
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2022

New debiasing strategies in collaborative filtering recommender New debiasing strategies in collaborative filtering recommender

systems: modeling user conformity, multiple biases, and systems: modeling user conformity, multiple biases, and

causality. causality.

Mariem Boujelbene
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Boujelbene, Mariem, "New debiasing strategies in collaborative filtering recommender systems: modeling
user conformity, multiple biases, and causality." (2022). Electronic Theses and Dissertations. Paper 3819.
https://doi.org/10.18297/etd/3819

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ir.library.louisville.edu%2Fetd%2F3819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=ir.library.louisville.edu%2Fetd%2F3819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3819
mailto:thinkir@louisville.edu

NEW DEBIASING STRATEGIES IN COLLABORATIVE FILTERING
RECOMMENDER SYSTEMS: MODELING USER CONFORMITY, MULTIPLE

BIASES, AND CAUSALITY

By

Mariem Boujelbene
M.Sc., Computer Engineering and Computer Science,

University of Louisville, Louisville, KY

A Dissertation
Submitted to the Faculty of the

J.B. Speed School of Engineering of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Computer Science and Engineering

Department of Computer Science and Engineering
University of Louisville

Louisville, Kentucky

May 2022

Copyright 2022 by Mariem Boujelbene

All rights reserved

NEW DEBIASING STRATEGIES IN COLLABORATIVE FILTERING
RECOMMENDER SYSTEMS: MODELING USER CONFORMITY, MULTIPLE

BIASES, AND CAUSALITY

By

Mariem Boujelbene
M.Sc., Computer Engineering and Computer Science,

University of Louisville, Louisville, KY

A Dissertation Approved On

25 April 2022

by the following Dissertation Committee:

Dr. Olfa Nasraoui, Dissertation Director

Dr. Hichem Frigui

Dr. Nihat Altiparmak

Dr. Cara Cashon

Dr. Juwon Park

ii

ACKNOWLEDGEMENTS

I would like to thank my adviser Dr. Olfa Nasraoui for her guidance and support

during the past five years. She supported us every step of the way and inspired us to aim

for exellence. Her mentorship and feedback have guided us toward the right direction and

enabled us to further improve our research. I thank her for being not only an incredible

advisor but also an amazing friend.

I want to thank my committee members, Drs. Cara Cashon, Hichem Frigui, Juw

Won Park, and Nihat Altiparmak, for accepting to be part of this journey, for reviewing

my work, and for their insightful feedback.

Last but not least, I thank my husband Sami for his patience and his support; and

for the fruitful research discussions that inspired and contributed to this work. I also thank

my family for supporting me during this journey, with in particular, a special thanks to

my mother for all the sacrifices she has made. Without her, none of this work would be

possible.

I would also like to acknowledge the National Science Foundation for partially sup-

porting my research through grants IIS-1549981, CNS-1828521, and DRL-2026584.

I would finally like to thank my puppy Simba for his company during the late work

nights.

iii

ABSTRACT

NEW DEBIASING STRATEGIES IN COLLABORATIVE FILTERING

RECOMMENDER SYSTEMS: MODELING USER CONFORMITY, MULTIPLE

BIASES, AND CAUSALITY

Mariem Boujelbene

April 25 2022

Recommender Systems are widely used to personalize the user experience in a diverse

set of online applications ranging from e-commerce and education to social media and

online entertainment. These State of the Art AI systems can suffer from several biases that

may occur at different stages of the recommendation life-cycle. For instance, using biased

data to train recommendation models may lead to several issues, such as the discrepancy

between online and offline evaluation, decreasing the recommendation performance, and

hurting the user experience. Bias can occur during the data collection stage where the

data inherits the user-item interaction biases, such as selection and exposure bias. Bias can

also occur in the training stage, where popular items tend to be recommended much more

frequently given that they received more interactions to start with. The closed feedback

loop nature of online recommender systems will further amplify the latter biases as well. In

this dissertation, we study the bias in the context of Collaborative Filtering recommender

system, and propose a new Popularity Correction Matrix Factorization (PCMF) that aims

to improve the recommender system performance as well as decrease popularity bias and

increase the diversity of items in the recommendation lists. PCMF mitigates popularity

bias by disentangling relevance and conformity and by learning a user-personalized bias

iv

vector to capture the users’ individual conformity levels along a full spectrum of conformity

bias. One shortcoming of the proposed PCMF debiasing approach, is its assumption that

the recommender system is affected by only popularity bias. However in the real word,

different types of bias do occur simultaneously and interact with one another. We therefore

relax the latter assumption and propose a multi-pronged approach that can account for two

biases simultaneously, namely popularity and exposure bias. our experimental results show

that accounting for multiple biases does improve the results in terms of providing more

accurate and less biased results. Finally, we propose a novel two-stage debiasing approach,

inspired from the proximal causal inference framework. Unlike the existing causal IPS

approach that corrects for observed confounders, our proposed approach corrects for both

observed and potential unobserved confounders. The approach relies on a pair of negative

control variables to adjust for the bias in the potential ratings. Our proposed approach

outperforms state of the art causal approaches, proving that accounting for unobserved

confounders can improve the recommendation system’s performance.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

ABSTRACT iv

LIST OF TABLES ix

LIST OF FIGURES xii

LIST OF ALGORITHMS xv

CHAPTER

1 INTRODUCTION . 1

1.1 Problem Statement . 3

1.1.1 Dissertation Scope and Impact 4

1.2 Research Contributions . 6

1.3 Document Organization . 8

2 BACKGROUND AND LITERATURE REVIEW 9

2.1 Recommendation Systems . 9

2.1.1 Collaborative filtering Methods 9

2.1.2 Content-based Filtering Methods 15

2.2 Bias in Recommender systems . 16

2.2.1 Selection Bias . 19

2.2.2 Diversity Bias . 19

2.2.3 Popularity Bias . 20

2.2.4 Position Bias . 20

2.2.5 Feedback Loop bias . 22

2.3 Recommender systems as a Causal Inference problem 22

2.3.1 Causal Graph Interpretation of Recommendation System . . . 23

vi

2.3.2 Limitation of previous bias research 25

2.4 Summary . 25

3 POPULARITY CORRECTION MATRIX FACTORIZATION (PCMF) . 26

3.1 Motivation and Problem Description 26

3.2 Popularity Bias Correction Matrix Factorization (PCMF) 29

3.2.1 Notation and Problem Formulation 31

3.2.2 Learning Conformity Embedding 31

3.2.3 Disentangling Conformity and Relevance 33

3.2.4 Multi-task Learning . 34

3.3 Experimental Results . 35

3.3.1 Experimental Setting . 38

3.3.2 Performance Evaluation of PCMF in the Regular Setting . . . 43

3.3.3 Performance Evaluation of PCMF on the Skew data Setting . . 46

3.3.4 PCMF Learned Embedding . 47

3.3.5 Ablation Study . 49

3.4 Summary . 54

4 MULTI-BIAS CORRECTION MATRIX FACTORIZATION 55

4.1 Motivation and Problem Description 55

4.2 Multi-bias Correction Matrix Factorization 56

4.2.1 Notation and Problem Statement 56

4.2.2 Multi-bias Correction Matrix Factorization Estimator 60

4.2.3 Propensity Score Estimation . 61

4.2.4 Update equations and algorithm 62

4.3 Experimental Results . 63

4.3.1 Experimental Setting . 64

4.3.2 Experimental results . 66

4.3.3 Future directions . 69

vii

4.4 Summary . 70

5 BRIDGE FUNCTION FOR BIAS CORRECTION 71

5.1 Motivation and Problem Description 71

5.2 Bridge Function for Bias Correction 74

5.2.1 Notation and Definition . 74

5.2.2 Causal Graph Interpretation of Recommendation System . . . 76

5.2.3 Theory of Identification with Negative Control Variables (NC) 78

5.2.4 Bridge Matrix Factorization . 83

5.3 Experimental Results . 86

5.3.1 Experimental Setting . 87

5.3.2 Performance Evaluation . 90

5.4 Summary . 93

6 CONCLUSION . 94

REFERENCES 96

CURRICULUM VITAE 106

viii

LIST OF TABLES

TABLE Page

3.1 Notation and Definitions - Chapter 3 . 32

3.2 Dataset Statistics . 38

3.3 Accuracy performance of PCMF compared to different baseline on Movielens-

100K. We observe that our model has higher RMSE and Precision while

having comparable performance in terms of ranking precision, NDCG and

RMSE. 44

3.4 Accuracy performance of PCMF compared to different baselines on Movielens-

1M. We notice that our model outperforms all the baselines on all the per-

formance metrics . 44

3.5 Bias results on Movielens 100K using a random split. We notice that our

method manages to have comparable performance compared to MAB which

is a post-processing method . 46

3.6 Bias results on Movielens 1M dataset. We notice that our method manages

to outperform all the baselines in terms of decreasing the average popularity

and increasing the diversity of the recommendations. 46

3.7 Accuracy performance of PCMF compared to different baseline on Movielens-

100K using a skew split setting challenge. We observe that our model has

a higher accuracy performance compared to previous approaches. This indi-

cates that our model is able to learn accurate embeddings to represent the

preference of the user and has a better generalisation ability 47

ix

3.8 Bias results on Movielens-100K using a skew split setting challenge. We

notice that our method manages to have comparable performance to IPSMF

in terms of average popularity and outperforms other baselines in terms of

diversity. 48

3.9 Comparing a different variation of PCMF using a constant lambda as a trade-

off parameter. We notice that using a constant lambda yields better debiasing

metrics but only at the expense of a significant drop in accuracy. This shows

that learning a personalized popularity preference gives more relevant results. 51

