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ABSTRACT 

PREDICTING HENRY’S LAW CONSTANTS OF VOLATILE ORGANIC 

COMPOUNDS PRESENT IN BOURBON USING MOLECULAR SIMULATIONS 

Chris Abney 

April 12, 2021 

Henry’s Law describes the partitioning of molecules into liquid and gas phases at 

low concentrations. Henry’s Law, which is based upon a species-dependent constant and 

the gas phase partial pressure, is useful for predicting phase behavior of dilute solutes. 

However, Henry’s Law constants are difficult to measure experimentally or to predict 

using structure-property or thermodynamic models. Herein, molecular simulations were 

used to calculate Henry’s Law constants for 18 volatile organic compounds (VOCs) 

present in bourbon. The novel simulations analyzed solvation thermodynamics of small 

organic molecules in 120 proof ethanol. A fast-growth non-equilibrium free energy 

method was used in which the VOC of interest was removed or added, thus affecting the 

overall thermodynamic properties of the system. Work distributions for forward and 

reverse transitions were analyzed. The Gibbs free energy of solvation for each VOC was 

thus estimated, which is directly related to the chemical potential of the VOC, thus 

providing access to Henry’s law constants. Results of models were compared to values of 

aqueous solvation from literature. The results of the simulations were precise over 

multiple iterations, but a lack of experimental data with respect to solvation in ethanol-

water solutions presents difficulties in assessing the accuracy of presented models. 
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Introduction 

 Henry’s Law, in the simplest sense, is a proportionality between the amount of 

gas dissolved in a liquid and its corresponding partial pressure above the liquid. Henry’s 

Law holds for dilute solutes. When taught in early science courses, carbonated beverages 

are used as an example to demonstrate the law—the solubility of carbon dioxide 

increases with pressure inside its container. When opened and exposed to atmospheric 

pressure, the solubility of carbon dioxide decreases, and gas bubbles are forced out of the 

liquid. 

 Henry’s Law constants are the proportionality factors between the aqueous phase 

concentration and gaseous phase partial pressure and can be classified into two 

fundamental types. Henry’s Law solubility constants, H, relate the proportionality when 

referring to the aqueous phase in the numerator and the gaseous phase in the 

denominator. Conversely, Henry’s Law volatility constants, KH, refer to the 

proportionality where the gaseous phase is in the numerator, with the aqueous phase in 

the denominator1. 

 In the context of the distilled spirits industry, and more directly with bourbon, 

Henry’s Law is intimately connected with the volatile organic compounds (VOCs) 

present within the bourbon and the headspace in the bourbon barrel. These compounds, in 

addition with non-volatile compounds determine the flavor and aroma profiles of 

bourbons. VOCs are also the principal emissions from bourbon production that occur 

primarily during the aging process where barrels are stored in warehouses for at least 

three years.  
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 Focusing exclusively on bourbon, the industry generates $8.6 billion and provides 

more than 20,000 jobs with an annual payroll of $1 billion. For every distilling job in 

Kentucky, three more are created down the line from utilities to logistics. Additionally, 

distilling ranks second in terms of the state’s share of national employment and 

manufacturing output with more than $2.3 billion in capital projects completed or 

planned through 2022. At any one time, the Commonwealth of Kentucky has a total 

inventory of nearly 10 million barrels of bourbon and other spirits, which accounts for 

almost 2 barrels for every single person living in Kentucky2. 

 Additionally, Kentucky exported over $570 million in bourbon and other spirits in 

2019, with top markets in Japan, Spain, Canada, and Australia. Visitors to Kentucky 

made 1.7 million stops at Kentucky distilleries in 2019, with the Kentucky Bourbon Trail 

attracting 1.3 million visits and the Kentucky Bourbon Trail Craft Tour distilleries 

hosting over 440,000 visits. The bourbon industry is booming with no signs of slowing 

any time soon, despite a global pandemic and a restless political environment. One would 

think that with the prevalence of alcohol in the world, scientific data involving distilled 

spirits would be ubiquitous2. 

 However, even with alcoholic beverages playing such a prominent part of 

worldwide social culture, data for some, if not all, of the VOCs present within the 

bourbon headspace is difficult to find. In fact, the chemical components of distilled 

liquors are still insufficiently understood, with new ‘unidentified’ compounds continually 

discovered today. In a 2018 study, using mass spectrometry-based metabolomic 

approaches, a total of 879 VOCs were identified in just 24 distilled liquor samples of 

various types3. 
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 Several analytical techniques have been proposed and employed to identify the 

VOCs in distilled spirits4. The majority of studies use chromatographic methods to 

analyze VOCs. For identifying and quantifying the concentration of amino acids, 

phenolic compounds, glycerol, and ethanol, liquid chromatography is often used. For 

higher alcohols, esters, aldehydes, methanol, and volatile acids, gas chromatography with 

flame ionization is used. Additionally, some studies have used gas chromatography with 

mass spectroscopy (GC-MS) to determine compounds used as markers for liquor aging4. 

The issue with chromatographic methods for determining VOCs, is that, while 

compounds can be independently identified due to varying residence times, to allow 

concentration measurements, identification of said compounds depends on having known 

values for residence time. Several studies routinely identify ‘unknown’ compounds 

within the spirit, highlighting the imperfect nature of chromatography for this purpose.  

For example, in a 2008 study of characterizing odor-active compounds in 

American bourbon whisky, Poisson et al. used aroma extract dilution analysis (AEDA) 

on a volatile fraction of an unrevealed bourbon. To isolate the VOCs in the whisky, 1:1 

extraction by dilution with tap water was dried and then concentrated using a column. 

Then, the nonvolatile compounds were removed via high vacuum distillation, with the 

distillate being concentrated. By treating the distillate with sodium bicarbonate, the 

distillate was fractioned into the neutral/basic and the acidic volatiles. The neutral/basic 

fraction was concentrated and fed into a water-cooled column to yield five fractions of 

increasing polarity, which was then separated using ether mixtures and dried. High 

resolution gas chromatography—olfactometry (HRGC-O) and mass spectrometry were 

performed.  
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While the gas chromatography was being performed, a panelist was present to 

smell the outgoing aroma of each VOC. Linear retention indices were calculated and 

mass spectra were recorded. Using diethyl ether, both the neutral/basic and acidic 

volatiles were diluted until sets from 1:1 up to 1:4096 were obtained. Panelists performed 

sensory tests on these portions until no aroma could be detected by GC-O5. 

This lengthy process for determining the concentrations and aroma intensities of 

the various compounds is slow and scientifically imprecise. Once again, this method does 

not determine the identity of unknown compounds. In fact, of the 45 VOCs tabulated in 

Poisson’s study, four were newly identified unknown compounds. Additionally, some of 

the identified VOCs have no measured Henry’s law constant data reported for them5. Of 

these 45 compounds, 18 were chosen for this thesis based on their flavor dilution factor, 

as well as the availability of experimental data. 

Experimental data regarding Henry’s law constants are also more or less 

exclusively tabulated with water as the solvent. Literature data involving Henry’s law 

constants for any solvent system other than water are few and far between, with notable 

exceptions such as water and methanol solutions. This lack of data is unfortunate, 

because Henry’s law can be incredibly useful in many applications for the distilled spirts 

industry, where the solvent is water and ethanol. This solvent system behaves differently 

than pure water, despite forming an azeotrope with water. Also, some notable VOCs are 

entirely miscible in alcohol but insoluble in water, some are entirely miscible in water 

and not alcohol, and some have moderate solubility in either. 

Henry’s law constants in literature are also often expressed with differing unit 

systems, which can make comparing experimental values to literature tedious. This is 
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partly due to the numerator/denominator convention discussed previously, as well as 

different methods to calculate Henry’s law constants. While the method in this thesis 

involves using the Gibbs free energy of solvation, Henry’s Law constants can be 

calculated from the chemical potential, from the fugacity of the component, or from 

simply taking the partial pressure and concentration of the solute and solvent and 

dividing the two. In addition to the experimental methods mentioned previously, Henry’s 

law constants have been estimated using molecular dynamics (MD) simulations and 

through group contribution methods. 

The group contribution method allows structure-property relationships dependent 

on molecular structure influence to predict Henry’s law constants. Group contribution 

methods assume that any given functional group makes a constant contribution to the 

Henry’s law constant. For example, -OH groups would have different contributions than -

CH3 groups. However, use of this method is limited by the availability of literature data 

for any given group that has been determined in the past for a specific solvent6. 

