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ABSTRACT

NUCLEATE BOILING UNDER DIFFERENT GRAVITY VALUES: NUMERICAL

SIMULATIONS & DATA-DRIVEN TECHNIQUES

Sandipan Banerjee

March 29 2022

Nucleate boiling is important in nuclear applications and cooling applications under

earth gravity conditions. Under reduced gravity or micro-gravity environment it is

significant too, especially in space exploration applications. Although multiple studies

have been performed on nucleate boiling, the effect of gravity on nucleate boiling is

not well understood. This dissertation primarily deals with numerical simulations of

nucleate boiling using an adaptive Moment-of-Fluid (MoF) method for a single vapor

bubble (water vapor or Perfluoro-n-hexane) in saturated liquid for different gravity

levels. Results concerning the growth rate of the bubble, specifically the departure

diameter and departure time have been provided. The MoF method has been first

validated by comparing results with a theoretical solution of vapor bubble growth in

super-heated liquid without any heat-transfer from the wall. Next, bubble growth

rate and heat transfer results under earth gravity, reduced gravity and micro-gravity

conditions are reported and they are in good agreement with experiments. A new

method is proposed for estimating the bubble diameter at different gravity levels. This

method is based on an analysis of empirical data at different gravity values and using

power-series curve fitting to obtain a generalized bubble growth curve irrespective of

the gravity value. This method is shown to provide a good estimate of the bubble

diameter for a specific gravity value and time.

iv



A new hybrid approach is proposed for calculating the contribution of the de-

pletable liquid micro-layer trapped between the vapor bubble and the heater wall for

numerical simulations in micro-gravity conditions is proposed in this work. This tech-

nique does not “model” the micro-layer, but calculates the contribution of the vapor

flux from the micro-layer into the bubble and distributes it over the cells where the

micro-layer should be present. The micro-layer is depletable because an evaporation

term is part of the equation which maintains the reduction in the thickness of the

micro-layer consistent with the behavior reported in experiments. Results for nucleate

boiling simulations under micro-gravity conditions are reported using the proposed

micro-layer approach in comparison with experiments performed on the International

Space Station. Results for bubble growth rate, bubble shape and heat-flux are in good

agreement with experiments and are verified with two different time-instants in the

bubble life cycle.

Additionally, a data-driven model is proposed for the prediction of heat-flux from

experimental parameters like wall super-heat, gravity, liquid sub-cooling, etc. Exper-

imental data from multiple experiments under varying conditions for different liquids

have been performed to date. Artificial Neural Networks (ANNs) have been used to

predict nucleate boiling heat flux by learning from a dataset of twelve experimental

parameters across 231 independent samples. An approach to reduce the number of

parameters involved is proposed to increase model accuracy. The approach consists

of two steps. In the first step, a feature importance study is performed to determine

the most significant parameters. Only important features are used in the second step.

In the second step, dimensional analysis is performed on these important parameters.

Neural network analysis is then conducted based on the dimensionless parameters.

The results indicate that the proposed feature importance study and dimensional

analysis can significantly improve ANN performance. The results show that model

errors based on the reduced dataset are considerably lower than those based on the
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initial dataset. The study based on other machine learning models also shows the re-

duced dataset generates better results. The results also show that ANN outperforms

other machine learning algorithms and outperforms a well-known boiling correlation

equation. The effect of parameters on heatflux has been quantified, and the effect of

parameters on different physical sub-processes in nucleate boiling has been analyzed.

The effect of parameters on the boiling regimes has also been investigated. Addition-

ally, the feature importance study concludes that wall superheats, gravity and liquid

subcooling are the three most significant parameters in the prediction of heat flux for

nucleate boiling.

The key contributions made in this work are listed below:

• MoF method simulations for nucleate boiling has been performed. Simulation

results in earth gravity, and reduced gravity are in good agreement with exper-

iments.

• A data-driven technique for prediction of effect of gravity on bubble growth rate

has been proposed.

• A novel depletable microlayer approach for microgravity is proposed, results for

bubble growth rate, bubble shape, and heat-flux are comparable to experiments

performed on ISS.

• A novel data-driven technique has been used for heatlfux prediction. ANN out-

performs XGB (Extreme Gradient Boosting), RFR (Random Forest Regression)

and Rohsenow correlation in heatflux prediction.

• Dimensional Analysis and Feature Importance techniques help in reducing ANN

error from 25.7% to 9.12%.
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• Gravity, Wall super heat, and Liquid subcooling are the three most significant

parameters in heatflux prediction. Novel results of quantification of parameter

contribution in each boiling regime has been reported.
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CHAPTER I

INTRODUCTION

1 Overview of Boiling Process

Boiling is a process which although is very common in residential as well as industrial

field, is not completely well understood in the scientific community. One of the

major importance of boiling process lies specifically in the heat-flux. A sample of the

classical pool boiling curve is shown in figure 1.

Figure 1. Boiling curve for water at 1 ATM pressure (Image Source: Transport
Phenomena in Multi-phase Systems, by: Amir Faghri, Yuwen Zhang, 2006) [1]

Typically when a solid heater is submerged in a liquid which is maintained at

its saturation temperature (Tsat), and the solid heater wall is at a higher temper-
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ature (Twall or Tw, both notations would be used interchangeably through out this

dissertation), then the wall super-heat (defined as the difference between the wall

temperature and the liquid saturation temperature, ∆T = Tw − Tsat) is what drives

the heating process. Figure 1 shows how the heat-flux varies with increasing wall

super-heat. At low wall super-heats, heat transfer is mainly through natural convec-

tion, as the excess heat from the solid is used to heat up the bulk liquid shown in

Region I. At Point A, starts region II which is denoted as ONB (Onset of Nucleate

Boiling). A sharp increase in heat-flux is observed from point A. In this region of the

plot, bubbles start to form. It should be noted that typically bubble nucleation occurs

at kinks or imperfections in rough areas of the surface as the trapped gas molecules

in the crevices add their free surface energy, and lesser energy is required for bubble

nucleation. From point A to B, isolated single bubble formation is observed. The

bubbles are held at the solid wall due to the surface tension force. These bubbles nu-

cleate, grow to a certain size due to change in phase of surrounding liquid into vapor

and finally depart when they are larger in size (i.e. when the buoyancy force exceeds

the surface tension force). From point B onward, the heat-flux keeps increasing and

isolated individual bubbles typically merge to form vapor slugs and vapor columns

till it reaches point C. Point C is when the heat-flux reaches its maximum value. It

is also know as Critical Heat Flux and typically denoted as CHF. Beyond the critical

heat flux, the heat-flux starts to drop with increasing wall super-heat from point C to

D, when it reaches the minimum heat-flux. This region is transition boiling. Beyond

point D, vigorous boiling is observed which is the film boiling stage and heat-flux is

again observed to increase.

The interest in Nucleate boiling phase mainly arises due to the high heat-flux.

Energy can be efficiently transported using this mechanism which makes it suitable

to industrial cooling processes, such as in Nuclear power plants. It can be argued that

heat-flux in similar range to that of nucleate boiling phase would also be possible at
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some time during film boiling phase as well (somewhere between point D and E in

figure 1), however, it should be noted that the wall super heat required to reach film

boiling is much higher, so much more energy needs to be used to reach that high wall

super-heat (∆T ). At such high temperatures, damages to the heater wall could also

be expected. Nucleate boiling achieves the high heat-flux with much lower energy

expenditure. However, the problem lies in the ability to control the heat-flux such

that it does not reach the CHF as this process very quickly reaches the CHF, and

once it does the heat-flux starts decreasing which does not solve the purpose. The

broader goal is to be able to reach and sustain the heat-flux at a level just near the

CHF. In order to find that optimum value, a thorough understanding of the nucleate

boiling process is required. As a first step the physics behind the isolated bubble

regime needs to be understood well.

2 Background and Motivation

Correlations between the heat-flux and wall super-heat have been made with empirical

results or based on modeling of sub-processes. Two main empirical correlations are

discussed here in short. Rohsenow (1952) ( [8]) related the heat-flux, q̇ to the wall

super heat, ∆Tw by the assumption of a single phase forced convection problem:

cpl∆Tw
hfg

= Cs

 q̇
√

σ

g (ρl − ρv)
µlhfg


1/3

Pr1or1.7
l (1)

The power of 1/3 on the Reynolds Number and the power of 1 for water and 1.7 for

all other liquids to the Prandtl Number (Pr) were obtained empirically. Cs depends

on heater material and fluid combination. In equation 66, cp is the specific heat, q̇

is the heat-flux, hfg is the latent heat of vaporization, σ is the surface tension, g is

the acceleration due to gravity, ρl, ρv are the liquid phase and vapor phase densities

respectively. µl is the viscosity of the liquid.
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Stephan and Abdelsalam (1980) ( [9]) provided a correlation valid for all liquids

by determining the important fluid property groups using regression analysis. The

correlation provided by them is given as:

q̇Dd

∆Tkl
= 0.23

(
q̇Dd

Tsatkl

)0.674(
ρv
ρl

)0.297(
hfgD

2
d

α2
l

)0.371(
ρl − ρv
ρl

)−1.73(
α2ρl
σDd

)0.35

(2)

The correlation provided by equation 2 does not consider the variation in de-

gree of surface wettability, while the correlation provided by equation 66 does not

consider heater geometry. The mechanism based correlations typically deal with 3

sub-processes ( [10]), they are:

1. Number density of nucleation sites

2. Bubble departure diameter

3. Bubble release frequency

The number density of nucleation sites are determined by solid surface properties and

thermal response of the substrate. Generally, for a slow growing bubble its departure

diameter is believed to be determined by buoyancy and surface tension while by liquid

inertia and surface tension for a fast growing bubble. The bubble release frequency

is dependent on the bubble diameter at departure and bubble growth rate. For the

understanding of single bubble dynamics, an in-depth study of the bubble departure

diameter and bubble growth rate is crucial. Multiple correlations for the above sub-

process have been proposed. Some key correlations are briefly discussed here. Fritz

(1935) [11] correlated the bubble departure diameter (Dd) with the contact angle

(φ), gravity (g), surface tension (σ), and densities of liquid (ρl), and vapor (ρv),

respectively with:

Dd = 0.0208

√
σ

g(ρl − ρv)
(3)
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Correlation provided in equation 3, does not hold true for high pressure cases. Goren-

flo (1986) [12] proposed a correlation at high heat-flux:

Dd = C1

(
Ja4α2

l

g

)1/3
[

1 +

√
1 +

2π

3Ja

]4/3

(4)

where α is the thermal diffusivity of the liquid, Ja is the Jakob number which is

defined as:

Ja =
ρlcpl∆T

ρvhfg
(5)

and C1 is a constant which has different values for different liquids. So far a corre-

lation for the departure diameter of a bubble has not been proposed that has shown

reasonable agreement with a wide variety of liquids under different conditions. As

per [10], the main reason for not having a working correlation lies in the lack of

knowledge of the temperature and velocity fields both of which have temporal and

spatial variation.

In order to get a better correlation, one way could be performing numerical sim-

ulations of a single vapor bubble growth by varying different conditions like the wall-

super-heat, gravity, the test liquid itself, and the effect of each variable could be well

understood. It should be noted that numerical simulation of the nucleate boiling is a

challenging task, mainly because of the multiple phases involved, with phase change

occurring between the two predominant phases of liquid and vapor. Additionally, the

vapor-liquid interface which defines the shape of the bubble is also critical for numer-

ical simulations. Typically, a heater wall (solid) is submerged in a liquid maintained

at its saturation temperature. The temperature of the solid wall is higher than the

liquid saturation temperature. (∆Twall = Twall − Tsat)
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Figure 2. Stages of vapor bubble life cycle in nucleate boiling under earth gravity
conditions)

Typically, the life cycle of a single vapor bubble in earth gravity consists of four

stages as shown in figure 2:

1. Nucleation- A vapor bubble is formed or nucleated due to kinks and roughness

on the heater surface.

2. Bubble Growth-

• The nucleated vapor bubble starts to grow due to phase change of the

surrounding liquid due to the heat transfer from the solid wall till it reaches

a peak size.

• It should be noted that as the bubble size increases, the bubble base radius

increases as well. The bubble base radius is also called the contact line,

which signifies the region of the vapor bubble coming in contact to the

wall.

• The bubble is held at its base to the wall by the surface tension force acting

between the vapor and the solid wall.
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3. Departure phase- In the departure phase, bubble base radius (contact line)

starts to reduce, as the buoyancy force increases due to larger volume of the

vapor bubble.

4. Lift Off- Bubble lifts off or pinches off when the buoyancy force exceeds the

surface tension force.

Once a bubble lifts off, a new bubble generally forms or nucleates at the same location.

One of the major factors of nucleate boiling is gravity. Typically, at the International

Space Station (ISS), an efficient medium of heat transfer is required to make the

components more compact. Conventional techniques like heat pipe cannot be used,

as it was found that the hot end of the heat pipe quickly floods under micro-gravity

conditions [13]. Nucleate boiling on the other hand could provide a better alternative

solution of the problem and as nucleate boiling heat transfer performance strongly

depends on the gravity level, it is critical to understand the effect of gravity over

a wide range of gravity levels. There have been multiple experimental, as well as

numerical studies performed. A brief review is presented below in the following two

sub-sections.

Experimental studies of nucleate pool boiling under reduced and micro

gravity conditions

It is well known that under reduced gravity nucleate pool boiling behavior is differ-

ent. Siegel and Usiskin (1959) [14] performed one of the first studies to investigate

nucleate boiling under reduced gravity conditions. They performed nucleate boiling

experiments under free fall conditions and observed that vapor bubbles remained at-

tached to the heater surface instead of departing as under earth gravity. This could

be attributed to the reduced buoyancy force with reduction in gravity. The reduc-

tion in buoyancy does not allow the buoyancy force to overcome the surface tension

force which holds the vapor bubble at the surface. Siegel and Keshock (1964) [5]

7



observed that under reduced gravity the bubble growth period was longer and the

bubble departure diameter was larger. Their observation is consistent with that of

Qiu et al.(2002) [15] who conducted experiments on parabolic flights. Kannengieser et

al.(2010) [16] conducted boiling experiments on board the Sounding Rocket Maser 11.

They found a large primary bubble stayed attached to the heater surface during the

experiment. Using the Micro-heater Array Boiling Experiment (MABE) on the ISS,

Raj et al.(2012) [17] performed nucleate boiling experiment using perfluoro-n-hexane

(pfnh) which is a linear isomer of C6F14. This isomer is the principal constituent

of FC-72 which is widely used as an electronic cooling fluid. They reported a large

vapor bubble covering the entire heater surface and did not observe bubble lift off.

Warrier et al.(2015) [18] also performed experiments under micro-gravity conditions

using pfnh as the test liquid and reported a large bubble being formed near the heater

in their experiment on the ISS. The large bubble formation could be seen as a result

of reduced buoyancy and merging of small bubbles. At low wall super-heat temper-

ature, the bubble departure was not observed, however at high wall super-heats, the

large bubble could depart from the surface. Even if the bubble departed, the au-

thors observed the bubble to continue to hover near the heater wall. They concluded

that under micro-gravity conditions surface tension and inertia forces dominate dur-

ing most of the bubble growth period, until a bubble reaches a relatively large size.

The experimental data of Usiskin and Siegel (1961) [19] and Straub et al.(1990) [20]

indicated that nucleate boiling heat transfer rate was insensitive to the gravity. How-

ever, Zhao et al.(2009) [21], conducted nucleate pool boiling experiment aboard a

recoverable satellite and observed that under micro-gravity the nucleate pool boiling

heat transfer rate was lower than that under terrestrial gravity. The critical heat flux

values were about 3 orders of magnitude lower than that obtained at earth gravity.

Warrier et al.(2015) [18] performed nucleate boiling experiments at micro-gravity and

also at earth normal gravity using identical heating surface. Their results showed that
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heat transfer coefficients decrease with the decrease in gravity level. Their observation

is consistent with that of Straub et al.(1990) [20] too. Raj et al.(2012) [17] showed

that at lower wall super-heats micro-gravity boiling heat fluxes were larger than those

obtained at normal earth gravity, but the trend reversed at higher wall super-heats.

The anomaly may be caused by the small heater sizes and high wall super-heats

which resulted in film boiling instead of nucleate boiling in the experiments of Raj

et al.(2012) [17]. Kannengieser et al.(2010) [16] showed that when the wall temper-

ature was lower than the saturation temperature the Marangoni convection was the

dominant heat transfer mechanism, while when it was higher than the saturation tem-

perature, evaporation at the bubble base was the dominant heat transfer mechanism.

