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ABSTRACT 

Design of a 300cm2 PEMFC Stack with Force and CFD simulation to optimize flow 

channels, gasket design, and clamping forces. 

Robert Michael Ench 

April 10, 2021 

Proton exchange membrane fuel cells are important to the future of green energy 

as hydrogen can be made with green technologies and store energy for later use. Fuel 

cells can efficiently convert the hydrogen to electricity as needed. This study uses 

Solidworks simulation to make design improvements to the fuel cell before the prototype 

build stage of testing; this saves money and time by reducing the prototype builds 

needed.   

In this study, a multi-channel serpentine design with two outlets versus a single 

outlet is evaluated using CFD to investigate pressure drop. Lower pressure drops are 

desirable as less energy input is required to operate the fuel cell. A problem with the 

clamping of fuel cell end plates is that the forces are not evenly spread throughout the 

cell. To improve the clamping force problem, a two-piece end plate with embossments is 

designed and forces simulated. In the FEA, the embossments provided a more uniform 

force distribution.  

The findings show that the two-outlet bi-polar plate greatly reduces the pressure 

drop, which at same inlet pressure of 5 psi increases the mass flowrate by 54% . The 
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analysis of the endplates with embossments shows an improvement in the uniformity of 

the forces applied to the fuel cell. This is visible by the stress contour plots of each 

design, which shows that the forces move from the edges of the cell to the inner area of 

the cell. 

This study demonstrates that Solidworks can be used to evaluate a PEMFC and 

that the design changes used in this study have promising possibilities in future PEMFC 

designs.       
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CHAPTER 1: INTRODUCTION 

 

 The energy demand of the world is always increasing as the availability of fossil 

fuels are decreasing. This is driving the people of the world to investigate alternative 

energy sources. In 2019, 17% of the energy used in the United States came from 

renewable energy, and this percentage is expected to rise to 21% by 2021 (U.S. Energy 

Information Administration, 2020).  The energy sector is rapidly shifting toward 

renewable energy sources. One promising energy source is hydrogen. Hydrogen can be 

produced by electricity (electrolysis), thermochemical processes, direct solar water 

splitting processes, and biological processes (Office of Energy Efficiency & Renewable 

Energy, 2020).   Most of the hydrogen in the United States is produced using steam-

methane reforming which has a byproduct of carbon monoxide (Office of Energy 

Efficiency & Renewable Energy, 2020). Equation 1 demonstrates the steam-methane 

reforming reaction: 

CH4 + H2O (+HEAT) → CO + 3H2                                      (1) 

  Proton exchange membrane fuel cells are a way to produce electricity from 

hydrogen. There are many types of fuel cells, but the focus of this work is the proton 

exchange membrane fuel cell. PEM fuel cells are chosen due to their high-power density, 

which allows them to be relatively small, and begin generating energy quickly (Electrical 

Academia, n.d.). The PEM fuel cell converts hydrogen and oxygen to electricity, and 

details of this process are in Chapter 5. PEMFC are constructed with parts (end plates. 

membrane electrode assembly, collector plate, bi-polar plates, and gaskets) being 

compressed together. The end plates allow for the gas fittings to be connected to the 
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PEMFC stack and for the fasteners to push against the end plates, which causes the 

clamping force to hold the PEMFC together. The collector plates are used to collect and 

send off the power that is produced by the PEMFC. Additionally, there are bipolar plates, 

which can either be the same for the anode and cathode or a different design for each, 

depending on the design intent. On the back side of the bipolar plate, there will be either 

an open cooling channel for air-cooled or a closed system channels for water-cooled. 

There is a Membrane Electrode Assembly (MEA) with Gas Diffusion Layer (GDL) on 

both sides in the middle of the bipolar plates, as shown if Figure 1  

 

Figure 1 The Components of one PEM fuel cell 

The MEA allows the hydrogen ions to pass in order to give the cell its charge and 

produce power. The GDL allows the gases to pass next to the MEA so that the reaction 

can happen. The GDL also helps move water away from the MEA and allows the cell to 

be electrically conductive. The gaskets are also crucial to the functioning of the PEMFC.  

The gasket seals the gas layers, the MEA, and the cooling channels. The gaskets can 

make the difference between an efficient PEMFC and a non-working PEMFC by 
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determining the compression force on the end plates. If the compression force is too high, 

the GDL will be crushed, reducing its porosity and thereby reducing the gas contact with 

the MEA. If the force is too small or the gasket is not compressed enough, the GDL could 

lose its conductivity, reducing the power output of the PEMFC and potentially causing 

gas and water leakage, which not only reduces efficiency but also poses a hazard. 

Therefore, the thickness, material, and shore hardness of the gaskets is very important.  

 Bi-polar plates also consist of flow channels. The flow channels include the 

cooling channel and the gas channels. The flow patterns effect the efficiency and the 

pressure drop. 

 In this project, a 300 cm2 active area bi-polar plate PEMFC will be designed and 

simulated for the required gasket and flow channels. The gasket compression and 

compression force on the PEMFC will be evaluated using Compression Force Deflection 

charts and mathematics based on the CAD area of each part. The flow channels are 

evaluated using a Computational Fluid Dynamics (CFD) simulation to look at flow 

patterns, heat dissipation, and pressure drop.  

 To better understand why PEMFC was chosen an overview of the different types 

of fuel cells is reviewed below. The information in this section was attained from the 

Office of Energy Efficiency & Renewable Energy (Office of Energy Efficency & 

Renewable Energy, 2021).  

 PEMFC have a high-power density which allows them to be low weight and size 

compared to other fuel cells. The PEMFC uses a solid polymer and only needs hydrogen, 

oxygen, and water to operate. They can operate using pure oxygen from a tank or from 

the air. They have a low operational temperature around 80⁰C. They have a quick starting 
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time due to the low operational temperature. Some disadvantages to PEMFC is the high 

cost of platinum catalyst and the purity requirement of the hydrogen gas. PEMFC are 

primarily used for transportation applications. 

 Direct methanol fuel cell (DMFC) are power by pure methanol. Methanol has a 

higher energy density than hydrogen and is easier to transport because it is a liquid. The 

main drawback to DMFC is the very sluggish anode reaction, which coupled with the 

inefficient cathode reaction, this gives an overall low performance especially at low 

temperatures (Keith Scott, 2012).   

 Alkaline fuel cell (AFC) uses potassium hydroxide in water as electrolyte. 

Modern AFC use a polymer membrane. AFC are used in space applications do to the 

high efficiencies above 60% and their poisoning to even low amounts of carbon dioxide 

(CO2).  

  Phosphoric acid fuel cell (PAFC) use liquid phosphoric acid as an electrolyte. 

PAFC are used for stationary power generation. PAFC are more tolerant to impurities in 

the fuel. Disadvantages of PAFC very large size and high loading platinum needed for 

catalyst.  

  Molten carbonate fuel cell (MCFC) are used for coal-based and natural gas 

power plants. MCFC run at high temperature, 650⁰C. Due to the high temperature lower 

cost catalyst and the ability convert fuels into hydrogen internally. MCFC disadvantages 

are the high operating temperature and its short life before decreasing performance.     

 Solid oxide fuel cell (SOFC) are a high efficiency FC that operates at high 

temperature of 1000⁰C. SOFC has the highest resistance to sulfur allow it to operate on 
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natural gas, biogas, and gases made from coal. The disadvantage of SOFC is the high 

operating temperature which cause high cost in materials.    
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CHAPTER 2: OBJECTIVE AND INTELLECTUAL MERIT 

 The project is designed to validate the components designs in a PEMFC using the 

software Solidworks. The project uses the modeling capabilities for the design process, 

CFD for the gas pressure drop calculations and the water-cooling thermodynamics, and 

finite element modeling for force placement. Due to limitations on gasket materials, the 

gasket compression calculations were done mathematically.  

Goals Part Process 

Compare Gas Channels for Improvements Bipolar Plate CFD Pressure Drop 

Water cooling Design and required Flowrate Bipolar Plate CFD Thermodynamic 

End Plate Design Compression Comparing Clamping Bracket Finite Element  

Gasket Design Force Calculations Gasket Mathematically 

Table 1 Project goals 

 The gas pressure drop calculations are used to check for improvements in the gas 

flow due to the redesign of the serpentine flow pattern. These calculations are important 

because of the limitations the redesign causes on larger active area PEMFC. This 

limitation is due to the high pressure drop. Reducing the high pressure drop allows the 

cell size to increase. 