In addition to group contribution methods, there are methods based on bond 

contributions, which have much wider application in calculating Henry’s law constants. 

This is due to the fact that there are much fewer types of bonds than types of functional 

groups. A downside to these methods is that they are less specific than any group 

contribution method, so it is expected that values calculated using this method are less 

accurate6. 

Using the vapor pressure and aqueous solubility (concentration) of a specific 

chemical in each solvent is also a reasonable method for calculating a Henry’s law 

constant, especially for compounds with low solubility. This method is straightforward 
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and has been used in literature to calculate values for more exotic compounds, where 

often this is the only method with published data. However, calculating a Henry’s law 

constant from these two data sets can be problematic. Even when determined 

experimentally, error is introduced when measuring and calculating the vapor pressure of 

solutes and the solubilities of these solutes in any given solvent system. Thus, the final 

calculation for the constant relies on two values with inherent error. The resultant 

calculation, therefore, has magnified error6. 

The other method for calculating Henry’s constants is by using MD simulations, 

of which there are many variations. In MD simulations of fluids, the equations of motion 

for a collection of molecules are solved using numerical integration over time. 

During MD simulations, certain physical parameters are held constant. 

Simulations produce an ensemble of states that represent a sample of all possible states. 

Ensembles, then,  are differentiated by which physical parameters are held constant. The 

two most common ensembles are the canonical ensemble and the isothermal-isobaric 

ensemble. In both systems, the number of particles, N, as well as the temperature are 

assumed to remain constant. With the canonical ensemble, the volume is held constant, 

and the temperature is controlled by modifying kinetic energy using a mathematical 

thermostat. For the isothermal-isobaric ensemble, as the name would suggest, pressure is 

controlled by modifying the box volume using a mathematical barostat, and temperature 

is likewise controlled with a thermostat. Thus, the canonical ensemble is often referred to 

as the NVT ensemble and the isothermal-isobaric ensemble is often referred to as the 

NPT ensemble. During an MD simulation, snapshots of the system properties including 

atomic positions are recorded, which, when combined, constitute a trajectory. While the 
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trajectory can have fluctuating values for some of the physical constants mentioned 

above, it is assumed that these values, when averaged, are constant and unchanging7.  

MD simulations are commonly used in industries outside of food science such as 

the biological field, the medical field, and in materials research. It has been demonstrated 

that MD simulations are capable of predicting structures of complex macromolecules 

with accuracy that rivals experiment8.  

In materials engineering, there has been an increasing number of articles and 

journals related to MD simulations. This reflects the growing desire (and capability) of 

understanding microscopic physical and chemical processes, which underlie the 

macroscopic performance of construction materials. MD allows for fundamental 

descriptions of physical material properties, especially in nano-engineering, where it is 

hard to experimentally ascertain material quality characteristics9. 

However, certain real-life events simply are not feasible to produce 

experimentally. Whether this is due to cost, the required repeatability, or if the work is 

purely theoretical in nature, simulation allows for the circumvention of these issues. 

These difficulties become apparent when considering Henry’s Law constants with 

bourbon or other spirits. As stated previously, experimental methods for measuring 

Henry’s Law constants are tedious and costly in time and resources. Moreover, it is not 

ideal to tamper with potential product—whether for food-safety standards, or for simply 

maximizing profit. Molecular simulations present the possibility of modeling the aging 

process of bourbon without disturbing the product and without waiting several years to 

collect data. Specifically, if Henry’s Law constants for all VOCs in bourbon could be 
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accurately estimated, the product will not need to be disturbed, and only sampling of the 

barrel’s headspace will be required. 

With the justification for MD simulations laid bare, and with how ubiquitous they 

are in other industries, it begs the question: “Why aren’t simulations more common in 

food science?” 

While MD algorithms are well established and founded on universally accepted 

scientific principles, there is a knowledge barrier for entry with respect to running a 

simulation. While various proprietary and free open-source software packages exist, 

learning the underlying theory and practice behind these simulations takes time and 

effort. In addition to a large time commitment (months or more), many of the most 

advanced packages, such as GROMACS (GROningen Machine for Chemical 

Simulations) run on Linux (or Unix) operating systems. Learning how to navigate a new 

operating system, while using a terminal and keyboard commands as opposed to using 

Microsoft Windows with neat graphical user interfaces presents an additional learning 

curve. In order to run the number of simulations necessary to collect a sufficient amount 

of data, scripts have to be created in order to submit queued jobs to a research cluster or a 

distributed computing environment. 

The results presented herein were the fruit of over 1,800 MD simulations of 

various VOCs solvated in a bourbon solution. In total, these simulations took roughly two 

days of processing time spread over a portion of the large Cardinal Research Cluster at 

the University of Louisville, which is made up of hundreds of nodes, having 16 nodes 

completely dedicated to running these specific calculations. Each of these 16 nodes has a 

high-performance graphics processing unit (GPU). Just one of the current best in class 



9 
 

GPUs (Nvidia GeForce RTX 3090) costs anywhere from $1500 to $2000 due to 

manufacturing shortages, but also because GPUs are generally expensive. Creating a 

cluster of supercomputers capable of the computational throughput requires a large 

capital investment. Alternatively, estimates could be made on a slower basis using less 

expensive computers or on cloud computing resources such as Amazon Web Services or 

Microsoft Azure, but these options also present disadvantages. 

The accuracy of MD simulations when calculating Henry’s law constants has not 

been established, especially for non-aqueous solvents. For instance, the compendium 

produced by Sander indicates that Henry’s law constants range from a magnitude of 1040 

to 10-14. Additionally, with some compounds there is a large degree of variation between 

the values reported from different studies. For example, with (2,4-dichlorophenoxy)-

ethanoic acid, there are two measured values: 1.2 and 0.14 mol/m3-Pa, while the 

calculated values range from 1.8 to 5.5x106 mol/m3-Pa. It is not uncommon to see 

independent studies differ by several orders of magnitude for a given compound. Because 

of the large variations reported in experimental values, it is hard to say whether the values 

produced by MD are accurate and precise compared to literature. However, studies by 

Mobley et al. prove the feasibility of using MD for calculating free energy of hydration10, 

11.  

The ambiguity of currently available experimental and theoretical methods calls 

for a robust, reproducible theoretical framework by which researchers can estimate 

Henry’s Law constants. Not only can theoretical estimates be made more quickly than 

experimental results can be measured, but theoretical estimates based on fundamental 

chemical physics can help to determine whether a measured experimental value is 



10 
 

reasonable. I envision a future in which many (thousands or more) Henry’s Law 

constants are estimated and tabulated via MD simulations, thus providing preliminary 

estimates of VOC volatility in spirits. 

Statistically, MD simulations are incredibly accurate provided that the interaction 

models used to describe atomic interactions are representative of real behaviors. For the 

properties needed to estimate Henry’s law constants, MD systems are quick to converge 

to a statistically correct answer, with relatively low error. 

While many publications have in the past have focused on the identification of 

new VOCs in whiskeys, very few have put effort into obtaining quantitative data for 

these compounds5, 12. While Salo et al. were the first group of researchers to determine 

odor thresholds based on quantitative data, the activity values that were calculated were 

actually determined from other authors’ quantitative values13. 

An artificial whiskey model was created by the team and the aroma compounds 

were characterized based on sensory tests in omission experiments. While this study 

identified carbonyl compounds and straight chain ester compounds to be particularly 

important whiskey compounds, a separate, following study, determined that various 

phenols exceeded the thresholds of the carbonyl/ester compounds in a water/ethanol 

mixture13. 

However, the studies by Salo et al. did not use GC-Olfactometry analysis during 

their identification experiments. Therefore, the actual selection of aroma compounds was 

arbitrary and had no bearing on the aroma intensity within the artificial whiskey5, 12. 

A second 2008 study, again conducted by Poisson and Schieberle, sought to 

quantify the aroma compounds that the pair previously identified as being the most 
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important to bourbon whiskey in the prior study. The pair’s previous study identified 45 

odor-active areas within the bourbon, allowing for the identification of 42 unique odor 

compounds. This new study had the goal of quantifying the aroma compounds previously 

identified with the highest flavor dilution factors using stable isotope dilution assays. 

Subsequent goals involved calculating the odor activity values on the basis of odor 

threshold in water/ethanol, as well as verifying the experimental results using aroma 

recombination and omission experiments, similar to the studies performed by Salo et al. 5, 

12. 

