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ABSTRACT

ADAPTIVE CONTROL AND PARAMETER-DEPENDENT ANTI-WINDUP

COMPENSATION FOR INERTIA VARYING QUADCOPTERS

Benjamin Edwards Farber

April 27, 2021

A novel parameter-dependent anti-windup compensator is developed to improve the

performance of a saturation constrained model reference adaptive controller. The com-

bined control structure solves the input saturation and stability problem for inertia varying

quadcopters. The control synthesis follows the conventional two-step anti-windup design

paradigm where a nominal controller is designed without consideration of the input satu-

ration, and the anti-windup compensator is designed to minimize deviations from nominal

performance caused by saturated inputs. To account for varying inertia of the quadcopter

during package retrieval/delivery routines, the inertia parameters of the vehicle/package

are estimated with an online recursive system identification technique, and these estimates

are used to schedule the parameter-dependent anti-windup compensator. The performance

and stability conditions of the parameter-dependent anti-windup compensator are formu-

lated as a set of parameter-dependent linear matrix inequalities. When solved, the linear

matrix inequalities yield a gain-scheduled anti-windup compensator that ensures stability

and minimizes the deviation from nominal model reference adaptive control performance

when saturation occurs. The effectiveness of the combined control scheme is demonstrated

by simulations of an input constrained quadcopter lifting a payload of unknown mass.
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1 INTRODUCTION

Most practical control systems have actuators with limited range and many also ex-

hibit linear parameter-varying (LPV) plants. When not addressed, actuator saturation and

parameter variations can result in a significant deviation from nominal performance and

worst case, system instability. Some control systems address input saturation by design-

ing the controller such that saturation is avoided altogether. For example, in [14, 13], the

“positive µ-modification” allows the adaptive system to maintain stable adaptation during

saturation events by modifying the reference command to ensure the control signal re-

mains within the saturation limits. While solving the input saturation problem, controllers

of this form do not explicitly include anti-windup techniques, which can provide favorable

performance over their non-anti-windup contestants. Likewise, these control strategies do

not make use of the full actuator range and often lead to conservative designs with sub-

optimal performance. Alternatively, in [23, 26], rather than avoiding saturation limits, the

positive µ-modification is altered to demonstrate anti-windup capabilities in control signal

magnitude [23] and rate [26] limited control systems. These methods make use of model

reference adaptive control (MRAC) as the nominal controller for a linear time-invariant

(LTI) plant. An adaptive, deadzone dependent anti-windup term is included in both the

control law and the reference model. The modified reference model contains the additional

anti-windup term that alters the desired plant trajectories. When there is no saturation, the

anti-windup term has no effect on the controller output, and the ideal reference model is

tracked. When saturation is present, the modified reference model is tracked until the anti-

windup term returns the plant to ideal reference model tracking. Theoretical development

guarantees the convergence of the plant trajectories to the modified reference model trajec-
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tories and eventually to the ideal reference model trajectories. However, the methods are

not extended to LPV systems.

Various anti-windup strategies have been developed for LPV systems. In [18], an LPV

anti-windup design method is presented that assumes the plant is LTI but includes the feed-

back of a nonlinear operator that contains both the time-varying parameters and the input

nonlinearity. The results from this paper guarantee a single upper bound on the anti-windup

L2 performance which may result in conservatism for certain operating conditions. In [5],

the one-step anti-windup design paradigm is applied. In this case, L2 performance is only

guaranteed for the unsaturated system. During saturation, the performance requirements

are relaxed, and only bounded system trajectories are guaranteed. Similarly, [28] applies

the one-step anti-windup design which also results in conservative saturated performance.

However, this paper takes the unique approach of using a saturation indicator as a schedul-

ing variable for the control system which allows the performance degradation to be smooth

when saturation occurs. The two-step anti-windup design is applied to LPV systems in [9].

However, the method presented requires the simultaneous solution of multiple linear matrix

inequalities (LMIs) and multiple intermediate steps to construct the anti-windup compen-

sator. In each of these anti-windup designs (except [18]), gain-scheduling techniques are

applied. For LPV systems where the parameters can be measured or estimated in real-time,

it is known that a gain-scheduled controller will yield higher performance than an LTI or

robust controller [16].

Input saturation in adaptive control systems leads to undesirable adaptation of the con-

troller. This issue is addressed in [17] where a binary multiplier is included in the MRAC

adaptation laws to suspend adaptation when saturation is present. This modification to

MRAC prevents instability and controller windup caused by increasing controller gains but

does not specifically include the performance guarantees that anti-windup compensation

(AWC) provides. While MRAC and AWC are rather developed fields, research regarding

the combination of the two control systems, particularly for LPV systems, is less devel-
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oped. In [3] and [20], MRAC is used with AWC, but the controllers are only developed

for LTI plants. In [3], the controller consists of MRAC and an adaptive anti-windup com-

pensator. The anti-windup synthesis is included in the design of MRAC adaptation laws

which makes the design appealing. However, the incorporation of AWC in the MRAC con-

trol law development results in an anti-windup compensator that is not designed to have

optimal L2 performance, which has been demonstrated to be critical for good anti-windup

performance in LTI systems [24, 10, 29].

Considering the plant used in this paper, a quadcopter may retrieve packages of un-

known mass which results in an overall change to the plant’s inertia. Furthermore, a heavy

package that challenges the quadcopter’s lift capability will likely cause actuator (thrust)

saturation, particularly if additional thrust is required to overcome unpredictable distur-

bances such as wind. It is important to consider that while the quadcopter thrust capa-

bilities could simply be over-designed to easily carry these heavier packages, this would

require larger actuators which would increase the overall quadcopter mass. A more pow-

erful quadcopter, while well suited for carrying heavier packages, will expend a significant

amount of its battery life to transport its own weight when carrying lighter packages. So,

rather than use a heavier and more powerful quadcopter, a control system with an adaptive

controller in the two-step anti-windup design procedure is proposed that allows less power-

ful quadcopters to stably transport these “heavier” packages. With MRAC as the nominal

adaptive controller, the unsaturated system maintains stability and desired performance de-

spite parameter variations. During saturation, a novel parameter-dependent anti-windup

compensator (PDAWC) maintains stability and optimal L2 performance.

The rest of the paper continues as follows: Section 2 presents common notation used

throughout the paper. Following the two-step anti-windup design process, the nominal

MRAC controller and PDAWC are designed independently and are subsequently combined

in Section 3. In Section 3, a system identification method is also presented to estimate the

time-varying inertia parameters. The LPV quadcopter dynamics are developed in Section 4.
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The proposed control system is designed and applied in simulation to the LPV quadcopter

in Section 5. Conclusions and future work are presented in Section 6. In Appendix A,

different methods of adaptive control are examined. Prior to choosing state feedback direct

MRAC as the nominal adaptive controller to be applied to the quadcopter, other adaptive

control methods were also considered. Appendix A highlights each of the types of adaptive

control explored in this preliminary research period and also provides explanations for

why they were not chosen to be the nominal adaptive controller for combination with the

PDAWC and subsequent application to the quadcopter in simulation.

