
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2021

Update of MultiCellular data standard to match PhysiCell Update of MultiCellular data standard to match PhysiCell

"compact" output. "compact" output.

Reid A Honeycutt
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Other Biomedical Engineering and Bioengineering Commons

Recommended Citation Recommended Citation
Honeycutt, Reid A, "Update of MultiCellular data standard to match PhysiCell "compact" output." (2021).
Electronic Theses and Dissertations. Paper 3925.
https://doi.org/10.18297/etd/3925

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/239?utm_source=ir.library.louisville.edu%2Fetd%2F3925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3925
mailto:thinkir@louisville.edu

UPDATE OF MULTICELLULAR DATA STANDARD TO MATCH PHYSICELL

“COMPACT” OUTPUT

By

Reid Alan Honeycutt

B.S., University of Louisville, 2020

A Thesis

Submitted to the Faculty of the

University of Louisville

J.B. Speed School of Engineering

as Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Bioengineering

December 2021

Dr. Nihat Altiparmak

Dr. Joseph Chen

UPDATE OF MULTICELLULAR DATA STANDARD TO MATCH

PHYSICELL “COMPACT” OUTPUT

Submitted by:

Reid Alan Honeycutt

A Thesis Approved On

___________December 2nd, 2021__________

 (Date)

By the Following Reading and Examination Committee:

Hermann B. Frieboes, Thesis Director

ii

iii

ACKNOWLEDGEMENTS

I owe many people for the support they have offered during my completion of this

project. This thesis project would have been impossible without their cooperation and

guidance.

I would like to thank my thesis director, Dr. Hermann Frieboes, for his guidance and

unfailing humor. Undertaking this project under his tutelage has deepened my

understanding of bioengineering and the ways it can impact other fields. I owe him for

the opportunity to work on this project and to expand my knowledge and skills.

I would also like to thank Dr. Samuel Friedman for lending me his expertise and for

bearing with my endless questions. I would have been seriously lost and confused had I

not been able to rely on his experience.

Finally, I would like to thank my family and friends for their continual support and

encouragement throughout this arduous process.

iv

ABSTRACT

In the field of multicellular biology, it is currently very difficult for researchers to share

digital data, due to a lack of standards for said data. Each laboratory will collect data

from a particular project, which will describe only the features relevant to their research,

and then present that data using written descriptions, charts, graphs, and images. This

makes it difficult for the data produced by these studies be leveraged in other research

efforts by scientists studying similar phenomena. An open-source, universal standard that

attempts to meet this need is the MultiCellular Data Standard (MultiCellDS).

MultiCellDS is described as a “a community-developed standard to functionally describe

cell phenotypes with contextual information from the microenvironment”. A program

called PhysiCell utilizes a modified, compact version of the MultiCellularData Standard

through use of “custom” data tags that bypass validation. The goal of this project is to

update MultiCellDS to reflect the data format utilized by PhysiCell so that PhysiCell files

can be successfully validated by the standard. Additionally, a script is required to update

PhysiCell files to remove the “custom” data tags, which are discouraged in the standard.

v

TABLE OF CONTENTS

Page

APPROVAL PAGE .. ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

I. INTRODUCTION ... 1

A. Background ... 1

II. PROCEDURE .. 7

A. Project Overview .. 7

III. RESULTS AND DISCUSSION OF RESULTS .. 14

A. Validation Testing .. 14

IV. CONCLUSIONS .. 17

V. RECOMMENDATIONS ... 18

REFERENCES CITED ... 20

APPENDIX I. ... 21

APPENDIX II. .. 23

vi

APPENDIX III. ... 24

VITA ... 26

LIST OF TABLES

Page

Table 1 - Validation Testing Results. ... 16

vii

LIST OF FIGURES

Page

Figure 1 - Central Repository for Storing Clinical, Experimental, and Modelling Insights

