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ABSTRACT 

HARMFUL ALGAL BLOOMS IN THE OHIO RIVER: SPATIAL AND TEMPORAL 

DIFFERENCES 

Bevin Hardy 

April 5, 2021 

The frequency of harmful algal blooms (HABs) has been increasing across the globe, 

especially in river ecosystems. Although more common in lakes, more HABs have been 

reported in rivers in the past decade, particularly in the Ohio River. In 2019, a HAB 

stretched 200 to 300 miles throughout the Ohio River from September to October. 

Samples were collected for the duration of the 2019 bloom (August-October) in the 

McAlpine Pool in Louisville, KY to compare microcystis toxin (microcystin) 

concentrations on a temporal and spatial scale. Different habitats (bay, creek, river) were 

sampled throughout the bloom, and two additional sampling days, one in September and 

one in October, were taken from a boat in various habitats throughout the channel of the 

river. Wind and temperature were also documented for each sample. ELISA kits were 

utilized to determine the presence and concentration of microcystin. There was some 

significance spatially and temporally, however, more samples are needed to draw these 

conclusions.   
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CHAPTER I: INTRODUCTION 

       Harmful algal blooms (HAB) have become a global phenomenon and demand 

attention from the general public and academic community to understand their intricacies 

and develop, or improve, management practices. This phenomenon has now spread to 

every continent, including Antarctica, and is calling for more research to understand its 

complexity in a variety of environments (Clark et al., 2017). HABs have been increasing 

in frequency and distribution over the past few decades, which has heightened concern of 

their impacts, specifically, on the environment, economy, and social equity. Water 

sources are an integral part to many systems, and if these valuable resources become 

contaminated through HABs, they have the potential to have far reaching consequences. 

This research attempts to enhance the understanding of HABs in large rivers and the 

connected water systems. This research is imperative as it can provide crucial 

information for potential management strategies for future HABs, specifically in large 

river systems.  

i. Background

       Despite the damage caused by HABs, they are a naturally occurring phenomenon 

created by algal communities vital to numerous environments. Algal communities are 

essential components in various ecosystems in waterbodies along the freshwater to 

marine continuum. These algal communities are comprised of phytoplankton which are 
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critical to water ecosystems, even in large rivers. It was originally thought that large 

rivers did not provide a compatible environment to host phytoplankton, however, they 

provide a suitable habitat for a rich community of phytoplankton (Wehr & Thorp, 1997). 

The vast array of modifications made to many large rivers have created favorable 

conditions for phytoplankton to inhabit, specifically through channelization and the 

creation of navigational dams. These modification reduce turbidity and downstream loss 

in the pools throughout dammed rivers, which allow phytoplankton to utilize the 

increased amount of light penetrating through the water column to flourish and multiply 

(Wehr & Thorp, 1997). These favorable conditions become problematic when algal 

colonies proliferate rapidly to form a harmful algal bloom (HAB), depleting oxygen from 

the aquatic ecosystem and releasing toxins into the environment (Gatz & Library of 

Congress. Congressional Research, 2018).  

       These blooms are classified as harmful because the algal colonies can accelerate 

eutrophication and emit toxins in an ecosystem (Gilbert & Burford, 2017). Eutrophication 

is a naturally occurring process, however, it normally takes hundreds or thousands of 

years to occur (Anderson et al., 2002). Through anthropogenic influences, such as 

nutrient loading, alteration of water habitats, and climate change, this process has been 

accelerating rapidly and is now classified as cultural eutrophication or hypereutrophy 

(Carmichael, 2008). This process has been well-documented in European countries in 

most large rivers, and there is an extensive record of eutrophication accredited to human 

disturbance and pollution (Wehr & Descy, 1998). In a study by Wehr and Descy (1998), 

it was observed that phytoplankton densities increased 10-fold in the Danube River in the 

1970s, mainly attributed to the human alteration of river structures, which decreased 
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turbidity and increased light exposure to algal communities. Eutrophication and HABs 

are less documented in the U.S., however, there has been more attention towards HABs 

because of the increase in their frequency and duration in major water systems across the 

country.  

       In the U.S. especially, HABs are better documented in coastal waters and lakes, with 

little attention to large rivers. Even though HABs can occur in virtually any aquatic 

ecosystem, the dynamics of the bloom are significantly different between each ecosystem 

and water type (Wells et al., 2015). For example, in lakes, nutrient loading is the primary 

driver for HABs, whereas, in rivers light is the primary driver (Anderson et al., 2002; 

Wehr & Descy, 1998). Also, there are numerous types of phytoplankton associated with 

each water type (marine, brackish, and fresh). Dinoflagellates are most common in 

marine waters, diatoms are most common in brackish water, and cyanobacteria are most 

common in fresh water (Lopez, Dortch, et al., 2008; Lopez, Jewett, et al., 2008). For the 

purpose of this study, the focus will be cyanobacteria harmful algal blooms (cyanoHABs) 

since this research took place in fresh water environments. 

       One of the most common types of cyanoHABs are Microcystis spp., which has been 

found in 108 of 257 countries and territories in documented events across the globe 

(Harke et al., 2016). Microcystis spp. can be dangerous because they have the ability to 

emit toxins into their environment (Meissner et al., 2015; Watanabe & Oishi, 1985). 

