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ABSTRACT 

PDE4 INHIBITION: A NOVEL THERAPEUTIC STRATEGY IN LIVER FIBROSIS 

Mohamed Elnagdy 

4/23/2021 

Background: Liver fibrosis is accumulation of extracellular matrix (ECM) proteins due to 

chronic liver injury. Chronic hepatic damage can occur due to multiple causes including, 

alcohol, non-alcoholic steatohepatitis and chronic viral hepatitis. Liver fibrosis is a critical 

problem worldwide due to the extremely high incidence of alcohol associated liver damage 

and chronic viral hepatitis. Moreover, there is no FDA approved therapy for liver fibrosis. 

Activation and transdifferentiation of quiecent hepatic stellate cells (HSCs) to 

myofibroblasts (MFBs) is the main event contributing to liver fibrosis. This process 

involves two phases, the initiation and the perpetuation phases. Hepatocyte injury and 

inflammatory response result in the initiation phase. During this phase, several profibrotic 

mediators (e.g.trasforming growth factor β1 (TGFβ1)) initiate the activation of HSCs. 

Activated MFBs deposit extracellular matrix proteins (ECM), including collagen and 

fibronectin. In perpetuation phase, MFBs proliferate and acquire a contractile/motile 

phenotype.  

Earlier work done by our group showed that spontaneous in culture HSC activation was 

accompanied by an increase in phosphodiesterase 4 (PDE4), a cAMP degrading enzyme. 
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We also showed that PDE4 inhibition by Rolipram attenuated fibrogenic signaling in a bile 

duct ligation liver fibrosis rat model. More recent studies done by our group showed that 

PDE4 inhibition by Rolipram  attenuates CCl4 induced liver fibrosis in C57Bl/6 mice. 

Rolipram decreased collagen deposition as demonstrated by Sirius red staining and 

hydroxyproline assay. We also observed attenuation of markers of HSC activation (α 

smooth muscle actin) and motility/contractility (pMLC and EDN1). Importantly, 

downstream cAMP effectors including, protein kinase A (PKA) and exchange protein 

activated by cAMP (EPAC) were shown to have significant antifibrotic effects. Hence, we 

hypothesized that PDE4 inhibition prevents development of liver fibrosis by attenuating 

TGFβ1-induced activation of HSCs.  

Methods: For in vivo studies, C57Bl6/J mice were subjected to a repeated CCl4 injections 

twice a week for the duration of 4 weeks. One group of mice received Rolipram twice a 

week, day after CCl4 administration. For in vitro studies, LX2 human HSC line was used. 

A group of cells was pretreated with Rolipram and then, recombinant human TGFβ1 was 

added. Cells were collected at early time points (30 and 90 minutes) and late timepoint (24 

hours). RNA was extracted by trizol method from LX2 HSCs and, expression of several 

fibrotic genes was assessed using quintitative RT qPCR. We also made whole cell lysates 

from LX2 cells (late timepoint) using Radioimmunoprecipitation assay buffer (RIPA) 

buffer as well as nuclear and cytoplasmic lysates from early time points. Protein lysates 

were used in western blot analysis to assess expression of relevant proteins as well as early 

TGFβ1 signaling changes. We also performed scratch assay to examine the effect of 

Rolipram on HSC motility/contractility. In chronic CCl4 mouse model, We performed 
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proteomic analysis to examine the affected proteins and pathways by PDE4 inhibition in 

liver fibrosis. 

Statistical analysis was done using one-way ANOVA and unpaired t-test (*p < 0.05, **p 

< 0.01 and ***p < 0.001). 

Results: Proteomic analysis showed a significant effect of PDE4 inhibition on liver fibrosis 

pathways as well as pathways related to cytoskeleton remodeling, cell adhesion and 

motility/contractility. In LX2 cells, Rolipram attenuated TGFβ1-induced HSC activation 

by decreasing phosphorylation of SMAD3 and HSC activation marker (αSMA). Rolipram 

also attenuated TGFβ1-induced HSC motility/contractility by decreasing phosphorylated 

myosin light chain (pMLC) and endothelin-1 expression. Importantly, the effect of 

Rolipram on cell motility was validated by the results of the scratch assay which showed a 

significant decrease in percentage of wound closure at 24 hours. 

Conclusions: These results demonstrate that the PDE4 inhibition attenuates the initiation 

and perpetuation of liver fibrosis thorugh reduction of TGFβ1-mediated HSC activation 

and motility/contractility 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1. Liver histology and functional anatomy: 

As reviewed in [1], hepatic parenchyma is composed of multiple cells, including 

hepatocytes and endothelial cells as well as non-parenchymal cells, including, hepatic 

stellate cells (HSCs) and Kupffer cells (KCs). Hepatocytes are arranged in cords around 

central veins radiating towards a peripheral hexagonal stromal frame forming the classic 

hepatic lobule. At the corners of this lobule exist the portal triad, including; portal vein, 

bile ductule, and hepatic arteriole. Blood and bile flow in opposite directions in the 

hepatic lobule. The bile, secreted by hepatocytes in bile canaliculi, flows peripherally 

towards the bile ductule. The blood entering the hepatic artery and portal vein flows into 

the liver sinusoid toward the central vein. The sinusoid is the liver's microvascular unit 

composed of fenestrated endothelial cell lining separated from hepatocytes by space of 

Disse. This space harbors the hepatic stellate cells which exist in a quiescent phenotype. 

Quiescent HSCs maintain a low-density extracellular matrix for proper exchange of 

nutrients/metabolites between hepatocytes and the bloodstream. 
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As reviewed in [1, 2], hepatocytes have multiple crucial functions to maintain normal 

body homeostasis and physiology. Their functions include protein synthesis and storage, 

metabolic functions, synthetic functions, and detoxification functions. Hepatocytes 

synthesize plasma proteins, e.g., albumin and globulins, as well as fibrinogen, 

prothrombin, and other coagulation factors. They also synthesize lipoproteins for lipid 

metabolism, ceruloplasmin for copper transport, transferrin for iron transport, and 

complement factors that have an important immune function. They are also axial 

metabolic cells involved in carbohydrate metabolism through glycogenesis, 

glycogenolysis, and gluconeogenesis. They synthesize chylomicrons from fats absorbed 

from the intestine and handle serum low density lipoproteins (LDL) and very low density 

lipoproteins (VLDL), and protein metabolism by detoxifying ammonia generated from 

amino acid metabolism into urea through the urea cycle.  Hepatocytes also synthesize 

bile, which is involved in the emulsification of fats, and this is an essential step for fat 

absorption. Hepatocytes also can metabolize and detoxify xenobiotics as well as drugs 

and toxins/toxicants, e.g., insecticides. 

Hepatic stellate cells are the resident mesenchymal cells of the liver. Activation of HSCs 

into contractile myofibroblasts (MFs) generates scar tissue causing fibrosis [3]. Apart 

from hepatic wound healing by liver fibrosis, HSCs have many other functions, 

including, storage of vitamin A as retinol granules, immunoregulation, and regulation of 

portal blood flow [3]. 

Kupffer cells (KCs) are the resident hepatic macrophages derived from circulating blood 

monocytes and are part of the innate immune response [4]. KCs are mainly responsible 
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for the initial response to any hepatic antigen, a microorganism, or a toxin [4]. They have 

a phagocytic function by which they can engulf and process the antigen, then presenting 

its degradation products to T helper cells for activation of a specific immune responses 

against the antigen. KCs also secrete cytokines through which they interact with other 

immune cells and HSCs, initiating their activations [4]. 

The hepatic artery and portal vein are responsible for the blood supply of the liver. The 

blood enters from the portal triad and moves towards the central vein through hepatic 

sinusoids to allow the exchange of substances between hepatocytes and the bloodstream 

through the endothelial cells and space of Disse. Central veins drain in hepatic vein, 

which drains into the systemic venous circulation in the Inferior Vena Cava (IVC) [5]. 