 The cooling channels are evaluated to find the required flow rate of water needed 

for the PEMFC stack. A correctly-designed cooling system will be needed to design the 

full system in the future. 

    Another important part of this project is the redesign of the end plates. The end 

plate designs are very important to the efficiency of the PEMFC stacks, and they are 

difficult to evaluate without FEA simulation. The challenge of moving the forces to the 

center of the end plate to make an even force on the bipolar plates has been studied 

before, but no standard solution has been found (Alizadeh, Ghadimi, Barzegari, 
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Momenifar, & Saadat, 2017). The emboss design chosen for this project was selected due 

to the low cost of stamping parts and the lower weight of the combination of the emboss 

metal with an internal end plate of polycarbonates compared to a solid steel end plate. 

The challenge of this embossed end plate design is that the layout of the embossed design 

can be done in unlimited variations.  

This project is designed to be a stepping stone for future PEMFC designs and 

testing. With the promising results from the dual-direction multichannel serpentine 

design bipolar plates and the embossed end plate, these innovations could possibly help 

future PEMFC manufacturing by reducing research and development and increasing 

performance. Additionally, Solidworks is a well-known and accessible software so other 

researchers can use this project as a guide to build simulations of PEMFCs using 

Solidworks in the future. Table 2 shows a list of tests done to make the conclusions in 

this project. 

Test Process 

Gas channels flowrate test for single out bipolar plate CFD Pressure Drop 

Gas channels flowrate test for dual out bipolar plate CFD Pressure Drop 

Gas channels flowrate test for dual out with added radius to channels CFD Pressure Drop 

Water cooling Design and required Flowrate by changing water flow CFD Thermodynamic 

Water cooling Design efficiency change by adding radius to channels CFD Thermodynamic 

End Plate Design Compression Comparing with and without emboss up to endplate Finite Element  

End Plate Design Compression Comparing with and without emboss though a cell Finite Element  

Gasket Design Force Calculations of original design Mathematically 

Gasket Design Force Calculations of reduced material design Mathematically 

Calculate total force needed Mathematically 

Calculate bolt size and quantity needed for total force Mathematically 

Table 2 List of testing in this project 
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CHAPTER 3: BI-POLAR PLATE REVIEW 

3.1 Background 

The bi-polar plates are an important part of the PEMFC as they control the flow 

of gases, the cooling flow, the removal of byproducts, including water, and the flow of 

the electricity produced. There are many designs when it comes to the bi-polar plate; a 

few examples are the Pin design (Figure 2 left side), Cascade design (Figure 2 right side), 

Parallel design (Figure 3 left side), and the Serpentine design (Figure 3 right side). 

  

Figure 2 Pin bipolar design (left), Cascade bipolar design (right) 
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Figure 3 Parallel bipolar design (left), Serpentine bipolar design (right) 

A poorly designed bipolar plate can cause uneven gas distribution, hot spots in the 

MEA, unstable current density, and cell failure due to bad water management 

(Wilberforce & Ogungbemi, 2019). The life and efficiency of the PEMFC stack can be 

directly related to the design of the bipolar plate. The pressure drop across the bipolar 

plate affects the performance of the bipolar plate as it shows restrictions in the gas flow 

and how well water that is produced by the reaction is removed from the system so that 

the MEA does not get flooded. To provide a better understanding of the requirements of 

the bi-polar plate design, Wilberforce & Ogungbemi’s (2019) comprehensive study on 

the effect of bipolar plate (BP) geometry design on the performance of photon exchange 

membrane (PEM) was reviewed.  

3.2    Review 



10 

 

The performance of the PEM fuel stack directly relates to the reactants being 

evenly distributed over the active area. The distributions of the reactant gas are managed 

directly by the design of the bipolar plates. The bipolar plate design also relates to the 

efficiency of cooling and energy removal. Wilberforce and Ogungbemi’s (2019) article 

provide an in-depth examination of each component that makes up the design of the 

bipolar plate.  

The most critical issue in bipolar plate design is minimizing the pressure drop of 

gases as they pass through the bi-polar plate. Fuel cell scientists recommend that the 

pressure drop be reduced to the barest minimum (Wilberforce & Ogungbemi, 2019).  

Pressure drops in bipolar plates are related to the plate’s design, the length of the 

channels, and the depth of the channels. Other factors include the material surface finish 

and shape of the channel. The compositional material and manufacturing process will 

give the friction factor of the channels. The friction factor is also called the roughness 

factor, which is used in simulations. Another design factor is the width of the ribs in 

between flow channels. The study concluded that a wider channel with thinner ribs is 

recommended; this is based on pressure drop over the length of the channel. The shape of 

the cross section of the channel is also reviewed. The channel could be a triangle or a 

rectangle, as well other shapes. Based on the report, the triangle shape produces higher 

voltage but is prone to flooding, so a rectangle cross section is preferred.   

The pin, cascade, parallel, and serpentine flow pattern designs are examined. The 

pin-like design has a low pressure drop but is limited by uneven distributions of gases, 

which leads to the possibility of flooding and uneven temperature distributions. The 

cascade design has a high pressure drop and a low rate of penetration of the gases, 
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resulting in efficiency problems. The parallel design provides low pressure drop but 

causes a nonuniform distribution of gases. The serpentine design is the commercially-

accepted design as it has both good water management and thermal conductivity with 

enhanced flow rates; however, the serpentine design is also limited by higher pressure 

drops and some uneven reactions. 

The directions of the air flow against the hydrogen flow are important to the 

performance of the bi-polar plates. There are three different options for how the flow 

directions relate to each other. The first choice is that the gases flow in the same 

direction, directly on the other side of the MEA. The second choice is to have the gases 

flowing across each other in a perpendicular relation. The last type is for the gas flows to 

move in opposite directions. Research has shown the opposite direction design is the 

most efficient due to the more evenly humidified MEA, reduced flooding, and increased 

current density.   

3.3     Relation to this project 

This project will use information from Wilberforce and Ogungbemi’s (2019) 

study expand upon their findings. The bi-polar plate design in this study uses the parallel 

design due to its high performance and preference in industry. This study examines the 

issue with the pressure drops caused by the long channels of the design to make 

improvements. The rectangular channel design will be used and compared to rectangular 

channels with a radius in the corners to see if there is any improvement in performance. 

The flow channel directions will be a modified opposite directional flow, so the hydrogen 

and oxygen will be traveling in different directions.      
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3.4 PEMFC Design Overview 

A PEMFC is designed to convert hydrogen gas into electricity. The process uses 

hydrogen and oxygen to produce electricity with byproducts of H2O and heat. 

The Anode reaction is on the hydrogen side of the PEMFC. 

H2 → 2H+ + 2e−         Anode Reaction                           (2) 

The Cathode reaction is on the oxygen side. 

1

2
𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂 + ℎ𝑒𝑎𝑡   Cathode Reaction                   (3) 

The PEMFC operates in a temperature range between 20 and 180 degrees Celsius. 

(Alrweq 2018) 

The reaction is illustrated in Figure 4, which was drawn based on the drawing used by the 

National Museum of American History, Smithsonian Institution. (National Museum of 

American History, 2021) 

 

Figure 4 Illustrated PEMFC reaction. 

The major parts of a PEMFC consist of the cell itself, which includes the bipolar 

plates, the GDLs, the seals, and the MEA. These cells are stacked together to increase 
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output; this creates a PEMFC stack. The parts of a PEMFC stack include the cell 

assemblies, the gaskets, end cooling plates, the current collector plates, end plates, gas 

fittings, clamping brackets (optional), and fasteners.  