4.1 Notation and Definitions - Chapter 4 . 57

4.2 Accuracy Performance of PCMF-IPS on the Yahoo!R3 unbiased test Dataset.

Our model succeeds to significantly improve the RMSE compared to IPS+MF. 66

4.3 Accuracy performance of PCMF + IPS compared to different baselines on

Movielens-100K. We observe that our model has lower RMSE than the other

baselines, including the state of the art IPS+MF, while reaching similar levels

of precision, recall and NDCG as IPS+MF 67

4.4 Bias Performance of our IPS-PCMF on Movielens-100K. Our model manages

to maintain the same popularity results provided by PCMF while increasing

the diversity of the recommendation list . 68

4.5 Bias Performance on the Yahoo!R3 dataset. Our model outperforms all the

baselines in terms of decreasing the popularity and providing diverse recom-

mendations to the user. 68

5.1 Notation and Definitions used in Chapter 5 76

5.2 Dataset Statistics . 89

5.3 Accuracy performance of Bridge MF compared to different baselines on Ya-

hoo!R3. We observe that our model has lower MSE and higher NDCG, while

having comparable performance in terms of Precision and Recall. 90

x

5.4 Accuracy performance of Bridge MF compared to different baselines on the

Coat Dataset. We observe that our model has lower MSE and higher NDCG,

Precision, and Recall. 92

5.5 Accuracy performance of Bridge MF compared to different baselines on the

Coat Dataset. We observe that our model has lower MSE and higher NDCG,

Precision, and Recall. 92

xi

LIST OF FIGURES

FIGURE Page

2.1 Recommender System Life-cycle and biases at different stages. Bias can be

introduced in the data collection step by inheriting the user interaction biases.

Bias can also be introduced in the model training phase, where popular items

get recommended more frequently given that they receive a higher number

of user interactions . 17

2.2 An example showing the effect of popularity and position bias by presenting

the difference between the recommended list and the user interaction based

on the existence of different biases. Blue items represent relevant items, solid-

line items are those that have been previously clicked by the user. The tick

sign represents the items clicked at the current iteration 18

2.3 Position bias effect in a recommendation list 21

2.4 Causal graphs explaining different types of biases 24

3.1 Decomposition of the true user representation into two main components.

The first component is User Preference which represents the user’s preference

toward all items. The second component (blue vector) is the user preference

for popular items. 27

xii

3.2 Popularity Bias Correction Matrix Factorization (PCMF). The first module

denotes the relevance embedding. The second module denotes the confor-

mity embedding, i.e., it is learned from the popularity matrix. The linear

combination of the relevance score and the conformity score constructs the

predicted rating. Each task has its corresponding loss function. A multi-

task learning framework is used to predict ratings from the relevance and

conformity embeddings . 30

3.3 Items in the Movielens 100k dataset are divided into five groups depending

on their popularity level using percentiles. The least popular items belong

to group 1 and the most popular items belong to group 5. The blue bars

represent the percentage of each group in the data. As expected, long tail

items represents the majority of the data and popular items represents a

small fraction of the data. The yellow bars represent the average percentage

of each group in the recommendation lists of size 20 computed by Matrix

Factorization (MF). Popular items are recommended the most despite being

less than 1% of the data. This graph shows that MF suffers from a severe

popularity bias. 37

3.4 Representation of user embeddings on a two dimensional space. We notice

that our model learns two different dimensions referring to the preference

toward popular items and the general interest of the user 49

3.5 Representation of the learned popularity embedding of the items, color-coded

to represent the popularity of the items. We notice that popular items are

clustered together, meaning that our model is able to capture such a property

through the embeddings . 50

3.6 . 53

5.1 Causal graphs of different Recommendation systems 75

xiii

5.2 Proximal causal graph for a recommendation system where A denotes the

exposure variable, Y denotes the outcome variable, X denotes the user and

item covariates, V denotes the latent confounder, W denotes the negative

control outcome (NCO),and Z denotes the negative control exposure (NCE). 80

5.3 Pipeline for learning the de-confounded ratings. We start by learning a bridge

function using NCO and NCE. Then we use the predicted ratings from the

bridge function h to learn unbiased ratings 83

5.4 Bridge Function Network Architecture. 85

xiv

LIST OF ALGORITHMS

ALGORITHM Page

3.1 Popularity bias Correction Matrix Factorization (PCMF) 36

4.1 Dual Popularity and Exposure Bias Correction MF 64

5.1 Bias correction learning using a causal bridge function 86

xv

CHAPTER 1

INTRODUCTION

Artificial Intelligence (AI) applications have witnessed a rapid growth in recent years,

thanks to the abundance of available data, models, hardware, and advances in Machine

Learning (ML) algorithms, which nowadays power multiple sectors, ranging from health

and education to e-commerce, entertainment, and social media. As a result, AI has started

affecting people’s lives in their daily lives, whether they are applying for a loan, credit

card, or jobs; or exploring and interacting with their social media feeds or music and video

streaming platforms. Yet, the performance of Machine learning models depends on the

quality of the collected data. In fact, in recent years, concerns have been raised about the

potential effects of bias emerging from either the algorithms or the data, on the ML models’

performance.

Recommendation systems (RS) are one particular application where AI algorithms

has made significant improvements in recent years. Recommendation systems power the

majority of e-commerce websites, music streaming servers, social media platforms, news

websites, etc. Recommendation systems help the users by by providing recommendations

that match their preferences, as they navigate online environments and services that are

filled with a staggering amount of available options that would otherwise lead to a paralyz-

ing information overload. For this reason, recommender systems can lead to a better user

experience, and in turn benefit both the user and the service/business providers. Recom-

mender systems can be divided into three categories. Collaborative Filtering recommender

systems [1] operate by leveraging the users’ past interactions with the items in order to

detect the similarity between users and items without explicitly encoding the user features

and item content features. Collaborative Filtering approaches are easy to implement given

1

that the only information we need to encode is user-item interactions. The second category

is content-based filtering [2] which relies solely on the user and item features to build pre-

dictive recommendation models. The third category is hybrid approaches [3], which as the

name suggests, may rely on user and item features as well as collaborative filtering.

Collaborative filtering recommender systems are currently considered the state of

the art given the ease of usage and interaction data collection. They rely on the assumption

that users with similar interests have similar interaction behavior and leverage past user-

item interaction data to learn patterns or models, for instance based on latent factors, that

capture the similarity between users and items. Then these learnt latent factors are used to

predict the users’ preferences and to recommend items to them. Given that collaborative

recommender systems rely solely on historic user-item interaction data, they are more sen-

sitive to the biases that are present in data or in the algorithms, as well as biases emerging

from the closed feedback loop between the algorithms’ output predictions and their inputs.

Bias can be manifested in different stages of the life cycle of a recommendation

system [4]. It can be introduced in the data collection phase, where the data may inherit

the underlying biases of the interaction data’s collection process [4]. For instance, the user’s

clicks might be affected by the recommendation list’s presentation order [5] [6], or by the

popularity of the items [7], the crowd’s opinion [8], or past exposure of the user to the

items [9] (such as a friend recommendation, ads, etc). Bias might also be introduced during

the model training phase [4]. In fact, popular items tend to receive a higher number of

interactions which in turn leads to a highly unbalanced training data where the majority

categories of items get to control the training loss. The recommender system, by nature,

operates in a closed feedback loop setting where feedback from the users is used to provide

recommendations for the next iteration. This feedback loop further amplifies the biases

discussed above [10,11].

As recommender systems (RS) continue to permeate through an expanding set of

online applications and domains, they are starting to have an increasing impact on human

decisions and behaviour. Hence, depending on the application domain and on their scale of

2

use, biases that emerge within these recommender systems can have significant social and

economical impacts [12]. For these reasons, research on understanding bias and designing

debiasing strategies has been attracting a growing interest from the recommender systems

community [4]. Bias in recommender systems may result in multiple consequences. From the

user’s perspective, bias might decrease the performance of the recommendation algorithms

by pushing popular and less diverse items to the top of the recommendation list, leading to

less personalization which may hurt the user experience. From the supplier’s perspective,

bias may lead to pushing popular items to the top of the recommendation lists more than

long tail items, thus leading to unfairness of exposure among the different providers’ items.

This phenomenon is known as the Mathew effect [13] or the ”rich get richer” effect. Bias

may also lead to polarization and echo chambers [14,15].

1.1 Problem Statement

Recommendation systems are known to suffer from extreme popularity bias [16] [17],

where popular items are recommended the most at the top of the recommendation list,

resulting in an imbalanced training data. The problem stems from the fact that popular

items receive more clicks compared to long tail items. This leads to highly unbalanced

training data and to a training process that is biased towards popular items. For instance,

[16] showed that the recommendation lists generated by Matrix Factorization consist mainly

of popular items, regardless of the user’s preference for popular items or long tail items.

