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ABSTRACT 

SAVING BUTTERFLIES IN THE CITY: GARDENS AS CONSERVATION SPACES 

IN URBAN LANDSCAPES 

Lindsay D. Nason 

April 15, 2021 

 

Butterfly populations are declining, and habitat degradation due to urbanization is 

a major contributing factor. Gardens represent a large proportion of land area in many 

cities, and thus may be important for conserving butterflies in urban environments. In this 

dissertation, I examine how garden features (ex: size, level of urbanization, plant 

diversity) affect adult butterfly diversity/abundance, behavior, and the predation risk 

faced by caterpillars. My study sites were native plant gardens in Jefferson, Bullitt, and 

Hardin Cos.,KY. In Chapter One, I used clay caterpillars to assess differences in 

predation pressure in gardens along a gradient of percent impervious surface (%IS). I 

glued clay caterpillars to plant leaves at 24 gardens in both July and October 2017, then 

assessed them for damage. 97% of damage was attributable to parasitoid wasps, spiders, 

ants, vertebrates, and predatory wasps. Overall attack rate declined significantly with 

increasing %IS and plant species richness (plantR). The attack rate by each predator type 

responded differently to %IS and plant biovolume density (BVD).  
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In Chapter Two, I surveyed adult butterflies at 26 gardens from May–October 

2018, to evaluate how garden characteristics influence butterfly diversity and abundance. 

Butterfly species richness (BSR) significantly increased as garden size increased. BSR 

was also affected by an interaction between %IS and plantR. BSR increased with 

increasing plantR, and this effect was stronger when %IS was high. Butterfly abundance 

was affected by multiple interactions, including %IS with garden area, and %IS with 

BVD. Butterfly abundance increased with increasing garden size and BVD, particularly 

when %IS was high. The proportion of larval host-specialist species I recorded declined 

as %IS, but increased when both garden size and plantR increased together. 

In Chapter Three, I recorded the flight/feeding behaviors of cabbage white 

butterflies (Pieris rapae) to determine if urbanization affects butterfly behavior. I 

conducted behavioral trials at 6 urban and 6 rural gardens in July-October 2019. 

Butterflies released in urban gardens spent more time actively flying and/or feeding from 

flowers than butterflies in rural gardens. They also flew more tight turns, even when they 

did not feed from flowers, indicating more intensive searching behavior in urban gardens.  
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INTRODUCTION 

 

Urban landscapes are the fastest growing type of habitat across the world. In the 

United States alone, urban land use has increased substantially over the last four decades. 

Urban habitats have been found to be highly detrimental to the great majority of species, 

and urban communities are almost always found to be less diverse than corresponding 

rural or natural communities. Therefore, it is imperative to reduce current rates of 

urbanization, particularly the spread of low-density sprawl, if we are to retain local and 

native species. However, urban habitats cannot be ignored by ecologists and 

conservationists. Even if urbanization rates slow dramatically, current reserve and 

restoration projects alone will not be able to maintain local biodiversity. To prevent 

continued species losses at local and regional scales, we must substantially improve 

human-dominated landscapes (like cities) to reduce their environmental impact and 

support greater levels of biodiversity.  

Gardens are potentially a major resource for conservation in urban environments. 

Collectively they comprise a large portion of the available plantable space in cities, and 

often represent a greater land area than public greenspace.  Since they are managed by 

private citizens, private gardens would not face the budgetary concerns of park systems). 

Given their small size, gardens are likely not effective habitat for certain animals (e.g., 

species that require core habitat or have large home ranges), but they could support 
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relatively small species that are adaptable to patchy habitat. Lepidopterans are a 

particularly good target for conservation in urban gardens. They are small, mobile 

animals that utilize resources (host and nectar plants) that are fairly simple to add to most 

gardens. This type of conservation requires public interest and participation, so it is also 

helpful that lepidopterans (specifically butterflies) are highly charismatic. 

For my dissertation research, I evaluated the potential of urban native plant 

gardens to act as conservation spaces for butterflies. First, I conducted a study using clay 

caterpillar models to assess predator attack rates on lepidopteran larvae across a gradient 

of percent impervious surface. The primary purpose of this research was to determine if 

caterpillars in urban gardens faced a greater predation threat than caterpillars in more 

rural gardens, and therefore establish whether planting host plants in urban gardens is 

likely to be a beneficial strategy or one that could cause ecological traps (i.e., whether 

butterflies can reproduce effectively in urban gardens, or if their reproductive efforts are 

wasted because caterpillars are too likely to be eaten).  

In my second study, I recorded butterfly species richness and abundance data at 

most of the same native plant gardens as the clay caterpillar study. The focus of this 

research was measuring the effect of different local characteristics of the gardens (garden 

area, plant species richness, planting density), and evaluating their ability to offset the 

expected negative effects of increasing urbanization on butterfly diversity and abundance. 

The ultimate goal of this research was to identify ways to improve urban gardens so that 

they can attract and support large, diverse communities of butterflies.  

In my final study, I monitored the flight and foraging behaviors of the cabbage 

white butterfly (Pieris rapae) in a subset of the gardens I used in my previous research. 
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The goal of this study was to determine if (and how) urbanization affected the foraging 

and associated movement behaviors of butterflies. Foraging and movement behaviors are 

influenced by landscape structure and connectivity, so this data provides insights into 

butterflies’ perceptions of the urban matrix and how it influences their decisions. This, in 

turn, can inform conservation planners about the best way to distribute resources for 

butterflies throughout a city (i.e., should resources be concentrated in very high-quality 

hotspots, or are stepping-stone improvements needed widely across the matrix to 

facilitate better connectivity).  
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CHAPTER ONE 

 

Introduction 

Urban landscapes are the fastest-growing type of habitat across the world. In the 

United States alone, urban land use increased from 289,904 km2 in 1950 to 1.48 million 

km2 in 2000 (Brown et al. 2005). Urban land, including both urban centers and suburban 

areas, has increased by an average of 5% globally between 1970-2010 (Güneralp et al. 

2020). In North America, the rate of urban land conversion consistently outpaced 

increases in urban population density, indicating high levels of low-density urban sprawl, 

and more than half of the land that was converted to urban use had been forested 

(Güneralp et al. 2020). Globally, the conversion of natural habitat to urbanized habitat 

will continue to increase, and urban sprawl is projected to consume another 5.87 million 

km2 of land by 2030 (Seto et al. 2012). This rapid urban expansion has destroyed, 

fragmented and isolated natural habitats and has led to the decline of numerous plant and 

animal taxa across the globe. 

Urban habitats are highly detrimental to the great majority of animal taxa 

(McKinney 2002) including insects (Hill and Wood 2014, Verboven et al. 2014, Prescott 

and Eason 2018). Lepidopterans are no exception to the common pattern; many butterfly 

(Swengel et al. 2011) and moth (van Langevelde et al. 2018) species have been in drastic 

population decline over the last several decades, and increased urbanization is associated 
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with declines in abundance and species richness of both butterflies (Blair and Launer 

1995, Olivier et al. 2016) and moths (Bates et al. 2014, Merckx and Van Dyck 2019). 

These declines are likely due in part to reduced floral resources and loss of larval host 

plants (Potts et al. 2010), and in the case of moths, increased light pollution (van 

Langevelde et al. 2018). 

To address this problem, new conservation strategies that do not rely solely on 

set-asides of protected natural areas are being developed (Rosenzweig 2003). One of 

these strategies, known as “reconciliation ecology” seeks to improve degraded habitats 

such as urbanized areas by including species habitat amid residential, commercial and 

other land-use types to promote increases in biodiversity (Rosenzweig 2003). For 

butterflies and other flower-visiting insects, conservation organizations such as National 

Wildlife Federation have encouraged members of the public to create native plant 

gardens as a conservation tactic, thus providing at least small patches of natural habitats 

in residential landscapes (Oder 2015). Gardens typically comprise 16% to 36% of land 

area in cities and towns (Goddard et al. 2010), and the majority of privately owned 

plantable space in cities that could potentially be converted into gardens or meadows 

often far exceeds the available plantable space in public park systems (Johnston et al. 

2019, Marshall et al. 2019). Collectively, gardens and other urban plantings have 

considerable conservation potential. A recent study by Johnston et al. (2019) found that 

potential milkweed plantings in eastern U.S. cities could provide up to 1/3 of what is 

needed to stabilize the eastern monarch population. 

However, the efficacy of gardens as conservation spaces for pollinators and 

overall animal diversity has not been fully explored. Research has shown high variability 
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in the animal diversity that urban environments are able to support. Some studies have 

found that urban environments act purely as population sinks, or even “ecological traps” 

that draw animals away from more undisturbed habitat to the detriment of their 

population (Levy and Connor 2004, Sumasgutner et al. 2014, Suárez-Rodríguez et al. 

2017). Others have found more positive results, finding that urban habitats can provide 

some pollinators with crucial food resources, (Samnegård et al. 2011, Pereira-Peixoto et 

al. 2014, Hülsmann et al. 2015, Hausmann et al. 2016), and that some urban populations 

of insects, can even be self-sustaining (bumblebees:  Gunnarsson and Federsel 2014; 

Diptera, Coleoptera, Hemiptera, and Hymenoptera:  Smith and Fellowes 2014). Multiple 

studies have also recognized the potential of urban habitats to increase biodiversity if 

management practices are changed (Shwartz et al. 2013, Hill and Wood 2014, Pardee and 

Philpott 2014, Philpott et al. 2014, Smith and Fellowes 2014, Otoshi et al. 2015, Tam and 

Bonebrake 2016, Callaghan et al. 2019). Typically, “best management practices” 

associated with butterfly gardens involve planting caterpillar host plants to make gardens 

breeding habitats rather than just providing nectar sources; the best-known campaign is to 

plant milkweed for monarchs. It is usually assumed that planting host plants must be a net 

positive, despite some evidence indicating that caterpillar survival in urban gardens can 

be very poor and thus that such gardens may be acting as ecological traps within a larger 

district that includes natural areas (Levy and Connor 2004).  

Lepidopteran species vary widely in their ability to adapt to an urban environment 

(Blair and Launer 1995, New and Sands 2002, Konvicka and Kadlec 2011, Merckx and 

Van Dyck 2019, Franzén et al. 2020), and very few studies have evaluated how 

caterpillar abundances change across an urbanization gradient. A handful of studies have 
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compared caterpillar abundances between urban and forested areas as a measure of food 

availability for insectivorous birds, but their results have been mixed. Two studies found 

reduced caterpillar abundance (Marciniak et al. 2007) or biomass (Seress et al. 2018) in 

urban areas, one study found no significant change in abundance (Solonen 2001), and 

another found higher caterpillar abundance in urban areas (Isaksson and Andersson 

2007).  

One factor that might contribute to such disparities in caterpillar abundance is 

predation pressure.  Two studies have directly evaluated how predation pressure on 

caterpillars changes across disturbance gradients. In a tropical forest in the Philippines, 

predator attack rate increased with increasing habitat degradation (Posa et al. 2007). In 

contrast, in temperate Denmark, predator attack rate declined as the level of urbanization 

increased (Ferrante et al. 2014). These and many other studies have used clay caterpillar 

models, an established method for estimating predator attack rate (e.g., Koh and Menge 

2006, Posa et al. 2007, Tvardikova and Novotny 2012, Ferrante et al. 2014, Roslin et al. 

2017). Because marks left on the models are attributable to different predator taxa (e.g., 

birds, wasps, spiders), they can also be used as an indicator of how predator communities 

vary in different environments (Ferrante et al. 2014, Seifert et al. 2015, Roslin et al. 

