
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2021

Flight trajectory prediction for aeronautical communications. Flight trajectory prediction for aeronautical communications.

Nathan T Schimpf
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Multi-Vehicle Systems and Air Traffic Control Commons, Other Computer Engineering

Commons, Systems and Communications Commons, and the Systems Engineering and Multidisciplinary

Design Optimization Commons

Recommended Citation Recommended Citation
Schimpf, Nathan T, "Flight trajectory prediction for aeronautical communications." (2021). Electronic
Theses and Dissertations. Paper 3906.
https://doi.org/10.18297/etd/3906

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/227?utm_source=ir.library.louisville.edu%2Fetd%2F3906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=ir.library.louisville.edu%2Fetd%2F3906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=ir.library.louisville.edu%2Fetd%2F3906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=ir.library.louisville.edu%2Fetd%2F3906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=ir.library.louisville.edu%2Fetd%2F3906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=ir.library.louisville.edu%2Fetd%2F3906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3906
mailto:thinkir@louisville.edu

FLIGHT TRAJECTORY PREDICTION FOR AERONAUTICAL
COMMUNICATIONS

By

Nathan Schimpf
B.S. Electrical Engineering, University of Louisville, 2020

A Thesis
Submitted to the Faculty of the

University of Louisville
J.B. Speed School of Engineering

as Partial Fulfillment of the Requirements
for the Professional Degree

MASTER OF ENGINEERING

Department of Electrical and Computer Engineering

July, 2021

FLIGHT TRAJECTORY PREDICTION FOR AERONAUTICAL
COMMUNICATIONS

Submitted by:
Nathan Tyler Schimpf

A Thesis Approved On

July 12th, 2021

by the Following Reading and Examination Committee:

Hongxiang Li, Thesis Director

Adel S. Elmaghraby

Andre J. Faul

Jacek M. Zurada

ii

DEDICATION

To Etana, the life we build, and celebrations along the way.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Hongxiang Li, whose
support and mentorship throughout my Master degree has been invaluable
to me as a student and budding researcher. I would also like to recognize the
assistance of the members of my thesis committee, Dr’s. Adel Elmaghraby,
Andre Faul, and Jacek Zurada; their support and feedback throughout this
research meant a lot to me, and each of their courses built on that meaning
throughout my Master’s degree.

A special thanks is owed to Rafael Apaza, Eric Knoblock, Ruixuan Han,
and Zhe Wang for sharing their experiences and help as I’ve been involved
in this research and the larger scope of this project.

I would also like to thank NASA Glenn Research Center (specifically
Rafael Apaza and Eric Knoblock) for making this research possible. Addi-
tionally, I am grateful to Kim Calden and Margo Pawlak at MIT Lincoln
Laboratory for helping with the access of assorted data used in this project,
as well as the University of Louisville and the Electrical and Computer En-
gineering department for providing the financial support for me pursue this
work and continue as a student.

Finally, I would like to offer some personal thanks. To my partner, Etana,
for her love, kindness, and patience. To my parents, for their love and sup-
port. And to my friends, particularly August, Brian, Gloria, and Kaleb, for
the joy and kindness throughout the year.

iv

Abstract

The development of future technologies for the National Airspace System
(NAS) will be reliant on a new communications infrastructure capable of
managing a limited spectrum among aircraft and ground systems. Emerging
approaches to this spectrum allocation task mostly consider machine learn-
ing techniques reliant on aircraft and Air Traffic Control (ATC) sector data.
Much of this data, however, is not directly available. This thesis consid-
ers the development of two such data products: the 4D trajectory (latitude,
longitude, altitude, and time) of aircraft, and the anticipated airspace utiliza-
tion and communication demand within an ATC sector. Data predictions are
treated as a time series forecast challenge and addressed via the development
of deep learning models with some form of recurrence. For each data prod-
uct, relevant datasets are explored and an architecture search is conducted
to identify and optimize a deep learning model. To this end, current efforts
have primarily addressed trajectory prediction. Flight and weather data for
the 4D trajectory prediction have been identified and preprocessed; initial
comparisons of weather data have been used to hypothesize useful combina-
tions; and initial model architectures have been identified for comparative
development. Future work seeks to finalize training efforts toward trajectory
prediction and address the task of airspace demand prediction.

v

Contents

Dedications . iii
Acknowledgements . iv
Abstract . v
I. INTRODUCTION . 1
II. BACKGROUND . 2

1 Problem Formulation 2
2 Data Products . 2
3 Deep Learning Frameworks 5

A Hidden Markov Model 5
B Artificial Neural Network 5
C Convolutional Neural Network 6
D Recurrent Neural Network 7
E Attention Mechanisms 9

4 Prior Research . 10
III. INSTRUMENTATION AND EQUIPMENT 13
IV. TRAJECTORY PREDICTION TASKS AND EXPERIMENTS 13

1 Data Preprocessing . 14
2 Recreating the Initial Work 16
3 Weather Data Analysis 20
4 Initial Structure Comparison 23
5 Continued Efforts in Network Exploration 27

A Model Tuning: Initial (Naive) Attempt 28
B Model Tuning: Addressing Overfitting 31
C Model Tuning: Weather Extraction Feature

Sizes . 36
D Model Tuning: Recurrent Hidden Layer Sizes

v. Depths . 40
D.1 CNN-LSTM 41
D.2 SA-LSTM 42

vi

D.3 CNN-GRU 44
D.4 SA-GRU 45

E Model Tuning: Optimizer Selection 47
6 Final Model Evaluations 51

A Data Generalization Results 51
B Model Tuning Results 53
C Revisited Model Tuning 55

V. FUTURE WORK . 57
1 Trajectory Prediction Refinement 57
2 Applying Trajectory Prediction 58

VI. CONCLUSIONS . 60
I. APPENDIX A: COMPLETE EXTRACTION CHANNEL TUN-

ING FIGURES . 61
1 CNN-LSTM . 61
2 SA-LSTM . 63

II. APPENDIX B: COMPLETE RNN HYPERPARAMETER TUN-
ING FIGURES . 65
1 CNN-LSTM . 65
2 SA-LSTM . 69
3 CNN-GRU . 73
4 SA-GRU . 77

III. APPENDIX C: EVALUATION VISUALS OF TRAINED MOD-
ELS . 81
1 Initial Trained Model Plots 81
2 Data Generalization Model Plots 86

A CNN-LSTM 86
B CNN-GRU 87
C SA-LSTM . 88
D SA-GRU . 89

3 Model Tuning Model Plots 90
IV. VITA . 96

vii

List of Tables

1 Summary of Weather Datasets 4
2 Summary of Weather Product Performances 22
3 Default Model Parameters . 25
4 Summary of Select Models’ Performances 26
5 Hyperparameter Search Space of Initial Tuning Attempt . . . 28
6 Initial Tuning Attempt: Best Models by Training Loss 30
7 Initial Tuning Attempt: Best Models by Validation Loss . . . 30
8 Breakout of Selected Flights for Generalization 31
9 Final Losses for Batch Normalization Hyperparameters 33
10 Final Losses for Dropout Hyperparameters 34
11 Final Losses for Weight Regularization Hyperparameters . . . 36
12 Overfit Hyperparameter Tuning Attempt: Best Models by

Validation Loss . 36
13 Best Training Results for Varied Channel Depths of CNN-

LSTM Network . 38
14 Best Validation Results for Varied Channel Depths of CNN-

LSTM Network . 38
15 Best Training Results for Varied Channel Depths of SA-LSTM

Network . 39
16 Best Validation Results for Varied Channel Depths of SA-

LSTM Network . 40
17 Final Selections for RNN Hyperparameters 41
18 Best Training Results for Varied RNN Hyperparameters of

CNN-LSTM Network . 42
19 Best Validation Results for Varied RNN Hyperparameters of

CNN-LSTM Network . 42
20 Best Training Results for Varied RNN Hyperparameters of

SA-LSTM Network . 43

viii

21 Best Validation Results for Varied RNN Hyperparameters of
SA-LSTM Network . 44

22 Best Training Results for Varied RNN Hyperparameters of
CNN-GRU Network . 45

23 Best Validation Results for Varied RNN Hyperparameters of
CNN-GRU Network . 45

24 Best Training Results for Varied RNN Hyperparameters of
SA-GRU Network . 46

25 Best Validation Results for Varied RNN Hyperparameters of
SA-GRU Network . 47

26 Final Selections for Hyperparameters 47
27 Default Parameters of Tested Optimizers 50
28 Summary of Data Generalization Model Performance 52
29 Summary of Initial Model Tuning Performance 54
30 Summary of Final Model Tuning Performance 55

ix

List of Figures

1 Illustration of an ANN . 6
2 Convolution Dimensions . 6
3 Vanishing Gradient in an Unrolled RNN 7
4 LSTM Cell Diagram . 8
5 Visualization of Traditional RNN (left) and IndRNN (right)

Layers . 9
6 Functional Diagram of a Self-Attention Layer 9
7 Sample Navigation Aid Query from [1] 15
8 Selection of one feature cube (left) and all cubes (right, blue)

along a flight plan (right, red) 16
9 CNN-LSTM Model Presented in [2] 17
10 Sample Prediction Using 1-Second Interpolated Flight Data . 18
11 Sample 3D Trajectory Predictions, one of which is expected

(left) and one incomplete (right) 19
12 Sample 4D Trajectory Prediction 20
13 Histograms of Cross-Correlation Coefficients Ranging (0, .5) . 21
14 Layout of Hybrid-Recurrent Framework 24
15 Hybrid-Recurrent Architecture, with Dropout Layer Placement 29
16 Coverage of Selected Flights for Data Generalization 31
17 Training Plots of CNN-LSTM Model without Batch Normal-

ization (left), with Batch Normalization (middle), and with
Affine Batch Normalization (right) 33

18 Training Plots of CNN-LSTM Model with Increasing Dropout
Rates. From Left to Right: (Top) 0%, .01%, .1%, 1% (Bottom)
5%, 10%, 20% . 34

19 Training Plots of CNN-LSTM Model with Increasing Weight
Regularization Rates. From Left to Right: (Top) 0, 1 ∗ 10−8,
1 ∗ 10−6, 1 ∗ 10−5 (Bottom) 1 ∗ 10−4, 1 ∗ 10−3, 1 ∗ 10−2, 1 ∗ 10−1 35

x

20 Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with Channel Depth Combinations, Limited
to Losses no Greater Than 0.005 37

21 Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with Channel Depth Combinations, Limited
to Losses no Greater Than 0.004 39

22 Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with CNN-LSTM RNN Parameter Combi-
nations, Limited to Losses no Greater Than 0.01 41

23 Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with SA-LSTM RNN Parameter Combina-
tions, Limited to Losses no Greater Than 0.01 43

24 Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with CNN-GRU RNN Parameter Combina-
tions, Limited to Losses no Greater Than 0.01 44

25 Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with SA-GRU RNN Parameter Combina-
tions, Limited to Losses no Greater Than 0.01 46

26 CNN-LSTM Training Plots using Adam (left) and RMSProp
(right) Optimizers. Note that Adam Does Not Converge for
the Given Model . 48

27 SA-LSTM Training Plots using Adam (left) and RMSProp
(right) Optimizers . 48

28 CNN-GRU Training Plots using Adam (left) and RMSProp
(right) Optimizers . 49

29 SA-GRU Training Plots using Adam (left) and RMSProp (right)
Optimizers . 49

30 Training (left) and Validation (right) Losses of Optimizers
with Default Parameters for Tuned CNN-LSTM Model 50

31 Notional Architecture for Communication Demand Prediction 59
32 Training (left) and Validation (right) 3D Scatter Plots of Var-

ied Channel Depths for CNN-LSTM Model, with Complete
(top) and Limited (bottom) Sample Views 61

33 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied Channel Depths for CNN-LSTM Model, with Complete
(top) and Limited (bottom) Sample Views 62

xi

34 Training (left) and Validation (right) 3D Scatter Plots of Var-
ied Channel Depths for SA-LSTM Model, with Complete (top)
and Limited (bottom) Sample Views 63

35 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied Channel Depths for SA-LSTM Model, with Complete (top)
and Limited (bottom) Sample Views 64

36 Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-LSTM Model with Input
Size of 6, with Complete (top) and Limited (bottom) Sample
Views . 65

37 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-LSTM Model with Input
Size of 6, with Complete (top) and Limited (bottom) Sample
Views . 66

38 Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-LSTM Model with Input
Size of 10, with Complete (top) and Limited (bottom) Sample
Views . 67

39 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-LSTM Model with Input
Size of 10, with Complete (top) and Limited (bottom) Sample
Views . 68

40 Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for SA-LSTM Model with Input
Size of 6, with Complete (top) and Limited (bottom) Sample
Views . 69

41 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for SA-LSTM Model with Input
Size of 6, with Complete (top) and Limited (bottom) Sample
Views . 70

42 Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for SA-LSTM Model with Input
Size of 10, with Complete (top) and Limited (bottom) Sample
Views . 71

43 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for SA-LSTM Model with Input
Size of 10, with Complete (top) and Limited (bottom) Sample
Views . 72

xii

44 Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-GRU Model with Input
Size of 6, with Complete (top) and Limited (bottom) Sample
Views . 73

45 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-GRU Model with Input
Size of 6, with Complete (top) and Limited (bottom) Sample
Views . 74

46 Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-GRU Model with Input
Size of 10, with Complete (top) and Limited (bottom) Sample
Views . 75

47 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-GRU Model with Input
Size of 10, with Complete (top) and Limited (bottom) Sample
Views . 76

48 Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for SA-GRU Model with Input Size
of 6, with Complete (top) and Limited (bottom) Sample Views 77

49 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for SA-GRU Model with Input Size
of 6, with Complete (top) and Limited (bottom) Sample Views 78

50 Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for SA-GRU Model with Input Size
of 10, with Complete (top) and Limited (bottom) Sample Views 79

51 Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for SA-GRU Model with Input Size
of 10, with Complete (top) and Limited (bottom) Sample Views 80

52 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM1lay Model 81

53 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM2lay Model 81

54 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU1lay Model 82

55 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU2lay Model 82

56 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-IndRNN2lay Model 83

xiii

57 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-IndRNN3lay Model 83

58 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN+SA-LSTM1lay Model 84

59 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN+SA-LSTM2lay Model 84

60 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM1lay Model 85

61 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM2lay Model 85

62 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM Generalized Model 86

63 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM Generalized Model, KJFK-KLAX
Flight Subset . 86

64 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU Generalized Model 87

65 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU Generalized Model, KJFK-KLAX Flight
Subset . 87

66 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM Generalized Model 88

67 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM Generalized Model, KJFK-KLAX Flight
Subset . 88

68 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM Generalized Model 89

69 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-GRU Generalized Model, KJFK-KLAX Flight
Subset . 89

70 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM Generalized and Tuned Model 90

71 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU Generalized and Tuned Model 90

72 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM Generalized and Tuned Model 91

73 Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-GRU Generalized and Tuned Model 91

xiv

I INTRODUCTION

With the proliferation of autonomous and unmanned aircraft, the Federal
Aviation Administration (FAA) anticipates overhauling the National Airspace
System (NAS). Because the NAS has a limited availability of radio spectrum
that is predominantly allocated to static voice channels, a key aspect of re-
designing the NAS includes the dynamic spectrum allocation for aeronautical
communications, which the National Aeronautics and Space Administration
(NASA) is currently investigating. In particular, authors in [4] describe an
approach rooted in machine learning, reliant on data such as the anticipated
location of aircraft and consequent communications demand on Air Traffic
Control (ATC) sectors. While research has been previously conducted toward
the development of these data products, the efforts have been preliminary.