1.1. Introduction to Liver Fibrosis: 

 As reviewed in [6], hepatic fibrosis is a wound healing process characterized by the 

accumulation of extracellular matrix (ECM) due to liver injury. In case of acute or self-

limited injury, transient changes occur with hepatic regeneration and typical hepatic 

architecture restoration. However, if the damage is sustained, fibrosis and scar formation 

outweigh the hepatic regeneration, causing accumulation of scar tissue and fibrosis. This 

results in deterioration of hepatic function and end-stage liver cirrhosis, and can cause 

liver failure or hepatocellular carcinoma. Both liver cirrhosis and hepatocellular 

carcinoma have a poor outcome and high mortality rate. Progression to end-stage liver 

disease can take 5-50 years, depending on multiple factors, mainly genetic and 

environmental. 
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Figure 1. spectrum of liver fibrosis.  

Adopted from: Pellicoro, A., Ramachandran, P., Iredale, J. et al. Liver fibrosis and repair: 

immune regulation of wound healing in a solid organ. Nat Rev Immunol 14, 181–194 

(2014). https://doi.org/10.1038/nri3623 

According to the 2015 national survey on drug use and health, 70.1 % of adults aging 18 

years or older reported that they consumed alcohol regularly in the past year. An 

estimated 88,000 people die from alcohol-related liver diseases annually [7]. An 

estimated 2.7-3.9 million people in the USA have hepatitis C virus (HCV) infection, with 

rates even higher in other countries, e.g., Egypt [8]. The prevalence of chronic viral 

hepatitis due to HCV and HBV (hepatitis B virus) is more than 5 million in the USA. 

Around 75% of HCV patients are unaware of their infection. Chronic viral hepatitis had a 
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mortality rate of around five deaths/100,000 in 2014 [9]. Non-alcoholic fatty liver disease 

occurs in approximately 30% of the US population, about 100 million individuals in the 

US [10]. All the previously mentioned liver diseases are considered causes of chronic 

liver injury, and the usual cause of mortality is liver cirrhosis/liver cell failure on top of 

liver fibrosis. Thus, studying liver fibrosis and finding new drug targets to attenuate its 

progression is extremely important because, as of now, there is no FDA-approved therapy 

for liver fibrosis. 

1.3. Clinical and pathological features of liver fibrosis: 

Liver fibrosis occurs due to ongoing chronic hepatic injury. Many causes lead to liver 

fibrosis, including: alcoholic liver injury, which is the most common cause in the US; 

chronic viral hepatitis (HCV and HBV); obesity-induced liver injury; and toxicant-

induced liver injury. Multiple pathological changes happen due to dysregulated liver 

fibrosis, which leads to the development of liver cirrhosis [6]. Deposition of ECM starts 

in the space of Disse, causing a loss of normal fenestrations existing in the hepatic 

sinusoids, in turn causing impairment of the typical metabolic exchange between the 

blood and hepatocytes in a pathological process called capillarization of the sinusoids 

[11]. Many pathological patterns have been described in liver fibrosis, including: 1) 

bridging fibrosis, which usually happens in chronic viral hepatitis; 2) perisinusoidal 

fibrosis associated with alcoholic and non-alcoholic liver injury; 3) biliary fibrosis or 

periductular fibrosis, which is caused by biliary tract diseases; and 4) centrilobular 

fibrosis which is caused mainly by conditions altering hepatic venous return to the 

systemic venous circulation [12]. 
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As reviewed in [13], liver cirrhosis occurs due to an imbalance between liver 

injury/fibrosis and hepatocyte regeneration. Liver cirrhosis is the most common non-

neoplastic cause of mortality among digestive diseases. Cirrhosis has two stages, starting 

with a compensated phase followed by a decompensated phase.  This process leads to 

portal hypertension and liver cell failure, which can have many clinical manifestations 

including jaundice, esophageal varices, rectal hemorrhoids, spider nevi, and flapping 

tremors. Liver cell failure can end in hepatic coma and death due to the accumulation of 

ammonia in the blood, which is toxic to the CNS. 

1.4. Hepatic extracellular matrix: physiology and pathology 

In normal liver, extracellular matrix (ECM) shows a high dynamic regulation between 

formation and degradation in a process called ECM remodeling. ECM is essential to 

provide structural and functional integrity to hepatic parenchyma [14]. Typically, ECM 

constitutes about 3% or less of the liver tissue and 0.5% of liver weight. ECM includes 

collagen, proteoglycans, laminin, fibronectin, and matricellular proteins [15]. It forms the 

liver tissue framework, including, Glisson's capsule surrounding the liver, portal tracts, 

central veins, and space of Disse. In the space of Disse, a low-density basement 

membrane-like matrix is composed mainly of collagen types IV and VI. ECM also 

contains matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases 

(TIMPs) which are responsible for ECM remodeling [16]. 

During chronic hepatic injury, an imbalance occurs between ECM formation and 

degradation, causing thickening of stromal septae with changes in collagen types 

associated with collagen cross-linking [17]. In the space of Disse, disruption of 
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physiological low-density matrix occurs with the replacement of collagen type IV and VI 

with fibrillary collagen types, such as collagen type I and type III, and fibronectin. This 

leads to alteration of sinusoidal lumen physiology and hepatic function [18]. ECM can 

also modulate HSCs activation and proliferation and promote their growth, activation, 

and migration. Thus, ECM's role in liver fibrosis is believed to be bi-directional. For 

example, integrins are transmembrane receptors with a head domain that binds ECM 

components and cell adhesion molecules [19]. Integrins were shown to modulate and 

interfere with transforming growth factor β (TGFβ) and platelet-derived grown factor 

(PDGF) signaling pathways involved in liver fibrosis in which different integrin families 

were shown to be upregulated [20, 21]. HSCs and endothelial cells were shown to 

express two critical molecules from the ADAM family of integrins, ADAMSTS-13 and 

ADAMSTS-1 [22]. Another important integrin molecule is the Discoidin domain 

receptor 2 (DDR2), activated primarily by collagen types I, II, III, and V, contributing to 

HSC activation and epithelial to mesenchymal transition [23].  

1.5. Liver fibrosis and hepatic stellate cells 

Hepatic stellate cells (HSCs) were identified as the primary fibrogenic cells in the liver. 

Advances in the clarification of HSC biology is the main bridge towards effective 

antifibrotic therapy in the near future. 

The liver is a regenerative organ; however, sustained parenchymal injury leads to the 

activation of wound healing fibrotic process and deposition of extracellular matrix 

(ECM) proteins [6]. Activated HSCs are the main fibrogenic cell population in the liver 

tissue [6]. HSC activation leads to excessive deposition of fibrillary collagen type I and 
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III, showing a 3-10 fold increase in fibrotic liver tissue [18]. Besides collagen, other 

ECM proteins, e.g., Fibrillin, Fibronectin, and sulfated proteoglycans, are also deposited 

in liver fibrosis [18]. HSCs reside in the sub-endothelial space of Disse between the cords 

of hepatocytes and liver sinusoidal endothelial cells, one of the main ECM deposition 

sites during liver fibrosis [3].  

The primary site of injury, which varies according to liver injury, is another site of ECM 

protein-deposition. This leads to the different patterns of fibrosis which were described 

before. 

There are multiple expected pathological outcomes associated with liver fibrosis. ECM 

deposition in the space of Disse impairs the process of solute exchange between the 

hepatocytes and the plasma [11]. Loss of fenestrae in the liver sinusoids in a process 

known as capillarization is the main factor responsible for impaired solute exchange [11]. 

The course of most chronic liver diseases takes decades until advanced fibrosis develops. 

During this course, the patient is usually asymptomatic or has minimal symptoms making 

it hard for early detection [24]. Advanced fibrosis also leads to liver failure, portal 

hypertension, and increased hepatocellular carcinoma risk on top of liver cirrhosis [25].  

1.5.1. Cell biology of liver fibrosis 

The contractile and highly secretory hepatic myofibroblasts (MFBs) are considered the 

primary cells responsible for liver fibrosis [26]. MFBs transdifferentiate from quiescent 

resident primary HSCs as well as from periportal fibroblasts [27]. Quiescent HSCs 

represent 5-8% of cells in the healthy liver contributing to hepatic development, 

regeneration, immune responses, angiogenesis, and vitamin A storage [3]. HSCs can be 
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differentiated from portal fibroblasts morphologically by vitamin A droplets. They can also 

be differentiated genetically by expressing desmin, glial fibrillary acidic protein, L-rat, 

Hand-2, Vimentin, PDGFR-β, cytoglobin, and Reelin [28, 29]. They also differ based on 

the type of ECM protein each produces. HSCs derived MFBs deposit fibrillin positive 

elastin negative ECM while activated portal fibroblasts deposit fibrillin positive elastin 

positive ECM [30]. 

