger Software Suite (150). The image 

was created within Schrödinger Maestro with the sequence differences between PKM1 and PKM2 

identified.   

Bioinformatic analysis of PSAT1 in EGFR mutant lung cancers: 

The GSE32863, GSE75037, GSE31548, GSE31210, and GSE11969 data sets 

encompassing gene expression analysis from EGFR mutant lung cancer with clinical information 

were downloaded from the GEO database through using BRB-ArrayTool software (151). PSAT1 

expression (probe IDs: ILMN_1692938 for GSE32863 and GSE75037, 223062_s_at for GSE31210 

and GSE31548, and 5144 for GSE11969) was retrieved from EGFR mutant tumor and normal lung 

specimens with clinical information.  Differential expression analyses were carried out for tumor vs. 
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normal and stage II-III vs. stage I, while Kaplan-Meier analyses were performed for overall survival 

and relapse-free survival rates on the indicated data sets.  

Statistical analysis 

All data were statistically analyzed using Prism 8 software (GraphPad Software). Statistical 

significances were assessed based on the number of groups with one or more independent 

variables.  Paired t-tests were used for the analysis of two groups, with the exception of an unpaired 

t-test for the pyruvate kinase assay. While one-way ANOVA with Tukey's multiple comparison test 

for three groups was performed for PC9 cell variants, two-way ANOVA with Tukey's multiple 

comparison test was used for A549 cell variants with or without EGF treatment. Experimental 

replicates for each analysis are stated within the respective figure legend. Values of p< 0.05 were 

considered statistically significant. 
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Results 

PKM2 is a novel binding partner of PSAT1 

Non-canonical functions of metabolic enzymes that directly involve protein-protein 

interactions have previously been reported in promoting tumorigenesis (109, 152). To determine 

PSAT1-associating proteins, we used a GST-PSAT1 pull-down assay coupled to LC-MS/MS 

analysis (Fig. 6A). Among the resolved proteins, we identified pyruvate kinase M (PKM) with 

approximately 22% sequence coverage (Fig. 6B). PKM1 and PKM2 are two alternatively spliced 

isoforms of the PKM gene and exhibit differential enzymatic properties (153). Utilizing co-

immunoprecipitation (co-IP) analysis encompassing only recombinant PKM1, PKM2, and PSAT1, 

we found that PSAT1 directly binds to the PKM2 isoform (Fig. 6C). Thus, these results identify 

PKM2 as a novel direct binding partner of PSAT1.  

Based on this interaction, we hypothesized that a PKM2-specific region may contribute to 

PSAT1 association. Three-dimensional modeling of human PKM1 and PKM2 demonstrate that 

they have 95.8 % sequence homology and have the same overall structure. As depicted in Figure 

7A, an isoform-specific region (cyan) is localized to a loop structure that lies towards the exterior of 

the monomer. We mutated amino acid residues in wild-type (WT) PKM2 to the corresponding 

PKM1 residues by site-directed mutagenesis (Fig. 7A, mutations highlighted in red). Co-IP analysis 

involving FLAG-tagged PKM2 WT and mutant (MT[1-4]) proteins revealed that mutations in MT 1, 

2, & 4 did not substantially affect the interaction with PSAT1 (Fig. 7B). However, the amino acid 

changes within MT3-PKM2 that are inclusive of mutations in both MT 2 and 4 strongly reduced 

binding to endogenous PSAT1. Together, the recombinant co-IP and mutational analysis 

demonstrate a specific PSAT1:PKM2 interaction. 
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Figure 6. PKM2 is a novel binding partner of PSAT1. A) Silver stain of GST-PSAT1 

purified proteins from A549 whole cell lysates. * denotes residual GST-PSAT1 from 

column purification; Denotes gel slice encompassing PKM. B) Primary amino acid 

sequence of human PKM. MS identified peptides of PKM are highlighted in red. Black 

labeled sequences belong to common regions of both PKM1 and PKM2 isoforms and 

green labeled sequences identify isoform-specificity. C) Co-IP of recombinant (rec-) 

PSAT1 and PKM1 or PKM2. Immunocomplexes were precipitated using anti-PSAT1 

antibody and analyzed by immunoblot using anti-PKM1 and anti-PKM2 antibody. 

RecPKM1 and recPKM2 were used as controls showing antibody specificity and PSAT1 

alone was used as IP control. Shown are representative images from two separate 

experiments. 
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Figure 7. Mutations within an isoform-specific region of PKM2 weakens the PSAT1 

interaction. A) Schematic representation of PKM2 specific mutations generated for analysis 

of PSAT1:PKM2 association.  Ribbon representation of the structure of PKM2 colored by 

PKM1 sequence homology (right panel). Identical regions are shown in purple and 

divergent regions in cyan. Left panel depicts site directed mutagenesis of amino acids (MT1-

4, highlighted in red) in the PKM2 specific region (denoted in white box). B) FLAG-PKM2 

wild-type (WT), mutants (MT1-4) and FLAG-EV (-) were expressed in HEK293T cells. 

Endogenous PSAT1 protein complexes were immunoprecipitated and association of PKM2 

was assessed by immunoblot. Similar expression of FLAG-PKM2 variants is shown by 

immunoblot of FLAG fusion proteins from protein lysate input with β-actin used a protein 

loading control. Shown are representative images from three separate experiments. (-) 

denotes empty vector. 

A 

B 
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Suppression of PSAT1 in NSCLC cancer cells does not alter PKM2 expression or pyruvate 

kinase activity 

Previously, the pyruvate kinase activity of PKM2 has been metabolically linked to the serine 

biosynthetic pathway in human cancers (52, 57, 61, 62). Our pull-down and recombinant protein 

association studies now suggest that these pathways might also be connected via protein:protein 

interactions in tumor cells. Co-IP analysis demonstrated an endogenous interaction between 

PSAT1 and PKM2 in two separate NSCLC cell models (Fig. 8).  

To investigate the functional significance of this PSAT1 and PKM2 interaction, PSAT1 

expression was stably silenced in PC9 and A549 cells (Fig. 9A). Given the metabolic cross-talk 

between the glycolytic and serine synthetic pathways (52, 57, 61) and this new PSAT1:PKM2 

association, we questioned whether loss of PSAT1 may modulate the metabolic activity of PKM2. 

As shown in Figure 9B, PSAT1 depletion did not affect pyruvate kinase activity in either cell line. 

This was not due to altered PKM2 or PKM1 as analysis of PKM isoform expression found no change 

between control and shPSAT1 cells in both A549 and PC9 cells (Fig. 9C). Taken together, we 

conclude that while a physiological interaction between PSAT1 and PKM2 exists, suppression of 

PSAT1 expression fails to alter pyruvate kinase activity and expression of PKM2 in these NSCLC 

cell lines, indicating that this interaction may be dispensable for cellular pyruvate kinase activity.  
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Figure 8. PSAT1 associates with endogenous PKM2 in NSCLC cells. Co-IP of PSAT1 

and PKM2 in A549 and PC9 NSCLC cells. PSAT1- specific immunocomplexes were 

precipitated using anti-PSAT1 from whole cell lysate and analyzed for PKM2 by immunoblot 

with anti-PKM2 antibody. Shown are representative images from three separate 

experiments. 



45 
 

 

  

Figure 9. Loss of PSAT1 does not alter pyruvate kinase activity and expression. A) 

Loss of PSAT1 expression in A549 and PC9 cells stably expressing PSAT1-specific 

shRNA.  PSAT1 expression was determined from whole cell lysates from control or 

shPSAT1 expressing cells by immunoblot using anti-PSAT1 and anti-α-Tubulin (loading 

control). B) Intracellular pyruvate kinase activity was determined in cell lysates from A549 

or PC9 cells with or without PSAT1 expression. Data is represented as relative pyruvate 

kinase activity (control cells set to 1) and shown are the mean  S.D from four independent 

experiments. C) Immunoblot analysis of PKM1 or PKM2 expression in whole cell lysates 

from control or PSAT1 silenced A549 and PC9 cells. Recombinant human PKM1 and 

PKM2 proteins were used as positive control for the specificity of antibodies and β-Actin 

for loading control. Shown are representative images from two separate experiments 

A 

B 

C 
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Silencing of PSAT1 suppresses the nuclear localization of PKM2 in EGFR activated NSCLC 

cells 

 As recent studies have demonstrated EGFR-mediated nuclear localization of PKM2  (113, 

114, 154), we examined whether PSAT1 may alter PKM2 nuclear localization under EGFR 

activation in NSCLC cells. Subcellular fractionation confirmed that the nuclear localization of PKM2 

in EGFR-mutant PC9 cells was blocked with the EGFR-TKI, erlotinib (Fig. 10A). Importantly, 

cellular fractionation and immunofluorescence analysis found that loss of PSAT1 expression by 

either stable shRNA or CRISPR-mediated knock-out diminished PKM2 translocation under EGFR-

activation (Figs. 10A and B and 11). To complement these losses of function studies, conversely, 

overexpression of FLAG-tagged PSAT1 (Fig. 12A) in parental PC9 cells resulted in higher levels 

of nuclear PKM2 (Fig. 12B). Unexpectedly, PSAT1 was also found within the nuclear compartment 

within PC9 cells, which was abrogated with erlotinib treatment and enhanced with FLAG-tagged 

PSAT1 overexpression (Fig. 10A, 11 and 12B). 
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A 

Figure 10. Silencing of PSAT1 suppresses the nuclear localization of PKM2 in EGFR 

mutant PC9 cells. A) EGFR-mutant PC9 cells stably expressing control or PSAT1 shRNA 

were treated with 1 µM of erlotinib for 48 hrs. Cytoplasmic and nuclear fractions were 

examined by immunoblot analysis using anti-PKM2 and anti-PSAT1 antibodies. OCT1 and 

α-tubulin served as loading controls for nuclear and cytoplasmic compartments, 

respectively. Shown are representative images from three separate experiments. B) 

Nuclear localization of PKM2 was examined in serum-starved PC9 cells expressing control 

or PSAT1 shRNA by confocal microscopy. Representative Immunofluorescence image 

with anti-PKM2 antibody (green) and DAPI nuclei staining (blue). Arrowheads indicate 

nuclear PKM2 staining. 

B 
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Figure 11. CRISPR-mediated PSAT1 knockout reduces PKM2 nuclear localization in 

EGFR mutant PC9 cells. Immunoblot analysis of PKM2 and PSAT1 localization after PSAT1 

deletion. Cytoplasmic and nuclear fractions from Control and PSAT1 KO PC9 cells were 

analyzed using anti-PKM2 antibody or anti-PSAT1 antibody. OCT1 and α-tubulin served as 

loading controls for nuclear and cytoplasmic compartments, respectively. Shown are 

representative images from three independent experiments. 
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Figure 12. Ectopic expression of PSAT1 induces PKM2 nuclear localization in EGFR 

mutant PC9 cells. A) Immunoblot analysis of FLAG-PSAT1 expression in PC9 cells. 

Endogenous and tagged PSAT1 was analyzed using anti-PSAT1 antibody in lysates from 

PC9 cells expressing empty vector (FLAG-EV) or vector encoding FLAG-PSAT1. α-Tubulin 

expression was used for loading control. Shown are representative images from three 

independent experiments. B) PKM2 localization in PC9 cells ectopically FLAG-EV or 

FLAG-PSAT1. Cytoplasmic and nuclear fractions from FLAG-EV and FLAG-PSAT1 

expressing cells were analyzed using anti-PKM2 antibody. OCT1 and α-tubulin served as 

loading controls for nuclear and cytoplasmic compartments, respectively. Shown are 

representative images from three independent experiments. 

A B 
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We further substantiated these findings in A549 cells harboring wild-type EGFR through 

EGF stimulation (155, 156). Fractionation analysis revealed enhanced nuclear translocation of 

PKM2 in EGF-stimulated A549 cells compared to untreated control cells, while the loss of PSAT1 

significantly inhibited induced PKM2 nuclear translocation (Fig. 13). Consistent with the findings in 

PC9 cells, PSAT1 nuclear localization was also observed in EGF-stimulated A549 cells. We then 

determined whether EGF stimulation alters the PSAT1:PKM2 interaction in    A549 cells as a means 

of promoting enhanced nuclear localization. Co-IP analysis from A549 stimulated with or without 

EGF found similar PSAT1:PKM2 interactions and the level of PKM2 did not significantly change in 

response to EGF stimulation (Fig. 14).  
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Figure 13. Loss of PSAT1 abrogates EGF-induced nuclear localization of PKM2 in 

EGFR-WT A549 cells. Serum-starved A549 cells (EGFR-wild-type) stably expressing 

control or PSAT1 shRNA were treated with or without EGF (100 ng/ml). Cytoplasmic and 

nuclear fractions were prepared and PKM2 and PSAT1 localization was analyzed by 

immunoblot. OCT1 and α-tubulin served as loading controls for nuclear and cytoplasmic 

compartments, respectively. Shown are representative images from three separate 

experiments.  



52 
 

  

Figure 14. EGF-stimulation does not alter the PSAT1:PKM2 association. Serum-

starved A549 cells were treated without or with EGF (100 ng/ml). Shown is a 

representative co-IP (n = 2) performed using anti-PSAT1 or IgG antibody. PKM2 and 

PSAT1 were analyzed by immunoblot using anti-PKM2 or PSAT1 antibodies. 
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The observation that both PSAT1 and PKM2 translocate to the nucleus upon EGFR-

activation prompted us to investigate the putative involvement of direct protein-protein interaction 

in their nuclear localization. FLAG-tagged PKM2 WT or MT3, which has diminished PSAT1 

association (Fig. 7B), were stably expressed in endogenous PKM2 depleted PC9 cells. We found 

that both PKM2 forms were able to localize in the nucleus (Fig. 15).  While this may suggest that a 

direct interaction may not be essential for PSAT1’s function in promoting nuclear PKM2, the direct 

association of PKM2 with these fusion proteins has not yet been defined in the PC9 cells. Further, 

the co-IP studies in the HEK293T cells showed residual binding of PKM2 MT3 to PSAT1, which 

may in itself be sufficient in promoting nuclear localization. 
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Figure 15. A PSAT1-interaction deficient PKM2 mutant is still able to localize to the 

nucleus in PC9 cells. Immunoblot analysis of FLAG-PKM2 WT or MT3 localization in 

PC9 cells stably expressing empty vector (-), FLAG-PKM2 WT, or FLAG-PKM2 MT3. 

Endogenous PKM2 was silenced via siRNA prior to cytoplasmic and nuclear fractionation 

of the indicated cell lines.  OCT1 and α-tubulin served as loading controls for nuclear and 

cytoplasmic compartments, respectively. Shown are representative images from three 

independent experiments. indicates FLAG-tagged PKM2, * indicates non-specific 

band. 
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Loss of PSAT1 suppresses migration of EGFR-mutant and EGF-induced EGFR-WT lung 

cancer cells  

The oncogenic function of PSAT1 has been investigated in many tumor types and found 

to play a role in proliferation, migration, and chemo-resistance (1, 43, 71, 74, 77, 79, 81), yet it 

remains elusive whether PSAT1 may contribute to the cellular response to specific oncogenic 

signaling, particularly EGFR. Since previous studies have shown that EGF exposure selectively 

induces cell migration in A549 cells without affecting proliferation (155, 156), we investigated the 

role of PSAT1 in cell motility in EGFR-activated NSCLC cells. We found that loss of PSAT1 

significantly decreased EGFR-mutant PC9 cell motility (Fig. 16 and 17) and observed no impact on 

cell proliferation with stable shRNA-mediated silencing under these experimental conditions (Fig. 

18). In addition, PSAT1 suppression completely inhibited EGF-induced cell migration in A549 cells 

(Fig. 19).   
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Figure 16.  Loss of PSAT1 decreases cell motility in EGFR mutant PC9 cells. Wound 

healing assay of serum-starved PC9 cells expressing control or PSAT1-specific shRNA. 

Representative images at 0 hr and 24 hr with migrating cells demarcated by white 

continuous lines. Data is presented as migrated area after 24 hours and shown is mean 

 SE from three independent experiments. * p < 0.005. A.U.: arbitrary unit. 
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Figure 17. CRISPR-mediated PSAT1 knockout decreases PC9 cell motility. Wound 

healing assay of serum-starved Control and PSAT1 KO PC9 cells. Shown are 

representative images at 0 hr and 24 hr with migrating cells demarcated by white 

continuous lines. Data is presented as mean ± SE migrated area after 24 hours from 

three independent experiments. *, p<0.05.  A.U.: arbitrary unit. 
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Figure 18. Stable PSAT1 suppression does not impact PC9 cell proliferation under 

medium conditions and timing used within cell migration assays. PC9 cells (plated at 

low density -10,000 cells) were serum starved for 24-hours prior to addition of 1% serum. 

