
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

8-2021 

Passive method for 3D reconstruction of human jaw: theory and Passive method for 3D reconstruction of human jaw: theory and 

application. application. 

Mohamad Ghanoum 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Ghanoum, Mohamad, "Passive method for 3D reconstruction of human jaw: theory and application." 
(2021). Electronic Theses and Dissertations. Paper 3729. 
https://doi.org/10.18297/etd/3729 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Fetd%2F3729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3729
mailto:thinkir@louisville.edu


PASSIVE METHOD FOR 3D RECONSTRUCTION OF HUMAN
JAW: THEORY AND APPLICATION

Mohamad Ghanoum
B.Sc., Electronics and Communications Engineering, University of Kalamoon,2012

M.Sc., ECE, Speed School of Engineering, University of Louisville, 2015

A Dissertation
Submitted to the Faculty of the

J. B. Speed School of Engineering of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering
University of Louisville

Louisville, Kentucky

August, 2021



c© Copyright 2020 by Mohamad Ghanoum

All Rights Reserved





PASSIVE METHOD FOR 3D RECONSTRUCTION OF HUMAN
JAW: THEORY AND APPLICATION

by

Mohamad Ghanoum
B.Sc., Electronics and Communications Engineering, University of Kalamoon,2012

M.Sc., Electrical and Computer Engineering, Speed School of Engineering,
University of Louisville,2015

A Dissertation Approved on

August 5, 2021

by the following Dissertation Committee:

Professor Aly Farag, Ph.D., Chair/Advisor

Asem Ali, Ph.D., Co-Advisor

Professor John F. Naber, Ph.D.

Professor William C. Scarfe, BDS, FRACDS, MS

Professor Hichem Frigui, Ph.D.

Michael L. Mclntyre, Ph.D.

ii



DEDICATION

I would like to dedicate this thesis to my parents, to my beloved

wife, and to my son.

iii



ACKNOWLEDGEMENTS

This research was performed by the grace of God, who gave me the knowledge

and wit to finish and establish this research. I owe my gratitude to all the people

who have made this thesis possible and because of whom my graduate experience

has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, Professor Aly Farag for giv-

ing me an invaluable opportunity to work on challenging and extremely interesting

projects over the past six years. Thank you for introducing me to Computer Vision

and giving me the opportunity to explore this captivating field. Your ongoing con-

fidence in me and my work has been an inspiration. It has been an honor to be one

of your Master and Ph.D. students.

I would also like to thank my co-advisor, Dr. Asem Ali. Without his extraor-

dinary theoretical ideas and computational expertise, this thesis would have been

a distant dream. Thanks are due to Professor John Naber, Professor William

Scarfe, ProfessorHichem Frigui, and DrMichael Mclntyre for agreeing to serve

on my thesis committee and for sparing their invaluable time reviewing the manuscript.

My colleagues Mr.Islam Alkabany and Mr.Mustafa Izz at the computer

vision and image processing laboratory have enriched my graduate life in many ways

and deserve a special mention.

I owe my deepest thanks to my family - my mother Mufida Katma and

father Mostafa Ghanoum who have always stood by me and guided me through

iv



my career, and have pulled me through against impossible odds at times. Words

cannot express the gratitude I owe them. I would also like to thank my uncle Dr.

Kheder Kutmah for his love, support, guidance and unfailing faith in me. Words

cannot do justice to his impact in forging my personal and academic outlook. .

I have been blessed with a marriage to one of the most decent and lovable

persons God ever created. My beloved wife,Olama Kalih, supported me in times of

doubt, and her enriched my life beyond measure. She has cheerfully accommodated

all manner of long hours and inconvenient absences. Her unconditional love and

constant encouragement are what keep me going. Basically she was the person I

counted on for support and encouragement. No words can express my love and

appreciation for her.

v



ABSTRACT

PASSIVE METHOD FOR 3D RECONSTRUCTION OF HUMAN
JAW: THEORY AND APPLICATION

Mohamad Ghanoum

August 5, 2021

Oral dental applications based on visual data pose various challenges. There

are problems with lighting (effect of saliva, tooth dis-colorization, gum texture, and

other sources of specularity) and motion (even inevitable slight motions of the up-

per/lower jaw may lead to errors far beyond the desired tolerance of sub-millimeter

accuracy). Nowadays, the dental CAM systems become more compromised and ac-

curate to obtain the geometric data of the jaw from the active sensor (laser scanner).

However, they have not met the expectations and the needs of dental professionals

in many ways. The probes in these systems are bulky – even their newer versions -

and are hard to maneuver. It requires multiple scans to get full coverage of the oral

cavity. In addition, the dominant drawback of these systems is the cost.

Stereo-based 3D reconstruction provides the highest accuracy among vision

systems of this type. However, the evaluation of it’s performance for both accuracy

result and the number of 3D points that are reconstructed would be affected by the

type of the application and the quality of the data that is been acquired from the

object of interest. Therefore, in this study the stereo-based 3D reconstruction will
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be evaluated for the dental application. The hand piece of sensors holder would

reach to areas inside the oral cavity, the gap between the tooth in the upper jaw

and the tooth in the lower jaw in these areas would be very small, in such the stereo

algorithms would not be able to reconstruct the tooth in that areas because of the

distance between the optical sensors and the object of interest “tooth” as well as the

configuration of optical sensors are contradict with the geometric constraint roles

of the stereo-based 3D reconstruction. Therefore, the configuration of the optical

sensors as well as the number of sensors in the hand piece of sensors holder will be

determined based on the morphological of the teeth surfaces.

In addition to the 3D reconstruction, the panoramic view of a complete arch

of human teeth will be accomplished as an application of dental imaging. Due to

low rate of features on teeth surfaces, the normal of tooth surface is extracted using

shape from shading. The extracted surface normals impact many of imprecise values

because of the oral environment; hence an algorithm is being formulated to rectify

these values and generate normal maps. The normal maps reveals the impacted

geometric properties of the images inside an area, boundary, and shape. Further-

more, the unrestricted camera movement problem is investigated. The camera may

be moved along the jaw curve with different angles and distances due to handshak-

ing. To overcome this problem, each frame is tested after warping it, and only

correct frames are used to generate the panoramic view. The proposed approach

outperforms comparing to the state-of-art auto stitching method.
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CHAPTER 1: INTRODUCTION

Recovering the structure of a scene from images has long been one of the core

interests of computer vision. While a considerable amount of work in this area has

been devoted to achieving high-quality reconstructions regardless of run time, other

work has focused on the aspect of real-time reconstruction and its applications. In

the past two decades, interest has developed around the use of 3D reconstruction

for reality capture, gaming, virtual, and augmented reality. These techniques have

been used to realize video game assets [1, 2], virtual tours [3] as well as mobile 3D

reconstruction apps [4]. Some other areas in which 3D reconstruction can be used

are computer graphics and animation [5], medical imaging [6], etc.

1.1 Dental impression

Orthodontic treatment involves the application of force systems to teeth over-

time to correct the malocclusion. In order to evaluate tooth movement progress,

the orthodontist monitors this movement by means of visual inspection, intraoral

measurements, fabrication of plastic models (casts), photographs, and radiographs,

a process that is both costly and time-consuming. Obtaining a cast of the jaw is

a complex operation for the orthodontist, an unpleasant experience for the patient,
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Figure 1.1: Dental impressions

and may not provide all the details of the jaw. Some efforts have been devoted to

computerized diagnosis in orthodontics. In the past, most of these 3D systems for

dental applications found in the literature rely on obtaining an intermediate solid

model of the jaw (cast or teeth imprints) and then capturing the 3D information

from that model. User interaction is needed in such systems to determine the 3D

coordinates of fiducial reference points on a dental cast.

1.1.1 Digital impressions

Nowadays, the optical impression are widely use to get a full 3D model of the

human jaw. Optical impressions have several advantages over conventional impres-

sions(Fig.1.1). The most important is the reduction of patient stress and discomfort.