(Friedman, Anderson et al. 2016) ... 2

Figure 2 - MultiCellDS Glossary of Terms (Friedman, Anderson et al. 2016) 4

Figure 3 - A PhysiCell File With A “custom” Element, Which Contains Children Not

Allowed by The Standard ... 5

Figure 4 - Flowchart Showing Focus of Project ... 7

Figure 5 - Flowchart Showing How Standard Was Updated .. 8

Figure 6 - Flowchart Showing How Update Script Was Written 8

Figure 7 - Example of The Hierarchical nature of XML Schema. 10

Figure 8 – Example validation of a PhysiCell File. The red box shows where the

“custom” data tag used to be. .. 11

Figure 9 - PhysiCell File Before Update script ... 13

Figure 10 - PhysiCell file after update script. ... 13

Figure 11 - Validation of an "uncustomed" version ... 15

Figure 12 - Validation of Updated Version .. 15

1

I. INTRODUCTION

A. Background

In the field of multicellular biology, it is currently very difficult for researchers to share

digital data, due to a lack of standards for said data. Each laboratory will collect data

from a particular project, which will describe only the features relevant to their research,

and then present that data using written descriptions, charts, graphs, and images. This

makes it difficult for the data produced by these studies be leveraged in other research

efforts by scientists studying similar phenomena. In addition, it means that teams are

likely spending time to create software-based tools to create and analyze data that are

useless outside of their own work. This phenomenon, known as data siloing, greatly

reduces the speed at which research can be done because it makes it difficult for studies

on similar topics to build off of each other. This issue could be rectified by a universally

adopted data standard for describing multicellular systems. Such a standard would allow

data to be shared effortlessly and enable the creation of central repositories to store both

clinical and experimental data.

2

Figure 1 - Central Repository for Storing Clinical, Experimental, and Modelling Insights

(Friedman, Anderson et al. 2016)

It would also allow for the creation of open-source software for collecting, analyzing, and

formatting data that could be used to study any multicellular system. These tools would

not only increase the ease with which new studies of multicellular systems could be

conducted, but their interoperability would also make studies that utilize them more

reproducible.

Standardizing the way that multicellular biological data is formatted and stored would

also simplify software-driven efforts to model and simulate multicellular systems.

Technologies for assessing single-cell systems are advancing rapidly. High-throughput

multi-omics assays, along with techniques for manipulating and tracking cell histories

mean that we have more information than ever about single cell systems. As these

technologies begin to be applied to multicellular systems, large, high-resolution datasets

3

describing the chemical and behavioral characteristics of many cells within a

multicellular system (Macklin 2019). Incredibly descriptive data such as these would

enable modelers to simulate the behavior of multicellular systems. By continuously

improving models to the point where they can accurately simulate real cellular systems,

researchers would be able to run “trial” experiments computationally. This would save

time and resources and allow investigators to more quickly identify experimental

conditions that are worthy of further study. These large datasets also open the door to

bioinformatics and other data-driven approaches to investigating biological systems.

Software, with its ability to quickly digest large volumes of information, would be able to

find relationships in the data that would otherwise be difficult for researchers to

recognize. Machine learning approaches, in particular, are promising for this purpose. In

this way, bioinformatics can provide new questions and new avenues for investigating

multicellular systems.

However, the current issue with data being stored in complex, non-standard formats is

especially stifling for biological modelling. Computers are totally incapable of processing

data like one would find in an academic publication. To leverage data from such a

publication would require a person to translate said data into a machine-readable format.

This process is time-consuming and increases the likelihood of errors being introduced to

the data. To circumvent this obstacle, any universal standard for describing multicellular

systems would need to be both human and machine-readable. This would empower

modelling projects, and enable data to be searched through, parsed, and analyzed using

standard software. Opening up the field of multicellular biology to computational efforts

like this would have profound effects, as described above.

4

An open-source, universal standard that attempts to meet this need is the MultiCellular

Data Standard (MultiCellDS). MultiCellDS is described as a “a community-developed

standard to functionally describe cell phenotypes with contextual information from the

microenvironment”. MultiCellDS uses the eXtensible Markup Language (XML), a

hierarchical data format that reflects the hierarchical nature of biological systems, to store

data in a machine and human-readable way.

Figure 2 - MultiCellDS Glossary of Terms (Friedman, Anderson et al. 2016)

MultiCellDS formats data in three ways. Digital cell lines (DCLs) are a hierarchical

representation of phenotypic data for a given cell type, digital snapshots record the

spatial information for the cells and their microenvironment, and collections are

groupings of DCLs and digital snapshots based on study or other factors.

The ultimate goal of the MultiCellDS project is to allow for the creation of databases,

tools, and models that will elevate the current paradigms of multicellular systems

biology.

