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ABSTRACT 
 

THE IMPACT OF VOLUME OF TISSUE ACTIVATION ON CORTICAL-STRIATAL 
NETWORKS AND VERBAL FLUENCY DECLINES IN POST-DEEP BRAIN 

STIMULATION PARKINSON’S DISEASE PATIENTS 
 

Alexander Luke Alley 

April 22, 2022 

This study investigated the cortical-striatal networks of verbal fluency declines in 

6-month, post-operative, deep brain stimulation Parkinson’s Disease patients. Nine 

Parkinson’s disease participants with implanted STN or GPi DBS systems were recruited 

for this study. Verbal fluency data was obtained from each patient preoperatively and 6- 

months post implantation. The stimulation-based volume of tissue activated area (VTA) 

of each target site (STN or GPi) was analyzed using Lead-DBS and Lead-Group. The 

white matter tracks intersecting each patient’s VTA, terminating in the pre-SMA, SMA, 

caudate nucleus, and anterior cingulate were investigated and correlated with verbal 

fluency declines. We found statistically significant effects of DBS on verbal fluency, with 

a trend towards greater declines in the STN compared to the GPi. Verbal fluency declines 

were found to be the greatest in patients with more white matter tracts leading from the 

left hemisphere to the left caudate and bilaterally to the pre-SMA and SMA, and there 

were no correlations found between VF and the anterior cingulate. 
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INTRODUCTION 
 
 
 
 

Parkinson’s disease (PD) is the most common form of movement disorder and the 

second most common neurological disorder. Prevalence rates of PD in industrialized 

countries are estimated at 0.3% of the entire population and as high as 1% in people over 

60 years of age, effecting upwards of five million people worldwide [1-4]. Its 

pathological hallmark is the loss of pigmented dopaminergic neurons in the substantia 

nigra pars compacta, leading to various motor symptomologies [5, 6]. These motor 

symptoms are manifested clinically by a triad of cardinal motor symptoms- rigidity, 

bradykinesia, and tremor, which become progressively worse as the disease advances. 

Dopaminergic medications are typically used for the frontline treatment of these motor 

symptoms in PD. Usually increasing the dosage of these medications is commonplace to 

combat these worsening symptoms [3]. However, the benefits of higher doses are offset 

by side effects, such as dyskinesia, motor fluctuations, confusion, and hallucination [7], 

creating the need for other treatment methods outside of medication. 

 
 
 
 
 
 
 
 
 
 
 
 

1 
 

 



2  

Surgical treatments for PD were developed as a means to overcome difficulties 

associated with the medical management of motor complications in patients with 

advanced Parkinson’s disease [8]. Deep Brain Stimulation (DBS) was historically used as 

a method to check the area to be lesioned in each functional target during a Pallidotomy 

[9]. Later it became an adjustable and reversable alternative procedure to stereotactic 

ablation [10]. Because of this, Globus Paladus internus (GPi) DBS was successfully 

introduced for the management of bradykinesia and rigidity [11]. Following the discovery 

of the key role that the Subthalamic Nucleus (STN) plays in the pathophysiology of PD 

[12], STN lesions were shown to improve parkinsonism and subsequently showed that 

STN DBS could become a successful surgical treatment site candidate for patients with 

PD [8, 13]. 

 
 

DBS for the treatment of PD is an efficacious treatment method for the reduction 

of PD motor symptoms. This treatment, however, can have deleterious effects on certain 

aspects of the patient’s cognitive functioning. Specifically, most patients experience a 

decline in spontaneous word generation, or verbal fluency (VF) [14-28]. Deficits in 

verbal fluency are variably expressed and exacerbated in PD and following DBS surgery 

[16]. However, the specific effects that DBS has on cognition are not well understood 

[29]. While VF deficits are generally a part of PD symptomology prior to DBS surgery 

[30], the underlying cause of the worsening that occurs after DBS is still an area of active 

research [14].
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While DBS is overall a generally safe treatment for PD, deficits in VF represent 

one of the most commonly reported side effects of DBS therapy when targets of either 

the STN or GPi are used [16, 44]. Causes of this effect across individuals and between 

targets are generally incomplete, however. Some patients do not show any, or marginal 

fluency deficits, whereas others can potentially show a dramatic reduction in VF [45]. 

Reductions in VF can lead to a negative impact on quality of life for PD patients and 

suboptimal clinical responses [16, 31-34]. The prospect of having short- or long-term 

complications, particularly cognitive changes, can negatively affect efficacy and 

enthusiasm for continued use of an intervention. Understanding what causes VF decline 

due to DBS might also help to optimize future DBS settings [16]. 

 
 

VF is generally tested with a task requesting the patient, within a minute, to name 

as many words as possible starting with a specific letter (F, A, or S), known as phonemic 

or letter fluency and/or stemming from a certain category (e.g. animals and boys names), 

known as semantic or categorical fluency) [35, 36]. Deficits in VF in turn come about 

from both linguistic and executive dysfunctions as it involves a multitude of cognitive 

processes including lexical search, memory retrieval, executive functioning, and response 

monitoring, inhibition, and selection [36, 37]. Among 21 studies looking into VF declines 

in PD patients with DBS, 16 reported data for phonemic VF (355 patients) and 16
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reported data for semantic VF (355 patients) and found average effect sizes of moderate 

size (0.51 and 0.73) for both letter and categorical VF declines [33]. 

 
 

Action (verb) fluency is another form of fluency, similar to semantic and 

phonemic verbal fluency, but it requires the patient to rapidly generate as many verbs (i.e. 