Microcystin is the most common type of toxin emitted by Microcystis spp., and its innate 

function is still under discussion (Meissner et al., 2015). Microcystin is a secondary 

metabolite produced by microcystis spp., and is classified as a hepatotoxin, which is a 

liver toxin (Meissner et al., 2015; Weber et al., 2020). Microcystin also has carcinogenic 
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properties, with long-term exposure being linked to certain types of cancers; however, 

more research is needed on the subject (Meneely & Elliott, 2013) One of its understood 

functions are that it serves as a defense mechanism against grazers and parasites. 

Additionally, there have been numerous studies that have illustrated a correlation 

between the presence of microcystin and an increased resistance and growth in conditions 

were there is oxidative stress and when there is inorganic carbon limitation (Meissner et 

al., 2015). The presence of microcystin can also stabilize the protein against protease 

degradation when there are high amounts of radiation (Meissner et al., 2015; Meneely & 

Elliott, 2013). Some of these environmental conditionals are particularly conducive with 

projected impacts of climate change, which makes the production of microcystin a real 

concern.  

       Some documented cases of microcystin exposure have been concerning because of 

the adverse health effects on various species. For example, there have been documented 

cases where animals who ingested water contaminated with microcystin had livers that 

were engorged with blood and suffered fatal outcomes (Ingram & Prescott, 1954; 

Watanabe & Oishi, 1985). Humans have to ingest more toxins than animals to have this 

effect, however, chronic exposure can lead to long-term health effects or result in algal 

poisoning (Weber et al., 2020). The World Health Organization (WHO) set the safety 

standards for exposure to microcystins in drinking water and recreational exposure, 

which is 1 μl /L and 2 μl /L, respectively (Meneely & Elliott, 2013). Additionally, 

microcystin can bioaccumulate in various animals, including humans, primarily in the 

kidneys, intestines, lungs, and the carcass, but can also accumulate in the spleen and heart 

through long-term exposure (Meneely & Elliott, 2013). If humans or other species were 
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to ingest an animal with a high concentration of microcystin, it could have adverse effects 

on their health (Watanabe & Oishi, 1985).  

The actual function of microcystin is still not fully understood, however, their 

extracellular and intracellular roles are discussed in the literature (Meissner et al., 2015). 

       Microcystis spp. have been observed throughout the year when conditions are 

suitable, but are primarily present from July to October (Carmichael, 2008; Wehr & 

Thorp, 1997). Previous studies (Watanabe & Oishi, 1985; Wehr & Thorp, 1997) have 

observed higher concentrations of microcystin during a cyanoHAB from the middle of 

July through August, with toxin concentrations declining through October. There are 

numerous drivers for the proliferation of Microcystis spp., which are conducive with the 

weather and general freshwater habitat conditions present from late summer through the 

middle of fall. Some of the primary drivers for the production of Microcystis spp. are 

high light availability, warmer temperatures, low turbidity, low flow periods, and high 

nutrient loading (Paerl & Otten, 2016). 

       Many of these conditions are favorable for numerous types of HABs, however, 

Microcystis spp., especially, possess numerous traits and flexible genes that make them 

extremely competitive in comparison to other phytoplankton species. For example, 

Microcystis spp. are larger in size with gas vesicles that aid in their movement up the 

water column, which allows them to have prolonged light exposure, which aids their 

rapid proliferation (Meissner et al., 2015). Additionally, Microcystis spp. are able to form 

in oxygen depleted waters, unlike other algal species, giving them a competitive 

advantage and allows them to propagate further (Paerl & Otten, 2016). In addition to 

these traits, Microcystis spp. have a high tolerance for high temperatures, are able to 
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sequester dissolved inorganic and organic nitrogen, and have higher photosynthetic rates 

in high light exposure (Meissner et al., 2015; Paerl & Otten, 2016). One of Microcystis 

spp. more problematic traits is that higher light availability has shown to be more 

correlated with the toxic strain of microcystin (Wells et al., 2015).  

       The proliferation and toxicity of Microcystis spp. can have far reaching 

consequences that can have a ripple effect on surrounding water systems. Some of these 

consequences include creating hypoxic conditions, large fish die offs (wild and farmed), 

illness or death of aquatic species, household pets, or mammals (including humans) who 

have consumed contaminated water or aquatic species, high water purification costs, 

inhibition of recreational activities, and alteration of ecosystems, to name a few. 

(Anderson et al., 2002; Codd et al., 2005). HABs are a serious concern since they 

threaten one of the most vital resources utilized by almost every living creature across the 

globe. If there are not significant changes to how water systems are manipulated, 

exploited, and managed, it is likely HABs will continue to increase in frequency and 

duration in coming years. Since HABs have a significant impact on the environment, 

economy, and social equity, it is crucial to understand why HABs are unsustainable and 

why it is crucial to improve the sustainability of impacted aquatic ecosystems.  

ii. Sustainability

       All types of HABs can have a significant impact on the sustainability of a water 

system, however, the focus of this analysis will be on the consequences of cyanoHABs, 

specifically, in freshwater systems.  CyanoHABs can be dangerous because of the toxins 

they release and how they drastically alter and impact an aquatic ecosystem, however, 

these are not the full extent of their impacts. Waterbodies are highly utilized by numerous 
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actors for shelter, profit, or resources, which are critical for various species and systems. 

For this reason, it is crucial to break down how cyanoHABs impact on the environment, 

economy, and social equity (i.e. the three pillars of sustainability) to grasp the 

significance of this research. In its simplest form, sustainability is defined as living in a 

way that will not significantly impact future generations (Vos, 2007). The basic model of 

sustainability is to find a way to balance the positive and negative outcomes impacting 

the environment, economy, and social equity (Opp & Saunders, 2013). CyanoHABs have 

a significant impact on each of these pillars, and currently, there are no widespread, 

successful management practices to maintain a sustainable water system. To improve the 

condition of waterbodies victim to cyanoHABs, it is pertinent to better understand how 

the current situation is unsustainable and significantly impacting each sector.  

