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ABSTRACT 

MOTION AND EMOTION ESTIMATION 

FOR ROBOTIC AUTISM INTERVENTION 

Jacob M. Berdichevsky 

August 4, 2021 

Robots have recently emerged as a novel approach to treating autism spectrum 

disorder (ASD). A robot can be programmed to interact with children with ASD in order 

to reinforce positive social skills in a non-threatening environment. In prior work, robots 

were employed in interaction sessions with ASD children, but their sensory and learning 

abilities were limited, while a human therapist was heavily involved in “puppeteering” 

the robot. 

The objective of this work is to create the next-generation autism robot that 

includes several new interactive and decision-making capabilities that are not found in 

prior technology. Two of the main features that this robot would need to have is the 

ability to quantitatively estimate the patient’s motion performance and to correctly 

classify their emotions. This would allow for the potential diagnosis of autism and the 

ability to help autistic patients practice their skills. Therefore, in this thesis, we 

engineered components for a human-robot interaction system and confirmed them in 
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experiments with the robots Baxter and Zeno, the sensors Empatica E4 and Kinect, and, 

finally, the open-source pose estimation software OpenPose 

The Empatica E4 wristband is a wearable device that collects physiological 

measurements in real time from a test subject. Measurements were collected from ASD 

patients during human-robot interaction activities. Using this data and labels of 

attentiveness from a trained coder, a classifier was developed that provides a prediction 

of the patient’s level of engagement. The classifier outputs this prediction to a robot or 

supervising adult, allowing for decisions during intervention activities to keep the 

attention of the patient with autism. 

The CMU Perceptual Computing Lab’s OpenPose software package enables 

body, face, and hand tracking using an RGB camera (e.g., web camera) or an RGB-D 

camera (e.g., Microsoft Kinect). Integrating OpenPose with a robot allows the robot to 

collect information on user motion intent and perform motion imitation. In this work, we 

developed such a teleoperation interface with the Baxter robot. 

Finally, a novel algorithm, called Segment-based Online Dynamic Time Warping 

(SoDTW), and metric are proposed to help in the diagnosis of ASD. Social Robot Zeno, a 

childlike robot developed by Hanson Robotics, was used to test this algorithm and metric. 

Using the proposed algorithm, it is possible to classify a subject’s motion into different 

speeds or to use the resulting SoDTW score to evaluate the subject’s abilities. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Autism spectrum disorder (ASD) affects approximately 1 in 54 US children from 

all racial, ethnic, and socioeconomic groups, as reported by the Centers for Disease 

Control and Prevention (CDC) in 2016 [1]. Individuals with ASD have difficulties 

communicating and interacting with others, restricted interests, and repetitive behaviors 

and have symptoms that impede their ability to function socially, as reported by the 

National Institute of Mental Health [2]. 

The diagnosis of this disorder is subjective, due to the difficulty of quantifying such 

things as cognitive level and language skills. The Autism Diagnostic Observation 

Schedule (ADOS) is a “semi-structured” assessment used to provide a standardized way 

to diagnose ASD [3]. The assessment consists of topics such as social behavior, and use 

of speech and gestures in social situations, among other topics [3]. Lord et al. suggest that 

the ADOS should be administered by professionals who have significant experience with 

ASD patients and the clinical assessment of the disorder [3]. Therefore, to diagnose a 

subject with autism is no small task. 

 Treating individuals affected with ASD can be complicated due to their restricted 

interests and impaired language abilities. According to the CDC, some of the typical 
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treatments include Discrete Trial Training, where a lesson is split into simple parts and 

positive reinforcement is used to reward correct answers, Social Skills Training, which 

teaches the children the skills necessary to interact with others, or Speech Therapy, which 

seeks to improve verbal communication skills [6]. 

The recently awarded National Science Foundation project, SCH:INT Adaptive 

Partnership for Robotic Treatment of Autism [4], aims to tackle some of these challenges 

in diagnosis and therapy to help individuals with this disorder using robotic technology. 

As depicted in Figure 1, the project has several goals, such as creating a quantitative 

severity scale for ASD, creating a robot that can adapt to the human in therapy sessions, 

and, finally, conducting human-robot interaction (HRI) studies between robots and 

children with ASD in a group therapy setting. To help reach the project goals, this thesis, 

focuses on creating subsystems that will enable a robot to be adaptive in a therapy 

scenario by interpreting physiological signals and motion data from ASD subjects. In 

addition, our work also proposed and validated an algorithm that can be used to identify 

the motion quality of a subject during imitation of the robot. This thesis contributes to 

research contributions one, two and four from Figure 1. 
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Figure 1. Diagram of Smart and Connected Health (SCH) Project #1838808 from the US 

National Science Foundation (NSF) 

Research contribution one of the SCH project involves the creation of an ASD 

scale based on the assessment of motion performance and emotional engagement of a 

subject. There are several challenges that need to be considered when developing such a 

scale. Prior to being able to understand the motion performance of ASD subjects, it is 

necessary to acquire and stream sensor data and implement an on-line algorithm to 

quantify the performed motion. The algorithm must be thoroughly tested to validate that 

it can accurately assess the motion quality of a subject. Likewise, classifying the 

emotional engagement of a subject is no easy task. It is necessary to somehow capture the 

physiological and/or psychological signals of a subject, then classify them into different 
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emotions. This involves creating a dataset of physiological signals and labeling them 

appropriately using deep learning classification algorithms. 

In a similar vein, research contribution two focuses on using a robot that can 

adapt during a therapy session. This necessitates that a robot can quantify and understand 

the needs of the user to maximize the effectiveness of the therapy. Previous work in this 

field necessitated heavy involvement of a human to essentially puppeteer (or teleoperate) 

the robot, such as the FACE, AuRoRa, Kaspar, and Keepon robotic systems [7]. By using 

the same algorithms created in research contribution 1, it is possible to enable a robot to 

adapt to the motion quality and emotional engagement of a subject. This will enable the 

creation of a “closed-loop” system for ASD intervention. 

Creating a “closed-loop” system for ASD intervention allows the robot to 

compensate for users’ behavioral variations in each instance of interaction. In the eyes of 

a robot, humans can be difficult to interpret and even behave illogically, which is the 

basis for the field of research in human-robot interaction. By creating a system that can 

understand the motions and emotions of a subject, we are able to strive for a more 

autonomous approach to therapy and diagnosis. This behavior enables a therapist to be 

solely focused on the subject rather than a robot, generates more natural responses from 

the robot (by reducing delay created by puppeteering), and can also help foster a peer-like 

relationship between the subject and the robot. Interpreting the emotional states of a 

subject can enhance the abilities of a robot to ensure the maximum ability of the therapy 

session. Using this information, the robot can be programmed to respond to certain 

emotional states on the fly. For instance, if inattentiveness is detected, the robot can 

respond by prompting the subject to pay attention. Or if the subject becomes frustrated, 



5 

the robot could alert a therapist while also beginning to follow a “calming” routine. These 

are only a few ways that enhancing a robot with the emotional state of a subject can 

beneficial. 

Emotion classification is not the only function of an autism robot that can be 

improved to help ASD patients. A second task is to enable a robot to understand the 

motion quality of the subject. In past works, it has been found that motion quality can be 

indicative of ASD [8]. By enabling a robot to quantify the proficiency of a subject during 

a motion, it could be possible to diagnose a subject before they can even speak. Motion-

quality assessment can also be used to quantify the improvement of a subject during a 

training session. This can be done by viewing the subject’s motion-quality score over 

time as they are trained during a therapy session. Therefore, motion-quality estimation 

would enable the next-generation autism robot to quantifiably track the improvement of a 

subject. 

1.2 Thesis Contributions 

The contribution of this research is to create algorithms and subsystems that can be 

used for motion and emotion estimation to enhance the next-generation autism robot. In 

particular, we utilized a wearable wristband (the Empatica E4) that collects physiological 

measurements in real time from a test subject. Measurements were collected from ASD 

patients during a social skills camp at the University of Louisville Autism Center 

(ULAC). Using this data, we explored different neural network structures and 

hyperparameters to see if an effective classifier can be developed for identifying a 

subject’s attentiveness. The classifier enables the performance of intervention activities 

by a robot or supervising adult to keep attention of the autism patient. 
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The Empatica E4 wristband is a wearable device that collects physiological 

measurements in real time from a test subject. It is equipped with a PPG sensor, GSR 

sensor, three axis accelerometer, infrared thermopile, event mark button, and an internal 

real time clock. This allows the researcher to measure blood volume pulse, heart rate, 

electrical properties of the skin, and skin temperature. In addition, the clock and event 

mark button allow researchers to save snapshots of important events (such as when a 

subject has begun or completed a certain exercise). 

The work with the physiological wristband tackles the problem of creating an 

algorithm for the emotional understanding of a subject. By conducting a study, we are 

creating a dataset that can be used for classification of the subject’s affective state. In this 

dataset, we explored the attentiveness of two subjects and the ability to classify it using 

neural networks. Some of the models developed as part of this work were able to classify 

the attentiveness of a subject at 68% accuracy. In the future, the experimental knowledge 

can be used to generate new studies and classifiers to capture other emotions. This will 

enable the next-generation autism robot to become more sensitive to the needs of the 

subject. 

Using the CMU Perceptual Computing Lab’s OpenPose software package, which 

enables body, face, and hand tracking using a camera (such as a Microsoft Azure Kinect), 

we were able to teleoperate a robot so that it could imitate the upper body motion of a 

user. This enhances our previous work in motion quality estimation with more data about 

the subject and provides a way to record and generate trajectories from a human subject 

who is performing a motion. 
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Skeletal tracking will be a necessary function for the next-generation autism robot 

to examine a subject’s motion quality. Combining OpenPose’s tracking abilities with a 

robot enables us to record and analyze more complicated motions involving features such 

as fingers and facial points for use in a motion quality study or gaze tracking. 

The Baxter robot developed by Rethink Robotics is a collaborative robot that is 

meant to accomplish assembly line tasks. This robot features two arms with seven 

degrees of freedom (DOF) each, an ultrasonic sensor grid, three cameras (one on each 

arm near the end-effector, and one on the main display), accelerometers, and sensor pads 

for robot manipulation by a human. The pads enable a human to teach Baxter by showing 

examples of a task/motion. This robot was used to implement a teleoperation experiment 

with OpenPose. 

Finally, we proposed a novel algorithm (called SODTW - Segment-based Online 

Dynamic Time Warping) to help in the diagnosis of ASD by quantifying the motion-

imitation performance of human subjects. Social Robot Zeno, a childlike robot developed 

by Hanson Robotics, was used to implement and experimentally test this algorithm. 

Using the proposed algorithm, it is possible to adapt a robot to the subject’s motion. This 

algorithm also enables the evaluation of motion quality to see how the subject is 

performing. 

To test this algorithm, we used Social Robot Zeno and the Open Kinesthesia toolkit 

developed for LabVIEW by the University of Leeds, UK. Zeno features an emotive face 

with seven facial muscle motors, two eye motors, two neck motors, and a blink motor. It 

is powered by a LabVIEW NI myRio, therefore, all programming will be done in 

LabVIEW. The Open Kinesthesia toolkit is a software add-on that enables the use of a 



8 

Microsoft Kinect for Windows sensor. The toolkit allows for hand, feet, and basic head 

tracking, however, it doesn’t provide tracking of fingers and facial features. 