2017).  

In this study, we assessed whether caterpillar survival differs in native plant 

gardens in urban versus more rural areas by measuring predator attack rates on clay 

caterpillar models.  To determine whether local factors affect caterpillar predation, we 

also examined the effects of garden attributes – specifically plant species richness and 

plant biovolume density – on predator attacks on the models. Finally, we tested whether 
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season and model size affected predation. Previous studies have suggested that the effects 

of caterpillar size on predation rates may not be consistent (Stamp and Bowers 1988, 

Hooks et al. 2003), and we also wanted to learn whether caterpillar size affected the 

predator types that attacked caterpillars. 

 

Methods 

 

Study sites 

We conducted this study in two adjacent counties in Kentucky, USA, Jefferson 

and Bullitt.  Jefferson County includes the entire city of Louisville (38°15´ N, 85° 46´ 

W), which had a population just above 760,000 in 2019 (U.S. Census Data 2019). 

Jefferson and Bullitt counties are located in north-central Kentucky and are a part of the 

Interior Low Plateau, Bluegrass Section and in the Eastern Broadleaf Forest 

(Continental)Province biome (USDA Forest Service 2018). Annual mean temperature for 

Louisville is 14.6 C with a mean minimum in January of -2.8 C and a mean maximum in 

July of 31.7 C. Annual precipitation averages 114 cm and ranges from 7.6 to 13.4 cm 

monthly (US Climate Data 2018).    

We conducted trials in July and October 2017 at 24 native plant garden sites (Fig. 

1). These gardens included seven residential gardens, eight gardens at schools, eight 

gardens in urban and rural parks, and one corporate garden.  They ranged from 21 m2-

2,165 m2 in size, and all gardens had high sun exposure, with little to no tree cover. 

 

Garden Characteristics 
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We measured the following variables for each site: % impervious surface 

surrounding the garden, garden area (m2), plant species richness, and plant biovolume 

density (m3/m2) (Table 1). We used ArcGIS® (version 10.6) to calculate the percent 

impervious surface surrounding each garden, using circles with a 0.5-km, 1-km, and 1.5 

km radii.  Model comparison using AIC showed that the 1-km scale explained most 

variation in model attack rate, and using that scale, percent impervious surface ranged 

from 6.1%-84.2%. Plant species richness in the gardens ranged from 13-65 species. Plant 

biovolume density (m3/m2) was calculated using two different methods depending on 

plant density. At high-density sites, plant height was recorded every 2m along a transect; 

transects were 3m apart for small sites (less than 500 m2) and 5m apart for large meadows 

(over 1000 m2). At high-density sites plant biovolume density is equivalent to mean plant 

height. At low-density sites, each plant’s volume was calculated individually, and the 

sum of all plant volumes was divided by area to calculate plant biovolume density. Plant 

biovolume density ranged from 0.02–0.69 m3/m2.   

 

Caterpillar models and placement in gardens  

We created green clay caterpillar models by mixing 2 parts green plasticine clay 

with 1 part yellow (clay brand: Sargent Art®). We made models in two sizes, large (5cm 

long, 6mm diameter) and small (3 cm long, 3mm diameter), and we affixed them to plant 

leaves with Loctite® superglue. In each garden, we placed one large and one small 

caterpillar on each of 20 plants for a total of 40 caterpillars/site/trial and an overall total 

of 1920 clay caterpillars, with 960 set out in July and 960 in October. The selected plants 

belonged to various species of herbaceous perennials that were representative of the 
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range of plant species at the garden. The plants were at least 0.5 m in height and at least 

1.0m distant from any other plant with model caterpillars. Caterpillar placement on the 

plant was randomized with respect to vertical spacing (top, middle or bottom third of the 

plant) and horizontal spacing (models were either on opposite sides of the plant main 

stem or on the same side of the stem and separated by vertical space only). We checked 

caterpillars for damage after 24 and 48 hours; caterpillars damaged after 24 hours were 

removed without replacement. All remaining caterpillars were removed after 48 hours 

and assessed to determine predator type using Low et. al (2014) as a guide (Fig. 2). To 

further verify marks made by hymenopterans versus orthopterans, we captured multiple 

grasshopper and katydid species of different sizes, directly recorded their bite marks on 

clay caterpillar models, and compared those marks to those on the experimental 

caterpillars. We considered all caterpillars that were damaged to have been predated and 

thus the predation rate was the proportion of caterpillar models that showed damage. 

Each damaged model was assigned a single predator; in the relatively few cases where 

multiple predators attacked the same model, the predator that did the most extensive 

damage was used for our analyses. 

 

 

Statistical Analyses 

We analyzed which factors influenced total predation rate across gardens using 

logistic regression models with GLM in R, and we determined which factors influenced 

predation rates of different predator types using multinomial logistic regression with the 

mlogit package in R (R Core Team 2016).  Two factors, garden area and percent 
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impervious surface, were highly correlated;  accordingly we used a model comparison 

(AIC) approach to determine which variable better explained the data.  We found that 

percent impervious surface was a much better predictor of both total predation rate and of 

predation by predator type; we therefore dropped garden size from both models. The 

explanatory variables included in the two models were season (July or October), model 

size (small or large), percent impervious surface, plant species richness, and plant 

biovolume density.  

 

Results 

We recovered 1883 (98.1%) of the 1920 caterpillar models we placed in the 

gardens;  this included 98.4% of the large models and 97.7% of the small ones. The 

models we did not recover were not included in statistical analyses. Of the 1883 

recovered models, 981 (i.e., 52.1% of the models), were attacked by a predator. Overall, 

97.3% of the attacks could be attributed to 5 predator types (Fig. 3): parasitoid wasps 

(47.1%), spiders (16.2%), ants (13.5%) vertebrates (13.3%), and predatory wasps (7.2%). 

In the analysis of overall probability of predation, impervious surface, plant species 

richness, model size, and season all have significant main effects, but plant biovolume 

did not.  The probability of a clay caterpillar being attacked after 48 hours declined from 

approximately 62% to 39% as percent impervious surface increased from 6 to 84% (p < 

0.001, Fig. 4a), and declined from approximately 58% to 43% as plant species richness 

increased (p = 0.047, Fig. 4b). Large model caterpillars were attacked more frequently 

than small models (p < 0.001); 58% of all large models were attacked and 46% of all 

small models were attacked. Models were also attacked more frequently in October than 
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July (p < 0.001); 45.7% of the July models were attacked and 58.7% of the October 

models were attacked. There were no significant interaction effects.  

In contrast, in the model of the proportions of caterpillars damaged by particular 

predator types, season, caterpillar size, and plant species richness did not have any 

significant effects. The final model included percent impervious surface (1-km radius), 

plant biovolume density (m3/m2), and the interaction between them; further, the effects of 

these factors varied across predator taxa. The probability of a caterpillar model being 

attacked by parasitoid wasps was significantly affected by an interaction between percent 

impervious surface and plant biovolume density (p < 0.001, Fig. 5). Below approximately 

35% impervious surface, the probability of attack by parasitoid wasps increased as plant 

biovolume density increased. Above 35% impervious surface this trend reversed, and the 

probability of attack by parasitoid wasps decreased as plant biovolume density increased. 

The probability of attack by vertebrates was also affected by both percent impervious 

surface and plant biovolume density, but as separate main effects rather than via an 

interaction. The probability of attack by vertebrates decreased approximately 20% as 

percent impervious surface increased from 6 to 84% (p = 0.01, Fig. 6a) and increased 

approximately 13% as plant biovolume density increased (p = 0.002, Fig. 6b). The 

probability of attack by predatory wasps decreased approximately 14% as percent 

impervious surface increased from 6 to 84% (p = 0.002, Fig. 7a) and slightly increased 

(approximately 6%) as plant biovolume density increased (p = 0.06, Fig. 7b). The 

probability of attack by spiders was not affected by percent impervious surface (p = 0.79) 

but marginally increased (approximately 3%) as plant biovolume density increased (p = 

0.02, Fig. 8). The probability of a model being attacked by ants was not significantly 
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affected by either percent impervious surface (p = 0.79) or plant biovolume density (p = 

0.79).  

 

Discussion 

Overall, our caterpillar models were attacked by predators significantly less 

frequently in urban areas than rural areas. In gardens surrounded by very low percent 

impervious surface (~5%), our model predicted that a caterpillar had a 62% probability of 

being predated within 48 hours. In gardens with very high percent impervious surface 

(~85%), the probability of being predated within 48 hours dropped to 39%. The 

likelihood of being attacked within 48 hours was also affected by variation in caterpillar 

model size, season, and garden plant species richness. These factors did not affect the 

likelihood of attack by any particular predator, but some garden characteristics did affect 

different predator taxa differently. For example, the likelihood of attack by two of our 

predator taxa, ants and spiders, was not significantly influenced by percent impervious 

surface at all, but attacks by predatory wasps and vertebrates strongly declined as percent 

impervious surface increased. Plant biovolume density, which was not a significant factor 

in the total predation model, significantly affected all of our predator taxa (except ants) in 

some way.  

 Parasitoid wasps were the dominant predator of our clay models. They accounted 

for 47.1% of all attacks, and the probability of a model being attacked by a parasitoid was 

high across all sites. The variation in the rate of attack was influenced by an interaction 

between percent impervious surface and plant biovolume density. In more rural areas, 

parasitoid attack rates were highest when plant cover was very dense. Conversely, in 



 14 

urban areas parasitoid attack rates were highest when plant cover was sparse. This is 

possibly due to a change in the parasitoid community across the urban gradient. A study 

by Burks and Philpott found that parasitoid wasp diversity decreased with increasing 

urbanization, but parasitoid abundance increased with increasing urbanization. The 

parasitoid wasp species able to persist in urban areas may not necessarily need much 

vegetative cover to survive in an urban environment, and can take advantage of the fact 

that the caterpillar models are easier to see in low-density gardens. However, if that is the 

case, it is likely specific to the local or regional parasitoid wasp community, as a prior 

study in Brazil found that predation on lepidopteran pupae by parasitoid wasps in an 

urban area increased significantly as vegetative cover increased (Ruszczyk 1996). The 

predation pattern found by Ruszczyk may also be more reflective of the general predator 

response. Although plant biovolume density did not have a significant main effect in our 

overall attack rate model, this model was highly affected by the complex response of 

parasitoids. Attacks by vertebrates, spiders, and predatory wasps all increased as plant 

biovolume density increased, regardless of the level of urbanization. This is likely due to 

the ability of denser plant cover to support the presence of these predators, as several 

studies have shown that diversity and abundance of each of these groups increases when 

ground or shrub cover is more dense (Lancaster and Rees 1979, Beissinger and Osborne 

1982, Costello and Daane 1998, Lassau and Hochuli 2005, Silva et al. 2010, Melin et al. 

2018, Sáenz-Romo et al. 2019).  

The decrease in total predation rate in urban areas is likely attributable to 

decreases or functional changes in predator diversity and abundance (excepting parasitoid 

wasps). Our analysis of attack frequency by predator type showed that attacks by 
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predatory wasps and vertebrates declined with increasing percent impervious surface. 

