
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2021

Refinement and automation using algorithmic control of Refinement and automation using algorithmic control of

BreathForce, a respiratory training system for patients with spinal BreathForce, a respiratory training system for patients with spinal

cord Injuries. cord Injuries.

Anna Goestenkors
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Biomedical Devices and Instrumentation Commons

Recommended Citation Recommended Citation
Goestenkors, Anna, "Refinement and automation using algorithmic control of BreathForce, a respiratory
training system for patients with spinal cord Injuries." (2021). Electronic Theses and Dissertations. Paper
3902.
https://doi.org/10.18297/etd/3902

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/235?utm_source=ir.library.louisville.edu%2Fetd%2F3902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3902
mailto:thinkir@louisville.edu

REFINEMENT AND AUTOMATION USING ALGORITHMIC CONTROL OF

BREATHFORCE, A RESPIRATORY TRAINING SYSTEM FOR PATIENTS

WITH SPINAL CORD INJURIES

Anna Goestenkors

Bioengineering B.S., University of Louisville, 2020

A Thesis

Submitted to the Faculty of the

University of Louisville

J.B. Speed School of Engineering

As Partial Fulfillment of the Requirements

For the Professional Degree

MASTER OF ENGINEERING

Department of Bioengineering

May 2021

ii

REFINEMENT AND AUTOMATION USING ALGORITHMIC CONTROL OF

BREATHFORCE, A RESPIRATORY TRAINING SYSTEM FOR PATIENTS

WITH SPINAL CORD INJURIES

iii

ACKNOWLEDGMENTS

Throughout the past year, I have received so much support from many people in my life.

I would like to thank Dr. Roussel for always being a supportive thesis mentor and helping

me along every step of the way. In addition to being a great mentor, he took the time to

write numerous letters of recommendation and support me in figuring out the next step in

my career. I would like to thank my committee members, Dr. Ovechkin and Dr.

Kopechek, for agreeing to be on my committee and support me throughout this project. I

would also like to thank Dr. Soucy and Alexa Melvin for being amazing mentors and

giving me such great advice. I would also like to thank my family for constantly

encouraging me and being my testing volunteers. I would not have been able to do this

without them. Finally, I would like to thank my friends for their constant support.

iv

ABSTRACT

Spinal cord injuries (SCI) can lead to impaired respiratory and cardiovascular

function and a general decrease in lung compliance. This can complicate breathing as

well as impair the ability to sigh, cough, and clear secretions, leading to increased risk of

respiratory infections. Respiratory training has been shown to combat these effects.

BreathForce is under active development to create a user-centric inspiratory-expiratory

device that is an affordable option for at-home training. This study reports on the

refinement of valve design and automation incorporated into BreathForce to enhance and

enforce clinical practices and processes as part of the respiratory training protocol used

with SCI patients.

The system establishes resistance to flow using a custom designed (SolidWorks

Flow Sim 2020) proportional valve driven by a 180-degree servo motor (Towerpro

MG996R). Computational Fluid Dynamics (CFD) methods were used to evaluate the

downstream to upstream pressure differential as each modified valve design was rotated

from completely closed to completely open. Boundary conditions were set at the inlet and

outlet of the device to imitate the peak volumetric flow rate of a healthy adult male

weighing 70 kg (0.167 L/sec). The static pressure at the inlet and outlet of the device as

well as the pressure differential were output parameters for each incremental position of

the proportional valve. A microprocessor (Feather M0, Adafruit) was used to automate

respiratory training. The original system calculated target expiratory and inspiratory

v

training pressures but required the clinicians to manually set the valve position. An

algorithm was developed to automatically set the target valve position for training based

on a measurement of the maximum inhalation and exhalation pressures. The pressure

drop generated by the user was measured during normal breathing as the servo motor

incrementally moved the valve from open to closed. Once the generated pressure was

within ninety percent of the target pressure (~ 15% of max capacity), the servo motor was

stopped, and that valve position was stored. Healthy volunteers were used to validate

system operation. Data was saved to an included SD card and real time clock (Adalogger

FeatherWing, Adafruit) to record maximum and minimum pressures generated, as well as

session training data at approximately 20 Hz.

The simulation goal was to develop a valve geometry that maintained resistance

to flow over the widest range of valve body rotation (0 to approximately 180 degrees).

Seventeen design iterations were created and tested via CFD. The algorithm successfully

located the optimal valve position for both expiration and inspiration training based on

individual users maximum expiratory and inspiratory pressures measured on system

startup. Additionally, a simple feedback algorithm was included to adjust the valve

position in small increments during training based upon the percentage of target pressure

the user was generating. Since pressure drop is related to volumetric flow, if a user

generated an artificially high pressure (hyperventilation, coughing) during training,

continuous adjustment of the valve position aided users in reaching appropriate target

pressures.

Flow simulations set the stage for continued refinement of the custom valve

designs which are currently 3D printed. The inherent print resolution limitations of this

vi

manufacturing method are acceptable only for prototyping, and as the product moves

towards manufacturability, the valve structure will be injection molded. Each training

session begins with a measurement of maximum and minimum pressures, so the target

training pressure the user experiences automatically increases as the user gains in their

respiratory capacity. Building in automation proved successful in enforcing clinical

protocols developed at the Frazier Rehabilitation Institute and refinements will continue

as the system moves to the clinic for evaluation with patients under IRB approval.

vii

Table of Contents

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

LIST OF FIGURES ... ix

LIST OF TABLES .. xii

I. INTRODUCTION .. 1

1.1 Clinical Presentation of Spinal Cord Injury ... 4

1.2 Project Goals .. 5

II. BACKGROUND .. 7

2.1 Physiology of the Spinal Cord ... 7

2.2 The Physiology of Respiration ... 9

2.3 The Mechanics of Respiratory Function Following Spinal Cord Injury 12

2.4 Respiratory Function Rehabilitation Methods ... 13

III. MATERIALS & METHODS ... 18

3.1 Device Hardware .. 18

3.1.1 The First-Generation of BreathForce .. 18

3.1.2 The Proportional Valve vs. Threshold Valve ... 19

3.1.3 The Second-Generation of BreathForce ... 20

3.1.4 Pressure Differential Analysis via CFD .. 24

3.1.5 Printed Circuit Board and Components .. 27

3.2 Device – Software .. 28

3.2.1 Software Criteria ... 29

3.2.2 Updating the Touchscreen Display ... 29

3.2.3 Updating the Microcontroller Code .. 30

3.2.4 Experimental Testing with Healthy Volunteers .. 31

IV. RESULTS/DISCUSSION... 32

 Proportional Valve Computational Fluid Dynamics Results 32

 Updated Touchscreen Display and Microcontroller Code 46

 Results of Experimental Testing with Healthy Volunteers 54

viii

 Interpretation of Experimental Testing with Healthy Volunteers 62

V. CONCLUSION ... 66

5.1 Proof of Concept .. 66

5.2 Future Development of BreathForce .. 67

REFERENCES ... 69

VI. APPENDIX I .. 74

VII. APPENDIX II .. 79

VIII. APPENDIX III ... 113

IX. APPENDIX IV.. 118

X. APPENDIX V ... 137

XI. APPENDIX VI.. 138

XII. APPENDIX VII ... 147

XIII. APPENDIX VIII .. 171

XIV. APPENDIX VIIII ... 174

XV. APPENDIX X .. 179

ix

LIST OF FIGURES

Figure 1.1 - Motor vehicle accidents constitute the largest cause of spinal cord injury

since 2015. .. 2

Figure 2.1 - The white matter encompasses the gray matter within the spinal cord. 7

Figure 2.2 - The upper and lower respiratory tracts function to pass air from the

environment to the lungs. .. 9

Figure 2.3 - The lung volumes and capacities can give clinicians an idea of someone's

lung function. .. 11

Figure 2.4 - The Breather has a manually adjustable valve to provide resistance during

respiratory muscle training. .. 15

Figure 2.5 - The CoughAssist Mechanical Insufflation-Exsufflation Device helps subjects

simulate a cough. .. 16

Figure 3.1 – The first-generation of BreathForce used off-the-shelf parts to create a

respiratory training device that provided resistance for inspiration and expiration. 19

Figure 3.2 - The 2nd generation design of BreathForce featuring an inlet, outlet, servo

motor platform, and driving gear for internal proportional valve. 21

Figure 3.3- The end of the inlet acts as the fixed portion of the proportional valve......... 22

Figure 3.4- The disc acts as the rotating (free) valve body of the proportional valve. 22

Figure 3.5– The idealized response that maintains resistance to flow while experiencing a

linearized decline is shown in green. .. 23

Figure 3.6 – Simplified version of the valve including a section view showing the

movable valve body. ... 24

Figure 3.7 – A proportional valve design in SOLIDWORKS is moved from completely

closed to completely open using an angle mate. ... 25

Figure 3.8 - The 3D rendering of the printed circuit board shows the various components.

... 27

Figure 4.1 – The original design featured four cut-outs on both portions. 32

Figure 4.2 – The original design resulted in a low maximum pressure differential and

resistance to flow over only forty degrees. ... 33

https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925096
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925096
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925097
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925098
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925098
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925099
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925099
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925100
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925100
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925101
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925101
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925102
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925102
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925103
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925103
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925104
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925105
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925106
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925106
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925107
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925107
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925108
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925108
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925109
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925109
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925110
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925111
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925111

x

Figure 4.3 – The third assembly featured a grate design on the free portion to increase

resistance to flow. ... 34

Figure 4.4 – The third assembly resulted in a high maximum pressure differential, but

only resisted airflow over 30 degrees. .. 34

Figure 4.5 – Assembly Five and Six featured the same patterns, but in a reverse order to

ascertain which produced the greatest resistance to flow over the largest area of the

proportional valve. .. 35

Figure 4.6 – Assembly Six resulted in a maximum pressure differential of 59.7 cm H2O

while Assembly Five resulted in a maximum pressure differential of 38.0 cm H2O. 35

Figure 4.7 – Assembly Eight featured matching grate designs on both portions with a

change in thickness on the free portion... 36

Figure 4.8 – Assembly Nine was the same design as Assembly Eight with the thickness

over the grate equivalent to the thinnest portion of Assembly Nine. 37

Figure 4.9 – Assembly Eight featured an increasing thickness over the grate and

resistance to flow over fifty-five degrees. ... 38

Figure 4.10 – Assembly Nine show resistance to flow only over forty degrees. 38

Figure 4.11 – Assembly Thirteen featured matching grate designs of .40 by .40-

millimeter square cut-outs... 39

Figure 4.12 – Assembly Thirteen featured high resistance to flow over 180 degrees. 40

Figure 4.13 - Assembly Fourteen featured matching grate designs with larger cut-outs of

increasing size and increasing thickness over the grate. ... 41

Figure 4.14 – Assembly Fifteen featured matching grate designs with larger cut-outs of

all the same size and increasing thickness over the grate. .. 41

Figure 4.15 – Assembly Fourteen resulted in a much lower maximum pressure

differential and lower resistance to air flow over the proportional valve area. 42

Figure 4.16 - Assembly Fifteen results were more consistent with the design criteria than

Assembly Fourteen but not as consistent as Assembly Thirteen. 43

Figure 4.17 – Assembly Seventeen featured a yin-yang shaped cut-out to facilitate

smaller increases in air flow as the valve was opened. ... 44

Figure 4.18 – Assembly Seventeen created the resistance to flow over approximately 130

degrees of the proportional valve. ... 45

Figure 4.19 – Normalized to each other, Assembly 17 clearly generated the largest

maximum pressure differential and created the largest resistance to flow over the

proportional valve. .. 46

Figure 4.20 – The “start-up” page of the touchscreen is displayed while the program

performs necessary functions for set-up. .. 47

Figure 4.21 – The Test Program page was included for future testing of proportional

valve designs. .. 47

https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925112
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925112
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925113
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925113
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925114
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925114
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925114
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925115
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925115
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925116
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925116
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925117
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925117
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925118
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925118
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925119
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925120
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925120
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925121
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925122
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925122
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925123
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925123
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925124
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925124
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925125
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925125
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925126
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925126
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925127
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925127
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925128
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925128
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925128
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925129
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925129
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925130
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925130

xi

Figure 4.22 – The Directory page presents the user with the necessary options to

complete the device protocol. ... 48

Figure 4.23 – This page walks the user through the steps being completed to read

previous files and make a new file. ... 48

Figure 4.24 – The user uses the slider to set the training percentage for the session. 49

Figure 4.25 – The PI/PEmax page directs the user on when to breath to measure their

maximal inspiratory and expiratory pressures. ... 50

Figure 4.26 – The Valve Position Location page directs the user through the steps to

locate the expiratory and inspiratory valve positions for training. 50

Figure 4.27 – The flow chart shows that if the pressure is not within ten percent of the

target pressure, the process begins again with another servo motor movement and

pressure measurement. .. 51

Figure 4.28 – The training page has multiple forms of feedback to direct users through

the training session. ... 52

Figure 4.29 – The servo motor moved based on the percentage of the target pressure the

user is generating. ... 53

Figure 4.30 – The Results page produces a summary of the previous and current training

session. .. 53

Figure 4.31 – Volunteer A Training Session at 10% .. 56

Figure 4.32 – Volunteer A Training Session at 15% .. 57

Figure 4.33 – Volunteer A Training Session at 20% .. 57

Figure 4.34 – Volunteer B Training Session at 10% .. 58

Figure 4.35 – Volunteer B Training Session at 15% .. 59

Figure 4.36 – Volunteer B Training Session at 20% .. 59

Figure 4.37 – Volunteer C Training Session at 10% .. 61

Figure 4.38 – Volunteer C Training Session at 15% .. 61

Figure 4.39 – The updated code included a dead band as shown in the flow chart. 65

https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925131
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925131
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925132
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925132
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925133
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925134
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925134
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925135
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925135
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925136
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925136
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925136
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925137
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925137
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925138
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925138
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925139
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925139
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925140
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925141
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925142
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925143
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925144
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925145
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925146
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925147
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925148

xii

LIST OF TABLES

Table 1.1 - Spinal cord injury has a significant financial impact. 3

Table 4.1 – Volunteer A Summary Data .. 55

Table 4.2 – Volunteer B Summary Data ... 55

Table 4.3 – Volunteer C Summary Data ... 60

Table 4.4 – Average Deviations at Each Training Percent ... 62

https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925149
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925150
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925151
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925152
https://d.docs.live.net/a1ca5ed82830f4a0/Documents/Master's/Thesis%20Drafts/Thesis%20Near%20Final.docx#_Toc74925153

1

I. INTRODUCTION

Spinal cord injury is defined as damage to the spinal cord or the cauda equina, the

collection of nerves at the end of the spinal canal. The spinal cord can be directly

damaged or be compromised as a result of damage to the vertebrae, ligaments, or discs in

the spinal column. Injury may occur for example, from a significant blow to the body or

from a wound that directly penetrates and/or lacerates the spinal cord. Additional damage

can follow in the days and weeks after the initial injury due to inflammation and swelling

of the tissue surrounding the cord [1].

In the United States alone, there are approximately fifty-four new cases of spinal cord

injury for every one million people each year [2]. This number does not account for

fatalities due to severe spinal cord trauma. While the average age of injury has for many

years hovered around twenty-nine years old, the average age is now trending towards

forty-three, with males accounting for approximately seventy-eight percent of spinal cord

injury cases. Motor vehicle accidents followed by falls are the two largest percentages of

spinal cord injuries. Other incidents that cause spinal cord injuries include violence,

sports, and medical/surgical incidents. The graphical breakdown of spinal cord injury

causes since 2015 can be viewed in Figure 1.1 (next page) [2].

Spinal cord injury can be classified by injury type and level of injury. The two types

of spinal cord injury are referred to as complete and incomplete. Complete spinal cord

injury is defined as a loss of sensory and motor function below the level of injury as a

2

whole. Complete injuries results in paraplegia or quadriplegia. Paraplegia refers to

paralysis and loss of mobility in the lower limbs and sometimes the lower abdomen due

to injury in the thoracic and lumbar segments of the spinal cord. Quadriplegia is paralysis

and loss of mobility in all four limbs due to injury to the cervical segment of the spinal

cord [3].

Incomplete injury occurs when there is partial damage to the spinal cord that leads to

some remaining sensory and/or motor function [3]. The resulting paralysis or loss of

voluntary motor movement in this type of injury greatly depends on the level and severity

of the injury. The level of injury is based on the section of the spinal cord that is

damaged. The four sections of the spinal column include the cervical, thoracic, lumbar,

and sacral, and injuries at each level affects different groups of nerves. Depending on the

particular nerves that are damaged, an individual may experience varying degrees of

severity of paralysis or loss of motor function as well as other symptoms from different

organ systems in the body [4].

Since 2010, forty five percent of spinal cord injuries can be categorized as incomplete

quadriplegia. Twenty-one percent are categorized as incomplete paraplegia while twenty

Figure 1.1 - Motor vehicle accidents constitute the largest cause of spinal cord injury since 2015.

3

percent are categorized as complete paraplegia. Finally, a smaller fourteen percent are

categorized as complete quadriplegia [5].

The different levels of paralysis combined with motor function loss result in average

annual expenses for individuals that are greatly dependent on the severity of their injury.

Table 1.1 displays the average cost of the first year and each subsequent year post injury

for different types of injury previously discussed [5].

Table 1.1 shows that medical costs for high tetraplegia patients are significantly

higher compared to low tetraplegia. This is due to the greater number of complications

found in higher level injuries due to a larger collection of nerve groups that are affected.

Additionally, the medical costs for both high and low levels of tetraplegia are higher per

year compared to paraplegia due to the paralysis and loss of motor function in four limbs

as opposed to two.

Table 1.1 - Spinal cord injury has a significant financial impact.

Severity of Injury
Average Cost of the First

Year Following Spinal Cord

Injury

Average Cost of Each

Subsequent Year

High Tetraplegia (C1-C4) $ 1,064,716 $ 184,891

Low Tetraplegia (C5-C8) $ 769,351 $ 113,423

Paraplegia $ 518,904 $ 68,739

Incomplete Motor Function $ 347,484 $ 42,206

4

1.1 Clinical Presentation of Spinal Cord Injury

As previously stated, resulting symptoms of injury greatly depend on the level of

injury and severity of injury. General symptoms that can be seen at any level or severity

in different combinations include loss of movement, loss of bladder or bowel control, loss

or change in sensation, increased reflex activities or spasm, pain caused by damage to the

nerve fibers in the spinal cord, and difficulty breathing, coughing, and clearing secretions

from the lungs [1].

Elevated risk of severe respiratory complications is primarily associated with cervical

injuries. An injury at the fifth cervical vertebrae allows for independent respiration but

results in abdominal muscle paralysis. This causes decreased lung volumes and a weak

and ineffective cough. The inability to cough to remove secretions can lead to respiratory

infections, pneumonia, or even respiratory failure. Second to paralysis and loss of motor

functions, respiratory complications are a major concern following spinal cord injury as

they remain the most common cause of mortality in spinal cord injury patients.

Additionally, the number of respiratory complications experienced by an individual

following spinal cord injury greatly influences length of stay and hospital costs [6].

Current rehabilitative therapy aims to restore pulmonary function in spinal cord injury

compromised patients. One method includes intermittent positive pressure breathing,

which uses a mouthpiece or a facemask that supports inspiration and then manually

assists coughing in an attempt to increase lung volume and exhalation flow. A similar

method is called in/exsufflation which also increases inspiratory volume followed by

assisted coughing. Another method is breath stacking which uses a resuscitation bag

connected to a mouthpiece or facemask. The resuscitation bag delivers two or more

5

breaths before it allows exhalation to occur and increases lung volume. It also aims to

improve clearance of secretions [6].

Respiratory therapies have not been proven yet to be clinically effective following

spinal cord injury [7]. However, exercise has been proven to increase fitness and

respiratory function following spinal cord injury. Strength training can take place in a

clinical setting to improve the function of the pectoralis major in order to improve

expiratory function and the ability to cough and rid the body of secretions [7].

BreathForce was designed with the goal of creating an inspiratory and expiratory training

device that allows for exercise-like training to take place in a home-setting with a

simplified user interface. It was also developed with reduced costs in mind to make the

device affordable for end users.

1.2 Project Goals

The original goal of BreathForce was to develop a respiratory training device using

off the shelf parts combined with a differential pressure instrumentation configuration to

evaluate and capture breath cycles generated by the user, and a simple and intuitive

control interface to guide users through therapy sessions. While this goal was met, the

inclusion of manually adjustable airway restriction valves proved to be troublesome for

SCI patients, many of which suffer from limitation of fine motor control. A second-

generation device that addressed this major complication of the original device would

offer more effective training via automation of valve position and provide a more

efficient and consistent experience for end users. With this in mind, the goals of this

project were to eliminate the manual valve of the original device by creating a custom

flow resistance mechanism, improve the user experience, and evaluate options to

6

automate the control of the valve position at the start and during a training session. The

following specific aims were outlined.

Specific Aim 1: Design and simulate proportional valve structures that provide

geometries that create the widest range of resistance over the largest area of the

proportional valve from fully closed to fully open. The valve should allow for

electromechanical adjustment prior to training and continual adjustment of the valve

throughout training. Using instantaneous pressure measurements, the simulation data

could be used to identify the appropriate valve position that corresponds to the

recommended training level chosen by the clinician.

Specific Aim 2: Develop an algorithm to identify the training session starting valve

position that creates an appropriate resistance for the user. Automation of this step of

the protocol will provide a more efficient and consistent experience when using the

device. Using maximum expiratory and minimum inspiratory pressures measured at the

start of a session, the algorithm will provide a repeatable method to set the initial valve

position.

Specific Aim 3: Automate the device operation during training to ensure users are

reaching, but not exceeding, their target inspiratory and expiratory pressure levels. An

algorithm will be developed to continuously monitor the pressure throughout a training

session and continually adjust the valve position to account for when users breathe too

forcefully, and the measured pressure exceeds the recommended resistance level.

7

II. BACKGROUND

2.1 Physiology of the Spinal Cord

The spinal cord is a vital part of the central nervous system. It lies within the

vertebral column, which is protected by numerous vertebrae, and covered by three

membranes, the dura mater, arachnoid, and the pia mater [8]. White and gray matter

comprise the cord, creating an H-shaped cross section. The gray matter surrounds the

white matter as shown in Figure 2.1 [9].

The gray matter is made up of motor and sensory neurons, interneurons, neuroglia

cells, and, for the most part, unmyelinated axons. This tissue makes up the dorsal and

ventral horns that are also shown in Figure 2.1. The white matter is made up of

Figure 2.1 - The white matter encompasses the gray matter within the spinal cord.