In current research, development of an accurate 4D en-route trajectory
prediction is considered a cornerstone for providing data items to these spec-
trum allocation frameworks. A sufficiently accurate trajectory prediction can
serve to identify the sectors an aircraft will occupy, potentially indicating the
available communication resources for each flight segment. The location of
the aircraft can furthermore be used to estimate path loss and other channel
quality metrics, providing insight for power budgeting and channel alloca-
tion engines. Finally, given a set of rules which define the occurrence of
communications, spectrum demand can be inferred by comparing an accu-
rate trajectory prediction against sector boundaries and the last-filed flight
plan of the aircraft.

This thesis aims to develop such a trajectory prediction, by investigating
deep learning mechanisms and available data. The structure of this thesis
is as follows: Section II formulates the tasks of predicting each data prod-
uct, identifies relevant datasets and deep learning frameworks, and discusses
prior research on each task; Section III describes the computing resources,
software setup, and methods of data acquisition for the tasks; Section IV de-
scribes the conducted efforts, including preprocessing, failed initial attempts,
and conducted experiments; Section V discusses future efforts that could be
conducted to continue the refinement and application of this research; finally,
Section VI reiterates the scope, status, and conclusions of this thesis.

1

II BACKGROUND

This section discusses the tasks of trajectory and airspace demand prediction
in greater detail. Both tasks are formulated, and a combination of data prod-
ucts and deep learning frameworks and mechanisms are introduced. Finally,
a review of existing literature on both topics are discussed.

1 Problem Formulation

In this research, aircraft trajectory is a target output, which may support
the estimation of communications within an ATC sector and aircraft chan-
nel qualities. Trajectory predictions are expected as time-varying products;
however, the paradigm to accomplish this varies in research.

In the trajectory prediction scenario, each aircraft files a flight plan indi-
cating the general path and cruising altitude to reach its destination; how-
ever, this plan is frequently modified during flight due to convective weather
in the airspace. Trajectory prediction aims to train a model on these avail-
able flight plans and adverse weather data to estimate the flight’s actual
4D coordinates. The generation of a predicted trajectory is accomplished in
either a single-point forecast, multi-point forecast, or sequence-to-sequence
paradigm. In single- and multi-point forecasts, prior aircraft position infor-
mation is known and supplements flight plan and weather data to predict
the next position or sequence of next positions. In a sequence-to-sequence
paradigm, only the complete flight plan and weather data are used to create
a complete trajectory prediction. For this research, trajectory prediction is
developed under a sequence-to-sequence paradigm.

2 Data Products

Within the continental United States, flight data are collected via the FAA
Air Route Traffic Control Center (ARTCC), while researchers typically ac-
cess these data in aggregated locations such as the NASA Sherlock Data
Warehouse [5]. Databases include flight plan and flight track information;
while the flight track provides complete 4D information, flight plan messages
only contain a cruising altitude and string of waypoints guiding the aircraft
en-route. Flight plan messages are only provided as communications occur to
modify these items. As a result, the last-filed flight plan (prior to departure)

2

must be interpreted by selecting initial messages and querying databases such
as OpenNav [1].

A handful of weather databases are considered in existing literature to
predict flight deviations. Each database provides regular updates to current
and forecasted measurements of assorted products; Table 1 summarizes these
databases. When collecting weather data for model training, a set of con-
straints are given: the weather products must be gridded, as this provides suf-
ficient data for identifying trends related to convective weather; the weather
products are also collected at their current measurement times (not forecast)
to simplify data preprocessing and minimize potential forecast inaccuracies
during model training. Finally, data products must be frequently updated to
provide relevant forecasts. For this study, weather data from Massachusetts
Institute of Technology Lincoln Labs’ Corridor Integrated Weather Services
(CIWS) and the National Oceanic and Atmospheric Administration (NOAA)
High Resolution Rapid Refresh (HRRR) are considered, while NOAA North
American Mesoscale products are neglected due to their update frequency.

3

Table 1: Summary of Weather Datasets
Weather Used Relevant Update Resolution
Database in Variables Period
Corridor [2] Vertically Integrated Current 1.85 km

Integrated Liquid (VIL) 2.5 Min (1 nmi)
Weather Forecast
Service Echo Top 5 Min
(CIWS)
North [6] Humidity 6 Hours 12 km

American Temperature (6.48 nmi)
Mesoscale Wind Speed (U)

(NAM) Wind Speed (V)
Rapid [7] 1 Hour RAP

Refresh 13 km
(RAP) Humidity (7.01 nmi)

Temperature
High Wind Speed (U) HRRR

Resolution Wind Speed (V) 3 km
Rapid (1.61 nmi)

Refresh
(HRRR)

CIWS provides a limited number of products designed in partnership
with the FAA to support air traffic management [8]. Of particular interest
are Echo Top and Vertically Integrated Liquid (VIL), radar measurements
indicating the cloud height and total precipitation at all atmospheric levels,
respectively. Neither measurement varies with altitude, though both strongly
correlate to the presence of convective weather; while Echo Top is indicative
of a lowest safe altitude for flight, VIL represents the amount and severity of
precipitation in an area.

NOAA Rapid Refresh and HRRR collect over 14 general atmospheric
measurements. These datasets are considered due to their public accessibility
and providing the fastest update period of NOAA datasets. Most measure-
ments in the datasets vary by latitude, longitude, and atmospheric pressure
levels. For the purposes of this study, measurements of atmospheric temper-
ature and Westerly (U) and Southerly (V) Wind Components are considered
from the dataset.

4

3 Deep Learning Frameworks

Due to the variability and uncertainty of data present in both prediction
tasks, machine learning frequently serves as a framework for research. This
section will discuss the dominant frameworks used in research – Hidden
Markov Models, Artificial Neural Networks, Convolutional Neural Networks,
Recurrent Neural Networks, and Self-Attention. Other statistical, adaptive,
or machine learning techniques may appear in research and will be discussed
as they appear.

A Hidden Markov Model

Prior to 2018, the Hidden Markov Model (HMM) was predominant in mod-
elling forecast and regression techniques. Though the HMM was originally
applied to language modelling, it is used in a variety of fields that use se-
quential data, including DNA modeling and flight prediction [9]. The HMM
operates on a principle of stochastic chains, referred to as Markov chains. In
an HMM, there are a set of potential states - of which a sequence may be
given, as well as known probabilities to transition between each state. An
HMM is used to predict a future state by computing the total probability
of events leading up to each new potential state; effectively, this becomes a
challenge of computing the maximum likelihood out of all possible sequences
of events.

B Artificial Neural Network

The resurgence of deep learning has largely been characterized by the use of
Neural Networks. Artificial Neural Networks (ANNs) were largely defined by
1995 but have become popular in the past 10 years due to advances in com-
puting hardware [10]. Typical applications address classification and pattern
recognition, including image processing and data categorization. In an ANN,
individual neurons are interconnected in layers. Each neuron is trained to
provide an output based on a weighted summation of all outputs from the
previous layer; this summation is transformed via a nonlinear function re-
ferred to as an activation function. Typical ANN implementations are under
a paradigm of supervised learning, where expected outputs are compared
against computed outputs via a loss function; the reported error is used to
update network weights via an optimizer.

5

Figure 1: Illustration of an ANN

C Convolutional Neural Network

Convolutional Neural Networks (CNNs) present a model where data are op-
erated on by a sweeping elementwise multiplication of an input matrix with a
series of filter matrices (kernels) [10]. This operation is primarily modified by
setting the size of these kernels, the rate that the kernels move over the input
matrix (stride), and the padding of the input matrix. This convolution op-
eration is frequently paired with pooling layers, which perform an operation
(maximum, minimum, average, etc.) over fixed subsets to reduce data size.
Typically, CNNs provide a method of abstraction and hierarchical behavior
to larger deep learning frameworks. Most often, CNNs are used in computer
vision tasks.

Figure 2: Convolution Dimensions

6

D Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a specific form of ANN, where prior
predictions are fed back into the network alongside new information. In
principle, this enables RNNs to retain a history of information and make
predictions on sequences of data. However, RNNs suffer from challenges in
error backpropogation known as vanishing and exploding gradients. During
backpropogation, if a neuron is penalized such that its weights are close
to zero (or greater than one), calculating the exponential impact of those
weights on retaining sequence information decays (or grows) rapidly [10].
This is predominantly due to the shared weights within RNN cells and the
nature of chain-differentiation when computing the gradient. Consequently,
this problem is exacerbated by longer sequence lengths. Because of this
problem, variants of the RNN are more commonly used in research.

Figure 3: Vanishing Gradient in an Unrolled RNN

A popular alternative to traditional RNNs are gated variants such as Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). These so-
lutions address the vanishing gradient challenge by developing more complex
cells in place of a simple neuron with associated recurrent state [10]. For ex-
ample, LSTM cells implement two recurrent states: a cell state which directly
stores and feeds forward historical information, and a hidden state which op-
erates on prior and new information to generate outputs corresponding to
the point in a sequence. For both new inputs and historic retention, the
LSTM cells train neurons to regulate the relevance of data before their use
in computing cell and hidden states. As a result, LSTM is able to operate
on longer sequences of data with significantly greater effectiveness.

7

Figure 4: LSTM Cell Diagram

ft = σ(Wfxt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)

ct = ft
⊙

ct−1 + it
⊙

tanh(Wcxt + Ucht−1 + bc)
ht = ot

⊙
tanh(ct)

Similar in concept to LSTM, GRUs mitigate the vanishing gradient issue
via gating mechanisms. However, their implementation does so with fewer
neurons and only one recurrent state. Theoretically, this enables GRUs to be
trained more quickly and achieve better performance than LSTM; however,
research has found that the two cell designs perform similarly on a variety of
tasks [11].

A more recent, alternative approach to the traditional RNN is through
the constraint of layer connections, as posed by Independently Recurrent
Neural Networks (IndRNN). In traditional RNNs (and gated variants), the
recurrent states associated with a layer are connected to each cell in the
respective layer; IndRNN proposed a restriction to these connections, such
that each recurrent state is connected to only one cell in the layer [12]. This
approach prevents multiple recurrent states from being harshly penalized or
neglected as a result of one cell’s weight update, solving the vanishing and
exploding gradient problem so long as a sufficiently small optimizer learning
rate is selected.

8

Figure 5: Visualization of Traditional RNN (left) and IndRNN (right) Layers

E Attention Mechanisms

While attention mechanisms have existed for years in the field of natural lan-
guage processing, their application to other fields (such as computer vision)
has only been considered recently [13]. For this research, soft self-attention
is considered as in Figure 6 [10] and described by (1) - (5). A complete data
sequence X is received and transformed into key K, query Q, and value V
datasets. In the discussed attention, a sense of locality is embedded in the
data by training a softmax layer, whose input is a matrix multiplication of
key and query datasets. Findings from [13] indicate that self-attention is a
capable supplement following convolutional layers when extracting patterns
from 2D data.

Figure 6: Functional Diagram of a Self-Attention Layer

9

Q = σ(
W ᵀ
QX√
dout

) (1)

K = σ(W ᵀ
KX) (2)

V = σ(W ᵀ
VX) (3)

A = softmax(KᵀQ) (4)

O = AV (5)

4 Prior Research

Though the topic of flight prediction has been examined prior to 2016, re-
search addressed specific aspects of the flight, such as descent and traffic
merging ahead of arrival. Additionally, data sources for effective flight pre-
diction - particularly aggregated GPS data - were not yet available. For
the purpose of managing and informing communication cells throughout the
NAS, many of these papers are therefore irrelevant. Four papers will be
presented, with discussion focusing on their goals, selection of data sources,
frameworks, and contributions.

In [7], the authors sought to develop a model that could correlate historic
flight data with surrounding weather data. A Hidden Markov Model was
developed, where flight coordinates were associated with those of the NOAA
RAP dataset. Using the defined trajectory as observed emissions and regions
of RAP coordinates as hidden states, the HMM was trained. 594 4D tra-
jectories were collected for one flight (DAL2173) with identical arrival and
departure locations (ATL to MIA). The authors were the first to formulate a
complete trajectory prediction model and proposed the notion of surrounding
weather data (feature cubes), a concept which has widely defined later model
developments. The efficacy of this approach has yet to be matched, however
it is unclear if the reported accuracy is a result of the learning approach or
the heavy constraints placed on flight data collection.