Proliferation was monitored by cell enumeration at the indicated time points. Shown are 

mean  SE from two independent experiments. No effect on cell proliferation was observed 

at 24 hours and PSAT1 loss had moderate impact at three and four days.   
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Figure 19.  Loss of PSAT1 decreases cell migration in EGF-stimulated A549 cells. 

Boyden chamber migration assay on serum-starved A549 cells expressing control or 

PSAT1 shRNA. 100 ng/ml EGF serum-free media was used as chemoattractant and 

migrated cells were fixed and stained with crystal violet after 24hr. Shown are 

representative images of migrated cells and quantification is demonstrated as mean  

SE of % migration area from three independent experiments. *, p=0.0001. N.S: not 

significant. 
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To demonstrate PSAT1 specificity, we restored expression in silenced PC9 cells (Fig. 20). 

Re-expression of PSAT1 rescued not only nuclear localization of PKM2 (Fig. 20A and B) but also 

cell migration (Fig. 21). Increased cell migration upon ectopic PSAT1 overexpression further 

corroborates these findings (Fig. 22). These results demonstrate a role for PSAT1 in PKM2 nuclear 

localization and cell migration in these NSCLC models. 



61 
 

  

Figure 20. Re-expression of PSAT1 restores the nuclear localization of PKM2 in 

silenced PC9 cells. A) Immunoblot analysis of cytoplasmic and nuclear fractions from 

Control-EV, shPSAT1-EV and shPSAT1-FLAG-PSAT1 PC9 cells using anti-PKM2 and 

anti-PSAT1 antibodies. OCT1 and α-tubulin served as loading controls for nuclear and 

cytoplasmic compartments, respectively. Shown are representative images from three 

independent experiments. B) Immunofluorescence analysis of PKM2 localization in 

Control-EV, shPSAT1-EV and shPSAT1-FLAG-PSAT1 PC9 cells by confocal microscopy. 

Immunofluorescence image with anti-PKM2 antibody (green) and DAPI nuclei staining 

(blue). Arrowheads indicate nuclear PKM2 staining. EV: Empty Vector. 

A 

B 
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Figure 21. Re-expression of PSAT1 restores cell migration in silenced PC9 cells. 

Wound healing assay of Control-EV, shPSAT1-EV, and shPSAT1-FLAG-PSAT1 PC9 cells. 

Shown are representative images at 0 hr and 24 hr with migrating cells demarcated by 

white continuous lines. Data is presented as mean  SE migrated area after 24 hours from 

three independent experiments. **, p<0.005 and *, p<0.05. EV: Empty Vector, A.U.: 

arbitrary unit. 
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Figure 22. Ectopic expression of PSAT1 induces cell migration in EGFR mutant PC9 

cells. Wound healing assay of serum-starved PC9 cells expressing FLAG-EV or FLAG-

PSAT1. Shown are representative images at 0 hr and 24 hr with migrating cells demarcated 

by white continuous lines. Data is presented as mean  SE migrated area after 24 hours 

from three independent experiments. *, p<0.05. EV: Empty Vector, A.U.: arbitrary unit. 
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Re-expression of nuclear-localized acetyl-mimetic (K433Q) PKM2 partially restores the 

migration defect due to the loss of PSAT1 in EGFR mutant cells 

We then assessed whether nuclear PKM2 may be required for the PSAT1-mediated cell 

migration in EGFR-mutant cells. Nuclear PKM2 was reconstituted via stable expression of FLAG-

tagged PKM2 harboring a nuclear localization signal (FLAG-PKM2NLS-WT) in PC9 cells (Fig. 23A). 

However, the re-expression of nuclear PKM2 did not restore wound healing in PSAT1 depleted 

cells (Fig. 23B).  
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Figure 23. Re-expression of nuclear-localized wild-type PKM2 does not rescue the 

migration defect due to the loss of PSAT1 in EGFR mutant PC9 cells. A) Immunoblot 

analysis of cytoplasmic and nuclear fractions from Control-EV, shPSAT1-EV, and 

shPSAT1-PKM2NLS-WT expressing cells using anti-PKM2 and anti-PSAT1 antibodies. OCT1 

and α-tubulin served as loading controls for nuclear and cytoplasmic compartments, 

respectively. Shown are representative images from three independent experiments. B) 

Wound healing assay of serum-starved PC9 cells expressing Control-EV, shPSAT1-EV, 

and shPSAT1-PKM2NLS-WT. Shown are representative images at 0 hr and 24 hr with 

migrating cells demarcated by white continuous lines. Data is presented as mean ± SE 

migrated area after 24 hours from three independent experiments. *, p<0.0001. NS: not 

significant,  A.U.: arbitrary unit, and NLS: nuclear localization signal. 

A 

B 
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 PKM2 can be acetylated at K433 upon EGF stimulation, which localizes in the nucleus 

and exhibits higher protein kinase activity compared to wild-type PKM2 (110). Consistent with this 

result, SIRT6-mediated deacetylation of K433 results in the export of PKM2 from the nucleus, 

suggesting that acetylation of PKM2 at K433 is critical for nuclear localization and function (157). 

For this, we stably expressed acetyl-mimetic nuclear PKM2 (FLAG-PKM2NLS-K433Q) in cells lacking 

PSAT1. Fractionation analysis confirmed reconstitution of acetyl-mimetic nuclear PKM2 (Fig. 24A). 

Unlike wild-type PKM2, nuclear acetyl-mimetic PKM2 significantly rescued (41%) PC9 cell motility 

in the absence of PSAT1 (Fig. 24B). Together, these results suggest that PSAT1 promotes EGFR-

stimulated PKM2 translocation, potentially through regulating PKM2 post-translation modifications. 

This contributes, in part, to PSAT1 mediated cell motility within these EGFR-activated NSCLC cells. 
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Figure 24. Re-expression of nuclear-localized acetyl-mimetic (K433Q) PKM2 partially 

rescues the migration defect due to the loss of PSAT1 in EGFR mutant PC9 cells. A) 

Immunoblot analysis of cytoplasmic and nuclear fractions from Control-EV, shPSAT1-EV, 

and shPSAT1-PKM2NLS-K433Q expressing cells using anti-PKM2 and anti-PSAT1 

antibodies. OCT1 and α-tubulin served as loading controls for nuclear and cytoplasmic 

compartments, respectively. Shown are representative images from three independent 

experiments. B) Wound healing assay of serum-starved PC9 cells expressing Control-EV, 

shPSAT1-EV, and shPSAT1-PKM2NLS-K433Q. Shown are representative images at 0 hr and 

24 hr with migrating cells demarcated by white continuous lines. Data is presented as mean 

± SE migrated area after 24 hours from three independent experiments. **, p<0.0001 and 

*, p<0.05. A.U.: arbitrary unit, and NLS: nuclear localization signal. 

A 
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PSAT1 expression negatively correlates with survival outcomes in EGFR-mutant NSCLC  

We next sought to investigate the clinical relevance of PSAT1 in EGFR mutant lung cancer 

using microarray datasets and corresponding clinical outcomes from EGFR mutant lung tumors.  

Expression analysis found elevated PSAT1 expression in both paired and unpaired EGFR mutant 

lung tumors compared with normal lung (Fig. 25). Furthermore, late-stage EGFR mutant lung 

tumors tended to exhibit increased PSAT1 expression than early-stage tumors (Fig. 26). Finally, 

Kaplan-Meier analysis correlated high PSAT1 expression to poorer relapse-free and overall 

survival rates in this patient population (Fig. 27). These findings suggest that high PSAT1 

expression negatively impacts clinical outcomes in EGFR mutant lung cancer. 
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Figure 25. PSAT1 is elevated EGFR-mutant lung cancer compared to normal lung. 

Expression analysis of PSAT1 in EGFR mutant lung tumors compared to normal lung in 

paired (GSE32863 and GSE75037) and unpaired (GSE31548 and GSE31210) datasets. 

Paired (GSE32863 and GSE75037) and unpaired (GSE31548 and GSE31210) t-tests 

were performed to determine statistical significance.  
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Figure 26. PSAT1 is increased in later stages of EGFR-mutant lung cancer.  Expression 

analysis of PSAT1 in late stage (Stage II and/ or stage III) compared with early stage (Stage 

I) EGFR mutant lung tumors. Data was statistically evaluated using unpaired t-test. 
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Figure 27. Elevated PSAT1 is associated with poor outcomes in EGFR-mutant 

NSCLC. Kaplan-Meier analysis was performed to assess the correlation of PSAT1 

expression with A) overall survival and B) relapse-free survival rates in EGFR mutant lung 

cancer patients. 

B 

A 
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Discussion 

Elevated PSAT1, along with other enzymes within the SSP, has previously been reported 

in lung cancer (1, 42, 45). Notably, tumor-initiating cells display increased expression of PSAT1, 

further emphasizing the functional significance of PSAT1 in lung cancer progression (86). While 

the role of PSAT1 has been investigated in the context of metabolic function, the potential for an 

alternative role in tumorigenesis remains unclear. Recent discoveries of multifunctionality of 

metabolic enzymes in tumorigenic processes led us to explore a putative non-canonical function of 

PSAT1 involved in lung cancer progression (104, 152). In the present study, we identified an 

interaction between PSAT1 and PKM2 and a need for nuclear PKM2 in PSAT1-driven motility of 

EGFR-activated NSCLC cells.  

PKM2 functions as the predominant pyruvate kinase in many tumor types and promotes 

growth by various different mechanisms, including regulating anabolic reactions (153). For 

example, flux through serine biosynthesis is partially controlled through a feedback loop involving 

PKM2 activity (52, 57). In line with this, small-molecule activators of PKM2 predominantly exert 

their anti-tumorigenic effect under serine deprivation conditions in vitro (60, 61).  As these findings 

indicate a metabolic cross-talk between PKM2 activity and serine, we speculated that depletion of 

PSAT1 in the cells may alter intracellular pyruvate kinase activity of PKM2 either through reduced 

serine levels or potentially through disruption of the protein:protein interaction. However, both A549 

and PC9 cells did not display a significant change in PKM2 expression or activity in response to 

PSAT1 silencing, suggesting that PSAT1 association does not influence intracellular PKM2 activity. 

As our studies were performed in a serine-proficient medium, we postulate that serine import may 

have sustained intracellular serine levels, which may have contributed to the lack of effect on 

pyruvate kinase activity in the absence of PSAT1.  

Among the oncogenic-drivers of lung adenocarcinoma, activating mutations within the 

EGFR tyrosine kinase domains account for approximately 17% of these diagnoses (90).  Like GBM, 

nuclear PKM2 has been detected in EGFR mutant NSCLC cancer cells but not in EGFR wild-type 

NSCLC cells (113, 130, 154). While nuclear PKM2 mediates EGFR-induced proliferation, epithelial-

mesenchymal transition (EMT), migration, and invasion in GBM, HCC, and nasopharyngeal 
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carcinoma cells, EGFR-mediated nuclear function of PKM2 in lung cancer remains elusive, despite 

a finding as a predictor for response to PARP inhibitor treatment in EGFR-mutant NSCLC cells 

(113, 154, 158-160).  In addition, prior work has also demonstrated that EGF-stimulation promotes 

cell migration in A549 NSCLC cells that express wild-type EGFR (155, 156). Based on these 

studies, we speculate that PSAT1 might participate in cell migration under EGFR-activation through 

facilitating nuclear localization of PKM2. While suppression of PSAT1 decreased EGFR-induced 

nuclear localization of PKM2, nuclear PKM2 was rescued upon PSAT1 restoration or elevated in 

ectopic FLAG-PSAT1 overexpressing PC9 cells, implicating a requirement for PSAT1 for PKM2’s 

translocation. Accordingly, cell migration decreased upon PSAT1 suppression and increased when 

PSAT1 was expressed.  Various signals, including EGF, can stimulate PKM2 acetylation at K433, 

which is required for nuclear function and contributes to tumor progression (110, 157). Consistent 

with these previous studies, we found that restoration of acetyl-mimetic nuclear PKM2, but not wild-

type PKM2, partially reverts the migratory defect due to the suppression of PSAT1. Therefore, our 

results indicate a correlation between PSAT1-mediated cell migration and nuclear localization of 

PKM2 upon EGFR-activation. 

Although we are able to demonstrate an interaction between PSAT1 and PKM2, our 

findings yield new unanswered questions. For instance, it is still unclear how PSAT1 may regulate 

the nuclear localization of PKM2. Similar to PKM2, we also observed EGFR-activation dependent 

nuclear translocation of PSAT1. However, the requirement of this interaction for nuclear localization 

is still unclear as a PKM2 mutant that exhibits reduced binding with PSAT1 was still able to localize 

to the nuclear compartment. Alternatively, PSAT1 may be an essential mediator of EGFR-signaling 

to PKM2. Upon EGFR activation, cytosolic to nuclear translocation of PKM2 requires multiple steps, 

including phosphorylation by ERK2, isomerization by PIN1, and then importin α5 mediated nuclear 

import (114). Subsequently, nuclear retention of PKM2 is aided through binding to poly ADP-ribose 

(PAR) (154). Given the complexity of nuclear localization of PKM2 mentioned above, it is worth 

identifying which step or steps are influenced by PSAT1, which is the focus of on-going studies.  

The subcellular location in which PKM2 is acetylated by p300 at K433 remains obscure 

despite the acetylated form being localized in the nucleus and deacetylation resulting in nuclear 
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export (110, 157). Therefore, it is intriguing whether PSAT1 loss inhibits the nuclear localization of 

PKM2 by disrupting its acetylation. As p300 acetylates PKM2 in response to oncogenic stimuli, 

including EGF (110), we postulate that PSAT1 depletion may disrupt the p300:PKM2 interaction or 

alter EGFR-downstream signaling pathways that regulate p300 activity (161). While nuclear PKM2 

is required for EGF-involved EMT-mediated cell migration in HCC, oral squamous carcinoma, and 

colon cancer, further work is also needed to fully define the mechanisms by which nuclear PKM2 

promotes cell motility under EGFR-activation in NSCLC (158, 162, 163).  

The partial rescue observed within the PKM2 expression studies indicates that other 

PSAT1 activities contribute to EGFR-activated NSCLC motility independent of nuclear PKM2, 

which may include putative nuclear-specific PSAT1 function(s). As the metabolic function of PSAT1 

has not yet been thoroughly examined in this context, its enzymatic activity on cell migration and 

nuclear localization of itself and PKM2 needs further investigation, potentially through the use of 

metabolic deficient PSAT1 mutants. In summary, we have identified PKM2 as a new PSAT1 

associating protein in NSCLC cells. Whereas PSAT1 appears to be dispensable for PKM2’s 

pyruvate kinase activity, it is essential for PKM2 nuclear localization in EGFR-activated NSCLC 

cells. This supports, in part, PSAT1’s ability to promote cell migration under EGFR signaling, which 

may be a contributing determinant for its negative correlation with patient outcomes in EGFR-

mutant NSCLC.  
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CHAPTER 3 

DELINEATING THE FUNCTIONAL LINK BETWEEN A PSAT1-ASSOCIATED GENE 

EXPRESSION SIGNATURE AND EGFR-MUTANT LUNG CANCER 

Introduction 

Genome-wide gene expression profiling has become routine since the discovery of 

microarray technologies and the completion of the human genome project. Gene expression 

patterns have allowed for determining the mechanisms that drive diseases, identifying disease sub-

types, predicting disease progression, and providing functional information about the differentially 

expressed genes that can be grouped into functional pathways (164, 165). More recently, RNA 

sequencing (RNA-seq) has taken the place of microarrays as the cost of sequencing has fallen. 

This change has also facilitated the discovery of new fusion transcripts involved in tumorigenesis 

(166). 

Analysis of these technologies has also required the development of bioinformatics tools 

to help researchers handle these large datasets and extract any biological information. MSigDB 

and WebGestalt are both well-known web-based integrated data-mining systems that can explore 

large gene sets (167, 168). They are user-friendly bioinformatics tools that help users in the 

management, information retrieval, organization, visualization, and statistical analysis of gene sets.  

The  Gene Expression Omnibus (GEO) database was founded to serve as a public 

repository for high-throughput gene expression and other functional genomics datasets (169). 

Researchers can easily access either the raw or processed data that may benefit their own studies. 

Furthermore, biostatisticians of the Biometric Research Branch of the National Cancer Institute 

have developed the BRB-ArrayTools software package, which is non-commercial and user-friendly 
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sequence profiling analysis tool (151). In addition to the normalization of the genomics data, it has 

many plugins to help in performing further analysis. For example, these include class comparison 

analysis for determining differentially expressed genes between groups as well as survival risk 

prediction tools for identifying gene signatures that may predict patients outcomes (170). In 

addition, it has many statistical tools such as cluster, ANOVA, and time-series analysis.  