8

interconnecting fiber tracts that are mostly myelinated sensory and motor axons. The

central canal sits at the center of the cord containing cerebrospinal fluid [10].

It is the white matter that carries information between sensory receptors and the

higher levels of the central nervous system through the interconnecting fiber tracts. These

tracts are categorized as either ascending or descending tracts. The ascending tracts

transmit signals from peripheral sensory receptors up to the higher level while the

descending tracts transmit signals from the higher levels out to the periphery. The spinal

cord can also independently act via reflex arcs, which allow the body to react via this

feedback mechanism without input from the brain. In reflex arcs, signals are carried from

the sensory receptors to the spinal cord and synapsed on an interneuron. That signal is

then carried to a motor neuron which stimulates the effector muscles needed to respond to

the sensory input [10].

The spinal column is composed of thirty-three vertebrae that are divided into four

sections: cervical, thoracic, lumbar, and sacral [11]. There are thirty-one pairs of spinal

nerves coming from the spinal cord that are labeled according to which section they

originate in. There are eight cervical nerves that originate from an enlargement of the

cord due to their extension into the upper extremities and large neural output and input.

There are twelve thoracic nerves and sacral nerves. Between the thoracic and sacral

nerves are five lumbar nerves which also originate from an enlargement due to their

extension into the lower extremities and large neural output and input [10].

These spinal nerves originate as two roots, ventral and dorsal. The dorsal root

transmits signals to the brain while the ventral root transmits signals from the brain.

These roots conjoin to form the spinal nerve which eventually forms branches after

9

exiting the spinal canal. These branches contain motor and sensory fibers [11]. Injuries to

the cervical nerves are considered the most severe, as they greatly affect the central

nervous system [12]. The third, fourth, and fifth cervical nerves control the function of

diaphragm that stretches the rib cage to allow for breathing [13]. When the spinal cord is

injured, afferent signals can no longer travel from the brain past the injury. Damage to the

cervical nerves can cause weakness or loss of function in the diaphragm and abdominal

muscles required for respiration and coughing [12].

2.2 The Physiology of Respiration

The respiratory system consists of the upper respiratory tract, which includes the

nose, nasal cavity, sinuses, and pharynx, and the lower respiratory tract, which includes

the larynx, trachea, bronchial tree, and lungs. These structures, as shown in Figure 2.2,

are involved in the passage of air from the environment into the lungs [14].

Figure 2.2 - The upper and lower respiratory tracts function to pass air from the environment to the

lungs.

10

Respiration consists of two phases: inspiration and expiration. Inspiration is a

product of atmospheric pressure acting as a force to move air into the lungs when a

decrease in pressure inside the lungs is created by the diaphragm. When the muscle fibers

of the diaphragm are signaled to contract, it moves downward. This movement makes the

thoracic cavity bigger and causes the pressure drop within the lungs which then begins to

fill with air. External intercostal muscles may also contribute to this pressure drop by

contracting to elevate the ribs and sternum, further increasing the size of the thoracic

cavity [14].

Expiration is a product of the elastic recoil of lung tissue and abdominal organs

and surface tension acting as the forces required to push air out of the respiratory tract.

The external intercostal muscles and the diaphragm will relax after inspiration, and

elastic tissues within the lungs will cause elastic recoil. This recoil returns the lungs to

their initial size and shape. Additionally, surface tension between the alveolar linings

within the lungs shrink the alveoli. All of these actions increase the lung pressure above

atmospheric pressure which causes the air that traveled into the lungs during inspiration

to be forced out. One inhalation and one exhalation are considered a single respiratory

cycle [14].

The respiratory cycle can be evaluated and described in terms of air volumes and

capacities shown in Figure 2.3 (next page). Spirometry is the measurement technique

used to quantify several types of respiratory volumes that are moved in and out of the

lungs. Tidal volume is the volume of air that enters or leaves the respiratory tract and

alveoli during a single respiratory cycle. For an adult, 500 milliliters is considered an

average tidal volume during resting inspiration and that same volume exits during a

11

resting expiration. The inspiratory reserve volume is the volume of air that is inhaled in

addition to the tidal volume during a forced maximal inspiration and is generally around

three thousand milliliters. Contrary to that, the expiratory reserve volume, usually around

1,100 milliliters, is the amount of air that can be exhaled in addition to the tidal volume

during a maximal forced expiration. Residual volume, usually around 1,200 milliliters, is

the amount of air that remains in the lungs following a maximal forced inspiration. This

is the only volume that cannot be measured with spirometry and must be measured

through gas dilution techniques instead [14].

There are four respiratory capacities that can be used to describe the respiratory

cycle by combining the respiratory volumes. The inspiratory capacity is the sum of the

tidal volume and the inspiratory reserve volume. The functional residual capacity is the

sum of the expiratory reserve volume and the residual volume. The vital capacity is the

sum of the tidal volume, the inspiratory reserve volume, and the expiratory reserve

Figure 2.3 - The lung volumes and capacities can give clinicians an idea of someone's lung function.

12

volume. Finally, the total lung capacity is the sum of the vital capacity and residual

volume [14].

2.3 The Mechanics of Respiratory Function Following Spinal Cord Injury

Spinal cord injuries that occur at the third, fourth, or fifth cervical vertebrae and

damage any of the corresponding spinal nerves can greatly change the mechanics of the

respiratory cycle [16]. Lung compliance is defined as how easily the lungs are able to

expand as a result of the pressure changes that occur during the respiratory cycle [14].

Lung compliance is reduced within a month of the initial spinal cord injury and

will not change thereafter during the first-year post-injury. This reduction in compliance

is believed to be caused by reduced lung volume combined with changes in surface

tension that alters the mechanical properties of the lungs. Overall, this reduced

compliance is a complicated issue because in spinal cord injury, the compliance of the

abdominal compartment of the chest wall is quite high, but the rib cage compartment can

become stiff. This stiffness can be a result of muscle spasticity as well as abnormalities in

the rib articulations with the spine and sternum. These abnormalities develop as a result

of poor inspiratory muscle function that results in a reduction in lung capacity [16].

Quadriplegia causes changes in the respiratory system which in turn causes an

individual to exert more energy than is achieved during ventilation. This leads to fatigue

of the respiratory muscles. Additionally, weakness or loss of external intercostal muscles

function as well as high compliance of the abdominal wall can cause the upper anterior

rib cage to move inward during inhalation. This decreases the effectiveness of the

diaphragm and reduces the rib cage expansion during inhalation [16].

13

Overall, the changes in compliance in the abdominal and rib cage compartments

as well as respiratory muscle function create abnormalities in the lung volumes and

therefore to the vital lung capacities discussed previously. These abnormalities are

dependent on the severity and level of injury, body mass index, time since injury, and the

development or previous existence of other respiratory conditions. However, on average

a decrease in total lung capacity, expiratory reserve volume, and function residual

capacity is observed. Additionally, there is commonly an increase in residual volume.

Overall, these changes cause less efficient respiration and an increase in exerted energy

[17].

The impaired respiratory muscle function and decrease in lung compliance can

interfere with the ability to sigh, cough, and clear secretions. This leads to an increase in

respiratory infections and causes those infections to be much more persistent when they

occur. Respiratory illnesses are a major factor in the mortality rate of spinal cord injury

patients, and therefore, respiratory function rehabilitation is a major topic in spinal cord

injury research [16].

2.4 Respiratory Function Rehabilitation Methods

Respiratory therapists can attempt to manage or improve the respiratory function

of spinal cord injury patients in a number of ways. Respiratory muscle training is often

used to improve the muscle strength and endurance. It has been previously shown that

able-bodied individuals can train and enhance the respiratory muscles similar to training

for the skeletal muscles (i.e. weightlifting). However, these improvements to capacity

require a significant amount of training. Spinal cord injury leads to respiratory muscle

14

weakness that can lead to respiratory muscle fatigue. Training has been shown to enhance

respiratory muscle strength and prevent fatigue [18].

Respiratory muscle training commonly centers around inspiration or expiration

against an adjustable resistance for a specified amount of time each day for multiple

weeks. Studies by Gross et al [19] and Rutchik et al [20] showed improvement in both

strength and endurance as well as increases in maximum inspiratory pressures, functional

vital capacity, and total lung capacity. Another study by Kogan et al [21] showed similar

results as well as thickening of the diaphragm. While these studies clearly show

respiratory muscle training is effective, the best (or even a recommended)

protocol/method of training has not been established. Additionally, long-term effects of

training as well as the effects of abandoning the training method have not been studied or

established [18].

One example from a variety of commercially available devices that promote the

concept of respiratory muscle training is “The Breather.” This device claims to

independently train inspiratory and expiratory muscles in patients suffering from spinal

cord injury, COPD, multiple sclerosis, and many other conditions. As shown in Figure

2.4 (next page), it is a small hand-held device with a manually adjustable valve that

restricts the flow of air as the user breathes [22].

Another respiratory rehabilitation method is called abdominal binding, which is

commonly used in tetraplegia. This method includes using inductance pneumography

belts as abdominal support during spontaneous breathing. This support increases the

abdominal pressure and forces the diaphragm to remain in contact with the rib cage over

15

a larger region. The support also causes the upper rib-cage area to increase during tidal

inhalation, showing that the larger region of contact diminished distortion of the

respiratory system as whole. Unfortunately, this method does reduce the functional

residual capacity, and needs to be studied more to ascertain its effects on gas exchange

[18].

Respiratory muscle pacing is a relatively new technique used to restore

inspiratory muscle function in tetraplegic subjects following spinal cord injury.

Intramuscular electrodes are placed near the motor points of the phrenic nerve in each

hemidiaphragm and stimulated to active the diaphragm. This provides full ventilatory

support and allows the patient to breathe without the support of the ventilator.

Respiratory muscle pacing restores the inspiratory muscle function and provides a more

natural breathing experience as the subjects are breathing through their nose.

Additionally, placement of epidural electrodes to directly stimulate the spinal cord has

been used to restore the ability to cough. The stimulation in that region results in

powerful contraction of the abdominal muscles and could result in less occurrences of

respiratory infections seen in chronic spinal cord injury cases [18].

Figure 2.4 - The Breather has a manually adjustable valve to provide resistance during respiratory

muscle training.

16

After spinal cord injury, many individuals are left without or a significant

decrease in the ability to cough. This results in secretions that accumulate in the

respiratory tract and cause respiratory infections. The assisted cough technique is used to

directly combat this issue, and there are several ways to apply the method. Epidural

stimulation, while technically considered muscle pacing, also falls under this method.

Quad cough, though often ineffective, involves the subject, in a supine position,

expanding their lungs to total capacity and then coughing. A therapist applies forceful

pressure to the abdomen in rhythm with the cough. A mechanical insufflation-

exsufflation device can also be used [18]. A device is used to gradually inflate the lungs

and then quickly changes to negative pressure. This causes the subject to rapidly exhale,

which essentially simulates a cough [20]. One example of this type of device is the

CoughAssist Mechanical Insufflation-Exsufflation Device produced by J.H. Emerson Co.

(Figure 2.5) [24].

Figure 2.5 - The CoughAssist Mechanical Insufflation-Exsufflation Device helps subjects simulate a

cough.

17

Unfortunately, respiratory rehabilitation is quite expensive. For example, while

the mechanical insufflation and exsufflation devices are effective, they can cost between

$1,500 and $5,000 [25]. In 2009, the cost to implant a spinal cord stimulation system in

the United States was estimated to be between $32,882 to $57,896, depending on

insurance. The annual maintenance cost at that time was estimated to be between $5,071

and $7,277. The average cost for complications was estimated as $9,649 to $21,390 [26].

While these various techniques have been shown to be effective, respiratory

rehabilitation would benefit from a method that allows patients to complete their therapy

every day, following a proven and effective protocol, and at a low cost. While “The

Breather” provides an inexpensive option at a cost of $47.95 per unit, it contains a

manually adjustable valve (difficult for SCI patients to use) with low precision settings

that could lead to inconsistent configurations and therefore limit the success of

rehabilitation sessions [22]. Additionally, there is no way for supporting respiratory

therapists to confirm that patients completed training, nor obtain confirmation that

training sessions were completed correctly. While users may set the valve position to

apply the correct amount of resistance, confirmation that the appropriate pressure was

reached when using the respiratory system to rehabilitate the muscles is not provided.

Respiratory muscle pacing requires an expensive and invasive implantation process. It is

also subject to complications that require significant costs to maintain these systems. The

cost is also highly variable depending upon the insurance that the patient has [26]. Cough

assistance machines are expensive as well, which limits the number of patients that can

afford to obtain a machine for home use [25]. They may also use the machines

incorrectly, limiting their effectiveness.

18

III. MATERIALS & METHODS

Software developed for the original BreathForce prototype followed a scripted

respiratory training protocol developed by researchers at Frazier Rehabilitation Institute

while the mechanical prototype components incorporated a manually adjusted resistance

mechanism during inspiration and expiration using off the shelf parts. The original

training protocol was used as a guide to develop improved software with new features to

automate several steps and incorporate a feedback system into the training regimen. The

mechanical resistance mechanism was completely abandoned in favor of a 3D printed

valve with a servo-driven custom proportional valve body that would provide high

resolution adjustments to the flow resistance that users experience when using the device.

Validation tests were completed to test the efficacy of the new software that adjusted the

valve position for initial setup and during data collection with healthy volunteers.

3.1 Device Hardware

3.1.1 The First-Generation of BreathForce

The first generation of BreathForce was designed using off-the-shelf parts that

included an inspiratory valve and an expiratory valve combined with a tee connector that

contained two one-way valves. A differential pressure sensor was included to measure

the pressure inside the device with respect to atmospheric pressure. The inspiratory and

expiratory threshold valves contained threshold settings that could be manually adjusted

by the clinicians or users to adjust the resistance to flow during the training sessions [27].

19

The two one-way valves on opposite sides of the tee connector provided independent

resistance levels according to the threshold settings based on the measured maximum

inspiratory and expiratory capacities. As the user inhales, the air flows through the

inspiratory one-way check valve into the tee connector while the expiratory resistance

device blocks airflow through that portion. During exhalation the opposite effects occur,

where the air flows through the tee connector and the one-way valve of the expiratory

one-way check valve while the one-way valve in the inspiratory muscle trainer device

blocks airflow. The first-generation device and the airflow paths are shown in Figure 3.1

[27].

3.1.2 The Proportional Valve vs. Threshold Valve

By definition a proportional control valve changes the fluid flow rate through changes

in size of the flow passage via a restriction system [28]. The new goal was to include one

valve that provided resistance for both inspiration and expiration in the second-generation

Figure 3.1 – The first-generation of BreathForce used off-the-shelf parts to create a respiratory training

device that provided resistance for inspiration and expiration.

20

device. Threshold valves that were used in the first-generation device were not capable of

this as they open when the pressure reaches a certain level (threshold, or cracking

pressure), and therefore only work for one direction of airflow. A custom-designed

proportional valve would provide resistance in both directions and require only one

adjustment mechanism. The geometry of the custom-designed proportional valve is

unique, and while the airflow may remain laminar, there is no simple technique to

quantify changes in area of the flow restriction path. General fluid transport equations do

not apply to these custom designs; therefore simulations are appropriate and required in

order to evaluate the pressure differential of individual designs prior to fabrication.

3.1.3 The Second-Generation of BreathForce

As shown in Figure 3.2, the first iteration of a bi-directional respiratory training

device was developed in SolidWorks (Dassault Systèmes, Waltham, MA) in order to

provide users with a device that contained an integrated airway restriction mechanism for

both inspiration and expiration. This prototype features a one-inch diameter inlet and

outlet with a custom designed proportional control valve that incrementally opens and

closes when rotated by a servo motor. Two pressure measurement ports (1 mm diameter)

extrude form the flow volume upstream and downstream from the adjustable valve body

to allow for the measurement of differential pressure measurement using a pressure

sensor ((+/- 5 PSI, NSCDRRN005PDUNV, Honeywell, Charlotte, NC).

To provide a mechanism for electronic control of valve position, a platform and

mounting features for the servo motor (Towerpro MG996R) were included as well as a

custom gear attachment for the servo horn (24T). A section at the center of the device

was removed to expose gear teeth on the internal movable valve that would interface with

21

the gear driven by the servo. The ratio of the servo gear to the movable valve gear was

designed to be 1:1.67, providing approximately 240 degrees of internal rotation to 180

degrees of rotation of the servo motor. Turning the servo motor incrementally open and

closes the proportional valve.

When the general layout of the second-generation prototype was finalized, focus was

turned to the design of the geometric features of the adjustable proportional control valve.

A planar valve body was chosen to directly interface with the direct drive of the servo

gear and to simplify the fabrication process during prototyping. The design should

maintain resistance to flow over the widest range of valve body rotation (zero to one

Figure 3.2 - The 2nd generation design of BreathForce featuring an inlet, outlet, servo motor platform,

and driving gear for internal proportional valve.

22

hundred and eighty degrees) to allow the clinicians ample opportunity to find a valve

position that produces the correct amount of resistance for each user.

The first design produced in SolidWorks featured a proportional valve design

produced with the end of the inlet acting as the fixed portion and the disc acting as the

free portion as seen in Figure 3.3 and Figure 3.4, respectively.

Figure 3.3- The end of the inlet acts as the fixed portion of the proportional valve.

Figure 3.4- The disc acts as the rotating (free) valve body of the proportional valve.

23

As the free portion is turned and the cut-out sections align, air more easily passes

through the device leading to little to no pressure differential between the inlet and outlet

of the device and less resistance. When the cut-outs do not align, a smaller volume of air

can pass through the device leading to a greater pressure differential between the inlet

and outlet and greater resistance. The SolidWorks drawings of the original design

components and assembly can be seen in Appendix I.

Figure 3.5 shows the pressure differential response of the first proportional valve

design as well as an idealized response. The idealized response includes a linearized

decline in pressure as the proportional valve is opened as it provides resistance to flow

over a wide range of valve body rotation. The area under the curve of the first bi-

directional proportional control valve design is approximately 145 while it is

approximately 1025 for the idealized response which indicates there is room for

Figure 3.5– The idealized response that maintains resistance to flow while experiencing a

linearized decline is shown in green.

0

2

4

6

8

10

12

14

16

2
6

.5

3
3

.8

4
1

.2

4
8

.6

5
6

.0

6
3

.4

7
0

.8

7
8

.2

8
5

.5

9
2

.9

1
0

0
.3

1
0

7
.7

1
1

5
.1

1
2

2
.5

1
2

9
.8

1
3

7
.2

1
4

4
.6

1
5

2
.0

1
5

9
.4

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Idealized Proportional Valve Pressure
Differential Response

Ideal Response

Assembly 1

24

improvement from the original design. Visualization of simulation results will

demonstrate increases in both the range of valve angle of rotation and the area of similar

curves based on iterations of the flow restriction geometry.

3.1.4 Pressure Differential Analysis via CFD

SolidWorks Flow Simulation 2020 was used to study changes in the pressure

differential as each valve body design was incrementally moved from completely closed

to completely open. A simplified three-dimensional model of the overall design prototype

was used to simplify the geometry required to initiate flow simulations (Figure 3.6). The

platform for the servo motor was removed in addition to the gear attachment and gear

teeth on the free portion of the proportional valve.

Figure 3.6 – Simplified version of the valve including a section view showing the movable valve body.

25

In order to complete a parametric study, an angle mate that establishes a relationship

between the original and target rotation of the valve body was included. This parameter

iteratively sets the position of the free valve body in relation to the position of the fixed

portion on the inlet. This mate was then made into a global variable for use in the

simulation where the software could rotate the valve angle between iterations. Rotation of

the servo position adjusts the primary gear attachment which in turn rotates the free

portion of the valve. The gear ratio is such that one degree of movement on the servo

motor is equivalent to 0.615385 degrees of movement of the free portion of the valve.

Multiples of 0.615385 degrees were used to incrementally change the valve position. An

example of a proportional valve design moving from completely closed to open in

multiples of ten is shown in Figure 3.7.

Additionally, the software requires that the assembly be completely sealed in order to

run a flow simulation. Lids were created to seal the inlet, outlet, two pressure ports, and

the opening for the servo motor gear attachment.

Boundary conditions were set at the inlet and outlet of the device. When participants

use the device, they will be breathing into the inlet, so a volumetric flow rate boundary

Figure 3.7 – A proportional valve design in SOLIDWORKS is moved from completely closed to

completely open using an angle mate.

26

condition was applied. In order to simulate and visualize the pressure differential created

with each valve position, a peak volumetric flow rate was used.

An adult male weighing 70 kg expires a volume of approximately 500 milliliters

following resting inspiration for approximately two to three seconds [29]. Using these

parameters, a volumetric flow rate during exhalation of an average adult male can be

calculated using the following unit conversions.

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 =
500 𝑚𝐿

1 𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛
×

1 𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
×

1 𝐿

1000 𝑚𝐿
= 0.167 𝐿/𝑠

The value of three seconds was used as the estimate for the time to complete a full

exhalation. The resulting flow rate was set as a boundary condition at the inlet.

Atmospheric pressure was set as a boundary condition at the outlet.

The input parameter of the parametric study was the global variable of the angle

mate between the fixed and free portion of the proportional valve. Multiples of 0.615385

degrees were added to ascertain the pressure differential at each valve position from

completely closed to completely open. The angle values for the completely closed and

open positions differed for each design due to different design features in each. The

completely closed position was defined as the position that generated the largest pressure

differential value while the completely open position was defined as the position that

generated the smallest pressure differential value. The output parameters of each study

were the static pressure at the inlet, outlet, and the pressure ports as well as the calculated

differential pressure between the inlet and outlet and the calculated differential pressure

between the two ports. The automatically calculated mesh with a refinement level of

seven (about 100,000 cells) was used to generate pressure differential results for each of

27

these output parameters at each valve position. Overall, seventeen proportional valve

designs were simulated, and the fixed and free portion of each design is included in

Appendix II.

3.1.5 Printed Circuit Board and Components

The circuit board designed to support the second-generation device was inherited for

this project (Figure 3.8). The circuit included a 2.5 mm power input jack and on-off

power switch for a 5-volt, 2.5 Amp DC power supply. An embedded microcontroller

(Feather M0 Bluefruit, Adafruit Industries, New York, NY) was used to orchestrate the

respiratory training protocol. A real-time clock with flash storage daughterboard

(Adalogger FeatherWing - RTC + SD, Adafruit Industries, New York, NY) was included

to save data with time stamps from the real time clock. A manual reset button was

Figure 3.8 - The 3D rendering of the printed circuit board shows the various components.

28

incorporated into the design for programming, and two manual switches were included

on the circuit board to control servo motor movement.