The majority of attacks by vertebrates in our study were bird attacks, and increasing 

urbanization often causes bird diversity to decline (Lancaster and Rees 1979, Blair 1996, 

Chace and Walsh 2006, Aronson et al. 2014). Furthermore, the highly abundant bird 

species in urban environments are predominantly granivorous or omnivorous rather than 

insectivorous (Lancaster and Rees 1979, Beissinger and Osborne 1982, Crooks et. al 

2003, Chace and Walsh 2006), so the decline in vertebrate attacks that we found may be 

more reflective of reduced numbers of insectivorous birds than a decline in absolute bird 

abundance.  In general, the effects of urbanization on predatory wasps are less clear, in 

part because of the scarcity of studies on this topic. Our data show that predatory wasp 

attacks on caterpillars decline with increasing urbanization, and a recent study in Rome, 

Italy (Corcos et al. 2019) similarly found a decline in sphecid wasp abundance with 

increasing urbanization; however, a study in Sydney, Australia (Christie and Hochuli 

2009) found no significant effects of urbanization on any wasp taxa. The variation in 

predatory wasps’ responses to urbanization may depend at least in part on the degree of 

dissimilarity between the habitat surrounding the urban area and the urban habitats 

themselves. However, it is unclear whether the difference we observed was driven by a 

reduction in the numbers of predatory wasps or a change in their community composition 

that results in the absence of species that specialize on caterpillars.  

We also found that late-instar caterpillars and caterpillars of larger-bodied species 

may be at higher overall risk of predation than early instar caterpillars and caterpillars of 

small-bodied species, as the large caterpillar models were predated more frequently than 

the small caterpillar models. Hooks et al. (2003) found that bird and spider predation 
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significantly reduced the amount of large caterpillars on individual plants but did not 

affect the amount of small caterpillars on the plants. However, clay models cannot exhibit 

the defenses of real caterpillars, and Stamp and Bowers (1988) found that late-instar 

caterpillars were much more successful at evading wasp predation than early-instar 

caterpillars. Late-season caterpillars may be more at risk of predation, as the likelihood of 

a model being attacked was much higher in October than July. This result is likely due to 

diminishing alternative resources for predators in all taxa we studied.  Finally, we found 

that the attack rate on the models declined by about 15% when plant species richness was 

very high. This effect is opposite to what has been found in most other studies, which 

have found increases in predation when plant species richness is increased (Sobek et al. 

2009, Hertzog et al. 2017, Leles et al. 2017). There are a few studies that have shown 

different effects of plant species richness on predators. Fabian et al. (2014) found no 

significant relationship between the abundance of herbivore-predating wasps and plant 

species richness, and the direction of the trend (although not statistically significant) was 

negative, with fewer wasps where plant species richness was high. Yang et al. (2018) 

found that insectivorous bird predation declined with increasing tree species richness in a 

tropical forest, and Sperber et al. (2004) found no effect of herbaceous plant species 

richness on parasitoid wasp richness. It is also possible that our highly plant-diverse sites 

are in some way associated with another variable that we weren’t able to measure and 

that influenced predator presence (e.g., garden management techniques, microhabitats, 

plant species attributes).  

Our models were damaged at a rate (52.1%) comparable to rates in other 

caterpillar predation studies in temperate regions that used either clay models (50%, 
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Ferrante et al. 2014) or live caterpillar larvae (56%, Grenis et al. 2015), suggesting that 

our results were not unduly influenced by using clay models instead of live caterpillars. 

Our results, which correspond with the trend found by Ferrante et al. (2014), suggest that 

if there is a reduction in caterpillar survival in some urban caterpillar populations, that 

reduction may not be due to increased predation, although of course this should be 

studied in more cities at a greater diversity of latitudes, in varied habitats, and of different 

sizes. To fully determine whether caterpillar survival is similar between urban and rural 

gardens, there also need to be more studies addressing caterpillar survival directly and 

other factors that may affect it, such as food quality and availability. Furthermore, if there 

is greater survival of caterpillars in urban habitats, then there could be increased 

herbivory that significantly affects both damage to and success of plants in urban 

gardens. Future studies should investigate plant-caterpillar interactions in urban gardens, 

and determine what degree of plant damage alters gardeners’ responses to the 

caterpillars’ presence. Additionally, a broader range of lepidopteran species should be 

studied, as current research shows some species-specific responses. For example, a study 

on the Apollo butterfly (Parnassius apollo) showed poor caterpillar survival in urban 

gardens (Levy and Connor 2004), but a few studies on the monarch (Danaus plexippus) 

have found no significant differences in caterpillar survival between urban and rural areas 

(Cutting and Tallamy 2015, Geest et al. 2019). Such research can inform more targeted 

conservation strategies for different lepidopteran species in residential areas.  

In conclusion, we found that urban gardens are not necessarily “ecological traps” 

for lepidopterans. Caterpillars that hatch in urban areas may face a lower predation threat 

than caterpillars in rural areas. However, this potentially higher survival may come at the 
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expense of losses to biodiversity in other taxa, namely predatory wasps and insectivorous 

birds, which showed a sharp decline in attack rate as impervious surface increased. Given 

the importance of preserving biodiversity in general, we recommend that urban gardeners 

increase the plant density in their gardens to facilitate the presence of more bird, spider, 

and predatory wasp activity. While this and other strategies to improve gardens, such as 

greater use of native plants, will likely increase attacks on caterpillars, our data suggest 

that the predation pressure may not be substantially different to what is occurring in more 

natural environments. Our findings suggest that we should continue to encourage urban 

gardeners to continue planting host plants, as their efforts will help conserve lepidopteran 

species rather than contributing to their demise.    
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Table 1 

 

 

Site Site Type 

% Impervious 

Surface (1 km 

radius) 

Garden Area 

(m2) 

Plant Species 

Richness 

Plant 

Biovolume 

Density 

(m3/m2) 

Bernheim Park 6.1 2574 21 0.41 

Beckley I Park 7.5 2165 31 0.44 

Beckley II Park 7.5 2000 29 0.50 

Iroquois I Park 14.0 1238 29 0.61 

Iroquois II Park 14.0 200 21 0.49 

Private Garden I Residential 18.3 20.8 23 0.40 

Cherokee I Park 21.9 1024 25 0.40 

Cherokee II Park 21.9 1024 24 0.38 

Moore School 26.7 384.1 22 0.55 

Louisville Nature 

Center 
Park 30.2 448.7 34 0.69 

Private Garden II Residential 30.5 453.4 33 N/A 

Chenoweth School 32.7 125.8 39 0.03 

St. Agnes School 33.0 82.3 26 0.05 

Portland School 38.9 44.4 33 0.04 

Private Garden III Residential 40.2 96.8 49 0.30 

John Paul II School 42.2 82.3 24 0.65 

Holy Spirit School 42.9 59.5 20 0.04 

Private Garden IV Residential 43.5 102.1 46 0.48 

Private Garden V Residential 44.0 91.6 59 0.41 

Private Garden VI Residential 44.3 35.4 40 0.12 

Old Louisville 

Community Garden 
Residential 62.2 34.2 29 0.47 

Copper and Kings Business 66.8 341.9 38 0.41 

U of L Korfhage 

Garden 
School 68.9 372.4 65 0.02 

St. Francis School 84.2 184.5 13 0.24 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Captions 

Table 1 A table showing each garden site and its characteristics. U of L refers to the 

University of Louisville 

 

Fig. 1 A map showing the relative locations of the 24 garden sites, with the symbol for 

each site indicating the level of impervious surface (IS) surrounding each site 

 

Fig. 2 Caterpillar models showing damage by different predator taxa:  a) Predatory wasp  

b) Reptile  c) Mammal  d) Spider e) Parasitoid wasp f) Bird 

 

Fig. 3 The percentage of attacks on caterpillar models made by each predator type across 

all sites 

 

Fig. 4a The probability of a caterpillar model being attacked after 48 hours decreased as 

percent impervious surface increased (logistic regression, p < 0.001)   

Fig. 4b The probability of a caterpillar model being attacked after 48 hours decreased as 

plant species richness increased (logistic regression, p = 0.047)   

 

Fig. 5  Predicted probabilities of parasitoid wasp attacks versus impervious surface at 

different values of plant biovolume density (BVD).  Below approximately 35% 

impervious surface, increasing plant biovolume density increased the probability of 

attack by parasitoid wasps. Above 35% impervious surface this trend reversed, and 
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decreasing plant biovolume density increased the probability of attack by parasitoid 

wasps. (logistic regression, p < 0.001) 

 

Fig. 6a The probability of attack by vertebrates decreased as percent impervious surface 

increased (logistic regression, p = 0.01)   

Fig. 6b The probability of attack by vertebrates increased as plant biovolume density 

increased (logistic regression, p = 0.002)   

 

 

Fig. 7a The probability of attack by predatory wasps decreased as percent impervious 

surface increased (logistic regression, p = 0.002) 

Fig. 7b The probability of attack by predatory wasps slightly increased as plant 

biovolume density increased (logistic regression, p = 0.06)   

 

Fig. 8 The probability of attack by spiders marginally increased as plant biovolume 

density increased (logistic regression, p = 0.02) 
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CHAPTER TWO 

 

Introduction  

Many pollinator species have experienced severe population declines and local 

extinction events over the last several decades, and the conversion of naturalized and 

rural lands to urban and suburban developments is a key contributor to this decline (Potts 

et al. 2016, Vanbergen 2013).  Urbanization results in the destruction and fragmentation 

of core habitat and the loss of crucial nectar and nesting resources, frequently resulting in 

lower pollinator species richness and abundance.  Such negative effects are particularly 

strong when natural areas are lost (as opposed to the loss of farmlands).  Urbanization 

also causes changes in community composition that favor generalists over specialists 

(Wenzel et al. 2020). Unfortunately, urban landscapes are the fastest-growing habitat type 

across the world. In the United States alone urban land cover has increased from 60,703 

km2 in 1945 to 469,435 km2 in 2017, a seven-fold increase in just over 70 years (USDA 

2020, Bigelow and Borchers 2012). Globally, there was an average 5% increase in urban 

and suburban land from 1970-2010 (Güneralp et al. 2020), and urban sprawl is projected 

to consume another 5.87 million km2 of land by 2030 (Seto et al. 2012).  

Lepidopterans mirror these overall trends in pollinator declines as lands become 

increasingly urbanized (Casner et al. 2014), as evidenced by several surveys of butterfly 

species richness and abundance across urban-rural gradients (Blair 1999, Ramírez-
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Restrepo and MacGregor-Fors 2016, Merckx and Van Dyck 2019, Tzortzakaki et al. 

2019, Kurylo et al. 2020, Kuussaari et al. 2020). The loss of butterflies from urbanized 

habitats is often attributed to the destruction of certain specialized habitats (core forest 

and wetland, particularly) and reductions in larval host plant (Bonebrake and Cooper 

2014) and nectar plant availability (Abrahamczyk et al. 2020). Specialist butterfly species 

are particularly hard-hit by urban land conversion, and they disappear from the landscape 

quickly as urban intensity increases, whether they are specialized in terms of larval host 

plant (Kitahara and Fujii 1994, Clark et al. 2007), floral preference (Bergerot et al. 2010) 

or habitat (Blair and Launer 1995, Blair 1999, Koh and Sodhi 2004). One possible means 

of increasing butterfly populations is through the creation of residential butterfly gardens, 

a conservation tactic often promoted by conservation organizations like National Wildlife 

Federation (Oder 2015). Gardens are a good target for modifying urban green space 

because they typically comprise 16% to 36% of land area in cities and towns (Goddard et 

al. 2010), and the majority of privately owned plantable space in cities that could 

potentially be converted into gardens or meadows often far exceeds the available 

plantable space in public park systems (Johnston et al. 2019, Marshall et al. 2019).  

