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ABSTRACT 

HOW DO COVER CROPS CHANGE SOIL HEALTH IN A NO-TILL SYSTEM? 

Aysha K. Tapp Ross 

November 9, 2021 

 

The integration of soil health into mainstream agriculture has led to an increase in the use of 

conservation practices, such as no-till and cover cropping, within the agricultural industry. Nutrient 

levels and aggregation measurements are currently the most accurate means to measure soil 

health. However, it has been suggested that bacterial and fungal communities may prove to be a 

more accurate measure of soil health in the future. In this study soil microbe communities and 

nutrient levels were compared in rye cover cropped soils to measure for differences between 

treatments. Effects between the microbial communities and environmental measurements were 

also measured within those treatments to test for correlations between soil health measures and 

microbial communities. The plots were put in a biennial corn (Zea mays L.) and soybean (Glycine 

max) rotation in 2015, with corn planted in 2020.  Cereal rye was examined as the cover crop, 

compared to bare soil plots, and weedy fallow plots. Available nutrient levels of phosphorus (P), 

potassium (K), Calcium (Ca), magnesium (Mg), and zinc (Zn) were measured, as well as nitrate 

levels, ammonium levels, temperature, pH, and volumetric water content (VWC). Bacterial and 

fungal diversity measures and taxonomic families were compared between treatments.  Rye soils 

were observed to have significantly higher levels of VWC in 2” soil depth while annuals were 

observed to have significantly higher levels in 6” soil depth. Although there were no significant 

differences in diversity measures, rye soils had significantly more organisms in the AMF family 

Pleosporaceae as well as Helotiales Incertae sedis, and Diversisporaceae fungal families, while 

bare soil showed an increase in the Microdochiaceae family.  Further research is discussed to 

understand possible fungal influence on rye cover cropped soils. 
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CHAPTER I 

INTRODUCTION 
 

 Soil health is an integral part of the sustainable agriculture system (Doran 

& Zeiss, 2000; Kibblewhite et al., 2008; Tahat et al., 2020). Soil health is a 

measure of soil stability and is defined by Doran and Zeiss (2000) as “the 

capacity of a soil to function as a vital living system within ecosystem and land 

use boundaries to sustain plant and animal production, maintain or enhance 

water and air quality, and promote plant and animal health”. The United States 

congress and governmental agencies, such as the National Resources 

Conservation Services (NRCS), have recently begun focusing on integration of 

soil health within the agricultural industry through policy (United States Congress, 

2021) and utilization (NRCS, n.d.). While there is understanding concerning 

management practices that increase soil health (Kibblewhite et al., 2008), the 

mechanisms behind these practices are still largely unknown. While nutrient and 

aggregation measurements are currently the most accurate means to measure 

soil health (Wood et al., 2017) it has been suggested that soil microbes, in the 

form of bacterial and fungal communities, may prove to be a more accurate 

measure of soil health (Doran & Zeiss, 2000; Tahat et al., 2020). In this study soil 

microbe communities, nutrient levels, and soil aggregation were compared in rye 

cover cropped soils to measure for differences between treatments, and to 
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measure effects between the microbial communities and environmental 

measurements within those treatments to test for correlations between soil health 

measures and microbial communities.    

 

Background:  

 

Conventional farming relies heavily on the usage of pesticides, herbicides, 

and synthetic fertilizers (Robertson, 2015). It is best defined by Gold (2007) in a 

sustainable agriculture report published by the National Agricultural Library and 

the USDA as a system that shares the characteristics of: 

rapid technological innovation; large capital investments in order to apply 
production and management technology; large-scale farms; single 
crops/row crops grown continuously over many seasons; uniform high-
yield hybrid crops; extensive use of pesticides, fertilizers, and external 
energy inputs; high labor efficiency; and dependency on agribusiness. In 
the case of livestock, most production comes from confined, concentrated 
systems. (para. 11) 

 
Many of these inputs are responsible for greenhouse gas emissions, terrestrial 

acidification, and eutrophication of water systems due to nutrient runoff (Poore 

and Nemecek, 2018). Due to this impact, land practices have become an 

important aspect of the growing climate change debate.  

While farming dynamics are complex, industrialized, or “conventional 

farming” is largely considered unsustainable (Gold & National Agricultural 

Library, 2007). The agricultural sector is the fifth largest contributor to the United 

States greenhouse gas (GHG) emissions, contributing 628.6 MMT CO2 Eq., or 

9.6% of the total U.S. GHG emissions in 2019 (EPA, 2021).  High input 
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conventional farming contributes substantially to these figures (Arunrat et al., 

2021; Sazvar et al., 2018). With global climate temperatures surpassing 1°C 

above pre-industrial levels in 2017 and continuing to increase (Intergovernmental 

Panel on Climate Change [IPCC], 2018), the need to decrease GHG emissions is 

immediate. Low input sustainable agriculture can not only decrease GHG 

emissions by decreasing fertilizer and diesel fuel use (Lu & Lu, 2017; Shah et al., 

2017), but can also be a carbon sink (Stanley et al., 2018)    

The need to reduce GHG emissions and nutrient runoff has allowed 

sustainable agriculture to become an important aspect of the agriculture industry 

worldwide. In the same sustainability report Gold with the National Agricultural 

Library (2007) defines sustainable farming in terms of it’s social, economic, and 

environmental impacts, referring to it as an integrated whole farm system that is 

capable of maintaining productivity indefinitely. The management techniques 

utilized in such a system integrate biological cycles and on-farm resources, while 

minimizing the use of nonrenewable resources (para. 8). Sustainable agriculture 

provides a means to maintain low-input systems, utilizing integrated 

management techniques, such as no-till and cover crop management, which 

work to reduce the damage from conventional farming and improving the health 

of the soils (Nunes et al., 2018).  