4



2 NOTATION

This paper uses standard notation. A matrix in the real space m×n is represented by

Rm×n. The identity matrix is given by Iq ∈Rq×q. The saturation function sat(·) : Rm 7→Rm

is defined as

sat(u) := [sat1(u1) ... satm(um)]
′ (1)

where

sati(ui) :=


ūi if ui > ūi

ui if −ui ≤ ui ≤ ūi

−ui if ui <−ui

, ūi,ui ≥ 0

The deadzone function Dz(·) : Rm 7→ Rm is given by

ũ = Dz(u) := u− sat(u) (2)

A discrete vector-valued signal v(k) has L2 norm given by

‖v‖2 =

(
∞

∑
0
‖v(k)‖2

)1/2

(3)

where ‖v(k)‖=
√

v(k)′v(k).
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3 COMBINED MRAC AND PDAWC CONTROL SYNTHESIS

The control architecture, shown in Fig. 1, includes the PDAWC Θ(ρ) and nomi-

nal controller K(ρ) with general MRAC structure. The MRAC consists of a reference

model Gr(s) that contains the ideal plant dynamics and an adaptive gain matrix K̄(ρ)

that is designed to eliminate deviations between the trajectories of the plant G(ρ) and the

ideal trajectories specified by the reference model. The presented architecture is based

Figure 1: Combined MRAC and PDAWC architecture.

on the general LTI anti-windup design in [24, 10] and the LPV anti-windup design in

[18]. The architecture presented in Fig. 1 differs from [24, 10], which exclude plant,

anti-windup, and nominal controller dependence on ρ and the control allocation matrix

T . In [18], T is also excluded, but parameter dependence of the plant, anti-windup, and

nominal controller is considered in linear fractional transformation form rather than the

direct dependence on the parameter estimate ρ as presented in Fig 1. The control allo-

cation matrix T ∈ Rm×m is included for application to diagonally structured plants, i.e.,

G(ρ) = blockdiag(G1(ρ), . . . ,Gm(ρ)). In Section 4, the quadcopter is shown to be repre-
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sented with this diagonal structure. For full discussion of the inclusion of T for diagonally

structured plants in anti-windup design see [25, 19].

Consider the following plant with an LPV input matrix and input constraints

G(ρ)∼


ẋp = Apxp +Bp(ρ)T sat(uT )

yp =Cpxp

zp =Cpzxp

(4)

where xp ∈Rnp is the plant state vector, and ρ ∈Rv is the vector of time-varying parameters

with elements that are magnitude limited to vary within a set P defined as P = {ρ :

ρ i ≤ ρi ≤ ρ̄i, i = 1,2, ...,v}. The lower and upper bounds for the parameter vector ρ are

denoted as ρ = [ρ1 . . .ρv] and ρ̄ = [ρ̄1 . . . ρ̄v], respectively. In Fig. 1, both the nominal

controller and PDAWC rely upon the time varying parameters ρ . These parameters are

determined by system identification which is discussed specifically in Section 3.3. The

thrust control signal is uT ∈Rm. It is assumed all states are available by either estimation or

measurement; therefore, Cp = Inp , and the plant output yp = xp. The output zp ∈ Rnr is the

vector of performance variables used in reference tracking. The anti-windup compensator

Θ(ρ) is driven by the signal ũF = T ũT ∈ Rm, where ũT = uT − sat(uT ) = Dz(uT ), and

emits two signals ud ∈ Rm and yd ∈ Rnp , which are injected at the output and input of

K̄(ρ), respectively. The MRAC gain matrix K̄(ρ) is driven by ynom ∈Rnp and the reference

command r ∈ Rr, and it generates the control signal unom ∈ Rm. The error between the

plant and reference model outputs, e ∈ Rnp , is defined as

e = yp− yr (5)

The MRAC gain matrix K̄(ρ) is designed to adapt such that yp tracks the desired reference

model trajectories yr ∈ Rnp , i.e., e→ 0 [1].

In the two-stage anti-windup design procedure, the nominal controller K(ρ) is designed

7



without consideration of the input constraints and is assumed to stabilize the closed-loop

system in the absence of saturation. A detailed design process and stability analysis of

MRAC for LPV plants follows in Section 3.1. The PDAWC Θ(ρ) is designed to satisfy the

following objectives:

1. Remain inactive unless saturation occurs.

2. Ensure closed-loop stability when the control signal uT is saturated.

3. Provide fast recovery to nominal control when saturation ceases.

The first item is guaranteed since ũF = 0 when uT = sat(uT ). The second item is guaranteed

if the PDAWC design is stable, which will shown to be the case as presented in Section 3.2.

The remaining item represents anti-windup performance, which, as presented in Section

3.2, is achieved in the L2 sense.

3.1 Model Reference Adaptive Control

As mentioned previously, the two-stage anti-windup design procedure enables the de-

sign of the nominal controller without consideration of input constraints. Therefore, in the

absence of saturation, the architecture in Fig. 1 reduces to the architecture shown in Fig.

2. Note that since control allocation cancels, the input to the plant (4) is the output u of the

nominal control.

Figure 2: General MRAC system.
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While Fig. 2 represents the general MRAC structure (with added system identification

and parameter dependence), the specific MRAC structure utilized in this paper includes

integral feedback which is shown in Fig. 3 [15]. This structure ensures zero steady-state

reference tracking error by regulating the following integral: xI =
∫

erdt where er = r− zp.

The nominal controller K(ρ) shown in Fig. 3 will be used in place of the general MRAC

K(ρ) in the architecture presented in Fig. 1.

Figure 3: MRAC with Integral Feedback.

By defining x = [x′I x′p]
′ ∈ Rnr+np , a modified version of (4) with open-loop system

dynamics containing the additional error states can be written as

Ḡ(ρ)∼


ẋ = Ax+B(ρ)u+Brr

y =Cx
(6)

where

A =

0 −Cpz

0 Ap

 B(ρ) =

 0

Bp(ρ)

 Br =

Inr

0

 C =

Inr 0

0 Cp

 (7)

Since it is assumed that all states from (4) are available, i.e., Cp = I, then C = I and y = x.

9



The reference model, which specifies the ideal performance of (6), is given by

Ḡr(s)∼


ẋr = Arxr +Brr

ȳr =Crxr

(8)

where xr ∈ Rnr+np is the reference model state vector, ȳr ∈ Rnr+np is the reference model

output for the integral error structure. Choosing the reference model output matrix such

that Cr = C = I, then ȳr = xr. Therefore, the error between the plant and reference model

outputs originally defined in (5) is now defined as

ē = x− xr (9)

If the system (6) were parameter independent, ideal performance could be achieved

with a fixed gain controller of the form

u = K∗x (10)

which can be designed using pole-placement, LQR, or other modern control methods [15]

where K∗ ∈ Rm×nr+np is the ideal fixed gain matrix. Inserting (10) into (6) with B(ρ) = B

yields the ideal closed-loop system dynamics of the LTI plant

ẋ = (A+BK∗)x+Brr (11)

To ensure the trajectories of the plant follow the desired trajectories of the reference

model, the following matching condition must be met [11]

Ar = A+BK∗ (12)

where Ar is Hurwitz and is a part of the state-space representation of the reference model

10



in (8). To accommodate for the LPV plant, an adaptive control law is developed such that

the system in Fig. 3 is closed-loop stable and (9) asymptotically converges to zero. This is

achieved by introducing an adaptive term to the control law [15]

u = (K̂(ρ)+K∗)︸ ︷︷ ︸
K̄(ρ)

x = K̂(ρ)x︸ ︷︷ ︸
ua

+ K∗x︸︷︷︸
uL

(13)

where K̂(ρ) ∈ Rm×nr+np is the parameter dependent adaptive gain matrix.

Remark. The control signal (13) contains two terms: the adaptive control signal ua and a

control signal for the optimal LTI controller uL. The inclusion of uL is not required to prove

stable dynamics of K̂(ρ) with the Lyapunov stability analysis that follows. However, by

including uL in the control law, the performance at initialization is significantly improved

since, upon initialization, K̂(ρ) has no preset value (see (24)). Therefore, if ua is the only

control signal, performance is likely to be poor until K̂(ρ) has adapted to ensure ē is either

small or zero. When uL is present, the closed-loop system is initialized with the same

closed-loop poles as the reference model, and the adaptation of K̂(ρ) is only necessary to

account for transients or parameter changes that cause deviations between the plant and

reference model outputs.