In the previous chapter, we demonstrated a requirement for PSAT1 in EGFR-mediated cell 

migration. The partial rescue in cell migration with the restoration of nuclear PKM2 implies the 

potential presence of other PSAT1-dependent mechanisms. As we also found nuclear localization 

of PSAT1 upon EGFR activation, this prompted us to carry out genome-wide RNA-seq expression 

profiling under PSAT1 loss. Through analysis of differentially expressed genes, our intent was to 

identify other unknown mechanisms for PSAT1 in contributing to tumorigenesis. Further, to take 

advantage of the many genome-wide datasets focused on EGFR mutant lung cancer, we also 

compared our PSAT1-associated genes with differentially expressed genes in EGFR mutant lung 

tumors using the BRB-Array tools. This was done with the intent of identifying an EGFR related 

PSAT1 gene signature, which may have potential clinical application. 
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Methods and Materials 

Reagents and antibodies 

Antibodies against PKM2 (4053), β-catenin (8480), OCT1(8157), and 𝑎-Tubulin (3873) 

were obtained from Cell Signaling Technology.  Anti-PSAT1 (10501-1-AP) antibody was purchased 

from Proteintech Group Inc. β-actin (A2228), 100x EmbryoMax Nucleosides (ES-008-D), and 

Dimethyl 2-oxoglutarate(349631) were obtained from Sigma.  pGL4.49[luc2P/TCF-LEF/Hygro] 

Vector (E4611) and Dual-Luciferase Reporter Assay System (E1960) were purchased from 

Promega. Difco Noble Agar (214220) from BD Bioscience and 100X NEAA (non-essential amino 

acid) (25-025) were purchased from Corning. 

Cell culture 

Generation of stable PC9 cells (Control and shPSAT1 PC9, Control-EV, shPSAT1-EV,  

shPSAT1-FLAG-PSAT1, and shPSAT1-PKM2NLS-K433Q) were previously discussed in chapter 2. 

Control and shPSAT1 PC9 cells were maintained in RPMI media (Gibco) supplemented with 10% 

FBS, 50 µg/ml gentamicin (Gibco), and 1 µg/ml puromycin. Control-EV, shPSAT1-EV,  shPSAT1-

FLAG-PSAT1, and shPSAT1-PKM2NLS-K433Q PC9 cells were maintained in RPMI media (Gibco) 

supplemented with 10% FBS, 50 µg/ml gentamicin (Gibco), 1µg/ml puromycin, and 200ug/ml 

geneticin.  All cells were cultured in humidified incubators at 37C and 5% CO2. 

RNA isolation and reverse transcription 

RNA was harvested with RNeasy Mini Kit according to the manufacturer’s instructions 

(Qiagen, 74106). RNA quality and concentration were measured with Nanodrop RNA 6000 nano-

assays (for reverse transcription PCR (RT- PCR)). 2 µg of isolated total RNA was reverse 

transcribed by High-Capacity RNA-to-cDNA according to manufacturer’s instructions 

(ThermoFisher Sci., 4387406). The cDNA sample was diluted by adding 60 μl Nuclease-free water 

to make an estimated final concentration of 25 ng/μl. 

Real-time PCR for mRNA 
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10 µl of reaction mix was prepared by adding 1 µl of cDNA. 0.5 µl target probe (FAM 

conjugated), 0.5 µl of ACTB( VIC), and 5 ul of TaqMan Fast Advanced Master Mix (Thermo Fischer 

Sci, 4444557) and reactions were carried out according to Taqman Fast Reaction Protocol using 

AB StepOnePlus Real-Time PCR System (Applied Biosystems). Data were analyzed using Ct 

method and β-actin (ACTB) was used as a reference gene. The list of Real-time PCR Taqman 

probes is presented in Table 2. 

 

Soft agar assay and metabolite supplementation  

For both Control and shPSAT1 PC9 cells, 2 assays for each of the 8 conditions were 

prepared: No supplement (-); NEAA; Nucleoside; 500 µM α-ketoglutarate (α-KG); NEAA + 500 µM 

α-KG; NEAA + Nucleoside; Nucleoside + 500 µM α-KG; ALL (NEAA+ Nucleoside+ 500 µM α-KG). 

Dimethyl 2-oxoglutarate served as α-KG supplement. 

i. Base agar:  18 ml of warmed 2% noble agar were mixed with 42 ml of warmed 10% FBS 

media. 3ml of the mixture was then added to individual 6-cm cell culture plates and 

incubated at room temperature until solidified.  

ii. Top agar: (Each condition, 2 plates) 1.3 ml of warmed 2% noble agar were mixed with 8 ml 

of warmed 10% FBS media containing 3000 cells and supplemented with the indicated 

metabolite(s). 3 ml were then added to the top of the base agar and incubated at room 

Table 2. Taqman probe list 

Gene Name # PROBE 

USP14 Hs00193036_m1 

VAPA Hs00427749_m1 

NDUFV2 Hs00221478_m1 

TYMS Hs00426586_m1 

METTL4 Hs01559838_m1 

SEH1L Hs01031566_m1 

IMPA2 Hs00274110_m1 

MYL12B Hs01050560_m1 

S100A4 Hs00243202_m1 

TMSB4X Hs03407480_gH 

FHOD1 Hs01077922_m1 

ACTB Hs01060665_g1 
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temperature until solidified. Cells were cultured in humidified incubators at 370 C and 5% 

CO2 for 21 days and maintained with feeder layers every 3-4 days, as described below. 

iii. Maintenance of culture with feeding media (4 plates/metabolite addition): 1.25 ml of warmed 

2% noble agar were mixed with 8.75 ml of warmed 10% FBS media supplemented with the 

indicated metabolite(s).  Cells were then fed with 1.5 ml of feeding media every 3-4 days 

during 21-day incubation. At the end of the study, whole plate images were captured, and 

colonies were counted via Image J cell counting tool. 

Soft agar assay for rescue study  

In both PSAT1 and nuclear PKM2 rescue study, 4 plates were prepared for each condition 

(Control-EV, shPSAT1-EV, shPSAT1-FLAG-PSAT1, or shPSAT1-PKM2NLS-K433Q). 

i. Base agar:  Prepared as described above.  

ii. Top agar: (Each condition, 4 plates) 1.9 ml of warmed 2% noble agar were mixed with 12 

ml of warmed 10% FBS media containing 4500 cells. 3 ml of the mixture was then added 

to the top of the base agar and incubated at room temperature until solidified. Then, cells 

were cultured in humidified incubators at 37 0C and 5% CO2 for 21days. 

iii. Maintenance of culture with feeding media: 2.5 ml of warmed 2% noble agar were mixed 

with 27.5 ml of warmed 10% FBS media.  Cells were then fed with 1.5 ml of feeding media 

every 3-4 days during 21-day incubation. At the end of the study, whole plate images were 

captured, and colonies were counted via Image J cell counting tool. 

Wound-healing assay with metabolite supplementation  

Control and shPSAT1 PC9 cell lines were plated at 106 cells / well in 6 well-plate and grown 

in complete media overnight. Culture media was then changed to serum-free media for 24 hours. 

A confluent monolayer of cells was wounded with a 200 µl pipette tip in two different areas in each 

well. Cells were washed three times with PBS and cultured in 4 ml of low serum-RPMI media (1% 

FBS) with or without metabolites (1XNEAA + 1XNucleoside + 500 µM α-KG). Six different images 

(4x magnification) were captured from wounded areas at 0- and 24-hour time points and analyzed 
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using Image J software with MRI wound healing tool. The migrated area was calculated by 

subtraction of wound area (arbitrary unit) at 24 hours from the initial wound area. 

Whole-cell protein extracts and subcellular fractionation 

Whole-cell lysate protein extraction was performed via Pierce IP lysis buffer supplemented 

with PMSF, protease inhibitor, and phosphatase inhibitor according to manufacturer protocol 

(Thermo Fischer Sci, 87787).  

Cytosolic and nuclear proteins were isolated using the NE-PER kit (Thermo Fischer Sci., 

78835). 15 µg of cytoplasmic protein and 25 µg of nuclear protein were used for immunoblotting 

analyses. 

Immunoblotting 

Proteins within whole-cell lysates, cytosolic and nuclear fractions were separated by SDS-

PAGE and transferred to PVDF membrane. Blocked membranes were then incubated with the 

indicated primary antibodies. Protein detection was performed using the appropriate HRP-

conjugated secondary antibody and visualized by chemiluminescence (ECL Prime, GE 

Healthcare). 

Luciferase reporter assay 

Control-EV, shPSAT1-EV, and shPSAT1-FLAG-PSAT1 PC9 cells were plated into 6-well 

plates and transfected with 2 µg of pGL4.49[luc2P/TCF-LEF/Hygro] using jetPEI with overnight 

incubation (media changed after 24 hours). Forty-eight hours post-transfection, stably transfected 

cells were selected in 200 µg/ml hygromycin (TCF-LEF vector), 200 µg/ml geneticin (pcDNA3.1 

vector), and 1 µg/ml puromycin (shRNA vector). For each study, 4 x 105 stable cells were plated 

into each well of a 6-well plate (3 replicates for each condition). Next day, cells were switched to 

serum-free media and maintained for 24 hours. Cells were then harvested according to Dual-

Luciferase Reporter Assay protocol.  Firefly luciferase activity was determined using 96-well plate 

luminometer. Protein concentration of samples was measured by BCA Protein assay and used to 

normalize the luciferase activity. 
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Phalloidin staining 

Cells were plated into 4-well chamber slides and incubated in serum-free media for 24 

hours. They were then fixed with 3.7% paraformaldehyde in PBS solution for 10 minutes at room 

temperature and washed three times with PBS. Following washes, they were permeabilized with 

0.1% Triton X-100 in PBS for 3 minutes and washed again. For visualization, cells were incubated 

with a Rhodamine Phalloidin (Invitrogen, R415) working solution (5µl stock/200 µl PBS) for 20 

minutes in the dark at room temperature. After additional washing with PBS (3X), slides were 

covered with SlowFade Diamond Antifade Mountant with DAPI (S36964) reagent. Images were 

captured by Olympus FV-3000 confocal microscope equipped with Fluoview software (Olympus 

America Inc) under 40X magnifications. 

RNA-seq transcriptomic profiling 

Three sets of RNA for RNA-seq profiling were prepared from 24 hour- serum-starved 

Control and shPSAT1 PC9 cells. Samples were submitted to the UofL Genomics Facility, which 

performed the library preparation and sequencing reactions.  Sequencing was performed on the 

Illumina NextSeq 500 using the High Output Kit v2 with 75 cycles (cat# FC-40402005) within the 

CGeMM facility. Initial data analysis was performed by the KBRIN Bioinformatics core. Normalized 

FPKM (Fragments Per Kilobase of transcript per Million mapped reads) expression values and 

statistical analysis results, including p- and q-value with ENSEMBL gene ID, were downloaded for 

further investigation.  

The following parameters served as the selection criterion for differentially expressed 

genes, |log2[FC]| ≥0.48, FPKM value (Control or shPSAT1) ≥ 5, and q-value ≤0.05. Genes were 

divided into two groups: down-regulated genes (termed shPSAT1-down-regulated) and up-

regulated genes (termed shPSAT1-up-regulated) as identified in comparisons between shPSAT1 

PC9 cells and control cells. As MsigDB v7.2 (Molecular Signatures Database) (https://www.gsea-

msigdb.org/gsea/msigdb) provides several categories for gene set analysis, KEGG pathway 

analysis, CGP (chemically and genetically perturbed data sets), gene ontology (GO) analysis with 

GO_BP (biological process) and GO_CC (cellular component), and positional gene set analysis 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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tools were utilized in this project based on TOP 20 list for KEGG pathway analysis and TOP 50 for 

others with FDR ≤0.05 (167). Potential transcription factors involved in the alteration of gene 

expression were identified by the transcription factor analysis tool of WebGestalt 2013 (WEB-based 

GEne SeT AnaLysis Toolkit)  (http://www.webgestalt.org/2013/)  using the hypergeometric test with 

adj-p≤0.001 with at least 10 gene targets (168). 

 Public microarray datasets analysis  

i. Data search and import 

The EGFR mutant lung cancer datasets were chosen based on the number of EGFR 

mutant tumor samples (n>10) with paired or unpaired normal tissue samples and the availability of 

relevant clinical information. According to these selection criteria, GSE31210, GSE27262, 

GSE31547, GSE31548, GSE32863, and GSE75037 datasets were imported to BRB-ArrayTool 

using its NCBI GEO Series tool (151). 

ii. Identification of common gene sets and survival analysis 

shPSAT1-mediated down-regulated and up-regulated gene lists obtained from the RNA-

seq analysis were prepared separately as text files and saved under the user gene list folder under 

the program files of ArrayTool. Expression of these genes was filtered using the ArrayTool- re-filter 

option and normalized. Data was utilized with the exclusion of those genes whose expression was 

less than 20% of expression data and less than 1.5- fold change in either direction from the gene’s 

median value options. Differentially expressed genes from our RNA-seq profiling were directly 

compared to those gene changes between EGFR mutant tumor and normal lung samples using 

the ArrayTool-Class Comparison plugin and the significance threshold of univariate analysis with 

p≤0.05 served as statistical analysis criteria. This was done to identify PSAT1 regulated genes that 

are also differentially expressed in EGFR-mutant NSCLC. Importantly, up-regulated genes in 

EGFR tumors would be down-regulated by shPSAT1 and vice-versa. Genes with fold-changes 

(EGFR mutant tumor/ Normal lung) ≥ 1.4 found in our shPSAT1-down-regulated genes list and 

genes with fold-changes (EGFR mutant tumor/ Normal lung) ≤ 0.71 found in our shPSAT1-up-

http://www.webgestalt.org/2013/
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regulated genes list were assigned as PSAT1-associated genes linked with EGFR mutant lung 

cancer.  This procedure was repeated for each dataset: GSE31210, GSE27262, GSE31547, 

GSE31548, GSE32863, and GSE75037. 

The common gene sets were determined via Venn diagram comparisons using 

http://bioinformatics.psb.ugent.be/webtools/Venn/. The expression of common genes from each 

dataset was extracted using the ArrayTool-Class Comparison tool. Cluster analysis and heatmap 

generation were performed with dChiP software using the following criteria: Euclidean distance with 

average linkage analysis (171).  

Among the datasets, GSE31210 was the only set encompassing all of the following clinical 

information on defined NSCLC genotypes:  KRAS mutant and EGFR/KRAS wild-type tumor data 

in addition to EGFR mutant lung tumors and their pathological stage, relapse and survival events, 

and duration data. Therefore, survival predictions using the expression data of the PSAT1-

associated common gene lists were performed by the BRB-ArrayTool survival risk prediction 

function (170). Principal component analysis with leave-one-out cross-validation and log-rank 

statistics with 100 permutation tests were used for analysis and p≤0.05 was considered statistically 

significant. This analysis calculated the prognostic indexes and classified the patients based on 

this index as high risk and low risk groups.  

iii. Identification of a potential PSAT1-associated metastatic gene signature  

GSE14107 was imported as described above due to the presence of a genome-wide 

expression profile of both parental PC9 cells and its metastatic brain subline of PC9-BrM3 (172). 

Differentially expressed genes were determined by ArrayTool- Class comparison plugin using the 

significance threshold of univariate analysis with p≤0.05.  Down-regulated and up-regulated gene 

lists were assigned based on fold-change (PC9-BrM3/PC9-Parental) 0.71 ≥ and 1.4 ≤, respectively. 

The GSE14107 gene list was compared with the differential expression gene list from our PC9-

shPSAT1 RNA sequencing analysis by http://bioinformatics.psb.ugent.be/webtools/Venn/  to find 

common genes. Cluster analysis and heatmap generation of common gene expression derived 

from the GSE14107 dataset were performed by dChiP software. 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Statistical analysis 

All data were statistically analyzed using Prism 8 software (GraphPad Software). Statistical 

significances were assessed based on the number of groups with one or more independent 

variables. Repeated Measure one-way ANOVA with Tukey's multiple comparison test for three 

groups was performed for both PSAT1 and nuclear PKM2 rescue study. Two-way ANOVA with 

Tukey's multiple comparison test was used for wound-healing assay with metabolite 

supplementation. The statistical significance for soft agar assay with metabolite supplementation 

was determined by two-step analysis: firstly, two-way ANOVA with Dunnet’s multiple comparison 

test was performed with raw data to examine the effect of metabolite supplementation on both 

control and shPSAT1 cells. Then, the ratio of colony number (shPSAT1/Control) within each 

treatment was used for repeated measure one-way ANOVA with Dunnet’s multiple comparison test 

to assess the rescue effect.   Experimental replicates for each analysis are stated within the 

respective figure legend. Values of p ≤ 0.05 were considered statistically significant. 
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Results 

Determination of differentially expressed genes (DEG) in PSAT1 silenced PC9 cells 

In the previous chapter, we used biochemical approaches to examine the role of PSAT1 in 

NSCLC tumorigenesis. We found that PSAT1 interacts with PKM2 and contributes to PKM2’s 

nuclear localization in EGFR-activated NSCLC cells. Unexpectedly, we also observed PSAT1 

within the nuclear compartment of the  EGFR-activated cells. Thus, we conducted a genome-wide 

gene expression profiling study using RNA-seq technology to potentially uncover unknown cellular 

processes that are impacted by PSAT1 loss. 