However, they found little difference in the boiling heat transfer rates under micro

gravity and earth gravity conditions. Experiments conducted on the ISS also showed

the dependence of the heat flux on wall super-heat decreased as the pressure or liquid

sub-cooling increased under micro-gravity (Warrier et al.(2015) [18]). However, the

dependence of heat flux on wall super-heat was weakened at earth normal gravity

in comparison to that under micro-gravity conditions. It is believed that geometry

of the heated surface is a major factor in the differences observed. In general, ex-

periments conducted using wires showed little or no change in nucleate boiling heat

transfer as gravity was changed while experiments using flat heated surfaces generally

showed reduced heat transfer under micro-gravity. With the advent of computational

resources, CFD has also been used to study nucleate boiling by performing numer-

ical simulations. A review of the significant past work of numerical simulations is

provided in the following sub-section .
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Numerical studies of nucleate pool boiling under reduced and micro grav-

ity conditions

One of the first numerical approaches in Nucleate pool boiling was studied by Lee

and Nydahl (1989) [22]. They modeled bubble dynamics in saturated nucleate pool

boiling on a heated horizontal surface by solving the axi-symmetric Navier-Stokes and

energy equations. They calculated the bubble growth rate, but they did not consider

the change in bubble shape as their model assumed that the bubble maintained a

hemispherical shape during its growth. Their model included a wedge-shaped micro-

layer whose thickness was adjusted in an ad-hoc way to match the experimentally

measured bubble growth. Mei et al.(1995) [23] investigated bubble growth and de-

parture. However, their study ignored the hydrodynamics of the liquid motion by the

growing bubble. Furthermore, their model assumed that heat transfer to the bubble

was only through the micro-layer, which is not an accurate assumption for saturated

liquid. Welch (1995) [24] used an interface tracking method to study the boiling

problem. However, he only considered small distortions due to the limited capability

of his method in handling topology changes. Son et al.(1999) [6] simulated nucleate

boiling by assuming axi-symmetric and laminar flow. They used the level set method

to capture the vapor-liquid interface. In their model, the computational domain was

divided into micro and macro regions. The macro region included the bubble and the

liquid surrounding the bubble. The micro region consists of the thin liquid micro-

layer that forms underneath the bubble. In the micro region, the lubrication theory

was used to model the micro-layer. The two regions were matched near the outer

layer of the micro-layer. The model predicted the bubble growth but not the rela-

tion between the heat flux and wall super-heat. Abarajith et al.(2002) [25] used this

model to investigate the effect of contact angle. Later, Abarajith et al.(2004) [26]

used that model to study bubble merger in reduced gravity. They found that bubble

merger in a plane lead to early bubble lift-off under low gravity conditions due to
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the additional lift-off force developed from the merger process. They also found that

in most cases the bubble departure diameter for merged bubbles was much smaller

than that for a single bubble case. The bubble merger also increased time aver-

aged wall heat flux. However, as pointed out by Tanguy et al.(2014) [27], the use of

smoothing of the velocity jump condition at interface can lead to misleading mass

prediction. Shin et al.(2005) [28] simulated three-dimensional nucleate boiling using

the level contour reconstruction method. Their model included the effect of nucle-

ation site density and was capable of predicting the relationship between the heat

flux and the wall super-heat in a realistic surface. But they did not include contact

line dynamics in their calculations. Wu and Dhir (2011) [29] conducted numerical

simulations to investigate the effect of non-condensable gases. They found that ac-

cumulation of non-condensable gas caused a drop in the local vapor pressure and

reduced the effect of sub-cooling. Direct numerical simulation of nucleate boiling im-

poses significant challenges due to the issues of wall contact. Further, the coupling of

unsteady mass, momentum and energy transport with the complicated liquid-vapor

interface dynamics and inter-facial physics such as surface tension and discontinuity

in material properties pose numerical challenges. Tanguy et al.(2014) [27] conducted

extensive simulation to compare different numerical methods for the simulation of

boiling flows. They found that solving the thermal boundary layer accurately around

the bubble and computation of the boiling mass flow rate are critical for the boiling

flow simulation. One of the major challenges of numerical simulations of multi-phase

problems is to capture the interface between two phases. In the MoF method used

in this work, comparison between a reference centroid information corresponding to

the interface is made with actual centroid information. The difference between the

actual centroid and reference centroid is minimized while keeping the actual volume

fraction and reference volume fraction same. This ensures a sharp interface. Multiple

interface tracking methods have been proposed so far. A general summary of the
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interface tracking mechanisms are included in Table 1.

Method Publication Summary of work

Level Set
Method

Son and
Dhir

(1998) [30]

They performed numerical simulation of film boiling near
critical pressures. The interface is captured by a level set

method which is modified to include the liquid-vapor
phase change effect.

Gibou et
al.(2007)

[31]

They describe a sharp interface capturing method for the
study of incompressible multiphase flows with phase
change. They use the level set method to track the

interface between the two phases and uses a ghost fluid
approach to impose the jump conditions at the interface.

Tanguy et
al.(2007)

[32]

They report simulations of two phase vaporizing flows.
They use use both the Level Set Method and the Ghost
Fluid Method to capture the interface motion accurately

and to handle suitable jump conditions.

Can and
Pros-

peretti
(2012) [33]

They report a a finite-difference computational method
suitable for the simulation of vapor–liquid flows in which
the dynamical effects of the vapor can be approximated
by a time-dependent, spatially uniform pressure acting

on the interface which is described by a level set method
modified with a high-order “subcell fix” with mass

conservation properties.

Front
Tracking
Method

Univerdi
and Tryg-

gvason
(1992) [34]

They propose a method to simulate unsteady multi-fluid
flows in which a sharp interface or a front separates

in-compressible fluids of different density and viscosity is
described. The flow field is discretized by a conservative
finite difference approximation on a stationary grid, and

the interface is explicitly represented by a separate,
unstructured grid that moves through the stationary grid.

Juric and
Tryggva-

son
(1998) [35]

They propose a numerical method to simulate
liquid–vapor phase change. In this method, the

conservation equations of mass, momentum and energy
are discretized by a finite difference method on a regular
grid and the phase boundary is explicitly tracked by a

moving front.

Volume of
Fluid
Method

Welch and
Wilson

(2000) [36]

They report a numerical method for the simulation of
flows with mass transfer due to changes of phase. They
perform simulations on horizontal film boiling and use a

volume of fluid (VOF) based interface tracking method in
conjunction with a mass transfer model and a model for

surface tension.
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Method Publication Summary of work

Volume of
Fluid
Method
(contd)

Ghosh et
al.(2006)

[37]

They report a numerical model based on the
volume-of-fluid (VOF) method in spherico-symmetric

geometry containing two immiscible phases They provide
simulation results for rapid collapse phenomenon of
vapor film around a hot metal in sub-cooled water.

Yuan et
al.(2008)

[38]

This paper presents a numerical method for the
simulation of boiling flows on non-orthogonal body-fitted
coordinates. The volume-of-fluid (VOF) method based

on piece-wise linear interface construction (PLIC) is used
to track liquid-vapor interface and is extended to

body-fitted coordinates.

Haelssig et
al.(2010)

[39]

They used VoF for DNS of interface dynamics and
simultaneous inter-phase heat and mass transfer in

systems with multiple chemical species. The method
incorporates the full interface species and energy jump
conditions for vapour–liquid inter-phase heat and mass
transfer. They present results of ethanol–water system
for the cases of wetted-wall vapor–liquid contacting and

vapor flow over a smooth, stationary liquid.
Coupled
Level Set

and
Volume of

Fluid

Tomar et
al.(2005)

[40]

They use a coupled level-set and volume-of-fluid method
for modeling incompressible two-phase flows with surface

tension. CLSVOF conserves mass and captures the
complicated interfaces accurately. They report results for

film boiling.

Phase
Field
Method

Jamet et
al.(2001)

[41]

In this method, the interface is described as a
three-dimensional continuous medium across which

physical properties vary by imposing that the internal
energy of the fluid depends on its density gradient. They
explore if this method can be used for cases with moving

contact lines.

Badillo
(2012) [42]

They provide a phase-field model for simulation of
bubble growth in the diffusion-controlled regime. The
model accounts for phase change and surface tension

effects at the liquid-vapor interface. They split the single
phase field PDE to two separate equations, one controls
the phase change and the other one controls the shape of

the phase-field profile across the diffuse interface.
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Method Publication Summary of work

Color
Density
Function

Sato and
Ničeno

(2013) [3]

They proposed a phase-change model for a
mass-conservative interface tracking method. The mass
transfer rate is directly calculated from the heat flux at
the liquid–vapor interface, and the phase change takes
place only in the cells which include this interface. The
method was used in a projection based Navier Stokes

equation solver on a staggered finite-volume algorithm on
Cartesian grids.

Table 1. Different numerical methods used for boiling problem

Current nucleate pool boiling designs still depend on empirical correlations or

mechanistic models which either ignore or insufficiently model many important phys-

ical phenomena (i.e., bubble departure, merger, and micro-layer formation and evap-

oration between bubble and heater surface). Further, the gravity effect on nuclear

pool boiling is only poorly understood. A thorough understanding of these important

physical phenomena and the gravity effect is vital for safe and efficient nucleate pool

boiling design.

3 Micro-layer Formation and Evaporation

During the initial phase of bubble growth, the vapor-liquid interface grows much

more faster than the bubble base, as the surface tension inhibits the growth of the

bubble base to some extent. In order to incorporate the rapid growth, the interface

bends towards the base. This bending traps a thin layer of liquid under the vapor

bubble and above the heater wall. This thin layer of liquid is called as the micro-

layer. The thickness of the micro-layer is typically in the order of microns, hence the

name “micro-layer”. Snyder and Edwards ( [43]) first proposed the existence of a

liquid micro-layer. Cooper and Lloyd ( [44]) confirmed its existence with validation

from experimental results. The typical life-cycle of the liquid micro-layer is that it

forms during the initial phase of the bubble growth, then the micro-layer grows as

the bubble grows while it continues to contribute to the bubble growth through the
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its evaporation. As the bubble enters the departure phase, the micro-layer reduces

in size and finally gets completely depleted before the bubble departs. Experiments

have been performed to study the micro-layer behavior. Moore and Mesler ( [45]),

Hendricks and Sharp ( [46]) , Yabuki and Nakabeppu ( [47]) tried to predict the initial

micro-layer thickness from the measurements by calculating the total heat removal

and the temperature distribution in the wall.

A typical micro-layer is shown in figure 3. In the figure, rml, corresponds to the

radial extent of the micro-layer in relation to the vapor bubble base, and rd corre-

sponds to the dry-out radius. An even thinner layer of liquid called the adsorption

layer is also present under the dry-out radius as well. However, the adsorption layer

does not evaporate, hence makes no significant contribution to the bubble growth via

heat transfer or mass flux of vapor. This has been confirmed by Urbano et al.( [48]).
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Figure 3. Typical Microlayer
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Experiments have shown that the micro-layer typically extends almost for the

entire radial extent of the bubble base, and its thickness being in the order of a few

microns makes its aspect ratio to be very high. Moreover, since the micro-layer of

liquid is the only thing that lies between the heater wall and the vapor bubble, it

evaporates very rapidly, making it harder for measurements of the micro-layer size and

thickness in experiments. This makes the uncertainty of the experimental correlations

to be on the higher side. However, with advancement is optical photography some

other studies have been performed as well. Jung and Kim ( [49]) used interferometry

and Utaka et al.( [50]) used laser extinction method. Most of the experiments report

the micro-layer thickness to be of a linear relationship with the bubble base radial

location. [47] provided the correlation for the initial micro-layer thickness to be:

δ = 0.0005099r0.69 (6)

Similar linear correlation have been provided by [50] as well:

δ = 0.00446r (7)

However, both these correlations are for the specific case of water under earth gravity

conditions. [50] also provided a similar correlation for ethanol as the test liquid, where

the coefficient is different. For the case of ethanol the correlation is given as:

δethanol = 0.0102r (8)

As can be seen, the thickness maintains a linear profile with the radius for multiple

liquids. These coefficients were based on empirical calculations. There are some

analytical correlations available int he literature too. However, the ones that are

analytical, typically estimate the so-called hydrodynamic thickness of the micro-layer.

This refers to the micro-layer that would form if the bubble was considered to be

growing only by vapor flux from the macro-layer region, i.e. if the evaporation of the

16



micro-layer was not taken into consideration VanStralen et al.( [51]). [44] proposed

the relation of the hydrodynamic thickness to be:

δhd = 0.8
√
νlt (9)

where νl is the liquid kinematic viscosity and t is the time. Similar correlations with

different coefficients have been proposed by Smirnov [52]:

δhd = 1.04
√
νlt (10)

[51] proposed yet another different coefficient:

δhd = 3.632
√
νlt (11)

These correlations did not consider the relation to be dependent on the radial location,

and neither did they consider the wall-super heat temperature as a factor. Olander

and Watts ( [53]) provided an analytical formulation considering the above mentioned

factors. They proposed:

δhd =
π

4
√

3

ρvhfg
ρlcpl∆T

√
νl
αl
r (12)

Although, [53] correlation takes into account the radial location, and wall super-heat

into the formulation it does not consider the effect of depletion of the micro-layer.

As far as numerical simulations are concerned, there are considerable challenges

in order to be able to account for the contribution of the micro-layer. Typically, the

micro-layer thickness is in the order of (10−6m) or microns, and the bubble radius

is in the order of a few millimeters. So in order to fully resolve the micro-layer,

the spatial resolution needs to be very fine to incorporate the length scale of the

micro-layer thickness. This would make the computations very expensive as the

domain of computation will need to be a lot larger, and each cell size would be

very small, making the number of computations higher. In order to solve this issue,

some form of modeling has been used in the research community. Wayner ( [54])
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proposed a model to consider the micro-layer contribution which was later modified

by Stephan and Busse ( [55]) and Son et al.( [6]). The contact line model (also known

as a triple line model in the literature) proposed by them addresses the line where

the curved surface of the bubble intersects the heated surface. They divided the

domain into macro and micro-region, where the micro-region consisted of the micro-

layer area, and macro-layer consisted of the remaining portion of the domain. They

solved the mass, momentum and energy conservation equations in both the regions.

For the micro-layer, they approximated the momentum conservation equation by

using lubrication theory. Using the conservation equations, a fourth order, non-linear

differential equation is determined. This differential equation is solved to get the

thickness of the micro-layer. The liquid flow into the micro-layer is considered to be

driven by the pressure difference between the liquid pressure and vapor pressure. This

micro-layer modeling approach showed to be in agreement with boiling experiments

both in earth gravity and micro-gravity experiments. However, one of the major

disadvantages of their model lies in the fact that the radial extent which the micro-

layer encompasses corresponds to a very small portion of the bubble base. An example

of the triple line model is shown in figure 4. The image on the right shows a zoomed

in portion of the region near the triple point (i.e. where all three phases of liquid,

vapor and solid, come into contact).
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Figure 4. Microlayer in Triple Line Model or Contact Line Model

The contact line model is shown in figure 4. This is different from the actual micro-

layer seen in experiments because the length of the micro-layer in the radial extent

consists of a very small region which corresponds to the base of the triangle formed

by the microlayer thickness line, the vapor bubble interface and the heater wall. In

reality this assumption is not true, as experiments have shown that the micro-layer

exists almost along the entire radial extent of the bubble base as shown in figure

3. This means that the evaporation of the micro-layer does not take into account

of the entire region the micro-layer is present. Secondly, in reality the micro-layer

has variable thickness, it grows initially and then reduces with time as it evaporates,

however, this model assumes the micro-layer thickness as a constant value. This

disadvantage extends to another related issue with the model. If the micro-layer

size does not change, then the micro-layer does not deplete, which means micro-layer

is present at all times, this is also not true, as experiments have proved that the

micro-layer forms, grows in size, depletes away, so towards the very end of the bubble

life cycle (i.e. in the departure phase), the micro-layer should no longer be present,

making the contribution of vapor mass-flux from the micro-layer to the bubble to be

zero. This is not the case with this model, it considers the micro-layer to be present

at all times, hence the contribution of micro-layer is being calculated even when it
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should not be. These are some of the physical limitations of this specific model, but

there is a numerical limitation too. Due to the vanishing gradient problem associated

with the temperature, there is a requirement for the minimum size of the micro-layer,

the requirement is typically that the micro-layer thickness has to be greater than

one cell size of the computational domain resolution. This method would not be

able to handle a thickness value of the micro-layer lower than the cell size. So, for

cases with very thin micro-layer, a very fine resolution would be needed, making the

computation expensive due to longer run times.

Sato and Ničeno [56] proposed a depletable micro-layer model. They simulated

the growth and departure for a single vapor bubble from a heated surface using a

sub-grid scale modeling approach for the micro-layer. Although this model produces

results which are in good agreement in comparison to experiments with respect to

bubble growth rate, heat transfer rate and other bubble dynamics parameters in

general, there are two major limitations with this model. First, the model uses the

below equation to predict the micro-layer thickness:

δ = CslopeR (13)

where δ is the micro-layer thickness, and R is the radius of the bubble base. Cslope is

a constant value which is estimated from the empirical coefficient shown in equation

7 from [50]. It should be noted that the experiment of [50], was performed under

earth gravity conditions, using water as the test liquid. So, the constant value of

the parameter Cslope, used in this model would be valid only under the assumptions

of these specific conditions. The model cannot be scaled to micro-gravity conditions

where in other liquids are used for the experiments owing to the density ratio dif-

ference. Later Hänsch et al.( [57], [58]), proposed a modification to the model, by

replacing the Cslope term with an expression for the initial micro-layer thickness by

performing a back calculation from the rate of micro-layer depletion and the thick-

ness of the depleted micro-layer to generate the initial micro-layer thickness. The
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depleted micro-layer thickness value is used from experiments. Additionally, Hänsch

et al.model requires very fine resolution. They report that at the liquid-solid interface

the grid size is 0.5µm, and time-step size of 2ns was needed. Such fine resolution

and small time-step size, would make the computation very expensive which is sort

of antithetical to the use of a modeling approach itself. The goal of the modeling

for micro-layer is to make the computations faster, so that very fine resolution is

not needed. Moreover, the model proposed has not been tested under micro-gravity

conditions. Typically, under earth gravity the bubble growth rate is found to be t1/2

where, t is the time, but in micro-gravity conditions, the bubble growth rate in single

bubbles has been observed to be t1/3. This model does not provide any consideration

for that.