 

Figure 2. Hepatic stellate cell activation and liver fibrosis 

Adopted from: Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005 
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HSCs activation involves two phases, the initiation phase and the perpetuation phase [26]. 

In the initiation phase, upregulation of growth factor receptors and their signaling makes 

the quiescent HSCs more responsive to triggers and injury stimuli. This leads to the 

activation of HSCs in the zones of severe liver injury and inflammation [26]. Perpetuation 

is the process of amplification of the activated HSCs (MFBs) phenotype. This includes 

multiple distinctive features, such as proliferation, contractility, fibrogenesis, and matrix 

deposition [26]. Apoptosis, senescence, or reversion to quiescence may follow 

perpetuation if the underlying injury is resolved early [31]. However, with the persistence 

of injury, an imbalance occurs between the hepatocyte regeneration and healing by fibrosis 

leading to the development of the pathological fibrosis associated with deterioration of 

liver function [32]. 
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Figure.3 HSCs activation involves the initiation and perpetuation process that causes 

HSCs proliferation, contractility, fibrogenesis, and inflammatory signaling.  

Adopted from: Trivedi P, Wang S, Friedman SL. The Power of Plasticity-Metabolic 

Regulation of Hepatic Stellate Cells. Cell Metab. 2021 Feb 2;33(2):242-257. doi: 

10.1016/j.cmet.2020.10.026. Epub 2020 Nov 23. PMID: 33232666. 

Multiple biological factors play a role in the process of HSCs activation, including; 

Transforming growth factor β (TGFβ), Platelet-derived growth factor B (PDGF-B), 

Connective tissue growth factor (CTGF), Vascular endothelial growth factor (VEGF), 

Endothelin-1 (ET-1), Tissue inhibitors of metalloprotease (TIMP) and Matrix 

metalloproteases (MMPs). 
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TGFβ, mainly TGFβ1, is a potent regulator of HSCs proliferation, differentiation, and 

fibrogenesis. TGFβ1 is a homodimer that binds to TGFβ1 receptor forming 

heterotetrameric complexes. Transmembrane receptor serine/threonine kinase propagates 

the signal to downstream intracellular signaling molecules known as SMAD proteins. 

TGFβ1 receptor phosphorylates SMAD2 & SMAD3 proteins, which bind together with 

SMAD4 to form the SMAD complex, which translocates to the nucleus to mediate most of 

the TGFβ1 target effects. The significant impacts of TGFβ1 include 1) upregulation of 

expression of collagen I, II, and IV, fibronectin, and laminin, and 2) downregulation of 

collagenase protease inhibitors such as TIMP1, collagenase, and stromelysin [18, 33]. 

Aside from the induction of collagen synthesis through HSCs activation, TGFβ1 also 

increase HSCs motility/contractility [34]. TGFβ1 was shown to increase phosphorylated 

myosin light chain (pMLC) by induction of myosin light chain kinase and inhibition of 

myosin light chain phosphatase. Phosphorylated myosin light chain protein is an activated 

form which couples with actin filaments and other focal adhesion proteins mediating 

activated HSC motility. TGFβ also induces mitogen‐activated proteinase (MAPK) 

pathways (ErK, p38 MAPK, and JNK) independently of SMADs [35, 36].  Since systemic 

inhibition of TGFβ promotes carcinogenesis, liver or cell type‐specific inhibition of TGFβ 

would be an ideal strategy for liver fibrosis treatment [37, 38]. 
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Figure 4. TGFβ1 canonical signaling pathway.  

Adopted from: Tzavlaki, K., and A. Moustakas, TGF-β Signaling. 2020. 10(3): p. 487. 

PDGF‐B is the most potent mitogen and chemoattractant for HSCs. PDGF acts on PDGF 

receptor β, which is a tyrosine kinase receptor. Quiescent HSCs express αPDGF receptor 

with increased βPDGF receptor expression after HSCs stimulation by TGFβ1 [39, 40]. 

PDGF receptor β is upregulated during the initiation process, and this was shown by studies 

in HSCs in humans and rodents [39, 40], thereby amplifying PDGF-B signaling in HSCs. 

PDGF-B has multiple sources, including HSCs themselves, macrophages, and platelets 

[41]. In murine liver fibrosis models, knocking out PDGF receptor β on HSCs led to 

attenuation of liver injury and fibrosis [42]. PDGF expression was also shown to be 

significantly upregulated after CCl4 administration to rats [43]. 
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Endothelins (ETs) are a group of peptides formed by proteolytic cleavage of precursor 

propeptides by endothelin converting enzymes. ETs act on G protein-coupled endothelin 

receptors, causing many effects that play a significant role in liver fibrosis [44]. ET1 is a 

significant regulator of HSC contractility. It also acts as a potent vasoconstrictor, causing 

increased portal resistance associated with liver fibrosis [45]. It also plays a role in in vitro 

HSCs activation [46]. Studies also showed that endothelins might take part in collagen 

bands' contraction, leading to liver cirrhosis [45]. 

CTGF is an emerging target for antifibrotic drugs. CTGF is a profibrogenic protein 

expressed by HSCs in the injured liver, promoting fibrogenesis, adhesion, migration, and 

cell survival [47]. Inhibition of CTGF by human anti‐CTGF antibodies are in clinical trials 

for pulmonary fibrosis (ClinicalTrials.gov ID #NCT01217632). 

Tissue inhibitors of metalloproteinases (TIMPs) TIMP1 and TIMP2 are produced by 

activated HSCs. TIMP1 has an antiapoptotic effect on HSCs mainly through induction of 

Bcl‐2 antiapoptotic pathway, thus promoting cell survival [48]. HSCs also produce MMP2 

and MMP9, and they disrupt the normal hepatic matrix to be replaced with fibrotic matrix 

[49, 50]. 

VEGF is mainly released from liver sinusoidal endothelial cells and HSCs in the injured 

liver. It induces HSCs proliferation, migration, and collagen production. It also mediates 

angiogenesis, which is a pathogenic process in advanced liver disease. It may also be a 

requirement for liver regeneration [51, 52]. 
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1.6. Cyclic AMP signaling 

As reviewed in [53], cAMP was the first second messenger to be identified and described 

in 1958 [54]. It is generated from ATP by adenylyl cyclase (AC) in response to various 

signaling molecules. There are nine transmembrane adenylyl cyclases (tmAC).  They are 

differentially expressed and regulated to generate cell and stimulus-specific responses 

[55]. Transmembrane ACs are activated upon engagement to G protein-coupled receptors 

(GPCRs).  In 1975, soluble AC was first described in the cytosol of rat testis and was 

later found in the nucleus, mitochondria, and centrioles. Soluble AC activity is regulated 

by intracellular levels of bicarbonate, calcium, and ATP [56].  

Binding of GPCRs to their specific agonists leads to a conformational change. This 

change activates GPCR-bound heterotrimeric αβγ G protein, where GTP replaces GDP 

bound to the alpha subunit. The GTP-bound α subunit dissociates from the βγ dimer. ACs 

are stimulated mainly by Gαs dissociated subunit; however, some ACs are stimulated by 

the βγ complex [57]. Generated cAMP can activate many effector molecules, including 

protein kinase A (PKA), guanine nucleotide exchange factor activated by cAMP (EPAC), 

and cyclic nucleotide-gated ion channels. PKA, the most extensively studied effector, is a 

complex of two regulatory (R) and two catalytic subunits (C). The binding of cAMP to 

two R subunits causes the C subunits to dissociate [58]. PKA acts on many cytosolic and 

nuclear substrates. PKA-mediated phosphorylation regulates the activity of numerous 

metabolic enzymes (e.g., glycogen synthase and phospholipase β2). Regulation of gene 

expression by PKA is achieved by phosphorylation of cAMP response element binding 

protein (CREB), cAMP-responsive modulator (CREM), and activating transcription 
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factor 1 (ATF1). Once phosphorylated, CREB binds to other cofactors, CREB binding 

protein (CBP) and p300, before binding to cAMP response elements on DNA. The 

CREM gene acts as a feedback inhibitor for inducible cAMP early repressor protein 

(ICER) [59, 60]. 