The original identification study sorted and characterized 45 of the most odor-

active volatile constituents, as well as some compounds present in the barrel headspace, 

with a threshold of their flavor dilution factors being >32. This created a necessary cutoff 

that eliminated the arbitrary nature that the two were critical of when it came to the 

studies by Salo et al12. 

In addition to identifying the compounds and their respective flavor dilution 

values, the researchers also characterized their odor quality perceived at the sniffing port, 

using adjectives such as ‘fruity, soapy, earthy, coconut-like, phenolic, etc.’ The 

researchers also indicated the fraction of the gas chromatograph column in which the 

odorant was detected (A through E), with some compounds present in a combination of 

two fractions (B+C, C+D, etc.). Retention indices were calculated and reported for each 

compound. Of particular interest, the team noted whether or not each compound had been 

previously identified as a whiskey VOC in literature, with some having been reported two 

times, and some with no reports at all. Seventeen of these compounds were newly 

identified in this study, with four compounds denoted as being completely unknown12. 
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In this thesis, 18 of these 45 compounds were chosen for simulation and 

calculation of Henry’s law constants under the criteria of higher flavor dilution indices. 

Compounds in this study were chosen based on the availability of literature values for 

Henry’s law constants for each compound, however, as noted previously, some 

compounds had no literature values at all.  

In addition to applications within the bourbon industry, using MD simulations to 

predict Henry’s law constants could prove useful to industries that are adjacent to the 

bourbon industry. When it comes specifically to champagne, Henry’s law is directly 

applicable to the carbonation of the beverage. While the solubility of carbon dioxide is 

partially due to the temperature that champagne is stored in, Henry’s law itself absolutely 

dominates the contribution towards carbon dioxide solubility. In fact, a team of 

researchers built a multiparameter model in order to investigate providing the dissolved 

carbon dioxide content in champagne through the entire aging period. The researchers 

were able to demonstrate a clear correlation with the aging process and the losses of 

dissolved carbon dioxide, in that the longer a bottle sat corked over time, carbon dioxide 

was increasingly lost. The team interpreted these losses as the diffusion of gases through 

the cork stoppers. It was the combination of principles of diffusion with Henry’s law that 

allowed the team to construct their model14. Molecular dynamics has been used in the 

past to study the interplay of carbon dioxide diffusion and ethanol diffusion in 

champagne wines.  Bonhommeau et al. found that there was excellent agreement between 

theoretical and experimental diffusion coefficients calculated using MD and NMR. The 

team specifically notes the reliability of their approach and the benefit of using this 
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method for physical chemists aiming to model transport phenomena in water and alcohol 

mixtures15. 

 

Methods 

 There are two commonly used, well-established classes of simulations for 

calculating free energy differences between thermodynamic states by using energy 

gradients—equilibrium and nonequilibrium methods. The most prominent equilibrium 

method involves free energy perturbation (FEP) developed by Zwanzig16. A perturbation 

theory was developed in which two systems are compared. The first system has 

thermodynamic properties related to those of the second system, which are encapsulated 

in a difference between intermolecular potential energies of the two systems. Differences 

in the interatomic potentials between the two neighboring systems needs to be small such 

that thermodynamic fluctuations in each of the neighboring states allows for the 

observation of overlapping phase space. Ultimately, a series of many neighboring 

systems can be constructed by adding more nearby neighbors to span distant 

thermodynamic states. The FEP method unfortunately suffers in accuracy due to the very 

high amount of sampling needed. This is due to the exponential growth of statistical 

uncertainty with decreasing phase space density overlap17. Therefore, many closely 

neighboring states need to be sampled or long simulation times are needed to observe 

consistent overlap in phase space. 

 A second technique in calculating free energy differences with energy gradients is 

called thermodynamic integration (TI) — with three common variations: slow-growth 

(SGTI), fast-growth (FGTI), and discrete (DTI). Essentially, thermodynamic integration 
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involves the generalized force (δH/δλ), where λ is a coupling parameter that can be varied 

continuously (STGI and FGTI) or in discrete steps (DTI). This coupling parameter drives 

the system between two states, where at one state λ =1 and a second state where λ =0. 

Because of the continuous nature of λ and the speed with which λ evolves in fast-growth 

conditions, the system is never actually in equilibrium. Therefore, accuracy is entirely 

dependent on having small systems or long simulation times. While DTI avoids problems 

associated with the system being away from equilibrium, it runs into issues with sampling 

where if the free energy gradients are large for discrete λ values, numerical integration 

becomes computationally taxing. This issue is magnified at the states for λ=1 and λ=0 

(which are incidentally the final and initial states of the system in question)17. The 

method used in this thesis is FGTI, and the analysis of results follows Jarzynski’s work 

averaging, Bennett’s Acceptance Ratio (BAR), and the Crooks Gaussian intersection 

method (CGI).  

 Jarzynski has proven that the difference in free energy ΔF is directly related to a 

series of nonequilibrium work computations18 shown in Equation 1: 

𝑒−𝛽∆𝐹 =  〈𝑒−𝛽𝑊𝜏 〉 (1) 

where the brackets denote an average over an ensemble of n trajectories originating from 

a canonical ensemble. In this equation, 𝛽 is the reciprocal thermal energy (1/KBT) where 

KB is Boltzmann’s constant and T is absolute temperature, and 𝑊𝜏  is the work function 

over an arbitrary time length 𝜏. Either the Helmholtz or the Gibbs free energy can be 

estimated using Equation 1. Helmholtz free energy is predicted in the NVT ensemble, 

while Gibbs free energy is predicted in the NPT ensemble. Through the relationship in 
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Equation 2, the Gibbs free energy is directly related to the chemical potential, because the 

number of moles, pressure, and temperature were held constant: 

𝜇𝑖 = (
𝜕𝐺

𝜕𝑁𝑖
)

𝑇,𝑃,𝑁𝑗≠𝑖

(2) 

 The work function 𝑊𝜏  is defined using the previously mentioned coupling 

parameter, λ, in Equation 3: 

𝑊𝜏 = ∫
𝛿𝐻𝜆

𝛿𝜆
𝑑𝜆

1

0

(3) 

The coupling parameter λ switches the system from a defined state A to a new state B 

over the simulation length 𝜏, defined by the Hamiltonians 𝐻𝐴 and 𝐻𝐵 , where it is shown 

that 𝐻𝜆 = (1 − 𝜆)𝐻𝐴 +  𝜆𝐻𝐵 . Through using a very long simulation length, and thus a 

large switching time from state A to state B, the system stays close enough to equilibrium 

conditions that it can be assumed that the dissipated work is negligible allowing the work 

function to represent the free energy difference, ∆𝐹 = 𝑊 17. A visualization of the 

coupling parameter λ is shown in Figure 1, which depicts 2-methoxyphenol in the solvent 

system—specifically, the reverse ensemble where λ = 1 corresponds to the fully present 

VOC in the solvent system at the start of the simulation. 
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Figure 1. Visualization of the coupling parameter λ in the reverse ensemble of 2-

methoxyphenol 

 

In running many different simulations for each volatile compound, the probability 

distribution of values for the work is approximated by a Gaussian function 𝑃(𝑊) in 

Equation 4: 

𝑃𝑓,𝑟(𝑊) ≈
1

𝜎𝑓,𝑟√2𝜋
𝑒𝑥𝑝 [−

(𝑊−𝑊𝑓,𝑟)
2

2𝜎𝑓,𝑟
2 ] (4)  

where 𝑊𝑓,𝑟 are the means and 𝜎𝑓,𝑟 are the standard deviations of the work distributions. 

The “f” and “r” denote the forward and reverse ensembles. In the forward ensemble λ 

increases from 0 to 1. In the reverse ensemble λ decreases from 1 to 0 over time17. An 

alternate approach that circumvents relying on the Jarzynski equality is based on the 

Crooks Fluctuation Theorem where the forward and reverse ensemble distributions can 

be expressed as a ratio seen in Equation 5, where: 

𝑃𝑓(𝑊)

𝑃𝑟(−𝑊)
= 𝑒𝛽(𝑊−∆𝐹) (5) 
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If it is assumed that the distributions for the forward and reverse work are smooth 

enough, a maximum likelihood on Bennett’s Acceptance Ratio yields the following 

Equation 6 under the assumption that there is an equal number of forward and reverse 

ensemble distributions17: 

〈
1

1 + 𝑒𝑥𝑝[𝛽(𝑊 − ∆𝐹)]
〉𝑓 = 〈

1

1 + 𝑒𝑥𝑝[−𝛽(𝑊 − ∆𝐹)]
〉𝑟 (6) 

The difference in free energy can then be directly calculated using Equation 6. 