Three separate sets of RNA were extracted from distinctly grown control and shPSAT1 

PC9 cells and submitted for sequencing and statistical analysis to the genomics core facility within 

the James Graham Brown Cancer Center in partnership with the Kentucky Biomedical Research 

Infrastructure Network (KBRIN). Their initial analysis provided normalized expression values of 

genes in FPKM (fragments per kilobase of transcript of million mapped reads) with annotation 

tables, log2(FC) (log2(foldchange)), p-values, and q-values (adjusted p-value). From this, we 

determined the differentially expressed genes (DEG) based on the following criteria: FPKM≥ 5, 

fold-change ≥ 1.4 (|log2(FC)|≥ 0.48), and q-value ≤ 0.05.  Heatmaps of both down-regulated and 

up-regulated genes resulting from PSAT1 silencing were created by dChiP software and presented 

in Figures 28 & 29, respectively (171). In sum, we found 279 down-regulated and 211 up-regulated 

genes for further analysis. 

Pathways and biological processes affected by PSAT1 suppression 

Molecular signature database (MSigDB) is a user-friendly database created and 

maintained by the Broad Institute (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) (167). 

MSigDB stores more than thirty thousand annotated gene sets under 9 different subjects for gene 

set analysis including, hallmarks of gene sets, positional gene sets, curated gene sets, regulatory 

target gene sets, computational gene sets, ontology gene sets, oncogenic signature gene sets, 

immunologic gene sets, and cell type signature gene sets. These major subjects have been further 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Figure 28. Heatmap demonstrating down-regulated genes upon PSAT1 silencing. 

Color key (Blue, Red)→ (-2,2). 
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Figure 29. Heatmap demonstrating up-regulated genes upon PSAT1 silencing. 

Color key (Blue, Red)→ (-2,2). 
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divided into sub-groups. For example, curated gene sets consist of gene sets for pathway analysis, 

including KEGG, BIOCARTA, PID, and REACTOME. Users are able to upload individual gene sets 

for comparison to the curated sets within MSigDB.  The overlapping genes are then identified along 

with statistical analysis values: p and FDR, which can be downloaded in a text format. 

Down-regulated and up-regulated gene lists obtained from our RNA-seq studies were 

uploaded separately to MSigDB for KEGG pathway analysis based on Top 20 pathways with 

FDR≤0.05. Results were plotted as number genes in the indicated pathways and presented in 

Figure 30. The affected pathways identified with the down-regulated gene set included cell cycle, 

pathways in cancer, and MAPK signaling pathway (Fig. 30A). These are commonly dysregulated 

pathways involved in tumorigenesis and confirm the oncogenic effect of PSAT1 at the 

transcriptional level.  Down-regulated genes within folate biosynthesis, glutathione metabolism, and 

purine and pyrimidine metabolism linked dysregulation of serine biosynthetic pathway with loss of 

PSAT1 metabolic function.  Paradoxically, KEGG pathway analysis of up-regulated genes also 

found cancer-related pathways involving MAPK signaling pathway, ERBB signaling pathway, 

pathways in cancer, and endometrial cancer (Fig. 30B). However, we found that 20.7 % of down-

regulated genes were attributed to cancer-related pathways, while only 11.84 % of up-regulated 

genes were included in this pathway analysis. 

Next, we performed gene ontology (GO) analysis using MSigDB- GO_BP (Biological 

Process) and GO_CC (Cellular Component) tools to gain deeper insight into PSAT1-associated 

gene signatures. Top 50 signatures with FDR ≤0.05 served as our selection criteria. GO 

terminologies were grouped under general biological process titles in order to highlight the overall 

cellular changes upon PSAT1 silencing.  GO_BP and GO_CC analysis of down-regulated genes 

were summarized in Tables 3 and 4. Similarly, GO_BP and GO_CC of upregulated genes were 

presented in Tables 5 and 6. 

 

 



89 
 

 

 

 

 

 

  

Figure 30. KEGG pathway analysis of differentially expressed genes. A) shPSAT1-

down-regulated genes and B) shPSAT1-up-regulated genes. FDR≤0.05. 
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Table 3. GO_BP analysis of shPSAT1-down-regulated genes 
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GO_NUCLEAR_BODY 

GO_CHROMATIN 

Membrane 

GO_SUPRAMOLECULAR_COMPLEX 

Table 4. GO_CC analysis of shPSAT1-down-regulated genes 



9
2

 

 

Biological 
Function 

GO_BP terms Genes 

GO_CELL_MOTILITY 
EGFR, APP, RAC1, S100A9, HDAC9, PDGFA, ALOX5, TNFRSF11A, GLUL, CSF1R, 

SMAD3, EFNB2, FOLR1, CCL20, CXCL1, B4GALT1, SDC4, ADGRE2, STC1, GBF1, 

CLDN1, JAG1, TRIB1, ATP2B4, EPS8, HBEGF, TNS3, RIN2, ITGB8, SPOCK1, 

MEGF9, PLA2G7, DEFB1, SRGAP1, ARID5B, LRP12, TNC, AREG, ROR1, LCN2, 

BTG2, SPTBN1, KIDINS220, KLK6, FSTL4, MYLIP, DDX56, FGD4, NUDCD3 

GO_LEUKOCYTE_MIGRATION 

Motility GO_CELL_CHEMOTAXIS 

GO_CELL_PROJECTION_ORGANIZATION 

GO_MYELOID_LEUKOCYTE_MIGRATION 

GO_CELL_ACTIVATION 

EGFR, APP, RAC1, S100A9, HDAC9, PDGFA, ALOX5, TNFRSF11A, CSF1R, 

SMAD3, EFNB2, FOLR1, CCL20, CXCL1, B4GALT1, SDC4, ADGRE2, STC1, GBF1, 

CLDN1, JAG1, HBEGF, RIN2, ITGB8, SPOCK1, MEGF9, PLA2G7, DEFB1, LRP12, 

C3, TLR1, ABCA1, IGFBP2, TNC, AREG, GJB2, CACNG4, CALCOCO1, PCDH1, 

GPRC5B, AOC1, LCN2, FTH1, CDK13, CD22, CFD, QPCT, TCN1, TMEM179B, 

AGR2, AHR, VTCN1, LFNG, TXNIP, CTSV, FBXO32, NEAT1, CREBRF, PMEPA1, 

DSC2, TJP2, PI3, RAMP1, LYPD3, SPTBN1, SNX18, HLA-DQB1, CFB, TPCN2, 

BPIFB1, GBP2, TMPRSS4, ATP9A 

GO_CELL_ACTIVATION_INVOLVED_IN_IMMUNE_RESPONSE 

GO_BIOLOGICAL_ADHESION 

Immune 
Response 

GO_INFLAMMATORY_RESPONSE 

GO_MYELOID_LEUKOCYTE_MEDIATED_IMMUNITY 

GO_IMMUNE_EFFECTOR_PROCESS 

GO_LEUKOCYTE_CHEMOTAXIS 

GO_DEFENSE_RESPONSE 

GO_RESPONSE_TO_OXYGEN_CONTAINING_COMPOUND 

EGFR, APP, RAC1, S100A9, HDAC9, TNFRSF11A, GLUL, CSF1R, SMAD3, FOLR1, 

CCL20, CXCL1, STC1, GBF1, CLDN1, JAG1, TRIB1, ATP2B4, EPS8, DEFB1, C3, TLR1, 

ABCA1, ANO1, IGFBP2, TNC, AREG, GJB2, CACNG4, EIF4EBP2, CALCOCO1, LATS2, 

AOC1, LCN2, CFD, AHR, VTCN1, TXNIP, BTG2, CTSV, FBXO32, DGAT2, CREBRF, 

PMEPA1, EPG5, PI3, RAMP1, KIDINS220, HLA-DQB1, CFB, BPIFB1, GBP2, LSM5 

GO_RESPONSE_TO_ORGANIC_CYCLIC_COMPOUND 

GO_RESPONSE_TO_LIPID 

Response to 
Exogenous 

signals 

GO_RESPONSE_TO_ENDOGENOUS_STIMULUS 

GO_RESPONSE_TO_CORTICOSTEROID 

GO_RESPONSE_TO_STEROID_HORMONE 

GO_RESPONSE_TO_BIOTIC_STIMULUS 

GO_CELL_CELL_SIGNALING 

EGFR, APP, RAC1, S100A9, HDAC9, PDGFA, ALOX5, TNFRSF11A, GLUL, CSF1R, 

SMAD3, EFNB2, FOLR1, CCL20,  STC1, GBF1, CLDN1, JAG1, TRIB1, ATP2B4, EPS8, 

HBEGF, SRGAP1, ARID5B, C3, TLR1, ABCA1, ANO1, PER2, IGFBP2, TNC, AREG, 

GJB2, CACNG4, EIF4EBP2, CALCOCO1, ROR1, SCEL, PCDH1, GPRC5B, LATS2, 

SYNPO, TCF7L1,  GABBR2, AOC1, CD22, AGR2, AHR, LFNG, TXNIP, BTG2, CTSV, 

FBXO32, CREBRF, PMEPA1, RAMP1, SPTBN1, KIDINS220, MAP3K1, GPRC5A, 

ARHGAP23, KLK6, FSTL4, BMF, SOS2, FGD4, FAM83A, DEPTOR, PIK3IP1 

GO_RESPONSE_TO_ENDOGENOUS_STIMULUS 

GO_POSITIVE_REGULATION_OF_SIGNALING 

Cell Signaling GO_ENZYME_LINKED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY 

GO_REGULATION_OF_INTRACELLULAR_SIGNAL_TRANSDUCTION 

GO_TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_KINASE_SIGNALING_PATHWAY 

GO_EPIDERMAL_GROWTH_FACTOR_RECEPTOR_SIGNALING_PATHWAY 

GO_SECRETION 

EGFR, APP, RAC1, S100A9, HDAC9, PDGFA, ALOX5, TNFRSF11A, GLUL, CSF1R, 

SMAD3, EFNB2, FOLR1, CCL20, CXCL1, B4GALT1, SDC4, ADGRE2, STC1, 

CLDN1, JAG1, TRIB1, ATP2B4, HBEGF, RIN2, ITGB8, PLA2G7, DEFB1, SRGAP1, 

ARID5B, LRP12, C3, TLR1, ABCA1, ANO1, PER2, AREG, CACNG4, ROR1, 

GPRC5B, LATS2, AOC1, LCN2, FTH1, CDK13, CD22, CFD, QPCT, TCN1, 

TMEM179B, AGR2, TNFAIP2, LFNG, DGAT2, SGPP2, PMEPA1, DSC2, LIPK, 

RAMP1, KIDINS220, MAP3K1, GPRC5A, ARHGAP23, SNX18, SNX13, DCP1B, H1-0, 

MYLIP, CREBL2, TPCN2, TOMM7, ICE1, EEPD1, SLC43A2, TSPAN13, DEPTOR, 

CCNL2, KPNA7, STX5, PIK3IP1, MTMR1, RBP1, AKR1B15, CYP4V2, ALDH3B2, 

THNSL2, STARD3NL, TMPRSS4, ATP9A, WDR70 

GO_POSITIVE_REGULATION_OF_MOLECULAR_FUNCTION 

GO_EXOCYTOSIS 

GO_REGULATION_OF_TRANSPORT 

GO_REGULATION_OF_CELLULAR_COMPONENT_MOVEMENT 

Molecular 
Function 

GO_POSITIVE_REGULATION_OF_CATALYTIC_ACTIVITY 

GO_REGULATION_OF_PROTEIN_KINASE_ACTIVITY 

GO_POSITIVE_REGULATION_OF_PROTEIN_METABOLIC_PROCESS 

GO_REGULATION_OF_TRANSFERASE_ACTIVITY 

GO_LIPID_METABOLIC_PROCESS 

GO_ENDOCYTOSIS 

GO_REGULATION_OF_PROTEIN_MODIFICATION_PROCESS 

Development 

GO_EPITHELIUM_DEVELOPMENT 

GO_TUBE_MORPHOGENESIS 

GO_NEUROGENESIS 

EGFR, APP, RAC1, S100A9, HDAC9, PDGFA, ALOX5, GLUL, CSF1R, SMAD3, 

EFNB2, FOLR1, B4GALT1, SDC4, STC1, CLDN1, JAG1, ATP2B4, HBEGF, TNS3, 

RIN2, ITGB8, SPOCK1, LRP12, C3, PER2, TNC, AREG, GJB2, ROR1, SCEL, 

GPRC5B, AGR2, TNFAIP2, LFNG, TXNIP, BTG2, CTSV, DSC2, TJP2, PI3, LIPK, 

KRT6B, RAMP1, SPTBN1, KIDINS220, KLK6, FSTL4, MYLIP, DDX56 

Proliferation GO_REGULATION_OF_CELL_POPULATION_PROLIFERATION 

EGFR, APP, PDGFA, ALOX5, TNFRSF11A, GLUL, CSF1R, SMAD3, EFNB2, CXCL1, 

B4GALT1, SDC4, CLDN1, JAG1, TRIB1, HBEGF, TNS3, PER2, IGFBP2, TNC, 

AREG, FTH1, CDK13, CD22, AHR, VTCN1, TXNIP, BTG2, NEAT1, SGPP2, H2AC6 

Table 5. GO_BP analysis of shPSAT1-up-regulated genes 
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Cellular Localization GO_CC terms Genes 

Cell Membrane 

GO_INTRINSIC_COMPONENT_OF_PLASMA_MEMBRANE 

GO_CELL_SURFACE 

GO_RECEPTOR_COMPLEX 

GO_WHOLE_MEMBRANE 

GO_PLASMA_MEMBRANE_REGION 

GO_APICAL_PART_OF_CELL 

GO_APICAL_PLASMA_MEMBRANE 

GO_G_PROTEIN_COUPLED_RECEPTOR_COMPLEX 

APP, EGFR, SDC4, FOLR1, ABCA1, TLR1, CACNG4, 

ITGB8, RAMP1, ROR1, CSF1R, HBEGF, CD22, 

GABBR2, EPS8, GPRC5A, ANO1,   ATP2B4, CLDN1, 

JAG1, EFNB2, GJB2, PCDH1, SLC28A3, ADGRE2, 

LRP12, RCE1, LYPD3, EEPD1, OPN3, TSPAN13, 

CD82, TM4SF1, PDGFA, B4GALT1, RAC1, C3, CTSV, 

TMEM179B, BMF, AREG, STX5, HLA-DQB1, PMEPA1, 

SLC29A3, ATP9A, GPRC5B, VTCN1, TNFRSF11A, 

SMAD3, AHR, SNX18, STARD3NL, TPCN2, SNX13, 

PEX6, TOMM7, SLC4A11, IGFBP2, STC1, SPTBN1 

Junction/Projection 

GO_ANCHORING_JUNCTION 

GO_ACTIN_BASED_CELL_PROJECTION 

GO_GLIAL_CELL_PROJECTION 

APP, EGFR, SDC4, ITGB8, EPS8, CLDN1, JAG1, 

EFNB2, GJB2, PCDH1, PDGFA, B4GALT1, RAC1, 

CTSV, AOC1, FGD4, DSC2, SYNPO, TJP2, TNC, 

TNS3, GLUL 

Golgi/Secretion 

GO_GOLGI_APPARATUS 

GO_SECRETORY_VESICLE 

GO_VESICLE_LUMEN 

GO_GOLGI_MEMBRANE 

GO_VESICLE_MEMBRANE 

GO_ENDOPLASMIC_RETICULUM_GOLGI_INTERMEDIATE_COMPARTMENT 

GO_ENDOSOME 

GO_FICOLIN_1_RICH_GRANULE 

GO_VACUOLE 

GO_SPECIFIC_GRANULE 

APP, EGFR, SDC4, FOLR1, ABCA1, TLR1, 

CACNG4, HBEGF, CD22, GPRC5A, GJB2, PDGFA, 

B4GALT1, RAC1, CDK13, C3, CTSV, AOC1, QPCT, 

CXCL1, TCN1, LCN2, ALOX5, CFD, S100A9, 

TMEM179B, BMF, FTH1, KLK6, FSTL4, TMPRSS4, 

AREG, STX5, HLA-DQB1, PMEPA1, SLC29A3, 

ATP9A, GBF1, MAN1A1, GBP2, LFNG, CHST12, 

HS6ST2, FGD4, DEFB1, RETREG1, H1-0, 

SLC39A11, CAPN8, GPRC5B, SNX18, STARD3NL, 

TPCN2, SNX13, SLC4A11, KIDINS220 

Others 

GO_NUCLEAR_ENVELOPE_LUMEN 

GO_LIPID_DROPLET 

GO_PERINUCLEAR_REGION_OF_CYTOPLASM 

GO_CORNIFIED_ENVELOPE 

APP, EGFR, ABCA1, GJB2, ALOX5, ATP9A, GBF1, 

GBP2, DSC2, EPG5, DGAT2, 

ALDH3B2, RBP1, SCEL, PER2, PI3 

Table 6. GO_CC analysis of shPSAT1-up-regulated genes 
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The serine synthetic pathway provides precursors for anabolic pathways such as 

nucleotide and lipid biosynthesis to promote tumor growth (Fig. 31A)(16, 28). As mentioned above, 

KEGG pathway analysis confirmed the decreased SSP activity upon PSAT1 silencing. Accordingly, 

GO analysis with down-regulated genes implicated genes involved in maintaining chromatin 

structure, participating in DNA metabolism, and influencing cell proliferation (Tables 3 & 4). As a 

result, we speculated that the metabolic activity of PSAT1 contributes to the oncogenic capacity of 

EGFR-mutant NSCLC cells.  For this, we performed soft agar assays with or without 

supplementation of SSP-downstream metabolites, including non-essential amino acids (NEAA), 

nucleosides, and α-ketoglutarate (α-KG).  We observed that depletion of PSAT1 resulted in a 40% 

reduction in colony formation in comparison with control cells (Fig. 31B).  The addition of down-

stream metabolites alone did not affect the ratio of colony number (shPSAT1/Control). However, 

the combination of any metabolite(s) with nucleosides significantly increased the ratio of colony 

number in comparison with media without supplementation. To further understand the putative 

metabolic role, soft agar assays were repeated with the genetic rescue of PSAT1 or expression of 

nuclear acetyl-mimetic PKM2 in PC9 cells, as was done in Chapter 2. Restoration of PSAT1 (Fig. 