In fact, many patients today have anxiety and a strong gag reflex and therefore do

not tolerate the conventional impressions; in these cases, using light to substitute

trays and materials is an ideal solution. Optical impressions, moreover, are time-
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Figure 1.2: Illustration of the margin line in prepared teeth

efficient and can simplify clinical procedures for the dentist, especially for complex

impressions. In addition, optical impressions eliminate plaster models, saving time

and space, and allow for better communication with the dental technician. Finally,

intra-oral system (IOS) improves communication with patients and are therefore

a powerful marketing tool for the modern dental clinic. Conversely, the disadvan-

tages of using optical impressions are the difficulty in detecting deep margin lines

in prepared teeth and/or in the case of bleeding (Fig.1.2), and the purchasing and

managing costs which consider the main drawback for small clinics.

1.2 Stereo-based 3D reconstruction in dental application

CVIP- lab has been involved for the three decades inhuman jaw reconstruction

research. The goal is to develop a system for dentistry to go beyond traditional
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Figure 1.3: Few correct and incorrect matches are obtained by a robust feature-based
stereo applied to a right and left camera’s images

approaches [7–11]. The system should obtain sequences of calibrated images of

the upper/lower jaw using small intra-oral cameras.Then the system will provide

accurate 3D reconstruction from the acquired images and will register robustly the

3D models , which will be built from multiple views. This research has immense value

in various dental practices including implants, tooth alignment, and craniofacial

surgery. The proposed technology has also wide applications in teledentistry, dental

education, and training. Several different approaches have been examined, such as

the Shape from Shading (SFS) [12], shape from shading with shape priors [9], and

appearance-based approch for shape reconstruction [13]. The stereo approach has

been by far the most widely used for shape recovery.

However, one of the main problems of stereo is the correspondence problem.

Due to the difficult nature of the correspondence problem, several constraints have

4



been imposed on the stereo-based approach. A large number of stereo techniques

rely heavily on assumptions such as the existence of specific features in the images

to produce satisfactory results. However, featureless (see Fig.1.3) scenes are hard

to reconstruct in stereo because corresponding points between two corresponding

images cannot be accurately found. Also, stereo-based approach is difficult to apply

to images taken from arbitrary viewpoints. This is because corresponding image

points become very hard to find if the images are taken from viewpoints far apart.

As a consequence, a stereo-based approach is an inefficient method for reconstruction

of objects like human teeth, which, in addition to having many occlusion edges, have

no specific geometric features.

This work investigates the obstacles that would make the stereo approach fail

in the dental project. The cameras configuration and the depth of field are an

important keys used in the stereo approach to obtain a valid 3D points from the

scene to be reconstructed. These constraints will be studied and determined the

best settings that would achieve the goal.

1.3 Literature review

Three dimensional reconstruction methods are classified into passive and active.

Passive methods do not involve interaction with the object, whereas active methods

use contact or a projection of some form of energy onto the object. Most of the

current technologies, in dental application for 3D reconstruction, work based on

active methods.
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As an example, iTero [14] system employs a parallel confocal imaging tech-

nique [15] for structure recovery, an array of incident red laser light beams, passing

through a focusing optics and a probing face, is projected onto the teeth. The

beams generate illuminated spots on the structure and the intensity of returning

light rays is measured for various positions of the focal plane. The topology of the

three-dimensional structure of the teeth is reconstructed on the basis of spot-specific

positions yielding a maximum intensity of the reflected light beams. This technique

allows iTero capturing all structures and materials in the mouth, without the need to

apply any coating to the patient’s teeth. The 3Shape is another company launched

a new patient-friendly and high-performance intraoral scanning solution.

Table 1.1: Comparison of technical data of intraoral scanning systems

Intraoral scanner Company working principles Light source Imaging type Necessity of coating In-office milling Output format Commercial availability
1 iTero Cadent LTD (IL) Parallel confocal microscopy Red Laser Multiple images None No Proprietary Available
2 E4D D4D Technologies, LLC (US) Optical coherence tomography and confocal microscopy Laser Multiple images Occasionally Yes Proprietary Available
3 LavaTMC.O.S . 3M ESPE (US) Active wavefront sampling Pulsating blue light Video Yes titanium dioxide No Proprietary Available
4 IOS FastScan IOS Technologies, INC. (US) Active triangulation and Schleimpflug principle Lase r 3 images Yes Yes STL Available
5 directScan HINT – ELS GMBH (DE) Active Stereoscopic Vision Not disclosed Multiple images Not disclosed No STL Not Available
6 Trios 3Shape (DK) Confocal microscopy Not disclosed Multiple images Not disclosed No Not disclosed Available
7 Dental Wings Dental Wings.inc (CA) stereoscopic LED light and projector Multiple images Yes Yes STL Available
8 Bluescans Atron3Ds GMBH(AT) Active stereoscopic vision Plused UV LED 2 images None No STL Available
9 CEREC Bluecam Sirona Dental System GMBH (DE) Active triangulation and confocal microscopy Blue light Multiple images Yes titanium dioxide Yes Proprietary Available

TheTrios system [16] works according to the principle of confocal microscopy,

with a fast scanning time. The light source provides an illumination pattern produc-

ing a light oscillation on the object. The system produces a variation of the focus

plane of the pattern as well, over arrange of focus plane positions, while maintain-

ing a fixed spatial relation of the object. When a time varying pattern is applied,

a single sub-scan is actually the collection of a certain number of 2D images, cor-

responding to different positions of the focus plane and to their respective different

time instances of the illumination pattern. In 2006, The Lava C.O.S. system for

dental scanner is launched. The Lava C.O.S. camera contains a highly complex op-
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tical system comprised of 22 lens systems and 192 blue LED cells. They introduced

a method of capturing 3D data based on the principle of active wave front sam-

pling [17] with structured light projection. There are many additional laser dental

scanners in the last two decades have been launched. Table 1.1 illustrates differences

and characteristics of each one of these scanners.

On the other hand, the passive methods are a non-contact technique for dig-

itally collecting data of the shape of a 3D object. There has been a substantial

amount of work to make it easy and feasible for doctors, dentists, and researchers to

obtain a 3D model of the person’s jaw without ionizing radiation. Computer vision

techniques boost computerized diagnosis in dentistry [18]. Unluckily, due to non-

trivial occlusions in the mouth interior and the difficult appearance properties of

the teeth, camera-based photogrammetric reconstruction is very challenging. Teeth

have low dense of texture and they are highly specular and exhibit strong subsurface

scattering.

Several works have been conducted in the reconstruction of tooth occlusal

surface based on the reflectance properties using Shape from Shading [7, 19–21].

However, the outcome reconstruction of these approaches is a non-metric recon-

struction. On the other hand, some previous works developed a statistical model

that can recover the 3D shape of the visible teeth from a single photo or from a set

of overlapped images. In Shireen etal [13], proposed a relation between the pho-

tometric information of a single intraoral photo and the underlying 3D shape by

formulated a statistical model in such the effect of the illumination and reflectance

are molded into that model whereas the principle component regression is used for
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3D estimation. Yet, the reconstruction result of the joint tooth-gum region is not

accurate since the information in these areas are estimated. Wu, Chenglei, in ‘ [22]

, also proposed a model-based approach for reconstructing a 3D teeth model from a

set of overlapped images. However, these images have not been captured intraorally,

which means that the information in the occlusal sextant parts are missing, and the

result of these parts would be estimated from the trained model. Generally, these

type of approaches are not clinically accepted since the results are based on a prior

model, which is consider as an estimated outcome.

Passive triangulation [23]is based on processing of two stereo images, obtained

from two calibrated cameras, whose relative translation and rotation are known.

This information is needed in order to identify points with corresponding features

on the two images and to apply triangulation, with respect to the same corre-

sponding points on the epipolar line. Stereo-based reconstruction uses the epipolar

geometry. There is another technique among the passive method called Structure

from Motion(SFM) [24–28]. SfM is the process of reconstructing 3D structure from

its projections into series of images taken from different viewpoints. Incremental

SfM is a sequential processing pipeline with an iterative reconstruction component.

