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ABSTRACT 

DETERMINATION OF THE BIOLOGICAL FUNCTIONS OF UNDEFINED DOMAINS OF 

VEEV NSP2 

Andrew Michael Skidmore 

April 9, 2021 

Alphaviruses are positive sense, single strand, RNA viruses. These viruses occur 

on every populated continent. Alphaviruses are divided into two clades, the New-World 

and Old-World viruses. The New-World viruses include Eastern (EEEV), Western 

(WEEV), and Venezuelan equine encephalitis viruses (VEEV), and cause neuroinvasive 

disease. The Old-World viruses include Chikungunya (CHIKV) and Ross River viruses 

(RRV), and typically cause multijoint arthralgia. There are currently no approved antiviral 

therapeutics or vaccines for any alphavirus, making them a high priority for antiviral drug 

design and discovery. A benzamidine inhibitor (ML336) of VEEV was characterized, and 

determined to inhibit replication of VEEV RNA during infection of BHK-21 cells, a 

fibroblast model. This activity was due a loss of synthesis of new viral RNA. This 

compound had no effect on RNA synthesis in uninfected cells, making it a promising 

target for therapeutic development. The inhibitory activity of ML336 was highly specific 

for VEEV, having no effect on RNA synthesis of CHIKV. A potential interaction between 

ML336 and the VEEV nsPs was examined, but these results were inconclusive. ML336 

and related compounds were used to generate resistant mutant VEEV. These isolates 

were sequenced and it was revealed that mutations were concentrated in a region of 

nsP2 of unknown function. Analysis of these mutant viruses revealed delayed growth, 

RNA synthesis, and translation of viral proteins in BHK cells. There was also a growth 

delay seen in SH-SY5Y cells, a model of neuronal infection. These findings indicate that 

this region of nsP2 is likely involved in RNA synthesis of VEEV, and shows promise as a 

target of antiviral drug development. 
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CHAPTER 1 

INTRODUCTION



2 

Alphaviruses are positive sense, single stranded, RNA viruses in the family 

Togaviridae, which are classified as members of the domain Riboviria1. The alphaviruses 

currently encompass more than thirty members that infect a wide range of host and 

vector species, both terrestrial and aquatic. These viruses are widely dispersed 

geographically as well, with at least one alphavirus being present on every populated 

continent23–6. These viruses are currently emerging into naïve populations making them 

an important group of pathogens as there are currently no treatments or vaccines for 

alphaviral disease.  

The geographic distribution of the alphaviruses has resulted in the historical 

classification of the viruses based on where they were initially isolated. The Old-World 

viruses were initially isolated in the Eastern hemisphere, primarily in Africa. The New-

World viruses were isolated in the Americas, and have a more diverse native 

distribution, with members being found from southern Canada all the way to Argentina. 

These two clades are also regarded as having distinct symptoms in the host.  

The Old-World viruses generally cause arthralgia and fever, with some also 

causing a rash7. There is some recent evidence that Old-World members may be able to 

cause encephalitis as well, with the adaptation of neurologically invasive Sindbis (SINV) 

virus in the lab, as well as its association with rare cases of viral encephalitis in Europe8–

10. Neurological invasion is a common symptom of the New-World alphaviruses, with the

three most prominent members of this clade: Eastern (EEEV), Western (WEEV), and 

Venezuelan Equine Encephalitis viruses (VEEV), demonstrating high levels of 

neurological pathogenicity7. Recent research has indicated that this division may be less 

stringent than previously thought, as many recently discovered New-World viruses do 

not cause detectable disease in humans or other host animals at all11. Additionally, 
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several New-World viruses which may display pathogenicity that is more in line with that 

of the Old-World viruses, such as Mayaro virus2,12.  

Alphaviral Disease 

The following section will discuss the diseases that are caused by alphaviruses in 

the human population.  

The Old-World virus of most concern is Chikungunya virus (CHIKV), which has 

recently expanded into naïve populations across Asia, southern Europe, and most 

dramatically in the Caribbean3–6. This has resulted in CHIKV becoming endemic in 

several regions where it previously had never achieved local transmission. The primary 

risk of these viruses is the sustained arthralgia that can last for months, with one study in 

Mexico indicating that over a third of confirmed CHIKV cases have arthralgia twelve 

months after acute disease13. Similar instances of long term pain have been seen in 

other family members as well, such as Ross River virus14.  

The New-World alphaviruses generally cause more severe disease than the Old-

World viruses, however the three most common (EEEV, WEEV, VEEV) are noted for 

displaying a high rate of asymptomatic infection11. This asymptomatic infection rate does 

vary between the three viruses and in the two primary populations of interest, equids and 

humans11. Disease is also generally more severe in equid hosts than in humans7. 

Disease generally reduces in severity comparing EEEV to WEEV to VEEV, with EEEV 

having the highest reported rate of neurological involvement and lethality, VEEV having 

the least, and WEEV falling between the two11. However VEEV has historically caused 

the largest and largest number of outbreaks affecting both human and equid populations 

resulting in many thousands of human cases and equid deaths11,15.  
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EEEV is the most severe of the New World alphaviruses with case fatality rates 

in some cases estimated to be above 60%16 and infection results in death or permanent 

neurological sequelae in a large majority of symptomatic cases17. The virus remains 

uncommon in the human population, with only in a handful of reported cases every year 

in the United States18. There has recently been an uptick in cases of EEEV reported to 

the CDC, with almost 40 cases reported in 2019, a more than fivefold increase from 

201818. 

WEEV is of moderate pathogenicity, with a case fatality and rate of neurological 

involvement between that of EEEV and VEEV. While the virus has caused instances of 

severe human disease, its occurrence in the human population is quite low11 and has 

been declining for many years since its initial discovery in the 1930s. In fact, since 1964 

there have been less than 700 cases of WEEV reported in the United States, averaging 

out to less than 12 cases a year19. And there has not been a reported case of human 

WEEV disease in the United States since 199820.  

VEEV is the least severe of the encephalitic alphaviruses. Conversely it is also 

the virus of most concern for two reasons. First, unlike the other encephalitic 

alphaviruses VEEV has a history of causing large outbreaks in large portions of South 

and Central America, causing thousands of human cases, with hundreds of those having 

neurological involvement15. Second, VEEV is also highly transmissible via the aerosol 

route, making it a concern for both accidental exposure as well as purposeful misuse21. 

This high level of transmissibility made VEEV a target for bioweapon by both the United 

States and former Soviet Union during the Cold War, leading to its classification as a 

select agent, a classification it shares with EEEV22. VEEV generally causes a mild febrile 

illness, that occasionally results in encephalitic infection, with encephalitic infection 

resulting in death in approximately 10% of cases7. Cases of VEEV with neurologic 
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involvement are often fatal, and those patients that do survive are likely to suffer from 

long term sequelae23.  

There are currently no treatments or preventive measures available for any 

alphavirus, making them targets of antiviral drug and vaccine development. The 

pathology of alphaviruses is outlined in Figure 1.  



6 

Figure 1. Alphaviral disease. Alphaviruses of both the Old and New-World clades are 

known to cause febrile illness in most cases, and many of these cases do not progress 

further. In severe cases, the Old-World viruses can cause long lasting symptoms, 

primarily a multijoint arthralgia that can last for several months. However, the Old-World 

viruses are rarely fatal. Severe cases of the New-World viruses can cause multiple 

neurological symptoms. In the case of neuroinvasion the New-World viruses are 

frequently fatal, and survivors generally have permanent sequalae.  
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Natural Transmission of the Alphaviruses 

Alphaviruses are vector borne viruses that generally require the use of an 

intermediate species to transmit to a naïve vertebrate host7, and this transmission cycle 

is outlined in Figure 2. Due to this cycle, the viruses must efficiently infect and replicate 

in multiple species. Alphaviruses infect a wide variety of both vector and hosts, and the 

species infected are specific for each virus. The reservoir species for VEEV are primarily 

various rodents including cotton rats24,25 Individual alphaviruses are often able to infect 

multiple different vector species, with separate species being involved in endemic 

maintenance and others being necessary to cause epidemic and epizootic 

transmission26. Epidemic strains of VEEV have been isolated from mosquito species of 

several genera including Aedes, Ochlerotatus, and Psorophora24,25. These vectors 

where epidemic strains are found are commonly referred to bridge vectors, as these 

species have increase promiscuity in their feeding habits, making them more likely to 

infect a non-reservoir species, such as a human or an equid27–29. The feeding habits of 

vector species, as well as the natural range of vector and reservoir species are the 

primary determinants of the geographic range of any given alphavirus. 

The virus will first enter the mosquito or other vector through a blood meal that is 

taken from an infected host. The virus will then encounter the cells of the mosquito 

midgut, before passing into the hoemocel, the circulatory system of the mosquito. 

Eventually virus will arrive in the salivary glands where it replicates to high levels and is 

transmitted to the next vertebrate host during a blood meal30,31. Not only does vector 

transmission complicate control of these viruses, but infection of the mosquito is an 

important selection process, and different strains of these viruses can behave differently 

in the vector. In particular, epidemic VEEV strains behave very differently in the 

mosquito than those are isolated from enzootic infection30–32.  
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Upon blood meal from an infected mosquito, the alphavirus is injected into the 

skin of a naïve host. As these viruses have various cellular tropisms that will result in 

differing pathologies, here the general series of events that will occur for the infection of 

a susceptible and permissive host cell will be described.  
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Figure 2. The transmission cycle of alphaviruses. A) Alphaviruses are maintained in 

nature by cycling between a host species, typically a bird or small mammal, and a 

mosquito vector species. B) Spillover events often occur into livestock, which reach high 

viral titers and readily transmit the virus to additional vectors. In the case of the New 

World viruses this infection almost always leads to death. C) Typically, after infection of 
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livestock, humans that work in close association with these animals can also be infected 

by vector species. Humans are regarded as dead end hosts for VEEV. In humans these 

infections may lead to disease, and, in severe cases, death.  
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Alphaviral replication 

After inoculation into the vertebrate host alphaviruses enter permissive and susceptible 

host cells to manufacture new virions. This process is here described in detail, and a 

summary can be found in Figure 4. 

Receptor-mediated endocytosis 

The primary mechanism by which alphaviruses enter naïve host cells is via 

receptor mediated endocytosis33. There have been multiple different suggested 

receptors for cellular entry33. Two important receptors are DC-SIGN and L-SIGN, which 

are likely involved in the myeloid cell tropism displayed by VEEV, which is known to 

infect dendritic cells early in infection34. Multiple other receptors have been found, and  

continue to be found in recent work35.CRISPR has been used to great effect in the 

search for additional alphaviral receptors, with Mxra8 being found to be important for 

multiple alphaviurses36, and LDLRAD3 having been described as a receptor for VEEV 

specifically37.  Heparin sulfate has also been found to be a binding partner for some of 

these viruses, and is ubiquitously expressed33. However, it has been found that viruses 

that have not been adapted to cell culture have less affinity for heparin sulfate38,39,40. This 

indicates that it is likely that the amount of heparin sulfate binding that has been reported 

is an artifact of cell culture adaptation of virus that has been produced and expanded in 

in vitro systems.  

After receptor binding the alphaviruses are then transported into the cell via 

clathrin mediated endocytosis4133, resulting in a virus containing endosome passing 

through the stages of acidification and maturation. The New-World viruses, including 

VEEV, remain in the vacuoles until they reach the endosome stage, whereas the Old-

World viruses escape from the early endosomal compartment42. 
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There is some evidence that alphaviruses may demonstrate alternative entry 

strategies, such as direct entry at the host cell plasma membrane4344. This has been well 

characterized in CHIKV as well, with research indicating that even though an 

acidification step is required, it can occur in a manner that is independent of the activity 

of clathrin45. However, the importance of this entry method remains unclear. 

Fusion/ Uncoating and RNA release 

Fusion of the viral and host cell membranes is achieved by the activity of the E1 

protein, and expression of E1 without the other glycoproteins is enough to mediate viral 

membrane fusion46,47. This fusogenic activity is initially prevented by the interaction of E1 

with E2, but this interaction is disrupted at low pH33,48.  

After fusion the nucleocapsid core is released into the cytoplasm of the cell. The 

disassembly of the nucleocapsid is enhanced by the low pH environment, which may be 

caused by membrane pores induced by E14950,5152. After escape from the endosome, the 

nucleocapsid interacts with ribosomes, which disassemble the capsid in a non-catalytic 

manner53. This disassembly appears to be dependent on conserved sequences in the 

capsid protein54. These steps have only been outlined so far using SINV and SFV.  

Translation and processing of the nsPs 

As positive sense, single-stranded RNA viruses, the alphavirus genome requires 

no additional processing to be available as an mRNA for translation by the host cell 

ribosomes. The genome has both a 5’ methyl cap and a 3’ poly A tail, allowing for 

normal recruitment of initiation and elongation factors to begin translation7. The initial 

step of viral replication is the translation of the nonstructural polyprotein, which contains 

the proteins which are responsible for the replication of the viral RNA. The viral nsPs are 

numbered in the order that they occur in the genome from 5’ to 3’, 1-4. The genomic 
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organization of VEEV can be found in Figure 4. The initial polyprotein is translated as 

either nsP123 or nsP1234, depending on read through of a stop codon that may or may 

not be present in the genome depending on the alphavirus in question55,56,57.  

After the initial translation of these proteins, they undergo tightly controlled cleavage 

events that result in the formation of multiple intermediates as well as the formation of 

the final mature replicase complex nsP1/2/3/458,59. This fully cleaved, mature complex is 

highly stable. Control of this cleavage process is important as it controls the levels of 

viral RNA species that are present at different times during infection60,61. This cleavage 

process appears to have unique regulatory features such as having morphological 

cleavage recognition instead of sequence specificity62. This regulatory process is highly 

important to viral biology as altering it leads to attenuation63. Proper cleavage is also 

important to immune evasion, as viruses with incomplete cleavage result in alterations of 

the viral RNA species prevalences, increasing Type I interferon induction as well as 

sensitivity of the viruses to interferon64. 
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Figure 3. The genetic structure of VEEV. VEEV has a 12kb, linear, positive-sense 

genome. The genome has two open reading frames, the nonstructural and the structural. 

The nonstructural open reading frame encodes the four nonstructural proteins, which are 

responsible for replication of the viral RNA. The structural open reading frame encodes 

for the E proteins and capsid as well as the 6K and TF proteins. The capsid and E 

proteins form the structure of the viral particle.  
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Viral RNA Replication 

The process of viral RNA synthesis is outlined in Figure 5. To make additional 

molecules of RNA genome, the virus is required to first transcribe the positive-sense 

genome into negative-sense template strand. This activity is performed by the partially 

cleaved polyprotein nsp123/461. However, nsP2 has protein cleavage activity which 

rapidly degrades the polyprotein into its constitutive parts. This initially produces 

intermediate forms of the replicase complex that are short lived and produce both 

negative and positive-sense RNA60,61. The final cleavage between nsP2 and nsP3 leads 

to the formation of the mature replicase complex nsP1/2/3/4 which produces only 

positive-sense RNA58,59,65. This self-proteolytic behavior creates a distinct expression 

profile of the viral RNA. Initially the immature forms of the complex produce higher levels 

of negative-sense RNA. As the complex is processed the synthesis of negative-sense 

RNA is reduced and eventually eliminated. This causes most negative-sense RNA to be 

produced early in infection, as well as less negative-sense RNA being produced 

overall66.Following cleavage and assembly of the mature replicase complex, RNA 

synthesis converts to the synthesis of positive-sense genomic and subgenomic RNA67. 

The positive-sense genomic RNA functions primarily as the genetic material of 

the next generation of virus, as well as being translationally activity in the cell to produce 

additional nonstructural proteins. However, recent work has indicated that the genomic 

RNA may have biological functions in addition to this, as increasing the amount of non-

capped genomic RNA that is produced during infection leads to a decrease in viral 

fitness68. The other positive-sense viral RNA that is produced is the subgenomic RNA. 

This small RNA is produced from a separate promoter and encodes for the structural 

genes of the virus55.   
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Localization of genome replication 

Alphaviruses demonstrate a sequestration of their replication to intracellular 

membranes, which is similar to other RNA viruses which also largely replicate in and on 

membranous structures69–71. The alphaviruses utilize microinvaginations called 

spherules69. These are sites where the viral RNA has been found to localize in infected 

cells72,73. It has been confirmed in vitro that these structures contain viral RNA synthetic 

activity through the use of purified spherules to synthesize viral RNA74. It has been 

recently determined that the initial formation of the spherules is dependent solely on the 

activity of the nsPs with no requirement for viral RNA being present75. However, the size 

of the individual spherules is dependent on the length of the RNA that is transcribed 

within, which appears to be a feature unique to alphaviruses76. 

Spherules were initially identified on large, endosomal-like compartments in 

infected cells. In several of these viruses these spherules form at the plasma membrane 

and later traffic to intracellular compartments77.  This localization has not yet been fully 

characterized in VEEV. In vertebrate cells, the movement of the spherules away from 

the plasma membrane is dependent on the activation of PI3K-Akt-mTOR, and reduction 

of this activation is associated with an increased proportion of the spherules remaining at 

the cellular membrane78 

Translation of the structural genes 

The structural genes of the alphaviruses are produced via translation of the 

subgenomic RNA. The initial gene product is a polyprotein that contains the capsid, E 

proteins, 6K, and TF proteins protein557. The capsid protein contains a serine protease 

domain and uses this to rapidly cleave itself from the other structural genes55. The 

capsid protein forms the nucleocapsid core and is responsible for binding to and 
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packaging viral RNA61, this interaction is mediated by the size and charge of the RNA 

molecule79. In addition to the role that it plays in virion structure, the capsid of 

alphaviruses also has biological functions involved in viral pathogenesis. In the New-

World alphaviruses the capsid protein is able to block the nuclear pores and thus 

prevent the translation of new cellular protein, enhancing viral pathogenesis, cytopathic 

effect, and assisting in immune evasio80,81. This protein synthesis inhibition functions in 

tandem with the nsPs which actively inhibit the synthesis of cellular proteins82. 

After cleavage of the capsid protein, the glycoproteins are translated into the 

endoplasmic reticulum, and pass through the Golgi apparatus before being embedded 

into the plasma membrane of the cell55. These proteins are also highly post-

translationally modified via glycosylation and palmitoyaltion55.  

Packaging of the viral RNA and release of the virion 

After translation of the structural proteins, the viral RNA must be packaged into 

the virion and then released to infect new host cells. The RNA and capsid undergo 

interactions due primarily to molecule size and charges, resulting in nucleocapsid like 

structures occurring in the cytoplasm55,79,83. Alphaviruses bud directly from the plasma 

membrane of the infected cell7. However, it is unclear how this budding process is 

initiated83. It has been found that both the preformed nucleocapsid like structures and 

the glycoproteins are able to drive budding83,84. However, when either of the functions 

occurs independently of the other, there is a marked reduction in efficiency, indicating 

that it is likely that these two mechanisms interact to allow for the maximal budding of 

virions84. 

Transport of the structural proteins to the plasma membrane requires the host 

secretory system84. However the exact proteins that are used remain unknown84. 
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Release of virions can also be inhibited by host proteins. In particular tetherin has been 

shown to prevent the release of virions from infected cells84. The general replication of 

alphaviruses is outlined in Figure 4 below.  
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Figure 4. The replication cycle of alphaviruses. The virion enters a susceptible cell via 

receptor mediated endocytosis, and due to pH changes of the endosome releases its 

RNA into the cytoplasm of the host cell. The positive sense genomic RNA is first used by 

ribosomes to translate the viral nsPs as a polyprotein. The polyprotein will undergo 

cleavage events that control the synthesis of the viral RNA species. This RNA synthesis 
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occurs in membrane invaginations that are termed spherules. These spherules protect 

the viral RNA and nsPs from detection by the host cell. Late in infection the structural 

genes are synthesized. The capsid will form into nucleocapsid cores as it packages the 

viral RNA, and the glycoproteins are transported to the cell membrane. The 

nucleocapsid cores translocate to the cellular membrane where they bud off, collecting 

their envelope and glycoproteins and forming new infectious virus.  
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Figure 5. RNA synthesis of alphaviruses. This RNA synthesis activity is carried out in 

spherules on the membranes of cellular organelles. After release into the cytoplasm the 

genomic RNA is used to synthesize the initial nonstructural polyprotein. nsP2 initially 

cleaves between nsP3 and 4 leading to nsP123/4, which synthesizes primarily negative-

sense template RNA. The protein undergoes rapid cleavage through intermediate states 

to reach the final replicase complex nsP1/2/3/4. This complex synthesizes new positive-

sense genomic and subgenomic RNA and can no longer synthesize negative-sense 

RNA. The genomic RNA is used to synthesize additional genomes and is packaged into 

progeny virions. The subgenomic RNA is used to synthesize the structural genes that 

from the new virions.  
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Functions of the alphaviral nonstructural proteins 

The alphaviruses make four nonstructural proteins. These proteins are 

responsible for viral RNA replication as well as many other enzymatic functions. The 

nonstructural proteins are also intimately involved in the pathogenesis of the 

alphaviruses. The functions of these proteins will now be described in greater detail. 

While the functions of the nsPs are highly conserved, differences between the Old and 

New-World viruses will be indicated when necessary. 

Nonstructural protein 1 

NsP1 is the capping enzyme for the viral genomic RNA, and this activity occurs 

independent of the activities of the other nsPs85. The activity of this protein has only 

recently been examined in VEEV, having previously been studied only in Old-World 

viruses. This was also the first time that each individual step, including the final guanyl 

transfer, has ben detected86. The steps occur as follows. 1) The transfer of a methyl 

group from S-adenosylmethionine to position N7 of a molecule of GTP is catalyzed 2) 

nsP1 receives the methyl-GTP becoming guanylated, releasing pyrophosphate in the 

process 3) the 7 methyl-GMP is transferred to the 5’ end of the target RNA86,87. For this 

reaction to occur properly, the RNA being capped must have had its 5’ terminal 

phosphate removed by nsP288 NsP1 is also responsible for the anchoring of the viral 

replicase complex to cellular membranes which are the site of RNA replication, and this 

activity is required for capping to be carried out as well89–91. Very recently a cryo-em 

structure was published that showed how nsP1 influences the structure of the 

membrane spherules and potentially controls entry and exit of materials92. NsP1 was 

found to form a ring-like structure that appears to act as a gate and controls entry and 

exit from the spherule92. The nsPs are also responsible for the formation of the 
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spherules and this can occur in the absence of viral RNA75 however the viral RNA 

determines the spherule size76. 