“things that people do”) as possible in within one minute. Verb generation is primarily 

associated with the integrity of frontal-striatal-thalamo-cortical loops [38, 39], whereas 

noun generation is more dependent on the temporal and inferior parietal cortices [40, 41], 

with deficits in noun naming being linked to anterior and inferotemporal areas [42]. 

Action fluency may be more sensitive to frontal-basal ganglia loop pathophysiology than 

traditional noun fluency tasks, which is in line with the existing hypothesized neural 

dissociation between noun and verb retrieval [43]. 

 
 

The production of speech involves a complex interplay of motor and cognitive 

processes, and the decline of VF in PD patients undergoing DBS is theorized to be caused 

by changes in the basal-ganglia-thalamocortical network [33, 44]. Non-surgical 

contributors (ex- dopaminergic medication changes, pre-surgical disease variables, and 

various neuropsychological and physicals characteristics) do not seem to provide 

significant insight into the emergence of VF deficits post DBS [14, 24, 45-47]. There is, 

however, evidence for reductions in fluency tied to stimulation parameters. For example, 

clinically high frequency DBS (~160 Hz), in conjunction with both the location of the
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electrodes within the target area and location of the volume of tissue activated (VTA) 

collectively, lead to increased rates of VF decline, implicating a direct role of stimulation 

and potential VTA induced white matter networks in VF declines [48-50]. 

 
 

There is some indication that fluency deficits may be greater when a STN target is 

used versus GPi, although mixed results have been reported with both targets and more 

research is warranted[48-50]. Also, concerns surrounding changes in frontal lobe related 

cognitive functions have been raised [24, 51-53] specifically with STN DBS. STN DBS 

may lead to improved motor conditions but concomitantly worsened emotional and 

cognitive measures (ie- anxiety, depression, apathy, and categorical fluency task) with 

little to no change in other cognitive functions [22]. Worsening in categorical fluency 

seems to be the most frequent cognitive decline reported after STN-DBS [22, 24, 54, 55]. 

This may be because the STN is a relatively small structure that is innervated with 

cortical projections from motor, associative and limbic areas [56, 57]. The frontal lobe 

related cognitive changes after DBS could be the result of modulation of the associative 

circuits [15]. Cilia et al., 2007 found that worsening fluency in STN-DBS was associated 

with decreased perfusion in the left dorsolateral prefrontal cortex, anterior cingulate 

cortex, and ventral caudate nucleus (p<0.01). There are also indications that Pre-SMA 

and SMA could potentially be involved in the mediation of VF as well, notionally 

allowing the indirect effects of the DBS system on the cortex to modulate VF [58, 59]. 

VF declines with DBS GPi however, have received less attention and there is a lack of
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research into the mechanisms that could explain the VF decline with GPi. The current 

study aims to determining how the field of stimulation and the upstream cortical 

circuitries modulated by the stimulation are related to fluency decline in STN and GPi 

which could offer new strategies for the mitigation of negative DBS cognitive side 

effects. 

We predict that DBS will lead to a global VF decline and we will additionally 

explore the cortico-striatal networks associated with these VF declines because the 

indirect role that the cortex plays in the mediation of VF is unclear and has not been 

previously studied. 



7 

METHODS 

Patient Cohort 

Table 1 

Demographics and clinical variables (means and standard deviation) for GPi and STN 

Patients

GPi (6) STN (3) 
Age (yrs) 57.2(11.4) 62.6(13.9) 
Gender (M:F) 2:3 3:1 
Education (yrs) 13.8(1.6) 12.8(1.0) 
Disease Duration (yrs) 6.75(5.1) 9.25(3) 
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(Table 1) shows 9 participants total, recruited from the UofL Health system, 

which were included in this trial. Six of those patients were implanted with bilateral GPi 

DBS, and the remaining 3 patients were implanted with STN targets, 2 bilateral and 1 

unilateral right STN. Patients were implanted with either Medtronic, Abbott, or Boston 

Scientific DBS systems. All patients were tested on VF both ON stimulation status and 

on dopaminergic medication, to best emulate patient at-home and day-to-day conditions. 

Imaging data of 8 of 9 patients consisted of multispectral preoperative MRI (T1 and T2 

weighted) sequences and were also CT scanned postoperatively. One patient, however, 

underwent preoperative CT and postoperative CT imaging due to an MRI incompatible 

implanted medical device. 

Verbal Fluency 

To obtain verbal fluency comparisons, participants were administered 

postoperatively either the Letter and Category tasks from the DKEFS Verbal Fluency 

assessment [60] or the Letter and Category tasks from the COWAT Verbal Fluency 

assessment [35], dependent upon the original VF assessment administered during the 

patient’s initial preoperative neuropsychological assessment. These tests were used to 

measure Letter and Category fluency. All patients were additionally asked to participate
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in an Action fluency [43] assessment post-operatively (only a subset of participants 

underwent preoperative Action fluency testing), where they generated a list of action 

words. The participants were tested both at time of initial evaluation of DBS implantation 

and again 6 months post-implantation. 

Participants were instructed to generate as many words within 1 minute following 

a semantic, phonemic, and action category, such as “animal names”, “words that begin 

with the letter “f””, or “things that people do”, respectively. Participants were then given 

points for each unique word given and inversely were not given points for words with 

similar roots (“run”, “runs”, “running”) or for the same action with different subjects 

(“running fast” or “running slow”). Additionally, they were instructed to refrain from 

giving numbers and proper names of people and places. The order of fluency test 

administration was fixed across patients and consisted of Letter then Category, followed 

by Action. 