A differential pressure sensor (+/- 5 PSI, NSCDRRN005PDUNV Honeywell,

Charlotte, NC) was incorporated into the circuit in order to measure the pressure

difference between the inlet and the outlet ports of the breathing apparatus. Additionally,

a 3.2-inch display (uLCD-32PTU-AR, 4D Systems, Minchinbury NSW, Australia) was

included to provide input control via resistive touch input and visual feedback for the

user, which included both instructions for operating the device as well as feedback during

implementation of the protocol. The layout and 2D rendering of the printed circuit board

and components can be viewed in Appendix III.

3.2 Device – Software

The original prototype software was developed on the Arduino platform (Arduino

MEGA, Arduino.cc), and the flexibility of a software driven mechanism that included the

custom protocol developed at Frazier Rehab for respiratory training proved to be

extremely successful. Based on feedback from users and clinicians, changes to refine the

flow of the training enabled by the device could be acted on rapidly with simple changes

to the code. The most recent version of the original prototype software was used as a base

for this project and was refactored to include both manual and automated control of the

servo position, as well as enhancement to the respiratory protocol to take advantage of

the system-controlled proportional valve.

29

3.2.1 Software Criteria

The primary software development goal was to include code that allows the system to

set the position of the proportional valve for training based on the pressures measured by

the pressure sensor. This is a significant advancement beyond the original manually

adjusted valve position of the original prototype. In the original software, the training

pressures were calculated, and the clinician or user manually adjusted the valve position.

The updated software was also required to include a method to continuously adjust the

valve body angle during the training portion of the protocol. This adjustment would be

used to actively increase or decrease the valve resistance created by the proportional

valve to assist the user in maintaining the training pressure values. Additionally, the

software for the touchscreen display was to be replicated and updated to include these

additions to the protocol. The existing software prior to any updates can be seen in

Appendix IV.

3.2.2 Updating the Touchscreen Display

The 4D Workshop Integrated Development Environment (IDE) and Arduino IDE

were used to program the touchscreen display and microcontroller, respectively. The 4D

Workshop (4DW) was used to create multiple forms that act as a dynamic user interface

on the touchscreen and to program the display to report messages in response to certain

user inputs to the microcontroller. These inputs were used to prompt the user regarding

the various functions of the device. Additionally, data was programmed to be sent from

measurements performed in the microcontroller code to the touchscreen for display.

Forms from the first iteration of the device were replicated. Insignificant changes

such as making custom software buttons that were larger and easier to read were made to

30

some of the existing forms. New form pages were created to facilitate the location of the

proportional valve position as well as test the pressure differential created at different

proportional valve positions.

3.2.3 Updating the Microcontroller Code

The Arduino IDE was used to develop the previous code, and it was also used to add

new functions in order to provide a valve test program, to locate the position of the

proportional valve, and to provide continuous adjustment of the valve position during

training.

The test program was created with a function that allowed for the servo motor to be

manually turned clockwise or counterclockwise (opening and closing the valve) in

increments of one degree. The user could then measure the pressure differential generated

by the proportional valve in cm H2O at a particular valve position. The pressure sensor

reports values in PSI, but code was included to convert cm H2O which are standard for

respiratory measurements. This conversion can be viewed in Appendix V.

The process for recording the maximum expiration and inspiration pressures would

be the same as the previous iteration of software. It would use a moving window average

to find the values. The target pressures would then be calculated by multiplying those

maximum pressures by the training percentage chosen by the clinician or user.

The new function to locate the proportional valve position for training measured the

pressure differential in cm H2O while the servo motor moved the valve from an open

position to a closed position in increments of one degree. As the user is asked to breathe

in and out normally, the proportional valve closes, which increased the resistance to flow

31

and increased the measured pressure differential. Once the user was within ninety percent

of the calculated exhalation training pressure, the servo motor stopped, and the servo

position was saved. The same process was repeated for the calculated inhalation training

pressure. These two valve rotation positions would serve as the starting point for training.

During the training portion of the protocol, an algorithm was included to continuously

adjust the servo motor to the appropriate proportional valve positions during inspiration

and expiration. When the pressure differential was positive and within one hundred and

ten percent of the exhalation training pressure, the servo motor set the proportional valve

to the position located for the exhalation training pressure. When the pressure differential

was negative and within one hundred and ten percent of the inhalation training pressure,

the servo motor set the proportional valve to the position located for the inhalation

pressure. If the pressure differential exceeded one hundred and ten percent of either

training pressures, the servo motor opened the proportional valve ten degrees to decrease

the resistance and the pressure differential. This addition to the code was included to

ensure that the user does not experience too much resistance (higher than prescribed),

which leads to early fatigue and low compliance.

3.2.4 Experimental Testing with Healthy Volunteers

To test the additions to the existing code, six volunteers, three healthy females and

three heathy males completed the entire protocol with the new additions. Each completed

the protocol three times for two minutes, each using a different training percentage. The

chosen training percentages were ten, fifteen, and twenty percent. The results were saved

to the SD card for later evaluation by clinicians.

32

IV. RESULTS/DISCUSSION

 Proportional Valve Computational Fluid Dynamics Results

The flow simulations produced the pressure differential between the inlet and the

outlet of the breathing apparatus at each input angle. The results shown in this section

represent significant developments made during this study. Results for all seventeen

assemblies can be seen in Appendix VI. The original design or first assembly, shown in

Figure 4.1, was tested first and produced the data seen in Figure 4.2 (next page). While

the results showed a relatively gradual decline in pressure, that gradual decline only

spanned approximately forty degrees. The servo motor allows for up to one hundred and

eighty degrees of movement. It was important to find a design that allowed for

adjustments over a larger portion of that available space, so the valve could be adjusted to

Figure 4.1 – The original design featured four cut-outs on both portions.

33

the most efficient location for each individual participant. Additionally, the pressure

differential generated, even completely closed (the most resistive position) was relatively

low at 14.3 cm H2O.

In order to increase resistance to air flow to raise the pressure differential, a grate

design was created for Assembly Three. Additionally, to attempt to provide resistance

over a larger area of the valve, the grate was designed to cover one hundred and eighty

degrees of the proportional valve as shown in Figure 4.3 (next page). A cutout matching

the size of the grate was made on the fixed portion of the proportional valve. A flow

simulation was completed and produced the results seen in Figure 4.4 (next page). While

the grate design resulted in an increase in the pressure differential, with a maximum value

of 30.9 cm H2O, the design only provided resistance to flow over thirty degrees.

Figure 4.2 – The original design resulted in a low maximum pressure differential and resistance to flow

over only forty degrees.

0

2

4

6

8

10

12

14

16

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 1 Pressure Differential Vs. Proportional Valve Angle

34

Continuing with the grate concept, the variable pattern feature in SolidWorks was

used to create a grate in a semi-circular pattern on the free portion of the valve. As the

free portion was rotated, the size of the cutouts within the grate pattern changed. In the

first iteration of this design, Assembly Five, as the grate pattern lined up with the cutout

Figure 4.3 – The third assembly featured a grate design on the free portion to increase resistance to

flow.

Figure 4.4 – The third assembly resulted in a high maximum pressure differential, but only resisted

airflow over 30 degrees.

0

5

10

15

20

25

30

0
.0

6
.2

1
2

.3

1
8

.5

2
4

.6

3
0

.8

3
6

.9

4
3

.1

4
9

.2

5
5

.4

6
1

.5

6
7

.7

7
3

.8

8
0

.0

8
6

.2

9
2

.3

9
8

.5

1
0

4
.6

1
1

0
.8

1
1

6
.9

1
2

3
.1

1
2

9
.2

1
3

5
.4

1
4

1
.5

1
4

7
.7

1
5

3
.8

1
6

0
.0

1
6

6
.2

1
7

2
.3

1
7

8
.5

1
8

4
.6

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 3 Pressure Differential Vs. Proportional Valve Angle

35

on the fixed portion, the holes became larger. In the second iteration, Assembly Six

(Figure 4.5), the holes became smaller. Of the two, Assembly Six created a larger

maximum pressure differential as shown in Figure 4.6. However, the resistance to flow

only spanned approximately twenty degrees, limiting the adjustments available for

participants during the training regimen.

Figure 4.5 – Assembly Five and Six featured the same patterns, but in a reverse order to ascertain

which produced the greatest resistance to flow over the largest area of the proportional valve.

Figure 4.6 – Assembly Six resulted in a maximum pressure differential of 59.7 cm H2O while

Assembly Five resulted in a maximum pressure differential of 38.0 cm H2O.

0

10

20

30

40

50

60

1
8

1
.5

1
8

7
.7

1
9

3
.8

2
0

0
.0

2
0

6
.8

2
1

2
.9

2
1

9
.1

2
2

5
.2

2
3

1
.4

2
3

7
.5

2
4

3
.7

2
4

9
.8

2
5

6
.0

2
6

2
.2

2
6

8
.3

2
7

4
.5

2
8

0
.6

2
8

6
.8

2
9

2
.9

2
9

9
.1

3
0

5
.2

3
1

1
.4

3
1

7
.5

3
2

3
.7

3
2

9
.8

3
3

6
.0

3
4

2
.2

3
4

8
.3

3
5

4
.5

3
6

0
.6

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 6 Pressure Differential Vs. Proportional Valve Angle

36

In order to maintain the increased pressure differential but create a more gradual

decline in pressure, different patterns were tested on the fixed portion of the proportional

valve. Additionally, the cut-outs of the grate design were rounded. Flow simulations were

also used to test whether a change in the thickness of the free portion of the valve would

have any effect on the generated pressure differential. Assembly Eight (Figure 4.7) was

created with a matching grate pattern on both the fixed and free portions of the

proportional valve. Additionally, as the free portion turned and more openings lined up,

the thickness of the free portion continuously increased.

Assembly Nine (Figure 4.8, next page) was created for comparison by adjusting

only the thickness of the free portion. To test if increasing the thickness created a

difference, the thickness over the grate in Assembly Nine was set equal to the thinnest

portion of Assembly Eight.

Figure 4.7 – Assembly Eight featured matching grate designs on both portions with a change in

thickness on the free portion.

37

Overall, the increase in thickness over the grate did create a resistance to flow

over a larger portion of the valve rotation. Assembly Eight results (Figure 4.9, next page)

show that the matching grate pattern with increasing thickness generated a maximum

pressure differential of 7.34 cm H2O and a gradual decline in pressure that spanned

approximately sixty degree. Assembly Nine results (Figure 4.10, next page) show that the

matching grate pattern without increasing thickness generated a maximum pressure

differential of 6.69 cm H2O with a steeper decline than Assembly Eight.

Figure 4.8 – Assembly Nine was the same design as Assembly Eight with the thickness over the grate

equivalent to the thinnest portion of Assembly Nine.

38

Figure 4.9 – Assembly Eight featured an increasing thickness over the grate and resistance to flow over

fifty-five degrees.

Figure 4.10 – Assembly Nine show resistance to flow only over forty degrees.

0

1

2

3

4

5

6

7

1
6

4
.3

1
6

6
.8

1
6

9
.2

1
7

1
.7

1
7

4
.2

1
7

6
.6

1
7

9
.1

1
8

1
.5

1
8

4
.0

1
8

6
.5

1
8

8
.9

1
9

1
.4

1
9

3
.8

1
9

6
.3

1
9

8
.8

2
0

1
.2

2
0

3
.7

2
0

6
.2

2
0

8
.6

2
1

1
.1

2
1

3
.5

2
1

6
.0

2
1

8
.5

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 8 Pressure Differential Vs. Proportional Valve Angle

0

1

2

3

4

5

6

1
6

4
.3

1
6

9
.8

1
7

5
.4

1
8

0
.9

1
8

6
.5

1
9

2
.0

1
9

7
.5

2
0

3
.1

2
0

8
.6

2
1

4
.2

2
1

9
.7

2
2

5
.2

2
3

0
.8

2
3

6
.3

2
4

1
.8

2
4

7
.4

2
5

2
.9

2
5

8
.5

2
6

4
.0

2
6

9
.5

2
7

5
.1

2
8

0
.6

2
8

6
.2

2
9

1
.7

2
9

7
.2

3
0

2
.8

3
0

8
.3

3
1

3
.8

3
1

9
.4

3
2

4
.9

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 9 Pressure Differential Vs. Proportional Valve Angle

39

Assembly Eleven, Twelve, and Thirteen feature matching square grate designs

with the same increasing thickness as the proportional valve opens. The sizes of the cut-

outs were altered to determine the effects different sizes and increasingly large cut-outs

had on the generated pressure differential. Assembly Eleven and Twelve both featured

cut-outs of increasing size. However, the cut-outs in Assembly Eleven were 0.10

millimeters larger than the cut-outs in Assembly Twelve. Assembly Thirteen featured

cut-outs all 0.40 millimeters by 0.40 millimeters.

The results for all three assemblies featured gradual declines in the pressure

curves with discontinuities appearing in the trend in the data due to the cut-outs aligning

and misaligning as the proportional valve opened. Assembly Thirteen (Figure 4.11)

featured the highest maximum pressure differential of 60.7 cm H2O (Figure 4.12, next

page).

Figure 4.11 – Assembly Thirteen featured matching grate designs of .40 by .40-millimeter square cut-

outs.

40

While the grate design seemed promising in terms of a high-pressure differential

and resistance to flow as the proportional valve is opened, the ability to 3D print the

design was an issue. The available 3D printer (3D40, Dremel, Racine, WI) was capable

of reliably creating a minimum hole size of around 1.1 mm. A design was created with

matching grate designs on both portions of the proportional valve. Assembly Fourteen

(Figure 4.13, next page) featured the increasing thickness on the free portion and

increasing size in cut-outs as previously tested. However, these cut-outs were 1.10

millimeters to 1.90 millimeters. Assembly Eleven and Twelve featured cut-outs between

0.40 and 0.90 millimeters.

Figure 4.12 – Assembly Thirteen featured high resistance to flow over 180 degrees.

0

10

20

30

40

50

60

6
.8

1
2

.9

1
9

.1

2
5

.2

3
1

.4

3
7

.5

4
3

.7

4
9

.8

5
6

.0

6
2

.2

6
8

.3

7
4

.5

8
0

.6

8
6

.8

9
2

.9

9
9

.1

1
0

5
.2

1
1

1
.4

1
1

7
.5

1
2

3
.7

1
2

9
.8

1
3

6
.0

1
4

2
.2

1
4

8
.3

1
5

4
.5

1
6

0
.6

1
6

6
.8

1
7

2
.9

1
7

9
.1

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 13 Pressure Differential Vs. Proportional Valve Angle

41

Additionally, since previous studies showed cut-outs of the same size generated a

higher maximum pressure differential, Assembly Fifteen (Figure 4.14) was created

featuring cut-outs that were all 1.10 millimeters.

Figure 4.14 – Assembly Fifteen featured matching grate designs with larger cut-outs of all the same

size and increasing thickness over the grate.

Figure 4.13 - Assembly Fourteen featured matching grate designs with larger cut-outs of increasing

size and increasing thickness over the grate.

42

Overall, both Assembly Fourteen (Figure 4.15) and Fifteen (Figure 4.16, next

page) resulted in a decreased maximum pressure differential and a much more rapid

decrease in the pressure differential when opening the proportional valve. Assembly

Fourteen resulted in a maximum pressure differential of 8.55 cm H2O. Assembly Fifteen

resulted in a maximum pressure differential of 19.7 cm H2O. Both of these values are less

than thirty percent of the pressure differential generated by Assembly Thirteen. While the

original grate designs resulted in the desired design criteria, the version that is capable of

being fabricated does not produce the same results.

Figure 4.15 – Assembly Fourteen resulted in a much lower maximum pressure differential and lower

resistance to air flow over the proportional valve area.

0

1

2

3

4

5

6

7

8

1
7

5
.4

1
8

1
.5

1
8

7
.7

1
9

3
.8

2
0

0
.0

2
0

6
.2

2
1

2
.3

2
1

8
.5

2
2

4
.6

2
3

0
.8

2
3

6
.9

2
4

3
.1

2
4

9
.2

2
5

5
.4

2
6

1
.5

2
6

7
.7

2
7

3
.8

2
8

0
.0

2
8

6
.2

2
9

2
.3

2
9

8
.5

3
0

4
.6

3
1

0
.8

3
1

6
.9

3
2

3
.1

3
2

9
.2

3
3

5
.4

3
4

1
.5

3
4

7
.7

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 14 Pressure Differential Vs. Proportional Valve Angle

43

The final design, Assembly Seventeen, featured a yin-yang shaped cut-out on the

fixed portion of the proportional valve and a grate of thirteen 1.0 millimeters holes evenly

spaced out with the boundaries of the yin-yang shape on the free portion. As the

proportional valve opens, a change occurs in the amount of air passed through the

opening. The yin-yang design (Figure 4.17) would, in theory, create gradually smaller

increases in the amount of air allowed to flow as the valve was opened. Additionally, the

increased thickness on the free portion of the valve was incorporated to aid in creating an

increased pressure differential compared to previous design iterations.

Figure 4.16 - Assembly Fifteen results were more consistent with the design criteria than Assembly

Fourteen but not as consistent as Assembly Thirteen.

0

2

4

6

8

10

12

14

16

18

0
.0

6
.2

1
2

.3

1
8

.5

2
4

.6

3
0

.8

3
6

.9

4
3

.1

4
9

.2

5
5

.4

6
1

.5

6
7

.7

7
3

.8

8
0

.0

8
6

.2

9
2

.3

9
8

.5

1
0

4
.6

1
1

0
.8

1
1

6
.9

1
2

3
.1

1
2

9
.2

1
3

5
.4

1
4

1
.5

1
4

7
.7

1
5

3
.8

1
6

0
.0

1
6

6
.2

1
7

2
.3

1
7

8
.5

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 15 Pressure Differential Vs. Proportional Valve Angle

44

Despite the discontinuities in the graph of pressure versus valve position, assumed

to be caused by the spacing of the grate cut-outs in the moveable valve body, this design

resulted in a maximum pressure differential of 208.6 cm H2O, the highest of all seventeen

assemblies. Additionally, the decline in the pressure differential was gradual and very

similar to the results observed in Assembly Thirteen (Figure 4.18, next page).

Overall, this simulation and design study showed that the original servo-driven

valve design limited the ability to adjust proportional valve position during the training

regimen. The functionality of the valve would be optimized if small changes in the

pressure differential were available over the full one hundred and eighty degrees of servo

rotation. While the use of grates (a grid of holes) appeared to provide an acceptable

geometry to meet the design criteria, the maximum resolution of the 3D printer used to

create a printed prototype for testing limited the size of the holes that make up the grating

design. When the system was evaluated with the grating hole sizes that could be

successfully fabricated, the results indicated that desired gradual decline in resistance to

Figure 4.17 – Assembly Seventeen featured a yin-yang shaped cut-out to facilitate smaller increases in

air flow as the valve was opened.

45

flow as the valve was opened was unattainable. In future work, injection molding could

be a way to fabricate these designs for testing.

The final yin-yang shaped design appeared to provide the most gradual decrease

in pressure as the proportional valve is opened. This functionality should allow a wide

range of adjustability for the system to optimize the valve position during a therapy

session. Future studies on the design of the proportional valve will build on this

information and continue to create subtle iterations of the yin-yang design. Figure 4.19

(next page) features the results of all of the assemblies normalized to each other in terms

of position and is an excellent representation of how the subtle changes in the fixed and

movable valve body affects the drop in pressure versus valve position. Zero on the X-axis

of the graph represents the position on each assembly that the proportional valve is

Figure 4.18 – Assembly Seventeen created the resistance to flow over approximately 130 degrees of

the proportional valve.

0

50

100

150

200

9
4

.8

9
9

.7

1
0

4
.6

1
0

9
.5

1
1

4
.5

1
1

9
.4

1
2

4
.3

1
2

9
.2

1
3

4
.2

1
3

9
.1

1
4

4
.0

1
4

8
.9

1
5

3
.8

1
5

8
.8

1
6

3
.7

1
6

8
.6

1
7

3
.5

1
7

8
.5

1
8

3
.4

1
8

8
.3

1
9

3
.2

1
9

8
.2

2
0

3
.1

2
0

8
.0

2
1

2
.9

2
1

7
.8

2
2

2
.8

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 17 Pressure Differential Vs. Proportional Valve Angle

46

completely closed and where the maximum pressure differential is generated for the

simulated maximum flow rate.

 Updated Touchscreen Display and Microcontroller Code

The LCD touchscreen begins with the “start-up” page seen in Figure 4.20 (next

page) and performs tests to check the function of the SD card and RTC function as well

as calibrates the pressure sensor as shown in the previous code. The start-up page features

two buttons, the Test Program button and a Start button. The Test Program button pulls

up the Test Program page as shown in Figure 4.21 (next page).

The Test program, which was added to this iteration of the platform software,

allows for the user to open or close the proportional valve using the servo motor in one-

Figure 4.19 – Normalized to each other, Assembly 17 clearly generated the largest maximum pressure

differential and created the largest resistance to flow over the proportional valve.

0

50

100

150

200

0

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

1
1

0

1
2

1

1
3

2

1
4

3

1
5

4

1
6

5

1
7

6

1
8

7

1
9

8

2
0

9

2
2

0

2
3

1

2
4

2

2
5

3

2
6

4

2
7

5

2
8

6

2
9

7

3
0

8

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Positions Starting at Maximum Generated Pressure

Normalized Chart for Comparison of Generated Pressure Differentials

Assembly 17 Assembly 13 Assembly 16 Assembly 11 Assembly 6 Assembly 12

Assembly 3 Assembly 15 Assembly 5 Assembly 10 Assembly 1 Assembly 14

Assembly 9 Assembly 8 Assembly 7 Assembly 2 Assembly 4

47

degree increments. Pressing the “Measure” button directors the microprocessor to use the

differential pressure sensor to measure the pressure for five seconds.

If the user presses the Start button it takes them to the Directory page (Figure

4.22) as in the previous set-up. This page allows the user to choose to make a file to save

all of the session results to, calculate the maximal expiratory pressure and the maximal

inspiratory pressure, locate the valve positions for the training regimen, or complete the

training regimen.

Figure 4.20 – The “start-up” page of the touchscreen is displayed while the program performs

necessary functions for set-up.

Figure 4.21 – The Test Program page was included for future testing of proportional valve designs.

48

If the user chooses the Make File Session button it takes them to the Making New

File page seen in Figure 4.23. Pressing the Start button on this page will cause the code to

run as in the previous set-up to create a .csv file to save all of the data from the session to

the flash drive.

Figure 4.22 – The Directory page presents the user with the necessary options to complete the device

protocol.

Figure 4.23 – This page walks the user through the steps being completed to read previous files and

make a new file.

