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ABSTRACT

STATISTICAL METHODS FOR ASSESSING DRUG
INTERACTIONS AND IDENTIFYING EFFECT MODIFIERS

USING OBSERVATIONAL DATA

Qian Xu

April 22, 2022

This dissertation consists of three projects related to causal inference based on

observational data.

In the first project, we propose a double robust to identify the effect modi-

fiers and estimate optimal treatment. Observational studies differ from experimental

studies in that assignment of subjects to treatments is not randomized but rather

occurs due to natural mechanisms, which are usually hidden from the researchers.

Many statistical methods to identify the treatment effect and select the optimal per-

sonalized treatment for experimental studies may not be suitable for observational

studies any more. In this project, we propose a flexible outcome model to select the

optimal personalized treatment which is suitable for experimental studies as well as

observational studies. In the proposed model, the control group response profile is

captured by a non-parametric function, and treatment heterogeneity is captured by

the interaction term between treatment and a linear combination of covariates. L1

penalty and A-learning method are proposed to select the important variables in the

interaction terms, thus the effect modifiers can be obtained and the optimal treat-

ment can be determined. The proposed approach is quite flexible and has a doubly
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robust nature in terms of that the estimated individual treatment effect is consistent

if either the control group response profile or the propensity score model is correctly

specified.

In the second project, we propose a statistical method for assessing drug in-

teractions with binary treatments. With advances in medicine, many drugs and

treatments become available. On the one hand, polydrug use (i.e., using more than

one drug at a time) has been used to treat patients with multiple morbid conditions,

and polydrug use may cause severe side effects. On the other hand, combination

treatments have been successfully developed to treat severe diseases such as cancer

and chronic diseases. Observational data, such as electronic health record data, may

provide useful information for assessing drug interactions. In this project we propose

using marginal structural models to assess the average treatment effect and causal

interaction of two drugs by controlling confounding variables. The causal effect and

the interaction of two drugs are assessed using the weighted likelihood approach, with

weights being the inverse probability of the treatment assigned. Simulation studies

were conducted to examine the performance of the proposed method, which showed

that the proposed method was able to estimate the causal parameters consistently.

Case studies were conducted to examine the joint effect of metformin and glyburide

use on reducing the hospital readmission for type 2 diabetic patients, and to examine

the joint effect of antecedent statins and opioids use on the immune and inflammatory

biomarkers for COVID-19 hospitalized patients.

In the third project, we propose a statistical methods for assessing treatment

interactions where treatment could be measured in a continuous scale such as differ-

ent dose levels or intensity of treatment. Combination treatment has been often used

to treat certain disease such as cancer or alcohol use disorders (AUD). For example,

medication and psychotherapy could be applied together to treat patients with AUD.

Observational data from electronic health records or claims data are examples of such

vi



data resources which could be used to examine treatment effects and treatment inter-

actions. In the second project, we proposed the generalized MSMs and provide the

procedures for estimating ATE and treatment interactions using observational data,

where the confounding variables are controlled via the IPTW method. Nevertheless,

this method presents the MSMs and algorithms for estimating ATE and treatment

interaction when two treatments are used together and each drug has only two levels

(present or not), which is unsuitable for the situation when each treatment has mul-

tiple levels or in continuous scale. In this project, we propose the marginal structural

semiparametric model (MSSM) to estimate ATE and treatment interactions, where

the generalized propensity score (GPS) method and spline functions are applied, and

each treatment either includes multiple levels or in continuous scale. The statistical

method developed here can be used to investigate ATE and treatment interaction on

treatment effect, as well as on adverse event, depending on the outcome of interest.
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CHAPTER 1

INTRODUCTION

1.1 Doubly robust methods for identifying effect modifiers and esti-

mating optimal treatment based on observational data

Observational studies differ from experimental studies in that assignment of

subjects to treatments is not randomized but rather occurs due to natural mech-

anisms, which are usually hidden from the researchers. Yet objectives of the two

studies are frequently the same: identify the treatment effect of some exposure on a

population. Furthermore, in both types of studies it is frequently of interest to learn

whether treatment effects differ across particular subgroups of subjects, a situation

sometimes termed treatment heterogeneity. While these objectives can be achieved

directly in an experimental context due to the design imposed on the study, in an

observational study special care must be taken to avoid confounding bias in treatment

effect estimates, particularly when the number of covariates is large. This research

focuses on avoiding confounding bias in estimation of treatment effect, with special fo-

cus on identifying effect modifiers and treatment heterogeneity. We present a method

which efficiently selects effect modifiers from the set of covariates and identifies the

patients who are more beneficial from a certain treatment.

In this project, we propose a flexible outcome model, where the control group

response profile is captured by a non-parametric function, and treatment heterogene-

ity is captured by the interaction term between treatment and a linear combination

of covariates. L1 penalty (Zou and Hastie, 2005a) and A-learning method (Schulte
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et al., 2014) are proposed to select the important variables in the interaction terms,

thus the effect modifiers can be obtained and the optimal treatment can be deter-

mined. The proposed approach is quite flexible, and it can be applied to data from

either randomized trials or observational studies.

1.2 Statistical methods for assessing drug interactions using observa-

tional data with binary treatments

With advances in medicine, many drugs have become available to treat pa-

tients. Polydrug use may cause adverse side effects, and has increasingly caused

concerns (Tramontina et al., 2018). The data depositories from routine clinical prac-

tice provide great opportunity to study the treatment effect of combination therapy

and the adverse effect of polydrug use. Observational data from electronic health

records or claims data are examples of such data resources which could be used to ex-

amine treatment efficacy or adverse outcomes due to combination therapy or polydrug

use. In either type of data sets, confounding variables, which are causally related to

both treatment selection and outcome variable, must be controlled to obtain unbiased

estimates for treatment effect and drug interaction.

As multiple drug use increases, drug interaction has been recognized as an

important problem recently, yet the rigorous statistical methods assessing drug in-

teraction based on clinical observational data are lacking. The assessment of drug

interaction based on observational data requires thoughtful consideration of confound-

ing factors such as patient-specific characteristics and comorbidity. The most critical

issue using clinical observational data to assess drug interactions is to control the

confounding factors, which impact both treatment selection and outcome variables

(Hernan and Robins, 2020). Propensity score based methods such as the inverse

probability of treatment weighting (IPTW) and doubly robust methods have been

2



applied to estimate causal effects (Rosenbaum and Rubin (1983); Yan et al. (2019)).

In particular, IPTW method along with marginal structural models (MSMs) have

been applied to estimate causal parameters such as average treatment effect (Cole

and Hernán (2008); Robins et al. (2000)).

In this project, we propose using MSMs in the framework of generalized linear

models to assess the interaction of two drugs. The statistical method we develop

here can be used to investigate drug interaction on treatment effect, as well as drug

interaction on adverse event, which depends on the outcome of interest.

1.3 Statistical methods for assessing drug interactions using observa-

tional data with treatment in continuous scale

It is common that several drugs (treatments) are prescribed to a patient by

health providers, particularly, when the patient has multiple morbid conditions. Pre-

venting drug interaction plays a vital role in maximizing patient benefit from polydrug

use. Observational data from electronic health records or claims data are examples

of such data resources which could be used to examine drug interactions.

However, one of the greatest challenges using clinical observational data to as-

sess drug interactions is to control the confounding factors, which impact both treat-

ment selection and outcome variables (Hernan and Robins, 2020). Despite propensity

score based methods are popular in observational studies, a main practical difficulty

of these methods is that the propensity score must be estimated. Previous studies

have revealed that slight misspecification of the propensity score model can result

in substantial bias of estimated treatment effects (e.g. Kang and Schafer (2007)

and Smith and Todd (2005)). Evidence suggests that covariate balancing propensity

score (CBPS) method is more reliable, which is robust to mild misspecification of the

parametric propensity score model (Imai and Ratkovic, 2014).
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In previous project, we proposed generalized MSMs and provide the procedures

for estimating ATE and drug interaction using observational data. Nevertheless, this

method presents the MSMs and algorithms for estimating ATE and drug interaction

when two drugs are used together and each drug has only two levels (present or

not), which is unsuitable for the situation when each drug has multiple levels or in

continuous scale.

In this project, we propose a marginal structural semiparametric model (MSSM)

to estimate ATE and treatment interaction with treatment in multiple levels or in

continuous scale. The generalized propensity score (Hirano and Imbens, 2004) enables

us to investigate the drugs with multiple levels or in continuous scale. Once the gen-

eralized propensity scores are obtained, the MSSM based on the weighted sample can

be applied to estimate the interaction. Thus, the proposed MSSM along with IPTW

method provides rigorous statistical method for assessing treatment interactions when

treatment is measured either in multi-levels or in continuous scale.
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CHAPTER 2

DOUBLY ROBUST METHODS FOR IDENTIFYING EFFECT

MODIFIERS AND ESTIMATING OPTIMAL TREATMENT

BASED ON OBSERVATIONAL DATA

2.1 Introduction

As advancing in medicine, many drugs have been developed to treat patients.

It is often that a treatment may only work for patients with certain characteristics

(Dijkman et al., 2009). Therefore, studying the treatment heterogeneity and selecting

optimal treatment have drawn much attention in the literature (Murphy, 2003; Zhang

et al., 2012; Lu et al., 2013; Tian et al., 2014; Foster et al., 2015, 2016; Lipkovich et al.,

2017). Many statistical methods were developed to identify the treatment effect and

select the optimal personalized treatment for experimental studies. For example,

Tian et al. (2014) considered a simple method for estimating interactions between a

treatment and a large number of covariates based on experimental data.

Observational studies differ from experimental studies in that assignment of

subjects to treatments is not randomized but rather occurs due to natural mecha-

nisms, which are usually hidden from the researchers. Although observational studies

such as electronic health records and registry data often provide rich data resources

under routine clinical settings, many statistical methods developed for experimental

studies may not be suitable for observational studies anymore, because the relation-
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ship between treatment and outcomes in observational studies is often confounded.

Appropriate statistical methods for assessing treatment heterogeneity and selecting

optimal treatments need to handle the possible confounding.

In the literature on optimal treatment, Laber and Zhao (2015) developed meth-

ods for optimal treatment selection based on decision trees (Breiman, 2001), which

can facilitate communication with health care providers. In contrast, regression-based

approaches (see, e.g., Qian and Murphy (2011); Brinkley et al. (2010)) typically face

the choice between constructing parsimonious models leading to more interpretable

decision rules but subject to model misspecification, or more complex models that

may avoid misspecification but result in “unintelligible” treatment rules. Tian et al.

(2014) proposed such a regression-based model, where the interaction term of treat-

ment and covariates are included in the model to capture the contrasts between

groups, and further provide guiding decisions about future subjects. However, ques-

tions have been raised about the assumption of correctly specification of propensity

score model. A major problem with this method is the estimates would be biased if

the propensity score model is misspecified.

In this chapter, we propose a flexible outcome model, where the control group

response profile is captured by a non-parametric function, and treatment heterogene-

ity is captured by the interaction term between treatment and a linear combination of

covariates. L1 penalty (Zou and Hastie, 2005a) and A-learning method (Schulte et al.,

2014) are proposed to select the important variables in the interaction terms, thus

the effect modifiers can be obtained and the optimal treatment can be determined.

The most important contribution of the proposed method is double robust to model

misspecification for consistent estimation for optimal treatment regime. A-learning

requires only the part of the outcome regression including contrasts among treat-

ments and propensity scores, which is more robustness, and the form of the decision

rules defining the optimal regime is easy interpretable. Besides, the proposed method
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can handle the high dimensional data by L1 penalty. Our simulation studies showed

that the estimates are still consistent if either the propensity score model is correctly

specified or the control group response profile is correctly specified. The proposed

approach is quite flexible, and it can be applied to data from either randomized trials

or observational studies.

The structure of the remainder of this chapter is as follows: in Section 2.2, we

describe the context and propose a method using L1 penalty (Zou and Hastie, 2005a)

and A-learning method (Schulte et al., 2014) to estimate the contrast function and

identify the optimal treatment for a given patient. In Section 2.3, we describe the

simulation study we executed to examine the performance of the proposed method.

In Section 2.4, we applied the proposed method to study which group of patients

more likely benefit from statin use in control of inflammation for COVID-19 patients

based on an observational study. Finally, in Section 2.5, we provide further discussion

of the results and general conclusions.

2.2 Proposed doubly robust method for estimating optimal treatment

Let (Y, T,X) indicate the triplet for the p-dimensional baseline covariates,

treatment received, and outcome variable. Without loss of generality, we consider

the case with two possible treatment choices, that is, T ∈ {0, 1} with 0 and 1 denot-

ing receiving placebo(control) and getting treated, respectively. Let {(Yi, Ti,Xi)}ni=1

denote a random sample consisting of n i.i.d replicates of (Y, T,X). The sample could

result from either a randomized experimental design or an observational study.

The following model (2.1) has often been used (see, e.g., Lu et al., 2013; Fu

et al., 2016; Lipkovich et al., 2017) to identify the subgroup which may benefit from

the treatment and select the optimal treatment regime:

E(Y |X, T ) = h∗(X) + g∗(X)T. (2.1)
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The interaction term g∗(X)T plays a vital role in quantifying the benefits that a

patient receives from the treatment and hence identifying the optimal treatment. To

further elaborate, we use the concept of potential outcomes (Rubin, 1974). Let Y (0)

and Y (1) denote respectively, the potential outcomes for a subject with covariates X

receiving control and treatment. Here we assume that exchangeability and consistency

hold (Hernan and Robins, 2020), where (i) exchangeability: Y (t)⊥T |X for t = 0, 1,

i.e., given X, the potential outcome is independent of the treatment received; and

(ii) consistency: Y = TY (1) + (1 − T )Y (0), i.e., the observed outcome equals the

potential outcome corresponding to the treatment the subject receives. Under the

two conditions and (2.1), we observe that

h∗(X) = E(Y |X, T = 0) = E(Y (0)|X, T = 0) = E(Y (0)|X) (2.2)

h∗(X) + g∗(X) = E(Y |X, T = 1) = E(Y (1)|X, T = 1) = E(Y (1)|X) (2.3)

where the first equalities in both (2.2) and (2.3) follow from (2.1), the second equal-

ities follow from the consistency condition, and the last equalities follow from the

exchangeability condition. Subsequently, E(Y (1) − Y (0)|X) = g∗(X). Therefore,

g∗(X) in (2.1) is a contrast function, capturing the change of response brought by

treatment for a subject with covariates X, whereas the function h∗(X) is a baseline

function, reflecting the response profile if the subject receives no treatment.

In practice, the primary interest is to identify the subjects who may have a

beneficial treatment effect, that is, to pinpoint {X : E[Y (1)−Y (0)|X] = g∗(X) > 0}.

Thus, we focus on estimating the contrast function g∗(X) instead of h∗(X), and

subsequently finding out the subjects who may have a beneficial treatment effect.

To facilitate a clinical decision, we would like the g∗(X) function to be simple

and to capture the main variables for decision making on which treatment works

better for a person with covariate X. The function h∗(X) captures the response
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profile under control, which is not of direct interest and is considered as a nuisance

function. However, a good estimation of h∗(X) can facilitate an accurate estimation

of the contrast function g∗(X). In the following, we develop a doubly robust estimator

for g∗(X) in that g∗(X) can be estimated consistently if either propensity score model

π∗(X) = P (T = 1|X) or the outcome model h∗(X) is correctly specified.

2.2.1 Doubly robust method

Let assume that g∗(X) is a linear combination of X, that is,

g∗(X) = g(X;β∗) = β∗0 +XTβ∗1 = X̃Tβ∗,

where X̃ = (1,XT)T and β∗ = (β∗0 ,β
∗T
1 )T with β∗0 ∈ R and β∗1 ∈ Rp. Lu et al.

(2013) and Lipkovich et al. (2017) proposed to estimate g∗(X,β∗) by minimizing the

following squared-loss function with respect to β

L(β) =
1

n

n∑
i=1

{
Yi − h∗1(Xi)− X̃T

i β
(
Ti − π∗(Xi)

)}2

, (2.4)

where h∗1(X) = E(Y |X). Consequently, an estimating equation for β∗ can be ob-

tained by setting the first derivative of the objective function (2.4) to zero:

1

n

n∑
i=1

X̃i{Ti − π∗(Xi)}
{
Yi − h∗1(Xi)− X̃T

i β
(
Ti − π∗(Xi)

)}
= 0. (2.5)

However, as π∗(X) is involved in both of the two terms Ti−π∗(Xi) and Yi−h∗1(Xi)−

X̃T
i β(Ti− π∗(Xi)) in the product in Equation (2.5), the expectation of the left hand

side of Equation (2.5) has a value zero only if π∗(X) is correctly specified. Therefore,

the solution to (2.5) may not provide consistent estimates for β∗ if π∗(X) is mis-

specified.
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We note that

h∗1(X) = E(Y |X) = E((1− T )Y (0) + TY (1)|X) (by consistency)

= E(Y (0)|X)(1− π∗(X)) + E(Y (1)|X)π∗(X) (by exchangeability)

= h∗(X)(1− π∗(X)) + (h∗(X) + g∗(X))π∗(X) (by consistency and (2.1))

= h∗(X) + g∗(X)π∗(X).

Therefore, Equation (2.5) is essentially equivalent to

1

n

n∑
i=1

X̃i{Ti − π∗(Xi)}
{
Yi − h∗(Xi)− TiX̃T

i β
}

= 0. (2.6)

In Equation (2.6), the propensity score π∗(X) is only included in the term Ti−π∗(Xi),

whereas Yi−h∗(Xi)−TiX̃T
i β is solely related to the outcome model. In the following

Proposition 2.2.1, we show that E[X̃i{Ti − π(Xi)}{Yi − h(Xi) − TiX̃
T
i β
∗}] = 0 if

either the propensity score is correctly specified (i.e., π(·) = π∗(·)) or the response

profile for subjects under control is correctly specified (i.e., h(·) = h∗(·)).

Proposition 2.2.1. Assuming that g(X; β) = X̃Tβ, if either the propensity score

π∗(X) or the response profile h∗(X) is correctly specified, then

E
[
X̃i{Ti − π(Xi)}

{
Yi − h(Xi)− TiX̃T

i β
∗
}]

= 0

Proposition 2.2.1 implies that that Equation (2.6) is a valid estimating equation

if either h∗(X) or π∗(X) is correctly specified. We denote its solution by β̂DR.

Equation (2.6) has been referred as A-learning in the literature (Schulte et al., 2014).

The proof of Proposition 2.2.1 is provided in the Appendix.

As h∗(X) and π∗(X) are typically unknown in practice, they are often re-

placed by their estimates ĥ(X) and π̂(X). Lu et al. (2013) proposed to estimate

the nuisance function h∗1(X) via a parametric model, such as a constant or a linear
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combination of X, which can be adopted to estimate h∗(X) as well. π∗(X), also

known as a propensity score function, is often estimated via the logistic regression in

an observational study, and is often assumed to be a known constant (say 0.5) for a

randomized study. With h∗(X) and π∗(X) replaced by ĥ(X) and π̂(X) in Equation

(2.6), simple algebra yields that

β̂DR =

(
n∑
i=1

{Ti − π̂(Xi)}TiX̃iX̃
T
i

)−1( n∑
i=1

{Ti − π̂(Xi)}X̃i{Yi − ĥ(Xi)}

)
. (2.7)

Next we show that β̂DR is consistent, if either the propensity score model

π∗(X) or the response function under control h∗(X) can be consistently estimated.

Therefore, the solution to Equation (2.6) is doubly robust (Koch et al., 2018; Yan

et al., 2019).

Theorem 2.2.1. Under Conditions (C1)–(C3) in the Appendix if min{‖π̂−π∗‖∞, ‖ĥ−

h∗‖∞} = op(1), then β̂DR →p β.

The proof of Theorem 2.2.1 is provided in the appendix. Theorem 2.2.1 indicates

that our proposed doubly robust estimator β̂DR achieves the estimation consistency.

Next, we establish its asymptotic distribution.

Define B(π) = E
[
{1− π(X)}TX̃X̃T

]
. Denote π̃ and h̃ as the functions to

which π̂ and ĥ converge in probability respectively. π̃ 6= π∗ (or h̃ 6= h∗) implies that

π∗ (or h∗) is not consistently estimated.

Theorem 2.2.2. Under Conditions (C1)–(C3) in the Appendix, suppose ‖π̂− π̃‖∞ =

op(n
−α1) and ‖ĥ− h̃‖∞ = op(n

−α2) for some π̃ ∈ Π, h̃ ∈ H, and α1 + α2 > 1/2.

(i) If π̃ = π∗ and Condition (C4): E[{π∗(X) − π̂(X)}X̃{h∗(X) − h̃(X)}] =

Enψh̃(Ti,Xi) + op(n
−1/2), E[ψh̃(T,X)] = 0, and E[‖ψh̃(T,X)‖2] < ∞ holds,

then

n1/2(β̂DR − β∗)→d N(0,B−1(π∗)Σ(h̃)B−1(π∗)),
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where

Σ(h̃) =E
[(
{T − π∗(X)}X̃{h∗(X) + ε− h̃(X)}+ ψh̃(T,X)

)
×
(
{T − π∗(X)}X̃{h∗(X) + ε− h̃(X)}+ ψh̃(T,X)

)T
]
.

(ii) If h̃ = h∗ and Condition (C5): E[{T − π̃(X)}X̃{h∗(X)− ĥ(X)}] = Enφπ̃(Yi,

Ti,Xi) + op(n
−1/2), E[φπ̃(Y, T,X)] = 0, and E[‖φπ̃(Y, T,X)‖2] <∞ holds,

then

n1/2(β̂DR − β∗)→d N(0,B−1(π̃)Σ(π̃)B−1(π̃)),

where

Σ(π̃) =E
[(
{T − π̃(X)}X̃ε+ φπ̃(Y, T,X)

)
×
(
{T − π̃(X)}X̃ε+ φπ̃(Y, T,X)

)T
]
.

We discuss the feasibility of conditions in Theorem 2.2.2 in the following two

remarks.

Remark 2.2.1. The conditions that ‖π̂− π̃‖∞ = op(n
−α1) and ‖ĥ− h̃‖∞ = op(n

−α2)

with α1+α2 > 1/2 are often satisfied by different approaches. For example, if paramet-

ric models are used to obtain π̂ and ĥ, ‖π̂−π̃‖∞ = op(n
−1/2) and ‖ĥ−h̃‖∞ = op(n

−1/2)

under Conditions (C1) and (C3). If multivariate kernel methods are used to acquire

both π̂ and ĥ, ‖π̂− π̃‖∞ = op(n
−2/(p+4) log n) and ‖ĥ− h̃‖∞ = op(n

−2/(p+4) log n) (see,

e.g., Yang and Tschernig, 1999) and the condition holds if p < 4.

Remark 2.2.2. Conditions (C4) and (C5) are also satisfied by many commonly

used estimation methods, including the maximum likelihood estimation, the estimating

equation approaches, nonparametric kernel regression, and smoothing splines regres-

sion. Conditions (C4) and (C5) are inspired by the condition 2.6’ (ii) in Chen et al.
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(2003).