Participant Imaging Co-registration & Electrode Localization 

Initial individual processing and registration of all the patients’ imaging and 

electrode localization were completed using Lead-DBS. Localizations were finalized 

using the default parameters of the Lead-DBS v.2 pipeline [61]. Linear co-registration of 

the preoperative MRI (or CT) imaging to the postoperative CT images were completed
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using Advanced Normalization Tools (ANTs; http://stnava.github.io/ANTs/; [62]). If 

necessary, these normalized images were manually refined using 3D slicer 

(www.slicer.org). The preoperative scans were normalized into MNI (ICBM 2009b 

NLIN Asym; [63] space using ANTs and the “Effective: low variance” protocol with 

subcortical refinement within the Lead-DBS space [64]. Co-registration results were then 

manually checked using built-in tools that assist visual inspection- red wire-frame 

generation of the anchor modality, and further false-color overlays. Co-registration is a 

crucial step during electrode localization since the preoperative data is used to define 

overall anatomy and of postoperative data to define electrode locations [61]. 

Normalization of individual patient anatomy to a template space creates an 

environment in which relation of electrode placement to anatomy and comparisons 

between patients and electrode centers are possible. These template spaces often allow 

the most likely location of anatomical structures to be better defined, and can then be 

used to project subcortical atlases or whole-brain parcellations [61] onto regions of 

interest. The patient-to-template-normalization in the primary default pathway of Lead 

DBS uses the Advanced Normalization Tools (ANTs) SyN [62], which employs a Four- 

Stage preset with subcortical refinement, and the Statistic Parametric Mapping (SPM) 

Unified Segmentation Method, which is based upon Tissue Probability Maps calculated 

from multispectral ICBM 2009b NLIN ASYM Space templates [65].
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During surgery, air can potentially enter the skull after it is accessed and opened. 

This can ultimately lead to a nonlinear deformation of the brain in relation to the bone, 

called brain shift (pneumocephalus). This usually pushes the forebrain in the occipital 

direction because of the supine nature of the patient. When this is present during post- 

operative imaging, it can induce a discrepancy between the electrode placement and the 

anatomical structures compared to the preoperative imaging [66]. To combat this, Lead 

DBS uses a threefold linear registration stored internally and applies this to DBS 

electrode placement afterward [61, 67]. The PaCER toolbox [68] was used during the 

process of electrode placement reconstruction [61]. 

The VTA is a conceptual volume elicited by the electrical stimulation from the 

DBS device and is thought to produce additional action potentials due to the electrical 

stimulation of axons [69]. The SimBio/FieldTrip toolbox within Lead-DBS was used to 

estimate the VTA for each participant within this study using the stimulation parameters 

of each patient at the time of their postop VF testing. This toolbox uses a finite element 

method (FEM) approach, 4-Compartment model and Tetrahedral Mesh method [70]. The 

VTA is then used to estimate the further connectivity matrix of each patient. (Figure 2) 

shows, within 3D template MNI space, the registered electrodes, basal ganglia structures, 

VTA, white matter tracts and their terminating structures based upon the HMAT 

parcellation.
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Figure 1 

Localized and registered, using Lead-DBS, bilateral GPi DBS electrodes in MNI space 

with stimulation mediated VTA, activated white matter tracts, cortical & basal ganglia 

structures based upon the HMAT parcellation 
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Connectomic Analysis 

Six of the 9 patients were included in the connectomic analysis using the toolbox 

Lead Group, with the percentage change in VF scores included in the Lead Group GUI. 

Stimulation parameters were specified for each individual patient and was used to 

calculate the VTA using a FEM approach. Seeding from these VTA’s provide an estimate 

of structural connectivity to other brain areas and was computed using Lead Group. A 

PD-specific connectome was then used, which was obtained from an 85-patient sample 

included in the Parkinson’s Progression Markers Initiative (PPMI; www.ppmi-info.org) 

database [71]. For the current analysis, fibers of the connectome were selected that 

traversed through the VTA and terminated in the distinct regions of the sensorimotor 

cortex, the Human Motor Area Template (HMAT) and the Automated Anatomical 

Labeling (AAL3) atlas. [72, 73]. These parcellation contains regions defining 

supplementary, and presupplementary motor areas (SMA/preSMA), anterior cingulate, 

and the caudate nucleus [5, 8, 79]. These intersections were measured and then correlated 

with VF declines. 

Statistical analysis 

First, the effect of stimulation in the STN and GPi on letter and category fluency 

from pre- to post-DBS was compared. VF for each category was defined as a scaled score
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(scaled score of the average word rate generated per minute). A one-way ANOVA was 

used, with Fluency Type (Category and Letter), and Session (Pre, Post), as the within- 

subject factors and DBS Target (STN, GPi) as the between subject’s factor. A paired 

samples T-Test was also performed on the 5 patients who had both pre- and post- 

procedural Action fluency scores. 