A more complex, deep generative network is presented in [6]. At its
core, this framework generates Gaussian Mixture Models using a sequence-to-
sequence paradigm for Long Short-Term Memory (LSTM). The predictions of

10

these models are then filtered using a variety of techniques (Adaptive Kalman
Filter, Beam Search, Rauch-Tung-Striebel Smoother). 3D Flight plans and
4D flight trajectories were recorded for 1,679 flights with identical arrival
and departure airports (IAH to BOS). Weather data were collected from
the NOAA NAM database, specifically U/V Winds, Air Temperature, and
Convective Weather. While the results were not as compelling as those in [7],
authors present several significant concepts, including a sequence-to-sequence
paradigm and efficient methods of organizing and accessing weather data.
Several reasons for these poorer results may be inferred: foremost, the NAM
database is limited in resolution, as each data point is inter-spaced at 12 km
and refreshed every 6 hours; the selected flight is infrequent, and collecting
the number of flights in this paper may have required a significant range of
seasons and consequent weather patterns; finally, the model itself may have
been unnecessarily complicated by relying on the repeated generation and
sampling of Gaussian Mixture Models.

Taking inspiration from the previous paper, the authors of [2] presented
a convolutional-LSTM hybrid network to predict aircraft trajectories. This
model presents a basis for hybrid-recurrent networks: weather features are
extracted and represented through a series of convolutional and dense layers,
while supplemented with the aircraft location prior to the provided cube.
The combination of abstracted weather data and prior aircraft position are
fed into an LSTM layer to predict the aircraft’s position. LSTM layers were
selected for recurrence to mitigate the vanishing gradient challenge of training
traditional RNNs. Feature cubes were generated from Echo Top measure-
ments, and flight data was collected for a total of 2,528 flights of identical
arrival and departure points (JFK to LAX) over the dates November 1st,
2018 through February 5th, 2019. Initial research focused on 3D trajectory
predictions (ignoring altitude), and reported efficacy in terms of improved
error (described by Euclidean Norms) over that of the flight plan. The au-
thors reported the accuracy of 47% of all flight plans were improved by their
predictive model, on average by 12.3%. While this efficacy appears satisty-
ing, this relative metric is not directly comparable to other research; the
two papers prior reported efficacy in terms of a horizontal and vertical er-
ror (units of nautical miles and ft), with no reference to the error of related
flight plans. As a result, this paper should be more critically contextualized
in other research.

Finally, [14] discuss the prediction of aircraft based solely on prior Auto-
matic Dependent Surveillance-Broadcast (ADS-B) data. Their research con-

11

siders single and multi-point forecasting of 4D trajectory using sequences of
prior 4D data, as well as ground speed and heading information. Three mod-
els are presented for this task, one purely-convolutional, one purely-recurrent
(LSTM), and one CNN-LSTM hybrid. The results reinforce the usefulness
and importance of prior design choices in hybrid-recurrent networks, while
also offering some qualitative understandings and intuition. Data were col-
lected for approximately 397,000 flights from Qingdao to Beijing, providing
the largest dataset of all considered in existing research. However, again, the
metrics reported in this paper are not directly comparable to those described
in prior research; those presented here are standard error metrics within deep
learning (Mean Absolute Percentage Error, Mean-Squared Error, etc.), but
not relevant to describing the usefulness of a trajectory prediction model.

Over the course of the existing body-of-research, several individual ad-
vances have been made; a core formulation and approach illustrated the
viability of machine learning for this task in [7]; An initial deep learning
framework was developed in [6] which, despite the limitations of used data,
provided a framework and approach to the task; A more robust deep learn-
ing approach was formulated in [2] and validated with [14], which provided a
starting point for research conducted in this thesis. However, each contribu-
tion mentioned considered different datasets, and frequently demonstrated
the efficacy of an approach with different metrics. To advance the state of
research on trajectory prediction, two contributions are noted in this thesis:
1) the generalization of the predictive task, experimenting with a variety of
datasets, flights, and models to contextualize other research, and 2) a search
for an accurate, generalizable deep learning model that suits this task.

12

III INSTRUMENTATION AND EQUIPMENT

All data processing and model development are performed on a workstation
with AMD Ryzen Threadripper 1950X chipset and dual Nvidia RTX 2080
Graphics cards. To ensure stable hardware acceleration, development is per-
formed on the Ubuntu 20.04 LTS release. Unless otherwise specified, software
is developed in PyCharm projects, whose code and python environments are
available at [15], [16].

As experimentation progressed, the selection of flights and dataset ranges
varied significantly, and are specified for each experiment. Due to amount
of data collected (particularly weather data), significant storage is necessary.
CIWS Echo Top, Flight Plan, and Flight Track data are collected via Sher-
lock Data Warehouse in coordination researchers at NASA Glenn Research
Center. CIWS VIL and miscellaneous products are collected in coordination
with Lincoln Labs, but may be accessible via Sherlock as well. NOAA HRRR
data are collected via NOAA’s Google Cloud database.

IV TRAJECTORY PREDICTION TASKS AND

EXPERIMENTS

The following section presents the experiment setup and results for all efforts
made toward trajectory prediction. Flight and weather data were collected
and preprocessed. Experiments to determine the optimal weather data and
network structure were conducted in stages as well. The first four subsections
discuss the data preprocessing and results related to comparing weather prod-
ucts, as well as initial results in comparing deep learning mechanisms; these
subsections correspond to the efforts conducted and published in [17]. Con-
tinued efforts to address challenges with model tuning are described in the
remaining subsection, including experiments to generalize flight and weather
data, tune model hyperparameters, and provide finalized results of these im-
provement efforts.

For both experiments, the available data are split in a test-train ratio of
25%-75%. Presented results are determined from a 4-fold cross-validation.
All model training is accomplished over 500 epochs, sampling the dataset
with a batch size of 1. Error was calculated with a Mean Squared Error loss
function, and models are currently adjusted using the Adam optimizer with
a learning rate of 2 ∗ 10−4.

13

1 Data Preprocessing

Preprocessing of flight and weather data was accomplished in several steps:
the collection of individual, relevant flight data; the discretizing of 4D flight
track data; the parsing and interpolation of 2D flight plans; and the col-
lection of weather data surrounding the interpolated flight plan into usable
feature cubes. The end products of preprocessing included a 4D flight track
of historic GPS data at exactly 1-minute intervals; a 4D flight plan based on
what is assumed as a last-filed flight plan at exactly 1-minute intervals; and
a NxZx20x20 sequence of weather cubes, where N is the number of points
recorded in the flight plan and Z is the number of relevant altitude levels
for the select weather data. The following paragraphs provide a summary of
these algorithms.

The collection of flight data are accomplished from Integrated Flight For-
mat (IFF) data available at the NASA Sherlock Data Warehouse. IFF Data
contain a complete set of messages from all active aircraft in the NAS in one
day. Messages are all related to the aircraft’s flight, including en-route GPS
information, updates to an aircraft’s flight plan, and general aircraft reports
and information. To generate an initial set of files for each individual flight
plan and flight track, a C-program was used to parse IFF data for messages
specific to the relevant flights.

The resulting files for each flight, however, required some degree of clean-
ing. Flight track data were available at irregular intervals (between 1 second
and 24 seconds), frequently with redundant messages. With the assump-
tion of a constant airspeed, these flight tracks were linearly interpolated to
provide 4D information at exactly 1 minute intervals.

The initial flight plan messages contain (among other things) a speci-
fied cruising altitude and list of waypoints and navigation aids resembling
the general route of the aircraft through the NAS. Because these messages
are provided as the flight is already beginning (taxiing, takeoff, en-route,
etc.), creating a trajectory using the last-filed flight plan requires use of the
earliest complete message. In order for the message to be useful in a deep
learning model, this list must be interpreted into latitude and longitude co-
ordinates. Interpretation is accomplished by querying the OpenNav website.
From there, altitudes can be assigned based on the airport ground elevations
and the cruising altitude after takeoff; initial and final timestamps are asso-
ciated from the processed flight track; and the list of interpreted waypoints
is interpolated to exactly 1-minute intervals.

14

As a final step, each dimension which will be used by the deep learning
frameworks (latitude, longitude, altitude, weather measurements) is normal-
ized to a value between 0 and 1. The scaling is individual for each dimension,
and is performed to match data with the typical operating range of deep
learning models.

Figure 7: Sample Navigation Aid Query from [1]

The generation of weather cubes from a given flight plan is the most
computationally intensive preprocessing task. For each point along the flight
plan, a Zx20x20 set of gridded weather data is collected based on the pro-
jected heading of the aircraft, where Z is 1 for all 3D products (Echo Top,
VIL) and 3 for all 4D products (HRRR measurements). This process is sum-
marized in Algorithm 1 and visualized by Figure 8. At current, feature cubes
have only been generated for 3D products.

15

Algorithm 1 Weather Cube Generation

Require: Flight Plan FP , Gridded Weather Database W
for time, alt, lat, lon in FP do

find and open most-recent, valid file w in W
calculate heading θ and orthogonal vectors θ⊥ from
lati, loni, lati−1, loni−1
locate the nearest latitude wlat and longitude wlon to lati, loni
generate a 20-point axes X, Y along θ and θ⊥
for x,y in X,Y do

locate the nearest latitude wclat and longitude wclon
if w varies by altitude then

find containing altitude group walt
for zε[−1, 1] do

collect feature cube data wcdata at (wclat, wclon, walt + z)
end for

else
collect feature cube data wcdata at (wclat, wclon)

end if
end for

end for

Figure 8: Selection of one feature cube (left) and all cubes (right, blue) along
a flight plan (right, red)

2 Recreating the Initial Work

This section highlights the attempts to re-create the initial efforts to develop
a deep-learning model, which approximated the scope of work in [2] and [18].
The two papers provided a basis for much of the initial efforts on this topic,

16

and comprised of three experiments summarized in Table XX. Notably, two of
the three experiments did not incorporate altitude into trajectory predictions.
To simplify the task of re-creating the research, experiment 2 is focused on:
not only does this focus efforts to a 3D trajectory prediction at first, but also
avoids the challenge of batch sizes for sequences of unequal length.

Figure 9: CNN-LSTM Model Presented in [2]

The development of the proposed model was notably simplified for the
approach considered. The model proposed initially in [2] had been devel-
oped at a much lower level using TensorFlow, to incorporate several custom
controls: the weather cube and flight plan information was designed to be
fed into the model’s LSTM forget gate, while prior trajectory points were
fed through the model’s LSTM input gate; additionally, dense layers were
incorporate between the update of the LSTM’s hidden states for each item
flight sequence, as a way to briefly expand the dimensionality of the hidden
state. Both of these behaviors required the design of a specific, customized
form of an LSTM layer, which was beyond the knowledge and development
time possible over the course of this thesis. Instead, the default LSTM layer
within PyTorch was employed, where all useful data are provided to the in-
put gates of the LSTM layer and no deep learning mechanism is incorporated
into the updating of hidden states.

In initial efforts, data preprocessing and training focused on handling
flights as sequences of data interpolated to a 1-second interval, while working
with the complete 100 days of flight data. For a number of reasons, this
approach was abandoned. First, generating such long sequences of data

17

required an analogously long period of time to pass the sequence through a
deep learning model; in initial attempts (which trained the model in a time-
series forecast paradigm), each epoch required approximately 46 minutes to
process and backpropogate based on the 75% split of training data over the
100 days of collected flights.

Additionally, the model accuracy was significantly hindered by such long
sequence lengths. As seen in the sample prediction of Figure 10, the model
was unable to retain and meaningfully predict for all sequence points in the
flight; at several instances, select points would be predicted wildly astray
from the rest of the predicted flight path. This likely reflects the limits of
LSTM memory retention: research has indicated that LSTM can only retain
sequences of information no more than 1000 points; by contrast, a typical
non-stop flight from New York to Los Angeles lasts roughly 6 hours (21,600
seconds) [12].

Figure 10: Sample Prediction Using 1-Second Interpolated Flight Data

To improve the training times and accuracy of recreating this model,
data in all future experiments were interpolated at 1-minute intervals. This
yielded a typical sequence length closer to 360 points, well within the limits of
LSTM. Additionally, Model training shifted focus to a sequence-to-sequence
paradigm; this limits the amount of training performed: in a time-series
forecast, input data includes a window of past trajectory points, requiring

18

each flight to be used multiple times in training in, such that the window
shifts throughout the flight duration. Simplifying to a sequence-to-sequence
paradigm requires each flight to be used only once in training, greatly reduc-
ing the duration of each training epoch.

Finally, to insure training could be conducted and modified quickly, data
were limited to flights in a two-week period as opposed to a 100 day period.
The specific two-week period was determined by selecting a date range with
the best reported coverage; from January 10th to Januray 24th, no Echo Top
measurements were missing from available databases.

After re-considering the approach to trajectory prediction, models were
able to be trained over the 14 days of 3D flight data. Figure 11 illustrates
two sample flight plans and predictions. Some issues still arose during pre-
dictions as a result of shortcomings in preprocessing; specifically, flights and
trajectories would occasionally include incomplete sequences, as seen on the
right; this occurrence was reduced by revisiting the preprocessing algorithms,
as well as setting up more stringent data filters prior to model training.

Figure 11: Sample 3D Trajectory Predictions, one of which is expected (left)
and one incomplete (right)

Once 3D trajectory predictions were seen as functional, the incorpora-
tion of 4D data became somewhat trivial. Altitude information is directly
available flight trajectory points, and can be inferred based on the cruising
altitude provided in flight plan information; incorporating altitude into the
hybrid-recurrent model was a matter of expanding the set of data provided
from preprocessed flight plans. A sample 4D prediction is provided in Figure
12.