To determine the dynamics of the adaptive gain matrix K̂(ρ) that ensure ē→ 0, the state

equation of (6) can be equivalently written as

ẋ = Arx+B(ρ)
(
u+B+(ρ)(A−Ar)x

)
+Brr (14)

where B+(ρ) = B′(ρ)(B(ρ)B′(ρ))−1 denotes the Moore-Penrose inverse. By defining

K (ρ) = −B+(ρ)(A−Ar), then if the adaptive gain matrix K̄(ρ) can converge to K (ρ),

then the control law (13) results in plant dynamics (14) that are identical to the reference

model dynamics (8) [2]. Substituting K (ρ) and (13) into (14), the closed-loop dynamics

11



become

ẋ = Arx+B(ρ)∆K̄(ρ)x+Brr (15)

where ∆K̄(ρ) = K̄(ρ)−K (ρ). The dynamics of (9) can be obtained by subtracting the

reference model state equation in (8) from (15)

˙̄e = ẋ− ẋr (16)

= Arx+B(ρ)∆K̄(ρ)x−Arxr (17)

= Arē+B(ρ)∆K̄(ρ) (18)

Now, consider a Lyapunov function candidate

V (x, t) = ē′Pē+ trace
(
∆K̄(ρ)Γ−1

K ∆K̄′(ρ)
)

(19)

where ΓK > 0 is the diagonal adaptation rate matrix and P = P′ > 0 is the unique solution

to the algebraic Lyapunov equation

PAr +A′rP =−QK (20)

for any QK = Q′K > 0. The derivative of V (x, t) along its trajectories is

V̇ (x, t) = ē′P ˙̄e+ ˙̄e′Pē+2trace
(

∆K̄(ρ)Γ−1
K

˙̂K′(ρ)
)

(21)

Substituting (18) into (21),

V̇ (x, t) = ē′ (PAr +A′rP)︸ ︷︷ ︸
−QK

ē+2 ē′PB(ρ)︸ ︷︷ ︸
a′

∆K̄(ρ)x︸ ︷︷ ︸
b

+2trace
(

∆K̄(ρ)Γ−1
K

˙̂K′(ρ)
)

(22)

where co-dimensional vectors a and b satisfy the trace identity a′b= trace(ba′). The deriva-
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tive of the Lyapunov function can then be written as

V̇ (x, t) =−ē′QK ē+2trace
(

∆K̄(ρ)
(

xē′PB(ρ)+Γ
−1
K

˙̂K′(ρ)
))

(23)

If the adaptive law is chosen as

˙̂K′(ρ) =−ΓKxē′PB(ρ) (24)

then V̇ (x, t) becomes globally negative semi-definite

V̇ (x, t) =−ē′QK ē≤ 0 (25)

This condition guarantees the closed-loop dynamics of ē are uniformly stable. Addi-

tionally, the uniform stability of ˙̄e ensures that the terms ē and K̂(ρ), which are contained

in V̇ (x, t), are uniformly bounded. With the bounded reference command r and Ar, which

is Hurwitz, the reference state xr and its first time derivative are bounded from (8). Because

ē and xr are bounded, then from (9), x is bounded, which ensures xp is also bounded. The

control input u is bounded as a result of the boundedness of K̂(ρ), xp, ē, and r. Bounded-

ness of u results in bounded ẋ as well (6). Since ẋ and ẋr are bounded, then from (16) ˙̄e is

also bounded. Because both ē and ˙̄e are bounded, the second derivative of V , given by

V̈ (x, t) =−2ē′QK ˙̄e (26)

is also bounded, thus V̇ (x, t) is uniformly continuous. Additionally, V is lower bounded by

zero and V̇ (x, t) ≤ 0. With these conditions, Barbalat’s lemma can be applied with use of

the immediate corollary:

Lemma 1.1 (“Lyapunov-Like Lemma”) If a scalar function V (x, t) satisfies the following

conditions
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• V (x, t) is lower bounded

• V̇ (x, t) is negative semi-definite

• V̇ (x, t) is uniformly continuous in time

then V̇ (x, t)→ 0 as t→ ∞ [21].

Therefore, ē globally, uniformly, and asymptotically converges to the origin.

3.2 Parameter-Dependent Anti-Windup Compensation

The two-step anti-windup method parameterizes the anti-windup compensator Θ(ρ)

in terms of a transfer function M(ρ) and a copy of the plant G(ρ). Under this parameteri-

zation, the system depicted in Fig. 1 is equivalent to the system in Fig. 4. The equivalent

Figure 4: Equivalent representation of Fig. 1 when Θ(ρ) is parameterized by transfer
functions G(ρ) and M(ρ)

structure illustrates the two-step anti-windup design process, i.e., that stability analysis and

design for the nominal control loop and the anti-windup compensation loop can be per-

formed separately. Furthermore, Fig. 4 illuminates that minimizing the saturated system’s

deviation from nominal performance can achieved by the minimization of the mapping

Taw(ρ) : unom 7→ yd .
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The objectives of anti-windup compensator design presented in the introduction of this

section will be achieved by choosing M(ρ) as part of the right co-prime factorization of

G(ρ) = N(ρ)M(ρ)−1 where M(ρ),N(ρ) ∈RH ∞ [6]. With this choice of M(ρ), the full-

order anti-windup compensator

Θ(ρ) =

M(ρ)− I

N(ρ)

 (27)

has order Rnp and shares the same state space as the plant (4) [24].

To build off the extensive work in [10] regarding discrete anti-windup design, the anti-

windup compensator presented in this paper is also designed to be discrete. Additionally, as

a result of the discrete nature of the system identification technique used in Section 3.3, ρ is

not known continuously but as a discrete vector updated at each time step k i.e. ρ = ρ(k∆t)

where ∆t is the discrete update step size of the system identification method. Thus, the

use of a discrete anti-windup compensator pairs well with the use of discrete estimates of

ρ . The discrete anti-windup compensator is designed using the discrete counterpart of the

continuous plant G(ρ) (4).

Gz(ρ)∼


xz(k+1) = Azxz(k)+Bz(ρ)T sat(uT (k))

yz(k) =Czxz(k)
(28)

where xz(k) ∈Rnp is the discrete plant state vector, uT (k) ∈Rm is the discrete thrust signal

and yz(k)∈Rnp is the discrete plant output. The discrete state space matrices Az, Bz(ρ), and

Cz are determined by applying the zero-order hold (ZOH) method to (4) [8]. The co-prime
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factors of Gz(ρ) to be used in (27) are given by

M(ρ) =

Az +Bz(ρ)F(ρ) Bz(ρ)

F(ρ) I

 (29)

N(ρ) =

Az +Bz(ρ)F(ρ) Bz(ρ)

Cz 0

 (30)

Substituting (29) and (30) into (27), the state-space representation of Θ(ρ) is

Θ(ρ)∼


xa(k+1) = (Az +Bz(ρ)F(ρ))xa(k)+Bz(ρ)ũF(k)

ud(k) = F(ρ)xa(k)

yd(k) =Czxa(k)

(31)

where xa(k)∈Rnp is the anti-windup state and ũF(k) = T ũT (k) = T Dz(uT (k))∈Rm. With

the structure of Θ(ρ) chosen, the remaining task is to calculate the parameter dependent

anti-windup gain F(ρ) ∈ Rm×np such that global stability is achieved and ‖Taw(ρ)‖2 is

minimized where

‖yd(k)‖2 ≤ ‖Taw(ρ)‖2‖unom(k)‖2 (32)

Theorem 1 . If K(ρ) stabilizes G(ρ) ∀ ρ ∈ P without consideration of the input non-

linearity, there exists a discrete full order anti-windup compensator Θ(ρ) which achieves

the anti-windup design objectives if for a given ρ there exist matrices Q(ρ) > 0, U(ρ) =

diag(µ1(ρ), ...,µm(ρ))> 0, L(ρ)∈Rm×n and a positive real scalar γ(ρ) such that the LMI
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(33) is satisfied.



−Q(ρ) −L′(ρ) 0 Q(ρ)A′z +L′(ρ)B′z(ρ) Q(ρ)C′z

? −2U(ρ) Im U(ρ)B′z(ρ) 0

? ? −γ(ρ)Im 0 0

? ? ? −Q(ρ) 0

? ? ? ? −γ(ρ)Im


< 0 (33)

For each ρ , the solution to (33) yields an F(ρ) that achieves ‖Taw(ρ)‖2 < γ(ρ) and is

given by F(ρ) = L(ρ)Q−1(ρ).