Second, the percentage of VF decline was calculated by taking the difference of 

the summed category and letter pre- and post-operative scores for each patient. This 

result was then correlated, using a Spearman’s Rank-correlation, to the amount of VTA 

activated white matter fiber tracts that terminate within the right and left Pre SMA, SMA, 

Anterior Cingulate Gyrus, and the Caudate nucleus. Random permutation (x 5000) was 

conducted to obtain P-values.
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RESULTS 

Table 2 

DBS clinical stimulation parameters (means and standard deviations) for GPi and STN 

targets separated by left and right electrode leads 

GPi (6) STN (3) 
Left (6) Right (6) Left (2) Right (3) 

Amplitude (V) 4.0(1.1) 3.1(1.8) 2.9(1.4) 1.6(.57) 
Pulse width (ms) 67.5(15) 67.5(15) 60(0) 60(0) 
Frequency (Hz) 135(10) 135(10) 140(14.1) 128.8(2.5) 

(Table 1) shows participant demographics and clinical variables. (Table 2) reports 

DBS stimulation parameters for both targets (means and standard deviations). PD patients 

with DBS STN and GPi targets were similar in age, gender, education, and disease 

duration.
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DBS effects on fluency 

Table 3 

VF for Letter and Category types, dependent upon target, pre- and post-DBS 

STN GPi 
Session Fluency Type Mean Std. Error Mean Std. Error 
Pre Letter 11.0 2.2 12.2 1.9 

Category 13.0 1.9 11.6 1.7 
Post Letter 7.8 1.3 9.8 1.2 

Category 6.5 1.7 9.8 1.6 

(Table 3) shows verbal fluency data for two of the VF types, Letter and Category, 

pre- and post DBS surgery dependent upon each target, STN and GPi. Verbal fluency 

was not found to vary by fluency type (Fluency Type, F (1,7) = 0.06, p = .94, n2 = 0.01), 

the production of letter-associated words (10.2) and category-related words (10.2) was 

comparable. A significant decrease in VF was discovered between pre- (12.0) and post- 

operative (8.5) testing (Session, F (1,7) = 25.32, p = .002, n2 = .783) (Table 5). There was 

a larger decline in STN VF (pre = 12.0 to post = 7.1) compared to GPi VF (pre = 11.9 to 

post = 9.8) from pre- to post DBS implantation, although this was not significant (Session 

x Target, F (1,7) = 4.0, p = 0.08, n2 = .36) (Table 4 and Figure 2). All other two- and 

three-way interactions between fluency types, session, and target were not significant 

(F’s < 2.9, p’s > .133, n2 <.29). Action fluency was not included in this analysis due to the 

inconsistency of presurgical testing and was calculated separately. 
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Figure 2 

Average (Letter + Category) verbal fluency scores preoperatively compared to 6-month 

post DBS implantation 

(Table 4) shows the VF for the third type, Action fluency. Due to only having 

preoperative Action VF data on 5 of the patients, these scores were ultimately not 

included in the ANOVA or the fiber count correlations. Consistent with both the Letter 

and Category fluency data, a decreasing trend was also observed with the Action VF data 

as well (pre= 9.0 to post= 6.8) (T(4) = report t value, p = 0.086).

VF Scores Pre- & Post-DBS by Target 
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Table 4 

VF for Action fluency pre- and post-DBS 

Session Mean N Std. Deviation Std. Error 
Pre 9.0 5 2.9 1.3 
Post 6.8 5 2.6 1.2 
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Cortical areas impacted by DBS associated with post-operative change in fluency 

Figure 3 

Correlation of bilateral VTA intersected fiber counts and % change in VF for left and 

right SMA/PreSMA 

While the processing that takes place in Lead-DBS mainly serves to visually 

describe DBS effects about their anatomical sites of one patient, Lead-Group further 

provides specific statistical tests and ways to export metrics to run more elaborate 

statistical analyses between a participant group. For the purpose of this study, based on
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the PPMI 85 connectome, fibers that were traversing through the VTAs of each patient 

were isolated and the ones terminating in each region defined by the HMAT and AAL3 

Figure 4 

Correlation of right and left hemisphere VTA intersected fiber counts and % change in 

VF for right and left caudate 

parcellations were counted using Lead-Group. These several, primarily, cortical regions 

(Pre-SMA, SMA, Anterior Cingulate Gyrus, and Caudate Nucleus) were then correlated 

with the change in VF across the group. As can be seen in (figure 3), the greater the 

number of fibercounts connecting VTAs from both hemispheres to the R and L SMA & 

Pre-SMA is associated with larger VF decline (R > -0.89, p<0.02). There were no 

connections to either the right or left anterior cingulate cortex in correlation to VF. 

Interestingly, the left caudate nucleus only showed fibers from the ipsilateral (left) 

hemisphere contributing to VF decline (L Caudate, L hemisphere: R = -0.93, p = 0.01)  
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(L caudate, R hemisphere: R = -0.13, p= 0.5). There was no significant correlation found 

between either hemisphere’s connection to the right caudate with VF declines (R= -0.52, 

p= 0.1). (Figure 4) shows the exact correlational curve for right and left caudate. (Table 

5) shows all correlational, significance, fibercount, and VF values for each area and

hemisphere. 

Table 5 

All correlational and p-values for each target area from each VTA hemisphere (R 

Hemisphere, L Hemisphere, Both hemispheres) 

VTA hemisphere 
L Caudate Both Hem. R Hem. L Hem. 
R NOT SIG -0.13 -0.93 
p NOT SIG 0.485 0.014 
R Caudate Both Hem. R Hem. L Hem. 
R -0.52 NOT SIG NOT SIG 
p 0.168 NOT SIG NOT SIG 
L Pre-SMA Both Hem. R Hem. L Hem. 
R -0.94 -0.94 -0.94 
p 0.009 0.008 0.011 
R Pre-SMA Both Hem. R Hem. L Hem. 
R -1.00 -1.00 -0.94 
p 0.003 0.002 0.009 
L SMA Both Hem. R Hem. L Hem. 
R -0.89 -0.94 -0.89 
p 0.016 0.004 0.014 
R SMA Both Hem. R Hem. L Hem. 
R -0.89 -0.93 -0.89 
p 0.024 0.007 0.014 
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DISCUSSION 

The current study replicated previous findings regarding the deleterious effects 

that DBS has on category and letter verbal fluency (14,16, 22, 24, 44, 47-40, 50-52, 56- 

57). Like these prior studies, we discovered postoperative fluency declines in all fluency 

categories in PD patients, with some suggestion that STN VF declines may be more 

significant than GPi. Additionally, this study examined what VTA mediated cortical 

areas could be associated with global VF declines in DBS implanted PD patients. 