19

Figure 12: Sample 4D Trajectory Prediction

3 Weather Data Analysis

After building a foundation of data and deep learning models, the first ex-
periment seeks to determine the optimal combination of weather datasets for
predicting flight reroutes. Selected weather data include Echo Top and VIL
products from CIWS, as well as atmospheric temperature and U/V Wind
Components from NOAA HRRR. To limit the number of combinations con-
sidered, a cross-correlation of weather products is first performed using the
products’ complete coverage of the continental United States. The results
of this cross-correlation will determine which combination of weather prod-
ucts supplement one another enough to justify the computational cost of
providing additional data to the models. From here, the individual weather
products and selected combinations thereof will be used to train a hybrid-
recurrent model of fully convolutional layers and a single LSTM layer. For
this section, all flight and weather data are collected in the two-week period
from January 10th to 24th, 2019; flights travelling from Los Angeles to New
York are collected, totaling 379 usable for training.

Due to the size and mismatch of coordinate space between some weather
datasets, several constraints are placed for cross correlation. All weather
product measurements have been normalized to a scale between 0 and 1.

20

When correlating between CIWS and HRRR products, a rectangular subset
of data are selected to ensure a matching coordinate boundary. From there,
HRRR data are interpolated to match the spatial resolution of CIWS data.
Since CIWS data do not vary by altitude, its measurements are averaged over
all relevant altitude levels (all levels for VIL, all levels containing or below
the Echo Top measurement for Echo Top). Finally, the cross-correlation only
considers the exact alignment of the two products, not any shifted forms
which would require padding the boundaries of the dataset. Correlation
coefficients are collected for each product over a two-week period, yielding
the set of histograms in Figure 13.

Echo Top VIL Temperature Wind (U) Wind (V)

Echo Top

VIL

Temperature

Wind (U)

Wind (V)

Figure 13: Histograms of Cross-Correlation Coefficients Ranging (0, .5)

Based on these results, Echo Top and VIL data were each found to be
weakly correlated to other products; this is likely due to the sparsity of Echo
Top and VIL data at any given time. In contrast, Temperature and Wind
Components were all moderately correlated with one another; as a result, it

21

is anticipated that only one of the three NOAA products should be used. Be-
cause Temperature provided the lowest correlations of all NOAA products,
it is predominantly considered in combinations of NOAA products. There-
fore, the model training considers 8 combinations of datasets: Echo Top, VIL,
Temperature, and V Wind Component will be considered individually; Com-
binations will also consider Echo Top and VIL, Echo Top and Temperature,
and VIL and Temperature. Finally, Temperature and V Wind Component
will be tested in combination, to verify the assumption of performance based
on their higher correlation.

Table 2: Summary of Weather Product Performances
Product(s) Horizontal Error Vertical Error Improvement over Improvement over

Echo Top Echo Top
(µ/σ in nmi) (µ/σ in ft) (µHoriz/σHoriz as percent) (µV ert/σV ert as percent)

Echo Top 50.017 1160.07 0 0
48.854 1420.26 0 0

VIL 55.171 1230.23 -10.304 -6.048
67.276 1514.95 -37.708 -6.667

TMP 52.983 1130.72 -5.931 2.530
60.901 1399.41 -24.659 1.468

U Wind 50.560 1128.17 -1.085 2.749
(E/W) 54.588 1420.57 -11.738 -0.022
V Wind 50.167 1097.16 -0.29 5.422
(N/S) 51.376 1390.80 -5.164 2.074

ET + VIL 50.670 1118.72 -1.305 3.564
57.596 1365.45 -17.895 3.859

ET + TMP 50.194 1156.50 -0.354 0.307
51.937 1424.41 -6.312 -0.292

VIL + TMP 52.520 1248.81 -5.005 -7.650
65.513 1558.70 -34.101 -9.748

TMP + V Wind 49.578 1128.25 0.877 2.743
51.764 1430.29 -5.957 -0.707

After training the products and product combinations above, prediction
results are summarized in Table 2, with percent improvement comparisons
drawn against Echo Top, which is treated as the default due its use in [2].
Several trends can be observed: Without considering combinations of mul-

22

tiple products, Echo Top provides the minimum horizontal error; this is ex-
pected, due to the nature of the measurement being tailored to air traf-
fic management, alongside its sparsity. VIL performed notably worse than
most products, despite its sparsity and correlation to convective weather;
this reflects how VIL represents only the presence of liquid, not whether it
is indicative of humidity, rainfall, snowfall, etc. - not all of which require
flight adjustments. While no NOAA data product could provide an im-
proved horizontal accuracy, the use of any of the three provided degrees of
improvement to vertical accuracy predictions – likely because of data being
altitude-varying. Notably, V Wind Components provided the greatest im-
provement in vertical accuracy; it is hypothesized this may reflect a skew in
flight data, where a notable percent of arrivals and departures occurred with
a significant north/south component (parallel to V Wind), while the en-route
flight had a majority east/west component (parallel to U Wind).

No combinations of products provided sufficient improvements in accu-
racy to justify their additional data processing and model complexity. How-
ever, challenges of model reproducibility may have inhibited the usefulness of
some products, especially with populous data items such as NOAA measure-
ments. In particular, prior experiments without normalizing temperature
data yielded horizontal accuracies much closer to (even surpassing) those of
Echo Top, making temperature a viable choice for predictive modeling.

4 Initial Structure Comparison

The second experiment seeks to identify trends in component selection and
usefulness among different hybrid-recurrent implementations. This section
only considers a direct implementation of related deep-learning mechanisms
with assumed hyperparameters; a more in-depth exploration of hyperparam-
eters and overfitting follows.

Extending the general form of Figure 14, models were defined by the se-
lection of weather feature extraction mechanism, recurrence mechanism, and
number of recurrence layers. These parameters were assumed and modified
from the network layout in [2], and are summarized in Table 3. Extraction
mechanisms were defined in a depth of three layers, and included a purely con-
volutional design, a purely self-attention design, and a convolutional design
with self-attention serving as a final layer. Recurrence techniques included
LSTM, GRU, and IndRNN layers, always with a hidden state size of 100.
Finally, the depth of recurrence was limited to 1 or 2 layers. For IndRNN

23

cells, an additional layer was included to allow for information sharing be-
tween neurons. All models were trained on Echo Top feature cubes and flight
data. All models were initially trained with 379 flights from Los Angeles to
New York, collected over the two week period of January 10th to 24th, 2019.

Figure 14: Layout of Hybrid-Recurrent Framework

24

Table 3: Default Model Parameters
Parameter Description Parameter Value

Convolution Kernel Sizes [6x6, 3x3, 1x1]
Convolution Stride Lenths [2, 2, 1]
Convolution Filter Sizes [1, 2, 4]

Attention Output Dimensions [128, 36, 36]
Dense Layer Sizes LSTM, GRU: [16, 3]

IndRNN: [16, 97]
Recurrent Input Size 6

Recurrent Depth GRU, LSTM: 1 or 2 Layers
IndRNN: 2 or 3 Layers

Optimizer Learning Rate 2x10−4

While some initial experimentation has been conducted, few conclusive
results were drawn. Results are considered inconclusive due to prior tests
yielding large variances in error. Table 4 is presented to indicate prelimi-
nary results and a general format for comparing effectiveness of architecture
design, where horizontal and vertical error are standard metrics for general
flight trajectory prediction error, and percent improvements are prescribed
in comparison to the flight plan and a convolutional-LSTM design of 1 layer
(a model inspired from [2] and used as a baseline for this task). The table
does not detail all possible model combinations, with the intent that those
presented would sufficiently describe the trends in usefulness of different re-
current and extraction components.

25

Table 4: Summary of Select Models’ Performances
Model Horizontal Error Vertical Error Improvement over Improvement over

Flight Plan CNN-LSTM1lay
(µµµ/σ in nmi) (µµµ/σ in ft) (µHorizµHorizµHoriz/µV ert as percent) (µHorizµHorizµHoriz/µV ert as percent)

CNN-LSTM1lay 63.5584 1160.27 39.5920 0
26.8905 1500.83 64.0127 0

CNN-LSTM2lay 60.9995 1167.39 42.0241 4.0260
29.2265 1551.46 63.7919 -0.6135

CNN-GRU1lay 59.8954 1120.04 43.0735 5.7632
28.0559 1399.75 65.2606 3.4676

CNN-GRU2lay 47.2278 1156.16 55.1131 25.6938
22.9868 1332.40 64.1404 0.3548

CNN-IndRNN2lay 119.1314 1219.99 -13.2263 -87.4361
63.1298 1682.68 62.1607 -5.1463

CNN-IndRNN3lay 122.6245 1219.86 -16.5463 -92.9320
61.8804 1682.68 62.1645 -5.1355

CNN+SA-LSTM1lay 59.3252 1178.57 43.6154 6.6603
29.5847 1546.38 63.4454 -1.5763

CNN+SA-LSTM2lay 60.1143 1152.56 42.8654 5.4187
28.4656 1537.15 64.2520 0.6651

SA-LSTM1lay 40.9453 804.73 61.0843 35.5785
23.7972 1054.89 75.0405 30.6436

SA-LSTM2lay 56.2102 990.82 46.5760 11.5613
25.1934 1294.62 69.2687 14.6051

With large variances in mind, one trend still tends to appear, which
is the usefulness of self-attention in this task. The use of self-attention,
while potentially incrementing performance as a supplement to convolutional
layers, notably improved performance of models when behaving as an out-
right replacement for convolutional layers. The improvements via fully at-
tentional extraction may be caused by the globality of self-attention: since
self-attention layers consider all features in relation to each other (as opposed
to a fixed number of neighbors in one sequence element), attention mecha-
nisms may be able to define complex filters that consider the interactions of
data between each feature cube in the provided sequence. Consequently, the
use of self-attention as a supplement to convolutional networks may be inhib-
ited by convolutional extraction techniques: since convolutional layers can

26

only extract features within each cube individually, the patterns extracted
may be counterproductive from a more global perspective.

An additional point should be made, that IndRNN performed notably
poorly. When comparing results of IndRNN-based models, error was notably
worse than that of the flight plan, and moreso in comparison to the baseline
model. This may be a reflection of implementation challenges; the selected
hyperparameters may have been limiting for the model. However, due to
implementation challenges, this mechanism will be abandoned in remaining
sections; despite being the least computationally-complex of the recurrent
mechanisms tests, they require significant training time as GPU-accelerated
variations of the mechanism are no longer supported.

5 Continued Efforts in Network Exploration

Following initial attempts to propose useful deep learning mechanisms that
would improve trajectory prediction, several questions and challenges re-
mained. Initial efforts in comparing deep learning mechanisms relied on a
set of assumed hyperparameters, which may have limited the performance
of each model. Furthermore, variations in model accuracy between training
sessions prevented a consistent comparison of models. A final, major concern
is the fear of overfitting; 379 flights were split between training and testing in
the initial results, all collected over a two-week period for one specific route.
This is likely to provide a model heavily biased toward not only this route,
but also this general flight direction and weather trends within this season.

This section aims to identify and address these problems in a number of
steps. First, an initial attempt to tune model performance was attempted,
which identified limited trends (including the degree of overfitting) while il-
lustrating a need for more in-depth efforts. Follow-on efforts focused on data
collection and parameters to address overfitting. Finally, model hyperparam-
eters were experimented with, in order to identify optimal channel depths,
recurrent depths and hidden state sizes, and optimizer selections.

For each of the following subsections, Ray Tune provided a basis and im-
plementation for scheduling experiments and computer resources [19]. Ray
is a collection of python libraries, which provide implementation of both
scheduling and optimization algorithms for hyperparameter tuning in Py-
torch and TensorFlow. While a variety of algorithms are available, few if any
were used for this project, tended toward finding visual representations of
hyperparameter trends; this chosen with then intent of allowing for a more

27

verbose comparison and analysis of hyperparameter selection.

A Model Tuning: Initial (Naive) Attempt

The first attempt to find optimal hyperparameter settings was admittedly
naive. For each model type, a large search space was configured as defined
in table 5. Note that this space incorporated dropout, an initial attempt
to address potential overfitting. These layers were incorporated in select
portions of the network, as illustrated in Figure 15. Using Asynchronous
Hyperband, each search space was sampled 20 times, with additional training
epochs (upto 300) progressively performed on models with the best validation
loss. Again, data used for training consisted of the 379 flights over a two-week
period.

Table 5: Hyperparameter Search Space of Initial Tuning Attempt
Hyperparameter Sampling Distribution

Optimizer gridSearch(Adam, RMSProp)
Extraction Channels [1, randInt(1, 25), randInt(1, 25)]

Dense Layers 1-5 layers, each uniquely sampled by
randInt(1, 48)

RNN Input randInt(3, 20)
RNN Depth randInt(1, 4)

RNN Hidden Size randInt(10, 1000)
Dropout Rate uniform(0, 0.5)
Learning Rate logUniform(2 ∗ 10−6,2 ∗ 10−2)

28

Figure 15: Hybrid-Recurrent Architecture, with Dropout Layer Placement

Several shortcomings became apparent with this approach. Primarily,
the necessary number of samples to effectively represent the indicated search
spaces would be excessive; this lead to an inability to recognize many trends
in hyperparameter selection. In addition, there had been little consideration
for the repeatability of these results; model weights were initialized with ran-
dom distributions, each from a unique seed related to that model’s training
session. As a result, there was no way to guarantee that each model was
training fairly, from a starting point of equal or approximate inaccuracy, and
that the model could obtain more competitive parameters within its first
epoch.