49

Once the file is created, the user can press the Back to Main Directory button to

return to the Directory page seen in Figure 4.22. If the user chooses the

Expiratory/Inspiratory (PE/PImax) button, they will first be taken to a page to choose the

training percent for the session as shown in Figure 4.24. They are able to use the slider to

choose the training percent, and the current value of that slider will also be displayed in

the LED digits indicator along with the chosen value from the previous session.

After choosing the appropriate training percentage and pressing next, the user is taken to

the PI/PEmax page (Figure 4.25, next page). On this page the user will first inhale as

forcefully as they can from the device after pressing the PImax button and then will exhale

as forcefully as they can into the device after pressing the PEmax button. The program uses

a running window average as in the previous set-up to calculate the maximum values.

When the user presses the result button, the maximum values are displayed as well as the

training values for exhalation and inhalation. These training values are the percentage

chosen of the calculated maximum values.

Figure 4.24 – The user uses the slider to set the training percentage for the session.

50

The user can choose to return to the Main Directory page. They would then

choose the Locate Valve Position button. This button pulls up the Valve Position

Location Page (Figure 4.26).

Figure 4.25 – The PI/PEmax page directs the user on when to breath to measure their maximal

inspiratory and expiratory pressures.

Figure 4.26 – The Valve Position Location page directs the user through the steps to locate the

expiratory and inspiratory valve positions for training.

51

This page was added to the set-up and locates a position for both inhalation and

exhalation during the training regimen. The user breathes in and out of the device

normally, and as they breathe the device measures the pressure differential and moves the

servo motor in one-degree increments starting at seventy-five degrees. This movement is

slowly closing the proportional valve and steadily increasing resistance to flow. The

proportional valve will continue to close until the pressure differential being currently

measured is within ninety percent of the previously calculated training pressures. A flow

chart depicting the logic of the code is shown in Figure 4.27.

Once completed, the user can choose the Back to Main Directory button to go to

the Directory page again. They can finally choose the Training button and go to the

Training page (Figure 4.28, next page).

Figure 4.27 – The flow chart shows that if the pressure is not within ten percent of the target pressure,

the process begins again with another servo motor movement and pressure measurement.

52

This page operates in a very similar manner to the original software. However,

this generation includes new code to continuously adjust the valve position throughout

the training regimen as previously stated. Figure 4.29 (next page) shows the flow chart

depicting the logic of the code that adjusted the servo motor according to the percentage

of the target pressure the user is generating. The code measures the pressure differential

and adjusts the valve position depending on what percentage range of the target pressures

the pressure is within. If the pressure is greater than zero but less than one hundred and

ten percent of the target expiratory pressure, the valve is set at the expiratory valve

position. If the pressure is less than zero but greater than one hundred and ten percent of

the target inspiratory pressure, the valve is set at the inspiratory valve position. If the

pressure exceeds one hundred and ten percent of either target pressure, the valve opens

ten degrees to decrease the resistance to air flow and decrease the pressure differential.

Figure 4.28 – The training page has multiple forms of feedback to direct users through the training

session.

53

Once the user completes the training regimen, they can choose the Results button

to see a summary of the session as shown in the previous set-up. The Session Results

page (Figure 4.30) was only minimally altered to include the time spent training instead

of the maximum inhalation and exhalation values generated during the training regimen.

Figure 4.30 – The Results page produces a summary of the previous and current training session.

Figure 4.29 – The servo motor moved based on the percentage of the target pressure the user is

generating.

54

The complete code for the new system configuration can be viewed in Appendix

VII while a set of directions for use can be viewed in Appendix VIII.

 Results of Experimental Testing with Healthy Volunteers

Six healthy volunteers completed the entire device protocol at different training

percentages. The main purpose of these tests was for prototype evaluation with the

inclusion of the new programming to automate the entirety of the protocol. However, due

to the volunteers being tested at various percentages, it is also possible to evaluate the

effects of those different percentages on their respiratory function and the effects multiple

sessions have on the valve location process.

Volunteers A, C, and F were healthy males with no history of spinal cord injury

or respiratory dysfunction. Volunteers B, D, and E were healthy females with no history

of spinal cord injury or respiratory dysfunction. Volunteers completed three two-minute

respiratory training sessions, unless the valve location process set the valve positions as

completely closed for both inspiration and expiration. Once this situation occurred, their

respiratory training was suspended. The training sessions were conducted at ten, fifteen,

and twenty percent of the maximal expiration and inspiration pressures.

Table 4.1 and Table 4.2 (next page) show the summary of each training session

for Volunteers A and B. The summary includes the training percentage, the maximal

pressures, the training time they completed, the target and average pressures, and the

valve positions.

55

Table 4.1 – Volunteer A Summary Data

Training Load (%) 10 15 20

PEmax (cm H2O) 34 35 39

PImax (cm H2O) -32 -36 -35

Training Time (seconds) 120 120 120

Target Expiration Pressure (cm
H2O) 3.4 5.25 4.6

Average Expiration Pressure (cm
H2O) 2.23 3.14 4.32

Target Inspiration Pressure (cm
H2O) -3.2 -5.4 -5.4

Average Inspiration Pressure (cm
H2O) -2.2 -3.23 -4.06

Expiratory Valve Position
(degrees) 152 136 152

Inspiratory Valve Position
(degrees) 178 178 178

Table 4.2 – Volunteer B Summary Data

Training Load (%) 10 15 20

PEmax (cm H2O) 80 61 63

PImax (cm H2O) -21 -53 -25

Training Time (seconds) 120 120 120

Target Expiration Pressure (cm
H2O) 8.00 9.15 12.6

Average Expiration Pressure (cm
H2O) 6.59 6.05 9.48

Target Inspiration Pressure (cm
H2O) -2.10 -7.95 -5

Average Inspiration Pressure (cm
H2O) -3.12 -5.45 -5.66

Expiratory Valve Position
(degrees) 166 152 178

Inspiratory Valve Position
(degrees) 91 162 166

56

 Figure 4.31, Error! Reference source not found. (next page), and Figure 4.33 (next

page) show three breath cycles during the respiratory muscle training for Volunteer A at

the three training percentages. The graphs of the breath cycles also include lines dictating

the target and average expiratory and inspiratory pressures.

Figure 4.31 – Volunteer A Training Session at 10%

-6

-4

-2

0

2

4

6

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer A 10%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

57

Figure 4.32 – Volunteer A Training Session at 15%

-8

-6

-4

-2

0

2

4

6

8

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer A 15%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

Figure 4.33 – Volunteer A Training Session at 20%

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer A 20%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

58

The average expiratory pressure for each session is the average of all positive

pressure values recorded during the training session while the average inspiratory

pressure for each session is the average of all the negative pressure values recorded

during the training session. Comparing the average pressures to the target pressures

allows for observation of how far the patient deviated from the measured target pressures

they were aiming to hit. Volunteer A generated larger deviations, or greater differences

between the average and target pressures, at fifteen percent but had lower deviations at

twenty percent.

Figure 4.34, Error! Reference source not found. (next page), and Error!

Reference source not found. (next page) show three breath cycles during the respiratory

muscle training for Volunteer B at the three training percentages.

Figure 4.34 – Volunteer B Training Session at 10%

-15

-10

-5

0

5

10

15

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer B 10%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

59

Figure 4.35 – Volunteer B Training Session at 15%

-10

-5

0

5

10

15

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer B 15%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

 Figure 4.36 – Volunteer B Training Session at 20%

-15

-10

-5

0

5

10

15

20

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer B 20%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

60

In some instances, volunteers reached the maximum valve position for both their

inspiratory and expiratory positions. When this occurred, both valve positions were 178

degrees, and the respiratory muscle training was ended after the completion of that trial.

Completing the next test at a higher percentage would have meant higher target pressures.

The volunteer could not generate ninety percent of the calculated target pressures with

the valve almost completely closed during the valve location process. They would not

have been able to generate ninety percent of even greater calculated target pressures. One

example of this instance was seen with Volunteer C. As shown in Table 4.3 the valve

positions were 178 degrees, the maximum, and 161 degrees for expiration and inspiration

respectively. Upon completing the protocol again, their maximal pressures were slightly

greater along with the training percentage, and the valve locations were set to 178

degrees.

Table 4.3 – Volunteer C Summary Data

Training Load (%) 10 15 20

PEmax (cm H2O) 76 81 N/A

PImax (cm H2O) -55 -64 N/A

Training Time (seconds) 120 120 N/A

Target Expiration Pressure (cm
H2O) 7.6 12.15 N/A

Average Expiration Pressure (cm
H2O) 4.48 3.92 N/A

Target Inspiration Pressure (cm
H2O) -5.5 -9.6 N/A

Average Inspiration Pressure (cm
H2O) 5.32 -4.62 N/A

Expiratory Valve Position
(degrees) 178 178 N/A

Inspiratory Valve Position
(degrees) 161 178 N/A

61

Figure 4.37 and Figure 4.38 contain graphs of the volunteer’s respiratory cycles at

ten and fifteen percent. During the respiratory muscle training at fifteen percent, the

volunteer has a much greater deviation between the target and average pressures, and

they indicated they were feeling quite fatigued during that training session.

Figure 4.37 – Volunteer C Training Session at 10%

Figure 4.38 – Volunteer C Training Session at 15%

-15

-10

-5

0

5

10

15

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer C 10%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

-15

-10

-5

0

5

10

15

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer C 15%

Training Pressure Target Expiratory Pressure

Target Inspiratory pressure Average Expiratory Pressure

Average Inspiratory Pressure

62

Volunteers D and E also reached the maximum valve positions for both

inspiration and expiration during the respiratory training session at fifteen percent.

Volunteer F reached the maximum valve position during their first session at ten percent.

Summary tables and graphs characterizing their training sessions can be found in

Appendix VIII.

 Interpretation of Experimental Testing with Healthy Volunteers

Overall, there were deviations from the target expiratory and inspiratory pressures, but

that was expected. During the first iteration of BreathForce, healthy test subjects had

larger deviations than subjects with spinal cord injury. This was suspected to be a product

of their healthy respiratory systems leading to an increased respiratory range.

Table 4.4 shows the average deviations for all three training percentages. A trend

shows that the average deviations increase from ten to fifteen percent but decrease at

twenty percent.

This could be the product of two things. The volunteers were becoming fatigued

by the third training session, so their respiratory range was decreased. Additionally, they

were becoming more comfortable operating and reading the device and were better able

to match the generated pressure shown on the touchscreen to the target pressures.

Table 4.4 – Average Deviations at Each Training Percent

Training Load (%) 10 15 20

Expiratory Pressures (cm H2O) 1.58 3.73 1.70

Inspiratory Pressures (cm H2O) 2.82 2.99 1.00

63

Additionally, three volunteers were not able to complete the training session at

twenty percent of their maximal pressures while the fourth volunteer was not able to

complete the training session at fifteen and twenty percent due to reaching the maximum

valve position for both the expiratory and inspiratory pressures at ten percent. There are

two possible reasons for the volunteers not being able to generate a pressure within ten

percent of their maximal pressures even with the valve completely closed. The first is that

the design of the proportional valve is still not generating enough resistance to increase

the pressure differential. More designs and iterations of the yin-yang shape are still being

tested to increase the maximum pressure differential generated and maintain resistance to

air flow over a larger area of the valve.

Another possible reason is that the program is generating artificially high

maximal inspiratory and expiratory pressures. When the maximal inspiratory and

expiratory pressures are calculated, the volunteers are instructed to breath as forcefully as

they can in or out of the device. The program moves the servo to almost close the valve

completely. Currently, the program moves the servo to one hundred and seventy degrees.

It is possible, that the valve is closed too much and, depending on how the volunteers

breathe into the device, generating artificially high pressures. Then when the target

pressures are calculated as fifteen or twenty percent of these maximal values, they are too

high for the volunteer to generate breathing normally into the device, even when

completely closed.

A future study will be conducted to determine at which position the valve should

be set to generate accurate maximal pressures for all subjects. The first iteration included

a specific mouthpiece for measuring the maximal pressures that had a leak valve with an

64

inner diameter of 2.58 mm. A future potential study could include the use of SolidWorks

to calculate the area of the open proportion of the proportional valve at each incremental

valve position to locate a valve position with an area equivalent to that leak valve and use

that position within the programming.

Another issue encountered was that adding the programming to continuously

adjust the servo motor and valve position during training decreased the resolution of the

data acquisition during the training session. Each time a session is completed, and a file is

created, the program calculates the amount of data points stored per second and stores

that in the file as well. It was found that while the original program had a sampling rate of

approximately twenty points per second, the new programming had decreased the

resolution to approximately seven points per second. Changes were made to the

programming including creating a subroutine for moving the servo motor during the

respiratory training session and changing the if-else statements that directed the servo

movement to case statements. These changes can be seen in Appendix IX. Overall, the

resolution was improved, and the sampling rate was increased to thirty-four points per

second. This increase greatly improved the accuracy of the data.

Additionally, the test data revealed that at the gain setting used on the circuit

board, the analog measurement channel had a resolution of 0.37 bytes. In order to reduce

unnecessary noise, a dead band was incorporated into the code to move the servo motor

only when the pressure is outside the bit noise floor of the analog channel. The dead band

was classified as any pressure greater than -0.74 cm H2O and less than 0.74 cm H2O. The

code would then direct that if the user was within the dead-band range, the servo motor

65

would not move. Figure 4.39 shows the flow chart depicting the logic of the final code

including the dead band.

Finally, it was noted that during the testing, the LED indicating that the device

was receiving power would dim upon movement of the servo. Additionally, the servo

movement would also cause the touchscreen to freeze. Further testing revealed that the

movement of the servo motor was causing the current usage to spike. Future hardware

iteration will be completed to compensate for the power requirements of the device.

Figure 4.39 – The updated code included a dead band as shown in the flow chart.

66

V. CONCLUSION

5.1 Proof of Concept

Overall, the criteria for this project were met and the design and operation of

BreathForce was refined and completely automated. After testing seventeen different

proportional valve designs using flow simulations, a design was found with a high

maximum pressure differential that maintained resistance over a large area of the

proportional valve as it was opened incrementally. Microcontroller code was created to

fully automate the entire device protocol including the system-controlled movement of

the proportional control valve. The software calculates the maximal and target pressures,

locates the valve position for both expiration and inspiration, and continuously adjusts the

valve position during training to aid the user in generating pressure within ten percent of

the target pressures. Experimental testing with healthy volunteers revealed that the new

additions had lowered the sample rate to seven points per second. Changes were made to

the logic of the program that increased the sampling rate to thirty-four points per second.

The complete automation of the device will allow for at-home use that enforces

the device protocols and leads to consistent effective use of the device for respiratory

muscle training. More consistent, effective use of the device will enhance respiratory

muscle rehabilitation and respiratory infection prevention.

67

5.2 Future Development of BreathForce

Currently, the continued automation and development of BreathForce is limited

by the device hardware. The next step would be to create a truly active valve that would

start each inspiration or expiration completely open and close the valve incrementally

until the subject reaches the target pressures. However, the current microcontroller does

not possess enough processing power to acquire data and send commands fast enough to

accurately complete that process. Prior to the addition of programming that directs a truly

active valve, the hardware must be redesigned to include two microcontrollers. One

would be used to acquire data and send commands to the servo motor while the other

would be used to send commands to the touchscreen.

Additionally, future studies need to be completed to determine the position of the

servo motor and proportional valve during the measurement of the maximal pressures as

well as the most effective proportional valve design. These studies need to be completed

to calculate accurate maximal pressures and aid subjects in reaching the target pressures

during the valve location process and respiratory training session.

Finally, the newest software for the second-generation device produces high

fidelity data of the participants’ respiratory cycles. The clinicians will need to analyze

that data to determine if the data gives them the same information as the first-generation

device or if there have been alterations due using a restriction valve instead of a check

valve. Additionally, it needs to be determined whether the second generation provides an

equivalent or better experience and training session through application of the device in a

clinical setting with spinal cord injury patients and analysis of data. Mastering the ability

to adapt the design based on CFD simulation results in this study allows for continued

68

refinement of the hardware to continue improvement of the device per the guidelines of

the clinicians.

69

REFERENCES

1. Kupfer, Mendel, et al. "Spinal Cord Injury." CURRENT Diagnosis & Treatment:

Physical Medicine & Rehabilitation Eds. Ian B. Maitin, and Ernesto Cruz.

McGraw-Hill, 2014, https://accessmedicine-mhmedical-

com.echo.louisville.edu/content.aspx?bookid=1180§ionid=70377348.

2. National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance.

Birmingham, AL: University of Alabama at Birmingham, 2020.

3. Keenan, Mary Ann E., et al. "Chapter 12. Rehabilitation." Current Diagnosis &

Treatment in Orthopedics, 5e Eds. Harry B. Skinner, and Patrick J.

McMahon. McGraw-Hill, 2014, https://accessmedicine-mhmedical-

com.echo.louisville.edu/content.aspx?bookid=675§ionid=45451718.

4. “Types and Levels of Spinal Cord Injuries.” Spinal Cord Injury Levels and Types

| Shepherd Center Rehabilitation, Shepherd Center, 2021.

5. “Costs of Living with Spinal Cord Injury.” Reeve Foundation, Reeve Foundation,

2021, www.christopherreeve.org/living-with-paralysis/costs-and-

insurance/costs-of-living-with-spinal-cord-injury.

6. Berlowitz, David J et al. “Respiratory problems and management in people with

spinal cord injury.” Breathe (Sheffield, England) vol. 12,4 (2016): 328-

340. doi:10.1183/20734735.012616

http://www.christopherreeve.org/living-with-paralysis/costs-and-
http://www.christopherreeve.org/living-with-paralysis/costs-and-

70

7. Terson de Paleville, Daniela G L et al. “Respiratory motor control disrupted by

spinal cord injury: mechanisms, evaluation, and restoration.” Translational

stroke research vol. 2,4 (2011): 463-73. doi:10.1007/s12975-011-0114-0

8. Nógrádi A, Vrbová G. Anatomy and Physiology of the Spinal Cord. In: Madame

Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience;

2000- 2013. Available from:

https://www.ncbi.nlm.nih.gov/books/NBK6229/

9. A., Rajalakshmi. (2018). Influence of Early Acquaintance

with Dikshitar's Nottuswaras on Cognitive Development, Communication

and Social-Emotional Learning in Preschool Children.

10.13140/RG.2.2.13266.20169.

10. Harrow-Mortelliti M, Reddy V, Jimsheleishvili G. Physiology, Spinal Cord.

[Updated 2021 Feb 17]. In: StatPearls [Internet]. Treasure Island (FL):

StatPearls Publishing; 2021 Jan-. Available from:

https://www.ncbi.nlm.nih.gov/books/NBK544267/

11. “Spine Anatomy, Anatomy of the Human Spine.” Mayfieldclinic.com,

Mayfield Brain and Spine , Sept. 2018, mayfieldclinic.com/pe-

anatspine.htm#:~:text=Vertebrae%20are%20the%2033%20individual,sacr

um%20and%20coccyx%20are%20fused.

12. Garshick, Eric, et al. “Respiratory Health and Spinal Cord Injury.” Respiratory

Health and Spinal Cord Injury | Model Systems Knowledge Translation

Center (MSKTC), Model Systems Knowledge Translation Center

(MSKTC), 2015,

71

msktc.org/sci/factsheets/respiratory#:~:text=in%20your%20body.-

,How%20does%20the%20respiratory%20system%20work%3F,levels%20

to%20 ontract%20the%20diaphragm.

13. Slosar, Paul. “Cervical Spinal Nerves.” Spine - Health, Veritas Health, LLC, 31

May 2019, www.spine-health.com/conditions/spine-anatomy/cervical-

spinal-nerves.

14. Shier, David, et al. Holes Essentials of Human Anatomy & Physiology + Lab

Manual. 14th ed., McGraw-Hill College, 2016.

15. Editorial, AnaesthesiaUK. “Spirometry .” Anaesthesia UK : Tests of Pulmonary

Function, AnaethesiaUK, 11 Feb. 2004,

www.frca.co.uk/article.aspx?articleid=100023.

16. Brown, Robert et al. “Respiratory dysfunction and management in spinal cord

injury.” Respiratory care vol. 51,8 (2006): 853-68;discussion 869-70.

17. Stepp, Evan L et al. “Determinants of lung volumes in chronic spinal cord

injury.” Archives of physical medicine and rehabilitation vol. 89,8 (2008):

1499-506. doi:10.1016/j.apmr.2008.02.018

18. Brown, Robert et al. “Respiratory dysfunction and management in spinal cord

injury.” Respiratory care vol. 51,8 (2006): 853-68;discussion 869-70.

19. Gross D, Ladd HW, Riley EJ, Macklem PT, Grassino A. The effect of training on

strength and endurance of the diaphragm in quadriplegia. Am J Med

1980;68(1):27–35.

http://www.spine-health.com/conditions/spine-anatomy/cervical-
http://www.spine-health.com/conditions/spine-anatomy/cervical-

72

20. Rutchik A, Weissman AR, Almenoff PL, Spungen AM, Bauman WA, Grimm

DR. Resistive inspiratory muscle training in subjects with chronic cervical spinal

cord injury. Arch Phys Med Rehab 1998;79(3):293–297.

21. Kogan I, McCool FD, Liberman SL, Garshick E, Shannon K, Frisbee JH, Brown

R. Diaphragm hypertrophy during inspiratory muscle training in tetraplegia

(abstract). Am J Respir Crit Care Med. 1996;153(4):A25.

22. “The Breather.” PN Medical, PN Medical, www.pnmedical.com/product/the-

breather/.

23. Homnick, Douglas N. “Mechanical insufflation-exsufflation for airway mucus

clearance.” Respiratory care vol. 52,10 (2007): 1296-305; discussion

1306-7.

24. “Used EMERSON CA-3000 Cough Assist Device For Sale - DOTmed Listing

#906026.” DOTmed.com, DOTmed.com, Inc.,

www.dotmed.com/listing/cough-assist-device/emerson/ca-3000/906026.

25. “Respironics Cough Assist T70.” No Insurance Medical Supplies,

www.noinsurancemedicalsupplies.com/respironics-cough-assist-

t70/?sku=1098160&gclid=EAIaIQobChMIkNjkw6TY7wIVicDACh3isQ_

YEAQYAyABEgI2vfD_BwE.

26. Kumar, Krishna, and Sharon Bishop. “Financial impact of spinal cord stimulation

on the healthcare budget: a comparative analysis of costs in Canada and

the United States.” Journal of neurosurgery. Spine vol. 10,6 (2009): 564-

73. doi:10.3171/2009.2.SPINE0865

27. Tran, Kevin L. Design, Development, and Characterization of BreathForce, A

http://www.pnmedical.com/product/the-
http://www.dotmed.com/listing/cough-
http://www.noinsurancemedicalsupplies.com/respironics-cough-assist-
http://www.noinsurancemedicalsupplies.com/respironics-cough-assist-

73

Respiratory Training System for Patients with Spinal Cord Injuries. MEng

Thesis. University of Louisville, 2017 Dec.