Potential cortical mechanisms of VF decline 

Reductions in VF after DBS have been attributed to factors related to the surgical 

procedure (e.g. lesion effects) as well as to stimulation parameters [47, 74]. The aim of 

this study was to understand the role that clinically determined stimulation dependent 

VTA’s have on their connected structures and ultimately VF declines following DBS 

implantation. Specifically, we investigated how the VTA created by the clinical 

stimulation settings modulates the white matter tracts to pre-SMA, SMA, anterior 

cingulate, and caudate that could potentially explain declines in VF. This study suggests 

that increasing activated white matter tracts leading to the left caudate nucleus (from the 

left hemisphere only), right and left pre-SMA and SMA (regardless of hemisphere of 

origin) relates to higher declines in VF.
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The caudate nucleus is thought to be involved in various roles of higher 

neurological functioning. It functions not only in planning the execution of movement, 

but also in learning and memory [75]. Evidence suggests potential lateralized effects of 

DBS on axial motor symptoms as well as deleterious effects of left-sided DBS on 

language-related functions, specifically VF [76]. The declines we see associated with the 

left caudate nucleus from the left hemisphere DBS VTA, could be a potential explanation 

of the lateralized VF effects seen in PD DBS. Also, the VF declines seen generally 

related to the caudate could be explained due to the conceivable effects the DBS system 

could have on the executive functioning and memory retrieval tasks governed by the 

caudate. 

VF declines related to the pre-supplementary motor area could be explained, 

similar to the caudate nucleus, by impacting the roles it has on executive functioning 

[77]. In addition, the frontal aslant tract, is a direct pathway connecting the Broca’s area 

to the Pre-SMA [58]. Indirect influence on this tract via the DBS mediated VTA could 

potentially lead to the increases in VF decline seen here. 

The SMA, specifically the medial portion, potentially has mechanisms for 

response sequence planning and response inhibition during VF performance. Effects of 

the DBS on this structure could potentially explain the VF declines seen as well. Future 

study could help to expand the current understandings of the role that these areas play in 

language. More specifically, by looking at the effects that DBS has on language 

subprocesses (word retrieval, generation and working memory) across the VTA based
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cortical networks or through the experimental manipulations of the VTA (as associated 

circuits) to test the relative effect it may have on VF. 

Limitations and future directions 

This study has several limitations and leaves room for further research and 

exploration. First, although we were able to explore the within-subject nature of the VF 

results, the small sample size (n=9) greatly limits the breath of our conclusions. The same 

conclusion holds true for the connectomics results as well. While we do find a 

statistically significant result of overarching verbal fluency decline and a greater trending 

VF decline in STN targeted patients, future studies with larger sample sizes are needed to 

confirm the robustness and strength of these relationships. A larger sample would provide 

not only a greater statistical power to investigate a combination of stimulation parameters 

in both DBS targets but would also allow the differentiation of target location between 

the connectomics. Also, employing actual DTI imaging, allowing for patient specific 

white matter analysis, instead of a generalized connectome, could provide more precise 

insight into the structures impacted by DBS induced VTA; this could be a direction for 

future study. 

Second, this study is limited because it did not allow full experimental control 

over the variables, such as stimulation parameters and target location. A future 

prospective study with randomized DBS targets across patients, an equal number of
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participants with STN and GPi targets and standardized stimulation parameters could 

overcome some of these issues. 

In addition, we were not able to include the action fluency data alongside letter 

and category fluency in relation to the connectomics. This was due to the inconsistent 

nature of the preoperative neuropsychological testing completed at the inaugural start to 

the DBS program at UofL Health. The addition of action fluency to this data could 

provide further insight to differing mechanisms of VF aside from those that letter and 

category provide. In addition, the type of preoperative VF testing (COWAT vs DKEFS) 

in this case was inconsistent, leading to increased difficulties in a direct comparison of 

the two results. This again was due to the inconsistent nature of the preoperative testing 

conditions of each participant. A future study could correct for this using consistent 

preoperative testing measures for all patients, leading to a more direct comparison of VF 

results. 

One other potential area of future study surrounding the indirect connectomic 

effects of DBS outside of VF could be its effects on motor outcome and ultimately be 

used to further optimize additional motor outcomes. 