One such model that has emerged is PhysiCell, which the authors describe as an “an open

source, agent-based modeling framework for 3-D multicellular simulations”

(Ghaffarizadeh, Heiland et al. 2018). PhysiCell allows users to model hundreds of

5

thousands of cells at once, or perhaps millions, depending on the computational power

being used. Accurate multicellular systems are simulated using sub-models that simulate

“cell fluid and solid volume changes, cycle progression, apoptosis, necrosis, mechanics,

and motility”. Since PhysiCell was developed in part by researchers involved with the

MultiCellDS project, PhysiCell utilizes a modified, compact version of the MultiCellular

Data Standard. The PhysiCell version of the MultiCellular Data Standard stores

references to external files, such as MATLAB files, in “custom” data elements in a way

that would ideally not be allowed in the standard.

Figure 3 - A PhysiCell File With A “custom” Element, Which Contains Children Not

Allowed by The Standard

6

Currently, any data within a “custom” element is not checked to see if it fits within the

standard, so any new elements that PhysiCell files nests within “custom” elements,

namely “simplified_data” and its children, must be added to the standard. Additionally, a

script for updating old PhysiCell files is required so that they match the updated

MultiCellular Data Standard.

7

II. PROCEDURE

A. Project Overview

At the start of this project, there was already a version of the MultiCellular Data Standard

available that was mostly suitable for validating PhysiCell files. The exception to this was

the data being stored in the “simplified_data” element, that was found nested in “custom”

elements. This was undesirable because, as mentioned above, the standard does not check

the children of “custom” elements for content validation. Therefore, the key objective of

updating the standard is to incorporate the children of the “custom” data elements, found

in PhysiCell files, into the MultiCellular Data Standard.

Figure 4 - Flowchart Showing Focus of Project

As shown in figure 4 above, the focus of the project is to expand the existing ontology

within the standard to allow for the removal of the “custom” data elements from

8

PhysiCell files. This will allow the child elements within the “custom” tags to be

validated using the standard.

Figure 5 - Flowchart Showing How Standard Was Updated

A program called Oxygen XML Editor was used to open and edit .xsd and .xml files and

to validate .xml files against the standard.

A secondary goal of the project is to create a method for updating old PhysiCell files to

match the new standard. Since the current PhysiCell paradigm is to store references to

external data within “custom” elements, once the standard no longer accepts those

elements, PhysiCell files will not be considered valid within the updated standard. To

remedy this, a script for editing PhysiCell files is required. Such a script would need to

remove the “custom” data elements and its children that violate the standard, while

replacing them with the proper tags.

Figure 6 - Flowchart Showing How Update Script Was Written

9

This script was written in Python 3.9 and requires the xml.etree and lxml libraries to

operate, as well as the standard Python modules glob and os. The script was developed in

PyCharm.

B. Updating Standard

XML schema definitions (XSDs) are documents that can be written in a hierarchical

format, similar to XML data, that are used to define the appropriate structure and format

of an XML document. For the purpose of MultiCellDS, these schema documents are used

to ensure that data is formatted properly, that necessary metadata is present, and that the

data are of the correct type. The schema can be used to “validate” XML documents,

which will flag all the errors and sections of the document that do not match the standard.

This process is crucial for any effort to create a repository, as data that do not follow the

standard would be incompatible with any tools meant to work with MultiCellDS data.

XML schemas define the allowed content of an XML file, which are composed of

elements. The schema defines what elements can be found in a document, the type of

content each element can contain, which attributes each element can have, and parent-

child relationships between elements, among other things.

The MultiCellular Data Standard is written as multiple XML Schema Definition (.xsd)

files, which reference each other for element type definitions. MultiCellDS is written

using the venetian blind model, which utilizes local element declarations, but has globally

defined element types (Walmsley 2013). This increases reusability since type definitions

can be used in multiple places and are used in the definitions of other complex types.

Another advantage is that locally defined elements can have the same name but different

attributes, which increases flexibility.

10

Figure 7 - Example of The Hierarchical nature of XML Schema.

Figure 7 shows both the hierarchical nature of XML schemas and XML data. The

elements “microenvironment”, “phenotype”, “cell_part”, and “custom” are all included in

the type-definition of “phenotype_dataset”, which is in turn included in the type-

definition of “population_definition”. This example also demonstrated the nature of the

Venetian Blind model, as each child element of “population_definition” and

“phenotype_dataset” is defined separately and not within the type-definition of its parent,

meaning they are defined globally.