28. “Engineering Essentials: Flow-Control Valves.” Hydraulics Pneumatics,

Endeavor Business Media, 1 Jan. 2012,

www.hydraulicspneumatics.com/technologies/hydraulic-

valves/article/21885085/engineering-essentials-flowcontrol-valves.

29. Hallett S, Toro F, Ashurst JV. Physiology, Tidal Volume. [Updated 2020 Jun 1].

In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021

Jan.

74

VI. APPENDIX I

The schematic drawings of the original BreathForce design:

75

76

77

78

79

VII. APPENDIX II

The schematic drawings of the seventeen proportional valve designs tested:

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

VIII. APPENDIX III

The schematics and 2D layout of the printed circuit board:

114

115

116

117

118

IX. APPENDIX IV

The first iteration of the BreathForce system code installed in the Arduino Mega MCU:

#include <SD.h>

#include <Wire.h>

#include <TimeLib.h>

#include <DS1307RTC.h> //Run RTClib -> SetTime example to re-calibrate time

tmElements_t tm; //Time things

#include <genieArduino.h>

Genie genie;

#define RESETLINE 4

//psi calculations

const int numReadings = 10;

int readings[numReadings]; // the readings from the analog input

int readIndex = 0; // the index of the current reading

int total = 0; // the running total

int average = 0; // the average

float GAIN = 500.0;

float bits = 1023.0;

float resolution = 0.0002584;

float psi;

float offset = 2.5;

float Vcc = 5.0;

float calibration = 0.00;

int count;

int PSIhi; //to help display on 4d display

int PSIlow;

int MEP = 0;

int MIP = 0;

int TargetMEP;

int TargetMIP;

int TrainingPercent;

int MEParray[105];

int MEPsumarray[95];

119

int E;

int MIParray[105];

int MIPsumarray[95];

int I;

long int PSITimer;

//Pressure sensor

int inputPin = A0;

//SD Card

File logfile;

const int chipSelect = 10;

char filename[] = "XXXXXX00.CSV"; //change patient name here. Format: (First thE

letters of first and last name)00.CSV

char filename2[] = "XXXXXX00.CSV";

int x;

int xx; //helps display previous file

int xxx;

//

void setup() {

 //for PSI calculation

 for (int thisReading = 0; thisReading < numReadings; thisReading++) {

 readings[thisReading] = 0;

 }

 //for 4d display to boot up

 Serial.begin(200000); // Serial0 @ 150000 (200K) Baud

 genie.Begin(Serial); // Use Serial0 for talking to the Genie

Library, and to the 4D Systems display

 genie.AttachEventHandler(myGeniEventHandler); // Attach the user function

Event Handler for processing events

 pinMode(RESETLINE, OUTPUT); // Set D4 on Arduino to Output

(4D Arduino Adaptor V2 - Display Reset)

 digitalWrite(RESETLINE, 1); // Reset the Display via D4

 delay(100);

 digitalWrite(RESETLINE, 0); // unReset the Display via D4

 delay (3500); //let the display start up after the reset (This is

important)

 genie.WriteContrast(1); //1=ScrEn on, 0 = scrEn off

 delay(500);

 //Starting process

 genie.WriteStr(0, "STARTING UP...");

 delay(300);

120

 //RTC Boot Check

 genie.WriteStr(0, "Checking RealTimeClock (RTC) status:...");

 delay(300);

 if (RTC.read(tm)) {

 genie.WriteStr(0, "RTC is running.");

 delay(300);

 }

 else {

 if (RTC.chipPresent()) {

 genie.WriteStr(0, "The DS1307 is stopped. Please run the SetTime example

DS1307RTC to recalibrate");

 while (1) {};

 }

 else {

 genie.WriteStr(0, "DS1307 read error! Please check the circuitry/battery.");

 while (1) {};

 }

 }

 //SD Card Check

 genie.WriteStr(0, "Initializing SD card:...");

 delay(300);

 pinMode(53, OUTPUT);

 if (!SD.begin (SPI_FULL_SPEED, chipSelect)) {

 genie.WriteStr(0, "Failed. SD Card not present: 1) Insert SD. 2) Press reset.");

 while (1) {};

 }

 else {

 genie.WriteStr(0, "Success.");

 delay(300);

 }

 genie.WriteStr(0, "Press 'START' when ready...");

}

//

void loop() {

 genie.DoEvents(); // This calls the library each loop to process the queued responses

from the display

}

//

void myGeniEventHandler(void) {

121

 genieFrame Event;

 genie.DequeueEvent(&Event); // Remove the next queued event from the buffer, and

process it below

 int EVENT_val = 0;

 int slider_val = 0;

 EVENT_val = genie.GetEventData(&Event);

 //If the cmd received is from a Reported Event (Events triggered from the Events tab of

Workshop4 objects)

 if (Event.reportObject.cmd == GENIE_REPORT_EVENT)

 {

 //For Calibration on directory screen

 if (Event.reportObject.object == GENIE_OBJ_4DBUTTON)

 {

 if (Event.reportObject.index == 0)

 {

 genie.WriteObject(GENIE_OBJ_FORM, 0, 1);

 delay(1000);

 genie.WriteStr(26, "Calibrating...");

 delay(500);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, 333);

 delay(1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, 222);

 delay(1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, 111);

 delay(1000);

 long int CALendtime = 0;

 CALendtime = millis() + 1500;

 while (millis() < CALendtime)

 {

 PSIcalculation(); // PSI calculation

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, psi);

 }

 delay(500);

 calibration = psi;

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, psi);

 delay(500);

 genie.WriteStr(26, "Calibrated.");

 delay(1000);

 genie.WriteStr(26, "Make File Session.");

 }

 }

122

 //To create new file for session

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 {

 if (Event.reportObject.index == 13)

 {

 genie.WriteStr(18, "Checking INFO file...");

 delay(1000);

 if (Event.reportObject.index == 13)

 {

 MakeNewFile();

 }

 }

 }

 //Puts in High (e) and Low (i) psi into file. Then displays results of session and

displays previous session

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 {

 if (Event.reportObject.index == 10)

 {

 PullFromNewAndOldFiles();

 }

 }

 //Adjusts LED Target Values to Trigger

 if (Event.reportObject.object == GENIE_OBJ_SLIDER)

 {

 if (Event.reportObject.index == 3)

 {

 slider_val = genie.GetEventData(&Event);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 7, slider_val);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0, slider_val);

 TargetMEP = slider_val;

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_SLIDER)

 {

 if (Event.reportObject.index == 2)

 {

 slider_val = genie.GetEventData(&Event);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 5, slider_val);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, slider_val);

 TargetMIP = -1 * slider_val;

 }

 }

123

 //For MIP

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 {

 if (Event.reportObject.index == 6)

 {

 TimerMIP(8, 1, 4, 17);

 genie.WriteStr(17, "Done.");

 }

 }

 //For MEP

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 {

 if (Event.reportObject.index == 14)

 {

 TimerMEP(8, 1, 4, 17);

 genie.WriteStr(17, "Done.");

 }

 }

 // //For 5secMIP

 // if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 // {

 // if (Event.reportObject.index == 0)

 // {

 // TimerMIP(8, 1, 4, 17);

 // genie.WriteStr(17, "Done.");

 // }

 // }

 //

 // //For 5secMEP

 // if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 // {

 // if (Event.reportObject.index == 1)

 // {

 // TimerMIP(8, 1, 4, 17);

 // genie.WriteStr(17, "Done.");

 // }

 // }

 //

 // //For Valsalva

 // if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 // {

 // if (Event.reportObject.index == 22)

 // {

124

 // TimerMEP(8, 1, 4, 17);

 // genie.WriteStr(17, "Done.");

 // }

 // }

 //

 // //For StimMIP

 // if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 // {

 // if (Event.reportObject.index == 6)

 // {

 // TimerMIP(8, 1, 4, 17);

 // genie.WriteStr(17, "Done.");

 // }

 // }

 //

 // //For StimMEP

 // if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 // {

 // if (Event.reportObject.index == 14)

 // {

 // TimerMEP(8, 1, 4, 17);

 // genie.WriteStr(17, "Done.");

 // }

 // }

 //

 // //For Stim5secMIP

 // if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 // {

 // if (Event.reportObject.index == 0)

 // {

 // TimerMIP(8, 1, 4, 17);

 // genie.WriteStr(17, "Done.");

 // }

 // }

 //

 // //For Stim5secMEP

 // if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 // {

 // if (Event.reportObject.index == 1)

 // {

 // TimerMIP(8, 1, 4, 17);

 // genie.WriteStr(17, "Done.");

 // }

 // }

 //

 // //For StimValsalva

125

 // if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 // {

 // if (Event.reportObject.index == 22)

 // {

 // TimerMEP(8, 1, 4, 17);

 // genie.WriteStr(17, "Done.");

 // }

 // }

 //PSI Training Timers

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 {

 if (Event.reportObject.index == 15)

 {

 PSITimer = 180500;

 count = 5;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer / 1000);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 {

 if (Event.reportObject.index == 16)

 {

 PSITimer = 240500;

 count = 4;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer / 1000);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 {

 if (Event.reportObject.index == 17)

 {

 PSITimer = 300500;

 count = 3;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer / 1000);

 }

 }

 //Shows results of MEP/MIP on MEP/MIP result

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 {

 if (Event.reportObject.index == 8)

 {

 delay(500);

 genie.WriteObject(GENIE_OBJ_FORM, 7, 1);

 delay(500);

126

 genie.WriteStr(12, MEP);

 delay(500);

 TargetMEP = MEP * TrainingPercent / 100;

 genie.WriteStr(13, TargetMEP);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0, TargetMEP);

 delay(500);

 genie.WriteStr(14, abs(MIP));

 delay(500);

 TargetMIP = MIP * TrainingPercent / 100;

 genie.WriteStr(15, abs(TargetMIP));

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, abs(TargetMIP));

 }

 }

 //LUNG TRAINING button takes to Form 3

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

 {

 if (Event.reportObject.index == 5)

 {

 genie.WriteObject(GENIE_OBJ_FORM, 3, 1);

 delay(100);

 }

 }

 //For PSI training screen. Write to excel and give option to end or continue.

 if (Event.reportObject.object == GENIE_OBJ_4DBUTTON)

 {

 if (Event.reportObject.index == 1)

 {

 logfile = SD.open(filename, FILE_WRITE);

 TimerAndRecordPSI ();

 logfile.close();

 delay(500);

 genie.WriteStr(2, "Done.");

 delay(1000);

 genie.WriteStr(2, "RESULTS to see results \nor START to repeat training.");

 }

 genie.WriteObject(GENIE_OBJ_4DBUTTON, 1, 0);

 }

 }

}

//PSI calculation///

int PSIcalculation() {

 total = total - readings[readIndex]; //psi readings + calculations

 readings[readIndex] = analogRead(inputPin);

 total = total + readings[readIndex];

127

 readIndex = readIndex + 1;

 if (readIndex >= numReadings) {

 readIndex = 0;

 }

 psi = total / numReadings;

 psi = psi / bits; //bits = 1023.0

 psi = psi * Vcc; //Vcc=5.0

 psi = psi - offset; //offset = 2.5

 psi = psi / resolution; //resolution = 0.0002584

 psi = psi / GAIN; //GAIN

 psi = psi * 10 * 1.36; //1.36 is conversion from 1 mmHg = 1.36 cmH2O

 psi = psi - calibration;

}

//Makes new file name based off INFO file and setsup CVS file///////////////////////////////

void MakeNewFile() {

 genie.WriteStr(18, "Patient Info:...");

 delay(1000);

 logfile = SD.open("INFO.TXT");

 filename[0] = logfile.read();

 filename[1] = logfile.read();

 filename[2] = logfile.read();

 filename[3] = logfile.read();

 filename[4] = logfile.read();

 filename[5] = logfile.read();

 filename2[0] = filename[0];

 filename2[1] = filename[1];

 filename2[2] = filename[2];

 filename2[3] = filename[3];

 filename2[4] = filename[4];

 filename2[5] = filename[5];

 logfile.close();

 genie.WriteStr(18, filename);

 delay(1000);

 genie.WriteStr(18, "Making new file:...");

 for (uint8_t i = 1; i < 100; i++) {

 filename[6] = i / 10 + '0';

 filename[7] = i % 10 + '0';

 if (! SD.exists(filename)) {

 logfile = SD.open(filename, FILE_WRITE);

 logfile.print(",,");

 logfile.print("Date(D/M/Y)/Time:,"); //A1:B1

 logfile.print(tm.Day);

 logfile.print("/");

128

 logfile.print(tm.Month);

 logfile.print("/");

 logfile.print(tmYearToCalendar(tm.Year));

 logfile.print(",");

 logfile.print(tm.Hour);

 logfile.print(":");

 logfile.print(tm.Minute);

 logfile.print(":");

 logfile.println(tm.Second);

 logfile.print(",,");

 logfile.print("Highest Exp. PSI:"); //A2:B2

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.print(",,");

 logfile.print("Lowest Insp. PSI:"); //A3:B3

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.print(",,");

 logfile.print("MEP:"); //A2:B2

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.print(",,");

 logfile.print("MIP:"); //A3:B3

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.print(",,");

 logfile.print("Training %");

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("%");

 logfile.print(",,");

 logfile.print("# of points:"); //A4:B4

 logfile.print(",");

 logfile.print("=COUNT(B:B)");

 logfile.print(",");

 logfile.println("points");

 logfile.print(",,");

129

 logfile.print("Time Duration"); //A5:B5

 logfile.print(",");

 logfile.print("=(MAX(A:A)-MIN(A:A))/1000");

 logfile.print(",");

 logfile.println("seconds");

 logfile.print(",,");

 logfile.print("Points per second:"); //A6:B6

 logfile.print(",");

 logfile.print("=D7/D8");

 logfile.print(",");

 logfile.println("points/s");

 logfile.print("Time(ms)"); //A8:B8

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.close();

 break; // leave the loop!;

 }

 }

 delay(1000);

 genie.WriteStr(18, filename);

 delay(1000);

 genie.WriteStr(18, "Checking old file...");

 delay(1000);

 filename2[6] = filename[6];

 filename2[7] = filename[7];

 xx = filename2[6] - '0'; //Renames filename to go back 1 previous session to display on

result scrEn

 xxx = filename2[7] - '0';

 x = (xx * 10) + xxx - 1;

 filename2[6] = x / 10 + '0';

 filename2[7] = x % 10 + '0';

 logfile = SD.open(filename2, FILE_READ);

 logfile.seek(20);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

130

 MEP = logfile.readStringUntil(',').toInt();

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 MIP = logfile.readStringUntil(',').toInt();

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 TrainingPercent = logfile.readStringUntil(',').toInt();

 logfile.close();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 12, MEP); //MEP

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 13, abs(MIP)); //MIP

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 10, TrainingPercent); //% Training

 genie.WriteStr(18, filename2);

 delay(1000);

 genie.WriteStr(18, "Proceed to MEP/MIP.");

 delay(100);

}

//MIP calculating//

void TimerMIP (int a, int b, int c, int d) {

 genie.WriteStr(d, "Starting...");

 delay(1000);

 genie.WriteStr(d, "3...");

 delay(1000);

 genie.WriteStr(d, "2...");

 delay(1000);

 genie.WriteStr(d, "1...");

 delay(1000);

 genie.WriteStr(d, "Now.");

 delay(500);

 long int MIPendtime = 0;

 I = 0;

 MIP = 0;

 MIPendtime = millis() + 10500;

 while (millis() < MIPendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, a, (MIPendtime - millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_SCOPE, b, abs(psi));

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, c, abs(psi));

 MIParray[I] = psi;

131

 I++;

 }

 for (I = 0; I < 96; I++)

 {

 MIPsumarray[I] = (MIParray[I] + MIParray[I + 1] + MIParray[I + 2] + MIParray[I +

3] + MIParray[I + 4] + MIParray[I + 5] + MIParray[I + 6] + MIParray[I + 7] +

MIParray[I + 8] + MIParray[I + 9]) / 10;

 delay(5);

 }

 int idy;

 for (byte idy = 0; idy != 96; idy++)

 {

 if (MIPsumarray[idy] < MIP) {

 MIP = min(MIPsumarray[idy], MIP);

 }

 delay(5);

 }

}

//MEP calculating//

void TimerMEP (int a, int b, int c, int d) {

 genie.WriteStr(d, "Starting...");

 delay(1000);

 genie.WriteStr(d, "3...");

 delay(1000);

 genie.WriteStr(d, "2...");

 delay(1000);

 genie.WriteStr(d, "1...");

 delay(1000);

 genie.WriteStr(d, "Now.");

 delay(500);

 long int MEPendtime = 0;

 E = 0;

 MEP = 0;

 MEPendtime = millis() + 10500;

 while (millis() < MEPendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, a, (MEPendtime - millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_SCOPE, b, abs(psi));

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, c, abs(psi));

 MEParray[E] = psi;

 E++;

 }

 for (E = 0; E < 96; E++)

 {

132

 MEPsumarray[E] = (MEParray[E] + MEParray[E + 1] + MEParray[E + 2] +

MEParray[E + 3] + MEParray[E + 4] + MEParray[E + 5] + MEParray[E + 6] +

MEParray[E + 7] + MEParray[E + 8] + MEParray[E + 9]) / 10;

 delay(5);

 }

 int idx;

 for (byte idx = 0; idx != 96; idx++)

 {

 if (MEPsumarray[idx] > MEP) {

 MEP = max(MEPsumarray[idx], MEP);

 }

 delay(5);

 }

}

//Timer and PSI session calculating//

void TimerAndRecordPSI () {

 long int Pendtime = 0;

 while (count > 0)

 {

 delay(500);

 genie.WriteStr(2, "Starting...");

 delay(1000);

 genie.WriteStr(2, "3...");

 delay(1000);

 genie.WriteStr(2, "2...");

 delay(1000);

 genie.WriteStr(2, "1...");

 delay(1000);

 genie.WriteStr(2, "Now...");

 delay(500);

 Pendtime = millis() + PSITimer;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer / 1000);

 while (millis() < Pendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, (Pendtime - millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 1, abs(psi));

 genie.WriteObject(GENIE_OBJ_SLIDER, 1, psi + 40);

 if (psi > PSIhi) {

 PSIhi = psi;

 }

 if (psi < PSIlow) {

 PSIlow = psi;

 }

 if (psi > (TargetMEP * 0.90)) {

 genie.WriteObject(GENIE_OBJ_USER_LED, 0, 1);

133

 }

 else {

 genie.WriteObject(GENIE_OBJ_USER_LED, 0, 0);

 };

 if (psi < (TargetMIP * 0.90)) {

 genie.WriteObject(GENIE_OBJ_USER_LED, 1, 1);

 }

 else {

 genie.WriteObject(GENIE_OBJ_USER_LED, 1, 0);

 };

 logfile.print (millis());

 logfile.print (",");

 logfile.println(psi);

 }

// delay(1000);

// genie.WriteStr(2, "1-minute rest");

// delay(1000);

// genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, 60);

// Pendtime = millis() + 60500;

// while (millis() < Pendtime)

// {

// genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, (Pendtime - millis()) / 1000);

// }

// delay(1000);

 count = count - count ; //supposed to be count - 1 when doing longer consecutive

sessions.