Furthermore, the participants in this study were in their optimal medication and 

stimulation state and did not include a post-op off stimulation/off medication state to 

dissociate potential lesion from stimulation effects. However, the growing body of 

research points to a stimulation induced cause of these cognitive decline (14-28). Also,
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the lack of unilaterally implanted patients in this study did not allow us to separate the 

contribution of unilateral versus bilateral stimulation on VF changes. 
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CONCLUSION 

The current study shows a clear reduction in VF 6-months after surgical 

implantation of electrodes and shows a potential greater decline in VF with target areas of 

the STN over the GPi in patients with PD. Because of this stimulation there are other 

brain structures influenced, like the pre-SMA, SMA, and the caudate nucleus potentially 

causing the declines seen in VF. Clinically, including a fluency measure, in addition to 

motor function testing, during the process of defining and optimizing the DBS parameters 

during implantation could positively influence both motor and fluency outcomes



28 

REFERENCES 

1. Dorsey, E.C., et al., Projected Number of People with Parkinson Disease in the
Most Populous Nations, 2005 Through 2030 Neurology, 2007. 68: p. 384- 
386. 

2. Lau, L. and M. Breteler, Epidemiology of Parkinson's Disease. Lancet Neuology,
2006. 5: p. 525-535. 

3. Xia, R. and Z.-H. Mao, Progression of Motor Symptoms in Parkinson's Disease.
Neurosci Bull, 2012. 28(1): p. 39-48. 

4. Nussbaum, R.L. and E.E. Christopher, Alzheimer’s disease and Parkinson’s
Disease. N Engl J Med, 2003. 384: p. 1356-1364. 

5. Lang, A. and A. Lozano, Parkinson's Disease. Second of Two Parts. New
England Journal of Medicine, 1998. 339: p. 1130-1143. 

6. Diaz, N. and C. Waters, Current Strategies in the Treatment of Parkinson's
Disease and a Personalized Approach to Management. Expert Rev 
Neurother, 2009. 9: p. 1781-1789. 

7. Stacy, M., Medical Treatment of Parkinson Disease. Neurologic Clinics, 2009.
27: p. 605-631. 

8. Fasano, A., A. Daniele, and A. Albanese, Treatment of motor and non-motor
features of Parkinson's disease with deep brain stimulation. Lancet 
Neurol, 2012. 11: p. 429-442. 

9. Albe-Fessard, D., Electrophysiological Methods for the Identification of Thalamic
Nuclei. Z Neurol, 1973. 15: p. 15-28. 

10. Benabid, A. and C.e.a. Gervasoin, Long-term Suppression of Tremor by Chronic
stimulation of the Ventral Intermediate Thalamic Nucleus. Lancet, 1991. 
337: p. 403-406.



29 

11. Siegfried, J. and B. Lippitz, Bilateral Chronic Electrostimulation of
Ventroposterolateral Palladum: a New Therapeutic Approach for 
Alleviating all Parkinsonian Symptoms. Neurosurgery, 1994. 35: p. 1126- 
1130. 

12. DeLong, M., M. Crutcher, and A. Georgopoulos, Primate Globus Pallidus and
Subthalamic Nucleus: Functional Organization. Journal Neurophysiology, 
1985. 53: p. 530-543. 

13. Benabid, A., et al., Acute and Long-term Effects of Subthalamic Nucleus
Stimulation in Parkinson's Disease. Stereotactic Functional Neurosurgery, 
1994. 62: p. 76-84. 

14. Hojlund, A., et al., Worsening of Verbal Fluency After Deep Brain Stimulation in
Parkinson's Disease: A Focused Review. Computational and Structural 
Biotechnology Journal, 2017. 15: p. 68-74. 

15. Cilia, R., et al., Brain Networks Underlining Verbal Fluency Decline During STN- 
DBS in Parkinson's Disease: An ECD-SPECT Study. Parkinsonism & 
Related Disorders, 2007. 13: p. 290-294. 

16. Cernera, S., M. Okun, and A. Gunduz, A Review of Cognitive Outcomes Across
Movement Disorder Patients Undergoing Deep Brain Stimulation. 
Frontiers in Neurology, 2019. 10: p. 1-18. 

17. Kirsch-Darrow, L., et al., The Trajectory of Apathy After Deep Brain Stimulation:
From pre-surgery to 6 Months Post-surgery in Parkinson's Disease. 
Parkinsonism & Related Disorders, 2011. 17: p. 182-188. 

18. Qureshi, A., et al., Postoperative Symptoms of Psychosis After Deep Brain
Stimulation in Patients with Parkinson's Disease. Neurosurgical Focus, 
2015. 38: p. E5. 

19. Daniele, A., et al., Cognitive and Behavioral Effects of Chronic Stimulation of the
Subthalamic Nucleus in Patients with Parkinson's Disease. Journal of



30 

Stimulation Neurology, Neurosurgery, and Psychiatry, 2003. 74: p. 175- 
182. 

20. Alegret, M., et al., Comparative cognitive effects of bilateral subthalamic
stimulation and subcutaneous continuous infusion of apomorphine in 
Parkinson's disease. Mov Disord, 2004. 19: p. 1463-1469. 

21. Azuma, T., et al., A longitudinal study of neuropsychological change in
individuals with Parkinson's disease. international Journal of Geriatric 
Psychiatry, 2003. 18: p. 1043-1049. 

22. De Gaspari, D., et al., Clinical Correlates and Cognitive underpinnings of Verbal
Fluency Impairment After Chronic Subthalamic Stimulation in 
Parkinson's Disease. Parkinsonism Relat Disord., 2006. 12: p. 289-295. 

23. Demater, G., et al., The effect of deep brain stimulation of the subthalamic
nucleus on executive functions: impaired verbal fluency and intact 
updating, planning and conflict resolution in Parkinson's disease. 
Neuroscience letters, 2017. 647: p. 72-77. 

24. Funkiewiez, A., et al., Long term effects of bilateral subthalamic nucleus
stimulation on cognitive function, mood, and behaviour in Parkinson's 
disease. J Neurol Neurosurg Psychiatry, 2004. 75: p. 834-839. 