Environment  

       The formation and presence of cyanoHABs in freshwater systems have negative 

consequences on the environment and the species supported by the affected environment. 

As mentioned before, cyanoHABs impact the environment by creating eutrophic 

conditions, and accelerating this process that naturally takes hundreds or thousands of 

years (Anderson et al., 2002). Eutrophication generally occurs when bodies of water are 

loaded with nutrients, which are then used by algae to proliferate. Then the algae form 

dense mats, and depletes the oxygen in the water system, causing large die-offs of fish 

and other species (Gilbert & Burford, 2017). Eutrophication and the production of 

cyanoHABs across the globe have been highly correlated with poor water quality, which 

is primarily caused by anthropogenic sources (Carmichael, 2008). Nutrient and other 

pollutant inputs can come from sewage, animal wastes, atmospheric deposition, 
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groundwater inflow, and waste water and runoff from agricultural or urban sources which 

are overloading water systems (Anderson et al., 2002; Carmichael, 2008).  

       CyanoHABs thrive in these disturbed areas, unlike other aquatic species which 

cannot survive in these polluted environments. The biodiversity in freshwater systems 

continues to be threatened by numerous factors, including increased pollutants from 

agricultural and urban areas, drastic alterations in the environment, overexploitation of 

species and water resources, and many other factors (Collen et al., 2014). Conversely, 

invasive species and other nuisance species, like Microcystis spp., thrive in these 

disturbed areas and further decline biodiversity in aquatic ecosystems (Gilbert & Burford, 

2017). When a cyanoHAB is present, its toxicity can poison other species in that 

environment, or bioaccumlate in various species and cause even more impediments. As 

mentioned earlier, if humans or other animals ingest these contaminated species, the 

adverse health impacts can be compounded. This perfectly illustrates the extensive 

impacts cyanoHABs can have beyond their environmental consequences.  

Economy 

       Humans also utilize these threatened water sources, and have economically suffered 

from some of the consequences of cyanoHABs. Over the years, cyanoHABs have 

continued to significantly impact numerous economies overlapping or associated with the 

aquatic systems. For example, fisheries in rivers, lakes, and coastal waters have become 

contaminated from HABs in the past, and have even resulted in large fish die-offs 

because of eutrophic conditions (Anderson et al., 2002). In Alaska, the shellfisheries have 

taken a significant financial loss exclusively caused by cyanoHABs. These fisheries 

generate 50 million dollars annually, and if there is a cyanoHAB present, they risk losing 
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all of their revenue because of the contamination of their product (Sellner et al., 2003). 

CyanoHABs can also impact animals that do not live in aquatic systems, like livestock, 

horses, or pets. If these animals were to drink from a contaminated water source, it could 

have fatal and monetary costs (Gorham et al., 2017).  

       Additionally, there are numerous industries throughout freshwater systems that rely 

on the recreational use of the river to survive. There are many small businesses that 

generate their revenue from recreational activities in fresh bodies of water, such as 

kayaking, boating, swimming, etc. Without potable water, these industries lose their 

business and have the potential to fail if water quality continues to decline and if 

cyanoHABs increase in frequency and or duration (Clark et al., 2017). Just one bloom in 

an Ohio Lake cost local businesses approximately 37 to 47 million dollars in local 

tourism revenue over a period of two years. Small marinas are another example of an 

industry that is impacted by HABs. For example, in the U.S., small marinas support a 

multibillion-dollar recreation industry along river systems that is at risk if water quality 

and cyanoHABs continue to worsen (Ford et al., 2020). There is also the issue of 

cyanoHABs contaminating a drinking water source, and the costs associated with treating 

contaminated water and implementing management systems. Two notable cases of toxin 

cyanoHABs contaminating drinking water was in Lake Taihu in China and Lake Erie in 

the US. The contamination of these water sources led to a drinking water crisis in two 

major cities, and removing the cyanobacteria, along with the toxins, generated high water 

treatment costs (Burford et al., 2020).  

 In the U.S., treatment facilities are having to adapt to the occurrence and increased 

frequency of HABs. The EPA has been working with treatment plants surrounding Lake 

9



Erie, which were built before World War II, to find cost effective and successful 

solutions to treating water contaminated by a HAB (EPA, 2020). Sometimes these 

solutions involve adding more chemicals or updating the current technology at the 

treating plant, which could cost millions of dollars. In one study conducted in a lake in 

Ohio contaminated by a HAB, had documents that showed that more than 13 million 

dollars was spent in a period of two years just to treat the drinking water from the lake 

(EPA, 2015). Currently, the total economic costs of HABs in the US have been estimated 

to be approximately 2.2 billion dollars annually, which includes the effects on 

recreational use, property values, fishing, water treatment costs, etc. (Burford et al., 

2020). These costs will continue to increase if better management practices, water 

quality, and, ultimately, the frequency of cyanoHABs do not improve.  