Nonstructural protein 2 

NsP2 is a multifunctional protein with many described functions and multiple 

domains with discreet enzymatic activities. First, nsP2 is responsible for host cell 

transcriptional shutoff in the Old-World viruses, and loss of this phenotype reduces viral 

cytotoxicity80,93. In the New-World viruses this activity is instead carried out by the capsid 

protein, and nsP2 is responsible for shutoff of host cell protein synthesis, and may have 

a role in packaging of viral RNA80,81,94,95. In VEEV this translational shut down provides 

resistance to a pre-existing antiviral state94.  

There are three recognized domains in nsP2. The N-terminal regions contains a 

helicase domain, and NTPase activity that serves to provide energy for the helicase96,97. 

This same region also has RNA 5’-triphosphatase activity which prepares RNA for 

capping, allowing for translation and packaging in virions88. The N terminal region of the 

protein including the helicase domain has recently been crystalized98. The most 

interesting feature was the large number of accessory domains that were present, as 

these domains had not previously been predicted by structural modeling. In particular 

the so called stalk domain, which based upon our own research appears to have an 

important function in viral RNA synthesis66.  

Large portions of the N-terminal region of nsP2 remain poorly characterized. 

Studies have implicated that in VEEV this region may be important to packaging of the 

viral genome95. However, in SINV this a transposon insertion approach using the 

sequence for GFP found that region was involved in the cleavage between nsP2 and 

nsP3, controlling the ratio of genomic and subgenomic RNA, and regulation of RNA 
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synthesis99. This range of phenotypes indicates that these regions are highly important 

to these viruses, but further characterization and research is needed. 

NsP2 also contains a cysteine protease domain that is responsible for the 

cleavage of the nsPs from the polyprotein into its constitutive members100–102. As 

described earlier, this cleavage is responsible for the transition from the synthesis of 

negative-sense viral RNA to positive-sense viral RNA61,103. The protease has also been 

shown to target cellular proteins, a common feature of viral proteases, and this is related 

to resistance to innate immune responses104.  

Lastly, nsP2 contains a putative methyltransferase domain that was predicted 

due to the structure of the protein102. However, it is predicted to be inactive as it lacks the 

active site residue necessary for activity85. Recently though, there has been work that 

indicates this domain may play a role in interferon shutoff due to its interaction with 

signal transducer and activator of transcription proteins 1 (STAT1)105. This activity 

appears to be mediated by enhancing the nuclear export of STAT1, which prevents the 

magnification of downstream immune signaling, including the interferon response105 

Nonstructural protein 3 

NsP3 is poorly understood, but mutations within this protein have resulted in 

defects in both negative-sense and subgenomic RNA synthesis106.  

NsP3 contains a macrodomain with both adenosine diphosphate ribose (ADPr) 

binding and hydrolase activity85,107108. This ADP ribosylase activity is necessary for 

infection of neural cells and the hydrolase activity results in an increase in replicase 

complexes109. In a SINV model, reductions in hydrolase activity led to reduced 

neurovirulence while increases in ADP ribosylase activity increased neurovirulence110.  



25 

NsP3 also contains the highly conserved alphavirus unique domain, or AUD85. 

This domain is maintained across all alphaviruses85. Recent work has indicated that it 

potentially has many functions in CHIKV, particularly in subgenomic RNA replication111. 

Disruption of the AUD resulted in decreased infectivity, potentially due to decreased 

interaction with the viral RNA and the subgenomic promoter111. 

The last feature of note in nsP3 is the hypervariable domain or HVD. This domain 

is so varied that it can be distinct between strains of a single viral species, such as in 

VEEV112. This region is tolerant of significant mutation and even deletion, which is 

unique compared to the rest of the alphaviral genome113. Natural duplications and 

insertions in this region can even have positive effects on viral fitness114. The HVD is 

also involved in interaction with host cell proteins, resulting in the formation of distinct 

protein complexes in Old and New-World viruses115. These interactions include the 

cellular machinery responsible for the formation of stress granules, which alphaviruses 

utilize to their own replicative benefit116–119. These interactions are highly specific to viral 

species as well, and may partially drive the differences in pathogenesis seen between 

species119–121.  

Nonstructural protein 4 

NsP4 is produced in small amounts by most alphaviruses due to the inclusion of 

a stop codon between nsP3 and nsP455,57. Altering expression levels of nsP4, either to 

increase or decrease expression, decreases viral fitness, indicating that tight control of 

expression is highly important122. The tight limit on expression of nsP4 is also promoted 

by it being targeted by N-end rule degradation, further limiting the amount present in the 

cell123.  
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NsP4 is the RNA dependent RNA polymerase (RDRP) of the alphaviruses and is 

active in both positive and negative-sense RNA synthesis, with the specificity being 

determined by the cleavage state of the other nsPs61,85,124. NsP4 can display RNA 

synthesis activity alone, but the activity is enhanced by the presence of the other 

nsPs124–126.  

NsP4 also has a large N terminal region that lacks predicted structure or function. 

Our own work has predicted that this region is somehow involved in viral RNA synthesis, 

as mutations in this region result in resistance to the effects of a drug that inhibits the 

production of new viral RNA66,127. However, the function of this region remains unclear. 

Work by others has also shown that mutations in this regions have a broad range of 

effects on viral RNA synthesis128. This work, as well as the antiviral resistant VEEV 

isolates that have been recovered in our lab127 indicate that this region plays an 

important role in RNA synthesis of these viruses potentially in tandem with nsP2. This 

indicates that these proteins have additional, complex interactions and roles in viral 

biology that remain to be understood.  The functions of the nsPs are summarized in 

Table 1. 
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Protein Structures Functions 

nsP1 methyl transferase 
domain, guanyl 
transferase domain, 
membrane association 
domains 

caps viral RNA making it 
usable by ribosomes, 
anchors the replication 
machinery to cellular 
membranes75,85–87,89–92 

nsP2 helicase domain, ADP 
binding region, cysteine 
protease, methyl 
transferase like domain 

unwinds viral RNA for 
replication, cleaves the 
polyprotein into its 
constitutive parts, 
digests host cell 
proteins61,80,81,88,93–98,100–

105

nsP3 macrodomain, 
alphavirus unique 
domain, hypervariable 
domain 

poorly described, 
necessary for 
replication, highly 
involved in host cell 
interactions85,106–

114,116,117,120,121,129

nsP4 RNA dependent RNA 
polymerase domain 

synthesizes new viral 
RNA57,61,85,122–126,128,130 

Table 1. Summary of alphavirus nonstructural protein functions 
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Current state of alphaviral therapy development 

Currently there are no approved therapeutics or vaccines for alphaviral disease. 

The development of treatments is urgently needed due the global range of alphaviruses 

and their continuous emergence into naive populations. This is compounded with the 

high risk of alphaviruses expanding their geographic ranges due to climate change. 

There have been many investigations into potential alphaviral therapeutics; however 

thus far, none have resulted in clinically approved treatments.  

Several studies have examined the efficacy of currently approved broad 

spectrum antiviral treatments. Ribavirin, a common standard of care in the treatment of 

viral infections, has been found to be ineffective131. Interferon α, another common 

antiviral treatment, has been found to be effective in mouse models at high doses, when 

it is pegylated to increase its halflife132. However, interferon treatment has severe side 

effects, and is particularly noted for the neurological symptoms it induces, such as 

depression133.  

A recently licensed drug of interest is the broadly anti-influenza treatment 

favipiravir. Created and initially tested in Japan, this is a nucleotide analogue which has 

been found to inhibit the polymerase of influenza viruses134. Treatment with favipiravir is 

mildly efficacious against WEEV, increasing survival in infected mice134,135. Also, 

treatment with this drug during the acute phase of infection resulted in clearance of 

CHIKV from infected mice, but there was no effect on the infection if treatment was 

initiated in the chronic phase136. It is important to note, that this treatment was not very 

efficient, requiring high doses of drug and delivery mechanisms that would be impractical 

during a natural outbreak of these viurses135,137 
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There have also been many other investigations into other potential treatments, 

such as therapeutic antibodies, mifiprestone analogues, and antimicrobial peptides138–

140. Promising data has come from treatment with antagonists of argonaut 2, an 

important protein in RNA silencing141 and inosine-5’-monophosphate (IMP) 

dehydrogenase, an enzyme involved in guanine synthesis142131143. Finally, there has 

even been work that has examined the effects of compounds like β-d-N4-

Hydroxycytidine, which increases the mutation rate during viral RNA synthesis in an 

attempt to induce damage in the genome144. However, as mentioned above, none of 

these leads have led to therapies licensed for the treatment of alphaviral infection in the 

clinic. Of particular interest in ongoing antiviral research is the development of viral 

targets that can be perturbed by treatment, leading to the development of more specific 

antiviral therapies with minimal side effects.  

The development of alphaviral therapies in the Chung lab 

The Chung lab has a history of antiviral drug development, and is known for the 

development of high throughput screening processes for the identification and 

characterization of novel therapeutic compounds127,145–147. Briefly, libraries of compounds 

are screened for increases in the viability of infected cells compared to a vehicle control. 

This is performed in a 384 well format allowing for rapid screening of thousands of 

compounds127. Compounds that meet the threshold for effectiveness are then assayed 

for antiviral effects as well as cytotoxicity, then promising compounds are further 

examined for pharmacological characteristics. This results in the identification of hit 

compounds which may become lead compounds themselves, or may be used to 

generate additional compounds using medicinal chemistry127.  

The antiviral drug discovery work using VEEV resulted in the discovery of an 

initial quinazolinone hit compound that was found to be highly effective against VEEV 
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with some efficacy against EEEV and WEEV as well127. Additional compounds that have 

unrelated mechanisms of action were also discovered using this same process, such as 

compound ML416, a pyrimidine analoge146. The initial quinazolinone compound was 

then further developed in collaboration with a medicinal chemist to the current lead 

compound ML33666,148. The hit compound was also used in several basic assays of 

compounds functionality and it was found to act primarily early in infection. This, 

combined with sequencing data from resistant viral isolates, indicated that the hit 

compound, and its derivative ML336 , were potentially acting to inhibit viral RNA 

synthesis in the infected cell148. The characterization of ML336 and its activity in the host 

cell will be discussed at length in the following chapter. A selection of compound 

structures that were used in this characterization work is included in chapter 2.  

The Chung lab not only tests these compounds as potential therapeutics, but 

also utilizes this expertise in antiviral drug discovery to probe viral biology. The antiviral 

compounds identified and developed in this process can be used as probes to produce 

mutant viruses that resist drug treatment148. These mutant isolates can then be 

sequenced and used to examine previously unknown biological activities of the viruses 

used. This process is described in detail in chapter 4 of this work. Where an anti-VEEV 

compound was used to probe the nonstructural proteins for novel biological functions.  

Objective of Dissertation 

Alphaviruses are important pathogens of both human and animal hosts and are 

of particular concern due their potential use in biological warfare. Several of these 

viruses are also rapidly expanding into naïve populations. There are currently no 

approved vaccines or antiviral strategies available for the treatment or prevention of 
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these viruses. New potential therapeutics need to be characterized and further 

developed. Our group has developed and begin to examine several anti-VEEV 

compounds and these require more complete study to determine their mechanism(s) of 

action127. Novel antiviral compounds also have the potential to be used as probes to 

characterize alphaviral biology. This is primarily carried out by the isolation and 

characterization of compound resistant viruses. Mutations in these viruses can be 

identified127 and any alterations in the behavior of these viruses can be mapped to the 

mutated region(s). These avenues of research were explored in the context of the 

following aims: 

1) To determine the mechanism of action of the anti-VEEV benzamidine

compound ML336.

2) To characterize the hypothetical interaction between amidine scaffold

compounds and the nonstructural proteins of VEEV.

3) To describe the biological function of the regions of nsP2 which were found to

be important to ML336 activity.

Justification 

Alphaviruses are important pathogens of both humans and domesticated 

animals, and the lack of therapeutic and preventative options means that there is a 

significant need for research to find and characterize new potential therapeutics and 

drug targets.  

The design of antiviral drugs has been historically rather difficult, as the 

pathogens utilize predominantly host systems for their biological processes. While there 
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has been some success with antiviral development recently, these drugs often have 

significant side effects making them poorly tolerated and underutilized149,150151152153.  

The current lack of anti-VEEV treatments, as well as the generally poor track 

record of many antiviral compounds, have led to our own interest in developing better 

antiviral compounds, with a focus on alphaviruses generally and VEEV specifically. This 

virus is not only a risk of natural infection, but is also a high-risk agent for misuse, 

making the development of treatments high importance.  

Further, there are many areas of alphaviral biology that remain poorly defined, 

despite extensive study. Antiviral compounds can be used to derive treatment resistant 

viruses. Those viruses that resist treatment can be sequenced for mutations in their 

genomes, and then these mutants characterized by classical virological methods. This 

method has the advantage of only discovering mutations that are compatible with 

replication, avoiding the creation of nonviable mutants which is common in random 

mutagenesis studies. With the characterization of these isolates, new information about 

the function of the viral proteins and their interaction with each other and cellular 

components can be gained.  
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CHAPTER 2 

BENZAMIDINE ML336 INHIBITS VEEV RNA SYNTHESIS 

Skidmore AM, Adcock RS, Jonsson CB, Golden JE, Chung DH. Benzamidine 
ML336 inhibits plus and minus strand RNA synthesis of Venezuelan equine 
encephalitis virus without affecting host RNA production. Antiviral Res. 2020 

Feb;174:104674. doi: 10.1016/j.antiviral.2019.104674. Epub 2019 Dec 6. PMID: 
31816348; PMCID: PMC6935354. 
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Overview 

Venezuelan equine encephalitis virus (VEEV) is an alphavirus that is endemic to 

the Americas. VEEV outbreaks occur periodically and cause encephalitis in both 

humans and equids. There are currently no therapeutics or vaccines for treatment of 

VEEV in humans. Our group has previously reported on the development of a 

benzamidine VEEV inhibitor, ML336, which shows potent antiviral activity in both in vitro 

and in vivo models of infection. In cell culture experiments, ML336 inhibits viral RNA 

synthesis when added 2-4 hours post-infection, and mutations conferring resistance to 

this activity occur within the viral nonstructural proteins (nsP2 and nsP4)127. This led us 

to hypothesize that ML336 targets the viral replicase complex and inhibits viral RNA 

synthesis. Using ML336 and structurally related compounds, we demonstrate that the 

cellular antiviral activity of this antiviral scaffold correlates with inhibition of viral RNA 

synthesis. However, ML336 has no effect on the RNA synthesis of the closely related 

CHIKV or on cellular RNA synthesis. With a combination of fluorography, strand-specific 

qRT-PCR, and tritium incorporation, we demonstrated that ML336 inhibits the synthesis 

of the positive-sense genomic, negative-sense template, and subgenomic RNAs of 

VEEV. In summary, ML336 and related compounds inhibit all stages of VEEV RNA 

synthesis during infection, and this activity mediates the antiviral effect of these 

compounds.. 

Introduction 

Venezuelan equine encephalitis virus (VEEV) is a single-stranded, positive-

sense, RNA virus belonging to the family Togaviridae, which includes other medically 

important mosquito-borne viruses such as Chikungunya virus (CHIKV), and Eastern and 
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Western equine encephalitis viruses (EEEV and WEEV respectively)7. The encephalitic 

alphaviruses, VEEV, WEEV, and EEEV, are closely related, sharing a recent common 

ancestor as determined by phylogenetic analysis154. VEEV generally causes a mild 

febrile disease, while approximately 1% of patients suffer from encephalitis, leading to 

death in about 10% of these encephalitic patients7. Only supportive care is available for 

those with VEEV infection.  

Encephalitic alphaviruses have caused periodic outbreaks in the Americas 

throughout the 20th century, and of these viruses VEEV has been the most significant 

public health burden. Historically, large VEEV outbreaks occur about every 15 - 20 

years, typically affecting thousands of equids and humans. For example, between 1962 

and 1972 in Central America15, over 109,000 human cases of VEEV were reported, with 

nearly 1,000 neurological cases and over 500 associated human fatalities. These 

outbreaks also caused a significant burden to the agricultural industry with over 800,000 

reported deaths of equids due to VEEV infection.  

In addition to large natural outbreaks, VEEV poses additional threats to the 

public. VEEV is classified as a Select Agent by both the Centers for Disease Control and 

Prevention and United State Department of Agriculture for its historic and potential use 

as a bioweapon22. There are currently no licensed treatments or vaccines for VEEV, or 

any other alphaviral infection in humans. Due to the stochastic nature of VEEV 

outbreaks, and difficulty in defining target groups for vaccination, therapeutics could be 

crucial for control of VEEV.  

A wide variety of compounds have been reported to show anti-VEEV activities. 

These include mifepristone analogues, argonaute-2 antagonists, therapeutic antibodies, 

compounds that induce mutations in the viral genome, and naturally expressed host 

antimicrobial peptides to name a few138–140,143,155. Efforts using the broad spectrum, FDA-
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approved antivirals interferon and ribavirin resulted in antiviral effects only at doses that 

were higher than are clinically relevant131,132. Other discovery efforts using nucleoside 

analogues or non-nucleoside analogues have shown moderate effects against 

VEEV146,156. Lastly, the broadly anti-influenza drug faviprivir134,136, shows efficacy against 

some alphaviruses135. However, this drug has not been tested against VEEV in a mouse 

model, and its efficacy against these related viruses is poor, requiring doses of up to 400 

mg/kg/day135,157 

To address the unmet need for VEEV therapeutics, we employed a high-

throughput, cell-based, anti-VEEV screen and discovered a novel quinazolinone hit 

compound (CID:15997213)158. This compound showed significant promise as a small 

molecule inhibitor of VEEV infection with an EC50 of 1.9 µM in a cell culture assay, and 

100% protection of VEEV-challenged mice at a dose 50 mg/kg in a lethal VEEV infection 

model127. This hit compound was then further refined using medicinal chemistry 

approaches in pursuit of compounds with superior pharmacological characteristics. The 

most promising of these further derived compounds was ML336, Figure 6 A.159. ML336 

shows potent and specific anti-VEEV (EC50 = 32 nM) activity in vitro, and VEEV titer 

reduction greater than 7.2 logs at 5 µM145,159. ML336 also effectively protected mice in a 

lethal VEEV infection model, with no apparent toxicity at any of the examined doses159.  

Our previous resistant mutation studies suggest the hit quinazolinone compound 

and benzamidine ML336 both inhibit VEEV replication by interfering with non-structural 

proteins 2 and 4 (nsP2 and nsP4) in the middle phase of replication127. NsP2 and nsP4 

are essential proteins of the viral replicase complex of alphaviruses7,102,124. The incoming 

viral genomic RNA (49S) is translated to form the polyprotein nsP123 and nsP4. The 

polyprotein then synthesizes negative-sense RNA using the genomic RNA as the 

template strand61,160, Figure 6 B. NsP123 rapidly undergoes cleavages mediated by the 
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protease activity of nsP258,59, resulting in nsP1, nsP23, and nsP4, and then further into 

nsP1, nsP2, nsP3, and nsP4 (nsP1/2/3/4). The mature replicase complex, nsP1/2/3/4, 

synthesizes the positive-sense, 49S viral genomic and 26S subgenomic RNAs61,103. This 

viral RNA synthesis by the mature replicase complex occurs in spherules, micro-

invaginations on intracellular organelles, in the infected cells91,161. RNA-dependent RNA 

polymerase (RdRP) activity is carried out by nsP4, and nsP2 also exhibits nucleoside 

triphosphatase (NTPase) activity and helicase activity during RNA synthesis, in addition 

to the aforementioned protease activity for processing of the polyprotein88,96,162. 
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Figure 6. Summary of VEEV replication A) The structure of the VEEV inhibitory amidine 

compound, ML336, as has been previously reported. B) A summary of the RNA 

replication process of alphaviruses. First, the genomic RNA (green line) is released from 

the virion into the cytoplasm, where it can recruit ribosomes and be translated into the 

initial polyprotein, nsP123/4. This short-lived, initial polyprotein then synthesizes 

negative-sense RNA template strands (yellow line) from the positive-sense genome. The 

polyprotein then undergoes self-cleavage to form the mature, stable, replicase complex, 

nsP1/2/3/4, which then synthesizes additional genomic RNA (49S) as well as 

subgenomic RNA (26S, blue line). 
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In order to characterize the potential of viral populations to gain resistance to 

these antiviral treatments, experiments were performed that isolated resistant virus from 

the treated population. The locations of mutations granting resistance were then 

determined using sequencing, which can provide information on both potential 

mechanisms of compound action as well as potential sites of interaction between viral 

proteins and the compounds. Resistance mutations to the hit quinazolinone compound 

and benzamidine ML336 both map to two regions; 1) the N-terminal region of nsP2, 

nsP2 mutations Y102C, D116N, E117V, E118V, and 2) the N-terminal region of nsP4, mutation Q210 

in nsP4Q210R
58,85,88,96,127,130,162. The ML336 resistance mutations in nsP2 were clustered in 

a region that has recently been shown to be part of the so-called “stalk” domain of the 

helicase domain98. An X-ray crystal structure of CHIKV nsP2 helicase domain shows 

that the nsP2 Y102, D116, E117, and E118 residues are not associated with the active site or 

RNA recognition domains of the enzyme. Rather, these residues are within the distal 

part of a large alpha helix and flanked by smaller disordered regions. The resistance 

mutations in nsP4 are also upstream of the active site of the RdRP, in a region with no 

known functional activity125. Previous work in Sindbis virus indicates that the N-terminal 

region of nsP4 has importance for viral RNA synthesis possibly in a protein-to-protein 

interaction dependent manner; however, no clear functions have been understood163. 

In this study we sought to understand how ML336 and its benzamidine 

analogues inhibit VEEV replication with a hypothesis that ML336 is directly-acting on the 

replicase complex and interferes with viral RNA synthesis. Our results confirm that viral 

RNA synthesis is efficiently abrogated by ML336, an activity mediated through the viral 

replicase complex. We found that the synthesis of all species of viral RNAs (i.e., the 

genomic (49S), subgenomic (24S) positive-sense RNA, and negative sense RNA) are 

inhibited by ML336, and that the RNA inhibition displayed by ML336 is maintained in a 
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cell free system of viral RNA synthesis. These findings suggest that the primary antiviral 

activity of ML336 is the inhibition of viral RNA synthesis during infection. 