25. Harati, A. and T. Muller, Neuropsychological effects of deep brain stimulation for
Parkinson's disease. Surgical neurology international, 2013. 4: p. S443- 
S447. 

26. Houvenaghel, J., et al., Reduced Verbal Fluency Following Subthalamic Deep
Brain Stimulation: A Frontal-Related Cognitive Deficit? PLoS One, 2015. 
10: p. e0140083. 

27. Troster, A., et al., Neuropsychological outcomes from constant current deep brain
stimulation for Parkinson's disease. Mov Disord, 2017. 32: p. 433-440.



31 

28. Jahanshahi, M., et al., The impact of deep brain stimulation on executive function
in Parkinson's disease. Brain, 2000. 123: p. 1142-1154. 

29. Wu, B., et al., Influence of deep brain stimulation of the subthalamic nucleus on
cognitive function in patients with Parkinson's disease. Neurosci Bull, 
2014. 30: p. 153-161. 

30. Henry, J. and J. Crawford, Verbal Fluency Deficits in Parkinson's Disease: A
Metanalysis. J Int Neuropsychol, 2004. 10: p. 608-622. 

31. Smith, K., et al., Phonemic verbal fluency decline after subthalamic nucleus deep
brain stimulation does not depend on number of microelectrode 
recordings or lead tip placement. Parkinsonism Relat Disord, 2014. 20: p. 
400-404. 

32. Schrag, A., M. Jahanshahi, and N. Quinn, What contributes to quality of life in
patients with Parkinson's disease? J Neurol Neurosurg Psychiatr, 2000. 
69: p. 308-312. 

33. Parsons, T., et al., Cognitive sequelae of subthalamic nucleus deep brain
stimulation in Parkinson's disease: a meta-analysis. Lancet Neurol, 2006. 
5: p. 578-588. 

34. Troster, A. and J. Massano, Changes in cognitive abilities after deep brain
stimulation for Parkinson's disease. Neurology, 2015. 84: p. e98-9. 

35. Benton, A., K. Hamsher, and A. Sivan, Multilingual aphasia examination. 3rd ed.
Iowa City, IA: AJA Associates, 1994. 

36. Lezak, M., et al., Neuropsychological Assessment. 5 ed. New York: Oxford
University Press; 2012, 2012. 

37. Martin, A., et al., Word retrieval to letter and semantic cues: a double
dissociation in normal subjects using interference tasks. 
Neuropsychologica, 1994. 32: p. 1487-1494.



32 

38. Buckner, R., M. Raichle, and S. Petersen, Dissociation of human prefrontal
cortical areas across different speech production tasks and gender groups. 
Journal of Neurophysiology, 1995. 74: p. 2163-2173. 

39. Cappa, S., et al., The role of the left frontal lobe in action naming: rTMS
evidence. neurology, 2002. 59: p. 720-723. 

40. Williamson, D., et al., Object and action naming in Alzheimer's disease. Cortex,
1998. 34: p. 601-610. 

41. Warbuton, E., et al., Noun and verb retrieval by normal subjects. Studies with
PET. Brain, 1996. 119: p. 159-179. 

42. Tranel, D., et al., A neural basis for the retrieval of words for actions. Cognitive
Neuropsychology, 2001. 18: p. 655-670. 

43. Woods, S., et al., Action (Verb) Fluency: Test-retest Reliabiloty, Normative
Standards and Construct Validity. Journal of the International 
Neuropsychological Society, 2005. 11: p. 408-415. 

44. Kalbe, E., et al., Frontal FDG-PET activity correlates with cognitive outcome
after STN-DBS in Parkinson's disease. Neurology, 2009. 72: p. 42-49. 

45. Hershey, T., et al., Stimulation of STN impairs aspects of cognitive control in PD.
Neurology, 2004. 62: p. 1110-1114. 

46. Morrison, C., et al., Neuropsychological functioning following bilateral
subthalamic nucleus stimulation in Parkinson's Disease. Archives of 
clinical neuropsychology: the official journal of the National Academy of 
Neuropsychologists, 2004. 19: p. 165-181. 

47. Wojtecki, L., et al., Frequency-dependent reciprocal modulation of verbal fluency
and motor functions in subthalamic deep brain stimulation. Arch Neurol, 
2006. 63: p. 1273-1276.



33 

48. Williams, A., et al., Cognitive outcome and reliable change indices tow years
following bilateral subthalamic nucleus deep brain stimulation. 
Parkinsonism, 2011. 17: p. 321-327. 

49. Troster, A., et al., Declines in switching underlie verbal fluency changes after
unilateral pallidal surgery in Parkinson's disease. Brain and Cognition, 
2002. 50 p. 207-217. 

50. Zahodne, L., et al., Cognitive declines one year after unilateral deep brain
stimulation surgery in Parkinson's disease. The Clinical 
Neuropsychologist, 2009. 23: p. 385-405. 

51. Krack, P., et al., Five-year follow-up of bilateral simulation of the subthalamic
nucleus in advanced Parkinson's disease. N Engl J Med, 2003. 349: p. 
1925-1934. 

52. Saint-Cyr, J., et al., Neuropsychological consequences of chronic bilateral
stimulation of the subthalamic nucleus in Parkinson's disease. Brain, 
2000. 123. 

53. Temel, Y., et al., Differential effects of subthalamic nucleus stimulation in
advanced Parkinson's disease on reaction time performance. Exp Brian 
Res, 2006. 169: p. 389-399. 