Theorem 2.2.2 indicates that the asymptotic variance of β̂DR depends on both

π̂ and ĥ. It is worthwhile to mention that the asymptotic covariance matrix in

Theorem 1 of Lu et al. (2013) is B−1(π∗)Σ(h̃)B−1(π∗) in Theorem 2.2.2 (i) with

π̃ = π∗. If both π∗ and h∗ are consistently estimated, we obtain the following corollary.

Corollary 2.2.1. Under Conditions (C1)–(C3) in the Appendix, suppose ‖π̂−π∗‖∞ =

op(n
−α1) and ‖ĥ− h∗‖∞ = op(n

−α2), and α1 + α2 > 1/2, then

n1/2(β̂DR − β∗)→d N(0,B−1(π∗)E
[
(T − π∗(X))2ε2X̃X̃T

]
B−1(π∗)).

From Theorem 2.2.1, the estimated parameters β for the contrast function

g∗(X) based on the estimating equation (2.6) has doubly robust properties. Al-

though estimating the mean function h∗(X) is not of primary interest, the correct

specification of h∗(X) can improve the efficiency of the estimator β̂DR and guarantee

a consistent estimator for β. In the literature, simple function forms such as constant

or linear combination of covariates have been proposed to estimate h∗(X) or h∗1(X)

(Lu et al., 2013). However, such specification could be far from true model, which

could result in biased estimates if the propensity score model is not correctly speci-

fied. In this article, we propose using a more flexible ensemble method to estimate

the response profile h∗(X). The ensemble method uses several commonly used meth-

ods and selects the optimal one (i.e., having the smallest predicted mean squared

errors (MSE)) based on the 10-fold cross-validation method, such as multiple linear

regression model, multivariate adaptive regression spline (MARS), and the gradient

boosting method (GBM). MARS (Friedman, 1991) has been used to alleviate the

bias problem and achieve the ideal performance in causal inferences (Foster et al.,

2015; Powers et al., 2018). MARS is a non-parametric regression technique which

uses hinge functions as the basis functions, and MARS can be seen as an extension
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of linear models that automatically models nonlinearities and interactions between

variables (Friedman, 1991). The maximum degree of interactions of predictors and

the number of terms retained in the final model are two important tuning parameters

in MARS model, and we performed a grid search and 10-fold cross-validation method

to select the two optimal tuning parameters. MARS technique has been implemented

in the R-package “earth” (Milborrow, 2019). GBM is a tree based approach and

iteratively adds basis functions in a greedy fashion so that each additional basis func-

tion further reduces the selected loss function (Friedman, 2001). GBM and multiple

linear model are very commonly used to estimate the response profile. The proposed

ensemble method uses MARS, GBM and linear regression model and selects the one

which provides the smallest MSE based on 10-fold cross-validation method.

We propose the following algorithm to estimate the parameter β in the contrast

function g(X; β):

(i) Estimate π∗(X): we propose to estimate π∗(X) via the logistic regression re-

gardless the data is from an observational study or a randomized trial. The

resulting estimate is denoted as π̂(X). Note that for a randomized study a

known constant, say 0.5, has been used as π∗(X).

(ii) Estimate E(Y (0)|X) = h∗(X) nonparametrically: we fit the model h∗(X) using

the proposed ensemble method and the observations from control subjects and

obtain a predicted model ĥ(X). We predict ĥ(Xi), i = 1, · · · , n, the potential

outcome under control for all subjects regardless of the treatment assignment.

(iii) Estimate the parameters β∗ in the contrast function g(X; β∗) by the following

expression:

β̂DR =

(
n∑
i=1

{Ti − π̂(Xi)}TiX̃iX̃
T
i

)−1( n∑
i=1

{Ti − π̂(Xi)}{Yi − ĥ(Xi)}X̃i

)
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(iv) Identify patients who benefit from treatment and identify the effect modifiers

which impact the treatment heterogeneity. On the one hand, we can identify

the patients who benefit from the treatment as those who have covariateX such

that g(X; β̂) > 0 , or g(X; β̂) is great than a clinically meaningful threshold.

On the other hand, we can also identify the variables which are significant in

the contrast function g(X; β̂). These variables impact treatment heterogeneity

and are often referred as effect modifiers.

2.2.2 Doubly robust method with variable selection

In clinical research and practice, it is important to know the markers or vari-

ables which impact the treatment heterogeneity (i.e., effect modifiers). In this section,

we incorporate the variable selection in proposed doubly robust method by using the

adaptive lasso method, which is an extension of traditional lasso proposed by Tib-

shirani (1996) with additional coefficient specific weights on the penalty term (Zou,

2006). Under certain conditions, Zou (2006) demonstrated that adaptive lasso esti-

mators have oracle properties, which refer to consistent variable selection. We note
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that the estimating equation (2.6) can be written in the following form:

n∑
i=1

X̃i{Ti − π∗(Xi)}
{
Yi − h∗(Xi)− TiX̃T

i β
}

=
n∑
i=1

X̃i{Ti − π∗(Xi)}
{
Yi − h∗(Xi)

}
−

n∑
i=1

X̃i{Ti − π∗(Xi)}TiX̃T
i β

=
n∑
i=1

X̃i{Ti − π∗(Xi)}
{
Yi − h∗(Xi)

}
−

n∑
i=1

X̃i

√
[Ti − π∗(Xi)]Ti

√
[Ti − π∗(Xi)]TiX̃

T
i β

≈
n∑
i=1

X̃i

√
[Ti − π∗(Xi)]Ti + (1− Ti)δ

({Ti − π∗(Xi)}
{
Yi − h∗(Xi)

}
√

[Ti − π∗(Xi)]Ti + (1− Ti)δ

−
√

[Ti − π∗(Xi)]Ti + (1− Ti)δX̃T
i β

)
,

which is the derivative of the objective function

n∑
i=1

({Ti − π∗(Xi)}
{
Yi − h∗(Xi)

}
√

[Ti − π∗(Xi)]Ti + (1− Ti)δ
−
√

[Ti − π∗(Xi)]Ti + (1− Ti)δX̃T
i β

)2

. (2.8)

Here δ is a small value, e.g., 10−5.

The objective function (2.8) can be simplified as:

n∑
i=1

(
Y New
i −XNewT

i β

)2

, (2.9)

where Y New
i =

{Ti−π∗(Xi)}
{
Yi−h∗(Xi)

}
√

[Ti−π∗(Xi)]Ti+(1−Ti)δ
, and XNew

i =
√

[Ti − π∗(Xi)]Ti + (1− Ti)δX̃i.

Hence, we perform variable selection with adaptive lasso by adding the L1 penalty

with specific weights for the objective function (2.9), and the adaptive lasso estimators

are:

β̂(adLasso) = argminβ

n∑
i=1

(
Y New
i −XNewT

i β

)2

+ λ

p∑
j=1

ŵi|βj|,
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where ŵi = 1

|β̂i(OLS)| , and β̂i(OLS) is estimated via ordinary least squares regression

fitted by Y New andXNew. The tuning parameter λ is selected by minimizing Bayesian

Information Criterion (BIC). Note that the intercept term in the contrast function is

not penalized.

2.3 Simulation studies

2.3.1 Simulation settings

As a proof-of-concept, we designed a simulation study to implement the pro-

posed method. The design of the simulation study were to a large extent influenced

by the simulation study conducted by Lu et al. (2013), which is for randomized con-

trolled trials (RCTs). Our approach is applicable to both RCTs and observational

studies.

Our aims in the simulation studies were to demonstrate that our proposed

method was doubly robust in estimating the contrast function under a variety of un-

derlying data generating conditions. The outcome was designed such that a higher

value indicated a more desirable response. As in Lu et al. (2013), we used 10 co-

variates. We carried out simulation study for both experimental and observational

data, and while Lu et al. (2013) considered only experimental data in their simulation

studies.

In all scenarios, the dimension of covariates was set to 10 as in Lu et al. (2013)

and X ∼ N(010,Σ), where 0d indicated the zero vector of length d and Σ had a

AR(1) structure with correlation coefficient being 0.3. We considered the outcome

model Y = h(X; γ)+Tg(X; β)+ε, where the contrast function g(X;β) = X̃Tβ with

β = (1, 1,0T
7 ,−1, 1.2)T, and ε ∼ N(0, 1). The treatment assignment T either was

a Bernoulli trial with probability 0.5 in RCTs or followed a conditional logit model

logit(Pr[T = 1|X]) =logit(π∗(X)) = X̃Tφ, with φ = (1, 2,−1,0T
6 , 1.5,−0.5)T.
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The h() function controls the complexity of the relationship between the out-

come Y and the covariates X under no treatment. We consider three scenarios of

h(·) as follows:

(S1) Linear model: h(X; ) = 1 +XT
1 , where 1 = (1,−1, 0.5,0T

7 )T.

(S2) Quadratic model: h(X; ) = 1 + (XT
1 )(XT

2 ), where 1 is the same as in Scenario

S1 and 2 = (0.4, 0.3, 0.8, 0.1,0T
6 )T.

(S3) Exponential model: h(X; ) = 1 + (XT
1 )2/4 + exp(XT

2 )/4, where 1 and 2 are the

same as in Scenario S2.

For each scenario, we consider two sample sizes n = 500 and 2000, and two types of

treatment models, RCTs with probability 0.5 and the observational study with the

aforementioned conditional logit model.

For each generated data set of sample size n, we used the proposed doubly

robust method to estimate the contrast function, where the propensity score was

estimated using the logistic regression and h(X; γ) was estimated using the linear

function and the ensemble method, respectively. These results were presented in Ta-

bles 2.1-2.3 under the respective columns “drLM” and “drEns” on the rows with row

title “Est. PS”. To compare, we also estimated the contrast function g(X; β) us-

ing the constant propensity score, say π(X;φ) = 0.5, which was the true propensity

scores for RCTs but a mis-specified propensity score model for observational studies

(see the row blocks “PS=0.5” in Tables 2.1-2.3). In addition, we applied the linear

model of the form E(Y ) = X̃Tγ+TX̃Tβ to estimate the contrast function, which was

presented under the column “LM” in Tables 2.1-2.2. As a comparison, we also applied

the 2-stage approach proposed by Lu et al. (2013) using Equation (2.5) to estimate

h1(X; γ) (instead of h(X; γ)) first then estimate the contrast function. The results

for estimating h1(X; γ) by using the linear function and using the ensemble method

were presented in Tables 2.1-2.3 under the column “2sLM” and “2sEns” respectively.
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For the proposed doubly robust approach, we also examined the performance when

variable selection was applied (see Tables 2.1-2.3 with columns “drLMla”, “drEnsla”).

Under each simulation scenario and for each sample size, we generated 1000 simu-

lated datasets. For each dataset, we applied the 7 methods to estimate the contrast

function with either estimated propensity score or constant propensity scores. The

performance of these methods were summarized by the prediction accuracy in esti-

mating the parameters β in the contrast function and the contrast function itself.

The prediction accuracy in estimating the parameters β were summarized by the

mean squares for errors (MSE) (i.e.,||β̂ − β||2) (see Table 2.1).The precision in esti-

mating the contrast function was summarized by the percent correct decision (PCD,

1
n

∑n
i=1 I[sign(g(Xi; β̂)) = sign(g(Xi; β))]) (see Table 2.2). We constructed Y such

that larger values were more desirable; thus, g(Xi; β̂) > 0 implied that subject i

should be prescribed the treatment, while g(Xi; β̂) < 0 implied that subject i should

not be prescribed the treatment. PCD measured how well the predicted decision

matched the known best decision. We also examined the performance for variable

selection based on the proposed doubly robust approach. We summarized the num-

ber of correctly dropped covariates (Corr0), and the number of incorrectly dropped

covariates (Incorr0) in Table 2.3.

2.3.2 Simulation results

The simulation scenarios varied in terms of sample size (n=500 and 2000),

nature of the -functions (i.e., linear, quadratic, and exponential models), and exper-

imental design (i.e., RCTs versus observational studies). The simulation results for

different metrics were summarized in Tables 2.1-2.3. From Table 2.1 and based on

the MSE under different models, we concluded that (i) the MSE resulted from dou-

bly robust ensemble method (drEns) method had the smallest MSE than all other
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methods in almost all scenarios; (ii) the proposed doubly robust ensemble method

with variable selection using adaptive lasso (drEnsla) further reduced the MSE than

drEns in all scenarios; (iii) drEns performed much better than all the other methods

when treatment assignment dependent on covariates (i.e., observational study) while

the propensity score was set as a constant 0.5, that was the case both propensity

score model and the response model were mis-specified. It was clear that using the

non-parametric ensemble method in the doubly robust approach can alleviate the

impact due to the misspecification of the propensity score model. (iv) Linear model

(LM) model itself or LM in the 2 stage approach (2sLM) or doubly robust approach

(drLM) could result in larger MSE when h(X; γ) was not linear. In summary, it was

clearly that drEns was the winner among all the mentioned methods here.

Table 2.2 presented the predicted correct decision (PCD) for the contrast func-

tion. From Table 2.2, it is clear that (i) PCD was the highest for doubly robust

ensemble method with variable selection method (drEnsla) for almost all scenarios,

followed by doubly robust ensemble method (drEns); (ii) the largest PCD improve-

ment for drEns versus 2sEns was from observational study and PS was set as 0.5:

the improvement was from 85.9% to 91.5% (n=500) and 87.9% to 95.6% (n=2000)

when h(X; γ) was quadratic, and the improvement was from 88.9% to 90.0% (n=500)

and 94.0% to 95.5% (n=2000) when h(X; γ) was exponential function. Overall, the

proposed drEns and drEnsla method led, a great majority of the time, to the correct

decision regarding whether a particular subject should receive treatment or not.

Table 2.3 showed the number of the correctly dropped covariates among the 7

covariates with zero coefficients in the contrast function (Correct 0), and the number

of the incorrectly dropped covariates among the 3 covariates with non-zero coeffi-

cients and intercept in the contrast function (Incorrect 0). When h(X; γ) was linear

function, both methods dropped almost all 7 irrelevant covariates (i.e., Correct0 >

6.9) and picked up the relevant covariates (Incorrect0=0). On the other hand, the

20



number of incorrectly dropped covariates was 0 in almost all scenarios (Incorr0 in

Table 2.3), based on our proposed doubly robust methods (i.e., drLMla, drEnsla),

indicating that our proposed method selects the important variables very well.

Table 2.1: Mean squared errors for β based on 1000 simulated datasets under each
scenario.

LM 2sLM 2sEns drLM drEns drLMla drEnla
Sample size n=500

RCT

Est.PS
Linear 0.106 0.111 0.118 0.109 0.110 0.040 0.040
Quad 0.353 0.319 0.235 0.325 0.152 0.208 0.062
Exp 0.189 0.184 0.248 0.184 0.154 0.088 0.063

PS=.5
Linear 0.106 0.108 0.117 0.106 0.108 0.039 0.040
Quad 0.353 0.342 0.246 0.353 0.153 0.243 0.064
Exp 0.189 0.187 0.261 0.189 0.156 0.094 0.065

Obs.study

Est.PS
Linear 0.135 0.384 0.475 0.279 0.281 0.113 0.120
Quad 2.031 0.724 0.461 0.770 0.386 0.768 0.236
Exp 1.085 0.471 0.457 0.423 0.380 0.295 0.208

PS=.5
Linear 0.135 0.356 1.183 0.135 0.147 0.066 0.078
Quad 2.031 1.735 1.203 2.031 0.505 2.051 0.438
Exp 1.085 0.872 1.381 1.085 0.743 1.102 0.682

Sample size n=2000

RCT

Est.PS
Linear 0.026 0.026 0.027 0.026 0.026 0.009 0.009
Quad 0.087 0.078 0.035 0.078 0.029 0.044 0.010
Exp 0.044 0.042 0.041 0.042 0.029 0.018 0.010

PS=.5
Linear 0.026 0.026 0.027 0.026 0.026 0.009 0.009
Quad 0.087 0.087 0.036 0.087 0.029 0.053 0.010
Exp 0.044 0.044 0.042 0.044 0.029 0.019 0.010

Obs.study

Est.PS
Linear 0.031 0.085 0.085 0.063 0.063 0.024 0.024
Quad 1.687 0.169 0.091 0.184 0.072 0.253 0.029
Exp 0.926 0.104 0.088 0.095 0.072 0.045 0.029

PS=.5
Linear 0.031 0.241 0.828 0.031 0.032 0.014 0.015
Quad 1.687 1.509 0.854 1.687 0.135 1.724 0.110
Exp 0.926 0.727 0.987 0.926 0.172 0.915 0.155
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Table 2.2: Percent correct decision (PCD) based on 1000 simulated datasets under
each scenario.

LM 2sLM 2sEns drLM drEns drLMla drEnla
Sample size n=500

RCT

Est.PS
Linear 0.961 0.960 0.960 0.961 0.961 0.977 0.977
Quad 0.930 0.932 0.949 0.933 0.953 0.948 0.971
Exp 0.949 0.949 0.950 0.949 0.953 0.967 0.971

PS=.5
Linear 0.961 0.961 0.960 0.961 0.961 0.977 0.977
Quad 0.930 0.930 0.949 0.930 0.953 0.943 0.971
Exp 0.949 0.948 0.950 0.949 0.953 0.965 0.971

Obs.study

Est.PS
Linear 0.956 0.928 0.923 0.937 0.937 0.962 0.961
Quad 0.802 0.903 0.922 0.900 0.927 0.899 0.947
Exp 0.882 0.920 0.922 0.924 0.928 0.942 0.950

PS=.5
Linear 0.956 0.920 0.911 0.956 0.954 0.969 0.967
Quad 0.802 0.790 0.859 0.802 0.915 0.801 0.923
Exp 0.882 0.885 0.889 0.882 0.900 0.882 0.915

Sample size n=2000

RCT

Est.PS
Linear 0.980 0.980 0.980 0.980 0.980 0.989 0.989
Quad 0.965 0.966 0.978 0.967 0.979 0.976 0.988
Exp 0.974 0.975 0.978 0.975 0.979 0.984 0.988

PS=.5
Linear 0.980 0.980 0.980 0.980 0.980 0.989 0.989
Quad 0.965 0.965 0.978 0.965 0.979 0.974 0.988
Exp 0.974 0.974 0.978 0.974 0.979 0.984 0.988

Obs.study

Est.PS
Linear 0.979 0.966 0.967 0.970 0.970 0.982 0.982
Quad 0.810 0.951 0.965 0.949 0.968 0.945 0.980
Exp 0.890 0.961 0.966 0.963 0.968 0.976 0.980

PS=.5
Linear 0.979 0.931 0.951 0.979 0.978 0.985 0.985
Quad 0.810 0.800 0.879 0.810 0.956 0.809 0.961
Exp 0.890 0.897 0.940 0.890 0.955 0.891 0.958

2.4 Case study

To demonstrate the use of our proposed method, we applied it to study the

effect of antecedent statins use in a large database of hospitalized coronavirus dis-

ease 2019 (COVID-19) patients, which was established by the University of Louisville

Center of Excellence for Research in Infectious Disease (CERID). Statins were a class

of drugs that lower the level of cholesterol in the blood by reducing the production of

cholesterol by the liver, and statins also had pleiotropic effects (non-lipid, often bene-

ficial effects). Cholesterol was critical to the normal function of every cell in the body,

and it also contributed to the development of atherosclerosis. The impact of statins
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on COVID-19 severity and recovery was important given their high prevalence of use

among individuals at risk for severe COVID-19 (Daniels et al., 2021). We used this

COVID-19 dataset to study the impact of statins on the immune and inflammatory

biomarker. The patients were formed into two groups according to their antecedent

statins use: control group (i.e., no statin used, n= 815), and statin use group (n=

658). The target immune and inflammatory biomarker was a special type of white

blood cells: lymphocyte percentage, that were involved in the fight against infection.

Lymphocytes percentage has a normal range 20% to 40% of circulating white blood

cells (McPherson and Pincus, 2021). Recent study has showed lymphopenia, which

refers to a reduced level of lymphocyte, can indicate certain viral diseases, including

COVID-19 (Tavakolpour et al., 2020), and a meta analysis demonstrated that lym-

phopenia on admission was related with poor outcome in COVID-19 patients (Huang

and Pranata, 2020). Race, gender, age, BMI, and different comorbidity conditions

(see Table 2.4) were possible confounding variables because they are associated with

treatment choices as well outcome risks.

We obtained the estimated interaction parameters of covariates and statins

using the proposed double robust method, and the results were presented in Table

2.5. The proposed drEnsla method identified several covariates which impacted the

optimal treatment selection (see Table 2.5): gender, BMI, race, pulmonary comor-

bidity, neoplastic comorbidity, cerebrovascular accident (CVA) comorbidity, diabetes,

and thrombosis. For example, a regression coefficient of -1.258 for gender (female as

reference level) indicated that the statins lowered 1.258% of lymphocyte percent-

age for males more than females; a regression coefficient of 1.390 for BMI indicated

that higher BMI led to higher statins effect; and the regression coefficients for the

race (hispanic, black, other versus white) -3.087, -2.388, and -5.471, respectively, in-

dicated that statins had larger treatment effect for the White COVID-19 patients.
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It was also clear that statins had larger treatment effect on lymphocyte percentage

in the COVID-19 patients with pulmonary, neoplastic, CVA, and diabetes than in

the COVID-19 patients without these comorbidities (regression coefficients are 1.107,

4.765, 1.124, and 1.432, respectively), and statins had smaller treatment effect on

lymphocyte percentage in patients with thrombosis than patients without thrombo-

sis (regression coefficient: -3.854).

Based on the estimates of contrast function, we constructed the optimal treat-

ment based on the patient characteristics, the optimal treatment for the patients with

contrast function greater than 0 was the statins treatment, and the optimal treatment

for the patients with contrast function less than or equal to 0 should be assigned to

the control. We further presented the distribution of probability of obtaining Lym-

phocyte (%) larger than the given value for treatment group, the control group, and

the optimal treatment, respectively (see Figure 2.1). From Figure 2.1, it is clear that

the patients in the optimal group (green dot line) would have a higher probability of

obtaining a normal lymphocyte percentage (20% to 40%), compared to the patients

in either treatment group or control group. We also selected two pairs of patients

with similar conditions as examples (Table 2.5). In each pair both patients had the

similar characteristics thus have similar contrast functions, which was greater than 0

in the first pair, and less than 0 in the second pair. Based on the optimal treatment

rule, the patients in the first pair should be recommended to be treated. Indeed, we

saw that the patient from the first pair in the treated group (patient P1t in Table 2.5)

had a normal lymphocyte percentage 26.7%, but patient P1c from the control group

had a poor lymphocyte percentage 16.0%. The patients in the second pair shouldn’t

be recommended to be treated with statins. Indeed, we saw that the patient P2c

from the control group had a better lymphocyte percentage 16.4% than the patient

P2t’s lymphocyte percentage 5.0% from the treated group. The observed matched

pairs clearly showed the selected optimal treatment benefits the patients with similar
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characteristics.

This result could reflect the impacts of the effect modifiers for statins use on

innate immune function. The mechanism how these covariates modify the statin effect

may be further investigated, which is beyond the scope of this work.
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Figure 2.1: The probability of obtaining Lymphocyte (%) larger than the given value,
where the blue, red, and green curves represent the treatment group; the control
group; and the optimal group based on the proposed method, respectively.