 }

}

//Pulls information from old file to display on session results scrEn////////////////

void PullFromNewAndOldFiles() {

 delay(500);

 logfile = SD.open(filename, FILE_WRITE);

 logfile.seek(20);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(PSIhi);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(PSIlow);

 logfile.readStringUntil(',');

134

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(MEP);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(MIP);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(TrainingPercent);

 logfile.close();

 genie.WriteObject(GENIE_OBJ_FORM, 4, 1);

 delay(1000);

 genie.WriteStr(5, filename);

 delay(500);

 logfile = SD.open(filename, FILE_READ);

 logfile.seek(20);

 genie.WriteStr(1, logfile.readStringUntil(',')); //DATE

 delay(500);

 genie.WriteStr(4, logfile.readStringUntil(',')); //TIME

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(6, logfile.readStringUntil(',')); //EXHALE

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(3, logfile.readStringUntil(',')); //INHALE

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(19, logfile.readStringUntil(',')); //MEP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(21, logfile.readStringUntil(',')); //MIP

 delay(500);

135

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(23, logfile.readStringUntil(',')); //% Training

 delay(500);

 logfile.close();

 xx = filename[6] - '0'; //Renames filename to go back 1 previous session to display on

result scrEn

 xxx = filename[7] - '0';

 x = (xx * 10) + xxx - 1;

 filename[6] = x / 10 + '0';

 filename[7] = x % 10 + '0';

 genie.WriteStr(7, filename);

 delay(500);

 logfile = SD.open(filename, FILE_READ);

 logfile.seek(20);

 genie.WriteStr(8, logfile.readStringUntil(','));

 delay(500);

 genie.WriteStr(9, logfile.readStringUntil(','));

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(10, logfile.readStringUntil(','));

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(11, logfile.readStringUntil(','));

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(20, logfile.readStringUntil(',')); //MEP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(22, logfile.readStringUntil(',')); //MIP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(24, logfile.readStringUntil(',')); //% Training

 delay(500);

136

 logfile.close();

}

137

X. APPENDIX V

Conversion from PSI to cm H2O used in the Arduino code:

psi = total / numReadings;

 psi = psi / bits; //bits = 1023.0

 psi = psi * Vcc; //Vcc=3.3

 psi = psi - offset; //offset = 2.5

 psi = psi / resolution; //resolution = 0.0002584

 psi = psi / GAIN; //GAIN

 psi = psi * 1.36; //1.36 is conversion from 1 mmHg = 1.36 cmH2O

 psi = psi - calibration;

138

XI. APPENDIX VI

The computation fluid dynamics study results for the seventeen designs:

0

2

4

6

8

10

12

14

16

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 1 Pressure Differential Vs. Proportional Valve Angle

139

0

1

2

3

4

5

6

7

4
2

.5

4
3

.1

4
3

.7

4
4

.3

4
4

.9

4
5

.5

4
6

.2

4
6

.8

4
7

.4

4
8

.0

4
8

.6

4
9

.2

4
9

.8

5
0

.5

5
1

.1

5
1

.7

5
2

.3

5
2

.9

5
3

.5

5
4

.2

5
4

.8

5
5

.4

5
6

.0

5
6

.6

5
7

.2

5
7

.8

5
8

.5

5
9

.1

5
9

.7

6
0

.3

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 2 Pressure Differential Vs. Proportional Valve Angle

0

5

10

15

20

25

30

0
.0

6
.2

1
2

.3

1
8

.5

2
4

.6

3
0

.8

3
6

.9

4
3

.1

4
9

.2

5
5

.4

6
1

.5

6
7

.7

7
3

.8

8
0

.0

8
6

.2

9
2

.3

9
8

.5

1
0

4
.6

1
1

0
.8

1
1

6
.9

1
2

3
.1

1
2

9
.2

1
3

5
.4

1
4

1
.5

1
4

7
.7

1
5

3
.8

1
6

0
.0

1
6

6
.2

1
7

2
.3

1
7

8
.5

1
8

4
.6

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 3 Pressure Differential Vs. Proportional Valve Angle

140

0

0.05

0.1

0.15

0.2

0
.0

1
.8

3
.7

5
.5

7
.4

9
.2

1
1

.1

1
2

.9

1
4

.8

1
6

.6

1
8

.5

2
0

.3

2
2

.2

2
4

.0

2
5

.8

2
7

.7

2
9

.5

3
1

.4

3
3

.2

3
5

.1

3
6

.9

3
8

.8

4
0

.6

4
2

.5

4
4

.3

4
6

.2

4
8

.0

4
9

.8

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 4 Pressure Differential Vs. Proportional Valve Angle

0

5

10

15

20

25

30

35

40

1
7

9
.7

1
8

5
.8

1
9

2
.0

1
9

8
.2

2
0

4
.3

2
1

0
.5

2
1

6
.6

2
2

2
.8

2
2

8
.9

2
3

5
.1

2
4

1
.2

2
4

7
.4

2
5

3
.5

2
5

9
.7

2
6

5
.8

2
7

2
.0

2
7

8
.2

2
8

4
.3

2
9

0
.5

2
9

6
.6

3
0

2
.8

3
0

8
.9

3
1

5
.1

3
2

1
.2

3
2

7
.4

3
3

3
.5

3
3

9
.7

3
4

5
.8

3
5

2
.0

3
5

8
.2

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 5 Pressure Differential Vs. Proportional Valve Angle

141

0

10

20

30

40

50

60

1
8

1
.5

1
8

7
.7

1
9

3
.8

2
0

0
.0

2
0

6
.8

2
1

2
.9

2
1

9
.1

2
2

5
.2

2
3

1
.4

2
3

7
.5

2
4

3
.7

2
4

9
.8

2
5

6
.0

2
6

2
.2

2
6

8
.3

2
7

4
.5

2
8

0
.6

2
8

6
.8

2
9

2
.9

2
9

9
.1

3
0

5
.2

3
1

1
.4

3
1

7
.5

3
2

3
.7

3
2

9
.8

3
3

6
.0

3
4

2
.2

3
4

8
.3

3
5

4
.5

3
6

0
.6

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 6 Pressure Differential Vs. Proportional Valve Angle

0

1

2

3

4

5

6

7

6
.8

1
2

.9

1
9

.1

2
5

.2

3
1

.4

3
7

.5

4
3

.7

4
9

.8

5
6

.0

6
2

.2

6
8

.3

7
4

.5

8
0

.6

8
6

.8

9
2

.9

9
9

.1

1
0

5
.2

1
1

1
.4

1
1

7
.5

1
2

3
.7

1
2

9
.8

1
3

6
.0

1
4

2
.2

1
4

8
.3

1
5

4
.5

1
6

0
.6

1
6

6
.8

1
7

2
.9

1
7

9
.1

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 7 Pressure Differential Vs. Proportional Valve Angle

142

0

1

2

3

4

5

6

7

1
6

4
.3

1
6

6
.8

1
6

9
.2

1
7

1
.7

1
7

4
.2

1
7

6
.6

1
7

9
.1

1
8

1
.5

1
8

4
.0

1
8

6
.5

1
8

8
.9

1
9

1
.4

1
9

3
.8

1
9

6
.3

1
9

8
.8

2
0

1
.2

2
0

3
.7

2
0

6
.2

2
0

8
.6

2
1

1
.1

2
1

3
.5

2
1

6
.0

2
1

8
.5

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 8 Pressure Differential Vs. Proportional Valve Angle

0

1

2

3

4

5

6

1
6

4
.3

1
6

9
.8

1
7

5
.4

1
8

0
.9

1
8

6
.5

1
9

2
.0

1
9

7
.5

2
0

3
.1

2
0

8
.6

2
1

4
.2

2
1

9
.7

2
2

5
.2

2
3

0
.8

2
3

6
.3

2
4

1
.8

2
4

7
.4

2
5

2
.9

2
5

8
.5

2
6

4
.0

2
6

9
.5

2
7

5
.1

2
8

0
.6

2
8

6
.2

2
9

1
.7

2
9

7
.2

3
0

2
.8

3
0

8
.3

3
1

3
.8

3
1

9
.4

3
2

4
.9

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 9 Pressure Differential Vs. Proportional Valve Angle

143

0

2

4

6

8

10

12

14

16

1
6

.0

2
2

.8

2
9

.5

3
6

.3

4
3

.1

4
9

.8

5
6

.6

6
3

.4

7
0

.2

7
6

.9

8
3

.7

9
0

.5

9
7

.2

1
0

4
.0

1
1

0
.8

1
1

7
.5

1
2

4
.3

1
3

1
.1

1
3

7
.8

1
4

4
.6

1
5

1
.4

1
5

8
.2

1
6

4
.9

1
7

1
.7

1
7

8
.5

1
8

5
.2

1
9

2
.0

1
9

8
.8

2
0

5
.5

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 10 Pressure Differential Vs. Proportional Valve Angle

0

5

10

15

20

25

30

35

40

1
.8

8
.0

1
4

.2

2
0

.3

2
6

.5

3
2

.6

3
8

.8

4
4

.9

5
1

.1

5
7

.2

6
3

.4

6
9

.5

7
5

.7

8
1

.8

8
8

.0

9
4

.2

1
0

0
.3

1
0

6
.5

1
1

2
.6

1
1

8
.8

1
2

4
.9

1
3

1
.1

1
3

7
.2

1
4

3
.4

1
4

9
.5

1
5

5
.7

1
6

1
.8

1
6

8
.0

1
7

4
.2

1
8

0
.3

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 11 Pressure Differential Vs. Proportional Valve Angle

144

0

5

10

15

20

25

30

1
.8

6
.8

1
1

.7

1
6

.6

2
1

.5

2
6

.5

3
1

.4

3
6

.3

4
1

.2

4
6

.2

5
1

.1

5
6

.0

6
0

.9

6
5

.8

7
0

.8

7
5

.7

8
0

.6

8
5

.5

9
0

.5

9
5

.4

1
0

0
.3

1
0

5
.2

1
1

0
.2

1
1

5
.1

1
2

0
.0

1
2

4
.9

1
2

9
.8

1
3

4
.8

1
3

9
.7

1
4

4
.6

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

o
)

Proportional Valve Angle

Assembly 12 Pressure Differential Vs. Proportional Valve Angle

0

10

20

30

40

50

60

6
.8

1
2

.9

1
9

.1

2
5

.2

3
1

.4

3
7

.5

4
3

.7

4
9

.8

5
6

.0

6
2

.2

6
8

.3

7
4

.5

8
0

.6

8
6

.8

9
2

.9

9
9

.1

1
0

5
.2

1
1

1
.4

1
1

7
.5

1
2

3
.7

1
2

9
.8

1
3

6
.0

1
4

2
.2

1
4

8
.3

1
5

4
.5

1
6

0
.6

1
6

6
.8

1
7

2
.9

1
7

9
.1

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 13 Pressure Differential Vs. Proportional Valve Angle

145

0

1

2

3

4

5

6

7

8

1
7

5
.4

1
8

1
.5

1
8

7
.7

1
9

3
.8

2
0

0
.0

2
0

6
.2

2
1

2
.3

2
1

8
.5

2
2

4
.6

2
3

0
.8

2
3

6
.9

2
4

3
.1

2
4

9
.2

2
5

5
.4

2
6

1
.5

2
6

7
.7

2
7

3
.8

2
8

0
.0

2
8

6
.2

2
9

2
.3

2
9

8
.5

3
0

4
.6

3
1

0
.8

3
1

6
.9

3
2

3
.1

3
2

9
.2

3
3

5
.4

3
4

1
.5

3
4

7
.7

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 14 Pressure Differential Vs. Proportional Valve Angle

0

2

4

6

8

10

12

14

16

18

0
.0

6
.2

1
2

.3

1
8

.5

2
4

.6

3
0

.8

3
6

.9

4
3

.1

4
9

.2

5
5

.4

6
1

.5

6
7

.7

7
3

.8

8
0

.0

8
6

.2

9
2

.3

9
8

.5

1
0

4
.6

1
1

0
.8

1
1

6
.9

1
2

3
.1

1
2

9
.2

1
3

5
.4

1
4

1
.5

1
4

7
.7

1
5

3
.8

1
6

0
.0

1
6

6
.2

1
7

2
.3

1
7

8
.5

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 15 Pressure Differential Vs. Proportional Valve Angle

146

0

10

20

30

40

50

60

2
.5

7
.4

1
2

.3

1
7

.2
2

2
.2

2
7

.1
3

2
.0

3
6

.9
4

1
.8

4
6

.8
5

1
.7

5
6

.6
6

1
.5

6
6

.5
7

1
.4

7
6

.3
8

1
.2

8
6

.2
9

1
.1

9
6

.0
1

0
0

.9
1

0
5

.8
1

1
0

.8

1
1

5
.7

1
2

0
.6

1
2

5
.5

1
3

0
.5

1
3

5
.4

1
4

0
.3

1
4

5
.2

1
5

0
.2

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 16 Pressure Differential Vs. Proportional Valve Angle

0

50

100

150

200

9
4

.8

9
9

.7

1
0

4
.6

1
0

9
.5

1
1

4
.5

1
1

9
.4

1
2

4
.3

1
2

9
.2

1
3

4
.2

1
3

9
.1

1
4

4
.0

1
4

8
.9

1
5

3
.8

1
5

8
.8

1
6

3
.7

1
6

8
.6

1
7

3
.5

1
7

8
.5

1
8

3
.4

1
8

8
.3

1
9

3
.2

1
9

8
.2

2
0

3
.1

2
0

8
.0

2
1

2
.9

2
1

7
.8

2
2

2
.8

P
re

ss
u

re
 D

if
fe

re
n

ti
al

 (
cm

 H
2

O
)

Proportional Valve Angle (Degrees)

Assembly 17 Pressure Differential Vs. Proportional Valve Angle

147

XII. APPENDIX VII

The second configuration of BreathForce system code installed in the Adafruit Feather

M0 Bluefruit Microcontroller

#include <SD.h>

#include <Wire.h>

#include <TimeLib.h>

#include <SPI.h>

#include "RTClib.h"

RTC_PCF8523 rtc; // runs RTC, if you need to recalibrate run the PCF8523 example

char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"};

#include <genieArduino.h>

Genie genie;

#define RESETLINE 5

//SD card variables

// set up variables using the SD utility library functions:

Sd2Card card;

SdVolume volume;

SdFile root;

//Connecting Servo

#include <Servo.h>

int servoPin = 12;

Servo myservo;

int openvalve = 0; //WILL CHANGE DEPENDING ON THE DESIGN AND POSITION

int almostclosevalve=170;

int closevalve = 180; //WILL CHANGE DEPENDING ON THE DESIGN AND

POSITION

//All of this code is to add the buttons on the PCB to increment by 1

const byte Button1=6;

const byte Button2=9;

byte CurrentButtonState1=HIGH;

byte PreviousButtonState1=HIGH;

byte CurrentButtonState2=HIGH;

byte PreviousButtonState2=HIGH;

148

int sPosition=0;

int sIncrement=1;

int spPosition=0;

int spIncrement=1;

//psi calculations

const int numReadings = 10;

int readings[numReadings]; // the readings from the analog input

int readIndex = 0; // the index of the current reading

int total = 0; // the running total

int average = 0; // the average

float GAIN = 47.55;

float bits = 1023.0;

float resolution = 0.00025075;

float psi;

float offset = 1.08;

float Vcc = 3.3;

float calibration = 0.00;

int count;

int PSIhi; //to help display on 4d display

int PSIlow;

int MEP = 0;

int MIP = 0;

int FMIP =0;

int MPF = 0;

int MPS = 0;

int TargetMEP;

int TargetMIP;

int TrainingPercent;

int MatchPressure;

int MEParray[105];

int MEPsumarray[95];

int E;

float MIParray[105];

float MIPsumarray[95];

int I;

int MParray[105];

int MPsumarray[95];

int J;

int h;

long int PSITimer;

149

int R;

int RCP;

int MEPfinalpos;

int MIPfinalpos;

int b;

int TP;

int TEP;

int BreathTime=0;

int TotalTime=0;

//Pressure sensor

int inputPin = A2;

//SD Card

File logfile;

const int chipSelect = 10;

char filename[] = "SADATA00.CSV"; //change patient name here. Format: (First thE

letters of first and last name)00.CSV

char filename2[] = "SADATA00.CSV";

int x;

int xx; //helps display previous file

int xxx;

//

void setup() {

 //for PSI calculation

 for (int thisReading = 0; thisReading < numReadings; thisReading++) {

 readings[thisReading] = 0;

 //connecting servo

 myservo.attach(servoPin);

 pinMode(Button1, INPUT); // Manual valve adjustment (clockwise)

 pinMode(Button2, INPUT); // Manual valve adjustment (counterclockwise)

 }

 //for 4d display to boot up

 Serial1.begin(200000); // Serial0 @ 150000 (200K) Baud

 genie.Begin(Serial1); // Use Serial1 on the Feather for talking to

the Genie Library, and to the 4D Systems display

 genie.AttachEventHandler(myGenieEventHandler); // Attach the user function

Event Handler for processing events

 pinMode(RESETLINE, OUTPUT); // Set Resetline (D5) on Feather to

Output (4D Arduino Adaptor V2 - Display Reset)

150

 digitalWrite(RESETLINE, 0); // Reset the Display via Resetline

 delay(100);

 digitalWrite(RESETLINE, 1); // unReset the Display via Resetline

 delay (3500); //let the display start up after the reset (This is

important)

 genie.WriteContrast(1); //1=ScrEn on, 0 = scrEn off

 delay(500);

 //Starting Process

 //These messages are being written to the string object on form 0, the index number for

the string object is 23

 genie.WriteStr(23, "Starting up. Please wait.");

 delay(1200);

 //RTC Boot Check

 genie.WriteStr(23, "Checking RealTimeClock status:....");

 delay(1200);

 if (rtc.begin())

 {

 genie.WriteStr(23, "Real Time Clock is working.");

 delay(1200);

 }

 else

 {

 if(! rtc.initialized() || rtc.lostPower())

 {

 genie.WriteStr(23, "RTC is down. Run pcf8523 sketch. System halted.");

 while (1){};

 }

 else {

 genie.WriteStr(23, "RTC read error. Check battery/circuit. System Halted");

 while(1){};

 }

 }

 //SD Card Check

 genie.WriteStr(23, "Initializing SD card:...");

 delay(1200);

 pinMode(10,OUTPUT);

 if (!SD.begin(chipSelect))

 {

 genie.WriteStr(23, "Failed. SD Card not present. Insert SD and press reset. System

Halted.");

151

 while (1) {};

 }

 else

 {

 genie.WriteStr(23, "Success.");

 delay(1200);

 }

 genie.WriteStr(23, "Opening Valve");

 myservo.write(openvalve);

 delay(1200);

 genie.WriteStr(23, "Calibrating...");

 delay(1000);

 long int CALendtime=0;

 CALendtime = millis() + 1500;

 while (millis() < CALendtime)

 {

 PSIcalculation(); // PSI calculation

 }

 delay(1200);

 calibration=psi;

 PSIcalculation;

 delay(1200);

 genie.WriteStr(23, "Calibrated.");

 delay(1200);

 genie.WriteStr(23, "Press 'Start' when ready...");

}

///

///////////////////////

void loop()

{

 CurrentButtonState1 = digitalRead(Button1);

 if (CurrentButtonState1 != PreviousButtonState1 && CurrentButtonState1 == LOW)

 {

 sPosition += sIncrement;

 myservo.write(sPosition);

 delay(10);

 }

 PreviousButtonState1 = CurrentButtonState1;

 CurrentButtonState2 = digitalRead(Button2);

 if (CurrentButtonState2 != PreviousButtonState2 && CurrentButtonState2 ==LOW)

 {

 sPosition -= sIncrement;

 myservo.write(sPosition);

152

 delay(10);

 }

 PreviousButtonState2 = CurrentButtonState2;

 genie.DoEvents(); //This calls the library each loop to process the responses from the

display.

}

///

///////////////////////

void myGenieEventHandler(void)

{

 genieFrame Event;

 genie.DequeueEvent(&Event); //This removes the queued event from the buffer to

process it below

 int EVENT_val=0;

 int slider_val=0;

 EVENT_val = genie.GetEventData(&Event);

 //If the cmd received is from a Reported Event (Events triggered from the Events tab of

Workshop4 objects)

 if (Event.reportObject.cmd == GENIE_REPORT_EVENT)

 {

 if (Event.reportObject.object == GENIE_OBJ_4DBUTTON)

 {

 if (Event.reportObject.index == 4)

 {

 spPosition=spPosition+spIncrement;

 myservo.write(spPosition);

 delay(1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 12, spPosition);

 }

 if (Event.reportObject.index == 5)

 {

 spPosition=spPosition-spIncrement;

 myservo.write(spPosition);

 delay(1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 12, spPosition);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_4DBUTTON)

 {

153

 if (Event.reportObject.index == 1)

 {

 TestProgram();

 genie.WriteStr(25, "Idle");

 }

 if (Event.reportObject.index == 3)

 {

 return;

 }

 }

 //To create a new file for the session which is form 1, Userbutton0

 if (Event.reportObject.object == GENIE_OBJ_4DBUTTON)

 {

 if (Event.reportObject.index == 2)

 {

 genie.WriteStr(24, "Checking INFO file...");

 delay(1000);

 MakeNewFile();

 }

 }

 //Puts in High (e) and Low (i) psi into file. Then displays results of session and

displays previous session

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 12)

 {

 genie.WriteObject(GENIE_OBJ_FORM, 7, 1);

 PullFromNewAndOldFiles();

 }

 }

 //Controls Training% for PSItraining %

 if (Event.reportObject.object == GENIE_OBJ_SLIDER)

 {

 if (Event.reportObject.index == 0)

 {

 slider_val = genie.GetEventData(&Event);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0, slider_val);

 TrainingPercent = slider_val;

 }

 }

 //For MIP

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 6)

154

 {

 myservo.write(almostclosevalve);

 TimerMIP(4, 5, 0);

 genie.WriteStr(0, "Done.");

 }

 }

 //For MEP

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 7)

 {

 TimerMEP(4, 5, 0);

 genie.WriteStr(0, "Done. Proceed to results.");

 }

 }

 //Shows results of MEP/MIP on MEP/MIP result

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 5)

 {

 delay(500);

 genie.WriteObject(GENIE_OBJ_FORM, 4, 1);

 delay(500);

 genie.WriteStr(1, MEP);

 delay(500);

 TargetMEP = MEP * TrainingPercent / 100;

 genie.WriteStr(2, TargetMEP);

 delay(500);

 FMIP = -1 * MIP;

 genie.WriteStr(3, FMIP);

 delay(500);

 TargetMIP = FMIP * TrainingPercent / 100;

 genie.WriteStr(4, TargetMIP);

 delay(500);

 myservo.write(openvalve);

 }

 }

 //Moves to form 5 to calibrate valve positions

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 2)

155

 {

 delay(500);

 genie.WriteObject(GENIE_OBJ_FORM, 5, 1);

 delay(500);

 genie.WriteStr(5, "Recalibrating pressure sensor. Please wait."); //Keep couple

spaces between please and wait so it fits the string on the display correctly.

 Recalibrating();

 genie.WriteStr(5, "Press the 'Locate PEmax Position' button when ready.");

 }

 }

 //Calibrates the Valve Position

 h=75;

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 20)

 {

 myservo.write(h);

 TimerMatchPressureMEP();

 genie.WriteStr(5, "Done. Press the 'Locate PImax Position' button when ready.");

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 21)

 {

 delay(1200);

 genie.WriteStr(5, "Recalibrating pressure sensor and servo motor. Please wait.");

 myservo.write(h);

 delay(1200);

 Recalibrating();

 delay(1200);

 TimerMatchPressureMIP();

 genie.WriteStr(5, "Done, Proceed to the training page.");

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 3)

156

 {

 delay(500);

 genie.WriteObject(GENIE_OBJ_FORM, 6, 1);

 delay(500);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 9, TargetMEP);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 7, abs(TargetMIP));

 genie.WriteStr(22, "Chose the number of minutes to train. Then press start.");

 }

 }

 //PSI Training Timers

 //There are options for 1, 2, 3, 4, or 5 minutes of training. Each button needs to identify

how much time there is and write it the LED on the training page.

 //The PSITimer is in milliseconds with an extra half second added on.

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 17)

 {

 PSITimer = 300500;

 count =5;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 16)

 {

 PSITimer = 240500;

 count =4;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 15)

 {

 PSITimer = 180500;

 count =3;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

157

 if (Event.reportObject.index == 14)

 {

 PSITimer = 120500;

 count=2;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 13)

 {

 PSITimer = 60500;

 count=1;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

 }

 }

 //For PSI training screen. Write to excel and give option to end or continue.