In this work, we report nucleate pool boiling results at different gravity levels

using a simulation tool based on a novel Moment-of-Fluid method (MoF) ( [59–

61]) and validate the simulation results using experimental data in order to further

study important physical phenomena and their effects on nucleate pool boiling. In

Chapter II, the MoF method is discussed and results for the validation of the MoF

method is presented by comparing with the analytical solution of Scriven [62] which

does not consider the presence of a heated wall. It is an analytical expression, that

provides the growth rate of a vapor bubble which is immersed in a super heated

liquid. In Chapter III, results from simulation of a single vapor bubble growth and

departure in presence of a heater wall is compared with experimental results for earth

gravity conditions. Simulation result of bubble growth in reduced gravity environment

is also provided along with comparison of experimental result. A new method for

estimating bubble diameter at different gravity levels for nucleate pool boiling is also

proposed [63]. In Chapter IV, a novel hybrid approach for a depletable micro-layer

for micro-gravity is proposed after an explanation on the need for using a micro-

layer for this case. Also given is a brief summary of the existing micro-layer models
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along with their advantages and limitations. The reported micro-layer approach does

not technically model the micro-layer, but only estimates the contribution of the

micro-layer evaporation to the bubble growth. Simulation results for bubble growth

rate, and heat flux is presented using the proposed micro-layer approach for micro-

gravity conditions. Comparison with experiments performed on ISS are provided,

which shows reasonable agreement in bubble shape at a time-instant, growth rate as

well as heat-flux. In Chapter V, an investigation into leveraging the state of the art

machine learning techniques is performed with the goal of predicting the heat-flux as

a function of different experimental variables. Conclusions are reported in Chapter

VI.

For the earth and reduced gravity experiments, water is the test liquid (corre-

sponds to results in Chapter II, and most of III (i.e. in all sections except section 1),

and perfluoro-n-hexane is the test liquid for micro-gravity conditions (corresponds to

results in section 1 of Chapter III and entire Chapter IV). The values used for the

physical properties of both liquids are provided in table 2 below for reference.

Property Water (Units)
Perfluoro-n-hexane

(Units)
Density of Liquid (ρl) 958 (kg/m3) 1500.785 (kg/m3)
Density of Vapor(ρv) 0.5956 (kg/m3) 11.46 (kg/m3)

Latent heat of vaporization (hfg) 2257E3 (J/kg) 86097 (J/kg)
Thermal conductivity of liquid (kl) 0.68 (W/mK) 0.0603 (W/mK)
Specific heat capacity of vapor (cpv) 2029 (J/kgK) 784 (J/kgK)
Specific heat capacity of liquid (cpl) 4217 (J/kgK) 992.01 (J/kgK)

Table 2. Physical properties of the two liquids simulated
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CHAPTER II

NUMERICAL METHOD AND CODE VALIDATION

This Chapter describes the numerical method, and reports the results of the case for

bubble growth in super heated liquid in absence of wall-heat transfer. This case is

chosen as the validation case as an analytical solution to this problem is available

(Scriven [62]). The method used for the simulations is Moment of Fluid which is

based on the works of [59–61]. A description of the MoF method is provided below:

1 Numerical Method: MoF

Governing Equations

The governing equations to be solved are the mass conservation equation, momentum

conservation equation, and the energy conservation equation for each material for

in-compressible, immiscible, multi-phase flow, which are given as follows: For each

material m:

∇ · ~u = 0 (14)

(Φm)t + ~VI · ∇Φm = 0, m = 1, 2, · · · ,M (15)

∂

∂t
(ρm~u) +∇ · (ρm~u⊗ ~u) = −∇ · pmI +∇ · ~τ + ρm~g if Φm (~x, t) > 0 (16)

∂

∂t
(ρmCp,mT ) +∇ · (~umρmCp,mT ) = ∇ · (km∇T ) + ~τ : ∇~u if Φm (~x, t) > 0 (17)

where for material m:
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• ρm is the density, pm is the pressure, ~g is the acceleration due to gravity.

~u (u, v, w) is the velocity field, Cp,m is the heat capacity per unit mass at con-

stant pressure, km is the thermal conductivity.

• ~VI is the interfacial velocity, computed by [27,31]:

~VI = ~Vvap −
ṁ

ρvap
~nlv (18)

ṁ =
[k∇T · ~nlv] Γ

hfg
(19)

where ~nlv is the normal vector at the interface Γ, which points from liquid to

vapor phase, hfg is the latent heat of vaporization.

• Φm is the level-set function:

Φm (~x, t) =


> 0, ~x ∈ m (material)

≤ 0, otherwise

(20)

• Temperature at the phase change front (vapor-liquid interface) is always as-

sumed to be the saturation temperature Tsat.

• ~τ is the deviatoric stress tensor for a Newtonian fluid,

~τ = µm
(
∇~u+∇~uT

)
(21)

• ~τ : ∇~u is the viscous diffusion term, which is included here in the formulation,

but neglected in the numerical implementation.

The numerical method is described on a rectangular Cartesian grid where the

velocities (u and v) are discretized on the cell face centers and other variables such as

the pressure (p), cell centroids (x), level-set functions (Φm), volume fractions (Fm),

and temperature are discretized at the cell centers. The location of the definitions of

the variables are shown in figure 5, where Γ is the interface.
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Figure 5. Variable definition in a cell

So, a single cell Ωi,j centered at (xi, yj) is defined as:

Ωi,j =

{
~x :

(
xi −

∆x

2

)
< x <

(
xi +

∆x

2

)
,

(
yj −

∆y

2

)
< y <

(
yj +

∆y

2

)}
(22)

The domain of material m in cell (i, j) is defined as Ωm
i,j, then the corresponding

volume fraction (zeroth moment) and centroid position (first moment) are defined as:

Fm
i,j, =

∫
Ωm
i,jdΩ∫

Ωi,jdΩ
(23)

~xmi,j, =

∫
Ωm
i,j~xdΩ∫

Ωi,jdΩ
(24)

Jump Conditions

At the vapor-liquid interface, both liquid and vapor phase meet, so a jump condition

needs to be applied at the boiling front Γ to maintain the conservation of mass,

momentum and energy.
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• Mass Conservation:

[~u]Γ = −ṁ
[

1

ρ

]
Γ

~nlv (25)

where [f ] = fvap − fliq is the jump operator; and ṁ = ρvap

(
~uvap − ~VI

)
· ~nlv is

the change of local mass flow rate.

• Momentum Conservation: For in-compressible flows and Newtonian fluids,

an appropriate jump in pressure must be satisfied at the boiling front to account

for capillary, viscous and phase change effects,

[p]Γ = σκ+ 2

[
µ
∂~un
∂n

]
Γ

−
[

1

ρ

]
Γ

ṁ2 (26)

~tl [2µD] · ~n = 0; i = 1, 2. (27)

where σ is the surface tension, κ is the local interface curvature, and
∂~un
∂n

, is

the normal derivative of the normal component of velocity. The third term on

the right hand side is the recoiling pressure occurring with phase change, the

recoil pressure has been ignored in the numerical implementation as it has been

found to be of small value. ~tl (i = 1, 2) represents the two tangential normals in

3D space.

• Energy Conservation: Finally, the following energy jump equation have to

be added to the formulation:

[k∇T · ~n]Γ = ṁ (hfg + (Cp,l − Cp,v) (Tsat − TΓ)) (28)

where Tsat is the saturation temperature. Since it is assumed that TΓ = Tsat,

[k∇T ·]~n]Γ = ṁhfg (29)

The multiphase flow solver solves the three-dimensional Navier-Stokes equations

using the variable density pressure projection algorithm ( [64]) on block structured
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adaptive mesh refinement grid (AMR) ( [65]). It can handle both compressible ( [60])

and incompressible flows ( [2], [66]). The solver employs the state of the art Moment

of Fluid method (MoF) to represent multiphase interfaces ( [67], [66], [60], [68], [69]).

It employs dynamic contact models for droplet impact problems ( [70]). Tests have

showed that the code has a high parallel efficiency of more than 96% on a 48-core

workstation.

Interface Representation

During the MOF interface reconstruction process, a reference volume fraction function

Fref and a reference centroid, Xc
ref both corresponding to the real interface, are

given in Figure 6 (left), and the actual volume fraction function, FA, and the actual

centroid, Xc
act corresponding to the reconstructed interface, are then computed as

shown in Figure 6 (right).

The MOF method requires that the actual volume fraction be equal to the refer-

ence value and the actual centroid be as close to the reference centroid as possible.

This becomes a constraint optimization problem formulated as follows:

Minimize ‖Xc
ref −Xc

A (n, b) ‖2, Under constraint: ‖Fref − FA (n, b) ‖ = 0

Figure 6. Surface reconstruction using the MOF method Li et al.(2013) [2] (left) the
real interface and reference volume fraction and centroid; (right) the reconstructed
interface and computed volume fraction and centroid.
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As discussed in Jemison et al.(2013) [66], the use of centroid information ensures

the MOF method maintains a sharp interface. In their simulations it was critical to

maintain a sharp interface as they performed droplet impact simulations.

Phase Change Velocity

The contribution to the interface velocity due to phase change is divided into two

parts:

• VIp → Velocity of material domain variation due to the phase change is evalu-

ated by:

VIp =
ṁ

ρl
=

[κ∇T ] · ~nlv
ρlhfg

(30)

• VIe → Velocity due to gas expansion, is evaluated by:

VIe =
VIp (ρl − ρv)

ρv
(31)

Hence the volume and mass are preserved discretely with negligible error. In

other words, from time T0 to T1:

∑
F i,j
v (T1) ρvV

i,j −
∑

F i,j
v (T0) ρvV

i,j =
∑(

−F i,j
liq (T1) + F i,j

liq (T0)
)
ρliqV

i,j

(32)

Next, the level-set functions and volume fractions are updated using the calculated

phase change rates. The interface is perfectly sharp. This property is an extension to

the work of Weymouth and Yue (2010) [71] to the phase problem. This property in

the method addresses the over shoot and undershoot problem for material advection

and volume conservation is maintained.

Section 2 reports results for validation of the MoF code. Comparison of results are

provided with an analytical solution of vapor bubble growth in super heated liquid

under absence of wall heat transfer.
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2 Validation: Vapor bubble growth in super-heated liquid under absence

of wall-heat transfer

Simulation of a growing vapor bubble in a super-heated liquid has been performed in

r-z coordinate system. There is an analytical solution available for this problem in

the literature, hence this provides a good basis for the code validation. The analytical

solution was provided by Scriven (1959) [62]. In that paper, the author provided an

equation which relates the bubble radius as a function of time for a specific super-heat.

Equation reported by Scriven [62] is:

R = 2 · βg

√
klt

cplρl
(33)

where R is the radius of the bubble, t is the time, kl is thermal conductivity of the

liquid, and βg is a growth constant which is determined by:

ρlcpl∇T
ρv (hfg + (cpl − cpv)∇T )

= 2β2
g

∫ 1

0

exp

(
β2
g

(
(1− ζ)−2 − 2

(
1− ρv

ρl

)
ζ − 1

))
dζ

(34)

where ρv, cpv are the density and specific heat capacity of the vapor phase and hfg is

the latent heat of vaporization. ∇T is the super-heat (i.e. the difference between the

saturation temperature of the liquid and the actual temperature of the liquid).

The simulations were run for three different super-heats and are compared with

the analytical solution of Scriven. The system pressure is maintained to be constant

at 1 atm. The initial bubble radius is 0.05 mm and the domain size in each direction

is 0.1205 mm. The bubble radius is calculated in this case similar to Sato and Ničeno

(2013) [3] using the equation (for 2-d case).

R =
1

2

Dx +Dy

2
(35)

where Dx, Dy are the bubble diameters in x and y directions respectively.

A grid convergence study is presented in figure 7 for the case of ∆T = 5K. Here

the domain is divided into 32 by 32, 64 by 64 and 96 by 96 points respectively in each
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case. However, since the adaptive mesh refinement feature in the code has been used

AMR = 1, this corresponds to a double value of the number of grid points in the

multiphase regions. For the finest case of 96 by 96, the initial number of data points

inside the bubble in each direction is about 80. From figure 7 it can be concluded

that the 96 by 96 with amr=1 resolution has converged. Hence, this is the chosen

resolution for the validation study.

Figure 7. Resolution comparison: Growth rate at ∆Tw = 5K

The rate of increase of the bubble radius provides good agreement with the ana-

lytical solution. It should be noted that the numerical simulation data points start

from a radius of 0.05 mm, as that is the initial radius value used for the simulations.

in figure 7. The comparison of the growth rates for different super-heats (5 K, 2.5 K

and 1.25 K) with the respective analytical solutions are shown using a log-scale plot

in Figure 8. The results are similar to that of Sato and Ničeno (2013) [3].
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Table 3. MoF method percentage difference with Scriven equation

Superheat, ∆T Mean Error Percentage
1.25K 2.97%
2.5K 3.41%
5.0K 1.06%

Figure 8. Growth rate comparison in log-scale

The mean percentage error for each superheat for the MoF predictions from the

Scriven equation values are presented in table 3. The results show that error for all

three superheats are lower than 4%.

Next, the velocity vectors for different super heats at the same time instant are

plotted. Two counter-rotating vortical structures inside the vapor bubble could be

observed, similar counter-rotating vortices were also reported by [3]. These vortical
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structures are similar to the parasitic currents generated by the surface tension, which

were also reported by [72].

Figure 9. Velocity vector for super-heat=5k
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Figure 10. Velocity vector for super-heat=2.5k
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Figure 11. Velocity vector for super-heat=1.25k

Figure 9, Figure 10, and Figure 11 shows the velocity vectors for super-heats 5,

2.5, and 1.25K all three are at the same time instant of 4.824e-5 seconds.

Next, the boundary layer thickness at different super-heats is shown, at the time

when the bubble radius is same for all three cases. It can be seen from figure 12 that

the boundary layer thickness increases with decreasing super-heat which is also in

agreement with the results from [3].
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Figure 12. Boundary layer thickness for same radius (different times), super
heat=5K, 2.5K, 1.25K (L-R)

However, they reported bulging at the ends of the boundary layer for lower super-

heats, specifically for super-heat of 1.25K. In the MoF simulations, for the same radius

plot (12), no bulging can be seen, and complete symmetry is maintained across the

entire cross-section. However, in figure 13, which shows the results at the end time

for the simulations, some bulging at the ends could be seen, but the bulging with the

MoF method is much less pronounced than that of [3]. For reference and comparison

of the degree of deformation in the temperature field, a snapshot of Figure number 24

on page 17 of Sato and Ničeno (2013) [3], is provided here (figure 14 in this thesis).

Figure 13. Boundary layer thickness for same time instant, super heat=5K, 2.5K,
1.25K (L-R)

35



Figure 14. Boundary layer thickness from Sato and Ničeno (2013), super
heat=1.25K, 2.5K, 5K (L-R), Image Source: [3]

This bulging of the temperature field (due to the thickening of the thermal layer)

is believed to be caused by the artificial recirculating flow pattern with in the bubble.
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CHAPTER III

NUCLEATE BOILING SIMULATIONS IN EARTH GRAVITY AND

REDUCED GRAVITY CONDITIONS

Using the MoF method, the results of the numerical simulations of 2-d nucleated

boiling of a single vapor bubble in earth gravity and reduced gravity are presented

below.

1 Vapor bubble growth with heat transfer from the wall in earth gravity

Vapor bubble growth in presence of a wall heater is being considered under earth

gravity. The wall is maintained at a constant temperature Tw. In this case as the

heat transfer from the wall is considered and due to the presence of gravity, bubble

departure is expected. Urbano et al. [73] and Guion et al. [74] showed the signif-

icance of a microlayer and provided a figure to determine the cases for which the

microlayer contribution would be significant. They showed in figure 9a of their paper

that whether the case falls in the microlayer regime (i.e. a microlayer is formed and

hence contributes to bubble growth) or Contact Line regime depends on a combina-

tion of Jakob number

(
Ja =

ρlcpl(Tw − Ts)
ρvLvap

)
, (where ρ corresponds to the density, cp

corresponds to the specific heat, T corresponds to temperature, and Lvap is the latent

heat of vaporization, subscripts l, v, w, s corresponds to liquid, vapor, wall, and satu-

ration), and Contact Angle. The figure 9a in Urbano et al., shows that our simulation

case (with Ja=21.03 and Contact Angle =50 degrees) falls under the Contact Line

regime, hence no microlayer consideration is required. This is further verified with

good agreement between the MoF simulations with the experiments. Similar results
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were also reported by Tryggvason and Lu [75], who did not consider the microlayer

contribution as well. For cases with higher Ja and Contact Angle, some form of mi-

crolayer modeling approach can be implemented as an extension to the MoF method.

The results reported are a comparison with experimental results reported by Dhir [4].

In that paper, the authors provide numerical simulation as well as experimental re-

sults. The test liquid used is saturated water, with a wall superheat of ∆Tw = 7K

and static contact angle of θ = 50°. Domain size of 64 by 128 was used, with AMR

= 1, which makes the effective grid size to be 128 by 256 points. We simulate half

of the bubble and use symmetric boundary conditions. Thus for the initial bubble

size of diameter = 0.00075m, the number of grid points inside the bubble along the

diameter is ∼ 26. Figure 15 shows the snapshot of the bubble growth life-cycle at

different time instants. Figure 15 shows the snapshot of the bubble growth life-cycle

at different time instants.

Figure 15 shows the snapshot of the bubble growth life-cycle at different time

instants. Dhir [4] did not provide bubble shape for the case of ∆T = 7K, so we

compare the bubble shape at departure with Dhir [4] results for the case of ∆T = 8.5K

in figure 16. Results in figure 16, show that the MoF method provides reasonably

good prediction for bubble shape at departure in comparison to experiments. A

comparison plot of the MoF method is presented with both the numerical result as well

as experimental result of Dhir [4] for the bubble growth rate indicating the departure

diameter and the departure time in figure 17. It should be noted that in this case,

as per Dhir [4], the diameter is calculated as equivalent bubble diameter for an equal

volume sphere. Figure 17 shows the comparison of departure diameter and departure

time. In their paper, Dhir (2001) [4] reported that their numerical simulations over-

predicted the departure time and the departure diameter. For departure diameter, the

percent difference between MoF simulation and experimental case is 1.12%, Dhir [4] is

at 0.54%. But, the percentage difference of departure time between MoF simulation
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Figure 16. Bubble shape at departure comparison between MoF and Dhir [4] for
∆T = 8.5K

with experimental result is 16.72% which is more accurate than that of Dhir [4] at

21.43%. Since the bubble in the MoF results has an initial radius, the data has been

shifted such that in all the cases in figure 17, the vapor bubbles are at the same initial

radius at the initial time to maintain consistency and accuracy between previously

published and current results.