 

Materials and Methods 

Cell culture and viral strains 

 Baby hamster kidney (BHK) clone 21 cells (ATCC CCL-10) and Vero 76 (African 

Green monkey kidney fibroblasts) (ATCC® CRL-1587™) were maintained in Modified 

Eagle’s Medium with Earle’s Balanced Salt Solution and L-glutamine (MEM-E, Corning 

10-010-CV) supplemented with 10% fetal bovine serum (FBS) (Corning 35-011-CV). 

Cells were maintained at 37 C in humidified incubators with 5% CO2. VEEV strain TC-83 

(gift of Dr. Connie Schmaljohn, USAMRIID) was used for this study. The strain V3526 

was generated from a plasmid as described previously (Chung et al., 2014). Infections 

were carried out using a virus infection medium (Modified Eagle’s Medium with Earle’s 

Balanced Salt Solution supplemented (Corning 15-010-CV) with 1x GlutaMAX (Gibco 

35050061), 25 mM HEPES (Corning 25-060-Cl), and 10% FBS. For Chikungunya virus 

(CHIKV) experiments, CHIKV strain 181/25 (BEI Resources NR-13222) was used. 

V3526 experiments were carried out in an infection media that contained L-glutamine 

instead of GlutaMAX (Modified Eagle’s Medium with Earle’s Balanced Salt Solution with 

L-glutamine (Corning 10-010-CV), 25 mM HEPES, 10% FBS) 

Immunoblot analysis  

 Cells were lysed using Laemmli buffer 4% SDS (RPI L22010) w/v, 20% glycerol 

w/v, 120 mM Tris-HCl pH=6.8, bromophenol blue) and 42 µM of dithiothreitol (DTT Enzo: 

ALX-280-001-G025)) and the homogenate was passed through a needle to shear the 

DNA, with additional sonication as necessary. After denaturation at 100C for ten 
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minutes, samples were loaded onto a gradient gel (4-20%, GenScript, M42012) and run 

at 140 V for 90 minutes in 1X MOPS-SDS buffer (GenScript, M00138). Proteins were 

transferred to a PVDF membrane (Bio-Rad 1620177). The membrane was blocked with 

5% dry milk in TBS-T, and probed using antibodies for the indicated proteins. Anti-nsP2 

(Clone no. 8A4B3, available from Kerafast, EUL015) was generated as a custom mouse 

monoclonal antibody from GenScript using bacterially expressed recombinant nsP2 

protein, used at a final concentration of 0.4 µg/mL. Beta-actin was detected using an 

antibody directly linked to horse radish peroxidase (HRP) (Cell Signal 8H10D10) at a 

dilution of 1:1,000. Anti-nsP2 was detected using (HRP)-conjugated rabbit anti-mouse 

IgG antibody (Sigma A0168) final concentration 1:10,000. Images were developed using 

ECL reagent and captured using an Azure Biosystems c300 imaging system.  

Analysis of viral RNA synthesis in vivo by metabolic labelling with 3H-uridine 

Cells were infected with VEEV at a multiplicity of infection (MOI) of ten on ice for 

one hour; and afterwards, cells were washed with ice-cold 1X phosphate buffered saline 

(PBS Caisson Labs PBL07) and transferred to a 37C CO2 incubator to initiate the 

replication (T=0). At 6 hours post-infection (HPI), cells were washed and pulsed with 

virus infection media containing actinomycin D (act D) (1 µg/mL, Sigma Aldrich A9415), 

tritium-labelled uridine (3HU) (5 µCi/mL, Perkin Elmer NET367250), and ML336 at 

various concentration for two hours. Total RNA was isolated from the cells using RNAzol 

RT according to manufacturer’s instructions (Molecular Research Center RN190). Total 

RNA was mixed with 10 mL liquid scintillation cocktail (BETA BLEND, MP Biochemicals 

0188245004) and the radioactivity was measured using a Perking Elmer Tri-Carb 2910 

TR liquid scintillation counter. For CHIKV, infection proceeded to 8 HPI for 3HU pulse 

labelling. For compound treatment, ML336 dissolved in DMSO (Sigma Aldrich D8418) 

was added in the 3HU labelling mixture with a final DMSO concentration of 0.25%. 
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ML336 concentrations are indicated in the results section for specific experiments. For 

cycloheximide (CHX) (Sigma Aldrich C7698) treatment, cells were treated with 3HU 

labelling mixture containing CHX with a final concentration of 8.8 µg/mL.  

Fluorography 

250,000 cells were infected at an MOI of 20 with VEEV TC-83. Cells were pulsed 

for the indicated times post infection with 1 µg/mL act D, 40 µCi/mL 3HU and 2.5 µM 

ML336. RNA was isolated using RNAzol RT. One µg RNA was used per treatment for 

the fluorgram. Fluorography was performed following a protocol published by John 

Aris164. 

RNA labeling of V3526 and mutant viruses 

Cells were infected with VEEV V3526 at an MOI of 5 and pulsed in 2 hour 

increments up to 14 hours. Later time points were also collected at 18, 24, 30, and 40 

HPI. Peak RNA synthesis was found to occur between 14 and 18 HPI (data not shown). 

To compare the effectiveness of the compound, cells were infected at an MOI of 3 and 

allowed to proceed to 13 HPI before pulsing with 1 µM ML336 or an equivalent volume 

of DMSO. RNA was collected and radioactivity was detected as described above.  

Strand-specific quantitative real-time PCR (qRT-PCR) of VEEV RNA 

Detection of positive and negative sense, genomic viral RNA was carried out 

using a strand-specific qRT-PCR method adapted from Plaskon et al165. Briefly, cDNA 

was generated using tagged primers for detecting positive-sense and negative-sense 

RNA. The generated cDNA was then used in qRT-PCR using TaqMan chemistry 

(Applied Biosystems TaqMan gene expression master mix ThermoFisher 4369016) with 

a strand-specific primer set. A fluorescent probe was used for both analyses. The primer 

sequences are given in the following table. Lowercase sequences are additional 
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sequence added for primer identification, sequences in italics are specific for viral RNA, 

and sequences in bold were used to identify only those cDNA sequences that were 

produced due to primer binding. All primers and probes were custom generated by IDT. 

Primer Sequence 

nsP1 positive 
Tag 

GGCAGTATCGTGAATTCGATGCCTGACCTGGAAACTGAGACTATG 

nsP1 negative 
Tag 

GGCAGTATCGTGAATTCGATGCGGCGACTCTAACTCCCTTATTG 

nsP1 positive 
FWD 

aataaatcataa CTG ACC TGG AAA CTG AGA CTA TG 

nsP1 positive 
REV 

aataaatcataa GGC AGT ATC GTG AAT TCG ATG C 

nsP1 negative 
FWD 

aataaatcataa GGC GAC TCT AAC TCC CTT ATT G 

nsP1 negative 
REV 

aataaatcataa GGC AGT ATC GTG AAT TCG ATG C 

nsP1 probe /56-FAM/TCC GTC AAC /ZEN/CGC GTA TAC ATC CTG /3IABkFQ 

Enrichment of viral replicase complexes from infected cells 

 VEEV replicase complexes were isolated according to the protocol published by 

Barton et al166. Cells were infected with VEEV TC-83 at 10 MOI and incubated for 6 

hours. Then, cells were washed with ice-cold, sterile PBS and the cells were incubated 

in hypotonic RS buffer (10 mM NaCl, 10 mM Tris-HCl, pH7.8) supplemented with 

Protease inhibitor cocktail III, 30µL per 20x106 cells, (Research Products International 

P50700-1) on ice for 15 minutes. Cells were scraped into buffer and thoroughly 

homogenized using a Dounce homogenizer. Nuclei were removed by centrifugation at 

900 x g for 10 minutes at 4 °C. Supernatant containing the cytoplasmic fraction was 

transferred to microcentrifuge tubes and centrifuged at 15,000 x g for 20 minutes at 4 °C. 

The supernatant (S15 fraction) was removed and pellets (P15 fraction) were suspended 

in RS buffer supplemented to 15% glycerol for storage at -80 °C.  

In vitro viral RNA synthesis assay 
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VEEV viral RNA synthesis assay was adapted from Barton et al166. Ten 

microliters of P15 fraction enriched for VEEV viral replicase complexes, which is 

equivalent of approximately 1.25 x 106 infected cells, was combined with a same volume 

of a RNA synthesis mix (100 mM Tris-HCl pH 7.8, 100 mM KCl, 20 µg/mL act D, 20 mM 

DTT, 10 mM creatine phosphate, 50 µg/reaction creatine phosphokinase, 4 mM of ATP, 

GTP, and UTP, 20 µM CTP, 12 mM MgCl2) (nucleotides from NEB N0450S) on ice and 1 

µL of SUPERaseIn RNase inhibitor (Ambion AM2694 ), 5 µg of yeast tRNA (Ambion 

15401011), and 5 µCi of [α-33P]-CTP (Perkin-Elmer NEG608H) were added per reaction. 

After an incubation at 37 °C for 90 minutes, RNA was isolated from each reaction using 

RNAzol RT and RNA mini prep kit columns (Zymo Research R2052) according to 

manufacturer’s instructions, with an additional wash step before elution. For compound 

addition, ML336 was added to reaction mixtures before incubation at 37 °C at the 

indicated concentrations. The final DMSO concentration was 0.25%. 

Autoradiography of viral RNA 

After extraction of viral RNA from the in vitro reactions, the RNA was mixed 1:1 

with a glyoxal loading buffer/dye with ethidium bromide (Ambion AM8551) and denatured 

at 50 °C for 30 minutes. Samples were chilled briefly and loaded for RNA 

electrophoresis. RNA electrophoresis was performed through a denaturing agarose gel 

containing 0.8% agarose, 1X MOPS (Quality Biological 351-059-10), and 2.2 M 

formaldehyde. Electrophoresis was performed at 60 V for 70 minutes, then the gels were 

rinsed in nuclease-free water once and treated with 0.1N NaOH for 40 minutes at room 

temperature with continuous rocking. Gels were neutralized in 20X saline-sodium citrate 

(SSC) buffer (3 M NaCl, 300 mM trisodium citrate, pH7.0) for 40 minutes. RNA was 

transferred to a neutral nylon membrane (GE Nytran 10416296). The RNA on the 

membrane was then UV cross-linked for 5 minutes at 4 mW/cm2. Autoradiograms were 
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developed using a phosphor screen (Kodak K screen 1707843) and documented using a 

Pharos FX plus (BioRad). Densitometry analysis was performed using Fiji image 

analysis software167. 

Cell-based anti-VEEV assay 

Anti-VEEV activity of compounds was measured using a cell-based CPE assay 

as previously described158. Briefly, Vero 76 cells seeded in a 96 well plate were infected 

with VEEV TC-83 at an MOI of 0.05 in the presence of test compounds, highest 

concentration of 50 µM, serially diluted 1:2 with a total of eight concentrations, lowest 

concentration 400 nM. Infected cells were incubated for 48 h and cell viability, protection 

from VEEV-induced CPE, was measured using CellTiter-Glo (Promega G7570). EC50 

was calculated with a 4-parameter logistic model (XLfit, IBDS). 

Statistics 

Statistics were performed in GraphPad Prism version 9. Unless otherwise 

indicated significance was calculated using ANOVA with Dunnett corrections for multiple 

comparisons. All graphs use the mean value, with error reported as standard deviation. 

Results 

VEEV viral RNA production peaks at 6-8 hours post infection. 

 To determine the optimal timepoint to examine the inhibitory effects of ML336 on 

viral RNA synthesis, we first measured the rate of VEEV viral RNA synthesis over the 

course of infection using metabolic labeling of RNA. After BHK21 cells were infected with 

VEEV TC-83 at an MOI of 10, the synthesis of viral RNA was tracked in two-hour 

increments beginning at 2 HPI by pulsing with 3HU in the presence of act D, which 
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allowed us to detect only the synthesis of viral RNA by inhibiting cellular RNA 

transcription from DNA templates. Using this assay, we found that VEEV RNA synthesis 

was detectable at 2 HPI, and continued until 18 HPI Figure 7 A. VEEV RNA synthesis 

reached its peak between 6 and 8 HPI and began to decrease at 10 HPI. There is no 

significant difference between the three pulses from 4-10 HPI. So any of the three pulses 

should allow for strong detection of viral RNA synthesis. The 6-8 HPI pulse was selected 

due to a balance of length of the experiment, as well as the higher magnitude displayed 

in this assay. 

We measured expression of nsP2 as a marker for the viral replicase complex 

over the course of infection by immunoblotting. Detectable amounts of nsP2 were 

detected at 4 HPI, and the expression peaked at 8 HPI, which is consistent with the 

timeline of viral RNA synthesis Figure 7 B. Later time points were selected due to 

previous knowledge about the kinetics of nsP2 in our lab. These data together indicate 

that the greatest level of RNA synthesis of VEEV is from 6-8 HPI. Based on this result, 

we chose the 6-8 HPI time point for subsequent experiments for viral RNA synthesis 

assays.  
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Figure 7. VEEV RNA synthesis peaks at 6-8 HPI.  

A) BHK 21 cells were infected with VEEV as described in the Materials and Methods of 

this chapter and treated with act D and 3HU to selectively label newly synthesized viral 

RNA. Total RNA was isolated and subjected to liquid scintillation counting. The amount 

of label detected is reported as counts per minute (CPM) per microgram of isolated 

RNA. NC is an uninfected negative control collected at 18 hours. Bars represent two 

biological replicates from one representative experiment of two. Error bars indicate 

standard deviation. B) BHK 21 cells were infected with VEEV and total cell lysate was 

used for immunoblotting to detect nsP2. Beta-actin is included as a protein loading 

control. Image is from one representative experiment of three. 
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Antiviral activities of ML336 and derivatives correlated with their inhibition of viral 

RNA synthesis.  

Based on our previous findings127, we hypothesized that the primary antiviral 

mechanism of the benzamidine scaffold, including ML336, is inhibition of viral RNA 

synthesis. To test this hypothesis, we chose to examine the RNA synthesis inhibition 

activities of an array of structurally analogous compounds (Table 1) based around the 

ML336 amidine scaffold Figure 8159. Multiple compounds have been developed using the 

base structure of ML336, with the pursuit of further improvements to both efficacy and 

pharmacokinetics, this optimization is pursued for every potential lead therapeutic 

compound that is discovered through the high throughput screening process. Each of 

these compounds has been found to be variously effective at inhibiting VEEV induced 

CPE. If the efficacy of this range of compounds at inhibiting VEEV induced CPE and 

RNA synthesis corelate, it indicates that RNA synthesis inhibition is a feature of the more 

general benzamidine scaffold and not unique to ML336. This also strengthens the 

hypothesis that RNA synthesis inhibition is a major contributor to the antiviral activity of 

the benzamidine compound family. ML416, which has an antiviral mechanism that is 

independent of viral RNA synthesis and is structurally distinct, was used as a control for 

comparison146. We also included our initial hit compound from our high throughput study, 

CID15997213127. 

Nine compounds with 50% cytopathic effect (CPE) inhibitory concentrations 

(EC50-CPE) ranging from 0.1 μM to greater than 50 μM were tested in the 3HU labeling 

assay159. Cells infected with VEEV TC-83 at an MOI of 10 were treated with each 

compound at 1 µM at six HPI and their RNA synthesis inhibitory activities were 

compared with their EC50-CPE. The concentration was held constant instead for example 
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using the IC50 of each compound so that each compounds efficacy could be directly 

compared. Using the middle efficacious concentration of each compounds would not 

allow for variation between the measurements, and the correlation could not be 

determined. Each activity was quantified as percent inhibition compared to the DMSO-

treated control. While ML416 did not show any RNA synthesis inhibitory activity as 

expected, each of the compounds showed various amounts of reduction of viral RNA 

synthesis Figure 8. Importantly, we found a trend that compounds that were more potent 

in the CPE-bases assay were generally more efficacious as inhibiting RNA synthesis, 

R2= 0.42 p=0.059, as measured by the incorporation of 3H-uridine into viral RNA. This 

experiment was performed from 6-8 HPI as this was found to be the time of maximal 

RNA synthesis by the virus. At this time post infection, and at the MOI that was used, the 

virus has already entered the cell and performed the activities of early infection (i.e. 

receptor binding, endocytosis, release of the viral RNA into the cytoplasm) and the initial 

translation and processing of the nsP polyprotein. Thus, the reduction in viral RNA 

synthesis that is seen to occur after treatment with these compounds is likely to occur 

independently from these other early infection processes. This indicates that the anti-

RNA synthesis activity of the benzamidine family is likely mediating the antiviral effects 

that that occur during infection with VEEV. 

Several compounds that were tested in the assay were strongly inhibitory of RNA 

synthesis but had little effect on cell viability, such as CMP3. While none of these 

compounds were cytotoxic, CC50 > 50 µM159, it is possible there are some off target 

effects that make the compounds less protective.  
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Figure 8. Compounds derived from ML336 also inhibit viral RNA replication. 

BHK 21 cells were infected with VEEV as described and infection proceeded to 6 HPI. 

Cells were pulsed for 2 hours with actD, 3HU, and one of the compounds of interest at 1 

µM or DMSO vehicle control. The amount of 3HU incorporated into the viral RNA was 

quantified by liquid scintillation counting. The percentage of label that was incorporated 

compared to a DMSO control, with 100% inclusion resulting in 0% inhibition, and 0% 

inclusion resulting in 100% inhibition. This data was compared to the percent protection 

from TC-83-induced CPE in a cell-based assay. Percent protection is the percent of 

viable cells after infection compared to DMSO vehicle control treatment. R2=0.42 

p=0.059, calculated using linear regression in GraphPad Prism. ML416 was included as 
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an outgroup, as it is effective at inhibiting VEEV induced CPE but is known to function by 

an RNA synthesis independent mechanism. Each point represents three biological 

replicates and the experiment was repeated twice (Exp 1 and Exp2). Compound IDs are 

found in Table 2. 
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Number Compound 
ID 

Percent 
Protection 
From CPE 

Percent 
RNA 

Inhibition 
Exp 1 

Percent 
RNA 

Inhibition 
Exp 2 

CMP1 CB10002593 5.2 42.5 10.7 

CMP2 CB10002582 11.3 68.0 59.7 

CMP3 CB10002510 21.0 84.3 97.8 

CMP4 CB10002491 51.9 80.4 82.0 

Hit CB10000905 61.2 90.0 91.9 

CMP6 CB10002462 65.3 94.9 87.9 

CMP7 CB10002594 73.9 101.6 99.2 

ML416 CB10002681 95.1 -20.0 

CMP9 CB10002704 96.5 110.4 102.6 

ML336 CB10002700 106.6 112.7 103.0 

Table 2. Chemical IDs and effectiveness in the CPE and RNA inhibition assays. 

Compound ID numbers are the same as the structure IDs available in PubChem. 
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Number Compound ID Structure 

CMP1 CB10002593 

CMP2 CB10002582 

CMP3 CB10002510 

CMP4 CB10002491 

Hit CB10000905 

CMP6 CB10002462 

CMP7 CB10002594 
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ML416 CB10002681 

CMP9 CB10002704 

ML336 CB10002700 

Table 3: Structures of the selected compounds 
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The anti-RNA synthesis activity of ML336 is VEEV-specific and has no effect on 

cellular RNA synthesis.  

Having determined that ML336 and related compounds are able to inhibit VEEV 

RNA synthesis during active replication, we sought to further characterize this anti-RNA 

synthesis activity. First, we determined the potency of ML336 against VEEV viral RNA 

synthesis. Cells were infected with VEEV strain TC-83 and treated with 3HU and various 

concentrations of ML336 from six to eight HPI as described in the Materials and 

Methods. The amount of 3HU incorporated into the total isolated RNA was measured 

and a dose response curve was generated to calculate the IC50 Figure 9 A. ML336 

showed strong, dose-dependent inhibition of viral RNA synthesis activity with an IC50 of 

1.1 nM with a standard deviation of 0.7 nM. At 40 nM, ML336 decreased viral RNA 

synthesis to 7% of the control. These data indicate that VEEV RNA synthesis is 

efficiently inhibited by ML336. Also, ML336 was efficacious at inhibiting viral RNA 

synthesis at the EC50 determined by the cell-based assay. 

Previously, we determined that compounds based around the ML336 

benzamidine scaffold had no antiviral effect on CHIKV in cell culture using the CPE 

assay145. If the antiviral effect of this compound is mediated by the inhibition of viral RNA 

synthesis, then CHIKV will also resist this activity. We measured the inhibition of RNA 

synthesis by ML336 treatment on CHIKV using the 3HU assay. As can be seen in Figure 

9 B, ML336 had no effect on CHIKV RNA synthesis even at 4 µM (P > 0.22, ANOVA), 

the highest concentration we tested, and 4000-fold higher than the IC50 value of the 

compound against VEEV in this assay, compared to an untreated positive control.  

To measure the effect of ML336 on cellular RNA production, uninfected BHK 

cells were incubated with ML336 at the indicated concentrations or with a DMSO control 

in the presence of 3HU without act D Figure 9 C. Overall, ML336 did not show an 
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inhibitory effect on cellular RNA synthesis. A small decrease in cellular RNA synthesis 

was detected only at the highest concentrations of ML336, 50 µM and 25 μM, which are 

over 20,000-fold higher than the IC50 value, indicating that the inhibitory activity of 

ML336 against cellular RNA synthesis is negligible at working concentrations.  
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Figure 9. The RNA synthesis inhibition of ML336 is highly specific and has no effect on 

cellular RNA synthesis.  

A) BHK 21 cells were infected with VEEV as described and cells were pulsed from 6-8

hours post infection with act D, 3HU, and ML336 at the indicated concentrations. Each 

point represents three biological replicates, error was calculated as the standard 

deviation. Dose-response curves were generated using four parameter curve fitting in 

Graph Pad Prism software 9th edition. B) BHK 21 cells were infected with CHIKV at an 

MOI of 10 and infection proceeded as for VEEV. Cells were treated with the indicated 
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amounts of ML336. U is an uninfected control. Graph is of one representative 

experiment of two total experiments, each point represents three biological replicates, 

and error is standard deviation. C) Uninfected BHK 21 cells were treated with VEEV at 

the indicated concentrations or DMSO control. Cells were pulsed for 2 hours with 

compound and 3HU. NL is an unlabeled control reaction. Graph is of a single 

representative experiment of two experiments, points each represent three biological 

replicates, and error is standard deviation.  
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Viral isolates that can replicate in the presence of ML336 resist the RNA synthesis 

of inhibition of the compound. 

 As previously mentioned, we have isolated several strains of VEEV that resist 

treatment by either our initial hit compound127 or ML336, by serially passaging in the 

presence of the compound or by direct sequencing in the presence of the compound. 