31D), but not PKM2NLS-K433Q (Fig. 31C), recapitulated the phenotype of control cells. Taken 

together, these results are consistent with the RNA sequencing analysis and implicate the 

metabolic function of PSAT1 contributes to anchorage-independent growth. 

Next, we investigated the contribution of PSAT1-downstream metabolites on cell migration. 

A wound-healing assay was performed in the presence or absence of all metabolites (NEAA+ 

nucleoside + α-KG). Unlike the soft agar assays, we found that the addition of metabolites did not 

rescue the loss of PSAT1 mediated migration deficiency (Fig. 32). This supports our previous 

findings that a putative novel non-canonical function of PSAT1, including facilitation of nuclear 

PKM2 localization, contributes to cell migration. 
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C 

A 

B 

Figure 31. The metabolic activity of PSAT1 contributes to anchorage-independent 

growth. A) Serine synthetic pathway.  (B-D) Soft agar assays analysis for B) metabolite 

supplementation, C) nuclear PKM2 restoration, and D) PSAT1 restoration. N=3, *, 

p≤0.05 and **, p≤0.01. EV: empty vector and NS: Not significant. 

D 
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A 

Figure 32.  The addition of downstream metabolites fails to induce cell migration 

in PSAT1 silenced cells.  A) Representative images of wound-healing assay. B) 

Quantification of migration. N=3, *, p≤0.0001, NS: not significant, and A.U,: arbitrary 

unit. 
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Validation of PSAT1 mediated gene changes in EGFR-mutant NSCLC cells 

Our KEGG pathway analysis described above found significantly altered cell cycle process 

in the absence of PSAT1 (Fig. 30).  To explore genes involved in the RB/E2F pathway’s functional 

role in regulating the cell cycle, we utilized the DEG list from our RNA-seq studies and performed 

gene set analysis using the MSigDB CGP (chemical and genetic perturbations) tool that harbors 

curated gene lists from other genome-wide gene expression studies and transcription factor 

analysis by WebGestalt 2013 (167, 168).  The results for the gene set analysis were presented in 

Figure 33A.  We found a high number of downregulated genes that significantly overlapped with 

genes within “FISCHER_ G1/S_CELL _CYCLE” (30 genes, p= 2.6e-31, FDR= 7.82 e-28) and 

“CHICAS_RB1_TARGETS_SENESCENT” (37 genes, p= 2.85e-25, FDR= 1.37e-22) that function 

in RB/E2F pathway. Furthermore, nineteen of the down-regulated genes possessed E2F binding 

sites within their promoter regions. Expression values of E2F family members and RB1 were 

extracted from our RNA-seq data and plotted to determine any changes at the transcriptional level. 

As shown in Figure 33B, E2F1 and E2F8 were significantly downregulated in PSAT1 silenced cells. 

Taken together, our analysis corroborates previous reports that PSAT1 contributes, in part, to cell 

cycle progression through modulating the RB/E2F pathway (1). 
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Figure 33. Gene set analysis confirms the link between PSAT1 and RB/E2F mediated 

cell cycle progression. A) Summary of gene set and transcription factor analyses. B) Log 

transformed FPKM value of E2F family and RB expression. *, q≤0.05; q: Adjusted p-value 
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PSAT1 may mediate β-catenin transactivation through regulating protein expression 

EGFR activation promotes the nuclear localization of β-catenin through various 

mechanisms. While phosphorylation of membranous β-catenin by EGFR or AKT leads to migration 

of β-catenin away from the membrane,  EGFR activation inhibits the proteasomal degradation of 

cytoplasmic β-catenin protein by GSK3β inactivation. Thus, both  EGFR-mediated pathways result 

in the accumulation of β-catenin in the nucleus (63, 173-175). Nuclear β-catenin is associated with 

poor overall survival in patients with EGFR mutant lung cancer (174).  Although a role for nuclear 

β-catenin in tumor initiation and cell migration has been shown in EGFR mutant lung cancer models 

(176, 177), the contribution of nuclear β-catenin activity to the development of EGFR-TKI resistance 

is of significant interest since EGFR-TKI resistant NSCLC cells developed various mechanisms to 

promote β-catenin stabilization and activation (176-183). In short, nuclear β-catenin seems to 

contribute to every step within EGFR-driven tumor progression. 

β-catenin is another downstream target of the GSK3β pathway that has previously been 

examined (43, 79). Reduction in β-catenin level has been observed together with phospho-GSK3β 

upon PSAT1 silencing, impacting cell cycle and proliferation in ER-negative breast cancer cells and 

resistance in ovarian cancer cells while inducing apoptosis. However, the connection between β-

catenin and PSAT1 remains elusive in EGFR mutant NSCLC cells. Furthermore, nuclear PKM2 

requires EGF-induced β-catenin transactivation in EGFR-driven tumor growth of GBM and EGF-

induced EMT and invasion in HCC cells (100, 113). Considering these previous reports and our 

results showing the link between PSAT1 and nuclear PKM2, we speculated that loss of PSAT1 

may result in altered β-catenin transactivation.  

First, we performed gene set analysis with our PSAT1-mediated DEG list utilizing the 

MSigDB-CGP tool and transcription factor analysis by WebGestalt 2013. As β-catenin induces 

transcription via interacting with TCF/LEF1 transcription factor family, genes with LEF1 binding 

sites were assumed as potential β-catenin targets (162, 164). The summary of our gene 

comparison analysis was shown in Figure 34A. While overlapping shPSAT1-down-regulated genes 

within the “FEVR_CTNNB1_TARGETS_DN” gene set suggested a reduction in β-catenin 
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transactivation in PSAT1 silenced cells, paradoxically, we also found down-regulated genes within 

the “WANG_RESPONSE_TO_GSK3B_INHBITOR_SB216763_DN” gene set, which indicated a 

possible activation of β-catenin upon PSAT1 loss. Furthermore, transcription factor analysis found 

LEF1 promoter binding sites in genes from both down and up-regulated gene lists. In short, these 

analyses did not provide any clear insight into whether β-catenin transactivation may change upon 

PSAT1 silencing. Thus, we extracted the expression data of β-catenin (CTNNB1) and TCF(T-cell 

specific transcription factor) family (TCF7(TCF-1), LEF1, TCF7L2 (TCF-4), TCF7L1(TCF-3)) and 

compared their transcript levels between control and stable PSAT1 shRNA expressing PC9 cells 

(162, 173). We did not observe any significant change in the mRNA expression level of β-catenin 

and TCF/LEF1 transcription factor except TCF7L1 with a 1.47-fold increase in PSAT1 silenced 

cells (Fig. 34B). As TCF7L1 is a known repressor, this may reduce the β-catenin-TCF/LEF1 target 

gene expression (173). Overall, our gene set analysis was unable to provide any definitive link 

between PSAT1 and β-catenin transactivation in our PC9 cell model. 

To better understand the connection between PSAT1 and β-catenin, we next assessed 

whether β-catenin protein expression was altered in the presence or absence of PSAT1. In Figure 

35A, immunoblot analysis found that β-catenin expression decreased upon PSAT1 silencing, which 

can be rescued by re-expression of PSAT1. We then examined whether nuclear PKM2 expression 

(as assessed by PKM2NLS-K433Q) would affect β-catenin expression under PSAT1 silencing.  We 

found no rescue of β-catenin expression with nuclear acetyl-mimetic PKM2, indicating that 

regulation of β-catenin expression is independent from nuclear PKM2 level in the context of PSAT1 

loss (Fig. 35B). 
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Figure 34. PSAT1 mediated DEG are compared with genes within the GSK3β/β-

catenin related pathway. A) Summary of gene set and transcription factor analyses. B) 

Log transformed FPKM value of TCF/LEF1 family and CTNNB1 expression. *, q≤0.05; q: 

Adjusted p-value. 
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Figure 35. Suppression of PSAT1 reduces β-catenin protein levels. (A-B) Immunoblot 

analysis of β-catenin expression and quantification in A) PSAT1 rescued shPSAT1 PC9 

cells (N=3) and B) Nuclear PKM2 rescued shPSAT1 PC9 cells (N=5). White arrow: non-

specific band.   *, p≤0.05; **, p≤0.01, and NS: not significant.  



103 

Accumulation of cytoplasmic β-catenin due to inhibited proteasomal degradation leads to 

its nuclear localization and transactivation (83, 175). Since we found a reduction in total β-catenin 

levels, we next examined its cellular distribution upon PSAT1 silencing. Thus, subcellular 

fractionation was performed, and the cytoplasmic and nuclear distribution of β-catenin was 

assessed by immunoblotting.  We found that nuclear β-catenin decreased in PSAT1 silenced cells 

in comparison with control cells, which could be rescued upon re-expression of PSAT1 (Fig. 36A). 

Yet, we also observed the same pattern of β-catenin expression in the cytoplasmic fraction (SE; 

short exposure).  These results, together with our findings from whole-cell lysates (Fig. 35A) and 

mRNA expression profiles (Fig. 34B), imply that PSAT1 contributes to β-catenin stability in PC9 

cells, possibly through increasing phospho-GSK3β level. 

We then aimed to directly measure β-catenin transcriptional activity with an established 

luciferase reporter assay system. To achieve this goal, cells were stably transfected with the 

luc2p/TCF-LEF vector. Cells were maintained in serum-free media for 24 hours in order to directly 

assess mutant activated EGFR-dependent β-catenin transactivation. Figure 36B demonstrates that 

loss of PSAT1 significantly decreased luciferase activity compared to control cells, while PSAT1 

re-expression completely rescued β-catenin transcriptional activity. Taken together, our findings 

suggest that PSAT1 affects β-catenin transactivation through regulating its stability.  
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Figure 36. Suppression of PSAT1 reduces β-catenin transactivation. A) Immunoblot 

analysis of cytoplasmic and nuclear β-catenin expression (N=3). B) TCF-Luciferase 

reporter assay for the assessment of β-catenin-TCF transactivation (N=4).  *, p≤0.05. 

White arrow: non-specific band. EV: Empty vector and SE: short exposure 
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Silencing of PSAT1 impacts the actin cytoskeleton organization via decreasing the 

expression of actin regulating genes 

The actin cytoskeleton not only determines cellular morphology but plays key roles in 

tumorigenic processes such as migration and invasion due to the requirement for cell movement 

(184). As our previous results found a requirement for PSAT1 in cell migration, we speculated that 

loss of PSAT1 may impact the organization of the actin cytoskeleton. To assess this, we used 

immunofluorescence microscopy with phalloidin staining that is commonly used to visualize actin 

stress fibers through binding to F-actin (filamentous actin) (185). As shown in Figure 37, confocal 

microscopy found that control PC9 cells exhibited structured actin fibers spanning the whole cell 

body, while cells devoid of PSAT1 displayed loss of these actin stress fibers. Yet, re-expression of 

PSAT1 in silenced cells rescued the long fiber formations, thereby validating PSAT1’s on-target 

effects and confirming a role for PSAT1 in actin cytoskeleton organization.  

Next, we further scrutinized our PSAT1-mediated DEG lists to identify genes involved in 

actin-related processes. Firstly, we extracted gene lists from the MSigDB database stratified under 

the GO_Actin_ [Binding, Cytoskeleton, Filament Organization] categories and determined 

overlapping genes with our DEG list. We found 15 genes related to actin cytoskeleton regulation 

within our shPSAT1-down-regulated gene list (Fig. 38).  

Formin Homology 2 Domain Containing 1 (FHOD1) functions as an actin filament capping 

and bundling protein, unlike other formin members with nucleation and elongation activity (186). It 

is activated via phosphorylation by the RhoA-ROCK pathway and subsequently promotes stress 

fiber formation. While depletion of FHOD1 in cells leads to decreased stress fiber formation, thicker 

actin fibers have been observed in overexpressed cells (187). The gain and loss of function studies 

have shown differential effects of FHOD1 on cell shape through regulating F-actin bundling (188-

190). Co-localization of FHOD1 with F-actin at the cell periphery suggests that FHOD1 enhances 

cell migration via inducing the formation and stabilization of F-actin at the leading edge.  Its role in 

cancer metastasis is further supported by the observation of elevated expression at the invasive 

front of squamous cell carcinoma (SCC) (190). 
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Figure 37.  Loss of PSAT1 impacts the actin cytoskeleton. Representative images from 

two different experiments. Phalloidin staining for F-actin visualization: Real (red) and pseudo-

colored (gray) images. DAPI served (blue) served as nuclear staining. 
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Figure 38.  shPSAT1-down-regulated genes involved in actin-related biological 

functions.  
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TMSB4X encodes a small peptide that is known as thymosin β4 (Tβ4). Its expression has 

been linked to aggressive tumorigenic phenotypes such as increased angiogenesis, cell migration, 

and metastasis (191). Thymosin β4 is recognized as a G-actin sequestering factor that inhibits 

spontaneous actin polymerization (192). It contributes to cell motility via localizing the monomeric 

G-actin at the leading edge of lamellipodia for actin polymerization, leading to the formation of

membrane protrusions (193). Thymosin β4 has also been reported as a prognostic factor for poor 

survival and metastasis in patients with early-stage NSCLC (194). Furthermore, decreased cell 

proliferation, cell migration, and invasion both in vitro and in vivo have been observed in thymosin 

β4 silenced A549 and H1299 NSCLC cells (195). 

S100A4 is a calcium-binding protein belonging to the S100 family and recognized as a 

metastasis-associated protein (196). The prognostic value of S100A4 has been shown in a variety 

of cancers, including lung cancer. S100A4 functions as a metastasis-inducing factor in tumor cells 

without apparent tumorigenic function. Association with actin-related factors such actin, myosin, 

and tropomyosin has been reported, but the mechanism in which S100A4 increases the 

lamellipodia stabilization and actin cytoskeleton re-arrangement to promote cell migration remains 

elusive (184, 197).  