The utilization of sustainable agriculture management practices has been 

suggested as a means to mitigate the negative effects of climate change and 

increase resilience of our food production systems (Sarkar et al., 2020).  Global 

food systems are not only a major contributor to the growing climate crisis, they 
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are also one of the most vulnerable industries to the projected warming, placing 

pressures on global food security (Zhao et al., 2017). Projections indicate 

increases in severe drought conditions and decreases in agricultural yield (Arnell 

et al., 2019), which would increase food insecurities and disproportionately affect 

the global poor (IPCC, 2018). Low input agricultural methods may provide 

essential agricultural adaptation needed to reduce these outcomes, while 

simultaneously mitigating the agricultural effects on the climate crisis (Sarkar et 

al., 2020).  

 

Sustainable Agriculture and Policy 

 

There are multiple terms in this discussion of what constitutes sustainable, 

low input farming, including organic farming, regenerative agriculture, and 

conservation farming. While each of these methods relies on decreasing the use 

of synthetic pesticides and herbicides, and increasing natural inputs (USDA, 

2011; Schreefel et al., 2020; Hobbs et al., 2008), they each have slightly different 

meanings. Organic farming is heavily regulated and requires expensive 

certifications yet provides security to the consumer with the assurance through 

the Certified Organic badge (USDA, 2011). Regenerative agriculture does not 

have a clear scientific definition and is not regulated by an institutional entity 

(Schreefel et al., 2020), making it easy to administer, but difficult to assess. 

However, within the agricultural and scientific communities it can encompass 

several management techniques that have been shown to increase soil health, 
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such as no-till, soil cover, and year-round root systems (LaCanne & Lundgren, 

2018), to an intensive farming method that integrates livestock and plant 

diversification that foster soil health and carbon sequestration (Elevitch et al., 

2018). Conservation farming, on the other hand, provides a clear policy definition 

for sustainable farming, one that is regulated and funded by National Resource 

Conservation Service (NRCS) (Schaible et al, 2015). This allows for a myriad of 

different techniques that encompass recognized soil health measures of the 

NRCS without excluding farmers by requiring extensive certifications. It is for this 

reason that conservation farming will be utilized in discussing sustainable farming 

further. 

Current proposals reflect the need to integrate conservation farming into 

public policy with bills such as The Growing Climate Solutions Act, which utilizes 

the United States Department of Agriculture (USDA) in aiding farmers to enter 

carbon markets (United States Congress, 2021), and increased funding to 

conservation programs through NRCS (Farm Service Agency, 2021). Kentucky 

has been working to pass a comprehensive soil health bill (Kentucky General 

Assembly, 2021) that aims to encourage farmers to move to more climate 

friendly agricultural methods. Once passed Kentucky will join the few states who 

have implemented statewide soil health initiatives, such as California (California 

State Legislature, 2016), Hawaii (Hawaii State Legislature, 2017), Maryland 

(Maryland State Legislature, 2017), and Oklahoma (Oklahoma State Legislature, 

2001).  
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Through these policies and programs NRCS now recognizes four 

essential soil health principles that should be implemented by farmers, the same 

soil health measures defined by regenerative farmers. These principles involve 

minimizing soil disturbance, implementing soil cover, increasing plant diversity, 

and continual live roots throughout the year (NRCS, n.d.). Current conservation 

methods focus on integrating all four soil health measures without requiring 

excessive management changes for farmers. This is primarily done by fostering 

the utilization of no-till and cover cropping practices. 

 

Soil Health Practices 

 

Improvements in soil health, by promoting the utilization of healthy soil 

practices, has been shown to help alleviate the effects of climate change by 

increasing soil carbon sequestration, and soil’s resilience to extreme climate 

events (Lal, 2016), Soil health practices have also been shown to decrease 

nutrient runoff and soil erosion, and increase soil biodiversity (Kihara et al., 

2020). Healthy soils allow for proper nutrient uptake, water infiltration, and soil 

microbe communities (LaCanne & Lundgren 2018). Each of these effects helps 

to alleviate the ramifications of the current agricultural industry.   

No till and cover crop management techniques cover all four of the NRCS 

health soil principles. No-till farming addresses the first principle of minimum soil 

disturbances with at least 30% of the soil covered in crop residue (Horowitz et al., 

2010). Cover cropping addresses the second, third, and fourth principles of 
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healthy soils, that of continual soil cover, increasing plant diversity, and year-

round live roots. This method involves planting a crop during periods when cash 

crops are not on fields, typically over winter. These crops are then terminated 

prior to planting of the next year’s cash crop (Clark, 2019). This allows 

continuous planting on fields that would have been bare, added cover of living 

biomass when growing and residue when terminated, and added plant diversity 

to crop soils.  