These resistant viruses have mutations mapped in the N-terminal regions of nsP2 (e.g., 

nsP2Y102C mutation) or of nsP4 (e.g., nsP4Q210K mutation)127. Either of these mutations is 

enough to cause resistance in isolation, i.e. only one of the two mutations is required for 

compound resistance. We hypothesized that if inhibition of viral RNA synthesis is the 

primary outcome of ML336 treatment, then these mutants would maintain levels of RNA 

synthesis similar to the parental virus in the 3HU incorporation assay. We introduced the 

mutations that were found in the mutant strains into the plasmid encoding the full, 

infectious genome of V3526 and then produced the mutant virus strains in the presence 

of the initial hit compound at a concentration of 5 µM127. After determining that maximum 

levels of RNA synthesis occurred at 14 HPI (data not shown) we performed a metabolic 

labeling experiment in the same manner as described in our methods.  

As expected, viral RNA synthesis of the parental V3526 was sensitive to 

treatment with ML336, and viral RNA synthesis was fully abrogated at 5 µM Figure 10. 

Comparatively, the mutant viruses showed varying levels of sensitivity to ML336. The 

nsP2Y102C mutant showed 76.2 % RNA synthesis compared to the control and nsP4Q210K 

mutant showed no inhibition compared to a vehicle control. This result clearly shows that 

the compound-resistant mutant viruses are able to overcome the RNA synthesis 

inhibitory effects of ML336. Our data so far support the hypothesis that ML336 is a viral 

RNA synthesis inhibitor that acts through nsP2 and nsP4. 
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Figure 10. ML336 resistant mutations grant resistance to RNA synthesis inhibition. 

Mutations were introduced to the clonal VEEV V3526 backbone and these mutant 

viruses were subjected to the RNA synthesis inhibition assay as described at a 

concentration of 5 µM ML336. The amount of 3HU label was quantified by liquid 

scintillation counting. The amount of incorporated label was divided by the amount 

present in the DMSO treated control and multiplied by 100 to yield the percent of RNA 

synthesis. Graph is from data from two experiments, each with three biological 

replicates. Error is reported as standard deviation. 
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ML336 inhibits both positive and negative RNA synthesis of VEEV. 

 During infection with VEEV, several RNA species are generated by the virus 

which have distinct functions. We next sought to determine if ML336 specifically targeted 

the synthesis of one or more of these RNA species. To determine if ML336 inhibits either 

positive or negative-sense RNA production, we used a strand-specific qRT-PCR165. 

VEEV-infected cells were treated either with ML336 or DMSO at 4 HPI, and the copy 

numbers of positive and negative-sense viral RNA were quantified and compared. This 

earlier time point was selected as the rate of negative-sense RNA production decreases 

later in infection. As shown in Figure 11 A, the control group (DMSO-treated) had almost 

a 1 log increase in the amount of positive-sense RNA and an approximately half log 

increase of negative-sense RNA during the period of 4 to 6 HPI. 

In the presence of ML336, however, the amount of positive- and negative-sense 

viral RNA did not increase at all, which demonstrated the inhibition of both positive- and 

negative-sense viral RNA synthesis by ML336. The presence of ML336 did not affect the 

ratio of positive to negative-sense RNA. The copy number of positive-sense RNA was 

10,000-fold higher than that of the negative-sense RNA at all time points and in both 

ML336 treated and untreated conditions. This difference in the levels of the RNA species 

is consistent with findings previously reported in alphaviruses by others168. These results 

show that the synthesis of both the positive and negative-sense strands of VEEV RNA 

was affected by ML336.  

ML336 inhibits the RNA synthesis by the mature replicase complex. 

 For alphaviruses, the majority of viral RNA synthesized in the infected cells is 

positive-sense RNA (See Figure 11 A) and the synthesis of positive-sense RNA is 



62 

dependent on the amount of negative-sense genomic RNA (Figure 5)85; therefore, the 

inhibition of negative-sense RNA synthesis would result in the inhibition of positive-

sense RNA synthesis . To determine if the inhibition of viral positive-sense RNA 

synthesis by ML336 is due to the inhibition of negative-sense RNA synthesis, we sought 

to test the effect of ML336 on positive-sense viral RNA synthesis alone. 

The alphavirus negative-sense RNA is produced only by the newly translated, 

short-lived, polyprotein, nsP123/4 or nsP1/23/461,160. Therefore, it has been well-

established that inhibition of translation (e.g., treatment with cyclohexamide) prevents 

the production of the negative-sense RNA by nsP123/4, which allows us to measure the 

positive-sense specific RNA synthesis by the pre-formed, mature, viral replicase 

complex85,169.  

We measured viral positive-sense RNA synthesis using our 3HU labelling assay 

in the presence of cyclohexamide (CHX), a translation inhibitor, and evaluated the effect 

of ML336, Figure 11 B. Treatment with CHX showed no significant difference in the total 

viral RNA production compared to the vehicle control. This data indicates that the 

majority of viral RNA that was being synthesized at this time was positive-sense RNA, 

which is consistent with data reported by others85 as well as our real-time PCR 

experiments shown in Figure 11 A. Importantly, we found that the treatment of VEEV-

infected cells with ML336 completely abrogated viral RNA production even in the 

presence of CHX. This shows that ML336 inhibited the synthesis of viral RNA generated 

by the mature replicase complex (i.e., positive-sense RNA), and the inhibition of the 

negative-sense viral RNA synthesis is not required for ML336 to inhibit positive-sense 

viral RNA synthesis. 
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ML336 inhibits the synthesis of both genomic and subgenomic VEEV RNA.  

Having determined that ML336 inhibits the synthesis of positive-sense VEEV 

RNA, we sought to determine if the inhibition of the positive-sense RNA strand was 

specific to either the genomic or the subgenomic RNA. Alphaviruses synthesize two 

species of positive-sense RNAs, the genomic RNA (49S), which is packaged into 

progeny virions and is used for translation of the nonstructural polyprotein, and the 

subgenomic RNA (26S), which is responsible for the production of the structural genes. 

The expression of these two RNAs is controlled by the amount of polyprotein that has 

been synthesized, and the current cleavage state of the polyprotein61,103,160.  

To understand whether the inhibition of viral RNA synthesis was specific to 

genomic (49S) or subgenomic (26S) viral RNA, we analyzed the viral RNAs that were 

produced in the presence or absence of ML336 using fluorography of 3HU-labeled viral 

RNA. As Figure 11 C shows, the addition of ML336 to VEEV-infected cells at any time 

post-infection up to 8 hours completely abrogated synthesis of both genomic and 

subgenomic viral RNA. This indicates that addition of ML336 inhibits the synthesis of 

both 49S and 26S viral RNA in cells.  
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Figure 11. ML336 inhibits all stages of VEEV RNA synthesis. 

A) Strand-specific qRT-PCR was performed on RNA isolated from TC-83 infected BHK

21 cells that were either treated with ML336 at 5 µM or DMSO vehicle control. RNA copy 

number was measured by using a standard curve with known viral RNA copy numbers. 

Each point represents a mean and standard deviation from three biological replicates. B) 

Metabolic labeling of VEEV RNA was performed as before using act D and 3HU, with 

data collected by liquid scintillation counting. Cells were labeled from 6-8 HPI. CHX: 

cyclohexamide. Graph is from one representative experiments with three biological 

replicates per treatment. Error is reported as standard deviation. C) A representative 

fluorogram after treatment with ML336. Cells were treated with ML336 at 2.5 µM or 
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DMSO at the time points indicated and then the RNA was visualized by treatment with a 

scintillant and exposure to X-ray film as described in the materials and methods. 1 µg of 

RNA was used per lane. G: genomic RNA, SG: subgenomic RNA.  
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ML336 inhibits VEEV RNA synthesis in a cell-free system. 

The work outlined here implies that ML336 and related compounds function to 

inhibit VEEV infection by interfering with the synthesis of viral RNA. And this activity is 

specific to viral RNA and has minimal effect on cellular RNA synthesis (Figure 10). 

Further, it is known that the replication of viral RNA is carried out directly by the virally 

derived replicase complex58–61. This catalytic activity is also maintained by purified 

protein124,125 Additionally it has been previously found that viral isolates that resist 

treatment with these antiviral compounds have mutations in the N terminal region of 

nsP2 and nsP4148. When taken altogether, this led to our hypothesis that ML336 and 

related compound were likely to be directly interacting with the viral nsPs to mediate 

their anti-VEEV activities. Currently there has been no successful expression of the full 

length nsP2 protein of any alphaviruses, and the other nsPs are also known to be 

difficult to ectopically. This limited our abilities to examine a potential interaction between 

these proteins and ML336. This led to our use of a so-called cell-free RNA synthesis 

assay. 

The cell-free RNA synthesis assay was developed for alphaviruses many years 

ago and uses fractioned cellular components as both enzyme and template to generate 

viral RNA in the absence of complete, living cells166170. While this method does not 

completely remove cellular components from the assay, it greatly limits the amount of 

cellular proteins present, and is currently the best that can be done to isolate and 

examine the activities of the nsPs directly. The use of the P15, or membranous fraction, 

provides both template and polymerase to examine viral RNA synthesis. P15 fraction 

isolated from VEEV-infected cells was incubated with ribonucleotide substrates (e.g., 

ATP, GTP, and UTP) and radioactive CTP in the presence of ML336 or DMSO, then the 

in vitro synthesized viral RNA was analyzed on denatured agarose gels. 
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As shown in Figure 12 A, while there was no radiolabeled RNA produced by the 

P15 fraction of uninfected cells, three distinct viral RNA bands corresponding to genomic 

(49S), subgenomic (26S), and a replication intermediate, which has been previously 

reported on denaturing gels 166, were present in the RNA produced with P15 from virus-

infected cells. The addition of ML336 in the reaction decreased the amount of all three 

RNA species in a dose-dependent manner. At ML336 concentrations greater than 200 

nM, there was complete abrogation of all viral RNA synthesis. This result, complete 

inhibition of viral RNA synthesis of the P15 fraction, indicated that the inhibition of viral 

RNA synthesis by ML336 is independent from cellular metabolism and supported our 

hypothesis that ML336 inhibits viral RNA synthesis by a direct interaction with the viral 

replicase complex. 

 The IC50 value in this assay was then determined via optical density analysis 

from three separate experiments, and was found to be 49 nM, which is similar to the 

EC50 value as determined in our initial cell-based assays, Figure 12 B. This IC50 value is 

higher than that seen for RNA inhibition in our 3HU incorporation assay, Figure 9 A. This 

is most likely due to differences in the RNA labeling reactions. The 3HU incorporation 

assay labels all of the viral RNA that is being produced in the cell. However the cell-free 

synthesis assay is labeling primarily positive-sense RNA manufactured by mature 

replicase complexes. This could lead to less sensitivity as ML336 also inhibits the 

synthesis of negative-sense RNA.  

The autoradiogram in Figure 12 A and also shows a large amount of small RNA 

products being labeled that were not present in the fluorgram in Figure 11 C. This is due 

to the being different ways of making and labeling RNA. The fluorgram uses total 

isolated RNA from infected cells, which is made in an ideal system for the virus. The 

labeling periods are also rather long allowing for highly efficient incorporation of label 
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into the RNA. The autoradiogram, by contrast, is in a limited system, with minimal 

resources for the replicase complex. This minimal system is probably the cause of the 

increase in labeled small transcripts. These transcripts could be early terminated RNA, 

RNA synthesis initiating incorrectly, or RNA in the middle of synthesis 
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Figure 12. ML336 is active in a cell-free system. 

The P15 was isolated from BHK 21 cells infected at an MOI of 10 with VEEV TC-83. 

This material was combined with various reagents as described in the methods, with 

[α33P]-CTP to label viral RNA. A) A representative RNA gel showing the results of the 

labeling reaction. The 28S and 18S ribosome subunit rRNA were used as size markers. 

RI: a VEEV replication intermediate; G: the VEEV genomic RNA; SG: the VEEV 

subgenomic RNA. U is an uninfected control. 0 µM is a DMSO treated control. RNA 

amounts were controlled by using equal numbers of infected cells (1.25 x 106) per 

reaction, and total isolated RNA was used from each reaction. B) Densitometry was 

performed on three images from separate experiments to quantify the amount of labeled 

RNA present. These results are shown as a dose response curve. The IC50 value in this 

assay was found to be 49 nM. 
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Discussion 

ML336 and its analogues have been discovered through medicinal chemistry 

efforts originating from a quinazolinone hit compound that was identified from a cell-

based high-throughput assay using live virus127. While our previous approaches using 

cell-based assays and mapping of resistance mutations strongly suggested viral RNA 

synthesis as the target step of this antiviral activity, the mechanism of action of the 

compounds has remained unclear127,145. In this study we employed additional cell-based 

and biochemical assays to evaluate the effect of these compounds on VEEV viral RNA 

and host cell synthesis. Our data suggest that ML336 and related compounds inhibit 

VEEV by directly preventing viral RNA synthesis via a direct interaction with the viral 

replicase complex. ML336 demonstrated an efficacious inhibitory activity in both cell-

based and cell-free viral RNA synthesis assays, and showed strong inhibitory activity 

against the synthesis of all viral RNA species. Our data strongly support the conclusion 

that the primary anti-VEEV mechanism of the amidine compound, ML336, is interfering 

with viral RNA synthesis.  

The inhibition of viral RNA synthesis mediated by interaction with the replicase 

complex has not yet been described for any antiviral with efficacy against alphaviruses. 

With regards to the molecular mechanism of these compounds, resistant mutations in 

nsP2 (e.g., nsP2Y102C) indicate that this region of nsP2 may be important for sensitivity to 

ML336. A homology model of VEEV nsP2 made using a recently published crystal 

structure of the N terminal region of nsP2 of CHIKV with the I-TASSER protein modeling 

server171–173, Figure 14, has shown that the residues that are important for sensitivity to 

ML336 are located in an accessory domain to the helicase, termed the stalk domain, in 

nsP298. The stalk domain is a large alpha helix that is external to the active site of the 
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helicase, which may imply that this region could be involved in the protein interactions in 

the replicase complex during infection.  
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Figure 13. Homology model of VEEV nsP2 N terminal region. 

A ribbon structure homology model of the first 465 amino acids of VEEV nsP2 was 

produced using I-TASSER. This model was made possible by the recent publication of 

the crystal structure of this same protein region from CHIKV by the Luo lab98 which was 

used as the basis for our model. Domains are color coded. N terminal domain (red), 

Stalk domain (orange), 1 B (yellow), Rec 1 (green), Rec 2 (light blue), Connector (dark 
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blue). The region where our compounds are expected to bind is the stalk in the stalk 

domain. The location of one of the resistance residues, Y102, is indicated with the side 

chain. The ADP binding pocket is also marked.  
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Our work characterizing the benzamidine compounds also has the potential to lead to 

further understanding of the divergence between the New- and Old-World alphaviruses. 

The Old-World alphaviruses (e.g., CHIKV) do not show susceptibility to this scaffold as it 

relates to RNA synthesis inhibition. The nsP2102 residue is occupied with a tyrosine in 

New-World alphaviruses (i.e., EEEV, VEEV, and WEEV); while a lysine residue occurs 

at this position in the Old-World alphaviruses. This information provides insight into novel 

ways in which the N-terminal regions of nsP2 and nsP4 may affect the divergent 

phenotypes of the New- and Old-World viruses. Lastly, further research to understand 

the mechanism of ML336 may assist in the design of new compounds that inhibit 

replication of the Old-World alphaviruses.  

In conclusion, we demonstrated that ML336 is a selective and potent inhibitor of 

VEEV viral RNA synthesis and that the inhibition of viral RNA synthesis might be the 

primary antiviral mechanism of this class of compounds. Our results strongly support 

that this class of compounds has a high potential for effective antivirals for New World 

alphaviruses. 

Conclusions 

The previously discovered antiviral compound ML336 was found to inhibit the 

replication of viral RNA by VEEV. This activity appears to be mediated through domains 

of currently unknown function in the N terminal regions of viral nonstructural proteins 2 

and 4. Further characterization of this proposed interaction will be helpful in determining 

the function(s) of this domain which is currently proposed as an accessory domain to the 

helicase. We hypothesize that it will be involved in protein/protein interactions due to its 

location external to the helicase active site, as well as it showing no evidence of RNA 

binding activities.  
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CHAPTER 3 

ANALYSIS OF INTERACTIONS BETWEEN AMDIDINE COMPOUNDS AND THE VEEV 

NSPS 
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Overview 

As outlined in the previous chapter, ML336 and related compounds mediate their 

anti-VEEV activity by inhibiting viral RNA synthesis. Due to the specificity of this activity, 

as well as the fact that viral isolates that resist compound treatment have mutations in 

the N terminal regions of nsP2 and nsP4127, we hypothesize that ML336 and related 

compounds interact with VEEV nsP2 and nsP4. To detect and characterize the 

hypothetical interaction(s) between the amidine compound family and Venezuelan 

equine encephalitis virus (VEEV) it is desirable to determine the location and dynamics 

of this interaction. However, working with VEEV proteins in biochemical assays is 

difficult due to difficulty expressing them recombinantly. This chapter outlines various 

methods that were tested in an attempt to characterize this interaction, as well as the 

development of a system for the ectopic expression of VEEV nsP2.  

Introduction 

While the mechanism of action of our amidine family anti-VEEV compounds has 

been thoroughly examined, the interaction(s) between these drugs and their targets has 

yet to be fully characterized.  Characterizing these interactions will provide more detail 

about the mechanism of action, as well as assist in the further development of this 

compound scaffold. It was hypothesized that ML336 and related compounds interact 

with the nsPs of VEEV. This is due to several observations. First, when viral isolates 

occur that resist treatment with this compound family, the mutations that occur in these 

viruses are primarily focused in nsP2 and nsP4127. This indicates that these regions and 

proteins are important in mediating compound activity. Second, ML336 acts to inhibit 

viral replication and CPE by interfering with viral RNA synthesis. This activity is known to 

be carried out by the viral nsPs. Lastly, ML336 remains activity in a cell-free RNA 

synthesis assay. While this assay does not eliminate all cellular proteins, it does 
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eliminate all living cells. This indicates that the antiviral activity of this compounds is 

unlikely to be dependent on cellular signaling processes.  

 However, the detection of these hypothetical interactions between ML36 and the 

viral nsPs is difficult, as most methods of interaction detection require both large 

amounts of starting material, in this case of viral protein, as well as highly pure sample. 

There are often challenges in expressing eukaryotic, or in this case viral, proteins such 

as insolubility, disulfide bond formation, and post-translational modification174,175176,177, 

and the VEEV nsPs have been historically difficult to generate in this manner, as can be 

seen in only partial expression of nsP2 that has been achieved98,102.  

To date, there has been relatively little success in solving the structures of the 

VEEV nsPs, which makes the prediction of binding sites and interaction using in silico 

methods challenging. While the macrodomain of nsP3, and the protease of nsP2 have 

solved structures102,108,178, the remaining proteins and domains have proven difficult to 

work with and only recently has there been published work examining parts of their 

structure. The N terminal region of nsP2 has recently been crystalized from CHIKV, and 

this allowed for the development of homology models of this protein in VEEV98. A cryo-

em derived structure of nsP1 was also recently published in its membrane bound form92. 

The crystal structure of nsP2 has paired knowledge of protein structure with previous 

research that this protein contains several biologically active domains, in particular the 

C-terminus contains a cysteine like protease domains, while the N terminus has helicase 

and RNA binding activity88,96,162. The C-terminal region of nsP2 also contains a methyl 

transferase like domain, however this domain has not been confirmed to be functional85, 

however it appears to involved in innate immune signaling105. Mutations in this region 

also interfere with the localization of nsP2 to nucleus179 

The determination of protein function and the production of proteins for various 

biochemical assays is greatly aided by the use of vector systems for the expression of 
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proteins. The most common vector system is the use of specially designed strains of E. 

coli that are optimized for this purpose. These systems typically utilize inducible 

expression systems that can be controlled by media supplementation174. There are also 

many strains available that have been optimized for the expression of difficult eukaryotic 

proteins174.  

 With the goal of examining the hypothetical interactions between ML336 and the 

VEEV nsPs, several methods of protein isolation and labeling were attempted. The 

methods that were utilized were fractioning of cells and ultracentrifugation, the labeling 

of proteins and tracking of interactions using Click-iT chemistry, and recombinant 

expression of VEEV nsP2. 

 It was first attempted to purify the nonstructural proteins from infected cells. 

Previous work has established that these proteins could be detected in highly purified 

spherules from infected cells 74. So, we sought to enrich for this fraction from infected 

cells and then determine if we could use this fraction for biochemical binding assays. 

After finding little success with this approach, a recently developed chemical labeling 

system referred to as Click-iT chemistry180 was utilized.  

This chemistry utilizes functional groups that are essentially absent in biological 

systems, azides and alkynes, to perform highly specific interactions which form covalent 

linkages between these groups. These interactions can be used to label molecules for 

imaging, for isolation of molecules form complex mixtures, and many other downstream 

applications. Multiple types of reactions have been optimized both with and without 

copper catalysis. In this instance proteins are metabolically labeled with a methionine 

analogue that can be then be appended using a marker than can then be purified or 

tracked with imaging techniques181182183. This system is advantageous as it can be 

performed during infection easily, and depending on the method used requires minimal 

protein for detection. Working with our medicinal chemist collaborator, we also obtained 



79 

two compounds, one with efficient antiviral activity and one without, that were modified to 

contain click labile functional groups. This allows for these compounds to be directly 

labeled in the Click reaction and detected in a variety of ways. 

While this system showed promise, being able to detect both metabolically 

labeled proteins as well as specifically appended click labile antiviral compounds, these 

methods were not specific enough for our needs. We detected primarily cellular proteins 

after metabolic labeling, and the click labile compounds were too dispersed throughout 

the cells to make colocalization with viral replication centers or proteins possible. 

Lastly, an expression system was developed for nsP2 and nsP4. The work of 

expressing and purifying this protein was performed iteratively, starting from attempting 

to express fusion peptides of nsP2 and nsP4 in multiple orientations. It was 

hypothesized that these proteins interact in the replicase complex due to resistance 

mutations occurring in both of these proteins in response to treatment with the small 

molecule antiviral compounds.  This initial strategy eventually led to the successful 

expression of the N terminal region of nsP2 using a large solubility increasing tag in a 

highly specialized strain of E. coli termed Rosetta, that has been altered for the 

expression of both proteins with a large number of disulfide bonds as well as for codons 

that are rare in E. coli174.  