As mentioned above, the common points of FHOD1, TMSB4X, and S100A all share an 

interaction with actin, contribute to F-actin formation, and play critical roles in cellular motility. As 

PSAT1 loss results in motility defects and changes in actin polymerization, we confirmed the 

differential expression of these genes via Real-Time PCR in our NSCLC model.   As shown in 

Figure 39, silencing of PSAT1 reduced the expression of each gene, which was fully restored by 

re-expression of PSAT1. These results validate our findings from the RNA-seq transcriptomic and 

implicate a new role for PSAT1 in cell migration through regulating the expression of actin-related 

factors. 
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Figure 39. Suppression of PSAT1 reduces the expression of genes involved in F-

actin formation. Real-time PCR analysis of gene expression. N= 3-4; *, p≤0.05 and **, 

p≤0.01 
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PSAT1 impacts the expression of genes localized in chr18p11 

Serine metabolism can potentially contribute to epigenetic regulation due to the 

involvement of one-carbon metabolism or production of -KG (38, 136). Kottakis et al. has found 

an epigenetic mechanism for PSAT1 upon the depletion of the tumor suppressor, Lkb1, in a Kras-

activated pancreatic cancer transgenic mouse model (46). Increased PSAT1 expression leads to 

hypermethylation of DNA, which is mainly enriched in retrotransposons. These hypermethylated 

retrotransposons can promote tumor formation through impacting the host gene expression. In 

another study, Hwang et al. has demonstrated that PSAT1 participates in the maintenance of stem 

cell properties of mouse ESCs via providing the α-ketoglutarate cofactor for α-KG-dependent 

dioxygenases that results in hypomethylation of histone and DNA (136). These reports highlight 

PSAT1’s potential role in epigenetic regulation. 

As epigenetic regulation generally affects transcriptional expression over a broad 

chromosomal area, we sought to identify differentially expressed genes located in the same 

chromosomal region. Results from this analysis using the MSigDB-positional gene set tool were 

presented in Figure 40.  Several shPSAT1-down-regulated genes were localized to the chr18p11 

cytogenic band, while the chr7p21 cytogenic band harbored various shPSAT1-up-regulated genes. 

A genome-wide association study within a Korean population conducted by Ahn et al. found 

an association of chr18p11 with never-smoker lung cancer susceptibility (198). Consistent with the 

fact that EGFR activation mutation is more common in the never-smoker Asian population, we 

chose to examine these genes localized in chr18p11 in response to differential PSAT1 expression 

(96). First, we utilized the UCSC genome browser (http://genome.ucsc.edu/) to determine the 

genomic position of the genes on chr18p11 cytogenic bands.  As shown in Figure 41A, our identified 

down-regulated genes were not restricted to a small region but observed spanning the wide-ranging 

area within chr18p11. We then picked 8 genes to validate their differential regulation observed in 

our RNA-seq studies upon PSAT1 silencing (Fig. 41A, red color). Real-time PCR analysis 

confirmed that genes within Chr18p11 were down-regulated upon PSAT1 silencing and partially 

http://genome.ucsc.edu/
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restored by re-expression of PSAT1, with the exception of TYMS (Fig. 41B).  This result suggests 

potential PSAT1-mediated epigenetic regulation in this region.  
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Figure 40.  Differentially expressed genes are observed in the same cytogenetic bands. 

A) sh-PSAT1-down-regulated genes and B) shPSAT1-up-regulated genes.
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Figure 41.   Suppression of PSAT1 results in reduced expression of genes across 

the chr18p11 cytogenic band, which are partially rescued by re-expression of 

PSAT1. A) The cartoon showing the map of down-regulated genes on chr18p11 cytogenic 

bands. Highlighted genes with red color were tested with Real-Time PCR in B). N=4; *, 

p≤0.05; ** p≤0.01; ***, p≤0.0001, and NS: not significant. 

A 

B 
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Identification of PSAT1-associated genes differentially expressed in EGFR mutant NSCLC 

PC9 cells have been frequently used as an in vitro model for EGFR mutant lung cancer 

studies due to the presence of an activation mutation (exon19del) in the EGFR tyrosine kinase 

domain and its responsiveness to EGFR tyrosine kinase inhibitor treatment (199). Within the above 

transcriptomic analysis, RNA was collected from serum-starved PC9 cells to assess the EGFR-

dependent gene expression alterations while minimizing the contribution of other serum-factors 

from the media. Therefore, we would expect to observe a subset of PSAT1-mediated genes that 

have been independently implicated in EGFR-driven lung tumorigenesis. To identify these genes, 

we designed a bioinformatic approach through a comparative analysis between the differentially 

regulated genes in our RNA-seq analysis and publicly available microarray datasets obtained from 

EGFR-mutant patient tumors. 

GEO database (https://www.ncbi.nlm.nih.gov/geo/) stores a large number of microarray 

datasets from various studies and makes them available for other researchers for their independent 

investigations (169). We searched for gene expression datasets consisting of EGFR mutant lung 

tumors and normal lung (n≥10, each) derived from untreated patients. Based on these criteria, 

GSE31210, GSE31547, GSE31548, GSE27262, GSE32863, and GSE75037 were chosen for this 

analysis.  Clinical information on the EGFR mutant lung tumor samples and the microarray chip 

platform were summarized in Table 7.  

We utilized the BRB-ArrayTool, a user-friendly free software package for microarray data 

analysis, to import the gene expression files of these datasets and perform statistical analysis to 

determine PSAT1-associated genes in EGFR mutant tumors (151). The flow chart in Figure 42 

demonstrates our strategy to determine these PSAT1-associated genes in EGFR mutant lung 

tumors.  

Briefly, the series matrix of each dataset, which includes the normalized value of gene 

expression and the relevant clinical information, was imported by BRB ArrayTool “import data with 

NCBI GEO series” plugins. After re-filtering, the PSAT1 associated DEG list from our RNA 

sequencing study was used for a class comparison analysis between EGFR mutant lung tumor  

https://www.ncbi.nlm.nih.gov/geo/
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Table 7. The GEO microarray datasets harboring expression profiles from EGFR 

mutant lung cancer and normal lung with relevant clinical information used in this study. 
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Figure 42. Strategic flow chart to identify PSAT1-associated genes from our PC9 

study that are differentially expressed in human EGFR mutant lung tumors. ***, ID 

number 31210, 27262, 31547, 31548, 32863, or 75037; FC, fold-change; T, tumor; N, 

normal. 
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and normal lung to determine the significantly altered genes. PSAT1-associated genes were 

defined as those up-regulated in tumor tissues (T/N) that are correspondingly down-

regulated upon PSAT1 silencing in our RNA-seq profiling (shPSAT1-down-regulated) and, 

conversely, down-regulated in tumor tissue (T/N) that are correspondingly up-regulated 

upon PSAT1 loss (shPSAT1-up-regulated). 

Gene lists derived from the GSE31547 and GSE31548 datasets were combined as 

“GSE31547-48” since neither Affymetrix-HG-U133A  nor Affymetrix-HG-U133B can cover all genes 

from the RNA-seq list and expression profiles were obtained from the same patients (Table 7) 

(200). We then compared the PSAT1-associated gene list from each dataset to obtain “common 

genes” altered in all datasets using web tool: http://bioinformatics.psb.ugent.be/webtools/Venn/. As 

some genes were represented by several probes, the number of probes was more than the number 

of genes (Fig. 43A(i) and B(i)). Venn diagrams in Figure 43A(ii) and 43B(ii) highlight 13 genes from 

our shPSAT1-down-regulated gene list and 12 genes from our shPSAT1-up-regulated genes list 

from the RNA-seq study, respectively. These were classified as PSAT1-associated  genes in 

EGFR-mutant lung tumors as they were found to be differentially expressed in all the EGFR-mutant 

lung cancer datasets (Fig. 43A(iii) and B(iii)). 

To confirm these findings visually, the expression of these genes was extracted from each 

dataset by BRB-ArrayTool. Cluster analysis was performed and heatmaps were generated by 

dChIp software for each dataset. Figure 44 demonstrates that shPSAT1-down-regulated common 

genes were increased in EGFR mutant tumors compared to normal tissue, while Figure 45 shows 

shPSAT1-up-regulated common genes that were decreased in EGFR mutant tumor tissues. 

Together, this bioinformatics approach was able to identify common genes linked through PSAT1 

regulation in EGFR mutant lung tumors. 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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(ii) (iii) 

(i) 

(ii) (iii) 

Figure 43. 13 shPSAT1-down-regulated and 12 shPSAT1-up-regulated genes are 

defined as PSAT1-associated genes in EGFR mutant lung tumors. Selection of common 

genes found across all EGFR-mutant tumor datasets that were A) shPSAT1-down-regulated 

or B) shPSAT1-up-regulated in response to PSAT1 loss in our RNA-seq analysis.   
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Figure 44. Heatmaps show increased expression of shPSAT1-down-regulated 

common genes in EGFR-mutant tumor tissues compared to normal lung. T: Tumor and 

N: Normal. Color key (Blue, Red)→(-2,2). 
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Figure 45. Heatmaps show decreased expression of shPSAT1-up-regulated common 

genes in EGFR-mutant tumor tissues compared to normal lung. T: Tumor and N: 

Normal. Color key (Blue, Red)→(-2,2). 
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A PSAT1-associated gene expression signature is associated with poor outcomes in 

patients with EGFR mutant lung cancer 

The combination of the down-regulated and up-regulated common genes collectively 

identifies a PSAT1-associated gene signature for EGFR mutant lung cancer.  We then wanted to 

assess the relationship between this gene signature and both relapse-free and overall survival in 

EGFR-mutant lung cancer patients. Among the datasets we used, GSE31210, GSE31547, and 

GSE31548 contained patient survival information. However, we focused on GSE31210 dataset as 

GSE31547 and GSE31548 had a limited number of EGFR mutant lung cancer samples (14 arrays) 

for survival analysis and could not be combined due to the platform incompatibility.  

Survival risk prediction tools from BRB-ArrayTool have been commonly used to test the 

predictive ability of gene expression on patient outcomes (170, 201, 202). This tool calculates the 

survival risk score from the sum of gene expression product and corresponding regression 

coefficient for each gene. Based on this survival risk score, it assigns patients into two groups such 

as “High Risk” and “Low Risk”: High Risk > mean (total survival risk score) > Low Risk. These 

groups are then utilized to generate a Kaplan-Meier (KM) plot using patient survival information 

and Receiver Operating Characteristic (ROC) curves. The KM plot demonstrates the predictive 

ability of gene expression on patient outcomes, while the area under the curve (AUC) in the ROC 

plot is accepted as the measure of predictive accuracy of the test and AUC above 0.7 is considered 

significant (170, 203).    

Unfortunately, we had only one dataset with survival information (GSE31210) on EGFR-

mutant NSCLC patients, so we were unable to validate our findings with another dataset. Therefore, 

we performed overall survival and relapse-free survival analysis by the leave-one cross-validation 

method with 100 permutation tests under principal component analysis with p ≤0.05 as previously 

defined (170). 13 and 17 out of 25 genes were found to predict the overall survival and relapse-

free survival rates, respectively (Fig. 46). In addition, 12 genes were observed in both overall 

survival and relapse-free survival analyses. 
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Figure 46. Common genes from the PSAT1-associated gene signature for EGFR 

mutant lung cancer display predictive ability for both overall survival (OS) and 

relapse-free survival (RFS). 
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According to Kaplan-Meier Plot for overall survival, the high-risk group (defined by 13 

genes out of 25) exhibited significantly shorter overall survival than the low-risk group (Fig. 47A(i)). 

In addition, the prediction accuracy was supported by the AUC value (0.77) (Fig. 47A(ii)). Survival 

risk prediction for relapse-free survival analysis found additional genes (17 genes out of 25) that 

contributed to RFS. The KM plot demonstrated that the high-risk group correlated with worse 

relapse-free survival (Fig. 47B(i)) with a prediction accuracy AUC value of 0.72 (Fig. 47(ii)). Taken 

together, these results suggest that a PSAT1-associated gene signature is associated with poorer 

outcomes in patients with EGFR-mutant NSCLC.   

We then extracted the expression of these 25-genes in GSE31210 for cluster analysis and 

subsequently heatmap generation. Figure 48 showed that the high-risk group identified by relapse-

free survival analysis clustered together and exhibited the opposite expression profile of normal 

lung. While the high-risk group comprised 21 of 24 stage II samples and 45 of 103 stage I patient 

samples, the low-risk group derived from 58 stage I and only 3 stage II patient samples.  Stage I 

patients’ samples within the high-risk group displayed a similar expression pattern as the stage II 

samples in the same group yet were different from the stage I patient samples within the low-risk 

group. This implies that this PSAT1-associated gene signature for EGFR mutant lung cancer may 

predict high-risk groups within stage I patients. 

The probes and their corresponding genes involved in relapse-free and overall survival 

prediction were summarized in Table 8 with their statistical significance (p-value) and contribution 

to cross-validation (% CV support). We also added coefficients of each probe (wi) used in survival 

risk score calculation. Probes/genes with positive coefficient indicate that higher expression is 

correlated with shorter survival, whereas negative coefficient implies the higher expression is 

associated with longer survival. Therefore, when looking at the sign of coefficients, we observed 

that down-regulated genes upon PSAT1 silencing possessed positive coefficients and up-regulated 

genes had negative coefficients, corroborating the findings above that PSAT1-associated gene 

signature for EGFR mutant lung cancer is associated with poorer outcomes. 
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Figure 47. PSAT1-associated genes for EGFR mutant lung cancer are found to be 

associated with poorer clinical outcomes. (A-B) Cross-validated Kaplan-Meier Curve 

and log-rank statistics based on permutation (i) and cross-validated ROC curve with AUC 

value (ii) for A) overall survival analysis and B) relapse-free survival analysis in patients with 

EGFR mutant lung cancer. ROC: Receiver Operating Characteristics; AUC: Area under 

respective ROC curve.  

B 

(i) 

(i) 

(ii) 

(ii) 
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Figure 48. PSAT1-associated genes are able to discriminate a high-risk relapse group within stage I EGFR-mutant 

lung cancer patients from the GSE31210 dataset. RFS: Relapse-free Survival. Color key (Blue, Red)→ (-2,2). 
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Table 8.   Probe list of genes identified in the relapse-free survival and overall survival analysis of EGFR mutant patients’ 

samples. Shown are the Cox proportional hazards models (p≤0.05), %CV support: cross-validation, and Weight (wi): coefficient 

of each probe used of survival risk score calculation.  

EGFR mutant Tumor (n=127) Relapse-Free Survival Overall Survival 

Genes Probe ID p-value % CV Support Weights (wi) % CV Support Weights (wi) 

CFD 205382_s_at 2.055E-04 100 -0.114579 100 -0.155391

FILIP1L 1554965_at 9.436E-03 100 -0.015713 96.85 -0.019086

GPRC5A 212444_at 5.962E-03 100 -0.069177 100 -0.097158

GPRC5A 235563_at 5.228E-03 100 -0.08264 98.43 -0.113706

HBEGF 244857_at 2.611E-04 100 -0.030123 100 -0.038612

MCM2 202107_s_at 5.760E-05 100 0.064114 100 0.090761 

MMP15 243883_at 100 0.029494 

PAICS 201013_s_at 6.360E-05 100 0.044286 100 0.059939 

PSAT1 220892_s_at 4.256E-03 100 0.063036 98.43 0.088233 

PSAT1 223062_s_at 1.716E-03 100 0.088942 92.91 0.121965 

SCEL 1554921_a_at 1.656E-02 100 -0.070521 98.43 -0.107053

SCEL 232056_at 5.110E-03 100 -0.093097 100 -0.136887

SFN 209260_at 2.136E-04 100 0.054471 100 0.073341 

SFN 33322_i_at 6.670E-05 100 0.034709 100 0.046443 

SFN 33323_r_at 1.390E-03 100 0.040225 100 0.053199 

SLC39A4 219215_s_at 1.350E-02 100 0.025303 98.43 0.037955 

TYMS 1554696_s_at 8.194E-04 100 0.060664 100 0.083552 

TYMS 202589_at 2.288E-03 100 0.086638 100 0.119874 

UHRF1 225655_at 2.998E-02 96.85 0.103476 1.139E-02 100 0.144022 

CDCA7 224428_s_at 6.952E-03 100 0.070623 

PAICS 201014_s_at 1.116E-03 100 0.048539 

BTG2 201236_s_at 3.605E-02 96.06 -0.04939

GPRC5A 203108_at 2.229E-02 100 -0.039503

NETO2 218888_s_at 2.223E-02 100 0.04869 

NETO2 222774_s_at 4.979E-02 42.52 0.065235 

JAG1 229924_s_at 2.418E-02 99.21 -0.024027

ANKRD22 238439_at 2.015E-02 100 0.044862 
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We performed a literature search for reported function and/or connection of our survival 

genes in lung cancer and summarized these findings in Table 9.  We observed that shPSAT1-

down-regulated genes (conversely increased in tumors) were associated with poor patient outcome 

and tumor progression and involved in various oncogenic processes, including cell cycle 

progression, proliferation, migration, and invasion. On the other hand, shPSAT1-up-regulated 

genes (conversely decreased in tumors) have been linked to good prognosis and played roles in 

inhibition of cell proliferation, migration, and invasion. Among these genes, BTG2 (B-cell 

translocation gene 2) and GPRC5A (G Protein-Coupled Receptor Class C Group 5 Member A) 

have already been accepted as tumor suppressors and GPRC5A acts as a negative regulator of 