The last method, that subsequently also employs the Crooks Fluctuation Theorem is 

known as the Crooks Gaussian Intersection. Each work value is calculated using 

Equation 3, from the individual trajectories for the switching process based on the 

coupling parameter. Equation 5 is the foundation upon which this method is built. Based 

on the equality shown, ΔF is the amount of work necessary for the left-hand side of the 

equation to be unity. Simply put, ΔF is the intersection point of the two work 

distributions, where 𝑃𝑓(𝑊) = 𝑃𝑟(−𝑊) and is the point of interest for these simulations17. 

This intersection point is shown in Figure 2. 
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Figure 2. Illustration of the Gaussian work distributions and the intersection point. The 

solid line indicates the forward A to B distribution while the dashed line indicates the 

reverse B to A distribution. σf and σr are the standard deviations of the forward and 

reverse ensembles, respectively, while Wf and -Wr are the means of the forward and 

reverse ensembles, respectively. 

 

The intersection point, ΔF, can be directly calculated using Equation 7: 

∆𝐹 =

𝑊𝑓

𝜎𝑓
2 −

−𝑊𝑟

𝜎𝑟
2 ± √

1
𝜎𝑓

2𝜎𝑟
2 (𝑊𝑓 + 𝑊𝑟)

2
+ 2 (

1
𝜎𝑓

2 −
1

𝜎𝑟
2) 𝑙𝑛

𝜎𝑟

𝜎𝑓

1
𝜎𝑓

2 −
1

𝜎𝑟
2

 (7) 

 In Equation 7, Wf and -Wr are the means of the forward and reverse Gaussian 

functions, respectively. The standard deviations, σf and σr, are also for the forward and 

reverse Gaussian functions, respectively. 
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 Goette and Grubmüller note that when σf ≠ σr, these cases will generally have two 

intersection points. Because ΔF only has one unique solution, the intersection point that is 

located in the tail region of the distributions is generally neglected. The intersection point 

that lies closest to (𝑊𝑓 + 𝑊𝑟)/2 is accepted as the correct solution for the estimate of ΔF, 

the difference in free energy17.  

 As was the case of all the simulations presented herein, sometimes Wf and -Wr are 

too close to each other to calculate an intersection. Visually, this is when both 

distributions are on top of each other (almost appearing as one distribution) as opposed to 

overlapping as seen in Figure 1. In these cases, Goette and Grubmüller empirically chose 

to use the mean of Wf and -Wr as the best estimate of the ΔF value17. This occurred for 

each of the 18 volatile organic compounds, and as such the mean was used to estimate 

ΔF. 

 It should also be noted that while directly determining the intersection point is 

possible using histograms, this is not advisable without a Gaussian distribution function. 

This is due to the large statistical error introduced when calculating the intersection in 

this way. The bin containing the intersection point is the only bin of work values used 

when calculating the intersection. Goette and Grubmüller note that this is particularly 

damaging when the forward and reverse distributions have a very small overlap which 

leads this intersection value to be miniscule or zero17. As such, Gaussian approximations 

were used in this thesis. 

  Goette and Grubmüller also applied a Kolmogorov-Smirnov-test to their 

simulated distributions to ensure that they were distributed as a Gaussian function. 

Testing the hypothesis that the 1000 simulated values were distributed in this manner, the 
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pair obtained significance levels α=0.10 and α=0.50 for the forward and reverse 

distributions, respectively. These significance levels implied that at the expected 5% or 

lower significance level, the hypothesis could not be rejected. Thus, it was assumed that 

the Gaussian approximation held for the tested values. Of note, with typical Gaussian 

distributions, there are decreasing sets of values as one moves away from the main body 

of the function and into the tail function. Because of the smaller data set, Kolmogorov-

Smirnov-tests cannot be accurately applied for these data points. However, with most of 

the work distributions, the intersection of the forward and reverse ensembles generally 

lies in the overlapping main body areas of the two distributions, where the tail data points 

have no real weight. Therefore, any statistical uncertainty in these tail values has no 

actual weight on the final free energy estimates for the system17. 

 Finally, Goette and Grubmüller tested the accuracy and convergence for each of 

the above methods. To test the convergence for varying numbers of trajectories, the 

researchers carried out test simulations on two systems with the slow-growth 

thermodynamic integration results as the basis for reference. For both test systems, using 

SGTI enabled the systems to converge after approximately 40 ns. In comparison, each of 

the new methods tested (except for one, not used in this thesis) converged beyond 7.5 ns. 

And when these new methods converged for the test systems, despite being significantly 

faster simulations, they agreed with the slow-growth reference result within an acceptable 

statistical accuracy threshold. When comparing the accuracy of the traditional methods 

with the newer methods proposed in their paper, the two found no significant differences 

in the resulting free energies that were calculated17. 
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 MD simulations require starting structures that contain the identities and positions 

of each of the atoms in the system. One of the most common formats for MD structure 

files is from the Protein Databank (PDB) and contains the file extension .pdb. While 

many online databases have .pdb files ready for download, many contain errors. 

Therefore, existing .pdb files were edited manually, or molecules were completely 

redrawn. Creating a .pdb file is straightforward using programs such as GaussView. 

Within the graphical user interface, one can create a ball and stick model of a molecule, 

with specifications of bond types, angles, dihedrals, etc. and save the molecule in the .pdb 

format, which will contain atom names, coordinates, and information about atom 

connectivity. 

 Once a .pdb file was created for each VOC, the next step involved generating a 

forcefield based on the .pdb file. A force field is simply the collection of equations used 

to describe the molecular interactions within and between each molecule in the system. 

During an MD simulation, the internal structure of molecules evolves over time through 

changing bond lengths, bond angles, and dihedrals angles. Van der Waals and 

electrostatic forces act between non-bonded atoms within and between molecules to 

additionally drive molecular rearrangement. The force field, therefore, describes the 

potential energies of bonds, angles, dihedrals of each molecule, as well as the 

electrostatics and Lenard-Jones potentials that fall into the category of non-bonded 

interactions. The bonded terms cover the covalent bonded potentials. Equation 8 is the 

harmonic energy equation generally used for force fields19: 
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𝑬𝒃𝒐𝒏𝒅𝒆𝒅 + 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

= ∑ 𝑲𝒃(𝒃 − 𝒃𝟎)𝟐

𝒃𝒐𝒏𝒅𝒔

+ ∑ 𝑲𝜽(𝜽 − 𝜽𝟎)𝟐

𝒂𝒏𝒈𝒍𝒆𝒔

+ ∑ 𝑲𝝋(𝝋 − 𝝋𝟎)𝟐

𝒊𝒎𝒑𝒓𝒐𝒑𝒆𝒓
𝒅𝒊𝒉𝒆𝒅𝒓𝒂𝒍𝒔

 

+ ∑ ∑ 𝑲∅,𝒏(𝟏 + 𝐜𝐨𝐬(𝒏∅ − 𝜹𝒏))

𝟔

𝒏=𝟏𝒅𝒊𝒉𝒆𝒅𝒓𝒂𝒍𝒔

+ ∑
𝑞𝑖𝑞𝑗

4𝜋𝐷𝑟𝑖𝑗𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 
𝑝𝑎𝑖𝑟𝑠 𝑖𝑗

 

+ ∑ 𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

]
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

𝑝𝑎𝑖𝑟𝑠 𝑖𝑗

 (8)
 

 

Where, 𝐾𝑏 is the bond force constant, 𝑏0 is the reference bond length, 𝐾𝜃 is the 

angle force constant, 𝜃0 the reference valence angle, 𝐾𝜑 the improper dihedral force 

constant, 𝜑0 the improper dihedral angle reference (usually 0), n is the dihedral 

multiplicity, 𝛿𝑛 the dihedral phase, 𝐾∅,𝑛 the dihedral amplitude, 𝑞𝑖𝑞𝑗 the partial 

charges, 𝜀𝑖𝑗 the Lennard-Jones well depth , 𝑅𝑚𝑖𝑛,𝑖𝑗 the Lennard-Jones radius, and 𝑟𝑖𝑗 the 

distance between two particles. 

For bonds, the force is spring-like in nature. For angle potentials, molecules have 

preferred bond angles and any deviation in this serves to change the potential energy. 