2.5 Conclusion and discussion

This manuscript presents a method for identifying covariates that interact with

a binary treatment to affect the outcome, hence characterizing subgroups of a study
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population that have differing average treatment effects. The method is capable of

handling a large number of covariates, due to the complexity control exerted by way

of penalized regression. Also, the method is capable of handling both experimental

data and observational data.

This work does have some limitations. So far, it applies only to point-in-time

treatments. Extending this work to dynamic treatment regimens would be benefi-

cial, particularly given that individualized treatment regimes are receiving height-

ened attention in personalized medicine. Also, the method should be studied for its

effectiveness with binary or categorical outcomes, as the work to date has focused on

continuous outcome measures. The characterization of the subgroups resulting from

the selected covariates is not automatic, but a separate step following estimating the

control group response profile. Nevertheless, this approach appears flexible and pow-

erful approach for selecting the variables which impact the treatment heterogeneity,

for deciding which patients would benefit more from the treatment.
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Table 2.3: Variable selection results based on 1000 simulated datasets under each
scenario. Correct0 # is the average of number of covariates correctly estimated as
0 in the contrast function (True value is 7); Incorrect0 # is the average number of
covariates incorrectly estimated as 0 in the contrast function.

Correct0 # Incorrect0 #
drLMla drEnsla drLMla drEnsla

Sample size n=500

RCT

Est.PS
Linear 6.942 6.941 0 0
Quad 6.210 6.872 0 0
Exp 6.691 6.840 0 0

PS=.5
Linear 6.940 6.940 0 0
Quad 5.942 6.858 0.002 0
Exp 6.641 6.821 0 0

Obs.study

Est.PS
Linear 6.976 6.969 0.013 0.017
Quad 6.585 6.849 0.372 0.059
Exp 6.834 6.855 0.095 0.046

PS=.5
Linear 6.821 6.792 0 0.001
Quad 4.838 6.079 0.493 0.042
Exp 4.773 5.176 0.248 0.048

Sample size n=2000

RCT

Est.PS
Linear 6.977 6.977 0 0
Quad 6.409 6.979 0 0
Exp 6.843 6.965 0 0

PS=.5
Linear 6.973 6.973 0 0
Quad 6.299 6.983 0 0
Exp 6.840 6.968 0 0

Obs.study

Est.PS
Linear 6.991 6.992 0 0
Quad 6.436 6.972 0.155 0
Exp 6.799 6.955 0 0

PS=.5
Linear 6.910 6.910 0 0
Quad 4.633 6.254 0.171 0.002
Exp 4.771 5.975 0.007 0.001

27



Table 2.4: Baseline characteristics of hospitalized COVID-19 patients, statins case
study.

Control group (N=815) Statins use group (N=658)
Age (Mean±SD) 59 ± 17.2 68.3 ± 11.68

BMI 32 ± 9.7 32.4 ± 8.28
Race

Hispanic 91 (11.17%) 27 (4.10%)
Non-Hispanic black 205 (25.15%) 186 (28.27%)
Non-Hispanic white 468 (57.42%) 425 (64.59%)
Non-Hispanic others 51 (6.26%) 20 (3.04%)

Gender
Male 397 (48.71%) 345 (52.43%)

Female 418 (51.29%) 313 (47.57%)
Pulmonary count

0 616 (75.58%) 457 (69.45%)
1 176 (21.60%) 181 (27.51%)
2 22 (2.70%) 20 (3.04%)
3 1 (0.12%) 0 (0.00%)

Cad count
0 326 (40.00%) 44 (6.69%)
1 258 (31.66%) 125 (19.00%)
2 155 (19.02%) 257 (39.06%)
3 47 (5.77%) 123 (18.69%)

4-6 29 (3.56%) 109 (16.56%)
Liver count

0 782 (95.95%) 629 (95.59%))
1-2 33 (4.05%) 29 (4.41%)

Neoplastic 61 (7.48%) 70 (10.64%)
CVA 58 (7.12%) 114 (17.33%)

Renal disease 111 (13.62%) 189 (28.72%)
Diabetes 214 (26.26%) 380 (57.75%)

CVD Thrombosis 41 (5.03%) 41 (6.23%)
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Table 2.5: The estimated coefficients for the interaction between the covariates and
statins use based on the hospitalized COVID-19 patients’ cohort, where the response
variable was lymphocyte percentage, and 2 pairs of patients were shown as examples.

Est. of drEnsla Patient Pair 1 Patient Pair 2
Coeff. (SE) P1c: No statins use P1t: statins use P2c: No statins use P2t: statins use

Intercept 0.533 Ori. Value Std. Value Ori. Value Std. Value Ori. Value Std. Value Ori. Value Std. Value
Age 0 92 1.809 88 1.558 67 0.241 66 0.178

Gender Male (Ref: Female) -1.258 0 0 0 0 1 1 1 1
BMI 1.390 29.8 -0.255 30.4 -0.178 26.7 -0.592 27.4 -0.513

Race Hispanic (Ref: White) -3.087 0 0 0 0 0 0 0 0
Race black (Ref: White) -2.388 0 0 0 0 0 0 0 0
Race other (Ref: White) -5.471 0 0 0 0 0 0 0 0

Pulmonary count 1.107 0 -0.572 1 1.347 0 -0.572 0 -0.572
Cad count 0 1 -0.414 4 1.846 5 2.599 3 1.092
Liver count 0 0 -0.205 0 -0.205 0 -0.205 0 -0.205
Neoplastic 4.765 0 0 0 0 0 0 0 0

CVA 1.124 0 0 0 0 0 0 0 0
Renal disease 0 1 1 1 1 0 0 0 0

Diabetes 1.432 1 1 1 1 0 0 0 0
Thrombosis -3.854 0 0 0 0 1 1 1 1

Contrast Function g(X) >0 >0 <0 <0
Lymphocyte percentage 16.0 26.7 16.4 5.0
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CHAPTER 3

STATISTICAL METHODS FOR ASSESSING DRUG

INTERACTIONS USING OBSERVATIONAL DATA WITH

BINARY TREATMENTS

3.1 Introduction

With advances in medicine, many drugs have become available to treat pa-

tients. Drug interactions could be concerns when multiple drugs are applied to the

same patients. For example, several drugs are prescribed to a patient by health

providers when the patient has multiple morbid conditions. Polydrug use is referred

as using more than one drug or treatment during the same time period to treat

different underlying morbid conditions (Vogt-Ferrier, 2011; Naveiro-Rilo et al., 2014;

Tramontina et al., 2018). Polydrug use may cause adverse side effects, and has increas-

ingly caused concerns (Tramontina et al., 2018). On the other hand, the combination

of multiple treatments are developed to treat the same condition, such as cancer

(Mokhtari et al., 2017). Combination therapy may be synergistic, thus more effective

than each single drug (i.e., monotherapy) (Lee et al., 2007). In developing combina-

tion therapy for a certain disease, drug interaction often refers to the situation where

the effect of two drugs is more or less than the predicted additive effect. When the

effect of combination of two drugs is more than their predicted additive effect, the

two drugs are said to be synergistic (Kong and Lee, 2006; Lee et al., 2007). When the

effect of combination of two drugs is less than their predicted additive effect, the two
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drugs are said to be antagonistic (Kong and Lee, 2006; Lee et al., 2007). However,

drug interaction can also refer to adverse effect when polydrug is used. When the

outcome of interest is treatment efficacy, the synergistic treatment effect is preferred.

In the case that the outcome is the adverse side effect, the synergistic effect would

amplify the adverse side effect, and should be avoided.

Although the topic on assessing drug interaction is not new, many statistical

models have been developed for assessing drug interaction using in-vitro cell culture

data (Kong and Lee, 2006; Lee et al., 2007) and in-vivo human tumor xenograft data

(Fang et al., 2004). These models have the form of EY = h(d1 + ρd2 + τd1d2), where

Y is the outcome variable, h is the dose-response curve for drug 1, d1 and d2 are re-

spectively the dose level for drug 1 and drug 2, ρ captures the relative potency of drug

2 versus drug 1, and τ captures the interaction of two drugs. τ > 0 indicates that

the combination of two drugs is synergistic, and τ < 0 indicates that the combination

of the two drugs is antagonistic. These approaches on assessing drug interactions

are consistent with isobologram and combination index (Kong and Lee, 2006; Lee

et al., 2007; Zhao and Yang, 2014; Noguchi et al., 2019). However, these methods do

not control confounding variables, and they are not applicable to observational data

from clinical settings. Drug-drug interaction and drug-herb interaction in clinical

studies have drawn much attention (Malone et al., 2004; Baxter and Preston, 2010;

Mokhtari et al., 2017). However, much of these drug interactions in clinical settings

were discovered through clinical experience. As multiple drug use increases, drug

interaction has been recognized as an important problem recently, yet the rigorous

statistical methods assessing drug interaction based on clinical observational data are

lacking. The data depositories from routine clinical practice provide great opportu-

nity to study the treatment effect of combination therapy or the adverse effect of

polydrug use. Observational data from electronic health records or claims data are

examples of such data resources which can be used to examine treatment efficacy due
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to combination therapy or adverse outcomes due to polydrug use.

Recently several data mining algorithms were proposed to identify drug in-

teraction quantitatively using clinical data (Tatonetti et al., 2012; VanderWeele and

Knol, 2014; VanderWeele, 2015), a common used multivariate regression model has

the form of g(EY ) = XTγ + τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2, where g is a known link function,

and X is a vector of covariates. However, this type of model adjusts the confounding

variables in regression, and assumes that the treatment effects given X are the same

for different values of covariates. The parameters (τ1, τ2, τ12) capture the average

treatment effects (ATEs) and drug interactions only under certain link function g.

The generalized marginal structural models (MSMs) directly model the relationship

between the treatment (or combination treatment) and its potential outcome. The

generalized MSMs can be written as g(EY (d1,d2)) = τ0 + τ1d1 + τ2d2 + τ12d1d2, where

Y (d1,d2) describes the potential outcome if a patient had received treatment (d1, d2)

(Rubin, 2005). Note that not everyone receives the treatment (d1, d2). Under certain

assumptions, the inverse probability of treatment weighting (IPTW) method weights

each subject with the inverse of probability of the treatment received, and the result-

ing weighted sample for patients receiving treatment (d1, d2) has a similar distribution

as the entire study cohort. That is, in the weighted sample, the distribution of each

covariate across different treatment groups are similar, the parameters in the MSMs

thus are obtained from the weighted sample and have causal interpretation (Robins

et al., 2000; Cole and Hernán, 2008; Hernan and Robins, 2020). The IPTW are often

obtained from generalized propensity score (GPS) models (Imbens, 2000; Yan et al.,

2019). Literature has indicated that the variances of the causal parameters from

IPTW method are optimal if propensity score models include confounding variables

(i.e., variables associated with both outcome and treatment selection) and predic-

tor variables (i.e., variables associated with outcome but not treatment selection)

(Brookhart et al., 2006; Craycroft et al., 2020). In Section 3.2, we propose a gener-
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alized MSM to assess ATEs and drug interactions, where the confounding variables

and predictor variables are obtained from fitting a multivariate regression model using

the elastic net variable selection method (Zou and Hastie, 2005b), and the selected

variables are included in the propensity score estimation. The proposed statistical

methods in this article can be used to investigate drug interaction on treatment effi-

cacy as well as drug interaction on adverse event, which depends on the outcome of

interest. In Section 3.3, extensive simulation studies are conducted to examine the

performance of the proposed method. In Section 3.4, one case study is conducted to

examine the joint effect of metformin and glyburide in reducing hospital readmission

in type 2 diabetic patients, and another case study is conducted to examine the joint

effect of statins and opioids on the immune and inflammatory biomarkers in hospi-

talized COVID-19 patients. Section 3.5 is devoted to conclusions and discussions.

The major contributions of this article include: (1) we establish a connection

between the MSMs (suitable for clinical data) and the drug interaction model orig-

inated for pre-clinical data; (2) we investigate the impact of variable selection on

estimating ATEs and drug interactions; (3) we compare the performance of the pro-

posed methods with traditional multivariate regression models in estimating ATEs

and drug interactions; and (4) we illustrate the application of the proposed methods

in estimating ATEs and drug interactions based on clinical data sets.

3.2 Statistical method to assess drug interactions

3.2.1 The proposed models

Let us consider evaluating drug interactions of two drugs (say drug 1 and drug 2).

Let us assume that we have observed quadruplets (D1, D2, X, Y ) for each subject.

D1 and D2 denote the treatment received, and (D1, D2) takes values in D, where
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D = {(0, 0), (1, 0), (0, 1), and (1, 1)}. Specifically,

(D1, D2) =



(0, 0), if the patient neither receives drug 1 nor drug 2;

(1, 0), if the patient receives drug 1 but not drug 2;

(0, 1), if the patient receives drug 2 but not drug 1;

(1, 1), if the patient receives both drug 1 and drug 2.

Y denotes the outcome variables from an exponential family, which include Gaussian

distribution for continuous outcome and binomial distribution for binary outcome.

X denotes the confounding variables which impact both treatment choice and out-

come variable. One example for confounding variable is comorbid conditions, which

impact the patient’s treatment choices as well as his or her health outcome. The

outcome variable Y could be continuous (e.g., the reading value for a biomarker) or

binary (e.g., death, hospital readmission). In the literature, the additive effect of

drug 1 and drug 2 was obtained from two dose-response curves when drug 1 and

drug 2 are applied alone (Kong and Lee, 2006; Lee et al., 2007). If the treatment

effect of the combination treatment of drug 1 and drug 2 is more than the additive

effect, the combination treatment is said to be synergistic; and alternatively, if the

treatment effect of the combination treatment of drug 1 and drug 2 is less than the

additive effect, the combination treatment is said to be antagonistic. The model in

the form of h(d1 + ρd2 + τd1d2) has been used to capture drug interaction in in-vitro

study (Kong and Lee, 2006; Lee et al., 2007). The generalized MSM proposed in

this section is on the line with the form of E(Y ) = h(d1 + ρd2 + τd1d2) but for po-

tential outcome. Potential outcomes can help understand what the ATEs and drug

interaction parameters represent (Rubin, 2005). In the case of two drugs, there are

four potential outcomes (say, Y (0,0), Y (1,0), Y (0,1), and Y (1,1)) for each patient. The

potential outcome Y (d1,d2) for a patient would be the outcome when the patient had
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received treatment combination (d1, d2), where d1 and d2 take values 0 or 1. In prac-

tice, only one potential outcome is observed, say Y , which is the potential outcome

Y (d1,d2) corresponding to the treatment the patient received, say (D1, D2)= (d1, d2).

That is, Y =
∑

(d1,d2)∈D I{(D1,D2)=(d1,d2)}Y
(d1,d2). Here I{(D1,D2)=(d1,d2)} is an indicator

function and takes value 1 if (D1, D2) = (d1, d2) and zero otherwise. We assume

the outcome variable follows an exponential family distribution, and we propose the

following generalized MSM to assess ATEs and drug interaction:

g
(
E{Y (d1,d2)}

)
= τ0 + τ1d1 + τ2d2 + τ12d1d2. (3.1)

Here g is a known monotonic link function. When the outcome is continuous, we may

take g as the identity link function, and model (3.1) becomes

E{Y (d1,d2)} = τ0 + τ1d1 + τ2d2 + τ12d1d2. (3.2)

When the outcome is binary, we may take g as the logit link function, and model

(3.1) becomes

logit
(
E{Y (d1,d2)}

)
= τ0 + τ1d1 + τ2d2 + τ12d1d2. (3.3)

When outcome is the count data, the log-link function may be applied. The general-

ized MSM (3.1) and its special cases (3.2) and (3.3) are distinctive to the traditional

marginal regression model g (E{Y |d1, d2}) = τ̃0 + τ̃1d1 + τ̃2d2 + τ̃12d1d2 and the tradi-

tional multivariate regression model g (E{Y |X, d1, d2}) = XTγ+τ ∗1 d1 +τ ∗2 d2 +τ ∗12d1d2

in that (i) the generalized MSMs are structural and they model the relationship be-

tween potential outcome and treatment (d1, d2) as if everyone had received the treat-

ment (d1, d2), thus the parameters in the MSM have causal interpretation and capture

the ATEs and drug interactions; (ii) the multivariate regression model could capture
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the ATEs and drug interactions if the multivariate regression model has an identity

link function; (iii) when the multivariate regression model has an logit link function,

the multivariate model can not be used to capture the ATEs and drug interactions;

(iv) the traditional marginal regression model does not capture the ATEs and drug

interactions. Heuristic proofs for these statements are provided in the Appendix. The

proposed generalized MSM (3.1) is quite similar to the response surface models for

assessing drug interactions proposed by Kong and Lee (2006) and Lee et al. (2007).

However, the models proposed in (Kong and Lee, 2006; Lee et al., 2007) are used

to assess drug interactions based on in-vitro cell culture data, where there are no

confounding variables involved. Here we extend these models to assess drug inter-

actions based on clinical observational data, where confounding variables often exist

and thus must be controlled for any valid inferences for causal relationship between

combination treatment and outcome variable.

Let us first consider that the link function g as the identity link function with

the resulting model (3.2). The ATE due to drug 1 in the absence of drug 2 is defined

as E
(
Y (1,0)

)
−E

(
Y (0,0)

)
, which is captured by τ1 based on model (3.2). The ATE due

to drug 2 is defined as E
(
Y (0,1)

)
− E

(
Y (0,0)

)
, which is captured by τ2. We can also

see that the ATE due to drug 1 in the presence of drug 2 is E
(
Y (1,1)

)
− E

(
Y (0,1)

)
,

which equals τ1 + τ12. That is, when τ12 6= 0, the ATE due to drug 1 varies depending

on whether drug 2 is administered or not. When τ12 > 0, the ATE due to drug 1 in

the presence of drug 2 is larger than that in the absence of drug 2, indicating that

drug 1 and drug 2 are synergistic. Vise versa, when τ12 < 0, the ATE due to drug 1

in the presence of drug 2 is less than that in the absence of drug 2, indicating that

drug 1 and drug 2 are antagonistic. This definition is consistent with the definition

of drug interaction on the additive scale (VanderWeele, 2015), which states that the

sum of ATE of each individual treatment is different from the ATE when the two
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drugs are applied together. That is,

(
E(Y (1,0))− E(Y (0,0))

)
+
(
E(Y (0,1))− E(Y (0,0))

)
6= E(Y (1,1))− E(Y (0,0)). (3.4)

Note that E(Y (1,0))−E(Y (0,0)) = τ1 and E(Y (0,1))−E(Y (0,0)) = τ2, while E(Y (1,1))−

E(Y (0,0)) = τ1 + τ2 + τ12. Equation (3.4) above is equivalent to τ12 6= 0, thus the

parameter τ12 captures drug interaction on the additive scale.

When the outcome is binary, the logistic MSM (3.3) is often used. We illus-

trate that the causal parameter τ12 captures drug interaction in the odds ratio scale

(VanderWeele, 2015). That is, τ12 captures whether the product of causal odds ratios

of each individual treatment is different from the odds ratio when two treatments are

applied together. That is,

OR(1,0) vs (0,0) ×OR(0,1) vs (0,0) 6= OR(1,1) vs (0,0). (3.5)

Equation (3.5) is equivalent to τ12 6= 0, and τ12 captures drug interaction in the odds

ratio scale (VanderWeele, 2015).

When risk ratio is the quantity of interest, the following MSM with log-link

function could be applied:

log(Pr(Y (d1,d2) = 1)) = τ0 + τ1d1 + τ2d2 + τ12d1d2.

The interaction on the multiplication scale is defined as that the product of causal risk

ratios of individual treatment is different from the causal risk ratio when two treat-

ments are applied together (VanderWeele, 2015). That is, Pr(Y (1,0)=1)

Pr(Y (0,0)=1)
× Pr(Y (0,1)=1)

Pr(Y (0,0)=1)
6=

Pr(Y (1,1)=1)

Pr(Y (0,0)=1)
, which is equivalent to τ12 6= 0. Therefore, τ12 captures drug interaction

in the multiplication scale (VanderWeele, 2015).

In summary, the parameter τ12 in the generalized MSM (3.1) captures drug
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interaction. τ12 > 0 implies that the effect of the combination treatments is more

than expected, indicating a synergistic effect; τ12 < 0 implies that the effect of the

combination treatments is less than expected, indicating an antagonistic effect.

3.2.2 Estimation of the parameters in MSMs

Note that the aforementioned generalized MSMs are models for potential outcome

Y (d1,d2) when the subject had received combination treatment (d1, d2). However the

potential outcome Y (d1,d2) is not observed if the subject does not receive the combina-

tion treatment (d1, d2). Although the parameters τ = (τ0, τ1, τ2, τ12) in the generalized

MSM (3.1) have causal interpretation, an appropriate estimating method must control

for confounding variables. Following the literature in the causal inference, we apply

the IPTW method to estimate the causal parameters τ in the generalized MSMs

(Robins et al., 2000; Cole and Hernán, 2008). The IPTW method essentially creates

a weighted sample where the distributions of each confounding variable across differ-

ent treatment groups are similar, thus removing the confounding effect between the

treatment assignment and the outcome variable. The consistency of the estimates for

τ provided by the MSMs with IPTW holds under the following assumptions (Rosen-

baum and Rubin, 1983; Imbens, 2000; Gelman and Hill, 2006; Cole and Hernán, 2008;

Greenland and Mansournia, 2015; Hernan and Robins, 2020): (i) Weak ignorability

(i.e., weak unconfoundness): Y (d1,d2) ⊥ (D1, D2)|X for each pair (d1, d2) ∈ D. That

is, given X, the potential outcome is independent of the treatment received; (ii) Pos-

itivity: Pr(D1 = d1, D2 = d2|X) > 0 for all (d1, d2) ∈ D and X; (iii) Consistency:

Y =
∑

(d1,d2)∈D I{(D1,D2)=(d1,d2)}Y
(d1,d2), that is, the observed outcome is the same as

the potential outcome corresponding the treatment received; and (iv) Correctly spec-

ification of propensity score model. The first three assumptions are key in the causal

inference literature. The fourth assumption is specifically required for the IPTW

method (Robins et al., 2000; Kang and Schafer, 2007; Cole and Hernán, 2008). Vi-
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olation of any one of the assumptions may result in biased estimates for ATEs and

drug interactions when our proposed IPTW method is applied.

Let us denote (d1i, d2i, xi, yi) as the observed quadruplets for ith subject (i =

1, 2, ..., n). The IPTW weight for ith subject is:

wi =
1

Pr(D1 = d1i, D2 = d2i|X = xi)
.

Thus, we form a weighted sample where ith subject has wi copies of (d1i, d2i, xi, yi)

instead of 1 copy. Let us denote the distribution of X in the weighted sample as f ∗,

and in the original sample as f . The weight for an observation with covariate x and

treatment (d1, d2) is defined as w(d1, d2|x) = 1
Pr(D1=d1,D2=d2|x)

, 1
f(d1,d2|x)

. Then the

conditional distribution of X given (D1, D2) = (d1, d2) in the weighted sample is:

f ∗(x|d1, d2) , w(d1, d2|x)f(x|d1, d2) =
1

f(d1, d2|x)

f(x, d1, d2)

f(d1, d2)
=

f(x)

f(d1, d2)
∝ f(x).