Dynamic contact angle has been used in the studies by Ajaev et al. [76], Mukherjee

et al. [77], Jo et al. [78] among others. Ajaev et al. [76], explores dynamic contact angle

for evaporating liquids on inclined surfaces, not nucleate boiling. However, the study

by Mukherjee et al. [77] explores the effect of static contact angle, and different cases

of dynamic contact angles on single bubble nucleate boiling. They conclude that the

vapor-removal rate shows very little change for three following cases: static contact
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Figure 17. Bubble growth rate comparison under earth gravity conditions

angle (Case 1), dynamic contact angle with constant value advancing and receding

angle (Case 2) , and dynamic contact angle as a function of interfacial velocity (Case

3).

We compare two different modeling techniques for the dynamic contact angle. We

use the Jiang [79], and Kistler [80] models of dynamic contact angle formulation. The

Jiang model calculates the dynamic contact angle ,θd, using

cos θs − cos θd
cos θs + 1

= tanh(4.96Ca0.702) (36)

where θs is the static contact angle, Ca (Capillary number) is given as: Ca =
µVcl
σ

,

where µ is the dynamic viscosity of the liquid, Vcl is the contact line velocity, and σ

is the surface tension. One drawback of the Jiang model is that it is not as accurate

for large values of Ca [81]. However, since Ca values are significantly small in our

simulations, that drawback is not applicable. Using the the Jiang model, we found the

maximum range of the Dynamic Contact Angle to be about 2◦, which shows that the
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effect of the dynamic contact angle in this case is negligible. The results for growth

rate for nucleate boiling in earth gravity using these two models in comparison to

the static contact angle model, and experimental results from Dhir [4] are reported

in figure 18.
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Figure 18. Growth rate comparison for different contact angle models

The results in figure 18, shows that the departure time and diameter for the Kistler

model is under-predicted (which can be seen from where the curve for each case ends),

where as for the Jiang model, it is similar to the static contact angle model for the

earth gravity case. The growth rate, however, is almost similar for both Jiang and

Kistler models in comparison to the static contact angle model. These results are in

agreement with the conclusions of Mukherjee et al., that the vapor removal rate sees

very little change. Hence, for the results reported in this dissertation, a static contact

angle model has been used.

Next, a plot of the heat transfer rate as a function of time is reported in figure

19. Here the heat transfer is calculated as the heat energy per unit time required to
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vaporize the volume of liquid corresponding to bubble growth in that time. Since it

considers the total heat supplied to the bubble, it takes into account both the heat

transfer from the wall and the heat transfer from the surrounding liquid.
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Figure 19. Heat Transfer as a function of time in earth gravity

The bubble growth rate is also plotted on the right Y-axis of figure 19. A peak

could be observed in the heat transfer rate at a later stage of the bubble life-cycle.

During the departure phase, the bubble base starts to shrink, which means increased

quantity of colder water surrounds the bubble, this makes the vapor bubble lose some

of its heat by conduction to the colder water, i.e. conduction of heat from the vapor

bubble is increased, hence more heat is transferred to the bubble. The peak signifies

this additional heat transfer. Finally, there is a drop in the heat transfer rate, as the

bubble enters departure phase, this is evident from the shrinking size of the bubble

base diameter from about 0.03s mark to the ultimate lift-off. Heat transfer rate

continues to drop till the bubble lifts off and departs indicated by the vertical line,

which is in agreement to the reasoning provided above.
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Vapor bubble growth with heat transfer from the wall in reduced gravity

In the case of reduced gravity, a comparison of the MoF simulations are presented

in comparison with results from experiments by Siegel and Keshock [5]. In this

paper, the authors provide experimental results for reduced gravity cases which were

performed using a drop tower. The results are for a case with wall superheat of

∆Tw = 11.1K, and gz = 1.4%ge, where gz corresponds to the effective gravity value

and ge corresponds to the value of gravity at earth. The simulations were carried out

using a grid resolution of 128 by 256 and amr = 1. which makes the effective grid size

to be 256 by 512 in the X-direction and Y-directions respectively. The initial number

of grid points inside the bubble along the diameter is 26, as only half the bubble is

simulated due to symmetric boundary conditions. The bubble shape at different time

instants are shown in figure 20. With reduced gravity environment, the bubble did

not observe departure similar to that in the experiments.

Figure 21 shows the bubble growth rate comparison of numerical results of MoF

method with experimental results of Siegel and Keshock [5]. The growth rate results

provided by the MoF simulation is in good agreement with the experimental results.

Next, the heat transfer as a function of time is provided for the reduced gravity case

in figure 22.

Heat transfer in the reduced gravity case does not observe the drop in comparison

to the earth gravity case, as the bubble does not enter the departure phase in this

case. The growth rate is also plotted along the right y-axis for reference.

Vapor bubble growth in micro-gravity conditions

MoF simulation of boiling in micro-gravity conditions is compared with experiments

on the International Space Station (ISS) by Dhir et al. [7]. For the experiments,

the wall superheat was in a range of 4° − 7°C and the liquid sub-cooling varied

from 5° − 1°C due to variance in pressure. For the comparison of the numerical
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Figure 21. Bubble growth rate comparison of numerical results of MoF method
with experimental results under reduced gravity conditions (gz = 1.4%ge)

simulation using MoF method with the micro-gravity simulations, we use a saturated

liquid (i.e. no sub-cooling). Dhir et al. [7] reported multiple challenges with their

experiments on ISS, one of the key challenges being a heater malfunction, which

resulted in the system pressure to vary and this resulted in an increase in the liquid

saturation temperature. As a consequence of this increase in the liquid saturation

temperature, the liquid subcooling got introduced. Dhir et al.then increased the wall

temperature to compensate for the increase in liquid subcooling. However, in our

simulations the system pressure, liquid saturation temperature, and wall temperature

were maintained to be constant through-out the simulation. Hence, there was no

need for sub-cooling or increasing wall temperature in the MoF simulations. The wall

superheat for our simulations is set to be constant at 16°C. The MoF simulation is run

for a domain of 32mm by 32mm with a base resolution of 144x144 and a refinement

setting of 2. As mentioned earlier, a refinement value of 2 corresponds to a resolution
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Figure 22. Heat transfer as a function of time for reduced gravity case

of 576 by 576. This results in about 110 initial grid points inside the bubble in along

the diameter. For our results we performed the simulations for about 5 seconds of

total run time, where in the bubble diameter reached a size of about 20mm. For the

micro gravity case, since the bubble size is larger, the domain is also larger, making

the required resolution to be very fine. This makes the simulation computationally

very expensive and time consuming. The reason for that is the time-step size is

very small due to the stability time constraint for surface tension. The stability time

constraint due to surface tension tsurf ∝ (∆x)3/2. Since ∆x is very small, tsurf is also

very small, which requires a large number of time-steps to reach a significant total

simulation time value. Figure 23 shows a comparison of the experimental results with

the MoF simulations for the same test liquid (perfluoro-n-hexane) in micro-gravity

conditions.

The results from the MoF simulation are in good overall agreement with the

experimental ones. As in the experiments, the simulations also did not observe bubble
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Figure 23. Bubble growth rate comparison of numerical results of MoF method for
micro-gravity conditions with experiments on ISS

departure in the micro-gravity environment. A zoomed in plot for the portion of the

run time of the simulation is added on the right side of figure 23. In order to provide

a qualitative understanding of the above simulation under micro-gravity, the heat

transfer rate is also plotted in figure 23 as a function of time. In figure 24, the
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Figure 24. Heat Transfer as a function of time for micro-gravity simulations
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growth rate is also plotted on right y-axis for reference. The slight difference in the

growth rate of the simulations in comparison to the experiments could be attributed

to the uncertainties in the experiment itself which are mentioned in details in their

paper. Moreover, only one experiment for single bubble case was completed in the

experiments, which makes the statistical uncertainty considerably high.

Based on the heat transfer plots provided for each gravity case, it can be seen that

for the same amount of heat transfer of 0.5W, the bubble diameter is different. For

earth gravity with water, the diameter at 0.5W of heat transfer is about 2.5mm, the

same for water in reduced gravity is 6mm, and the same for Pfnh in micro-gravity

in 8.3mm. From the results it can be concluded that as gravity is reduced, less heat

transfer is required to reach the same bubble diameter.

More significantly, the results show that for the experiments, the wall super-heat

was 7°C, but for the simulations a wall-super heat of 16°C was required. The reason

for this could be attributed to the absence of the micro-layer contribution in the

simulations. This shows the importance of micro-layer evaporation specifically in

micro-gravity conditions. A novel approach for calculating the contribution from the

depletable micro-layer in micro-gravity condition is proposed in Chapter IV.

In section 2 we propose a new method to determine the bubble diameter at any

gravity level using a non-dimensional equation model.

2 New method for determining bubble diameter at different gravity levels

So far, bubble growth and departure results for cases at different gravity levels have

been reported. A closer analysis of the results shows that there is a similar pattern to

the growth rate curves of the bubbles at each gravity level. The growth rate changes

with gravity. For this case, we use the experimental results at reduced gravity by

Siegel and Keshock [5]. In their paper, they used a drop tower to control the value

of the gravity. We use their results for three different gravity values of 1.4%, 3.0%,
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and 6.1% of earth gravity. This has been shown in figure 25.
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Figure 25. Bubble growth rate in different gravity values (experimental data from
[5])

The goal is to develop a method by obtaining a generalized growth curve irrespec-

tive of the gravity level. Keeping all other parameters constant, if we change only

the value of gravity, the growth rate of the bubble changes and this change can be

attributed to the change in gravity value only. For these cases, we use the experimen-

tal data for growth rates for experiments at different gravity levels and we perform

an analysis by starting with making the relevant values dimensionless. Next, we use

a power-series curve fitting where we try to “fit” the growth rate curves at different

gravity values into a single curve and generate a common equation which would be a

close match for the data of all the gravity levels. We propose the generalized equation

to be:

d∗ =
D

(g∗)C ×De

(37)
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g∗ =
g

ge
(38)

t∗ =
T

Te
(39)

where d∗ is the non-dimensional diameter, D is the diameter of the bubble at any

time instant, g∗ is the non-dimensional gravity, g is the gravity value in question and

ge is the earth gravity value. C is the coefficient for the specific case and De is the

departure diameter at earth gravity. t∗ is the non-dimensional time, where T is the

time instant of the simulation or the experiment and Te is the departure time at earth

gravity. It should be noted that Te and De could be any value for time and length

respectively. Both Te and De are used as constant values and their significance lies

only in non-dimensionalization of the time and diameter.

We start by choosing one time instant from figure 25, available in Supplemental

Material, part of the ASME Digital Collection for all three gravity values. In this

case we chose t = 0.3003s. Next we plot the diameters at this time-instant for all

three gravity values and perform a curve fitting, as shown in figure 26.

Based on the curve fitting equation, we can generate the model equations which is

shown above. Using the model equations, we plot the growth rates at three different

gravity level in figure 27, available in Supplemental Material, part of the ASME

Digital Collection. It should be noted that the values of the coefficients of the equation

are specifically for the case of Siegel and Keshock [5]. Only data from Seigel and

Keshock is used since this is the only paper which provides experimental results at

different gravity levels, by keeping all other parameters constant. Since the proposed

equation is mainly dependent on gravity, it is imperative to keep other variables such

as wall superheat, system pressure, etc. constant. The test liquid (water in this

case) parameters, the superheat value and all other parameters that contribute to
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Figure 26. Curve fit for diameter at same time instant for different gravity levels

the growth of a bubble also contribute towards the calculation of the coefficients.

The coefficient C for this case was calculated to be C = −0.1587.

The somewhat combined general curve shown in figure 27, can then predict the

effective diameter of a bubble if the time instant and the gravity value is known. We

validate this claim by calculating the d∗ from the 3.0% gravity value, and then plug

in the d∗ to predict the diameters at 1.4% and 6.1% gravity values at those time

instants. This is compared with the experimental results in figure 28.

It shows that the model is accurate at gravity levels for both higher and lower

values than the one which was used to calculate d∗. Additionally, although the

diameter from only one time-instant was used for performing the curve fit to generate

the coefficient, the model predicts accurate results for all time-instants.
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CHAPTER IV

SIMULATIONS IN MICRO-GRAVITY CONDITIONS USING A

NOVEL MICRO-LAYER APPROACH

The results for micro-gravity in Chapter III showed the importance of micro-layer

contribution specifically for micro-gravity cases. In this chapter, we propose a novel

approach to calculate the contribution of the depletable micro-layer in micro-gravity

conditions [82].

1 Existing Micro-layer models

This section provides background on existing micro-layer models available in the

literature. As introduced in Chapter I, a micro-layer is formed during the initial

phase of the bubble life cycle. As the growth rate is much faster during this period,

the speed of the interface growth is faster than the speed of the bubble base growth as

the surface tension force in the bubble base hinders it growth to some extent. In order

to compensate for the slower speed of the bubble base, the vapor-liquid interface of the

bubble bends near the end and traps a thin later of liquid between the vapor bubble

and the solid heater wall. This thin liquid layer has a thickness on the order of µm,

hence the name micro-layer. Snyder and Edwards [43] first proposed the existence of

a liquid micro-layer. Cooper and Lloyd [44] confirmed its existence with validation

from experimental results. The typical life-cycle of the liquid micro-layer is that it

forms during the initial phase of the bubble growth, then the micro-layer grows as

the bubble grows while it continues to contribute to the bubble growth through the

its evaporation. As the bubble enters the departure phase, the micro-layer reduces
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in size and finally gets completely depleted before the bubble departs. In numerical

simulations, the micro-layer is particularly challenging as the size of the micro-layer

demands a small cell size where as the bubble size is typically on the order of a few

mms. This makes the simulations computationally very expensive if the micro-layer

needs to be resolved. Typically some form of modeling technique has been used in

the community, some major modeling techniques along with their advantages and

limitations are described below.

Triple line models or Contact line models

Wayner [54] proposed a model to consider the micro-layer contribution which was

later adopted by Son et al. [6]. The contact line model (also known as a triple line

model in the literature) proposed by them addresses the line where the curved surface

of the bubble intersects the heated surface. They divided the domain into macro and

micro-region, where the micro-region consisted of the micro-layer area, and macro-

layer consisted of the remaining portion of the domain. A snapshot of the model

from [6] is provided in figure 29.
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Figure 29. Microlayer in Triple Line Model from Son et al., Img Source: [6]

They solved the mass, momentum and energy conservation equations in both the

regions. For the micro-layer, they approximated the momentum conservation equa-

tion by using lubrication theory, so for the micro-layer, the momentum conservation

equation for them becomes:

∂pl
∂r

= µl
∂2ul
∂y2

(40)

The fluid flow into the micro-layer is driven by the pressure difference, which is

56



calculated as:

pl = pv − σκ−
A

δ3
+

q2

ρvh2
fg

(41)

where pl, pv are the pressures associated with the liquid and vapor phases respectively.

σ is the surface tension which is taken as a function of temperature, κ is the curvature.

A is the dispersion constant which is an empirical term and evaporation heat-flux, q

is approximated using the Clausius-Clapeyron equation:

q = hev

[
Tint − Tv +

(pl − pv)Tv
ρlhfg

]
(42)

Using the conservation equations, a fourth order, non-linear differential equation is

formulated.

∂′′′′ = f(∂, ∂′, ∂′′, ∂′′′) (43)

This differential equation is solved to get the thickness of the micro-layer using bound-

ary conditions. The liquid flow into the micro-layer is considered to be driven by the

pressure difference between the liquid pressure and vapor pressure. Although, this

micro-layer modeling approach was in agreement with experiments, some of the as-

sumptions made in the model description do not reflect the actual physics of the

process. The micro-layer length is considered for a small portion under the vapor

bubble, this assumption is not true as experiments have shown that the micro-layer

is formed along almost the entire length of the bubble base, barring a very small

dry-out radius. So, the contribution of the micro-layer along the entire radial extent

is not considered. Moreover, the micro-layer thickness is supposed to vary as the

bubble life cycle proceeds and eventually deplete itself by evaporation, however this

model assumes the micro-layer to be of a constant thickness and does not take into

consideration the depletion too. From the numerical perspective, this model imposes

a requirement that the micro-layer thickness needs to be about a cell size, which

is also going to make it computationally expensive specifically for a case with thin

micro-layer.
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Depletable whole micro-layer models

Whole micro-layer models typically consider the micro-layer length to be along the

entire radial extent of the bubble. Models which add the evaporation term in de-

termining the micro-layer thickness so that the micro-layer would evaporate away or

deplete away are called depletable models. Both of these are consistent with the actual

physics behind the process confirmed by experimental results. Sato and Ničeno [56]

proposed the first depletable micro-layer model. They simulated the growth and

departure for a single vapor bubble from a heated surface using a sub-grid scale mod-

eling approach for the micro-layer. The model uses the equation below to predict the

micro-layer thickness:

δ = CslopeR (44)

where δ is the micro-layer thickness, and R is the radius of the bubble base. Cslope is

a constant value which is estimated from the empirical coefficient shown in equation

7 from [50]. It should be noted that the value for Cslope used in the simulations, is

just the initial value. They run the simulation with the initial value, compare to the

experimental results, and based on the agreement with the results they modify the

value used in the model. But this coefficient is specific to the test liquid water, and

is also specific to the conditions of the experiment (for example the wall super heat).