Lastly, there are dihedral bonded potentials which, while like bond angle, involve the 

orientation of the molecule in 3D space. The van der Waals forces of the molecules are 

approximated using the Lenard-Jones potential model, which describes the attractive and 

repulsive forces between atoms that arise from temporary dipoles. The repulsive and 

attractive forces between molecules is primarily a function of the distance between pairs 

as in Figure 3. 
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Figure 3. Plot showing the Lenard-Jones potential as a function of the distance between 

two particles 

 

When atoms are too close, they have an unfavorable positive interatomic 

potential. When atoms are at a moderate distance, they have a favorable negative 

interatomic potential. When atoms are far apart, they have no interatomic potential. The 

second term of non-bonded potentials comes from the contribution of electrostatics 

between molecules. These forces are approximated by assigning a point charge to every 

atom in the system, and while not perfect, is a suitable approximation in most cases. In 

general, the non-bonded terms contribute heavily to the overall energy in the force field. 

 To create the forcefield, a python script was used around the ANTECHAMBER 

software, within the AMBER MD package, to simplify the generation of topologies and 

parameters for use with GROMACS. ACPYPE (AnteChamber Python Parser interfacE) 

is a simple script used to generate the force field of the system based on the .pdb files for 

each of the VOCs. This free, open source application readily calculates partial charges 
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and generates topology and parameters in different formats for use with molecular 

dynamics simulations20. The default method, and the one used in this thesis, is the BCC 

method, which is a semi-empirical method parameterized to reproduce specific charges. 

This method is slower than other methods but is more accurate. The output of this script 

is a usable file containing force field parameters for ethanol and each VOC taking most 

parameters from the General AMBER Force Field (GAFF). The force field used was the 

AM1-BCC force field. The water solvent model used was the TIP3P model with explicit 

solvent dynamics. GAFF was designed to be compatible with existing AMBER force 

fields for proteins and nucleic acids, but also has parameters for most organic and 

pharmaceutical molecules21. Mobley and his coworkers found that the solvation free 

energy of small molecules in TIP3P water is accurately predicted by MD simulations 

when using GAFF and AM1-BCC, as used herein. When comparing simulated values and 

experimental values, they found an average error of 0.47 ± 0.06 kcal/mol10, 11. The 

topology, which is a description of the connectivity of the atoms in the system, is also 

generated by the script. The combined force field and topology files for GROMACS have 

the .itp extension, which allows the quick addition of new, non-standard molecules into 

MD simulations. 

To fill the simulation box with molecules and generate an initial structure for the 

MD simulation, Packmol was used. This application packs a specified number of 

molecules within a region of space, using the .pdb files of each of the constituent 

molecules as inputs. To calculate the number of water and ethanol molecules to use when 

filling the simulation box, basic stoichiometry was used along with an assumption of 120-

130 proof bourbon—equating to a baseline of 60% alcohol by volume. Changing the 
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percent of alcohol within the solvent would drastically affect results, because the VOCs 

have different solubility values in water and ethanol. Assuming a volume of 125 nm3, and 

incorporating the densities of water and ethanol, it was determined that the box would 

hold 1666 molecules of water and 773 molecules of ethanol (as well as one VOC 

molecule). This volume was chosen based on the size of particles in the system being on 

a 1-2 nm scale. Systems smaller than this would not provide a realistic picture of the 

behavior occurring, while systems larger than this, while more representative, would take 

greater computational power. A GROMACS topology file (.top) must be manually 

created and edited to match the number of solvent molecules with the VOC. Despite 

filling the box with the correct number of molecules that will fit in it, the box size must 

still be specified. Using the editconf command within GROMACS, the box size was set 

to 5x5x5 nm3. GROMACS version 2020 was used for all simulations presented here.  

After a structure and topology has been generated for the complete system, the 

next step involves minimizing the energy of the system. Due to imperfections in the 

system setup, it is possible to have starting configurations that cause forces to be too large 

due to overlapping van der Waals radii, causing spikes in velocity early in the simulation. 

Therefore, driving the system down potential energy gradients toward a minimum energy 

for the system allows for an optimal and stable starting point for the simulation.  

Using the grompp function in GROMACS outputs a binary .tpr file containing the 

assembled structure starting point, the topology, and simulation parameters. Energy 

minimization simulations are generally quick. For the energy minimization, the 

simulation was set to stop once the maximum force in the system reached less than 1000 

kJ/mol/nm. This is a generally recommended force value for ensuring an optimal starting 
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position for the actual MD simulations to run. The coordinates of the atoms in the system 

were shifted to drive the system’s potential energy downhill using the steepest descent 

method for up to 50,000 steps, with an energy step size of 0.01 kJ/mol/nm. To minimize 

the number of potential and force calculations in the system, Lennard-Jones potentials 

and forces are truncated after a certain distance. This is called the cutoff distance, and it 

was set to 1.0 nm for all simulations presented here. The cutoff distance is selected to 

coincide with the asymptotic portion of the Lennard-Jones potential curve as shown in 

Figure 3. Short range electrostatic potentials and forces are likewise calculated directly 

below the cutoff distance. However, electrostatic interactions act over much longer 

distances than Lennard-Jones interactions, and therefore long-range electrostatic 

interactions must also be considered.  The Particle-mesh Ewald (PME) method for 

calculating long-range electrostatics was employed. PME assigns charges to the grid 

using interpolation as opposed to direct summation of vectors. Transforming the grid into 

a 3D object using Fourier transformation, the reciprocal energy is calculated through one 

summation of the grid. The parameters of grid size are automatically tuned by 

GROMACS to maintain fast simulations with minimal numerical errors. 

Because Lennard-Jones truncation causes a discontinuity in the potential, the 

potential is always shifted by a constant value such that it always equals 0 at the cutoff 

distance. Periodic boundary conditions are used for all simulations to prevent edge effects 

that would arise from surrounding the solvent box with a vacuum. Periodic boundary 

conditions essentially create an infinite working space in a “Pac-man”-like manner—

where a particle traveling in the positive X direction will hit the edge of the cube and 

enter back into the cube from the opposite face. For the short-range electrostatics, the 
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cutoff distance becomes important and is chosen to be 1.0 nm. This cutoff distance is also 

the same for short-range Van der Waals interactions. As seen in Figure 2, as the distance 

from two particles increases, the potential slowly goes to 0. By choosing a cut-off of 1.0 

nm, the assumption is made that there are no interactions occurring between particles past 

this distance. With all these parameters, and a successful energy minimization completed, 

the next step is equilibrating the system. 

The position of the solvent molecules must be shifted from their random initial 

positions generated by Packmol toward a more realistic structure around the VOC. 

Without equilibration, certain MD simulations will become unstable and crash. Other 

simulations will produce unreliable results, because the sampling is of states that are far 

from equilibrium. Equilibration takes a longer amount of time than running energy 

minimization and can be run in the NPT or NVT ensemble (or both). The systems in this 

study were equilibrated under an NPT ensemble, run for 500,000 steps and a time step of 

0.002 ps for a total of 1.0 ns of simulation time, which is enough time for solvent 

molecules to rearrange with respect to each other and with respect to the VOC.  

Equilibration simulations are true MD simulations in that they use numerical 

integration of the Newtonian equations of motion to propagate the system coordinates 

through time, in contrast to the energy minimization simulations previously described, in 

which atom coordinates are simply driven down potential energy gradients. MD 

simulations in the NPT ensemble require the addition of a thermostat and barostat to the 

system. For the thermostat, the coupling scheme was set to V-rescale. With a thermostat, 

the temperature is controlled by adding or removing the kinetic energy in the system 

through changing atomic velocities. The setpoint was 300K with a τ value of 0.1 ps. 
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Using 2-methoxyphenol as an example, Figure 4 demonstrates the function of the 

thermostat in keeping the temperature maintained at an average of 300K. Despite 

fluctuations from ~292K up to ~308K, the overall moving average was maintained at 

300K. 

 

Figure 4. Temperature profile of 2-methoxyphenol during the NPT equilibration 

simulation 

 

For the barostat, the pressure was set to a reference pressure of 1.0 bar with a τ 

value of 2.0 ps and compressibility of 4.5x10-5 bar-1, which is the isothermal 

compressibility of water (since the solvent model is based largely on water). This is also a 

standard for use with GROMACS. The pressure coupling algorithm used was the 

Berendsen barostat, which is somewhat analogous to the temperature coupling scheme. 