Proof. A Lyapunov function candidate is chosen as V (xa(k)) = x′a(k)P(ρ)xa(k)> 0 where

P(ρ) ∈ Rnp is a real symmetric positive definite matrix. The Lyapunov difference is given

by ∆V (xa(k)) := V (xa(k+ 1))−V (xa(k)). Since the system in Fig. 4 is equivalent to the

system in Fig. 1, then if the inequality

∆V (xa(k))< γ
2(ρ)‖unom(k)‖2−‖yd(k)‖2 (34)

is satisfied then the system (31) is is finite-gain L2 stable and ‖Taw(ρ)‖2 < γ(ρ) [12].

The deadzone Dz(·) :Rm 7→Rm inhabits the sector [0, I] [12]. Thus, the following sector

condition is satisfied for all diagonal W (ρ)> 0

ũT (k)′W (ρ)(u(k)− ũT (k))≥ 0 (35)

where u(k) = unom(k)−ud(k). However, since the PDAWC input is ũF(k), then if diagonal

Y (ρ) = (T−1)′W (ρ)T−1 exists, then the following inequality is satisfied

ũF(k)′Y (ρ)(u(k)− ũF(k))≥ 0 (36)

As shown in [19], diagonal positive definite matrices W (ρ),Y (ρ) ∈ Rm, such that
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(T−1)′W (ρ)T−1 = Y (ρ), do exist for the T matrix of the quadcopter presented in Section

4. Therefore,

∆V (xa(k))+‖yd(k)‖2− γ
2(ρ)‖unom(k)‖2

<∆V (xa(k))+‖yd(k)‖2− γ
2(ρ)‖unom(k)‖2 +2ũF(k)′Y (ρ)(unom(k)−ud(k)− ũF(k))< 0

(37)

To begin formulation of the LMI (33), substitute xa(k+1),xa(k),ud(k),yd(k) into (37)


xa(k)

ũF(k)

unom(k)


′

V11 (Az +Bz(ρ)F(ρ))′P(ρ)Bz(ρ)−2F ′(ρ)Y (ρ) 0

? −2Y (ρ)+B′z(ρ)P(ρ)Bz(ρ) Y (ρ)

? ? −γ2(ρ)Im




xa(k)

ũF(k)

unom(k)


(38)

where

V11 = (Az +Bz(ρ)F(ρ))′P(ρ)(Az +Bz(ρ)F(ρ))−P(ρ)+C′zCz

The standard Schur complement and the congruence transformation

C = diag(P−1(ρ) Y−1(ρ) I I I) are applied to (38). Then, using the relationships U(ρ) =

Y−1(ρ), Q(ρ) = P−1(ρ), L(ρ) = F(ρ)Q(ρ), and L′(ρ) = Q(ρ)F ′(ρ), (38) becomes the

LMI governing global stability of Θ(ρ) as expressed in (33).

3.2.1 Local Stability

The quadcopter for which this anti-windup compensator is to be applied in Section 5 is

open-loop marginally stable – all of the poles of the linearized system lie at the origin of the

complex plane. Therefore, only local stability can be achieved by which it is assumed that

the state xa(k) attains values only within a certain compact region of the state space. This

means that the input to the deadzone uT (k) attains values only below a certain level, i.e.,

if all uT,i(k) satisfy −βiuT,i ≤ uT,i(k)≤ βiūT,i, where βi > 1 ∀ i, then Dzi(uT,i(k)) remains
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below the gradient

αi :=
βi−1

βi
< 1 (39)

Therefore, the deadzone is constrained to the narrower sector bound Sector[0,A ] where

A := diag(α1, ...,αm) and αi ∈ (0,1). Consequently,

ũF(k)′Y (ρ) [A u(k)− ũF(k)]≥ 0 (40)

where, again u(k) = unom(k)− ud(k) and Y (ρ) = (T−1)′W (ρ)T−1. Following the same

process for developing (33) from (37) with the slight variation of replacing (36) with (40),

the parameter dependent LMI (41) is generated with an optimal solution for each ρ given

by F(ρ) in (31) that achieves ‖Taw(ρ)‖2 < γ(ρ) for marginally stable and unstable plants

and is given by F(ρ) = L(ρ)Q−1(ρ) .



−Q(ρ) −L′(ρ)A 0 Q(ρ)A′z +L′(ρ)B′z(ρ) Q(ρ)C′z

? −2U(ρ) A U(ρ)B′z(ρ) 0

? ? −γ(ρ)Im 0 0

? ? ? −Q(ρ) 0

? ? ? ? −γ(ρ)Im


< 0 (41)

3.3 System Identification

The elements of ρ are estimated by a linear input-output relationship in the system

dynamics given by

d(k) = ρ̂d(k)φ(k) (42)

where d(k) ∈ Rv is the vector of output variables, ρ̂d(k) is the matrix containing the esti-

mates of ρ , and φ(k) ∈ Rv is the regressor (input) vector.

To account for changing parameters, a real-time recursive least-squares (RLS) system

identification algorithm with exponential forgetting is utilized [4]. This identifies time-
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varying parameters by exponentially discounting the weighting of older data [1, 7]. The

algorithm is applied to the set of linear equations (42) to estimate ρ(k∆t) which is needed

for both K̂(ρ) from MRAC and the PDAWC Θ(ρ). The RLS algorithm operates at time

steps k and minimizes the following cost function

E (ρ,k) =
1
2

N

∑
k=1

λ
N−k(d(k)− ρ̂d(k)φ(k))2 (43)

where 0 < λ < 1 is the forgetting factor. The least squares criteria (43) is minimized

through implementation of the following recursive equations:

X(k) =
R(k−1)φ(k)

λ +φ ′(k)R(k−1)φ(k)
(44a)

ε(k) = d(k)− ρ̂d(k−1)φ(k) (44b)

ρ̂d(k) = ρ̂d(k−1)+X(k)ε(k) (44c)

R(k) =
1
λ

(
R(k−1)−X(k)φ ′(k)R(k−1)

)
(44d)

where ε(k) is the residual (estimation error). The recursive aspect of these equations re-

quires the initialization of R(0)= δ Iv where δ is an arbitrary constant. The initial parameter

estimate ρ̂d(0) can be initialized to the null vector unless the initial values of ρ are known

a priori. From (44c) it can be seen that the current parameter estimate ρ̂d(k) is achieved by

an adjustment of the previous estimate which is proportional to the estimation error.
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4 SYSTEM DYNAMICS

Fig. 5 represents a quadcopter with time-varying inertia parameters and a body-fixed

coordinate frame Φ1 ≡ {Q;~ik} aligned along the propeller axes. The quadcopter is moving

in space relative to the inertial frame Φ0 ≡ {E; ~Ik}. The rotational transformation matrix

R10 transforms the motion from Φ0 to Φ1 using the 3, 2, 1, rotation sequence

R10 =


cθ3cθ2 cθ3sθ2sθ1− sθ3cθ1 cθ3sθ2cθ1 + sθ3sθ1

sθ3cθ2 sθ3sθ2sθ1 + cθ3cθ1 sθ3sθ2cθ1− cθ3sθ1

−sθ2 cθ2sθ1 cθ2cθ1


where c and s denote cos and sin functions, respectively [22]. Each propeller generates a

thrust uT,i which acts only in the−~i3 direction and is constrained by the saturation function

(1).

Figure 5: Quadcopter Model.