By using a study, Zeno was used to test whether it was possible to adapt to three 

different speeds of the subject and evaluate their motion quality. During the motion-

quality evaluation, the subjects would mimic the movement of the robot with or without a 

15lb kettlebell. This provided an impairment model that showed the SODTW algorithm 

can differentiate between an impaired motion and unimpaired motion. In addition, Zeno 

was able to identify the closest speed the subject was performing the motion (fast, 

normal, or slow), and adapt to their speed. 

1.3 Thesis Organization 

This thesis is organized in the following way: 

Chapter 2 is a background survey of the topics: robots for autism, human-robot 

interaction, physiological sensors and emotion classification, and, finally, motion-quality 

estimation. Chapter 3 describes our experimentation in creating a neural network for 

classifying data from a wearable that collects physiological signals such as blood volume 

pulse (BVP), galvanic skin response (GSR), and temperature data. Chapter 4 introduces 

our work in teleoperating a robot using pose estimation software and inverse kinematics. 

Chapter 5 discusses our proposed algorithm, called Segment-based Online Dynamic 

Time Warping and the results of a study conducted on healthy subjects that are above the 

age of 18. Finally, Chapter 6 concludes by summarizing the thesis and discusses the 

future work that can be used to enhance the techniques described above. 
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CHAPTER 2 

BACKGROUND 

The use of robotics with autism is a field that is expanding in order to help the 

individuals affected by this disorder. A robot built for this task must be able to take in 

different sensor data and adapt to the subject. In this chapter, we explored scientific 

literature related to the topics of robots for autism, human-robot interaction (HRI), the 

use of physiological sensors in emotion classification, and motion-quality studies. 

There are several examples of robots for autism, as well as studies that are used to 

analyze their therapeutic effects. In general, it has been found that individuals with 

autism are fascinated by and prefer them to humans. These robots are programmed to 

help subjects with social and communication skills or movement. By ensuring the 

subjects are engaged it is possible to maximize the effectiveness of therapy. 

Several robots, such as Nao, Zeca, and Kaspar show promising results in helping 

the children with ASD in becoming more engaged. By keeping these subjects engaged, it 

is possible for them to receive the full benefit of therapy, which is an example of human-

robot interaction (HRI). HRI is a field of study which includes analyzing how individuals 

feel about, interact with, and safely cooperate with robots. Reviewing the literature 

enables us to create novel ways to interact with the robot while designing our 

experiments to ensure that the subjects feel safe. 
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Analyzing the emotion of a subject ensures that it is possible for investigators and 

robots to understand the affective state of the subject. However, to understand this, it is 

necessary to somehow collect data for analysis. In the literature, it has been reported that 

physiological signals can be used to classify the affective state of a subject. By reviewing 

the types of sensors and experiment setups that are used in the literature, we can create a 

classifier would enable a robot to understand the emotions of its user. This information 

will allow “closed-loop” control of the robot, enabling on-the-fly decision-making by the 

robot. 

It has been observed by Todorova et al. that children with ASD struggle with 

mimicking specific motions [9]. A motion, such as a hand wave, that would be relatively 

for a neurotypical child can be difficult for ASD patients to perform. Therefore, motion 

quality is also important to understand the capabilities of a subject. By reviewing the 

literature for algorithms to classify motion quality, it is possible to create algorithms for 

grading a subject’s capabilities. 

2.1 Robots for Autism 

Several research groups have designed and studied robots meant for helping 

children with autism. These include such robots such as Softbank Robotics’ Nao robot, 

Zeca, Kaspar, and many others. Two studies conducted by Robins et al. revealed that 

ASD subjects tend to prefer robots with simpler features over humans [1]. In the first 

study, a mime artist was dressed in either a robot costume (that obscured a face) or 

ordinary clothes. The mime artist was asked to act like a robot, perform the same 

movements, and avoid interaction with the children. It was observed that the ASD subject 
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interacted with the mime longer when wearing the robot costume than the normal clothes 

costume. 

In the second study conducted by Robins et al., the children interacted with a 

Robota Robot in two different modes of dress. The robot would either be puppeteered by 

an investigator or dance to music. The trial would last as long as the children were 

comfortable, and the study showed that, over a long period of time, the children 

interacted better with the obscured robot [1]. These studies conducted by Robins et al. 

show that ASD subjects are more likely to interact with robots than humans and served as 

the inspiration for the robot KASPAR. 

Figure 2. Robota robot, left is the obscured robot, middle shows the robotic parts, and 

right is the dressed robot [1]  

Building upon the work performed on the Robota platform, a new robot called 

KASPAR was developed. Robins et al. introduced KASPAR to three children with ASD 

(ranging in age from 6 to 16) to gauge the effectiveness of the design of the robot. These 

children all were diagnosed with severe autism, would avoid looking at the faces of 

others, and had difficulties understanding social interaction. By the end of the therapy 

session with KASPAR, all three subjects were able to gaze at others who were present at 



12 

the same time [11]. Their results show that KASPAR can be used to facilitate 

rehabilitation in autistic subjects. 

Figure 3. KASPAR robot [11] 

In Silva et al., the ZECA robot (or, Zeno Engaging Children with Autism), which 

was based on the Zeno R50 Robokind platform, was used to help children with autism to 

learn how to produce various facial expressions. The researchers asked ASD children to 

mimic preprogrammed facial expression of the Zeca robot. The purpose of this study was 

meant to serve as a way to help the children learn how to create those facial expressions. 

The researchers found that, over time, the children “had a positive evolution over the 

sessions” with the subjects maintaining their interest during the activity [12]. 

Figure 4. Experimental setup of the study on ZECA and the ASD children [12] 
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Robokind also produces a Milo robot (Figure 5), a production unit targeted towards 

getting ASD individuals access to robots. The robot is designed to enable subjects to 

practice communication and social skills through a preprogrammed curriculum [13]. 

Kroiss et al. investigate the engagement of children (between the ages of 5 and 14) with 

ASD when engaging with Milo versus engaging with the therapist. The subjects were 

either verbal or minimally verbal, and it was found that the children with ASD were more 

engaged with Milo than the therapist. In addition, once the minimally verbal were able to 

become comfortable with the robot, their performance was close to that of the fluent 

individuals [14]. 

Figure 5. Milo robot [14] 

2.2 Human-Robot Interaction 

The experiences of autistic children with robots falls into the domain of human-

robot interaction (HRI). This field of study investigates how humans feel, control, 

cooperate, and interact with their robotic partner. In Fasola et al., a robot was used to 

analyze how subjects interact with and react to a robot during an HRI session. 
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The study used the Bandit robot, which features 19 degrees of freedom (with each 

arm having six DOF) and a USB camera. In the first study, the robot acts as an exercise 

coach for the elderly subjects. The subjects each participate in two sessions (10 minutes 

each), in one of which, the robot is a coach that gives the user praise or reassurances 

when appropriate, and, in the second, the robot only provides instructional feedback, such 

as user score and redemonstrating the exercise. After each session, the subject was given 

a survey to see which of the two robot modes they preferred. The researchers found that, 

on average, the subjects preferred the robot that would give praise or reassurances [15]. 

Figure 6. Bandit [15] 

In a second study, the researchers evaluated whether giving the user a choice of 

which game to play with the robot would affect the associated score of the activity. The 

researchers recruited 24 participants between the ages of 68 and 89. The subjects were 

split into two groups, altering whether the robot would prompt the subject for the game to 
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play first, or not. Each subject participated in two sessions, where the second session 

would be the opposite of the initial choice. Once the activity was completed the subjects 

were given a survey to rank which session they preferred, their perception of the robot’s 

helpfulness and intelligence, and their mood. It was found that there was no clear 

preference to either choice condition, however, the robot was rated highly by the subjects 

in the perception questions [15]. 

Other studies investigate the method of control for robots, such as brain-computer 

interfaces or physiological signals. In Bian et al., the researchers investigate the use of 

electroencephalogram (EEG), electromyography (EMG), and voice-command to control 

a robot for use in space. Ten subjects participated in a study where they would use their 

voice to confirm the start of the study by saying a phrase. The system would use the 

signals from the EEG to decide which task the subject wanted to be performed. If the 

system began the correct task, then the subject would utter the phrase “confirm,” 

otherwise, the system would choose a different task. Once the task was confirmed, the 

EMG data would be used to manipulate virtual dials and controls such as moving a 

joystick n amount. The researchers concluded that their system was 86.7% to 97.6% 

accurate in choosing a control [16]. The research conducted by Bian et al. shows how 

different control methods can be used to control a robot. 

Finally, human-robot interaction also touches upon how to ensure that a user is 

not unnerved by a robot. In Habib et al., the android Philip K Dick is used to understand 

how to generate natural facial features [17]. By utilizing a neural network and genetic 

algorithm, the researchers were able to take recorded human expressions and transfer this 

to the android. The software Faceshift ® was used to gather facial features of the human 
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and android. These two datasets for a given expression were compared and the genetic 

algorithm would explore ways to minimize the difference in expression [17]. 

Figure 7. Facial expression from a user and android Phillip K. Dick [17]. 

2.3 Physiological Sensors and Emotion Classification 

Using physiological sensors for emotion classification has been explored by several 

research groups. Some used units that were created in-house, while others used pre-

purchased physiological sensors such as the Shimmer 3, Biopac, EEG headsets, or the 

Empatica E4. In addition, there is a variety of physiological signals that can be used to 

understand the emotional state of a subject. Therefore, it is necessary to review the 

literature and understand what sorts of sensors, signals, and classification methodologies 

have been used for this task. 
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In Rahim et al., a series of Shimmer 3 units are used to extract electrocardiogram 

(ECG) and galvanic skin response (GSR) data for emotion charting. This data is 

converted into a 2-D frequency spectrum and used in a convolutional neural network 

(CNN) to classify the emotion. To validate the usage of a scalogram, the researchers used 

the open-source AMIGOS dataset, which provides long-term and short-term 

physiological recordings of 40 people. The data is split into two types of social situations, 

either in a group or individual setting. The researchers found that the AMIGOS dataset 

yielded an accuracy of 92.7% using GSR and 91.5% using ECG, and, when both signals 

were combined the accuracy was 93%. 

Figure 8. Shimmer 3 sensors [18] 

In addition, real-time data was collected from 10 different subjects using the 

Shimmer 3 units. Different emotions were induced by having the subject watch a video 

that would invoke one of the seven emotions for classification (anger, disgust, fear, 

happy, neutral, sad, or surprised). The results found that the model produced an accuracy 

of 68% on only GSR, 64.2% using only ECG, and, finally, 68.5% when both signals were 

combined [18]. 

A second example of using an off-the-shelf physiological sensor can be found in 

AlZoubi et al. In this research, a BioPac AC MP150 system was used to record the ECG, 
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EMG, and GSR physiological signals while video was recorded of the learner’s face and 

the computer screen. The study’s participants were asked to complete a 45-minute 

learning session of AutoTutor, during which time, the signals were recorded. The 

subjects were then asked to rate their emotional state in 20-second intervals based on 

their facial expressions during the session. The subjects had a choice of eight emotions, 

which were boredom, confusion, curiosity, delight, engagement, frustration, surprise, and 

neutral. This data was used as the labels for the emotion classification that the 

investigators developed. Using several machine learning techniques, such as SVM, K-

nearest neighbor, and multinomial logistic regression (among several others), the 

investigators combined all the subjects’ data for the training and test sets. AlZoubi et al. 

concluded that it was possible to detect affect from physiological data [19]. 