The Berendsen barostat is an algorithm that holds the pressure constant through changing 

the box size of the simulation. It is important when using this algorithm that the coupling 

type is also set to be isotropic, so that every dimension of the box is changed equally as 

opposed to increasing or decreasing certain faces exclusively. The pressure profile of 2-

methoxyphenol is shown in Figure 5. 
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Figure 5. Pressure profile of 2-methoxyphenol during the NPT equilibration simulation. 

 

At first glance, Figure 5 looks similar to the temperature profile presented in 

Figure 4, however, with further inspection of the axes the difference becomes apparent. 

The pressure fluctuated for 2-methoxyphenol over a range of 2000 bar which could seem 

alarming after effort was put in to minimizing the system. Fortunately, pressure tends to 

fluctuate heavily over an MD simulation of incompressible fluids, and this type of profile 

is very normal. While the setpoint was held at 1.0 bar, the actual average of the system 

was 6.04 bar for the equilibration of 2-methoxyphenol. However, the root-mean-square 

difference of the fluctuations was 369.16 bar, which is so large that, statistically, the 

value of 6.04 bar would be identical to 1.0 bar. Over longer timescales, an extended 

simulation’s pressure would equilibrate to 1.0 bar eventually. So, while, at times, the 

system pressure dips down to values such as -678 bar at timestep 128 ps, these low points 

are balanced out by pressure highs of equal magnitudes resulting in a ‘constant’ pressure 

that is at the setpoint. Lastly, the density of the equilibrated, solvated system of 
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water/ethanol and 2-methoxyphenol was 855.71 kg/m3 which is reasonably close to the 

density of 120-proof bourbon at 891.1 kg/m3. 

The equilibration step is also the first simulation run where velocities of the 

particles in the system are introduced. GROMACS generates atomic velocities at the 

beginning of the simulation based on the starting temperature setpoint of 300K and the 

Maxwell-Boltzmann distribution. 

To check that the system is appropriately equilibrated, analysis was run prior to 

the production MD simulations. For all systems, the box size equilibrated to 127 nm3, 

which was adequately close to the initial box size of 125 nm3. The volume of the system 

was set to the initial 125 nm3, then as the system is minimized and velocities are 

introduced, the system expands until reaching a maximum. After this, the system 

converges rapidly to a resting, equilibrated volume of 127 nm3 for the rest of the 

simulation from ~100 ps onwards. This behavior is shown in Figure 6.  

 

Figure 6. Volume profile of 2-methoxyphenol during the NPT equilibration simulation. 
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With a well-equilibrated system, the next step was running a production MD 

simulation for data collection. Before running the actual simulations for data collection, 3 

test simulations were run at increasing simulation lengths (500,000 steps, 5,000,000 

steps, and 50,000,000 steps corresponding to 1.0, 10, and 100 ns, respectively) to check 

for convergence over the period of the simulation. All 3 of these simulation lengths were 

returning similar values for the change in enthalpy of the system. Because of this, the 

shortest simulation length was chosen at 500,000 steps so that many simulations could be 

run for each of the 18 VOCs. 

The production MD simulation parameters are the same for the equilibration 

simulations, aside from two exceptions. The first is the addition of the coupling 

parameter λ as described in the introduction section and visualized in Figure 1, 

specifically, the reverse ensemble where λ = 1 corresponds to state A where the VOC is 

fully present in the solvent system and slowly disappears to state B.  

The second change was that instead of using the Berendsen barostat, the barostat 

was changed to use the Parrinello-Rahman algorithm. The Berendsen barostat is ideal for 

the equilibration step because it is a fast, first-order algorithm that will rapidly equilibrate 

a system. However, this method is not as reliable for a full-length production run 

simulation. The Parrinello-Rahman algorithm allows for maintaining the correct 

canonical or isothermal-isobaric ensemble and is more reliable for simulating 

thermodynamic properties. The downside to using this algorithm is that it has much 

slower approach to the setpoint pressure than using the Berendsen barostat due to its 

second-order nature. 
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  Fifty transition simulations were run for the forward ensemble and fifty 

simulations were run for the reverse ensemble for each of the 18 VOCs. This took 

considerable computational effort and would not have been possible without a system for 

queueing simulations on the research cluster, as the production simulations, which 

remove major restraints on the system, take much longer to perform. 

Once these production runs were completed, the change in Gibbs energy of 

solvation was calculated using a Python script pmx, created by Gapsys and de Groot, that 

analyzes the forward and reverse trajectories for each run, combining them into 

histograms22. This script also calculated the Gibbs free energy using the CGI, BAR, and 

Jarzynski methods. As previously described, the intercept of the two histograms is used 

to find the final value of Gibbs energy for the system. The Crook’s Gaussian Intercept 

plots for 2-methoxyphenol can be seen in Figure 7. However, as was the case for most of 

the VOCs tested, the overlap of the two histograms was so close that instead of using the 

actual intercept of the two Gaussian fits, the Python script calculated the mean of the two 

data sets. 
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Figure 7. Crooks Gaussian Intercept plot for 2-methoxyphenol, demonstrating the 

intersection of the two Gaussian fits. 

 

 Following the production runs for each VOC in both the forward and reverse 

ensembles, the entire process had to be repeated for a VOC in a pure vacuum to complete 

the thermodynamic cycle of solvation. This is because the total change in Gibbs energy 

of solvation is the difference in solution energy and gas-phase energy. The 

thermodynamic cycle is seen in Figure 8. 
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Figure 8. Thermodynamic cycle as it relates to the solvation of 2-methoxyphenol in a 

solvent system and in a vacuum state, where going from left to right is ΔGsolvation. 

 

 The resultant change in Gibbs free energy of solvation is then used for the 

purposes of calculating the final Henry’s law constant. While the chemical potential is 

usually defined by a system’s internal energy, using a Legendre transformation on the 

definition of internal energy for Gibbs free energy yields the expression for chemical 

potential based on Gibbs free energy, where the chemical potential is simply the partial 

derivative of Gibbs free energy with respect to the number of moles of species i. Because 

of this relationship, the calculated Gibbs energy is used in place of 𝜇𝑖.  
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 Following this, the calculation of the Henry’s Law constant is very 

straightforward using Equation 9: 

∆𝐺°𝑠𝑜𝑙𝑣 =  −𝑅𝑇 𝑙𝑛 (𝐻𝑐𝑝

𝑃°

𝑚°
) (9) 

 

Where, P° and m° are the reference pressure and molar standard. P° is chosen to be 1 bar, 

and m° is chosen to be 1 mol/kg.  

Rearranging, and solving for 𝐻𝑐𝑝 yields Equation 10: 

𝐻𝑐𝑝 = (
𝑚°

𝑃°
 ) exp (

−∆𝐺°𝑠𝑜𝑙𝑣

𝑅𝑇
) (10) 

Where, after unit conversion, the standard units for 𝐻𝑐𝑝 are mol/m3Pa. 

 

Results and Discussion 

 With the culmination of data collection, data analysis could begin. Simulations 

were first checked for the convergence of enthalpy. This is due to the simple relation 

where the Gibbs free energy change is directly related to the enthalpy and entropy 

change: ΔG = ΔH – TΔS.  

 Using 2-methoxyphenol as a visual example to demonstrate the convergence, 

Figure 9 shows the change in enthalpy per change in λ vs. the simulation time. It is 

important that the enthalpy converges while the coupling parameter changes, so that the 

Gibbs free energy of solvation also converges. Integrating the dH/dλ results in the work 

value, and any inflections would indicate adverse system behavior.  
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Figure. 9 2-methoxyphenol profile of change in Enthalpy over changing λ vs. time. 

 

 The model of a production simulation can be seen for 2-methoxyphenol in Figure 

10. The box itself is the 125 nm3 box, with periodic boundary conditions (which can be 

seen as some of the water and ethanol molecules are outside of the box lines). The water 

molecules are the red lines. The ethanol molecules are in light blue lines. In total there are 

1666 water molecules and 773 ethanol molecules as previously mentioned. The VOC, 2-

methoxyphenol, is represented using the van der Waals representation, so it is scaled up 

in size compared to the solvent molecules. In reality, this is a very tightly packed box 

filled completely with molecules. This can be seen when using the VDW representation 

for all molecules shown in Figure 11. 
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Figure 10. Snapshot of 2-methoxyphenol production run where the system is contained 

within the 125 nm3 box, while periodic boundary conditions are implemented. Ethanol 

(light blue) and water (red) surround 2-methoxyphenol (VDW visualization). 
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Figure 11. Snapshot of the same system in Figure 11 but using van der Waals 

visualizations for each molecule. Water and ethanol are transparent, while 2-

methoxyphenol is centered and towards the top of the box. 