This shows that there is a disparity between the user’s conformity level and what the

recommender is delivering, which may hurt the user experience. The Inverse Propensity

Scoring (IPS) framework [18, 19] is widely used to correct for popularity bias by down-

weighing the contribution of popular items using inverse propensity. One limitation of this

approach is the non-personalized representation of conformity bias, where the propensities

are treated as user-independent and the goal is to remove popularity bias regardless of

the user preference towards popular items. Yet the users’ preferences for popular or long

tail items is expected to vary from one user to the other and this preference should be

3

captured by the recommender system when debiasing recommendations. A more faithful

representation of preference can be decomposed into a general user preference vector and

a bias vector that represents the degree that each given user likes popular items. Learning

only the general preference of the user, or counteracting the popularity bias without taking

into account the relevance, will neglect an important component of the popularity bias and

might degrade the performance of the model. On another hand, ignoring the popularity bias

of the system will underfit the general preference of the user and will learn a representation

that is biased toward the popularity bias component. In addition, conformity bias does not

vary only between users, it may vary for the same user depending on the items’ categories.

Another shortcoming of existing debiasing efforts has been their lack of studying the effect

of multiple biases simultaneously. Yet, the logged data may be affected by multiple biases

at the same time, such as selection bias, exposure bias, presentation bias, etc.

1.1.1 Dissertation Scope and Impact

In this work, we investigate bias from three main perspectives that advance the state

of the art in debiasing research: First, we correct for the popularity bias, while taking into

account different users’ conformity bias toward popular items, but assuming that the rec-

ommender system is affected only by popularity bias. Then, we relax the latter assumption

and propose a bias correction mechanism for mitigating two biases simultaneously. Finally,

we study bias from a causal perspective in order to create a more robust system to the

dynamic shift in the data distribution.

We first propose a popularity correction approach that learns embeddings that can

incorporate the user’s conformity bias. Our approach aims to mitigate popularity bias

by disentangling conformity and relevance. In the second part of this work, we propose

an approach that simultaneously accounts for both exposure bias and popularity bias. For

instance, users tend to interact more with items presented at the top of the recommendation

list, as well as with items that are more popular and have higher ratings, thus potentially

leading to both conformity bias and popularity bias.

4

1.1.1.1 Correcting for Popularity Bias

We propose a novel popularity bias correction matrix factorization, that aims at re-

ducing popularity while providing more accurate recommendations. Personalized correction

of popularity bias benefits both users and suppliers. Since, it increases the accuracy of the

RS by learning the preference of the user for popular and long tail items while promot-

ing more diverse recommendations. Our method relies at learning richer embedding that

accounts for the preference of the user to the popular items. We show that by learning

better embeddings, the accuracy of the results increases while keeping a good diversity in

the recommendation

1.1.1.2 Correcting for Multiple Biases

We studied the effect of correcting for two biases simultaneously on the recommen-

dation accuracy and diversity. This is crucial, since biases do occur simultaneously and

current work usually isolate the system and correct for one bias at the time assuming that

biases do not interfere. Correcting for the bias interference may help further improve the

accuracy of the system and push more diverse and long tail items.

We combine IPS strategy with previously designed popularity-enhancing approach

in order to mitigate the selection bias effect on the training of the model. We show that

combining both approaches yields a superior performance in terms of accuracy and bias.

1.1.1.3 Causal Inference Based Debiasing Strategy

One important drawback of recommender systems is ignoring confounders while

learning the parameters of the model [4]. Confounders such as popularity, position of the

item or the exposure of the user affects the data collection process and therefore the ob-

servational data is heavily biased. Although previous methods such as IPS [18] aim at

reducing the bias effect, certain unmeasured confounders effect remain present and exacer-

bate the results. We propose a novel two step approach, inspired from the proximal causal

inference framework [20,21]. We aim at mitigating the effect of unmeasured confounders in

5

order to get more unbiased estimation of the performance of the model. Our method relies

on designing a bridge function that estimates the effect of the unmeasured confounders

on the observational data and then use the newly generated data to train a final model.

our approach is model agnostic and can be applied with several Collaborative Filtering

algorithms.

1.1.1.4 Debiasing using a Causal Framework

we present a new approach to adjust for confounders in recommendation systems.

In order to do this, we reframe the recommendation system within a causal framework and

then propose to use a proximal causal inference framework [22] to adjust for confounders.

Confounders are variables that may affect the predicted ratings leading to biased estimates

that can be misleading.

1.1.1.5 Scope of the Research and Assumptions

This research focuses on matrix factorization-based (MF) recommender systems, and two

types of bias, namely, popularity bias and exposure bias. The focus on MF in no way mini-

mizes the potential impact of this work since MF and latent factor methods are considered

state of the art on their own, and further form a major building block of more complex

models, including Deep Learning, where they are one foundation of representation learning.

1.2 Research Contributions

1. We propose a popularity bias correction matrix factorization algorithm (PCMF) that

learns a popularity-aware embedding for users and items to capture the user bias to-

wards different group of items, as well as a user-personalized bias vector to capture the

level of conformity bias among different users. We integrate the popularity compo-

nent in the learning process in order to learn more accurate and diverse embeddings.

PCMF learns tailored or personalized recommendations that capture the user inter-

est as well as her preference for popular items across different group of items. Our

6

approach is modular and can be adapted to recommendation algorithms other than

MF.

2. We perform extensive experimentation to evaluate our proposed approach and find

that PCMF outperforms other state of the art models in terms of recommendation

accuracy, correcting for the popularity bias and increasing the diversity of the recom-

mendations. Our model shows a better generalization ability when tested on inter-

vened test data (where the test popularity distribution is different form the training

data).

3. We propose a debiasing approach that corrects for two biases simultaneously. Specif-

ically, we proposed an approach that mitigates exposure bias and popularity bias by

combining the IPS debiasing framework to account for biases in the data collection

step and our popularity correction matrix factorization (PCMF) to account for the

model’s popularity bias during the training. It is worth noting that to the best of our

knowledge, our work is the first work that studies the effect of popularity bias and

exposure bias simultaneously in the collaborative filtering recommendation system

setting.

4. We perform extensive experiments to evaluate the performance of our algorithm and

to test the effectiveness of accounting for two biases. Our experiments show that

accounting for two biases further improves the recommendation accuracy and diversity,

while decreasing the average popularity.

5. We propose a novel two-stage causal debiasing methodology, that is inspired from the

proximal causal inference framework [20, 21]. Unlike a previous causal IPS approach

[18] that corrects for observed confounders, our proposed approach corrects for both

observed and potential unobserved confounders. First, we learn a bridge function

to adjust the rating data for observed an unobserved confounders using a pair of

negative control variables. Second, we fit an MF model on the adjusted ratings that

are predicted by the learnt bridge function.

7

6. We evaluate our proposed two-stage causal debiasing methodology empirically using

two unbiased real-world datasets and find that our proposed approach outperforms

state of the art causal approaches, proving that accounting for unobserved confounders

improves the recommendation system’s performance.

1.3 Document Organization

The remainder of the dissertation is organized as follows. Chapter 2 presents a

literature review about recommendation systems in general, followed by a review of previous

research on bias, including efforts for studying bias and bias correction. In Chapter 3, we

propose a new popularity correction matrix factorization (PCMF) approach as well as its

experimental evaluation. In Chapter 4, we relax the main assumption made in Chapter 3

which is that the recommender system is affected by only popularity bias. We thus propose

a new approach to correct for both exposure bias and popularity bias. Then we present

an empirical study to test the importance of accounting for different biases simultaneously.

Chapter 5 describes a new two-stage debiasing approach that corrects for observed and

unobserved confounders inspired by proximal causal inference. Then we present experiments

to evaluate the effectiveness of our causal debiasing approach. Finally, we conclude the

dissertation in Chapter 6.

8

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

As recommender systems (RS) continue to permeate through an expanding set of

online applications and domains, they are starting to have an increasing effect on human

decisions and behaviour. Hence, depending on the application domain and on their scale of

use, biases that emerge within these recommender systems can have significant social and

economical impacts [12]. For these reasons, research on understanding bias and designing

debiasing strategies has been attracting a growing interest from the RS community [4].

We start by discussing RS by detailing the different methods used. We describe

different families of models and learning algorithms used to recommend items to users. We

then describe the different biases that can be present in a Collaborative Filtering recom-

mender system. Finally, We highlight the shortcomings of previous research that has not

dealt with multiple biases at the same time.

2.1 Recommendation Systems

In this section we describe the different techniques used in recommender systems.

In our work, we mainly focus on Collaborative Filtering (CF) techniques, and so we start

by describing the models used in this category of RS. Then we enumerate the models

that are used in Content-based Filtering (CBF). Finally we briefly mention other types of

recommender systems such as hybrid systems.

2.1.1 Collaborative filtering Methods

Collaborative Filtering is a family of recommender system models that predict future

interactions by detecting similarity patterns between users and items. For instance, CF

9

models assume that similar users will have a similar rating behavior. On the other hand,

similar items will be rated similarly by a given user. Therefore we notice that there are two

families of CF models, user-based CF and item-based CF [23].

Collaborative Filtering only needs user-items interactions. It can predict the future

interactions by only using past interactions of these users with the items. We explore a few

classical models that fall into this category and we describe the learning algorithms used

to build these models. We also study the correctness of the assumptions that make these

methods work and how these relate to our work.

2.1.1.1 Matrix Factorization

Matrix Factorization [24] is a well known state of the art CF model. It became

especially popular when it was part of the winning solution in the Netflix 1M$ prize chal-

lenge [25]. The aim of Matrix Factorization is to project users and items in to a shared

latent space. Items that fall close to users in such a latent space will be then given a

higher recommendation score. The distance between users and items is based on the cosine

similarity since we use the dot product to map their latent variables.