Social Equity 

       In addition to the consequences cyanoHABs have on the environment and economy, 

people have been significantly impacted by the growing phenomenon. As mentioned 

previously, there can be significant economic costs of cyanoHABs that can have a 

substantial impact on many people, including their businesses. There is also the issue of 

human health when discussing the consequences of cyanoHABs. There are numerous 

routes of human exposure to cyanoHABs that include drinking contaminated water, 

ingesting contaminated seafood or plants, inhalation, and dermal exposure (Anderson et 

al., 2002; Meneely & Elliott, 2013; Sellner et al., 2003). Through recreational exposure, 

especially, humans risk eye irritation, respiratory distress, dermatitis, and potential algal 

poisoning (Weber et al., 2020). These impacts can intensify through long-term exposure, 

and some studies (Meneely & Elliott, 2013) have shown microcystin having carcinogenic 
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properties that have been correlated to certain types of cancer. This is especially of 

concern to those who live near and frequently interact with these contaminated bodies of 

water. The negative impacts cyanoHABs can have on human health makes HAB control 

and management a dire concern for the future.  

iii. Purpose and Hypothesis

       All the previous examples are crucial drivers for the research conducted in this study. 

CyanoHABs are detrimental to the sustainability of water systems, and continue to 

intensify as these blooms become more frequent and last longer. This phenomenon 

demands more attention and research aimed at understanding these blooms, and 

potentially finding new solutions for these problems. Despite the numerous studies 

performed and papers written about cyanoHABs, gaps in the literature remain present. 

These include an understanding of the frequency, extent, and duration of cyanoHABs 

(Wells et al., 2015). The purpose of this research is to build on previous literature about 

HABs in large river systems by looking at toxin concentrations in different habitats along 

the Ohio River throughout the duration of a cyanoHAB. These different habitats include 

bays, creeks, the river, and the main channel of the Ohio River. Since these systems are 

connected, this research is interested in discovering where HABs are forming first and 

where and when they have the highest and lowest concentrations of toxins, if present. 

Research Hypotheses  

1. Hypothesis 1: I predict these blooms are forming more rapidly in bay habitats and

then enhancing algal communities in the river, to form larger blooms. Bays,

especially marinas, are generally more polluted and have lower turbidity than the
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main channel, resulting in more light exposure. These conditions are ideal for the 

formation of a cyanoHAB. 

2. Hypothesis 2: I predict creek habitats will have the lowest toxin concentration

throughout the study because of the water is fast-moving, in comparison to the

other study habitats, and feeding pollutants directly into the river. Thus,

increasing the nutrients levels in the river.

3. Hypothesis 3: I predict the main channel of the river will have lower toxin

concentrations than bay habitats, but higher toxin concentrations than creek

habitats. The creeks and bays feeding into the Ohio River carry a variety of

pollutants from agricultural and urban runoff, which can provide a conducive

environment for the cyanoHAB.

4. Hypothesis 4: I predict the toxin concentrations will be higher earlier in the in the

bloom in comparison to the end of the bloom. Previous research (Carmichael,

2008; Wehr & Thorp, 1997) has illustrated this trend, and I predict these findings

will remain consistent in this study.

       These events have been increasing in frequency over the past few decades, however, 

it is possible historical HAB events were not detected or recorded for a myriad of reasons 

(Anderson et al., 2002). Historically, HABs have been documented more in lakes and 

coastal waters, however, more blooms have been appearing in other freshwater systems, 

such as river, bay, and creek habitats (Wehr & Descy, 1998). Lake ecosystems, including 

their phytoplankton communities, are better understood and researched than large river 

ecosystems. Despite the increased frequency of HABs in river systems, there are not 
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sufficient monitoring systems or clear understanding of the dynamics of the bloom 

(Anderson et al., 2002). Studying HABs in large river systems brings with it new 

challenges because blooms in riverine systems are driven by different factors than in lake 

and marine systems (Wehr & Thorp, 1997). This study attempts to enhance the 

knowledge of cyanoHABs in large river systems and their surrounding ecosystems to 

provide more information to improve management and monitoring systems. 
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CHAPTER II: MATERIALS AND METHODS 

i. Study Site

This research was conducted in the McAlpine Pool in the Ohio River. The Ohio 

River is formed from the confluence of the Monongahela and Allegheny Rivers in 

Pittsburg, Pennsylvania. The Ohio River runs 981-miles from Pittsburg to Cairo, Illinois 

where it joins the Mississippi River (Stefanavage, 2010). There is a long history of 

canalization and dam construction in the Ohio River to improve navigation throughout 

the river and increase connectivity to other river systems. Constructing the navigation 

system in the Ohio River included the addition of 20 locks and dams with a standard nine 

foot depth along the entirety of the river (Newman, 1979) . The modifications 

transformed the Ohio River into a central place of commerce on the river and in the cities 

the river passes through. These changes also impacted the ecosystem of the river by 

drastically altering the landscape and the species composition in the river. Before there 

were some environmental regulations implemented in the 1980s, unregulated activities, 

such as point-source pollution, were detrimental to the species utilizing the Ohio River. 

Before the 1980s, a study indicated 90% of samples along the Ohio River were classified 

as biologically impaired, compared to today, where only 34% of samples are considered 

biologically impaired (Miltner, 2018). Of the 34%, approximately one third of these 

sample sites are impaired because of eutrophic conditions, which is primarily
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attributed to extreme nutrient enrichment and the development of HABs. The 

concentration of nutrients are even higher during low-flow periods when the river mimics 

the conditions of a lake (Miltner, 2018).  