EGFR signaling in NSCLC cells (3, 32, 34). However, we were unable to find the relationship 

between these genes and EGFR mutant lung tumors in the current literature, implying the novelty 

of our PSAT1-associated genes in EGFR mutant lung cancer. 
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shPSAT1-down-regulated Genes (increased in tumors)  

PSAT1 • Shorter overall survival in NSCLC (1, 2) 

• Cell proliferation, cell cycle progression and tumor growth in vivo (1) 

• Shedden_Lung_Cancer_Poor_Survival_A6 (4) 

TYMS • Associated with advanced stage, lymph node metastasis, and 
vasculature invasion in lung adenocarcinoma (8) 

• Shedden_Lung_Cancer_Poor_Survival_A6 (4) 

SFN • Increased expression in NSCLC by hypomethylation of promoter 
and further reduced methylation with progression (10, 11) 

• Early-stage lung adenocarcinoma marker for progression (12) 

• Role in oncoprotein stabilization (13) 

SLC39A4 • Associated with increased tumor size, regional lymph node 
metastasis, and poor patient outcome (14) 

• EMT 

UHRF1 • Poor overall survival in lung adenocarcinoma(23) 

• Role in regulation of epigenetic modulation during DNA duplication 
in S-phase 

• Hypomethylation of UHRF1-related genes 

MMP15 • Associated with lymph node metastasis, tumor stage, and intra-
tumoral microvessel density (24) 

• EMT via degrading adherens and tight junction proteins (25) 

NETO2 • Shorter overall survival in lung adenocarcinoma (26) 

• Shedden_Lung_Cancer_Poor_Survival_A6 (4) 

ANKRD22 • Relapse and shorter overall survival in NSCLC (27) 

• Cell proliferation via increasing the expression of E2F1 

MCM2 • Shorter overall survival and progression-free survival in lung 
adenocarcinoma (29) 

• Cell proliferation, cell cycle, and migration (30) 

PAICS • Disease progression and poor prognosis in lung adenocarcinoma 
(31) 

• De novo purine biosynthesis, cell proliferation, invasion, and 
modulation of pyruvate kinase activity 

• Shedden_Lung_Cancer_Poor_Survival_A6 (4) 

CDCA7 • Shorter overall survival 

• Involved in a variety of oncogenic processes (37) 

                             (Continued) 

Table 9. The role of genes found by relapse-free and overall survival analysis in NSCLC. 
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shPSAT1-up-regulated genes (decreased in tumors) 

BTG2 • Hypermethylation of promoter is associated with shorter overall 
survival (3) 

• Inhibition of cell proliferation and invasion and PI3K/AKT signaling 
pathway 

HBEGF • Highly expressed in subgroup of lung cancer and associated with 
advanced tumor growth (7) 

• Patients with high serum level tend to longer progression-free and 
overall survival (21) 

JAG1 • Better overall survival rate (22) 

CFD NA 

SCEL • Shedden_Lung_Cancer_Good_Survival_A4 (4) 

GPRC5A • Low expression is associated with worse prognosis and advanced 
TNM stage(32) 

• Negative modulator of EGFR signaling in NSCLC cells and 
inhibited by EGFR-dependent phosphorylation(33, 34) 

• Shedden_Lung_Cancer_Good_Survival_A4 (4) 

FILIP1L • Down in lung cancer by DNA methylation (35) 

• Inhibition of cell migration 

• Reduced nuclear β-catenin expression (36) 

 

Table 9. Continued 
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PSAT1-associated gene signature is unable to predict the risk groups in other NSCLC 

tumors 

 In addition to EGFR-mutant lung tumors, the GSE31210 microarray dataset also harbors 

ALK-fusion positive, KRAS mutant, and EGFR/KRAS/ALK wild-type tumor samples with their 

corresponding clinical information. Therefore, we investigated whether the predictive ability of 

PSAT1-associated gene signature is specific to EGFR mutant lung cancer or applies to NSCLC 

tumors with other oncogenic drivers. Therefore, we performed survival risk prediction analysis for 

KRAS mutant and EGFR/KRAS/ALK wild-type tumors as described above.  Survival analysis for 

ALK-fusion positive only tumors was excluded due to the limited sample size (n=10).  

EGFR/KRAS/ALK wild-type tumors were identified as EGFR/KRAS wild-type so as to not lead to 

confusion.  

Expression profiles of JAG1, BTG2, ANKRD22, GPRC5A, and ALOX5 genes in KRAS 

mutant tumor and ALOX5 expression in EGFR/KRAS wild-type tumor resulted in the Kaplan-Meier 

overall survival curve construction (Fig. 49A and C, respectively). However, these genes were 

unable to separate the high-risk groups from the low-risk groups in neither KRAS mutant tumor nor 

EGFR/KRAS wild-type tumor. Kaplan-Meier relapse-free survival curves were generated from the 

expression profile of SCEL, MMP15, JAG1, BTG2, and ANKRD22 in KRAS mutant tumor and 

PSAT1 and SFN in EGFR/KRAS wild-type tumor (Fig. 49B and D, respectively). Although we 

observed better separation between high-risk and low-risk groups for the relapse-free survival 

curve in both KRAS mutant and EGFR/KRAS wild-type tumors compared with overall survival 

curves, they did not reach statistical significance.   
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Figure 49.  Survival risk predictions with the identified PSAT1-associated genes 

from EGFR mutant lung cancer against other NSCLC tumors. (A-D) Cross-validated 

Kaplan-Meier Curve and log-rank statistics based on permutation for overall survival 

analysis in patient with A) KRAS mutant and C) EGFR/KRAS wild-type tumor and B) 

relapse-free survival analysis in patients with KRAS mutant and D) EGFR/KRAS wild-

type tumor. 

A B 

C D 
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Identification of potential PSAT1-associated metastatic gene signature 

The PSAT1-associated gene signature we have described is mainly dominated by early-

stage EGFR mutant lung cancer transcriptomic profiles due to the presence of a high number of 

stage I patients in GSE31210 (N=103) and GSE27262 (all stage I tumors). These datasets may 

inform us to the relevance of this PSAT1-associated gene signature for EGFR tumor initiation and 

early progression, but at the same time, these may hamper the identification of potential PSAT1-

associated genes involved in late-stage tumor progression and metastasis as these microarray 

datasets had a limited number of stage-III and even fewer stage IV samples. Therefore, we decided 

to analyze the GSE14107 microarray dataset, which encompasses transcriptomic profiles of the 

PC9-parental line and the PC9-BrM3 brain metastatic sublines (172). 

We hypothesized that PSAT1-associated metastatic genes would be upregulated in PC9-

BrM3 and correlate with down-regulated genes in our PSAT1 silencing RNA-seq results and vice 

versa. To identify these genes, the GSE14107 microarray dataset was retrieved by BRB-ArrayTool 

as described before. Then, differentially expressed genes between PC9 and PC9-BrM3 cells were 

determined by class comparison plugin based on the same criteria used before: 1.4 fold- change 

and p≤0.05. Common genes between groups were determined by Venn diagram drawing webtool 

(http://bioinformatics.psb.ugent.be/webtools/Venn/).  

As shown in Figures 50A and B, 51 genes from the sh-PSAT1-down-regulated gene list 

and 30 genes from the shPSAT1-up-regulated gene list were identified as potential PSAT1-

associated metastatic genes. To confirm these findings visually, we extracted the differential 

expression profile of these genes between PC9-P and PC9-BrM3 cells from GSE14107. After 

performing cluster analysis, heatmaps were generated by dChIP.  Figures 50C and D, respectively, 

demonstrated the up-regulation of genes in PC9-BrM3 from the shPSAT1-down-regulated gene list 

and down-regulation of genes in PC9-BrM3 from the shPSAT1-up-regulated gene list. Interestingly, 

PSAT1 was one of the genes that increased in PC9-BrM3 cells, further supporting our hypothesis 

that these genes may contribute to PSAT1’s metastatic potential in PC9 cells. 

  

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 50. Potential PSAT1-associated metastatic genes are obtained from the 

differentially expressed genes between PC9-parental and PC9-BrM3 sublines. (A-B) 

Venn diagram displaying the number common genes in A) shPSAT1-down-regulated list 

and B) shPSAT1-up-regulated list. (C-D) Heatmaps displaying the expression profile of 

the common genes identified from C) Venn diagram in A and D) Venn diagram in B. Color 

key (Blue, Red)→(-2,2). 

A B 

D 
C 



134 
 

Discussion 

PSAT1 expression is elevated in many types of cancer, including NSCLC and associated 

with poor patient outcomes (1, 2, 44). While its metabolic function within SSP activity contributes 

to cell proliferation and tumor growth, oncogenic signals may promote alternative functions that 

may promote tumor progression; particularly as nuclear localization of PSAT1 in EGFR-activated 

lung cancer cells was observed in our study. To gain better insight into the role of PSAT1 in 

tumorigenesis and identify potential alternative activities, genome-wide expression profiling by 

RNA-seq technology was performed. Differentially expressed genes were intensely interrogated 

using bioinformatics tools for comparisons with other gene expression datasets. 

Inhibition of serine biosynthetic pathway impacts several metabolic pathways, including 

folate, glutathione, and nucleotide biosynthesis (Fig. 2) (15, 20, 40, 45). PSAT1 silencing led to 

down-regulation of genes involved in these pathways and reduced anchorage-independent growth, 

which was partially restored by downstream metabolites supplementation. These findings support 

a metabolic function for PSAT1 within the serine biosynthetic pathway. PSAT1 is also implicated in 

the inhibition of GSK3β dependent phosphorylation and proteasomal degradation of target proteins 

(Fig. 5)(1, 43, 69).   In addition, PSAT1-mediated stabilization of cyclin D1 promotes E2F 

transactivation in NSCLC cells and consistent with this finding, loss of PSAT1 was found to reduce 

the expression of E2F target genes (1). β-catenin was another potential target for PSAT1/GSK3β 

pathway and implicated in EGFR-mutant lung tumorigenesis (43, 176, 178).  Although our gene 

expression analysis was unable to demonstrate how PSAT1 loss alters β-catenin transactivation, 

reduction in the total and nuclear β-catenin level and luciferase activity corroborates these previous 

findings that PSAT1 may be involved in the regulation of β-catenin stability. Taken together, these 

suggest that PSAT1 loss mediated gene expression changes support known tumorigenic functions 

of PSAT1. 

Loss of PSAT1 severely affects the cell motility of EGFR-activated cells, as shown in 

Chapter 2. Through exploring gene expression alterations involved in cell migration, we observed 

down-regulation of genes involved in actin cytoskeleton arrangement in PSAT1 silenced cells. 

Among these genes, expressions of FHOD1, TMSBX4, and S100A4, which are well-known actin-
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associated proteins involved in actin fiber formation and cell migration, were assessed and 

validated as the downstream targets of PSAT1. However, their role in PSAT1-mediated cell 

migration requires further investigation. 

Nuclear localized metabolic enzymes, including PDC, ACLY, α-KGDH, are involved in 

epigenetic regulation via providing substrate for histone modifications (122, 124, 127). Accordingly, 

finding nuclear PSAT1 in EGFR activated lung cancer cells and previous reports showing the 

involvement of PSAT1 in epigenetic regulation prompted us to explore the differentially regulated 

genes located within certain chromosomal regions (46, 136).  Twenty-nine genes located in 

Chr18p11 were found to be down-regulated upon PSAT1 silencing. Real-time PCR analysis of 

seven out of eight genes verified as PSAT1 down-stream targets, implying a putative long-range 

gene expression regulation by PSAT1 within this genetic locus. Further investigation is also 

required to elucidate any involvement of PSAT1-mediated epigenetic regulation in this region. 

Availability of gene expression datasets from EGFR mutant lung cancer and the use of 

publicly available bioinformatics software for expression analysis provided us the opportunity to 

examine the clinical significance of a PSAT1-associated gene signature. We found twenty-five 

PSAT1 associated genes linked to EGFR-mutant lung cancer from the analysis of six different 

patient-derived datasets. Survival prediction analysis found that a subset of genes within this list 

significantly predicts overall and relapse-free survival in EGFR-mutant NSCLC patients. Consistent 

with this, the expression pattern of these genes in the stage I high-risk group is similar to that 

observed in the stage II high-risk group. On the other hand, this signature fails to predict other 

NSCLC types of tumors' patient outcomes. However, at this time, the limited number of KRAS 

mutant tumors analyzed precludes us from making a definitive conclusion that this signature is 

specific to EGFR mutant tumors.  

As early-stage cancers dominate the gene signature obtained from human EGFR mutant 

lung tumors, analysis of genes involved in late-stage tumor progression and metastasis is limited. 

Therefore, differentially expressed genes between parental PC9-P and brain metastatic PC9-BrM3 

were extracted from the Nguyen et al. study (172). Comparative analysis with RNA-seq data found 
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that 18.2 % of shPSAT1-down-regulated and 14.2% of shPSAT1-upregulated genes displayed the 

same pattern between metastatic versus parental PC9 cells and were defined as a potential 

PSAT1-associated metastatic gene signature. PSAT1 and PSAT1-mediated actin-related proteins, 

including S100A4, SMTN, and CALB2, were found within this list, supporting the notion that PSAT1 

contributes to cell motility via regulating the actin cytoskeleton. Thus, these findings suggest the 

putative involvement of PSAT1 in the metastasis of EGFR mutant lung cancer.  

In summary, these studies examined genome-wide expression changes upon PSAT1 

silencing using gene profiling and bioinformatics approaches. Our analysis corroborated previous 

findings on the role of PSAT1 within the serine biosynthetic pathway in regulating E2F activity and 

β-catenin protein expression/transcription activity. We also validated PSAT1’s impact on actin-

related genes as F-actin stress fiber formation was restored by re-expression of PSAT1. 

Comparative analysis of our genomic profiling against public gene expression data yielded a 

PSAT1-associated gene signature with prognostic value in EGFR-mutant NSCLC patient 

outcomes. 

 

 

 

  



137 
 

CHAPTER 4 

CONCLUSION & FUTURE STUDIES 

Investigation into the oncogenic function of PSAT1 has been relatively limited to general 

phenotype analysis in response to silencing or ectopic expression in tumor cells. Therefore, the 

complete mechanism(s) for the tumor-promoting activity of PSAT1 remains elusive. Through 

biochemical and genomic approaches, this work highlights a novel function for PSAT1 in EGFR-

mediated lung tumorigenesis.  

Results supportive of a non-canonical function of PSAT1 

In this study, we initially assessed PSAT1’s metabolic contribution to cell migration through 

metabolite rescue upon PSAT1 loss. Separately, we also compared PSAT1’s cell motility effects to 

those caused by PHGDH silencing. We found that metabolite supplementation failed to rescue the 

migration defect due to PSAT1 suppression and loss of PHGDH significantly impacted cell motility 

to a lesser extent than PSAT1 depletion (Chapter 5, Fig. 55). More notably, unlike PSAT1 silencing, 

depletion of PHGDH did not affect nuclear PKM2 translocation (Chapter 5, Fig. 54). Taken together, 

we postulate that PSAT1 differentially contributes to EGFR-mutant lung cancer cell motility through 

a non-canonical function, potentially facilitating nuclear PKM2 localization and activity. 

EGFR mutant lung cancer preferentially metastasizes to the brain and bone (204-207). 

Due to the blood-brain barrier, serine biosynthesis in neuronal cells is crucial and targeting SSP 

activity could have detrimental side effects (15). Our bioinformatic analysis indicated elevated 

PSAT1 expression in a brain-metastatic subline (PC9-BrM3) of EGFR-mutant NSCLC. Further, our 

findings suggest that other activities beyond PSAT1’s metabolic activity may be required for cell 

migration. Therefore, it is crucial to elucidate any non-canonical function(s) of PSAT1 in cell 

migration and the metastatic potential of PC-BrM3 cells. Targeting these PSAT1 functions may 
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prove to be a therapeutic option to suppress brain metastasis in EGFR-mutant lung cancer 

patients. 

Potential mechanisms by which nuclear PSAT1 may mediate gene regulation 

This study has demonstrated that the EGFR signaling facilitates the nuclear localization of 

PSAT1.  Nuclear localization of PSAT1 appears independent of PKM2 function (Chapter 2, Fig. 15) 

and elucidating the mechanism(s) which facilitate PSAT1 translocation is currently ongoing. Yet, 

we propose a model by which PSAT1 may exert its nuclear activity (Fig. 51). 