 

Figure 5 Parts of a PEMFC Stack 

The gases and cooling water flow through the end plates. The fittings are on both 

end plates but can be plugged on one side if the stack is not large enough to need extra 

inputs and outputs. The inputs and output can be seen in Figure 6 
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Figure 6  The PEMFC Stack inputs and Outputs 
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CHAPTER 4: CLAMPING FORCE 

4.1 Background 

 The clamping force is the force that is applied to the end plate to compress the 

PEMFC stack. The force must seal the gas flow channel and the cooling channel and 

make good contact for conductivity. The clamping force can be done in different ways, 

but it is common to use an end plate made of a stiff material like metal or reinforced 

plastic that transfers the force from the bolts to the stack of the PEMFC. Researchers state 

that around 59% of the total power lost in a PEMFC is to the contact resistance between 

the bipolar plate and the GDL layer, which is predominately caused by ununiformed 

pressure from the end plates (Alizadeh, Ghadimi, Barzegari, Momenifar, & Saadat, 

2017). 

The main problem with the end plates and bolt design is that, as the clamping 

force is increased, the end plate begins to have a slight bow which causes the force to 

maximize around the edge of the stack. The pressure in the middle of the bipolar plate is 

lowest due to this curving of the plate. Figure 7 shows how the forces are exerted on the 

end plate and the bipolar plate. 

 

Figure 7 The forces on the end plate with the curvature  
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A common way to fix this problem is to make the end plate out of a thick piece of 

stainless steel and add drilled and tapped holes placed in a pattern in the center of the 

plate. The tapped holes are then filled with bolts that can be tightened to apply more force 

to the middle. This design does help, but it causes point pressure on the bipolar plate and 

is a very heavy option based on the weight of the plate and the extra bolts. Alizadeh, 

Ghadimi, Barzegari, Momenifar, and Saadat (2017) look at a solution for this problem. 

4.2 Review 

The paper looks at a new solution for the uneven clamping force caused by the 

end plates using finite element modeling to show the difference in performance between 

designs. The design is a hydraulically pressurized pocket that is installed in between the 

end plate and the bipolar plate. The pocket can be pressurized after the bolts are tightened 

to add the even force to the center of the bipolar plate. This even force improves 

performance and reduces hot spots caused by the uneven contact pressure on the MEA. 

The pocket was placed on one side of the stack and was designed using two O-rings. The 

space between the O-rings becomes the pocket after the O-rings are compressed. Then, 

the air pressure can be regulated to change the forces on the center of the bipolar plates.  

The finite element testing was setup using a single cell in the two designs, first 

with the standard clamping setup and the second with the pressurized pocket. ABAQUS 

FEA simulation software was used for the calculations. The model with the standard 

setup had the largest pressure (4.8 MPa) on the outside corner of the bipolar plate and 

decreased to zero on the center area. The design with the pressurized pocket has a mostly 

even pressure range across the MEA. On the outside of the MEA, the pressure is 2.02 

MPA while the pressure is 1.36 MPa in the center. The test was also done with contact 
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pressure film which resulted in similar results. Overall, the pressure pocket design is 

shown to be very promising with an improvement in the uniform distribution of the 

pressure on the MEA. 

4.3 Relation to this project 

 In this project, finite element modeling will be used to check for improvements in 

end plate design. Solidworks Simulation will be used in a similar fashion. The authors 

used a pressurized pocket to result in a more uniform pressure distribution but, in this 

project, embossed end plates will be used.     
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CHAPTER 5: PEMFC DESIGN 

5.1 Bipolar Plate Design 

The bipolar plates are designed to control the flow of gases and cooling water. They 

must be made of conductive and thermal materials. On one side of the bipolar plate, there 

are channels for the gas flow. The other side of the bi-polar plate is for cooling. 

 The gas side of the bipolar plate highly affects the performance of the fuel cell. 

Based on its design, it can affect the current density, water management, pressure drop, 

and gas distribution (active area covered). In this project, several serpentine channels are 

combined; this design was chosen because it produces a lower pressure drop, removes 

water effectively, covers the full active area with gas flow, and is useful for large active 

areas (Wilberforce & Ogungbemi, 2019). The challenges of this design are that longer 

channels produce greater pressure drops and non-uniform reactant due to lower hydrogen 

levels toward the end of the flow channels. A 300 cm2 active area bipolar plate was 

chosen to show how the pressure drops across a larger area PEMFC. A 200 cm2 active 

area PEMFC is known to be large (Carcadea, 2020).   

 By increasing the number of channels, the pathway gets shorter. In figure 8, the 

bipolar plate has a 12-channel serpentine design that was created for this project testing.  
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Figure 8 A 12 channel serpentine design bipolar plate 

The 12-channel design allows the channels to travel across the active area only 

four times which helps to reduce pressure drops caused by the directional changes at the 

corners of the design pattern. The major issue with this design is that the channels are still 

long, which causes a larger pressure drop than a smaller active area bipolar plate. The 

channels are 28.05 inches long. To increase the efficiency of the bi-polar plate, the 

channel length needs to be decreased.  

To decrease the length of the channels, a twin output design was made. The design 

moved the inlet to the center on one side and made an upper and lower outlet. This allows 
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the channel to be much shorter. The dual outlet design is shown in Figure 9.

 

Figure 9  Dual outlet design 

With the dual outlet design the channel’s length is 18.68 inches, which is 9.37 

inches shorter than the previous design. The effects of this change will be simulated using 

CFD to find the change in pressure drop.  

 The shape of the channels is the next important consideration for gas channels in 

the bi-polar plate. Square like channel bends as shown in Figure 10 increase the pressure 

drop compared to curved channels as in Figure 11 (Wilberforce & Ogungbemi, 2019). 
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Figure 10 Bipolar plate with square bends 

 

Figure 11 Bipolar plate with curved channels 

In this project, CFD simulation is used to find the radius to reduce pressure drop 

without reducing the flow rate by the reduction of the channel area. 

 The next aspect of the bi-polar plate to investigate is the cooling channels. The 

cooling channels are evaluated using CFD to find the pressure and flow rate needed to 

keep the bi-polar plates cool. Additionally, the bends of the channels are evaluated to see 

their effects on the plates’ cooling. The cooling channels are shown in Figure 12.  
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Figure 12 Cooling channels 

5.2 Gasket Design 

The gasket design is important in many ways for the effective and efficient 

performance of the PEMFC. First, the gasket seals the gas layers and cooling layers so 

that there are no leaks. Second, gaskets must be made from a material that can withstand 

the gas and temperature changes. Third, the compression of the gasket determines the 

conductivity of the plates. Fourth, the thickness of the gasket determines the amount of 

pressure on the GDL. 

In this design, two materials are examined, Silicone and EPDM (Ethylene Propylene 

Diene Monomer rubber). Both materials are readily available and are used in PEMFC 

designs.  
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Material hardness directly affects the force needed to compress the gasket and the 

gaskets ability to seal. Silicone is available with Shore A hardness from 10 to 100 

durometer. EPDM is available with a Shore A hardness from 40 to 80 durometer.  The 

higher the shore hardness (stiffness), the higher the sealing pressure is (Lin, Chien, Tan, 

Chao, & Van Zee, 2011). LSR and EPDM show a stable and steady stiffness under the 

temperature range up to 90⁰C (Lin, Chien, Tan, Chao, & Van Zee, 2011). A common 

shore hardness for both EPDM and silicone is 70 to 75, which will be used for this 

design.  

Examining how a material holds up under use in a PEMFC is another important 

consideration when selecting a gasket material. Silicone rubber has been tested and does 

not meet the requirements for use in PEMFC. Silicone can degrade at 60⁰C and have 

mechanical change at 80⁰C. The degradation starts at surface hardening then goes onto 

cracking (Tan, Chao, Li, & Van Zee, 2007). This makes is unsuitable as a gasket material 

in PEMFC. 

EPDM rubber was also tested to see how it met the requirements of usage in PEMFC. 

The testing shows that operational temperatures do not affect the material. EPDM does 

not display surface hardening or any changes in mechanical properties (Tan, Chao, 

Wang, Gong, & Van Zee, 2009). Due to preexisting testing results, EPDM has been 

chosen for this project. The force used in this project to compress the gasket was derived 

from the charts produced by Parker Hannifin Corporation. Based on the chart for square 

gasket G008 divided by its cross-section area, the value of 61.58 PSI (424.027 Pa) is 

found to produce a compression of 10% of the gasket thickness (Parker Hannifin 

Corporation - TechSeal Division, 2020).  