While no-till farming has increased to 37% usage in the United States and 

has become the standard in Kentucky at 68% in 2019 (Zulauf and Brown, 2019), 

there have been more challenges in implementing cover cropping, with only a 

5.7% country wide utilization rate as of 2017 (Wallander et al., 2021). Lower 

rates of implementation of cover cropping are most likely due to difficulty in 

navigating management, markets, and weighing the costs of planting and 

termination (Roesch-McNally et al., 2017). Since these costs of implementing 

cover cropping deter their implementation, recent studies have focused on soil 

health benefits, in both conventional and no-till fields, potentially providing 

benefits that may outweigh costs.  

There are multiple options when choosing a cover crop. Cereal rye 

(Secale cereale) is commonly recommended as a cover crop due to its winter 

hardiness (SARE, 2007) which allows it to be planted later in the season than 

other cover crops. Rye, at a seeding rate of 2 bushels per acre, also provides 

weed suppression by reducing weed biomass over other cover crops, such as 

hairy vetch (Zotarelli et al., 2009). Currently the amount of weed suppression is 
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not adequate to eliminate the need for herbicides (Malik et al., 2008). However, 

higher seeding rates of up to 6 bushels per acre may provide adequate weed 

suppression (Sustainable Agriculture Research and Education [SARE], 2007). 

Rye also uptakes excess nitrogen, preventing leaching during winter months 

(Kaspar et al., 2007). While cereal rye may cause a decrease in corn yield, which 

could be a result of allelopathic effects of rye, changes in moisture, or pathogens 

(Patel et al., 2019), it is an optimum cover prior to a soybean rotation, especially 

since soybeans are a nitrogen fixing legumes. Rye also fosters arbuscular 

mycorrhizal fungi (AMF) communities (Gollner et al., 2011) which help regulate 

nutrient cycling and plant productivity (Mendes et al., 2015).   

The soil health benefits of conservation agriculture involve increased 

carbon sequestration through the use of no-till (Bai et al., 2019) and cover crop 

utilization (McDaniel et al., 2014; Poeplau and Don, 2015). These methods also 

increase soil microbial biomass (di Rauso Simeone et al., 2020), including AMF 

(Thapa et al., 2021), and bacterial communities (Navarro-Noya et al., 2012). In 

recent years studies have shown that increased soil carbon in these conservation 

methods may be due in part to the increase in AMF (Gottshall et al., 2017), and 

bacteria (Mau et al., 2014). However, fungi use carbon more efficiently and form 

more biomass per unit of carbon than bacteria (Gougoulias et al., 2014), which 

may mean that fostering healthy fungal communities may be more sustainable.   

Increased fungal biomass, or measure of the mass of the soil fungal 

microbes present, in agricultural soils has also been shown to increase nitrogen 

retention (de Vries et al., 2011). Fungal and bacterial community functioning is 
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essential to proper nitrogen uptake (Emmett et al. 2020; Mensah et al. 2015). 

Nitrogen, in the form of organic molecules, is broken down by bacterial and fungal 

decomposers by means of ammonification into ammonium (NH4
+). Atmospheric 

nitrogen (N2) is also converted into NH4
+ by means of nitrogen-fixing bacteria, 

such as Rhizobia found in the nodules of specific perennial legume roots. 

Nitrifying bacteria then convert ammonium into nitrites (NO2
-), and then nitrates 

(NO3
-) through nitrification, when it can then be absorbed by flora (Stein & Klotz, 

2016). Through this process the fungal and bacterial communities play a crucial 

role in nitrogen uptake, especially considering nitrogen is often a limiting factor in 

plant growth (Vitousek et al., 2002). 

Increased microbe biomass levels are beneficial to agricultural systems; 

however, an equally important microbial measure is soil biodiversity, or the 

measure of variability in soil microbes. Soil biodiversity has also been shown to 

improve plant diversity, decomposition, nutrient retention, and nutrient cycling 

(Wagg et al., 2014). Soil microbial diversity has been shown to increase plant 

productivity (Raynaud et al., 2021; Reynolds et al., 2003), and the decreasing of 

soil microbial diversity increases the risk of plant diseases (Schnitzer et al., 

2011). Increasing soil microbial biodiversity is also important for soil functioning, 

and agricultural conservation methods can reinforce soil ecosystem services, 

such as carbon and nutrient cycling and pest control (Thiele-Bruhn et al., 2012). 

This is done in part by stimulating organic phosphorus cycling (Hallama et al., 

2021), regulating nutrient cycling and plant pathogen defense (Wetzel et al., 

2014), and playing a role in plant uptake of P, Fe, Zn, Mn, and Cd (Hontoria et 
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al., 2019), making soil microbial diversity as important an indicator of soil health 

as biomass.  It is apparent that microbial diversity in agricultural soils is 

paramount in ensuring proper soil health, which promotes carbon sequestration, 

increased nutrient retention, and increased plant health.  

Studies into whether conservation practices in agriculture increase soil 

microbial diversity have increased since the need to sequester carbon emissions 

and decrease nutrient runoff has become of vital importance. These diversity 

readings may end up being as important a soil health measure as aggregate, 

nutrient, and infiltration measures currently utilized in agriculture. With fungi and 

bacteria working in a mutualism with agricultural crops it is important to focus on 

conservation methods which increase these biodiversity levels. With this 

knowledge we can influence policy to encourage the utilization of these practices 

to help transform the agricultural sector into a more sustainable system.  