Due to these limitations, the model cannot be scaled to other liquids, and specifically

to micro-gravity conditions as the test liquid typically used under micro-gravity is

perfluoro-n-hexane instead of water. The coefficient for perfluoro-n-hexane is not

yet known. From the numerical perspective, the model needs an additional sub-grid

scale modeling technique which needs to be implemented by using a finite volume

description for the micro-layer. Later Hänsch et al. [57, 58], proposed a modification

to the model, by replacing the Cslope term in the expression for the initial micro-layer

thickness by performing a back calculation from the rate of micro-layer depletion and

the thickness of the depleted micro-layer to generate the initial micro-layer thickness.
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But the depleted micro-layer value is generated from experiments too, which is in turn

dependent on the test liquid of water, and the same disadvantages of the method to

be not applicable for micro-gravity experiments with perfluoro-n-hexane persists with

this model too. Additionally, Hänsch et al. [57,58] model requires very fine resolution.

They report that at the liquid-solid interface the grid size is 0.5µm, and time-step

size of 2ns was needed. Such fine resolution and small time-step size, would make

the computation very expensive which is sort of antithetical to the use of a modeling

approach itself. Also, under earth gravity the bubble growth rate is found to be t1/2

where, t is the time, but in micro-gravity conditions, the bubble growth rate in single

bubbles has been observed to be t1/3, which means the bubble growth rate slows

down a little bit, and this implies that the contribution of the micro-layer should also

reduce by the same fraction. Since both the whole micro-layer depletable models are

specific to earth gravity conditions, they correctly do not implement this.

In the following section, a hybrid approach for calculating the contribution of a

depletable micro-layer specifically for micro-gravity conditions is proposed. Details

pertaining to the formulation of the approach is provided in the subsequent section,

followed by comparison of results using the micro-layer model for the bubble growth,

bubble shape, and heat-flux under micro-gravity conditions using pfnh as test liquid

with experimental results performed on the ISS using the same liquid under same

conditions from Dhir et al. [7].

2 Hybrid approach to calculate contribution of micro-layer under micro-

gravity conditions

The term “hybrid” is used because this technique of calculation is a mixture of both

the Contact Line model as well as the Whole depletable micro-layer model. The

MoF code still treats the vapor bubble to be attached to the heater, that is it does

not consider the presence of the micro-layer, but this approach calculates the flux of
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vapor if the micro-layer were to be present in an ad-hoc way, and adds the flux term

to the cells where the micro-layer would have been. This approach uses the benefits

of both methods, the micro-layer life-cycle is in line to the actual physical process,

and there is no additional sub-grid modeling necessary as only the contribution of the

micro-layer is considered, which is the main goal of these models. Since no specific

modeling of the micro-layer is needed, the term “approach” is used instead of calling it

a model. But, even in the whole micro-layer models described above, the micro-layer

thickness is typically estimated from experimental results. This is a major drawback

of these models as the experiments are with specific liquids with different properties

using specific wall-super heats. The same constant value would not be applicable to

other liquids, hence the micro-layer thickness would be different.

For the hybrid approach implementation, a typical micro-layer is shown in figure

30. It should be noted than in figure 30, the micro-layer length considered is denoted

as rmac, the micro-layer thickness at the outer edge of the bubble is hmac, and micro-

layer thickness at the inner edge is hmic, which is set to a very small value of 10−9m,

corresponding to a few molecules thickness or the advection thickness mentioned

earlier in Chapter I. the dry out radius of the neck of the bubble is denoted as rmic,

calculated from above mentioned hmic value and using the same slope as that of hmac

and rmac. rmac is calculated at each step by using a color function technique. Based

on the rmac, the hmac value is calculated which is the micro-layer thickness. In the

hybrid approach, the initial thickness hmac is estimated in a two step process, in the

first step the hydrodynamic thickness is estimated using the analytical formulation

of Olander and Watts1969 [53], which is given as:

hmac,1(r) =
π

4
√

3

ρvhfg
ρlcpl∆T

√
νl
αl
rmac (45)

where hmac,1 denotes the first step of the thickness determination. ρv and ρl are the

densities of vapor phase and liquid phase respectively. ∆T is the wall super heat, νl

is the kinematic viscosity of the liquid, and αl is the liquid thermal diffusivity. This
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equation provides an estimate of the initial micro-layer thickness based on the proper-

ties of the liquid in question, as well as the wall-super heat provided, and the radius of

the base of the bubble. Also, this equation maintains the linear relationship between

the radius and thickness of the micro-layer which has been reported by [50], and [47]

using experiments. The two major drawbacks of this equation includes the fact that

this equation makes an assumption that the bubble shape is spherical, which is not

necessarily true under earth gravity conditions, as the bubble shapes are typically

somewhat elongated in the vertical direction in terrestrial gravity conditions which

would then change the micro-layer thickness as the base radius would be different.

But in micro-gravity conditions, the bubble shapes have been found to be more oblate

shaped (as in more squashed than the elongated shape in earth gravity condition)

and hence resembles a sphere as can be seen in figure 31 from Dhir et al. [7] which

shows bubble shapes at different time instants from experiments on the ISS.
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Figure 31. Bubble shape in micro-gravity form experiments on ISS: Img Source:
Dhir et al. [7]

So, under micro-gravity conditions, this drawback becomes an advantage because

spherical is the precise shape the bubble possesses and the assumption becomes indeed

accurate. Second drawback of the equation is that it does not consider the depletion
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or evaporation of the micro-layer. However, the hybrid approach uses an evaporation

term [57, 58] which negates the drawback. This is the second step of the estimation

of the micro-layer thickness.

hmac(r, t) =

√
(hmac,1(r))2 − 2kl(Tw − Tint)

ρlhfg
t (46)

Using this equation, the micro-layer thickness is variable with time, based on the

evaporation. Once the micro-layer thickness is known, the contribution of micro-

layer in form of vapor flux is calculated. The derivation of the equation used for that

is provided below starting with figure 32.
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Figure 32. Calculation of micro-layer contribution

A portion of the micro-layer is shown in figure 32 (top), where Twall and Tinterface
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denote the temperature of the wall and the interface (which is set to be the saturation

temperature) respectively. Two axis perpendicular to each other are chosen as ξ and

ψ. In order to better visualize the calculation, the image on the left is rotated so that

ψ is along the x-axis and ξ is along the y-axis. Based on the figure, the following can

be formulated:

hmac/2

L
= tan

(
θmic

2

)
= m (47)

where m is the slope. Thus,

ψwall = h(ξ) = mξ (48)

and,

ψInterface = −h(ξ) = −mξ (49)

So, using interpolation the temperature as a function of ψ, and ξ can be written as:

T (ψ, ξ) =

(
Ts + Tw

2

)
ψ + h(ξ)

0 + h(ξ)
− Tsψ

h(ξ
(50)

Next, we set

T̃ =
Ts + Tw

2
(51)

and rewrite T (ψ, ξ) as:

T (ψ, ξ) = T̃ +
(T̃ − Ts)ψ
h(ξ)

(52)

The derivatives of T (ψ, ξ) with respect to each of ψ and ξ becomes:

Tψ =
T̃ − Ts
h(ξ)

(53)

Tξ =
−h′

h2
(T̃ − Ts)ψ (54)

φ1 is a signed distance function. The subscript “1” denotes liquid phase. So φ1 is

positive in liquid region and negative in vapor region. The zero level set of φ1 is the

Tsat line in figure 32. Thus:

φ1 = ψ +mξ (55)
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so the normal pointing into the liquid region from the vapor:

~n =
∇φ1

|∇φ1|
=

 1

m

 1√
1 +m2

(56)

Thus, for the normal temperature gradient from the liquid phase region:

∇T · ~n =
1√

1 +m2

Tψ
Tξ

 ·
 1

m

 (57)

This can be re-arranged as:

∇T T~n =

[
Tψ Tξ

]
~n =

[
T̃ − Ts
h(ξ)

−h′

h2
(T̃ − Ts)ψ

] 1

m

 1√
1 +m2

=
T̃ − Ts
h

[√
1 +m2

]
(58)

Now,

1

L− δ
=

∫ L

δ

1

h(ξ)
dξ =

1

L− δ
1

m
ln ξ|Lδ =

ln
L

δ
m(L− δ)

(59)

where 2δm = hmicro. Thus, using these expressions, the average flux can be calculated

as:

T̃ − Ts
m(L− δ)

(
ln
L

δ

)√
1 +m2 =

Tw − Ts
hmacro − hmicro

(
ln
hmacro
hmicro

)√
1 +m2 (60)

Since m is very small,
√

1 +m2 ≈ 1, so the total mass of liquid from the region using

the conduction equation becomes:

ṁliq
tot =

−kl(rmac − rmic)
hmacro − hmicro

∆T log

(
hmacro
hmicro

)
/hfg (61)

where kl is the thermal conductivity of the liquid, (rmac − rmic) is the area in 2-d,

and hfg is the latent heat of vaporization which converts heat energy to mass. Next,

mass-flux contribution from each time-step is then computed and distributed across

the relevant cells.

ṁavg =
ṁtot

ncell
× dt (62)
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where dt is the discretization time-step size. Average Vapor volume flux is calculated

by multiplying a factor f .

v̇vapavg = f × ṁavg/ρv (63)

The factor f ensures the t1/3 growth rate for micro-gravity by limiting the vapor

volume flux after rbase reaches a certain size (sizeperim). This variable (sizeperim) is

a user defined value, and the simulations are run with different values and based on

the comparison with experiments a final value is determined. A study on the effect of

this parameter will be discussed later in this chapter. The algorithm for the factor,

f can be summarized as:

if (rbase ≤ sizeperim) then f = 1

else if (rbase > sizeperim) then f =
sizeperim
rbase

Here it is assumed that the contribution of the micro-layer is proportional to the

bubble growth rate. A summary of the comparison of this approach with the two

leading models are provided below in table 4.

Feature
Dhir

model

Sato

model

Proposed

Method

Depletable
Micro-layer

7 3 3

Variable
Micro-layer
Thickness

7 3 3

Length along
majority radial

extent
7 3 3

Thickness of 1-cell
size not required

7 3 3

Thickness not
based on water

3 7 3

Sub-grid scale
modeling not

required
3 7 3

Table 4. Comparison summary of microlayer model
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As can be seen from table 4, the proposed novel approach addresses all the disad-

vantages of both the triple line model as well as the whole microlayer models available

in the literature specifically for the cases under micro-gravity conditions.

3 Results and Discussion

Boiling results for a single vapor bubble in micro-gravity conditions is provided in this

Section with comparison to the results from Dhir et al.(2012) [7], who performed the

experiments on the ISS. The wall super-heat varied from 4°−7°C in the experiments.

In the reported simulations a constant wall super heat of 7°C is used with no liquid

sub-cooling. Perfluro-n-hexane is used as the test liquid, whose properties are given in

table 2. First, a grid convergence study is reported in Figure 33, where the resolutions

of 128x128, 192x192, and 256x256 are reported.
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Figure 33. Grid convergence study
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From Figure 33, it can be observed that 256x256 and 192x192 have converged.

However, although 128x128, reports some difference, the has a maximum percentage

difference between 128x128 and 192x192 at any point is < 4.8%. Thus 128x128 can

be considered to be a reasonable approximation. The domain size in each direction

is 0.064 meters, which makes the cell size ∆x = 5.0 × 10−4m for 128x128, ∆x =

3.33 × 10−4m for 192x192, and ∆x = 2.5 × 10−4m for 256x256. This corresponds

to 16 points inside the initial bubble along the diameter for 256x256, 12 points for

192x192, and 8 points for 128x128. As the 128x128 is computationally less expensive

compared to the finer grid sizes and the percentage difference is in an acceptable

range, 128x128 is chosen to be the default resolution for all the results reported from

here onward. The time-step is calculated automatically based on the CFL stability

criteria. It should also be noted that the sizeperim variable is set to a value of 0.04m for

the cases in Figure 33. The simulations are in good agreement with the experimental

results.

The assumption that contribution of the microlayer is proportional to the bubble

growth rate is a reasonable one. In microgravity conditions, the growth rate is ≈ t1/2

initially and then ≈ t1/3 as opposed to earth gravity in which case the growth rate is

≈ t1/2. This can be seen from Figure 34.
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Figure 34. Comparison of growth rate with respect to different powers of time

As seen in Figure 34, the t1/2 curve gives a good match initially, however it over

predicts the diameter later. For the t1/3 curve, the diameter is over predicted in the

initial phase, but gives a good match in the later stage. A linear combination of

these two powers gives the best match which follows t1/2 initially, and t1/3 later. The

sizeperim variable determines when to switch from t1/2 rate to t1/3 from the perspective

of the contribution of the microlayer. The change from 1/2 to 1/3 is mainly because

the bubble size is larger in microgravity conditions and its growth rate is lower. Under

earth gravity conditions, the bubble departs much earlier than in microgravity. For

example: The departure diameter for water is about 1.4 mm in earth gravity [4, 63],

but for similar conditions in reduced gravity, bubble departure was not observed [5].

As a matter of fact, the difference between 1/2 and 1/3 is small when the bubble

size is less than 1 mm. The physics behind this reduction in microgravity could

be attributed to the microlayer. As the bubble size keeps on growing, the size and

thickness of the microlayer increases. So, it would take longer to evaporate the higher
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quantity of liquid in the microlayer. Hence, it lowers the vapor volume flux from the

microlayer, and thus reduces the bubble size compared to the earth gravity case.

Other assumptions in this approach include the fact that the bubble shape is

spherical (as per the Olander and Watts equation), and the liquid in the microlayer

is stagnant. One final assumption is that the microlayer thickness does not depend on

the surface tension. The last two assumptions are somewhat related and are explained

below.

Typically, the fluid flow in the microlayer is driven by the pressure difference

between the liquid and vapor pressure, it is denoted by the below equation:

pl = pv − σκ−
A

δ3
(64)

The third term on the Right Hand Side (RHS) of equation 64 is the dis-joining

pressure, which arises from attractive forces between molecules in the fluid and the

solid, A is the is the dispersion constant relating dis-joining pressure to the film

thickness. This term is very small as these forces typically act in the range of few

molecular diameters (on the order < 1nm), and thus can be neglected. The surface

tension contribution only comes into the picture due to the second term on the RHS.

However, since the liquid film is almost flat, the curvature of the vapor-liquid interface

can be assumed to negligible, which makes the capillary pressure term σκ to be ≈ 0.

So the above equation reduces to:

pl ≈ pv (65)

As the pressure difference is almost negligible, it can be safely assumed that the liquid

in the microlayer is stagnant.

Next, the effect of the sizeperim variable is reported in Figure 35.
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Figure 35. Effect of variable sizeperim or sourceperim

As can be observed from Figure 35, as the value of sizeperim increases, the bubble

growth rate flattens at a lower position and with a lower slope. From Figure 35, it

can be seen that sizeperim = 0.035m gives a better agreement with the experimental

results, however, it should be noted that the experiments on ISS went through some

complications, and they were able to perform only one completed single bubble ex-

periment which makes the standard deviation high. These anomalies could certainly

add into the uncertainty of the experimental results itself. So, a recommendation of

sizeperim in the range of 0.035− 0.04m is a reasonable approximation.

Heat-flux as a function of the X-position at time, t = 15s is shown in Figure 36.
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Figure 36. Heat flux at time, t = 15s

As can be seen from Figure 36, a peak of the heat-flux can be observed at the

triple point as majority of the phase change takes place at this specific location. The

maximum heat-flux value as per the MoF simulations is 384.4W/m2 at t = 15s.

Similar trend is also observed at time, t = 60s in Figure 37.
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Figure 37. Heat flux at time, t = 60s

Dhir et al.(2012) [7] reports similar results, and the comparison would be provided

later in the Section along with the bubble shape. In Figure 37, at t = 60s, the peak of

heat-flux is at a higher value of the X-position in comparison to Figure 36 at t = 15s.

This is because at t = 15s, the bubble base radius is smaller, and as the bubble has

grown to a larger size, the bubble radius and hence the triple point is at a higher

X-value at t = 60s. The two time-values of t = 15s, and t = 60s, are chosen so that

comparison could be made to results from experiments by Dhir et al.(2012) [7], as

they reported results at the same two instants.

Next, the velocity vectors near the triple point is reported for time-instant of

t = 15s in Figure 38.
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Figure 38. Velocity vectors near triple point at time, t = 15s

Similar results for velocity vectors near triple point is also reported for time-instant

of t = 60s in Figure 39.
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Figure 39. Velocity vector near triple point at time, t = 60s

Both results in Figures 38 and 39 show that the velocity field is similar near the

triple point at the two time-instants.

Bubble shape along with temperature distribution comparison with experiments

and numerical simulations of Dhir et al.(2012) [7] at time, t = 15s are reported in

Figure 40.

Also reported in the Figure is the heat-flux comparison at that time instant as

a function of the X-position. Dhir et al.(2012) [7] reports the experimental and

numerical results on the left. The MoF simulation results are on the right. The

heat-flux for experimental results (shown with black line) do not show a peak at the

triple point due to insufficient resolution in the experiments. Similar comparison is

also reported for time, t = 60s in Figure 41.