To describe the formal learning objective function of Matrix Factorization, we adopt

the following notation:

• U : Set of users

• I: Set of items

• u: A given user

• i: A given item

• P : Latent variable for the users

• Q: Latent variables for the items

• α: Learning rate

• β: Regularization hyperparameter

10

• K: Dimension of the latent space

• R: Rating matrix

The main goal of Matrix Factorization (MF) is to learn the latent variables P and Q where

P.QT reconstructs the original rating matrix R. In order to learn these representations, we

minimize the standard loss function for MF, defined as follows:

J(P,Q) =
∑

u∈U,i∈I
(Rui − PuQTi)2 (2.1)

Equation 2.1 describes the mean squared error loss for Matrix Factorization. The

idea is to learn a representation for each user and item by approximating the original

rating matrix with the product of the representations/factors, through minimizing the mean

squared error (MSE) of the reconstruction. In order to prevent the model from overfitting

and failing to generalize to unseen data, we typically add a regularization term, as follows:

J(P,Q) =
∑

u∈U,i∈I
(Rui − PuQTi)2 + β(||P ||2 + ||Q||2) (2.2)

By adding the regularization term, we make sure that our model does not reproduce the

input data and thus end up failing to predict the missing ratings. β is a hyperparameter

that is used to control the importance of the regularization.

To learn the model parameters P and Q, Alternate Least square is used by employing

Stochastic Gradient Descent (SGD) [26] in an alternating fashion to update P and Q:

Pt+1 = Pt − α
∂J

∂P
(2.3)

Qt+1 = Qt − α
∂J

∂Q
(2.4)

Using Stochastic Gradient Descent (SGD) allows for parallelization [26] in the training phase

which allows us to train scalable models. One of the drawbacks of Matrix Factorization is

that it is not guaranteed to converge [27]. In fact, the function is non-convex. Therefore,

the optimization algorithm may find a local minimum which does not reflect the global

minimum of the problem.

11

Another drawback of Matrix Factorization is the cold start problem [28]. In fact, if

a new user or a new item comes to the system, it will be hard to model it without existing

interactions. Methods such as augmenting the embedding with external features have been

used to mitigate this problem.

Furthermore, we notice that the main objective for MF is to reconstruct the rating

matrix. It learns the preference of the user toward a given item but does not account for the

ranking of items. This is solved using methods such as Bayesian Personalized Ranking [29].

2.1.1.2 Bayesian Personalized Ranking

Bayesian Personalized Ranking (BPR) [29] is a method of learning that employs

pairwise ranking along with a Bayesian framework. In fact, the loss employed learns user’s

preference by using pairs of items (i,j) where i is a positive item (the user likes the item and

j is a negative item where the user is not interested in the item. The goal of the optimization

problem is to learn the following relation fu(i) > fu(j) where fu is a preference function

for user u that maps the items to a preference score.

The loss function used to learn such a property is the following:

J(u, i, j) =
∑

u∈U,i,j∈I
ln(σ(fu(i)− fu(j)))− β||Θ||2 (2.5)

σ is the sigmoid function and serves to map the user preference to a probability function.

Θ represents the parameters of the model.

The next step is to model fu. One way to do that is to use Matrix Factorization

where fu(i) = PuQ
T
i . Other preference models can be used like Neural network architectures

and other factorization models.

The advantage of BPR is that it directly optimizes ranking evaluation metrics while

learning the user item preference. It has shown great improvement compared to other

Collaborative Filtering methods.

One of the main drawbacks of BPR is that it needs to define positive items and

negative items in the training phase. This might not be very trivial especially in the

implicit feedback setting where the user item interactions are clicks. Therefore, negative

12

sampling is usually needed to sample negative items from the set of non interacted item.

This may introduce bias in the system [30]. This can be mitigated by adopting different

negative sampling strategies [31].

2.1.1.3 Nearest-Neighbors Methods

Nearest-Neighbors methods recommend items to users that are the closest to the

previously interacted items based on a defined distance measure [32]. For instance, we can

use the learned items’ embedding of Matrix Factorization coupled with cosine similarity

[33] in order to recommend items that are the closest (in terms of cosine distance) to the

previously rated items by user u.

The Nearest-Neighbor method adopts an item-based Collaborative Filtering as it

only uses the item embeddings during the prediction. However, the users are also used

during the training of the embedding if we use a method such as Matrix Factorization.

Other models can be used to project the items in a space where we can calculate

distances. These include Neural Networks where we learn an embedding space through

multiple hidden layers. A naive approach can also be used by using the original rating

matrix as a space for the items. One drawback of this method is that the space can have a

very high dimensionality, therefore the distances between items will always be high (due to

the curse of dimensionality [34])

2.1.1.4 Neural Network Based methods

Recommender systems have benefited from the advancement of the deep learning

field where various architectures have been adapted in order to improve the recommendation

quality [30].

One famous Neural Network architecture for Collaborative Filtering is Neural Matrix

Factorization [35]. The idea is to learn two different representations for users and items using

a Multi-Layer Perceptron layer and a Matrix Factorization layer. The two embeddings are

then concatenated and fed into a sigmoid head to predict the score. The idea of Neural

13

Matrix Factorization NeuMF is to be able to detect the non-linear relation between the

interaction of the user and item. Later work [36] has argued that using a dot product head

in order to learn the similarity of the final concatenated embeddings yields better results.

Another family of methods for using a deep learning architecture is using sequential

based architectures [37]. For instance, the recommendation problem can be seen as: Given

a sequence of rated items {i}n, we want to predict the next item to be rated/clicked. To

this goal, models such as Recurrent Neural Nets (RNNs) have been used [38]. RNNs are

a family of deep learning models that capture the sequential behavior of the interaction

pattern of the user in order to provide next item recommendations. Later works have

exploited Transformer architecture in order to leverage the self-attention framework for

modelling sequential data [39]. Bert4Rec, for instance, models the interacted items as a

sequence and uses a BERT [40] architecture to model the session of the user and provide

recommendations.

An important family for Collaborative Filtering modelling, using Deep Learning

networks, is Autoencoders (AE) [41]. AE tries to reconstruct the original input through

an encoder-decoder architecture. The idea is similar to Matrix Factorization where the end

goal is to represent the users and items through a shared latent space and then perform

recommendations using various similarity measures [41]. Many variations of Autoencoders

have been used such as Variational Autoencoders which adopt a Bayesian framework for

the problem [42]. Autoencoder based architectures are being used in industry to model the

items and users and is a growing field of research. A major drawback of this method is

difficulty of convergence [43].

Graph Neural Networks can also be used in a Recommendation context [44]. The

recommender system problem can be seen as a bipartite graph problem. Therefore, Graph

Neural Networks (GNN) can be used in order to model the user profile and provide recom-

mendations [45]. GNN can be used to model the embeddings of users and items by leveraging

this graph relation. We put an emphasis in this case on the social influence for the user and

the item similarity for the items. GNN can be extended to use more advanced graph based

14

networks such as Convolutional Graph Networks [46] or Graph Attention Networks [47].

A major issue for Collaborative Filtering is the need for interactions in order to work.

Hence, users and items with no recorded interactions face the cold start problem. Models

will not be able to learn correct embeddings for these entities. Therefore, one solution is to

use Content-based Filtering methods where the use of external information is required.

2.1.2 Content-based Filtering Methods

Content-based Filtering methods rely on using external information about users and

items in order to provide recommendations [48]. There are different ways of incorporating

external features in a recommendation model. One way is to formulate the problem in a

supervised learning setting as a classification problem. In this setting, the goal is to classify

an interaction as a positive or a negative interaction (or no interaction). Therefore, users

and items features can be used to achieve this result using typical classification algorithm. A

popular class of algorithms are Decision Trees [49,50] through ensembles like Random Forest

and Gradient Boosting Decision Trees (GBDT) [51]. These methods make use of sparse

features for both items and users in order to provide recommendations. These methods

can also be used beyond classification and a ranking model where pairwise and listwise loss

functions are used in order to directly optimize ranking metrics. An example of such loss

function is LambdaRank that uses a listwise strategy to predict ranking for items combined

with Additive Trees context [52].

Another way to use external features is to compress them through an embedding

space and store these embeddings to be used later for prediction. To achieve this, deep

learning architectures are used. For instance Two tower architectures can be used in order

to project the user features and the item features into an embedding space and then use

a dot product head or a MLP head to provide predictions [53]. The advantage of using

embedding approaches in order to represent user and item features is the ability to re-

duce computation cost by compressing the dimension of the problem. Also we can store

the embeddings for fast inference at the serving stage. Furthermore, we can combine the

15

embeddings learned by using item and user features with the embeddings learned using

Collaborative Filtering methods. This allows for hybrid methods that can over come the

issues of both methods. Also embeddings allow for different ways of ranking and predictions

in the inference stage. We can use Nearest Neighbor methods to provide similar items to

the user. This method is preferred in industry because it scales well with a large number

of items [54]. Implementation for scalable Nearest Neighbor search such as ANNOY [55]

allows for fast retrieval.

An important issue of Content-based Filtering is the need to collect features from

users which is expensive. Users usually do not enter a lot of information about themselves

[56] and therefore, the collected features are very sparse and may lead to suboptimal results.

2.2 Bias in Recommender systems

Bias in recommender systems comes in many forms and from multiple sources, [14].

For instance, limited user exposure can create an exposure bias or selection bias that affects

the model training and results in statistical bias. The feedback loop creates a filter bubble

phenomenon which leads to several drawbacks, including popularity bias and non-diverse

recommendations. To understand the bias effect of recommender systems, we provide a

motivation on the bias phenomenon for different types of bias.