 

Soil Health Study 

 

While there has been evidence that conservation farming methods of no-

till and cover cropping increases fungal (Chen et al., 2013) and bacterial (Leite et 

al., 2021; Tyler, 2019) biomass, there is contradicting evidence that these 

methods also increase fungal and bacterial biodiversity. In this study soil fungal 

and bacterial diversity were measured, along with their relationship to soil 

nutrient levels, bulk density, VWC, and temperature measures in a long-term no-

till study with differing cover crop treatments in Central Kentucky. Cereal rye was 
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examined as the cover crop, compared to bare soil plots, sprayed with herbicides 

in the fall to prevent weed growth, and weedy fallow plots, which were not 

sprayed with herbicide to promote growth of annual winter weeds. Available 

nutrient levels of phosphorus (P), potassium (K), Calcium (Ca), magnesium (Mg), 

and zinc (Zn) were measured, as well as nitrate, ammonium levels.  

 

Hypothesis 1: 

Soils with a cereal rye cover crop would promote higher fungal and 

bacterial diversity. 

 

Hypothesis 2: 

Rye cover crop plots would have lower bulk density and higher nutrient 

availability relative to bare soil and a cover of weedy annuals.  

 

Hypothesis 3: 

Rye plots would have an effect on microbial composition. In particular, 

fungal and bacterial families would show differentiation between rye and 

cover crop plots. 
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CHAPTER II 
METHODS 

 

 

Long term field experiment  

 

The experimental field was part of a long-term cover crop study located at 

a field site at the University of Kentucky Spindletop Research Farm located in 

Lexington, Kentucky. Lexington is located in the Bluegrass region and yields 

yearly average highs of 18.3°C, lows of 7.78°C (U.S. Climate Data, 2021), and 

has an annual precipitation of 49.84” (National Weather Service, 2021). Three 

treatments were measured, with four replicates per treatment, for a total of twelve 

total plots.  Plot sizes were 30’ x 80’ and were arranged into four neighboring 

fields, each field containing one of each treatment randomly assigned to one of 

four plots within the field (Figure 1).  

The plots were put in a biennial corn (Zea mays L.) and soybean (Glycine 

max) rotation in 2015, with the most recent harvesting of corn on October 23, 

2020. Prior to the planting of corn. All treatments were under no-till management. 

Annual and rye plots were sprayed with Dicamba herbicide each year post cover 

crop termination, to prevent growth of residual weeds, prior to corn or soy 

seeding. The three treatments were bare soil, weedy fallow, and cereal rye. The 



 

13 
 

bare soil treatment was sprayed with a Dicamba herbicide in the fall of each year 

to prevent weeds growing over the winter period, with spraying occurring on 

November 5, 2020. The weedy fallow (annual) plots were not sprayed with 

herbicide prior to winter, which allows for the growth of winter annual weeds. 

Cereal rye was utilized as the overwintering cover crop. Prior to corn planting the 

rye plots were cover cropped in a crop mixture of rye and hairy vetch (Vicia 

villosa). A cover crop of rye was planted prior to planting of soybeans. Cereal rye 

was planted on October 27, 2020 at a seeding rate of 100 lbs. acre-1. Soil 

samples were collected on April 7, 2021.  

 

Soil sampling 

 

Samples of each of the twelve plots were taken by transecting each plot 

vertically and horizontally through the middle of each plot. Each soil sample was 

collected with a .39” wide by 2.36” deep soil probe at ten feet intervals along the 

length and width for a total of 9 samples and homogenized in a gallon freezer 

bag (Figure 2). Soil was collected from each homogenized sample into a sterile 

15mL centrifuge tube and placed on dry ice.  The homogenized samples were 

sent to Omega Bioservices (Norcross, GA) for sequencing. High throughput 

sequencing (IIlumina MiSeq) was used to analyze bacterial and fungal 

community composition utilizing 16s rRNA and ITS1 gene reamplification. Bulk 

density was sampled using a 4.25” golf hole corer to a depth of 4”, dried at 105℃, 

and weighed.  
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Soil moisture, nutrient data, and pH levels from 2020 were obtained, as 

well as nitrogen levels from 2019 and 2020 (Haramoto, personal communication, 

July 9, 2021). Soil inorganic nitrogen was extracted through .35oz of soil in .85 fl 

oz of 1M KCl.  Nitrate and ammonium levels were recorded at ppm. Each 

measurement was obtained for both the spring and fall of 2019 and 2020. P, K, 

Ca, Mg, and Zn, and pH were obtained by standard soil test run by regulatory 

services at the University of Kentucky.  

Soil-water pH was used for pH level as soil-water pH is more closely 

related to optimum plant growth (Cooperative Extension Service, 2020). Soil 

temperature and volumetric water content were recorded via soil moisture 

sensors placed at 2” and 6” depths. The sensors took readings every hour and 

were continually logged. The study utilized daily averages from the month prior to 

sampling, starting on 3/1/2021 and ending 4/7/2021.  