It should be noted that the image on the left shows a unit of W/cm2 for the
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Figure 40. Comparison of bubble shape along with heat-flux and temperature
distribution at time, t = 15s between Dhir et al.(2012) [7] experimental and numerical
results (left) and Dhir et al.(2012) [7] Experimental and present MoF simulations
(right)
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Figure 41. Comparison of bubble Shape along with heat flux and temperature
distribution at time, t = 60s between Dhir et al.(2012) [7] experimental and numerical
results (left) and Dhir et al.(2012) [7] Experimental and present MoF simulations
(right)
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heat-flux, and the MoF simulation reports W/m2, this is because the image has a

typographical error. They report the correct results in their paper in the text, and

flux values in units of W/cm2 are too high and W/m2 values are the ones that makes

reasonable sense given the size of the heater they used. Dhir et al.(2012) [7] reports

a peak value of heat-flux of 574W/m2 at both t = 15s and t = 60s time instants,

and the MoF simulations reports 384W/m2 at t = 15s and 388W/m2 at t = 60s time

instants. These values are in comparable range.

The results validate the reported microlayer approach formulated for micro-gravity

simulations. This approach considers the microlayer length to be along almost the

entire radial extent of the bubble base, and the microlayer thickness is variable with

time and radius of the bubble base. The depletion of the microlayer is incorporated

using the evaporation term, so the microlayer follows a similar trend as observed in

experiments. This approach could be used for any test liquid under micro-gravity

conditions, and there is no requirement to ‘model’ the microlayer, as the contribution

of the microlayer is being considered, so less computations are needed making the

approach faster as well.

80



CHAPTER V

DATA-DRIVEN PREDICTION FOR NUCLEATE BOILING

1 Introduction

The interest in nucleate boiling is mainly due to high heat flux generated at consid-

erably lower wall superheats. This makes nucleate boiling an efficient mode of heat

transfer for cooling applications including cooling in microgravity where an efficient

medium of heat transfer is required to make the components more compact.

The typical nature of the boiling curve during the nucleate boiling phase generally

shows a sharp increase in the heat flux with increase in wall superheat up to a

maximum value known as Critical Heat Flux (CHF). Beyond the CHF, a decrease in

the heat flux value is observed with an increase in wall superheat [83]. It is difficult

to control the heat flux near the CHF because nucleate boiling is a complicated

process that comprises of multiple mechanisms such as liquid-vapor phase change,

bubble dynamics, contact line dynamics, and nucleation site densities [10]. These

mechanisms further depend on experimental parameters such as wall superheat, liquid

sub cooling, gravity, surface roughness and thermo-physical properties of the liquid

and vapor in question. One of the goals of nucleate boiling research has been to

provide a generalized prediction of the heat flux based on other experimental input

parameters such that it can be maintained at an optimum value close to the CHF [4].

Empirical correlations have been reported in the literature, however they lack the

accuracy for a general mechanistic prediction [10].
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Empirical Correlations

Multiple studies related to experiments, numerical simulations and predictive cor-

relations of nucleate boiling have been reported in the literature [84]. Numerical

simulation studies are typically performed for specific cases, and are computationally

expensive. Additionally, simulations are challenging due to complexities arising from

phase change and bubble dynamics. Similarly experiments are also performed for

specific cases. Predictive correlations have also been reported in literature, most of

which were developed by using empirical coefficients. Rohsenow (1952) [8] proposed

one of the first correlations in nucleate boiling. He related the heat flux, q̇ to the wall

superheat, ∆Tw by the assumption of a single phase forced convection problem.

cpl∆Tw
hfg

= Cs

 q̇
√

σ

g (ρl − ρv)
µlhfg


1/3

Pr1or1.7
l (66)

In Rohsenow’s model Cs depends on the heater material and fluid combination. Later

Liaw and Dhir (1989) [85] improved Rohsenow’s model. In the improved model Cs

varies linearly with contact angle.

q̇

√
σ

g(ρl − rhov)
µlhfg

= C−3
s

[
cpl∆Tw
hfg

]3

Pr−3or−5.1
l (67)

In equations 66, and 67, cp is the specific heat, q̇ is the heat-flux, hfg is the latent

heat of vaporization, σ is the surface tension, g is the acceleration due to gravity,

ρl, ρv are the liquid phase and vapor phase densities respectively. µl is the viscosity

of the liquid. The exponent value of −3 for water and −5.1 for all other liquids to the

Prandtl Number (Prl) in equation 67 were obtained empirically. Rohsenow proposed

that Cs depends on the heater material and fluid combination, but later Liaw and

Dhir (1989) [85] showed that Cs varies linearly with contact angle.

Stephan and Abdelsalam (1980) [9] also provided a correlation by determining the

important fluid property groups using regression analysis. The correlation provided
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by them considers bubble departure diameter (Dd) as a variable, which is difficult to

be considered as an input parameter for predicting heat flux in industrial applica-

tions. The correlation by Stephan and Abdelsalam does not consider surface param-

eters while Rohsenow’s correlation implicitly considers surface contribution through

a proportionality constant Cs. Stephan and Abdelsalam’s correlation does not con-

sider gravity but Rohsenow’s equation considers gravity. Other correlations related

to nucleate boiling have been proposed by studies of Fritz [11], and Gorenflow [12]

among others, however these correlations are specific to sub process mechanisms such

as bubble dynamics and nucleation site densities. Thus, these correlations do not aid

in predicting the general heat flux. Rohsenow’s corrected equation by Liaw and Dhir

is a widely adopted model for the prediction of heat flux.

Machine Learning Techniques

Multiple studies on nucleate boiling experiments have been performed. Significant

amount of data from these experiments is generated. These data can be exploited to

identify new features and build better prediction models . It has been shown that

Machine Learning models have been effective in their predictive capabilities across

multiple fields. Computer Vision [86], Natural Language Processing [87], Software

Engineering [88–92], Epidemiology [93] and Environmental Sciences [94] are some of

the fields in which it has been used with great success. Machine learning models

including Artificial Neural Networks (ANNs), have been used for prediction in fluid

flow and heat transfer based problems too. Alizadehdakhel et al. (2019) [95] per-

formed experiments, Computational Fluid Dynamics (CFD) simulations and neural

network predictions of multiphase flow pressure drop in an unsteady problem. Jam-

bunathan et al.(1996) [96] used back-propagation algorithm based neural networks to

predict convective heat transfer coefficient in a duct. Ling et al.(2015) [97] evaluated

different machine learning algorithms for prediction of turbulence modeling. Rajen-
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dran et al.(2018) [98] performed vortex detection on unsteady CFD simulations using

recurrent neural networks. Singh et al.(2018) [99] combined numerical simulations

with ANNs to perform thermal modeling in HVAC systems. Mohan et al.(2018) [100]

implemented deep neural networks to build a Reduced Order Model (ROM) using

dimensionality reduction technique like Proper Orthogonal Decomposition (POD).

They use high-fidelity Direct Numerical Simulation (DNS) data to train the model.

This is significant since DNS is computationally expensive specifically for turbulent

flows [101, 102]. Naphon et al.(2016) [103] applied ANNs to analyze heat transfer of

spirally fluted tubes. Guo et al.(2016), [104] used convolution neural networks for

steady flow approximation of flow over vehicles. They train the model with veloc-

ity field data over primitive shapes like triangles, quadrilaterals, hexagons, at steady

state. Then the model predicts the velocity field of multiple car samples provided

as images. Wang et al.(2017) [105] used Random Forest algorithm to reconstruct

discrepancy between RANS stress modeling and DNS data.

Machine learning models have also been used in predictions of boiling related

research works. Liu et al.(2018) [106] predicted heat transfer from near wall local

features using simulation data from four different heat flux values for boiling. They

showed that the neural network model works well in case of both interpolation and

extrapolation cases with respect to the training values provided. Since the training

data for their neural networks are generated from simulation data, the same method

cannot be used for experimental data because the type of input parameters Liu et

al.(2018) uses for training for their model, such as pressure gradient and momentum

convection are hard to determine a-priori in experiment. Hassanpour et al.(2018) [107]

compared different Artificial Intelligence (AI) techniques for prediction of boiling heat

transfer coefficient of alumina water based nano-fluids. Their results confirmed that

diameter of nano-particles, its weight concentration in base fluid, wall superheat, and

operating pressure are the best independent variables for estimating the pool boiling
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heat transfer coefficient of water-alumina nano-fluid. Mazzola (1997) [108] integrated

ANNs and empirical correlations for predicting the CHF for subcooled water. They

provided a range for the variables determined from curve fitting techniques in or-

der to predict the CHF. They report that their method would likely be suitable for

thermal-hydraulic and heat transfer data processing. Alimoradi et al.(2017) [109]

used ANNs to study optimization of subcooled flow boiling in a vertical pipe. They

determined that there is an optimum condition which leads to minimizing the surface

temperature and maximizing the averaged vapor volume fraction. They report that

this optimization technique could be used to avoid burning the walls while main-

taining maximum vapor volume fraction. Scalabrin et al.(2006) [110] modeled flow

boiling heat transfer of pure fluids using ANNs. They report improvements to the

conventional correlations in flow boiling using ANNs. Qiu et al.(2020) [111] used

ANNs model to predict mini/micro-channels saturated flow boiling heat transfer co-

efficient. They report that the ANNs model did extremely well when a working fluid

data was included in the training dataset, and poorly when a working fluid data was

excluded from training dataset. Zhou et al.(2020) [112] compared ANNs predictions

with other machine learning models for prediction of flow condensation heat transfer

coefficients. They report machine learning models performed better than generalized

correlation equation. Bubble images have been used by Suh et al.(2021) [113] as

input to predict pool boiling characteristics as well. None of these works considered

variation in gravity, and very few of them use data from multiple test liquids. Mc-

Clure et al.(2021) [114] did consider gravity in order to predict heat flux, however

they only considered four input parameters: wall superheat, gravity, surface tension,

pressure. They did not consider liquid subcooling, vapor and liquid densities, thermal

conductivity and other parameters which will be shown to be significant in the feature

importance study presented in this work. This work uses deep learning to create a

model for nucleate boiling heatflux with a comprehensive set of all of the significant
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input parameters including gravity for five different test liquids. These input param-

eters were determined based on four different feature importance techniques. So far

according to the author’s knowledge no other study has done this.

Limited dataset size is another issue that needs to be addressed. Using a high

number of input parameters while the number of training samples are low could

reduce the model accuracy as the dimensionality for the model to learn would be

high. To solve that problem, we propose to use a combination of feature selection

techniques and dimensional analysis to reduce the number of input parameters. This

helps in keeping the information of each variable intact, and yet reducing the number

of parameters which aids in model convergence and increasing model accuracy, and

reduces training time [115]. In this work, we use one algorithm from each of the

three feature selection methods: Wrapper Methods, Filter Methods, and Embedded

Methods.

Wrapper Methods: This method selects features by comparing the model’s

accuracy while (a) the specific feature is selected, and (b) the specific feature is

not selected. It uses a predictive model to rate each feature. The entire feature

set once including and once excluding the feature is used to train a model, both

are tested on an unseen dataset and compared for increase or decrease in error to

determine the significance of that particular feature. Although wrapper methods are

computationally expensive, they can provide the best performing feature set for that

particular problem [116]. Forward sequential wrapper methods where the model starts

with an empty set, then adds features as the performance varies [117] and Backward

sequential wrapper methods where the algorithm starts with all available features,

then it removes the feature whose elimination increases the model accuracy [118] are

common types of wrapper methods.

Filter Methods: Filter methods use statistical quantities to provide a score to

each feature. These scores reflect the degree of correlation of each feature with the
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target variable. This method is fast to compute, but it may fail in capturing the

best features if they are not statistically correlated to the target variable.Common

wrapper methods include F-score ( [119]), Mutual Information [120], and Pearson

Correlation [121] among others.

Embedded Methods: In this method, feature selection is part of the model

construction process. It is implemented by algorithms that have their own built-in

feature selection methods. LASSO [122] (Least Absolute Shrinkage and Selection

Operator) and Ridge regression technique [123] are popular examples of embedded

methods. LASSO for example, constructs a linear model by penalizing the regression

coefficients with a L1 penalty. This reduces some coefficients to zero. Features with

non-zero regression coefficients are ’selected’ by the LASSO algorithm.

The accuracy of machine learning models depends on the quality and quantity

of the dataset. In many cases, like the study of nucleate boiling, the dataset is very

limited while the number of features involved is large, which can be problematic to

train the model ( [107], [110], [124]). To address the problem we propose an approach

to reduce the number of features and to improve model prediction accuracy. The

approach consists of two steps:

• Step 1: Reduce number of features from 12 to 8 by using feature selection

techniques as mentioned above.

• Step 2: Using the 8 selected variables from Step 1, we perform dimensional

analysis to generate 4 non-dimensional Π terms.

In this way, we reduce the dimensionality in the problem. In Step 1, we use a total

of four feature selection techniques: one from each of the three methods, namely,

the Backward Elimination Technique (Wrapper Method), Pearson Correlation (Filter

Method) and LASSO (Embedded Method) and an additional manual-wrapper type

method based on results of ANNs model which was trained by removing one feature
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at a time. Based on the combined conclusion from all the techniques we select the

eight variables for performing dimensional analysis in Step 2.

In this work, we use ANNs to predict nucleate boiling heat flux. Comparisons

are made between models that are trained based on (1) a consolidated experimental

dataset using all 12 parameters as input and (2) the reduced dataset with 3 non-

dimensional Π terms as input. The effectiveness of our approach is highlighted by the

change in the reported error metric MAPE (Mean Absolute Percentage Error) values.

We compare the ANNs predictions for both datasets against other machine learning

models such as Random Forest-Regression (RFR) and Extreme Gradient Boost (XG-

Boost or XGB) algorithms. Additionally, we compare the ANN model prediction to

a well known boiling correlation prediction (Liaw and Dhir [85]-corrected Rohsenow’s

equation [8]). Our results show that using feature selection study and dimensional

analysis to reduce the number of parameters is a viable option to generate accurate

predictions from machine learning models for a limited dataset size. The remainder

of the chapter is divided as follows: Section 2 provides the methods description and

reports the details on the dataset, a discussion on the feature importance study and

dimensional analysis performed. Section 3 provides ANNs prediction results using

Dataset-B and discusses the comparison of ANNs prediction with other machine

learning models for both Dataset-A and Dataset-B. It also includes discussion

on effect of parameters and parameter significance for different regimes and condi-

tions. Additionally, comparison of heat flux prediction is provided between ANNs

and Rohsenow’s correlation.

2 Method

This section provides details on the methods used. Description of ANNs methodology,

ANNs architecture, the full dataset used, details pertaining to the feature selection

study, and the dimensional analysis description.
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ANNs

A neural network [125] is a collection of mutually connected units or neurons. Each

neuron in a network has a single task, and it is connected to multiple other neurons

in the same layer. A regular neural network with four inputs X1, X2, X3, and X4

(for example density and viscosity in the fluid flow cases) is shown in figure 42. The

first layer (to the extreme left) is called the input layer which contains the features.

Figure 42. Regular Neural Network

Also shown in figure 42 is the output layer shown on the extreme right consisting

of only one unit named O which corresponds to the label (for example: heat flux

in this work). The layers shown in the middle are hidden layers. In figure 42 two

hidden layers are shown, each with two neurons. For complicated problems multiple

layers are usually employed. Also the input and output layers can consist of multiple

features and labels. A step-by-step description of the process is provided below. In

our case, we train the model for 2500 epochs or iterations. Model architecture for

the boiling parameters case that is used in this work for Dataset-A consists of 12

input parameters. The output layer at the extreme right contains one unit which

corresponds to the heat flux.

A step wise description of the ANN process is given below:

Step 1: Each Neuron attaches a weight to each of its inputs to create a linear

function of the them. For each layer, the values at the hidden neurons are computed
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by using the weights, biases and activation functions (to address non-linearity). So

for neurons in layer l = 2:

z(2) = W (1)x+ b(1) (68)

a(2) = f(z(2)) (69)

The equation for z(2) (equation 68) could also be written in an expanded form as:

z(2) =

W (1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 +W

(1)
14 x4

W
(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 +W

(1)
24 x4

+

b(1)
1

b
(1)
2

 (70)

where z(l) is the value of the neuron in layer l, W denotes the weight and superscript

of W denotes the layer number. b denotes the bias. The first digit in the subscript

of W denotes the index of the neuron in the next layer and the second digit denotes

the index of the neuron in previous layer. For neurons in layer l = 3, the equations

would be:

z(3) = W (2)a(2) + b(2) (71)

a(3) = f(z(3)) (72)

Here a is the activation function. In our case it is the ReLU function which is an

abbreviation for Rectified Linear Unit. This function returns 0 if it receives any neg-

ative input, but for any positive value x, it returns that value back. Mathematically,

ReLU can be depicted as:

a(x) = max(0, x) (73)

A graphical representation of ReLu is shown in figure 43.

Step 2: The weight values associated with each neuron is updated to create a

model during training with the aim of minimizing the loss function. In our model we

use ‘Mean Absolute Error’ (MAE) as the loss function. Loss function for our model

is given as:

L(y, ŷ) =
1

m

m∑
i=1

(yi − ŷi) (74)

90



−6 −4 −2 2 4 6

2

4

6

x

y

Figure 43. Graphical Representation of ReLU

Here ŷ is the output produced by the model, and y is the target value. The goal of

the model is to minimize the loss function L.

Step 3: Based on the value of the loss function the model determines how much

to adjust the weights and biases so that the error can be minimized. This is done using

the Back-propagation algorithm. The determination of the degree of adjustment to

the weight functions is done by computing the gradient of the loss function with

respect to the weight values by using the chain rule. For a single weight W
(l)
mn, the

process can be depicted mathematically as:

∂L

∂W
(l)
mn

=
∂L

∂z
(l)
m

∂z
(l)
n

∂W
(l)
mn

(75)

But, it is already known that:

z(l)
m =

s∑
n=1

W (l)
mna

(l−1)
n + b(l)

m (76)

where s is the number of neurons in layer (l − 1). Differentiating,

∂z
(l)
m

∂W
(l)
mn

= a(l−1)
n (77)

Plugging into equation 75, we get:

∂L

∂W
(l)
mn

=
∂L

∂z
(l)
m

a(l−1)
n (78)
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Similar set of equations are also applied for the bias functions as well.