Figure 9. Sensor layout from AlZoubi et al [19] 

Other researchers have approached the field of using physiological sensors for 

emotional classification differently. In Saadatzi et al., a wearable sensor, the EmotiGo, 
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was developed in-house that was then used for emotion classification. This wearable 

collected the tonic (slow changing) and phasic (rapidly changes) portions of GSR, 

photoplethysmography (PPG), and skin temperature. The sensor was integrated into a set 

of glasses frames that used Bluetooth Low Energy (BLE) to communicate with a 

computer. A Biopac MP150 was used to enable the comparison of the EmotiGo’s 

performance versus an off-the-shelf device. Three subjects were asked to wear the 

EmotiGo and were connected to the Biopac at the same time. Data was collected while 

the subjects performed a series of tests, such as riding a stationary bike, taking a startle 

test, and completing a Stroop word-color matching test. The researchers found that the 

EmotiGo can be used for emotion classification because its measurements highly agree 

with that of the Biopac (which has been used for emotion classification in the past) [20]. 

Figure 10. The EmotiGo [20] 

In Jiang et al., a wristband was created to monitor the emotional health of a subject. 

The researchers collected pulse, skin temperature, and GSR to recognize the emotions of 

a subject. The device was able to classify joy, anger, and sadness with around 67% 

accuracy after 10 trials using a K-nearest neighbor model. The creation of this device was 

for augmenting home health care for elderly or ill patients [21]. There are many other 

wristbands and sensors that have been used for the classification of emotions. However, 
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these have shown that the field of physiological sensors takes many forms and is 

constantly growing. 

Figure 11. Wearable designed by Jiang et al. [21] 

2.4 Motion Quality Studies 

Todorova et al. conducted a literature review of 52 papers and concluded that 

children with ASD struggle with mimicking motions [9]. By being able to assess the 

motion quality of a subject, it may be possible to identify ASD at an earlier age and 

rehabilitate these individuals. Therefore, it is necessary to analyze the literature for 

different ways motion quality assessment has been applied towards analyzing motion and 

rehabilitation. 

One example of motion quality being used to diagnose autism can be found in 

Zunino et al. In this study, the investigators asked 20 ASD and 20 typically developed 

children to grasp a bottle and perform four actions with the bottle. The interactions of the 

subjects with the bottles were recorded and the resulting video data was cut to the instant 

when the subject grasps the bottle until the subject finishes the experiment. The resulting 

video data was fed into a model that combined a Long Short-Term Memory Network 
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(LSTM) and a Convolutional Neural Network (CNN). The resulting network was able to 

classify the two types of subjects with good accuracy [22]. 

Figure 12. Samples from Video taken during data collection [22] 

A second example of using motion quality to evaluate the imitation deficits in ASD 

subjects can be found in Wijayasinghe et al. In this study, the researchers used a 

Microsoft Kinect for Windows to record the motion sequence of the subject while 

imitating the Zeno robot, this was done for six different motions. The motion sequence 

was then compared offline to the sequence that the robot performed using Dynamic Time 

Warping (DTW). The study examined the motion performance of 13 ASD children and 

54 neurotypical adult subjects (that were impaired with weights) to prove the validity of 

using this algorithm. The DTW scores for all four joints were combined into a total DTW 

score that was used for analysis. The researchers found that using the DTW scores 

enabled them to identify ASD subjects from others [23]. 

Motion quality assessment has also been used to help rehabilitate subjects. In Yang 

et al., the researchers utilized a Microsoft Kinect for Windows camera to help with stroke 

rehabilitation. These researchers focused on skeletal tracking, the analysis of 

rehabilitation progress, and the health of the subject. The developed application enabled 

patients to perform hand and leg training at home, and then provide the performance 

results for physicians. To aid with tracking the performance of the patient, the researchers 

simply counted the repetitions for a training scenario [24]. Therefore, analyzing the 
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motion of the patient enables the rehabilitation of an individual who is recovering from a 

stroke. 

Figure 13. Stroke Rehabilitation system with two subjects [24] 

In Wei et al., a rehabilitation program for Parkinson’s disease was developed in 

order to improve the balance and mobility of the subjects. The created application 

allowed the subjects to perform exercises at home, while ensuring that they do not 

perform an incorrect motion. The researchers developed a machine learning task 

recommendation model that examined the actions of the patient. Each motion was 

divided into several sub-actions that the motion system would grade and identify errors 

using the angles between predefined points. By identifying errors, the recommendation 

model would decide the next exercise that the patient should perform (just like a physical 

therapist) [25]. In this example, assessing motion quality is of the utmost importance, due 

to the possibility of a subject hurting themselves during an exercise and impeding their 

recovery. 
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CHAPTER 3 

EMPATICA E4 AND ITS APPLICATIONS 

Emotion estimation is a necessary function of the next-generation autism robot. 

This will enable the robot to monitor the subject’s affective states which give useful 

information to a therapist. In addition, affective information can maximize therapeutic 

effectiveness by ensuring subjects are attentive and not frustrated. 

We propose using a physiological sensor wristband to augment the next-

generation autism robot with these capabilities. The work presented here focuses on three 

main goals. First is to gain access to the capabilities of the sensor, second is to use a live 

data stream from the wearable to control the Social Robot Zeno as a proof of concept, 

and the final is to attempt classification of the attentiveness of a patient with ASD. The 

first two goals will be accomplished using NI’s LabVIEW software, and the final 

classification will use Google’s TensorFlow and Python 3. 

The Empatica E4 wristband is a wearable device that collects physiological 

measurements in real time from a test subject. The device provides four raw signals from 

four sensors: acceleration (ACC), skin temperature (TMP), Galvanic Skin Response 

(GSR), and Blood Volume Pulse (BVP). Empatica also provides two calculated data 

streams from the BVP signal: heart rate (HR) and inter-beat interval (IBI). 
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3.1 Gaining Access to the Empatica E4 Data 

To be able to use the E4, we implemented a data collection method for the device. 

A local server written by the Empatica team running on a Windows machine can be used 

to communicate with the E4. A telnet connection to the “Empatica Streaming Server” 

allows us to subscribe and store the data being transmitted by the wristband. Figure 14 

provides a sample output of real-time data from the wearable that must be transformed 

into a form more suitable for research use. We place each unique line into a comma 

separated string that can be visualized and analyzed. 

E4_Acc 1580837654.10826 3 64 4 

E4_Acc 1580837654.13951 3 64 4 

E4_Acc 1580837654.17076 3 64 4 

E4_Gsr 1580837652.738 0 

E4_Gsr 1580837652.988 0 

E4_Gsr 1580837653.238 0 

Figure 14. Sample E4 Data 

Using the gathered data within a closed-loop system, we can identify patterns of 

changes within the data and communicate to the robot which actions to choose based on 

those changes. To achieve the above, we must split our system into several parts: 

1. Accessing the Empatica E4 server, using a method (or SubVI in terms of

LabVIEW) that connects using a TCP connection. 

2. A way to read data and stores the data into a LabVIEW object.

3. A data parser that converts the data into a comma separated value format.

4. A LABVIEW SubVI to visualize the data coming from the E4.

These SubVIs will enable data capture, data parsing, and the display of the results and 

sensor readings. 
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3.1.1 System 

As seen in Figure 15 (a), the wristband uses a Bluetooth to USB dongle to connect 

to a streaming server (b) provided by Empatica. This server exposes a TCP connection 

that anyone can connect to, allowing LabVIEW (c) to utilize a TCP Connection to 

receive data from the E4. 

Figure 15. Data Flow between the Empatica E4 wearable and the Zeno Robot in our lab 

3.1.1.1 Data Collection 

To streamline the above behavior, a SubVI (the LabVIEW equivalent to a method 

in Object Oriented Programming) was created that is dedicated to connecting to the 

Empatica E4. 
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Figure 16 shows the SubVI for this task, which begins by using the “TCP Open 

Connection” function to open a TCP connection to the Empatica Streaming Server. Note, 

in Figure 16 we are providing the address 127.0.0.1 (also known as localhost) and a port 

of 28000, which is the default streaming server port. This does not necessarily mandate 

that this LabVIEW project must run on the same computer as the Streaming Server. If 

desired, it would be possible to open a firewall port to allow traffic from a different 

machine. 

Figure 16. Connect_2_E4.vi 

Once we have established a connection to the Streaming Server, we must specify 

an E4. The Streaming Server allows for multiple E4s to be connected at once. Therefore, 

to connect we must use a wristband’s specific unique identifier. This identifier can be 

found by using “device_list” when connected to the Streaming Server. It is also important 

to note that an end of line (EOL) constant must be sent so that the streaming server 

registers the end of a command. 
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Figure 17. SendData2E4.vi 

To simplify future commands sent to the streaming server, a secondary SubVI is 

created that appends the EOL constant and adds a delay of one second (using the “Time 

Delay” Express VI) to ensure that a command has been received and processed. Once an 

E4 wristband has been connected, all the data streams of interest must be subscribed to. 

See Table 1 for a list of data stream codes to sensor. After subscribing to all the data 

streams, it is now possible to begin receiving and parsing the data. 

Table 1. Empatica Streaming Server Codes to Sensor 

Code Sensor 

acc Accelerometer X, Y, Z 

bvp Blood Volume Pulse (BVP) Raw Signal 

gsr Galvanic Skin Response (GSR) Raw Signal 

ibi Inter-Beat Interval (IBI) Calculated Signal 

tmp Temperature Raw Signal 

Figure 18 shows the “Main Loop” of the Empatica project, using the Producer/ 

Consumer Design Pattern. This design pattern is based upon the Computer Science 

theory of the same name. One thread, or in this case “loop,” is dedicated to creating work 

for a second “consumer” thread. This enables parallel execution of a process while not 

sacrificing data capture. The Producer Loop calls the SubVI 
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“Get_e4_Data_Over_Period” which will produce data for the consumer. Once the data is 

produced it will add an element to a queue which will then be passed to the Consumer 

loop. 

Figure 18. MainLoop.vi 

Figure 19 shows the process for data collection when the 

“Get_e4_Data_Over_Period” SubVI is called. This SubVI receives an unsigned integer 

as an argument that specifies the amount of time to collect data (by default 20000 

milliseconds or 20 seconds). In the “Get_e4_Data_Over_Period” SubVI the existing open 

TCP Connection is used to read data that is being transmitted from the Streaming Server 

(with the help of the “TCP Read” function). One of the required arguments of the “TCP 

Read” function is the number of bytes to read. 
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Figure 19. Get_e4_Data_Over_Period.vi 

To determine this, we analyzed the traffic that is being streamed from the server. We use 

Wireshark [26] (see Figure 20) to see the TCP header; the length observed is 34 bytes. 