Photos were taken of each plot on the same day the soil samples were 

processed (Figure 3). Plant cover and species representation were not taken the 

day of soil collection. They were analyzed via the pictures at a later date. 

 

Statistical analysis 

 

Data were analyzed using RStudio (version 1.4.1717) running R version 

4.1.1. The number of organisms in individual fungal and bacterial families were 

analyzed when organisms within families were ≥500 in any of the twelve plots. 

The organism number in each family was then measured against treatment 
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types. All fungal family data that were analyzed were log transformed in order to 

fit a normal distribution, except Diversisporaceae which utilized the square root 

transformation. General linear model ANOVA tests were run using lmerTest 

package with number of organisms in a family as a numerical response variable, 

also with plot replicates as a random effect to account for interractions across 

replicated plots. When main effects were significant, post-hoc pairwise 

comparison tests using Tukey’s HSD were performed.  

Nutrient content for P, K, Ca, Mg, Zn, ammonium, and nitrate were 

compared against treatment type via general linear model tests, with 

concentration levels as a numerical response variable, also with plot replicates 

as a random effect to account for interactions across replicated plots. Ammonium 

and nitrate were also compared against year and season as categorical 

variables. Bulk density and soil water pH was also compared in the same manner 

with either the bulk density, or the soil water pH, as the numerical variable.  

Volumetric Water Content and temperature readings were analyzed using 

the overall means of the daily means per plot. They were compared by treatment 

type via a linear mixed model with either moisture or temperature reading as a 

numerical response variable, a categorical variable of treatment, and a 

categorical variable of depth, with plot replicates as a random effect to account 

for interactions across replicated plots. When main effects were significant, post-

hoc simple two-way interaction ANOVA tests were performed with a Tukey’s 

HSD.  
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Diversity measures were compared over fungal and bacterial data. Fungal 

and bacterial evenness, richness, Shannon Diversity, and total organisms 

measured were analyzed. Shannon diversity was calculated by Omega 

Bioservices using the formula:  

H’ = -∑((pi) * ln(pi)) 

Where pi= number of individuals of species/total number of samples. Evenness, 

the measure of how uniform each number of organisms are for each species in a 

community, was calculated using the formula: 

E=H’/H’max 

H’max = ln(N) 

Where N is the richness, or total number of species.  The data was analyzed 

using general linear models with diversity or organism measures as a numerical 

variable against treatment, with plot replicates as a random effect to account for 

correlated values across replicated plots.   

Nutrient data, bulk density, pH, VWC, and temperature were analyzed 

using a principal components ordination analysis (PCA) in R with the vegan 

package (Oksanen et al., 2019). Bacterial and fungal family community structure 

was also examined using a non-metric multidimensional scaling (NMDS) 

ordination analysis to observe dissimilarities in treatments through distance. 
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CHAPTER III 
RESULTS 

 

 

Effects on nutrient content, moisture levels, and bulk density 

 

 There were no significant differences between treatments in the nutrients 

tested, P, K, Ca, Mg, and Zn, or bulk density readings (model effect of treatment: 

Table 1, Figure 4). Soil water pH was log transformed to fit a normal distribution; 

no significant difference was observed. Log transformations were performed on 

nitrate data to fit normality. Significant differences in nitrates were recorded 

between seasons, with nitrates measuring higher in the fall (p=0.0004,), and 

seasons between years, with the fall of 2019 measuring higher than spring of 

2019 (p=5.09e-06) and both spring and fall of 2020 (p = 6.88e-07). Statistically 

significant differences were not found between treatments (model effect of 

treatment: Table 2, Figure 5). Outliers in ammonium data were included when 

running linear models, but not in figures. An exponential transformation was 

performed on ammonium data to fit a normal distribution. Ammonium did not 

show statistically significant differences between treatment (p=0.166), year 

(p=0.337), or season (p=0.158). 
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In plotting the treatment means of the daily VWC means there seems to 

be a trend for the VWC treatments (Figure 6). In testing for effects, VWC data 

was square transformed (x2) to fit a normal distribution and was run through a 

linear model. Table 3 shows interactions from the linear mixed model analysis of 

variance indicating a statistical difference for VWC between treatments (p= 

3.57e-16), between depths (2.2e-16), and between treatment and depth (2.2e-

16). Depths were isolated and ad hoc Tukey’s HSD testing was performed on 

each depth. It was determined that the significant difference in 2” depths between 

treatment was between both rye and bare soils (p=.0001), and rye and annuals 

(p=.000001), indicating that the VWC for cereal rye was higher than for the bare 

soil and annual plots. Significant differences in 6” depths were between annuals 

and bare soil (p= <2e-16) and annuals and rye (p= <2.2e-16), indicating that 

VWC for annual plots was higher than in bare soil or cereal rye plots. 

The temperature readings did not show statistically significant differences 

over treatments and depths (model effect of treatment: Table 4, Figure 8). Although 

depth differences between 6” and 2” had a p value of 0.057.  

Ordination plots demonstrated that the standard deviation ellipses for 

treatments were overlapping, and thus were not demonstrating a difference in 

environmental factors throughout the treatments (Figure 9). 