24 

 

There are two different gasket designs in PEMFC, which serve different functions. 

These two gasket designs are the gasket on the MEA side of the bipolar plate and the 

gasket on the cooling side of the bipolar plate. 

The MEA side of the bipolar plate gasket has more than one function. The first 

function is to seal all the gas sections and the water section. The second function is to 

control the compression pressure on the GDL. Figure 13 shows the cell with the gas side 

gaskets.  

 

 

Figure 13 Cell detail showing gas side gaskets 

As you can see in Figure 13, the GDL sits in the middle of the gaskets. In Figure 

14, the gasket is shown in its location on the bipolar plate where it seals all the gas and 

water passages.  
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Figure 14 The bipolar plate with gas gasket 

The gasket sits down in a cutout in the bipolar plate to keep it from moving and to 

help it seal the gas channels. The gasket has a high surface area, so the amount of 

compression can be better controlled by force. The compression amount is very important 

because the forces on the GDL is controlled by the final gasket thickness and its required 

forces. The placement of the GDL is shown in Figure 15. 
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Figure 15 Bipolar plate with gasket and GDL 

The GDL compression is very important for two reasons. First, if the GDL does 

not make good contact between the bi-polar plate and the MEA, then GDL resistance will 

go up. As contact pressure increases, the resistance decreases, which improves the 

electrical and thermal conductivity of the cell and helps support a more uniform 

distribution across the active area. Research has revealed that 59% of power lost in a 

PEM fuel cell is due to contact resistance between the GDL and the bi-polar plate 

(Alizadeh, Ghadimi, Barzegari, Momenifar, & Saadat, 2017). As the contact pressure 

increases, the GDL may become deformed, which reduces the thickness and porosity of 

the GDL, and causes the GDL to intrude into the bipolar plate flow channels (Atyabi, et 

al., 2019). The research shows an improvement in the performance of the GDL up to a 

pressure of 4.5 N/mm2 with a decrease in performance at higher pressures. 
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The GDL material greatly affects the deformation under pressure, so it must be 

examined when choosing the material. Three materials are examined for this project, 

SGL 29BCE, Toray TGP-H 060, and Freudenberg H2315. SGL 29BCE has its optimal 

pressure at 0.5 N/mm2, and, as the pressure is increased past this point, the performance 

decreases. The optimal pressure range of the Toray TGP-H 060 0.7 to 1.6 N/mm2, and, as 

the pressure is increased past 1.6 N/mm2, the performance decreases; higher pressures 

also cause permanent damage to the material.  Freudenberg H2315’s optimal pressure 

range starts at 0.7 N/mm2, continues to be flat at higher pressures, and does not have any 

permanent damage, even at a pressure of 6 N/mm2 (Irmscher, Qui, JanBen, Lehnert, & 

Stolten, 2019).  

Do to the improvement of contact pressure up to 4.5 N/mm2, its s flat optimal 

performance level, and its ability to operate without damage at high pressure levels, 

Freudenberg H2315 was chosen for this project. The design will be set for an optimal 

GDL pressure of 1 N/mm2. This GDL pressure has been chosen because the compression 

information is available by the manufacturer. The manufacturer states that the GDL 

thickness changes from 0.210mm to 0.170mm with 1 MPa (145.038 psi) of force 

(Freudenberg, 2020).  

  The water-cooling side of the bipolar plate has a differently designed gasket due 

to its different needs. The main difference is that the cooling side plates need to be in 

contact with each other to minimize electrical resistance. Figure 16 shows the placement 

of the cooling gasket. 
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Figure 16 Bipolar plates with cooling side gasket 

The gasket gets compressed in between the Cathode and Anode bipolar plates so 

the thickness of the gasket is very important. If the gasket is too thick, due to the 

compression needed for the gas gasket, the cooling gasket will not be compressed 

enough, and the plates will not come into full contact as needed. If the gasket is too thin, 

then there will not be enough sealing force to keep the water and gases from leaking. 

Using calculations, in this project, the correct thickness will be found so that the plates 

encounter each other with a little less force than what is needed on the MEA side gaskets; 

this way the cooling sides of the plate come into full contact. Figure 17 shows how the 

gasket matches up to the bipolar plates.   
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Figure 17 Cooling side of the bipolar plate with gasket 

5.3 Clamping Bracket Design 

The clamping bracket is used to transfer the clamping force needed to compress the 

PEMFC stack to the bolts that produce the force. On this design, sheet metal is used with 

a polycarbonate plate as an insulator. The polycarbonate plate is also used to install gas 

and water fittings. The thickness of the sheet metal can be used to change force, and, if 

needed, emboss can be used to change placement of the forces. In metalwork emboss is 

to raise a on a blank with dies of similar pattern, one the negative of the other 

(Dictionary.com, LLC, 2021). Due to the thickness of the sheet metal used the emboss 

will be made using a stamping process. The design of the clamping bracket must apply a 

uniform force to the stack. 

The thickness of the clamping plate directly relates to the uniformity of forces applied 

to the stack, and this increases the weight and material cost (Alizadeh, Ghadimi, 



30 

 

Barzegari, Momenifar, & Saadat, 2017). Simulating embossed sections of the clamping 

plate will help to achieve uniform pressures.  
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Chapter 6: Bi-polar Plate Simulation 

 

6.1 Flow Channel Length Simulation 

The flow simulation (CFD) in Solidworks is used to evaluate the influence of the 

length of the channel on the pressure drop. The simulation uses a set pressure change, and 

this gives a mass flow rate which is compared for both channel length to evaluate the 

change. 

The simulation material properties used in all the Solidworks CFD and FEA 

simulations are found in Table 3. 

 

Table 3 Material properties used in Solidworks simulations 

The single in, single out standard design serpentine bipolar design is evaluated first. 

The first step is to enclose the flow channels as shown in figure 18.  



32 

 

 

Figure 18 The flow channels open and closed 

Figure 18 shows two models. On the left, is the model with open channels, which 

shows how the part is produced; on the right, is the model with the enclosed channels, 

which is needed to create the flow channels.  The next step is to create caps so that the 

flow channels can be created. Figure 19 shows the created flow channels, with a total 

volume of gas as 26 milliliters. 

 

Figure 19  Single in single out bipolar plate flow channels 
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Next, the boundary conditions and goals are created to compare the two options, 

single out and dual out, and the mass flow rate is calculated. Due to the need to make the 

gas flow, the inlet pressure is set at 5 psi above ATM pressure (135798.78 Pa) and ATM 

pressure (101325 Pa) is used for the output making a pressure drop. The boundary 

conditions are shown in Figure 21. 

 

Figure 20 The boundary conditions setup for the single out bi-polar plate 

The final step before running the CFD is to setup the mesh. A five cells wide 

mesh was used across each of the channels in both simulation of the single out and dual 

outlet. The mesh is shown in figure 21.   

 

Figure 21  The meshed flow channels with a closeup of the mesh 
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The CFD goes over iterations until it comes up with a solution. The iterations 

versus mass flow rate is shown in Figure 23. 

 

Figure 22  CFD iterations vs mass flow rate 

The calculated values of the flow channels are shown in Table 4. 

 

Table 4 The single out flow channels calculated solutions 

The most important finding is that, with a drop-in pressure of 5 psi, the mass 

flowrate of the single out bipolar plate is .0026865 kg/s. 

The same test was performed on the dual outlet bipolar plate. In Figure 23, the 

open and closed flow channels are shown. 
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Figure 23 Open and closed flow channels for dual outlet 

The same boundary conditions are set on the dual outlet bipolar plate, except the 

two outlets are set at ATM pressure. The boundary conditions for the dual outlet bipolar 

plate are shown in figure 24. 

 

Figure 24 Boundary conditions of the duel outlet bipolar plate 

Figure 25 shows the flow channels with the total volume of the flow channels as 

27 milliliters.  
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Figure 25  Flow channels of the duel outlet bipolar plate 

The iteration curve of the dual outlet bipolar plate is shown in Figure 26. 

 

Figure 26 The plot of iterations vs flowrate 

The CFD results for the dual outlet bipolar plate are listed in Table 5. 