29

Table 6: Initial Tuning Attempt: Best Models by Training Loss
Model Training Validation Iterations Extraction Dense RNN RNN RNN Dropout Optimizer Learning Rate

Loss Loss Channels Layers Input Depth Hidden Rate
Size Size

CNN-LSTM 0.00047 0.00476 262 [1, 13, 24] [25] 19 2 601 9.131 ∗ 10−2 RMSProp 2.615 ∗ 10−4

CNN-LSTM 0.00055 0.00239 272 [1, 10, 10] [30] 15 1 54 7.740 ∗ 10−2 RMSProp 9.202 ∗ 10−4

CNN-GRU 0.00061 0.01429 256 [1, 14, 21] [20, 10] 15 4 718 2.437 ∗ 10−1 RMSProp 2.558 ∗ 10−4

CNN-GRU 0.00082 0.01346 249 [1, 5, 5] [21, 10] 19 2 128 1.935 ∗ 10−1 RMSProp 1.065 ∗ 10−3

CNN-LSTM 0.00088 0.00188 283 [1, 5, 11] [30] 15 2 462 2.002 ∗ 10−2 Adam 1.758 ∗ 10−4

Table 7: Initial Tuning Attempt: Best Models by Validation Loss
Model Training Validation Iterations Extraction Dense RNN RNN RNN Dropout Optimizer Learning Rate

Loss Loss Channels Layers Input Depth Hidden Rate
Size Size

CNN-LSTM 0.00140 0.00128 129 [1, 5, 1] [18, 9] 11 2 369 6.456 ∗ 10−3 Adam 1.647 ∗ 10−4

SA-LSTM 0.00172 0.00154 204 [1, 17, 5] [13] 10 1 760 8.596 ∗ 10−2 Adam 9.492 ∗ 10−5

CNN-LSTM 0.00237 0.00161 64 [1, 17, 12] [17, 31] 4 4 46 7.858 ∗ 10−2 Adam 3.140 ∗ 10−4

CNN+SA-LSTM 0.00197 0.00167 32 [1, 17, 20] [19] 13 2 766 2.347 ∗ 10−2 Adam 3.123 ∗ 10−3

CNN-GRU 0.00136 0.00178 132 [1, 3, 11] [12] 19 4 50 1.220 ∗ 10−2 Adam 2.806 ∗ 10−3

Even so, some trends were noticeable. The most glaring of these trends
being the epochs. Even with the maximum number of epochs being less than
those defined in the initial experiments, model training and validation losses
were able to improve over prior attempts. Regarding model parameters, the
assumed recurrent input size of 6 had been limiting; all but one of the best
trained models in Tables 6 and 7 required a larger recurrent input size, most
of which requiring a size larger than 10. Additionally, no models with use-
ful validation losses had significant dropout (at or exceeding 20%). Finally,
a notable trend appeared in better-performing models, where the recurrent
network would balance either a larger hidden size or recurrent depth; infre-
quently, both would be present, but never were both absent. This provided
some intuition for guiding later hyperparameter tuning.

Finally, the use of RMSProp exclusively provided the best training accura-
cies for this task, though with two caveats. First, none of the well-performing
models associated with this optimizer incorporated attention; this may likely
be a fluke, resulting from the small sample size in this experiment. Second,
the models which used RMSProp in training each experienced severe overfit-
ting, some by an order of magnitude. This result motivates both the use of
RMSProp in further experiments, and the efforts to address overfitting more
seriously in later experiments.

30

B Model Tuning: Addressing Overfitting

An initial attempt to address overfitting was conducted in this experiment,
consisting of two steps: first, data was generalized by collecting a larger
variety of flights within the two-week period. Second, hyperparameters to
restrict model training were introduced and tested over ranges.

In order to generalize the available data within the two-week period,
flights were collected to vary the general heading and region of coverage
within the continental United States. In total, 1,468 flights were collected,
with 734 of those flights considered useful for training. The varied flight col-
lections include New York (KJFK) to Los Angeles (KLAX), Houston (KIAH)
to Boston (KBOS), Atlanta (KATL) to Chicago (KORD), Atlanta to Miami
(KMCO), and Seattle (KSEA) to Denver (KDEN). A general visual and
detailed breakout of flights are prescribed in Figure 16 and Table 8.

Figure 16: Coverage of Selected Flights for Data Generalization

Table 8: Breakout of Selected Flights for Generalization
Flight General Heading Nonstop Time Estimated Flights in

Two-Week Period
KLAX - KJFK West-Southwest 5 hrs 30 mins 990
KIAH - KBOS Northeast 3 hrs 45 mins 40
KATL - KORD North-Northwest 1 hr 45 mins 313
KATL - KMCO South-Southeast 1 hr 45 mins 388
KSEA - KDEN Southeast 2 hrs 30 mins 238

31

In addition, tuning hyperparameters were configured that are tradition-
ally incorporated to reduce overfitting. These included Batch Normaliza-
tion, Dropout and Weight Regularization (referred to as Weight Decay in
PyTorch). Batch Normalization was incorporated between each layer of the
network, and could be configured in three manners: its absence, its pres-
ence without learned parameters, and its presence with learned parameters
(Affine, incorporating β and γ in Equation 6). Dropout remains config-
ured as described in Figure 15, with one of seven Dropout rates possible.
Finally, Weight Regularization was an L-2 regularization as implemented by
PyTorch’s optimizers, with one of eight regularization rates considered. Each
combination of the three hyperparameters was trained for 200 epochs, using
the RMSProp optimizer with a learning rate of 2 ∗ 10−4 and the generalized
set of two-week flight data. To insure repeatability, training used a con-
stant seed for weight initialization and forced deterministic algorithms, as
discussed in [20]. Additionally, training was only conducted for the CNN-
LSTM hybrid-recurrent architecture, as it is assumed that these parameters
will be transferable to other architectures solving this task. For brevity in
this experiment, it is assumed that these parameters will be generally trans-
ferable to other model architectures.

y =
x− E[x]√
V ar[x] + ε

∗ γ + β (6)

From the results highlighted in Table 9 and Figure 17, batch normaliza-
tion tended to have adverse effects on training. Without normalization, the
model reached an error minima close to 2∗10−3 in training, and 2.7∗10−3 in
validation. While overfitting is present, the degree of overfitting is negligible
compared to the degree of accuracy; incorporation of un-trainable normal-
ization did yield a point where validation loss improved over training loss,
but with both yielding a best error magnitudes greater than models without
normalization. Incorporating learned parameters only served to force a di-
vergence of training and validation loss, with minima for both never reaching
those even present in the prior un-trainable scenario.

Several reasons may exist for this, all resulting from a misunderstanding
of Batch Normalization’s use case and purpose. First and foremost, batch
sizes are restricted to one in all training, in order to prevent model accuracy
issues resulting from batching together data of varied lengths. The conse-
quence of this, is that the expectations and variances calculated, are done

32

so over the sequence of input flight and weather data; incorporating batch
normalization would only serve to skew the representation of existing data
across the complete flight sequence. Alternative, more useful mechanisms
may include Layer Normalization and Instance Normalization.

Figure 17: Training Plots of CNN-LSTM Model without Batch Normal-
ization (left), with Batch Normalization (middle), and with Affine Batch
Normalization (right)

Table 9: Final Losses for Batch Normalization Hyperparameters
BatchNorm Training Loss Validation Loss

None 0.002004 0.002747
Un-trainable 0.015965 0.018279

Trainable 0.016219 0.027436

The narrative for examining Dropout’s usefulness to this problem is dras-
tically different. As illustrated in Figure 18, Dropout rates greater than 1%
served only to force a drastic divergence between training and validation
losses. For Dropout rates at or less than 1%, however, an improvement can
be noted: rates of 0.01% and 1% trained toward validation losses comparable
to that without Dropout, while a rate of 0.1% provided marginal improve-
ments at the cost of a raised training loss. While a rate of 0.01% approaches
an absence of Dropout, as only a handful of weights are disconnected each
iteration, this rate remains distinct due to the large number of epochs over
which training occurred. Ultimately, a marginal amount of Dropout (.1%) is
recommended in future models.

33

Figure 18: Training Plots of CNN-LSTM Model with Increasing Dropout
Rates. From Left to Right: (Top) 0%, .01%, .1%, 1% (Bottom) 5%, 10%,
20%

Table 10: Final Losses for Dropout Hyperparameters
Dropout Rate Training Loss Validation Loss

0% 0.002004 0.002747
0.01% 0.002193 0.002781
0.1% 0.002607 0.002598
1% 0.002202 0.002755
5% 0.002369 0.003257
10% 0.002501 0.004381
20% 0.002967 0.008869

Finally, the incorporation of Weight Regularization yielded similar rec-
ommendations as that of Dropout. As summarized in Table 11 and Figure
19, minuscule amounts of regularization were able to improve validation loss
at the cost of marginally worse training loss. However, the effects of Weight
Regularization are distinct from those of Dropout. As regularization in-
creased, the level of noise between training epochs decreased, with the model
converging more smoothly toward its optimal solution. For all values, train-

34

ing and validation loss remain closely tied to one another. At the same time,
the minimum loss of these optimal solutions continue to rise with increasing
regularization, particularly beyond 1 ∗ 10−4. Examining the final losses in
Table 11 identifies a pocket of competitive-to-improved losses over a model
without regularization, with penalty values from 1∗10−8 to 1∗10−6. The lat-
ter value is selected, despite providing a sub-optimal improvement, to insure
a significant penalty.

Figure 19: Training Plots of CNN-LSTM Model with Increasing Weight Reg-
ularization Rates. From Left to Right: (Top) 0, 1 ∗ 10−8, 1 ∗ 10−6, 1 ∗ 10−5

(Bottom) 1 ∗ 10−4, 1 ∗ 10−3, 1 ∗ 10−2, 1 ∗ 10−1

35

Table 11: Final Losses for Weight Regularization Hyperparameters
Regularization Rate Training Loss Validation Loss

0 0.002004 0.002747
1x10−8 0.002061 0.002716
1x10−6 0.002155 0.002730
1x10−5 0.002755 0.002785
1x10−4 0.002704 0.003127
1x10−3 0.007822 0.008506
1x10−2 0.019760 0.020293
1x10−1 0.043634 0.044770

Considering the total set of combinations, the top-performing models
(based on validation loss) are summarized in Table 12. With consideration
from the trends described above and the proposed parameters in the table,
optimal hyperparameters for future training are selected as follows: no batch
normalization will be incorporated, and a Dropout rate of 0.01% and Weight
Regularization rate of 1 ∗ 10−8 will be incorporated.

Table 12: Overfit Hyperparameter Tuning Attempt: Best Models by Valida-
tion Loss

Training Loss Validation Loss Dropout Rate Weight Regularization Batch Normalization
0.002607 0.002598 0.1% 0.0 None
0.002105 0.002633 0.01% 1x10−8 None
0.002061 0.002716 0.0% 1x10−8 None
0.002155 0.002730 0.0% 1x10−6 None
0.002153 0.002745 0.1% 1x10−6 None

0.0.002004 0.002747 0.0% 0.0 None

C Model Tuning: Weather Extraction Feature Sizes

This subsection begins the study of hyperparameters, specifically for tailoring
them to the performance of different models. For this task, the dimensionality
of each weather extraction mechanisms is varied. In a convolutional network,
this can simply be accomplished by varying the number of filters, or channels,
associated with a convolutional layer. Because attention mechanisms do not
have this sort of parameter, the dimensionality is altered directly, assigning

36

a data dimension equivalent to the number of parameters that would be
present in a comparable convolutional layer.

For this task, two models are considered: CNN-LSTM and SA-LSTM;
it is assumed that the extraction channel configurations may be transferred
to other models, regardless of recurrence type. The dimensionality of each
model’s hidden and output weather extraction layers were varied between 1
and 32 channels (or a multiple thereof, for attention layers), with all other
parameters matching those described in Table 3; note one exception: due to
a coding error, the LSTM input size for the SA-LSTM model was set to 10,
instead of 6. Each model was sampled 200 times, to approximate the total
set of combinations; samples were each trained for 50 epochs. Finally, in
addition to prior efforts to insure repeatability, each model weight and bias
was set to 0.5.

To present a clearer picture and eliminate outliers, Figure 20 presents
a 2D scatter plot of the final training and validation losses with all varied
channel depths, limiting the maximum visible loss to .005; a complete set of
plots are available in Appendix I. From the illustrated plots, general regions
of useful depths can be defined. Within the training 2D plot, a large segment
is visible, where the hidden depth (Ch 2) requires a minimum of 9 and the
output depth (Ch 3) requires a minimum of 15. However, this region is
significantly trimmed in the validation loss plot, whose useful region requires
a minimum hidden size of 25, and minimum output size of 20.

Figure 20: Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with Channel Depth Combinations, Limited to Losses no
Greater Than 0.005

37

Examining the best training and validation loss models in Tables 13 and
14 identifies that optimal depths of 12 for both hidden and output layers.
However, this value is toward the outermost region of the identified trends,
and may not provide the best capability over larger data generalizations and
more extensive training. Because of this sample being considered an outlier,
and because the next-best model increasing validation loss by 2∗10−5, hidden
and output convolutional filter sizes of 28 and 22 were selected, respectively.

Table 13: Best Training Results for Varied Channel Depths of CNN-LSTM
Network

Training Loss Validation Loss Epoch Time Hidden Channels Output Channels
0.003351 0.003127 16.90 32 30
0.003351 0.003127 17.22 32 30
0.003365 0.003141 17.19 32 25
0.003386 0.003146 17.09 27 27
0.003397 0.003033 16.57 28 22

Table 14: Best Validation Results for Varied Channel Depths of CNN-LSTM
Network

Training Loss Validation Loss Epoch Time Hidden Channels Output Channels
0.003397 0.003033 16.57 28 22
0.003472 0.003053 19.83 15 30
0.003351 0.003127 16.90 32 30
0.003351 0.003127 17.22 32 30
0.003365 0.003141 17.19 32 25

Once again, scatter plots for the final training and validation loss as
a function of each model’s channel sizes are generated for the SA-LSTM
model; because of the model’s greater general accuracy, the loss limitation
was instead placed at .004, as seen in Figure 21. The best-performing models
are much more scattered for self-attention. While large hidden and output
dimensions are beneficial in training, they appear to facilitate overfitting
in the validation dataset; instead, optimal channel depths consider a much
smaller output size, as marked in the regions.

38

Figure 21: Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with Channel Depth Combinations, Limited to Losses no
Greater Than 0.004

Considering the final loss values in Tables 15 and 16, a minimum valida-
tion loss is achieved with channel sizes os 31 and 8 for the hidden and output
layers, respectively. Because this value falls within the visualized trends,
and no other considerations are apparent, these channel sizes are selected for
future attention-based models.