 

Effects on fungal and bacterial communities 
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Shannon Diversity, evenness, richness, and number of individuals were 

analyzed for fungal and bacterial readings using data obtained from Omega 

Bioservices. Means and standard deviation were assessed (Table 5). In 

analyzing for differences in diversity measures, there were no significant 

differences (Table 6, Figure 10) 

The number individuals within the fungal families Pleosporaceae, 

Helotiales Incertae sedis, and Diversisporaceae were affected by treatment, and 

post hoc testing indicated there were statistically significant differences in cereal 

rye than the other treatments (Table 7, Figure 11). Bare soil displayed a 

statistically significant difference in number of organisms in the fungal family 

Microdochiaceae (Table 7, Figure 12, p=.003). There were no significant 

differences in bacterial families between treatments.  

Non-metric multidimensional scaling (NMDS) plots, utilizing the standard 

deviation of the point scores for each treatment as ellipses, indicated that 

bacterial communities differed between cereal rye and annual plots, and bare soil 

and annual plots, but not cereal rye and bare soil (Figure 13), while there was no 

difference between fungal community composition and treatments (Figure 14) 

 

Plant Composition and Growth 

 

  Annuals were also present in both the annual plots and the cereal rye 

plots. Purple dead nettle (Lamium purpureum) and the common violet (Viola 

sororia) (Figure 15) was the most abundant in annual plots 102 and 201, and in 
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the cereal rye plots 104, 204, and 304, while the perennial dandelions 

(Taraxacum officinale) were present in plots 301 and 404.  
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CHAPTER IV 
DISCUSSION 

 

 

The abundance of AMF taxa Diversisporaceae indicate an association 

between cereal rye and their fungal communities, which is typically found in 

organic soils, managed under a moldboard plough tillage, with no pesticides or 

herbicides (Banerjee et al., 2019). Even though rye is a known AMF host, it is still 

promising to see an increase in beneficial AMF communities in the rye soils, 

especially during vegetative growth early in the season when AMF abundance is 

shown to be higher than later in the season (Welsh et al., 2010). Previous studies 

have also shown that increasing AMF abundance in agricultural soils can 

negatively affect the growth of some weed species (Veiga et al., 2011), and 

some weeds negatively affect the presence of AMF fungal communities 

(Wortman et al., 2013), however since weed samples were not collected it is 

unknown whether these weeds occurred in the plots. 

AMF communities have been shown to support plants in nutrient 

acquisition (Debeljak et al., 2018), contribute to soil aggregate formation (Leifheit 

et al., 2014) and protect their host plants from environmental stresses (Bunn et 

al., 2009; Chen et al., 2013).  The utilization of rye as a cover crop has even  
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been shown to promote mycorrhizal fungus colonization of the subsequent crops 

(Kabir and Koide, 2002). Therefore, utilization of rye as a cover crop has the 

potential to increase root functioning in the cash crops following rye 

implementation, which could increase yield. 

The presence of the family Pleosporaceae however, is troubling. 

Pleosporaceae are bitunicate ascomycetes that are known pathogens, including 

species that cause corn leaf blight (Cochliobolus heterostrophus) and disease in 

cereals (Bipolaris maydis, Setosphaeria turcica, and Cochliobolus miyabeanus) 

(Kodsueb et al., 2017). However, none of these specific species were present in 

any of the field plots. While the species within the Pleosporaceae family are 

considered to be pathogens, some do so by acting as parasitic endophytes, 

which can be used for weed control (Kia et al., 2016), meaning that they could be 

acting as a weed suppression instead of possibly damaging crops. Helotiales 

Incertae sedis are species of the order Helotiales that have not yet been placed 

in a family, and they are difficult to classify (Johnston et al., 2019). Further 

examination is needed to identify the possible effects of both families within rye 

soils.  

Microdochiaceae are endophytes thought to be important members of 

fungal communities in harsh, nutrient-limited environments (Knapp et al., 2019). 

Their presence in bare soils indicates a possible mutualistic benefit for the crops 

grown in these environments. The abundance of this family in bare soils over 

annual or rye soils may provide insight into soil functioning of conventional 

farming methods.  
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The significant difference in nitrates between the spring and fall of 2019 

was most likely due to an increase in nitrate levels in the fall of 2019 following a 

soybean crop rotation. Soybean is a legume, which are nitrogen fixers, and their 

presence increases available nitrogen within soils (Zahran, 1984).  

The Shannon Diversity (H’) readings for fungal and bacterial communities 

were similar to those in other studies. The fungal H’ measures for rye (H’ =3.79) 

and bare soil (H’=3.61) were higher than Schmidt et al. (2018) in comparing 

cover cropped (H’=2.55) to no cover (H’=2.76) plots. They were also higher than 

Hontoria et al. (2018) in their experimental no till plots with Barley (H’=1.92) as a 

cover crop, and bare soil (H’=1.72). Sommerman (2018) investigated tillage 

effects on fungal diversity and showed higher results of H’=3.9 in no tilled soils. 

The cover crop studies also did not show significant differences in H’ for cover 

cropped soils.  

Bacterial H’ was lower for rye (H’=4.42) and bare soil (H’=4.45) than in 

other cover crop studies. In no-till soils bacterial H’ was 6.1 (DeGrune et al., 

2016). Buckwheat cover crops in tilled soils displayed H’ = 9.58 directly before 

termination of the cover crop, while in no cover plots H’ = 9.37 (Wang et al., 

2020). The differences in H’ could be due to the management of the soils prior to 

the experiment, Wang et al. utilized organic soils, however there is little evidence 

that organic systems increase bacterial diversity (Armalytė et al., 2019; Palma-

Cano et al., 2021).  