       Previously a free-flowing river, the Ohio River is now a series of impoundments 

which changes the river dynamics, fish community, and the occurrence of HABs 

(Stefanavage, 2010). One of these impoundments is the McAlpine Pool, which is located 

in the section of the Ohio River that runs by Louisville, Kentucky. The McAlpine Pool is 

75.1 miles long, and is located between the Markland (river mile 531.7) and McAlpine 

(river mile 606.8) Locks and Dams (Stefanavage, 2010). These alterations to the Ohio 

River has created suitable habitats for cyanoHABs to flourish in this environment. Over 

the past century, there have been approximately five cyanoHABs documented in the Ohio 

River, however, it is predicted there were more undocumented blooms throughout this 

period. One of the first blooms on record in the Ohio River was in West Virginia in 1930, 

which is believed to have been brought on by an extended drought period throughout the 

Ohio River Basin (Tisdale, 1931). Another bloom was recorded and studied thoroughly 

was in 1991-1992 in the Ohio River (Wehr & Thorp, 1997). Although there was another 

bloom recorded in 2007, the most significant HAB on record occurred in 2015, and 

stretched approximately 650 miles, almost the entirety of the Ohio River (ORSANCO, 

2021). This bloom was present in from August to October and received significant media 

coverage, which amplified the general public’s concern about HABs.  

In late summer of 2019, a cyanoHAB started to form in McAlpine Pool and other 

parts of the Ohio River. This bloom was approximately 200 to 300 miles in length 

throughout the Ohio River, however, it is possible that it was more extensive because of 
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limited monitoring systems. Throughout the month of September 2019, Louisville had a 

significant drought period, which aided the McAlpine Pool to resemble a lake. The lack 

of rain caused there to be a lack of mixing, low turbidity, and very little water runoff  

(Weber et al., 2020). This allowed for light to penetrate further into the water column, 

allowing for algal colonies to rapidly proliferate and form a bloom until the middle of 

October in 2019. The bloom diminished after there was a large rain event mid-October, 

which allowed for enough mixing to dissipate the bloom.  

Within the McAlpine Pool, three sites (bay, creek, and river) were sampled almost 

daily from the middle of August until the middle of October (Figure 1). There were three 

additional sites were sampled periodically throughout the bloom, but not daily (Figure 1). 

Additionally, there were two sampling days, one in September and one in October, that 

were taken from a boat (Figure 2). The boat allowed access to various habitats throughout
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the channel of the river that would be impossible to reach from land. These habitats were 

classified as above island, below island, main channel, side arm, and bay habitats.   

Figure 1. Sampling sites in the McAlpine Pool in the Ohio River. Red sampling sites were sampled almost 
daily, and the black sampling sites were sampled periodically throughout the study. 
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Figure 2. Sampling sites from the two boat sampling days that took place September 25th and October 9th. 

ii. Methods

Sampling began in mid-August and continued through the beginning of October 

in Louisville, KY in 2019. Samples were collected almost daily, or as supplies and 

weather permitted, in 500 mL plastic bottles. These samples were gathered from three 

different habitats in the McApline Pool in the Ohio River (bay, creek, and river). 
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Specifically, samples were collected daily from Limestone Bay, the Ohio River, and the 

mouth of Beargrass creek (Figure 1). Other sites included Harrod’s Creek, Corn Creek, 

and the Ohio River from the community boat dock (Figure 1). Most of these sites were 

chosen because of their feasibility for the study, including meeting site needs and having 

unlimited access to each site. Samples were collected from the shore of these waterbodies 

at convenient access points to the surface water. With the help of docks, bay habitat 

samples were able to be collected further out beyond the shore. Each bottle was filled 

with surface water in each habitat and was immediately stored in a freezer until it was 

ready for analysis. In addition to near-daily sampling, there were two days samples were 

collected on a boat to reach different habitats throughout the main channel of the river 

(Figure 2). The first sampling day took place on September 25th and the second was on 

October 9th, when the HAB was visible in thick patches in the Ohio River. Samples were 

collected from the side of the boat after the boat had been turned off for approximately 

two minutes. Air temperature, weather, and the date were also recorded as additional 

variables throughout the entire study.  

Next, ELISA tests were used to measure the toxin concentration, if present, in 

each sample. Each sample was replicated twice for the ELISA tests, which resulted in 

118 replicates (59 samples) from the continuous sampling days and 62 replicates (31 

samples) from the boat sampling days. Microcystins-ADDA ELISA tests were used from 

Abraxis to measure the concentration of microcystin by detecting microcystins, 

nodularins, and their congeners by their particular antibodies. First, the cells needed to be 

lysed, which required two freeze thaw cycles. When the samples were ready for the 

ELISA tests, two replicates of each sample were tested in a microliter plate. The ELISA 
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tests involved a four-step process to measure the absorbance for each replicate. First, an 

antibody solution was added to each individual well, and then washed with a buffer 

solution after 90 minutes. Second, an enzyme conjugate was added to each well, and 

washed with a buffer solution after 30 minutes. Third, a substrate solution was added to 

each well for 30 minutes, and then a stop solution was added to each well. Lastly, the 

microplate is put into a photometer to read the absorbance of each well. Once the 

absorbance for each sample was recorded, the values needed to be converted to toxin 

concentration. This involved calculating the %B/B0 for each standard, plotting the values 

on a standard curve, and using the equation from that curve to calculate the concentration 

for each sample. The detection limit of the ELISA tests was any sample below 0.15 or 

any sample above 5 μl/L. 