The packet length is rounded up to account for bigger packets, which is why a size of 50 

bytes is used. After reading the data, it is appended to a string using a shift register, which 

will then output into the “Data_Output” control. To be able to capture data over a time 

period, it is necessary to iterate until the specified time has elapsed. This is gauged using 

the “Tick Count” function which takes the millisecond count. The SubVI captures the 

time at the beginning and the current count. The two values are then subtracted and 

compared to the “DataCollection Length (ms)” control. If the result is greater than or 

equal to the threshold, then the SubVI will finish execution. The enqueued data is now 

ready for the next step. 
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Figure 20. Wireshark Snippet 

3.1.1.2 Data Processing 

Once the data has been produced, by definition, it must be consumed. To do this 

the Main Loop dequeues the data into the consumer loop. This data is then passed to the 

“ParseString” SubVI which is responsible for data cleaning and parsing (seen in Figure 

21). 

Figure 21. ParsingString.vi 

The input data is parsed into a 2d array by the “Spreadsheet String to Array” function. 

Using the space constant and the format string of “%s” every whitespace character is 

considered a delimiter (e.g., a comma in a CSV). The data has now been parsed and is 

ready for cleaning. The 2d array must be cleaned of bad data. To do this it is necessary to 
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remove streaming server status responses and partial data (i.e., status responses are 

identified by the prefix R and partial data is identified if the third [data] argument is 

missing). The clean data is now ready for visualization and further processing. 

To be able to visualize and extract features, the data must be split into respective 

groups per sensor. This is done by the “GetArrays” SubVI (illustrated in Figure 22). 

Using the “Index Arrays” function, the first column is used to specify which array the 

data column belongs to. Using a Conditional Tunnel, we can use a Boolean to sort the 

data into the appropriate array. However, if the data is from the accelerometer, then it is 

necessary to sort the data into the X, Y, and Z axes. To be able to split, the columns for 

each axis must be explicitly specified. This SubVI will also convert the data to a CSV 

format, using the upper-case statement which will go to a format of “%s,%s,%s” by 

default. If the data is from the accelerometer, then it must be split by the axes. Once all 

the above operations have concluded the data is ready for visualization and basic feature 

extraction. 
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Figure 22. GetArrays.vi 

3.1.1.3 Data Visualization 

To visualize the data, the arrays are first input into a series of waveform graphs. 

These allow the user to see the data that has been produced after collection. Next, the 

created CSV is appended to a file. This file will be used for further data analysis (e.g., 

model training or to diagnose issues). Finally, the features are extracted using the 

techniques described by Welch et al. [27]. 

The “ExtractFeatures” SubVI is used as the default feature extraction function. 

This is meant to be a placeholder for exploring some basic features of the signals. This 

work served as a precursor to the attentiveness classification study at the University of 

Louisville Autism Center. Figure 23 illustrates the general feature extraction SubVI. The 
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features that it extracts are: Mean, Median, Max, Min, Peak Locations, Peak Amplitudes, 

and the Change between the start and end of the signal. This is done using the built in 

LabVIEW functions. Since this SubVI is run in parallel, it is necessary to enable the 

“Preallocated clone reentrant execution” option. 

Figure 23. ExtractFeatures.vi 

Now that the waveform graphs have been displayed to the user, the consumer loop 

finishes its iteration. The consumer loop will wait for new data in its queue (that is produced 

by the producer loop) and will begin another iteration. This continues until the stop button 

has been hit, or the VI has been manually stopped. Due to the projects focus on data 

collection, error handling has not been incorporated. In the future it will be necessary to 

decide how to handle data errors. 
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Figure 24. An Example of Real Time Data from E4 

3.2 Controlling Zeno’s Arm with the Empatica E4 

As the second goal in this work, we added functionality to the social robot Zeno as 

a proof of concept. In the past, Zeno was used for an experiment with patients with autism. 

This experiment involved creating a LabVIEW application that would use a Kinect to 

mimic the therapist. 

To move Zeno’s arm with the Empatica E4 we created a project based on the 

Kinect demo for manipulation. Since Zeno uses environmental variables to move, these 

variables can be hijacked for a different purpose. This is done by setting constants on all 

the variables (or joints) other than the one of interest. Then, using the previously 

discussed SubVIs, it is possible to capture the accelerometer data. It was found that the Z 

axis showed the most pronounced change in data when moving the user’s arm; therefore, 

it was used to control the movement of Zeno’s arm. 
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The SubVI in Figure 25 shows how the data from the accelerometer is used as a 

binary switch. The coordinate from the Z axis defines which way the motor will move the 

arm. Using this technique, the robot seems like it is mimicking the movement of the 

wrist. However, it will always go to one of two predefined points. 

Figure 25. e4_Zeno_Move.vi’s binary switch 

3.3 Classifying Attentiveness 

Our final goal was to experiment with using the Empatica E4 to classify data from 

the social skills group run by the University of Louisville Autism Center. During this 

study six subjects were split into two groups for robot interaction. Each group was placed 

into a room with a Nao robot (a robot produced by Softbank Robotics), Figure 26, and 

were given a list of questions to ask the robot. The Nao robot features a microphone and 

speech recognition software which enables it to interpret the response of the subject. 

Once a question was asked, the robot would respond and then wait for a second question, 
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this continued for a 3-to-6-minute session every week (for 12 weeks). The same subjects 

would wear the E4 wristband during the interaction with the robot, while the others 

would wear dummy wristbands that were not recording data. We collected E4 data from 

two subjects during the human-robot interaction sessions and used it in our classification 

algorithms. In order to collect a baseline, the wearables were turned on several minutes 

before the subjects entered the room.  

Figure 26 Nao Robot 

3.3.1 Gathering and Labeling Data 

The Empatica enabled us to gather BVP, GSR, HR, and Temp for both subjects 

for approximate total of three hours of data. The IBI sensor data was not used for 

classification due to possible discontinuities, therefore this could potentially inhibit the 

algorithms classification accuracy. The accelerometer data was not used due to its lack of 

use in previous studies [27]. This signal may have useful information about changes in 

attentiveness, however, this work focuses on other signals. During this same time, a time-

synced video recording of both subjects which enabled the syncing of the E4 data and the 

video. A group of professional coding staff employed by the Department of Education 
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were asked to label whether each subject was attentive or inattentive every 20 second 

period while watching the collected videos. 

3.3.2 Feature Extraction 

The physiological data was split into 20 second periods and computed into 

different features, for use in our deep learning models. We computed the following 

features for every 20 second interval: 

• BVP Peak Mean - Average of the peak amplitudes of the BVP signal

• BVP Peak Max - The maximum peak amplitude for the given time frame

• Tonic Mean - The average of tonic skin conductance, derived from the GSR

signal 

• Tonic Slope - The slope of the tonic skin conductance

• Phasic Peak Mean - The average of the phasic skin conductance (derived from the

GSR signal) 

• Phasic Peak Max – The maximum peak of the phasic skin conductance

• Phasic Peak Rate – The number of peaks per 20 second period multiplied by three

• HR Standard Deviation – Standard deviation of the heart rate

• HR Mean – Average of the heart rate

• Temp Standard Deviation - Standard deviation of the temperature

• Temp Mean – Average of the temperature
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• Temp Slope – Slope of the temperature

Each feature was normalized to have a value between zero and one, for use in our 

models. 

3.3.3 Deep Learning 

The small dataset posed several challenges for use with deep learning. When both 

subjects are combined there are 543 usable data points of which 124 are inattentive and 

419 are attentive. The usable points were defined as the features that had all of the data 

during the 20 second time frame during feature calculation. It was possible for some data 

to be lost due to a lost connection or a subject accidentally turning off the wristband. 

Figure 27. Number of Datapoints per Subject 

This yields an unbalanced dataset with a very heavy bias towards attentive data. 

To combat this, we split the total data set into a Python dataframe of all the attentive 

points and a second dataframe containing all the inattentive points. We then randomly 
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sample our attentive dataset to have the same amount of data as the inattentive one. This 

ensures that there is no longer any bias towards attentive instances. 

To ensure that the train and test set both have the same distribution of inattentive 

and attentive data (to prevent instances of the test set containing all of one type of data) 

we use sklearn’s “train_test_split” method on both dataframes. We use a 20/80 test/train 

split due to the small amount of data. The two resulting training sets are concatenated 

together and randomized, with the same done to the test sets. 

We experimented with combining the two subjects into one dataset as well as 

separating them. In addition, we tried several types of neural network layouts: shallow 

versus deep, epoch amount, and different loss functions. In total 54 models were trained 

using Google’s Tensorflow [28], 18 on each dataset (subject 1, subject 2, and both). 

3.3.4 Models Experimentation 

To gain clarity on whether the Empatica E4 and deep learning neural networks 

can be used to classify attentiveness, it is first necessary to experiment with different 

hyperparameters. The goal of this work is to train a model that can classify attentiveness 

with an accuracy of greater than 50%. Experimenting with different hyperparameters will 

provide guidance for future development of a successful model. 

Prior to choosing the variables to experiment with it was decided to keep the Input 

and Output layers consistent between networks. The Input Layer would require all 12 

precomputed features from Section 3.3.2, and the output layer would utilize a tanh 

function. The tanh would ensure that the output would always be between zero and one, 

with zero being an inattentive classification, and one being attentive classification. 
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The first experiment involved varying the number of layers with different 

numbers of hidden layers. Figure 28 shows the layout of the “Shallow Network” which 

was used in our experimentation. This layout features a single hidden layer that had 16 

hidden units. 

Figure 28. Shallow Network 

Figure 29 shows the Two Layer Network layout, which builds upon the Shallow 

Network by adding a second hidden layer with 32 hidden units. 

Figure 29. Two Layer Network 

Figure 30 illustrates the Three Layer Network which builds upon the Two-Layer 

Network by adding a third hidden layer with 32 hidden units. 

Figure 30. Three Layer Network 
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Finally, Figure 31 shows the Five-Layer Network which takes the Two Layer Network 

and places a fourth and fifth layer with 64 and 32 hidden units each. Table 2 shows the 

hyperparameters used for the Layer Size Experimentation. These constant parameters 

were chosen through experimentation on the training set. 

Figure 31. Five Layer Network 

Table 2. Layer Size Experiments 

Model Name Epochs Loss Function Optimizers Activation 
Learning 

Rate 

Shallow Network 4000 Adam MeanSquaredError ReLu 0.0002 

Two Layer Network 4000 Adam MeanSquaredError ReLu 0.0002 

Three Layer Network 4000 Adam MeanSquaredError ReLu 0.0002 

Five Layer Network 4000 Adam MeanSquaredError ReLu 0.0002 

The second experiment performed was on the number of epochs the Two Layer 

Network was trained for. Table 3 shows the naming convention between each model and 

the Epoch number. 

Table 3. Number of Epochs Experiment 

Model Name Epochs Loss Function Optimizers Activation Learning Rate 

Two_Layer_2000 2000 MeanSquaredError Adam ReLu 0.0002 

Two_Layer_2500 2500 MeanSquaredError Adam ReLu 0.0002 

Two_Layer_3000 3000 MeanSquaredError Adam ReLu 0.0002 

Two_Layer_3500 3500 MeanSquaredError Adam ReLu 0.0002 

Two_Layer_4000 4000 MeanSquaredError Adam ReLu 0.0002 
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The third experiment performed was on the different Loss Functions that are 

commonly used for Binary Classification (shown in Table 4) [29]. It should be noted that 

Two_Layer_MeanAbsoluteError is the exact same model as Two_Layer_2500 however it 

has been renamed for use in this experiment (it was not retrained). 