Thus, in the weighted sample, the distribution of X in each treatment group is pro-

portional to the marginal distribution of X in the population where the original

sample comes from. That is, X is not associated with treatment assignment anymore

in the weighted sample. In practice, the probability of treatment assignment, say

Pr(D1 = d1, D2 = d2|X = x), needs to be estimated. In the literature, parametric

methods (e.g., multinomial regression (Imbens, 2000), covariate balance propensity

score (CBPS) method (Imai and Ratkovic, 2014)) and non-parametric method (e.g.,

generalized boosting method (GBM) (McCaffrey et al., 2013)) have been proposed to

estimate the GPSs (Yan et al., 2019). Recent studies indicate that a more efficient

estimate for ATEs can be obtained by including only the confounding variables and

predictor variables in the GPS estimation (Brookhart et al., 2006; Craycroft et al.,

2020). Note that the confounding variables and predictor variables are associated

with the outcome variable, we propose applying the LASSO method (i.e., using L1

39



penalty) (Zou and Hastie, 2005b) to the multivariate regression model to select the

variables which are associated with the outcome variable. We assume that the mul-

tivariate regression model includes treatment D1, D2, D1D2, and all covariates. We

apply the LASSO method to the multivariate regression model to select the covari-

ates associated with the outcome, and the selected covariates are included in the GPS

model. GPSs are also called balance score (Rosenbaum and Rubin, 1983). A metric to

evaluate whether a covariate is balanced is the standardized mean difference (SMD)

among all groups. The SMD between two treatment groups, say between treatment

(d1, d2) and (d′1, d
′
2), is defined as:

SMD{(d1,d2) vs (d′1,d
′
2)} =

X̄(d1,d2) − X̄(d′1,d
′
2)√(

S2
(d1,d2) + S2

(d′1,d
′
2)

)
/2

,

where X̄(d1,d2) and X̄(d′1,d
′
2) are, respectively, the sample means of the covariate in the

(d1, d2) group and (d′1, d
′
2) group. S2

(d1,d2) is the standard deviation of the covariate

based on the observations in the (d1, d2) group. The SMDs in the weighted sample

are defined similarly but with X̄(d1,d2) being the weighted sample mean in the (d1, d2)

group. The summarized metric of covariate balance across all groups for a covariate

is obtained by the mean of SMDs over all pairs of different treatment groups. A

SMD greater than 0.1 is considered a sign of imbalance of the covariate (Zhang et al.,

2019). SMD allows researchers to quantitatively compare balance in measured base-

line covariates between two groups in the IPTW weighted sample (Austin and Stuart,

2015). However, SMD also can be used to assess balance of confounding variables

in the original sample, which helps determine whether or not weighting is needed to

correct for confounding variables. Further SMD can be used to assess the balance

of confounding variables under different GPS models. The GPS model should be

correctly specified and result in balanced confounding variables. In this article, we

apply the multinomial logistic regression to estimate GPSs, which is easy to imple-
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ment and fast to compute. However, in case that the confounding variables in the

weighted sample are not balanced, more advanced models such as CBPS model (Imai

and Ratkovic, 2014) and GBM (McCaffrey et al., 2013) can be applied to estimate

the GPSs. The balance of the confounding variables in the weighted sample should

be assessed and achieved.

To obtain the GPSs, say Pr(D1 = d1i, D2 = d2i|X = xi) for ith subject (i =

1, ..., n), we apply the multinomial logistic regression model which has the following

form:

log
Pr(D1 = d1, D2 = d2|X = x)

Pr(D1 = 0, D2 = 0|X = x)
= (1, xT )β(d1,d2) = β

(d1,d2)
0 + xTβ

(d1,d2)
1 .

Here β(d1,d2) = (β
(d1,d2)
0 , β

(d1,d2)
1

T )T for (d1, d2) ∈ D, and β(0,0) takes a vector of zero

values. The GPS can be obtained as:

Pr(D1 = d1, D2 = d2|X = x) =
exp (β

(d1,d2)
0 + xTβ

(d1,d2)
1 )∑

(d′1,d
′
2)∈D exp (β

(d′1,d
′
2)

0 + xTβ
(d′1,d

′
2)

1 )
. (3.6)

The parameters β(d1,d2) with (d1, d2) ∈ D − (0, 0) can be estimated from the max-

imum likelihood (ML) method using the observed treatment assignments (d1i, d2i)

and confounding variables xi (i = 1, ..., n). Once the parameters β(d1,d2) are esti-

mated, the weight for ith subject is obtained as ŵi = 1

P̂ r(D1=d1i,D2=d2i|X=xi)
, where the

P̂ r(D1 = d1i, D2 = d2i|X = xi) is obtained by replacing β
(d1,d2)
0 and β

(d1,d2)
1 by their

ML estimates in equation (3.6).

Under the four assumptions (i.e., weak ignorability, positivity, consistency, and

correct specification of GPS model), there is no confounding anymore in the weighted

sample. The parameters τ = (τ0, τ1, τ2, τ12) in the generalized MSM (3.1) can be

41



obtained by maximizing the weighted log-likelihood function. That is,

τ̂ = (τ̂0, τ̂1, τ̂2, τ̂12)T = arg max
n∑
i=1

ŵil(τ ; d1i, d2i, yi).

Here l(τ ; d1i, d2i, yi) is the log-likelihood function for ith observation. When the out-

come is continuous and the identity link function is used, the log-likelihood function

for ith observation is

l(τ ; d1i, d2i, yi) = log(
1√

2πσ2
e−

(yi−τ0−τ1d1i−τ2d2i−τ12d1id2i)
2

2σ2 )

= −(yi − τ0 − τ1d1i − τ2d2i − τ12d1id2i)
2

2σ2
− 1

2
log(2πσ2).

When the outcome is binary and the logit link function is used, the log-likelihood

function for ith observation is

l(τ ; d1i, d2i, yi) = yi(τ0 + τ1d1i + τ2d2i + τ12d1id2i)− log(1 + eτ0+τ1d1i+τ2d2i+τ12d1id2i).

The similar work (Robins et al., 2000) on MSMs indicates that the weighted ML

results in consistent estimator for the causal parameter for τ under the four assump-

tions for causal inference. The weighted ML estimate for τ can be obtained by using

the R package survey (Lumley, 2004), where the weights are obtained by the GPS

model which achieves the balance of confounding variables. Although a robust vari-

ance estimator for τ̂ can be obtained from the survey package, it does not incorporate

the uncertainty in estimating the GPSs in the IPTW method. Instead, we use the

bootstrap sampling techniques to estimate the variance of τ̂ . That is, we obtain B

(say, 100) bootstrap samples from the original sample. For the bth bootstrap sample

(b = 1, · · · , B), we repeat the same estimating process as outlined to obtain an esti-

mate τ̂ (b) for τ . V̂ar(τ̂), the estimate of the variance of τ̂ , is obtained as the variance of

the B bootstrap estimates τ̂ (b) (b = 1, · · · , B) (Mooney et al., 1993). In the following
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section, extensive simulation studies were carried out to examine the performance of

the proposed methods in estimating ATEs and drug interactions.

3.3 Simulation studies

In this section, we carried out extensive simulation studies to examine the perfor-

mance of the proposed method in estimating ATEs and drug interactions using the

generalized MSMs with IPTW method.

3.3.1 Design of simulation studies

In our simulation studies, we examined the performance of our proposed method un-

der three different sample sizes (say n=500, 1000, and 5000) for continuous responses

as well as binary responses (say Y ). For continuous responses Y , we considered the

following two regression models, the first one assumed homogeneous treatment effects

(i.e., the conditional treatment effect given X was the same over different covariates

X):

Y = X̃
T
γ + τ ∗1D1 + τ ∗2D2 + τ ∗12D1D2 + ε; (3.7)

and the second one assumed heterogeneous treatment effects (i.e., the conditional

treatment effect given X varied over different covariates X):

Y = X̃
T
γ + τ ∗1D1 + τ ∗2D2 + τ ∗12D1D2 + δ1X

2
1D1 + δ2X

2
2D2 + δ3X3D1D2 + ε. (3.8)

Here we set τ ∗1 = τ ∗2 = 1, and τ ∗12 was taking values from -1 to 1 by a step of

0.5, δ1 = δ2 = δ3 = 1. X̃ = (1,XT )T , where X is a vector of p covariates (p = 10)

with each covariate being independently normally distributed with mean zero and

variance 1. ε was a random error with normal distribution of mean 0 and variance

0.52. γ was set as (1, 2,−2, 2,−2, 2,05)T so that the outcome models only depended

on the first 5 covariates. Here 0q represented a vector of zero with q components.
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For binary responses Y , we considered the following two logistic regression

models, the first one assumed homogeneous treatment effects:

logitPr(Y = 1|X,D1, D2) = X̃
T
γ + τ ∗1D1 + τ ∗2D2 + τ ∗12D1D2, (3.9)

and the second one assumed heterogeneous treatment effects:

logitPr(Y = 1|X,D1, D2) =X̃
T
γ + τ ∗1D1 + τ ∗2D2 + τ ∗12D1D2 (3.10)

+ δ1X
2
1D1 + δ2X

2
2D2 + δ3X3D1D2.

Here τ ∗1 = τ ∗2 = 2, and τ ∗12 was taking values from -1 to 1 by a step of 0.5,

δ1 = δ2 = δ3 = 1, X̃ = (1,XT )T were set the same as those for the continuous

outcomes, and γ was set as (0.1, 1, 1, 1, 1,−1,05)T .

Given X, the treatment assignment (say, (D1, D2)) was generated using the

multinomial distribution with the following probabilities:

Pr((D1, D2) = (d1, d2)) =
exp (β

(d1,d2)
0 + XTβ

(d1,d2)
1 )∑

(d′1,d
′
2)∈D

exp (β
(d′1,d

′
2)

0 + XTβ
(d′1,d

′
2)

1 )
, (3.11)

where β
(0,0)
0 = β

(1,0)
0 = β

(0,1)
0 = β

(1,1)
0 = 0, β

(0,0)
1 = 0T10, β

(1,0)
1 = 0.2×(1,−1,−1,02, 0.5,−1,03)T ,

β
(0,1)
1 = 0.2×(0.5,−1.5, 0.5,02, 1.5,−1,03)T , and β

(1,1)
1 = 0.2×(1,−1, 0.5,02, 1, 0.5,03)T .

Thus, in our simulation setting, the first three covariates were confounding variables,

which were related to both the treatment assignment and the outcome; X4 and X5

were predictor variables, which were only related to the outcome but not the treat-

ment assignment; X6 and X7 were instrumental variables, which were only related

to the treatment assignment; and all the other three variables X8, X9 and X10 were

spurious variables which were neither related to the treatment assignment nor to the

outcome. Based on the generated covariates and treatments, we generated the con-

44



tinuous responses using models (3.7) and (3.8), respectively. We also generated the

binary responses using models (3.9) and (3.10), respectively.

For each outcome model (four models in total), each τ ∗12 (five specifications),

and each sample size (n=500, 1000, and 5000), we generated 1000 simulated data sets.

The data generating and estimating procedures were carried out in the following steps.

Step 1: A data set was generated by (i) first generating n observations for the p covari-

ates, say Xi (i = 1, . . . , n), where Xi ∼ MVN(0, I2); (ii) generating treatment

assignment (Di1, Di2) based on a multinomial distribution with probability of

treatment assignment model (3.11) and the covariate Xi (i = 1, . . . , n); (iii) gen-

erating the outcome Yi based on the outcome model along with the covariate Xi

generated in (i) and treatment assignment (Di1, Di2) (i = 1, . . . , n) generated

in (ii).

Step 2: For each simulated data set, the four potential outcomes {Y (0,0)
i , Y

(1,0)
i , Y

(0,1)
i , Y

(1,1)
i }

corresponding to the covariate Xi were generated using the outcome model

(i = 1, . . . , n). For continuous outcome, the true sample ATEs for drug 1 used

alone versus control, for drug 2 used alone versus control and, and drug inter-

action were, respectively, obtained as

ATE(1,0) vs. (0,0) = 1
n

n∑
i=1

(Y
(1,0)
i − Y (0,0)

i ),

ATE(0,1) vs. (0,0) = 1
n

n∑
i=1

(Y
(0,1)
i − Y (0,0)

i ), and

ATE(1,1) vs. (0,1)−ATE(1,0) vs. (0,0) = 1
n

n∑
i=1

(
Y

(1,1)
i −Y (0,1)

i −(Y
(1,0)
i −Y (0,0)

i )
)
.

For binary outcome, the true sample ATEs and drug interaction in terms of

odds ratio were obtained as

ATE(1,0) vs. (0,0) =

1
n

n∑
i=1

Y
(1,0)
i

1− 1
n

n∑
i=1

Y
(1,0)
i

/

1
n

n∑
i=1

Y
(0,0)
i

1− 1
n

n∑
i=1

Y
(0,0)
i

,

ATE(0,1) vs. (0,0) =

1
n

n∑
i=1

Y
(0,1)
i

1− 1
n

n∑
i=1

Y
(0,1)
i

/

1
n

n∑
i=1

Y
(0,0)
i

1− 1
n

n∑
i=1

Y
(0,0)
i

, and
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ATE(1,1) vs. (0,1)

ATE(1,0) vs. (0,0)
=

( 1
n

n∑
i=1

Y
(1,1)
i

1− 1
n

n∑
i=1

Y
(1,1)
i

/

1
n

n∑
i=1

Y
(0,1)
i

1− 1
n

n∑
i=1

Y
(0,1)
i

)
/

( 1
n

n∑
i=1

Y
(1,0)
i

1− 1
n

n∑
i=1

Y
(1,0)
i

/

1
n

n∑
i=1

Y
(0,0)
i

1− 1
n

n∑
i=1

Y
(0,0)
i

)
.

Step 3: For each dataset, we estimated the parameters τ = (τ0, τ1, τ2, τ12) in the gen-

eralized MSM without using the IPTW and with using the IPTW, and we also

estimated τ using multivariate regression model as specified in model (3.7) for

continuous outcome and model (3.9) for binary outcome. In the IPTW ap-

proach, the following five sets of covariates were used to estimate GPSs and

weights: (i) all available covariates, i.e. X1 ∼ X10; (ii) true confounding vari-

ables only, i.e. X1 ∼ X3; (iii) confounding variables and instrumental variables,

i.e. X1 ∼ X3 and X6 ∼ X7; (iv) confounding variables and predictors, i.e.

X1 ∼ X5; and (v) the set of covariates selected based the LASSO method.

Step 4: Bootstrap resampling method was used to estimate the variance for each esti-

mated causal parameter, say τ1, τ2, and τ12.

Step 5: Steps 1-4 were repeated for 1000 times. The true ATEs and drug interaction

were obtained as the mean of the 1000 true sample ATEs and drug interac-

tions calculated in Step 2. For continuous outcome, the true τ1, τ2 and τ12

were obtained,respectively, as the mean of 1000 true sample ATE(1,0) vs. (0,0),

ATE(0,1) vs. (0,0), and ATE(1,1) vs. (0,1)−ATE(1,0) vs. (0,0). For binary outcome, the

true τ1, τ2 and τ12 were obtained, respectively, as the mean of 1000 log(ATE(1,0) vs. (0,0)),

log(ATE(0,1) vs. (0,0)), and log(ATE(1,1) vs. (0,1) − ATE(1,0) vs. (0,0)).

Step 6: The mean of the 1000 estimates (Est), mean squared errors (MSE), the mean of

1000 standard errors (SE) based on the bootstrap method in Step 4, the empiri-

cal standard deviation for the 1000 estimates (E.SD) for each causal parameter,

and the true coverage rate (CR) of the 95% confidence intervals for the true

causal parameters (τ1, τ2, τ12) from Step 5 were obtained.

Step 7: Repeat Steps 1-6 for each of the 60 combined settings (four outcome models,
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five specifications for τ ∗12, and three sample sizes.)

The boxplots of the quantities based on the 1000 simulated data with het-

erogeneous treatment effects for the three sample sizes and different τ ∗12 were shown

in Figure 3.1 for continuous outcomes and Figure 3.2 for binary outcomes, and the

boxplots of these quantities based on the 1000 simulated data sets with homogeneous

treatment effects were shown in Figure A1.1 for continuous outcomes and Figure

A1.2 for binary outcomes in the Appendix. The summarized metrics, including Est,

MSE, SE, E.SD, and the CR for the true causal parameter were presented in Table

3.1 for continuous outcomes and Table 3.2 for binary outcomes for τ ∗12 = 0 and the

sample size n = 1000. The summarized simulation results with sample size n = 500

and n = 5000 were reported in Tables A1.1 ∼ A1.2 in the Appendix for continuous

outcomes, and in Tables A1.3 ∼ A1.4 in the Appendix for binary outcomes.

We also assessed the balance of the covariates in our simulation study. It has

been well known that the propensity scores are used to balance covariates among

different treatment groups (Rosenbaum and Rubin, 1983). For each simulated data

set, we calculated the propensity scores by using the multinomial regression models

and different sets of covariates. We calculated the average of SMDs for each covariate

to assess the balance of covariate among the four treatment groups. Figure A1.3 in

the Appendix showed the boxplots of the average of SMDs among all pairs of the four

treatment groups for each covariate without and with IPTW for the 1000 simulated

data sets with sample size n = 5000, where we presented three sets of covariates in the

GPS models: (i) all covariates; (ii) confounding variables and predictors; and (iii) the

selected variables via LASSO. A dashed horizontal line at the height 0.1 indicated the

threshold on whether the covariate was balanced or not. From Figure A1.3, we can see

that (i) the confounding variables (i.e., X1 ∼ X3) and instrumental variables (i.e., X6

andX7) were not balanced in the original samples, and the predictors (i.e., X4 andX5)

and the spurious variables (i.e., X8 ∼ X10) were less unbalanced in the original sample;
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(ii) the GPS model included all covariates balanced all covariates; (iii) the GPS

model included confounding variables and predictors only balanced these variables;

(iv) the GPS model included the selected variables via LASSO balanced confounding

variables and predictors. All GPS models resulted in balanced confounding variables

but not necessary instrumental variables. To estimate ATEs and drug interaction

appropriately, the confounding variables were important to be controlled. It was

clear that different GPS models balanced all the confounding variables across the

four groups.

3.3.2 Simulation results

Based on the simulation results in Figures 3.1 ∼ 3.2 and Tables 3.1 ∼ 3.2 in the

current article and Figures A1.1 ∼ A1.2 and Tables A1.1 ∼ A1.4 in the Appendix, we

concluded that (i) the estimated ATEs based on the proposed method for drug 1 were

close to the true ATEs (see the first row from the third to the seventh boxplots versus

the first boxplot for each τ ∗12 in Figures 3.1 ∼ 3.2, S1 ∼ S2), while the estimated

ATEs without IPTW (see the first row the second boxplot for each τ ∗12) were far

from the true ATEs; (ii) the estimated ATEs based on the proposed method for drug

2 were also close to the true ATEs for drug 2 (see the second row from the third

to the seventh boxplot versus the first boxplot for each τ ∗12 in Figures 3.1 ∼ 3.2,

S1 ∼ S2), while the estimated ATEs without IPTW for drug 2 were far from the

true ATEs (see the second row the second boxplot versus the first boxplot for each

τ ∗12; (iii) the estimated drug interactions (say τ̂12) based on the MSMs with IPTW

were also close to the true drug interactions, while the estimated drug interactions

based on MSM without IPTW were far from the true drug interactions (see the third
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row in Figures 3.1 ∼ 3.2, S1 ∼ S2); (iv) as the sample size increased (n=500, 1000,

5000 in the first, second, and third column, respectively, in Figures 3.1 ∼ 3.2, S1

∼ S2), the estimated ATEs and drug interactions based on the proposed methods

became more accurate and variations became smaller; (v) although the IPTW-based

estimates for ATEs and drug interactions using different sets of covariates were close

to the true values, the variations of the estimated ATEs and drug interactions with

GPS including confounding variables and predictors were the smallest one, followed

by the GPS model with covariates selected by LASSO (see MSE and E.SD in Tables

3.1 ∼ 3.2, A1.1 ∼ A1.4 in the Appendix); (vi) the SEs based on the bootstrap method

were close to the E.SD for each causal parameter, and the true CRs were close to the

nominal rate of 0.95 (Tables 3.1 ∼ 3.2, A1.1 ∼ A1.4), indicating that the bootstrap

method performed well in estimating the variances of the causal parameters; (vii)

the multivariate regression models could provide unbiased estimates for ATEs and

drug interactions when the underlying link function was the identity link function,

and the multivariate regression models may not provide unbiased estimates for ATEs

and drug interactions when the underlying link function was the logit link function

(Tables 3.1 ∼ 3.2, A1.1 ∼ A1.4). We concluded that the proposed method performed

well in estimating ATEs and drug interactions in these simulation studies.

We would like to clarify that the first boxplot in each block in Figures 3.1 ∼

3.2, A1.1 ∼ A1.2 was the boxplot of the true sample ATEs and drug interactions based

on the potential outcomes obtained from the underlying outcome models in Step 2 in

the simulation algorithm. The four potential outcomes for each patient in a simulated

data set were obtained from the underlying models with the generated covariates and

four different treatment combinations. The true ATEs and drug interaction reported

in Tables 3.1 ∼ 3.2 in this article and Tables A1.1 ∼ A1.4 in the Appendix were the

mean of the 1000 true sample ATEs and drug interactions. The true sample ATEs

and drug interactions were not estimates from a sample but were obtained with a

49



known underlying outcome model with plugging in the generated covariates and each

one of the four treatment combinations. While the other quantities were obtained

from certain estimation procedures as outlined in the simulation study. This may

explain why the variations for the true sample ATEs were smaller than the other

quantities in Figures 3.1 ∼3.2, A1.1 ∼ A1.2 and Tables 3.1 ∼ 3.2, A1.1 ∼ A1.4.

3.4 Case studies

3.4.1 Case study 1: glyburide/metformin on readmission rates for diabetes

Recent evidence suggests that the management of hyperglycemia in the hospitalized

patient has critical impact on the clinical outcomes for both morbidity and mortal-

ity (Strack et al., 2014). Literature has shown that the combination of glyburide

and metformin significantly reduced fasting plasma glucose and 2 hour postprandial

glucose values compared with either monotherapy (Garber et al., 2003). This was a

randomized, three arm parallel group, double blinded trial, of 486 participants, with

inadequate glycemic control that had attempted first line diet and exercise alone.

The use of first-line combination treatment of glyburide and metformin versus gly-

buride or metformin monotherapy was studied. The combination treatment provided

superior glycemic control over component monotherapy, allowing more patients in

this study, to achieve American Diabetes Association (ADA) treatment goals with

lower component doses in drug-naive patients with type 2 diabetes (Garber et al.,

2003). In our case study, we studied the joint effect of metformin and glyburide

on readmission rates in individuals admitted to a hospital obtained from electronic

health records data. The data set consisted of patients who were hospitalized with

diabetic encounter and had recorded diabetes medications. The data set was cre-

ated from the health fact database which included patients’ comprehensive clinical

records from 130 US hospitals for years 1999-2008, and the data set was available
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in the University of California Irvine (UCI) machine learning repository database.