It commonly starts with feature extraction and matching, followed by geometric

verification. The resulting scene graph serves as the foundation for the reconstruc-

tion stage, which seeds the model with a carefully selected two-view reconstruction,

before incrementally registering new images, triangulating scene points, filtering

outliers, and refining the reconstruction using bundle adjustment.
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1.4 Contribution

Intra-oral scanning technology is a very fast-growing field in dentistry since

it responds to the need for an accurate three-dimensional mapping of the mouth.

Despite the high 3D reconstruction accuracy of the active scanners, they are very

expensive which is considered as the main drawback, the head of the scanner is very

bulky, and it needs a dentist professional in many ways. The geometric extraction

of human teeth using passive methods is studied in this work. The main advantage

of using the passive method is the low cost of these systems, made of few and cheap

components; furthermore, also the working principle is simple, the same as in the

human eye.

The sensor planning will be designed based on the morphological teeth surfaces.

Due to the complexity and variety of teeth surfaces, the hand piece of sensors holder

would need more than two cameras to scan a complete full arch, in such a different

kind of areas inside the oral cavity would be scanned with one-time data acquired

which would be a distinct feature from the active scanners. The number of cameras

needed would be determined by conducting a different experiments on a certain

teeth surfaces. In addition to 3D reconstruction application, this work proposed an

approach to produces a panoramic view of a complete arch of jaw from a sequence

of images. Normal maps were used to reveal the impacted features of the images.

Also, normal maps are used to estimate connected planner regions to obtain the

homographies for stitching. In this work, the restriction of the camera movement

has been released. This constraint impractical due to the handshaking of the intra-
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oral camera inside the oral cavity even for experts. This problem is solved by using a

Boolean stage to test the homography matrix between every two consecutive images

and decide whether these images stitching could proceed.

1.5 Dissertation organization

This document is divided into three chapters. The chapter two covers the

geometry of the oral cavity as well as the dimensions of the complete arch jaw . The

chapter three presents the proposed the sensor planning configuration using passive

method based on the geometry of the oral cavity. The chapter three shows how the

stitch a consectuive images acquired from the human teeth to construct a panoramic

view of a complete arch.
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CHAPTER 2: THE GEOMETRY OF THE HUMAN ORAL

CAVITY

The human oral cavity is considered as a complex environment for visual appli-

cation due to the confined space, saliva, and lack of texture. The width, length, and

depth of dental arches have had considerable implications in orthodontic diagnosis

and treatment planning in modern dentistry based on prevention and early diagnosis

of oral disease. From a computer vision perspective, the scene and the object need

to be studied before any further step in the application. Therefore, in this chapter,

the oral space dimensions will be studied to reveal the available space that can be

used in visiual applications such as probe design

2.1 Mouth opening

2.1.1 Maximum mouth opening

Much research has been carried out to document maximum mouth opening

(MMO) in several populations [29–31]. MMO can be expressed either as interin-

cisal distance or as corrected interincisal distance, which is determined by adding

the amount of vertical overlap between the upper and lower incisors to the incisal
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Figure 2.1: Diagrammatic representation of the curvilinear pathways of the incisors
(C) , the angle of mandibular rotation θ in maximal mouth open and the distance
between condyle and incisors (r).

distance [32]. Rieder [29] reported that men generally have a wider mouth opening

than women: in that study, 83% of men had a mouth opening of 40–60 mm, whereas

87 % of women had a mouth opening of 35–55 mm, see arc (C) in Fig.2.1.

The mouth angle has been reported in some research as a part of their study

of the MMO [33, 34]. The angle, θ in Fig.2.1, of mandibular rotation during the

maximal mouth opening was measured, in [34], as the angular change of the dashed

line connecting the hinge axis and incision from maximum intercuspation to max-

imum opening. In that study, 93 cases distributed to 30 men and 63 women with

ages between 15-75 years old were enrolled. The average of the angle of mandibular

during the maximum mouth open was 26± 7.0 degree.

Assuming that the curvilinear pathways (C) is an arc , (r) is the radius of this

circle and θ is the central angle of this arc in radian. The (r) can be calculated as
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following:

r =
C

θ
=
lengthofsubstendedarc

thecentralangle
(2.1)

Where the curvilinear enterval is 35-60 mm and the average of central angle is

0.45 radian, thus the radius using Eq.2.1 is 77.7-134 mm

2.2 Dental jaw geometry

Dental Jaw dimensions, including width, length, and height, are important

values for the diagnosis, treatment, planning, and treatment outcomes concerning

patients who are seeking orthodontic treatment in all age groups. Different ethnic

groups and populations display variable dental Jaw measurements and characteris-

tics [35]. The characteristics of the jaw(see Fig. 2.2) can be determined based on

the following parameters:

1. Inter-canine distance (a): from the cusp tip of the canine to the contralateral.

2. Inter-first molar distance (b): the distance measured from the buccal groove

along the occlusal surface of the first molar to the contralateral first molar.

3. Inter-second molar distance (c): the distance measured from the buccal groove

along the occlusal surface of the second molar to the contralateral second

molar.

4. Arch length (f): from the center of the palatal incisal papilla to the middle point

on a line drawn between the right and left second molars.
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Figure 2.2: Maxillary and mandibular dental width measurements: a.intercanine
distance; b.inter-first molar length; c. inter-second molar and f.arch length.

In order to get these dimensions, our dataset contains 432 three dimensional

CT models (224 male and 208 female) of human jaws are measured. This dataset

can be divided into four categories based on a number of teeth per jaw and the

mandible or maxilla jaw type:

1. 90 jaws for (mandible-14 teeth)

2. 259 jaws for (maxilla-14 teeth)

3. 39 jaws for (mandible-12 teeth)

4. 44 jaws for (maxilla -12 teeth)

To accurately measure these parameters, we extract a set of anatomical land-

marks. Typically, a landmark represents a distinguishable point which is present

in most of the images under consideration, for example, the location of the central

grooves of each tooth. Fig. 2.3 illustrates the location of 72 landmark points for a

jaw containing 14 teeth.
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Table 2.1: Maxillary and mandibular dental width dimension according to Fig.2.2.

a(mm) b(mm) c(mm) f(mm)
Lower-14 26.77±1.99 51.19±1.32 55.90±2.78 51.23±1.28
Upper-14 34.46±2.52 55.36±1.89 59.09±2.67 55.37±1.90
Lower-12 28.17±1.70 45.42±1.61 53.63±2.57 45.40±1.63
Upper-12 33.19±2.92 46.06±3.16 51.69±7.74 46.00±3.17

Figure 2.3: Illustration of the human jaw anatomical landmarks.

In Table 2.1, the dimensions of the maxillary and mandibular jaw have been

identified. These dimensions would help us to get more measurements of the oral

space like the distance between the second molars of the maxillary and mandibular

during the maximum mouth opening.

2.2.1 Distance between the maxillary and mandibular during maxi-

mum mouth opening

This study aims to define the smallest distance in the oral space that the sensor

would reach it during data acquisition. This distance is between the second molar
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Figure 2.4: The presentation of linear measurements RH: Ramus height, RW: Ramus
width, AGD: Antegonial depth CH: Condylar height.

in the occlusal surface of the mandibular jaw and the contralateral in the maxillary

jaw (see L in Fig.2.5). In [36], a study was made to see the impact of the age,

gender, and dental status on the remodeling of anantegonial and gonial, condylar,

and ramus regions (see Fig.2.4). They reported that the average of ramus height

for 910 patients is 49.23±7.22 mm. The straight line between the incisor of the

mandibular and condyle, r is calculated using Eq.2.1. So,the angle α in Fig.2.5 can

be calculated as follows:

α = sin(
RH

r
) = 21− 39 degree (2.2)

The radius of the circle that passing the second molars in both jaws (upper

and lower) is defined as d (Fig.2.5). The f in table 2.1 and α are known, so the
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radius of that circle can be approximated as following:

Figure 2.5: Measurement in the oral space.

d
′
= cos(α)× f =⇒ d = r − d′

(2.3)

Thus, L in Fig.2.5 can approximated using Eq.2.1:

d =
L

R
=⇒ L = d×R =⇒ L = 12− 26.6 mm (2.4)

The hand piece of sensors holder as well as the sensors configuration will be

designed based on the available space between the sensors and the teeth surfaces
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(Fig.2.6). Since the smallest area “L” that the hand piece would reach inside the

mouth for 3D reconstruction is calculated and the thickness of the sensors holder is

known based on the sensor dimension, the space availability between the sensor and

teeth surface is estimated to be approximately 5mm.