Table 4. Loss Function Experiments 

Model Name Epochs Loss Function Optimizers Activation 
Learning 

Rate 

Two_Layer_BinaryCrossEntropy 2500 Binary Crossentropy Adam ReLu 0.0002 

Two_Layer_Hinge 2500 Hinge Adam ReLu 0.0002 

Two_Layer_MeanSquaredError 2500 Mean Squared Error Adam ReLu 0.0002 

Two_Layer_MeanAbsoluteError 2500 Mean Absolute Error Adam ReLu 0.0002 

The fourth experiment performed was on the viewing the differences between the 

Adam and Stochastic Gradient Descent (SGD) optimization algorithms [30]. It should be 

noted that Two_Layer_Adam is the exact same model as Two_Layer_2500 (from the 

Epoch experiment) however it has been renamed for use in this experiment (it was not 

retrained). 

Table 5. Testing Optimizers 

Model Name Epochs Loss Function Optimizers Activation 
Learning 

Rate 

Two_Layer_Adam 2500 Mean Squared Error Adam ReLu 0.0002 

Two_Layer_SGD 2500 Mean Squared Error SGD ReLu 0.0002 

The fifth experiment performed was on the viewing the differences between the 

Sigmoid and ReLu activation functions. These activation functions were applied to both 

hidden layers, while the output layer kept its tanh activation function. It should be noted 

that Two_Layer_Sigmoid is the exact same model as Two_Layer_2500 (from the Epoch 
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experiment) however it has been renamed for use in this experiment (it was not 

retrained). 

Table 6. Activation Functions 

Model Name Epochs Loss Function Optimizers Activation 
Learning 

Rate 

Two_Layer_Sigmoid 2500 Mean Squared Error Adam Sigmoid 0.0002 

Two_Layer_ReLu 2500 Mean Squared Error Adam ReLu 0.0002 

3.3.5 Results 

In total the above distinct models were trained on the three data sets: both subjects 

combined, subject one, and subject two. Figure 32 shows the results of training the four 

different models on the three different datasets. We can conclude that the Three Layer 

network would perform best on a combined subject dataset (based on the accuracy) and 

the Two Layer network would perform best overall based upon the average accuracy 

score across all three datasets. The performance of the models could be improved with 

more feature types and data. One way this could be performed is by using a publicly 

available dataset (such as AMIGOS) train attentiveness on any type of subject. The 

trained model can then be used for transfer learning to enable specialization on a specific 

subject. 
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Figure 32. Layer Size Experiment Results 

Figure 33 shows the results of training the Two Layer model on the three different 

data set for different epoch amounts. The number of epochs is the number of iterations a 

neural network will iterate over the training set to find the best weights. By increasing the 

number of epochs, it is possible to find the point at which the loss function is minimized, 

however, this risks overfitting on the training set, therefore performing poorly on the test 

set. We can conclude that the network would perform best training for 2500 or 3500 

epochs. We chose to use 2500 in our experiments to prevent overfitting on the training 

set. 
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Figure 33. Epoch Number Experiment Results 

Figure 34 shows the results of training the Two Layer model on the three different 

data sets for different loss functions. We can conclude that the network performs best by 

using the Mean Squared Error loss function. 

Figure 34. Loss Function Experiment Results 
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Figure 35 shows the results of training the Two Layer model on the three different 

data sets for different optimizer functions. We can conclude that the network performs 

best when using the Adam Optimizer. 

Figure 35. Optimizer Experiment Results 

Figure 36 shows the results of training the Two Layer model on the three different 

data set for different activation layer functions. We can conclude that the network 

performs best by using the ReLu activation function during training. 
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Figure 36. Activation Layers Experiment Results 

3.3.6 Future Work 

In conclusion, the data from the Empatica E4 is useful for classification of 

attentiveness and inattentiveness of an ASD subject. Unfortunately, due to the low 

amount of data, it was not possible to create a model that was able to perform better than 

68% on at least one subject. The highest percentage found from all the experiments, per 

dataset, was 60% for the combined subject data, 57% for a model of Subject 1’s data and 

68% for a model of Subject 2’s data. There were several models that performed at 57% 

accuracy for Subject 1, all shared the characteristics of using a ReLu activation function 

and Adam Optimizer. For Subject 2, there were two best performing models both were 

two-layer networks with a ReLu activation function, and an Adam optimizer. Overall, we 

suggest using a model with two hidden layers, trained for 2500 epochs, using the mean 

squared error loss function, the Adam optimizer, and ReLu activation functions for the 

two layers. 
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The best performing model, that was produced as part of this work, would match 

a human coder on predicting attentiveness or inattentiveness about two-thirds of the time. 

During new interventions with these subjects, the model could be used by a robot to test a 

new sample of physiological data, return a prediction of affect (e.g., attentiveness or 

inattentiveness), and decide about actions to take during the intervention. For example, if 

the model predicts the subject’s signals indicate attentiveness, the robot can choose to 

continue with practicing a social skill. However, if the model predicts inattentiveness, the 

robot can remind the subject about the directions and about staying on task. In future 

research on model building, we would like to explore gradient boosting and collecting 

more data by creating a study that would create a case where the subject is inattentive. 
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CHAPTER 4 

BAXTER TELEOPERATION USING OPENPOSE 

Teleoperation of a robot is the process of remotely controlling the pose of the 

robot arm or end-effector by direct input from the human operator. This input is typically 

provided via a robotic mechanism local to the user, such as a gaming joystick controller, 

or another robotic manipulator. In this section, we achieve remote imitation operation of 

a robot manipulator arm, such as social robot Zeno’s arms, or Baxter’s dual manipulator 

arms, through a non-contact visual interface that estimates the position of the human 

hand, then calculates corresponding poses for the remote robot. 

Teleoperating the next-generation autism robot will enable the ability to puppeteer 

the robot when needed. This also provides a way to test and record motions for automated 

performance of these motions later. In this work we propose using the Baxter robot, a 

dual robotic manipulator, which was developed by Rethink Robotics. This is a 

collaborative robot designed for assembly line tasks; therefore, it is well suited for 

repetitive movements. The purpose of the work presented in this chapter is to accomplish 

remote teleoperation of dual manipulator arms that mimic human arm movements, for 

instance those involved in social interaction, or during assembly line operations in 

factories. Examples include teaching by demonstration by a remote user of pick-and-

place operations, or imitation of hand gestures for the purpose of navigation or 

communication with factory floor personnel or other robotic assets. 
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4.1 System Architecture 

Figure 37. Baxter Teleoperation System Architecture 

There are several pieces of the overall system that must be developed to 

teleoperate a dual manipulator system such as the Baxter robot. There must be a vision 

system that translates the user’s motions into a Cartesian Coordinate frame. Next, 

something must compute the inverse kinematics to translate the human pose into a valid 

pose for the robot. Finally, the system must tell the robot the joint angles to move. Due to 

the different operating system requirements of the Azure Kinect, OpenPose, and Baxter, a 

virtualization platform called Docker is used. 
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The Azure Kinect ROS Driver mandates that Ubuntu 18.04 must be used to 

publish data from the camera to ROS. This ROS Driver creates a series of topics that 

allow a user to subscribe to the data from the camera. The “ROS_OpenPose” wrapper 

(developed by Joshi et al.) uses the “/rgb/image_raw”, “/depth_to_rgb/image_raw”, and 

“/rgb/camera_info” topics from the Azure Kinect to compute the XYZ coordinates of 

each body part [33]. 

The “/rgb/image_raw” topic gives a raw file image that is directly provided to 

OpenPose for processing. This yields X and Y coordinates of all the features the user has 

selected (we are currently only receiving hand and body data). Once the XY coordinates 

have been received, the “ROS_OpenPose” wrapper uses the “/rgb/camera_info” topic to 

get information about the camera calibration. This information is important to translate 

the XY pixel coordinates from OpenPose to distance data. Finally, the 

“/depth_to_rgb/image_raw” data is combined with the translated XY coordinates to form 

the complete XYZ data. The complete data is then published to the /frame topic as a 

custom message. 

Once data is published to the /frame topic, the “BaxterInverseKinematics” 

subscriber uses the provided coordinates to calculate the inverse kinematics. The 

subscriber selects the shoulder, elbow, and wrist (from both sides) to compute the 

resulting joint angles. After these joint angles are computed, they must be offset to 

achieve the desired pose. This is done to match the initial pose from the motion camera to 

the initial position of Baxter. After the offset, the system uses a TCP socket to send data 

for publishing to the robot (which uses Docker). 
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Docker is a container-based virtualization platform that is meant to deliver an 

application as a package. Docker ensures that the developer and production environments 

for a piece of software are always the same and all dependencies are met. For the 

application of robotics Docker (and similar virtualization software) decouples the 

robotics software from the developer’s hardware. Ensuring that a developer computer 

failure will not cause a robot to become inoperable because all the necessary software 

was installed in one place. 

To satisfy the requirement that multiple people need to work on Baxter software 

and to isolate the robot from the outside world, a Docker container was developed to 

communicate with Baxter. This container installs ROS Indigo and Baxter-specific 

packages, creates a developer environment, and sets up a private Local Area Network 

(LAN). The created Docker container establishes a way for the system to communicate 

with Baxter through ROS Indigo. 

On the ROS Indigo network, a node named “BaxterTeleopPublisher” is running 

that serves as a bridge between ROS Melodic and ROS Indigo. This node hosts a TCP 

server that receives data from the “BaxterInverseKinematics” node. When the server 

receives data, it will create a thread, load the valid json string into a dictionary, and create 

a “JointCommand” that is published to either the “/robot/limb/right/joint_command” or 

“/robot/limb/left/joint_command” (depending on which side of the robot the joint angles 

are for). 

Finally, the Baxter moves to the desired position, in future work this portion will 

be improved so that the desired positions are constantly published. This is necessary 

because the robot will only begin moving to the desired position if that position is 
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published constantly. In future a thread will be used to constantly publish the current 

desired joint position. 

4.2 Description of Imaging Hardware and Software 

The Baxter robot features two arms each with seven degrees of freedom, an 

ultrasonic sensor grid, three cameras (one on each arm near the end-effector, and one on 

the main display), accelerometers, and sensor pads for robot manipulation by a human. In 

our lab the Baxter robot is outfitted with a pedestal (giving it a total height of around 6’ 

tall, and a wingspan of approximately 103”) and a pair of electric parallel grippers [34]. 

The orientation and labeling of Baxter joints can be seen in Figure 38. 

Figure 38. Joint Description [35] 

Internally Baxter is running a computer with an Intel Core i7-3770 8MB 3.4 GHz 

processor with 4GB of DDR3 ram and a 128GB SSD [36]. This system runs ROS Indigo 

released for Ubuntu 14.04 LTS on July 22nd, 2014 [37]. Therefore, any control with 



54 

Baxter must be done over a system that is able to communicate with ROS Indigo. 

Unfortunately, there are still considerable inter-compatibility challenges between ROS 

versions, which necessitated special ROS nodes to bridge the gap between software 

modules written. 

CMU’s OpenPose software package enables body, face, and hand tracking using 

an RGB camera (such as a web camera). OpenPose can identify the 2D pose of multiple 

people in an image [38]. Using multiple 2d image sources of a subject, the software can 

produce XYZ coordinates of the 135 keypoints. However, others have implemented a 

wrapper that pairs an RGB-D camera with OpenPose. For the purposes of this research, 

we used the “ROS_Openpose” wrapper created by Joshi et al. [33]. The 2D image from 

the RGB-D camera is sent for evaluation by OpenPose, and the resulting information is 

then combined with Depth information from the camera. 