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 11)

 {

 logfile = SD.open(filename, FILE_WRITE);

 TimerAndRecordPSI ();

 logfile.close();

 delay(500);

 genie.WriteStr(22, "Done.");

 delay(1000);

 genie.WriteStr(22, "Click results to see results. Click start to train again.");

 }

 }

 }

}

void MakeNewFile()

{

 genie.WriteStr(24, "Patient Info:...");

 delay(1200);

 logfile = SD.open("INFO.TXT");

 if (logfile.available())

 {

 genie.WriteStr(24, "File exists.");

 }

 else

 {

158

 genie.WriteStr(24, "File does not exist.");

 delay(1200);

 genie.WriteStr(24, "Check SD Card");

 delay(3600);

 return;

 }

 filename[0] = logfile.read();

 filename[1] = logfile.read();

 filename[2] = logfile.read();

 filename[3] = logfile.read();

 filename[4] = logfile.read();

 filename[5] = logfile.read();

 filename2[0] = filename[0];

 filename2[1] = filename[1];

 filename2[2] = filename[2];

 filename2[3] = filename[3];

 filename2[4] = filename[4];

 filename2[5] = filename[5];

 logfile.close();

 genie.WriteStr(24, filename);

 delay(1000);

 genie.WriteStr(24, "Making new file:...");

 for (uint8_t i = 1; i < 100; i++) {

 filename[6] = i / 10 + '0';

 filename[7] = i % 10 + '0';

 if (! SD.exists(filename)) {

 DateTime now = rtc.now();

 logfile = SD.open(filename, FILE_WRITE);

 logfile.print(",,");

 logfile.print("Date(D/M/Y)/Time:,"); //A1:B1

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.year(), DEC);

 logfile.print(",");

 logfile.print(now.hour(), DEC);

 logfile.print(":");

 logfile.print(now.minute(), DEC);

 logfile.print(":");

 logfile.println(now.second(), DEC);

 logfile.print(",,");

 logfile.print("Training Time:"); //A2:B2

 logfile.print(",");

 logfile.print(" ");

159

 logfile.print(",");

 logfile.println("seconds");

 logfile.print(",,");

 logfile.print("PEmax:"); //A2:B2

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.print(",,");

 logfile.print("PImax:"); //A3:B3

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.print(",,");

 logfile.print("Training %");

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("%");

 logfile.print(",,");

 logfile.print("# of points:"); //A4:B4

 logfile.print(",");

 logfile.print("=COUNT(B:B)");

 logfile.print(",");

 logfile.println("points");

 logfile.print(",,");

 logfile.print("Time Duration"); //A5:B5

 logfile.print(",");

 logfile.print("=(MAX(A:A)-MIN(A:A))/1000");

 logfile.print(",");

 logfile.println("seconds");

 logfile.print(",,");

 logfile.print("Points per second:"); //A6:B6

 logfile.print(",");

 logfile.print("=D6/D7");

 logfile.print(",");

 logfile.println("points/s");

 logfile.print("Time(ms)"); //A8:B8

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.close();

 break; // leave the loop!;

 }

 }

160

 delay(1000);

 genie.WriteStr(24, filename);

 delay(1000);

 genie.WriteStr(24, "Checking old file...");

 delay(1000);

 filename2[6] = filename[6];

 filename2[7] = filename[7];

 xx = filename2[6] - '0'; //Renames filename to go back 1 previous session to display on

result scrEn

 xxx = filename2[7] - '0';

 x = (xx * 10) + xxx - 1;

 filename2[6] = x / 10 + '0';

 filename2[7] = x % 10 + '0';

 logfile = SD.open(filename2, FILE_READ);

 logfile.seek(20);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 MEP = logfile.readStringUntil(',').toInt();

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 MIP = logfile.readStringUntil(',').toInt();

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 TrainingPercent = logfile.readStringUntil(',').toInt();

 logfile.close();

//writing the previous values to form 7 led digits

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, MEP);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, abs(MIP));

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 1, TrainingPercent); //Previous %

training display in form 2

 genie.WriteStr(24, filename2);

 delay(1000);

 genie.WriteStr(24, "Proceed to PE/PImax.");

 delay(100);

161

}

int PSIcalculation() {

 total = total - readings[readIndex]; //psi readings + calculations

 readings[readIndex] = analogRead(inputPin);

 total = total + readings[readIndex];

 readIndex = readIndex + 1;

 if (readIndex >= numReadings) {

 readIndex = 0;

 }

 psi = total / numReadings;

 psi = psi / bits; //bits = 1023.0

 psi = psi * Vcc; //Vcc=3.3

 psi = psi - offset; //offset = 2.5

 psi = psi / resolution; //resolution = 0.0002584

 psi = psi / GAIN; //GAIN

 psi = psi * 1.36; //1.36 is conversion from 1 mmHg = 1.36 cmH2O

 psi = psi - calibration;

}

void PullFromNewAndOldFiles() {

 delay(500);

 logfile = SD.open(filename, O_RDWR);

 logfile.seek(20);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(TotalTime/1000);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(MEP);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(FMIP);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(TrainingPercent);

 logfile.close();

 genie.WriteObject(GENIE_OBJ_USERBUTTON, 12, 1);

 delay(1000);

162

 genie.WriteStr(6, filename);

 delay(500);

 logfile = SD.open(filename, FILE_READ);

 logfile.seek(20);

 genie.WriteStr(7, logfile.readStringUntil(',')); //DATE

 delay(500);

 genie.WriteStr(8, logfile.readStringUntil(',')); //TIME

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(9, logfile.readStringUntil(',')); //Total Time

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(11, logfile.readStringUntil(',')); //MEP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(12, logfile.readStringUntil(',')); //MIP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(13, logfile.readStringUntil(',')); //% Training

 delay(500);

 logfile.close();

 xx = filename[6] - '0'; //Renames filename to go back 1 previous session to display on

result scrEn

 xxx = filename[7] - '0';

 x = (xx * 10) + xxx - 1;

 filename[6] = x / 10 + '0';

 filename[7] = x % 10 + '0';

 genie.WriteStr(14, filename);

 delay(500);

 logfile = SD.open(filename, FILE_READ);

 logfile.seek(20);

 genie.WriteStr(15, logfile.readStringUntil(','));

 delay(500);

 genie.WriteStr(16, logfile.readStringUntil(','));

 delay(500);

 logfile.readStringUntil(',');

163

 logfile.readStringUntil(',');

 genie.WriteStr(17, logfile.readStringUntil(','));

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(19, logfile.readStringUntil(',')); //MEP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(20, logfile.readStringUntil(',')); //MIP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(21, logfile.readStringUntil(',')); //% Training

 delay(500);

 logfile.close();

}

void Recalibrating() {

 long int RCendtime = 0;

 R = 0;

 RCP = 0;

 RCendtime = millis() + 5500;

 while (millis() < RCendtime)

 {

 PSIcalculation();

 }

}

void TestProgram()

{

 long int TPendtime = 0;

 TP = 0;

 TEP = 0;

 TPendtime = millis() + 5500;

 while (millis() < TPendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 13, abs(psi));

 genie.WriteStr(25, "Measuring");

 }

}

void TimerAndRecordPSI () {

164

 long int Pendtime = 0;

 int scount=0;

 int smove=0;

 while (count > 0)

 {

 BreathTime=PSITimer;

 TotalTime=TotalTime+BreathTime;

 Pendtime = millis() + PSITimer;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer / 1000);

 while (millis() < Pendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, (Pendtime - millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 8, abs(psi));

 if (psi > (TargetMEP * 0.90)) {

 genie.WriteObject(GENIE_OBJ_USER_LED, 1, 1);

 }

 else {

 genie.WriteObject(GENIE_OBJ_USER_LED, 1, 0);

 }

 if (psi < (TargetMIP * 0.90)) {

 genie.WriteObject(GENIE_OBJ_USER_LED, 0, 1);

165

 }

 else {

 genie.WriteObject(GENIE_OBJ_USER_LED, 0, 0);

 }

 if (psi>0 && psi<=1.1*TargetMEP)

 {

 myservo.write(MEPfinalpos);

 delay(100);

 genie. WriteStr(22, "Normal Expiratory Position");

 }

 else if (psi<0 && psi>=1.1*TargetMIP)

 {

 myservo.write(MIPfinalpos);

 delay(100);

 genie.WriteStr(22, "Normal Inspiratory Position");

 }

 else if (psi>1.1*TargetMEP)

 {

 myservo.write(MEPfinalpos-10);

 delay(100);

 genie.WriteStr(22, "Too much expiratory pressure.");

166

 }

 else if (psi < 1.1*TargetMIP)

 {

 myservo.write(MIPfinalpos-10);

 delay(100);

 genie.WriteStr(22, "Too much inspiratory pressure.");

 }

 else

 {

 genie.WriteStr(22, "Transitioning..");

 }

 logfile.print (millis());

 logfile.print (",");

 logfile.println(psi);

 }

 count = count - count ; //supposed to be count - 1 when doing longer consecutive

sessions.

 }

}

void TimerMEP (int a, int b, int c) {

 genie.WriteStr(c, "Starting...");

 delay(1000);

 genie.WriteStr(c, "3...");

 delay(1000);

167

 genie.WriteStr(c, "2...");

 delay(1000);

 genie.WriteStr(c, "1...");

 delay(1000);

 genie.WriteStr(c, "Now.");

 delay(500);

 long int MEPendtime = 0;

 E = 0;

 MEP = 0;

 MEPendtime = millis() + 5500;

 while (millis() < MEPendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, a, (MEPendtime - millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, b, abs(psi));

 MEParray[E] = psi;

 E++;

 }

 for (E = 0; E < 96; E++)

 {

 MEPsumarray[E] = (MEParray[E] + MEParray[E + 1] + MEParray[E + 2] +

MEParray[E + 3] + MEParray[E + 4] + MEParray[E + 5] + MEParray[E + 6] +

MEParray[E + 7] + MEParray[E + 8] + MEParray[E + 9]) / 10;

 delay(5);

 }

 int idx;

 for (byte idx = 0; idx != 96; idx++)

 {

 if (MEPsumarray[idx] > MEP) {

 MEP = max(MEPsumarray[idx], MEP);

 }

 delay(5);

 }

}

void TimerMIP (int a, int b, int c) {

 genie.WriteStr(c, "Starting...");

 delay(1000);

 genie.WriteStr(c, "3...");

 delay(1000);

 genie.WriteStr(c, "2...");

 delay(1000);

 genie.WriteStr(c, "1...");

 delay(1000);

 genie.WriteStr(c, "Now.");

168

 delay(500);

 long int MIPendtime = 0;

 I = 0;

 MIP = 0;

 MIPendtime = millis() + 5500;

 while (millis() < MIPendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, a, (MIPendtime - millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, b, abs(psi));

 MIParray[I] = psi;

 I++;

 }

 for (I = 0; I < 96; I++)

 {

 MIPsumarray[I] = (MIParray[I] + MIParray[I + 1] + MIParray[I + 2] + MIParray[I +

3] + MIParray[I + 4] + MIParray[I + 5] + MIParray[I + 6] + MIParray[I + 7] +

MIParray[I + 8] + MIParray[I + 9]) / 10;

 delay(5);

 }

 int idy;

 for (byte idy = 0; idy != 96; idy++)

 {

 if (MIPsumarray[idy] < MIP) {

 MIP = min(MIPsumarray[idy], MIP);

 }

 delay(5);

 }

}

void TimerMatchPressureMEP() {

 genie.WriteStr(5, "Starting...");

 delay(1000);

 genie.WriteStr(5, "3...");

 delay(1000);

 genie.WriteStr(5, "2...");

 delay(1000);

 genie.WriteStr(5, "1...");

 delay(1000);

 genie.WriteStr(5, "Now.");

 delay(500);

 long int MEPMatchPressureEndTime=0;

 J=0;

 MPF=0;

 MEPMatchPressureEndTime=millis() + 105500;

169

 while (millis() < MEPMatchPressureEndTime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 10, (MEPMatchPressureEndTime -

millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 11, abs(psi));

 delay(1000);

 if (abs(psi)<= .9*TargetMEP)

 {

 h=h+1;

 myservo.write(h);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 26, h);

 MEPfinalpos=h;

 }

 else if (abs(psi) >= .9*TargetMEP)

 {

 break;

 }

 else

 {

 break;

 }

 }

}

void TimerMatchPressureMIP() {

 genie.WriteStr(5, "Starting...");

 delay(1000);

 genie.WriteStr(5, "3...");

 delay(1000);

 genie.WriteStr(5, "2...");

 delay(1000);

 genie.WriteStr(5, "1...");

 delay(1000);

 genie.WriteStr(5, "Now.");

 delay(500);

 long int MIPMatchPressureEndTime=0;

 J=0;

 MPS=0;

 MIPMatchPressureEndTime=millis() + 105500;

 while (millis() < MIPMatchPressureEndTime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 10, (MIPMatchPressureEndTime -

millis()) / 1000);

170

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 11, abs(psi));

 delay(1000);

 if (psi> .9*TargetMIP)

 {

 h=h+1;

 myservo.write(h);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 26, h);

 MIPfinalpos=h;

 }

 else if (psi <= .9*TargetMIP)

 {

 break;

 }

 else

 {

 break;

 }

 }

}

171

XIII. APPENDIX VIII

BreathForce Training Instructions

1. Plug in the device and wait for the screen to say “Press ‘Start’ When Ready…”.

a. If the device says

i. "Failed. SD Card not present. Insert SD and press reset. System

Halted."

1. Unplug the device, insert and SD card, and plug the device

back in.

ii. "RTC read error. Check battery/circuit. System Halted"

1. Unplug the device and check if the processor battery has

died and needs to be replaced. Replace the battery and run

the Real Time Clock Set-Up Program titled “pcf8523” in

Arduino IDE.

iii. "RTC is down. Run pcf8523 sketch. System halted."

1. Run the Real Time Clock Set-Up Program titled “pcf8523”

in Arduino IDE.

2. Press Start. This will take you to the Main Directory of the device.

3. Choose “Make File Session” on the Main Directory

4. Press the Start button and wait while a new file is generated to save the data from

the session.

a. If the device says the file does not exist and to check the SD card, make

sure:

i. The correct SD card is being used.

ii. The text.info file contains the correct origin file name.

5. When the device says "Proceed to PE/PImax." choose “Back to Main Directory”.

6. Choose “PE/PImax”.

7. Use the slider to select the training percent for the session and click “Next”.

8. When ready, choose “PImax”. The device will countdown, and when it displays

“Now”, inhale as forcefully as you can while the timer counts down from five

seconds.

9. When ready, choose “PEmax”. The device will countdown, and when it displays

“Now”, exhale as forcefully as you can while the timer counts down from five

seconds.

10. When finished, press “Results”

172

11. The PImax and PEmax will be displayed as well as the Target PImax and Target

PEmax values calculated for the training session.

12. Click “Back to Main Directory” when finished viewing the results.

13. On the Main Directory, choose “Locate Valve Position”.

14. To locate the valve positions for training, first press “Locate PEmax Position”,

and wait as the device counts down. When the device says “Now”, breath as you

would during the training session in and out of the valve until it says "Done. Press

the 'Locate PImax Position' button when ready."

15. When ready, press “Locate PImax Position”, and wait as the device recalibrates

and counts down. When the device says “Now”, breath as you would during the

training session in and out of the valve until it says "Done, Proceed to the training

page."

16. Choose “Back to Main Directory”.

17. On the Main Directory, choose “Training”.

18. Choose the number of minutes you want to train, and press “Start”.

19. Breath in and out of the valve while trying to match the Target PI/PEmax values

displayed until the timer runs out.

a. The LED lights above the Target PI/PEmax values will turn on when you

are within 10% of the Target PI/PEmax pressures.

20. When the timer expires, you may:

a. Start another training session by choosing the number of minutes you wish

to train and pressing “Start” again

b. End the session by pressing “Results”

21. If you choose “Results” the device will display highlights from the current and

previous sessions.

22. Turn off the device.

173

BreathForce Testing Program

To test the pressure at various servo positions use the following process:

1. Plug in the device and wait for the screen to say “Press ‘Start’ When Ready…”.

a. If the device says

i. "Failed. SD Card not present. Insert SD and press reset. System

Halted."

1. Unplug the device, insert and SD card, and plug the device

back in.

ii. "RTC read error. Check battery/circuit. System Halted"

1. Unplug the device and check if the processor battery has

died and needs to be replaced. Replace the battery and run

the Real Time Clock Set-Up Program titled “pcf8523” in

Arduino IDE.

iii. "RTC is down. Run pcf8523 sketch. System halted."

1. Run the Real Time Clock Set-Up Program titled “pcf8523”

in Arduino IDE.

2. Press “Test Program”.

3. To move the servo and open or close the valve, press “Open” or “Close”.

4. To measure the pressure, press the measure button.

5. As the measurement is occuring, the device will display “Measuring”. During this

time, the servo motor cannot be adjusted.

6. When the device displays “Idle” the servo motor position can be adjusted again.

7. To suspend the measuring process while the display shows “Measuring”, press the

stop button.

174

XIV. APPENDIX VIIII

The summary tables and respiratory graphs of Volunteers D, E, and F:

Volunteer D

Training Load (%) 10 15 20

PEmax (cm H2O) 34 30 N/A

PImax (cm H2O) -28 -27 N/A

Training Time (seconds) 120 120 N/A

Target Expiration Pressure (cm
H2O) 3.40 4.50 N/A

Average Expiration Pressure (cm
H2O) 1.66 2.21 N/A

Target Inspiration Pressure (cm
H2O) -2.80 -4.05 N/A

Average Inspiration Pressure (cm
H2O) -0.93 -1.13 N/A

Expiratory Valve Position (degrees) 157 178 N/A

Inspiratory Valve Position (degrees) 178 178 N/A

175

-4

-3

-2

-1

0

1

2

3

4

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer D 10%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Exiratory Pressure

Average Inspiratory Pressure

176

Volunteer E

Training Load (%) 10 15 20

PEmax (cm H2O) 82 75 N/A

PImax (cm H2O) -25 -70 N/A

Training Time (seconds) 120 120 N/A

Target Expiration Pressure (cm
H2O) 8.20 11.25 N/A

Average Expiration Pressure (cm
H2O) 6.55 8.32 N/A

Target Inspiration Pressure (cm
H2O) -2.50 -10.50 N/A

Average Inspiration Pressure (cm
H2O) -1.8 -8.14 N/A

Expiratory Valve Position
(degrees) 177 178 N/A

Inspiratory Valve Position
(degrees) 101 178 N/A

-5

-4

-3

-2

-1

0

1

2

3

4

5

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer D 15%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

177

-6

-4

-2

0

2

4

6

8

10

12

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer E 10%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

-15

-10

-5

0

5

10

15

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer E 15%

Training Pressure Target Expiratory Pressure Target Inspiratory Pressure

Target Expiratory Pressure Target Inspiratory Pressure

178

Volunteer F

Training Load (%) 10 15 20

PEmax (cm H2O) 51 N/A N/A

PImax (cm H2O) -51 N/A N/A

Training Time (seconds) 120 N/A N/A

Target Expiration Pressure (cm
H2O) 5.10 N/A N/A

Average Expiration Pressure (cm
H2O) 4.71 N/A N/A

Target Inspiration Pressure (cm
H2O) -5.10 N/A N/A

Average Inspiration Pressure (cm
H2O) -3.61 N/A N/A

Expiratory Valve Position
(degrees) 178 N/A N/A

Inspiratory Valve Position
(degrees) 178 N/A N/A

-8

-6

-4

-2

0

2

4

6

8

10

P
re

ss
u

re
 (

cm
 H

2
O

)

Time (ms)

Volunteer F 10%

Training Pressure Target Expiratory Pressure

Target Inspiratory Pressure Average Expiratory Pressure

Average Inspiratory Pressure

179

XV. APPENDIX X

The final configuration of the BreathForce system code installed in the Adafruit

Feather M0 Bluefruit Microcontroller

#include <SD.h>

#include <Wire.h>

#include <TimeLib.h>

#include <SPI.h>

#include "RTClib.h"

RTC_PCF8523 rtc; // runs RTC, if you need to recalibrate run the PCF8523 example

char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"};

#include <genieArduino.h>

Genie genie;

#define RESETLINE 5

//SD card variables

// set up variables using the SD utility library functions:

Sd2Card card;

SdVolume volume;

SdFile root;

//Connecting Servo

#include <Servo.h>

int servoPin = 12;

Servo myservo;

int openvalve = 0; //WILL CHANGE DEPENDING ON THE DESIGN AND POSITION

int almostclosevalve=170;

180

int closevalve = 180; //WILL CHANGE DEPENDING ON THE DESIGN AND

POSITION

//All of this code is to add the buttons on the PCB to increment by 1

const byte Button1=6;

const byte Button2=9;

byte CurrentButtonState1=HIGH;

byte PreviousButtonState1=HIGH;

byte CurrentButtonState2=HIGH;

byte PreviousButtonState2=HIGH;

int sPosition=0;

int sIncrement=1;

int spPosition=0;

int spIncrement=1;

//psi calculations

const int numReadings = 10;

int readings[numReadings]; // the readings from the analog input

int readIndex = 0; // the index of the current reading

int total = 0; // the running total

int average = 0; // the average

float GAIN = 47.55;

float bits = 1023.0;

float resolution = 0.00025075;

float psi;

float offset = 1.08;

float Vcc = 3.3;

float calibration = 0.00;

int count;

int PSIhi; //to help display on 4d display

int PSIlow;

int MEP = 0;

int MIP = 0;

int FMIP =0;

int MPF = 0;

181

int MPS = 0;

int TargetMEP;

int TargetMIP;

int TrainingPercent;

int MatchPressure;

int MEParray[105];

int MEPsumarray[95];

int E;

float MIParray[105];

float MIPsumarray[95];

int I;

int MParray[105];

int MPsumarray[95];

int J;

int h;

long int PSITimer;

int R;

int RCP;

int MEPfinalpos;

int MIPfinalpos;

int b;

int TP;

int TEP;

int BreathTime=0;

int TotalTime=0;

//Pressure sensor

int inputPin = A2;

//SD Card

File logfile;

const int chipSelect = 10;

char filename[] = "SADATA00.CSV"; //change patient name here. Format: (First thE

letters of first and last name)00.CSV

char filename2[] = "SADATA00.CSV";

182

int x;

int xx; //helps display previous file

int xxx;

//

void setup() {

 //for PSI calculation

 for (int thisReading = 0; thisReading < numReadings; thisReading++) {

 readings[thisReading] = 0;

 //connecting servo

 myservo.attach(servoPin);

 pinMode(Button1, INPUT); // Manual valve adjustment (clockwise)

 pinMode(Button2, INPUT); // Manual valve adjustment (counterclockwise)

 }

 //for 4d display to boot up

 Serial1.begin(200000); // Serial0 @ 150000 (200K) Baud

 genie.Begin(Serial1); // Use Serial1 on the Feather for talking to

the Genie Library, and to the 4D Systems display

 genie.AttachEventHandler(myGenieEventHandler); // Attach the user function

Event Handler for processing events

 pinMode(RESETLINE, OUTPUT); // Set Resetline (D5) on Feather to

Output (4D Arduino Adaptor V2 - Display Reset)

 digitalWrite(RESETLINE, 0); // Reset the Display via Resetline

 delay(100);

 digitalWrite(RESETLINE, 1); // unReset the Display via Resetline

 delay (3500); //let the display start up after the reset (This is

important)

 genie.WriteContrast(1); //1=ScrEn on, 0 = scrEn off

 delay(500);

 //Starting Process

 //These messages are being written to the string object on form 0, the index number for

the string object is 23

 genie.WriteStr(23, "Starting up. Please wait.");

183

 delay(1200);

 //RTC Boot Check

 genie.WriteStr(23, "Checking RealTimeClock status:....");

 delay(1200);

 if (rtc.begin())

 {

 genie.WriteStr(23, "Real Time Clock is working.");

 delay(1200);

 }

 else

 {

 if(! rtc.initialized() || rtc.lostPower())

 {

 genie.WriteStr(23, "RTC is down. Run pcf8523 sketch. System halted.");

 while (1){};

 }

 else {

 genie.WriteStr(23, "RTC read error. Check battery/circuit. System Halted");

 while(1){};

 }

 }

 //SD Card Check

 genie.WriteStr(23, "Initializing SD card:...");

 delay(1200);

 pinMode(10,OUTPUT);

 if (!SD.begin(chipSelect))

 {

 genie.WriteStr(23, "Failed. SD Card not present. Insert SD and press reset. System

Halted.");

 while (1) {};

 }

 else

 {

184

 genie.WriteStr(23, "Success.");

 delay(1200);

 }

 genie.WriteStr(23, "Opening Valve");

 myservo.write(openvalve);

 delay(1200);

 genie.WriteStr(23, "Calibrating...");

 delay(1000);

 long int CALendtime=0;

 CALendtime = millis() + 1500;

 while (millis() < CALendtime)

 {

 PSIcalculation(); // PSI calculation

 }

 delay(1200);

 calibration=psi;

 PSIcalculation;

 delay(1200);

 genie.WriteStr(23, "Calibrated.");

 delay(1200);

 genie.WriteStr(23, "Press 'Start' when ready...");

}

///

///////////////////////

void loop()

{

 CurrentButtonState1 = digitalRead(Button1);

 if (CurrentButtonState1 != PreviousButtonState1 && CurrentButtonState1 == LOW)

 {

 sPosition += sIncrement;

 myservo.write(sPosition);

 delay(10);

 }

185

 PreviousButtonState1 = CurrentButtonState1;

 CurrentButtonState2 = digitalRead(Button2);

 if (CurrentButtonState2 != PreviousButtonState2 && CurrentButtonState2 ==LOW)

 {

 sPosition -= sIncrement;

 myservo.write(sPosition);

 delay(10);

 }

 PreviousButtonState2 = CurrentButtonState2;

 genie.DoEvents(); //This calls the library each loop to process the responses from the

display.