Table 15: Best Training Results for Varied Channel Depths of SA-LSTM
Network

Training Loss Validation Loss Epoch Time Hidden Channels Output Channels
0.002723 0.003253 22.63 30 25
0.002763 0.003048 20.71 27 31
0.002793 0.003243 22.85 21 29
0.002836 0.003418 20.25 30 6
0.002856 0.002950 20.54 31 8

39

Table 16: Best Validation Results for Varied Channel Depths of SA-LSTM
Network

Training Loss Validation Loss Epoch Time Hidden Channels Output Channels
0.002898 0.002932 20.62 12 12
0.002856 0.002950 20.54 31 8
0.003131 0.002965 20.26 17 4
0.004426 0.002990 20.36 29 8
0.003077 0.003006 20.04 10 27

D Model Tuning: Recurrent Hidden Layer Sizes v. Depths

This subsection presents the efforts of tuning RNN hyperparameters, which
include RNN input size, number of layers, and the number of hidden states
within each layer. The experiments to tune these parameters will primarily
focus on the layers and hidden size, where both will be varied for each model
and losses reported in scatter plots - much like with selection of feature
extraction dimensionality. Instead of drawing 200 samples at random, a set
of 80 samples are pre-defined using a grid search: networks will consider 1
to 4 recurrent layers, each with a common hidden state size (in increments
of 50) between 50 and 1000. Because the RNN has the largest impact on
complexity and training time, both a low number of samples and a smaller
number of epochs (20) were used for this experiment.

Recall that (in Section A) an input size of 10 had been previously iden-
tified as preferred for recurrent neural networks over the prior default of
6. However, the experiments of this subsection were conducted with both,
to validate the assumed performance improvements. Across all models, the
smaller input size was preferred. For all but one experiment (CNN-LSTM),
the minimum achievable loss was greater. While the larger input provided
some relief in model complexity for the achievable results (particularly with
the hidden size of LSTM models), this does not supersede the loss in ac-
curacy. For brevity, figures with input size of 10 are provided in Appendix
II.

Originally, only three models were considered for these experiments: CNN-
LSTM, CNN-GRU, and SA-LSTM. A fourth model (SA-GRU) was added
after the first three were initially executed, as the changes in desirable RNN
parameters varied greatly - both when switching from LSTM to GRUs, and
switching between CNNs and Self-Attention.

40

The optimal RNN parameters for each of the four model types is sum-
marized in Table 17, and examined more closely below.

Table 17: Final Selections for RNN Hyperparameters
Model Type Hidden Output RNN Input RNN Hidden RNN Depth

Extraction Extraction Size
Channel Size Channel Size

CNN-LSTM 28 22 6 1 1000
SA-LSTM 31 8 6 2 600
CNN-GRU 28 22 6 1 650
SA-GRU 31 8 6 2 600

D.1 CNN-LSTM Running the grid search across CNN-LSTM samples
yielded the set of scatter plots in Appendix II. To minimize clutter, only
a 2D view, limited to errors at or below 0.01 are presented in Figure 22.
From these figures, it can be observed that this model benefits most from
LSTM with either a large hidden size or multiple layers, occasionally both;
this echoes initial trends from A.

Figure 22: Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with CNN-LSTM RNN Parameter Combinations, Limited
to Losses no Greater Than 0.01

Comparing these figures with the table of top-performing models (by val-
idation loss) in Tables 18 and 19, it becomes apparent that a larger hidden
state size has greater impact on accuracy. While the best-performing model

41

incorporates both a large hidden size and large depth, this utilizes more re-
sources than can be reasonably provided - resulting in an epoch training time
close of 64 seconds. To provide the greatest accuracy without significantly
impacting training time, a single layer of LSTM with hidden size of 1000 is
selected.

Table 18: Best Training Results for Varied RNN Hyperparameters of CNN-
LSTM Network

Training Loss Validation Loss Epoch Time RNN Depth RNN Hidden Size
0.004225 0.004442 71.69 4 1000
0.004474 0.004683 24.16 3 250
0.004811 0.004389 23.24 1 1000
0.004933 0.005441 25.89 3 100
0.004951 0.005050 37.04 3 150

Table 19: Best Validation Results for Varied RNN Hyperparameters of CNN-
LSTM Network

Training Loss Validation Loss Epoch Time RNN Depth RNN Hidden Size
0.006081 0.004387 64.82 4 900
0.004811 0.004389 23.24 1 1000
0.004225 0.004442 71.69 4 1000
0.004474 0.004683 24.16 3 250
0.005408 0.004701 22.54 1 950

D.2 SA-LSTM Considering the results for LSTM models with self-attention
for an extraction layer provides a cleaner selection process. The 2D scatter
plots presented in Figure 23 only consider samples with losses at or below
0.01; from this, we can observe that fewer models retain a useful accuracy as
LSTM depth increases. Additionally, the best visible accuracies still require
a moderate-to-large hidden layer size.

42

Figure 23: Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with SA-LSTM RNN Parameter Combinations, Limited
to Losses no Greater Than 0.01

The results listed in Tables 20 and 21 tend to validate the previously-
observed trends. As a result, a hidden size of 600 and depth of 2 layers
was selected for SA-LSTM models. This reflects a capable and useful model;
this parameter selection relays a balance of strong validation and training
accuracy, while also not requiring significant resources (inferred from the
training epoch time of 32 seconds).

Table 20: Best Training Results for Varied RNN Hyperparameters of SA-
LSTM Network

Training Loss Validation Loss Epoch Time RNN Depth RNN Hidden Size
0.003858 0.003735 39.57 2 950
0.003910 0.003508 31.72 2 600
0.003994 0.004477 37.97 2 900
0.004147 0.003829 26.92 1 950
0.004197 0.004902 45.75 3 750

43

Table 21: Best Validation Results for Varied RNN Hyperparameters of SA-
LSTM Network

Training Loss Validation Loss Epoch Time RNN Depth RNN Hidden Size
0.003910 0.003508 31.72 2 600
0.003858 0.003735 39.57 2 950
0.004147 0.003829 26.92 1 950
0.004535 0.003867 25.67 1 1000
0.005072 0.004236 27.87 1 400

D.3 CNN-GRU The results from testing CNN-GRU models have no-
table trends. Most apparently in the limited-view scatter plots of Figure
24 is the lack of effectively-trained models; roughly 25 models were able to
achieve a final training loss that surpassed the limit of 0.01. Of those that
did meet the threshold, most models required only one layer of recurrence
and a moderate hidden-state size; in comparison to CNN-LSTM, GRU can
achieve a compromised degree of accuracy for this specific task, albeit with a
much more resource- and time-efficient model. With a longer model training
time, this accuracy disparity may become negligible.

Figure 24: Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with CNN-GRU RNN Parameter Combinations, Limited
to Losses no Greater Than 0.01

Considering the final loss values in Tables 22 and 23, most apparent
samples validate the above trends, with exception for a single layer of 150
GRU cells. Going forward, a single GRU layer of size 650 will be used in

44

CNN-GRU models. This selection provided the best validation loss of the
samples displayed; furthermore, the sample remained within the understood
trends of this model type, and did not use an excess of computing resources.

Table 22: Best Training Results for Varied RNN Hyperparameters of CNN-
GRU Network

Training Loss Validation Loss Epoch Time RNN Depth RNN Hidden Size
0.004417 0.004434 16.01 1 650
0.004432 0.005020 24.08 1 550
0.004446 0.005145 26.19 1 500
0.004549 0.004528 15.56 1 600
0.004613 0.005121 15.75 1 450

Table 23: Best Validation Results for Varied RNN Hyperparameters of CNN-
GRU Network

Training Loss Validation Loss Epoch Time RNN Depth RNN Hidden Size
0.004417 0.004434 16.01 1 650
0.004549 0.004528 15.56 1 600
0.004632 0.004673 16.48 1 400
0.004959 0.004936 15.34 1 150
0.004432 0.005020 24.08 1 550

D.4 SA-GRU When utilizing self-attention to extract weather behav-
iors, the paradigm of useful GRU features shifts significantly. As seen in
figure 25, an increase in models meeting the threshold loss can be noted; for
training, 37 models achieved a loss no greater than 0.01. Additionally, the
region of desirable models has shifted almost exclusively to the newly-visible
set, whose recurrent depth is 2 and holds greatest interest in moderate hidden
sizes.

45

Figure 25: Training (left) and Validation (right) Scatter Plots of Training
Losses Associated with SA-GRU RNN Parameter Combinations, Limited to
Losses no Greater Than 0.01

Considering the finalized losses in Tables 24 and 25, a recurrent depth of
2 layers and hidden size of 600 was selected; coincidentally, this is identical to
the hyperparameters for SA-LSTM. This sample provides the best training
and validation loss, and remains within the limited trends for this model
type. The compute utilization remains somewhat negligible, with an epoch
training time of roughly 23 seconds.

Table 24: Best Training Results for Varied RNN Hyperparameters of SA-
GRU Network

Training Loss Validation Loss Epoch Time RNN Depth RNN Hidden Size
0.004084 0.003586 23.45 2 600
0.004188 0.004547 23.67 2 450
0.004615 0.005259 23.00 2 250
0.004905 0.005755 25.04 2 350
0.005350 0.004908 24.88 1 550

46

Table 25: Best Validation Results for Varied RNN Hyperparameters of SA-
GRU Network

Training Loss Validation Loss Epoch Time RNN Depth RNN Hidden Size
0.004084 0.003586 23.45 2 600
0.004188 0.004547 23.67 2 450
0.005350 0.004908 24.88 1 550
0.004615 0.005259 23.00 2 250
0.005382 0.005474 19.43 1 650

E Model Tuning: Optimizer Selection

Expanding on prior results, the question of an appropriate optimizer is re-
visited. For overfitting and hyperparameter tuning, RMSProp had been em-
ployed, as it significantly exacerbated the overfitting challenge. This section
briefly considers RMSProp’s usefulness against the presumed default opti-
mizer, Adam. Due to time constraints, a learning rate of 2 ∗ 10−4 is assumed
to be useful. Each tuned model type is considered, with optimal parameters
listed in Table 26. Each model is again initialized with all parameters set to
0.5, and trained for 50 epochs.

Table 26: Final Selections for Hyperparameters
Model Type Hidden Output RNN Input RNN Hidden RNN Depth Optimizer

Extraction Extraction Size
Channel Size Channel Size

CNN-LSTM 28 22 6 1 1000 RMSProp
SA-LSTM 31 8 6 2 600 Adam
CNN-GRU 28 22 6 1 650 RMSProp
SA-GRU 31 8 6 2 600 RMSProp

For all but one model type (SA-LSTM),both training and validation
model performance remained better with the use of RMSProp as opposed to
Adam; CNN-LSTM in particular reflects this, as Adam was unable to gener-
ate a convergent model whatsoever. no doubt, the preference for RMSProp
is at least partially a reflection of the optimizer’s use throughout parameter
tuning. The training results for each optimizer are listed in Figure 26 for
CNN-LSTM; Figure 27 for SA-LSTM; Figure 28 for CNN-GRU; and Figure
29 for SA-GRU.

47

Figure 26: CNN-LSTM Training Plots using Adam (left) and RMSProp
(right) Optimizers. Note that Adam Does Not Converge for the Given Model

Figure 27: SA-LSTM Training Plots using Adam (left) and RMSProp (right)
Optimizers

48

Figure 28: CNN-GRU Training Plots using Adam (left) and RMSProp (right)
Optimizers

Figure 29: SA-GRU Training Plots using Adam (left) and RMSProp (right)
Optimizers

From a brief discussion in [21], it is noted that adaptive optimizers such
as RMSProp and Adam may poorly generalize models; the experiments con-
ducted in [21] all are performed over hundreds of epochs, such that there
are more optimizer steps than there are model parameters. As a result, it is
hypothesized their findings may be applicable for this task. Over the course
of 300 epochs, the tuned CNN-LSTM model was initialized and trained with
a set of optimizers; Adam is included twice in these results, once of which
without a weight regularization penalty, as a result of a coding error. For

49

each optimizer, 5 models are trained with random parameter initializations;
each training session and the average of each optimizer is plotted in Figure
30. Due to a limited amount of time, default learning rates are assumed for
each optimizer based on those present in Pytorch and Keras, and the weight
decay selected in subsection B is transferred to each optimizer; the selected
learning rates are listed in Table 27.

Table 27: Default Parameters of Tested Optimizers
Optimizer Learning Rate Weight Regularization Momentum

SGD 0.01 1 ∗ 10−6 0.0
SGD+Momentum 0.01 1 ∗ 10−6 0.5

SGD+Nesterov 0.01 1 ∗ 10−6 0.5
Adam 0.001 1 ∗ 10−6 N/A

Adam with
Initial 0.001 0.0 N/A

Parameters
Adadelta 1.0 1 ∗ 10−6 N/A
Adagrad 0.01 1 ∗ 10−6 N/A

RMSProp 0.0001 1 ∗ 10−6 N/A

Figure 30: Training (left) and Validation (right) Losses of Optimizers with
Default Parameters for Tuned CNN-LSTM Model

50

From these results, it is noted that adaptive optimizers are likely to re-
main useful in this task. It is possible Stochastic Gradient Descent (SGD)
and its momentum variants (SGD+momentum, SGD+nesterov) may im-
prove in accuracy with selection or scheduling of learning rates, as well as
with additional training epochs; however, these possibilities could not be fur-
ther explored. The selected optimizer is used in the revisited tuning results
of Subsection C.

6 Final Model Evaluations

After completing all model tuning for the four models in 26, a series of fi-
nalized model trainings and evaluations is conducted. This section considers
several distinct evaluations to improve performance: re-training sets of de-
fault models with the parameters in Table 3, this time using the generalized
two-week data, to illustrate the effect of generalizing model data; and train-
ing the sets of tuned models from Table 26 on generalized two-week data, in
order to illustrate the effects of a careful hyperparameter selection. Results
in this section are briefly described in terms of mean and standard deviation
of trajectory errors; for a more comprehensive view of the model assessments,
see Appendix III.