Once the toxin concentration was calculated, I ran a generalized linear mixed-

effects model on each dataset (continuous sampling days and boat sampling days) within 

R-studio. To analyze the data from each sampling day, the data was log transformed to 

make it fit normality assumptions. The original data was transformed because it appeared 

to be right skewed. Then a linear mixed-effects model was made in R-Studio with the 

response variable (log concentration), the fixed effects (site type, temperature, wind), and 

the random effects (date and site). An ANOVA was used on the model to find the p-

values for the fixed effects. To analyze the data from the two boat sampling days, the data 

was, again, right skewed and needed to be log transformed to make it fit normality 

assumptions. Then a linear mixed-effects model was made in R-Studio with the response 

variable (log concentration), the fixed effects (site type and month), and the random 

effects (date and site). An ANOVA was run on the model to find the p-values for the 
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fixed effects. Excel was also used to calculate microcystin concentrations from each 

dataset (continuous sampling days and boat sampling days).
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CHAPTER III: RESULTS 

i. Continuous Sampling Days

       Overall, toxin concentrations were the lowest in August and the beginning of 

September, and peaked at the end of September and decreased again in the beginning of 

October (Figure 3 and Figure 4). The overall highest toxin concentration was recorded on 

September 24th at 4.398 μl/L (Figure 5). The highest average toxin concentrations for 

bay and creek habitats were recorded on September 24th at 4.392 μl/L and 2.016 μl/L, 

respectively, and the highest average toxin concentration for river habitats was recorded 

on September 27th at 1.368 μl/L (Figure 3). The highest average toxin concentration for 

each habitat (creek, bay, river) was recorded in the last week of September (22-28) 

(Figure 4). The overall lowest toxin concentration was recorded on August 17th at 0.038 

μl/L (Figure 6). The lowest average toxin concentration for bay habitats was on August 

10th at 0.0816 μl/L, creek habitats was on September 12th at 0.0493 μl/L, and river 

habitats was on September 20th at 0.00436 μl/L (Figure 3).  
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Figure 3: Average toxin concentrations in each habitat for each day of sampling. 

Figure 4: Average toxin concentrations in each habitat for each week of sampling. 
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Figure 5: Maximum toxin concentrations for each recorded sampling day. 

Figure 6: Minimum toxin concentrations for each recorded sampling day. 

       It is also crucial to look at any samples that exceeded the World Health 

Organization’s (WHO) established safe limit for microcystin exposure for humans in 

terms of recreational exposure. The only sampling days that had toxin concentrations 

higher than the recreational safe limit set by the WHO (2 μl/L) was September 24th and 
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September 27th (Figure 5). On September 24th, toxin concentrations above the WHO 

safe limit were found in samples from bay habitats (4.392 μl/L) and creek habitats (2.016 

μl/L) (Figure 5). On September 27th, toxin concentrations above the WHO safe limit 

were found in samples from bay habitats (2.558 μl/L) and river habitats (2.688 μl/L) 

(Figure 5). The average toxin concentration of every other sampling day fell below 1 μl/L 

(Figure 7). 

Figure 7: Average toxin concentrations recorded for each sampling day. 

       As mentioned earlier, a generalized linear mixed-effects model in R-Studio was run 

with the response variable (log concentration), the fixed effects (site type, temperature, 

wind), and the random effects (date and site). An ANOVA was used on the model to find 

the p-values for the fixed effects. None of the fixed effects had significant p-values, 

however, site type is trending with a p-value of 0.097, since it is below 0.10 and above 

0.05 (Table 1). Creek and river habitats appear to have similar results, whereas, bay 
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habitats show higher toxin concentrations in comparison to creek and river habitats 

(Figure 8). To further analyze the significance of site type, T-Tests were run between 

each site type, using a Bonferroni correction (p-value of 0.0167). After using the 

Bonferroni correction, the differences between bay sites and river and creek sites were 

significantly different (Table 2). There was no significant difference between creek and 

river habitats (Table 2). There were a substantial number of outliers in the dataset of 

creek and river site types, which could possibly explain the trending p-value (Figure 8). 

Fixed Effects P-Value 

Wind (mph) 0.685 

Site Type 0.097 

Temperature 0.969 

Table 1: P-values of fixed effects from linear fixed-effects model. 
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Figure 8: Box plot for toxin concentrations for each habitat for continuous sampling day. 

T-Test P-Value 

Bay vs. Creek 0.00718 

River vs. Bay 0.00000292 

Creek vs. River 0.176 

Table 2: T-Test results from direct habitat comparisons. 
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ii. Boat Sampling Days

       To analyze the data from the two boat sampling days, a linear mixed-effects model 

was made in R-Studio with the response variable (log concentration), the fixed effects 

(site type and month), and the random effects (date and site) (Figure 9). An ANOVA was 

run on the model to find the p-values for the fixed effects. There was no significant 

difference between site type, however, the difference between months was highly 

significant (Table 3 and Figure 9). The average toxin concentration for the sampling day 

in September was 0.1408 μl/L and the average toxin concentration for the sampling day 

in October was 8.011 μl/L. In September, the toxin concentrations recorded did not 

exceed 0.201 μl/L, and did not fall below 0.0904 μl/L (Figure 10). In October, the toxin 

concentrations recorded did not exceed 11.279 μl/L, and did fall below 2.669 μl/L 

(Figure 10). In September, the habitat with the highest average toxin concentration was in 

below island habitats (0.2027 μl/L), and the lowest average toxin concentration was in 

bay habitats (0.2027 μl/L) (Figure 11). In October, the habitat with the highest average 

toxin concentration was in above island habitats (10.4354 μl/L), and the lowest 

average toxin concentration was in main channel habitats (7.4737 μl/L) (Figure 11). 