Even though soil microbe diversity was not significantly different between 

treatments there are several reasons why this might have occurred. Other 
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studies have shown the implementation of no-till practices influence soil microbial 

communities (Dong et al., 2017; Sharma-Poudyal et al., 2017) even over cover 

crop utilization (Tyler, 2020). This indicates that cover crops are beneficial on 

tilled soils, but perhaps not as much on no-till soils.  

Timing of soil samples has been shown to influence diversity and 

community measures. Nevins et al. (2018) demonstrated that variation in 

microbe communities decreases and becomes more specialized starting 21 days 

after cover crop termination, with the presence of cover crop residue. Testing the 

soils again after cover crop termination may have demonstrated different microbe 

community variation and diversity results. 

Evidence suggests that covering soils in plant residue increases soil 

microbe diversity (Bending et al., 2002, Govaerts et al., 2007), it is also 

hypothesized that continuous covering of soils with crop residues, such as 

crimping rye prior to planting, is even more beneficial (Romdhane et al., 2019). 

Even though cover crop residues remained on the treatment soils, both the 

cereal rye and annual plots have large sections of plots where cover did not 

grow. It is possible the data did not show a significant difference because the 

biomass of the living plant cover was too low to make a difference in soil microbe 

levels.  

Cover crop management may also play a factor in soil microbe diversity. 

Few studies have investigated the differences in how cover crops are managed; 

whether the cover crop is sprayed, removed, or crimped before planting of the 

successional crop, and which cover crops are used. It is possible that soil 
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coverage after cover crop termination matters just as much as the utilization of 

cover crops. Cover crop residue was left on the fields prior to termination via 

herbicide throughout the study. However, while maintaining cover crop residue 

preserves fungal and bacterial diversity (Navarro-Noya, 2012) the use of 

herbicides does not (Vukicevich et al., 2016), potentially causing microbe 

communities to remain similar to bare soil plots, despite the addition of beneficial 

cover crop residue. Finally, it has been indicated that there are species-specific 

cover crops effects on microbial communities that influence soil biological 

activities (Finney et al., 2017) indicating that the utilization of non-rye cover 

crops, or a mixed cover crop, should demonstrate alternative community 

differentiation.  

While cereal rye cover crops are a weed suppressant, they are not 

sufficient in eliminating the need for herbicides. Thus, rye cover crop 

management in Kentucky relies on herbicide even with the weed suppression it 

provides (Sherman et al., 2020). It is recommended that rye be seeded at 1-2 

bushels acre-1 in late fall and terminated by tillage or herbicides in early spring, at 

eight to twelve inches in height (Rector et al., 2009). However, Sustainable 

Agriculture Research and Education (SARE) suggests seeding up to 6 bushels 

acre-1 for weed management with the use of a roller crimper for termination 

(2007), indicating a potential for weed suppression without the utilization of 

herbicides, although more testing is needed in this area.  

 While many of the statistical analyses did not show significant differences 

between treatments this may have been due to a type II statistical error. Type II 
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errors occur when a null hypothesis, that there is no significant difference 

between treatments, fails to be rejected because the statistical tests do not hold 

enough power. Only having four data points per treatment does not give much 

power to a statistical test. In order to counteract this in the future there either 

needs to be more replicates, or more data taken over longer periods of time.  

While there is conflicting evidence of the effects of cover crops on fungal 

and bacterial communities in no-tilled soils, the presence of increased AMF 

communities in cereal rye soils could indicate increased soil health. Further soil 

testing on the plots 21 days or more post cover crop termination with residue 

presence would be needed to assess further microbe specialization within the 

soils, preferably with herbicide use as a variable. Testing should also occur over 

multiple seasons to assess for effects of rye biomass if decreased biomass did 

have an effect this year. While it is understood that cover crop utilization is 

beneficial in tilled soils, the benefits on no-tilled soils still needs further study. 

However, the potential increase in AMF communities in cover cropped soils is 

promising and could potentially aid in the increase of soil aggregation, nutrient 

uptake, and decrease in environmental stresses in agricultural soils. 

It is possible that by exploring microbial communities within agricultural 

soils we can develop and promote a better understanding of proper conservation 

agriculture methods that promote soil health. By understanding the mechanisms 

behind nutrient uptake, water infiltration, and most importantly carbon 

sequestration within agricultural soils we can help steer the direction of 

conservation programs that will inevitably be influencing agricultural carbon 
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markets and other climate related policy programs. With this influence we could 

provide a more concrete method to ease climate change pressures on the 

agricultural and food industries in subsequent years.  
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Table 1: General linear model results for nutrients, bulk density, and soil water pH. No significant 
differences were found.  
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Table 2: General linear model table for ammonium and nitrate values. Significant differences 
were found between seasons and between seasons and year. Ad hoc testing determined the 
significance was with the fall of 2019.  
 