A Data Generalization Results

For this comparison, three models (CNN-LSTM, SA-LSTM, CNN-GRU)
are considered with the associated default parameters described in Table
3. These models are trained with the 734 flights collected in the general-
ized two-week flight data over 500 epochs and using a 4-fold cross validation.
From this, the trajectorywise error results are listed in Table 28. This ta-
ble lists error for each model in two separate forms: one, which considers
all flights in the validation set, and one which considers only the subset of
flights from New York to Los Angeles within each validation set. Any avail-
able, comparable error from the initial training in 4 are listed alongside these
errors, as well as percent improvements over the initial training.

51

Table 28: Summary of Data Generalization Model Performance
Case Initial Initial Case Case Improvement over Improvement over

Horizontal Vertical Horizontal Vertical Initial Initial
Error Error Error Error Horiz. Error Vertical Error

(µµµ/σ in nmi) (µµµ/σ in ft) (µµµ/σ in nmi) (µµµ/σ in ft) (µµµ/σ as percent) (µµµ/σ as percent)

CNN-LSTM 63.5584 1160.27 48.5837 1525.08 23.561 -31.442
Total Data 26.8905 1500.83 63.1849 2121.23 -134.971 -41.337

CNN-LSTM 63.5584 1160.27 29.5634 711.24 53.486 38.700
KJFK-KLAX 26.8905 1500.83 67.8611 1673.58 -152.361 -11.510
CNN-GRU 59.8954 1120.04 44.5988 1486.57 25.539 -32.725
Total Data 28.0559 1399.75 40.8868 2032.41 -45.733 -45.198

CNN-GRU 59.8954 1120.04 26.3954 686.36 55.931 38.720
KJFK-KLAX 28.0559 1399.75 46.1633 1597.22 -64.541 -14.107
SA-LSTM 40.9453 804.73 53.1642 1565.15 -29.842 -94.493
Total Data 23.7972 1054.89 67.7009 2183.16 -184.49 -106.956
SA-LSTM 40.9453 804.73 33.4991 732.47 18.186 8.980

KJFK-KLAX 23.7972 1054.89 72.7729 1708.79 -205.804 -61.987

From the table, several trends can be noted. In general, training with
identical model hyperparameters over the generalized flight dataset yielded
models which were more accurate in terms of average error, but varied in
accuracy significantly more than initial models. This is especially noted
in comparisons of horizontal error, though the trend is also present when
comparing model evaluation over the restricted set of flight between New
York and Los Angeles.

For all models trained with the generalized data set, their vertical error
was notably worse when evaluated with the total set of flights than with the
subset of flights. This is certainly a reflection of the nature of that subset.
Recalling from Table 8, flights from New York to Los Angeles are the longest
duration considered at over 5 hours; as a result, they have the longest flight
duration at a cruising altitude, where a model is most likely to accurately
predict the flight’s elevation. Since the evaluation of the total set of flights
considers aircraft spending more of their route in a climb or descent, each
model’s shortcomings in predicting altitude are heavily depicted. It should be
noted that these shortcomings may be a reflection of naive data preprocessing
approaches, which do not accurately represent the climb and descent of an
aircraft when generating a 4D flight plan.

52

Generally speaking, SA-LSTM is somewhat of an outlier in the results
presented. The SA-LSTM model trained with generalized flight data failed
both to maintain a relative standing as the best model of those tested with
a given set of data, as well as to improve on its accuracy in a meaningful
over the initial SA-LSTM model. While it is true that the model improves in
mean horizontal error once evaluations are restricted to flights from KJFK to
KLAX, the variance in error notably large. It is believed that the shortcom-
ings of SA-LSTM are a reflection of the assumed model hyperparameters.
Self-attention parameters were not available from prior research, nor thor-
oughly tested; as a result, it is both possible and likely that the self-attention
layers lacked the necessary complexity to generalize for this task.

It is hypothesized that the increase in error variance is a reflection of
the model’s inability to generalize along with the newly-available data. As-
sumptions for default hyperparameters were made based on the model in [2],
which focused on a convolutional-recurrent design for flights from New York
to Lose Angeles exclusively; as a result, both convolutional-recurrent designs
(CNN-LSTM, CNN-GRU) may be hindered by limitations in network size,
while these limitations are further exacerbated with models utilizing self-
attention. A supplemental reason for the variance still assumes the models
faced challenges with generalization, but specifically considers the selection
of optimizer as a reason for this challenge. Discussions in [21] indicate that
the use of adaptive optimizers such as RMSProp and Adam may prevent
models from effectively generalizing to support new data, particularly for
smaller data sizes such as this situation.

B Model Tuning Results

For this comparison, the models using tuned hyperparameters in Table 26
are trained with the two-week generalized data over 500 epochs, also with a
4-fold cross-validation. Their trajectorywise errors are reported in Table 29,
with reference to the errors of the complete validation sets listed in Table 28.

53

Table 29: Summary of Initial Model Tuning Performance
Model Default Default Tuned Tuned Improvement over Improvement over

Horizontal Vertical Horizontal Vertical Default Default
Error Error Error Error Horiz. Error Vertical Error

(µµµ/σ in nmi) (µµµ/σ in ft) (µµµ/σ in nmi) (µµµ/σ in ft) (µµµ/σ as percent) (µµµ/σ as percent)

CNN-LSTM 48.5837 1525.08 55.9422 1531.31 -15.146 -0.408
63.1848 2121.23 40.8471 1973.87 35.353 6.947

CNN-GRU 44.5988 1486.57 56.6427 1575.88 -27.005 -6.008
40.8868 2032.41 39.0383 1973.20 4.521 2.913

SA-LSTM 53.1642 1565.15 47.3686 1722.35 10.901 -10.044
67.7009 2183.16 34.4715 2041.98 41.697 6.466

SA-GRU 46.6859 1646.01 NaN NaN NaN NaN
44.1792 2232.96 NaN NaN NaN NaN

Before discussing the results in greater detail, an experimental error
should be noted. For this task, it was intended that all models would be
initialized with weights and biases set to 0.5. However, this yielded results
with significant error; most notably, the final model in Table 29 (SA-GRU)
was unable to converge to a useful model implementation. Due to a limita-
tion of time, only one set of models (those using the default hyperparameters
in Table 3) was able to be re-trained with a random initialization; as a result,
it is likely that the tuned model results represent a poor implementation for
this task.

Even so, the tuned models indicate their ability to address the main
concern previously encountered: a poor ability to generalize, resulting in
large error variances. For all models and each error, the standard deviation
was able to be reduced, even if marginally. Were the models retrained with
a random initialization, it is expected that the tuned models would find
significant improvements in error variance.

Special concern should be given to SA-LSTM, as the only model which can
represent the possibilty of improvements in the use of self-attention for a more
generalized dataset. While the model’s mean horizontal error (47.4 nmi) does
not improve over the initial SA-LSTM’s accuracy, it does improve over that
presented by the generalized model; furthermore, the accuracy is in-line with
and outperforming that of other tuned models considered in this experiment.
From this, it can be assumed that the parameters for self-attention have been
meaningfully prescribed for this task, and that self-attention still remains a

54

viable and competitive deep learning mechanism for improving trajectory
prediction.

C Revisited Model Tuning

After disabling the constant parameter initialization and selecting an opti-
mizer based on a larger collection of tests, the four models were re-trained
with otherwise identical setup to the prior tuning comparison: models were
trained over 500 epochs with a four-fold cross-validation using the generalized
flight data over a 2-week period. This time, each model was trained using the
Adam optimizer, with a learning rate of 0.001 and no weight regularization.

Table 30: Summary of Final Model Tuning Performance
Model Default Default Tuned Tuned Improvement over Improvement over

Horizontal Vertical Horizontal Vertical Default Default
Error Error Error Error Horiz. Error Vertical Error

(µµµ/σ in nmi) (µµµ/σ in ft) (µµµ/σ in nmi) (µµµ/σ in ft) (µµµ/σ as percent) (µµµ/σ as percent)

CNN-LSTM 48.5837 1525.09 47.9694 1489.36 1.170 2.343
63.1848 2121.23 36.8354 1985.36 41.702 6.405

CNN-GRU 44.5988 1486.57 NaN NaN NaN NaN
40.8868 2032.41 NaN NaN NaN NaN

SA-LSTM 53.1642 1565.15 48.0979 1424.11 9.530 9.011
67.7009 2183.16 36.6018 1830.96 45.936 16.133

SA-GRU 46.6859 1646.01 NaN NaN NaN NaN
44.1792 2232.96 NaN NaN NaN NaN

The results presented in Table 30 show some improvement, with notable
limitations. neither GRU-based model could consistently converge; this is
likely a reflection of the choice of optimizer and learning rate, which may
have allowed for rapid changes to the model, causing an exploding gradient
problem. From the LSTM models that did converge, however, accuracies
are somewhat more in-line with desired results: CNN-LSTM was able to
improve its horizontal error (7.97 and 4.01 nmi in mean and standard devi-
ation, respectively), as well as SA-LSTM notably (298 and 211 ft in mean
and standard deviation). Even so, these improvements are marginal; initial
results in Table 4 found models capable of predicting with desirable accuracy
- particularly SA-LSTM. Additional optimizer tuning will likely reduce error,

55

specifically horizontal error. Large vertical error may be a reflection of poor
flight plan processing, as previously referenced in subsection A.

56

V FUTURE WORK

A number of extensions are relevant to the task of trajectory prediction, and
are highlighted in this section.

1 Trajectory Prediction Refinement

Needless to say, this work on 4D trajectory prediction is not comprehensive.
Additional efforts may include further weather data assessment and data
generalization, as well as further attempts to tune and improve architecture
design.

Regarding data: this body of work predominantly focused on a two-
week period of flights, regardless of whether the collection of flights was
generalized. Selection of flight and weather data should consider varied time
periods, covering different seasons within the year as well as the same date
ranges from prior years, to insure the model is trained for a more general
set of weather patterns. As of the submission of this thesis, processing was
completed for the generalized set of 5 flights over 100 days (November 1st,
2018 through February 5th, 2019), but could not be used in training as a
function of time.

Additionally, other weather products and combinations may still be con-
sidered; of particular interest is air pressure, as it is closely related to tem-
perature and air movements, and consequently may reflect wind turbulence
between altitudes. Combinations should be revisited, particularly with the
gained knowledge of model reproducibility, to re-assess the accuracy of weather
products and combinations.

Because the airspace has far more combinations of departure and ar-
rival locations than could realistically be incorporated into this dataset, it is
important to accentuate the possibility of unknown flight routes. In future
research, a number of departure/arrival pairs should be included in validation
data - and excluded from training data - to better represent this challenge.

A final note on data: as experiments with data generalization were con-
ducted, the flaws in simplistic flight plan developments became apparent
- especially in representing altitude, climb, and descent. Two approaches
should be considered to alleviate this challenge. A preferred approach would
be the coordination to understand systems behavior that dictates climb and
descent phases of a flight; this knowledge should be incorporated into pre-
processing, if possible. However, this may be impractical due to knowledge

57

accessibility or complexity; it may be appropriate to limit the scope of tra-
jectory prediction to the duration of a flight at cruising altitude.

From an architecture standpoint, several parameters may be useful which
were not considered in the scope of this thesis. As mentioned in B, normal-
ization should be revisited, as other scopes of normalization may prove useful
for this task. Additionally, in-model preprocessing techniques may be useful,
such as incorporating matrix decomposition into weather behavior extrac-
tion in order to efficiently locate and learn patterns in weather data. On
the aspect of generalization, attention mechanisms may still be explored; in
computer vision, they are used to identify regions of interest within an image,
to reduce the computation performed by a model when recognizing images;
this principle might be applied to the gridded data of the continental United
States, potentially allowing the prediction model to be generalized for multi-
ple flights without scaling memory usage associated with each flights’ set of
feature cubes. A more in-depth assessment of optimizer choice and tuning
is also worth considering, especially given the intended number of training
epochs and the possibility that adaptive optimizers may poorly generalize
the model [21]. Finally, tuning may be revisited with algorithmic optimizers,
particularly Bayesian-assisted techniques such as Bayesian-Optimized Hyper-
Band, which may learn and adjust hyperparameters throughout a training
process [22].

2 Applying Trajectory Prediction

As referenced in Section I, trajectory prediction is seen as a cornerstone
to providing data inputs for spectrum allocation. In current research, it is
hoped that an accurate 4D trajectory may help to localize flights within
airspace sectors (identifying what resources are available for assignment),
as well as estimating path loss from standard equations for air-to-ground
communications [23].

58

Figure 31: Notional Architecture for Communication Demand Prediction

Of greatest consequence, though, would be using an accurate trajectory
predictions to infer communication demand. Limited communication data
are available for this task, however a set of rules are generally known to affect
and require communications. These rules include aircraft handoff between
ATC sectors, as well as a set of flight adjustments (i.e. changes to altitude,
flight path, and airspeed). Consequently, it is believed that a deep learning
model may be developed to infer flight communications from predicted tra-
jectories, flight plans, ATC sector boundaries, and available weather data. A
notional architecture is provided in Figure 31, though significant effort must
be continued for this task.

59

VI CONCLUSIONS

Future spectrum allocation techniques in the NAS are anticipated to rely
on machine learning. Research efforts are attempted to develop deep learn-
ing architectures for the accurate prediction of aircraft locations and may
continue to investigate consequent communication demand.

A general analysis of weather products found Echo Top as the best holistic
product for model training, providing average horizontal and vertical accura-
cies of 50 nautical miles and 1160 ft, respectively. NOAA weather products,
specifically temperature and wind components, were found to marginally
improve vertical error (2-5% reduction), but would require sacrificing the
sparsity and limited dimensionality of data.

By incorporating attention mechanisms into existing hybrid-recurrent ar-
chitectures, model accuracy has the potential of increasing by over 60% -
predicted trajectories resided within 41 nautical miles horizontally and 805
ft of elevation, on average. This result outperforms reported accuracies in
state-of-the-art deep learning research, and is competitive against prior ma-
chine learning approaches as well.