Materials and Methods 

Cell culture and viral strains 

Baby hamster kidney (BHK) clone 21 cells (ATCC CCL-10) and Vero 76 (African 

Green monkey kidney fibroblasts) (ATCC® CRL-1587™) were maintained in Modified 

Eagle’s Medium with Earle’s Balanced Salt Solution and L-glutamine (MEM-E, Corning 

10-010-CV) supplemented with 10% fetal bovine serum (FBS) (Corning 35-011-CV). 

Cells were maintained at 37 C in humidified incubators with 5% CO2. VEEV strain TC-83 
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(gift of Dr. Connie Schmaljohn, USAMRIID) was used for this study. The strain V3526 

was generated from a plasmid as described previously (Chung et al., 2014). Infections 

were carried out using a virus infection medium (Modified Eagle’s Medium with Earle’s 

Balanced Salt Solution with L-glutamine (Corning 10-010-CV), 25 mM HEPES, 10% 

FBS) 

Solubilization of the P15 fraction 

Cells were infected with VEEV TC-83 at 10 MOI and incubated for 6 hours. Then, 

cells were washed with ice-cold, sterile PBS (Caisson Labs PBL01) and the cells were 

incubated in hypotonic RS buffer (10 mM NaCl, 10 mM Tris-HCl, pH7.8) supplemented 

with Protease inhibitor cocktail III (Research Products International P50700-1) on ice for 

15 minutes. Cells were scraped into buffer and thoroughly homogenized using a Dounce 

homogenizer. Nuclei were removed by centrifugation at 900 x g for 10 minutes at 4 °C. 

Supernatant containing the cytoplasmic fraction was transferred to microcentrifuge tubes 

and centrifuged at 15,000 x g for 20 minutes at 4 °C. The supernatant (S15 fraction) was 

removed and pellets (P15 fraction) were used for further analysis. 

To solubilize the membranes and release the viral proteins the P15 fraction was 

treated with either Triton X-100 (Sigma Aldrich T-9284) (2% v/v) or sodium deoxycholate 

(Sigma Aldrich 30970) (DOC) (0.5% w/v) with or without 1M NaCl at 4°C for ten minutes 

with mixing at 750 RPM. The insoluble material was then removed by centrifugation at 

15k x G for 20 minutes at 4C. The supernatants were then used in a cell free RNA. 

Method adapted from Pietla et al74 

Isolation of viral proteins via glycerol and sucrose gradients 

Supernatants from DOC solubilized P15 fractions were used as the input material 

for ultracentrifugation over a glycerol gradient. A discontinuous gradient was made using 

three steps 15%, 23%, and 30% glycerol with 1 mM EDTA (Promega V4231) , 50 mM 
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Tris-HCl pH=7.8, 0.5% DOC (w/v) and 150 mM NaCl. Samples were centrifuged at 

100,000 RPM for 1 hour in a Beckmann TLA 110 rotor at 4°C. Ten fractions of 500 µL 

were collected by bottom puncture and those with the highest activity as measured by 

RNA synthesis assay were further separated via a sucrose gradient.  

A three step discontinuous sucrose gradient was used to further separate the 

fractions that were found to have RNA synthesis activity after the initial separation on the 

glycerol gradient. The steps were 15%, 30%, and 60% sucrose (w/v). The samples were 

centrifuged at 100,000 RPM for 6.5 hours in a TLA 110 rotor at 4°C. Ten fractions of 500 

µL were collected by bottom puncture. Fractions were assayed for activity in the RNA 

synthesis assay.  

Isolation of viral proteins using cesium chloride 

Cesium chloride is used to create continuous gradients during centrifugation, and 

separates cellular components based on density rather than migration speed as 

opposed to glycerol and sucrose gradients. An aqueous solution of 1.37 g/mL CsCl was 

made and loaded into centrifuge tubes. The P15 from infected cells was isolated and 

solubilized as described above. The samples were loaded on top of the gradient and 

centrifuged at 100,000 x G for eight hours at 4°C in a Beckmann TLA 110 rotor. Ten 

fractions of 500 µL each were collected by bottom puncture. Floating material that did 

not enter the gradient was also collected.  

Immunoblotting 

The collected fractions after glycerol centrifugation were combined with Laemmli 

buffer (4% SDS w/v, 20% glycerol w/v, 120 mM Tris-HCl pH=6.8, bromophenol blue) 2:1 

and boiled to denature proteins. The prepared samples were loaded into gradient gels 

for SDS-PAGE (GenScript M00656) and run at 150V until the dye front reached the 

bottom of the gel. Protein was transferred to a PVDF membrane (BioRad 1620177) 

using methanol Tris-glycine buffer (200 mM glycine, 25 mM Tris, 10% methanol v/v) for 
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two hours at 20 V. Membranes were washed once with 1X TBS and blocked with 5% dry 

milk in TBS at room temperature for one hour. The membrane was washed five times in 

TBS-0.01% tween 20, and then stained with primary antibody overnight at 4° C. The 

nsP2 monoclonal antibody was used at a final concentration of 0.4 µg/mL diluted in TBS-

T. The membrane was then washed five times with TBS-T and stained with secondary 

antibody diluted in TBS-T. Anti-mouse HRP stained the nsP2 antibody and is used at a 

final concentration of 1:10,000. The secondary antibody staining was performed for one 

hour at room temperature. The membranes are washed six times in TBS-T and 

developed in ECL reagent for five minutes at room temperature. The images were 

collected using an Azure Biosystems c300 imaging system for detection of 

chemiluminescence.  

Cell-free RNA synthesis assays 

VEEV viral RNA synthesis assay was adapted from Barton et al166. Ten 

microliters of P15 fraction enriched for VEEV viral replicase complexes, which is 

equivalent of approximately 1.25 x 106 infected cells, was combined with a same volume 

of a RNA synthesis mix (100 mM Tris-HCl pH 7.8, 100 mM KCl, 20 µg/mL act D, 20 mM 

DTT, 10 mM creatine phosphate (Sigma Aldrich 10621714001) , 50 µg/reaction creatine 

phosphokinase (Sigma Aldrich C3755-3.5KU), 4 mM of ATP, GTP, and UTP, 20 µM 

CTP (NEB N0450s), 12 mM MgCl2) on ice and 1 µL of SUPERaseIn RNase inhibitor 

(Ambion AM2694 ), 5 µg of yeast tRNA (Ambion 15401011), and 5 µCi of [α-33P]-CTP 

(Perkin-Elmer NEG608H) were added per reaction. After an incubation at 37 °C for 90 

minutes, RNA was isolated from each reaction using RNAzol RT and RNA mini prep kit 

columns (Zymo Research R2052) according to manufacturer’s instructions, with an 

additional wash step before elution. For compound addition, ML336 was added to 

reaction mixtures before incubation at 37 °C at the indicated concentrations. The final 

DMSO (Sigma Aldrich D8418) concentration was 0.25%. 
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Silver stain of total protein 

The fractions collected after CsCl centrifugation were mixed 2:1 with Laemmli 

buffer (4% SDS (RPI L22010) w/v, 20% glycerol w/v, 120 mM Tris-HCl pH=6.8, 

bromophenol blue) and boiled to denature the proteins. The prepared samples were 

analyzed by SDS-PAGE in a gradient gel, run at 150 V until the dye front reached the 

bottom of the gel. Gel was stained using the Pierce Silver Stain Kit (Thermo Fisher 

24612) according to manufacturer’s directions. Gel was digitally scanned.  

L-AHA labeling of proteins 

Cells were infected with VEEV TC-83 at an MOI of ten and held on ice for one 

hour. The cells were washed once with PBS and released into warm infection media. 

Infection proceeded for 8 hours. The infected cells were then starved of methionine 30 

minutes before labeling was begun by incubation in DMEM hi-glucose without 

methionine, cysteine, or sodium pyruvate (ThermoFisher 21013024). Cells were then 

treated for one hour with azidohomoalanine (Anaspec AS-63669) (L-AHA) a methionine 

analog which contains an azide, at a concentration of 25 µM. 

DIBO labeling of L-AHA treated cells 

Dibenzocyclooctyne (DIBO) is the catalyst for copper free click chemistry. This 

version of click chemistry is useful because it avoids the off target effects of copper in 

cells184. For labeling of live cells, the cells are washed twice with PBS then DIBO-

Alexafluor 647 (ThermoFisher C20022) in PBS was added to the wells to a final

concentration of 5 µM. The cells were rocked in the dark at room temperature for one 

hour. The cells were washed twice with PBS then lysed with lysis buffer (1%SDS (w/v), 

50 mM Tris-HCl pH = 8). Cells were held in lysis buffer for fifteen minutes on ice, 

suspended and moved to Eppendorf tubes, then sonicated for five minutes in a water 

bath sonicator. The lysate was centrifuged for five minutes at max speed at 4C to 
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remove any debris. For DIBO labeling of cell lysate, DIBO-Alexafluor 647 was added to 

a final concentration of 5 µM to the cell lysate. Lysate was incubated in the dark for one 

hour at room temperature.  

Copper containing Click-iT reaction 

Cells were infected at an MOI of 10 with VEEV TC-83. Cells were held on ice for 

one hour. Cells were washed once with PBS and then released into warm infection 

media. Infection proceeded for 3.5 hours and the cells were methionine starved as 

before. The cells were treated with L-AHA at 25 µM for four hours. The cells were lysed 

as before, and the proteins were precipitated using methanol:chloroform precipitation. 

The proteins were then labeled using the Thermo Click-iT (C10276) protein reaction 

buffer kit according to manufacturer’s instructions. The labeled proteins were separated 

by SDS-PAGE, 150V until the dye front reached the bottom of the gel, and images 

collected using a BioRad Pharos imaging system.  

Treatment of infected cells for fluorescent microscopy 

BHK-21 cells grown on glass coverslips were infected at an MOI of 0.25 and held 

on ice for 1 hour to synchronize infection. Cells were washed with PBS and warm 

infection media was added to initiate infection. Infection proceeded for 5.5 hours at 37C 

and 5% CO2. The media was aspirated, and the cells were pulsed with media containing 

either of the two compounds at 10 µM or 0.25% DMSO vehicle control. Compounds 

3260 and 3261 are derived from the amidine scaffold backbone, they differ in that they 

each contain both an azide and alkyne functional group. The azide is photolabile and 

used to UV fix the compounds to whatever they are bound to in the cell. The alkyne is 

then used from Click chemistry. Cells were incubated for 30 minutes at 37°C 5% CO2. 

The cells were washed for ten minutes in HBSS (Lonza 04-315Q). The cells were short 

wavelength UV fixed for ten minutes to immobilize the compounds. The cells were fixed 

in a one-to-one mix of acetone and methanol at -20°C for 20 minutes in preparation for 



85 

an immunofluorescence assay (IFA) and to permeabilize the cells. The click reaction 

was then carried out on the monolayer: 1mM CuSO4, 100 mM L-ascorbic acid sodium 

salt, 20 mM Tris-HCl pH=8.5, 20 µM A647 alkyne. 300 µL of the solution was added per 

well, and the plates were incubated in the dark at room temperature for 30 minutes. 

Cells were washed four times with PBS and then used for antibody staining. 

Staining of cells for microscopy 

After the click reaction to directly detect the click labile antiviral compounds, the 

cells were stained to detect VEEV nsP2 and double stranded RNA. The antibodies were 

diluted into PBS with 0.1% saponin (Sigma Aldrich 47036) with 1% normal horse serum. 

Anti-VEEV E protein (BEI) was used at a concentration 1:10,000, and JS1 anti-dsRNA 

antibody (obtained from the lab of Dr. Nobuyuki Matoba as a human FC switched 

antibody) at a concentration of 1:1000. Primary antibody staining was carried out 

overnight at 4°C. The cells were washed three times with PBS-saponin and then stained 

with secondary antibody in the same buffer as before. Anti-goat 555 (gift from the Abu-

Kwaik lab) was used at a concentration of 1:1,000 to stain for E protein while anti human 

488 (JIR 709-545-149) was used to stain for dsRNA at a concentration of 1:1,000. 

Secondary staining was carried out at room temperature for one hour. The cells were 

washed four times with PBS saponin. The cells were incubated with Hoechst stain 

diluted 1:10,000 in PBS for ten minutes at room temperature. Slips were removed from 

the plate and mounted on glass slides using Prolong Gold Antifade mounting medium 

with DAPI (Invitrogen P36931). 

Design of protein expression plasmids 

Initially we deigned pET19.b plasmids that expressed fusions of the N terminal 

domains of nsP2 and nsP4 in two orientations, nsP2-nsP4 and nsP4-nsP2 with a flexible 

linker between the two regions, a map of one such insertion is shown in Figure 17 
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(custom expression plasmids from GenScript). These constructs were insoluble. We 

next attempted to express the N terminal domain of nsP2 as carried out by the Luo lab98. 

Expression of the N terminal domain of nsP2 was performed using the same Pet19.b 

plasmid backbone. The protein construct encoded a his tagged SUMO solubility tag, 

immediately followed by the first 465 amino acids of VEEV nsP2. This construct and 

plasmid backbone is found in Figure 16 (custom expression plasmids from GenScript).  

Strains of bacteria used for expression 

All protein expression experiments were carried out using E. coli. All 

strains are based on the BL21 (DE3) strain of E. coli which contains the genes 

necessary for inducible expression of protein using isopropyl-B-d1-

thiogalactopyranoside (IPTG). Strain BL21 (DE3) was used for expression of the 

expression of the nsP2-4 fusion peptides. E. coli Rosetta (Novagen 70594, gift 

from the lab of Dr. Donghan Lee) was used for expression of the N-terminal 

region of nsP2. 

Expression of the N terminal domain of VEEV nsP2 

The expression vector was transformed into E. coli Rosetta, and then 

used for protein expression. Cultures were grown at 37°C in LB broth to an 

OD600 of 0.4 and induced with the addition of 1 mM IPTG. The cultures were 

shifted to 18°C and then grown overnight. 

Isolation of bacterially expressed proteins 

The bacterial cultures were centrifuged to pellet. Three mL of cell lysis 

buffer was added per gram of E. coli cell pellet (50 mM Tris-HCl pH=8, 1mM 

EDTA (Promgea V4231) pH=8, 500 mM NaCl, 1 mM DTT (Enzo ALX-280-001-

G025))) and the bacteria were resuspended. Four microliters of 100 mM 
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phenylmethylsulphonyl fluoride (PMSF), and 80 µL of ten mg/ml lysozyme were 

added per gram of E. coli. This mixture was agitated for 20 minutes at 4°C. Four 

milligrams of sodium deoxycholate were added per gram of E. coli and this 

mixture sonicated on ice to ensure complete lysis. The lysate was centrifuged at 

5000 RPM for 1 hour at 4°C in a Beckman JS-5.3 rotor. The supernatant is the 

soluble fraction. 

Recovery of protein from inclusion bodies to determine localization during 

expression 

To recover protein from the inclusion bodies, the pellet was resuspended 

in 30 mL of cell lysis buffer 2 (50 mM Tris-HCl pH=8, 10 mM EDTA pH=8, 500 

mM NaCl, 0.5% v/v Triton X-100), and incubated for five minutes at room 

temperature in a water bath. The solution was centrifuged at 5000 RPM for 

twenty minutes at 4°C and the supernatant discarded. This was repeated twice, 

for a total of three washes. The pellet was then washed with 30 mL of water and 

centrifuged as before. 

The supernatant was discarded, and the pellet was suspended in an equal 

volume of inclusion body solubilization buffer (50 mM Tris-HCl pH=8, 1mM EDTA 

pH=8, 500 mM NaCl, 8 M urea, 0.1 mM PMSF freshly added) as the volume of 

the soluble fraction collected. This mixture was stirred at room temperature for 

one hour. Any remaining insoluble material was removed by centrifugation at 

5000 RPM for twenty minutes at 4°C. This is the purified inclusion body fraction. 

Purification of recombinantly expressed protein 
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The expressed proteins contained histidine tags. To purify the desired 

protein nickel column chromatography was used (HisPure Ni-NTA resin Thermo 

Fisher, 88222). Resin was packed into a gravity column and washed and 

prepared according to manufacturer’s instructions. Protein samples were 

equilibrated in PBS with 10 mM imidazole. Increasing amounts of imidazole in 

PBS were used to elute the protein as indicated, ranging from 30 to 310 mM. 

Each elution was three resin bed volumes (3 mL of imidazole solution for 1 mL of 

packed resin). All purification steps were performed at 4°C 

SDS-PAGE analysis of expressed protein 

Protein load was controlled based on OD600 of the bacterial sample. Sample 

was suspended in 100 µL buffer per OD unit. 20 µL of sample was combined with 

Laemmli buffer and separated in gradient gels. Gels were run at 150V until the dye front 

reached the bottom of the gel. Gels were stained with colloidal Coomassie (BioRad 

1610803) 

Results 

Use of purified spherules for detecting the interaction between ML336 and related 

compounds with the VEEV nonstructural proteins 

It has been previously shown that purified spherules from alphavirus infected 

cells contain RNA synthesis activity and contain nsPs74. It was determined that the 

protein contents of these spherules could be purified by centrifugation, and their protein 

contents could be utilized in assays to determine the interaction of the amidine scaffold 

compounds and the nsPs.  



89 

The spherules can be isolated from infected cells by ultracentrifugation. Several 

gradient materials can be used for this purpose. In the case of these experiments, 

glycerol, sucrose, and cesium chloride were used. The proteins that were isolated were 

assayed for activity in the cell free RNA synthesis assay to confirm that their structure 

remained intact. While there was some activity maintained by the isolated protein after 

the initial glycerol separation, this activity was very weak compared to the starting 

material and was completely lost upon further isolation using a sucrose gradient. This 

indicates that structure of the protein complex was disrupted, and they were not suitable 

for further use, Figure 14 A and B. This is likely due to disruption of the proteins during 

the centrifugation process. In previously published work the spherules were kept intact 

during centrifugation74. The disruption of these lipid layers is likely to leave the proteins 

more exposed to damage during the isolation process. Additionally a different media was 

used to form the gradient, a specialized sugar called iodixanol74. This specialized media 

has been used previously for the isolation of live cells185, and its particular properties 

probably assisted to keep the proteins protected.   

There were also issues with the ultracentrifugation being able to isolate the nsPs 

to a single fraction, as shown in Figure 14 C, where nsP2 was detected in multiple 

fractions after ultracentrifugation, indicating that separation across the gradient was 

poor. This poor separation led to our hypothesis that separation by velocity, as in 

glycerol or sucrose gradients, may not be able to separate the cell components 

sufficiently in this case. These results led to our use of a CsCl gradient. This method 

creates a homogenous solution that then creates a density gradient during the 

centrifugation process which separates components based on their densities.  

After centrifugation with CsCl most protein in the cellular extract remained 

floating on top of the solution and did not enter the column, Figure 14 D.  This indicates 

that the proteins were contained in structures that greatly reduced their density. This 
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most likely indicates that despite the initial solubilization to disrupt the lipids contained in 

the extract, enough of them remained intact to interfere with the separation of the 

proteins. After this was unsuccessful, other methods were examined that would allow for 

marking the proteins of interest in the infected cell instead of needing to extract them. 

This led to the use of click chemistry. 
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Figure 14. Isolation of the nsPs from infected cells using ultracentrifugation. A) P15 from 

infected cells was solubilized and separated over a stepwise glycerol gradient. After 

fraction collection the RNA synthesis activity, as measured by CPM using 33P 
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incorporation, was isolated in fractions four and six. B) The active fractions were then 

further separated over a three-step sucrose gradient. After this further separation the 

RNA synthetic activity of these fractions was lost, image from one representative 

fraction. Graphs are from one representative experiment of three C) The nsPs did not 

cleanly separate across a glycerol gradient. After separation across a three step glycerol 

gradient, an immunoblot was performed to detect nsP2. NsP2 was detected in several 

fractions, and in a pellet, P, that occur at the bottom of the centrifuge tube. Ten fractions 

were collected, increasing glycerol concentration from fraction 1 to 10. Image is one 

representative experiment of 2. D) A continuous density gradient made using CsCl was 

also unable to separate the proteins. A solution of CsCl was generated and the 

solubilized P15 fraction loaded on top. After centrifugation ten fractions were collected, 

increasing density from fraction 1 to 10. Fractions collected by bottom puncture. There 

was also a large amount of floating material F, that this did not enter the gradient and 

held a large majority of the proteins. The proteins were also present in a third of fractions 

at roughly equal level, indicating that separation was poor. Total protein was detected by 

silver staining. Isolation with CsCl was only attempted once. 

  



93 

The use of click chemistry to label proteins. 

Initially, the labeled proteins were extracted using methanol precipitation and 

then appended with fluorophore using the click reaction. Cells were infected at an MOI of 

ten with VEEV TC-83 for 3.5 hours. The cells were methionine starved for 30 minutes 

and then labeled with L-AHA for 4 hours. Cells were lysed and the proteins isolated 

using methanol precipitation. These proteins were then analyzed by gel electrophoresis, 

Figure 15 A. However, there was poor detection of viral proteins generally, and the nsPs 

could not be resolved, indicating that this method was not sensitive enough to detect the 

proteins of interest specifically compared to the cellular proteins. It is important to point 

out that the specificity of this assay was based on the result of VEEV infection inhibiting 

the synthesis of cellular proteins. However, as can be seen, there was still extensive 

labeling of cellular proteins at the time point examined. Future experiments would need 

to either utilize later time points in infection, or use pharmacological inhibitors of cellular 

protein synthesis. 

As metabolic labeling and in vitro tagging of the viral proteins was poorly 

sensitive and significantly labeled cellular proteins in addition to viral proteins, it was 

determined that altered antiviral compounds that already incorporated one of the 

functional groups would instead be used. Compound 3260 is an effective antiviral 

compound with an EC50 of 1 µM in the CPE prevention assay, compound 3261 is an 

ineffective compound with and EC50 of greater than 50 µM. These compounds are 

derived from the same amidine backbone as ML336. Each contains both an azide and 

an alkyne moiety. The azide is photolabile and allows for the use of UV to fix the 

compounds in place in the cell. This degrades the azide, and then the alkyne is usable 

for click it chemistry. The advantage of this method is that these compounds are not 

subject to the changing efficiencies of metabolic labeling, and the potential association of 
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the compounds and the viral proteins can be observed by co-staining with antibodies 

that detect the viral proteins. Two compounds were used, 3260, which is an effective 

antiviral and was hypothesized to associate with the viral proteins, and 3261 which is not 

an effective antiviral and was predicted to not associate with the viral proteins. 