Various lines of evidence suggest that urban gardens may have potential as 

conservation space for at least some pollinator taxa. Urban bees (Gunnarsson and 

Federsel 2014, Baldock et al. 2019) and hoverflies (Baldock et al. 2019) often are found 

in higher concentrations in urban gardens and allotments than in other areas of cities, 

suggesting that gardens may be resource patches for these groups. This conclusion is also 

supported by research showing that urban honeybees preferentially forage in gardens or 

other nearby high-quality floral patches (Garbuzov et al. 2015, Young et al. 2021).  Bee 
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diversity in urban areas can be the same as (Banaszak-Cibicka and Żmihorski 2020) or 

greater than (Baldock et al. 2015) the bee diversity in surrounding rural areas. 

Furthermore, garden characteristics often have stronger impacts on pollinator abundance 

and diversity than do landscape-scale effects (reviewed by Majewska and Altizer 2020). 

In urban bees, garden size (Quistberg et al. 2016, Egerer et al. 2020), floral abundance 

(Ahrné et al. 2009, Matteson and Langellotto 2010, Pardee and Philpott 2014, Quistberg 

et al. 2016, Simao et al. 2018), plant diversity (Hülsmann et al. 2015, Wilson and 

Jamieson 2019), and plant species composition (Hülsmann et al. 2015, Threlfall et al. 

2015) may be particularly important factors. These studies suggest that high-quality 

urban gardens may be able to compensate for some of the negative impacts of 

urbanization on some pollinators, and that we can improve urban green spaces that are 

currently poor habitat for pollinators. 

Because the majority of urban pollinator research has focused on bees, we 

currently have a poor understanding of the factors that promote greater butterfly diversity 

and abundance in urban gardens. Most studies of butterflies in urban areas have focused 

on land-use changes and the negative impact of urbanization, but there is some evidence 

that local factors can also influence urban butterfly diversity and abundance. For 

example, garden size is positively correlated with European butterfly (Knapp et al. 2008, 

Fontaine et al. 2016, Shwartz et al. 2013) and moth diversity (Bates et al. 2014), and high 

plant species richness has been linked to greater butterfly diversity in urban rights-of-way 

in Canada (Leston and Koper 2016) and rooftop gardens in Singapore (Wang et al. 2017).  

The presence of native plants may also affect the conservation potential of urban 

gardens, given that the replacement of native species with exotics has been linked to the 
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decline of insect herbivores (reviewed by Tallamy et al. 2020). Urban gardens are 

generally associated with high proportions of exotic plant species (Concepción et al. 

2015), so it may be possible to substantially improve their quality by increasing the 

prevalence of native plant use by gardeners. The presence of native plants is associated 

with greater bee species richness (McIntyre and Hostetler 2001, Egerer et al. 2020) and 

abundance (Pardee and Philpott 2014, Threlfall et al. 2017, Egerer et al. 2020), as well as 

the presence of more native (Pardee and Philpott 2014), rare (McIntyre and Hostetler 

2001) and specialist (Threlfall et al. 2015) species. There is some evidence that native 

plants may be associated with higher diversity and abundance of butterflies as well. 

Butterfly species richness is higher in grasslands (Collinge et al. 2003) and montane 

habitats (Simonson et al. 2001) that have a higher proportion of native species and 

butterfly abundance slightly increased with native floral abundance in urban transects of 

Melbourne, Australia (Kurylo et al. 2020). In suburban yards, a higher species diversity 

of moth and butterfly caterpillars occurred in native plant gardens than in yards with non-

native ground cover and shrubs (Burghardt et al. 2009). Regardless, the effectiveness of 

urban native plant gardens as possible refuges for butterflies is still not well understood. 

In this study, we evaluated the potential of gardens to ameliorate the expected 

negative effects of increasing urbanization on butterflies. We assessed several local 

characteristics of native plant gardens (garden area, flowering plant species richness, and 

planting density) situated on an urban-rural gradient, and determined their effects on 

butterfly species richness, abundance, and community composition (specifically in terms 

of the presence/absence of specialist species). This allowed us to identify the factors that 
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are most strongly linked with butterfly diversity and abundance, with the aim of 

improving gardens as resource patches for butterflies. 

 

Methods 

 

Site and survey methods 

We conducted this study at 26 gardens (Fig. 9) in three adjacent counties in Kentucky, 

USA: Jefferson, Bullitt, and Hardin. Jefferson County includes the entire city of 

Louisville (38°15´ N, 85° 46´ W), which had a population just above 760,000 in 2019 

(U.S. Census Bureau, 2019). Jefferson, Bullitt and Hardin counties are located in north-

central Kentucky and are a part of the Interior Low Plateau, Bluegrass Section in the 

Eastern Broadleaf Forest (Continental) Province biome (USDA Forest Service 2018). 

Annual mean temperature for Louisville is 14.6 °C with a mean minimum in January of -

2.8 °C and a mean maximum in July of 31.7 °C. Annual precipitation averages 114 cm 

and ranges from 7.6 to 13.4 cm monthly (US Climate Data 2018).    

We conducted butterfly surveys at 26 garden sites from May−October 2018. 

These sites included eight residential gardens, eight gardens at schools, nine gardens in 

public parks, and one corporate garden (Table 2). The term “garden” will be used to refer 

to all of the sites, although 6 of the park sites are restored meadow patches. To test the 

effects of garden size on butterfly diversity and abundance, we selected gardens that 

ranged widely in size (18–2,165 m2), and because the amount of available sunlight can 

influence butterfly diversity (Matteson and Langellotto 2010), we included only gardens 

with little to no tree cover. To evaluate the potential of native plant gardens to attract 
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butterflies, we used sites with a majority of native plants, as small numbers of native 

plants may have little effect on the presence of butterflies and other pollinators when the 

overwhelming majority of garden flora is exotic (Matteson and Langellotto 2011).  

Surveys began at 10:00 AM and ended no later than 1.5 hours before sunset. The 

minimum temperature for beginning a survey was 17°C (Cussans et al. 2010, Konvicka 

and Kadlec 2011, Shackleton and Ratnieks 2015), and surveys were conducted only when 

there was no precipitation and Beaufort wind speed was less than 5 (Cussans et al. 2010). 

Gardens were surveyed on a rotating basis, so that all 26 gardens were visited before 

repeating any sites. We used a rule-based stopping method for the surveys (Prescott and 

Eason 2018). Each survey had a base length of 20 minutes (Shackleton and Ratnieks 

2015); if a new butterfly species appeared in the final five minutes of the survey then the 

survey was extended for an additional 10 minutes. This process was repeated until no 

new species appeared in the final five minutes. The Pollard (1977) method of surveying 

was not used because transect surveys were not appropriate for the sites that were small, 

formal gardens (Wang et al. 2017). We conducted each survey by actively searching the 

garden for butterflies, walking slowly throughout the site and recording each butterfly 

seen.  Butterflies were identified to species using Eagle Optics© 10x42 binoculars and a 

field guide (Kaufman and Brock 2006). We paused the survey timer while identifying 

any individuals that were not immediately recognizable to species, and if needed we 

photographed such individuals with a digital camera for later verification. 

 

Determination of generalists and specialists 
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Butterflies were defined as host-plant specialists or host-plant generalists based on 

an established definition by Kitahara and Fujii (1994). Butterflies known to feed on 10 or 

fewer host plant species in the same taxonomic family were classified as host-plant 

specialists, and butterflies known to feed either on more than 10 host plant species in the 

same taxonomic family or on host plants in two or more taxonomic families were 

classified as host-plant generalists.  

 

Garden variables 

We recorded the following variables at each site: percent impervious surface 

surrounding the garden, garden area (m2), plant species richness, and plant biovolume 

density (m3/m2). We used ArcGIS® to calculate the percentage of impervious surface 

surrounding each site for radii of 0.5 km, 1.0 km, and 1.5 km.  We included all 

herbaceous plants and shrubs in calculating plant species richness, which ranged from 8–

65 species. We calculated plant biovolume density using two different methods 

depending on plant density. At high-density sites, we recorded plant height every 2 m 

along a transect; transects were 3 m apart for small sites (those with area less than 500 

m2) and 5 m apart for three large meadows that were over 1000 m2 in area. Length of 

each transect varied proportionately by meadow or garden area sampled.  At high-density 

sites, where plants were immediately adjacent to one another, plant biovolume density 

was equivalent to mean plant height ((garden area x plant height)/garden area). At low-

density sites, where individual plants were spaced apart, we calculated each plant’s 

volume individually, and we divided the sum of all plant volumes by garden area to 
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calculate plant biovolume density. Plant biovolume density ranged from 0.02–0.65 

m3/m2. 

 

Statistical Methods 

We analyzed butterfly species richness and butterfly abundance using linear 

regression models with glm in R (R Core Team 2016.) Both species richness and 

abundance data were cube-root transformed so that a histogram of the residuals fit a 

normal distribution. The abundance of cabbage whites (Pieris rapae) was removed prior 

to our analyses due to over-representation at several urban sites, some of which contained 

several cabbage white larval host-plants. We analyzed the probability of recording the 

proportion of host-plant specialists using logistic regression models with glm in R. We 

used AIC model comparison to determine which measure of percent impervious surface 

surrounding each site best explained variation in the data;  we selected among circles 

with radii of 0.5 km, 1.0 km, and 1.5 km. For each model, the percent impervious surface 

within 0.5 km of the sites best explained the variation in the data and was used for further 

analyses. At 0.5 km, percentage impervious surface ranged from 3–87%.  

 

Results 

Each of the 26 sites was surveyed 21 times. In total, we recorded 53 butterfly 

species and 5,121 individual butterflies. Of the 53 species recorded, 30 were classified as 

host-plant generalists and 23 were classified as host-plant specialists (Table 3). Excluding 

woodland and marsh butterflies, the species we recorded represent 67% of the regional 

species pool (Covell 1974). Over all 21 survey periods combined, cumulative butterfly 
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species richness per site ranged from 7–37, and cumulative butterfly abundance per site 

ranged from 9–750.  

Total butterfly species richness was not significantly affected by plant biovolume 

density, but each of the other explanatory variables (percent impervious surface (0.5km), 

garden area, and plant species richness) had significant effects in the final linear 

regression model. Garden area had a significant main effect (p=0.037), with the number 

of butterfly species recorded increasing as garden area increased. Butterfly species 

richness increased steeply as garden area increased up to approximately 300 m2 and 

increased more gradually across larger gardens (Figure 10). There was a significant 

interaction between percent impervious surface and plant species richness (p=0.027). 

When plant species richness was low, increasing percent impervious surface had a strong 

negative effect on butterfly species richness. However, higher values of plant species 

richness lessened the negative effect of impervious surface. In areas with a high 

percentage of impervious surface, butterfly species richness increased with increasing 

plant species richness, but as percent impervious surface decreased, the positive effect of 

plant species richness on the number of butterfly species also decreased (Figure 11).  

All four explanatory variables influenced total butterfly abundance through 

significant interactions in the final linear regression model. Percentage impervious 

surface interacted significantly with both garden area (p<0.001) and plant biovolume 

density (p=0.001). There was also a significant interaction between plant biovolume 

density and plant species richness (p=0.026). When gardens were small, high levels of 

percent impervious surface had a large negative impact on butterfly abundance, but this 

effect was reduced as gardens increased in size, such that large urban gardens supported 
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much higher butterfly abundances than small urban gardens (Figure 12). This same 

pattern was observed in the interaction between percent impervious surface and plant 

biovolume density. Increasing plant biovolume density was most effective in increasing 

butterfly abundance when percent impervious surface was high, and the negative effect of 

percent impervious surface was strongest when plant biovolume density was very low 

(Figure 13). The interaction between plant biovolume density and plant species richness 

followed a different pattern. Increasing either variable had a positive effect on butterfly 

abundance when the other variable was low, but the effect of either variable on butterfly 

abundance was greatly diminished when both variables were average-to-high (Figure 14).  