Step 4: Once the partial derivatives of the weights are calculated at each epoch,

an optimizer is used to reduce the Loss function. In our problem we use the well-

known RMSprop or ‘Root Mean Square Propagation’ optimizer. The process in which

RMSprop minimizes the Loss function is shown below:

Wt+1 = Wt −
α√
St + ε

· ∂L
∂Wt

(79)

where

St = βSt−1 + (1− β)

[
∂L

∂Wt

]2

(80)

Here W is the weight, α is the learning rate with a default value of 0.001. β is a

parameter which determines the decay of the learning rate, it has the default value

of 0.9. ε is the fuzz factor which ensures a division by zero or the vanishing gradient

problem does not arise. It has a default value of (1E− 6). t is the time-step or epoch

in consideration which makes (t−1) to be the previous epoch. Steps 1-4 are repeated

in each epoch.

Other Machine Learning Models

Here we provide a brief description of the two other machine learning models used.

• Random Forest [126]: Random Forest is based on the decision tree algorithm.

Decision trees are predictive models that use a set of binary rules to calculate

a target value. It estimates the target value with a series of questions to the

data, each question narrowing the possible values until the model is accurate

enough to make a prediction. The criteria for the decision is based on the Mean

Squared Error or MSE, which is given as:

MSE =
1

N

N∑
i=1

(fi − yi)2 (81)
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where N is the number of data points, fi is the value returned by the model,

and yi is the actual value for data point i.

Multiple Decision Trees are used together in a random forest algorithm along

with a statistical technique of ensemble learning called “bagging” which is a

way to decrease the variance in the prediction by generating additional data

for training using combinations with repetitions to produce multiple sets of the

original data. By combining the information from each decision tree the random

forest generates an ensemble model, which then predicts the final output. It is

better than single decision trees as it reduces over-fitting.

• Extreme Gradient Boosting [127]: Similar to bagging, another type of ensemble

learning technique is called “boosting”. It uses weighted averages in an iterative

way. Similar to other gradient boosting algorithms, Extreme Gradient Boost

also tries to reduce the MSE. The main feature of Extreme Gradient Boosting

is in its ability to penalize the complexity of trees.

Random Forest regression and Extreme Gradient Boosting has been previously

used by Zhou et al. [112] in predicting flow condensation heat transfer coefficient in

mini/micro-channel. They showed that both these methods provide accurate results.

There are five hidden layers between the input and the output layer. The number

of neurons in the 5 hidden layers are set to 1000, 500, 250, 100, and 50. We tested

different combinations of number of layers, neurons, epochs, value of learning rate, for

hyper-parameter tuning. The reported model provided the optimum results, hence

this architecture was chosen for the study. All codes were developed using Python

programming language on Tensorflow [128] and Keras [129] framework using Sci-kit

learn [130] package.
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Description of Data

The original 12-parameter dataset which is used to predict the heat-flux is denoted

as Dataset-A, and the reduced data-set which uses 3 non-dimensional Π terms to

predict the fourth non-dimensional heat-flux term as Dataset-B.

For Dataset-A, we consolidated 231 data points from multiple publications,

namely: Dhir (2005) [10], Oka et al.(1995) [131], Merte et al.(1996) [132], Straub et

al.(2001) [133], Raj et al.(2012) [17], and Warrier et al.(2015) [18]. Details about

the dataset are provided in table 5. It should be noted that only ranges of features

pertinent to experimental conditions are provided in the table. Other features which

include the fluid properties are not included since they are constant values for each

liquid.

These data points cover 12 parameters with a wide range: 5 different gravity values

(ranging from earth gravity to micro-gravity), 10 different liquid sub-cooling values, 5

different surface roughness values, 230 different wall superheat values (where negative

wall superheat signifies natural convection stage of the boiling curve) and 4 different

liquids which includes water, perfluoro-n-hexane, CFC-113 and n-pentane. Out of

the 231 samples, a random 80%− 20% split was made for training data and testing

data respectively. On the training set data, a further validation split of 80% − 20%

was applied. Data was scaled using the standard scaling equation:

z = (x− µ)/s (82)

where z is the scaled output, x is the input prior to scaling, µ is the mean, and s is

the standard deviation. The 12 parameters are given in table 6 with their respective

symbols and units. The details pertaining to the highlighted portions and the column

named “Contribution” in table 6 has been discussed later in the chapter.
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Range
of

variables

Dhir
(2005)
[10]

Warrier
et al.
(2015)
[18]

Raj
et al.
(2012)
[17]

Straub
et al.
(2001)
[133]

Merte
et al.
(1996)
[132]

Oka
et al.
(1995)
[131]

Total

Heatflux
(W/m2)

1439 -
115,895

40 -
39,300

3230 -
391,300

106,440
-

404,000

9430 -
80,700

4826 -
221,171

40 -
404,000

Gravity
(m/s2)

0.098
- 9.8

2.45E-
7 -
9.8

9.8E-6
- 9.8

9.8E-4
- 9.8

9.8E-4
- 9.8

9.8E-2
- 9.8

2.45E-
7 -
9.8

Wall su-
perheat
(◦C or K)

6- 12
-15.8 -
11.7

14.1 -
39.1

10.6 -
40.4

11.3 -
39.8

3.04 -
54.26

-15.88
- 54.26

Liquid
subcool-

ing
(◦C or K)

0 10.55 11 17 11 3 - 19 0 - 19

Surface
rough-
ness

(µ-m)

8.5 16.3 1 NA(0) NA(0) 0.1
0 -
16.3

System
pressure
(KPa)

101.32 125 101 102 150 101.3
101 -
150

Number
of

Samples
10 19 17 9 9 167 231

Liquid Water
pfnh /
FC72

pfnh /
FC72

R113 R113

n-
pentane,
R113,
Water

Water,
pfnh,
R113,
n-

pentane

Table 5. Range of values from each source
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Parameter Symbol Units Contribution

Heat flux q̇ W/m2 Prediction variable

Wall Superheat ∆Tw K 40%

Gravity g m/s2 28%

Liquid subcooling ∆Tsub K 22%

Vapor Density ρv Kg/m3 3%

Thermal Conductivity κl W/mK 2%

Surface Tension σ N/m 1%

Liquid Density ρl Kg/m3 1%

Dynamic Viscosity of Liquid µ N − s/m2 1%

Specific Heat Capacity of Liquid cp J/KgK 1%

Surface Roughness r µm 1%

Latent Heat of Vaporization L J/Kg 0%

System Pressure P Pa 0%

8 parameters selected for dimen-
sional analysis based on feature
importance study

4 parameters selected
as repeating variables

Table 6. 12 parameters from the original dataset

A flowchart of the entire parameter reduction procedure is provided in figure 44.

Feature Importance study

A deeper look at Dataset-A shows that we have 12 different parameters which

are used in predicting one parameter. This means the model has twelve degrees of

freedom. It can be problematic to train an ANNs model with 12 parameters but less

than 200 data points. Hence, with the goal of reducing the number of parameters we

first perform a feature importance study. We use four feature selection techniques:

one from each of the wrapper, filter and embedded methods, and one additional

manual wrapper method based on ANNs model prediction result.

We first report the results for the manual wrapper method. The ANNs prediction

is used as the basis for this method. Here, ‘Mean Absolute Percent Error’ (MAPE)
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Figure 44. Flowchart of parameter reduction

value is treated as the error metric, it is calculated as:

MAPE =
1

n

n∑
i=1

∣∣∣∣Ai − FiAi

∣∣∣∣ (83)

where A is the actual value, F is the predicted value and n is the number of samples

predicted. In order to understand the contribution of each parameter, we perform an

ablation study by following the below steps:

• Step 1: Run the ANNs model by training on all 12 parameters of Dataset-A.

It reports a MAPE of 25.77% (Details are provided in section 3).

• Step 2: Remove one parameter and train the same model architecture on the re-

maining 11 parameters. Record the MAPE value as it indicates the significance

of the parameter that was left out.

• Step 3: Add the previously left out parameter back and remove a different

parameter and perform Step 2.

• Step 4: Repeat step 2 and 3 for all parameters.
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• Step 5: Compare the MAPE values for each of the runs.

Based on the degree of change in MAPE, the effect of each parameter can be de-

termined. Figure 45 shows the error between the MAPE in each case when one

parameter is left out of the training set and the initial Dataset-A which include

all parameters. This shows the effect of leaving out each parameter on the MAPE.

Based on the results in figure 45, the percent contribution for each parameter was

Figure 45. Feature Importance Study: Effect of leaving out one variable on MAPE
using ANNs

calculated. The contribution of each parameter in order of decreasing significance

and the most important eight parameters are highlighted in table 6 in the column

named “Contribution”.

Next, we perform a second feature importance study technique called Pearson

Correlation [121]. This method determines the correlation between each variable
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calculating the correlation coefficient, r:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(84)

. Based on the correlation coefficient values for each variable in Dataset-A, a

heatmap was generated which shows the degree of correlation among each variables

in figure 46.

Figure 46. Feature Importance Study: Correlation Factor for Pearson Correlation

In figure 46, each cell reports the correlation factor between the two variables

corresponding to the row and column that the cell belongs to. So, for the heat flux

correlation, one should look at the right most column. The high correlation coeffi-

cient between density and viscosity is in agreement with the physics, since density is
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linearly proportional to viscosity. Similarly, high coefficient values between thermal

conductivity and latent heat of vaporization also makes sense in the nucleate boiling

space as both these variables are related to the total heat coming into the liquid.

Regarding the heat flux correlations, the results reported using Pearson Correlation

technique is in good agreement to the ablation study reported earlier. Wall super-

heat, Gravity and Liquid subcooling are determined to be the three highest correlated

variables with heat flux.

Out of the 5 parameters with 1% contribution, surface tension was selected due

to to its significance in nucleate boiling heatflux [134], and since its percentage being

a little higher than the other ones (which was rounded off to 1%). Liquid density

was the other parameter selected to formulate density ratio between liquid and va-

por densities as a dimension-less parameter in the dimensional analysis (details on

dimensional analysis are described in section 2), since density ratio has been shown

to be a significant parameter for nucleate boiling in other studies [10].

Additionally, we used two other feature importance study techniques, namely:

Backward Elimination technique and the LASSO (Least Absolute Shrinkage and Se-

lection Operator) technique. All methods report the same conclusion that Wall Su-

perheat, Gravity and Liquid subcooling are the three most significant parame-

ters in predicting nucleate boiling heat flux. Details about the Backward Elimination

and the LASSO techniques are not included for brevity.

Effect of dimensional analysis

Based on the results from the feature importance study, we initially determined the

three most significant parameters. So we start by training the ANNs model with the

three significant parameters, namely: Wall Superheat, Gravity and Liquid subcooling.

The MAPE reported by training the ANNs using only these 3 parameters was 68.32%

which is much higher than the MAPE with 12 parameters of 25.77%. This shows that
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3 parameters are not enough to construct an accurate functional mapping by ANNs.

The model needs the effect of more parameters, with reduced number of parameters.

So we select the eight most important parameters including heat flux to perform

dimensional analysis [135] as highlighted in the black colored box in table 6 with the

goal of reducing the number of parameters from 8 to 4 non-dimensional Π terms. Out

of these eight, the parameters that were selected as repeating variables are highlighted

in table 6 with violet cell background color. The Π terms generated as a result of

performing dimensional analysis are shown in table 7.

Π1 Π2 Π3 Π4

∆Tsub
∆Tw

g(1/4)σ(5/4)

κl∆Twρ
(1/4)
v

ρl
ρv

log

(
g(9/4)ρ

(1/4)
v

q̇σ3/4

)

Table 7. Π terms generated by dimensional analysis

3 Results and Discussion

Once the Π terms are generated, the next step is to train the model using Π1, Π2

and Π3 as input to predict the non-dimensional heat flux Π4. Here a log function was

used in Π4 to reduce the range of the non-dimensional gravity values ( microgravity is

in the range of ∼ 1.0E − 6m/s2) and earth gravity is ∼ 9.8m/s2). From the original

Dataset-A we generate a new dataset Dataset-B which has the 4 non-dimensional

Π terms and their values for the same 231 samples.

Model is trained based on Dataset-B, with only one change to the reported

model in section 2. Since the log function was used in Π4, it generated many negative

values. Hence, to incorporate that, the ‘ELU’ activation function or Exponential

Linear Unit instead of ‘ReLU’ was implemented. ELU unlike ReLU can produce
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negative outputs. ELU is defined as:

f(x) =

 x x > 0

α · (exp(x)− 1) x ≤ 0

 (85)

where α is the scale for negative factor and is set to the default value of 1.0 in our

code.

The results for the Π4 predictions of 46 samples using ANNs are provided in figure

47. The Ground Truth values (actual Π4 values) are plotted along the x-axis, and

Figure 47. ANNs prediction for Π4: Dataset-B

the model predictions are plotted along the y-axis. The points adhering closer to the

center diagonal line passing through the origin depicts higher accuracy. The MAPE

reported for ANNs model using non-dimensional Π terms is 9.12%, which reduces
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to 6.43% after removing 3 outlier predictions (the top 3 with the highest difference

between predicted and actual results were chosen to be removed in this case).

Next, we compare results from different models that are trained based on differ-

ent dataset. In section 3 we compare ANNs with Extreme Gradient Boost (XGB)

and Random Forest-Regression (RFR) algorithm predictions using Dataset-B. In

Section 3 we compare the prediction results with Dataset-A for ANNs and other

machine learning models. In section 3, we provide the comparison of ANNs prediction

with that of Rohsenow’s correlation.

Comparison with other machine learning models

Two new models are trained using Dataset-B to predict non-dimensional heat flux

Π4. The predictions for Π4 using XGB and RFR algorithms are provided in figure 48.

The XGB model has an MAPE value of 16.31% which is higher than 9.12% from the

ANNs model. Random Forest-Regression reports a MAPE of 18.71% which is higher

than those from the ANNs model and the XGB model. MAPE for XGB prediction

Figure 48. XGB (left) and RFR (right) predictions for Π4: Dataset-B

for Π4 using Dataset-B for 46 samples is 16.31% which is higher than 9.12% of
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ANNs.

Random Forest-Regression reports a MAPE of 18.71% for Dataset-B which is

higher than 9.12% of ANNs and 16.31% of XGB. As can be seen from figure 48, the

predictions are very similar for both models with some minor differences.

Comparison with 12 parameter dataset predictions

To highlight the effectiveness of dimension reduction we compare results from the

ANNs model trained using Dataset-A and from ANNs model trained using Dataset-

B. Prediction was made over the testing dataset of 46 independent samples for

Dataset-A. The results are shown in figure 49. In the case of Dataset-A, the

Figure 49. ANNs prediction for Heat flux: Dataset-A

MAPE value is 25.77%. After excluding two outlier samples MAPE reduces to

14.4%. The outliers did not have any specific correlation, they are for different liq-
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uids with different gravity, wall superheat and liquid subcooling values, indicating

that the outliers do not conform to any specific type which the model is unable to

predict correctly. In comparison, the prediction error for Dataset-B using ANNs

was much lower at 9.12%.

Next, we provide the predictions from the XGB and RFR model for Dataset-

A. Prediction was made over the testing data-set of 46 independent samples as in

Dataset-B. The results for the XGB and RFR prediction are shown are shown in

figure 50.

Figure 50. XGB (left) and RFR (right) predictions for Heat flux: Dataset-A

The corresponding MAPE values for XGB prediction for heat flux for Dataset-A

is 42.19% which is higher than the 25.77% of ANNs. In comparison, the prediction

for Dataset-B using XGB was much lower at 16.31%.

For Dataset-A, RFR reports a MAPE of 44.20% which is higher than 25.77%

of ANNs and 42.19% of XGB. In comparison, the prediction for Dataset-B using

RFR was much lower at 18.71%.

A comparison between figures 48 and 50 shows that the predictions for Dataset-

B in figure 48 are much closer to the center line and hence more accurate than the
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predictions for Dataset-A in figure 50. This can also be seen from the MAPE value

comparisons.

A summary of the comparison of the MAPE values along with standard deviations

of the MAPE for the machine learning models using both Dataset-A in predicting

heat flux and Dataset-B in predicting Π4 for the same 46 samples is provided in

table 8. Here, the standard deviation, φ is calculated as:

φ =

√∑
(xi − µ)2

N
(86)

where N is the number of the samples, xi represents the values from the ith sample,

and µ is the mean. The 46 samples were selected prior to the training process for

all cases shown in table8. The selection process was completely random, however the

same seed value was used for all methods so that the exact same samples are chosen

to be included in the test set for all models. This would maintain a fair comparison

for the predictive capabilities across the models.

Model
Dataset-A Dataset-B

MAPE Standard Deviation MAPE Standard Deviation
ANNs 25.77% 61.07 9.12% 16.28
XGB 42.19% 66.59 16.31% 28.49
RFR 44.20% 94.11 18.71% 32.95

Table 8. MAPE and standard deviation comparison of machine learning models for
46 samples using Dataset-A and Dataset-B

From the results in table 8 it is evident that the ANNs model reports the most

accurate predictions for both Dataset-A and Dataset-B. The prediction for ANNs

using the Dataset-B is considerably more accurate than that using Dataset-A.

This trend holds true for XGB and RFR algorithms as well. This suggests that

performing a feature importance study and dimensional analysis, which resulted in

the reduction of the number of features to 3 from 12, improved the accuracy of models.
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Analysis of Predictions:

Now we perform analysis to generate physically meaningful insights from the data.