The validation functionality built into Oxygen XML Editor was used to identify portions

of PhysiCell files that did not fit into the existing MultiCellular Data Standard. Sample

PhysiCell data were generated using example projects, which are included as a part of a

standard PhysiCell download. As can be seen in figure 8, after removing the “custom”

data tag, Oxygen flags the “simplified_data” tag because it does not fit within the

standard.

11

Figure 8 – Example validation of a PhysiCell File. The red box shows where the

“custom” data tag used to be.

This functionality was used to identify elements that were not part of the current standard

and would need to be added. The “simplified_data” element needed to be incorporated

into the standard, meaning that rules governing its content and position were needed. To

accomplish this, the definition of the “cell_population” complex type was changed to

allow it to contain a child element called “simplified_data” (later renamed to “Dataset”)

and a global type-definition for “Dataset” was needed for the standard. The child of

“Dataset”, “labels”, and its child “label” were also given global type definitions, in

keeping with the Venetian Blind Model. Making these changes allowed for the data in

figure 8, after changing the “simplified_data” tag to “Dataset” to be successfully

validated using the MultiCellular Data Standard.

12

However, not all changes were focused on adding new elements to the standard to reflect

those used in PhysiCell data. Other changes were focused on providing more complete

metadata to describe the new elements. For example, “Dataset” was given an optional

“ID” attribute, which can be used to store a unique identifier that links it to specific

metadata. This was necessary because multiple instances of “Dataset” can exist in one

document, and each instance of “Dataset” may require multiple metadata elements to

fully describe its origin.

The MultiCellular Data Standard is written hierarchically in XML Schema Definition

(.xsd) files. The master file, MCDS.xsd, references several other external files, which in

turn reference each other.

C. Writing Script

Due to the changes made to the standard, it was necessary to create a script for updating

PhysiCell files to match the new standard. Since most of the changes made to the

standard were to allow for the addition of new elements and metadata, the script only

needed to remove the custom data elements and replace them with the proper tag.

PyCharm was used to develop the script and, as when editing the standard, Oxygen XML

was used to open the XML files being modified. Using these programs allowed for rapid

iteration of the script as its effects on PhysiCell files could be observed immediately.

The script, written in Python, takes an input directory and finds all the XML files in said

directory. Then, the script searches through each file and finds the “custom” data

elements that are no longer allowed by the standard. Once it finds such an element, it

copies its child elements and assigns that data to a variable, then deletes the “custom” tag.

The children of the “custom” element are the appended back into the proper position

13

under the “Dataset” tag. Finally, the script restores the proper spacing and saves the

edited file.

Figure 9 - PhysiCell File Before Update script

Figure 10 - PhysiCell file after update script.

14

III. RESULTS AND DISCUSSION OF RESULTS

A. Validation Testing

The PhysiCell update script was validated using data produced by sample PhysiCell

models, tabulated below. The “control” version of each file had its “custom” data tags

removed so that its contents could be validated against the standard. The “experimental”

versions were the updated file after being run through the update script. Validation was

considered successful if no errors were found relating to the contents of the “Dataset”

element and if the whitespace/indentation of each element was properly aligned.

15

Figure 11 - Validation of an "uncustomed" version

Figure 12 - Validation of Updated Version

Figures 11 and 12 show an example of a successful validation. The results section shows

the errors present, or the sections of the document that do not fit the standard. Although

both versions have errors relating to missing information, specifically ORCID identifiers,

16

the updated version does not have the error relating to the “simplified_data” element.

Additionally, the updated version retains the proper spacing and whitespace. Data from

five different models were used to validate the script, and the results are tabulated below.

Model Name Author Successfully Validated?

Biorobots Macklin et al. Yes

Cancer biorobots Macklin et al. Yes

Heterogeneity Macklin et al. Yes

Cancer immune Macklin et al. Yes

pc4covid-19 Macklin et al. Yes

Table 1 - Validation Testing Results.

As can be seen in the results tabulated above, the update script was able to successfully

update data files from each PhysiCell model. This means that the updated versions did

not flag errors related to the content of the “custom” tags.