 

Table 5 The CFD results for dual outlet bipolar plate 
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The CFD result show that the mass flowrate of the dual outlet bi-polar plate is 

0.0041357 kg/s with the pressure drop of 5 psi used to cause the flow of gas. 

  The results of the two bipolar plates are compared in Table 6.  

 
Single Out       

Bipolar 

Plate 

Dual Outlet       

Bipolar Plate 

Increase caused 

by dual outlet 

Percentage 

Change 

Volume mL 26 27 1 3.70% 

Mass Flowrate kg/s 0.0026844 0.0041327 0.0014483 53.95% 

Velocity m/s 42.287 48.787 6.5 15.37% 

Table 6 Single outlet compared to dual outlet bipolar plate 

The dual outlet design is shown to have some major improvements in mass flowrate, 

with a 53.95% increase in performance with the same pressure drop. This demonstrates 

that fresher gasses will reach the cells, but higher flowrate will also help remove water 

deposits. The 15.37% increase in velocity will also help keep the channels clear. 

6.2 Radius Simulation for Gas Channels 

A 0.25mm radius was added to the dual outlet bipolar plate flow channels to see if 

any improvement in flowrate would be found. A radius of 0.25mm was selected because 

a larger radius would cause failures due to the thinness of the material between the 

channels. Figure 27 shows where the radius was added. 
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Figure 27  The added radius locations 

The results are found in Table 7. 

 

Table 7 the CFD results for the dual outlet bi-polar plate with 0.25mm radius added 

The results show a mass flowrate of 0.0041868 kg/s, which is an increase of 1.3%. 

The radius did improve the performance of the flow channels. 

6.3 Cooling Channel Simulation 

To evaluate the cooling channels, the first step is to calculate the waste heat produced 

in the fuel cell stack that must be removed from the stack by the cooling channels. To 

find the heat production rate equation 4 was used. 
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𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 𝑃𝑒 (
1.25

𝑉𝑐
− 1)  𝑊                                                 (4) 

Where Pe is the power produced by the PEMFC stack, and Vc is the voltage at 

current draw (James Larminie, 2003). For this PEMFC stack, Pe = 1000 watts, Vc = 0.65, 

which gives a value of 923.08 watts. There are 13 cooling sections in the stack, 11 full 

and 2 halves at the end plates, which gives a value of 76.92 watts per cooling set. In total, 

38.46 watts are created at the top bi-polar plate, and 38.46 watts are created at the bottom.  

Figure 28 shows the assembly used for the cooling simulation.  

 

Figure 28  Cooling simulation assembly 

The assembly has a cathode bi-polar plate and an anode bipolar plate situated 

back to back as the cooling channels flow behind them. A plate is added on both sides to 

represent the GDL which is where the 38.46 watts enter into the system as shown in 

Figure 29. 
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Figure 29 Cooling system heat generator locations 

The boundary conditions on the inlets and outlets of the system are setup with an 

inlet water mass flow rate, an output pressure at 101325 Pa and an outlet temperature of 

373 kelvin. The system will seek the water temperature of 373 kelvin but is limited by the 

mass flowrate and the heat generated. The boundary conditions are shown in Figure 30. 

 

Figure 30 Boundary conditions for the cooling simulation 
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The cooling channels are shown in Figure 31 with a volume of 36 milliliters.  

 

Figure 31 The cooling channels 

The goal of this simulation is to find a cooling flowrate that would produce 

exiting water near the operating temperature of the PEMFC stack. The first flowrate 

examined was 0.001 kg/s, and the temperature results are shown in Figure 32.  

 

Figure 32  Simulation with a flowrate of 0.001 kg/s 
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At a flowrate of 0.001 kg/s (60 mL/min), the maximum water temperature at the 

output is 311.8 kelvin (38.65 C). The next flowrate examined was 0.0008 kg/s, which is 

shown in Figure 33. 

 

Figure 33 Simulation with a flowrate of 0.0008 kg/s 

At a flowrate of 0.0008 kg/s (48 mL/min), the maximum water temperature at the 

output is 316.5 kelvin (43.35 C). The next flowrate examined was 0.0005 kg/s, which is 

shown in Figure 34. 
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Figure 34 Simulation with a flowrate of 0.0005 kg/s 

At a flowrate of 0.0005 kg/s (30 mL/min), the maximum water temperature at the 

output is 330.4 kelvin (57.25 C). The next flowrate examined was 0.0003 kg/s, which is 

shown in Figure 35. 
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Figure 35 Simulation with a flowrate of 0.0003 kg/s 

At a flowrate of 0.0003 kg/s (18 mL/min), the maximum water temperature at the 

outlet is 355.0 kelvin (81.85 C), which is a good operating temperature. Based on the 

design of the stack, which has 12 cooling areas, the total cooling water flowrate is 216 

mL/min. The results from the tested flowrates are shown together in Table 8. 
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Table 8 Flowrates and maximum water temperature from cooling channel testing. 

Using the flowrate of 0.0003 kg/s (18 mL/min), the corners of the flow channels 

are examined. The original design has square channels, and a different radius was used to 

see how the performance of the cooling system changed. Four radii are used in this 

testing: 0.15 mm, 0.25 mm, 0.35 mm, and 0.5 mm. Figure 36 show a channel inlet with a 

radius.  

 

Figure 36 Cooling inlet with radius 

The radii are listed in Table 9 with the corresponding outlet temperature. 
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Radius (mm) Outlet Temperature (K) 

NA 355.0 

0.15 356.535 

0.25 356.534 

0.35 356.515 

0.5 356.522 

Table 9  Outlet temperature vs channel radius 

Based on the findings shown in Table 9, a radius does increase the efficiency of the 

system, but it does not improve with larger radiuses.    
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CHAPTER 7: Gasket Compression Calculations 

7.1 Calculating Forces on Gaskets 

First, the surface area of the gaskets must be calculated using Solidworks.  

 

Figure 37 Cathode Gasket with an area of 25.58 in2 

The CAD model in Figure 37 shows that the area of the gasket is 25.58 

in2, which would require a force of 1,575.2 lbf. The required force is found by 

multiplying the area in inches by the required pressure to compress the gasket by 

10% which is 61.58 PSI. The large area of the gasket would cause a large 

compression force so the unneeded material from the gasket is removed to reduce 

the force.  
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Figure 38 Cathode Gasket with material removed with an area of 15.31 in2 

As is shown in Figure 38, the redesign reduced the material area to 15.31 square 

inches, which now gives a required force of 942.8 lbf. The redesign reduced the required 

force by 632.4 lbf. 

The next gasket to look at is the anode gasket in Figure 39. 
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Figure 39 the anode gasket with an area of 26.64 in2 

The area of the anode gasket is 26.64 in2, which gives a required force of 1,640.5 

lbf. Due to this high force, the area of the anode gasket will be reduced. 
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Figure 40 Anode gasket with material removed with an area of 15.59 in2 

 In Figure 40, the gasket redesign is shown with its new area of 15.59 in2, which 

will require a force of 960.0 lbf, a reduction of 680.5 lbf. The next gasket is the end plate 

gasket, which is used to seal the gas and water cavities.  
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Figure 41 The end plate gasket with an area of 14.04 in2 

The end plate gasket has an area of 14.04 in2 shown in Figure 41, which makes 

the gasket require a force of 864.6 lbf. 

The final gasket is the cooling channel gasket. 
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Figure 42 the cooling channel gasket with an area of 11.61 in2 

The cooling channel gasket has an area of 11.61 in2, which will require a force of 

714.3 lbf. 

The final force that needs to be determined is the force on the gas diffusion layer 

(GDL). To find the force, the area must be found.  
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Figure 43 GDL with an active area of 50.01 in2 

Figure 43 shows that the area of the GDL is 50.01 in2, which will require a force of 

7253.4 lbf. 

7.2 Material Thickness  

The gasket thicknesses are calculated based on the required thickness and then 

calculating the thickness after 10% compression. The 10% compression was chosen as it 

is the minimal amount needed for EPDM gaskets based on Parker instructions on gaskets 

(Parker Hannifin Corporation - TechSeal Division, 2020). 