Previous works have utilized the Kinesthesia toolkit from the University of Leeds 

[42]. However, this toolkit is only used in LabVIEW and is heavily tied to the use of the 

first-generation Xbox 360 Kinect. OpenPose is hardware-agnostic and allows us to 

inform the robot about hand grasping data (for control of a gripper) or facial features (to 

potentially enable gaze tracking). 

The Azure Kinect is an RGB-D sensor released in March 2020 and is produced by 

Microsoft. It features a one megapixel depth sensor with wide and narrow field of view, a 

seven-microphone array for sound capture and far-field speech, a 12-MP RGB camera for 

color information, an accelerometer, gyroscope, and finally sync pins to synchronize 

streams from multiple devices [43]. This comes in a package size of 103x39x126 mms 
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and has a weight of 440g [43]. Finally, the Azure Kinect ROS Driver supports ROS 

Melodic in Ubuntu 18.04. 

4.3 Kinematic Model of Baxter’s Right Arm 

To understand how Baxter’s joints work, we created a model using Peter Corke’s 

Robotics toolbox [45]. This enables the ability to model a robot using a series of links 

and Denavit-Hartenberg Parameters (DH Parameters). These parameters are used to 

attach reference frames to each link of the robot to generate forward kinematics. Table 7 

shows the DH Parameters used to generate the right arm of the Baxter robot. Figure 39 

shows the result that is created from the Robotics toolbox. Each joint row in the table has 

an entry for link twist (αi-1), link length (ai-1), link offset (di), and joint angle (Θi). To 

calculate the DH Parameters, first, a model of the robot arm is drawn and labeled with an 

X and Z axis. Figure 40 shows each joint and its corresponding axis using the drum 

notation. 

Table 7. DH Table for Baxter 

Joint αi-1 ai-1 di Θi 

S0 0 0 0 
𝝅

𝟐

P0 0 0 0 
𝝅

𝟐

E0 0 L0 L1 Θ3 

S1 
𝝅

𝟐
0 0 Θ4 

W0 −
𝝅

𝟐
L3 L2 Θ5 

E1 −
𝝅

𝟐
0 0 Θ6 
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W2 
𝝅

𝟐
0 L4 Θ7 

W1 −
𝝅

𝟐
0 0 Θ8 

Gripper 
𝝅

𝟐
0 L5 Θ9 

Figure 39. Kinematic model generated using Peter Corke’s Robotics toolbox 

Figure 40. Deriving the DH Parameters 

The joint angle Θi is the angle argument that defines how much to move the joint. 

Therefore, this column in the DH Table is generally set to the variable Θ. It is important 

to note that Joint S0 and P0 are set to 
𝝅

𝟐
 to escape some of the limitations of the Peter

Corke’s toolbox. It was discovered that it was necessary to add a P0 joint to allow for the 

vertical link length of L0 between joints S0 and S1. To cope with this, the P0 joint is 
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frozen so that it has no kinematic bearing on the model. Also, it should be noted that 

Figure 39 and Figure 40 do not look the same. This is due to the nature of the toolbox, 

which necessitated a roll joint to be added to the serial link, before a pitch joint. Luckily, 

the swapping of these joints does not have any effect on the kinematics. 

4.3.1 URDF Models 

Figure 41. RVIZ Kinematic Arm models (Zeno left, Baxter Right) 

To convert XYZ coordinates to joint angles for the robot, it is necessary to derive 

the inverse kinematics. In previous work [49] the kinematics of a humanoid robot, Zeno 

were previously derived for teleoperation. This work served as a basis for deriving 

Baxter’s kinematics. 

Zeno’s arm has four degrees of freedom (DOF) including two DOF at the shoulder 

(Alpha and Beta), and two at the elbow (Gamma and Theta), as depicted in Figure 42. 

The Gamma and Theta angles of Zeno are identical to the elbow angles E0 and E1 of 

Baxter, while the first two degrees of freedom of the Baxter differ from Zeno’s. 
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Figure 42. Zeno Kinematic Angles [49] 

To validate the inverse kinematics of Baxter, we created a URDF world file of 

both Baxter and Zeno. This enables us to run both models side-by-side and compare 

whether the result of the teleoperation is identical. In addition, these models serve as a 

way to confirm that the information received from ROS OpenPose is adequate for 

teleoperation. Results of these comparisons are reported in section 5.6. 

4.4 Inverse Kinematics 

Inverse kinematics enables the Baxter robot to interpret the data from OpenPose 

and calculate appropriate joint angles so that its pose follows the pose of a human arm. In 

this section, we present the inverse kinematics calculations allowing imitation 

teleoperation with the help of the Azure Kinect sensor and OpenPose. Specifically, the 

inverse kinematics problems addressed is as follows: given the Cartesian positions of the 
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human arm reported by a depth camera sensor of the Azure Kinect, calculate joint 

coordinates of a robotic arm mechanism configured like the first four degrees of freedom 

of a Baxter arm, arranged as joints S0, S1, E0 and E1. 

First, the origin and axes from OpenPose must be defined to enable the correct 

derivation. 

Figure 43. Origin and Axes of the OpenPose 

Figure 44. Azure Kinect vs Subject Location. Also depicted in our lab from left to right 

are robots PKD [17], Milo [13], Zeno [23][50], and Baxter 
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Using the OpenPose data, we extract the following Cartesian positions of the 

human wrist, elbow, and shoulder, and represent them as three-dimensional vectors: 

Position of Hand = Phand = (xh,yh,zh) (1) 

Position of Elbow = Pelbow = (xe,ye,ze) (2) 

Position of Shoulder = Pshoulder = (xs,ys,zs) (3) 

Before we can find the joint angles for S0 and S1 (azimuth and elevation respectively), it 

is necessary to define the subject’s shoulder joint as the origin of all other Cartesian 

positions. Therefore, the following differential vectors are created: 

𝑉𝑠𝑒 = [

𝑥𝑒
′

𝑦𝑒
′

𝑧𝑒
′
] = [

𝑥𝑒 − 𝑥𝑠

𝑦𝑒 − 𝑦𝑠

𝑧𝑒 − 𝑧𝑠

] (4) 

Figure 45. The Azimuth (φ) and Elevation angles (ψ) 

Using the vector, the angles azimuth (φ) and elevation (ψ) can be found using the 

following trigonometric equations: 

φ = 𝑎𝑡𝑎𝑛2(𝑥𝑒
′ , 𝑧𝑒

′ ) (5) 
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ψ = 𝑎𝑠𝑖𝑛 (
𝑦𝑒

′

√𝑥𝑒
′2 + 𝑦𝑒

′2 + 𝑧𝑒
′2

) (6) 

This is different from Zeno’s α and β angles (shown in the equations (7) and (8) from 

[49]) due to the different angle between S0 and α. 

α = 𝑎𝑡𝑎𝑛2(−𝑧𝑒
′ , −𝑦𝑒

′) (7) 

β = 𝑎𝑐𝑜𝑠 (
𝑥𝑒

′

√𝑥𝑒
′2 + 𝑦𝑒

′2 + 𝑧𝑒
′2

) 
(8) 

We can also define Ves and Vhe as the Vectors from the shoulder to the elbow and the 

hand to the elbow. They are defined as follows: 

𝑉𝑒𝑠 = [

𝑥𝑠 − 𝑥𝑒

𝑦𝑠 − 𝑦𝑒

𝑧𝑠 − 𝑧𝑒

] (9) 

𝑉ℎ𝑒 = [

𝑥ℎ − 𝑥𝑒

𝑦ℎ − 𝑦𝑒

𝑧ℎ − 𝑧𝑒

] (10) 

Before it is possible to derive the elbow angles, we must the define the normal to the 

plane created by the shoulder, elbow, and hand as nc (illustrated below) [49]. This can be 

written as follows: 

𝑛𝑐 = 𝑉𝑠𝑒 × 𝑉𝑒ℎ (11) 
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Figure 46. Normal to the plane formed by 𝑉𝑠𝑒 × 𝑉𝑒ℎ 

In order to track the amount this normal has rotated, we must create a rotation matrix 

𝑅𝑦𝑧(φ, ψ) about the axis of rotation. The angles φ and ψ are first in the kinematic chain,

which allows us to define the rotation matrix as follows: 

𝑅𝑦𝑧(φ, ψ) = 𝑅𝑦(φ) ⋅ 𝑅𝑧(ψ) = [

𝑐φ ⋅ 𝑐ψ −𝑐φ ⋅ 𝑠ψ 𝑠φ
𝑠ψ 𝑐ψ 0

−𝑠φ ⋅ 𝑐ψ 𝑠φ ⋅ 𝑠ψ 𝑐φ
] (12) 

Using the default surface normal (in the y direction) allows us to find the surface 

normal about the upper arm, ni. 

𝑛𝑖 = 𝑅𝑦𝑧(φ, ψ) ⋅ [
0
1
0

] (13) 

Finding the normal to the joints, nc, and the normal formed by the axis of rotation, 𝑛𝑖, 

allows us to find the magnitude of |γ|, which is the joint angle for E0. This is done by 

taking the inverse cosine of the dot product between the two-surface normal and dividing 

by the multiplication of their magnitudes. 
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|γ| = 𝑐𝑜𝑠−1 (
𝑛𝑖 ⋅ 𝑛𝑐

|𝑛𝑖||𝑛𝑐|
) (14) 

Since inverse cosine does not give direction, we use the sgn function of the x component 

and multiply it by |γ| to find the complete joint angle γ. 

γ = |γ| ∗ 𝑠𝑔𝑛(𝑥 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑜𝑓(𝑛𝑖 × 𝑛𝑐)) (15) 

Finally, to find θ, we use the formula used to find the angle between two vectors. We use 

the inverse cosine to find a value between 0 and 180 degrees because we assume a person 

will be unable to bend their arm past their elbow. 

θ = 𝑐𝑜𝑠−1 (
𝑉𝑒𝑠 ⋅ 𝑉ℎ𝑒

|𝑉𝑒𝑠||𝑉ℎ𝑒|
) (16) 

4.5 Finding Joint Offsets 

Finding joint offsets is necessary to match the initial pose of the user to the initial 

pose of the robot. This must only be done once per robot, after which time the offsets will 

match all subjects. To tune these offsets, we first ask the user to place their arms to their 

sides. This allows us to ensure that the φ, ψ, γ, and θ all yield a zero position that forces 

the robot to also have its arms to its sides. Following this, we ask the user to raise both 

hands above their heads to ensure that robot mimics their behavior. It was noticed that the 

S1 joint moved downward when given positive values and upward when given negative 

values. Therefore, it was necessary to invert the ψ angle by multiplying it by negative 

one. Next, the subject is asked to hold their arms in a “T” shape, which allows us to 

check that the γ angle was tuned correctly. Finally, a position where the subject held their 
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arms to their sides in a “T” shape, but bent at the elbows at 45 degrees up to their head 

allows us to check the θ angle. 

4.6 Controller and Gain Tuning 

Rethink Robotics provides several different control modes for using Baxter’s arms. 