The author’s greatest perceived contribution is the unification and gen-
eralization of data and challenges within trajectory prediction; existing lit-
erature addressed unique flights, datasets, and models, with reported errors
that were difficult to contextualize in a literature review alone. When training
comparable models over limited and generalized datasets, it was not uncom-
mon for error variances to increase by more than a factor of 2. Incorporat-
ing tuned hyperparameters helped some models to maintain or marginally
improve on initial errors, however most vertical error increased by approx-
imately 22% - on average and standard deviation. By starting to consider
a variety of data, this thesis hopes to illustrate the complexity and impor-
tance of generalizing the trajectory prediction challenge in state-of-the-art
research.

60

I APPENDIX A: COMPLETE EXTRACTION

CHANNEL TUNING FIGURES

1 CNN-LSTM

Figure 32: Training (left) and Validation (right) 3D Scatter Plots of Varied
Channel Depths for CNN-LSTM Model, with Complete (top) and Limited
(bottom) Sample Views

61

Figure 33: Training (left) and Validation (right) 2D Scatter Plots of Varied
Channel Depths for CNN-LSTM Model, with Complete (top) and Limited
(bottom) Sample Views

62

2 SA-LSTM

Figure 34: Training (left) and Validation (right) 3D Scatter Plots of Varied
Channel Depths for SA-LSTM Model, with Complete (top) and Limited
(bottom) Sample Views

63

Figure 35: Training (left) and Validation (right) 2D Scatter Plots of Varied
Channel Depths for SA-LSTM Model, with Complete (top) and Limited
(bottom) Sample Views

64

II APPENDIX B: COMPLETE RNN HY-

PERPARAMETER TUNING FIGURES

1 CNN-LSTM

Figure 36: Training (left) and Validation (right) 3D Scatter Plots of Varied
RNN Hyperparameters for CNN-LSTM Model with Input Size of 6, with
Complete (top) and Limited (bottom) Sample Views

65

Figure 37: Training (left) and Validation (right) 2D Scatter Plots of Varied
RNN Hyperparameters for CNN-LSTM Model with Input Size of 6, with
Complete (top) and Limited (bottom) Sample Views

66

Figure 38: Training (left) and Validation (right) 3D Scatter Plots of Varied
RNN Hyperparameters for CNN-LSTM Model with Input Size of 10, with
Complete (top) and Limited (bottom) Sample Views

67

Figure 39: Training (left) and Validation (right) 2D Scatter Plots of Varied
RNN Hyperparameters for CNN-LSTM Model with Input Size of 10, with
Complete (top) and Limited (bottom) Sample Views

68

2 SA-LSTM

Figure 40: Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for SA-LSTM Model with Input Size of 6, with
Complete (top) and Limited (bottom) Sample Views

69

Figure 41: Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for SA-LSTM Model with Input Size of 6, with
Complete (top) and Limited (bottom) Sample Views

70

Figure 42: Training (left) and Validation (right) 3D Scatter Plots of Varied
RNN Hyperparameters for SA-LSTM Model with Input Size of 10, with
Complete (top) and Limited (bottom) Sample Views

71

Figure 43: Training (left) and Validation (right) 2D Scatter Plots of Varied
RNN Hyperparameters for SA-LSTM Model with Input Size of 10, with
Complete (top) and Limited (bottom) Sample Views

72

3 CNN-GRU

Figure 44: Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-GRU Model with Input Size of 6, with
Complete (top) and Limited (bottom) Sample Views

73

Figure 45: Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for CNN-GRU Model with Input Size of 6, with
Complete (top) and Limited (bottom) Sample Views

74

Figure 46: Training (left) and Validation (right) 3D Scatter Plots of Varied
RNN Hyperparameters for CNN-GRU Model with Input Size of 10, with
Complete (top) and Limited (bottom) Sample Views

75

Figure 47: Training (left) and Validation (right) 2D Scatter Plots of Varied
RNN Hyperparameters for CNN-GRU Model with Input Size of 10, with
Complete (top) and Limited (bottom) Sample Views

76

4 SA-GRU

Figure 48: Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for SA-GRU Model with Input Size of 6, with
Complete (top) and Limited (bottom) Sample Views

77

Figure 49: Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for SA-GRU Model with Input Size of 6, with
Complete (top) and Limited (bottom) Sample Views

78

Figure 50: Training (left) and Validation (right) 3D Scatter Plots of Var-
ied RNN Hyperparameters for SA-GRU Model with Input Size of 10, with
Complete (top) and Limited (bottom) Sample Views

79

Figure 51: Training (left) and Validation (right) 2D Scatter Plots of Var-
ied RNN Hyperparameters for SA-GRU Model with Input Size of 10, with
Complete (top) and Limited (bottom) Sample Views

80

III APPENDIX C: EVALUATION VISUALS

OF TRAINED MODELS

1 Initial Trained Model Plots

Figure 52: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM1lay Model

Figure 53: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM2lay Model

81

Figure 54: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU1lay Model

Figure 55: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU2lay Model

82

Figure 56: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-IndRNN2lay Model

Figure 57: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-IndRNN3lay Model

83

Figure 58: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN+SA-LSTM1lay Model

Figure 59: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN+SA-LSTM2lay Model

84

Figure 60: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM1lay Model

Figure 61: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM2lay Model

85

2 Data Generalization Model Plots

A CNN-LSTM

Figure 62: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM Generalized Model

Figure 63: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM Generalized Model, KJFK-KLAX Flight Subset

86

B CNN-GRU

Figure 64: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU Generalized Model

Figure 65: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU Generalized Model, KJFK-KLAX Flight Subset

87

C SA-LSTM

Figure 66: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM Generalized Model

Figure 67: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM Generalized Model, KJFK-KLAX Flight Subset

88

D SA-GRU

Figure 68: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM Generalized Model

Figure 69: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-GRU Generalized Model, KJFK-KLAX Flight Subset

89

3 Model Tuning Model Plots

Figure 70: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-LSTM Generalized and Tuned Model

Figure 71: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for CNN-GRU Generalized and Tuned Model

90

Figure 72: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-LSTM Generalized and Tuned Model

Figure 73: Trajectorywise Horizontal (left) and Vertical (right) Error His-
tograms for SA-GRU Generalized and Tuned Model

91

Bibliography

[1] OpenNav, “Opennav aeronautical database,” in http://opennav.com.
Accessed 2020-09-23.

[2] Y. Pang, H. Yao, J. Hu, and Y. Liu, A Recurrent Neural Network Ap-
proach for Aircraft Trajectory Prediction with Weather Features From
Sherlock. 2019.

[3] Massachusetts Institute of Technology, “Corridor integrated weather ser-
vices web display,” in https://ciws.wx.ll.mit.edu/, 2021. Accessed 2021-
04-27.

[4] R. D. Apaza, E. J. Knoblock, and H. Li, “A new spectrum management
concept for future nas communications,” in 2020 AIAA/IEEE 39th Dig-
ital Avionics Systems Conference (DASC), pp. 1–7, 2020.

[5] M. M. Eshow, M. Lui, and S. Ranjan, “Architecture and capabilities of
a data warehouse for atm research,” in 2014 IEEE/AIAA 33rd Digital
Avionics Systems Conference (DASC), pp. 1E3–1–1E3–14, 2014.

[6] Y. Liu and M. Hansen, “Predicting aircraft trajectories: A deep genera-
tive convolutional recurrent neural networks approach.,” arXiv preprint
arXiv:1812.11670, 2018.

[7] S. Ayhan and H. Samet, “Aircraft trajectory prediction made easy with
predictive analytics,” in Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD
’16, (New York, NY, USA), p. 21–30, Association for Computing Ma-
chinery, 2016.

92

[8] J. Klingle-Wilson, D.; Evans, “Description of the corridor integrated
weather system (ciws) weather products,” tech. rep., Lincoln Labora-
tory, Massachusetts Institute of Technology, 2005.

[9] V. A. Petrushin, “Hidden markov models: Fundamentals and appli-
cations,” in 2000 Online Symposium for Electrical Engineers (OSEE),
2000.

[10] Y. Lecun and A. Canziani, “Deep learning: Ds-ga 1008, spring 2020,” in
https://atcold.github.io/pytorch-Deep-Learning/, 2021. Accessed: 2020-
11-15.

[11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.355v1, 12 2014.

[12] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, “Independently recurrent
neural network (indrnn): Building a longer and deeper rnn,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5457–5466, 2018.

[13] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and
J. Shlens, “Stand-alone self-attention in vision models,” in Advances
in Neural Information Processing Systems (H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32,
Curran Associates, Inc., 2019.

[14] L. Ma and S. Tian, “A hybrid cnn-lstm model for aircraft 4d trajectory
prediction,” IEEE Access, vol. 8, pp. 134668–134680, 2020.

[15] N. Schimpf, “Weather preprocessing,” in Github,
https://github.com/schimpfen/Weather-Preprocessing, 2021.

[16] N. Schimpf, “Flight track prediction,” in Github,
https://github.com/schimpfen/Flight-Track-Prediction, 2021. De-
velopment in-progress.

[17] N. Schimpf, E. J. Knoblock, Z. Wang, R. D. Apaza, and H. Li, “Flight
trajectory prediction based on hybrid-recurrent networks,” in 2021
IEEE Cognitive Communications for Aeronautical Applications Work-
shop (CCAAW), pp. 1–6, 2021.

93

[18] Y. Pang, N. Xu, and Y. Liu, “Aircraft trajectory prediction using lstm
neural network with embedded convolutional layer,” in Conference of the
PHM Society 11, PHM 2019, (Scottsdale, AZ, USA), pp. 1–10, Prognos-
tics and Health Management Society (PHM), 2019.

[19] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Sto-
ica, “Tune: A research platform for distributed model selection and
training,” arXiv preprint arXiv:1807.05118, 2018.

[20] PyTorch, “Reproducibility,” in https://pytorch.org/docs/stable/notes/randomness.html.
Accessed 2021-6-7.

[21] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The
marginal value of adaptive gradient methods in machine learning,” 2018.

[22] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient hyper-
parameter optimization at scale,” 2018.

[23] International Civil Aviation Organization, ICAO Handbook on Radio
Frequency Spectrum Requirements for Civil Aviation: Volume II - Fre-
quency Assignment Planning Criteria for Aeronautical Radio Commu-
nication and Navigation Systems, first edition ed., 2017.

[24] B. Sridhar, T. Soni, K. Sheth, and G. Chatterji, “Aggregate flow model
for air-traffic management,” Journal of Guidance, Control, and Dynam-
ics, vol. 29, no. 4, pp. 992–997, 2006.

[25] D. Sun and B. Sridhar, “Traffic flow management using aggregate flow
models and the development of disaggregation methods,” 08 2009.

[26] Y. Cao and D. Sun, “Link transmission model for air traffic flow man-
agement,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 5,
pp. 1342–1351, 2011.

[27] M. Albasman and J. Hu, “An approach to air traffic density estimation
and its application in aircraft trajectory planning,” pp. 706–711, 05
2012.

[28] W. Chan, M. Refai, and R. DeLaura, An Approach to Verify a Model for
Translating Convective Weather Information to Air Traffic Management
Impact. 2007.

94

[29] E. J. Knoblock, R. D. Apaza, H. Li, Z. Wang, R. Han, N. Schimpf, and
N. Rose, “Investigation and evaluation of advanced spectrum manage-
ment concepts for aeronautical communications,” in Proceedings of the
Integrated Communications, Navigation, and Surveillance Conference,
ICNS 2021, 2021.

95

IV VITA

Nathan Schimpf was raised in Fort Thomas, Kentucky. They attended the
University of Louisville, earning a Bachelor of Science in Electrical Engineer-
ing, with High Honors, in 2020. They remained at the University of Louisville
to complete their Master of Engineering in Electrical Engineering.

While an undergraduate, Nathan supported research on physical-layer
wireless systems by developing hardware implementations. They were awarded
an NSF I-CORPS grant through the university to explore the viability of a
startup supporting these implementations. They also remained active with
the university’s IEEE student branch, serving as technology chair and branch
chair.

Nathan is currently interning with NASA Glenn Research Center virtu-
ally. Following the internship, they will be resuming studies at the University
of Louisville, starting in the university’s PhD program.

96

	Flight trajectory prediction for aeronautical communications.
	Recommended Citation

	Dedications
	Acknowledgements
	Abstract
	INTRODUCTION
	BACKGROUND
	Problem Formulation
	Data Products
	Deep Learning Frameworks
	Hidden Markov Model
	Artificial Neural Network
	Convolutional Neural Network
	Recurrent Neural Network
	Attention Mechanisms

	Prior Research

	INSTRUMENTATION AND EQUIPMENT
	TRAJECTORY PREDICTION TASKS AND EXPERIMENTS
	Data Preprocessing
	Recreating the Initial Work
	Weather Data Analysis
	Initial Structure Comparison
	Continued Efforts in Network Exploration
	Model Tuning: Initial (Naive) Attempt
	Model Tuning: Addressing Overfitting
	Model Tuning: Weather Extraction Feature Sizes
	Model Tuning: Recurrent Hidden Layer Sizes v. Depths
	CNN-LSTM
	SA-LSTM
	CNN-GRU
	SA-GRU

	Model Tuning: Optimizer Selection

	Final Model Evaluations
	Data Generalization Results
	Model Tuning Results
	Revisited Model Tuning

	FUTURE WORK
	Trajectory Prediction Refinement
	Applying Trajectory Prediction

	CONCLUSIONS
	APPENDIX A: COMPLETE EXTRACTION CHANNEL TUNING FIGURES
	CNN-LSTM
	SA-LSTM

	APPENDIX B: COMPLETE RNN HYPERPARAMETER TUNING FIGURES
	CNN-LSTM
	SA-LSTM
	CNN-GRU
	SA-GRU

	APPENDIX C: EVALUATION VISUALS OF TRAINED MODELS
	Initial Trained Model Plots
	Data Generalization Model Plots
	CNN-LSTM
	CNN-GRU
	SA-LSTM
	SA-GRU

	Model Tuning Model Plots

	VITA