Figure 2.6: Illustration of the measurment for the smallest space the hand piece of
sensors holder would reach in the human oral cavity.

2.3 Conclusion

In this chapter, the geometry of the oral cavity was studied to reveal the

dimension of areas that the hand piece sensors holder would reach during the data

acquisition. These dimensions are very important in the sensor planning design for

3D reconstruction of the human teeth in such the configuration of sensors would be

designed according to these dimensions.
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CHAPTER 3: CAMERA CONFIGURATION DESIGN FOR A

DENTAL RECONSTRUCTION

Visual 3D reconstruction is an essential technique in computer vision which

restores the 3D model of the scene from a single image or multi-view images. The

hand piece of sensors holder should capture images with good quality and process

them in real time. So sensors should be carefully configured such that teeth can be

clearly appear in field of view of cameras. Thus, this chapter illustrates the stratgy

which is used to determine the best number of sensors and their geometry to get

full and accurate 3D reconstruction of the human teeth.

3.1 Geometric camera formation

In order to use images to infer information about the 3D world, one needs

to study how pixel brightness in the image is related to the physical world. To

accomplish such a task, two questions needed to be addressed; (1) where some

point in 3D will appear in the 2D image, and (2) how bright this image point will

be. The former question is related to the camera/viewer properties, i.e. geometric

image formation(Fig. 3.1), while the latter one is governed by surface properties

and illumination conditions, i.e. photometric image formation.
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Figure 3.1: Geometric image formation.

Consider a directional light source emitting light rays in all directions(fig. 3.1),

where one light ray is directed towards a surface point. When a light ray hits a

surface point, a portion of its energy is absorbed by the object, while the remain-

ing is reflected from the surface. Such portion is a function of surface reflectance

properties. The brightness of the projected point in the image plane is affected by

the reflected light rays in the direction of the camera. The camera lens takes all the

light rays bouncing around and uses optics to redirect them to a single point and

then projects them on a digital camera sensor or piece of film. The processor of

the camera captures the information from the sensor camera and produces a sharp

image. If rays of light does not meet at the right point, the image will look blurry.

The focal Length is a principle parameter in the image formation; it determines

the angle of view. Shorter focal length, the more subject fits in the frame. There

are two types of projections:
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1. 1) Orthographic projection: is a form of a parallel projection in which all the

projection lines are orthogonal to the projection plane (image sensor),

x = f
X

Z
; y = f

Y

Z
(3.1)

Where f is the focal length,(x, y) are the pixel coordinate in image plane and

(X, Y, Z) are the point coordinate in world space.

2. Perspective projection: The image of a projective camera can be described in

terms of its 11 intrinsic and extrinsic parameters (see fig.3.2). The intrinsic

parameters affect how the image is seen on the image plane once it has entered

the camera. These are unique to individual cameras and include:

1. Focal Length - The distance from the camera’s center to the image plane.

In most digital and film cameras this is the distance from the rear-most

lens element to the actual sensor/film.

2. Principal Point - The origin of the image plane in relation to the center of

the image plane. For convenience, typically the lower left corner of the

image is considered the origin.

3. Skew Coefficients - The pixels in a CCD sensor may not be perfectly square,

resulting in a small distortion in the X or Y directions. The skew coef-

ficient is the number of pixels per unit length in each direction on the

CCD sensor.

4. Distortion - The curved nature of a lens results in radial and tangential
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Figure 3.2: Camera projection

distortion. These can be quantified by a number of distortion coefficients.

Together these parameters form the camera calibration matrix K. The extrin-

sic parameters of a camera, on the other hand, are not unique to any given

camera. These relate how a camera’s orientation and position within world

coordinates:

1. Rotation - Roll, Pitch, and Yaw of the camera

2. Translation - Position of the camera in regards to the World origin.

The intrinsic and the extrinsic parameters define a camera’s projection matrix

P :

P = K[R|T ] (3.2)
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Figure 3.3: An example of the camera projection types.(a) Orthographic projection
and (b) Perspective projection.

Fig.3.3 illustrates the difference between two projections. As shown in fig.3.1,

there is a distance in Z direction between the statues; the perspective clarify this

distance while the orthographic show that they are in the same distance from the

camera. Two main characteristics of perspective are vanishing points and perspec-

tive foreshortening. Due to foreshortening, object and lengths appear smaller from

the center of projection. More we increase the distance from the center of projection,

smaller will be the object appear. Thus, we can say the prespective is represents

the functionality the human eyes while we consider the orthographic projection is a

special case.
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3.2 Epipolar geometry

The epipolar geometry is the intrinsic projective geometry between two views.

It is independent of scene structure, and only depends on the camera’s internal

parameters and relative. Zisserman in [37] described the fundamental of epipolar

geometry and how it helps to find the correspondences of multi view images. Suppose

a point X in 3-space is imaged in two views, at x in the first, and x′ in the second.

In fig.3.4 the rays back-projected from x and x′ intersect at X are co-planar lying

in S. The plane S is determined by the baseline and the ray defined by x. Also,

the ray corresponding to the (unknown) point x′ lies in S, hence the point x′ lies

on the line of intersection l′ of S with the second image plane. This line l′ is the

image in the second view of the ray back-projected from x. In stereo correspondence

algorithm the search for the point corresponding to x is only restricted to the line

l′.

3.3 The fundamental matrix

The fundamental matrix is the mathematical representation of epipolar geom-

etry. Given a pair of images, as shown in 3.4, each point x in one image, there exists

a corresponding epipolar line l′ in the other image. Any point x′ in the second

image matching the point x must lie on the epipolar line l′ . The epipolar line is

the projection in the second image of the ray from the point x through the camera
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Figure 3.4: Correspondence geometry

centre C of the first camera. Thus, there is a map

x =⇒ l′ (3.3)

3.3.1 Geometric derivation

The mapping in Fig (3.5) from a point in one image to a corresponding epipolar

line in the other image can be divided into two steps:

1. The point x is mapped to point in the other image lying on the line l′: points

xi in the first image and the corresponding points x′i in the second image

are projectively equivalent, since they are each projectively equivalent to the

planar point set Xi. Thus there is a 2D homography HS mapping each xi to

x′i.

2. The line l′ is obtained as the line joining x′ to the epipole e′: the epipolar line l′
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passing through x′ and the epipole e′ can be written as l′ = x′ × e′. Since we

can write x′ = HS × x , we can write l′ as:

l′ = e′ ×HS × x = xF (3.4)

3.3.2 Algebraic derivation

The fundamental matrix can also derived algebraically in term of the two cam-

era projection matrices,P and P ′. The fundamental matrix can be written:

F = e′ × P ′ × P+ (3.5)

Where P+ is the pseudo inverse of P and the camera baseline intersects the

second image at the epipole point e′. Notice that homography matrix can be formed

HS = P ′ × P+ in terms of the two camera matrices.

3.3.3 Geometric constraints

Two perspective cameras observing the same points must satisfy the epipolar

constraint:

x′Fx = 0 (3.6)

Since x′ lies on the epipolar line l′ = Fx corresponding to the point x, that

gives 0 = l′× x′T = x′TFx. The human oral cavity enviroment puts a restriction on
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Figure 3.5: The fundamental matrix mapping

the cameras configuration to satisfy the epipolar constraint, in such the two cameras

parameters need to be tuned are (see Fig.3.6):

1. The baseline between cameras.

2. The angle between the optical axis of the cameras

3. The depth of field roles in the geometric constraint.

Figure 3.7, shows two images, which are captured with two cameras for a second

molar tooth (an artificial texture applied on the tooth to illustrate the idea), The

system parameters are chosen to be the baseline 5mm, depth is 8mm and the angle

between the optical axes is 12o. For the four pairs of contours in I1 and I2, each

pair are centered at corresponding points and have the same color, size and shape.