Cells were infected with VEEV, and then treated with the compounds for 30 

minutes. The cells were then fixed and permeabilized, and the click reaction was 

performed directly on the cell monolayers. The cells were then stained with antibodies 

against E protein and dsRNA to determine the localization of replication and infection 

compared to the antiviral compounds. 

As can be seen in Figure 15 B, there was no significant association between 

either of the compounds tested and dsRNA staining the pink staining, indicating the 

labeled compounds, is distributed throughout all of the cells equally, regardless of 

infections indicated by the yellow E protein or green dsRNA. The pink staining does not 

associated with either of those strains significantly within infected cells. While the active 

antiviral compound is expected to reduce dsRNA detection, due to the short treatment 

time (30 minutes) we had hoped that the compounds would not have taken full effect 

and that some viral replication would have remained active. Ultimately the only 

difference between the treatments was that the effective anti-VEEV compound, 

CB10003260, was able to enter cells at much higher levels compared to the ineffective 

anti-VEEV compound, CB10003261, used as a negative control. Importantly, this assay 

confirmed the antiviral effect of compound 3260, as the cells treated with this compound 

had very little dsRNA staining, indicating an inhibition of viral RNA synthesis. And 

compound 3261 did not display this effect. 
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Figure 15. Use of click-iT to identify viral protein/compound interactions. A) Uninfected 

and TC-83 infected cells were metabolically labeled with L-AHA to mark all newly 

synthesized proteins for click it detection. Cells were infected at an MOI of ten for 3.5 

hours and treated with L-AHA for 4 hours before lysis. The click it reaction was 
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performed with DIBO A647 either in the live cells or on cell lysate. Cells were lysed and 

proteins precipitated. Proteins were run in a gel and then imaged with a BioRad pharos 

imager. Only the lysate showed significant click labeling. There was minimal detection of 

viral proteins compared to cellular proteins. One representative image of two 

experiments. B) Representative images of infected cells treated with click moiety 

compounds. Cells were infected at an MOI of 0.25 for 5.5 hours and treated with the 

indicated compounds for 30 minutes at 10 μM. Compound 3260 is active against VEEV 

and enters cells. Compounds 3261 is inactive and does not. There was no significant 

association between the compounds and either viral E protein or dsRNA. Representative 

images of one of two experiments.  
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Expression of recombinant protein for biochemical analysis 

The data from the click chemistry experiments was unable to confirm the 

hypothesis that the amidine antiviral compounds are associating with the nsPs of VEEV 

to mediate their activity. Having gone through several methods attempting to use 

proteins produced during infection, it was determined that we would attempt to 

recombinantly express and purify the proteins of interest. As mentioned above, E. coli 

was selected due to its ease of use and readily available reagents and genetic systems. 

While it was known that expressing nsP2 in particular was likely to be difficult we 

started from an atypical approach of expressing the N terminal regions of nsP2 and 

nsP4 in fusion with one another. This fusion peptide was designed working under the 

hypothesis that these two domains interact closely in the mature replicase complex. This 

was hypothesized because of the high occurrence of compound resistant mutations in 

these two regions. Assuming that the antiviral compound binds to a single location in/on 

the replicase complex, for both of these regions to bind these small molecules they 

would need to be in close association with one another. We thus hypothesized that 

these regions are in close association, and that maintain this association in our protein 

constructs would result in enhanced folding and solubility during bacterial expression. 

Two fusions were created, nsP2-4 and nsP4-2. The expression of these proteins 

was tested in E. coli BL21 (DE3). Maps of the protein constructs discussed here and the 

plasmid backbone used are shown in Figure 16. Neither of these two fusion proteins 

were able to be produced in a soluble manner, with both of them localizing to the 

inclusion body fraction of the E. coli after purification. Figure 17 A shows data from the 

nsP2-nsP4 fusion peptide. Various optimizations were carried out, e.g. altering the 

temperature of induction and the amount of inducer added to the media, but these made 

no difference in the solubility. Refolding was attempted but this was also unsuccessful.  
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 While the next steps were being determined,  Luo group published the 

crystallization of the N terminal domain of nsP2 from CHIKV, outlining the expression of 

the N terminal domain of nsP2 in a soluble manner by using E. coli Rosetta and a 

solubility increasing tag termed SUMO186. With their assistance, a new expression 

construct was designed that incorporated their methods for expression of the N terminal 

domain of VEEV nsP2. E. coli Rosetta was generously shared by the lab of Dr. Donghan 

Lee, as was a plasmid for the expression of the SUMO protease for removal of the tag 

during purification. As can be seen in Figure 17 B, this new construct was indeed soluble 

when expressed in this strain of E. coli. And in Figure 17 C it is shown that it is also 

readily purified using a Ni column for his tag purification.  

 Large amounts of this protein were synthesized, and then submitted to HPLC for 

final purification before use in binding assays. Unfortunately, after the HPLC was 

performed, there were no peaks detected. Indicating that the protein was somehow lost 

during purification. This could be due to any number of factors. The protein may have an 

affinity for the matrix that was used during the separation process. Granule may have 

formed during the isolation process and clogged the matrix of the column. Or the protein 

could have degraded over the long transit time in the column, resulting in decreased 

concentration and lack of detection. 
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Figure 16. Expression constructs used for ectopic synthesis of VEEV nsP2. A) The 

fusion peptide combining N terminal portions of nsP2 and nsP2. B) The SUMO tagged N 

terminal nsP2 construct that produced soluble protein. C) The pET-19b vector backbone 

that was used for expression, map obtained from GenScript, from which these 

expression constructs were purchased.  
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Figure 17. The expression and purification of VEEV nsP2 in bacterial cells. A) VEEV 

nsP2-nsP4 fusion protein was expressed in BL21(DE3) E. coli. The protein was 

insoluble and formed inclusion bodies. MW=molecular weight, NI= non induced, I= 

induced, IS= insoluble fraction, INC= inclusion bodies, S= soluble fraction. One 

representative image from three experiments. B) The N terminal 465 amino acids of 

nsP2 were expressed solubly using a SUMO tag. The protein expression was evenly 

N-nsP2 
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split between the soluble fraction and the inclusion bodies. One representative image 

from 5 expression batches. C) Soluble nsP2-465 could be purified using Ni-NTA 

chromatography. Optimization of imidazole concentration was only performed once.  
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Discussion 

The isolation and use of viral proteins in biochemical and binding assays pose 

several challenges. Primarily, these proteins can often be difficult to isolate from infected 

cells as they occur at relatively low numbers, and like many proteins that are produced in 

eukaryotic systems, they are often difficult to produce using vector systems. However, 

based on previous work that had shown spherules could be successfully isolated from 

infected cells; we attempted to isolate the VEEV nsPs from infected cells directly. 

Unfortunately, this was unsuccessful. 

The use of ultracentrifugation initially showed promise, as there was localization 

of activity from the isolated fraction, but this activity was lost after an additional round of 

purification across sucrose. Several methods were tried to improve this activity, such as 

the addition of viral RNA to serve as more template in the RNA synthesis reactions, 

changing the methods of RNA extraction, and altering the conditions of the synthesis 

itself, such as adding different amounts of radiolabel and rNTPs. None of these 

improved the activity of the fractions appreciably. While CsCl also did not result in good 

separation of the protein, there are other more specialized materials that can be used to 

as gradient material. One of these is iodixanol, a specialized sugar molecule that has 

been previously used in the isolation of biomolecules187. Iodixanol is known to be gentle 

and is even used for preparation of live cells185. Thus the use of this material may result 

more preserved RNA synthesis activity and better preserve the structure of the isolated 

proteins. This would likely result in better maintenance of the enzymatic activity of these 

proteins, allowing for easier tracking during isolation. Gentler separation and isolation of 

the target proteins would also increase the concentration of the protein isolated from 

these infected cells.  

As these attempts at isolating spherules proved impractical, the next attempt at 

detecting the interaction between the amidine compounds and the viral nsPs was carried 
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out using click chemistry. The primary advantage of this method is that the viral proteins 

are labeled in the cell during infection, and that the detection of the labeled proteins is 

highly specific due to use of functional groups that do not naturally occur in biological 

systems. It was hoped that this experiment would result in specific labeling of viral 

proteins, and that this method could then be used to directly isolate these proteins whole 

cell lysate. The first attempt at this labeling, using gel electrophoresis and fluorescent 

labeling detection was unsuccessful. This is due to the fact that the viral proteins were 

not labeling efficiently enough to become apparent in the infected samples versus the 

uninfected control cells. One way that this could be improved is to treat cells later in 

infection. As time goes on, the synthesis of proteins in the cells shifts more towards the 

production of viral proteins. So treatment with L-AHA later in infection should more 

preferentially label viral proteins, allowing for more sensitive detection. 

Due to the poor results from L-AHA labeling, alternative uses of click chemistry 

were investigated. It was found that this method has also been used in fluorescent 

microscopy by performing the click reaction directly in the cell monolayer. Working with 

our medicinal chemist collaborator who is responsible for the synthesis and development 

of the amidine scaffold compounds, she was able to manufacture both an active and an 

inactive compound that were appended with the functional groups necessary for the click 

reaction to occur. This allowed for the design of experiments where the click reaction 

could be performed in combination with staining for VEEV E protein and double stranded 

RNA. While it is true that these compounds are able to inhibit the formation of dsRNA 

due to their antiviral activities, if used for a short enough time, in this case only 30 

minutes, we hypothesized that some replicative activity would remain. This experiment 

allows for the direct determination of compound localization in infected cells and can 

determine if they associate closely with the sites of viral replication. We hypothesized 

that the effective antiviral compound, 3260, would colocalize significantly with dsRNA, 
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which is a readout for the localization of viral replication, and that the ineffective 

compound, 3261, would be dispersed throughout the cell. Unfortunately, these 

experiments proved inconclusive, as the primary difference that was seen between the 

two compounds was that the compound that lacked antiviral effects, compound 3261, 

appeared to be unable to enter cells at the same rate as the effective antiviral 

compound, 3260. Also, further experiments should use a different marker for the 

replicase complexes such as nsP2, as even with the short treatment times used there 

was a significant reduction in dsRNA staining.  

While the results from these microscopy experiments were inconclusive, they 

resulted in the development of several new tools for further experiments. First, the click it 

reaction was successfully performed on a cell monolayer, and if the L-AHA or other 

metabolic labeling can be optimized, these can be combined to great effect. Second, 

these experiments led to the optimization of the use of a dsRNA antibody. This antibody 

is highly useful as it only stains those cells that are undergoing active viral replication, 

compared to cells that express viral protein. This antibody can also be used for 

colocalization studies to identify the loci of viral replication within infected cells.  

The inconclusive results of the click experiments led to the work developing an 

expression system of VEEV nsP2 in E. coli. As outlined above, it was determined that 

the N terminal domain of the protein could be expressed in a soluble manner when fused 

to a SUMO tag. However, this took quite a bit of optimization of both the constructs and 

expression system. The first attempt was made using nsP2 and 4 fusion constructs. 

These constructs were readily expressed at high levels but were never able to be 

expressed in a soluble form, and refolding these proteins was also unsuccessful. Even in 

the Origami strain of E. coli which is designed for the expression of proteins that contain 

disulfide bonds and that typically don’t fold correctly in expression vectors, this construct 

remained insoluble and disordered.  
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This resulted an impasse until we incorporated the SUMO tag. This tag proved 

quite helpful in the expression of this protein. The resulting truncated protein constructs 

were produced in the soluble fraction of E. coli Rosetta at high concentrations. However, 

when this tag was used with full length nsP2 protein and not the truncated construct, it 

remained insoluble. If the full length nsP2 is required for future experiments, further 

optimization of this expression will need to be carried out. NsP4 was also expressed in 

this same system with a SUMO tag, and it too remained insoluble. 

Additionally, the SUMO tagged nsP2 truncated construct had some issues with 

its purification. As shown, the complete construct can be readily purified using Ni 

chromatography. However, upon digestion with the SUMO protease, there is significant 

loss of protein sample, indicating that either the digestion, or the purification step 

performed to remove the tag need additional optimization. One way that this may be 

improved could be to incorporate a different protease site, such as an EK site, between 

the tag and nsP2. The use of a different cleavage method may result in a higher fidelity 

reaction. Different proteases also have different reaction conditions which may prove 

more suitable for our protein constructs, and result in less loss due to degradation. Also, 

a portion of the Ni chromatography purified protein was submitted for HPLC purification. 

Interestingly, despite a large protein input there were no peaks indicating proteins 

release from the column, and this was confirmed using the Bradford reaction. If HPLC is 

to be performed again, it is likely that the protein is binding to some part of the column, 

and so a different matrix types should be investigated. This protein construct may also 

have general issues of stability due to its nature as an incomplete truncated peptide. 

This would make slow purification schemes difficult. This should be examined further. 

Lastly, the SUMO containing protein construct can be used as is for many 

different assays, such as surface plasmon resonance, which allow for the measurement 

of binding of the antiviral compounds and the protein construct. Pilot studies were 
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performed using the OpenSPR platform from Nicoya, but unfortunately the sensitivity of 

the assay was poor, leading to inconclusive data. This is most likely due to the size of 

the antiviral molecules, as they are quite small, making the detecting of binding more 

difficult that with larger interactors. If these experiments are to be continued, then further 

work to increase the sensitivity of the assay should be performed. Such as by using 

various treatments to increase the amount of protein construct immobilized on the chip, 

or by immobilizing the small molecules on the chip and associating the protein construct. 

Conclusions 

Though this work attempting to detect and characterize predicted binding 

between the VEEV nsPs and the amidine scaffold was unsuccessful, it did lead to 

several useful experimental developments. First, the use of click chemistry in assays 

using both metabolic labeling of proteins and fluorescent microscopy was developed. 

While this chemistry did not prove useful for the experiments described here, these 

assays have many potential uses both monitoring the synthesis and localization of 

proteins as well as compound localization. There are also potential uses of this 

chemistry for directly purifying labeled proteins and compounds from cells and complex 

mixtures and extracts. Several additional tools were developed in tandem with these 

assays, including the use of a double stranded RNA antibody to track viral replication, 

and the novel amidine compounds that have click moieties that have potential to be used 

in many different experiments for both detection and purification. Second, an expression 

system for the N terminal domain of nsP2 was developed. This protein construct can be 

produced in large amounts as a soluble protein. This expressed protein is then readily 

purified by Ni chromatography. This system is ready for use in further biochemical 

assays.  
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CHAPTER 4 

THE USE OF AMIDINE COMPOUNDS TO CHARACTERIZE A REGION OF 

UNKNOWN FUNCTION IN VEEV NSP2
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Overview 

While antiviral drugs are researched primarily for their potential uses as 

therapeutic compounds, these compounds can also be used in viral research in a variety 

of ways dependent on their mechanisms of action. One way that these molecules can be 

utilized is to probe viruses for novel biological functions that have yet to be described. In 

this chapter, the amidine family of compounds characterized in chapter two has been 

used to probe the biology of VEEV. In this chapter the isolation and sequencing of 

viruses that resist the effects of these compounds will be discussed. Then these isolates 

will be used to characterize the function of an N terminal region of the viral nsP2, which 

previously has not been characterized and lacks designated functions.  

Introduction 

Despite the apparent simplicity of many viruses, the study of their biology can be 

quite complex. This is due to several factors, such as the uniqueness of many viral 

proteins making the use of homology modeling and functional prediction difficult, as well 

as the fact that viruses are dependent on cellular processes for many parts of their life 

cycles, meaning that functional assays of the viral proteins may not reveal all of the 

functions that they perform. Many viruses are also incredibly efficient in the use of their 

genetic material, generating proteins that are multifunctional, with many interacting 

domains. The result of this is that even many well studied viruses have portions of their 

genomes and proteins that have yet to be functionally characterized. This includes 

alphaviruses. These viruses were first isolated in the 1930s26,188–190 and have been 

thoroughly studied since, yet many parts of their proteins remain enigmatic. This 
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difficulty in characterizing these regions necessitates the development of novel ways to 

probe viral biology in addition to traditional biochemical and virological methods. 

One way that viruses are characterized in our lab is by using the antivirals that 

have been developed with our collaborators to perturb the viral life cycle. Due to their 

rapid mutations rates191 RNA viruses will often escape treatment with any antiviral 

compound, leading to generation of resistant populations that contain mutations in their 

genomes192. These mutant viral populations can then be plaque purified, and their 

genomes examined for mutations. In this work the Oxford Nanopore system has been 

utilized for sequencing of resistant viral isolates. This system is advantageous due to the 

small amount of starting material that it requires, as well as the fact that viral RNA can 

be sequenced directly.  

Viruses that were resistant to the amidine family of compounds described in 

chapter 2 were isolated. After sequencing of these mutant populations, it was found that 

these viruses had mutations that were localized in the N terminal region of nonstructural 

proteins (nsP) 2. It was surprising to find mutations in this region because it currently 

lacks any predicted or described function.  

NsP2 has been characterized as both the viral helicase protein as well as a 

cysteine protease88,96,98,162,193. However, a large portion of the N terminal region remains 

undefined. There has been some progress in solving the structure of this protein using 

X-ray crystallography, with the C terminal protease region being solved in Venezuelan 

equine encephalitis virus (VEEV), and recently the N terminal half of the protein was 

crystalized from chikungunya virus (CHIKV)98,193,194. However there has yet to be a 

structure solved for the entire protein. The structure of CHIKV nsP2 indicates that the 

helicase and its accessory domains take up a large portion of the N terminal region. 

From N to C-terminal these domains are: the N-terminal domain, the stalk domain, 1 B, 
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Rec 1, Rec, 2, and the connector domain.  The 1 B, Rec 1 and Rec 2 domains are all 

involved in the RNA binding and helicase activity of the enzyme. However, the 

disordered N-terminal domain and the stalk domain lack known fucntion98. Of the 

mutations that occur in nsP2 that result in resistance to compound treatment, the 

majority are in the N-terminal and stalk domains, such as those at amino acid position 65 

and 102, with some being in the far N terminal portion of the Rec 1A helicase accessory 

domain, amino acid 116, far from the helicase active site, and arrayed primarily on the 

external faces of the protein.  

 For the purpose of this work, three viral isolates with mutations that occurred in 

nsP2 were selected. These mutants were characterized in a variety of classical 

virological methods, investigating their growth, RNA synthesis phenotypes, and protein 

expression. Initially, this characterization was carried out using baby hamster kidney 

cells, a cell line that has long be used in the study of alphaviruses due its high 

susceptibility and permissivity to infection195–197198..  

After this initial characterization was completed the potential attenuation of these 

viruses was also examined in a neuronal cell model, SH-SY5Y cells. Neurons are a 

major cell type targeted by VEEV and are important in its pathology, and the effects of 

mutations in the nsPs may vary in these cells when compared to fibroblasts. SH-SY5Y 

cells are a human neuroblastoma cell line derived from metastatic cancer199. This cell 

model has an active viral response system while still being susceptible and permissive to 

infection with multiple viruses200–20237. These cells also have the advantage of being able 

to be differentiated into mature neurons203201. These differentiated cells are a reasonable 

facsimile of mature neurons in the brain203–205. This phenotype indicates that these cells 

provide a readily available, biologically relevant model of alphavirus infection of neurons.  
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Materials and Methods 

Fibroblast cell culture and viral strains 

 Baby hamster kidney (BHK) clone 21 cells (ATCC CCL-10) and Vero 76 (African 

Green monkey kidney fibroblasts) (ATCC® CRL-1587™) were maintained in Modified 

Eagle’s Medium with Earle’s Balanced Salt Solution and L-glutamine (MEM-E, Corning 

10-010-CV) supplemented with 10% fetal bovine serum (FBS) (Corning 35-011-CV). 

Cells were maintained at 37 C in humidified incubators with 5% CO2. VEEV strain TC-83 

(gift of Dr. Connie Schmaljohn, USAMRIID) was used for this study. Infections were 

carried out using a virus infection medium (Modified Eagle’s Medium with Earle’s 

Balanced Salt Solution with L-glutamine (Corning 10-010-CV), 25 mM HEPES, 10% 

FBS) 

Undifferentiated SH-SY5Y cells 

SH-SY5Y cells are human neuroblastoma cells derived from metastatic cancer 

isolated from the bone marrow of a patient. Cells were grown on cell culture treated 

plates and maintained in at 37°C 5% CO2. Cells were obtained from ATCC (CRL-2266). 

Cells were maintained in EMEM with 15% FBS, 1x penicillin/streptomycin, 2 mM 

glutamine. Cells were infected with the same media.  

Differentiation of SH-SY5Y cells 

Differentiation of SH-SY5Y cells into mature neurons has been well documented 

previously200,203,204,206–208. Cell were plated on untreated cell culture dishes (day 0). The 

following day (day 1) media was changed to differentiation media 1. Media was changed 

on days 3 and 5. On Day 7 cells were split 1:1, all with differentiation media 1. Day 8 

media was changed to differentiation media 2. Day 10 cells were split 1:1 onto dishes 

coated with extracellular matrix with differentiation media 2. Day 11 media was changed 
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to differentiation media 3. Media was changed on days 14 and 17 with differentiation 

media 3. On Day 18 cells are mature and ready to use. Differentiation media 1: EMEM 

with 2.5% FBS, 1x Penicillin/Streptomycin, 2 mM glutamine, 10 µM retinoic acid 

(STEMCELL technologies 72262). Differentiation media 2: EMEM, 1% FBS, 1x 

Penicillin/Streptomycin, 2 mM glutamine, 10 µM retinoic acid. Differentiation media 3: 

Neurobasal media, 1x B-27, 20 mM KCl, 1x Penicillin/Streptomycin, 2 mM GlutaMAX, 50 

ng/mL brain derived neural growth factor (Sigma Aldrich B3795), 2mM dibutyryl cyclic 

AMP (Selleck Chemicals S7858), 10 µM retinoic acid. Cells were infected in 

differentiation media 3.  

Plaque purification of resistant viral isolates 

Vero 76 cells were infected with VEEV TC-83 in the presence of 20 µM 

CB1000905. Supernatant was collected and then used for plaquing with an agarose 

overlay, also with 20 µM CB1000905. Plaques were picked and then placed in virus 

infection media to allow the virus to diffuse out of the agarose. These samples were then 

used to infect monolayers again under compound selection. This process was repeated 

a total of three times.  