These include the ability to provide joint positions, velocity, or torque values in order to 

move the arms. We use two versions of the Joint Position Controller which allows us to 

provide angles in radians to the robot. The normal joint controller features the ability to 

do collision avoidance, joint limit clipping, and collision detection. As well as provide 

Delta Scaling, Velocity Scaling, and High-Speed Scaling in order to ensure all joints 

achieve the desired pose at the same time (as seen in Figure 47) [51]. The various gains 

used by the controller are tuned from the factory, with spring and torque offsets being 

calibrated once a month using the arm calibration routine [54]. 

Figure 47. Baxter’s Joint Position Controller [52] 
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The Raw Joint Position Controller removes the safety systems while controlling 

the arms. The controller only allows for Delta Max Clipping, Joint Limit Clipping, and 

Collision Detection. It has been observed that the lack of Delta, Velocity, and High-

Speed Scaling enables the robot to move its arms faster. However, the cost of this mode 

is the lack of a collision avoidance system built into the controller and the arms move 

more erratically causing some noise due to the violence of the motion [51]. 

Figure 48. Baxter's Raw Joint Position Controller [53] 

The OpenPose data was found to also produce noise during tracking of the human 

subject. Therefore, an Infinite Impulse Response filter applied to the output of the inverse 

kinematics and offsets. This decreased the peaks and valleys that were occurring due to 

these errors. The equation of this is shown below: 

𝐴𝑛𝑔𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡 = 0.6 ∗ 𝐴𝑛𝑔𝑙𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 0.4 ∗ 𝐴𝑛𝑔𝑙𝑒𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (17) 
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4.7 Results 

4.7.1 Simulated Results 

In this section, we compare the resulting positions of the elbow of Baxter and Zeno 

kinematics to check the validity of our derived kinematic model. We asked a human 

subject to wave their hand, and then we calculate the joint angles of an arm configured as 

Baxter kinematics, as well as Zeno kinematic model represented by the URDF models of 

Figure 41. We then compare the calculated elbow position with forward kinematics of the 

two URDF robots after accounting for appropriate joint offsets. The acquired data yielded 

two datasets of 342 points of the subject waving (sampled at a frequency of 10hz). These 

two datasets were subtracted from each other, and then the difference was plotted 

corresponding to the difference in X, Y and Z. 

As seen in Figure 49, the error stayed close to zero during operation. However, 

there were two instances where the error shot rose to around +/-0.688. It is unclear as to 

what caused this; more than likely some sort of error with motion tracking (because this 

only occurred for one point at a time). 
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Figure 49. X Axis Actual and Error 

A similar trend is seen in the Y error shown in Figure 50 where the error is very 

close to zero. In this figure, there are more frequent disturbances from the 0 crossing. 

This may be due to some issues with tuning Zeno’s offsets. The large spikes occur in a 

similar place as to those in Figure 49. Therefore, we believe this was an error in motion 

tracking. 
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Figure 50. Y Axis Actual and Error 

A similar trend is seen in the Z error shown in Figure 51; where the error is very 

close to zero. This may be due to some issues with tuning Zeno’s offsets. The large 

spikes occur in a similar place as to those in Figure 49. Therefore, we believe this was an 

error in motion tracking. 

Figure 51. Z Axis Actual and Error 
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4.7.2 Experimental Results 

In the section above, it has been validated that the derived inverse kinematics are 

almost identical to the desired result. Therefore, it is possible to use the real Baxter to test 

the results. To validate that the Baxter robot and the human have achieved the correct 

pose, we must view the trajectories of both the human and the robot. We view each joint 

and the inverse kinematics compared to the actual achieved joint positions to confirm the 

validity of the control scheme. In this case, we asked the subject to perform a hand wave 

using each arm (first right, then left, with the unused hand by the subject’s side) and 

recorded the image data into a file. This file was used to supply images to the ROS 

OpenPose software which then allowed the rest of the system to function as if the motion 

was occurring live. The file was replayed three times per controller in order to ensure that 

the robot would have sufficient time to exit its initial position and use produce a 

movement. The resulting data that was produced by the robot was recorded into a 

comma-separated value file for later analysis. 

In our first experiment we use the normal Joint Position Controller and observe 

the results. Figure 52, shows that the S0 joints on both sides were constant. This joint 

corresponds with the azimuth, or angle, which does not move during a handwave. It is 

important to note that the robot does not start achieving the desired angle immediately. 

This is because Baxter begins in the untucked position, which is illustrated in Figure 53. 
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Figure 52. Left and Right S0 Joint Angles (OpenPose desired vs Baxter Position) for 

Joint Position Controller 

Figure 53. Baxter Untucked Position 97[55] 

Figure 54 shows the use of the Raw Joint Position controller during the same 

handwave experiment. It can be observed that there is more error in this type of 

controller, due to the speed of the end-effector during the experiment. The high velocity 
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causes the S0 joint to produce more error due to it moving around from the other joint 

movements. 

Figure 54. Left and Right S0 Joint Angles (OpenPose desired vs Baxter Position) for Raw 

Position Controller 

The second DOF is the S1 joint (the elevation angle), which corresponds to ψ. This 

angle is expected to change throughout each handwave (because the unused hand is by the 

subject’s side). The right S1 in Figure 55 confirms that the first arm to be used was the 

right. This can be observed due to the sharp change from the constant position 10 degrees 

to approximately 80 degrees. The small oscillations at the plateau of the OpenPose desired 

angles are where the hand is being waved. The move back to 10 degrees is the time when 

the left is being used. It can be observed that the right S1 joint, does not perform closely to 

the desired position acquired from OpenPose. This is most likely due to the Joint Position 
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Controller’s speed limiting, which prevents the robot from achieving the full pose, before 

the next hand is used. 

Figure 55. Left and Right S1 Joint Angles (OpenPose desired vs Baxter Position) 

The speed limiting effect of the Joint Position Controller is not observed when 

using the Raw Joint Position Controller. In Figure 56, the error is much smaller than in 

Figure 55, and the actual versus desired graphs show that both plateau around the same 

point. Some minor error is observed, most likely caused by the gains of the robot 

controller and of course the velocity of the other joints causing oscillations in the lower 

DOF joints. 
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Figure 56. Left and Right S1 Joint Angles (OpenPose desired vs Baxter Position) for Raw 

Position Controller 

The third DOF is the E0 or joint illustrated in Figure 57. It is expected that, during 

a handwave, the position will be greater than 180 degrees (to allow for the E1 angle to 

point up. During the right handwave, we see very high oscillations, however, it still stays 

above 180 degrees during the motion. This is most likely caused by using arcsin to 

compute this, since this function only has a domain between –
𝜋

2
 and 

𝜋

2
. During the right 

handwave, the left gamma angle hovers around 100 degrees. This is most likely an error 

in the offset tuning. 
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Figure 57. Left and Right E0 Joint Angles (OpenPose desired vs Baxter Position) 

During the Raw Position Controller test, the E0 joint was able to follow the 

desired OpenPose angles closely when compared with the normal Joint Controller 

(Figure 58). 

Figure 58. Left and Right E0 Joint Angles (OpenPose desired vs Baxter Position) for 

Raw Position Controller 
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Figure 59 illustrates the movement of the of the E1 or joint during the hand wave. 

The large oscillations are the points where the subject is performing the motion. The 

actual position of the robot in this figure, shows that it was unable to achieve the pose 

that was given to it. 

Figure 59. Left and Right E1 Joint Angles (OpenPose desired vs Baxter Position) 

The Raw Position Controller (as seen in Figure 60) was able to achieve its desired 

position for both hands. It should be noted that the left OpenPose desired angles do not 

show as much oscillation as the right hand OpenPose desired angles. This is due to error 

in the inverse kinematics producing errors due to loss in motion capture. The subject 

must have performed the motion at a different speed for the left hand when the data was 

being recorded. 
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Figure 60. Left and Right E1 Joint Angles (OpenPose desired vs Baxter Position) for 

Raw Position Controller 

Finally, Figure 61 illustrates the wrist angles for both arms, which are not 

currently implemented in the current control scheme. Therefore, the desired position will 

always be zero degrees, and the actual will also achieve the zero position. We see that, 

during the first few seconds, the actual graphs all move from some arbitrary value to 

zero. This is due to the location of these joints during the untucked position. 
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Figure 61. Left and Right Wrist Joint Angles (Openpose desired vs Baxter Position) 

The Raw Joint Position Controller performs similarly to the normal Joint Position 

Controller (Figure 62). However, the actual joint position for all three joints on both end 

effectors show small oscillations during the movement. This is due to the velocity caused 

by the movement of the first four DOF, which causes oscillations in the rest of the joints 

in the kinematic chain. 
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Figure 62. Left and Right Wrist Joint Angles (OpenPose desired vs Baxter Position) for 

Raw Position Controller 
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CHAPTER 5 

SEGMENT-BASED ONLINE DYNAMIC TIME WARPING 

Motion quality estimation is necessary for enabling a computer to “understand” the 

complexity of human movement and how it can be impaired. By giving a score for a 

motion it is possible to create a measure for diagnosing conditions such as stroke [56], 

cerebral palsy [57], spinal cord injuries [58], Parkinson’s disease [59], and autism [23]. 

Pairing an algorithm designed to analyze two signals with a robot’s ability to follow the 

same trajectory for hours at a times allows for the ability to teach a patient a motion 

through repetition. 

Dynamic Time Warping (DTW) is one of several algorithms that enables the 

comparison between two-time signals; others include algorithm such as Euclidean 

distance or the nearest neighbor distance. In our previous work, Wijayasinghe and 

colleagues [23] recorded sequences from hand joint angles of autistic and neuro-typical 

subjects while they imitated the upper arm motions of social robot Zeno. In this work, we 

build upon the DTW algorithm and improve on our previous study, allowing us to give 

subjects a motion-quality score in real time, and adapt the robot to a similar speed of the 

human. This is important to allow the next-generation autism robot to track the progress 

of a subject. 
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5.1 Segment-based Online Dynamic Time-Warping Algorithm 

Segment-based Online Dynamic Time Warping (SODTW) builds upon the 

Dynamic Time Warping algorithm by adding the segmentation of a reference sequence 

into a lookup table for easy comparison of the measured sequence. It is then applied to a 

cyclic motion to ensure that the best cost can be calculated while the subject performs the 

motion. This allows the algorithm to “understand” the subjects best case capabilities, 

which improves its use as a diagnostic tool. 

The segmentation behavior is shown in Figure 63, here we see that the reference 

sequence is split into several segments for an entire period. Segments from the measured 

sequence are compared to every reference segment (using DTW) in order to find what we 

call the start point of both sequences. In Figure 63, the measured sequence becomes 

cyclic at around the 250 seconds marker; this informs the algorithm that the subject has 

begun performing the motion. The start point is then used as the beginning of the time 

sequence to compare against the reference sequence. In addition, the time taken from the 

beginning of the robot performing the motion (at time zero) and the time the subject 

begins to perform the motion (at time 250) can be called the reaction time. 
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Figure 63. SODTW applied to a Cyclic Sequence 

To use DTW on segments and the full trajectory sequence, we must define the 

DTW cost function (18). Given two discrete time sequences X and Y with the lengths m 

and n respectively, allows us to define DTW cost as: 

𝐷(𝑖, 𝑗) = 𝑑(𝑥𝑖, 𝑦𝑗) + 𝑚𝑖𝑛[𝐷(𝑖 − 1, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1)] (18) 

Where d(x,y) is the Euclidean distance between x and y, i=1,…,m, j=1,…,n, and D(m,n) 

is the DTW cost. When the smallest DTW cost is found we save the index of the 

reference segment and the measured sequence, which are called our start points. For the 

measured sequence, all the points starting from the start points until the length of one 

cycle is collected. This collected data is compared against the start point of the reference 

segment for the cycle length, using DTW; the computed DTW cost is compared with the 

previous smallest cost, and, if the new one is smaller, it is now called the best SODTW 

cost (the start point is also stored as a measure of reaction time). The algorithm and be 

summarized as follows. 