However, each pair doesn’t enclose the exact corresponding points in images I1 and

I2. This occlusion happens due to the size of baseline, the angle between optical axes
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Figure 3.6: Cameras configuration setup.D is the depth of field between the object
and the cameras, angle of OA (Optical Axes) is the angle between the optical axes
of the cameras and Baseline is the distance between the cameras.

(OA) and the depth of field (w.r.t to the tooth size). This lack of correspondences

affects the reconstruction process.

Figure 3.7: Illustration of the cameras configuration influence on the geometric
constraint.
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Figure 3.8: The setting of analysis and geometric interpretation for binocular re-
construction.

3.4 Theoretical camera configuration design

Pinhole camera is a simple system that can record an image of an object or

scene in the 3D world [37]. The projection from the world coordinate of a 3D

point Xj to the camera coordinate on a certain 2D pixel x
(j)
i in the i-th image can

explained by the following:

x
(j)
i = PiXj = Ki[Ri|ti]Xj (3.7)

Where Pi is the projection matrix of i-th camera. In [38], a study proposed an

approach to measure the optimal camera configuration for a certain application. The

likelihood function of the projection equation Eq.3.7 can be described by Gaussian

distribution as :
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Figure 3.9: The virtual cameras setup in front of a partial of the second molar tooth.

p(x; θ) ∝ exp(
∑
i∈N
j∈M

− 1

2σ2
i

||x(j)i −Ki(RiXj + ti||2) (3.8)

Where x is the vector consists of all the projection pixels, i.e., θ = (XT
i )Ti∈N

, x = (x
(j)T
i )Ti∈N ,j∈M, M and N denote the index sets of cameras and 3D points,

respectively. Figure.3.8, shows the two cameras are located at c0, c1 with the yaw

angles α0, α1. The 3D point X to reconstruct is on the circle of radius r around

the midpoint O of c0 and c1. To maximize the reconstruction accuracy, the optimal

poses of all cameras have to be adjusted according to:

arg min
Ri,ti,i∈N

tr{I−1(θ)} =
d20zd

2
1z

d21z + d20z
+
d20d

1
1z + d21d

1
0z

b2d2z
(3.9)

Where {I−1(θ)} is the expectation of the likelihood function ,b is the baseline,

and Ri, ti is the rotation and translation respectively of cameras c0 and c1 in respect

to the midpoint O. The second molar tooth is used as a testing object for this

experimental to obtain the best camera’s poses for 3D reconstruction. Assuming
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Figure 3.10: The best cameras poses setting for the tooth.

there are two virtual cameras in front of a partial 3D points of the tooth (Fig.3.9.b),

and the configuration of cameras in respect to each other as well as the depth of

field are changed to obtain the best camera poses for 3D reconstruction, where the

range of the baseline is 1 to 4mm, the angle of OA is 10 to 40o , and the depth of

field is 13 to 3mm . The result of this expirment shows; a smaller baseline gives

more accurate 3D reconstruction and the angle of OA can be determined based on

the depth of field, i.e. a smaller depth of field needs bigger OA angle (see Fig.3.10).

3.5 Practical camera configuration design

Structure from motion [39] is a method among the passive technique for 3D

reconstruction. As shown in Fig.3.11, given a set of images acquired from different

observation points, it recovers the pose of the camera for each input image and a

three-dimensional reconstruction of the scene in form of a sparse point cloud.

The complete flow of incremental SFM pipeline operations is shown in Fig.3.12.

In particular, incremental SFM is a sequential pipeline that consists of a first phase
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Figure 3.11: Image-based 3D reconstruction. Given a set of photographs (left), the
goal of image-based 3D reconstruction algorithms is to estimate the most likely 3D
shape that explains those photographs .

Figure 3.12: Structure from motion pipeline.

of correspondences search between images and a second phase of iterative incre-

mental reconstruction. This phase takes as input the image set and generates as

output the so called Scene Graph (or View Graph) that represents relations be-

tween geometrically verified images. The iterative reconstruction phase is composed

of an initialization step followed by three reconstruction steps: Image Registration,

Triangulation and Bundle Adjustment.

The human oral cavity contains a different habitats which are colonized by

bacteria. Obtained real images from human oral cavity need the same cleaning

environment of a dental clinic. For simplicity now, we mimic the oral cavity envi-

ronment using Blender software. Our object of interest inside the oral cavity is the

teeth as well as the gum tissue. The STL files of human jaws are obtained from a
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Figure 3.13: Illustration of the areas that the cameras configuration needs to be
tested.

dental clinic. These jaws have a variety in crooked, overlapping, and twisted tooth.

The intra-oral cameras traveling above the teeth surface and capture the images.

3.5.1 The configuration of the essential sensors

The aim of this study is to identify the number of sensors needed to get a full

3D reconstruction of ‘clinical crowns’ which are defined to be the portion of the

teeth that is visible in the human mouth. The geometry of the jaw has a different

morphological surfaces(see Fig.3.13); occlusal,incisal, buccal, lingual, labial, distal,

mesial and gingiva.

Figure 3.14: Illustration of cameras configuration of the occlusal surface ; A) the
cameras location w.r.t the curve of spee , B) cameras configuration ,C) The quantity
result of the 3D reconstruction comparing to the ground-truth ,and D) the quality
result of the 3D reconstruction with ground-truth.
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Some of the 3D points of these surfaces may failed to be reconstructed if the

cameras configuration are not setup in a way that these points appear at least in

two sensors satisfying the geometric constraint of the fundamental matrix.

The evaluation for the best cameras configuration is based on the accuracy of

the reconstruction comparing with the ground truth and the number of 3D points

that is been reconstructed from this setup. The intrinsic parameters of the cameras

in this study are ; the field of view is 62o, and the image resolution is 512 × 512

Pixels. The depth of field is 5mm based on the study in the previous chapter.

Figure 3.15: The configuration of the twelve cameras.

The study started with occlusal surface (Fig.3.14), two cameras are in frontal

to the occlusal surface of the second molar and perpendicular to the curve of spee.

The baseline and the angle of the optical axes between the cameras are changed to

get the suitable configuration for this surface. The range of the baseline is from 1

to 4mm and the angle of OA is from 0 to 9 degree. The best 3D reconstruction
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result is obtained (see Fig. 3.14.C) when the baseline is 2.5mm and the angle of

OA is 0o, i.e. the cameras are in parallel. The configuration for the incisal surface

is different, the cameras should be in parallel to the curve of spee, the baseline is

1.5mm and the angle of OA is 0o. Therefore, the minimum number of sensors for

3D reconstruction for the top surfaces of teeth are four, which will be consider as

an essential configuration sensors for this application.

3.5.2 The configuration of sensors for twelve cameras design

The essential cameras setup is tested on the rest of the red areas in Fig.3.13.

The result shows as well that this configuration is suitable for buccal, lingual and

gingiva surfaces. Among the characteristics of the IOS system that we are trying

to design is the hand piece of sensors holder should has enough cameras to make

the time of the data acquisition and the 3D reconstruction error at the minimum.

Therefore, the hand piece sensors holder should has twelve cameras, each four is

responsible for 3D reconstruction of one of main surfaces of a tooth as shown in

Fig.3.15.

3.5.3 The configuration of sensors for six cameras design

In the twelve cameras design, the hand piece sensors holder has to move in a

translational movement along the curve of spee for data acquisition. The thinking

of reducing the number of the sensors in the hand piece, to make the probe lighter

and cheaper, brought the idea of making the hand piece moves in translational and
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rotational movement to scan the three main visible surfaces of a tooth with the

configuration of the essential sensors.

3.5.3.1 Mean shape model

The mean jaw’s shape model is constructed from a training data ensemble of

3D triangular meshes where each mesh is obtained from a high resolution CT scan

of the human jaw moulds. Hereafter, each 3D jaw surface is represented as a 2-

manifold triangular mesh G = (V ,F), where V = (x1, x2, ..., xv) is a set of V-vertices

with xv ∈ IR3 and F is a set of F -triangular faces. A sparse landmark points are

manually annotated for all the database samples. There is a total of 72 manually

annotated landmark points on a 14 teeth jaw. Generalised Procrustes [40] analysis

is then performed to provide an initial rigid alignment of the dense shapes to a

common reference frame where the alignment procedure is guided by the sparse set

of anatomical jaw landmarks.