Effect of gravity

The model learns the physics-based behavior from the data. This can be verified by

considering the example of gravity and its effect on heat-flux. Typically experiments

have shown that keeping other parameters constant, if gravity is reduced then a re-

duction in heatflux is observed ( [17,18,132]). For the model prediction, we consider

two sample points from the unseen test set. The two points are for the same liquid

(pfnh) and uses all other parameters of similar value (including wall super heat of

21.5C), the only difference between the two datapoints is gravity value. One is mi-

crogravity, and one is earth gravity. The ground truth data for gravity and heatflux

and the ANN model prediction of heatflux for the two points are shown in table 9.

Gravity
(m/s2)

Actual
Heatflux
(W/m2)

Predicted
Heatflux
(W/m2)

Percent
difference
in MAPE

9.8 215000 215755.34 0.35%
9.8E-6 30840 24687 19.94%

Table 9. Effect of gravity on heatflux

As can be seen from table 9, the ANN model predicts the trend of heatflux reduc-

ing with gravity. This trend has been verified by multiple experiments ( [18,132,133]).

The error for the earth gravity case is less than 1%. Although the error for the micro-

gravity case is higher at 19.94%, this error is similar to the state-of-the-art scaling law

model of Raj et al. [17] for microgravity conditions which provides an error of 20% for

heat flux predictions. However, it should be noted that the scaling law model for [17]

has been tested only for microgravity conditions. The ANN model predictions have
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tested for all conditions. Additionally, the higher error for microgravity case can also

be explained by the lower number of data points in microgravity conditions. With

more experimental data available, the model accuracy could be further improved.

This can be considered as part of a future work.

Effect of wall superheat

Next, we consider the effect of wall super heat on heatflux. From the unseen test

set, we select 4 sample datapoints which are for the same test liquid (water) and

uses all other parameters of similar values, the only difference is in the wall super

heat values. Experiments have shown that heat-flux increases with wall-super heat,

and this could be attributed to the additional supply of heat due to the increased

temperature difference. The ground truth data for wallsuper heat and heatflux and

the ANN model prediction of heatflux for the two points are shown in table 10.

Wall
superheat

(C)

Actual
Heatflux
(W/m2)

Predicted
Heatflux
(W/m2)

Percent
difference
in MAPE

10.88 31693.08 32111.77 1.32%
17.75 70102.91 72507.24 3.42%
20.21 103163.9 108982.7 5.64%
21.20 126648.9 126623.8 0.019%

Table 10. Effect of wall superheat on heatflux

As can be seen from table 10, the ANN model learns the behavior that heatflux

increases with increase in wall superheat. Additionally, the accuracy of the model

prediction is high which is evident from the low MAPE values. This shows that

the model learns the behavior of individual parameters with heatflux and creates a

universal functional mapping for all the parameters with heatflux.
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Critical Heat Flux (CHF)

Rayleigh Taylor instabilities occurs when a fluid of low density is pushing or acceler-

ating a fluid of higher density, it occurs due to continued acceleration, for which the

velocity is significant. In case of boiling, Rayleigh-Taylor instability starts to have an

effect when the heatflux is close to the CHF, and then continues through transitional

boiling and later in film boiling ( [136,137]). This is due to the velocity of the vapor

phase being higher during the transitional and film boiling phases. With increased

heat flux density, the vapor phase abrupts the flow of fresh liquid onto the heater

wall, and this leads to burn out [136]. To explore this, we first calculated the CHF

(Critical Heat Flux) for all the datapoints in the dataset using Zuber’s equation:

qCHF = Chfgρv

[
σg(ρl − rhov)

ρ2
v

]1/4

(87)

Here C is constant with value of 0.149 for flat surfaces. We compared the calcu-

lated CHF values with the actual heatflux to see which data-points had reached CHF.

It was determined that out of the 231 datapoints, only 27 datapoints had reached

the CHF value. 18 out of those 27 were for reduced gravity or microgravity condi-

tions. Out of those 27 datapoints, 5 datapoints were part of the randomly chosen

test dataset which is unseen to the ANN model. Next, we check the ANN model’s

prediction accuracy for the cases where CHF was reached. In order to do that, we

provide the results of the actual heatflux, predicted heatflux and MAPE for those 5

datapoints in table 11.

As can be seen from the table, that the average MAPE is about 15.36% for cases

where the CHF was reached, hence the model is able to predict cases of nucleate

boiling which are at the border of transition boiling, and start of Rayleigh-Taylor

instability could be observed with reasonable accuracy. For comparison, the MAPE
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Actual
Heatflux
(W/m2)

Predicted
Heatflux
(W/m2)

MAPE
Average
MAPE

30480 24687.87 19.94%

15.36%
44060 47285.84 7.32%
215000 215755.34 0.35%
146040 124243.13 14.92%
39310 25835.61 34.27%

Table 11. Effect of Rayleigh-Taylor instabilities

of the complete dataset was 25.77% which shows that the cases where CHF had been

reached has a lower error.

Kuzma-Kichta et al.( [138] investigated bubble interface oscillations during boil-

ing using acoustic diagnostics and a laser method under subcooled liquid condition.

They reported that the bubble surface oscillation causes a complex non-linear micro-

convection of the liquid around the bubble, affecting heat transfer on a heated surface.

This is in agreement with our ANN model prediction that Liquid Subcooling is one

of the significant parameters on which heatflux depends.

Parameter significance

One of the key novel contributions of this work includes the quantification of the

importance of each parameter in heatflux prediction. This quantification had been

provided in table 6. In order to verify the claim that “the three most significant

parameters for heatflux prediction in nucleate boiling are: Wall superheat, Gravity,

Liquid subcooling”, we performed a study. We trained the ANN-model only with

these 3 parameters and compared the accuracy of this model with the complete

dataset. A second study was performed to verify if the 7 parameters that we selected

for the dimensional analysis can predict heatflux with reasonable accuracy. The

comparison is provided in table 12.
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MAPE-3
parameter

dataset

MAPE-7
parameter

dataset

MAPE-12
parameter

dataset
3.77 26.54 25.77

Table 12. MAPE comparison between 3-parameter (most significant inputs), 7-
parameter (the parameters chosen for dimensional analysis), and the complete dataset
with 12 -parameter

It is expected that the MAPE for the 12 parameter dataset to be lower than the

3 parameter and 7-parameter ones since it includes more information. The percent-

age difference between the 12-parameter MAPE with the 3-parameter one is about

16%, which shows that the contribution of the top 3 parameters is about 84%. The

MAPE for the 7-parameter dataset is closer to the 12 parameter one than the 3-

parameter one since it contains more relevant information. The 7 parameter dataset

has a percentage difference of 2.9% from the 12-parameter one. This shows that the

contribution of these seven parameters combined, namely: Wall superheat, Gravity,

Liquid subcooling, Vapor density, Thermal conductivity, Surface tension, and liquid

density is about 97% in the prediction of heatflux.

Boiling regimes

In order to explore the effect of different boiling regimes, we quantify the percent-

age contribution of the variables in both Surface Tension Dominated Boiling (SDB)

and Buoyancy Dominated Boiling (BDB) regimes. Based on the threshold value of

Lh/Lc > 2.1 for BDB and Lh/Lc < 2.1 for SDB, where Lh is the heater size, and

Ls =

√
σ

g(ρl − ρv)
as proposed by Raj et al.(2010) [139], our dataset includes 60

datapoints in the SDB regime and remaining 171 datapoints in the BDB regime. We

determine the contribution of each parameter by calculating the MAPE difference

between (a) prediction from ANN model trained using complete dataset and (b) pre-

diction from ANN model trained by removing that particular parameter which would

show the contribution of the specific parameter. The MAPE thus calculated is based
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on the test cases of either only SDB regime or only BDB regime. Based on the equa-

tion of Ls, surface tension, gravity, and densities of liquid and vapor are significant

for the regimes, we provide the contribution of those parameters in table:

Variables
Contribution
percentage

in SDB

Contribution
percentage

in BDB
Gravity 0.96% 22.78%
Surface
Tension

44.86% 0.57%

Liquid and
Vapor

Density
4.97% 1.62%

Table 13. Parameter significance for different boiling regimes

The results in table 13 quantify the effect of gravity and surface tension in the SDB

and BDB regimes. The higher percentage contribution of Surface Tension in the SDB

regime and lower in the BDB regimes shows that surface tension is a key parameter in

SDB regime. Similarly, gravity is a key parameter in BDB regime. This can also be

verified with the physics behind the problem, as gravity is reduced, buoyancy reduces,

and surface tension effect becomes stronger. With continued reduction in gravity,

surface tension becomes the dominant parameter. The contribution of gravity in

SDB regime is almost non-existent, this was also reported by Raj et al. [17,139] from

their experiments. Additionally, the model predictions also highlight that surface

tension and liquid subcooling are the two most significant parameters in SDB regime

with a combined contribution of 60%. Similarly, wall superheat and gravity are the

two most significant parameters in BDB regime, with a combined contribution of

72%.
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Comparison with Rohsenow’s Correlation

Next, we compare ANNs predictions against predictions from the well-known corre-

lation originally proposed by Rohsenow (1952) [8] and later improved by Liaw and

Dhir (1989) [85]. Out of the 46 samples contact angle information was available for

only 22 samples. So, we used those 22 samples to calculate the heat flux using the

correlation. We also calculate the MAPE for ANNs using Dataset-B for those 22

samples in order to have a fair comparison with Rohsenow’s correlation. Results of

the experimental heat flux, Rohsenow’s prediction, and the ANNs predictions are

shown in figure 51.

Figure 51. Comparison of heat flux between Experimental, Rohsenow’s Correlation
and Predictions from ANNs based on 22 samples

It is evident in figure 51, that ANNs predictions are much closer to the experi-

mental values than Rohsenow’s correlation. In order to quantify the differences the

MAPE values along with the standard deviation of the MAPE using Dataset-B for

22 samples of ANNs and Rohsenow’s correlation are reported in table 14.
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Model MAPE
Standard

Devia-
tion

ANNs 19.07% 22.46
Rohsenow 103.48% 67.18

Table 14. MAPE and standard deviation comparison of ANNs (heat flux calculated
from Π4) and Rohsenow correlation for 22 samples for heat flux prediction

Results in table 14 show that that ANNs prediction with Dataset-B outperforms

Rohsenow’s correlation to a considerable extent. The overall conclusion for the results

using the 22 samples in table 14 is similar to that of the 46 samples reported in table

8. It confirms that ANNs using Dataset-B: (i) Outperforms its own predictions of

Dataset-A, (ii) Outperforms other machine learning models using both Dataset-A

and Dataset-B and (iii) Outperforms Rohsenow’s correlation.

114



CHAPTER VI

CONCLUSIONS

An adaptive Moment of Fluid method has been used to perform numerical simula-

tions of nucleate boiling of water vapor bubble in a pool of test liquid (water) under

different heat transfer conditions. Comparison of results of single bubble dynamics

especially bubble growth rate, departure radius, and departure time has been made

with different results. Validation with analytical solution of Scriven (1959) for bubble

growth in super-heated liquid under absence of wall heat transfer is reported as the

first case. Details of this case has also been compared with the numerical model of

Sato and Ničeno (2013). The MoF results are in good agreement (with less than 5%

error) with the previous published theoretical and numerical results. MoF results

provide better results in comparison to that by Sato and Ničeno (2013), specifically

for the bulging in the shape of the thermal layer. Next, the bubble growth is simu-

lated in presence of a heater wall and under earth gravity conditions. Results for this

simulation has been compared to both experimental as well as numerical solutions of

Dhir et al.(2001). The MoF simulations are in a better agreement with the experi-

mental solution than the numerical ones of Dhir et al.(2001) (about 5% lower error

than Dhir et al.model), which validates the MoF model results to be more accurate.

Next, bubble growth in super-heated liquid with wall-heat transfer is performed un-

der reduced gravity conditions and compared with experimental solutions of Siegel

& Keshock (1964). The MoF results for the reduced gravity simulations also provide

good agreement for the growth rate in comparison to experiments performed via a

drop tower. MoF simulations are performed for micro-gravity conditions with per-

fluoro-n-hexane as the test liquid, in comparison to results from experiments on the
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ISS performed by Dhir et al.(2012). Results for the micro-gravity simulations suggests

that the contribution of the micro-layer would be important in the micro-gravity case

as the numerical simulations get a good match with the growth rate only at a higher

wall-super heat, which means for the experimental value, the micro-layer contribution

needs to be included. A new method is proposed for estimating the bubble diameter

at different gravity levels. This method is based on an analysis of empirical data

at different gravity values and using power-series curve fitting to obtain a general-

ized bubble growth curve irrespective of the gravity value. This method is shown to

provide a good estimate of the bubble diameter for a specific gravity value and time.

A review of the existing micro-layer models in the literature is presented, along

with the disadvantages each of them entails. Specifically, the contact line model used

by the Dhir group which was introduced by Stephan and Busse (1992), and later

modified by Son et al.(1999), uses constant micro-layer with no depletion considered,

which does not reflect actual process. The model further assumes micro-layer length

to be only for a small portion of the bubble base, and not the larger radial extent

as found experimentally. The micro-layer thickness is restricted to be in the order of

one cell size. Next, the whole micro-layer model proposed by Sato and Ničeno (2015),

is restricted for test liquid water in earth gravity as it uses empirical coefficients to

calculate thickness. It also requires additional sub-grid scheme to be implemented

for the micro-layer model. This model additionally does not take into consideration

the fact that in micro-gravity experiments the growth rate is typically found to be

≈ t1/3 at the later stages, instead of ≈ t1/2 in earth gravity, where t is the time. A

novel depletable micro-layer approach is proposed for micro-gravity conditions using

perfluoro-n-hexane as the test liquid which maintains the t1/3 growth rate towards

the later stages as seen in ISS experiments and addresses all the disadvantages of the

existing models. The approach calculates the micro-layer thickness based on bubble

base radius and time at each time-step. Depletion of the model is calculated by
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subtracting the evaporation term. Additional Sub-grid scale modeling is not required

as the approach calculates the vapor volume flux into the bubble from the micro-layer

and distributes it across the cells which comprises the micro-layer region. Heat-flux,

bubble growth rate, velocity vector and bubble shape results at different time instants

are provided. All the reported results provide good agreement with experiments

performed on ISS as reported by Dhir et al.(2012) which validates the approach.

Additionally a data-driven model is used to predict the nucleate boiling heat-flux

under different conditions. Experimental data from multiple experiments under vary-

ing conditions of wall-superheat, liquid sub-cooling, surface roughness, and gravity

for different liquids have been collected. The predictions show that the datadriven

ANNs based model is higher in terms of accuracy than previous state of the art mod-

els. The best published model so far is the Liaw and Dhir’s modified equation of

Rohsenow’s correlation. The model provides a MAPE of about 102% for 46 inde-

pendent sample points. Our ANN based model has a MAPE of only 9%, which is

10 times more accurate than the current available models. The work also quantifies

the significance percentage of each parameter on which the nucleate boiling heat flux

depends. Earlier work had discussed the roles of many parameters in boiling. How-

ever, the quantification of these parameters has not been reported as per the author’s

knowledge. The current work would help researchers to determine the parameters to

reject with minimum loss in accuracy.

We provide quantified percentage contribution of the significant variables in the

SDB and BDB regimes of nucleate boiling. The key highlight of these results is that

surface tension and liquid subcooling are the most significant parameters in SDB

regime with a combined contribution percentage of 60%, while wall superheat and

gravity are the most significant parameters in BDB regime with a combined contri-

bution percentage of 70%. Most of prior studies using deep learning did not consider

variation in gravity. One of the studies did consider gravity, however they considered
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only four input parameters: wall superheat, gravity, surface tension, pressure. They

did not consider liquid subcooling, vapor and liquid densities, thermal conductivity

and other parameters which are shown to be significant in the feature importance

study presented in this work. Our work uses deep learning to create a model for

nucleate boiling heat flux with a comprehensive set of all of the significant input

parameters including gravity for five different test liquids. These were determined

based on results from four different feature importance techniques. We propose a

new way to handle challenges of small dataset in deep learning. Training a model of

a large number of features on a small dataset could reduce the model accuracy. To

solve that problem, we propose to use a combination of feature selection techniques

and dimensional analysis to reduce the number of input parameters by creating non-

dimensional π-terms from the most significant input parameters and then use these

π-terms as input. This helps in keeping the information of each variable intact, and

yet reducing the number of parameters to aid in model convergence and increasing

model accuracy. The reduction in error using this methodology has been highlighted

as well.

They key conclusions from this work are:

• MoF method simulations for nucleate boiling has been performed. Simulation

results in earth gravity, and reduced gravity are in good agreement with exper-

iments.

• A data-driven technique for prediction of effect of gravity on bubble growth rate

shows accurate prediction of bubble diameter in different gravity levels.

• A novel depletable microlayer approach for microgravity is proposed, results for

bubble growth rate, bubble shape, and heat-flux are comparable to experiments

performed on ISS.
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• A novel data-driven technique has been used for heatlfux prediction. ANN

outperforms XGB, RFR and Rohsenow correlation in heatflux prediction.

• Dimensional Analysis and Feature Importance techniques help in reducing ANN

error from 25.7% to 9.12%.

• Gravity, Wall super heat, and Liquid subcooling are the three most significant

parameters in heatflux prediction.

• Novel results of quantification of parameter contribution in each boiling regime

reported, and it shows that ANN can learn and predict physics (effect of pa-

rameters and boiling regimes).

A larger dataset could provide lower error and hence a more robust model. This

could be considered as a part towards future work. Additionally, the extension of the

microlayer model could be explored as a future work for a general case irrespective

of the gravity level.
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