In the logistic regression on the proportion of host-plant specialists, percent 

impervious surface had a significant main effect (Figure 15, p<0.001), and there was a 

significant interaction between garden area and plant species richness (Figure 16, 

p<0.0001). Plant biovolume density did not have a significant effect. As percent 

impervious surface increased, the likelihood of seeing a host-plant specialist decreased. 

The likelihood of seeing a host-plant specialist increased when garden area and plant 

species richness both increased.  

 

Discussion  

Although our study found that increasing urbanization had negative effects on 

butterfly species richness and abundance, we did not find the main-effect declines that are 

characteristic of many previous studies (Blair 1999, Ramírez-Restrepo and MacGregor-

Fors 2016, Merckx and Van Dyck 2019, Tzortzakaki et al. 2019, Kurylo et al. 2020, 

Kuussaari et al. 2020). Instead, we found that complex interactions between a garden’s 
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features (size, plant species richness, plant biovolume density) and the amount of 

impervious surface surrounding it significantly affected both butterfly species richness 

and abundance.  

Garden area was the strongest driver of butterfly species richness and abundance 

in our study. As garden area increased, sites had significantly higher butterfly species 

richness regardless of their level of urbanization. Garden area significantly affected 

butterfly abundance via an interaction with percent impervious surface. At all levels of 

percent impervious surface, increasing garden area increased butterfly abundance, and 

this effect was magnified at high levels of percent impervious surface (see also Fontaine 

et al. 2016). Large urban gardens thus had much higher butterfly abundances than small 

urban gardens. Several urban butterfly studies in Europe have also found positive effects 

of increasing patch size on butterfly species richness (Knapp et al. 2008, Fontaine et al. 

2016, Shwartz et al. 2013), and patch area is an important driver of urban arthropod 

diversity and abundance in general (Bolger et al. 2000, Quistberg et al. 2016, Burks and 

Philpott 2017, Egerer et al. 2020). This pattern is also found in other taxa; for example, 

urban bird diversity (Jokimäki 1999, Crooks et al. 2004, Dale 2018, Mayorga et al. 2020) 

and abundance (Crooks et al. 2004, Mayorga et al. 2020) is higher in larger habitat 

patches.  

Butterfly species richness was also significantly affected by an interaction 

between percent impervious surface and plant species richness. Increasing percent 

impervious surface resulted in significant declines in butterfly species richness only when 

garden plant species richness was low. Plant diversity has been tied to butterfly species 

richness in both urban rights-of-way (Leston and Koper 2016) and natural systems like 
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forests (Simonson et al. 2001, Kitahara et al. 2008) and shrubland (Grill et al. 2005). This 

may be attributable in part to butterfly species’ divergence and specificity in foraging 

preferences (Bergerot et al. 2010, Pohl et al. 2011), requiring the availability of a wide 

variety of nectar plants to satisfy the full community (Shackleton and Ratnieks 2015). 

Similarly, Theodorou et al. (2020) found that bee species richness and abundance was 

strongly tied to plant species richness and indirectly influenced by the negative effect of 

increasing urbanization on the species richness of flowering plants. Accordingly, 

enhancing the species richness of nectar and host plants in urban gardens and other green 

spaces may help recapture some of the butterfly diversity that is typically lost in urban 

areas. 

Plant biovolume density did not significantly influence butterfly species richness 

but did significantly affect butterfly abundance. Butterfly abundance significantly 

declined with increasing percent impervious surface only when plant biovolume density 

was low, i.e. where garden plant cover was relatively sparse. Although there have not 

been many studies addressing the effect of plant biovolume density on butterflies, the 

abundance of some few species, including the pearl crescent (Phyciodes tharos) and the 

European skipper (Thymelicus lineola), increased with greater plant density (Leston and 

Koper 2016). Greater herbaceous plant and shrub cover has also been associated with 

beneficial effects for other animal taxa in urban systems, including increased diversity of 

birds (Beissinger and Osborne 1982, MacGregor-Fors and Schondube 2011) and wasps 

(Lassau and Hochuli 2005). Similarly, in other human-managed landscapes, such as 

vineyards (Sáenz-Romo et al. 2019) and orchards (Silva et al. 2010), more ground cover 

significantly increases arthropod abundances. We also found some compensatory effects 
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of plant biovolume density and plant species richness on butterfly abundance: increasing 

either variable helped increase butterfly abundance to a certain point, after which 

additional increases in either factor did not result in increases in butterfly abundance. The 

effects of these two variables on butterfly abundance are much weaker than the effects of 

garden size and percent impervious surface.  

Although the impact of percent impervious surface was tempered by garden 

characteristics for butterfly species richness and abundance, it had a negative main effect 

on the proportion of specialist species, which declined slightly but significantly (~23%–

12%) as percent impervious surface increased. This supports previous evidence that 

urban habitats filter out most butterfly specialist species (Kitahara and Fujii 1994, Blair 

and Launer 1995, Koh and Sodhi 2004, Bergerot et al. 2010). However, increasing plant 

species richness and garden area had positive effects on the proportion of host-plant 

specialists, so it is possible that some of specialist species can be recovered in urban 

gardens if those gardens are fairly large and plant-diverse. Some research has shown that 

host-plant specialists (Steffan-Dewenter and Tscharntke 2000) and habitat specialists 

(Krauss et al. 2003a, Krauss et al. 2003b) are more sensitive to changes in habitat size 

and thus exhibit a steeper species-area curve than generalists. Therefore, there may be a 

minimum garden size that is required to support host-specialists, a threshold that likely 

increases for urban gardens. Increasing plant species richness could be critical for 

attracting specialist species; more information is needed, but there is some evidence that 

the presence of host-plant specialists is tied to plant diversity (Aviron et al. 2011). It may 

be possible to aid specialists in urban environments by planting gardens on the outskirts 

of large parks and urban forest fragments. Gardens in close proximity to potential sources 
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of more specialized pollinators, such as reserves and forest fragments, often have more 

diverse communities (Majewska and Altizer 2020). In our study, the 10 most infrequently 

recorded species (occurring at only one or two sites) were found (with one exception) at 

sites with relatively large nearby forest fragments. This result may be in part due to 

habitat and/or host plant requirements, as 6 of the 10 species were woodland butterflies 

like Satyrium calanus, the banded hairstreak, and Satyrodes appalachia, the Appalachian 

brown. Even parks that are relatively isolated may serve as important refuges for 

butterflies; in our study, park gardens that were relatively close to the city center had a 

high degree of community similarity to park gardens that were very distant from the city 

center (Sørensen similarity index: 0.82). Furthermore, parks and other large urban 

greenspaces should be improved to expand specialist habitat, as the presence of grassland 

(Krauss et al. 2003a, Krauss et al. 2003b) and woodland (Yamaura et al. 2008) butterflies 

in fragmented landscapes is strongly tied to the patch area of these specific habitat types.  

Plant communities in urban areas are often dominated by exotic and invasive 

species (Pickett et al. 2011, Concepción et al. 2015), and accordingly previous butterfly 

and pollinator studies in urban systems often focused on gardens with a high percentage 

of exotic or invasive plants. While exotic plants are frequently used by pollinators as 

nectar sources (Lowenstein et al. 2019, Staab et al. 2020), there is little evidence that they 

are more beneficial than native plants (Bergerot et al. 2010, Harrison and Winfree 2015). 

In fact, the presence of exotic species consistently causes negative effects on butterfly 

communities and decreases in caterpillar survival (reviewed by Yoon et al. 2016). The 

gardens we tested in this study were composed predominantly of native plants, and 

therefore our measure of plant species richness was nearly identical to a measure of 
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native plant species richness. Given the general importance of native plants to butterflies 

(Simonson et al. 2001, Collinge et al. 2003, Kurylo et al. 2020) bees (McIntyre and 

Hostetler 2001, Pardee and Philpott 2014, Threlfall et al. 2015, Threlfall et al. 2017, 

Egerer et al. 2020), and other insects (Smith et al. 2015, Fukase and Simons 2016) it is 

possible that the relatively strong effects of plant species richness in our study (it was 

associated with increased butterfly species richness, abundance, and host-specialist 

presence) were magnified because the plant species were native rather than exotic. While 

native plant gardens may not represent the majority of current gardens, they may 

represent best practices for butterfly conservation.  

In conclusion, our results show that urban native plant gardens can be improved to 

help ameliorate the deleterious impacts of urbanization on butterflies. The primary focus 

for conservation efforts should be increasing garden size. This can be accomplished 

easily in suburban areas by expanding gardens into space currently taken up by lawns, as 

traditional lawns support comparatively little biodiversity (Smith et al. 2015). For more 

tightly packed urban lots, it may be possible to capture a similar effect at the 

neighborhood or community level by turning small adjacent gardens into a much larger 

“collective” garden. (Vergnes et al. 2012, Braaker et al. 2014) Urban gardens can also be 

improved by adding plant species and planting gardens more densely. The use of 

predominantly native plants could substantially improve garden quality, especially 

considering that almost all native butterflies require native host-plant species. Where 

possible, native trees should also be added within or adjacent to gardens, as trees are 

important hosts for many butterfly species. Promoting the widespread use of native plants 

in urban gardens may thus be vital to maximizing gardens as conservation spaces for 
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butterflies. Convincing the public to “go native” is likely to be difficult, as many 

gardeners prefer exotic plant species (Anderson et al. 2014) due to their presumed 

aesthetic superiority. Encouraging native plant use will also require facilitating the 

procurement of native species, as they can be difficult to source and exotics are far more 

readily available for purchase in nurseries and garden centers (Hoff and Rydgren 2011, 

Altrichter et al. 2017, Torres-Camacho et al. 2017). 