Another critical effector for cAMP is EPAC, with two genes (EPAC1 and EPAC2), and 

three transcript variants for each gene [61]. EPAC, as a cAMP sensor, was discovered 30 

years after the discovery of PKA, in 1998. EPAC2 is mainly expressed in the liver, brain, 

pancreas, and adrenal gland, while EPAC1 is expressed ubiquitously. Binding of cAMP 

to EPAC leads to activation of the Ras GTPases (Rap1 and Rap2), known as cAMP-

regulated guanine exchange factors. In addition to their differential cellular expression, 

subcellular localization of both EPAC1 and EPAC2 determines the specificity of cAMP 

signaling (reviewed in [61]). They serve as interacting partners for multiple proteins and 

regulate numerous functions in various organs and systems, including the digestive and 

immune systems [61].   

cAMP signaling is fine-tuned by a specific group of enzymes known as 

phosphodiesterases (PDEs) [62-64]. PDEs are a large family of ubiquitously expressed 

enzymes responsible for the termination of cAMP signaling through catalyzing cAMP 

hydrolysis reaction to AMP. There are 11 different PDE families (PDE1 to PDE11), and 

they differ in their tissue distribution, substrate specificity, subcellular localization, and 

catalytic properties [62, 64, 65]. They can be grouped according to their substrate 

specificity:  cAMP-specific PDEs, including PDE4, PDE7, and PDE8; cGMP-specific 

PDEs, including PDE5, PDE6, and PDE9; and dual-specificity PDEs including PDE1, 
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PDE2, PDE3, PDE10, and PDE11. Cells might express several PDE isoforms in various 

subcellular locations; however, some cells show relatively abundant expression of 

specific PDEs (e.g., PDE6 in the retina).  Moreover, expression changes and mutations of 

multiple PDE enzymes have been linked to several disease states [66].  

It is essential to point out that the generation of cAMP and downstream signaling is 

specific to the stimulus and cell type. This specificity is ensured by the presence of cell-

specific GPCRs coupled with Gs proteins and AC. Some ACs reside in lipid rafts, while 

others are in various cellular compartments [67]. Additionally, A-kinase anchoring 

proteins (AKAPs) can interact with ACs to regulate cAMP signaling by creating a 

scaffold with PKA and its target [67, 68]. Notably, the fine-tuned and specific cAMP 

signaling is achieved by the co-existence of AC with a particular PDE isoform in a 

scaffold (compartmentalized cAMP signaling). The scaffold ensures PDE spatial, 

temporal, and compartmental downstream signaling activation. It is becoming 

increasingly evident that cAMP signaling uses cellular compartmentalization to 

coordinate the cellular functions under its control. This compartmentalization of cAMP 

was first recognized in the early 1980s in studies on cardiac myocytes. In these studies, 

researchers showed that cAMP levels increased in response to PGE1 and isoproterenol. 

However, only isoproterenol increased contractility [69]. These studies led to the 

hypothesis that the cAMP signaling pathway is organized in specific intracellular 

compartments to regulate its downstream targets and physiological outcomes. Studies 

using fluorescence resonance energy transfer (FRET) to visualize cAMP microdomains 

in a living cell later proved support for this hypothesis [70-72]. A large family of cAMP-

specific PDEs provides additional specificity of cAMP signaling. Several studies using 
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PDE4A, B, and D knockout mice have shown that these enzymes have non-redundant 

roles in various cellular and tissue responses [62, 73-76]. Interistingly, it has also been 

demonstrated that PDE4B plays an essential role in endotoxin-induced TNF production 

and toxicity, while PDE4A and D have no effect [74, 76] 

 

Figure 5. Schematic diagram of cAMP signaling pathway.  

Elnagdy M, Barve S, McClain C, Gobejishvili L. cAMP Signaling in Pathobiology of 

Alcohol Associated Liver Disease. Biomolecules. 2020 Oct 11;10(10):1433. doi: 

10.3390/biom10101433. PMID: 33050657 

1.6. Cyclic AMP and Liver fibrosis 

As reviewed in [53], The antifibrotic effects of cAMP effector molecules PKA and EPAC 

have been demonstrated in various tissue fibroblasts, including HSCs (reviewed in [77-

79]). Early studies have documented that quiescent HSCs have high levels of pCREB, 
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which decreases upon HSC activation and can be restored with activation of PKA [80-83]. 

Our previous studies demonstrated that primary HSCs do not express cAMP degrading 

PDE4 when they are quiescent; however, the expression of three PDE4 subfamilies of 

proteins, PDE4A, B, and D, increases upon the early stage of their activation [63]. Notably, 

culturing freshly isolated rat HSCs in the presence of a PDE4 specific inhibitor 

significantly attenuated the expression of HSC activation markers, αSMA, and Col1a1, and 

prevented their phenotypic change into myofibroblasts [63]. These data strongly suggest 

that the induction of PDE4 and the consequent decrease in cAMP signaling are required 

for HSC activation. We also observed a persistent increase in hepatic PDE4 expression in 

a cholestatic liver injury rat model of fibrosis. We recently examined the expression of 

hepatic PDE4 in livers of severe AH patients with fibrosis and observed a significant 

upregulation of PDE4 expression (both mRNA and protein) in comparison to healthy donor 

livers [84]. Several publications have shown the beneficial effects of cAMP-specific PDE 

inhibitors in attenuating hepatic fibrosis in vivo [85-87].   

cAMP/EPAC signaling as a regulator of fibrosis in different tissues is also well recognized 

[77, 78]. Mechanisms of EPAC mediated regulation of fibrosis include 

activation/differentiation of tissue-resident cells, epithelial-mesenchymal transformation 

(EMT), and recruitment of bone marrow progenitors [77, 78]. TGFβ1, the most potent 

profibrogenic cytokine, decreased EPAC1 expression in fibroblasts [78]. A critical 

mechanism of EPAC-mediated effects on fibroblast activation seems to be mediated by a 

small GTPase, Rho-A kinase (ROCK) [88]. Early studies in HSCs identified Rho-kinase 

as a regulator of actin cytoskeleton reorganization. This cytoskeleton reorganization leads 

to a phenotypic change of HSCs into myofibroblasts [89]. It has also been shown that 
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fibrotic livers from both humans and rodents have decreased levels of EPAC, which 

correlate with increased levels of phospho-Myosin Light Chain (p-MLC), a downstream 

target of ROCK1 [88]. Later studies confirmed that Rho-kinase signaling regulates HSC 

activation and migration [90-92]. Several other studies demonstrated the beneficial effects 

of selective delivery of Rho-kinase inhibitor to HSCs on hepatic fibrosis development in 

vivo [93-95]. EPAC also plays a critical role in liver fibrosis. EPAC1 was decreased, while 

EPAC2 protein was elevated in activated rat HSCs [96]. Stimulation of the EPAC1/Rap1 

pathway reduced the proliferation of HSCs, αSMA expression, and collagen type I and III 

syntheses [96]. Another study reported that EPAC-1 expression decreased in fibrotic livers 

compared to normal livers in the CCl4 mouse model and human fibrotic livers [88]. In the 

same study, administration of prostaglandin E2, a cAMP activator, attenuated platelet-

derived growth factor (PDGF)-induced proliferation and migration of stellate cells by the 

restoration of EPAC1 [88]. The same effect was shown using both EPAC and PKA agonists 

[88]. Notably, PDGF and transforming growth factor-beta (TGFβ1) suppressed EPAC1 

mRNA expression levels in isolated HSCs, with no effect on PKA [88]. It was also shown 

in a study that although PKA did not reduce α-SMA levels; however, it mediates 

phosphorylation of regulatory proteins required for mesenchymal transformation (EMT) 

[97]. EMT is one of the mechanisms leading to fibrosis. Cells of epithelial phenotype 

transition to a mesenchymal phenotype through increases in α-SMA and decreases in E-

cadherin expression. Both PKA and EPAC were shown to attenuate TGF-β-mediated 

reduction in E-cadherin expression [98]. 
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1.6. In vivo models of liver fibrosis 

Multiple in vivo murine fibrosis models made it easier to study liver fibrosis. The choice 

between these models is usually based on which cause of liver fibrosis is examined and 

the study aims/objectives. We will focus on two main categories of these in vivo models: 

hepatotoxin induced models and cholestatic models. 