Sequencing of whole viral genomes with the MinIon platform 

Vero 76 cells were infected at an MOI of ten with VEEV TC-83 and treated with 

compound CB1000905 at 20 µM. The media was aspirated, and TRI reagent was added 

at 300 µL per well and the cells were homogenized by pipetting. The RNA was then 

isolated using a ZYMO mag bead RNA isolated kit according to manufacturer’s 

instruction (R2101). Ribosomal RNA was depleted from the samples using an NEBNext 

rRNA depletion kit (NEB E6310S) according to manufacturer’s instructions. This RNA 

was used as input for direct RNA sequencing using an Oxford Nanopore direct RNA 
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sequencing kit (SQK-RNA002) according to manufacturer’s instructions. Sequencing 

was performed using the Oxford Nanopore MinION platform. Sequences were analyzed 

using Integrative Genomics Viewer209–211. 

Viral growth kinetics 

BHK-21 cells were seeded into 6 well plates at a density of 400,000 per well. 

Plates were infected at an MOI of 0.05 with the indicated virus and placed on ice for one 

hour to synchronize the infection. Inoculum was 0.5 mL. The cells were washed once 

with PBS and warm media was added to initiate the infection. The infection proceeded at 

37°C 5% CO2. Supernatant was collected at the indicated times and used for titration by 

plaque assay.  

For infections of the SH-SY5Y, virus had to be diluted into media corresponding 

to the needs of either the undifferentiated or differentiated SH-SY5Y cells. Cells were 

grown in 24 well plates and infected at a volume of 300 µL. The virus was diluted into the 

corresponding media, for undifferentiated cells EMEM with 15% FBS, 1x 

penicillin/streptomycin, 2 mM glutamine was used. For differentiated cells differentiation 

media 3 was used. Cells were inoculated at either MOI 5 for single step growth analysis 

or MOI 0.05 for multistep growth analysis. The cells were incubated at 37°C 5% CO2 for 

one hour. The media was aspirated, and the cells washed with the corresponding media 

free of virus. Warm media was added, and this point was considered time zero for the 

infections. Supernatant was collected at the indicated times post infection, and these 

samples were used for plaque assay titration.  

Plaque assay titration 

Plaquing for titration of the viruses was carried out on Vero76 cells in 24 well 

plates. Cells were seeded at a density of 100,000 per well and allowed to grow overnight 
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in complete media. Samples for titration were diluted in VIM (Modified Eagle’s Medium 

with Earle’s Balanced Salt Solution supplemented with 25 mM HEPES and 10% FBS).   

and vortexed. 167 µL of inoculum was used per well in 24 well plates. Media was 

aspirated from the cells and the dilute samples added and then incubated at 37°C, 5% 

CO2 for one hour. Plates were rocked initially and after 30 minutes. After one hour the 

cells were washed with PBS and overlay was added. For titration methyl cellulose 

overlay media was used (EMEM, 10% FBS, 0.7% w/v methyl cellulose, 1x GlutaMAX, 15 

mM HEPES). These plates were then incubated at 37°C 5% CO2 for three days, and 

then stained and fixed with a solution of 2% paraformaldehyde, 0.8% crystal violet in 

ethanol, dissolved in PBS.  

Plaque size analysis 

To measure the relative size of plaques of the viral isolates the protocol above 

was modified. Vero 76 cells were seeded at a density of 400,000 cells per well in six well 

plates. Samples were diluted in VIM and 668 µL of inoculum was added per well. Cells 

were incubated and washed as above. One mL of overlay media was added per well: 1x 

EMEM (Gibco 11430-30), 0.6% agarose (MP Biomedicals 952012), 0.22% sodium 

bicarbonate (Gibco 25080-094), 1x GlutaMAX, 1x nonessential amino acids (Gibco 

11140050), 1x penicillin/streptomycin (Gibco 15140122), 15mM HEPES, 10% FBS. The 

plates were incubated at 37°C 5% CO2 for 2 days and fixed with 4% paraformaldehyde 

at 4°C. The cells were then stained with 2% paraformaldehyde, 0.8% crystal violet in 

ethanol, dissolved in PBS. The plates were scanned, and the images used for plaque 

size analysis and counting using the viral plaque plugin for ImageJ/FIJI212. 

Isolation of viral RNA for qRT-PCR characterization 
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BHK cells were infected at an MOI of ten. The cells were placed on ice for one 

hour to synchronize infection. The cells were washed with PBS and then warm media 

was added to initiate infection. The cells were placed at 37°C 5% CO2 for the indicated 

times. At the indicated times, the media was aspirated, and TRI reagent (ZYMO R2050) 

added at 300 µL per well and the cells were homogenized by pipetting. The RNA was 

then isolated using a ZYMO mag bead RNA isolated kit according to manufacturer’s 

instruction (#R2101).  

cDNA synthesis for qRT-PCR analysis 

RNA samples were isolated as described above. Two master mixes were made as 

follows: 

Master Mix 1: 

Reagent Amount per one reaction (µL) 

10 mM dNTPs (Promega U1515) 1 

Custom primer (10 pmol/µL) or 
random hexamer (40pmol/µL) 

1 

Nuclease free water 4 

Four µL of RNA was added to this master mix and the reaction was heated at 65 C for 5 

minutes. The reaction was then chilled on ice for 5 minutes. 

Master Mix 2: 

Reagent Amount per one reaction (µL) 

5X reverse transcriptase buffer 
(ThermoFisher EP0743) 

4 

SUPERaseIn (Ambion AM2694) 0.5 

Maxima H Minus Reverse 
Transcriptase (ThermoFisher EP0743) 

0.5 

Nuclease free water 5 
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Ten µL of master mix two was added to each reaction after chilling. The reaction as 

gently mixed and then submitted to the following protocol for cDNA generation and 

thermal degradation of RNA: 

1. 25oC for 5 min.  

2. 50oC for 60 min.  

3. 85oC for 5 min.  

4. 4oC hold  

This cDNA was then used for further analysis in qRT-PCR analysis as described below. 

Strand-specific quantitative real-time PCR (qRT-PCR) of VEEV RNA  

Detection of positive and negative sense, genomic viral RNA was carried out 

using a strand-specific qRT-PCR method adapted from Plaskon et al165. Briefly, cDNA 

was generated using tagged primers for detecting positive-sense and negative-sense 

RNA. The generated cDNA was then used in qRT-PCR using TaqMan chemistry with a 

strand-specific primer set.. A fluorescent probe was used for both analyses. PCR 

reaction was performed using Fast Advanced TaqMan master mix (Applied biosystems 

4444557). PCR cycles were performed according to manufacturer’s instructions. The 

primer sequences are given in the following table. Lowercase sequences are additional 

sequence added for primer identification, sequences in italics are specific for viral RNA, 

and sequences in bold were used to identify only those cDNA sequences that were 

produced due to primer binding. All primers and probes were custom ordered from IDT. 

Primer Sequence 

nsP1 positive Tag GGCAGTATCGTGAATTCGATGCCTGACCTGGAAACTGAGACTATG 

nsP1 negative 
Tag 

GGCAGTATCGTGAATTCGATGCGGCGACTCTAACTCCCTTATTG 

nsP1 positive 
FWD 

aataaatcataa CTG ACC TGG AAA CTG AGA CTA TG 
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nsP1 positive 
REV 

aataaatcataa GGC AGT ATC GTG AAT TCG ATG C 

nsP1 negative 
FWD 

aataaatcataa GGC GAC TCT AAC TCC CTT ATT G 

nsP1 negative 
REV 

aataaatcataa GGC AGT ATC GTG AAT TCG ATG C 

nsP1 probe /56-FAM/TCC GTC AAC /ZEN/CGC GTA TAC ATC CTG /3IABkFQ 

qRT-PCR analysis of subgenomic RNA synthesis 

RNA samples from six hours post infection were used. cDNA was generated 

from RNA isolated from infected cells as described above using random hexamer. This 

cDNA was then used in a multiplex qRT-PCR with the following primers and TaqMan 

probes with TaqMan Fast Advanced master mix. All primers and probes were custom 

ordered from IDT.  

Primer Sequence 

Capsid FWD GGACGACCCATTCTGGATAAC 

Capsid REV CGTTCCACATGACGACTGAA 

Capsid Probe /5SUN/TCCTTCATT/ZEN/CACACCTCCCAGCAC/3IABkFQ/ 

nsP1 FWD CTGACCTGGAAACTGAGACTATG 

nsP1 REV GGCGACTCTAACTCCCTTATTG 

nsP1 Probe /56FAM/TCCGTCAAC/ZEN/CGCGTATACATCCTG/3IABkFQ 

The double delta CT was calculated and used to generate the relative gene expression 

that is shown.  

Immunoblotting 

Whole cell lysate from infected cells was collected by directly lysing cells with 

Laemmli buffer in the plate (2% SDS w/v, 10% glycerol w/v, 120 mM Tris-HCL pH=6.8, 

bromophenol blue)213. The resulting lysate was homogenized by pipetting. Samples were 

loaded into gradient gels for SDS-PAGE (GenScript M00656). Samples were run at 

170V until the dye front was run off of the gel. Protein was transferred to a PVDF (Biorad  

1620177) membrane using methanol Tris-glycine buffer and a semi-dry blotting 
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apparatus, 18V for 35 minutes. Membranes were washed once and blocked with 5% dry 

milk in TBS. The membranes were washed five times in TBS-T and then stained with 

primary antibody overnight at 4 °C. Anti-nsP2 E3 antibody (purified custom polyclonal 

antibody from GenScript) and anti-E protein polyclonal antibody (BEI) were both used at 

a 1:1000 dilution in TBS-T. The membranes were then washed five times with TBS-T 

and stained with secondary antibody diluted in TBS-T. Anti-rabbit HRP (Santa Cruz 

Biotechnology Sc-2054) was used to detect the nsP2 antibody and is used at a final 

concentration of 0.01 mg/mL. Anti-goat HRP (SeraCare) was used to detect the E 

protein and was used at a concentration of 1:10,000. Actin was stained directly using an 

HRP conjugated antibody (CellSignal 8H10D10) final dilution 1:10,000. The secondary 

antibody staining is performed for one hour at room temperature. The membranes are 

washed six times in TBS-T and developed in ECL reagent for five minutes at room 

temperature (ECL reagent A: 2.5 mM luminol, 400 mM P-coumaric acid, 100 mM Tris-

HCL pH=8.5. Reagent B: 0.02% H2O2, 100 mM Tris-HCl pH=8.5. Mix A and B one to 

one for development). The images were collected using an Azure imaging system for 

detection of chemiluminescence. For staining of the E protein, the membranes 

previously stained for actin and nsP2 were stripped in acid stripping buffer (1% w/v SDS, 

25 mM glycine HCL pH=2) for 30 minutes at room temperature with rapid agitation, and 

washed twice with PBS, and once with TBS-T before proceeding with blocking and 

staining.  

Statistics 

Statistics were performed in GraphPad Prism version 9. Unless otherwise 

indicated significance was calculated using ANOVA with Dunnett corrections for multiple 

comparisons. Error is reported as standard deviation. Graphs represent mean values of 

the indicated number of experiments. 
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Results 

Compound resistant viral isolates of VEEV have mutations in nsP2 

 Previous work with the antiviral compounds in our lab has identified the locations 

of mutations that occur in viral isolates that resist compound treatment which were 

isolated via plaque purificaiton148. Three isolates were selected that were known to have 

mutations in nsP2, to focus on characterizing unknown activities of this protein. After the 

initial selection, these viruses were submitted to whole genome sequencing to determine 

if there were any additional mutations in their genomes that had not been previously 

discovered. This process utilizes a direct RNA sequencing method developed by Oxford 

Nanopore for use with their MinION platform.  

It was found that mutations occurred in multiple locations in each of the selected 

viral isolates. Two of the isolates had single mutations in nsP2 at Y102 and D116. Both 

of these isolates also had point mutations in their E proteins. The third selected isolate 

had two mutations in nsP2 at both Y65 and Y102. This isolate also had a single point 

mutation in the subgenomic promoter region. While this is a noncoding region in the viral 

RNA it is highly important due to its regulation of subgenomic RNA synthesis. This led to 

the hypothesis that this mutant isolate is likely to have significant alterations to its 

expression of the structural proteins. The nucleotide sequence of the area of nsP2 that is 

mutated is shown in Figure 18, nucleotide changes are shown in red, and the position of 

the nucleotide is indicated. Maps of the viral genome are shown in Figure 19, with each 

of the mutations indicated. Table 3 lists the selected isolates with their mutations.  
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Figure 18. Single nucleotide polymorphisms of the selected viral isolates in N-nsP2. The 

sequences of VEEV TC-83 as well as the three selected mutant isolates are shown. The 

mutated nucleotides are shown in red and the poisitons boxed in. The nucloetide 

position is below the selected bases. All of the selected amino acid changes are due to 

single nucleptide polymoorphisms. 
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Figure 19. Maps of the full length genomes of the selected mutant viruses. A) Simplified 

map of isolate 82_11_24. Sequencing found a mutation, D116N located in the 1 B 

domain in nsP2, and there was an additional point mutation in E1. B) Simplified map of 

isolate 81_12_24. Sequencing found a mutation, Y102C located in the stalk domain in 

nsP2, and there was an additional point mutation in E2. C) Simplified map of isolate 

6_13_25. Sequencing found two mutations, Y65C in the N-terminal domain and Y102C 
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in the stalk domain in nsP2. There was an additional SNP in the region corresponding to 

the subgenomic promoter.  
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Amino 
Acid 

Position 

nsP2 
Y65 

nsP2 
Y102 

nsP2 
D116 

Sub 
Prom 
7531A 

E2 
F410 

E1 
N20 

Short 
name 

TC-83 --- --- --- --- --- --- --- 

82_11_24 --- --- N --- --- S 1124 

81_12_24 --- C --- --- Y --- 1224 

6_13_25 C C --- T --- --- 1325 

Table 3. Selected resistant viral isolates. Mutations are as indicated. 
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Compound resistant mutant viruses displayed delayed growth in a fibroblast cell 

model.  

The three mutant viruses were expanded under compound selection to ensure 

that the mutations were maintained through passaging. BHK cells were then infected at 

an MOI of 0.05 and a growth kinetics assay was performed using plaque assays to 

determine viral titer. It was hypothesized that isolate 6_13_25, with the subgenomic 

promoter mutation, would have a significant reduction in growth due the predicted effect 

this mutation would likely have on structural protein expression. However, the mutant 

isolates did not demonstrate a reduction in maximum titer compared to TC-83, Figure 20 

A. Instead each virus eventually reached and maintained a titer that was similar to the 

parental strain. These mutations did, however, result in delayed growth compared to the 

parental control TC-83. Isolates 82_11_25 and 81_12_24 both had delayed viral 

production, but quickly caught up to TC-83. 6_13_25 was the most significantly delayed 

and took the longest to reach parity with TC-83, Figure 20 A. These results show that the 

mutations found in the resistant viral isolates lead to a growth delay, with slower 

infection, and production of infectious virus, but not a growth defect in this non-selective 

cell line.  

While performing the plaque assays for the growth kinetics analysis, plaque 

morphology changes were noted in isolate 6_13_25. To examine this in greater detail, 

agarose plaque assays in 6 well plates were used, Figure 20 B. This analysis showed 

that 6_13_25 did in fact have smaller plaques than the other isolates or TC-83, Figure 20 

C. This is not surprising, as the structural proteins, and capsid in particular, are very 

important to the biological activities of alphaviruses and are under control of the 

subgenomic promoter7,55. The capsid protein is also very important in inducing cytopathic 

effect, detected phenotype in plaque assays80. These plaques also had a much tighter 
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distribution compared to TC-83 or the two single mutants. This phenotype indicates that 

isolate 6_13_25 is significantly attenuated compared to TC-83 and is less fit for cell to 

cell spread or cytopathic effect, in addition to the growth defect that it shares with the 

isolates that lack the subgenomic promoter mutation. Isolates 81_12_24 and 82_11_24 

have more moderate attenuations. 
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Figure 20. Mutant viral isolates show delayed growth in a fibroblast cell mode, and 

isolate 6_13_25 has decreased plaque size. Three mutant viruses were selected with 

the indicated mutations in nsp2. BHK cells were infected at an MOI of 0.05 A) All of the 

mutant viruses showed a delay in the production of new infectious virus as measured by 

plaque assay. Isolate 6_13_25 showed a larger delay than either of the two single 

mutants. Kinetics data combined from two experiments, three biological replicates per 

time point per experiment. 48 HPI was only collected from one experiment B) 

Representative images of plaque morphology from each of the viruses using an agar 
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overlay and staining the monolayers with crystal violet. Representative of three 

experiments. C) Quantification of the relative size of the plaques from each virus. The 

double mutant shows plaques that are significantly smaller than those of the parental 

TC-83 strain. The single mutants show no change. Graph is from one representative 

experiment of three. Three biological replicates per experiment. P<0.0001 as calculated 

by one way ANOVA. 
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Compound Resistant Viral Isolates Show Alterations in Their RNA synthesis 

profiles 

NsP2 is highly important in the RNA synthesis of alphaviruses, acting as the RNA 

helicase of these viruses and having RNA binding activity (described in detail in chapter 

1). Having noted a delay in growth of these resistant isolates, it was hypothesized that 

this growth delay resulted from a defect in viral RNA synthesis, likely being mediated by 

the mutations that occur in N terminal region of nsP2. 

Alphaviruses produce both positive and negative-sense RNA for replication82. 

These strands are both synthesized by the nonstructural proteins, but this synthesis is 

tightly controlled58,59,61,160,214. Thus, the synthesis of these two strands was examined 

separately, using a modified RT-PCR that is able to discriminate between the two 

different of polarities of RNA.  

It was found that both isolate 81_11_24 and 6_13_25 had delayed production of 

positive-sense RNA, Figure 21. This was similar to growth kinetics phenotypes. With the 

detection of the positive sense RNA being delayed early in infection and catching up to 

the parental virus strain by 8 hours post infection. That both of these isolates show this 

delay indicates a likely involved of the N terminal domain of VEEV nsP2, as isolate 

81_11_24 lacks the significant mutation in its subgenomic promoter. However, only 

isolate 6_13_25 showed a significant delay in the synthesis of negative-sense RNA, 

Figure 22. This indicates a likely involvement of nsP2 Y65C in the synthesis of negative-

sense RNA as only this isolate contains this mutation, and this synthesis should not be 

affected by the subgenomic promoter. 
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The relative expression of the subgenome was also examined, Figure 23. This 

was quantified by comparing the ratio of subgenomes to genomes in each of the viral 

isolates and TC-83. It was hypothesized that isolate 6_13_25 would have significant 

alterations in subgenomic RNA synthesis levels due to the mutation in the subgenomic 

promoter. While the other two isolates have point mutations in their glycoproteins, these 

proteins are not involved in RNA synthesis, so it was unlikely that the synthesis of the 

RNA would be effected. It was found that isolate 6_13_25 had greatly reduced 

subgenomic RNA expression, producing virtually no subgenomes at the time point 

examined, and the two other isolates displayed similar ratios to the parental TC-83 

strain, Figure 23.  
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Figure 21. Mutant viral isolates have a delay in positive-sense RNA synthesis. Strand 

specific qRT-PCR was performed at the indicated times post infection. Isolates 

82_11_24 and 6_13_25 both show reduced levels of positive-sense RNA at two and four 

hours post infection. This difference is lost at eight hours post infection, by which time 

every strain has reached the same level of RNA Data from one representative 

experiment of three. Three biological replicates per experiment. *p<0.05, **p<0.01, 

***p<0.001 as measured by one way ANOVA.  
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Figure 22. Isolate 6_13_25 has a delay in negative-sense RNA synthesis. Strand 

specific qRT-PCR was performed, and the amount of negative sense viral RNA 

quantified. Isolate 6_13_25 was found to have reduced negative sense RNA at two and 

four hours post infection. This difference was no longer present at eight hours post 

infection. Data from one representative experiment of three. Three biological replicates 

per experiment. * p<0.05, **p<0.01 as measured by one way ANOVA.  
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Figure 23. Relative expression of the subgenomic RNA compared to genomic RNA. 

Expression of capsid RNA was quantified relative to the expression of nsP1. This 

relative expression was then compared between the mutant viral isolates and TC-83. 

Only isolate 6_13_25 is significantly different from TC-83 with a ratio of one half that of 

the parental strain, indicating there is little to no subgenomic expression at this time. 

Data from one experiment, three biological replicates. *p<0.05.  
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Viral Isolates with mutations in nsP2 have altered protein expression profiles 

 Having investigated both the growth and RNA synthesis profiles of these 

compound resistant viral isolates, the next step was to examine their protein expression. 

The finding that two of these isolates had altered RNA synthesis led to the hypothesis 

that they would have similar delays in the expression of the viral proteins, indicating that 

a delay in replication of the viral RNA was leading to the delay seen in viral growth 

kinetics. In addition, it was expected that there would be marked decrease in the 

structural proteins of isolate 6_13_25 due to large decrease in its transcription of the 

subgenomic RNA. While there was not a statistically significant delay in RNA synthesis 

in isolate 81_12_24, it did have a delay in growth kinetics and displayed a trend of 

reduce positive-sense RNA synthesis at early times points, so it was expected to show a 

delay in protein synthesis as well.  

 To examine viral proteins synthesis, immunoblotting was performed. Nsp2 was 

used as a marker of the expression of the viral nonstructural gene and has been 

previously used by our lab in this manner66. The E protein was used as a maker for the 

expression of the viral structural protein, the antibody used here stains both the E1 and 

E2 proteins. Beta actin was used as a loading control, and its intensity was used to 

quantify the relative expression of the viral proteins across the different samples.  

 Protein expression was examined in BHK cells, which were infected at an MOI of 

ten and then lysed at the indicated times post infection. Representative blot images are 

shown in Figure 24. NsP2 had delayed expression in all of the resistant isolates, and 

was detected at lower levels than TC-83 until eight hours post infection, at which time 

the expression of nsP2 begins to match that of the parental strain, Figure 25 A. At ten 
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hours post infection, the slowest of the mutant viruses, isolate 6_13_25, has increased 

levels of nsP2 compared to TC-83. If 6_13_25 is less cytotoxic, then there would be 

more live infected cells at this later time point post infection, which would leave more 

infected cells to by lysed and used for detection. At this time post infection there was no 

staining of any forms of the nonstructural polyprotein. 

When examining the expression of the E proteins, the hypothesis about isolate 

6_13_25 was correct, this isolate had a significant reduction in expression of the protein 

at 10 hours post infection, Figure 25 B. This was true for all cleavage forms of the E 

proteins. It was unclear from their sequences if the other two isolates would have any 

alterations in their expression of the structural proteins. While both 82_11_24 and 

81_12_24 had statistically significant differences in their expression of the E proteins at 

ten hours post infection, these differences are small in magnitude and not likely 

biologically significant. None of the isolates had significant changes in their expression at 

8 hours post infection, however isolate 6_13_25 had a similar trended towards reduced 

expression compared to TC-83. 
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Figure 24. Representative Western blot images examining viral protein expression. Cell 

lysate was collected and used for Western blotting at the indicated times post infection. 