However, as mentioned before, there was not significant difference between habitats for 

the two boat sampling days (Table 3).  
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Figure 9: Box plot for toxin concentrations for each boat sampling day between each month. 

Fixed Effects P-Value 

Site Type 0.99 

Month < 2 x 10^-16 

Table 3: P-values of fixed effects from linear fixed-effects model. 
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Figure 10: Average toxin concentrations for each site for the two different sampling days that took place in 
September and October. 

Figure 11: Average toxin concentrations for each habitat for the boat sampling days in September and 
October.  
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CHAPTER IV: DISCUSSION 

       There were some results from the study that were expected, and some that were in 

stark contrast to previous studies conducted and the hypotheses for this study. First, bay 

habitats did have significantly higher toxin concentrations throughout the duration of the 

bloom in comparison to creek and river habitats; which provides supporting evidence for 

hypothesis 1. Even though bay habitats consistently had higher concentrations than the 

other habitats sampled, there was not a consistent pattern of an increase or decrease in 

toxin concentration throughout the sampling period. There were unpredicted drops and 

spikes in the toxin concentration of bay samples throughout the study, even though the 

highest peak of toxin concentration occurred towards the end of September. These 

samples created numerous outliers, which prevented a clear pattern from emerging from 

the data. Some of these outliers could be better explain if there were more variables 

measured throughout the study, such as sampling from deeper in the water column, 

including more sites, measuring turbidity, velocity, water temperature, and other 

countless factors. It would be critical to include some of these, if not all, of these 

variables in future studies to potentially provide a better explanation for some of these 

outliers in the dataset.  

Second, hypothesis 2 and 3 were not supported by the data collected in this study 

because the river samples were generally lower in toxin concentration than in creek 
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samples. Despite this trend, there was not a significant difference between river and creek 

habitats from the samples that were collected. If there were more river and creek sites 

included in the continuous, daily sampling days, there could have been more data to 

understand the dynamics of these habitats studies in this research. Third, hypothesis 4 

was also false because toxin concentrations were higher towards the beginning of the 

bloom, versus at the beginning of the bloom. Even though there were not many clear 

trends throughout the study, toxin concentrations were clearly impacted by the date. 

Based on the data collected, the lowest toxin concentrations at the beginning of the study, 

and there was an evident peak in toxin concentrations towards the end of September.  

       One of the most surprising results found in this study was the toxin concentrations 

being higher towards the end of the bloom versus at the beginning. Preceding research 

done in the Ohio River has documented previous cyanoHABs having higher toxin 

concentrations in July (or earlier in the bloom) than in October (later in the bloom) 

(Watanabe & Oishi, 1985; Wehr & Thorp, 1997). Watanabe & Oishi (1985) found that 

toxicity in Lake Suwa in Nagano Prefecture was highest from the middle of July through 

August, and drastically fell (by 50%) in late August and September. Additionally, a study 

by Wehr and Thorp (1997) illustrated higher toxin concentrations (more than double) of 

microcystin in the Ohio River in July than in October. The highest toxin concentration 

recorded in this study was on September 24th, whereas, the lowest toxin concentration 

was recorded on August 17th; which is the inverse of the finding from Watanabe & Oishi 

(1985). It is challenging to pinpoint why there is a significant difference between the 

findings in this study versus previous studies, however, it would be informative to repeat 
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this study in more habitats and pools along the Ohio River during a cyanoHAB to see if 

this pattern continues.  

       Another unexpected finding was that air temperature did not have a significant effect 

on bloom production. This differs from previous research which found high correlation 

between the temperature and the growth of the bloom and toxin concentration. Weber et 

al. (2020) found that air temperature significantly impacted bloom production, with 

higher temperatures significantly increasing algal growth. However, that particular study 

was done in a controlled lab setting, which may not directly translate into active aquatic 

ecosystems. Also, this result could potentially be contributed to the amount of samples or 

missing some sampling days during the bloom. It is possible that with more continuous 

sampling, or even multiple samplings throughout each day, there could be more data to 

find a stronger correlation between temperature and toxin concentration.  

Even though it was predicted that bay habitats would have higher toxin concentrations 

than every other habitat sampled, this contrasts what has been found in previous studies. 

These findings contradict previous literature (Gorham, 1964), where toxin concentrations 

were higher in the main channel of the Ohio River versus lake habitats. Even though lake 

habitats were not sampled in this study, bay habitats to some extent resemble lake 

habitats because they are more stagnant than river or creek habitats. The only time the 

main channel of the Ohio River had significantly higher toxin concentrations was during 

the October boat sampling day. However, all of the toxin concentrations were higher than 

5 μl/L, which according to the ELISA test, required additional testing to obtain a more 

precise concentration. Since, samples were contaminated before these tests were redone, 
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any toxin concentration above 5 μl/L must be reported as such, and cannot trust the 

accuracy of these values.  