1.6.1. Hepatotoxin induced liver fibrosis models: 

As reviewed in [99], The most commonly used hepatotoxin to induce liver fibrosis is 

carbon tetrachloride (CCl4). In mice, periodic intra peritoneal administration of CCl4 at a 

dose of 0.5-2 ml/kg body weight 2-3 times per week results in development of highly 

reproducible liver fibrosis within 4-6 weeks. Oral gavage is an alternative administration 

route however, it is associated with high rates of early mortality. CCl4 can be also 

administered by inhalation mainly for induction of liver cirrhosis and portal hypertension 

however, it needs appropriate equipment and operator training. Different mice strains 

show variable susceptibility to CCl4-induced liver fibrosis. BALB/c mice are the most 

susceptible and FVB/N mice are the least susceptible. C57Bl/6 mice are the most 

frequently used in CCl4-induced liver fibrosis models because of the availablility of 

respective knockouts. C57Bl/6 mice show intermediate liver fibrosis in response to CCl4. 

CCl4 is transformed by CYP2E1 to toxic trichloromethyl radical (CCl*3) [100].  This 

radical reacts with nucleic acids, proteins, and lipids, thereby impairing key cellular 

processes resulting in altered lipid metabolism (fatty degeneration and steatosis) and 

decreased protein synthesis. Oxygenation of CCl*3 radical forms trichloromethylperoxy 
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radicals (CCl3OO*) and this leads to aggravation of lipid peroxidation and the 

destruction of polyunsaturated fatty acids. Consequently, Global alteration of membrane 

permeability in all cellular compartments occur causing generalized hepatic damage 

characterized by inflammation, fibrosis, cirrhosis and HCC [100].  

Liver fibrosis in response to CCl4 can be divided into acute injury, early fibrosis and 

advanced fibrosis phases. In acute injury phase, liver necrosis triggers inflammation and 

Kupffer cells activation resulting in secretion of cytokines, chemokines and other pro-

inflammatory mediators [101]. This is followed by proliferation of hepatocytes and non-

parenchymal cells to mediate regeneration at around 48 hours after the first CCl4 

injection [101]. That’s why acute single CCl4 injection can also be used as a model to 

investigate toxic hepatic injury. Significant fibrosis and scarring usually occurs after 2-3 

weeks of CCl4 administration. This is associated with significant induction of profibrotic 

markers. Advanced bridging fibrosis develops usually after 4-6 weeks of CCl4 

administration. Moreover, CCl4-induce fibrosis shows complete resolution within several 

weeks of discontinuation of CCl4 administration [101]. In conclusion, CCl4 model shows 

significant similarity with human liver fibrosis pathology including inflammation, 

regeneration, fibrosis development and regression. 

Other toxicant induced liver fibrosis models include thioacetamide (TAA), Dimethyl 

nitrosamine (DMN) and Diethyl nitrosamine (DEN) models. TAA is bioactivated in the 

liver via CYP2E2 by oxidation producing toxic S-oxide and S-S dioxide radicals. TAA 

can be administered intraperitoneally at a dose of 150-200 mg/kg body weight 3 times a 

week [102]. This leads to significant centrilobular necrosis, elevated liver transaminases 
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and fibrosis within 6 weeks [102]. DMN and DEN are much less frequently used in 

fibrosis research. Their mutagenic and carcinogenic properties cause overlapping and 

mutated signaling pathways leading to difficulty in assessment if profibrotic mechanisms 

in these models [102]. However, it has been described that intraperitoneal injection of 10 

mg/kg body weight of these compounds results in liver fibrosis within 4 weeks [102]. 

1.6.2. Cholestatic models 

Cholestatic biliary epithelial damage is one of the major causes of liver fibrosis. Multiple 

causes lead to cholestatic inflammation and fibrosis including; autoimmune hepatitis, 

primary biliary cirrhosis and biliary tree obstruction. Animal models are a useful tool to 

study cholestatic liver fibrosis. The most common murine models for cholestasis are 

surgical bile duct ligation model, multidrug resistant gene knock out model and primary 

biliary cirrhosis models. All these models show several characteristics of liver injury such 

as obstruction-induced biliary epithelial damage, periductular inflammation/mononuclear 

cellular infiltration. Proper model is chosen by the investigator based on his study aims 

and objectives. 

Surgical bile duct ligation model is the most commonly used cholestatic murine model. 

The animal is anaesthetized followed by ligation/dissection of common extra-hepatic bile 

duct. Jaundice and significant liver fibrosis establish in mice and rats within 28 days 

[103]. Multiple variations in the surgical technique exist based on special study aims such 

as re-anastomosis after bile duct ligation, partial bile duct ligation and microsurgical 

ligation [103]. This model can be used to study cholestatic liver injury in normal mice as 

well as transgenic mice. 
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One of the most commonly used genetically modified mice in cholestatic liver fibrosis 

are the multidrug resistant (MDR) knock out mice. MDR2 in mice and MDR3 in humans 

are class III multi-drug-resistant P-glycoproteins which act as canalicular phospholipid 

translocators and are involved in biliary phospholipid (phosphatidylcholine) excretion 

[104]. Mdr2 gene knockout in mice leads to deficiency in phosphatidylcholine into the 

bile. This triggers inflammatory cholangitis, portal inflammation and ductular 

proliferation starting shortly after birth. The pathology progress to end stage liver fibrosis 

resembling sclerosing cholangitis and biliary fibrosis within 3-6 months [104]. 

In addition to the above-mentioned models, dietary models leading to cholestatic liver 

injury have been introduced. An example of these models is 3,5-diethoxycarbonyl-1,4-

dihydrocollidine (DDC) model. Feeding mice a diet supplemented with 0.1% DDC for 8 

weeks leads to increased biliary porphyrin secretion [104]. This leads to ductular 

inflammatory reaction within one week. Expression of cytokines such as vascular cell 

adhesion molecule, osteopontin and TNF-α is upregulated in duct epithelial cells. 

Multiple pathological features are observed including pericholangitis, inflammatory 

mononuclear cellular infiltration and activation of periductal myofibroblasts, causing 

biliary liver fibrosis that resembles sclerosing cholangitis in humans [104]. 

1.7. In vitro cell lines for liver fibrosis 

Cell lines are an important alternative to primary cells offering the advantages of 

unlimited supply and ease of use [139]. In this section, the most commonly used human 

and rodent hepatic stellate cell lines will be discussed.  
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1.7.1. Human HSC cell lines 

The most commonly used human HSC line is the Lieming Xu (LX)-2.  which was created 

from LX-1 line. LX-1 cells were generated by transfection of hepatic stellate cells with 

the pRSVTag plasmid which encodes the SV40 large T antigen under the control of a 

rous sarcoma virus (RSV) promoter. LX-2 cells were established by selecting the LX-1 

cells that were able to grow under reduced serum conditions (1% FBS) [105]. Both cell 

lines express the key fibrotic receptors resembling primary HSCs, including platelet 

derived growth factor receptor β (βPDGF-R), obese receptor long form (Ob-RL), and 

discoidin domain receptor 2 (DDR2). They also express proteins involved in matrix 

remodelling; matrix metalloproteinase (MMP), tissue inhibitor of matrix 

metalloproteinase (TIMP) [105]. Moreover, LX1 and LX2 cells were shown to express 

the key fibrotic proteins as well as HSC activation markers such as α-SMA, procollagen 

and HSP47 in response to TGFβ1 stimulation. They also retain other key features of 

primary HSCs including the expression of intermediate filaments (Vimentin and Glial 

fibrillary acidic protein) and uptake/metabolism of retinoic acid [105]. The unique 

advantages of LX2 cells over LX1 are their viability in serum free media and high 

transfectability. That’s why LX-2 cells are considered as a model of choice for 

investigating the signaling pathways in HSC activation because of their great similarity to 

in vivo HSC activation. 