However, it is important to note that improving urban gardens cannot replace the 

full benefits provided by rural and natural habitats. In many ways rural gardens are 

inherently more likely to have higher butterfly biodiversity and abundance due to the 

more natural surrounding matrix, so tweaking characteristics like plant species richness 

and plant biovolume density didn’t change their attractiveness to butterflies nearly as 

much as they did in urban environments, where the matrix is not generally habitable 

(Dennis and Hardy 2007) and gardens acted more as oases. It is likely that rural and 

natural areas provide the source populations for many butterfly species found in the city 

(Majewska and Altizer 2020). If too much of this habitat is lost to further urban 

expansion, many butterfly species may face such drastic declines that urban conservation 

spaces will lose their value.   
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Table 2 

Site Site Type 

% Impervious 

Surface (0.5 

km radius) 

Garden Area 

(m2) 

Plant Species 

Richness 

Plant 

Biovolume 

Density 

(m3/m2) 

Bernheim I Park 3.5 2574 12 0.05 

Iroquois I Park 4.0 1238 29 0.61 

Iroquois II Park 4.0 200 21 0.49 

Bernheim II Park 5.6 42.5 13 0.02 

Broad Run Park 8.0 120 18 0.04 

Beckley I Park 8.6 80 8 0.15 

Beckley II Park 9.6 2165 31 0.44 

Private Garden I Residential 9.6 18 19 0.04 

Cherokee I Park 10.9 426 9 0.60 

Cherokee II Park 13.1 1024 34 0.38 

Moore School 23.7 384.1 22 0.55 

St. Agnes School 27.8 82.3 26 0.05 

Louisville Nature 

Center 
Park 29.2 448.7 34 0.24 

Chenoweth School 38.0 125.8 39 0.03 

John Paul II School 40.8 82.3 24 0.65 

Private Garden II Residential 44.0 96.8 49 0.30 

Private Garden III Residential 44.6 102.1 46 0.43 

Private Garden IV Residential 46.2 91.6 59 0.41 

Portland School 48.6 44.4 33 0.04 

Holy Spirit School 49.3 59.5 20 0.05 

Private Garden V Residential 50.5 35.4 40 0.12 

Old Louisville 

Community Garden 
Residential 59.0 34.2 29 0.47 

Private Garden VI Residential 61.4 20.9 17 0.38 

U of L Korfhage 

Garden 
School 67.5 372.4 65 0.02 

Copper and Kings Business 74.6 341.9 38 0.41 

St. Francis School 87.4 184.5 13 0.24 
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Table 3 

Family Genus Species 
Common 

Name 
Abundance 

 

Host 

specificity 

Papillionidae Battus Battus philenor 
Pipevine 

swallowtail 
4 Specialist 

 Papilio Papilio glaucus 
Eastern tiger 

swallowtail 
108 Generalist 

  
Papilio 

polyxenes 

Black 

swallowtail 
13 Generalist 

  Papilio troilus 
Spicebush 

swallowtail 
53 Specialist 

 — NIS — 43 — 

Lycaenidae Calycopis 
Calycopis 

cecrops 

Red-banded 

hairstreak 
10 Generalist 

 Celastrina 
Celastrina 

neglecta 
Summer azure 36 Generalist 

 Everes Everes comyntas 
Eastern tailed-

blue 
434 Generalist 

 Satyrium Satyrium calanus 
Banded 

hairstreak 
30 Generalist 

  Satyrium titus 
Coral 

hairstreak 
1 Specialist 

 Strymon Strymon melinus 
Gray 

hairstreak 
57 Generalist 

 — NIS — 3 — 

Nymphalidae Agraulis Agraulis vanillae Gulf fritillary 2 Specialist 

 Asterocampa 
Asterocampa 

celtis 

Hackberry 

emperor 
14 Specialist 

 Cercyonis Cercyonis pegala 
Common 

wood-nymph 
6 Specialist 

 Chlosyne Chlosyne nycteis 
Silvery 

checkerspot 
133 Generalist 

 Danaus 
Danaus 

plexippus 
Monarch 298 Specialist 

 Euptoieta Euptoieta claudia 
Variegated 

fritillary 
44 Generalist 

 Junonia Junonia coenia 
Common 

buckeye 
204 Generalist 

 Libytheana 
Libytheana 

carinenta 

American 

snout 
23 Specialist 

 Limenitis 
Limenitis 

archippus 
Viceroy 25 Specialist 

  
Limenitis 

arthemis 

Red-spotted 

purple 
26 Generalist 

 Megisto Megisto cymela 
Little wood-

satyr 
25 Specialist 

 Phyciodes Phyciodes tharos Pearl crescent 510 Generalist 

 Polygonia — — 6 Generalist 

  
Polygonia 

comma 

Eastern 

comma 
2 Generalist 
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Polygonia 

interrogationis 
Question mark 12 Generalist 

 Satyrodes 
Satyrodes 

appalachia 

Appalachian 

brown 
2 Specialist 

 Speyeria Speyeria cybele 
Great spangled 

fritillary 
21 Specialist 

 Vanessa — — 2 — 

  Vanessa atalanta Red admiral 23 Generalist 

  Vanessa cardui Painted lady 5 Generalist 

  
Vanessa 

virginiensis 
American lady 7 Specialist 

 — NIS — 2 — 

Pieridae Colias — — 51 Generalist 

  Colias eurytheme 
Orange 

sulphur 
263 Generalist 

  Colias philodice 
Clouded 

sulphur 
207 Generalist 

 Eurema Eurema lisa Little yellow 33 Specialist 

  Eurema nicippe Sleepy orange 22 Specialist 

 Phoebis Phoebis sennae 
Cloudless 

sulphur 
139 Specialist 

 Pieris Pieris rapae Cabbage white 354* Generalist 

 Pontia Pontia protodice 
Checkered 

white 
2 Generalist 

Hesperiidae Achalarus 
Achalarus 

lyciades 
Hoary edge 1 Generalist 

 Anatrytone Anatrytone logan 
Delaware 

skipper 
5 Specialist 

 Ancyloxypha 
Ancyloxypha 

numitor 
Least skipper 24 Generalist 

 Atalopedes 
Atalopedes 

campestris 

Sachem 

skipper 
645 Generalist 

 Epargyreus 
Epargyreus 

clarus 

Silver-spotted 

skipper 
298 Generalist 

 Erynnis Erynnis baptisiae 
Wild indigo 

duskywing 
161 Specialist 

  Erynnis horatius 
Horace’s 

duskywing 
1 Specialist 

 Euphyes Euphyes vestris Dun skipper 55 Generalist 

 Hylephila 
Hylephila 

phyleus 
Fiery skipper 92 Generalist 

 Nastra 
Nastra 

lherminier 

Swarthy 

skipper 
11 Specialist 

 Poanes Poanes zabulon 
Zabulon 

skipper 
36 Generalist 

 Pholisora 
Pholisora 

catullus 

Common 

sootywing 
2 Generalist 

 Polites Polites origenes 
Crossline 

skipper 
28 Specialist 

  Polites peckius Peck’s skipper 201 Specialist 
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Polites 

themistocles 

Tawny-edge 

skipper 
247 Generalist 

 Pompeius Pompeius verna 
Little 

glassywing 
39 Specialist 

 Pyrgus 
Pyrgus 

communis 

Common 

checkered-

skipper 

3 Generalist 

 — NIS — 17 — 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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Figure 15 
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Figure 16 
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Captions 

 

 
Table 2 A table showing each garden site and its characteristics. U of L refers to the University of 

Louisville. 

 

Table 3 A table listing each recorded butterfly species by taxonomic Family, along with its abundance and 

status as a larval host plant specialist or generalist. Abundances are cumulative across all sites and surveys. 

Some individuals were identified only to Genus; abundances marked “NIS” were identified at the Family 

level. Cabbage white (Pieris rapae) abundance is marked with an* because it was excluded from our 

analysis of cumulative butterfly abundance. 

 

Fig. 9 A map showing the relative locations of the 26 garden sites, with the symbol for each site indicating 

the level of impervious surface (IS) surrounding each site. 

 

Fig. 10 A graph showing the relationship between butterfly species richness and garden area. Butterfly 

species richness increased asymptotically with garden area (p = 0.037). 

 

Fig. 11 A graph showing the interaction between percent impervious surface and plant species richness, 

and its effect on butterfly species richness. Where percent impervious surface is high, adding plant species 

richness increased butterfly species richness (p = 0.027). The color scale indicates increases in butterfly 

species richness from light to dark.   

 

Fig. 12 A graph showing the interaction between percent impervious surface and garden area, and its effect 

on butterfly abundance. Butterfly abundance increased with garden area; this effect is particularly strong 

when percent impervious surface is high (p< 0.001). The color scale indicates increases in butterfly 

abundance from light to dark.   
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Fig. 13  A graph showing the interaction between percent impervious surface and plant biovolume density, 

and its effect on butterfly abundance. In areas with high percent impervious surface, increasing plant 

density increased butterfly abundance (p = 0.001). The color scale indicates increases in butterfly 

abundance from light to dark.   

 

Fig. 14 A graph showing the interaction between plant species richness and plant biovolume density, and 

its effect on butterfly abundance. Butterfly abundance is highest when both plant density and plant species 

richness are intermediate (p = 0.026). 

Fig. 15 A graph showing the effect of percent impervious surface on the proportion of larval host-plant 

specialists in a garden. The proportion of larval host-plant specialists declined as percent impervious 

surface increased (p<0.001). 

Fig. 16 A graph showing the interaction between garden area and plant species richness, and its effect on 

the proportion of larval host-plant specialists in a garden. The proportion of larval host-plant specialists 

increased with plant species richness; the strength of this increase was magnified in larger gardens 

(p<0.0001).  
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CHAPTER THREE 

 

 

Introduction 

Urban environments affect a wide suite of behaviors across many animal taxa, 

including anti-predator behavior (Møller et al. 2015, Uchida et al. 2016, Avilés-

Rodríguez and Kolbe 2019), signaling (Halfwerk et al. 2019, Akçay et al. 2020, Lailvaux 

2020), movement patterns (Taylor and Paszkowski 2018, Ritzel and Gallo 2020, Rycken 

et al. 2021), and foraging (Sol et al. 2013, Chejanovski et al. 2017, Ritzel and Gallo 

2020). However, most of this research has focused on vertebrates, primarily birds and 

mammals, and much less is known about the effect of the urban environment on the 

behavior of insects and other invertebrates. Some studies on invertebrates have examined 

the effects of an individual component of the urban environment on behavior; for 

example, Johnson et al.(2020) found that elevated temperatures associated with the urban 

heat island effect altered the foraging and web-building behaviors of black widow 

spiders, and Altermatt et al. (2016) found that moths from urban populations exposed to 

high levels of light pollution were not as attracted to light sources as were rural moths. 

There is also some evidence that urban environments affect the foraging behavior of bees, 

as urban bees have been found to alter both distance traveled when foraging (Garbuzov et 

al. 2015) and the amount of time spent foraging in a patch (Andrieu et al. 2009, Harrison 

and Winfree 2015) in comparison with rural bees. 



 61 

There is very little evidence to indicate whether butterfly foraging and/or 

movement behaviors are also affected by urban environments; urban butterfly studies 

have primarily focused on diversity and abundance, and butterfly foraging studies often 

focus on floral preference in terms of flower color, flower morphology, or plants’ 

native/non-native status. However, some few studies that have characterized butterfly 

flight behaviors have found that butterflies fly very differently depending on the habitat 

context. Butterflies recognize habitat patches as distinct from the matrix surrounding 

those patches (Conradt and Roper 2006), and slower, more looping flight is associated 

with foraging behavior (Cant et al. 2005).  Butterflies generally fly more slowly and more 

sinuously within habitat patches than in the matrix (Schultz and Crone 2001, Schtickzelle 

et al. 2007, Skórka et al. 2013) and as the combined abundance of host and nectar plants 

increases (Fernández et al. 2016).  As these different flight patterns are easily 

recognizable and are associated with both habitat quality and foraging behavior, they 

provide good metrics for evaluating any differences in butterfly behavior between urban 

and rural environments. 

In this study, we analyzed the flight and foraging behaviors of cabbage white 

butterflies (Pieris rapae) in urban and rural gardens. The goals of this research were to a) 

determine whether butterfly flight and foraging behaviors differ between urban and rural 

gardens and b) examine whether distinctive flight patterns are associated with foraging 

activity and floral resources alone, in the absence of significant host-plant presence. 

 

Methods 
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Site and survey methods 

This study took place in three adjacent counties in Kentucky, USA: Jefferson, 

Bullitt, and Hardin. Jefferson County includes the entire city of Louisville (38°15´ N, 85° 

46´ W), which had a population just above 760,000 in 2019 (U.S. Census Bureau, 2019). 