Gasket 

Compressed 

Thickness 

(mm) 

Compressed 

Thickness 

(inches) 

Original 

Thickness 

(mm) 

Original 

Thickness 

inches 

Cathode Gasket 0.9 0.035 1 0.039 

Anode Gasket 0.9 0.035 1 0.039 

End Plate Gasket 1.35 0.053 1.5 0.059 

Cooling Gasket 2.7 0.106 3 0.118 

GDL 0.17 0.007 0.21 0.008 

Table 10 Material thickness before and after compression 
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The gasket cutout depth had to be slightly changed to make the gaskets’ original 

thicknesses align with standard size sheets for die cutting. The GDL was added to Table 

10 just for reference.  

7.3 Clamping Forces 

All the forces calculated in section IV A are listed in Table 11. 

Gasket 

Force 

Needed 

(lbf) 

Force 

Needed 

(N) 

Qty 

Needed 

Force 

Needed 

(lbf) Total 

Force Needed      

(KN) Total 

Cathode Gasket 632.4 2813 12 7588.8 21347 

Anode Gasket 680.5 3027 12 8166 24719 

End Plate Gasket 864.6 3846 2 1729.2 6650 

Cooling Gasket 714.3 3177 13 9285.9 29505 

GDL 7253.4 32265 24 174081.6 5616696 

Table 11 List of forces and quantities of each type 

The force listed in Table 11 also show the overall force for each type of gasket 

and GDL. The forces required are based on the pressure need to compress the gaskets by 

10% and the setting pressure of the GDL multiplied by the area.  The total forces, per end 

plate forces, and per bolt location forces are listed in Table 12. 

 

Force 

Needed 

(lbf) Total 

Force 

Needed      

(N) Total 

Clamping Total 200851.5 5.7E+09 

Per End Plate 100425.8 2.85E+09 

Per bolt location 5021.288 1.42E+08 

Table 12  Force total for overall, per end plate, and per bolt 

Table 12 shows that the overall clamping force of the PEMFC stack is 200,851.5 

lbf. The force is then split across each of the end plates, which is 100,425.8 lbf. The per 

bolt location lists the force at each of the contact locations on the clamping bracket, 
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which is 5021.3 lbf. Due to the very high force per bolt 7/16” Lamalloy (Rated L9) bolts 

must be used, which have a clamping load of 11550 lbf (Engineering Toolbox, 2020).  

Bolt Size 

(in) 

Number of Bolts 

Needed 

1/4 59 

5/16 36 

3/8 24 

7/16 18 

Table 13 The number of bolts required based on bolt size 

The required bolts need was calculated by dividing the total force by the maximum 

clamping force of each bolt; then rounding it up to the next whole number. The maximum 

clamping for is 75% of the proof load force for each bolt. The calculations are in Table 

14. 

Total 
Load (lbf) 

Bolt Size 
(in) 

Max 
Clamping 
Load (lbF) 

Total Divided 
By Max 

Rounded 
Up  

200851.5 1/4 3450 58.218 59 

  5/16 5700 35.237 36 

  3/8 8438 23.803 24 

  7/16 11550 17.390 18 

Table 14 Calculating the required number of bolts needed 

Based on Table 13, the best bolt choices for this PEMFC is the 3/8 inch or the 7/16 

inch. For this project, we are keeping 20 bolt locations so 7/16 inch is used. 
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CHAPTER 8: Clamping Bracket Force Simulation 

8.1 Clamping Bracket Simulation Setup 

The setup of the Clamping Bracket Simulation is designed to focus on the forces on 

the end cooling plate because the clamping bracket transfers the forces into the cell stack. 

The bolt holes and washers are changed to fit the 7/16 inch bolt due to the findings in 

Chapter 6.  

 

Figure 44. Assembly used for clamping force testing 

Figure 44 shows the assembly that is used for the clamping force testing. The 

exploded view is shown in Figure 45. 
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Figure 45 Exploded view of clamping force assembly 

The graphite plate is fixed in the assembly as it represents the cell stack. The force 

is spread out evenly on each of the washers to represent the bolt clamping down on the 

clamping bracket. The sheet metal used is 12-gauge 304 stainless Steel which is 0.125 

inches thick. There will not be a focus on the bending of the metal bolt tabs as the 

tightness of the bolts in the hole will minimize this.  

 

Figure 46 the fixed geometry of the graphite plate 

Figure 46 shows how the graphite plate is fixed in all direction, which allows this 

system to represent the compressive forces on the end plate. This demonstrates how the 

forces are displaced by countering the forces of the bolts with the compression of the 

PEMFC stack; this causes the end plate to be in compression without any fixed 

geometries.   



58 

 

 

Figure 47 External load setup with 5021 lbf on each washer 

Figure 47 shows the clamping force is evenly spread onto the washer locations to 

represent the clamping force of the bolts. The force is 5021 lbf per bolt. 

 

Figure 48 The mesh of the clamping force assembly 

Figure 48 shows the mesh of the assembly which is used in the static study.  

 

Figure 49 Stress contour plot of the assembly 
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Figure 49 shows the stress caused by clamping force of the bolts in the assembly. 

It shows that most of the forces are located around the edge of the end plate. Figure 50 

demonstrates how these forces interact with the end plate, which allows for the viewing 

of the forces entering the stack.  

 

 

Figure 50 Stress contour plot of the end plate 

Figure 50 shows that majority of the force entering the stack is around the edges. As 

discussed earlier in Chapter 5, this is not the best solution since the largest force in the 

system is caused by the GDL, which is in the middle of the PEMFC.  

8.2 Embossments in clamping bracket 

To move the forces from the outside to other locations within the end plates 

embossments were used. All the emboss plates move the emboss material location by 

0.08 inches. The first design is a dimple design. This design has dimples spread out to 

pinpoint the forces. The dimple design plate is shown in Figure 51. 
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Figure 51 Clamping force assembly with dimple clamping bracket 

The dimple clamping bracket test had the same loads and fixtures.  

 

Figure 52 Stress contour plot of assembly with dimple clamping bracket 

Figure 52 shows the stress chart of the dimple design. The figure shows that the 

forces have moved toward the center because the highest forces are no longer focused 

around the bolts.  
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Figure 53 Stress contour plot of the dimple design of the end plate 

Based on Figure 53, in the dimple design, the forces acting on the clamping 

bracket are spread more evenly throughout the end plate. The forces not only are around 

the edge there are points in the middle as well. 

 

 

Figure 54 Clamping force assembly with square emboss clamping bracket 

Figure 54 shows the second emboss design with a square emboss. The square is in 

the center of the clamping bracket. 
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Figure 55 Stress contour plot of assembly with square clamping bracket 

In Figure 55, the stress force can be seen with the highest forces starting at the 

edge of the emboss. 

 

Figure 56  Stress contour plot of the square design of the end plate 

Figure 56 shows the stress force focused on the end plate. It shows that the main 

transfer of forces is located at the bottom of the emboss.  
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Figure 57  Clamping force assembly with bars element added to the clamping bracket 

Figure 57 depicts the third design of the clamping bracket using bar shaped 

embossing. 

 

Figure 58  Stress contour plot of assembly with bars clamping bracket 

Figure 58 shows how stress can act on the bars on the embossed plate. The forces 

gather around the outside bars and in all four corners. 
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Figure 59 Stress contour plot of the bars design of the end plate 

Figure 59 depicts the end plate under the influence of the bar embossed plate. 

Some of the forces are focused on the center, but much of it is focused around the gas 

inputs and outlets.  

 

Figure 60 Clamping force assembly with layered square clamping bracket 

Figure 60 shows the clamping bracket with layered square emboss.  
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Figure 61 Stress contour plot of assembly with layered square clamping bracket 

Figure 61 depicts the stress force on the clamping bracket with layered square 

emboss. On this design, the forces are very evenly displaced. 
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Figure 62 Stress contour plot of the layered square design of the end plate 

Figure 62 shows the stress force on the end plate. The force is mostly focused 

around the area of the GDL, which requires the highest amount of force. 

 

Figure 63 The bottoms of the end plates with the stress forces shown for comparison 
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Figure 63 depicts the bottoms of the end plates used with each of the clamping 

brackets. The bottom of the end plate shows how the forces enter the rest of the stack. 