Algorithm 1 
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 Part 1: Initialization 

1. Nseg = Number of segments for one cycle

2. SegLen=Length of each Segment

3. segInter= Segment Interval

4. Time= Elapsed time/measured sequence indices

5. Q= One dimensional reference trajectory with fixed length

6. S= One dimensional measured streaming data sequence (of changing length)

7. cycleLen = Length of one cycle sequence calculated as (Nseg-1)*segInter+segLen

8. DTW_O = A large default number

9. DTW_N = 0

10. Error_Tolerance = Error tolerance for SODTW cost

Part 2: Dividing one cycle of reference trajectory into segments 

11. Seg = Segments created from Q (Seg is a matrix with Nseg row and segLen

column)

Part 3: Finding the segment index and DTW cost between segments on reference 

and measured sequences  

12. SWindow = Segment on measured trajectory, S, with the same length of the

segLen

13. for i = 1 to Nseg

14. SEG = Seg(i,:)

15. DTW_S_W(i) = D(SEG, SWindow) (Equation (1))

16. end for

17. I = Index of the segment on reference trajectory for the minimum of DTW_S_W

18. D = Minimum DTW cost in DTW_S_W

19. T = Time/index on the measured trajectory

Part 4: DTW cost calculation for one cycle 

20. Scycle = Cycle on S started from T and included Nseg segments

21. Qcycle = Cycle on Q started from I and included Nseg segments

22. DTW_N = D(Qcycle, Scycle) (Equation (1))

23. if DTW_N <= DTW_O – Error_Tolerance
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24. DTW_O = DTW_N

25. Reaction_Time = T

26. end if

5.2 Validation with Human Subjects 

To validate the SODTW, we used a pre-collected dataset of 55 physically healthy 

subjects over the age of 18 [23]. The motion recordings of the subjects were analyzed 

offline using our SODTW algorithm. We recruited an additional 13 subjects to perform 

the study to test whether the algorithm works in an online setting. 

5.2.1 Experimental Setup 

Figure 64. Experimental Setup 

The physical setup of the experiment was the same in the pre-collected and real-

time experiments. Social Robot Zeno was placed in front of a subject who was asked to 
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mimic the motions of the robot. An Xbox 360 Kinect (using the Kinesthesia toolkit) 

would be used to collect 3D data of the subject. Zeno, connected to an NI myRio 

controller, was programmed to execute a right handwave. Both studies used the same 

right hand recording file in order to ensure that the data can be used together. 

To simulate a patient who was motor-impaired in some way, the subject was 

asked to use weights while performing the motion. Both studies created comma separated 

value (CSV) files that could be used for later analysis. The weights used were none, 5, 

and 15lb dumbbells that were held in the subject’s hand during the duration of the 

motion. 

Figure 65. Sample Output of the Kinesthesia Toolkit 

To create the measured sequence the Kinesthesia toolkit was used to get XYZ 

coordinates of the humans pose. These XYZ coordinates are converted to joint angles 

using the inverse kinematics for Zeno. In order to perform SODTW, we need to have a 
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cyclic motion. In a handwave, the cyclic joint is the θ angle, therefore its time sequence 

is analyzed by the algorithm. 

5.2.2 Offline Validation 

For the offline validation of our algorithm the joint angle data from the 55 

previously recorded subjects was input into a MATLAB implementation of SODTW. 

This data had two conditions that were of interest: first, the performance of the motion 

without holding any weight, and a second, where the motion was performed while 

holding a 15lb weight. Only 44 of the 55 subjects had data for the 15lb weight, however, 

it should still be enough to validate our algorithm. 

The first step of the algorithm necessitates the initialization of several constants, 

(as seen in Table 8). cycleLen is derived by taking the reference trajectory and finding the 

length of each cycle. The segLen and segInter are chosen and these allow for the Nseg to 

be derived. 

Table 8 SODTW Parameter Initialization 

SODTW Parameter Values 

Nseg 52 

segLen 6 

segInter 1 

cycleLen 57 

Figure 66 shows the SODTW cost of the 55 subjects that performed the motion 

without a weight. The average SODTW cost for these 55 subjects is μ=5.85 with 

minimum m=2.03, maximum M=27.1 and standard deviation σ=4.7. In order to prove 
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that the SODTW algorithm is able to differentiate between our two impairment cases, it 

is necessary to compare the impairment model. 

Figure 66. SODTW cost for 55 subjects with no weight 

In Figure 67 we see the theta angle recording of a subject who performed the 

motion with, and without a 15lb weight. When the subject is unimpaired the 

SODTW=3.22; when the subject is asked to perform the same motion with the weight, 

the SODTW cost rises to 9.98. Showing that the SODTW algorithm can classify impaired 

versus unimpaired subjects. 

Figure 67. Sequence from a subject performing the motion with (right) and without (left) 

a weight 
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5.2.3 Online Validation 

To show that the SODTW can perform in real time, we asked 13 subjects to 

perform in a study where they performed a handwave. The average SODTW cost for the 

subjects without the 15lb weight was 7.23 and increased to 9.5 when holding the weight. 

We hypothesize that the higher-than-average SODTW cost without weight had to do with 

subject confusion of the correct motion to perform. Due to a later discovered faulty 

motor, that may have caused the robots handwave to look incorrect during the 

experiment. This would have caused the subject to be confused on how to execute the 

motion. 

5.3 Adaptive Imitation 

The SODTW algorithm also enables us to adapt the robot to the speed of the 

subject. In the future, this could be used to teach the subject a motion. To do this, the 

reference trajectory was used to create two other trajectories (fast and slow). By under-

sampling or oversampling the original trajectory, it was possible to slow/speed up the 

robot by either ½x or 2x the speed of the original. These new trajectories were also used 

in the SODTW to evaluate the performance of the user. After a period, the robot would 

identify the smallest SODTW score and switch to the associated reference trajectory. For 

instance, if the subject were asked to wave their hand quickly, the SODTW score for this 

motion would be close to or below 5, while the others would be higher. This would cause 

the robot to identify the fast reference trajectory as the best suited. Therefore, it would 

adapt and begin using the new reference trajectory as the new output to the motor 

commands. This behavior would also be applicable to both the normal and slow motions. 
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Figure 68 shows the SODTW scores for each of the 13 subjects during the 

adaptation experiment. In the right image, the subject was asked to perform the motion 

quickly. It can be seen that the SODTW score showed for the fast reference trajectory 

was lower than the normal reference trajectory for all subjects. In the left image, the 

subject was asked to perform the motion slowly. The SODTW score for the slow 

reference trajectory was lower than the normal reference trajectory for all subjects. 

Therefore, the SODTW algorithm enables the capability to recognize the ability of and 

adapt to the needs of the subject. In the future, this can enable the ability to teach a 

motion by slowing the robot to a speed that a subject can follow. 

Figure 68. The performance of all 13 subjects during the Adaptation Experiment 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This thesis focused on developing subsystems for the next-generation autism robot, 

in order to facilitate its ability to help individuals with ASD. We explored the usage of a 

physiological wristband in classifying attentiveness and controlling a robot in real time. 

Teleoperation was also explored to inform a robot about the motion of a subject. Finally, 

we developed an algorithm that enables the evaluation of motion quality of a subject in 

order to either diagnose a subject or adapt the robot on the fly. 

6.1 Conclusion 

The physiological wristband, Empatica E4, is a wearable device that collects 

measurements in real time. Using this ability, and LabVIEW it is possible to extract 

features for emotion classification and move a robot based on accelerometer data. In 

addition, we were able to explore the physiological data from a social skills camp at the 

University of Louisville Autism Center to attempt to classify the attentiveness of a 

subject. The proposed neural network classifiers in this thesis achieved a 68% accuracy. 

Gaining insight into the methods the wearable uses to gather data enables us to 

examine its feasibility for future use in studies with subject with ASD. This knowledge 

ensures that the next-generation autism robot will have a method of interpreting the 



90 

subject’s attentiveness, and in future, their emotions. This information can be used to 

maximize the effectiveness of therapy and ensure that the subject feels safe. 

Understanding motion is also an important part of the next-generation autism 

robot’s abilities. Being able to teleoperate (or puppeteer) the robot enables the therapist to 

record motions for use in a session. By utilizing OpenPose as the vision subsystem for the 

robot, we can track the face, fingers, and whole body of a subject. This allows more 

information about the subject to be collected and will allow the robot to understand more 

types of gestures (such as ones that involve fingers) or facial expressions. Using Rethink 

Robotics’ Baxter robot has shown that the teleoperation subsystem can be implemented 

on any ROS based robot. If the camera (Azure Kinect) system can communicate and 

provide web camera image to OpenPose the work is transferable. 

Finally using skeletal tracking software on a robot enables us to develop algorithms 

that evaluate the motion quality of a subject. We proposed the Segment-based Online 

Dynamic Time Warping algorithm to gauge the best-case capabilities of the subject. This 

enables the robot to grade a subject on their motion performance and adapt to the motion 

of the subject. Adapting to the motion quality can help the subject learn, the robot can 

change its speed to match the capabilities of the subject. 

By providing the ability to understand the motion of the subject, and adapt to their 

performance, it is possible to create a robot that can both diagnose and teach motions. It 

also enables the robot to mimic the motion of the subject which can help the subject stay 

engaged. Finally, by generating a score based upon the motion quality, it is possible for 

the robot to give the subject praise or reassurances based on threshold scores.  
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Informing the next-generation autism robot about the emotion and motion of the 

subject will enable a closed loop human-robot interaction. By monitoring the 

physiological signals from the wearable wristband, the robot could prompt the subject if 

they are inattentive or attempt to calm them if frustration is detected. Informing the robot 

about the motion of the subject ensures that it understands the movements. This signal 

data ensures that the robot is capable to adapt to the needs of its user. 

6.2 Future Work 

In the future, the subsystems developed in this thesis can be combined to help 

children with ASD. By improving upon the emotion classification and receiving the 

physiological signals in real time, it is possible to ensure that a robot can understand the 

emotional state of a subject. In addition, this technology can be useful for therapists and 

that oversee multiple students with ASD at once. By helping inform the therapist of the 

emotional state of all the students. 

The teleoperation submodule of this thesis can be used to teleoperate different 

robots to conduct a study on which type of robot is more effective at keeping engagement 

of a child with ASD. The teleoperation portion also enables the use of finger and facial 

feature tracking. Therefore, it is possible to ensure that the next-generation autism robot 

can be knowledgeable about the face of the subject. Finally, it is necessary to investigate 

the speed of the current controller in order to ensure that the robot can function in real 

time. 

When paired with a motion generation framework, such as Dynamic Movement 

Primitives, the SODTW algorithm can be used to help the robot teach a subject a desired 
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motion. This will enable the next-generation autism robot to adapt to the subject and help 

achieve mastery of various movements. 
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