 

The 18 volatile compounds chosen for this study are depicted using ball-and-stick 

3D models in Figure 12. 
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2-methoxyphenol 

 

2-phenylethanol 

 

3-methylbutan-1-ol 

 

3-methylbutylacetate 

 

4-allyl-2-methoxyphenol 

 

4-methylacetophenone 

 

α-damascone 

 

β-ionone 

 

diethoxyethane 

 

ethylbutanoate 

 

ethylhexanoate 

 

γ-decalactone 

 

γ-dodecalactone 

 

nonanol 

 

trans-2-heptenal 

 

trans-ethylcinnamate 

 

vanillin 

 

trans-whiskylactone 

 

Figure 12. VOC Models 
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Using the previously mentioned Python script, pmx, change in Gibbs free energy 

of solvation was calculated using the forward and reverse trajectories for every solvated 

VOC using 3 different methods: Crooks-Gaussian Intercept, Bennett Acceptance Ratio, 

and Jarzynski’s work averaging. These are shown in Table 1. The associated error for 

each method was the error from analytical integration, as opposed to bootstrap error. 

 

Table 1 

ΔG Values in Solvated System for Each Method. 

VOC CGI ΔG 

(kJ/mol) 

BAR ΔG 

(kJ/mol) 

Jarz ΔG 

(kJ/mol) 

CGI 

Error 

(±) 

BAR 

Error 

(±) 

Jarz 

Error 

(±) 

trans-2-heptenal -19.41 -19.42 -19.44 0.12 0.09 0.11 

nonanol -20.4 -20.4 -20.42 0.13 0.09 0.1 

2-phenylethanol -22.67 -22.69 -22.64 0.14 0.12 0.22 

3-methylbutan-1-ol -26.28 -26.17 -26.16 0.12 0.08 0.13 

4-allyl-2-methoxyphenol -45.62 -45.66 -45.63 0.25 0.17 0.22 

α-damascone -46.81 -46.81 -46.8 0.13 0.12 0.17 

2-methoxyphenol -48.39 -48.28 -48.23 0.17 0.15 0.21 

4-methylacetophenone -57.27 -57.41 -57.43 0.17 0.11 0.14 

γ-dodecalactone -82.83 -82.92 -82.93 0.14 0.08 0.12 

γ-decalactone -83.25 -83.33 -83.34 0.15 0.12 0.14 

t-whiskylactone -86.9 -86.9 -86.85 0.16 0.11 0.17 

ethylbutanoate -94.73 -94.74 -94.78 0.11 0.1 0.15 

ethylhexanoate -95.11 -95.08 -95.08 0.18 0.11 0.15 

t-ethylcinnamate -106.93 -106.91 -106.94 0.18 0.12 0.15 

diethoxyethane -122.4 -122.63 -122.67 0.2 0.13 0.14 

β-ionone -131.9 -132.02 -132.05 0.14 0.11 0.11 

3-methylbutylacetate -139.12 -139.27 -139.32 0.14 0.11 0.14 

vanillin -33.47 -33.69 -33.82 0.23 0.25 0.27 

 

Following the tabulation of Gibbs free energy change data for the solvated 

systems, as mentioned in methods, simulations were repeated using vacuum conditions 

with results shown in Table 2 for each method. 
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Table 2  

ΔG Values Under Vacuum for Each Method 

VOC CGI ΔG 

(kJ/mol) 

BAR ΔG 

(kJ/mol) 

Jarz ΔG 

(kJ/mol) 

CGI 

Error 

(±) 

BAR 

Error 

(±) 

Jarz 

Error 

(±) 

trans-2-heptenal 10 11.74 11.48 0.19 0.39 0.47 

nonanol 6.79 7.43 7.52 0.17 0.3 0.22 

2-phenylethanol -9.7 -9.59 -9.69 0.09 0.13 0.14 

3-methylbutan-1-ol -2.74 -3.66 -3.67 0.15 0.26 0.09 

4-allyl-2-methoxyphenol -19.46 -20.61 -21.19 0.78 0.51 0.83 

α-damascone -10.41 -10.57 -10.29 0.24 0.2 0.27 

2-methoxyphenol -21.11 -21.38 -21.51 0.18 0.27 0.45 

4-methylacetophenone -24.87 -23.08 -23.23 0.27 0.51 0.11 

γ-dodecalactone -45.07 -43.44 -43.26 0.3 0.61 0.36 

γ-decalactone -44.58 -42.88 -42.91 0.3 0.59 0.33 

t-whiskylactone -49.25 -46.89 -46.95 0.31 0.65 0.31 

ethylbutanoate -62.92 -62.19 -62.36 0.18 0.29 0.15 

ethylhexanoate -63.66 -61.86 -61.97 0.26 0.51 0.32 

t-ethylcinnamate -77.36 -75.59 -75.58 0.3 0.54 0.19 

diethoxyethane -99.04 -97.76 -97.9 0.18 0.31 0.17 

β-ionone -113.68 -113.68 -113.68 0 0 0 

3-methylbutylacetate -105.53 -105.76 -105.81 0.32 0.51 0.11 

vanillin 13.94 15.07 15.12 0.47 0.81 0.28 

 

 Following the collection of both solvated system data and vacuum data, the 

vacuum Gibbs free energy data was subtracted from the solvated data. From this, the 

associated error for the Crook’s Gaussian (CGI) method was added and subtracted to 

yield an upper and lower estimate for the change in Gibb’s free energy of solvation. 

Using the formula for calculating Henry’s law constants, the upper and lower CGI ΔG 

values were used to find the final resulting constants, seen in Table 3. The CGI method 

was used due to its associated Kolmogorov-Smirnov tests that check for Gaussian 

distribution quality. 
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Table 3 

Henry’s Law Constants Using Crook’s Gaussian ΔG Data 

VOC CGI 

ΔG 

(J/mol) 

CGI 

ΔG 

upper 

bound 

(J/mol) 

CGI 

ΔG 

lower 

bound 

(J/mol) 

Hcp 

(mol/m3Pa) 

Hcp lower 

bound 

(mol/m3Pa) 

Hcp upper 

bound 

(mol/m3Pa) 

trans-2-heptenal -29410 -29290 -29530 1.304 1.243 1.368 

nonanol -27190 -27060 -27320 0.535 0.508 0.564 

2-phenylethanol -12970 -12830 -13110 0.002 0.002 0.002 

3-methylbutan-1-ol -23540 -23420 -23660 0.124 0.118 0.130 

4-allyl-2-

methoxyphenol -26160 -25910 -26410 0.354 0.320 0.392 

α-damascone -36400 -36270 -36530 21.494 20.402 22.644 

2-methoxyphenol -27280 -27110 -27450 0.555 0.518 0.594 

4-

methylacetophenone -32400 -32230 -32570 4.323 4.039 4.628 

γ-dodecalactone -37760 -37620 -37900 37.078 35.055 39.219 

γ-decalactone -38670 -38520 -38820 53.404 50.287 56.714 

t-whiskylactone -37650 -37490 -37810 35.479 33.274 37.829 

ethylbutanoate -31810 -31700 -31920 3.413 3.265 3.567 

ethylhexanoate -31450 -31270 -31630 2.954 2.748 3.175 

t-ethylcinnamate -29570 -29390 -29750 1.390 1.293 1.494 

diethoxyethane -23360 -23160 -23560 0.115 0.106 0.125 

β-ionone -18220 -18080 -18360 0.015 0.014 0.016 

3-

methylbutylacetate -33590 -33450 -33730 6.967 6.587 7.369 

vanillin -47410 -47180 -47640 1775.807 1619.376 1947.349 

 

 Of the 14 calculated constants with associated literature data in aqueous solution, 

five compounds were on the same order of magnitude as the experimental constants. 

Three compounds were off by one order of magnitude compared to literature. The 

remaining 5 compounds deviated by two or more orders of magnitude from experimental 

values, with 2-phenylethanol deviating the most at a difference of five orders of 

magnitude. Research was conducted into the solubility of these compounds in both water 

and ethanol to try to better understand the data and the formation of any apparent trends 
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as VOC solubility in either water or ethanol relates to the Henry’s law constant value. 

Each VOC, its experimental Henry’s law constant, calculated Henry’s law constant, 

solubility in water and ethanol, and aroma are tabulated in Table 4. 