Catalytic-dependent pathway 

Similar to PSAT1, we also observed activated EGFR-dependent nuclear localization of 

PHGDH (Chapter 5, Fig.54). As both SSP enzymes are driven to the same cellular compartment, 

we speculate that nuclear PHGHD and PSAT1 catalytic activity may influence the cellular 

epigenetic landscape by producing key metabolites required for epigenetic modifiers (Fig. 51A). 

Specifically, α-KG serves as a substrate for both the Jumonji C domain containing lysine 

demethylases (KDM2-7) and ten-eleven translocation hydroxylases (TET1-3) that mediate histone 

and DNA demethylation, respectively (204). In support of this, epigenetic regulation by PSAT1-

derived α-KG is required for the pluripotency of mouse embryonic stem cells (136). Thus, we 

postulate that nuclear α-KG production through concerted PHGDH and PSAT1 activity leads to 

hypomethylation of DNA and histones. While less likely, alternatively, nuclear PHGDH could 

metabolize α-KG for the production of the oncometabolite 2-HG. As 2-HG competitively inhibits the 

KDM and TET enzymes, this would lead to histone and DNA hypermethylation. Although PHGDH 

derived 2-HG has been reported in breast cancer cells, it is still unclear whether the level of 2-HG 

produced is sufficient to impact the epigenetic landscape in these cells (135).  As described in 

chapter 1, there are several examples of metabolic enzymes contributing to histone modifications 

due to nuclear localization and local substrate production (122, 126, 127); therefore, it is plausible 

that nuclear-localized PHGDH and PSAT1 may act to produce metabolites that impact the 

epigenetic landscape in these lung cancer cells. This potentially would lead to differential gene 
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expression across a large chromosomal area, similar to what we observed for the 18p11 

cytogenetic locus.
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Figure 51. Schematic representation of putative nuclear PSAT1 function(s) in EGFR-

activated cells. A) Catalytic-dependent nuclear PSAT1 function. Increased α-KG 

production may lead to both histone and DNA hypomethylation via activation of enzymes: 

KDM and TET. Conversely, PHGDH-mediated 2-HG production that would inhibit these α-

KG-dependent enzymes and result in hypermethylation B) Catalytic-independent nuclear 

PSAT1 function.  PSAT1 contributes to gene regulation through interaction with other 

transcription factors (TF) or nuclear PKM2. KDM: Lysine demethylase; TET: ten–eleven 

translocation hydroxylases. 
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Catalytic-independent pathway   

PSAT1 may also exert a nuclear function as part of a transcriptional complex, similar to 

that reported with PKM2 and β-catenin (Fig. 51B)(113). As both PSAT1 and PKM2 localize to the 

nucleus in EGFR-activated cells, we can question whether nuclear PSAT1 may influence gene 

expression via interacting with PKM2. 

In short, our findings demonstrate the nuclear localization of PSAT1 in both  EGF-

stimulated EGFR-WT A549 and  EGFR-mutant PC9 NSCLC cell lines, but elucidation of its nuclear 

function as it relates to tumor progression requires further investigation. Our initial future plans are 

to generate cells expressing PSAT1 catalytically inactive and/or nuclear localization deficient 

mutants to explore effects on nuclear metabolism, histone modifications, and interacting proteins 

within the nucleus. The differentially expressed genes from the RNA-seq data (Chapter 3) can 

serve as read-outs to delineate the metabolic vs. non-metabolic and cytosolic vs. nuclear function 

of PSAT1 in gene regulation. For example, UHRF1 (Ubiquitin-like, with PHD And Ring finger 

domains 1) is one of the EGFR linked PSAT1 associated genes, which is down-regulated upon 

PSAT1 silencing. UHRF1 functions as an epigenome adaptor protein that can recognize hemi-

methylated DNA and methylated histones to recruit DNA methyltransferase 1 and histone 

methyltransferase (205, 206). Several reports demonstrated the involvement of UHRF1 in silencing 

tumor suppressor genes by DNA hypermethylation. FILIP1L (Filamin A interacting protein 1 like) 

and BTG2 within the shPSAT1-upregulated gene list act as tumor suppressors and are decreased 

in lung tumors by promoter hypermethylation (3, 35, 36). Thus, we can ask whether UHFR1 plays 

a role in PSAT1-mediated epigenetic regulation and whether the upregulation of these tumor 

suppressor genes is a result of DNA hypomethylation through using DNA immunoprecipitation 

(DIP)-PCR or DIP-seq analysis.  

A potential role for PSAT1 in immune modulation through regulating the protein secretory 

pathway  

We have so far focused on the intrinsic oncogenic function(s) of PSAT1 in EGFR-activated 

NSCLC and demonstrated its effects on anchorage-independent growth, cell migration, and actin 
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cytoskeleton rearrangements. However, GO analysis of the transcriptomic data in Chapter 3 also 

suggest a potential extrinsic function for PSAT1. 

According to GO_BP analysis, genes involved in immune response and leukocyte 

migration/chemotaxis were upregulated upon PSAT1 silencing (Chapter 3, Table 5). In addition, 

exocytosis, endocytosis, and secretion are other biological processes observed to be regulated by 

PSAT1 and tumor cells routinely utilize these mechanisms to modulate the tumor microenvironment 

(207, 208). The cellular component analysis found up-regulated genes whose protein products are 

localized in the Golgi, within the membrane and lumen of vesicles, and within secretory 

membranes, suggesting a change in vesicle-mediated transport and secretion. While it is hard to 

determine the extrinsic activity of PSAT1 by analyzing intrinsic transcriptomic profiles, these studies 

suggest, at the least, that loss of PSAT1 may alter the secretory pathway in tumor cells.  

Immunotherapy yields promising results if it is applicable to the patients. Immune 

checkpoint inhibitors (ICI) have become the part of the therapy for NSCLC patients, but EGFR 

mutant lung cancer patients are excluded from this treatment since EGFR mutant patients have 

limited responses to ICI treatment (209). Thus, it is intriguing to investigate how tumoral PSAT1 

may modulate the tumor microenvironment and whether targeting PSAT1 activity may sensitize 

EGFR mutant lung tumors to ICI treatment.  

Potential role in resistance to EGFR-TKI therapies 

Although patients with EGFR-activating mutations exhibit clinical responses to EGFR-TKI 

treatments, the development of resistance typically occurs within a year (98). A secondary mutation 

at T750M accounts for 50% of these cases. Mutations in genes involved in downstream pathways 

or activation of other RTKs represent other potential mechanisms that cause recurrence. Therefore, 

targeting resistance mechanisms within EGFR signaling underscores the rationale for current 

combination therapy research. 

 Recently, targeting metabolic pathways has become a strategy in combination therapies. 

Dong et al. demonstrated that PHGDH was upregulated in erlotinib resistance cells and inhibition 
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of activity via either inhibitor or silencing induces sensitivity (47). Another study supports this via 

ectopic expression of PSAT1 in EGFR mutant HCC827 NSCLC cells, which induced resistance to 

EGFR-TKI treatment (210).   A xenograft study with EGFR mutant lung cancer cells demonstrated 

that combination therapy with a glutaminase (GLS) inhibitor enhances the anti-tumor activity of 

erlotinib (102). Therefore, it is intriguing whether targeting PSAT1 function together with EGFR-TKI 

improves patients’ outcomes as PSAT1 is the connection between both serine synthesis and 

glutaminolysis.  

Findings that yield new questions 

• PKM2 was identified as a PSAT1-associating protein in NSCLC cells and required PSAT1 

expression for translocation into the nucleus upon EGFR activation. Interestingly, it is still 

unclear whether this interaction is completely responsible for the nuclear localization of 

PKM2. Separately, loss of PSAT1 could impact EGFR signaling, including ERK, that is 

involved in mediating PKM2 nuclear localization. GPRCA5 is upregulated upon PSAT1 

loss and is associated with a better overall and relapse-free survival rate of EGFR mutant 

lung cancer. A previous study reported that loss of GPRCA5 expression was associated 

with poor patient outcomes in NSCLC, as it functions as a tumor suppressor in lung 

tumorigenesis (32). Loss of GPRCA5 expression promotes EGFR signaling activation, 

which is lost by GPRCA5 restoration (34).  Therefore, we speculate that PSAT1 may 

promote EGFR signaling via suppressing GPRC5A expression. 

• Nuclear PKM2 is required for EGFR-induced β-catenin transactivation of target genes 

involved in cell proliferation, the Warburg effect, and cell invasion in various tumor cell 

types (113, 158). In our experimental settings, loss of PSAT1 led to decreased β-catenin 

expression and nuclear PKM2 localization. Nuclear acetyl-mimetic PKM2 re-expression 

failed to restore β-catenin expression in PSAT1-depleted cells, indicating that regulation of 

β-catenin expression is independent of nuclear PKM2 function. As the restoration of 

nuclear PKM2 partially rescued the migration defect due to PSAT1 loss, it is intriguing 

whether reduced β-catenin expression separately impacts cell motility. 
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• Co-IP analysis with recombinant proteins demonstrated the direct interaction between 

PSAT1 and PKM2, but not PKM1 (Chapter 2). Furthermore, we found that the pyruvate 

kinase activity of recombinant PKM2, but not PKM1, increases in the presence of active 

PSAT1 (Chapter 5, Fig. 52). PSAT1 further induces recPKM2 activity in the presence of 

allosteric activators: fructose 1,6-bisphosphate (FBP) and serine (Chapter 5, Fig. 53). 

These results indicate that PSAT1 has a functional consequence on PKM2 activity, at least 

under these conditions. However, loss of PSAT1 did not lead to reduced cellular pyruvate 

kinase activity in two NSCLC cell types. This could be due to saturating conditions of PKM2 

allosteric regulators and maybe context-dependent or environment-specific (i.e., limiting 

nutrient conditions). It should also be noted that the activity of PSAT1 was not assessed in 

the presence of PKM2.  It is possible that PSAT1 activity may also be affected by PKM2, 

as PSAT1 could be a protein substrate for PKM2’s protein kinase activity.  

Summary 

 In this dissertation, I investigated a pro-tumorigenic function for PSAT1 that may be beyond 

its activity within the serine biosynthetic pathway. For this, I employed two independent discovery 

methodologies: identification of PSAT1 interacting proteins by GST-pull down coupled MS analysis 

and RNA-seq profiling. PSAT1 interacts with PKM2 and induces recombinant PKM2 pyruvate 

kinase activity in vitro, but the disruption of this interaction by PSAT1 silencing does not impact the 

cellular pyruvate kinase activity in NSCLC cells. Yet, PSAT1 is required for the EGFR-mediated 

nuclear localization of PKM2.  

PSAT1 loss impairs anchorage-independent growth and cell migration in EGFR-mutant 

NSCLC cells. Mechanistic studies using a variety of rescue experiments demonstrated that 

anchorage-independent growth requires the metabolic function of PSAT1 but not nuclear PKM2 

activity. On the other hand, nuclear PKM2 contributes to PSAT1-mediated cell migration in EGFR-

activated cells. Although my results suggest the involvement of a non-canonical function for PSAT1 

in cell migration, rescue studies using a catalytically inactive, localization-dependent PSAT1 mutant 

are currently ongoing to unravel the full mechanism. 
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RNA-seq analysis corroborates the phenotypic analysis of PSAT1 loss and provides 

molecular insight about genomic changes that are regulated by PSAT1. For example, I found 

differential expression of genes involved in actin cytoskeleton rearrangement that have defined 

impacts on cell migration, which was confirmed by alterations in F-actin formation.  Lastly, I 

identified a PSAT1-dependent gene signature that had prognostic value for patient outcomes in 

EGFR-mutant NSCLC. 

In conclusion, I postulate that PSAT1 has a novel function that contributes to EGFR-

mediated lung tumorigenesis beyond its metabolic activity in SSP. Our findings in this study will 

guide us as we continue to dissect the contribution of both the canonical and/or non-canonical 

functions of PSAT1 involved in promoting EGFR-mutant NSCLC. 
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CHAPTER 5 

EXTENDED RESULTS DISCUSSED IN CHAPTER 4 

Recombinant PSAT1 enhances pyruvate kinase activity of recombinant PKM2 

Our proteomic study revealed an interaction between PSAT1 and PKM2 (Chapter 2); yet 

a functional role for this interaction on enzymatic activity was unknown. In this small study, we 

investigated the consequence of recombinant (rec-)PSAT1 on the pyruvate kinase activity of rec-

PKM2. We also tested whether rec-PSAT1 would influence the known effects of rec-PKM2 

allosteric activators. We modeled our study according to the protocol described in Chaneton et al. 

(57).  We found that rec-PKM2 activity in vitro increased in a dose-dependent manner in response 

to rec-PSAT1 concentrations and that heat-inactivation abrogated this effect (Fig. 52). As we have 

demonstrated that rec-PSAT1 selectively associates with rec-PKM2, the presence of rec-PSAT1 

had no effect on rec-PKM1 activity (Fig. 52). Therefore, this result indicates that PSAT1 can induce 

PKM2, at least in this in vitro cell-free system.   

To further examine rec-PSAT1’s influence on rec-PKM2, we determined the pyruvate 

kinase activity of rec-PKM2 in the presence of allosteric activators, such as fructose-1,6-

bisphosphate (FBP) or serine, in response to different concentrations of rec-PSAT1. We found that 

the addition of rec-PSAT1 can further activate rec-PKM2 in the presence of the known activator 

FBP (Fig. 53A). In addition, rec-PSAT1 also stimulated rec-PKM2 in the presence of serine (Fig. 

53B). In short, these results demonstrate that rec-PSAT1 induction is specific to rec-PKM2 in vitro 

and may differently regulate rec-PKM2 compared to other known allosteric activators. 
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Figure 52. rec-PSAT1 induces the pyruvate kinase activity of rec-PKM2 but not rec-

PKM1. Pyruvate kinase activity was assessed by quantifying levels of ATP using 

luminescent Kinase-Glo reagent (Promega) after addition of either rec-PKM2 or rec-

PKM1 in the presence of increasing concentrations of rec-PSAT1. To verify requirement 

for active rec-PSAT1, the protein was inactivated via boiling for 10 minutes prior to 

addition to the in vitro reaction. 
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Figure 53. rec-PSAT1 further induces rec-PKM2 activity in the presence of allosteric 

activators. Rec-PKM2’s pyruvate kinase activity was followed by quantifying levels of 

ATP using luminescent Kinase-Glo reagent (Promega) in the presence of A) FBP or B) 

serine and increasing concentrations of rec-PSAT1. Rec-PKM2 activity in the presence of 

the allosteric activator but in the absence of rec-PSAT1 was set to 1.  * , p≤ 0.05 
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Loss of PHGDH does not impact the nuclear localization of PKM2 

As shown in chapter 2, PSAT1 is required for EGFR-mediated PKM2 nuclear localization. 

We then questioned whether other SSP enzymes may also be involved in this regulation. PHGDH, 

the rate-limiting enzyme, was stably silenced in PC9 cells and cell fractionation was performed to 

examine protein localization. Unlike PSAT1, loss of PHGDH did not affect the nuclear localization 

of PKM2 (Fig. 54). However, we also observed the nuclear localization of PHGDH that is dependent 

on EGFR-signaling. This implies that there may be a nuclear requirement for SSP activity in EGFR 

activated NSCLC.   

Next, we performed wound-healing assays to assess the effect of PHGDH loss in cell 

migration. We found that PHGDH depletion resulted in only a slight reduction in cell migration, 

which was considerably less than that observed with PSAT1 loss (Fig. 55). Taken together, these 

results suggest that inhibition of serine biosynthesis via PHGDH depletion may not fully recapitulate 

the loss of PSAT1 phenotype in EGFR-mediated PKM2 nuclear localization and cell migration, 

potentially due to PSAT1’s selective requirement for PKM2 nuclear translocation.  

 

  



150 
 

 

  

Figure 54. Loss of PHGDH does not affect the nuclear localization of PKM2 in PC9 

cells. EGFR-mutant PC9 cells stably expressing Control or PHGDH shRNA were treated 

with 1 µM of erlotinib for 48 hrs. Cytoplasmic and nuclear fractions were examined by 

immunoblot analysis using anti-PKM2 and anti-PHGDH antibodies. OCT1 and α-tubulin 

served as loading controls for nuclear and cytoplasmic compartments, respectively. Shown 

are representative images from three separate experiments. 
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Figure 55. Cell migration is slightly affected upon PHGDH depletion in PC9 cells. 

Wound healing assay of serum-starved PC9 cells expressing Control or PHGDH-specific 

shRNA. Representative images at 0 hr and 24 hr with migrating cells demarcated by white 

continuous lines. Data is presented as migrated area after 24 hours and shown is mean ± 

SE from three independent experiments. * p < 0.005. 
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