Lysate was probed for nsP2 and E protein as indicated, and actin was used was an 

internal loading control. Labels: U=uninfected, 1124=82_11_24, 1224=81_12_24, 

1325=6_13_25. All of the mutant viruses display a delay in nsP2 production, similar to 

their delay in growth kinetics. However, only the double mutant, 1325, showed a 
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reduction in E protein synthesis. Representative images of one experiment of three. 

Each experiment had three biological replicates per virus and uninfected control. 
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Figure 25. Quantification of viral protein expression. Using densitometry, the relative 

expression of nsP2 and the E protein was quantified. A) Quantification of nsP2 

expression at the indicated times post infection. All mutant isolates show delayed 

expression, with less nsP2 present than in TC-83 at three and five hours post infection. 

By eight hours expression has caught up, and this is maintained at ten hours. B) 

Quantification of E protein expression. There is no significant difference between the 

viruses at eight hours post infection, however at ten hours post infection both isolate 

6_13_25 and isolate 82_11_24 mutant show significant reductions in E protein 

expression compared to TC-83. Combined data from three experiments. Three biological 

replicates per group *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 as calculated using 

one way ANOVA.  
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Growth of VEEV TC83 and mutant isolates in a neuronal cell model 

While fibroblasts have historically been the cell of choice for much alphavirus 

work, these cells are only a model of the initial stages of infection. The severe pathology 

of VEEV, encephalitis and other neurological effects, primarily occurs in neurons and 

related cells and not in fibroblasts. Thus, it was decided to examine the mutant viral 

isolates for attenuation in a model of neuronal cells. 

The SH-SY5Y cell line was selected for several reasons. When maintained in cell 

culture they have a neural progenitor cell like phenotype and can be maintained for 

several passages which is a significant advantage over other types of neural cell culture. 

These cells can also be differentiated into a neuron like phenotype if given the correct 

additives and media203. These neuron like cells have processes and are positive for 

markers of mature neurons205.  

When growth kinetics were examined in undifferentiated SH-SY5Y cells, the 

delay in viral growth was reduced, Figure 26 A. While isolate 6_13_25 displayed a delay 

in growth, while still eventually reaching parity with TC-83, isolates 81_12_24 and 

82_11_24 did not display significant differences from TC-83. This indicates that in these 

undifferentiated neuronal cells, the reduction in the structural genes or delay in 

subgenomic RNA synthesis is playing a significant role in the delay in viral growth, while 

the N terminal region of nsP2 appears to be less important. However, in the 

differentiated cells all of the mutant viral isolates had delayed growth and isolate 

6_13_25 never reached parity with TC-83, ending the time course with a half log 

reduction in maximum titer, Figure 26 B. This shows that in these differentiated cells, 

both the N terminal region of nsP2 and the effects of the subgenomic promoter region 

are important to normal virus growth. The normal synthesis of the subgenome and the 

structural proteins is also important to reaching normal titers in these cells. This indicates 
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that the differences in physiology of the differentiated cells leads to different restrictions 

on viral growth. SH-SY5Y cells have been used as models for many different types of 

neural pathologies199,200,202,205,207, and these cells display a phenotype that is similar to 

mature neurons after differentiation. This results in many changes to the metabolism and 

biology of these cells that could restrict viral growth. This includes the production of 

various neuron specific biological markers as well as neurotransmitters, as well as a 

slowing and eventual stop of the cell cycle where these cells no longer divide. Any one 

of or combination of these changes may result in restricted and slow viral growth. For 

example, due to this slowing of the cells cycle there will be less resources present in the 

cell for the virus to use to fuel its own replication leading a slow in its replication. It is also 

possible that any of the many upregulated neural genes may also have off target effects 

that restrict viral replication. 
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Figure 26. Compound resistant mutant viruses have delayed growth in a neural cell 

model. A) Undifferentiated SH-SY5Y cells were infected with the indicated viral strains at 

either 0.05 or 5 MOI. Supernatant was collected at the indicated time points and 
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replication measured by plaque assay. In undifferentiated neural cells, there was little 

delay seen in the single mutants. However, growth of isolate 6_13_25 still showed a 

delay in growth. B) Differentiated SH-SY5Y cells were used in the same experiment as 

A. In this case all of the mutant isolates showed a delay in growth, and isolate 6_13_25 

was generally attenuated as well, with a final titer fivefold less than the parental strain. 

Graphs are of individual experiments that were performed once. Three biological 

replicates per time point collected.  



143 

Discussion 

While alphaviruses are well studied, there remain portions of their genomes and 

proteins that lack described function and have remained difficult to characterize using 

typical methods of investigation. In this chapter viral isolates that resist treatment with 

antiviral compounds identified and derived in our lab were used as a method of viral 

biology characterization. Through the sequencing of these isolates, mutations were 

confirmed to be in an undescribed region of VEEV nsP2. This allowed for 

characterization of these mutants as a proxy for determining the function of the region. 

Each of the isolated mutants had and additional mutation outside of the nsP 

encoding regions. Isolates 81_12_24 and 82_11_24 both had a single point mutation in 

their E proteins and isolate 6_13_25 had a mutation in the subgenomic promoter region. 

While the mutations in the E proteins had no obvious effect in our characterization of 

these isolates, the subgenomic promoter mutations had significant effects. This mutation 

resulted in decreased subgenomic RNA synthesis structural gene expression. This 

mutation is likely involved in small plaque phenotype only seen in insolate 6_13_25, as 

well its increased attenuation in growth kinetics compared to the other isolates.  

The region of nsP2 that was mutated appears to be important in normal RNA 

synthesis. As two of the isolates have delayed synthesis of positive-sense RNA. It is 

hypothesized that due to the location of these mutations in an external face of the 

protein, and far from the active helicase sites, that this region is likely involved in protein 

interactions that stabilize the nsP complex during replication. This delay in RNA 

synthesis also resulted in a delay in the expression of the viral nsPs, as indicated by 

reduced and delayed expression of nsP2. This delay would have cascading effects 

during infection. Due to its importance as a major driver of viral RNA synthesis, a 

slowing of nsP2 expression would delay RNA replication, which would result in a vicious 
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cycle of reduced RNA leading to longer delays in protein synthesis. And this would, in 

turn, explain why these viruses have delayed replication. The fact that the viruses 

overcome this attenuation later in infection to reach similar maximal titers as TC-83 is 

explained by the exponential reduction of these molecules. Eventually so much nsP2 

and RNA are created that the viral replication and production machinery, as well as the 

ribosomes, become wholly saturated, and further acceleration is not possible.  

 In addition to the work characterizing RNA replication, protein expression, and 

growth kinetics in fibroblast cells, a more restrictive neural cell line was used. SH-SY5Y 

cells are advantageous as a model because unlike other neuronal cell lines, they can be 

maintained for several passages in cell culture when kept in their immature state. This 

immature state is similar to neural progenitor cells. They can also be differentiated, 

commonly using retinoic acid, to mimic a mature neuron cell type. 

 There was no increase in attenuation when the mutant viral isolates were grown 

in the undifferentiated SH-SY5Y cells and in fact, they were more similar to TC-83 than 

in the fibroblasts. This is an interesting phenotype that deserves further study. It is 

possible that his has to with their state along the epithelial-mesenchymal axis, as these 

cells were derived from metastatic neuroblastoma that was extracted from bone marrow.  

 When these viral isolates were examined in differentiated SH-SY5Y cells, the 

attenuation was increased compared to TC-83. The growth delay was more significant 

and isolate 6_13_25 had a reduced maximum titer as well. This may be due to an 

increased basal activation level of antiviral signaling in the mature cells. However, as this 

is quite different from the undifferentiated cells, it is likely that this restriction is due to a 

change relating to the maturation of the neurons themselves. These cells have been 

found to behave in many ways like mature neurons, and it is possible that one of the 

many biochemical pathways that they activate results in the restriction of viral growth. 
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This indicates that the N terminal region of nsP2 is important for normal replication in 

these cells and should be investigated further for potential interactions with molecules 

that are expressed in these differentiated cells but not in undifferentiated SH-SY5Y cells. 

Conclusions 

From the work that has been presented here it is clear that mutations in the N 

terminal region of VEEV nsP2 are detrimental to production of new infectious virus, and 

that this results from a delay in RNA synthesis, leading to a delay in the production of the 

viral nonstructural proteins. While a detailed mechanism remains unclear, this region 

appears to be important to the RNA synthesis of the virus. The current hypothesis is that 

the mutations are disrupting the protein/protein interactions that help to form and 

stabilize the mature replicase complex, particularly between nsP2 and nsP4. This is due 

to these mutations being far from any sites known to be involved in the helicase or RNA 

binding activities of nsP2, and their localization to sites that are largely on external faces 

of the protein structure.  

This N terminal region of nsP2 is also important for replication in differentiated 

SH-SY5Y cells, but not in undifferentiated cells. This indicates that this region is likely to 

interaction with pathways or components of the mature cells that are nor expressed in 

the neuroprogenitor like cells. This should be further investigated, looking for potential 

interaction partners in the cell, as well for pathways that are altered in these cells upon 

infection.  
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CHAPTER 5 

DISUCSSION AND FUTURE DIRECTIONS 
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DISCUSSION 

This work has investigated the mechanism of action and interactions of a novel 

antiviral amidine scaffold with Venezuelan equine encephalitis virus (VEEV). These 

compounds were also used to generate mutant virus populations that were used to 

investigate heretofore unknown aspects of VEEV biology. This work has shown how 

these compounds have promise both as potential therapeutics for VEEV induced 

disease, as well as for probing biological activities of uncharacterized portions of the viral 

genome. In this manner, these compounds have future usefulness both as potential 

treatments, as well as in the development of further compounds targeting novel 

biological activities that they can be used to detect and characterize.   

The compound scaffold was characterized through the methods described in 

chapter two. It was found that these compounds specifically and efficiently inhibit the 

synthesis of VEEV RNA during infection, and that this activity is maintained in a cell free 

system. The specificity of these compounds is highly desirable, as it means there are 

less likely to be off target effects when they are moved to more complex systems such 

as animal models. The RNA synthesis inhibitory effect of these compounds is also novel 

in the development of anti-VEEV molecules, as there are no other direct RNA synthesis 

inhibitors under investigation outside of our research group and collaborators. This is 

contrasted to nucleoside analogs, which are popular drug targets, but only inhibit viral 

RNA synthesis indirectly. 

This work characterizing the antiviral activity of these compounds led to our 

hypothesis that there is a direct interaction between the compounds and the viral 

proteins. This is due to the fact that compound ML336 maintains its effectiveness in a 

cell-free RNA synthesis assay. While this assay is not able to fully confirm an interaction 

between the viral proteins and compounds due to the inclusion of some cellular 
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components, its minimal nature makes it more likely that the compounds are directly 

interfering with the viral proteins. This led to investigation described in chapter 3, 

attempting to identify and characterize this proposed interaction between the amidine 

compounds and the VEEV nsPs.  

Unfortunately, it was not possible to confirm or deny the existence of this 

interaction, as the data obtained from the experiments looking to detect this binding were 

largely inconclusive. However, there were several advances that were made through this 

work. First, a reliable method of expressing the N terminal domain of VEEV nsP2 was 

developed. While this protein was not able to be used for the full range of 

characterization studies desired, this system has been well optimized for expression, 

and large parts of its purification. Adding a useful tool for future binding kinetics assays, 

as well as biochemical experiments examining the effects of these compounds on the 

enzymatic activities of the N terminal region of nsP2.  

Additionally, a technique using fluorescent microscopy with a double stranded 

RNA antibody as a readout for active viral replication was performed for the first time in 

our lab. This tool allows for the detection of both localization of the replication activity of 

this virus in infected cells, and quantification of how many cells are undergoing active 

viral production at any given time during infection, as opposed to cells that may no 

longer contain actively replicating virus, but still express viral proteins. For this same 

assay, click chemistry compatible compounds were developed by our medicinal chemist 

collaborator, opening up many new avenues for compound manipulation. The modified 

functional groups of these compounds allow for a variety of detection methods, as 

described here, as well as purification of the compounds from complex mixtures, as has 

been previously performed with labeled proteins215, depending on the desired use.  
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In addition to being useful for therapeutic development, antiviral compounds can 

also be used as chemical probes of viral biology. These compounds can be used to 

generate resistant mutant viral isolates, and these mutations can then be mapped to the 

viral genome, indicating the region(s) that are important in the activity of the compounds. 

This is useful from both a drug mechanism standpoint as well as a viral biology 

standpoint. For example, in this work it has been shown that the amidine antiviral 

scaffold functions to inhibit viral RNA synthesis. This means that any mutations that 

occur in the viral genome which confer resistance to drug treatment are in areas that are 

likely to be highly important for the synthesis of viral RNA. When these experiments 

were performed using the amidine scaffold compounds, it was found was that the 

resistance mutations consistently mapped to the N terminal domain of VEEV nsP2, a 

region of currently undescribed function.  

The localization of mutations to this region is not altogether surprising, as nsP2 is 

highly important in viral RNA synthesis, acting as the viral RNA helicase. NsP2 is also 

responsible for the normal cleavage of the polyprotein, which regulates RNA synthesis 

during viral infection216–219. As the implicated region lacked a specific function it was 

hypothesized that it was involved the normal synthesis of viral RNA. Due the location of 

the mutations on an external face of the protein, as well as the mutations being found 

primarily in less ordered regions, this activity was predicted to be mediated by interfering 

with the protein/protein interactions of the replicase complex and destabilizing these 

interactions.  

A group of mutant isolates was selected and submitted for further 

characterization studies. First, it is important to point out that these mutations were not 

found in detectable levels in unselected viral populations, indicating that these mutations 

are likely to be detrimental to the virus in the absence of selection by the compound. 
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Initially these viral isolates were examined in a growth curve using highly permissive 

fibroblast cells, this experiment showed that the compound resistant isolates had 

delayed growth compared to the parental VEEV strain used, but they did reach the same 

peak titers late in infection. This result was then mirrored in their RNA synthesis profiles 

with the mutants having delayed synthesis of both positive and negative sense genomic 

RNA.  

Three mutant viruses were selected for further characterization. Two isolates 

contained only single point mutations in nsP2 as well as a single point mutation in their E 

proteins. These isolates were predicted to be attenuated and display alterations in their 

RNA synthesis. A third isolate had a double mutation in nsP2 as well as a point mutation 

in its subgenomic promoter region. This isolated was predicted to be highly attenuated 

due to expected changes in the synthesis of its subgenomic RNA, and it was unclear 

how the mutations in nsP2 would combine with this to effect RNA synthesis and viral 

replication. 

Each of these viruses was attenuated in fibroblast cells, having delayed growth 

compared to the parental strain. As predicted the isolate containing the mutation in the 

subgenomic promoter was strongly attenuated, with the other two isolates having 

intermediate phenotype. However, it was surprising that each these isolates eventually 

reached parity with the parental strain and had no reduction in maximum titer. Similar 

phenotypes were seen when RNA synthesis was examined, and as predicted, the 

isolate with the subgenomic promoter mutation had a decrease in subgenomic RNA 

synthesis that the other two isolates did not display. The effects of these mutations on 

protein expression were slightly different, each of the isolates had a significant delay in 

the production of the viral nsPs and did not reach parental expression levels until eight 
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hours post infection. As expected, only the subgenomic promoter mutation had an effect 

on the synthesis of the structural proteins. 

When combined this data indicates that mutations in the N terminal region of 

nsP2 lead to delays in RNA synthesis leading to delays in nsP expression. As the nsPs 

are responsible for the replication of the viral RNA, these effects compound during 

infection, slowing viral replication, and leading to the delayed growth that was seen. 

However, as there was no loss in titer, and expression levels of both RNA and protein 

reach parity with TC-83 later in infection, these effects are overcome. This is most likely 

due to the nature of the exponential production of viral materials during infection. Even 

though the log phase growth of the virus is delayed, the viruses are still able to produce 

enough of their components over time to saturate their replicative systems as well as 

those of the cell, at which point no more acceleration of replication is possible. This 

results in the maximum titer being achieved, even though it takes longer to reach. A 

model outlining this hypothesis can be found in Figure 27. 

These phenotypes had all been examined in a highly permissive fibroblast cell 

line. These cells lack the ability to activate their interferon system and so are unable to 

enter an antiviral state. It was hypothesized that the mutant viral isolates would be 

increasingly attenuated in a cell system that could activate the antiviral response, so a 

second cell line was selected to examine this. SH-SY5Y cells were selected. These cells 

have a neural progenitor cell like phenotype and can also be differentiated into a mature 

neuron like state, making them an excellent model of VEEV infection in neurons, a 

significant site of pathology in the host220,221.  

The growth kinetics of the mutant viral isolates were examined in both the 

differentiated and undifferentiated cells. In the immature cells, the growth delay was less 

significant than that seen in the fibroblast cells. Only the isolate containing the 
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subgenomic promoter mutation was found to have a significant delay compared to TC-

83 and as before it still reached parity alter in infection. However, in the differentiated 

cells each of the isolates was significantly attenuated, and the isolates with the 

subgenomic promoter mutation had a final titer reduction of fivefold. This difference 
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Figure 27. Working model of the effects of mutations in the N-terminal region of VEEV 

nsP2. A) Early in infection the nonstructural polyprotein is synthesized from the genomic 

RNA. However, due the presence of mutations, the protein interactions have reduced 

stability, resulting in a significant reduction in the number of active complexes. This 

reduces the rate of viral RNA synthesis. B) As infection proceeds to later time points, the 

amount of nsPs synthesized increases. This increases the number of complexes that 

form despite the reduction in interaction stability. This leads to an increase in the rate of 

viral RNA synthesis, eventually reaching the maximum rate seen in infection with the 

parental TC-83 strain. 
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between the differentiated and undifferentiated cells implies that the N terminal region of 

nsP2 is likely important to the normal replication of VEEV in mature neurons but not in 

other neural derived cells, such a neural progenitor cells. The differentiated cells go 

through significant physiological changes during the maturation process leading to a 

host of phenotypes that make them useful models for neurological disease200,202,207,221. 

This includes the production of neurotransmitter, the formation of neural processes, and 

loss of cell cycling behavior. Any one or multiple of these changes could lead to more 

restricted replication of VEEV. Of particular interest is the way that the senescence of 

these cells may restrict the amount of resources available for viral replication, which is 

likely to perturb the ability of the virus to replicate as quickly as it would in the dividing 

undifferentiated cells.  

To summarize the work presented in this dissertation, the amidine scaffold 

compounds developed by our lab for the treatment of VEEV are highly effective and 

specific at inhibiting VEEV RNA synthesis. This activity is maintained in a cell-free 

system and has no effect on cellular RNA. These compounds are currently being used 

as the foundation for pretherapeutic drug discovery and development with collaborators. 

These compounds are predicted to interact with the nsPs of VEEV. While this interaction 

remains unconfirmed, several useful biochemical assays were developed, and can be 

used for further characterization of both antiviral compounds and viruses. A system was 

also developed for the recombinant expression of the N terminal region of nsP2, and this 

system is ready for use in biochemical and pharmacological assays. The amidine 

compounds were also used to derive resistant viral isolates that were used to 

characterize the N terminal region of VEEV vsP2. It was found that this region is 

important to the synthesis of viral RNA, and that its perturbation leads to a delay in viral 
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growth. This region is also important in the infection of differentiated neurons, but not 

undifferentiated neuronal cells. The mechanism of this phenotype remains unknown.  

FUTURE DIRECTIONS 

The work presented here has left several unanswered questions that need to be 

further examined and opened new questions.  

First, it remains unclear how and if the amidine scaffold compounds are 

interacting with the proteins of VEEV. While the sequencing results from chapter 4 

clearly indicate that mutations occur in a predictable manner to escape compound 

treatment, it has yet to be shown that the compounds and viral proteins directly interact. 

In chapter 3 several methods that were used to attempt to describe this interaction were 

summarized. However, no conclusive results were obtained. The primary way that this 

work should be continued is continuing to pursue the use of ectopically expressed 

protein for use in biochemical and pharmacological assays.  

The production of the N terminal region of nsP2 in a soluble form has been well 

optimized as has its initial purification. Further work remains in optimizing the cleavage 

of the SUMO tag from the construct, which will be necessary for any functional assays to 

be performed, such as helicase activity assays. The currently expressible protein is 

already usable in many types of binding assays such a microscale thermophoresis or 

surface plasmon resonance. While each of these assays requires highly pure sample, 

tag removal is not necessary so the current construct can be used. Pilot studies using 

SPR have been performed, however sensitivity was poor and further optimization of this 

assay is required.  
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Secondly, the work with the resistant viral isolates has shown that as expected, 

the N terminal region of nsp2 appears to be important to viral RNA synthesis. However, 

each of the isolates tested had an additional mutation. The N terminal region needs to 

be isolated to confirm that these phenotypes are due to the mutations in this region. To 

do this, a reverse genetic system can used. Plasmid based clones of TC-83 are 

available, and the desired mutations can be inserted using site directed mutagenesis. 

With the use of in vitro transcription these plasmids can be transfected into cells and 

virus generated with the desired genotypes. These viruses can then be submitted to the 

same experimenters as already performed with the mutant viral isolates. This type of 

system can also be used to isolate the double nsP2 mutation seen in one isolate, which 

was confounded by the presence of a mutation in its subgenomic promoter.  

Finally, the work with the resistant viral isolates in neuronal cells indicated that 

the N terminal region of VEEV nsP2 is important for the normal infection of differentiated 

neurons. The effect of mutating this region was more significant in these cells than an 

either fibroblasts or undifferentiated neuronal cells. This lead to the hypothesis that a 

feature unique to the differentiated neural cells was involved in this enhanced restriction 

on viral replication. This should first be investigated by examining the differential gene 

expression of the differentiated and undifferentiated cells to determine their differences 

in gene expression that may explain this alteration in sensitivity to viral infection. Further 

transcriptional changes in response to infection can then be determined by performing 

single cell sequencing and isolating those genes that upregulated in the infected but not 

uninfected cells, to characterize the response to infection. Ideally, there will be known 

antiviral signals or vial interactions that can be pursued in further, more detailed 

experiments. If not, there are a variety of ways that protein interactions can be predicted 

to lead to potential genes of interest. 
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