The details of the data set can be obtained from Strack et al. (2014). We obtained

data for a total of 1233 patients who had type 2 diabetes with HbA1c test result

greater than 8% and did not have any other diabetes medications other than gly-

buride and metformin. Per American Diabetic Association guidelines, HbA1c levels

7% are the recommended target, thus the patients in our case study would be con-

sidered patients with inadequate glucose control, unless they are older frail adults.

Among the patients, 738 patients did not use any diabetes medication (say, control

group), 150 patients used glyburide only, 198 patients used metformin only, and 147

patients used both glyburide and metformin (see Table 3.3A). The readmission rate

without adjusting any confounding variables were 43.8%, 40.7%, 30.8%, and 32.7%,

respectively, for control group, glyburide only group, metformin only group, and the

combination of glyburide and metformin group (Table 3.3A). The covariates include

race, gender, age, weight, the comorbidity conditions prior encounter hospital admis-

sion such as circulatory diseases, diabetes, digestive diseases, genitourinary diseases,

musculoskeletal disease, respiratory diseases, injury, neoplasms, and other diseases.

The SMD for the original samples were larger than 0.1, indicating unbalance of the

covariates in the original sample (Figure A1.4 in the Appendix). Thus, the IPTW

method, which adjust confounding variables, should be applied to estimate the ATEs

and drug interaction.

We applied LASSO method to the outcome model, which included all the

covariates, treatment indicator variables and the interaction of the two treatments.

The selected covariates were race, gender, age, and the comorbidity conditions, which

were included in the GPS model. We first applied the multinomial regression model

to estimate the GPSs, however the balance of the selected covariates among different

treatment groups were not achieved. Instead, we applied the CBPS method (Imai

and Ratkovic, 2014) to estimate the GPS and balance the selected variables. The
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balances of covariates in terms of SMD for this case study on original observed sam-

ple and the IPTW weighted sample were presented in Figure A1.4 in the Appendix.

It clearly showed that the SMD for the covariates across the four different groups

were small in the weighted sample, indicating balance of the covariates and comor-

bid conditions. The histograms of the GPSs for the four groups (see Figure A1.5 in

the Appendix) indicated that there were not zero or one probabilities, which implied

that the positivity assumption was not violated. The MSM with logit-link function

was used to assess treatment effect and drug interaction. The estimated readmission

rates in the weighted samples were 44.0%, 32.2%, 33.2%, and 31.8%, respectively,

for control group, glyburide only group, metformin only group, and the combination

of glyburide and metformin group (see the column under “Readmission with IPTW

(LASSO)” in Table 3.3A). The resulting parameters for MSM without IPTW and

with IPTW were reported in Table 1B. Due to the presence of confounding vari-

ables, the inference for ATEs and drug interaction should be made based on the

estimates applying MSM with IPTW (LASSO). Based on Table 3.3B, both glyburide

and metformin used alone significantly reduced the readmission rate, with OR as

e−0.503 = 0.604 (p=0.019) for glyburide used alone, and e−0.458 = 0.633 (p=0.015) for

metformin used alone. Their combination also significantly reduced the readmission

rate with an OR=e−0.524 = 0.592 (p=0.012). However, the interaction parameter was

not significantly different from zero (p=0.193), indicating that the two drugs did not

have interacting effect on hospital readmission based on this case study.

The model proposed can potentially detect a causal relationship between the

medications and outcome of re-hospitalization, if confounding variables were con-

trolled. The covariates included in this analysis sought to address variables that make

a patient more vulnerable to hospitalization when added glucose lowering treatments

are assigned, such as age and disease burden. This approach helps diminish the likeli-

hood of including re-hospitalization for hypoglycemia which is an problematic reason
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for re-hospitalization in older and frail patients (e.g. older age and higher diagno-

sis burden). In this example, the medications available in the data base excluded

medications other than diabetes medications. Clinically, there are potentially other

confounding variables, such as medications that increase glucose levels and impair

diabetic control, such as prednisone, which could probably explain the inability to

detect a significant interaction effect of metformin and glyburide on re-hospitalization.

Another confounder and limitation to the data set is that how the patient actually

takes a medication and manages diabetes at home is very difficult to account for.

Skipping doses, in addition to poor eating choices or lack of exercise, can negate the

impact of medications in any individual. Lastly, although re-hospitalization is the

ultimate outcome that most health systems seek to avoid, the breadth of reasons a

patient could be re-hospitalized for is vast. In this analysis, all re-hospitalizations

were considered the outcome of interest. Re-hospitalizations due to poor glucose con-

trol such as urinary frequency, dizziness, fainting, blurry vision and others, were not

identifiable.

3.4.2 Case study 2: Effect of antecedent statins and opioids use on inflammatory

biomarkers in hospitalized COVID-19 patients

Statins are a class of drugs that lower the level of cholesterol in the blood by reducing

the production of cholesterol by the liver, and statins also have pleiotropic effects

(non-lipid, often beneficial effects). Cholesterol is critical to the normal function of

every cell in the body, and it also contributes to the development of atherosclerosis.

The impact of statins on coronavirus disease 2019 (COVID-19) severity and recovery

is important given their high prevalence of use among individuals at risk for severe

COVID-19 (Daniels et al., 2021). Statins have a pleiotropic effect in addition to choles-

terol lowering mechanisms. This pleiotropic effect is independent of statin effects on

cholesterol. Statins inhibit production of proinflammatory cytokines, reactive oxygen
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species and diminish platelet reactivity (Oesterle et al., 2017). In other words, statins

appear to diminish the harms of inflammation and clotting that persons infected with

COVID-19 experience, which may lead to lower morbidity and mortality. Some stud-

ies indicate that some persons receiving statins during COVID-19 infection have lower

morbidity and mortality compared to some not receiving statins (De Spiegeleer et al.,

2020). Countering the theory that statins diminish COVID-19 infection morbidity

and mortality is that statins may up-regulate the ACE2 receptor activity in the lungs,

which is how SARS-Co-V2 enters cells, implying that statins may increase infection

risk (Tikoo et al., 2015).

Opioids are a class of drugs that include the illegal drug heroin, synthetic opi-

oids such as fentanyl, and pain relievers available legally by prescriptions (https://www.

drugabuse.gov/drug-topics/opioids). There is increasing recognition that persons en-

gaging in chronic opioid misuse have higher rates of viral and other infections. Opioid

use can make people more vulnerable to infection via suppression of immune surveil-

lance, in contrast to statin use which is theorized to increase viral load by easing

COVID-19’s ability to infect. Opioid misuse is associated with altered inflammatory

response. Opioid use is associated with elevated risk of infection due to immune

suppression, and paradoxically immune suppression may play a protective role dur-

ing COVID-19 infection due to mitigated inflammatory response (Ataei et al., 2020).

Louisville Kentucky is an epidemic area for opioid crisis. Statins and opoids are there-

fore theorized to impact COVID-19 outcomes in unconfirmed and variable ways. One

approach is to study their impact on biomarkers of inflammation and infection. We

used a large database of hospitalized COVID-19 patients established by the Univer-

sity of Louisville Center of Excellence for Research in Infectious Disease (CERID) to

study the impact of opioids and statins on the immune and inflammatory biomarkers

among patients hospitalized for COVID-19. The data used in this study consisted of

685 adult inpatients hospitalized with COVID-19 at nine different hospitals within
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the Louisville metropolitan area from March 9, 2020 to June 20, 2020. To assess

the effect of antecedent statins and opioids use on the immune and inflammatory

biomarkers, the patients were formed into four treatment groups according to their

antecedent statins and opioids use: control group (i.e., neither statin nor opioids

used, n=402), statins only group (n=214), opioids only group (n=34), and statin

plus opioids group (n=35). The target immune and inflammatory biomarkers of in-

terest regarding acute COVID-19 infection outcomes, the outcome variables, included

laboratory Ct values (i.e., the cycle threshold value in RT-PCR tests for the coron-

avirus, the smaller the Ct value, the more severe the infection), neutrophils percentage

(a special type of white blood cells that are involved in the fight against infection),

lymphocytes percentage (white blood cells that are one of the body’s main types of

immune cells), activated partial thromboplastin time (aPTT) (characterizing coag-

ulation of the blood), and procalcitonin (a higher level of procalcitonin indicates a

response to a pro-inflammatory stimulus). Several chronic co-morbidities and factors

are associated with baseline elevated pro-inflammatory states and baseline elevated

inflammatory bio-markers (de Lucena et al., 2020). Race, gender, age, weight, body

mass index (BMI), and different comorbidity conditions are possible confounding

variables because they are associated with treatment choices as well outcome risks.

Generalized propensity scores were obtained from multinomial regression mod-

els and were employed to balance the covariates in each group. Figure A1.6 in the

Appendix presented the SMDs for the original sample and the weighted sample. It

showed that the SMDs in the original sample were much larger than the threshold

value 0.1, and the SMDs in the weighted sample were smaller or close to the thresh-

old value 0.1, indicating that covariates were balanced among the four groups in the

weighted sample. We then applied IPTW to estimate the ATEs and drug interac-

tions on the different outcomes. Table 3.4 presented the group means of the outcome

variables based on the original observed sample (Table 3.4A) and the weighted sam-
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ples (Table 3.4B). We reported the estimated ATE and drug interaction parameters

using MSM without IPTW as well as with IPTW (see Table 3.5). Due to the unbal-

anced covariates in the original sample, the statistical inference for ATEs and drug

interactions should be based on the weighted sample, i.e., the estimates from MSMs

with IPTW. The variances for the estimated parameters in the MSMs were obtained

from the bootstrap method. Since there were five biomarkers in this investigation,

Bonferroni correction were applied to adjust the p-values for statistical inferences.

Based on Table 3.5, statins significantly increased neutrophils percentage and aPTT,

and statins significantly decreased lymphocytes percentage. Opioids used alone did

not change the aforementioned biomarkers significantly (although the p-value for the

procalcitonin level was 0.046, it became insignificant after Bonferroni corrections). In

particular, statins used alone increased aPTT significantly, and opioids used alone did

not change aPTT significantly. However, the effect of statins on aPTT in the presence

of opioids use was significantly decreased comparing with the effect of statins on aPTT

in the absence of opioids by a magnitude of -9.5 unit (adjusted p=0.004×5=0.02).

That is, statins and opioids did interact on aPTT significantly. The multiple path-

ways associated with immune response and sequent inflammatory cascade may be

reflected in this analysis. For example, an increase in aPTT in statin use alone may

indicate the impact of statin use on higher viral load and intensity of infection, which

in turn is associated with higher inflammatory levels. This finding supports the in-

creased ACE2 receptor up-regulation hypothesis with statin use. And, the presence

of opioids mitigating aPTT levels in statin users supports the hypothesis that opioids

may mitigate inflammatory response. This result could also reflect unknown impacts

of opioids and statins on innate immune function and inflammation. The mechanism

of the interaction of statins and opioids may be further investigated, which is beyond

the scope of this work.

We noted that the histogram of GPSs for this case study (Figure A1.7 in the
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Appendix) did indicate that some propensity scores were close to zero and some were

close to one, which implied that the positivity assumption might be violated. We

performed sensitivity analysis by weight trimming (Lee et al., 2011) to the range

of ( 1
0.95

, 1
0.05

). The parameters in the generalized MSM with the trimmed weights

were presented in Table A1.5 in the Appendix. The results were similar to those in

Table 3.5. However, the violation of the positivity assumption was a concern, and a

confirmatory conclusion requires a further study.

3.5 Conclusion and discussion

In this article, we propose the generalized MSMs and provide the procedures for esti-

mating ATEs and drug interactions using observational data, where the confounding

variables are controlled via the IPTW method. This proposed method, paired with

strong clinical modeling and the appropriate data set, provide a novel approach to

studying medication signals embedded in complex clinical scenarios. Our extensive

simulation studies illustrate that the proposed models and estimating algorithms pro-

vide consistent estimates for the causal parameters in the MSMs and capture the true

ATEs and drug interactions under the assumptions of weak ignorability, positivity,

consistency and correct specification of GPS. However, in practice, there could be

many factors that can confound the translation from the medication list to outcomes.

If there are unmeasured confounders, the underlying assumptions for the proposed

method do not hold, thus the proposed method may not be suitable to assess ATEs

and drug interactions. However, the focus of this article is the analytic methodol-

ogy of drug-drug interaction under these common assumptions. The cases presented

illustrate drug-drug interactions that may be detected from observational data for

potential prospective clinical study. The two case studies illustrate the method de-

scribed in this paper, with acknowledgement that the case studies are not based on

comprehensive clinical models aimed at controlling all confounding variables. The
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case studies illustrate the MSM modeling and identify drug-drug interactions associ-

ated with outcomes of consequence, providing a potential starting point for clinical

studies. Presentation of these case studies illustrates the potential utility of the model

in mining observational retrospective data to identify potential drug-drug synergies

for future clinical study.

The positivity assumption for the GPS approach is important, and a viola-

tion of the positivity assumption may result in biased estimates for ATEs and drug

interactions. The simulation studies in Section 3.3 represent the situations where

the positivity assumption holds. The histograms of the GPSs for patients assigned

to each group for a sample of size 5000 based on the simulation settings for the

GPS model in Section 3.3 were shown in Figure A1.8 in the Appendix, which clearly

indicated that the probability assigned to each group was positive (i.e., the posi-

tivity assumption held). We also carried out additional simulation studies by let-

ting β
(1,0)
1 = (1.5, 1,−1,02, 1.5, 1,03)T , β

(0,1)
1 = (0.5,−1.5, 0.5,02, 1.5,−1,03)T , and

β
(1,1)
1 = (1,−1, 0.5,02, 1, 1.5,03)T in the GPS model (3.11) to simulate the cases

where the positivity assumption was violated (Lee et al., 2007). The histograms of

the GPSs for patients assigned to each group for a sample of size 5000 were shown

in Figure A1.9 in the Appendix, which clearly indicated the violation of the positiv-

ity assumption. The boxplots for the simulation results for binary outcome model

(3.10) with independent covariates were presented in Figure A1.10, indicating that

the MSMs model based on IPTW method can result in biased estimates for ATEs

and drug interactions when the positivity assumption is violated. We also allowed

that Xi followed a multivariate normal with mean 0 and variance matrix as Σ, where

Σ = (1 − ρ)Ip×p + ρJ × JT with J being a vector of p ones. We set ρ = 0.2 for

moderately correlated case and ρ = 0.5 for strongly correlated case. The simulation

results (not shown) indicated that the correlated covariates may impact the variance

of the estimated ATEs and drug interactions, and the biases of the estimated ATEs
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and drug interactions were largely impacted by the GPS specifications.

Once the generalized propensity scores are obtained, one can use the Horvitz-

Thompson survey sampling weighted estimator (Horvitz and Thompson, 1952) to

estimate the mean of the potential outcome, further estimate ATEs and drug interac-

tions. Never the less, the Horvitz-Thompson method neither directly estimates ATEs

and drug interactions nor estimates their variances. On the contrary, the generalized

MSMs based on the weighted sample directly estimate ATEs and drug interactions

and their variances. Thus, the generalized MSMs along with IPTW method provide

rigorous statistical method for assessing drug interactions. With robust interdisci-

plinary collaboration and clinical modeling, the impact of drug interactions detected

using this method, may identify significant leads for biomedical clinical study.

This article presents the MSMs and algorithms for estimating ATEs and drug

interactions when two drugs are used together and each drug has only two levels

(present or not). However, the doses of the medicine sometimes vary among patients

and may be adjusted based on patients’ conditions, where the treatments could be

continuous variables. The proposed approach could be extended to the situation

when each drug has multiple levels or in continuous scale using the GPS (Hirano and

Imbens, 2004), which will be investigated in our future research.
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Figure 3.1: Boxplots of 1000 estimated ATEs and drug interactions for continuous
outcome with heterogeneous treatment effects and different sample sizes. The first
row and the second row, respectively, showed the estimated ATEs for drug 1 (i.e. τ̂1)
and drug 2 (i.e. τ̂2), with different specification of τ ∗12. The third row showed the
estimated τ12 to capture drug interaction. In each block (i.e. for a fixed τ ∗12), the
first boxplot was the true ATE or drug interaction, the second boxplot was estimates
according to MSMs without IPTW, and the third to the seventh boxplots were esti-
mates according to MSMs with IPTW being obtained from the following five different
sets of covariates: (i) all covariates, (ii) confounding variables only, (iii) confounding
variables and instrumental variables, (iv) confounding variables and predictors, and
(v) covariates selected by LASSO.
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Table 3.1: Summarized metrics for the estimated ATEs and drug interactions based
on 1000 simulated data sets for continuous outcomes with fixed τ ∗12 = 0 and sample
size n = 1000.

UW W-All W-C W-CI W-CP W-LASSO Reg. model
Homogeneous treatment effect for continuous outcome (Model (3.7)):

The true ATEs and drug interaction were (1.000, 1.000, 0.000).

τ1

Est. 1.370 0.991 0.983 0.983 0.989 0.989 0.998
MSE 0.309 0.018 0.079 0.083 0.012 0.012 0.002
SE 0.400 0.163 0.278 0.289 0.128 0.156 0.045

E.SD 0.414 0.134 0.281 0.288 0.109 0.110 0.047
CR 0.825 0.969 0.936 0.939 0.960 0.985 0.950

τ2

Est. 1.960 0.991 0.985 0.981 0.993 0.993 0.999
MSE 1.088 0.016 0.076 0.080 0.010 0.010 0.002
SE 0.400 0.161 0.276 0.289 0.120 0.151 0.045

E.SD 0.408 0.127 0.276 0.282 0.0980 0.099 0.047
CR 0.328 0.979 0.944 0.947 0.968 0.990 0.936

τ12

Est. -0.352 0.009 0.024 0.024 0.013 0.014 0.004
MSE 0.467 0.029 0.157 0.161 0.021 0.021 0.004
SE 0.568 0.225 0.392 0.408 0.173 0.213 0.064

E.SD 0.586 0.171 0.396 0.401 0.144 0.145 0.067
CR 0.890 0.982 0.946 0.954 0.976 0.988 0.940

Heterogeneous treatment effect for continuous outcome (Model (3.8)):
The true ATEs and drug interaction were (2.001, 1.999, 0.001).

τ1

Est. 2.370 1.99 1.982 1.982 1.989 1.989 2.014
MSE 0.316 0.024 0.086 0.091 0.017 0.022 0.010
SE 0.413 0.187 0.292 0.302 0.155 0.183 0.107

E.SD 0.429 0.162 0.297 0.305 0.138 0.154 0.107
CR 0.836 0.958 0.939 0.932 0.964 0.964 0.944

τ2

Est. 2.961 1.988 1.982 1.979 1.990 1.991 1.943
MSE 1.099 0.020 0.080 0.083 0.014 0.018 0.012
SE 0.415 0.180 0.288 0.301 0.145 0.176 0.107

E.SD 0.421 0.149 0.288 0.293 0.126 0.140 0.105
CR 0.360 0.975 0.956 0.956 0.974 0.981 0.924

τ12

Est. -0.266 0.010 0.025 0.024 0.015 0.011 0.071
MSE 0.480 0.057 0.181 0.186 0.046 0.053 0.044
SE 0.619 0.282 0.424 0.440 0.238 0.277 0.199

E.SD 0.639 0.240 0.425 0.432 0.215 0.233 0.200
CR 0.919 0.983 0.950 0.958 0.966 0.977 0.934
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Table 3.2: Summarized metrics for the estimated ATEs and drug interactions based
on 1000 simulated data sets for binary outcomes with fixed τ ∗12 = 0 and sample size
n = 1000.

UW W-All W-C W-CI W-CP W-LASSO Reg. model
Homogeneous treatment effect for binary outcome (Model (3.9)):
The true ATEs and drug interaction were (1.155, 1.160, 0.135).

τ1

Est. 1.046 1.156 1.163 1.162 1.157 1.154 2.055
MSE 0.055 0.034 0.038 0.039 0.032 0.033 0.900
SE 0.196 0.170 0.179 0.183 0.164 0.170 0.297

E.SD 0.196 0.168 0.181 0.185 0.163 0.167 0.289
CR 0.906 0.939 0.942 0.937 0.947 0.939 0.134

τ2

Est. 1.104 1.163 1.165 1.163 1.165 1.163 2.062
MSE 0.048 0.032 0.037 0.038 0.030 0.032 0.900
SE 0.196 0.172 0.180 0.185 0.165 0.172 0.298

E.SD 0.198 0.166 0.178 0.182 0.161 0.165 0.284
CR 0.932 0.954 0.937 0.947 0.944 0.953 0.132

τ12

Est. 0.414 0.168 0.164 0.166 0.165 0.169 0.022
MSE 0.226 0.129 0.133 0.138 0.122 0.129 0.249
SE 0.365 0.340 0.345 0.353 0.328 0.339 0.478

E.SD 0.363 0.332 0.340 0.346 0.322 0.332 0.468
CR 0.873 0.947 0.941 0.950 0.941 0.949 0.948
Heterogeneous treatment effect for binary outcome (Model (3.10)):

The true ATEs and drug interaction are (1.635, 1.638, -0.278).

τ1

Est. 1.502 1.638 1.645 1.644 1.639 1.637 2.606
MSE 0.067 0.040 0.044 0.045 0.038 0.039 1.038
SE 0.213 0.193 0.201 0.204 0.187 0.192 0.313

E.SD 0.208 0.183 0.195 0.197 0.179 0.182 0.299
CR 0.907 0.954 0.954 0.950 0.953 0.955 0.110

τ2

Est. 1.626 1.649 1.649 1.649 1.648 1.648 2.657
MSE 0.052 0.042 0.046 0.048 0.040 0.041 1.141
SE 0.218 0.199 0.205 0.210 0.191 0.199 0.321

E.SD 0.212 0.191 0.199 0.205 0.185 0.190 0.311
CR 0.952 0.956 0.956 0.957 0.957 0.954 0.104

τ12

Est. 0.040 -0.236 -0.244 -0.239 -0.244 -0.237 -0.663
MSE 0.330 0.218 0.216 0.224 0.203 0.215 0.477
SE 0.593 0.581 0.581 0.590 0.568 0.580 0.707

E.SD 0.450 0.435 0.435 0.443 0.420 0.431 0.554
CR 0.901 0.945 0.946 0.947 0.950 0.943 0.914
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Figure 3.2: Boxplots of 1000 estimated ATEs and drug interactions for binary outcome
with heterogeneous treatment effects and different sample sizes. The first row and
the second row, respectively, showed the estimated ATEs (OR in log scale) for drug
1 (i.e. τ̂1) and drug 2 (i.e. τ̂2), with different specification of τ ∗12. The third row
showed the estimated τ12 to capture drug interaction. In each block (i.e. for a fixed
τ ∗12), the first boxplot was the true ATE or drug interaction, the second boxplot
was estimates according to MSMs without IPTW, and and the third to the seventh
boxplots were estimates according to MSMs with IPTW being obtained from the
following five different sets of covariates: (i) all covariates, (ii) confounding variables
only, (iii) confounding variables and instrumental variables, (iv) confounding variables
and predictors, and (v) covariates selected by LASSO.
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Table 3.3: Summarized information for the study of glyburide and metformin on
hospitalized diabetic patients.