Another human HSC line is the human telomerase reverse transcriptase cells (hTERT 

cells). These cells were generated by Schnabl et al by isolation of human HSCs from the 

liver and its infection with a retrovirus expressing hTERT [106]. Functional expression of 
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the telomerase catalytic subunit prevent telomere shortening with repeated cell division 

and DNA replication. This extend the life span of various normal human cells. hTERT 

cells did not show any oncogenic transformation and exhibited characteristics of 

activated HSCs by Microarray and RT-PCR [106]. Moreover, plating hTERT cells on a 

basement membrane-like matrix reverts them toward a more quiescent phenotype [106]. 

1.8. Hypothesis and aims 

Previous study done by our group showed that PDE4 enzymes are upregulated in primary 

rat HSCs upon spontaneous activation in culture [63]. In this study, freshly isolated 

primary rat HSCs did not express PDE4 proteins, however, upon their attachment, they 

were rapidly induced. Intertestingly, during this process, cells did not express αSMA 

indicating that  PDE4 induction preceded the process of HSC activation. Importantly,  

PDE4 inhibition by Rolipram attenuated primary rat HSC activation and expression of 

COL1A1 and αSMA gene expression [63]. Additionally, PDE4 inhibition significantly 

attenuated TGFβ1 mediated fibrogenic signaling in a rat bile duct ligation model 

ofcholestatic liver injury/fibrosis [63]. 

Preliminary studies done by our group (unpublished data) showed that PDE4 inhibition by 

Rolipram (targeted to the liver) attenuated CCl4-induced liver fibrosis in mice. Importantly, 

PDE4 inhibition by Rolipram significantly attenuated collagen deposition as demonstrated 

by Sirius red staining and hydroxyproline assay. We also observed significant attenuation 

of ECM remodeling enzymes, matrix metalloprotease 2 and tissue inhibitor of 

metalloprotease 2 in Rolipram treated group. Moreover, significant attenuation of heat 
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shock protein 47 (chaperone protein involved in collagen synthesis) and lysyl oxidase 

enzymes (enzymes involved in collagen cross linking) occurred in Rolipram treated group.  

These observations led us to hypothesize that PDE4 inhibition prevents development of 

liver fibrosis by attenuating TGFβ1-induced activation of hepatic stellate cells. To 

test this hypothesis, we performed in vitro studies using LX2 hepatic stellate cell line. 

Additionally, we studied the effect of PDE4 inhibition on fibrogenic pathways in CCl4 

liver fibrosis model by proteomic analysis.  
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CHAPTER 2 

MATERIALS AND METHODS 

Experimental Animals 

C57BL6/J mice were purchased from Jackson Laboratory (Bar Harbor, ME) and housed in 

a specific pathogen-free animal facility accredited by the Association for Assessment and 

Accreditation of Laboratory Animal Care under a protocol approved by the University of 

Louisville Institutional Animal Care and Use Committee (for Dr. Leila Gobejishvili). The 

room was maintained on a 12-hour light/dark cycle.  

Experimental Design  

Mice were subjected to CCl4 injection intraperitonealy at a dose of 1 mg/kg body 

weight twice a week for the duration of 4 weeks. One group of mice received Rolipram 

(PDE4 inhibitor,  3 mg/kg body weight) intraperitonealy twice a week, a day after CCl4 

administration (Figure 6). 48 hours after the last dose of CCl4, mice were anesthetized, 

whole blood was collected from vena cava and liver tissue was harvested for protein and 

gene expression analysis. One peace of liver was fixed in 10% neutral buffered formalin 

for histological assessment.  
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Figure 6. Chronic CCl4 mouse model experimental approach 

Cell Culture 

 LX2 human hepatic stellate cell line (LX2-HSCs) was obtained from Sigma-

Aldrich. Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (ATCC, 

Manasas, VA) with 2% fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37 ֯ C 

in 5% CO2 and plated at density of 0.18 million/well in 6 well plates and 0.4 million in 100 

mm dishes. Cells were starved in serum-free DMEM overnight and treated with human 

recombinant TGFβ1 (2.5 ng/ml) with and without  Rolipram (10μM). Cells were collected 

at early timepoints (30 minutes and 90 minutes) and late timepoint (24 hours) for RT qPCR 

and western blotting.  

Proteomic analysis  

Protein lysates preparation: (1) Protein lysates were prepared from liver tissue using 

an equal volume of 2% sodium dodecylsulfate (SDS) dissolved in 0.1M Tris-HCl pH 8.5 

containing 1X HALTTM protease/phosphatase inhibitors (Thermo Fisher, Waltham, 

MA) supplemented with 0.5mM EDTA and concentrations estimated using a detergent 

compatible DC protein assay (BioRad, Inc Hercules, CA). Protein lysates (100 μg) were 
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trypsinized using the modified Filter-Aided Sample Preparation (FASP) method. (2) 

Protein samples were reduced with dithiothreitol (DTT), denatured with 8M urea and 

alkylated with iodoacetamide followed by centrifugation through a high molecular weight 

cutoff centrifugal filter (Millipore, 10k MWCO). After overnight digestion with 

sequencing grade Trypsin (Promega), the digested proteins were desalted and 

concentrated using an Oasis HLB 1cc (30mg) Extraction Cartridge (Waters Corporation, 

Milford, MA) using a modified protocol for extraction of the digested peptides. (3) Prior 

to peptide quantification by NanoDrop2000 A205 measurement. Protein digested samples 

(50 μg) were labeled with TMT TMT10plex™ Isobaric Label Reagent Set (Thermo 

Fisher, Waltham, MA). To remove excess labeling reagent the samples were concentrated 

and desalted with Oasis HLB Extraction cartridges (Waters Corp, Milford, MA).  

High pH reversed phase fractionation: Samples (90-100ug) were then subjected to 

high pH reversed phase separation at 37°C using a Dionex U3000SD uHPLC system 

(ThermoFisher Scientific, Waltham, MA, USA) with a BEH XBridge C18 5µm 3.0 x 

150mm column (Waters Corp, Milford, MA) for 70min and at 300µL/min flow rate with 

5-88% acetonitrile gradient buffered with 10mM ammonium formate pH10.0. Fractions 

were collected with an AFC-3000 fraction collector and after concatenation a total of 19 

fractions were used for proteomic analysis to measure TMT-labeled peptides.  

LC-MS/MS data collection and analysis: Briefly, the fractionated samples were 

analyzed by an Easy-nLC 1000 and Orbitrap Elite MS system (Thermo Scientific). 

Peptides in samples were trapped on an Acclaim PepMap 100 75µm x 2cm, nanoViper 

(C18, 3µm, 100Å) trap, and separated on an Acclaim PepMap RSLC 75µm x 50cm, 

nanoViper (C18, 2µm, 100Å) column (ThermoFisher Scientific, Waltham, MA), both 
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heated at 50°C, with a 120 min binary solvent gradient (2% acetonitrile with 0.1% formic 

acid and 80% acetonitrile with 0.1% formic acid). Eluate from the column was directly 

ionized by a nanospray source and analyzed by the mass spectrometer in DDA mode. The 

mass resolution was set to 60,000 for MS and MS/MS. AGC was set to 5e5 for MS and 

1e4 for MS/MS and the isolation window was set to 1 m/Z. Acquired data were processed 

by Proteome Discoverer (PD v1.4.1.14) with Sequest HT and Mascot (v.2.5.1) search 

engines and reviewed sequences from the reference mouse proteome from UniprotKB 

(downloaded on 7/18/2018). Data were searched considering two missed tryptic 

cleavages, static modifications of amino groups at N-termini of all peptides and lysine 

residues by TMT 10plex tag, and cysteine residues by carbamidomethylation as well as 

dynamic modification of methionine oxidation. Match tolerances were set to 50 ppm and 