 

Table 4 

Henry’s Law Constants for Each VOC with Associated Upper and Lower Error Bounds 

VOC 

Hcp upper 

bound 

(mol/m3Pa

) 

Hcp lower 

bound 

(mol/m3Pa

) 

Experiment

al Hcp in 

water 

(mol/m3Pa) 

Experiment

al Reference 

Solubility 

in H2O 

Solubilit

y in Eth. 
Aroma5 

trans-2-heptenal 1.368 1.243 0.05 23 Insoluble Soluble 
Fatty, 
green 

nonanol 0.564 0.508 0.11 24 140 mg/L Miscible soapy 

2-phenylethanol 0.002 0.002 >37 25 
16,000 
mg/L 

1 mL/2 
mL in 

50% 

flowery 

3-methylbutan-1-ol 0.130 0.118 0.46 23 
26,700 
mg/L 

Miscible malty 

4-allyl-2-
methoxyphenol 

0.392 0.320 5.1 26 
2400 
mg/L 

Soluble 
Clove-

like 

α-damascone 22.644 20.402 None none Insoluble 
1 mL/10 
mL 95% 

Cooked 
apple 

2-methoxyphenol 0.594 0.518 7.7 27 
187,000 

mg/L 

Very 

soluble 
phenolic 

4-
methylacetopheno

ne 
4.628 4.039 1.1 28 Insoluble 

Very 
soluble 

Almond
-like 

γ-dodecalactone 39.219 35.055 none none Insoluble 
1 mL/1 

mL 95% 
Peach-

like 

γ-decalactone 56.714 50.287 None none 
Conflictin

g 
1 mL/ 1 

mL 
Peach-

like 

t-whiskylactone 37.829 33.274 None none Soluble None 
Coconut

-like 

ethylbutanoate 3.567 3.265 0.029 29 
4900 
mg/L 

Miscible fruity 

ethylhexanoate 3.175 2.748 0.014 30 Insoluble 
1 mL/2 

mL 70% 
fruity 

t-ethylcinnamate 1.494 1.293 0.162 31 Insoluble Miscible fruity 

diethoxyethane 0.125 0.106 0.1 26 
44,000 
mg/L 

Miscible fruity 

β-ionone 0.016 0.014 1.2 32 169 mg/L Miscible 
Violet-

like 

3-
methylbutylacetate 

7.369 6.587 0.026 33 
2000 
mg/L 

Miscible fruity 

vanillin 1947.349 1619.376 4700 26 
11,020 
mg/L 

Very 
soluble 

Vanilla-
like 
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At first, these results seem somewhat inconclusive. While some VOCs are similar 

in value and magnitude to reported experimental values, most deviate by 1-2 orders of 

magnitude in terms of accuracy. However, standard error was calculated for each method 

of calculating the Gibbs free energy (3 measurements per compound) and this error 

ranged from 0.007 to 0.1 kJ/mol. This standard error was calculated using the standard 

deviation between the methods divided by the square root of the number of 

measurements. To investigate any correlation in the calculated data and the literature 

data, Spearman correlations were created to try to rank the VOCs based on the size and 

molecular weight of the molecules and how this possibly affects the trend of Henry’s law 

constant value. The Spearman’s rank correlation coefficient, ρ, is a metric for 

determining the rank correlation and relationship between two variables. The correlation 

investigated first was the relationship between Henry’s law constants and the molecular 

weight of the VOCs. The values of each were ranked from smallest to largest for the 

constant vs. molecular weight, then using Equation 10, the rank correlation coefficient 

was calculated. 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
(10) 

Where ∑ 𝑑𝑖
2 is the summation of the difference between ranks for each variable squared. 

Because there were 18 VOCs, n = 18. The Spearman coefficient ranges from -1 to 1, 

where -1 indicates a perfectly negative linear correlation, 1 indicates a perfectly positive 

linear correlation, and 0 indicates no correlation at all. Ideally, the coefficient should be 

close to, but not 1. 

 When determining the correlation between the Henry’s law constant and 

molecular weight, the calculated ρ was 0.385—which indicates a broad, but clustered 
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correlation between the two. Using a similar process, the correlation for the Henry’s law 

constant and topological polar surface area was investigated. The calculated ρ for this 

case was 0.212, indicating a slight correlation between the two, but not as significant as 

the previous case. 

 Comparing these values to the coefficients obtained when instead using the 

literature Henry’s law constant, first the relationship between molecular weight and 

constant was investigated. The calculated ρ for the experimental data for the first case 

was 0.292. The calculated ρ for the case between the constants and the topological polar 

surface area was 0.281. Using the experimental data provided similar results as with 

using the data determined from MD simulations, where the Spearman coefficients did not 

differ in magnitude. As previously discussed, calculating Henry’s law constants for 

compounds in bourbon using molecular dynamics simulations has not been done 

previously. However, due to the relatively small error associated with the values of Gibbs 

free energy for each VOC, these results are very precise over many iterations. 

 To investigate accuracy and validate the proposed novel method of calculating 

Henry’s Law constants using MD, one compound (2-phenylethanol) was used to repeat 

the process presented in the methods section under two new conditions: (1) using a pure 

aqueous solvent, and (2) using a pure ethanol solvent. For 2-phenylethanol in water, the 

Henry’s law constant was calculated to be 0.12 mol/m3-Pa, compared to a literature value 

of >37 mol/m3-Pa. 2-phenylethanol in ethanol yielded a Henry’s Law constant of 0.0003 

mol/m3-Pa.  
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Conclusion 

This study provides valuable insight into the feasibility of predicting 

thermodynamic data for volatile compounds in solvent systems more complex than water 

and could prove to be a valuable addition for the spirits industry. The calculated Henry’s 

law constants for VOCs in bourbon were very precise, with standard error between 

methods of calculating ΔG ranging from 0.007 to 0.1 kJ/mol for calculated energies 

ranging from -139 kJ/mol up to -18 kJ/mol. Continuing, five calculated Henry’s Law 

constants were on the same order of magnitude as their literature values, three 

compounds were within one order of magnitude, and the remaining compounds deviated 

by two or more orders of magnitude, up to a maximum of five. 

Using the same process laid out in the methods section, 2-phenylethanol was 

chosen to be solvated in two new systems—one with an ethanol solvent and the other 

water. In doing this, the compound’s calculated data could be more closely compared 

with the data presented in literature. While the Henry’s Law constant for aqueous 

solvation of 2-phenylethanol is presented in literature as >37 mol/m3-Pa, the calculated 

value herein was 0.120 mol/m3-Pa. When compared with the value obtained using the 

bourbon solvent simulation, 0.002 mol/m3-Pa, the result from aqueous solvation 

improves in accuracy by two orders of magnitude. Furthermore, the calculated Henry’s 

Law constant for 2-phenylethanol in the ethanol solvent system was 0.0003 mol/m3-Pa. 

2-phenylethanol’s solubility in water is 16,000 mg/L, while its solubility in ethanol is 1 

mL/2 mL in 50% ethanol. These results coupled with the literature solubility data build 

confidence in the proposed novel method, where a compound’s solubility in water 

relative to ethanol is reflected in the simulation of solvation in bourbon. 
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The accuracy and feasibility of running these simulations for this kind of work is 

generally well-established. Even though MD requires learning new technical knowledge, 

programming skills, etc., I would argue that the benefits of using simulations far 

outweighs any potential cost—whether this is time investment, cost investment, burden 

of knowledge, etc. 

Subsequently, with the growing popularity of artificial intelligence and machine 

learning for predicting and forecasting data trends, developing a machine learning model 

to do this kind of computational work could also be beneficial. This would require a 

similar amount of data points as the ones collected in this study, but with the potential to 

expand to a much greater extent than using multiple simulation iterations. Admittedly, 

this would also require a new set of skills and knowledge that is not often found in 

chemical engineering curriculum. 

Lastly, I recommend that the relationship between water and ethanol solubility is 

further investigated as it relates specifically to the magnitude of the Henry’s law 

constants for bourbon VOCs. Would it be possible to predict the relative magnitude of 

one constant based on its quantitative solubility in water and ethanol, or is it dependent 

on many more parameters? Could we also interpolate between calculated constants for a 

water solvent system and an ethanol solvent system to get a new constant of the 

combined solvent? The results of this study lean toward agreement with this line of 

thinking. 

While the presented calculations are more precise than accurate, they can be 

valuable in predicting the relative magnitudes of thermodynamic data, as evidenced by 

the validation cases of 2-phenylethanol. Future work in this area should focus on further 
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validation of methods and force fields used for calculating Henry’s Law constants of 

VOCs in bourbon.  
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