A: Sample size and estimated readmission rate
Sample Size Observed Estimated Readmission

Readmission with IPTW (LASSO)

Control 738 43.8% 44.0%
Gly. only 150 40.7% 32.2%
Met. only 198 30.8% 33.2%
Gly.+Met. 147 32.7% 31.8%
Overall 1233 40.0% 35.3%
B: Estimated ATE and drug interaction in logit (Est) and odds ratio (OR) scale

MSM without IPTW MSM with IPTW(LASSO)

Parameter Est (SE) OR P-Value Est (SE) OR P-Value

τg -0.127 (0.169) 0.881 0.454 -0.503 (0.189) 0.604 0.008

τm -0.558 (0.173) 0.572 0.001 -0.458 (0.196) 0.633 0.020

τgm 0.212 (0.289) 1.237 0.464 0.437 (0.317) 1.549 0.168

Total -0.473 (0.197) 0.623 0.018 -0.524 (0.233) 0.592 0.025

Note: τg , Glyburide vs Control; τm, Metformin vs Control; τgm, Drug interaction; Total, Gly.+Met. vs Control .
Abbreviations: Gly., Glyburide; Met., Metformin.

Table 3.4: Summarized statistics for the antecedent opioid use and statins use for
hospitalized COVID-19 patients

A: Summarized mean and standard deviation based on the observed sample
Control Statins Only Opioids Only Statins+Opioids

Sample Size(N=685) 402 214 34 35
Ct 28.1±5.59 26.1±5.78 26.0±6.13 26.1±4.79
Neutropct 71.1±14.03 74.4±14.3 69.3±12.94 69.4±14.15
Lymphopct 19.3±11.39 15.5±10.38 19.6±9.61 18.7±11.35
aPTT 30.7±7.02 37.0±27.08 33.0±6.35 29.3±4.09
Procalcitonin 2.0±14.49 3.2±28.99 0.5±0.89 1.3±3.59
B: Summarized mean and standard deviation based on the weighted sample with IPTW-All

Control Statins Only Opioids Only Statins+Opioids
Ct 27.3±5.76 26.6±5.62 25.5±6.09 27.1±4.14
Neutropct 71.1±13.41 75.0±13.08 71.8±13.57 71.6±12.86
Lymphopct 18.8±10.75 15.7±9.95 17.8±9.4 18.2±10.79
aPTT 30.6±6.39 35.4±20.92 33.8±6.91 29.0±3.73
Procalcitonin 1.8±12.2 3.3±30.69 0.5±0.82 1.2±3.54
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Table 3.5: The estimated ATEs and drug interactions for opioids and statins use

Biomarkers/ MSM without IPTW MSM with IPTW-All
Parameters Est SE P-Value Est SE P-Value*

C
t

τs -2.031 0.529 <0.001 -0.771 0.698 0.270
τo -2.136 1.286 0.111 -1.853 1.545 0.231
τso 2.123 1.713 0.229 2.412 2.022 0.234
τs + τo + τso -2.043 1.222 0.109 -0.213 1.210 0.860

N
e
u
tr

o
. τs 3.362 1.209 0.006 3.837 1.295 0.003

τo -1.758 3.038 0.569 0.719 3.923 0.855
τso -3.307 4.229 0.441 -4.077 4.793 0.396
τs + τo + τso -1.703 3.026 0.578 0.480 2.961 0.871

L
y
m

p
h

. τs -3.746 0.929 <0.001 -3.090 1.016 0.002
τo 0.341 2.189 0.878 -1.029 2.646 0.698
τso 2.825 3.290 0.398 3.535 3.718 0.342
τs + τo + τso -0.580 2.513 0.819 -0.584 2.744 0.832

a
P

T
T

τs 6.302 2.546 0.015 4.758 1.791 0.008
τo 2.286 1.808 0.225 3.155 2.373 0.185
τso -10.047 3.404 0.009 -9.526 3.241 0.004
τs + τo + τso -1.459 1.180 0.234 -1.612 1.192 0.178

P
ro

ca
l. τs 1.245 2.212 0.574 1.498 2.425 0.537

τo -1.487 0.822 0.083 -1.294 0.642 0.045
τso -0.433 2.201 0.845 -0.840 2.386 0.725
τs + τo + τso -0.676 1.078 0.536 -0.636 1.018 0.533

* The p-values were obtained from the Wald tests without Bonferroni correction.
The Bonferroni corrected p-values would be the minimal value of 1 and 5 times of the
p-values reported.
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CHAPTER 4

STATISTICAL METHODS FOR ASSESSING DRUG

INTERACTIONS USING OBSERVATIONAL DATA WITH

TREATMENT IN CONTINUOUS SCALE

4.1 Introduction

It is common that several treatments are applied to treat patients with the

same condition. For example, patients with alcohol use disorder often receive both

medical treatment and psychotherapy. It is also common that multiple drugs are

prescribed to a patient by health providers to treat different morbid conditions. Us-

ing more than one drug or treatment during the same time period to treat differ-

ent underlying morbid conditions is referred to as polydrug use (Vogt-Ferrier, 2011;

Naveiro-Rilo et al., 2014). Polydrug use could enhance the desired treatment effects.

However, polydrug use may also cause severe adverse side effects, and polydrug use

has increasingly caused concerns (Tramontina et al., 2018).

In developing combination therapy for certain disease, treatment interaction

often refers to the situation where the effect of two treatments is more or less than

the predicted additive effect. When the effect of combination of two treatments is

more than their predicted additive effect, the two treatments are said to be synergistic

(Kong and Lee, 2006, 2008). However, treatment interaction can also refer to adverse

effect when polydrug is used. When the outcome of interest is treatment efficacy, the

synergistic treatment effect is preferred. In the case that the outcome is the adverse
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side effect, the synergistic effect would amplify the adverse side effect, and should be

avoided. Previous study suggests that healthcare providers use various database and

Web resources depending on the potential drug interaction evidence they are seeking

(Grizzle et al., 2019). Observational data from electronic health records or claims

data are examples of such data resources which could be used to examine treatment

interactions.

Recently, a considerable literature has centered around the theme of assess-

ing treatment interaction using the existing data depositories from routine clinical

practice. Many statistical models have been developed for assessing drug interaction

using in-vitro cell culture data (Kong and Lee, 2006, 2008) and in-vivo human tumor

xenograft data (Fang et al., 2004). Drug-drug interaction and drug-herb interaction

in clinical studies have drawn much attention (Vogt-Ferrier, 2011; Baxter and Pre-

ston, 2010; VanderWeele, 2015). Much research discovered drug interactions clinically

through experience or experiments derived by dose-response curves for each pair of

drugs (Tatonetti et al., 2012; Li et al., 2015; Malone et al., 2004). Data mining al-

gorithms were also proposed to identify drug interaction quantitatively using clinical

data (Noguchi et al., 2019). However, one of the greatest challenges using clinical

observational data to assess drug interactions is to control the confounding factors,

which impact both treatment selection and outcome variables (Hernan and Robins,

2020). Propensity score based methods such as the inverse probability of treatment

weighting (IPTW) and doubly robust methods have been applied to estimate causal

effects (Rosenbaum and Rubin, 1983; Yan et al., 2019). In particular, the marginal

structural models (MSMs) along with IPTW method have been applied to estimate

causal parameters such as average treatment effect (ATE) (Cole and Hernán, 2008;

Robins et al., 2000). Despite propensity score based methods are popular in obser-

vational studies, a main practical difficulty of these methods is that the propensity

score must be estimated. Previous studies have revealed that slight misspecification
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of the propensity score model can result in substantial bias of estimated treatment

effects (e.g. Kang and Schafer (2007) and Smith and Todd (2005)). Evidence suggests

that covariate balancing propensity score (CBPS) method is more reliable, which is

robust to mild misspecification of the parametric propensity score model (Imai and

Ratkovic, 2014).

In previous chapter, we proposed generalized MSMs and provide the proce-

dures for estimating ATE and drug interaction using observational data, where the

confounding variables are controlled via the IPTW method, which is presented in

Chapter 3. Nevertheless, this method presents the MSMs and algorithms for estimat-

ing ATE and drug interaction when two drugs are used together and each drug has

only two levels (present or not), which is unsuitable for the situation when each drug

has multiple levels or in continuous scale. The generalized propensity score (Hirano

and Imbens, 2004) enables us to investigate the drug interactions with each drug

in multiple levels or in continuous scale. Covariate balancing generalized propensity

score (CBGPS) methodology, which minimizes the association between covariates and

the continuous treatments, is a robust approach to model misspecification by directly

optimizing sample covariate balance among different groups (Fong et al., 2018).

In this project, we propose a marginal structural semiparametric model (MSSM)

to estimate ATE and treatment interaction with treatment in multiple levels or in

continuous scale, which is presented in Section 4.2. Once the generalized propensity

scores are obtained, the MSSM based on the weighted sample can be applied directly

to estimate the causal drug interaction. Thus, the MSSM along with IPTW method

could provide rigorous statistical method for assessing treatment interaction.

The statistical method we develop here can be used to investigate treatment

interaction on treatment effect, as well as drug interaction on adverse event, which

depends on the outcome of interest and the investigated treatments/drugs.
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4.2 Statistical method to assess treatment interactions

Let us consider evaluating treatment interactions of two treatments (say treat-

ment 1 and treatment 2). Let us assume that we have observed quadruplets (D1, D2, X, Y )

for each subject. Dk is the dose level of the kth treatment in the set of Dk (k = 1, 2).

Y denotes the outcome variable. X denotes the baseline covariates which include all

potential confounding variables. Let denote Y (d1,d2) as the potential outcome when

the two treatment levels being d1 and d2, respectively. Note that there is a potential

outcome for each possible combination treatment (d1, d2), thus there are many poten-

tial outcomes for each subject. However, there is only one observed outcome for each

subject. The following statistical method is developed under the same assumptions

as in the literature for causal inferences. These assumptions include consistency and

no unmeasured confounding. The consistency assumes that the observed outcome Y

is the same as the potential outcome Y (d1,d2) corresponding to the observed treatment

combination, that is Y =
∑

d1∈D1,d2∈D2
Y (d1,d2)I(D1,D2)=(d1,d2). The assumption for ”No

unmeasured confounding” assumes that Y (d1,d2) is independent to the treatment as-

signment D = (D1, D2)T given the covariates X. The goal of the current study is to

access treatment effect for each individual treatment as well as to examine whether

the combination of the treatment is synergistic. We assume that the potential out-

come Y (d1,d2) follows an exponential family with mean µ(d1, d2) and variance function

as v(µ). That is

g(E
{
Y (d1,d2)

}
) = g(µ(d1, d2)) = f(d1, d2). (4.1)

Equation (4.1) is an extension of generalized MSMs model, and we use f(d1, d2)

denotes the response profile for (D1, D2) at the values (d1, d2). Here g is a known

monotonic link function. When the outcome is continuous, we may take g as the

69



identity link function, and model (4.1) becomes

E{Y (d1,d2)} = f(d1, d2). (4.2)

When the outcome is binary, we may take g as the logit link function, and model

(4.1) becomes

logit
(
E{Y (d1,d2)}

)
= f(d1, d2). (4.3)

Assuming D1 is a multi-level treatment with K levels (i.e., D1 = {0, 1, · · · , K − 1}),

and D2 is a continuous treatment with support interval D2. The term f(d1, d2) in

Equation (4.1) can be written as:

f(d1, d2) = τ0 + f0(d2) +
∑

k∈D1−{0}

1d1=k{τk + fk(d2)}, (4.4)

where fk(0) = 0 for k ∈ D1 = {0, 1, · · · , K − 1}, and d2 ∈ D2.

Here τ0 and τ0 + τk are the mean response when treatment 1 is used alone

at level 0 and k, respectively, in the absence of treatment 2. τ0 + f0(d2) and τ0 +

f0(d2) + τk + fk(d2) are the mean response when treatment 1 is used at level 0 and

k, respectively, in the presence of treatment 2 at dose d2. Note that not all potential

outcomes can be observed, only the potential outcome corresponding the treatment

received is observed. Literature has indicated that the inverse probability of treatment

weighted (IPTW) sample could remove the confounding and the causal parameters

in Equation (4.4) can be obtained using the IPTW sample.

Let us first consider that the link function g as the identity link function

with the resulting model (4.2). The ATE due to treatment 1 at the level k in the

absence of treatment 2 is defined as E
(
Y (k,0)

)
− E

(
Y (0,0)

)
, which is captured by τk

based on model (4.2) and Equation (4.4). The ATE due to treatment 2 is defined as

E
(
Y (0,d2)

)
−E

(
Y (0,0)

)
, which is captured by f0(d2). We can also see that the ATE due
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to treatment 1 at the level k in the presence of treatment 2 is E
(
Y (k,d2)

)
−E

(
Y (0,d2)

)
,

which equals τk + fk(d2). That is, when fk(d2) 6= 0, the ATE due to treatment 1 at

the level k varies depending on whether treatment 2 is administered or not. When

fk(d2) > 0, the ATE due to treatment 1 at the level k in the presence of treatment 2

is larger than that in the absence of treatment 2, indicating that treatment 1 at the

level k and treatment 2 are synergistic. Vise versa, when fk(d2) < 0, the ATE due

to treatment 1 at the level k in the presence of treatment 2 is less than that in the

absence of treatment 2, indicating that treatment 1 at the level k and treatment 2

are antagonistic. This definition is consistent with the definition of drug interaction

on the additive scale (VanderWeele, 2015), which states that the sum of ATE of each

individual treatment at the level k or the dosage d2 is different from the ATE when

the two drugs are applied together. That is,

(
E(Y (k,0))− E(Y (0,0))

)
+
(
E(Y (0,d2))− E(Y (0,0))

)
6= E(Y (k,d2))− E(Y (0,0)). (4.5)

Note that E(Y (k,0)) − E(Y (0,0)) = τk and E(Y (0,d2)) − E(Y (0,0)) = f0(d2), while

E(Y (k,d2)) − E(Y (0,0)) = τk + f0(d2) + fk(d2). Equation (4.5) above is equivalent to

fk(d2) 6= 0, thus the function fk(d2) captures drug interaction on the additive scale.

When the outcome is binary, the logistic MSSM (4.3) is often used. We il-

lustrate that the function fk(d2) captures drug interaction in the odds ratio scale

(VanderWeele, 2015). That is, fk(d2) captures whether the product of causal odds

ratios of each individual treatment at the level k or the dosage d2 is different from

the odds ratio when two treatments are applied together. That is,

OR(k,0) vs (0,0) ×OR(0,d2) vs (0,0) 6= OR(k,d2) vs (0,0). (4.6)

Equation (4.6) is equivalent to fk(d2) 6= 0, and fk(d2) captures drug interaction in

the odds ratio scale (VanderWeele, 2015).
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When risk ratio is the quantity of interest, the following MSSM with log-link

function could be applied:

log(Pr(Y (d1,d2) = 1)) = f(d1, d2).

The interaction on the multiplication scale is defined as that the product of causal

risk ratios of individual treatment at the level k or the dosage d2 is different from

the causal risk ratio when two treatments are applied together (VanderWeele, 2015).

That is, Pr(Y (k,0)=1)

Pr(Y (0,0)=1)
× Pr(Y (0,d2)=1)

Pr(Y (0,0)=1)
6= Pr(Y (k,d2)=1)

Pr(Y (0,0)=1)
, which is equivalent to fk(d2) 6= 0.

Therefore, fk(d2) captures drug interaction in the multiplication scale (VanderWeele,

2015).

In summary, the function fk(d2) in the MSSM (4.1) with the specification of

f(d1, d2) in Equation (4.4) captures drug interaction. fk(d2) > 0 implies that the effect

of the combination treatments is more than expected, indicating a synergistic effect;

fk(d2) < 0 implies that the effect of the combination treatments is less than expected,

indicating an antagonistic effect. Compared to the fixed causal parameter τ12 in

the generalized MSM (3.1), which captures two binary drugs’ interaction in previous

Chapter, the function fk(d2) is more flexible to describe the phenomena when synergy

and antagonism are interspersed in the different regions of drug combinations of

treatment 1 at the level k and treatment 2 with the dosage d2. Hence, the investigation

of the interaction of drug combinations of treatment 1 at the level k and treatment

2 with the dosage d2 is essentially to test if the function fk(d2) is 0. That is, we test

the following null hypothesis H0 against the alternative Ha:

H0 : fk(d2) = 0, for all k = 0, 1, · · · , K − 1 and all d2 ∈ D2

H1 : fk(d2) 6= 0, for at least one k ∈ {1, · · · , K − 1} and some d2 ∈ D2
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Although a number of statistical methods have been applied to estimate the func-

tions fk(d2), we propose to estimate the function fk(d2) with the orthogonal spline

basis functions (Perperoglou et al., 2019). That is, the function fk(d2) can be writ-

ten as a combination of the orthogonal spline functions, i.e. fk(d2) = B(d2)γ(k) =∑J
j=1 γ

(k)
j Bj(d2). Because the basis spline functions are orthogonal, the two hypoth-

esis tests for H0 against H1 are equivalent

H0 : γ
(k)
j = 0 for all k ∈ {1, · · · , K − 1} and all j ∈ {1, · · · , J}

H1 : γ
(k)
j 6= 0 for at least one k ∈ {1, · · · , K − 1} and one j ∈ {1, · · · , J}.

Without loss of generality, let assume the observed sample as (d1i, d2i, xi, yi)

for ith subject (i = 1, · · · , n), and d1i ∈ {0, 1, · · · , K − 1}. fk(d2) =
∑J

j=1 γ
(k)
j Bj(d2)

for k = 1, · · · , K − 1 could be written as:



fk(d21)

fk(d22)

...

fk(d2i)

...

fk(d2n)


=



B1(d21) B2(d21) ... BJ(d21)

B1(d22) B2(d22) ... BJ(d22)

... ... ... .

B1(d2i) B2(d2i) ... BJ(d2i)

... ... ... .

B1(d2n) B2(d2n) ... BJ(d2n)





γk1

γk2

...

γkj

...

γkJ


.

Similarly, f0(d2) in Equation (4.4) could also be expressed as the linear combination

of Bj(d2) for j = 1, · · · , J , i.e. f0(d2) = B(d2)β =
∑J

j=1 βjBj(d2). Hence, Equation

(4.4) could be written as:

f(d1, d2) = τ0 +
∑

k∈D1−{0}

1d1=k{τk}+
J∑
j=1

βjBj(d2) +
∑

k∈D1−{0}

1d1=k{
J∑
j=1

γ
(k)
j Bj(d2)},

(4.7)
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where fk(0) = 0 for k ∈ D1 = {0, 1, · · · , K − 1}. The linear equality constraint can

often be removed by reformulating the problem: one of unknown parameters can be

expressed as a function of the others.

Note that the aforementioned the extension of MSSM are models for potential

outcome Y (d1,d2) when the subject had received the drug combinations of treatment

1 at the level d1 = k and treatment 2 with the dosage d2. However the potential

outcome Y (d1,d2) is not observed if the subject does not receive the drug combina-

tions of treatment 1 at the level k and treatment 2 with the dosage d2. Although

the function γ(k) in fk(d2) in the MSSM (4.1) with specification of f(d1, d2) as (4.7)

has causal interpretation, an appropriate estimating method must control for con-

founding variables. Following the literature in the causal inference, we apply the

IPTW method to estimate the function γ(k) in the MSSM (4.1) with specification of

f(d1, d2) as (4.7) (Robins et al., 2000; Cole and Hernán, 2008). The IPTW method

essentially creates a weighted sample where the distributions of each confounding

variable across different treatment groups are similar, thus removing the confounding

effect between the treatment assignment and the outcome variable. The consistency

of the estimates for γ(k) provided by the MSSM with IPTW holds under the follow-

ing assumptions (Rosenbaum and Rubin, 1983; Imbens, 2000; Gelman and Hill, 2006;

Cole and Hernán, 2008; Greenland and Mansournia, 2015; Hernan and Robins, 2020):

(i) Weak ignorability (i.e., weak unconfoundness): Y (d1,d2) ⊥ (D1, D2)|X for each pair

(d1, d2) ∈ D. That is, given X, the potential outcome is independent of the treatment

received; (ii) Positivity: Pr(D1 = d1, D2 = d2|X) > 0 for all (d1, d2) ∈ D and X; (iii)

Consistency: Y =
∑

(d1,d2)∈D I{(D1,D2)=(d1,d2)}Y
(d1,d2), that is, the observed outcome

is the same as the potential outcome corresponding the treatment received; and (iv)

Correctly specification of propensity score model. The first three assumptions are key

in the causal inference literature. The fourth assumption is specifically required for

the IPTW method (Robins et al., 2000; Kang and Schafer, 2007; Cole and Hernán,
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2008). Violation of any one of the assumptions may result in biased estimates for

ATEs and drug interactions when our proposed IPTW method is applied.

The IPTW weight for ith subject is:

wi =
1

Pr(D1 = d1i, D2 = d2i|X = xi)
.

Thus, we form a weighted sample where ith subject has wi copies of (d1i, d2i, xi, yi)

instead of 1 copy. In the weighted sample, X is not associated with treatment as-

signment anymore in the weighted sample. In practice, the probability of treatment

assignment, say Pr(D1 = d1, D2 = d2|X = x), needs to be estimated. The generalized

propensity score (Hirano and Imbens, 2004) enables us to investigate the drugs with

multiple levels or in continuous scale. In the literature, parametric methods (e.g.,

multinomial regression (Imbens, 2000), covariate balance propensity score (CBPS)

method (Imai and Ratkovic, 2014)) and non-parametric method (e.g., generalized

boosting method (GBM) (McCaffrey et al., 2013)) have been proposed to estimate

the GPSs (Yan et al., 2019). In particular, the weight for the interaction effects of

both treatment D1 and D2 are the product of two weights (Kang et al., 2014). The

weight for subject i can be written as:

wi =
1

Pr(D1 = d1i, D2 = d2i|X = xi)
=

1

e1(D1i|Xi)
× 1

e2(D2i|D1i,Xi)
,

where e1(D1i|Xi) is the probability of treatment 1 assignment, and e2(D2i|D1i,Xi)

is the probability of treatment 2 assignment conditional on treatment 1.

Under the four assumptions (i.e., weak ignorability, positivity, consistency, and

correct specification of GPS model), there is no confounding anymore in the weighted

sample. The parameter γ(k) in fk(d2) in the MSSM (4.1) with specification of f(d1, d2)

as (4.7) can be obtained by maximizing the following objective function, which is the
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weighted log-likelihood function. That is,

θ̂(k) = (τ̂0, τ̂k, β̂, γ̂
(k))T = arg max

n∑
i=1

ŵil(θ
(k); d1i, d2i, yi).