 
 
 
  



 

30 
 

 
 
Table 3: General linear model values for volumetric water content. Significant differences were 
found between treatments and between depth. Depths were isolated and ad hoc Tukey’s HSD 
tests were run on 2 inches and 6 inches. In 2-inch levels cereal rye showed significant differences 
from bare soil and annual plots. In 6-inch levels annuals showed significant differences from bare 
soils and rye  
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Table 4: Temperature general linear model results. No significant differences were recorded 
between treatment or depth.  
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Table 5: Mean and standard deviations for diversity measures in bacterial and fungal 
communities 
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Table 6: General linear model results for diversity measures for fungal and bacterial data. No 
significant differences were recorded.  
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Table 7: General linear model results for fungal family data. Significant differences were found for 
Pleosporacae, Heliotiales Incertae sedis, and Diversisporaceae between bare soil and cereal rye, 
and cereal rye and annual plots. Also significant differences were found for Microdochiaceae 
between bare soil and annuals.  
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Figure 1.  Map of Spindletop Farm fields with treatment plots. Created by Dr. Erin Haramoto. We 
did not sample treatment 4, oats.  
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Figure 2. Transects of each 30’x 80’ plots. Samples along the 30’ length were taken every 10 
feet. Samples along the 80’ width were taken every 10 feet.  
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Treatment 1: Bare Soil 

 
Treatment 2: Annuals 

 
Treatment 3: Cereal Rye 

 
Figure 3. Pictures of the individual plots 
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Figure 4. Nutrient levels and bulk density readings between treatments.  
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Figure 5. Nitrogen levels between spring and fall of 2019 and 2020 with respect to treatment, 
with p values for treatment per season and between seasons in each year.   



 

40 
 

 

 

Figure 6. Mean values for the mean VWC per treatment per day in 2in and 6in depths.  
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Figure 7. Mean volumetric water content per plot per day over 2in and 6in depths 
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Figure 8. Mean values for mean temperatures per day per depth in relation to the three 
treatments.  
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 Mean 

temp 

 

Figure 9. Ordination plots from the redundancy analysis (RDA) results exploring the relationships 
between environmental factors (nutrients, temp, VWC, and nitrogen) and treatment plots±. 

Nitrate/NO3-N 
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Figure 10. Fungal and Bacterial diversity measures: Shannon D (A), Richness (B), Evenness (C), 
Total number of organisms (D)  
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Fungal Families in Cereal Rye 

  

 

Figure 11. Fungal Families displaying higher number of organisms in cereal rye soils but not in 
annuals or bare soil.   
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Figure 12. Significant difference in fungal family Microdochiaceae presence in bare soil. 
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Figure 13. NMDS Ordination analysis of the relationship between bacterial families and 
treatments, ellipses represent standard deviations of point scores of each treatment.   
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Figure 14. NMDS Ordination analysis of the relationship between fungal families and treatments, 
ellipses represent standard deviations of point scores of each treatment   
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Figure 15. Photo of annuals present in plots. Dead nettle (Lamium purpureum) and the common 
violet (Viola sororia) being the most abundant. 
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University of Louisville, Louisville, KY 
In collaboration with Cullen Hunter and Dr. Tamara Sluss 
• Analyzed data in R for publication (currently unpublished)

Research Assistant       2006 - 2008 
University of Kentucky, Lexington, KY 
• Ran microbiology labs, PCR, gel electrophoresis, and cell culture.

• In charge of my own project on HIV cells.

Undergraduate Research (unpublished)       2002 - 2003 
Bryn Mawr College, Bryn Mawr, PA & La Suerte Biological Field Station, Costa Rica 
• Observed interactions of Cebus imitator in the wild

• Presented for undergraduate defense
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Related Work Experience 

Regenerative Agriculture Initiatives Intern  Fall 2021 
American Farmland Trust, Louisville, KY 
• Maintain spreadsheets and run data in R for climate change project and Rye Initiative.

• Ran data in R for analysis and presentation to farmers

• Collaborate with corresponding AFT regional offices with climate change project data.

• Network and engage with farmers, researchers, and end-users during AFT events.

President       2020-Present 
Shelby County Farmers Market, Shelbyville, KY 
• Previous Board Member and Secretary

• Ran directive to meet standards for COVID requirements to ensure opening during the

2020 season

• Ran marketing, promotions, and community engagement efforts

• Developed recruiting and orientation tools for new vendors

Co-owner and Operator   2015-Present 
Moonlight Farms Homestead, Pleasureville, KY 
• Plant and maintain garden beds using regenerative farming methods.

• Run community supported agriculture (CSA)

• Developed and maintained relationships with customers through CSA and Farmers Market.

Policy Groups 

Community Farm Alliance: Climate Change Working Group 
National Healthy Soils: Policy Network 
National Sustainable Agriculture Coalition: Conservation, Energy, and Environment 

Committee 
Climate Justice Alliance: Green New Deal/Energy Democracy Merge Group 

Affiliations 

Organic Association of Kentucky (OAK) 
Henry County Beekeepers 
Community Farm Alliance 
HEAL Food Alliance 
Kentucky Conservation Committee 

Conferences Attended 

Organic Association of Kentucky (OAK) Conference 2020 
Organic Association of Kentucky (OAK) Conference 2021 (Virtual) 
National Sustainable Agriculture Coalition: Summer Conference (Virtual) 2021 
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