Figure 3.16: Mean shape model.

To obtain point-to-point dense correspondence between two rigidly aligned jaw
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shapes V1 and V2, a warping function, based on the physically motivated thin-plate

splines is constructed by using the landmark points as the control points.

To obtain a dense correspondence between all the shapes in the database, a 3D

thin-plate spline [41] is applied in an iterative manner as follows, where according

to the experimentation, this algorithm converges in a few iterations:

1. Choose one sample as an initial estimate of the mean shape – one may use the

first shape in the ensemble.

2. Solve for the warping function between the current mean shape and all the other

samples in the database.

3. Re-calculate the estimate of the mean from the aligned shapes.

4. If there is a significant change in the mean, return to step 2.

Figure 3.17: The modification of the Mean shape.

3.5.3.2 The modification of the mean shape

The hand piece of sensors holder of this design has to rotate at least three times

to scan a cross section of a tooth (buccal, lingual and occlusal surfaces). The worst

scenario that would face this design is when the tooth has a sharp edges in the joint
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area between tooth surfaces. Therefore, for testing this design in worst scenario,

each tooth in the mean shape model (see Fig3.16) is warped to look like a box in

such all the tooth in the jaw are boxes with same size of the actual corresponding

tooth (see Fig.3.17) . The configuration of the essential cameras is used for 3D

reconstruction of the modified mean shape model as a first experiment to see if

it needs any additional sensors. The hand piece of sensors holder of the design is

rotated three times to scan a cross section of each tooth in the jaw.

Figure 3.18: Illustration of the data acquisition for a cross section of a tooth using
the six cameras design.

The result shows that the design has to have either more sensors added to the

essential sensors or the cross section of a tooth needs to be scan more than a three

times. After a multiple of testing, the new design needs six cameras, four are the

essential sensors and two more in both sides with a 2mm a way from the essential

sensors (see Fig.3.18), to scan a cross section of a tooth with a minimum rotation

of the hand piece of sensors holder. The 3D reconstruction result of the modified

mean shape model (see Fig.3.19) shows a good quality and quantity comparing with

the ground-truth.
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Figure 3.19: Illustration of the 3D reconstruction of the modification the Mean
shape result comparing with ground-truth.

3.5.4 Comparison between the six and the twelve cameras design

Table 3.1 illustrates the differences between two designs in details. The twelve

sensors design looks to be more plausible design , since it has one more advantage

than the six sensors. However, this study considers a simulation experiment, so

some of the concepts and numbers may change in the real experiment.

Table 3.1: Comparison between the six and the twelve cameras design.

3.6 Experiment and result

We conduct experiments to evaluate the performance of the proposed twelve

sensors design in 3d reconstruction of the human jaws.
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For the manner of studying the 3D reconstruction accuracy of the sensor plan-

ning for one subject, a mandibular jaw (see Fig.3.20) with a complete dentition

is modified to get a different kinds of a tooth problems that would affect in teeth

reconstruction accuracy.

Figure 3.20: Customized mandibular complete-arch reference model; A)complete
arch, B)cracked on tooth no.30, C)crown preparation on tooth no.29, D)full-contour
crown preparation on tooth no.26 ,E)mesio-occlusodistal inlay preparation on tooth
no. 20 and F) mesio-occlusodistal inlay preparation on tooth no.19

A reference model comprised different types of single-tooth preparations. Teeth

26 and 29 (Fig.3.20.C and D) are prepared for full contour crowns, teeth 19 and 20

(Fig.3.20.E and F) for a mesio-occlusodistal inlay, and tooth 30 (Fig.3.20.B) as

cracked tooth. We used Blender software to acquire the images, the reference model

is imported and the twelve sensors are installed at a distance of 5mm from the model.

The intrinsic parameter of the sensors are; image resolution 500×500, image sensor

1/14” and the FOV is 62o. The evaluation is proceeded in two scenarios; individual

and complete full arch.

For a complete full-arch, 1200 sample images are captured ,while for each indi-
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vidual tooth only 120 sample images. For both scenarios the overlap between each

two consecutive sample images from the same sensor is more than %75, in such the

3D points correspondences . Structure from motion [39] is a method among the pas-

sive technique for 3D reconstruction. Given a set of images acquired from different

observation points, it recovers the pose of the camera for each input image and a

three-dimensional reconstruction of the scene in form of a sparse point cloud. We

used the optimized SFM software [42] for 3D reconstruction. The reconstruction 3D

models and the ground-truth are rigidly registered for the trueness accuracy mea-

surement. The trueness result describes how far the measurement deviates from the

actual dimensions of the measured object. Measuring the accuracy is done by line

distance with limited points of the reconstruction and the ground-truth. As shown

in Fig.3.21, five individual tooth are reconstructed and compared with ground-truth,

the color map was used to visually observe the 3D differences. In Fig.3.22 shows the

3D reconstruction of the complete full arch and the color map to observe the RMS

error comparing with ground-truth.

Table 3.2: Statistical Analysis on individual and complete arch scenarios in trueness
of 3D reconstruction (µm)

Tooth No. Min Max Mean Std

F 26 285 120 96
E 26 290 135 121
D 27 188 61 50
C 34 230 74 86
B 23 211 130 100
Complete arch(A) 60 590 280 200
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Figure 3.21: The individual 3D reconstruction tooth for;B) cracked on tooth
no.30,C)crown preparation on tooth no.29, D)full-contour crown preparation on
tooth no.26 , E) mesio-occlusodistal inlay preparation on tooth no. 20, and F)
mesio-occlusodistal inlay preparation on tooth no.19 and . the column 1) shows the
ground-truth and 2) the 3D reconstruction result with the color map of the RMS
error comparing with ground-truth.

For the quantitative evaluation, The mean deviation, maximum and minimum

values of the RMS error in µm comparing the reconstruction with ground-truth, are

displayed in table 3.2.

Figure 3.22: The Complete Arch 3D reconstruction; 1) shows the ground-truth and
2) the 3D reconstruction result with the color map of the RMS error comparing with
ground-truth.
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3.7 Conclusion

In this chapter, the sensor planning was designed based on the morphological

teeth surfaces. Two different sensors configuration were designed in such each de-

sign has a certien number of sensors according to the hand piece of sensors holder

movement inside the oral cavity. The twelve sensors design would be more robust

than the six sensors design in 3D reconstruction of the human teeth.
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CHAPTER 4: VISIUAL APPLICATION IN HUMAN ORAL

CAVITY ENVIRONMENT

Oral dental applications based on visual data pose various challenges such as

low lighting conditions, saliva, and low texture. The proposed approach is intro-

duced to stitch images of human teeth that are captured by an intra-oral camera.

In such monocular image matching, a low rate of features on teeth surfaces causes

a problem leading to a mismatch between teeth images. Therefore, this chapter

presents an approach to improve the matching in these low-texture regions. Nor-

mals of tooth surface is extracted using a shape from shading. Due to the oral

environment, the surface normals impact many of imprecise values; hence an algo-

rithm is being formulated to rectify these values and generate normal maps. The

normal maps reveals the impacted geometric properties of the images inside an area,

boundary, and shape. In addition, we investigate the unrestricted camera movement

problem. The camera may be moved along the jaw curve with different angles and

distances due to handshaking. To overcome this problem, each frame is tested, af-

ter warping it, and only correct frames are used to generate the panoramic view.