Here l(θ(k); d1i, d2i, yi) is the log-likelihood function for ith observation, and λ is

a tunning parameter. When the outcome is continuous and the identity link function

is used, the log-likelihood function for ith observation is

l(θ(k); d1i = k, d2i, yi) = log(
1√

2πσ2
e−

(yi−τ0−τk−
∑J
j=1 βjBj(d2)−

∑J
j=1 γ

(k)
j

Bj(d2))
2

2σ2 )

= −
(yi − τ0 − τk −

∑J
j=1 βjBj(d2)−

∑J
j=1 γ

(k)
j Bj(d2))2

2σ2
− 1

2
log(2πσ2).

When the outcome is binary and the logit link function is used, the log-likelihood

function for ith observation is

l(θ(k); d1i, d2i, yi) = yi(τ0 + τk +
J∑
j=1

βjBj(d2) +
J∑
j=1

γ
(k)
j Bj(d2))

−log(1 + eτ0+τk+
∑J
j=1 βjBj(d2)+

∑J
j=1 γ

(k)
j Bj(d2)).

The similar work (Robins et al., 2000) on MSMs indicates that the weighted

ML results in consistent estimator for the causal parameter for θ(k) under the four

assumptions for causal inference. The weighted ML estimate for θ(k) can be obtained

by using the R package survey(Lumley, 2004), where the weights are obtained by the

GPS model which achieves the balance of confounding variables. Although a robust

variance estimator for θ̂(k) can be obtained from the survey package, it does not

incorporate the uncertainty in estimating the GPSs in the IPTW method. Instead,

we use the bootstrap sampling techniques to estimate the variance of θ̂(k). That is, we

obtain B (say, 100) bootstrap samples from the original sample. For the bth bootstrap

sample (b = 1, · · · , B), we repeat the same estimating process as outlined to obtain
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an estimate θ̂(kb) for θ(k). V̂ar(θ̂(k)), the estimate of the variance of θ̂(k), is obtained as

the variance of the B bootstrap estimates θ̂(kb) (b = 1, · · · , B) (Mooney et al., 1993).

4.3 Case study

To demonstrate the use of our proposed method, we applied it to investigate the

treatment interaction between medication and psychology counseling on the remission

for patients with alcohol use disorder in the Kentucky Medicaid database.

Alcohol abuse and dependence is a serious threats throughout United States

(Smothers et al., 2004). According to the CDC, Kentucky is the state with the third-

highest problem with binge drinking, alcohol use disorder is a critical problem to the

health and well-being of Kentucky residents. Alcoholism treatment and alcohol rehab

are quite important to help people overcome addiction and regain full control over

their lives.

Patients with alcohol abuse and dependence quite often received drug ther-

apy. Naltrexone and acamprosate have well established efficacy and are first-line

treatments (Crowley, 2015). For patients who do not respond to naltrexone or acam-

prosate, disulfiram or topiramate will be considered (Crowley, 2015). On the other

hand, patients with alcohol abuse and dependence usually have psychological issues,

such as delusions and irrational thinking, anxiety and paranoia attention, memory

and cognitive problems, aggression, anger and irritability and so on. Psychologists

should play an increasing role in assessing and treating addictive (Miller and Brown,

1997) and psychology counseling is most used treatment for the patients with alcohol

abuse and dependence.

We used this alcohol use disorder in the Kentucky Medicaid dataset to study

the joint impact of drug therapy (such as naltrexone, disulfiram, acamprosate, and

topiramate) and psychology counseling, which the patients received within one year

window after the diagnosis of alcohol use disorder, on the remission of the alcohol use

77



disorder or not. Here psychology counseling is treatment 1, which is a binary variable

(level 0: without psychology counseling; level 1: with psychology counseling), and

total drug supply days is treatment 2, which is a continuous variable. The patients

were formed into four groups according to their treatment: control group (i.e., no

any treatment used, n= 2543), psychology counseling only group (n= 1414), drug

therapy only group (n= 956), and both treatments group (n= 173). Race, gender,

age, urban/rural, and different comorbidity conditions (see Table 4.1) were possible

confounding variables because they are associated with treatment choices as well

outcome risks.

Table 4.1: Baseline characteristics of patients with alcohol use disorder.

Control group (N=2543) Psychology counseling only group (N=1414) Drug therapy only group (n=956) Both treatments group (n=173)
Age (Mean±SD) 35.7±12.55 35.4±12.85 37.7±11.51 34.5±9.53

Gender
Male 1060 (41.68%) 661 (46.75%) 331 (34.62%) 59 (34.1%)

Female 1483 (58.32%) 753 (53.25%) 625 (65.38%) 114 (65.9%)
Race

Hispanic 16 (0.63%) 9 (0.64%) 10 (1.05%) 0 (0.00%)
Non-Hispanic black 296 (11.64%) 233 (16.48%) 59 (6.17%) 15 (8.67%)
Non-Hispanic white 1846 (72.59%) 944 (66.76%) 741 (77.51%) 127 (73.41%)
Non-Hispanic others 29 (1.14%) 20 (1.41%) 8 (0.84%) 3 (1.73%)

Non-Hispanic missing 356 (14%) 208 (14.71%) 138 (14.44%) 28 (16.18%)
Myocardial infarction 35 (1.38% 31 (2.19%) 28 (2.93%) 2 (1.16%)

Congestive heart failure 62 (2.44%) 45 (3.18%) 37 (3.87%) 1 (0.58%)
Peripheral vascular disease 58 (2.28%) 35 (2.48%) 45 (4.71%) 8 (4.62%)

Cerebrovascular disease 55 (2.16%) 28 (1.98%) 45 (4.71%) 3 (1.73%)
Dementia 5 (0.2%) 5 (0.35%) 0 (0.00%) 0 (0.00%)

Chronic pulmonary disease 696 (27.37%) 386 (27.3%) 327 (34.21%) 48 (27.75%)
Rheumatic disease 43 (1.69%) 22 (1.56%) 28 (2.93%) 3 (1.73%)
Peptic ulcer disease 25 (0.98%) 19 (1.34%) 18 (1.88%) 3 (1.73%)
Mild liver disease 180 (7.08%) 107 (7.57%) 93 (9.73%) 28 (16.18%)

Diabetes 245 (9.63%) 136 (9.62%) 148 (15.48%) 17 (9.83%)
Hemiplegia or paraplegia 16 (0.63%) 10 (0.71%) 8 (0.84%) 1 (0.58%)

Renal disease 71 (2.79%) 38 (2.69%) 35 (3.66%) 2 (1.16%)
Cancer 31 (1.22%) 26 (1.84%) 19 (1.99%) 0 (0.00%)

Moderate/severe liver disease 9 (0.35%) 6 (0.42%) 4 (0.42%) 0 (0.00%)
Metastatic solid tumour 13 (0.51%) 3 (0.21%) 6 (0.63%) 0 (0.00%)

Opioid use disorder 606 (23.83%) 366 (25.88%) 189 (19.77%) 67 (38.73%)
Mental disorder including anxiety/depression 1788 (70.31%) 967 (68.39%) 721 (75.42%) 121 (69.94%)

Alcohol history 4 (0.16%) 3 (0.21%) 5 (0.52%) 0 (0.00%)
Tobacco use 1776 (69.84%) 1066 (75.39%) 642 (67.15%) 127 (73.41%)
Remission 156 (6.13%) 109 (7.71%) 94 (9.83%) 32 (18.5%)

Generalized propensity scores obtained from the product of logistic regression

model for psychology counseling and continuous propensity score model for drug

therapy were employed to balance the covariates in each group. We applied proposed

MSSM model to estimate the ATEs and drug interactions on the remission. We

estimated the functions f0(d2) and f1(d2) by the orthogonal polynomials with the

degree 3. That is, f0(d2) = B(d2)β =
∑3

j=1 βjBj(d2), and f1(d2) = B(d2)γ(1) =∑3
j=1 γ

(1)
j Bj(d2).
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Table 4.2: The interaction parameter estimates for psychology counseling and drug
therapy

Parameters Est SE P-Value*
τ0 -2.644 0.069 <0.001
τ1 0.370 0.117 0.002
β1 9.737 2.144 <0.001
β2 -1.526 4.165 0.714
β3 -15.205 6.533 0.020

γ
(1)
1 -2.318 7.709 0.764

γ
(1)
2 -15.553 18.490 0.400

γ
(1)
3 -13.316 27.941 0.634

* The p-values were obtained from the Wald tests.

We reported the estimated drug interaction parameters γ
(1)
j , (j = 1, 2, 3) using

proposed MSSM model (see Table 4.2). Based on Table 4.2, all γ
(1)
j , (j = 1, 2, 3) are

not significant. That is, psychology counseling and drug therapy did not interact on

the remission significantly.

4.4 Conclusion and discussion

In this project, we developed a MSSM model to assess drug interactions when

one drug has multi-levels ans another drug in continuous scale. There are more work

to be done for this research project. First, we will work out the details about the

asymptotic normality and theoretic derivation. For the simulation study, we will

design and explore a wide spectrum of settings to examine the performance of the

proposed method.
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APPENDIX

Appendix 1: Technical Conditions

We begin with introducing some necessary notations. For any square matrixA, we use

σmin(A) and σmax(A) to denote its minimum and maximum eigenvalues, respectively.

We adopt the following empirical process notations as follows: for a generic variable Z

and function f , Gn(f) = Gn(f(Zi)) := n−1/2
∑n

i=1(f(Zi)−E[f(Zi)]) and Enf(Zi) :=

n−1
∑n

i=1 f(Zi). Let ‖A‖q denote the Lq norm of A, where A can be a vector, matrix,

or function. In particular, ‖A‖ denote the L2 norm of A,

(C1) X has a compact support X in Rp, E(ε) = 0 and E(ε2) <∞.

(C2) There exists some ν > 0 such that ν ≤ infx∈X π
∗(x) ≤ supx∈X π

∗(x) ≤ 1− ν.

(C3) π̂(·) ∈ Π and ĥ(·) ∈ H, where Π and H are two functional space including

π∗ and h∗, respectively. ν ≤ infπ∈Π,x∈X π(x) ≤ supπ∈Π,x∈X π(x) ≤ 1 − ν and

suph∈H ‖h‖∞ <∞. Moreover, the class F = {(T−π(X))X̃{h∗(X)−h(X)+ε} :

π ∈ Π, h ∈ H} is Donsker, where we refer the definition of a Donsker class by

Van Der Vaart and Wellner (1996).

Remark 4.1.1. Condition (C1) is commonly adopted in the literature (see, e.g., Zhao

and Li, 2012; Zheng et al., 2015; Kwemou, 2016). It reflects the data standardiza-

tion at the pre-processing stage. Condition (C2) is often satisfied in practice, for

example, if π∗ follows a logistic model, then π∗ is bounded away from 0 and 1, under

Condition (C1). By Condition (C2), we obtain that τ < σmin(E(π∗(X)X̃X̃T)) ≤

σmax(E(π∗(X)X̃X̃T)) < τ−1 for some constant τ > 0. The boundedness condition
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for Π and H in Condition (C3) is usually satisfied given that X is compact. The

condition that F is a Donsker class in Condition (C3) is often met. If Π and H are

collections of parametric models indexed by parameters in compact subset of Rp, that

is, Π = {ρ(x; θ) : θ ∈ Θ} and H = {κ(x; γ) : γ ∈ Γ} for some fixed function ρ and

κ, where Θ and Γ are some compact subsets of Rp, then F is Donsker by Lemma

2.6.15 and Theorem 2.5.2 in Van Der Vaart and Wellner (1996). For example, ρ is

the logit function and κ is a linear function. Π and H are also allowed to be some

nonparametric classes (Van Der Vaart and Wellner, 1996). We also refer to Chen

et al. (2003) for a detailed discussion.

Appendix 2: Proof of proposition and theorems

This section includes the proof of proposition and theorems in Chapter 2.

Proof of Proposition 2.2.1: If the propensity score π∗(X) is correctly specified

and h∗(X) is specified as h′(X), then

E
{
X̃{Y − h′(X)− TX̃Tβ}{T − π∗(X)}

}
=E

{
EX

[
X̃{h∗(X) + ε− h′(X)}{T − π∗(X)}

∣∣∣X]}
=E

{
X̃{h∗(X)− h′(X)}EX{T − π∗(X)|X}

}
= 0.

If the response profile h∗(X) is correctly specified but the propensity score π∗(X) is

specified as π′(X), then

E
{
X̃{Y − h∗(X)− TX̃Tβ}{T − π′(X)}

}
= E

{
X̃ε{T − π′(X)}

}
= 0.

Therefore, we proved that the estimating equation holds when either the

propensity score π∗(X) or the response profile h∗(X) is correctly specified. �
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Proof of Theorem 2.2.1: We note that

β̂DR =
(
En
[
{Ti − π̂(Xi)}TiX̃iX̃

T
i

])−1

En
[
{Ti − π̂(Xi)}X̃i{Yi − ĥ(Xi)}

]
=
(
En
[
{Ti − π̂(Xi)}TiX̃iX̃

T
i

])−1

× En
[
{Ti − π̂(Xi)}X̃i{h∗(Xi) + TiX̃

T
i β
∗ + εi − ĥ(Xi)}

]
= β∗ +

(
En
[
{Ti − π̂(Xi)}TiX̃iX̃

T
i

])−1

× En
[
{Ti − π̂(Xi)}X̃i{h∗(Xi) + εi − ĥ(Xi)}

]

First, we show that for any π(·) such that ν ≤ π(X) ≤ 1 − ν for all X,

σmax((En[{Ti − π̂(Xi)}TiX̃iX̃
T
i ])−1) ≤ (ντ)−1 in probability, where ν is defined in

Condition (C2) and τ is defined in Remark 4.1.1 presented later in this section.

By the law of large number and the fact T 2 = T ,

En
[
(Ti − (1− ν))TiX̃iX̃

T
i

]
→p E

(
(T − (1− ν))TX̃X̃T

)
= νE

(
π∗(X)X̃X̃T

)
(4.8)

Since ν ≤ π(X) ≤ 1 − ν, (T − π(X))T ≥ (T − (1 − ν))T . Then uniformly over all

nonzero vector u ∈ Rp+1, (Ti − π(Xi))Tiu
TX̃iX̃

T
i u ≥ (Ti − (1− ν))Tiu

TX̃iX̃
T
i u and

En[(Ti−π(Xi))Tiu
TX̃iX̃

T
i u] ≥ En[(Ti−(1−ν))Tiu

TX̃iX̃
T
i u] ≥ ντuTu in probability,

where the last inequality follows from (4.8) and Condition (C2). Therefore, we obtain

that in probability

σmin

(
En
[
(Ti − π̂(Xi))TiX̃iX̃

T
i

])
≥ ντ and

σmax

((
En
[
(Ti − π̂(Xi))TiX̃iX̃

T
i

])−1
)
≤ (ντ)−1. (4.9)
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Next, we evaluate n−1
∑n

i=1{Ti − π̂(Xi)}X̃i{Yi − ĥ(Xi)}. We obtain that

∥∥∥∥∥n−1

n∑
i=1

{Ti − π̂(Xi)}X̃i{h∗(Xi) + εi − ĥ(Xi)}

∥∥∥∥∥
≤

∥∥∥∥∥n−1

n∑
i=1

{Ti − π̂(Xi)}X̃iεi

∥∥∥∥∥+

∥∥∥∥∥n−1

n∑
i=1

{Ti − π̂(Xi)}X̃i{h∗(Xi)− ĥ(Xi)}

∥∥∥∥∥
≤

∥∥∥∥∥n−1

n∑
i=1

TiX̃iεi

∥∥∥∥∥+ sup
π∈Π

∥∥∥∥∥n−1

n∑
i=1

π(Xi)X̃iεi

∥∥∥∥∥
+ sup

h∈H

∥∥∥∥∥n−1

n∑
i=1

{Ti − π∗(Xi)}X̃i{h∗(Xi)− h(Xi)}

∥∥∥∥∥
+ ‖π̂ − π∗‖∞ ‖h

∗ − ĥ‖∞n−1

n∑
i=1

∥∥∥X̃i

∥∥∥
=:I1 + I2 + I3 + I4

where the first inequality is trivial and the second inequality follows from that ĥ ∈ H

and π̂ ∈ Π in Condition (C3).

We deal with the four terms separately. By the law of large number, I1 = op(1).

Since E(π(Xi)X̃iεi) = 0 for all π(·) ∈ Π,

I2 ≤ sup
π∈Π

n−1/2
∥∥∥Gn

[
π(Xi)X̃iεi

]∥∥∥ = op(1),

following from that {π(X)X̃ε, π ∈ Π} is Glivenko–Cantelli from Condition (C3).

Since E({Ti − π∗(Xi)}X̃i{h∗(Xi)− h(Xi)}) = 0 for all h ∈ H,

I3 ≤ sup
h∈H

n−1/2
∥∥∥Gn

[
{Ti − π∗(Xi)}X̃i{h∗(Xi)− h(Xi)}

]∥∥∥ = op(1),

following from that {{T − π∗(X)}X̃{h∗(Xi)− h(Xi)}, h ∈ H} is Glivenko–Cantelli

from Condition (C3). For the term I4, by the law of large number and Condition

(C3) I4 = op(1), if min{‖ĥ− h∗‖∞, ‖π̂ − π∗‖∞} = op(1).

Combining I1 – I4 together yields that n−1
∑n

i=1{Ti−π̂(Xi)}X̃i{Yi−ĥ(Xi)} =
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op(1). This and (4.9) imply that β̂DR →p β
∗. This completes the proof of Theorem

2.2.1. �

Proof of Theorem 2.2.2: From the proof of Theorem 2.2.1, we have

n1/2(β̂DR − β∗)

=
(
En
[
{Ti − π̃(Xi)}TiX̃iX̃

T
i

]
+ En

[
{π̃i − π̂(Xi)}TiX̃iX̃

T
i

])−1

× n−1/2

n∑
i=1

{Ti − π̂(Xi)}X̃i{h∗(Xi) + εi − ĥ(Xi)}.

By the law of large number, En[{Ti− π̃(Xi)}TiX̃iX̃
T
i ]→p E[T − π̃(X)}TX̃X̃T]. By

Condition (C3),

∥∥∥En [{π̃(Xi)− π̂(Xi)}TiX̃iX̃
T
i

]∥∥∥ ≤ ‖π̃ − π̂‖∞ En
[∥∥∥TiX̃iX̃

T
i

∥∥∥] = op(1).

By Continuous mapping theorem,

(
En
[
{Ti − π̂(Xi)}TiX̃iX̃

T
i

])−1

→p

(
E
[
{T − π̃(X)}TX̃X̃T

])−1

= B−1(π̃).

(4.10)
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By simple algebra, we obtain that

n−1/2

n∑
i=1

{Ti − π̂(Xi)}X̃i{h∗(Xi) + εi − ĥ(Xi)}

=n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃iεi + n−1/2

n∑
i=1

{π̃(Xi)− π̂(Xi)}X̃iεi

+ n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃i{h∗(Xi)− h̃(Xi)}

+ n−1/2

n∑
i=1

{π̃(Xi)− π̂(Xi)}X̃i{h∗(Xi)− h̃(Xi)}

+ n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃i{h̃(Xi)− ĥ(Xi)}

+ n−1/2

n∑
i=1

{π̃(Xi)− π̂(Xi)}X̃i{h̃(Xi)− ĥ(Xi)}

=n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃iεi

+ n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃i{h∗(Xi)− h̃(Xi)}

+ n−1/2

n∑
i=1

{π̃(Xi)− π̂(Xi)}X̃i{h∗(Xi)− h̃(Xi)}

+ n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃i{h̃(Xi)− ĥ(Xi)}+ op(1),

where the last equality follows from Lemma 4.1.1 presented later in this section.

(i): if π̃ = π∗, then by Lemma 4.1.1

n−1/2

n∑
i=1

{Ti − π̂(Xi)}X̃i{h∗(Xi) + εi − ĥ(Xi)}

=n−1/2

n∑
i=1

{Ti − π∗(Xi)}X̃i

{
h∗(Xi) + εi − h̃(Xi)

}
+ n−1/2

n∑
i=1

{π∗(Xi)− π̂(Xi)}X̃i{h∗(Xi)− h̃(Xi)}+ op(1).

Following the same arguments used for (i) of Lemma 4.1.1, we can show that Gn[{π∗(Xi)−
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π̂(Xi)}X̃i{h∗(Xi)− h̃(Xi)}] = op(1). Thus,

n−1/2

n∑
i=1

{Ti − π̂(Xi)}X̃i{h∗(Xi) + εi − ĥ(Xi)}

=n−1/2

n∑
i=1

{Ti − π∗(Xi)}X̃i{h∗(Xi) + εi − h̃(Xi)}

+ Gn

[
{π∗(Xi)− π̂(Xi)}X̃i{h∗(Xi)− h̃(Xi)}

]
+ n1/2E

[
{π∗(X)− π̂(X)}X̃{h∗(X)− h̃(X)}

]
+ op(1)

=n−1/2

n∑
i=1

{Ti − π∗(Xi)}X̃i{h∗(Xi)− h̃(Xi) + εi}

+ n1/2E
[
{π∗(X)− π̂(X)}X̃{h∗(X)− h̃(X)}

]
+ op(1)

=n−1/2

n∑
i=1

{Ti − π∗(Xi)}X̃i{h∗(Xi) + εi − h̃(Xi)}+ n−1/2

n∑
i=1

φh̃(Ti,Xi) + op(1)

→dN(0,Σ(h̃)),

by the central limit theorem. This and (4.10) together imply that

n1/2(β̂DR − β∗)→d N(0,B−1(π∗)Σ(h̃)B−1(π∗)).

(ii): if h̃ = h∗, we obtain that

n−1/2

n∑
i=1

{Ti − π̂(Xi)}X̃i{h∗(Xi) + εi − ĥ(Xi)}

=n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃iεi + n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃i{h∗(Xi)− ĥ(Xi)}+ op(1).

Similarly, using the same arguments for (i) of Lemma 4.1.1, we show that Gn[{Ti −
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π̃(Xi)}X̃i{h∗(Xi)− ĥ(Xi)}] = op(1). Therefore,

n−1/2

n∑
i=1

{Ti − π̂(Xi)}X̃i{h∗(Xi) + εi − ĥ(Xi)}

=n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃iεi + n1/2E
[
{T − π̃(X)}X̃{h∗(X)− ĥ(X)}

]
+ op(1)

=n−1/2

n∑
i=1

{Ti − π̃(Xi)}X̃iεi + n−1/2

n∑
i=1

φπ̃(Yi, Ti,Xi) + op(1)

→dN(0,Σ(π̃)),

by the central limit theorem. Then by (4.10), we obtain that

n1/2(βDR − β∗)→d N(0,B−1(π̃)Σ(π̃)B−1(π̃))

This completes the proof of Theorem 2.2.2. �

For a generic function g(·). let Hg(η) := {h(·) ∈ H : ‖h − g‖∞ ≤ η}. Likewise,

Πg(η) := {h(·) ∈ Π : ‖π − g‖∞ ≤ η}.