}

///

///////////////////////

void myGenieEventHandler(void)

{

 genieFrame Event;

 genie.DequeueEvent(&Event); //This removes the queued event from the buffer to

process it below

 int EVENT_val=0;

 int slider_val=0;

 EVENT_val = genie.GetEventData(&Event);

 //If the cmd received is from a Reported Event (Events triggered from the Events tab of

Workshop4 objects)

 if (Event.reportObject.cmd == GENIE_REPORT_EVENT)

 {

 if (Event.reportObject.object == GENIE_OBJ_4DBUTTON)

 {

 if (Event.reportObject.index == 4)

 {

 spPosition=spPosition+spIncrement;

 myservo.write(spPosition);

 delay(1000);

186

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 12, spPosition);

 }

 if (Event.reportObject.index == 5)

 {

 spPosition=spPosition-spIncrement;

 myservo.write(spPosition);

 delay(1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 12, spPosition);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_4DBUTTON)

 {

 if (Event.reportObject.index == 1)

 {

 TestProgram();

 genie.WriteStr(25, "Idle");

 }

 if (Event.reportObject.index == 3)

 {

 return;

 }

 }

 //To create a new file for the session which is form 1, Userbutton0

 if (Event.reportObject.object == GENIE_OBJ_4DBUTTON)

 {

 if (Event.reportObject.index == 2)

 {

 genie.WriteStr(24, "Checking INFO file...");

 delay(1000);

 MakeNewFile();

 }

 }

187

 //Puts in High (e) and Low (i) psi into file. Then displays results of session and

displays previous session

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 12)

 {

 genie.WriteObject(GENIE_OBJ_FORM, 7, 1);

 PullFromNewAndOldFiles();

 }

 }

 //Controls Training% for PSItraining %

 if (Event.reportObject.object == GENIE_OBJ_SLIDER)

 {

 if (Event.reportObject.index == 0)

 {

 slider_val = genie.GetEventData(&Event);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0, slider_val);

 TrainingPercent = slider_val;

 }

 }

 //For MIP

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 6)

 {

 myservo.write(almostclosevalve);

 TimerMIP(4, 5, 0);

 genie.WriteStr(0, "Done.");

 }

 }

 //For MEP

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

188

 if (Event.reportObject.index == 7)

 {

 TimerMEP(4, 5, 0);

 genie.WriteStr(0, "Done. Proceed to results.");

 }

 }

 //Shows results of MEP/MIP on MEP/MIP result

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 5)

 {

 delay(500);

 genie.WriteObject(GENIE_OBJ_FORM, 4, 1);

 delay(500);

 genie.WriteStr(1, MEP);

 delay(500);

 TargetMEP = MEP * TrainingPercent / 100;

 genie.WriteStr(2, TargetMEP);

 delay(500);

 FMIP = -1 * MIP;

 genie.WriteStr(3, FMIP);

 delay(500);

 TargetMIP = FMIP * TrainingPercent / 100;

 genie.WriteStr(4, TargetMIP);

 delay(500);

 myservo.write(openvalve);

 }

 }

 //Moves to form 5 to calibrate valve positions

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 2)

 {

189

 delay(500);

 genie.WriteObject(GENIE_OBJ_FORM, 5, 1);

 delay(500);

 genie.WriteStr(5, "Recalibrating pressure sensor. Please wait."); //Keep couple

spaces between please and wait so it fits the string on the display correctly.

 Recalibrating();

 genie.WriteStr(5, "Press the 'Locate PEmax Position' button when ready.");

 }

 }

 //Calibrates the Valve Position

 h=75;

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 20)

 {

 myservo.write(h);

 TimerMatchPressureMEP();

 genie.WriteStr(5, "Done. Press the 'Locate PImax Position' button when ready.");

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 21)

 {

 delay(1200);

 genie.WriteStr(5, "Recalibrating pressure sensor and servo motor. Please wait.");

 myservo.write(h);

 delay(1200);

 Recalibrating();

 delay(1200);

 TimerMatchPressureMIP();

 genie.WriteStr(5, "Done, Proceed to the training page.");

 }

190

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 3)

 {

 delay(500);

 genie.WriteObject(GENIE_OBJ_FORM, 6, 1);

 delay(500);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 9, TargetMEP);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 7, abs(TargetMIP));

 genie.WriteStr(22, "Chose the number of minutes to train. Then press start.");

 }

 }

 //PSI Training Timers

 //There are options for 1, 2, 3, 4, or 5 minutes of training. Each button needs to identify

how much time there is and write it the LED on the training page.

 //The PSITimer is in milliseconds with an extra half second added on.

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 17)

 {

 PSITimer = 300500;

 count =5;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 16)

 {

 PSITimer = 240500;

 count =4;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

191

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 15)

 {

 PSITimer = 180500;

 count =3;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 14)

 {

 PSITimer = 120500;

 count=2;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

 }

 }

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 13)

 {

 PSITimer = 60500;

 count=1;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer/1000);

 }

 }

 //For PSI training screen. Write to excel and give option to end or continue.

 if (Event.reportObject.object == GENIE_OBJ_USERBUTTON)

 {

 if (Event.reportObject.index == 11)

192

 {

 logfile = SD.open(filename, FILE_WRITE);

 TimerAndRecordPSI ();

 logfile.close();

 delay(500);

 genie.WriteStr(22, "Done.");

 delay(1000);

 genie.WriteStr(22, "Click results to see results. Click start to train again.");

 }

 }

 }

}

void MakeNewFile()

{

 genie.WriteStr(24, "Patient Info:...");

 delay(1200);

 logfile = SD.open("INFO.TXT");

 if (logfile.available())

 {

 genie.WriteStr(24, "File exists.");

 }

 else

 {

 genie.WriteStr(24, "File does not exist.");

 delay(1200);

 genie.WriteStr(24, "Check SD Card");

 delay(3600);

 return;

 }

 filename[0] = logfile.read();

 filename[1] = logfile.read();

 filename[2] = logfile.read();

 filename[3] = logfile.read();

193

 filename[4] = logfile.read();

 filename[5] = logfile.read();

 filename2[0] = filename[0];

 filename2[1] = filename[1];

 filename2[2] = filename[2];

 filename2[3] = filename[3];

 filename2[4] = filename[4];

 filename2[5] = filename[5];

 logfile.close();

 genie.WriteStr(24, filename);

 delay(1000);

 genie.WriteStr(24, "Making new file:...");

 for (uint8_t i = 1; i < 100; i++) {

 filename[6] = i / 10 + '0';

 filename[7] = i % 10 + '0';

 if (! SD.exists(filename)) {

 DateTime now = rtc.now();

 logfile = SD.open(filename, FILE_WRITE);

 logfile.print(",,");

 logfile.print("Date(D/M/Y)/Time:,"); //A1:B1

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.year(), DEC);

 logfile.print(",");

 logfile.print(now.hour(), DEC);

 logfile.print(":");

 logfile.print(now.minute(), DEC);

 logfile.print(":");

 logfile.println(now.second(), DEC);

 logfile.print(",,");

 logfile.print("Training Time:"); //A2:B2

194

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("seconds");

 logfile.print(",,");

 logfile.print("PEmax:"); //A2:B2

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.print(",,");

 logfile.print("PImax:"); //A3:B3

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.print(",,");

 logfile.print("Training %");

 logfile.print(",");

 logfile.print(" ");

 logfile.print(",");

 logfile.println("%");

 logfile.print(",,");

 logfile.print("# of points:"); //A4:B4

 logfile.print(",");

 logfile.print("=COUNT(B:B)");

 logfile.print(",");

 logfile.println("points");

 logfile.print(",,");

 logfile.print("Time Duration"); //A5:B5

 logfile.print(",");

 logfile.print("=(MAX(A:A)-MIN(A:A))/1000");

 logfile.print(",");

195

 logfile.println("seconds");

 logfile.print(",,");

 logfile.print("Points per second:"); //A6:B6

 logfile.print(",");

 logfile.print("=D6/D7");

 logfile.print(",");

 logfile.println("points/s");

 logfile.print("Time(ms)"); //A8:B8

 logfile.print(",");

 logfile.println("cm H2O");

 logfile.close();

 break; // leave the loop!;

 }

 }

 delay(1000);

 genie.WriteStr(24, filename);

 delay(1000);

 genie.WriteStr(24, "Checking old file...");

 delay(1000);

 filename2[6] = filename[6];

 filename2[7] = filename[7];

 xx = filename2[6] - '0'; //Renames filename to go back 1 previous session to display on

result scrEn

 xxx = filename2[7] - '0';

 x = (xx * 10) + xxx - 1;

 filename2[6] = x / 10 + '0';

 filename2[7] = x % 10 + '0';

 logfile = SD.open(filename2, FILE_READ);

 logfile.seek(20);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

196

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 MEP = logfile.readStringUntil(',').toInt();

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 MIP = logfile.readStringUntil(',').toInt();

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 TrainingPercent = logfile.readStringUntil(',').toInt();

 logfile.close();

//writing the previous values to form 7 led digits

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, MEP);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, abs(MIP));

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 1, TrainingPercent); //Previous %

training display in form 2

 genie.WriteStr(24, filename2);

 delay(1000);

 genie.WriteStr(24, "Proceed to PE/PImax.");

 delay(100);

}

int PSIcalculation() {

 total = total - readings[readIndex]; //psi readings + calculations

 readings[readIndex] = analogRead(inputPin);

 total = total + readings[readIndex];

 readIndex = readIndex + 1;

 if (readIndex >= numReadings) {

 readIndex = 0;

 }

 psi = total / numReadings;

197

 psi = psi / bits; //bits = 1023.0

 psi = psi * Vcc; //Vcc=3.3

 psi = psi - offset; //offset = 2.5

 psi = psi / resolution; //resolution = 0.0002584

 psi = psi / GAIN; //GAIN

 psi = psi * 1.36; //1.36 is conversion from 1 mmHg = 1.36 cmH2O

 psi = psi - calibration;

}

void PullFromNewAndOldFiles() {

 delay(500);

 logfile = SD.open(filename, O_RDWR);

 logfile.seek(20);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(TotalTime/1000);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(MEP);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(FMIP);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.print(TrainingPercent);

 logfile.close();

198

 genie.WriteObject(GENIE_OBJ_USERBUTTON, 12, 1);

 delay(1000);

 genie.WriteStr(6, filename);

 delay(500);

 logfile = SD.open(filename, FILE_READ);

 logfile.seek(20);

 genie.WriteStr(7, logfile.readStringUntil(',')); //DATE

 delay(500);

 genie.WriteStr(8, logfile.readStringUntil(',')); //TIME

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(9, logfile.readStringUntil(',')); //Total Time

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(11, logfile.readStringUntil(',')); //MEP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(12, logfile.readStringUntil(',')); //MIP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(13, logfile.readStringUntil(',')); //% Training

 delay(500);

 logfile.close();

 xx = filename[6] - '0'; //Renames filename to go back 1 previous session to display on

result scrEn

 xxx = filename[7] - '0';

199

 x = (xx * 10) + xxx - 1;

 filename[6] = x / 10 + '0';

 filename[7] = x % 10 + '0';

 genie.WriteStr(14, filename);

 delay(500);

 logfile = SD.open(filename, FILE_READ);

 logfile.seek(20);

 genie.WriteStr(15, logfile.readStringUntil(','));

 delay(500);

 genie.WriteStr(16, logfile.readStringUntil(','));

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(17, logfile.readStringUntil(','));

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(19, logfile.readStringUntil(',')); //MEP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(20, logfile.readStringUntil(',')); //MIP

 delay(500);

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 logfile.readStringUntil(',');

 genie.WriteStr(21, logfile.readStringUntil(',')); //% Training

 delay(500);

 logfile.close();

}

void Recalibrating() {

200

 long int RCendtime = 0;

 R = 0;

 RCP = 0;

 RCendtime = millis() + 5500;

 while (millis() < RCendtime)

 {

 PSIcalculation();

 }

}

void TestProgram()

{

 long int TPendtime = 0;

 TP = 0;

 TEP = 0;

 TPendtime = millis() + 5500;

 while (millis() < TPendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 13, abs(psi));

 genie.WriteStr(25, "Measuring");

 }

}

void TimerAndRecordPSI () {

 long int Pendtime = 0;

 int scount=0;

 int smove=0;

 int c;

 int prevCase = -1; // To make sure case starts not being equal to any other possible case

(something is written to LCD)

 int TargetMEPNinety=TargetMEP * 0.90;

 int TargetMIPNinety=TargetMIP * 0.90;

 int TargetMIPOneTen=TargetMIP * 1.1;

 int TargetMEPOneTen=TargetMEP * 1.1;

201

 BreathTime=PSITimer;

 TotalTime=TotalTime+BreathTime;

 Pendtime = millis() + PSITimer;

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, PSITimer / 1000);

 while (millis() < Pendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, (Pendtime - millis()) / 1000); //

write elapsed time (countdown)

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 8, abs(psi)); // write

current pressure in cmH2O

 logfile.println((String)millis()+","+psi); // writes entry to sd card

 // LED indicator during training

 if (psi > (TargetMEPNinety)) {

 // Check to see if user is in "the window" for exhale

 genie.WriteObject(GENIE_OBJ_USER_LED, 0, 0);

 genie.WriteObject(GENIE_OBJ_USER_LED, 1, 1);

 }

 else if (psi < (TargetMIPNinety)) {

 // Check to see if user is in "the window" for inhale

 genie.WriteObject(GENIE_OBJ_USER_LED, 0, 1);

 genie.WriteObject(GENIE_OBJ_USER_LED, 1, 0);

 }

 else {

 // user NOT in "the window"

 genie.WriteObject(GENIE_OBJ_USER_LED, 1, 0);

 genie.WriteObject(GENIE_OBJ_USER_LED, 0, 0);

 }

 // End LED indicator during training

 // Classify to ID state we are in

 if ((psi >= 0.74) && (psi <= TargetMEPOneTen))

 {

 c = 0;

202

 }

 else if ((psi <= -0.74) && (psi >= TargetMIPOneTen))

 {

 c = 1;

 }

 else if (psi > TargetMEPOneTen)

 {

 c = 2;

 }

 else if (psi < TargetMIPOneTen)

 {

 c = 3;

 }

 else

 {

 // This catches "dead band" -0.74 < psi < 0.74

 c = 4; // the "none of these" case

 }

 // END CLASSIFICATION

 switch (c)

 {

 case 0:

 // 0.74 to 110% of Target MEP

 TrainingServoWrite(MEPfinalpos);

 if (prevCase != c)

 { // only write to LCD if case has changed!

 genie.WriteStr(22, "Normal Expiratory Position");

 prevCase = c; // update prevCase to current case

 }

 break;

 case 1:

 // 0.74 to 110% of Target MIP

203

 TrainingServoWrite(MIPfinalpos);

 if (prevCase != c)

 { // only write to LCD if case has changed!

 genie.WriteStr(22, "Normal Inspiratory Position");

 prevCase = c; // update prevCase to current case

 }

 break;

 case 2:

 // PSI is > 110% of Target MEP

 TrainingServoWrite(MEPfinalpos-10);

 if (prevCase != c)

 { // only write to LCD if case has changed!

 genie.WriteStr(22, "Too much expiratory pressure.");

 prevCase = c; // update prevCase to current case

 }

 break;

 case 3:

 // PSI is < 110% of Target MIP

 TrainingServoWrite(MIPfinalpos-10);

 if (prevCase != c)

 { // only write to LCD if case has changed!

 genie.WriteStr(22, "Too much inspiratory pressure.");

 prevCase = c; // update prevCase to current case

 }

 break;

 case 4:

 // DEADBAND - Moving from Exhale to Inhale or vice versa

 if (prevCase != c)

 { // only write to LCD if case has changed!

 genie.WriteStr(22, "Transitioning..");

 prevCase = c; // update prevCase to current case

 }

 break;

204

 default:

 genie.WriteStr(22, "Do Nothing.");

 break;

 }

 }

}

void TimerMEP (int a, int b, int c) {

 genie.WriteStr(c, "Starting...");

 delay(1000);

 genie.WriteStr(c, "3...");

 delay(1000);

 genie.WriteStr(c, "2...");

 delay(1000);

 genie.WriteStr(c, "1...");

 delay(1000);

 genie.WriteStr(c, "Now.");

 delay(500);

 long int MEPendtime = 0;

 E = 0;

 MEP = 0;

 MEPendtime = millis() + 5500;

 while (millis() < MEPendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, a, (MEPendtime - millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, b, abs(psi));

 MEParray[E] = psi;

 E++;

 }

 for (E = 0; E < 96; E++)

 {

205

 MEPsumarray[E] = (MEParray[E] + MEParray[E + 1] + MEParray[E + 2] +

MEParray[E + 3] + MEParray[E + 4] + MEParray[E + 5] + MEParray[E + 6] +

MEParray[E + 7] + MEParray[E + 8] + MEParray[E + 9]) / 10;

 delay(5);

 }

 int idx;

 for (byte idx = 0; idx != 96; idx++)

 {

 if (MEPsumarray[idx] > MEP) {

 MEP = max(MEPsumarray[idx], MEP);

 }

 delay(5);

 }

}

void TimerMIP (int a, int b, int c) {

 genie.WriteStr(c, "Starting...");

 delay(1000);

 genie.WriteStr(c, "3...");

 delay(1000);

 genie.WriteStr(c, "2...");

 delay(1000);

 genie.WriteStr(c, "1...");

 delay(1000);

 genie.WriteStr(c, "Now.");

 delay(500);

 long int MIPendtime = 0;

 I = 0;

 MIP = 0;

 MIPendtime = millis() + 5500;

 while (millis() < MIPendtime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, a, (MIPendtime - millis()) / 1000);

206

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, b, abs(psi));

 MIParray[I] = psi;

 I++;

 }

 for (I = 0; I < 96; I++)

 {

 MIPsumarray[I] = (MIParray[I] + MIParray[I + 1] + MIParray[I + 2] + MIParray[I +

3] + MIParray[I + 4] + MIParray[I + 5] + MIParray[I + 6] + MIParray[I + 7] +

MIParray[I + 8] + MIParray[I + 9]) / 10;

 delay(5);

 }

 int idy;

 for (byte idy = 0; idy != 96; idy++)

 {

 if (MIPsumarray[idy] < MIP) {

 MIP = min(MIPsumarray[idy], MIP);

 }

 delay(5);

 }

}

void TimerMatchPressureMEP() {

 genie.WriteStr(5, "Starting...");

 delay(1000);

 genie.WriteStr(5, "3...");

 delay(1000);

 genie.WriteStr(5, "2...");

 delay(1000);

 genie.WriteStr(5, "1...");

 delay(1000);

 genie.WriteStr(5, "Now.");

 delay(500);

 long int MEPMatchPressureEndTime=0;

 J=0;

207

 MPF=0;

 MEPMatchPressureEndTime=millis() + 105500;

 while (millis() < MEPMatchPressureEndTime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 10, (MEPMatchPressureEndTime -

millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 11, abs(psi));

 delay(1000);

 if (abs(psi)<= .9*TargetMEP)

 {

 h=h+1;

 myservo.write(h);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 26, h);

 MEPfinalpos=h;

 }

 else if (abs(psi) >= .9*TargetMEP)

 {

 break;

 }

 else

 {

 break;

 }

 }

}

void TimerMatchPressureMIP() {

 genie.WriteStr(5, "Starting...");

 delay(1000);

 genie.WriteStr(5, "3...");

 delay(1000);

 genie.WriteStr(5, "2...");

 delay(1000);

208

 genie.WriteStr(5, "1...");

 delay(1000);

 genie.WriteStr(5, "Now.");

 delay(500);

 long int MIPMatchPressureEndTime=0;

 J=0;

 MPS=0;

 MIPMatchPressureEndTime=millis() + 105500;

 while (millis() < MIPMatchPressureEndTime)

 {

 PSIcalculation();

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 10, (MIPMatchPressureEndTime -

millis()) / 1000);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 11, abs(psi));

 delay(1000);

 if (psi> .9*TargetMIP)

 {

 h=h+1;

 myservo.write(h);

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 26, h);

 MIPfinalpos=h;

 }

 else if (psi <= .9*TargetMIP)

 {

 break;

 }

 else

 {

 break;

 }

 }

}

void TrainingServoWrite(int x)

209

{

 myservo.write(x);

}

	Refinement and automation using algorithmic control of BreathForce, a respiratory training system for patients with spinal cord Injuries.
	Recommended Citation

	tmp.1624318867.pdf.D133t