In a traditional recommender system setting, the user is first presented with a list

of recommended items. Then, the user’s clicks and ratings are used to retrain the model to

dynamically capture the user preference. The traditional algorithms used, i.e. Matrix Fac-

torization (MF) [57], assume that the collected data satisfies the independent and identically

distributed (iid) assumption. This assumption does not hold in the real world for multiple

reasons. For example, the items presented to the user are not randomly selected and the

items do not have equal probability of being recommended to the user. On the other hand,

the items presented to the user do not have the same probability of being observed. For

instance, the user’s observation is affected by multiple biases, i.e. presentation bias [5] [6],

popularity bias [7], etc. Figure 2.1 shows a typical recommender system’s life-cycle and

16

the biases that can occur at different stages therein [4]. Starting with the user interaction

phase, users choose what items to interact with from the recommendation list, which leads

to selection bias. In addition, the presentation of the items can affect the probability of

user interactions. This presentation can consist of the position of the item in the list, the

size of the item’s icon, etc. The user interaction can also be affected by the item popularity

and the crowd’s opinion about an item [8]. The next stage is to log the user interactions

with the recommendation list such as clicks, ratings, dwell time, etc. Then, the collected

data is fed to a recommendation model to be retrained every t times. The popular items

receive significantly more clicks than long tail items [58]. This leads to a biased training

which is dominated by popular items, since these items contribute the most to the training

loss. As a result, popular items have a higher probability of being recommended than long

tail items despite their true relevance to the user. We will later study this empirically in

the experimental evaluation section.

Figure 2.1. Recommender System Life-cycle and biases at different stages. Bias can be
introduced in the data collection step by inheriting the user interaction biases. Bias can
also be introduced in the model training phase, where popular items get recommended more
frequently given that they receive a higher number of user interactions

To further investigate the effect of bias on the recommendation results, let us suppose

we have a recommender system environment with k items, as shown in figure 2.2, where

popular items are the square shaped items and long tail items are the oval shaped items.

17

The blue items are the items relevant to the user, and the solid line edges denote the items

previously clicked by the user. In this example, we have three scenarios. The first scenario

denotes the ideal case where all the relevant items have equal probability of being shown

to the user despite their different levels of popularity. In the second scenario, we assume

that popularity bias is the only bias affecting the data. Then, popular items have higher

probability of being shown to the user at a higher position in the list. In this case, the items

shown to the user have the same probability of being observed. Hence, after being presented

to the user, popular and long tail items have equal probabilities of being observed despite

their rank. In the third scenario, we relax this assumption. In fact, users tend to interact

with items ranked higher in the list due to position bias [59]. As shown in figure 2.2, this

leads to popular items receiving even more clicks as shown in the third scenario. In this

section we detail different types of biases that affect the user experience while describing

debiasing techniques used to counteract such biases.

Figure 2.2. An example showing the effect of popularity and position bias by presenting the
difference between the recommended list and the user interaction based on the existence of
different biases. Blue items represent relevant items, solid-line items are those that have
been previously clicked by the user. The tick sign represents the items clicked at the current
iteration

18

2.2.1 Selection Bias

In contrast to classical machine learning systems where data is annotated using

an expert to ensure unbiased labeling, RSs collect their data via the continuous interaction

between the user and the RS algorithm. This particular setting leads to biased training data

due to the selection bias of the user [60]. In fact, because the user can only interact with the

exposed items which are a result of the past algorithm predictions, the labeling is conditioned

on the previous recommendation iteration. Hence, the training data is confounded by other

variables such as the user exposure [61], the positioning of the item in a ranked list, and

the performance of the previous recommender system model. This bias is usually corrected

mathematically by using Inverse Propensity Scoring methods [18, 62, 63]. IPS strategies

eliminate the statistical bias in the training loss by accounting for the propensity of the

users. This ensures an unbiased (in a mathematical sense) learning of the recommender

system model.

2.2.2 Diversity Bias

A critical issue in RSs is redundant recommendations [64]. In fact, the inductive

bias of the RS algorithms pushes for recommendations that are similar to the previously

provided user interests, using some similarity measure. Examples of such algorithms are K

Nearest Neighbors (KNN) and Matrix Factorization (MF) [57]. The use of these similarity

measures helps to provide accurate but less diverse recommendations. This lack of diversity

results in other problems such as the filter bubble and polarization [65], especially on large

scale social platforms.

A popular solution to this problem is Multi-Armed Bandits strategies (MAB) [66–69].

MAB adds exploration to the recommendation process and therefore increases the diversity

of the recommendations. The main intuition of the MAB strategy is to sacrifice some short-

term reward in order to increase the long-term outcome. Different MAB strategies have

been applied to the RS setting. A popular method is the ε-greedy strategy because of the

simplicity of its implementation.

19

Recently, researchers have adopted Reinforcement Learning (RL) techniques in order

to learn an ”intelligent” exploitation exploration trade-off [70,71]. However, Reinforcement

Learning techniques still face criticism due to their expensive evaluation process of the

proposed policies in an online setting and the logging bias introduced in an offline setting [4].

In order to correct for the logging bias, Inverse Propensity Scoring has also been proposed

in this setting [72].

2.2.3 Popularity Bias

Items that get recommended more to users will collect more interactions, and this

in return leads to a skewed rating distribution, with popularity bias [7] that affects fu-

ture recommendations. In fact, the model has more ratings and hence insights about the

popular items and this lead to more accurate recommendations for these items [73]. This

loop will lead to even more disparity between the item popularity and creates a niche of

underrepresented items, leading to an unfair exposure for some items. Similarly to solving

the lack of diversity in a recommendation list, increasing the exposure of unpopular items

may be achieved using post-processing such as re-ranking [74, 75] or exploration methods

like Multi-Armed Bandits. Another family of solutions acts on the training loss by adding

regularization to the error term. Other methods use multi-objective optimization through

optimizing for both increasing the accuracy and reducing the popularity disparity [73].

2.2.4 Position Bias

Another major bias in recommender systems is position bias. In fact, the user is

biased by the position of the presented item. Previous studies [76, 77] have shown that

the user pays more attention to top ranked items and usually ignores the items that are

ranked at the bottom of the list. For this reason, collecting data affected by position bias

creates issues when evaluating and training future models [78]. In fact, some items will be

considered as negative items because they were never clicked but the fact that they were

not present in the top of the list plays a bigger factor on the decision of the user. Some

20

Figure 2.3. Illustrating the effect of position bias: The arrow width represents the probabil-
ity of users seeing the ranked items. The position bias suggests that as the rank of the item
increases in the recommendation list, it will have lower chances of being seen. This leads
to relevant items not being clicked despite being in the recommendation list. This affects
the collected data by producing biased data.

industries moved away from the ranked list strategy and are using other ways to represent

items such as carousel or grid representation [79]. Other aspects of the position bias will

still be present involving the user browsing behavior.

In order to mitigate position bias effect, several methods have been adopted. For

instance, new click models have been developed [80–82] in order to take into account the

causal effect of the position of the item using a multiplicative relation. In fact, [82] argues

that the click of the model is an effect of first seeing the item and then being relevant.

Seeing the item or being exposed to the item is directly related to the position of the item.

Therefore, by constructing a click model that takes into account the position of the item, we

can mitigate the effect of position bias. By tying the position of the item to the exposure of

the user [83], we can also use Inverse Propensity Weighting in order to eliminate statistical

bias during testing and training of the recommender system [63]. In fact, it can be shown

that the exposure of the user that depends on the item’s position creates a biased estimator

that does not allow us to correctly evaluate the performance of the recommender system in

21

training and in testing.

Another way of counteracting position bias is by including such information in the

training and removing it from the testing phase. This method is often used in industry [84]

and in a content filtering scenario. The idea is to include the position as a feature in the

training phase. Then, during the prediction phase, we assume that the position feature

is constant (fixed as 1 for instance). Therefore, we eliminate the position bias effect by

predicting the relevance of an item given it would be ranked in the first position.

2.2.5 Feedback Loop bias

Another important aspect of bias in recommender systems is feedback loops [10,11].

In fact, due to the dynamic nature of recommender systems, most biases are amplified

through feedback loops. In the first iteration, the user is exposed to some initial recommen-

dations. They provide feedback to these recommendations. This feedback is affected by

biases such as popularity, selection and position bias. The recorded data is then used by the

next iteration of the algorithm in order to train and generate the next recommendations.

This closed loop affects the evolution of the system and contributes to amplifying biases.

In fact, previous research has shown that the feedback loop amplifies the bias and leads to

multiple phenomena such as filter bubbles and echo chambers [15].

In order to mitigate the effect of the feedback loop, previous research has suggested

using exploration methods such as bandit methods or random recommendations. Other

methods tried deconvolution techniques [85] in order to understand how feedback loops

affect the final ratings.

2.3 Recommender systems as a Causal Inference problem

Recommender systems can be modeled as a causal inference framework [86]. In fact,

we can assume X as the treatment of the user which details that user has been exposed to

a certain item by recommending that item to the user, and Y is the outcome which is the

rating provided by the user. Therefore, there is a causal relation that can be infered which

22

is: What is the outcome of recommending an item i to the user u.

The problem with causal inference problems is the unmeasured confounders V . An

unmeasured confounder is a variable that affects the exposure of the user to the treatment

and the outcome Y but it cannot be measured. One example of an unmeasured confounder

is popularity of the item [?], exposure bias [87], position bias [4], conformity bias [8].

Therefore, by using this framework, bias in recommender systems can be explained

through causal graphs as proposed in [88] and as shown in Figure 2.4.