Lemma 4.1.1. Under Conditions (C1)–(C3), if ‖π̂ − π̃‖∞ = op(n
−α1), ‖ĥ− h̃‖∞ =

op(n
−α2), Hh̃(1) ⊂ H, and α1+α2 > 1/2, then (i) n−1/2

∑n
i=1{Ti−π∗(Xi)}X̃i{h̃(Xi)−

ĥ(Xi)} = op(1); (ii) n−1/2
∑n

i=1{π̃(Xi) − π̂(Xi)}X̃i{h̃(Xi) − ĥ(Xi)} = op(1); (iii)

n−1/2
∑n

i=1{π̃(Xi)− π̂(Xi)}X̃iεi = op(1).

Proof: (i) ‖ĥ− h̃‖∞ = op(n
−α2) implies that given any η, δ > 0, there exists N , such

that for all n > N , P (‖ĥ− h̃‖∞ > η) < δ.

Thus, we restrict our attention on the functional space Hh̃(η) := {h(·) : ‖h−

h̃‖∞ ≤ η}. Without loss of generality, we assume Hh̃(η) ⊂ H. Noting that for any
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h ∈ Hh̃(η), E[{T − π∗(X)}X̃{h̃(X)− h(X)}] = 0,

∣∣∣∣∣n−1/2

n∑
i=1

{Ti − π∗(Xi)}X̃i{h̃(Xi)− ĥ(Xi)}

∣∣∣∣∣
≤ sup

h∈Hh̃(η)

η
∣∣∣Gn

[
{Ti − π∗(Xi)}X̃iη

−1{h̃(Xi)− h(Xi)}
]∣∣∣

≤ sup
h∈Hh̃(1)

η
∣∣∣Gn

[
{Ti − π∗(Xi)}X̃i{h̃(Xi)− h(Xi)}

]∣∣∣ ≤ ηMδ,

for some constant Mδ, with probability at least 1− δ uniformly over n. The last in-

equality follows from that under Condition (C3), {Gn[{Ti − π∗(Xi)}X̃iη
−1{h̃(Xi)−

h(Xi)}, h ∈ Hh̃(1)} converges weakly to a Gaussian process indexed by h and subse-

quently, the sequence suph∈Hh̃(1)

∣∣∣Gn

[
{Ti − π∗(Xi)}X̃iη

−1{h̃(Xi)− h(Xi)}
]∣∣∣ is tight.

Therefore, for all n > N

P

(∣∣∣∣∣n−1/2

n∑
i=1

{Ti − π∗(Xi)}X̃i{h̃(Xi)− ĥ(Xi)}

∣∣∣∣∣ > ηMδ

)
< 2δ.

This implies that n−1/2
∑n

i=1{Ti − π∗(Xi)}X̃i{h̃(Xi)− ĥ(Xi)} = op(1).

(ii) By the boundedness of X,

∥∥∥∥∥n−1/2

n∑
i=1

{π̃(Xi)− π̂(Xi)}X̃i{h̃(Xi)− ĥ(Xi)}

∥∥∥∥∥
≤n−1/2‖π̂ − π̃‖∞‖ĥ− h̃‖∞

n∑
i=1

‖X̃i‖ = op(n
−(1/2+α1+α2))

n∑
i=1

‖X̃i‖ = op(1).

(iii) The proof follows from the same arguments as used for (i) with Hh̃(η)

replaced by Ππ̃(η).

Thus, the proof of Lemma 4.1.1 is completed. �
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Appendix 3: Heuristic arguments for the relationship between multi-

variate regression models and MSMs

First let us assume that the multivariate regression model with the identity link

function (i.e., Model (3.7)) holds, we then have

E(Y (d1,d2)) = EX{E(Y (d1,d2)|X)}

= EX{E(Y (d1,d2)|X, (D1, D2) = (d1, d2))} by the weak ignorability assumption (i)

= EX{E(Y |X, (D1, D2) = (d1, d2))} by the consistency assumption (iii)

= E{X̃T
γ + τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2} by the model (3.7)

= E{X̃T
γ}+ τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2.

Taking τ0 = E{Xγ}, the correct specification of the multivariate regression model

(3.7) implies the MSM (3.2). Thus, the multiple variate regression model (3.7) is able

to capture the causal parameters as specified in the MSM (3.2).

Let us assume that the multivariate outcome model (3.8) is the underlying

true outcome model, we then have

E(Y (d1,d2)) = EX{E(Y |X, (D1, D2) = (d1, d2))}

= EX{X̃
T
γ + τ ∗1D1 + τ ∗2D2 + τ ∗12D1D2 + δ1X

2
1D1 + δ2X

2
2D2

+ δ3X3D1D2|X, (D1, D2) = (d1, d2)}

= EX{X̃
T
γ + τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2 + δ1X

2
1d1 + δ2X

2
2d2 + δ3X3d1d2}

= EX{X̃
T
γ}+ (τ ∗1 + δ1EX

2
1 )d1 + (τ ∗2 + δ2EX

2
2 )d2 + (τ ∗12 + δ3EX3)d1d2.

Thus, fitting a model of form (3.7) would result in regression coefficients for d1, d2,

and d1d2 as τ ∗1 +δ1EX
2
1 , τ ∗2 +δ2EX

2
2 ), and τ ∗12 +δ3EX3, respectively. These regression

coefficients do capture the ATEs and drug interaction specified in the MSM (3.2).
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Let us assume that the multivariate model (3.7) holds. Fitting a marginal re-

gression model with treatment indicator variables only, while ignoring the confounding

variables, would result in biased estimates for ATEs. This can be illustrated by

E(Y |(D1, D2) = (d1, d2)) = E{Xγ + τ ∗1D1 + τ ∗2D2 + τ ∗12D1D2|(D1, D2) = (d1, d2)}

= E{Xγ|(D1, D2) = (d1, d2)}+ τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2.

For the observational data, the confounding variables are associated with treatment

selection, the first term is a function of d1 and d2. Thus the parameters in the marginal

model for d1, d2, d1d2 are not τ ∗1 , τ ∗2 and τ ∗12 any more, and the parameters in the

marginal model do not have causal interpretation.

When the multivariate logistic regression model (3.9) is applied, even though

the treatment effects in logit-scale given X are the same across different X, the ATEs

in logit-scale are different from those conditional treatment effects. To examine this,

E(Y (d1,d2)) = EX{E(Y |X, (D1, D2) = (d1, d2))}

= EX

{
exp
(
X̃
T
γ + τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2

)
1 + exp

(
X̃
T
γ + τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2

)}

=

{
exp
(
EX(X̃

T
γ) + τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2

)
1 + exp

(
EX(X̃

T
γ) + τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2

)}

×
{

1 +
1− exp

(
EX(X̃

T
γ) + τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2

)(
1 + exp

(
EX(X̃

T
γ) + τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2

))2
V ar(X̃

T
γ))

}

The last equation is derived from the second order Taylor expansion at EX(X̃
T
γ) +

τ ∗1 d1 + τ ∗2 d2 + τ ∗12d1d2. It is clear that the regression coefficients for d1, d2, and d1d2

in the multivariate logistic regression model do not correspond to the the regression

coefficients in the MSM (3.3). Thus, even for the homogeneous treatment effect model
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(3.9), the regression coefficients for treatments do not have causal interpretation unless

(1− p̃)(1− 2p̃) = 0, where p̃ =
exp
(
EX(X̃

T
γ)+τ∗1 d1+τ∗2 d2+τ∗12d1d2

)
1+exp

(
EX(X̃

T
γ)+τ∗1 d1+τ∗2 d2+τ∗12d1d2

) .

101



Appendix 4: Supplementary table and figures

This section includes the additional figures and tables in Chapters 2-4.
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Table A1.1: Summarized statistics for the estimated ATEs and drug interactions
based on 1000 simulated datasets for continuous outcomes with fixed τ ∗12 = 0 and
sample size n = 500.

UW W-All W-C W-CI W-CP W-Lasso Reg. model
Homogeneous treatment effect for continuous outcome (Model (3.7)):

The true ATEs and drug interaction were (1.000, 1.000, 0.000).

τ1

Est. 1.405 0.992 1.025 1.022 0.996 0.997 1.000
MSE 0.493 0.051 0.164 0.177 0.030 0.030 0.004
SE 0.562 0.300 0.402 0.423 0.220 0.287 0.064

E.SD 0.574 0.226 0.405 0.420 0.175 0.174 0.064
CR 0.880 0.982 0.937 0.941 0.973 0.994 0.951

τ2

Est. 1.982 0.997 1.018 1.011 1.009 1.008 1.002
MSE 1.296 0.047 0.160 0.179 0.027 0.027 0.004
SE 0.566 0.300 0.399 0.423 0.213 0.285 0.065

E.SD 0.576 0.217 0.399 0.423 0.163 0.165 0.065
CR 0.587 0.983 0.951 0.951 0.976 0.996 0.941

τ12

Est. -0.398 -0.001 -0.021 -0.015 -0.006 -0.006 -0.002
MSE 0.859 0.089 0.336 0.369 0.054 0.054 0.008
SE 0.799 0.420 0.563 0.594 0.305 0.399 0.091

E.SD 0.838 0.299 0.580 0.608 0.232 0.232 0.091
CR 0.912 0.985 0.947 0.951 0.980 0.997 0.949

Heterogeneous treatment effect for continuous outcome (Model (3.8)):
The true ATEs and drug interaction were (1.999, 2.000, -0.001).

τ1

Est. 2.401 1.988 2.022 2.017 1.993 1.990 2.010
MSE 0.503 0.065 0.174 0.189 0.041 0.057 0.019
SE 0.580 0.327 0.421 0.442 0.253 0.318 0.152

E.SD 0.592 0.259 0.421 0.438 0.210 0.244 0.151
CR 0.882 0.976 0.944 0.950 0.972 0.975 0.944

τ2

Est. 2.984 1.995 2.016 2.008 2.007 1.998 1.948
MSE 1.314 0.058 0.170 0.190 0.038 0.051 0.022
SE 0.587 0.320 0.415 0.439 0.242 0.311 0.152

E.SD 0.594 0.250 0.415 0.438 0.206 0.237 0.154
CR 0.602 0.976 0.944 0.957 0.962 0.981 0.929

τ12

Est. -0.304 0.008 -0.012 -0.006 0.004 0.007 0.072
MSE 0.915 0.148 0.373 0.412 0.105 0.135 0.081
SE 0.871 0.490 0.607 0.640 0.386 0.477 0.281

E.SD 0.909 0.387 0.612 0.643 0.327 0.370 0.280
CR 0.921 0.977 0.948 0.950 0.975 0.977 0.942
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Table A1.2: Summarized statistics for the estimated ATEs and drug interactions
based on 1000 simulated data sets for continuous outcomes with fixed τ ∗12 = 0 and
sample size n = 5000.

UW W-All W-C W-CI W-CP W-Lasso Reg. model
Homogeneous treatment effect for binary outcome (Model (3.7)):
The true ATEs and drug interaction were (1.000, 1.000, 0.000).

τ1

Est. 1.374 1.001 0.992 0.993 1.000 1.000 1.000
MSE 0.168 0.003 0.014 0.015 0.002 0.002 0.000
SE 0.178 0.054 0.121 0.124 0.045 0.049 0.020

E.SD 0.168 0.051 0.118 0.121 0.042 0.042 0.020
CR 0.452 0.952 0.949 0.957 0.963 0.976 0.940

τ2

Est. 1.953 1.000 0.995 0.995 1.000 1.000 1.000
MSE 0.939 0.002 0.014 0.015 0.002 0.002 0.000
SE 0.179 0.051 0.120 0.124 0.041 0.045 0.020

E.SD 0.174 0.048 0.119 0.123 0.039 0.039 0.021
CR 0.001 0.957 0.955 0.949 0.951 0.968 0.935

τ12

Est. -0.361 0.000 0.013 0.012 0.001 0.001 0.001
MSE 0.191 0.004 0.028 0.029 0.003 0.003 0.001
SE 0.253 0.071 0.170 0.174 0.060 0.064 0.029

E.SD 0.247 0.067 0.167 0.170 0.057 0.057 0.030
CR 0.694 0.966 0.949 0.955 0.952 0.966 0.937

Heterogeneous treatment effect for continuous outcome (Model (3.8)):
The true ATEs and drug interaction were (1.999, 2.001, 0.000).

τ1

Est. 2.371 2.000 1.991 1.992 1.999 2.000 2.016
MSE 0.168 0.004 0.015 0.016 0.003 0.003 0.002
SE 0.184 0.067 0.127 0.131 0.059 0.066 0.047

E.SD 0.172 0.064 0.124 0.126 0.057 0.061 0.047
CR 0.477 0.949 0.953 0.962 0.952 0.962 0.924

τ2

Est. 2.958 2.002 1.997 1.997 2.002 2.002 1.952
MSE 0.947 0.003 0.015 0.016 0.002 0.003 0.004
SE 0.185 0.063 0.125 0.129 0.055 0.062 0.047

E.SD 0.179 0.061 0.124 0.130 0.053 0.058 0.047
CR 0.002 0.952 0.951 0.944 0.955 0.957 0.814

τ12

Est. -0.276 0.002 0.014 0.014 0.002 0.003 0.067
MSE 0.147 0.009 0.032 0.034 0.008 0.009 0.012
SE 0.276 0.102 0.184 0.189 0.093 0.101 0.089

E.SD 0.267 0.097 0.180 0.184 0.090 0.094 0.087
CR 0.836 0.950 0.952 0.951 0.952 0.951 0.889
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Table A1.3: Summarized statistics for the estimated ATEs and drug interactions
based on 1000 simulated data sets for binary outcomes with fixed τ ∗12 = 0 and sample
size n = 500.

UW W-All W-C W-CI W-CP W-Lasso Reg. model
Homogeneous treatment effect for binary outcome (Model (3.9)):
The true ATEs and drug interaction were (1.160, 1.156, 0.134).

τ1

Est. 1.052 1.159 1.161 1.160 1.160 1.158 2.111
MSE 0.098 0.071 0.077 0.079 0.066 0.070 1.106
SE 0.281 0.256 0.259 0.267 0.240 0.254 0.458

E.SD 0.275 0.249 0.257 0.263 0.238 0.246 0.437
CR 0.940 0.953 0.950 0.954 0.943 0.955 0.474

τ2

Est. 1.136 1.179 1.189 1.190 1.179 1.178 2.137
MSE 0.095 0.073 0.081 0.084 0.068 0.071 1.171
SE 0.284 0.258 0.261 0.270 0.241 0.257 0.458

E.SD 0.288 0.252 0.264 0.269 0.242 0.249 0.449
CR 0.948 0.944 0.941 0.949 0.935 0.950 0.434

τ12

Est. 0.393 0.165 0.159 0.161 0.163 0.167 0.012
MSE 0.361 0.259 0.268 0.277 0.242 0.255 0.526
SE 0.809 0.796 0.790 0.804 0.770 0.793 1.001

E.SD 0.515 0.485 0.495 0.503 0.467 0.480 0.696
CR 0.936 0.959 0.957 0.957 0.957 0.964 0.964

Heterogeneous treatment effect for binary outcome (Model (3.10)):
The true ATEs and drug interaction were (1.639, 1.632, -0.259 ).

τ1

Est. 1.520 1.656 1.655 1.655 1.652 1.655 2.688
MSE 0.118 0.092 0.094 0.098 0.083 0.089 1.332
SE 0.308 0.290 0.292 0.299 0.274 0.288 0.494

E.SD 0.302 0.285 0.285 0.294 0.269 0.280 0.468
CR 0.923 0.947 0.949 0.945 0.95 0.953 0.446

τ2

Est. 1.659 1.666 1.674 1.676 1.663 1.665 2.737
MSE 0.114 0.095 0.102 0.106 0.088 0.093 1.464
SE 0.320 0.302 0.302 0.312 0.283 0.300 0.508

E.SD 0.316 0.290 0.297 0.304 0.276 0.285 0.483
CR 0.942 0.945 0.951 0.945 0.944 0.947 0.428

τ12

Est. 0.070 -0.179 -0.196 -0.190 -0.186 -0.181 -0.626
MSE 1.306 1.200 1.187 1.215 1.156 1.181 1.623
SE 2.056 2.071 2.066 2.075 2.055 2.069 2.255

E.SD 1.067 1.065 1.060 1.071 1.045 1.056 1.197
CR 0.963 0.966 0.968 0.970 0.971 0.969 0.953
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Table A1.4: Summarized statistics for the estimated ATEs and drug interactions
based on 1000 simulated datasets for binary outcomes with fixed τ ∗12 = 0 and sample
size n = 5000.

UW W-All W-C W-CI W-CP W-Lasso Reg. model
Homogeneous treatment effect for binary outcome (Model (3.9)):
The true ATEs and drug interaction were (1.155, 1.157, 0.131).

τ1

Est. 1.040 1.157 1.154 1.155 1.156 1.157 2.009
MSE 0.022 0.006 0.007 0.008 0.006 0.006 0.746
SE 0.087 0.073 0.079 0.080 0.072 0.073 0.124

E.SD 0.089 0.076 0.082 0.083 0.075 0.076 0.129
CR 0.734 0.945 0.938 0.938 0.936 0.945 0.000

τ2

Est. 1.103 1.159 1.158 1.159 1.159 1.160 2.017
MSE 0.012 0.006 0.007 0.008 0.006 0.006 0.755
SE 0.087 0.074 0.079 0.081 0.072 0.074 0.125

E.SD 0.087 0.073 0.080 0.081 0.072 0.073 0.124
CR 0.894 0.946 0.945 0.942 0.942 0.948 0.000

τ12

Est. 0.381 0.130 0.132 0.131 0.131 0.130 -0.012
MSE 0.092 0.023 0.026 0.026 0.022 0.023 0.063
SE 0.158 0.142 0.148 0.151 0.139 0.142 0.200

E.SD 0.158 0.140 0.149 0.151 0.138 0.140 0.198
CR 0.651 0.949 0.946 0.946 0.949 0.950 0.901

Heterogeneous treatment effect for binary outcome (Model (3.10)):
The true ATEs and drug interaction were (1.634, 1.636, -0.277 ).

τ1

Est. 1.494 1.637 1.635 1.636 1.636 1.637 2.538
MSE 0.029 0.008 0.008 0.009 0.007 0.008 0.835
SE 0.094 0.083 0.088 0.089 0.081 0.083 0.130

E.SD 0.094 0.083 0.089 0.091 0.082 0.083 0.128
CR 0.685 0.947 0.937 0.940 0.942 0.947 0.000

τ2

Est. 1.614 1.633 1.632 1.632 1.633 1.633 2.578
MSE 0.011 0.009 0.009 0.010 0.008 0.009 0.907
SE 0.097 0.085 0.090 0.092 0.083 0.085 0.133

E.SD 0.099 0.088 0.092 0.094 0.086 0.088 0.136
CR 0.935 0.947 0.943 0.938 0.944 0.949 0.000

τ12

Est. 0.019 -0.265 -0.263 -0.264 -0.264 -0.264 -0.650
MSE 0.132 0.041 0.042 0.045 0.038 0.040 0.201
SE 0.194 0.182 0.186 0.189 0.179 0.182 0.235

E.SD 0.195 0.187 0.190 0.196 0.181 0.186 0.237
CR 0.666 0.938 0.941 0.937 0.943 0.939 0.643
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Table A1.5: The estimated ATEs and drug interactions for opioids and statins use
based on COVID-19 data set and weights trimmed to the range of ( 1

0.95
, 1

0.05
).

Biomarkers/ MSM with IPTW-All
Parameters Est SE P-Value*

C
t

τs -0.809 0.844 0.338
τo 0.687 1.798 0.703
τso -0.768 1.996 0.701
τs + τo + τso -0.890 1.259 0.481

N
e
u

tr
o
. τs 3.841 1.181 0.001

τo -3.609 3.465 0.299
τso 1.413 4.646 0.761
τs + τo + τso 1.646 3.080 0.594

L
y
m

p
h
. τs -3.122 1.035 0.003

τo 2.454 2.658 0.357
τso -2.326 3.638 0.523
τs + τo + τso -2.994 2.333 0.201

a
P

T
T

τs 4.766 1.670 0.005
τo -0.071 0.850 0.934
τso -6.536 2.312 0.005
τs + τo + τso -1.840 1.766 0.299

P
ro

ca
l. τs 1.427 2.612 0.585

τo -1.443 0.730 0.049
τso -0.084 2.746 0.976
τs + τo + τso -0.099 1.474 0.947

* The p-values were obtained from the Wald tests without Bonferroni correction.
The Bonferroni corrected p-values would be the minimal value of 1 and 5 times of the
p-values reported.
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Figure A1.1: Boxplots of 1000 estimated ATEs and drug interactions for continuous
outcome with homogeneous treatment effects and different sample sizes. The first
row and the second row, respectively, showed the estimated ATEs for drug 1 (i.e. τ̂1)
and drug 2 (i.e. τ̂2), with different specification of τ ∗12. The third row showed the
estimated τ12 to capture drug interaction. In each block (i.e. for a fixed τ ∗12), the
first boxplot was the true ATE or drug interaction parameter, the second boxplot
was estimates according to MSMs without IPTW, and the third to the seventh box-
plots were estimates according to MSMs with IPTW with weights being estimated
from the five different sets of covariates: (i) all covariates, (ii) confounders only,
(iii) confounders and instrumental variables, (iv) confounders and predictors, and (v)
covariates selected by Lasso.
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Figure A1.2: Boxplots of 1000 estimated ATEs and drug interactions for binary
outcome with homogeneous treatment effects and different sample sizes. The first
row and the second row, respectively, showed the estimated ATEs (odds ratio) in log
scale for drug 1 (i.e. τ̂1) and drug 2 (i.e. τ̂2), with different specification of τ ∗12. The
third row showed the estimated τ12 to capture drug interaction. In each block (i.e. for
a fixed τ ∗12), the first boxplot was the true ATE or drug interaction parameter in log
scale, the second boxplot was estimates according to MSMs without IPTW, and and
the third to the seventh boxplots were estimates according to MSMs with IPTW with
weights being estimated from the five different sets of covariates: (i) all covariates,
(ii) confounders only, (iii) confounders and instrumental variables, (iv) confounders
and predictors, and (v) covariates selected by Lasso.
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Figure A1.3: Boxplots of the average of standard mean difference (SMD) of each
variable among all pairs of the four treatment groups based on 1000 simulated datasets
(n=5000). The intercept of horizon line is 0.1.
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Figure A1.4: Covariates balance diagnose for the study of glyburide and metformin on
diabetic patients, where 1 denotes control group, 2 denotes glyburide group, 3 denotes
metformin group, and 4 denotes the combination of glyburide and metformin.
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Figure A1.6: Covariates balance diagnose for the study of antecedent statin and
opioid use for hospitalized COVID-19 patients, where 1 denotes control group, 2
denotes statins group, 3 denotes opioids group, and 4 denotes the combination of
statins and opioids.
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Figure A1.8: The histogram of generalized propensity scores of a sample (n=5000)
with good overlap based on the generalized GPS model (11) with specified coefficients
in the simulation setting in Section 3.3.1.
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Figure A1.9: The histogram of generalized propensity scores of a sample (n=5000)
with bad overlap based on the generalized GPS model (11) with specified coefficients
in the discussion in Section 3.5.
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Figure A1.10: The boxplots of the simulation results for the binary heterogenous
treatment effect outcome model with bad overlap for independent covariates.
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