0.05 Da for precursor and fragment ions, respectively. The target-decoy PSM validator 

node in PD v1.4 was used to estimate the false discovery rates (FDR) for peptide 

identifications. The result files from Proteome Discoverer were loaded into Scaffold Q+S 

v4.4.5.  Scaffold was used to calculate the false discovery rate using the Scaffold Local 

FDR and Protein Prophet algorithms.  Peptides were accepted if the identification had 

probability greater than 99.9% and parent mass error within 2ppm.  Proteins were 

accepted if they had a probability greater than 99.9% and at least one peptide.  Proteins 

were grouped into clusters to satisfy the parsimony principle. For relative quantification, 

intensity of report ions from peptides specific to the protein group were used to calculate 

the relative abundance of identified proteins. Hepatic proteins that had significance 

abundance were imported into Clarivate analytics software MetaCore and pathway 

enrichment analysis was performed. 
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Scratch assay 

 LX2 cells were plated at 0.2 million cells/well in 6 well plates in  DMEM (ATCC, 

Manasas, VA) with 2% FBS and 1% penicillin/streptomycin at 370 C in 5% CO2 for 24 

hours. Then the medium was aspirated, and the cell-coated surface was scraped with a 1 

ml pipette tip in a single stripe. The medium was changed to serum free DMEM and cells 

were treated with TGFβ1 (2.5 ng/ml) and TGFβ1+Rolipram (10 μM). Plates were allowed 

to heal at 37 °C in 5% CO2 for 24 hours inside the incubator. Migration of cells was 

observed with an inverted microscope and photographed at 0 hours and 24 hours. The 

average extent of wound closure was evaluated by multiple measurements of the width of 

the wound space. 

 

RT qPCR  

Total RNA was isolated from 50 mg of liver tissue using TRIzol Reagent 

(Invitrogen, Carlsbad, CA) and cDNA was made using XLAscript cDNA master mix 

(BioExcell, Bristol, PA). Real time PCR was performed with an ABI prism 7500 sequence 

detection system and PerfeCTa SYBR Green FastMix, Low ROX reagents (Quanta 

Biosciences, Inc.). The relative gene expression was analyzed using ΔΔCT method by 

normalizing to GAPDH gene expression in all experiments. Data are presented as fold 

change over the values for untreated control group. Primer sequences are listed in Table 1.  
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Table 1. qPCR primer sequences.  

Target Forward Primer (5' to 3') Reverse Primer (3’ to 5’) 

h-ET-1 CAAGCAGGAAAAGAACTCAG CTGGTTTGTCTTAGGTGTTC 

h-GAPDH CCATGGGGAAGGTGAAGGTC GAAGGGGTCATTGATGGCAAC 

 

Western Blotting 

Mouse livers and LX2 hepatic stellate cell whole protein lysates were prepared by 

homogenization in radioimmunoprecipitation (RIPA) buffer mixed with Halt protease and 

phosphatase inhibitor cocktail (Thermo Fisher) followed by centrifugation at 14000 rpm 

for 15 minutes at 40 C to remove insoluble material. For LX2 cells, cytoplasmic isolation 

was done using cytoplasmic lysis buffer (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.5 

mM DTT, 1 mM EDTA, Ph 7.9) with 0.1% NP40. Halt protease and phosphatase inhibitor 

cocktail (Thermo Fisher) was then added (1%); Lysates were kept on ice for 1 hour 

followed by centrifugation at 4000rpm for 4 minutes at 40C and cytoplasmic supernatant 

was isolated from nuclear pellet. Nuclear lysis buffer (20 mM HEPES, 1.5 mM MgCl2, 520 

mM NaCl, 0.1 mM EDTA, 0.5 mM DTT, 25% glycerol, Ph 7.8) with 0.2% NP40 was used 

for lysis of nuclear pellet. Protein concentrations were determined by Bradford assay using 

reagents from Bio-Rad (Hercules, CA) with bovine serum albumin as a standard. 25 μg of 

total protein in the 6X sample buffer was loaded onto a BioRad acrylamide gel (Biorad cat. 

no. 4561086) and separated at 100 volts for 80 minutes. Proteins were electro-blotted on a 

polyvinylidene difluoride membrane at a current not exceeding 300 milliamps for 1.5 

hours. Membranes were blocked with 5% milk in tris-buffered saline (TBST) for 1 hour 

and incubated overnight with a primary antibody at 40C. The membranes were washed with 
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TBST and incubated with the suitable secondary antibodies, and imaged using a BioRad 

Chemidoc™ imaging system. 

Statistical Analysis 

Data are shown as mean ± standard deviation (SD). GraphPad Prism 8 software 

(GraphPad Software, San Diego, CA) was used to perform unpaired t-tests (for two-group 

comparison) or one-way ANOVA tests with post hoc analysis (for more than two groups). 

Data are considered significant at p < 0.05 (*p < 0.05, **p < 0.01 and ***p < 0.001). 
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CHAPTER 3 

RESULTS 

The proteomic analysis shows that PDE4 inhibition has significant effects on liver 

fibrosis pathways 

             Liver proteomic analysis was performed to examine the pathways affected by 

PDE4 inhibition.  This analysis was performed by COBRE proteomic core with the help 

of  Dr. Merchant. Metacore software was used for pathway analysis. As shown in Table 2, 

PDE4 inhibition had a significant effect on proteins involved in the 

development/perpetuation of liver fibrosis. 

Affected proteins are part of either liver fibrosis signaling pathways e.g., WNT3A 

and IL1β or cytoskeleton remodeling and cell adhesion pathways e.g., ROCK/MLCP. 

These results suggest some pathways/target proteins through which PDE4 inhibition 

mediates its attenuation of initiation and perpetuation of liver fibrosis. 



36 
 

Table 2. PDE4 inhibition significantly affects pathways related to liver fibrosis in the CCl4 

mouse model.  

 

PDE4 inhibition attenuated HSC activation and decreased TGFβ canonical signaling 

protein pSMAD3 in LX2 HSCs 

LX2 human hepatic stellate cells were cultured as mentioned before. Cells were treated 

with TGFβ1 (2.5 ng/ml) and a group of cells were pretreated with Rolipram (10 μM) before 

TGFβ1. We collected the cells after 30 minutes and made cytoplasmic lysates to examine 

for pSMAD3 expression by western blot.  To assess if PDE4 inhibition attenuates TGFβ1-

induced α smooth muscle actin (αSMA), a critical HSC activation marker, we collected 

cells after 24 hours and performed Western blot. PDE4 inhibition by Rolipram decreased  

TGFβ1-induced pSMAD3 and αSMA in LX2 hepatic stellate cells (Fig.7A and 1B). These 

data show that PDE4 inhibition attenuates TGFβ1-induced HSC activation. 
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Figure 7. (A) PDE4 inhibition decreased αSMA expression in LX2 cells . (B) PDE4 inhibition attenuated 

TGFβ1 induced pSMAD3 expression in LX2 HSCs. This indicates that PDE4 inhibition decrease liver 

fibrosis by attenuation of TGFβ1 canonical signaling pathway causing decreased HSC activation. 

PDE4 inhibition decreased expression of endothelin 1 and activation of myosin light 

chain 

             Actomyosin-mediated contractility is one of the key mechanisms for the 

generation of mechanical stress and cell motility in HSCs. Actomyosin contractility is 

controlled by phosphorylation of myosin light chain, which is a regulated by myosin light 

chain kinase (MLCK) and myosin light chain phosphatase (MLCP) enzymes. 

Phosphorylated myosin light chain (pMLC) generates mechanical force on actin 

filaments mediating HSC motility/contractility. 

Endothelin-1 (EDN1), released by HSCs in response to TGFβ1 during fibrosis, induces 

HSC motility/contractility promoting the perpetuation of liver fibrosis. 

We examined the effect of PDE4 inhibition on perpetuation of liver fibrosis by 

examining its effect on pMLC and EDN1 in TGFβ1-stimulated LX2 human HSC line.  