Translational motion in Φ1 follows the equation

ẍ =
1

m(t)
F− θ̇ × ẋ+R10~g (45)
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where x = [ x1 x2 x3 ]′ and θ = [ θ1 θ2 θ3 ]′ are the translational and rotational degrees-

of-freedom, respectively, m(t) is the quadcopter mass, F = [ F1 F2 F3 ]′ are body forces in

each coordinate direction, and~g = [ 0 0 g ]′ where g is the gravitational constant. Since the

quadcopter has four unidirectional actuators, only four of the six degrees-of-freedom are

chosen to be directly controlled: x3, θ1, θ2 and θ3, while the remaining degrees-of-freedom

are indirect results from these controlled degrees-of-freedom. Therefore, considering only

the translational equation of motion along the~i3 axis:

ẍ3 =
F3

m(t)
+ θ̇2ẋ1− θ̇1ẋ2 +gcos(θ1)cos(θ2) (46)

Rotational motion of the vehicle is governed by

θ̈ = J(t)−1(M− θ̇ × J(t)θ̇) (47)

where J(t) is the mass moment of inertia tensor, and M = [ M1 M2 M3 ]′ are the body

moments about each coordinate axis in Φ1. Assuming Φ1 is aligned with the principal

inertial axes of the quadcopter, J(t) is diagonal

J(t) = diag(J11(t),J22(t),J33(t)) (48)

and the rotational equations of motion explicitly are

θ̈1 =
1

J11(t)
(M1 + θ̇3J22(t)θ̇2− θ̇2J33(t)θ̇3) (49)

θ̈2 =
1

J22(t)
(M2 + θ̇1J33(t)θ̇3− θ̇3J11(t)θ̇1) (50)

θ̈3 =
1

J33(t)
(M3 + θ̇2J11(t)θ̇1− θ̇1J22(t)θ̇2) (51)

The control allocation matrix, i.e. the transformation from the propeller thrust
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uT = [ uT,1 uT,2 uT,3 uT,4 ]
′ to the body force and moments on the vehicle, is



F3

M1

M2

M3


=



−1 −1 −1 −1

0 −h 0 h

h 0 −h 0

τm −τm τm −τm


︸ ︷︷ ︸

T

sat(uT ) (52)

where the half-span, h, is the distance from the quadcopter’s center of gravity to the each

propeller, and τm is the torque generated by the rotation of the each propeller. The diagonal

of the inertia tensor J(t) can be augmented with the vehicle mass to produce

Ja(t) = diag(m(t),J11(t),J22(t),J33(t)) (53)

Combining (46), (49), (50), and (51) and using (52) and (53), the quadcopter can be defined

by the following equations:



ẍ3

θ̈1

θ̈2

θ̈3


=



θ̇2ẋ1− θ̇1ẋ2 +gcos(θ1)cos(θ2)

(θ̇3J22(t)θ̇2− θ̇2J33(t)θ̇3)/J11(t)

(θ̇1J33(t)θ̇3− θ̇3J11(t)θ̇1)/J22(t)

(θ̇2J11(t)θ̇1− θ̇1J22(t)θ̇2)/J33(t)


︸ ︷︷ ︸

f (xp)

+Ja(t)−1T sat(uT ) (54)

Thus, choosing the state vector as xp = [x3 ẋ3 θ1 θ̇1 θ2 θ̇2 θ3 θ̇3]
′, the state-space represen-

tation of (54) is

ẋp =

I4⊗

0 1

0 0




︸ ︷︷ ︸
Ap

xp +

Ja(t)−1⊗

0

1




︸ ︷︷ ︸
Bp(ρ)

T sat(uT )+ f (xp)⊗

0

1

 (55)
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where ⊗ denotes the Kronecker product, ρ = ρ(t) is the time-varying parameter vector

ρ =

[
1

m(t)
1

J11(t)
1

J22(t)
1

J33(t)

]
(56)

yp = xp is the output, and the tracked output states are the position states

zp = [x3 θ1 θ2 θ3]
′ (57)

When the dynamic equations (54) are linearized about the hover operating point, (55) re-

duces to four decoupled double integrator systems [19]

ẋp = Apxp +Bp(ρ)T sat(uT ) (58)

While the nonlinear dynamics (54) will be used to simulate the quadcopter, the linearized

dynamics (58) are used to design the MRAC and PDAWC controllers.
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5 CONTROL SYSTEM DESIGN AND SIMULATIONS

To evaluate the performance of the combined MRAC and PDAWC control system,

it is applied to an LPV quadcopter with dynamics described by (54) and parameters de-

fined in Table 1. Following from [19], the parameters listed in Table 1 were determined

experimentally for a real quadcopter UAV using a mass moment of inertia test rig and force

measurement stand. Using parameters of a real quadcopter, the simulation results better

approximate the true flight behavior expected in a physical experiment. For comparison,

two control systems are designed and applied to the same quadcopter in simulation. The

first control system, denoted CK̂,Θ, is the combined MRAC and PDAWC control system

depicted in Fig. 1 where the nominal controller K(ρ) implements integral control as shown

in Fig. 3. The second control system uses MRAC without any anti-windup compensation,

and it is denoted as CK̂ . The structure of the CK̂ control system follows Fig. 3 with satu-

ration and control allocation included at the plant input. Thus, rather than the plant input

being u as shown in Fig. 3, the plant input is actually T sat(T−1u) when implemented in

simulation. Both CK̂,Θ and CK̂ are applied to the LPV quadcopter to demonstrate the per-

formance advantage of the proposed parameter-dependent anti-windup compensator when

compared to the adaptive control strategy without anti-windup compensation.
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Table 1: Experimentally determined quadcopter parameters.

Variable Name Variable Value Units

Half-span h 0.305 m

Gyroscopic moment τm 0.0278 m

Thrust range [uT,i ūT,i] [0 4.2] N

Gravitational constant g 9.81 m/s2

Initial mass mo 1.15 kg

Initial mass moment of inertia J11,o 0.026 kg · m2

Initial mass moment of inertia J22,o 0.026 kg · m2

Initial mass moment of inertia J33,o 0.050 kg · m2

The simulations that follow involve lifting a payload with mass mp, which is assumed

to be unknown. The simulated payload mass, mp = 0.45 kg, is about 40% of the original

vehicle mass (mo) and is about 80% of the quadcopter’s total payload carrying capacity

(0.56 kg). The payload is assumed to be located at the vehicle’s center of mass.

The RLS (44) is applied to determine ρ̂ = [1/m̂ 1/Ĵ11 1/Ĵ22 1/Ĵ33], which is the es-

timate of (56). When the quadcopter dynamics (54) are linearized about the hover point,

f (xp) = 0, and the dynamics take the form of (42), i.e.,

z̈p(k)︸ ︷︷ ︸
d(k)

= ρ̂d(k)T sat(uT (k))︸ ︷︷ ︸
φ(k)

(59)

Since the linearization of (55) results in four decoupled systems, ρ̂d(k) can be structured as

ρ̂d(k) = diag(1/m̂(k), 1/Ĵ11(k), 1/Ĵ22(k), 1/Ĵ33(k))

For implementation of the RLS, a value of λ = 0.98 is used for the forgetting factor in (44a)

26



and (44d). The identification algorithm operates at time steps ∆t = 0.0001s. Additionally,

the diagonal parameter estimate is initialized to ρ̂d(0) where the value of the reciprocal of

each diagonal element is given in Table 1.

5.1 MRAC Design

The MRAC design is identical for both CK̂,Θ and CK̂ . It is important to note that while

(24) is derived with the input matrix B(ρ) from (6), the adaptation law is implemented

discretely since estimates ρ̂ are made available at fixed-time intervals ∆t from the system

identification. After integrating (24), K̂(ρ) can be implemented discretely as

K̂′(ρ̂(k)) =−
(

z
z−1

)
ΓKx(k)ē′(k)PzBz(ρ̂(k)) (60)

where z/(z− 1) represents the discrete equivalent of integration using the forward Euler

method that results from the z-transform of 1/s from the Laplace domain. The vectors x(k)

and ē(k) are sampled at the input of K̄(ρ). Pz is the discrete equivalent of P in (20) which

must be solved using the discrete algebraic Lyapunov equation ArzPzA′rz−Pz+QK = 0

where Arz is the dicrete version of Ar from (8) which is determined by the ZOH method.

The final term Bz(ρ̂(k)) is from (28) with dependence on ρ̂ rather than ρ .

The main aspect of the MRAC design is the choice of the reference model which spec-

ifies the ideal performance of the plant. Following from (12) and (8), the A and B matrices

are taken from (6) when operating at the initial inertia parameter configuration ρo, thus

B = B(ρo). The remainder of the design is to calculate the ideal gain K∗, which is used for

both determining the reference model dynamics and the LTI control signal uL. The design

of K∗ is performed using the LQR optimal control method [15], for which the weighting

matrices are chosen as Qlqr = I12, Rlqr = 0.001× I4. This choice of Rlqr and Qlqr places

emphasis on quadcopter performance (small reference tracking error) rather than minimiz-

ing control effort. The resulting reference model and nominal closed-loop system have the
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following 12 closed-loop pole locations: −27.48, −632.45, a repeated pole at −1216.26,

and four repeated complex conjugate pairs of poles at −0.87±0.50i.