In fact, looking at Figure 2.4 (a), we can see the effect of selection bias where the

user’s rating is affected by which item is initially selected by the user. In fact, training on

the observational data would create a skewed distribution of only selected items from all

the observed items. This leads to biased training [18].

Looking at Figure 2.4 (b), we can illustrate the effect of conformity bias. In fact,

users tend to be biased toward popular items and tend to rate these items higher than other

items. Therefore, the popularity of an item affects the outcome Y (rating).

Figure 2.4 (c) shows the effect of position bias. In fact, position bias affects the

exposure of the user. Items that are in higher position have higher chance of being selected

[89]. Therefore, this selection affects which items are selected and which items are rated.

Items that are highly rated also affects the next batch of recommendations where they have

more chance of being recommended and therefore they appear in more high positions and

this results in a feedback loop.

2.3.1 Causal Graph Interpretation of Recommendation System

As the bias problem can be drawn as a causal inference problem, the solution can be

drawn from such framework. For instance, [18] have been used in order to account for se-

lection bias in training and evaluation by proposing an inverse propensity scoring technique

for loss functions. [86] proposed a framework for accounting for unmeasured confounders

such as the exposure of the users.

Causal approaches have also been used to counteract popularity bias [90–92], expo-

23

(a) Causal Graph for explaining the effect of selection
bias

(b) Causal Graph explaining the effect of conformity
bias bias

(c) Causal graph explaining the effect of position bias

Figure 2.4. Causal graphs explaining different types of biases. U,I denotes the user
and item. S denotes the selection of the item, Y is the outcome or the rating, X is the
treatment, P is the popularity, Q is the position and E is the exposure

24

sure bias [93,94] and unfairness in recommendations [95,96]. It has also been studied in the

context of online learning and reinforcement learning based recommender systems where

the aim is to evaluate the dynamic performance of the recommender system [97]

2.3.2 Limitation of previous bias research

A first limitation of the bias study in recommender systems is assuming that bias

present in the dataset is always harmful to the user. We argue that this bias can be

beneficial to certain users and we propose a personalized popularity bias by including a bias

component as a Multi-Task Learning problem. This provides better accuracy results than

previous approaches. Furthermore, bias in recommender systems has so far been studied in

an isolated manner. In fact, researchers isolate a particular bias such as selection bias or

popularity bias and then tailor a method to counteract this bias. Whereas, in real world

recommender system, these biases occur simultaneously and affect each other. For instance,

a user’s choice in clicking an item is both affected by the popularity and the exposure of the

user. Therefore, isolating these biases, although useful to gain a preliminary understanding

of their effect on the recommender system, can fail to model a more truthful scenario of the

practical use. We plan to tackle a multi-bias correction framework by combining the IPS

framework with our proposed popularity correction model and we propose a novel causal

inference framework in order to account for unmeasured confounders.

2.4 Summary

In this chapter, we summarized the different types of recommender systems. We

started by explaining collaborative filtering recommender systems and discussed their short-

comings. Then we described content based filtering methods while briefly mentioning hybrid

models. In the second part, we reviewed the literature on the problem of bias in recom-

mender systems. We described the different types of biases in these systems ranging from

popularity bias and exposure bias to selection bias and diversity bias. We also highlighted

the limitations of previous bias research.

25

CHAPTER 3

POPULARITY CORRECTION MATRIX FACTORIZATION (PCMF)

In this chapter, we propose a new methodology to mitigate popularity bias. We

start with the motivation and the problem description. Then, we present the notation and

the problem formulation. Next, we present a new approach to popularity bias correction

assuming that the data is affected only by popularity bias. Our method corrects for the

bias by learning a personalized popularity bias component in both the item embedding and

the user embedding. We finally present the results of an extensive experimental protocol to

study the performance of the model.

3.1 Motivation and Problem Description

The goal of a recommendation system is to predict users’ preferences in order to

recommend relevant items. Recommendation systems are known to suffer from extreme

popularity bias [16] [17], where popular items are recommended the most at the top of

the recommendation list, resulting in imbalanced training data. The problem stems from

the fact that popular items receive a higher number of clicks compared to long tail items.

This leads to highly unbalanced training data and to a training process that is biased

towards popular items. The fact that popular items receive more clicks does not imply

that all users are interested in popular items. In fact, the total number of interactions

is skewed towards popular items, but for a specific user, the percentage of popular items

that the user interacted with tends to vary from one user to another [16]. In addition,

the majority of traditional recommendation systems do not capture user-level conformity

bias. In this context, conformity bias stands for the user’s tendency to rate or like popular

items in a similar way to the majority of users, or possibly to align with the public opinion.

26

For instance, [16] showed that the recommendation lists provided by Matrix Factorization

consist mainly of popular items, regardless of the user preference for popular items or long

tail items. This shows the disparity between the user’s conformity level and what the

recommender is delivering, which may hurt the user experience.

Figure 3.1. Decomposition of the true user representation into two main components. The
first component is User Preference which represents the user’s preference toward all items.
The second component (blue vector) is the user preference for popular items.

The users’ preferences for popular items vary from one user to the other. In fact,

users can have different levels of conformity bias. One user may have a higher preference

for popular items and may have a more agreeable personality. In this case, the popularity

bias actually benefits the user since it reflects her true interest in popular items. Other

users may prefer long tail items or niche items, in this case, recommending popular items

may degrade their user experience [98,99].

Figure 3.1 shows a decomposition of the user preference in a two dimensional latent

space. We show that the true representation can be decomposed into a general preference

vector and a bias vector that represents the degree that the user likes popular items. Learn-

ing only the general preference of the user, or counteracting the popularity bias without

taking into account the relevance, will neglect an important component of the popularity

bias and might hurt the performance of the model. On another hand, ignoring the pop-

27

ularity bias of the system will underfit the general preference of the user and will learn a

representation that is biased toward the popularity bias component. In addition to that,

conformity bias does not vary only between users, it also varies for the same user depend-

ing on the items’ categories. For example, a user may be interested in documentaries and

keen about finding ”hidden gems” in this category. On the other hand, when it comes to

romantic movies, she enjoys watching popular ones.

Previous work [8] [100] [101] has mainly focused on removing popularity bias without

focusing on the users’ possible varying preference for certain popular items. One of the most

popular methods is inverse propensity scoring [100] which re-weights the items during the

training based on their popularity. Long tail items weights are higher than popular items.

The latter approach treats the popularity bias from the items’ perspective. In this work, we

look at the popularity bias from the users’ perspective. Other studies [8] [101] focused on

removing popularity bias by learning causal embeddings that are able to detect the underling

cause of clicks. In those studies, popularity bias was considered harmful and the ultimate

goal was to remove it. In our work, we advocate that popularity bias can be beneficial when

studied from the user ’s perspective. For example, if the user has a high conformity bias

and enjoys popular items, recommending popular items to them would provide a better

user experience. Our work focuses on detecting nuance in the user’s conformity bias within

item categories as well. Our goal is to improve the recommendation accuracy and to correct

for popularity bias with respect to users’ preference.

Motivated by the difference between users’ conformity levels, we propose the Pop-

ularity Correction Matrix Factorization (PCMF) algorithm that learns the user’s interest

by disentangling conformity and relevance using a personalized multi-objective framework.

This work falls into mitigating popularity bias during the recommendation stage.

Our main contributions are the following:

• We propose a new popularity bias correction matrix factorization method (PCMF)

that learns a popularity-aware embedding for users and items to capture the user’s

bias towards different group of items, as well as a user-personalized bias vector to cap-

28

ture the level of conformity bias among different users. We integrate the popularity

component in the learning process in order to learn more accurate and diverse embed-

dings. PCMF learns tailored or personalized recommendations that capture the user

interest as well as her preference for popular items across different group of items. Our

approach is modular and thus can be adapted to recommendation algorithms other

than MF.

• We performed an extensive empirical experiments to test our proposed approach. Our

results show that PCMF outperformed state of the art models in terms of recommen-

dation accuracy, correcting for the popularity bias, and increasing the diversity of the

recommendations. Our model showed a better generalization ability when tested on

intervened test data (i.e., the popularity distribution in the test data is different form

the training data).

3.2 Popularity Bias Correction Matrix Factorization (PCMF)

In this section, we present a detailed description of each component of our proposed

Popularity Correction Matrix Factorization. The goal is to provide the user with accurate

recommendations and to provide a personalized correction for the popularity bias for each

user. Figure 3.2 shows an overview of the model architecture. PCMF is composed of 3 main

components:

• The first module is responsible for learning the user’s relevance embedding. The true

ratings are used to learn the user interest by learning user and item embeddings. This

module recovers classic Matrix Factorization.

• The second module is responsible for learning the conformity embedding. The popu-

larity matrix is used to learn the embedding. The popularity matrix consists of the

popularity of each item that the user has rated. The embedding will capture the user’s

preference for popular items across item categories.

• The predicted ratings are obtained using a linear combination of the item’s popularity

29

Figure 3.2. Popularity Bias Correction Matrix Factorization (PCMF). The first module
denotes the relevance embedding. The second module denotes the conformity embedding,
i.e., it is learned from the popularity matrix. The linear combination of the relevance score
and the conformity score constructs the predicted rating. Each task has its corresponding
loss function. A multi-task learning framework is used to predict ratings from the relevance
and conformity embeddings

and relevance. We assume that the users’ interactions with a popular item may be

motivated by the users’ true interest in the item or the other users’ opinion about

the item. The idea here is to disentangle the conformity and interest, whereas in

classic matrix factorization, both entities are entangled. Given that the preference

for popularity varies among users, we learn a personalized linear combination for each

user.