17

IV. CONCLUSIONS

The goals of updating the standard to match the PhysiCell “compact” format and to create

a script for updating deprecated PhysiCell files were successfully met. The compact

branch of the MultiCellular Data Standard can now reflect the data structures found in

PhysiCell files that reference external data and provide information for interpreting said

data. New elements have been added to the standard to store these data and the metadata

has been restructured to allow for accurate documentation for the provenance of these

data. These updates are an important step in the development of this standard, as they

allow the standard to apply to an important use-case. These changes reflect the necessity

to expand the standard to enable new uses as those needs arise. By accommodating new

use-cases the standard can become more widely adopted. Popularity is crucial for any

universal data standard because its utility lies in its ubiquity.

Additionally, the update script developed is capable of converting PhysiCell files into a

form that is compliant with the updated standard. This capability is important for

facilitating the adoption of the MultiCellular Data Standard for use in PhysiCell models.

Modelers will be able to use the script to update their old files, instead of changing their

models and re-running them to produce updated versions. This script will ease the

transition to the use of MultiCellDS for PhysiCell modelers and complement the updated

standard for an important use-case.

18

V. RECOMMENDATIONS

There are several ways in which the existing MultiCellDS project and the work presented

in this paper could be built upon. Firstly, there are ways in which the standard itself could

be improved. The way that the standard currently deals with missing metadata, such as

missing ORCID identifiers for researchers who produced data, is by flagging it as

incorrect, much like it would for data that is formatted incorrectly. The issue of missing

metadata is entirely different from extraneous or incorrectly formatted data and should be

treated differently. A more helpful approach would be to provide a more descriptive

warning about the missing metadata, rather than simply flagging the empty element as an

error.

Secondly, the script for updating old PhysiCell files will likely require modification and

improvement moving forward. Admittedly, there was not a great variety of data available

for testing and validating the script functionality. It is possible that as more data files

from different PhysiCell models are run through the script, errors will be encountered due

to the presence of previously unencountered elements or formatting.

Finally, the standard must be updated periodically to accommodate the needs of

clinicians, researchers, and modelers that utilize the MultiCellular Data Standard.

Advancements in research techniques or new use cases will inevitably necessitate the

expansion or adjustment of the existing standard to allow for fully descriptive data. This

19

project is an example of such a situation. As a universal standard for describing

multicellular systems biology, it is paramount to remain abreast of the needs of the field

to ensure that all use cases are catered to.

20

REFERENCES CITED

• Friedman, S. H., et al. (2016). "MultiCellDS: a community-developed standard

for curating microenvironment-dependent multicellular data." bioRxiv: 090456.

• Ghaffarizadeh, A., et al. (2018). "PhysiCell: An open source physics-based cell

simulator for 3-D multicellular systems." PLOS Computational Biology 14(2):

e1005991.

• Macklin, P. (2019). "Key challenges facing data-driven multicellular systems

biology." GigaScience 8(10).

• Walmsley, P. (2013). Definitive XML Schema. Upper Saddle River, N.J.,

Prentice Hall.

21

APPENDIX I.

MultiCellDS Compact Branch Commits

Commit Name Date Description

Commit e0fbb7f1 March 10th, 2021 This commit includes changes intended to allow a

particular file produced in PhysiCell, found here:

https://gitlab.com/MultiCellDS/MultiCellDS/-/issues/14

to be validated by the MCDS. The sample.zip file

contains a data file called output00000010.xml,

which can now be validated successfully. The main

issues were missing instances of elements, such as

orcid_identifier, which were previously required.

Commit a80fda11 June 3rd, 2021 I added a simplified_data element and all of the

necessary sub-elements to cell.xsd in order to validate

the files generated by the pc4covid19 model. I also

added some supporting definitions to common.xsd

because I couldn't find existing elements that fit.

Commit 397da1ed June 9th, 2021 Removed data_sources to allow for any sort of string to

be input for a data source. Changed name of element

simplified_data to Dataset to match MCDI ontology.

Commit 7fd563a4 April 4th, 2021 Added a key to the ID attribute of data_origin and a

keyref to Dataset (placeholder name) to allow for

multiple instances of Dataset to be uniquely referenced

https://gitlab.com/MultiCellDS/MultiCellDS/-/issues/14

22

Table 2 – MultiCellDS compact branch commits.

in the metadata.