LX2 HSCs were treated with TGFβ1 (2.5 ng/ml) and a group of cells were pretreated 

with Rolipram (10 μM) before TGFβ1. We collected the cells after 90 minutes and made 



38 
 

cytoplasmic lysates to examine for pMLC expression by western blot. We also isolated 

RNA from cells treated with and without Rolipram and TGFβ1, 24 hours after TGFβ1 

treatment to examine for EDN-1 mRNA expression by RT qPCR. 

TGFβ1 administration increased EDN-1 expression at mRNA level (Fig. 8A) and pMLC 

at the protein level (Fig. 8B). Notably, cells treated with TGFβ1+Rol had significantly 

less pMLC  and EDN-1 expression compared to TGFβ1 alone (Fig.8A, B). 

 

 

Figure 8. (A) PDE4 inhibition significantly decreased EDN-1 gene expression in LX2 cells . (B) PDE4 

inhibition attenuated TGFβ1 induced pMLC expression in LX2 HSCs. Graph showing collected 
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densitometry for multiple western blots normalized to untreated (UT) control. All data are represented as 

mean ± SD, **p < 0.01.  

PDE4 inhibition decreases wound healing ability of LX2 HSCs  

            We studied the wound healing and migration properties of LX2 HSCs using 

scratch assay. A scrape wound created on the LX2 cells treated with either TGFβ1 alone 

or TGFβ1+Rol was observed after 0 hours and 24 hours of incubation in serum free 

medium. LX2 cells treated with TGFβ1 were able to close 80% of the wound size in 24 

hours. Rolipram significantly attenuated TGFβ1-induced cell migration/wound closure in 

LX2 cells by almost half   in 24 hours (Fig.9). Taken together, these results demonstrate 

that PDE4 inhibition attenuates HSC motility/contractility, one of the main mechanisms 

involved in the perpetuation of liver fibrosis. 

 

 

 

 

 

 



40 
 

 

 

Figure 9. PDE4 inhibition significantly decreased TGFβ1-induced wound healing capacity in LX2 HSCs . 

Data in the graph are shown as the average percentage of wound closure in 24 hours. Data are presented as 

mean ± SD, ***p < 0.001. 
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CHAPTER 4 

DISCUSSION 

  

PDE inhibition has been suggested to be an effective treatment strategy for several 

diseases, including liver diseases. PDE4 inhibition was shown to attenuate primary rat HSC 

activation markers in vitro. Importantly, previous studies done by our group showed that 

induction of PDE4 enzymes plays a pathogenic role the development of liver injury, 

inflammation and fibrosis in a rat model of cholestatic liver injury [63]. Therefore, we 

hypothesized that PDE4 inhibition inhibits TGFβ1 signalingin hepatic stellate cells (HSCs) 

and decreases their activation, and motility/contractility. In our experiments, PDE4 

inhibition by Rolipram attenuated liver fibrosis, both in vivo and in vitro. Moreover, our 

group observed that there was a significant increase in hepatic PDE4 expression in 

alcoholic hepatitis human liver samples. These findings suggest PDE4 inhibition may be a 

novel drug target in liver fibrosis. That is extremely important since there are no FDA-

approved therapies for liver fibrosis. Our findings also concur with previous reports that 

PDE4 inhibition effectively treats liver inflammation, ER stress, and ALD, which are 

common pathogenic mechanisms leading to liver fibrosis [84]. 
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PDE4 inhibition decreases the rate of cAMP degradation leading to upregulation of 

cAMP signaling. It was shown in several studies that cAMP effector molecules (PKA and 

EPAC) have anti-fibrotic effects on fibroblasts (reviewed in [77-79]). Activated HSCs 

were shown to have lesser expression of pCREB (downstream cAMP effector) [80-83]. 

EPAC attenuates fibroblastic motility via its effect on Rho kinase (ROCK) which regulates 

actin polymerization [89]. Therfore, upregulation of cAMP signaling via PDE4 inhibition 

could be a potential strategy for treatment of liver fibrosis. 

In our preliminary studies, CCl4 toxicant-induced liver fibrosis mice model was 

used. Interestingly, we observed that in the CCl4 mice model, PDE4 inhibition afforded 

excellent protection against liver fibrosis. Liver fibrosis is primarily driven by TGFβ1 

induced HSCs activation, meaning that the beneficial effects of PDE4 inhibition in liver 

fibrosis may be mostly due to attenuation of TGFβ1 signaling/effects in HSCs. 

We found significant effects of PDE4 inhibition on CCl4-induced liver fibrosis. 

Moreover, in our in vivo experiments, we did observe PDE4 inhibition attenuated TGFβ1-

induced pSMAD3, a canonical signaling pathway molecule in the TGFβ1 signaling 

pathway. Phospho-SMAD3 recruits other SMAD molecules. The SMAD complex then 

translocates to the nucleus and affects the expression of profibrotic genes. Interestingly, we 

obsreved a highly significant effect on collagen deposition and ECM remodeling enzymes 

in vivo, αSMA (a marker of HSC activation) and mediators of HSCs motility/contractility 

both in vitro and in vitro. In addition, proteomic analysis done on CCl4 mouse model 

showed a significant effect of PDE4 inhibition on pathways related to liver fibrosis, cell 

motility and adhesion.  
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HSC motility is another aspect of liver fibrosis. It is mediated mainly by 

contractility and cytoskeleton remodeling. Once activated, HSCs undergo phenotypic 

change to contractile myofibroblasts, which resemble smooth muscle cells. 

Phosphorylation of myosin light chain (MLC) by myosin light chain kinase (MLCK) 

causes its activation. Activated MLC exerts tension by coupling to actin filaments leading 

to the generation of a contractile force. Focal adhesion proteins together with actin-myosin 

sliding mediate HSC motility/contractility. Endothelin-1 and TGFβ1 cause an increase in 

pMLC and HSCs contractility/motility [107]. PDE4 inhibition significantly decreased 

pMLC and ET-1 expression both in vivo in CCl4 treated mice and in vitro in LX2 HSCs. 

Importantly, these results were strongly supported by  a significant reduction in the 

wound healing ability of LX2 HSCs in the scratch assay. Moreover, endothelin-1 is a 

known vasoconstrictor and mediator of portal hypertension in the liver [108]. Thus, PDE4 

inhibition may improve portal hypertension, a significant complication of liver 

fibrosis/cirrhosis. 

 Despite our results, more work has to be done to identify the molecular mechanisms 

by which downstream cAMP effectors (EPAC and PKA) attenuate TGFβ1 induced HSC 

activation. In addition, it’s important to examine if PDE4 inhibition can be used as a 

therapeutic rather than preventive approach in liver fibrosis. That’s what we are planning 

to do as explained later in our future directions. 
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CHAPTER 5 

FUTURE DIRECTIONS 

 In summary, Our work suggests that elevated cAMP via hepatic PDE4 inhibition 

attenuates liver fibrosis initiation and perpetuation. In vitro, PDE4 inhibition had a 

significant effect on TGFβ1 induced LX2 HSCs activation and motility/contractility by 

decreasing αSMA, pMLC and endothelin-1 expression. However, additional future work 

is necessary to validate PDE4 inhibition as a treatment strategy for liver fibrosis (Figure 

12). 

 

 

Figure 10. Summary figure. 
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 Two main questions will be answered through our future studies. First, which 

cAMP effector is involved in each of the effects we observed in our studies by PDE4 

inhibition? Second, can PDE4 inhibition be used in treating rather than preventing liver 

fibrosis? In our future studies, we plan to investigate if PDE4 inhibition can treat CCl4 

induced liver fibrosis rather than just prevent it. For making the studies more clinically-

relevant, we plan also to use more clinically relevant PDE4 inhibitors (Roflumilast and 

D46) in our in vivo treatment studies. 

In our future in vitro studies, we will elucidate the exact role of PKA and EPAC 

in mediating anti-fibrotic effects in hepatic stellate cells by using both pharmacological 

and siRNA approaches. Additionally, we are planning to determine the role of PDE4 

subtypes in HSC activation/transdifferentiation and liver fibrosis development. 

These future studies will clarify the mechanisms by which PDE4 inhibition and 

cAMP signaling attenuates liver fibrosis. It will also introduce a new potential therapy for 

liver fibrosis. 
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