       The boat sampling days are harder to explain because of the drastic differences in 

concentrations between the continuous sampling days. The first sampling day in 

September took place on the 25th, which was only one day after the highest recorded 

toxin concentration from the continuous sampling days. However, this boat sampling day 

resulted in some of the lowest toxin concentrations from the entire study. Additionally, 

the second boat sampling day took place on October 9th, and had the highest toxin 

concentrations recorded from the entire study. The maximum toxin concentration on 

October 9th from the continuous sampling days was 0.0801 μl/L, which was the lowest 

maximum concentration recorded from the entire study, regarding the continuous 

sampling days. Some possible errors could include the boat disturbing the water column, 

pushing surface algal colonies together or apart, or mixing the water underneath with the 

propeller could have all skewed the results from these sampling days. Regardless, the 

contrasts in data from the continuous sampling days and the boat sampling days 

illustrates the complexity of these blooms, and calls into question the other factors that 

could potentially be influencing the development and location of the bloom. The results 

from this study are limited in answering these questions because boat sampling was only 

available for two isolated days throughout the entirety of the three-month study.  
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CHAPTER V: CONCLUSION 

       This study built on previous literature and findings, but, also, produced findings that 

were drastically different from previous studies. With more sampling days and more 

samples from each habitat, it might be possible to draw more accurate conclusions or 

stronger correlations from the data collected. However, the results from this study call 

into question many known characteristics of cyanoHABs that require further exploration. 

There is a desperate need for more research about HABs in large rivers. Currently, there 

is an average of 7 cyanoHABs days per waterbody per year, and some predictions show 

this number increasing to 18-39 cyanoHAB days by the year 2090 (Weber et al., 2020). If 

these predictions come to fruition, it is crucial to improve monitoring systems and 

networks along all bodies of water, including the Ohio River. Sections of the Ohio River, 

like the McAlpine Pool, are not isolated from one another, but instead are extremely 

connected. If there are nutrient loading sources upstream, they can be transported 

downstream and support the formation of a larger bloom (Anderson et al., 2002). For this 

reason, it is important to enhance the network of monitoring systems to improve water 

conditions and protect anyone utilizing the river during bloom.  

       In addition to city and state networks, the general public needs to be informed and 

involved about HABs in their environment. Foundational change to improve water 

quality requires support and interest beyond the scientists advocating for improved water 
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systems.  The general public needs to be more aware of how they could be directly 

impacted by the degradation of their environment to become more involved and 

supportive of mitigation strategies (Bauer et al., 2010). As mentioned in the introduction, 

cyanoHABs can have far reaching impacts that can and will impact numerous systems, 

including the environment, economy, and social equity. For these reasons, especially, it is 

important to extend monitoring networks to the general public, so people are aware and 

have stake in what is happening to their environment. To better engage the public in HAB 

management there needs to be a focus on socioeconomic impacts, recreational and 

drinking water impacts, public health impacts, risk communication, institutional 

coordination, and improved education and outreach (Bauer et al., 2010). People need to 

understand the dangers of a HAB and what factors are causing these blooms to occur, so 

they can demand and create change in how water resources are exploited and polluted 

today.  

       There needs to be better monitoring systems to improve detection of HABs and 

management systems. A potential monitoring system proposed by numerous authors is 

satellite remote sensing (Clark et al., 2017; Gorham et al., 2017; Urquhart et al., 2017). 

This method has had success in lake susceptible to HABs, however, large rivers pose 

different obstacles to successful satellite monitoring. For example, a study (Gorham et al., 

2017) analyzing the efficiency and success of remote sensing in Ohio illustrated some of 

these benefits and challenges. Remote sensing was able to function as an early 

monitoring device to indicate the need for additional testing, however, only half of the 

waterbodies in Ohio were able to be monitored. This has some benefits, however, there is 

still a large portion of waterbodies susceptible to a bloom that are not being monitored 
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(Gorham et al., 2017). River systems are far more extensive than lakes, and require 

additional monitoring strategies to be successful in monitoring and managing a bloom. 

With more public outreach, the surrounding communities of these bodies of water could 

also contribute to monitoring the formation of bloom. If a network was created to connect 

with multiple communities about how to identify and report a bloom, this could 

significantly expand the current monitoring network.  

       These actions and more research are extremely important for the future of aquatic 

systems across the globe. Climate change is a pressing matter that is already impacting 

numerous environments and ecosystems, and riverine systems are no exception. There 

are many researchers and studies that conclude climate change impacts will exacerbate 

HABs in numerous regions (Gorham et al., 2017; Wells et al., 2015). Rising temperatures 

alone could contribute to higher surface water temperatures and vertical stratification. 

Changes in participation patterns could also create ideal conditions for HABs and 

increase their frequency and duration in susceptible regions (Paerl & Otten, 2013; Wells 

et al., 2015). Climate change effects will make it even more difficult to monitor and 

control HABs, which will only be exacerbated if more mitigation strategies are not 

implemented (Paerl & Otten, 2016). HABs require immediate attention from everyone 

who utilizes and relies on aquatic ecosystems, otherwise these compound effects will 

have substantial, irreversible consequences. 
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LIMITATIONS 

       There were numerous limitations throughout the duration of this research. First, the 

rapid development of the bloom resulted in a haste start of the research, with minimal 

time to fully develop a thorough research design. Second, lack of supplies, specifically 

bottles, and weather prevented samples from being collected every continuous day of the 

bloom. If there had been more samples there would have been more data to contribute to 

the final results, and could have explained some of the outliers in the dataset. Third, 

complications caused by the pandemic resulted in a loss of samples before further testing 

could be done. This included a PCR test, nutrient testing, and redoing ELISA tests. If a 

sample had a toxin concentration higher than 5 μl/L, the test required those solutions to 

be diluted down to receive a more precise, accurate concentration. These elements would 

have added to the research in profound ways, however, once the samples were 

contaminated, there was no way to perform these tests.  
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