Commit 8149c2a2 August 24th, 2021 Substituted the "software" element in the complextype

"data_origin" for a pared-down version that has less

information to reduce redundancy. Changed the number

of instances of data_origin to be unbounded to allow for

multiple origins to be stored for a single datum.

Commit d79630c1 September 8th, 2021 In cell.xsd: made "filename" element in "Dataset"

complextype optional. Added a "Binarized_Data"

element to "Dataset". In metadata.xsd: moved the

"custom" element to the correct position. Made

"data_origin_ID_key" a "unique" type instead of a

"key" to make it optional. Made a "software_group"

group to allow reusability. "software_group" is used in

"data_origin_software" and "software".

23

APPENDIX II.

Table 3 - Update script commits.

Update Script Commits

Commit Name Date Description

Commit ba0c3c5a October 5th, 2021 Initial commit.

Commit 343d7580 October 9th, 2021 Cleaned up some comments.

24

APPENDIX III.

import xml.etree.ElementTree as ET

from lxml import etree

import glob

import os

#Setup for opening a folder and making a list of each .xml file

#mypath = input("Enter a folder location")

mypath = 'C:/Users/Reid/Documents/THESIS STUFF/pc4covid19/Sample_Data'

file_list = []

#for file in os.listdir(mypath):

if file.endswith('.xml') and not ("updated" in file):

file_list += [file]

file_list = glob.glob(os.path.join(mypath, '*.xml'))

for file in file_list:

 file_name = os.path.join(mypath, file)

 #parsing xml doc and determining whether it needs to be updated

 NoWhiteSpaceParser = etree.XMLParser(remove_blank_text=True)

 tree = etree.parse(file_name)

 root = tree.getroot()

 print(root.attrib)

 Dataset = ET.Element("Dataset")

 for cell_populations in root.iter("cell_populations"):

 cell_populations.text = '\n'

 for cell_population in

cell_populations.iter('cell_population'):

 #ET.SubElement(cell_population, "Dataset")

 print(cell_population.attrib)

 for simplified_data in

cell_population.iter('simplified_data'):

 Dataset = simplified_data

 Dataset.tag = "Dataset"

 Dataset_tree = Dataset.iter()

 cell_population.text = '\n'

 for element in Dataset.iter():

 x = next(Dataset_tree, Dataset)

 #I'm setting a bunch of values to '\n' here to get

rid of some incorrect whitespace

 if element.tag == 'Dataset':

 element.text = '\n'

 element.tail = '\n'

 elif element.tag == 'filename':

 element.tail = '\n'

 elif element.tag == 'label':

 element.tail = '\n'

 print(element.tag)

 elif element.tag == 'labels':

 element.text = '\n'

25

 element.tail = '\n'

 # print(repr(element.text))

 # print(repr(element.tail))

 if element.tag == 'filename':

 print('element is file')

 print(x.tag)

 #element.tail = element.tail[0:len(element.tail)-2]

 #Dataset.append(a)

 cell_population.append(Dataset)

 #These indents are for adding in the correct whitespace

 etree.indent(cell_populations, space='\t')

 etree.indent(cell_populations, space='\t', level=1)

 etree.indent(cell_populations, space='\t', level=2)

 for custom in cell_population.findall("custom"):

 cell_population.remove(custom)

 if not os.path.isdir(os.path.join(mypath, 'Updated')):

 os.mkdir(os.path.join(mypath, 'Updated'))

 output_path = os.path.join(mypath, 'Updated')

 tree.write(os.path.join(output_path,

file[0+len(mypath)+1:len(file)-4] + '_updated.xml'), pretty_print=True)

26

VITA

Reid Alan Honeycutt graduated with his B.S. in bioengineering from the University of

Louisville in May of 2020 and his M.Eng. in bioengineering in December of 2021. He

was a recipient of the Governor’s Scholarship and the national Merit Scholarship. His

previous works include aiding in the development of a right ventricular assist device

under Dr. Steven Koenig. Reid plans to apply his skills as a bioengineer in developing

new devices and software to elevate the standards of patient care.

	Update of MultiCellular data standard to match PhysiCell "compact" output.
	Recommended Citation

	Reid Honeycutt Thesis_Final.pdf
	Reid Honeycutt Thesis Signature Page_SIGNED.pdf