The proposed approach outperforms comparing to the state-of-art auto stitching

methods..
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4.1 Features Matching

The surface orientation at a 3D point P in the scene on a surface S is de-

termined by a unit vector perpendicular to the plane tangent to S at P . Shape

from Shading (SFS) is an algorithm among the tools used in shape-oriented ex-

traction from a single view. Under the assumption of perspective projection and

the camera is calibrated, our previous approach [43] obtained a metric represen-

tation of teeth and gum surfaces using SFS algorithm. For each captured image,

we use this approach to estimate the surface normal as follows. An image point

p is given by sp = BP + b where B and b are decomposed parameters from the

projection matrix, p is the corresponding image coordinate and s is the scalar. So,

P = B−1(sp−b) = g(s(x, y)). By finding the scalar s, g(s(x, y)) will define a unique

3D point P on the object. The normal at a surface point (see Fig 4.1.b) can be

defined a N = r×q
|r×q| hence r = dg(s(x;y))

dx
,q = dg(s(x;y))

dy
. This can be estimated using a

Taylor’s series expansion and applying the Jacob iterative method (for more details

see [43].).

However, the SFS can’t provide accurate information of the surface normals

relying upon the raw image information. For that reason, considering the surface

normals estimation depends on light direction and the surface patches are homoge-

nous and uniformly lit by a distant light source. A cross product is applied between

the normal surface and the light direction vector (assume that the light and the

camera are in the same direction). Then the mean filtering is performed with a

window size 9.
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Figure 4.1: The work flow of the proposed images stitching approach

By applying the cross product as well as the mean filtering, the surface patches

(see Fig 4.1.c), which have the same orientation, have the same surface normal unlike

other patches, which are on the border between two planar surfaces.

For normal map representation, each pixel of the map stores the direction of

the surface normal at that point. Assume that X, Y , and Z are the components

of a surface normal. This mapping can be done to the red and green channels as

R = ( ~Nx+1)
2

and G = ( ~Ny+1)
2

. The Z component is always positive, because this is a

tangent space normal map, and it is directly mapped to the blue channel. Finally,

after obtaining the normal map (see Fig 4.1.d), we convert it to a gray-scale image.

The key to extraction normal map of images is to reveal the impacted geometric

properties of the images inside an area, boundary, and shape. Unlike the captured

RGB images, the normal maps are rich with features. Figure.4.1.e illustrates an

example of the proposed normal map, which contains plenty of features that can be
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used in the matching step.

Figure 4.2: An example of camera paths; blue camera represents the path with
a restriction movement while the red camera represents the path in the proposed
approach

We use the KAZE algorithm [44] to extract features from normal maps. KAZE

is a multiscale 2D features detection and description algorithm in nonlinear scale-

spaces. The state-of-the-art methods used the Gaussian blurring scale space of an

image to detect and describe features at different scale levels while KAZE detects

and describes 2D features using nonlinear diffusion filtering. The KAZE algorithm

showed a better performance in both detecting and describing features from normal

maps against state-of-the-art methods (e.g., SIFT or SURF).

4.1.1 Image frames examination

Since the camera moves in non-ideal conditions (Fig.4.2), the stage for decid-

ing whether an image is valid to proceed in a panoramic stitching pipeline is very

important. In the proposed frame examination step, first, we apply the homography
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Figure 4.3: Examples of frame rejection (a) Translation ,(b) Shearing and (c) Scale
with translation issues.

matrix on each two consecutive images. The homography matrix warps the moving

image to the fixed image. Then, we test the corners of the moving image. The

image will be used in the stitching process if it satisfies the following conditions, as

shown in Fig. 4.3: 1) The internal corners degree should be between [80 ,110] ,2) The

translation between the moving frame and fixed image frame should not be more

than 10% of the fixed images’ size and 3) Both ratio of the scale and translation

together between the fixed image and moving image frame should not be less than

0.85 and not be more than 5% of the fixed image’s size, respectively.

4.2 Image stitching using flexible warps

The prescribed images capturing conditions don’t lead to views that differ

purely by rotation, nor planar scene since the object is near to the camera. There-

fore, using a basic homographic warp yields misalignment. To overcome this prob-

lem, we build on Zaragoza et al. approach [45] and warp each part using a location

dependent homography. These estimated as-projective-as-possible warps account
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Figure 4.4: Structural similarity index metric between proposed algorithm results
and their ground-truth of ten subjects.

for data that deviates from the required constraints. Zaragoza et al. [45] uniformly

partition the image into a grid of n cells, and give higher importance to the center

of each cell than the other pixels far from the center. Pixels within the same cell are

then warped using the same homography. Unlike Zaragoza et al. approach [45], we

don’t use a uniform grid. But, we use the estimated normal maps to segment the

2D domain of the image into connected planar segments. Each pixel is assigned a

weight that is inversely proportional to its distance from the centroid of the segment.

Then the pixels of each planar segment are warped using the same homography.

4.3 Experiments and results

The evaluation of the proposed approach has been done by comparing its per-

formance with our previous work [46] (i.e., results will be presented with and without

augmenting stage processing). Also, ground-truth images are obtained using a single

shot for the Jaw. We perform a qualitative and a quantitative evaluations.
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Dataset Description: The human oral cavity contains different habitats that

are colonized by bacteria. Obtaining real images from the human oral cavity needs

the same cleaning environment of a dental clinic. For simplicity now, we mimic the

oral cavity environment using Blender software. Our object of interest inside the

oral cavity is the teeth as well as the gum tissue. The STL files of eight human jaws

are obtained from a dental clinic. These jaws have a variety in crooked, overlapping,

and twisted tooth. The intraoral camera is moved above the teeth surface capturing

the images. The images are taken with different distances from the surface as shown

in Fig. 4.2 . To generate the panoramic view of the whole jaw, we perform stitching

for all the images that are captured.

Qualitative evaluation: We apply our proposed algorithm on the oral dataset.

Fig. 4.5 shows the ground-truth, results of the proposed approach, and results of

[46]. It is clear that using a frame examination step, in our proposed approach,

gives much better performance than other approaches [46]. For more qualitative

evaluation, ground-truth and our results are rigidly aligned then combined on one

2D domain. Results show that generated images are closely similar to the ground-

truth images.

Quantitative evaluation: For each subject, first, the panoramic view is rigidly

aligned with the ground-truth. Then, we compute a quality metric–structural sim-

ilarity index (SSIM) [47]- between our the aligned results and the ground-truth.

Fig. 4.4 shows that the proposed method performs well and is more than 70% close

to the ground-truth.
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Figure 4.5: Examples for stitching images of two subjects: (a) Ground truth, (b)
Results with the augmenting stage, (c) Results are rigidly aligned with ground-truth,
and (d) Results without the augmenting stage.

4.4 Conclusion

In this chapter, an approach was introduced to stitch frames captured by intra-

oral camera to generate a panoramic view of the human jaw. The camera movement
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inside the oral cavity is unrestricted. This adds more challenges to the unfriendly

environment of te jaw. To overcome this problem, each frame is tested after warp-

ing it, upon on its corners appearance compared with the previous frame. Valid

frames are used to generate a panoramic view. This approach has been evaluated

both qualitatively and quantitatively. Results confirm the high performance of the

proposed approach.
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CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

The three dimensional reconstruction of the human teeth, or as they call it in

dental field the a dental impression, is needed for many common procedures such as

dental crowns, dental bridges, dental implants and dentures. Many dentists would

argue that the impression is the most important part of the process. The reality

is that, it is impossible to build a high end restoration on a bad impression. In

this thesis, the problem of the image-based 3D reconstruction of human teeth is

investigated. The main advantage of using the passive method is the low cost of

these systems, as they are made of few and cheap components.

The geometry of the oral cavity is studied to reveal the dimensions of areas

that the hand piece sensors holder would reach during the data acquisition. These

dimensions are very important in the sensor planning design for 3D reconstruction

of the human teeth in such the configuration of sensors would be designed according

to these dimensions.

The sensor planning was designed based on the morphological teeth surfaces.

Two different sensors configuration were designed in such each design has a certain
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number of sensors according to the hand piece of sensors holder movement inside

the oral cavity. A different experiments were conducted to evaluate the performance

of each design for 3D reconstruction accuracy of human teeth.

In addition to 3D reconstruction application, an approach iswas introduced to

stitch frames captured by an intra-oral camera to generate a panoramic view of the

human jaw. The camera movement inside the oral cavity is unrestricted. This adds

more challenges to the unfriendly environment of the jaw. To overcome this problem,

each frame is tested after warping it, upon on its corners appearance compared with

the previous frame. Valid frames are used to generate a panoramic view.