Additional MRAC parameters must be selected including QK from (20) (and its discrete

equivalent above) and the diagonal adaptation rate matrix ΓK in (24). The only requirement

on QK is QK = Q′K > 0. This parameter is arbitrarily chosen as the identity matrix, i.e.,

QK = I12. To tune ΓK , it was initially set equal to the identity matrix I12 and the simulation

described in Section 5.3 was evaluated. While the plant states converged to the reference

model trajectories within a reasonable period of time for quadcopter performance, signif-

icant overshoot and oscillation existed on all of the tracked states. In an effort to improve

MRAC performance, a tuning experiment was carried out to determine a ΓK that reduces

these undesirable overshoots and oscillations. To minimize the number of tuning parame-

ters, the elements of ΓK were divided into three groups that correspond to the adaptation

rates of the respective states in each group: 1. the error states xI =
∫
(r− zp)dt; 2. the

position states zp = (x3,θ1,θ2,θ3); and, 3. the velocity states żp = (ẋ3, θ̇1, θ̇2, θ̇3). Thus,

instead of tuning twelve individual parameters (one per state), only three groups of param-

eters required tuning. The simulation described in Section 5.3 was evaluated with each of

the groups’ adaptation rates at all combinations of 1, 10, and 100. The diagonal adaptation

rate matrix ΓK that resulted in the smallest overshoots and fastest return to reference model

tracking for these simulations was determined as

ΓK = diag

 I4︸︷︷︸
xI

, I4⊗


1︸︷︷︸

zp,i

0

0 10︸︷︷︸
żp,i


 (61)

where the underbraces indicate the adaptation rate for each state group. At first glance,

the resulting optimum ΓK is unexpected. Intuitively, one would expect the need for larger

adaptation rates for xI in order to quickly adapt the error states and hence reduce overshoot

and oscillations. However, a large adaption rate for xI resulted in large control effort,

28



particularly in the transient portion of the simulation. This in turn caused long periods of

saturation; and, since anti-windup compensation is absent in CK̂ , the control system was

unable to recover. Consequently, for the portion of ΓK responsible for the adaptation of xI ,

the identity matrix I4 resulted in no saturation during the transient portion of the simulation,

and hence, best performance.

5.2 PDAWC Design

To implement the gain-scheduled Θ(ρ), first note that under the assumption that the

payload is attached to the vehicle’s center of mass, each mass moment of inertia Jii(t)

changes proportional to m(t) viz

Jii,c(t) =
(

m̂
mo

)
Jii,o (62)

where Jii,c(t) are mass moments of inertia calculated from the estimated vehicle mass m̂.

Consequently, the parameter grid defined as µρ used to generate the gain schedule denoted

by FGS(µρ) can be reduced from a 4-dimensional matrix dependent on

ρ = [1/m 1/J11 1/J22 1/J33] to a 1-dimensional matrix dependent solely on 1/m. Similarly,

the scheduling variable can be reduced from the vector ρ̂ to the scalar 1/m̂ where the mass

moments of inertia are again calculated using (62). To reduce the possibility that any

estimated values m̂ do not fall outside the range of µρ during simulation, a large buffer is

included on both sides of the expected mass range of m(t) ∈ [1.15,1.60]. The mass grid

µρ is constructed using the range m = 0.5 kg to m̄ = 5 kg with increments of 0.01 kg. The

LMI (41) is then solved offline for all discrete values of 1/m on the grid µρ to generate the
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gain schedule FGS(µρ), and the anti-windup compensator is implemented as

Θ(1/m̂)∼


xa(k+1) = (Az +Bz(1/m̂)F(1/m̂))xa(k)+Bz(1/m̂)ũF(k)

ud(k) = F(1/m̂)xa(k)

yd(k) =Czxa(k)

(63)

where the anti-windup gain F(1/m̂) is obtained from the gain schedule FGS(1/m̂).

The LMI (41) requires a narrowed sector to guarantee local stability for the marginally

stable linearized quadcopter dynamics (58). For this simulation study, the local sector

term βi defined in (39) is βi = 100 ∀i = 1, . . . ,m. This ensures local stability so long as

uT,i < 100ūT,i ∀i = 1, . . . ,m.

To provide the control designer with an ability to tune anti-windup performance to the

specific control system, [24] includes the choice of two weighting matrices (similar to the

LQR method for the design of the reference model in MRAC). The performance weight

Wp prioritizes a fast return to nominal control performance, and the robustness weight

Wr emphasizes robustness to additive uncertainty. The choice of Wp and Wr can have a

significant effect on anti-windup performance. Thus, an analysis of the influence of these

weighting matrices on the performance of CK̂,Θ was conducted. The results of this analysis

are presented in Table 2.

Table 2: Anti-windup design parameters’ effect on performance (Wp = I).

Wr 0.01 0.1 1 10 100

Plot legend (Figs. 7 and 8)

γ(1/m̄) 0.89 2.09 5.79 6.60 53.36

γ(1/m) 0.58 1.73 5.33 5.47 52.03

For each test, Wp is held constant as the identity matrix, and Wr is varied by orders of

magnitude. Each set of Wr results in an PDAWC with a corresponding γ(1/m) for both
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parameter extremes m and m̄ as shown in Table 2. It is clear from Table 2 that larger Wr

results in larger L2 gain of the anti-windup compensator. Because minimizing the L2

gain results in a smaller deviation from nominal control performance during saturation,

anti-windup compensators designed with lower values of Wr result in better anti-windup

performance. To visualize the performance differences resulting from the choice of Wr

and the compensator’s corresponding L2 gain, the simulation described in Section 5.3 is

performed on the control system CK̂,Θ with Wr = 0.1,1, and 10.

5.3 Simulation Results

The CK̂,Θ and CK̂ controllers are tested with the same reference commands for the

following quadcopter states: r = [x3 θ1 θ2 θ3]
′. The simulation begins with the quadcopter

being released at x3 =−1m where it is commanded to hover for 5 seconds while the adap-

tive controller accounts for the transients due to gravity. At t = 5s, the quadcopter drops

down to x3 = 0m where it collects the payload shortly after at t = 10s. The quadcopter

performs various test maneuvers for each of the tracked states and the simulation ends with

the quadcopter landing at r = [0 0 0 0]′.

Because the input to the RLS algorithm is dependent on the control signal, both con-

troller systems CK̂,Θ and CK̂ result in different estimates of the parameters. Rather than

show the parameter estimates and the corresponding actual values, they are reciprocated

and plotted in Fig. 6 to better visualize the mass increase after the payload is lifted. In Fig.

6, discrepancies between the estimated and true parameter values exist at various instances

during the simulation. As will be discussed shortly, when saturation occurs, the input to the

RLS algorithm remains constant. However, the output of the RLS continues to change. Al-

though the parameters are not actually changing when saturation occurs in this simulation,

the algorithm has no knowledge of the saturation event, and thus, the parameter estimate

continues to change to accommodate for the varying outputs.

Time histories of the tracked states zp and thrust signals sat(uT ) for each CK̂,Θ are shown
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Figure 6: RLS parameter estimation. 1/ρ̂i CK̂; 1/ρ̂i CK̂,Θ; 1/ρi.

in Figs. 7 and 8, respectively. The legend for the different CK̂,Θ designs is included in Table

2. Additional signals included in the Fig. 7 are the reference signal r, the position state

outputs of the reference model zr which correspond to the plant states defined in (57), and

the output signals of the MRAC only controller (see figure caption for line-types for these

signals). One additional signal is included in Fig. 8, which is the thrust signals of the CK̂

controller, labeled as uCK̂
T .

When high emphasis is placed on PDAWC robustness (Wr = 10) the L2 gain of the

compensator is relatively large. Hence, the response has a slow recovery time. In fact, after

saturation has ended, this control system returns to reference tracking more slowly than

each of the performance-to-robustness designs assessed in this analysis. On the other hand,

placing PDAWC design emphasis on performance (Wr = 0.1) results in a relatively small

L2 gain of the compensator, and, as expected, the response returns quickly to MRAC
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Figure 7: Effect of Wr on system response. r; zr; CK̂; Additional legend elements
in Table 2.

control performance. However, with high performance weighting, the system response

during saturation results in overshoots around the 35s mark for the x3 and θ1 plots that are

greater in magnitude that the overshoots of the PDAWC when Wr = 10.