Each design has a unique stress force layout. Based on the visual inspection of the force 

layout, type 5 looks like it would be the best due to its ability to focus force on the center 

of the end plate, over the GDL and to distribute a secondary force over all the gas and 

cooling input and outputs.  

To look into the clamping forces caused by the different clamping plates deeper into 

the PEMFC stack a second assembly was evaluated. The assembly in Figure 64 shows an 

assembly with end parts and one full cell. 

 

Figure 64 Test assembly of PEMFC stack with end parts and one complete cell 

The test assembly parts can be seen in the exploded view in Figure 65. 

 

Figure 65 Exploded view of the assembly with one cell  
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As in the first test the forces of the bolts will be added to the washers and the test 

plate will be fixed. The test plate is looked at to see how the forces from the bolts travel 

through the stack to the other side of the cell. The last water gasket thickness is half due 

to no cutouts in the test plate. Due to the high details and small flow channels in the 

bipolar plates a very fine mesh had to be used. The mesh for the standard clamping 

bracket assembly is shown in Figure 66. 

 

Figure 66 Mesh for the standard clamping plate. 

The mesh shown in Figure 66 has minimal element size of .005 inches, 2.37 million 

nodes, and 1.37 million elements.  
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Figure 67 Stress contour plot of the one cell assembly with standard clamping plate 

The stress contour plot shown in Figure 67 shows that the forces are focused around the 

edges which follows the forces shown in the end plate evaluation testing. Another think is 

found here is the high forces in spots of the plates go high which could cause failure in 

standard graphite plates. To solve the problem of the high forces POCO graphite plates 

are recommended which have a maximum compressive strength of 207 MPa (30,000 psi) 

(Entegris, 2013). 
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Figure 68 Dimple emboss clamping plate assembly with one cell mesh 

 Figure 68 shows the mesh for the one cell assembly dimple emboss clamping 

plate; it has minimal element size of .005 inches, 2.41 million nodes, and 1.39 million 

elements. 
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Figure 69  Stress contour plot of the one cell assembly with dimple emboss clamping 

plate 

Figure 69 shows the stress contour plot of the one cell assembly with the dimple emboss 

clamping plate. The plot shows a very good force spread out over the gaskets and a little 

bit of coverage over the GDL edges. It does not have coverage over the middle of the 

GDL.  
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Figure 70 Square emboss plate assembly with one cell mesh 

Figure 70 shows the mesh for the one cell assembly square emboss clamping plate; it has 

minimal element size of .005 inches, 2.37 million nodes, and 1.37 million elements. 
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Figure 71 Stress contour plot of the one cell assembly with square emboss clamping plate 

Figure 71 shows the stress contour plot of the one cell assembly with the square emboss 

clamping plate. The plot shows less forces in the gasket locations and more forces at the 

GDL location. 
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Figure 72 Bars emboss plate assembly with one cell mesh 

Figure 72 shows the mesh for the one cell assembly bars emboss clamping plate; it has 

minimal element size of .005 inches, 2.40 million nodes, and 1.39 million elements. 
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Figure 73 Stress contour plot of the one cell assembly with bars shaped emboss clamping 

plate 

Figure 73 shows the stress contour plot of the one cell assembly with the bar shaped 

emboss clamping plate. The plot shows forces in the locations of the gas channels and the 

GDL location, but low forces at the water channels locations.  

 

Figure 74 Layered squares emboss plate assembly with one cell mesh 
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Figure 74 shows the mesh for the one cell assembly layered squares clamping plate; it has 

minimal element size of .005 inches, 3.92 million nodes, and 2.31 million elements. 

 

Figure 75 Stress contour plot of the one cell assembly with layered squares shaped 

emboss clamping plate 

Figure 75 shows the stress contour plot of the one cell assembly with the layered square 

shaped emboss clamping plate. The plot shows forces in the locations of the gas channels 

and the GDL location, but low forces at the water channels locations and less on the edge 

of the plate compared to the bars emboss.  
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Figure 76 Stress contour plots of the one cell assemblies for comparing 

Figure 76 shows the contour plots of the one cell assemblies for comparing. The no 

emboss plot shows all the forces around the edge with the maximum forces in the 

corners; this is not a good solution as the corners are a weak point and that the 

performance of the cell will be reduced as there are not any forces at the GDL area. The 

dimple emboss removes the maximum forces from the corners and has great force 

coverage on the gasket locations but has minimum forces at the GDL area. The square 

emboss plot shows more forces focused around the GDL with the maximum on the edges 

of the GDL but has very low forces at the water channel locations. The bars emboss plot 

shows results like the square but has a higher concentration of forces in the maximum 

areas and less focused on the center area. The layers of squares emboss has a similar plot 

to the square and the bars but has less of a high stress area which is faded out more over 

the GDL. Based on the visual inspections of the stress plots the one that is recommended 

will be the layered squares due to forces in the GDL and the smaller areas of high forces 

which will reduce the chances of cracking a bipolar plate.     
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CONCLUSIONS 

The results from simulations and calculations done in Solidworks can influence the 

design of a PEMFC and the stack during the design stage. The information found in this 

project can help support or reject design choices in the bi-polar plate, cooling systems, 

end plate, and clamping force designs.   

The CFD flow simulations of the gas flow channels estimated the improvements in 

the flow caused by utilizing the dual outlet design, which decreased the channel length by 

9.37 inches. The performance of the channel not only increased flowrate by 53.95% but 

also increased the velocity by 15.37% with the same active area. This solution could 

allow larger PEMFC to be designed without the limitations of long flow channels. The 

radius added to the flow channel had a small improvement to the performance but could 

be larger if water pooling was evaluated in the design. 

Evaluation of the gaskets and thickness was completed with the use of a Compression 

Force Deflection graph and CAD area calculations. The amount of force for the gaskets 

was found for each of the gaskets. During the processes of calculating the required forces, 

it became apparent that the area of the gasket needed to be decreased if possible. By 

evaluating these forces and making the changes, the overall required force was reduced 

by 15,754.8 lbf. Based on the large force needed to clamp the PEMFC stack assembly, 

larger bolts are needed than used in the original model. The force per bolt as designed is 

10,042.58 lbs. 
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Calculating the compression thickness of the gasket can be used to set the depth of 

the bi-polar plate gasket cutouts to allow for the use of standard thickness material sheets 

for the die cut process. For low productions, die cut gaskets will save cost over the need 

for injection molded gaskets for custom thicknesses.     

Cooling channel simulations allowed improvement in the overall system design. The 

cooling flowrate is important for designing a system that can cycle the minimal required 

amount of cooling water and potentially reuse the water. The CFD also gives the volume 

of water in the system, which is helpful in system design. Based on the findings, the 

system needs 216 mL/min. The radius in the cooling channel had a small effect. 

The clamping bracket designs can greatly change the effect of the clamping force. 

The challenge of relocating the clamping force to the center of the end plate can be done 

with embossments in the bracket. The forces caused by the layered square emboss show 

great promise. With this design the main force is focused on the GDL, with the secondary 

force on the gas collector locations, and a reduced area of maximum stress in the cells. 
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RECOMMENDATIONS 

Future work on this project should focus on building and testing the dual outlet 

design as the simulations show that this design should greatly increase the performance 

of the fuel cell. The design of embossments being used on the clamping brackets are 

promising as well. More emboss clamping bracket designs should be examined to 

improve its design to maximize the benefit of force relocating.  

Another future development that could help improve PEMFC designs is to create 

a database with Compression Force Deflection based on material and manufacture. 
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APPENDIX 
A.1    CFD how it works 

The CFD Solidworks software uses equations to find the solutions for fluid and 

heat simulations. The equations are based on the works of Claude-Louis Navier, Sir 

George Stokes, and Leonhard Euler and are known as the Navier-Stokes equations. 

(Hosch, 2020) The first equation is the Mass Continuity Equation (NASA Glenn 

Research Center, 2020). 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑤
=0                                            (5)  

Equation 2 is the Mass Continuity Equation where x, y, and z are a directional 

vector or distance. The velocity vectors are u, v, and w. The density of the fluid is noted 

by 𝜌 and t is time. (Subachkin, Dumnov, & Sobachkin, 2014) show a reduced equation 

based on the x direction and is show below as Equation 3.  