• We use a multi-task learning framework to find a trade-off between learning the con-

formity embedding, the relevance embedding and the personalized bias correction

vector.

In the following sections, we will describe each component of the PCMF architecture

30

in detail. Finally, we will describe our experimental protocol and present our empirical

results on two real world datasets.

3.2.1 Notation and Problem Formulation

We start by defining the notation for a recommender system with explicit feedback

data (i.e., ratings). Let U be set of the users with m = |U | being the number of users, and

let I be the set of items where n = |I| is the number of items. Let R be the rating matrix

where each entry rui represents the rating assigned by user u to item i. An entry rui > 0

indicates that user u rated item i. An entry rui = 0 does not necessary mean that user u

is not interested in item i. It means that the item has not been observed. We introduce a

matrix Ou,i ∈ {0, 1} where each entry denotes if user u has been exposed to item i. Ou,i = 1

means that the user has been exposed to item i, whereas Ou,i = 0 means that the user

has not been exposed to item i. Each entry Ou,i is a Bernoulli random variable indicating

whether a user u has been exposed to an item i.

3.2.2 Learning Conformity Embedding

In this section, we discuss how to learn the nuances of the user’s conformity bias

across diverse item groups. For example, in an e-commerce setting, a user may have a

different sense of fashion and tend to like non-popular items. On the other hand, the

user may like to purchase popular items when it comes to electronics. The user tendency

towards clicking on popular items may vary depending on the item group. In fact, if the

user’s previous interactions consist mainly of long tail items, we can infer that the user

likes to seek out niche items within a certain group. On the other hand, if the user clicks

prominently on popular items, we can infer that the user has a preference for popular

items and has a high level of conformity bias. Let Pop be the popularity matrix of size

(m = |U | , n = |I|), where each entry popu,i represents the popularity of an item i clicked

by user u. The entity popu,i can be computed using the following equation 3.1:

popu,i =
∑
u∈U

1Ru,i>0 (3.1)

31

Notation Definition

U Set of users

m Number of users |U |
I Set of items to be recommended

n Number of items |I|
O Binary Observation matrix indicating if user u observed item i

R Rating matrix where ru,i is the rating of user u to item i

R̂ Predicted rating matrix

Pop
Popularity matrix where popu,i is the popularity of item i

clicked by user u

P̂ op Predicted popularity matrix

S User conformity embedding

V Item popularity embedding

P User embedding

Q Item embedding

αu, βu Personalized bias parameter vectors

γ L2-Regularization weights

λ
Hyperparameter controlling the personalized linear combination between relevance

and conformity

η Learning rate

Iu Recommended list to user u

TABLE 3.1

Notation and Definitions - Chapter 3

The popularity of an item is defined as the number of interactions the item gets from all

the users. The popularity scores popu,i are then bucketed into five intervals using their

percentiles [per1, per2, per3, per4, per5]. An index of 1 denotes the less popular items and an

index of 5 denotes the most popular items. Let f be a mapping function where f : popu,i →

{1, 2, 3, 4, 5}. We suggest learning embeddings that capture the user’s conformity spectrum.

The idea is to project users that have similar levels of conformity for a certain group of items

closer to each other in the embedding space. For instance, the users that have a preference

for niche items within several categories will be considered similar even though they might

have different interests. For example one may have a preference for horror movies and

32

the other may have a preference for romantic movies. However, if two users have similar

preference for niche items within the same group of items, then they will be closer in the

embedding space compared to the latter example. This might sound counter-intuitive to

the recommender system goal. In the next section, we will describe how to capture the

user interest as well. In this section, we want to capture the user’s conformity bias levels

for different item groups. In order to learn the conformity embedding, we propose to use

matrix factorization where the input is the popularity matrix Pop. Equation 3.2 gives the

loss function to learn the popularity embedding:

LConformity(P̂ op) =
1

|{(u, i) : Ou,i = 1}|
∑

(u,i):Ou,i=1

(popu,i−su.vTi)2+γ(‖su‖2+‖vi‖2) (3.2)

where S represents the users’ conformity embedding, V represents the items’ similarity

embedding in terms of popularity. ‖su‖2, ‖vi‖2 denote the regularization terms which are

weighted by parameter γ to control for overfitting. Representing the user’s conformity using

an embedding is more accurate than using simple scalar scores, as was done by previous

studies [100] [9] which mitigated popularity bias by re-weighting the observed rating using

Inverse Propensity Scoring (IPS). This is because the IPS scores are user-independent and

rely only on the item popularity scores. In other words, they assume that all users have

the same behavior towards popular items and the same level of conformity bias towards all

items. A learned embedding provides a richer representation of the user’s conformity bias

spectrum and enables the system to capture the different nuances of user conformity.

3.2.3 Disentangling Conformity and Relevance

The user clicks are influenced by popularity and true relevance. A good recommender

system should be able to capture the general interest of the user. Motivated by the fact

that user clicks are influenced by conformity and interest, we propose that the rating can be

decomposed into an entity quantifying the true relevance and an other entity quantifying

the influence of the popularity on the user’s click. In order to do this, we represent the

predicted rating r̂u,i as the linear combination of a relevance score r̂elu,i and a conformity

score p̂opu,i, as shown in equation 3.3. These terms are further weighted by parameters αu

33

and γu. Which are learnable parameters that personalize the degree of a user’s conformity

bias toward popular items.

r̂u,i = βur̂elu,i + αup̂opu,i

r̂elu,i = pu.q
T
i

p̂opu,i = su.v
T
i

(3.3)

The conformity score su.v
T
i is computed using the conformity embedding from the previous

section. Let us suppose that a user has a preference for long tail items, which would mean

a low conformity score su.v
T
i . The interaction is more probably a representation of her true

interest in the item. Thus, the relevance score pu.q
T
i would be high. Equation 3.4 shows a

loss function to capture the relevance:

Lrelevance(R̂) =
1

|{(u, i) : Ou,i = 1}|
∑

(u,i):Ou,i=1

[ru,i−(βupu.q
T
i +αusu.v

T
i)]2+γ(‖pu‖2+‖qi‖2)

(3.4)

Where R is the rating matrix, su and vi are the conformity embeddings from the

previous section, αu, βu are personalized trade-off parameter controlling the relative con-

tribution of the relevance component pu.q
T
i and the popularity component su.v

T
i for each

user. The parameter γ controls the L2-regularization terms ‖pu‖ and ‖qi‖. In the inference

phase, the relevance of the items and the user-specific conformity bias are used to compute

the final recommendations. This means that the items are recommended in descending

order of their ˆru,i, calculated using Eq. 3.3.

3.2.4 Multi-task Learning

During the learning phase, our goal is to learn to predict the rating R̂ matrix. In this

case, we have two tasks to optimize: learning the conformity embedding and learning the

true relevance. The two tasks will be learnt simultaneously since they mutually improve

each other. The parameter λ controls for the trade-off between learning the conformity

embedding and the relevance embedding, λ ∈ [0, 1]. The loss function can formally be

34

written as follows:

Lclicks(R̂, P̂ op) = Lrelevance(R̂) + λLconformity(P̂ op) (3.5)

λ can be seen as a parameter controlling for the importance of conformity bias. The

conformity bias importance could depend on the application domain, such as book recom-

mendation or movie recommendation. λ equals 1 means the predicted rating is based only

on conformity bias. When λ equals 0, the algorithm is equivalent to traditional matrix fac-

torization (MF). For the learning step, Stochastic Gradient Descent can be used to search

for the optimal parameters. The update equations to compute the embeddings for relevance

and conformity, and to learn the personalized bias weights, can be derived to result in the

following.

p(t+1)
u ← p(t)u − η[−2β(t)u (q

(t)
i)T (ru,i − r̂(t)u,i) + 2γ

∥∥∥p(t)u ∥∥∥] (3.6)

q
(t+1)
i ← q

(t)
i − η[−2β(t)u p(t)u (ru,i − r̂(t)u,i) + 2γ

∥∥∥q(t)i ∥∥∥] (3.7)

s(t+1)
u ← s(t)u − η[−2λ(v

(t)
i)T (popu,i − p̂op(t)u,i)− 2α(t)

u (v
(t)
i)T (ru,i − r̂(t)u,i) + 2γ

∥∥∥s(t)u ∥∥∥] (3.8)

v
(t+1)
i ← v

(t)
i − η[−2λs

(t)
i (popu,i − p̂op(t)u,i)− 2α(t)

u s
(t)
i (ru,i − r̂(t)u,i) + 2γ

∥∥∥v(t)i ∥∥∥] (3.9)

α(t+1)
u ← α(t)

u − η[−2s
(t)
i (v

(t)
i)T (ru,i − r̂(t)u,i)] (3.10)

β(t+1)
u ← β(t)u − η[−2p

(t)
i (q

(t)
i)T (ru,i − r̂(t)u,i)] (3.11)

Algorithm 3.1 describes the steps of the PCMF approach. To reduce the number of

parameter of our model and mitigate the risk of overfitting, we use the relation αu = 1−βu

in our model implementation.