When analyzing the effect of Wr on the thrust signals shown in Fig. 8, it is important

to note that all variations of Wr for the control system CK̂,Θ assessed in this study result in

less saturation time than the CK̂ control system where AWC is absent. When comparing

the saturated thrust signals in Fig. 8 with the results assessed in Fig. 7, the largest devi-

ation from nominal control performance occurs simultaneously with the largest saturation

event at t = 30s. When comparing the reference signals of the states θ1 and θ2 with the

quadcopter model in Fig. 5, it can be determined that the first set of pulses for θ1 and θ2

between t = 20s and t = 30s result in forward flight, and the second set between t = 30s

and t = 40s result in backwards flight. Therefore, at t = 30s, the quadcopter is commanded
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Figure 8: Effect of Wr on thrust commands. uCK̂
T .

to abruptly change directions. With the additional weight of the package, this maneuver

requires a large change in momentum that results in a long period of thrust saturation for

each of the propellers. This saturation event causes both the deviation from nominal con-

trol performance shown in Fig. 7 and the deviation of the parameter estimates from the true

parameter values shown in Fig. 6.

With the information presented in Figs. 7 and 8 and Table 2, the final design of the

CK̂,Θ is chosen with Wr = 0.1 which has relatively low γ(1/m) and γ(1/m̄). This design

also returns to tracking the reference model trajectories zr more quickly than the other

designs.
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6 CONCLUSIONS

A model reference adaptive controller and a parameter-dependent anti-windup com-

pensator are presented in a control scheme for quadcopters with constrained inputs and

time varying inertia. Using an anti-windup compensation architecture that allows for in-

dependent analysis of both the MRAC and anti-windup compensator, stability is ensured

while L2 performance of the compensation is guaranteed. Stability is achieved by formu-

lating an adaptive MRAC control law that ensures asymptotically stable error between the

quadcopter and reference model outputs. Due to the time varying inertia parameters of

the quadcopter, the resulting adaptive control law is dependent on the the varying param-

eters which are estimated by a recursive least squares system identification algorithm. To

implement anti-windup for the time varying quadcopter, the estimated mass from the re-

cursive least squares system identification algorithm are used to schedule the anti-windup

compensator gain.

Simulations are carried out to evaluate the effectiveness of the control scheme for

a quadcopter retrieving a package. Results show that the control scheme outperforms

the control system with MRAC alone. This is further confirmed by investigating vari-

ous performance-to-robustness weight ratios used in the anti-windup compensator design.

While the case implemented assumes that the quadcopter’s inertia properties are propor-

tional to the the vehicle’s mass, hence simplifying the gain scheduling of the anti-windup

compensation, future work will require the need for gain scheduling that uses estimates

of the inertia independent from the mass to enable the evaluation of a wider class of quad-

copter applications. Likewise, the effects of the control scheme on energy efficiency will be

investigated for quadcopter battery life since this is a real problem that must be addressed
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in order for successful use of the vehicles for future applications.
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APPENDIX

A. EXPLORATION OF ADAPTIVE CONTROL METHODS

Preliminary research focused heavily on the choice of the nominal adaptive controller

to be applied in the control system developed in Section 3. Two general adaptive control ar-

chitectures including adaptive model control (AMC) and model reference adaptive control

(MRAC) were explored. Within the category of MRAC, many variations exist. However,

three forms of MRAC including the MIT rule, the normalized MIT rule, and state feed-

back direct MRAC were explored. The performance of each of these adaptive controller

types was evaluated with a simple simulation of single channel quadcopter dynamics with

time-varying mass. The results of the adaptive controller simulations show the state feed-

back direct MRAC has both faster adaptation to mass changes and faster convergence to

the commanded trajectories than the other types of adaptive control explored here. For this

reason, the state feedback direct MRAC was chosen to be the nominal adaptive controller

implemented in the main body of this paper.

A.1 Adaptive Model Control

Adaptive model control utilizes the least-mean-square (LMS) algorithm and an adaptive

linear combiner to generate an adaptive model of the plant. The adaptive model is then

inverted and placed before the plant. When the adaptive model is accurately tracking the

plant, the product of the inverse adaptive model and the plant will simplify to the identity

matrix and the reference command will feed directly through to the output. The adaptive

model control structure is shown in Figure 9.
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Figure 9: Adaptive Model Control

The adaptive controller consists of two parts - the adaptive model and the inverse model.

The adaptive model can be described as a linear combiner

gk =
N

∑
i=0

wi,kuk−i (64)

=

[
uk uk−1 . . . uk−N

][
w0,k w1,k . . . wN,k

]′
(65)

= uT
k Wk (66)

where wi,k is the ith weight at the kth time interval, uk−i is the control signal history, and the

length of the weight vector Wk is called the tap-length (L). The adaptive modeling error is

defined as

ek = zk−gk. (67)

Because the output gk is a linear combination of both the input signal uk and the weight

vector Wk, the error can be redefined using (66)

ek = zk−uT
k Wk. (68)

To minimize the adaptive modeling error, a steepest descent based algorithm is used. The

gradient used to descend the performance surface is defined as

∇k =
∂e2

k
∂Wk

= 2ek
∂ek

∂Wk
. (69)
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By taking the partial derivative of (68) with respect to Wk, the gradient can be defined in

terms of the error and input signals

∇k =−2ekuk. (70)

The LMS algorithm is defined as

Wk+1 = Wk−µ0∇k (71)

= Wk +2µ0ekuk (72)

= Wk +µekuk. (73)

Equation (71) demonstrates that the weight vector updates such that (67) decreases. For

stability of the LMS algorithm, the rate of convergence µ must satisfy the relationship:

0 < µ <
1

||uk||2
(74)

A more complete derivation of the LMS algorithm is found in [27].

The inverse model is developed by enforcing the desired condition that rk equals gk.

Equation (64) is then solved for the control signal uk. This results in:

uk =
1

w0,k
(rk−

N

∑
i=1

wi,kuk−i), w0,k 6= 0. (75)

For adaptive model control, the LMS algorithm would not converge for an open-loop

marginally stable system. Full-state feedback was implemented to internally to ensure a

bounded plant response. There are two parameters that affect system performance, the tap-

length L and the convergence ratio µ . The relationship between these two parameters and

performance characteristics such as settling time and percent overshoot is not clear. Ad-

ditionally, the two parameters have no theoretical method for calculating the ideal values.
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To ensure all dynamics can be modeled, L must be greater than the order of the character-

istic equation of the open loop plant. The constraint on µ (74) can only be checked if uk

is known in advance. However, to ensure the constraint was not violated, µ was chosen

by starting near zero and increasing the magnitude until the performance was satisfactory.

After many iterations, parameters were chosen as

Parameter Value

L 3
µ 1e-4

Table 3: AMC Parameters

The single channel quadcopter simulation of lifting a payload, regardless of the choice

of µ and L, resulted in unbounded outputs. For this reason, AMC was discarded as an

option for the nominal adaptive controller to be used in conjunction with the PDAWC

designed in Section 3. Results, although underwhelming, generated for the simulation of

the quadcopter with a constant mass are shown in Figure 10.
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Figure 10: Adaptive Model Control for LTI Single Channel Quadcopter

Figure 10 shows the poor performance of the adaptive model control architecture. At-

tempting to improve the response time by increasing the convergence ratio µ caused worse

performance or instability. The tuning of µ and L was not a trivial task and many com-

binations result in unbounded responses. Literature for previous work on adaptive model

control, specifically for open-loop marginally stable systems, was limited. Successful ap-

plications of adaptive model control was described in [27], but each of those systems had

slowly time varying dynamics and very slow responses.