Jefferson, Bullitt and Hardin counties are located in north-central Kentucky and are a part 

of the Interior Low Plateau, Bluegrass Section and in the Eastern Broadleaf Forest 

(Continental) Province biome (USDA Forest Service 2018). Annual mean temperature 

for Louisville is 14.6 °C with a mean minimum in January of -2.8 °C and a mean 

maximum in July of 31.7 °C. Annual precipitation averages 114 cm and ranges from 7.6 

to 13.4 cm monthly (US Climate Data 2018).    

We conducted butterfly behavior trials at 12 garden sites from July-September 

2019. These sites included five residential gardens, four gardens in parks, two gardens at 

schools, and one corporate garden (Table 4). Half of the gardens were located in urban 

areas (44–75% impervious surface within 0.5 km radius), and the other half were located 

in rural areas (4–22% impervious surface within 0.5 km radius). The gardens were size-

matched, with four sites (two urban and two rural) in each size category: small (< 45 m2), 

medium (80-120 m2), and large (300-400 m2). All gardens had little to no tree cover and 

thus generally received full sun. Butterfly trials began at 11:00 AM and ended no later 

than 1.5 hours before sunset. Across trials, temperatures ranged from 27–40°C, and 

windspeeds ranged from 3–19 kph. General weather conditions were also recorded as 

sunny, part sun, or overcast. We estimated floral abundance at the site for each trial; 

flowers inside inflorescences were counted as individual flowers regardless of size 

(Cohen et al. 2020).  



 63 

In all of the trials, butterflies were captured at one site and released in another that 

was at least 1.5 km away from the capture point. The majority of the individuals (N=125) 

used in this study were captured from locations that were not used as trial sites. On the 

few occasions (N=17) when butterflies were captured at a trial site, they were released at 

a different trial site. Equal numbers of butterflies were captured in urban and rural source 

locations, and the trials at each site used butterflies from urban and rural sources evenly. 

Therefore, trials included all four possible combinations of urban versus rural origin and 

destination. Prior to conducting a trial, we caught cabbage white butterflies (Pieris rapae) 

from a source location by netting them and transferring them into mesh cages. We chose 

to focus on this species because it is abundant in both urban and rural areas, thus 

removing a potential confound of releasing butterflies in small urban gardens that are 

predominantly found only in rural areas and large parks. Upon capture, butterflies were 

identified as male or female, but we could not analyze sex differences because over 95% 

of the captured individuals were female.  

Before releasing a butterfly, we recorded how many minutes it had been held in 

the cage before release (range: 12–293 min, average: 53 min.); butterflies were not fed 

while being held, so wait time may reflect some measure of hunger level. We marked 

each butterfly on both sides of the thorax with a colored Sharpie® to allow identification 

if an individual re-entered the site after leaving it. We then released the butterfly in the 

center of the site, and recorded its behavior until it either a) exited the site and did not re-

enter for 20 minutes or b) sat unmoving in the same location for a full hour. If the 

released butterfly immediately flew high and fast away from the site and showed no 

exploratory behavior, we waited 45 minutes instead of 20 for the butterfly to return; if it 
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did not return, the trial was eliminated from consideration in data analyses. During a trial, 

the focal butterfly’s behavior was recorded in two ways. First, we narrated its actions 

(flying, feeding, resting, fighting, etc.) into a digital recorder as they occurred in real 

time. Second, we recorded its flight path on a sheet of tracing paper placed over a scale 

map of the site (Figure 17). We later photographed the maps and analyzed them in 

ImageJ. When necessary, we used the audio transcripts to add repeated small-scale flight 

patterns, e.g. loops around a particular plant, to the ImageJ files that would have caused 

the original map to be unreadable if drawn in real time. From the audio transcripts, we 

recorded 1) the total amount of time each butterfly spent directly feeding from flowers, 

and 2) the amount of total active time (feeding and flying, but not resting) the butterfly 

spent at the site. From the drawn maps we recorded several measures of flight behavior, 

including flight path length (m), the number of turns (deviations of ≥ 20° from a straight 

path), the percentage of turns that were tight (≤125°), mean turn angle, and the number of 

loops per m of flight. We defined loops as full circles made by the butterfly in a single 

continuous motion. We calculated average flight speed by dividing the total time a 

butterfly spent flying by its flight path length. 

 

Statistical Methods 

We use linear regression models with glm in R (R Core Team, 2016) to analyze 

the factors affecting feeding time, activity time, flight path length, average flight speed, 

percentage of tight turns, mean turn angle, and the number of loops per meter of flight. 

Feeding time, activity time, and path length were cube-root transformed, the number of 

loops per meter of flight was square-root transformed, and average flight speed was 
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natural-log transformed, so that a histogram of the residuals for each model fit a normal 

distribution. Models examining tight turn percentage and mean turn angle met the 

assumptions of normality without transformation. We also determined the significance of 

correlations between foraging time, activity time and the flight variables using Pearson’s 

correlation tests. We used AIC model comparison to determine which measure of floral 

abundance best explained variation in foraging and activity time; the best measure was 

the number of flowers of preferred plant species (species that cabbage whites foraged on 

for >1,000 seconds over all trials combined, Table 5). However, there was a much 

stronger association between a logarithmic increase in the number of flowers and 

feeding/activity time than a linear increase, so we used the log of preferred floral 

abundance in our analyses.  

 

Results 

In total, we completed 142 butterfly behavior trials (71 urban, 71 rural). The 

behaviors we observed in our trials were highly variable; many individuals did not feed 

from flowers at all and spent very little time active (min: 7 seconds). Other individuals 

were highly active and spent extensive time feeding from flowers (max: 129 minutes 

active, 115 minutes foraging). Butterfly flight path lengths ranged from 5.5–1,101.5 

meters, and there was a grade of sinuosity from very straight flight to highly curved, 

looping flight (Figure 18). Across trials, butterflies fed on an average of 2 plant species; a 

maximum of 9 plant species was fed on by one individual. On average, 7 blooming plant 

species were available in a trial, with 3 of these being preferred plant species. All but six 

butterflies allocated over 90% of their foraging time to one or two plant species.  
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We found significant correlations between how long cabbage white butterflies 

were active in a garden and measures of their flight behavior. (These correlations were 

also significant for foraging time alone, but the correlations were stronger for total 

activity time). Greater activity in gardens was associated with longer flight paths (r = 

0.69, p<0.0001, Figure 19a), more loops per meter of flight (r = 0.52, p<0.0001), a 

greater percentage of tight turns (r = 0.62, p<0.0001, Figure 19b), tighter average turn 

angles (r = -0.53, p<0.0001, Figure 19c), and slower average flight speeds (r = -0.41, 

p<0.0001, Figure 19d). Butterflies that were highly active in a garden (and generally 

spent a lot of time foraging) thus flew slowly along extensive, curvy flight paths, and 

butterflies that left gardens quickly flew relatively fast along short, straight flight paths. 

Despite the correlations, there were differences in how these variables responded 

to the explanatory factors we tested. Site location (urban vs rural) significantly affected 

every variable except flight speed. Butterflies released in urban gardens fed from flowers 

longer (p=0.003), were active longer (p=0.001, Figure 20a), flew longer paths (p<0.0001, 

Figure 20b), flew tighter turns on average (p<0.001 Figure 20c), flew more loops per 

meter of flight (p<0.0001), and flew paths with a greater percentage of tight turns 

(p=0.002, Figure 20d). Therefore, urbanization had a significant impact on butterfly 

behavior that led to longer stays with more feeding and long, sinuous flight paths. 

Preferred floral abundance significantly (or near-significantly) affected feeding 

time (p=0.06), activity time (p=0.035, Figure 21a), percentage of tight turns (p=0.035, 

Figure 21b), loops per meter (p=0.057), and flight speed (p<0.0001, Figure 21c), but not 

path length or average turn angle. As the number of preferred flowers increased, 

butterflies fed longer, were active longer, flew paths with a higher percentage of tight 
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turns, flew more loops, and flew more slowly. The effect of temperature was similar, 

although it did not significantly affect the number of loops flown per meter. As 

temperature increased, butterflies fed longer (p=0.02), were active longer (p=0.01), flew 

paths with a higher percentage of tight turns (p=0.04) and flew more slowly (p=0.004).  

Site size significantly affected both path length (p<0.001) and average flight 

speed (p=0.002), but nothing else. Butterflies flew longer paths in large gardens, but 

similar path lengths in small and medium gardens. They also flew slightly slower on 

average as site size increased. The time a butterfly spent caged before being released 

significantly affected only feeding time: butterflies that waited longer in the cage fed 

from flowers for a longer period of time (p=0.03). On average, butterflies released in 

rural locations waited 60 minutes in the cage and butterflies released in urban locations 

waited 45 minutes in the cage, so it is unlikely that increased hunger levels due to waiting 

time explain the longer activity times we observed in urban gardens. We also tested for 

any effect of butterfly source location (urban vs. rural), but it did not significantly affect 

any of our behavioral variables either as a main effect or as part of an interaction. 

We also analyzed the factors that affected flight behavior in individuals that did 

not feed from flowers. We found that these butterflies still flew significantly more slowly 

as the number of preferred flowers increased (p<0.0001, Figure 22a), and flew more 

slowly in large sites (p<0.001). These butterflies also flew a significantly greater 

percentage of tight turns (p=0.035, Figure 22b) and more loops per meter (p=0.003) in 

urban gardens.  
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Discussion 

Cabbage white behavior was significantly different in urban versus rural gardens, 

and those differences did not depend on previous experience, as butterflies captured in 

urban and rural gardens did not differ from one another in foraging behavior. Individuals 

fed from flowers longer and spent more time active in urban gardens than in rural 

gardens, and they were also more likely to fly distinct patterns associated with foraging 

behavior (Cant et al. 2005) and high-quality habitat (Fernández et al. 2016). In urban 

gardens, butterflies flew longer, more sinuous flight paths with many more loops and 

tight turning angles. Even when butterflies did not feed from flowers, they flew more 

loops and tight turns in the urban gardens, which suggests that they were performing 

more localized searches in these gardens than in the rural ones.  

Urban gardens are generally more isolated from nearby resource patches 

compared to rural gardens (Davis and Glick 1978, Fattorini et al. 2017), which could 

increase travel time between patches and encourage longer stay times at urban sites 

(Charnov 1976). The urban matrix may also be particularly inhospitable to traverse; it has 

been shown to restrict the free movement of animals across the landscape for taxa 

including insects (Peralta et al. 2011, Le Gall et al. 2017, Buchholz et al. 2020), 

mammals (Robinson and Marks 2001, Braaker et al. 2014, Hämäläinen et al. 2019), and 

birds (Tremblay and St. Clair 2011, Shimazaki et al. 2014, Evans et al. 2017). Butterfly 

dispersal is affected by boundary permeability (Schtickzelle and Baguette 2003, 

Fernández et al. 2019), as well as the presence of natural barriers such as dense forest 

(Kuussaari et al. 1996, Schultz et al. 2012, Kallionemi et al. 2014) and windbreaks 

(Dover and Fry 2001). Urban areas are riddled with boundaries and barriers (e.g. 
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buildings, tall fences, etc.) with low permeability that likely affect butterflies’ ability to 

navigate through the matrix and locate resource patches. Jain et al. (2020) found that 

butterflies in urban parks were less likely to move between habitat patches than 

butterflies in forested sites, and woodland butterflies consistently refuse to cross into 

urban habitat (Kuefler et al. 2010). The butterflies in our study were able to quickly enter 

and exit the urban gardens, but they were notably impeded by the presence of houses and 

other large, solid structures (pilot data from a concurrent study on butterfly boundary-

crossing behavior). A study by Dennis and Hardy (2007) found that cabbage white 

butterflies had limited access to resources (specifically host plants) in an urban matrix 

(defined as roads, parking lots, etc.) and performed far fewer resource-use activities and 

exploratory flights in the urban matrix than in more rural matrices (including mown grass 

and crop fields).  