54. Ardouin, C., et al., Bilateral subthalamic or pallidal stimulation for Parkinson's
disease affects neither memory nor executive functions: a consecutive 
series of 63 patients. Ann Neurol, 1999. 46: p. 217-223. 

55. Gironell, A., et al., Effects of pallidotomy and bilateral subthalamic stimulation
on cognitive function in Parkinson disease. A controlled comparative 
study. J Neurol, 2003. 250: p. 917-923. 

56. Temel, Y., et al., The functional role of the subthalamic nucleus in cognitive and
limbic circuits. Prog Neurobiol, 2005. 76: p. 393-413.



34 

57. Haynes and Haber, The origanization of prefrontal-subthalamic inouts in
primates provides an anatomical substrate for both functional specificity 
and integration: implications for basal ganglia models and deep brain 
stimulation journal of neuroscience, 2013. 33. 

58. Catani, M., et al., A novel frontal pathway underlies verbal fluency in primary
progressive aphasia. Brain, 2013. 136: p. 2619 - 2628. 

59. Allen, M.D. and A.K. Fong, Clinical application of standardized cognitive
assessment using FMRI. II. Verbal fluency. Behavioral Neurobiology, 
2008. 20: p. 141 - 152. 

60. Delis DC, K.E. and J. Kramer, Delis-Kaplan executive function systemL technical
manual. Psychological Corporation, 2001. 

61. Horn, A., et al., Lead-DVS v2: Towards a comprehensive pipeline for deep brain
stimulation imaging. NeuroImage, 2019. 184: p. 293-316. 

62. Avants, B., et al., Symmetric diffeomorphic image registration with cross- 
correlaton: Evaluating automated labeling of elderly and 
neurodegenerative brain. Med. Image Anal, 2008. 

63. Fonov, V., et al., Unbiased nonlinear average age-appropriate brain templates
from birth to adulthood. NeuroImage, 2009. 47: p. S102. 

64. Ewert, S., et al., Optimization and comparatvie evaluation of nonlinear
deformation algorothms for atlas-based segmentation of DBS target 
nuclei. NeuroImage, 2019b. 184: p. 586-598. 

65. Ashburner, J. and K.J. Friston, Unified Segmentation. neuroimage, 2005. 26: p.
839-851. 

66. Bently, J.N., et al., Pneumoceaphalus and electrode deviation in deep brain
stimulation for Parkinson’s disease. Congress of Neuological Surgeons, 
2014. 226.



35 

67. Schonecker, T., et al., Automated optimization of subcortical cerebral MR
imaging-atlas coregistration for improved postoperative electrode 
localization in deep brain stimulation. AJNR Am J Neuroradoil, 2009. 30: 
p. 1914-1921.

68. Husch, A., et al., PaCER - a fully automated method for electrode trajectory and
contact reconstruction in deep brain stimulation. Neuroimage Clin, 
2017(17): p. 80-89. 

69. McIntyre, C.C. and W.M. Grill, Extracellular stimulation of central neurons:
influence of stimulus waveform and frequency on neuronal output. J. 
Neurophysiol, 2002. 88: p. 1592-1604. 

70. Horn, A., et al., Toward an electrophysiological “sweet spot” for deep brain
stimulation in the subthalamic nucleus. Hum. Brain Mapp, 2017. 

71. Marek, K., et al., The Parkinson Progression Marker Initiative (PPMI). Prog.
Neurobiol, 2011. 

72. Mayka, M.A., et al., Three-dimensional locaitons and boundries of motor and
premotor cortices as defined by functional brain imaging: a meta- 
analysis. Neuroimage, 2006. 31: p. 1453-1474. 

73. Rolls, E., et al., Automated anatomical labelling atlas 3. Neuroimage, 2020. 206:
p. 1-5.

74. John, K., et al., Deep Brain Stimulation Effects on Verbal Fluency Dissociated By
Target and Active Contact Location. Annals of Clinical and Translational 
Neurology, 2021: p. 27. 

75. Driscoll, M.E., P.C. Bollu, and P. Tadi, Neuroanatomy, Nucleus Caudate.
StatPearls, 2021: p. 1-1. 

76. Lin, Z., et al., Laterazlied effects of deep brain stimulation in Parkinson’s diease:
evidence and controversies. npj Parkinson’s Disease, 2021. 7: p. 1-8.



36 

77. Garic, D., et al., Lateraliy of the fontal aslant tract (FAT) explains externalizing
behavors through its association with executive funciton. developmental 
science, 2018. 22(2): p.1-13.



37 

CURRICULUM VITA 

NAME: Alexander Luke Alley 

ADDRESS: Department of Anatomical Sciences and Neurobiology 
323 E Chestnut St. 
University of Louisville School of Medicine 
Louisville, KY 40202 

DOB: Clarksburg, WV – August 26, 1998 

EDUCATION 
& TRAINING: B.S., Psychology 

University of Louisville 
2016-2020 

PROFESSIONAL SOCIETIES: Society for Neuroscience 
2021-2022 

Kentucky Academy of Science 
2021-2022 

INVITED PRESENTATIONS: American Society for Stereotactic and 
Functional Neurosurgery 
Poster Presentation – April 2022 


	The impact of volume of tissue activation on cortical-striatal networks and verbal fluency declines in post-deep brain stimulation Parkinson's disease patients.
	Recommended Citation

	Microsoft Word - ALEXANDER_ALLEY_THESIS_2022.docx