A.2 Model Reference Adaptive Control

The model-reference adaptive system is a system which contains the desired performance

characteristics in the form a reference model. Parameters of the controller (θ ) are adjusted

based on the error which is defined as the difference between the output of the system (y)
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and the output of the reference model (yr) [1]. Three methods for designing the adjustment

mechanism in Figure 11 are presented below.

Figure 11: General MRAC Structure

A.2.1 The MIT Rule

The MIT rule, developed at MIT in 1958, was the first approach to MRAC. To present

the MIT rule, consider Figure 11 which has one adjustable parameter θ . This parameter

must be chosen such that the output of the plant will converge to the desired closed-loop

response specified by the reference model. Similar to minimizing the square error in (69),

a cost function

J(θ) =
1
2

e2 (76)

will be minimized by updating θ in the direction of the negative gradient of J.

dθ

dt
=−γ

∂J
∂θ

=−γe
∂e
∂θ

(77)

where γ is called the adaptation rate/gain and ∂e/∂θ is called the sensitivity derivative.

The error can be written in terms of the transfer functions from r→ y and r→ yr

e = y− yr (78)

= Gp,clθr−Grr (79)
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where Gp,cl is the closed loop transfer function of the plant, and Gr is the transfer function

of the reference model. The sensitivity derivative can be evaluated using (79)

∂e
∂θ

= Gp,clr. (80)

Using the transfer function from r→ yr it is known that

r =
yr

Gr
. (81)

If the reference model is designed so that its closed-loop plant dynamics are identitcal to

those of the plant, when (81) is substituted into (80) the sensitivity derivative becomes

∂e
∂θ

= yr. (82)

The adjustment mechanism is developed by substituting (82) and (78) into (77) and inte-

grating which results in

θ =−γ

s
(y− yr)(yr). (83)

To determine the adaptation gain γ first rewrite (77) in terms of (79), (82) then rearrange

the result to form the parameter equation:

dθ

dt
+ γyr(Gp,clθr) = γy2

r (84)

If all signals are assumed to have reached steady state, (84) becomes

dθ

dt
+ γyr,ssrss(Gp,clθ) = γy2

r,ss (85)

which is simply a first order differential equation in terms of the parameter θ . The Laplace

transform yields the characteristic equation which governs the stability and performance of
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the parameter.

s+ γyr,ssrssGp,cl = 0 (86)

A range of γ that will guarantee stability of the adjustment mechanism can then be evaluated

using the Routh array.

The transfer function for quadcopter z-axis translation is

Gp(s) =
1/m
s2 (87)

A PD controller was used to achieve the performance criteria of 10% overshoot and to settle

within 2% in 3 seconds.

Kp(s) = 5(s+1) (88)

The closed loop plant transfer function becomes

Gp,cl(s) =
5
m(s+1)

s2 + 5
ms+ 5

m

. (89)

For perfect model following, the reference model must have the same dynamics as the

closed-loop plant. To meet this condition, the reference model was chosen as

Gr(s) =
5
m(s+1)

s2 + 5
ms+ 5

m

. (90)

where m = 1.15. When the plant mass equals the initial mass of 1.15 kg, the plant output

can perfectly track the reference model output otherwise there will be deviations. If aver-

age values of yr,ss and rss are known, the adaptation rate γ can be calculated using (86). For

the simulation results presented in Figure 12, yr,ss and rss are both equal to 1. Then, substi-

tuting Gp,cl into (86) and multiplying by the characteristic equation of Gp,cl , the parameter
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characteristic equation becomes

s3 +
5
m

s2 +
5
m
(1+ γ)s+

5
m

γ = 0. (91)

Using a Routh array [8], the range of stable values for γ is

0 < γ < 1− m
5
. (92)

There is a clear trade off between adaptation rate and stability for different values of mass.

As the mass of the system increases, the range of stable adaptation rates tightens. Priori-

tizing robustness over performance, the adaptation gain was chosen to be 0.1. The single

channel MIT Rule controlled quadcopter simulation results of lifting a payload of 3 Kg at

t = 50s are shown in Figure 12.

Figure 12: MIT Rule
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The MIT rule shows significant improvement when compared to the AMC results in

Figure 10. However, when analyzing (86), the stability and adaptation speed of the system

is dependent on the reference signal. This poses potential problems for large reference

signals that will force smaller values of γ to maintain stability and compromise adaptation

rate.

A.2.2 The Normalized MIT Rule

Noting from (86), the reference signal has a direct effect on the stability and performance

of the adjustment mechanism. The desired condition is r = y = yr at steady state. Thus,

the square of the reference signal will affect the adjustment mechanism. If the reference

signal is known to have large changes, the MIT rule will have performance limitations. To

mitigate these effects, the following normalized MIT rule was developed

dθ

dt
=

γφe
α +φ T φ

(93)

where φ = −∂e/∂θ , and α > 0 is introduced to avoid undefined conditions when φ is

small. Following the development of the parameter equation for the MIT rule in (84), (85),

and (86), the characteristic equation for the normalized adjustment mechanism becomes

s+ γ
yr,ssrss

α + yT
r,ssyr,ssGp,cl

= 0. (94)

Similarly, a range of γ that will guarantee stability of the normalized adjustment mechanism

can then be evaluated using the Routh array. Because yr,ss = rss, the effect of the reference

command on the adjustment mechanism stability and performance will be eliminated by

the inclusion of yT
m,ssym,ss in the denominator.

When implementing the normalized MIT rule, (89) and (90) were used for the plant

and reference models, respectively. The adaptation gain was chosen using the Routh array

as before but using (94) instead of (86). The parameter characteristic equation is (91) and
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the range of stable values for gamma is (92). The adaptation gain was again chosen to be

0.1. The single channel normalized MIT Rule controlled quadcopter simulation results of

lifting a payload of 3 Kg at t = 50s are shown in Figure 13.

Figure 13: Normalized MIT Rule

The performance of the normalized MIT rule in Figure 13 is similar to the MIT rule

performance in Figure 12. However, at the fourth pulse (t = 75s), the plant output actually

gets further from the reference model output. Although the normalized MIT rule performs

worse than the MIT rule for this example, the elimination of dependence on the reference

will allow the normalized MIT rule to have more consistent performance for a wider range

of reference signals.
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A.2.3 State Feedback Direct MRAC

Because the state feedback direct MRAC is designed thoroughly in the body of the paper,

theory is not presented here. For the full theoretical development and proof of stability, see

Section 3.1. For comparison to the results of AMC, the MIT rule, and the normalized MIT

rule, the same simulation is shown here in Figure 14. The reference model is designed as

follows

ẋr =

 0 1

−(ωn)
2 −2ζ ωn

xr +

 0

ωn
2

r (95)

yr =

[
1 0

]
xr +

0

0

r (96)

where m = 1.15 and ζ and ωn were chosen to satisfy the following performance specifica-

tions:

Performance Value

Overshoot 10%
Settling time 3.0 s

Settling amount 2%

ζ 0.59
ωn 2.21

Table 4: State Feedback Direct MRAC Performance Specifications

The following adaptation rates were chosen after a few iterations:

Parameter Value

Γx diag( 100, 100, 100)

Table 5: State Feedback Direct MRAC Adaptation Gains

The single channel state feedback direct MRAC controlled quadcopter simulation re-

sults of lifting a payload of 3 Kg at t = 50s are shown in Figure 14.
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Figure 14: State Feedback Direct MRAC

Figure 14 demonstrates the ability of state feedback direct MRAC ensure the conver-

gence of plant trajectories to the reference model trajectories. When the payload is added

at t = 50s, this variation of MRAC has very small deviations from reference model tracking

when compared to both the MIT rule and the normalzied MIT rule.

A.3 Performance Comparison

To provide a quantitative analysis of the performances of the MRAC variations (The LMS

was not included due to instability during mass change simulation) the percent differences

of the time integrals of the error signals and the time integrals of the desired signals are

shown in Figure 15.
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Figure 15: LTV Percent Difference of Error and Reference

Despite increasing the system mass significantly, the state feedback direct MRAC con-

tinually tracks the reference model through the duration of the simulation with only small

deviations after the addition of cargo. For this reason, this variation of MRAC is chosen as

the nominal adaptive controller to be implemented in Section 3.
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