5.2 Future work

Structure of motion (SFM) provides the highest accuracy among vision sys-

tems of this type. However, only high contrast targets and well-defined edges can

be measured with high accuracy. Untargeted, or featureless, surfaces may not be

measured at all. In addition, the ambient light affects significantly the ability of the

system to successfully extract all desired features. The 3D reconstruction in this

thesis was completed using artificial texture on the teeth to get more features for

correspondences and ease the work for the camera’s configuration. As future work,

there are different tasks that need to be done for this project such as:

• Investigate if there is any chance to extract a feature from the surface of

a tooth using neural network techniques instead of using a special light or

artificial texture.
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• One of the advantages of using the active method in 3D reconstruction, only

the 3D points which are in focus will be reconstructed. Unlike the passive

method, it would reconstruct any point that satisfies the geometric constraint.

i.e., there will be a cleaning step for the shape recovery from the specious 3D

points.

• Investigate in the deep learning architecture for the registration of 3D scans

of teeth surfaces.

• Switching from simulation to real experiments to evaluate the sensor planning

using real cameras.

• Eventually after switching to the real experiments, evaluate the system using

clinical trials.
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[36] Güldane Mağat and Sevgi Özcan Şener. The morphological changes in the
mandible bone: the effects of age, gender and dental status. Meandros Medical
and Dental Journal, 19(2):111, 2018.

[37] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[38] Qier An and Yuan Shen. Camera configuration design in cooperative ac-
tive visual 3d reconstruction: A statistical approach. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2473–2477. IEEE, 2020.

[39] Jan J Koenderink and Andrea J Van Doorn. Affine structure from motion.
JOSA A, 8(2):377–385, 1991.

[40] Timothy F Cootes, Cristopher J Taylor, et al. Statistical models of appearance
for computer vision, 2004.

[41] Fred L. Bookstein. Principal warps: Thin-plate splines and the decomposi-
tion of deformations. IEEE Transactions on pattern analysis and machine
intelligence, 11(6):567–585, 1989.

[42] Simon Fuhrmann, Fabian Langguth, and Michael Goesele. Mve-a multi-view
reconstruction environment. In GCH, pages 11–18. Citeseer, 2014.

[43] Sameh M Yamany, Aly A Farag, David Tasman, and Allan G Farman. A 3-d
reconstruction system for the human jaw using a sequence of optical images.
IEEE Transactions on Medical Imaging, 19(5):538–547, 2000.

[44] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J. Davison. Kaze
features. In Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato,
and Cordelia Schmid, editors, Computer Vision – ECCV 2012, pages 214–227,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

59



[45] Julio Zaragoza, Tat-Jun Chin, Quoc-Huy Tran, Michael S. Brown, and David
Suter. As-projective-as-possible image stitching with moving dlt. IEEE Trans.
Pattern Anal. Mach. Intell., 36(7):1285–1298, 2014.

[46] Mohamad Ghanoum, Asem M Ali, Salwa Elshazly, Islam Alkabbany, and Aly A
Farag. Frame stitching in human oral cavity environment using intraoral cam-
era. In 2019 IEEE International Conference on Image Processing (ICIP), pages
1327–1331. IEEE, 2019.

[47] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Im-
age quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004.

60



CURRICULUM VITAE

Mohamad Ghanoum

Education
PhD in ECE, Speed School of Engineering, University of Louisville
Working on image-based 3D reconstruction of human jaw
Current CGPA: 3.75 Expected graduation date: 2020
MSc. ECE, Speed School of Engineering, University of Louisville, 2015
Thesis Title: 3D-reconstruction of human jaw from a single image: integration

between statistical shape from shading and shape from shading.
BSc. Telecomunication Engineering, Faculty of Engineering, University of

Kalamoon, 2008
Graduation Project: TDMA and FDMA Telecommunication System
Current Position
Graduate Research Assistant, CVIP Lab, Speed School of Engineering, Uni-

versity of Louisville, 05/2021 - now
Work Experience

• Research Assistant, CVIP Lab, Speed School of Engineering, University of
Louisville, 1/2014 - 4/2019

Selected Publications
Full list at https://scholar.google.com/citations?user=FYHhwLIAAAAJ&hl=en)

• Ghanoum, Mohamad, Asem M. Ali, Salwa Elshazly, Islam Alkabbany, and
Aly A. Farag. “Panoramic View of Human Jaw Under Ambiguity Intraoral
Camera Movement.” In 2020 IEEE 17th International Symposium on Biomed-
ical Imaging (ISBI), pp. 1-4. IEEE, 2020.

• Ghanoum, Mohamad, Asem M. Ali, Salwa Elshazly, Islam Alkabbany, and
Aly A. Farag. “Frame stitching in human oral cavity environment using in-
traoral camera.” In 2019 IEEE International Conference on Image Processing
(ICIP), pp. 1327-1331. IEEE, 2019..

• Alkabbany, Islam, Asem Ali, Amal Farag, Ian Bennett, Mohamad Ghanoum,
and Aly Farag. “Measuring Student Engagement Level Using Facial Informa-
tion.” In 2019 IEEE International Conference on Image Processing (ICIP),
pp. 3337-3341. IEEE, 2019.

61



• Mohamed, Mostafa, Amal Farag, Asem M. Ali, Salwa Elshazly, Aly A. Farag,
andGhanoum, Mohamad. “Fly-In Visualization for Virtual Colonoscopy.”
In 2018 25th IEEE International Conference on Image Processing (ICIP), pp.
2062-2066. IEEE, 2018.

• Ghanoum, Mohamad, Asem M. Ali, Salwa Elshazly, Islam Alkabbany, and
Aly A. Farag. “Automatic extraction of interdental gingiva regions for accu-
rate statistical shape from shading-based reconstruction of human jaw.” In
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
pp. 998-1001. IEEE, 2018.

• Mohamad, Mostafa, Amal Farag, Asem M. Ali, Salwa Elshazly, Aly A. Farag,
and Ghanoum, Mohamad. “Enhancing virtual colonoscopy with a new vi-
sualization measure.” In 2018 IEEE 15th International Symposium on Biomed-
ical Imaging (ISBI 2018), pp. 294-297. IEEE, 2018.

Linguistic skills
First language: Arabic (Native speaker)
Second language: English (good)
Personal Information
Current Address: 9514 Aylesbury dr., Louisville, KY, 40242
Cell-Phone: +1 ((502)-445-5815
E-Mails: mohamad.ghanoum@louisville.edu
Date of birth: 1/28/1990 Nationality: SYRIAN
Marital Status: Married Religion: Muslim

62


	Passive method for 3D reconstruction of human jaw: theory and application.
	Recommended Citation

	List of Tables
	List of Figures
	INTRODUCTION
	Dental impression
	Digital impressions

	Stereo-based 3D reconstruction in dental application
	Literature review
	Contribution
	Dissertation organization

	 THE GEOMETRY OF THE HUMAN ORAL CAVITY 
	Mouth opening
	Maximum mouth opening

	Dental jaw geometry
	Distance between the maxillary and mandibular during maximum mouth opening

	Conclusion

	 CAMERA CONFIGURATION DESIGN FOR A DENTAL RECONSTRUCTION
	Geometric camera formation
	Epipolar geometry
	The fundamental matrix 
	Geometric derivation
	Algebraic derivation
	Geometric constraints

	Theoretical camera configuration design
	Practical camera configuration design
	The configuration of the essential sensors 
	The configuration of sensors for twelve cameras design 
	The configuration of sensors for six cameras design 
	Comparison between the six and the twelve cameras design

	Experiment and result
	Conclusion

	 VISIUAL APPLICATION IN HUMAN ORAL CAVITY ENVIRONMENT
	 Features Matching
	Image frames examination

	Image stitching using flexible warps 
	Experiments and results
	Conclusion

	 CONCLUSION AND FUTURE WORK
	Conclusion
	Future work

	REFERENCES
	CURRICULUM VITAE