𝜕𝜌

𝜕𝑡
+

𝑑(𝜌𝑢𝑖)

𝑑𝑥𝑖
= 0                                                      (6)   

The second Navier-Strokes equation is the Momentum Equation which is broken 

up into the x, y, and z directions. X direction is Equation 4, y- direction is Equation 5, 

and z direction is Equation 6 (NASA Glenn Research Center, 2020): 

𝜕(𝜌𝑢)

𝜕𝑡
+

𝜕(𝜌𝑢2)

𝜕𝑥
+

𝜕(𝜌𝑢𝑣)

𝜕𝑦
+

𝜕(𝜌𝑢𝑤)

𝜕𝑧
= −

𝜕𝜌

𝜕𝑥
+

1

𝑅𝑒𝑟
[

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
]         (7)   

𝜕(𝜌𝑣)

𝜕𝑡
+

𝜕(𝜌𝑢𝑣)

𝜕𝑥
+

𝜕(𝜌𝑣2)

𝜕𝑦
+

𝜕(𝜌𝑣𝑤)

𝜕𝑧
= −

𝜕𝜌

𝜕𝑦
+

1

𝑅𝑒𝑟
[

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
]         (8)   
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𝜕(𝜌𝑤)

𝜕𝑡
+

𝜕(𝜌𝑢𝑤)

𝜕𝑥
+

𝜕(𝜌𝑣𝑤)

𝜕𝑦
+

𝜕(𝜌𝑤2)

𝜕𝑧
= −

𝜕𝜌

𝜕𝑧
+

1

𝑅𝑒𝑟
[

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
]         (9)   

Where Re is the Reynolds Number and τ is the stress. Solidworks references a modified 

version in the x-direction shown in Equation 6 (Subachkin, Dumnov, & Sobachkin, 

2014): 

𝜕(𝜌𝑢𝑖)

𝜕𝑖
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) +

𝜕𝑃

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
(𝜏𝑖𝑗 + 𝜏𝑖𝑗

𝑅 ) + 𝑆𝑖                           (10) 

The variables information is missing in the Solidworks reference document but 

can be found in the Mentor FloEFD Technical Reference (Mentor, 2018) as the 

Solidworks CFD software is created and maintained by Mentor. Where P is pressure and 

Si is a mass-distributed external force per unit mass is shown in Equation 7. 

𝑆𝑖 = 𝑆𝑖
𝑝𝑜𝑟𝑜𝑢𝑠 + 𝑆𝑖

𝑔𝑟𝑎𝑣𝑖𝑡𝑦
+ 𝑆𝑖

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛                                   (11) 

Where 𝑆𝑖
𝑝𝑜𝑟𝑜𝑢𝑠

 is porous media resistance, 𝑆𝑖
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 is the coordinate system’s rotation, 

and 𝑆𝑖
𝑔𝑟𝑎𝑣𝑖𝑡𝑦

 is a gravitational acceleration component, as shown in Equation 8. 

𝑆𝑖
𝑔𝑟𝑎𝑣𝑖𝑡𝑦

= −𝜌𝑔𝑖                                                    (12) 

Where 𝑔𝑖 is the gravitational acceleration component. The last Navier-Stokes Equation is 

the Conservation of Energy Equation shown as Equation 9 (NASA Glenn Research 

Center, 2020): 



86 

 

𝜕(𝐸𝑇)

𝜕𝑇
+

𝜕(𝑢𝐸𝑇)

𝜕𝑥
+

𝜕(𝑣𝐸𝑇)

𝜕𝑦
+

𝜕(𝑤𝐸𝑡)

𝜕𝑧
= −

𝜕(𝑢𝑝)

𝜕𝑥
−

𝜕(𝑣𝑝)

𝜕𝑦
−

𝜕(𝑤𝑝)

𝜕𝑧
−

1

𝑅𝑒𝑟𝑃𝑟
[

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
+

𝜕𝑞𝑧

𝜕𝑧
] +

1

𝑅𝑒𝑟
[

𝜕

𝜕𝑥
(𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧) +

𝜕

𝜕𝑦
(𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧) +

𝜕

𝜕𝑧
(𝑢𝜏𝑥𝑧 + 𝑣𝜏𝑦𝑧 + 𝑤𝜏𝑧𝑧)]    

(13) 

Where q is the heat flux, ET is total energy, and Pr is the Prandtl Number. Solidworks 

references a modified version in the x-direction, shown in Equation 10 (Subachkin, 

Dumnov, & Sobachkin, 2014): 

𝜕𝜌𝐻

𝜕𝑡
+

𝜕𝜌𝑢𝑖𝐻

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
(𝑢𝑗(𝜏𝑖𝑗 + 𝜏𝑖𝑗

𝑅 ) + 𝑞𝑖) +
𝜕𝜌

𝜕𝑡
− 𝜏𝑖𝑗

𝑅 𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜌𝜀 + 𝑆𝑖𝑢𝑖 + 𝑄𝐻       (14) 

Where QH is a heat source or sink per unit volume, 𝑞𝑖 is the diffusive heat flux, and H is 

shown in Equation 11. (Mentor, 2018) 

𝐻 = ℎ +
𝑢2

2
+

5

3
𝑘 −

Ω2𝑟2

2
− ∑ ℎ𝑚

0
𝑚 𝑦𝑚                                    (15) 

Where Ω is an angular velocity, r is the distance from a point to rotation axis, ℎ𝑚
0  is an 

individual thermal enthalpy, ℎ is the thermal enthalpy, k is the kinetic energy of 

turbulence, and 𝑦𝑚 is a concentration of the mixture component, 𝜏𝑖𝑗 the viscous shear 

stress tensor for Newtonian fluids is found using Equation 12. (Mentor, 2018) 

𝜏𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
)                                           (16)                            

          𝜏𝑖𝑗
𝑅  the Reynolds-stress tensor is found by using Equation 13. 
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𝜏𝑖𝑗
𝑅 = 𝜇𝑡 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
) −

2

3
𝜌𝑘𝛿𝑖𝑗                               (17)   

Where  𝛿𝑖𝑗 is the Kronecker delta function, 𝜇 is the dynamic viscosity coefficient, k is the 

turbulent kinetic energy, and 𝜇𝑡 is the turbulent eddy viscosity coefficient, which is found 

using Equation 14 (Mentor, 2018): 

𝜇𝑡 = 𝑓𝜇
𝐶𝜇𝜌𝑘2

𝜀
                                                       (18) 

Where 𝜀 is the turbulent dissipation and 𝑓𝜇 is the turbulent viscosity factor that is found 

using Equation 15 (Mentor, 2018): 

𝑓𝜇 = [1 − 𝑒𝑥𝑝(−0.0165𝑅𝑦)]
2

∗ (1 +
20.5

𝑅𝑇
)                           (19) 

Where 

𝑅𝑇 =
𝜌𝑘2

𝜇𝜀
                                                         (20) 

𝑅𝑦 =
𝜌√𝑘𝑦

𝜇
                                                       (21) 

Where y is the distance from the wall. 
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A.2    Part Drawings 

 

Figure 77 Cathode bipolar plate drawing 
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Figure 78 Anode bipolar plate drawing 
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Figure 79 Graphite end plate drawing 
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Figure 80 End plate drawing 



92 

 

 

Figure 81 Single out bipolar plate drawing 
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Figure 82 Clamping Bracket drawing 
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Figure 83 Clamping bracket with dimples drawing 
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Figure 84 Clamping bracket with square emboss drawing 
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Figure 85 Clamping bracket with bar style emboss drawing 
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Figure 86 Clamping bracket with layered squares emboss drawing 
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Figure 87 Copper plate drawing 
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Figure 88 Membrane Drawing 
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Figure 89 GDL drawing 
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Figure 90 MEA drawing 
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Figure 91 Cathode side gasket drawing 
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Figure 92 Cathode side gasket with reduced material drawing 
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Figure 93 Anode side gasket drawing 
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Figure 94 Anode side gasket with material removed drawing 
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Figure 95 Water cooling side gasket drawing 
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Figure 96 End plate water gasket drawing 
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