Butterflies in urban gardens may thus have greater incentive to remain longer and 

utilize the resources that are immediately available to them, whereas butterflies in rural 

gardens may be quicker to leave and seek better resources nearby. Due to the fact that we 

transported the butterflies and released them far from their capture points, it is unlikely 

that these individuals used memory of the landscape to make these decisions. Instead, 

they likely relied upon visual cues like landscape openness and scent detection of nearby 

resources (Ikeura et al. 2010, Schäpers et al. 2015). Some of the behavioral changes we 

observed are also likely explained by differences in floral availability between our urban 

and rural sites. Combined across all trials, the average preferred floral abundance at the 

urban gardens was 2x greater than the average preferred floral abundance at rural 

gardens. However, while preferred floral abundance significantly affected most of the 
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behaviors we measured, the effect of urbanization was still stronger for every variable 

except flight speed.  

The behavior of cabbage whites was also significantly affected by patch quality; 

in our study quality is primarily attributable to floral abundance, as we found only limited 

effects of site size. Cabbage whites are known to have strong preferences when foraging 

(Lazri and Barrows 1984, Lewis 1986, Lewis 1989), and this matches what we observed 

in the field. During our trials, focal butterflies usually fed on only one or two plant 

species, and showed strong preferences for plant species that on average represented less 

than half of the available species pool of blooming plants. Therefore, it is not surprising 

that the behaviors we recorded were better explained by the floral abundance of a small 

number of preferred plant species than broader measures of floral abundance. When in 

gardens of higher quality (as measured by preferred floral abundance), butterflies were 

more active and flew paths with more loops and tight turns. They also flew much more 

slowly; in fact, butterfly flight speed was so strongly associated with floral abundance 

that it was the only behavioral variable unaffected by site location. Even butterflies that 

did not ultimately forage flew significantly more slowly in gardens with higher floral 

abundance. Flight speed may thus be a highly reliable indicator of general habitat quality 

for butterflies; Schultz et al. (2017) found that butterfly flight speed was negatively 

correlated with population density, such that butterfly densities were higher in land cover 

types through which they moved more slowly. Our results confirm that butterflies fly 

distinct search patterns based on foraging resources alone, and that the presence of host 

plants is not needed to change their flight behavior. Higher temperatures also increased 

butterfly activity levels; as urban areas are frequently hotter than rural areas, butterflies in 
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urban environments may face increased caloric demands that could reduce their fitness if 

sufficient nectar resources are not readily available. The behavioral patterns we observed 

were highly variable, and are not fully explained by the variables we were able to 

measure. It is likely that other factors had significant effects on an individual’s behavior, 

including: nectar availability, floral age, patch configuration, butterfly age, and mating 

status. 

In conclusion, we found that the flight and foraging behaviors of cabbage whites 

were strongly affected by urbanization and garden quality. Individuals increased their 

activity levels and intensive search behaviors in urban gardens, and in gardens with a 

higher abundance of preferred flowers. Of these two factors, urbanization had the largest 

effect on cabbage white behavior. It is likely that features of the urban landscape alter 

butterflies’ foraging decisions. This may be due to the presence of vertical structures that 

make traversing the urban matrix difficult or energetically expensive, or even hinder 

butterflies’ ability to perceive resource patches, as many butterflies rely strongly on 

visual cues (Goulson and Cory 1993, Kandori and Ohsaki 1996, Omura and Honda 

2005). Given resource deficiencies in the urban matrix compared to many rural matrices, 

urban gardens may also function more as isolated “habitat islands” than rural gardens, 

and therefore lead butterflies to increase their residence time. The potentially high 

energetic costs of life in an urban habitat due to patch isolation, urban structure, and 

urban temperature could reduce the fitness of urban butterflies and lower their 

reproductive success, even if host plants are made widely available. Detailed knowledge 

of butterfly movement behavior (Schultz et al. 2019), as well as determining landscape 

connectivity for butterflies in urban habitats may be key to implementing effective 
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conservation efforts. Future studies should directly examine how features of the urban 

landscape affect butterflies’ dispersal and inter-patch movement, butterflies’ ability to 

perceive resource patches, and butterflies’ energy expenditure. There should also be 

additional research examining the conservation implications of improving the urban 

matrix, as there could be trade-offs between facilitating connectivity and maximizing 

persistence at high-quality sites, as conservation projects often have limited funds for 

habitat improvement and maintenance (Crone et al. 2019).  
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Table 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Site Site Type Site Location Site Size 

Beckley Creek Park Rural Medium 

Bernheim I Park Rural Large 

Bernheim II Park Rural Small 

Broad Run Park Rural Medium 

Moore School Rural Large 

Private Garden I Residential Rural Small 

Copper and Kings Business Urban Large 

Private Garden II Residential Urban Small 

Private Garden III Residential Urban Medium 

Private Garden IV Residential Urban Medium 

Private Garden V Residential Urban Small 

U of L Korfhage Garden School Urban Large 
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Table 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plant Species Common Name Cumulative Feeding Time (s) 

Symphyotrichum novae-angliae New-England aster 11,597 

Verbena hastata Blue vervain 10,970 

Buddleja davidii Butterfly bush 4,380 

Vernonia noveboracensis New-York ironweed 3,634 

Thymus vulgaris Common thyme 3,190 

Conoclinium coelestinum Blue mistflower 3,024 

Agastache foeniculum Anise hyssop 2,989 

Pycnanthemum incanum Hoary mountain mint 2,851 

Nepeta racemose Catmint 2,770 

Echinacea purpurea Purple coneflower 2,478 

Apocynum cannabinum Dogbane 2,073 

Liatris spicata Blazing star 1,322 
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Figure 17 
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Figure 20 
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Figure 21 
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Figure 22 
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Captions 

 
Table 4 A table showing each garden site and its characteristics. U of L refers to the University of 

Louisville. 

 

Table 5 A table showing the 12 preferred plant species used for floral abundance calculations, and the total 

amount of time they were foraged on across all trials.  

 

Fig. 17 An example of a scale map of a garden used to draw butterfly flight paths. Solid lines represent 

solid borders, dashed lines represent open borders to paths or neighboring lawn, and dotted lines represent 

the approximate borders of plant patches. 

 

Fig. 18 Examples of butterfly flight paths on a gradient of sinuosity. a) straight flight b) broadly curved 

flight c) tightly curved flight. Squares represent the start location where the butterfly was released, dots 

represent landing points, outward-facing arrows represent exit points, and inward-facing arrows represent 

re-entry points. 

 

Fig. 19a A graph showing the correlation between time active and flight path length. Butterflies that spent 

more time active flew longer paths (r = 0.69, p<0.0001).  

Fig. 19b A graph showing the correlation between time active and proportion of tight turns. Butterflies that 

spent more time active flew a greater percentage of tight turns (less than 125º)  (r = 0.62, p<0.0001). 

Fig. 19c  A graph showing the correlation between time active and mean turning angle. Butterflies that 

spent more time active flew tighter average turn angles (r = -0.53, p<0.0001). 

Fig. 19d A graph showing the correlation between time active and average flight speed. Butterflies that 

spent more time active flew more slowly (r = -0.41, p<0.0001).  

 

Fig. 20a A boxplot showing the effect of site location on time active. Butterflies in urban gardens were 

active longer than butterflies in rural gardens (p=0.001). 
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Fig. 20b A boxplot showing the effect of site location on time flight path length. Butterflies in urban 

gardens flew longer paths than butterflies in rural gardens (p<0.0001). 

Fig. 20c A boxplot showing the effect of site location on mean turning angle. Butterflies in urban gardens 

flew tighter turns on average than butterflies in rural gardens (p<0.001)  

Fig. 20d A boxplot showing the effect of site location on proportion of tight turns. Butterflies in urban 

gardens flew paths with a greater percentage of tight turns (less than 125º) than butterflies in rural gardens 

(p=0.002).  

 

Fig. 21a  A graph showing the effect of preferred floral abundance on time active. Butterflies were active 

longer when there was greater preferred floral abundance (p=0.035) 

Fig. 21b A graph showing the effect of preferred floral abundance on proportion of tight turns. Butterflies 

flew a higher percentage of tight turns (less than 125º) when there was greater preferred floral abundance 

(p=0.035). 

Fig. 21c A graph showing the effect of preferred floral abundance on average flight speed. Butterflies flew 

more slowly when there was greater preferred floral abundance (p<0.0001). 

 

Fig. 6a Butterflies that did not forage flew more slowly when there was greater preferred floral abundance 

(p<0.0001). 

Fig. 6b Butterflies that did not forage flew a greater percentage of tight turns (less than 125º) in urban 

gardens (p=0.035).  
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CONCLUSION 

 

My research shows that urban gardens have strong potential to act as conservation 

spaces for butterflies, and possibly other taxa as well. Local garden characteristics, like 

garden size, native plant species richness, and plant biovolume density, had strong 

positive effects on butterfly diversity and abundance that helped compensate for the 

negative impact of increased impervious surface. I found more diverse communities of 

butterflies and higher numbers of individuals when gardens were large, plant-diverse, and 

densely planted. I also found that attacks on model caterpillars by vertebrates, spiders, 

and predatory wasps increased with greater plant biovolume density; this suggests that 

these taxa may also be present in higher numbers in densely planted gardens. 

Additionally, the results of my clay caterpillar study show that caterpillars are attacked 

less frequently in urban gardens compared to rural gardens. Therefore, adding host plants 

is likely to be a beneficial strategy, rather than one that creates and ecological trap (due to 

predation). 

In my cabbage white behavioral study, I found that butterfly behavior can be 

significantly affected by urbanization. Butterflies were more likely to spend a long time 

active (flying and foraging) in urban gardens. They also performed more intensive search 

flights in urban gardens than rural gardens. Urbanization had a stronger effect on 

butterfly behavior than floral abundance, suggesting that the urban landscape induces
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butterflies to utilize the resources in front of them rather than seeking alternative resource 

patches. Urban gardens may thus have a low degree of connectivity for butterflies due to 

patch isolation and/or barriers to movement caused by vertical structure (e.g. buildings, 

fencing).  

Based on my findings, I would recommend to gardeners that they plant diverse 

communities of native species, including both host plants and nectar plants. They should 

also fill in their garden space as much as possible (i.e. densely without large gaps 

between plants). Most importantly, they should increase the size of their gardens (if 

possible), and encourage friends and neighbors to do so as well. Clusters of gardens 

would not only create large neighborhood-scale resource patches, but could also help 

improve the connectivity of gardens across a city.  

Future studies should examine caterpillar survival in urban gardens, and 

determine if factors other than predation (e.g. plant nutrition, competition, urban heat 

island effects, microclimates, etc.) might limit butterfly reproduction in urban areas. 

There should also be more research evaluating whether adding both host and nectar 

plants to a garden attracts a greater diversity of butterfly species (particularly host-

specialist species) than just adding one resource type alone. Finally, there should by 

additional studies on butterfly movement through the urban matrix, and direct assessment 

of the connectivity of habitat patches in urban systems. 
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