3.3 Experimental Results

In this chapter, we will test the performance of our Popularity bias Correction Ma-

trix Factorization (PCMF) algorithm. We test our method on real-world datasets and

compare its performance to widely used baselines. We design our experiments to evaluate

the effectiveness of our proposed approaches at providing accurate recommendation as well

as correcting for popularity bias. The research questions we aim to answer are:

35

Algorithm 3.1 Popularity bias Correction Matrix Factorization (PCMF)

Input: Rating matrix R : {ru,i : (u, i) ∈ O}, Popularity matrix Pop : {popu,i : (u, i) ∈ O},
Regularization parameter γ, Trade-off parameter λ

Output: User Conformity latent factors S1:U , V1:I , User relevance latent factors P1:U , Q1:I ,
Personalized bias vector αu, βu
Randomly initialize S1:U , V1:I , P1:U , Q1:I , αu, βu
while not converged do

for u← 1 : U do
Update S1:U , P1:U using Eq 3.8 & Eq 3.6
Update α1:U , β1:U using Eq 3.10 & Eq 3.11

end for
for i← 1 : I do

Update V1:I , Q1:I using Eq 3.9 & Eq 3.7
end for

end while
return S1:U , P1:U , V1:I , Q1:I

• RQ1: How does our proposed approach PCMF compare to other state-of the art

methods in terms of performance on predicting recommendation relevance?

• RQ2: How does our proposed approach PCMF compare to other state-of the art

methods in terms of promoting diverse non-popular items?

• RQ3: How does our proposed approach PCMF generalize on test data with different

popularity distributions?

• RQ4: What do the relevance and popularity embeddings learn in the latent space?

• RQ5: What is the role of the personalized bias parameter vector αu in predicting

relevant and diverse recommendations?

• RQ6: What is the role of the added conformity embedding loss and how does the

Relevance-Conformity tradeoff parameter λ affect the recommendation performance?

We start by describing the experimental setting including the data used, the metrics,

the baselines and the experimental set-up. Then, we will present the performance evalua-

tion of our popularity bias correction approach in order to answer the research questions

RQ1-RQ6. We start with an empirical evaluation of the popularity bias severity in recom-

mendation systems, specifically matrix factorization (MF). To do so, we start by grouping

36

the items into five buckets based on their popularity using percentiles. We predict the

percentage of the items in each group by dividing by the total number of items. Then, we

count the average frequency of each group in the recommended lists provided by traditional

Matrix Factorization (MF) using the Movielens 100k dataset. Figure 3.3 shows that MF

suffers from a severe popularity bias. Group 5 represents the most popular items. Even

though items belonging to group 5 are less than 1% of the data, they are recommended the

most frequently. On average, 50% of the top 20 recommendation lists are popular items.

On the other hand, long tail items, representing more than 60% (i.e. the majority) of the

data, appear in less than 1% in the recommendation lists.

Figure 3.3. Items in the Movielens 100k dataset are divided into five groups depending
on their popularity level using percentiles. The least popular items belong to group 1 and
the most popular items belong to group 5. The blue bars represent the percentage of
each group in the data. As expected, long tail items represents the majority of the data
and popular items represents a small fraction of the data. The yellow bars represent the
average percentage of each group in the recommendation lists of size 20 computed by Matrix
Factorization (MF). Popular items are recommended the most despite being less than 1%
of the data. This graph shows that MF suffers from a severe popularity bias.

37

3.3.1 Experimental Setting

3.3.1.1 Datasets:

We use two publicly available datasets in order to evaluate the performance of our

models.

• Movielens-100K1: A movie rating dataset with ratings from 1 to 5. The data

includes around 100k ratings collected from 943 users for 1682 movies. The data

sparsity is 95%.

• Movielens-1M2: A larger version of the Movielens 100K with 1M ratings, 6000 users,

and 4000 items. We use it to evaluate the applicability of the model on larger datasets.

Table 3.2 shows the different statistics of the used datasets. We filtered out users that have

less 20 interactions which allows for reducing the sparsity of the data and learning better

embeddings.

TABLE 3.2

Dataset Statistics

Data Users Items Interactions Sparsity

Movielens-100K 943 1682 100k 93.7%

Movielens-1M 6000 4000 1M 95.7%

3.3.1.2 Metrics:

Our goal is to measure the performance of our model on three tasks: the rating

prediction performance, the recommendation performance, and the ability of the model

to recommend diverse items, i.e. less popular items. In order to evaluate the prediction

performance of the model, we used the Root Mean Square Error (RMSE) defined in equation

3.12, where N is the number of ratings in the test set. The lower the RMSE, the better.

1https://grouplens.org/datasets/movielens/100k/
2https://grouplens.org/datasets/movielens/1m/

38

RMSE(R, R̂) =

√∑
(ru,i − r̂u,i)2

N
(3.12)

In order to evaluate the quality of the recommended list ranking, we will use the fol-

lowing metrics: Normalized Discounted Cumulative Gain (NDCG@K), Precision@k, and

Recall@K. We compute NDCG@K using equation 3.13:

NDCG@K =
DCG@K

IDCG@K

DCG@K =
K∑
i=1

2reli − 1

log2(i+ 1)

(3.13)

IDCG@K stands for the DCG@K for the ideal ranking. K stands for the length of the

recommended list and i is item rank. The NDCG penalizes relevant items being ranked lower

in the list. Hence, the higher the NDCG@K is the better the ranking is. Precision@K is

computed using 3.14:

Precision@K =
|{relevant items @K}

⋂
{retrieved items @K}|

|K|
(3.14)

Precision@K estimates how many relevant items are in the recommendation list of length

K. The higher the precision the better the ranking is. Recall@K is the fraction of relevant

items that have been retrieved in the list of length K. The higher the recall the better

the ranking is

Recall@K =
|{relevant items @K}

⋂
{retrieved items @K}|

|{relevant items}|
(3.15)

To evaluate the popularity in the recommended lists, we use the Average Popularity. popi

in equation 3.16 refers to the popularity of item i computed using equation 3.1. Our goal

is to reduce the number of popular items in Iu. Hence, the lower the average popularity,

the better the model is at reducing popularity bias.

Avg Pop =
1

|U |
∑
u∈U

1

|Iu|
∑
i∈Iu

popi (3.16)

39

We user Intra-list Diversity (ILD) [102] to measure the diversity within the recommended

list. The individual intra-list diversity is computed as the average of the pairwise distances

between items belonging to the recommended list Iu. Individual ILD is used to measure the

diversity within a recommended list for user u and to measure the novelty as well. ILD is

computed using equation 3.17, where dist stands for the cosine based distance (1 - cosine).

The higher the IDL is the better the recommendation list is in terms of diversity.

ILD =
1

|U |
∑
u∈U

1

|Iu|(1− |Iu|)
∑

(ik,ij)∈Iu

dist(ik, ij) (3.17)

We used the minimum intra-list diversity (Min-ILD) as well, which is the minimum indi-

vidual intra-list diversity computed using equation ??.

MinILD = minu∈U

 ∑
(ik,ij)∈Iu

dist(ik, ij),

 (3.18)

3.3.1.3 Baselines:

We compare our method to four collaborative filtering approaches: ItemPop [103],

Matrix Factorization (MF) [57], Matrix Factorization with Inverse Propensity weights (IPS-

MF) [100], and Multi Armed Bandits (MAB) [104].

• ItemPop [103]: ItemPop is a non-personalized recommendation method that recom-

mends to the user the most popular item. We use it as a benchmark for performance.

• Matrix Factorization (MF) [57]: Matrix factorization is a popular CF technique

that learns an embedding of users and items by decomposing the rating matrix into

two embedding vectors. It uses the dot product to map the embedding to predicted

ratings.

• IPS-MF [100]: Inverse propensity Matrix factorization is an unbiased MF model

where the observed ratings for popular items are down-weighted since they have higher

probability of being observed. Our goal here is to compare simple scalar based (score)

40

debiasing to embeddings that capture the user’s personalized tendency to interact

with popular items.

• Multi Armed Bandits (MAB) [104]: Multi-Armed Bandits (MAB) is a popular

post-processing method that introduces exploration to the final recommendations by

introducing noise into the dataset.

3.3.1.4 Experimental set-up:

In this section, we describe our experimental set-up. We start with the data splitting

process. Then, we describe the data pre-processing procedure. Finally, we describe the

hyper-parameter tuning process and present the hyper-parameters used to train Popularity

Correction Matrix Factorization (PCMF).

Data splitting: The ideal set-up to evaluate the model’s ability to remove bias is to

test it on an unbiased dataset. In this case, all the items in the test set should have a

uniform probability of being observed by the user. Collecting the test data in real-life

is challenging. For instance, providing users with random recommendations will typically

degrade the user experience. Similar to [8] [9], we created an intervened dataset to simulate

the latter scenario. We called the test data in this scenario the Skew data. For a better

evaluation, We will test our model in two settings as explained below. The first setting,

called the regular setting, is the traditional recommender system evaluation set-up. The

second setting is the intervened setting, using the Skew test data.

• Regular: The data is randomly split into 70% training, 10%validation, and 20%

test. Note that in this setting the training, validation, and test data have the same

popularity distribution.

• Skew: The model is evaluated on a skewed test data, simulating the random-off policy.

We started by constructing our test and validation data by sampling 30% of the full

data where each item has a probability of the inverse popularity of being selected.

This means highly popular items have a lower chance of being selected in the test

41

data. For instance, if an item is 10 times more popular than the least popular item,

then it would have a 0.1 probability of being selected in the test data. The popularity

of an item popi is the number of times an item has been rated. Let P (i ∈ T) be

the probability of item i being selected in the test data. Equation 3.19 shows how to

compute P (i ∈ T).

popi =
∑
u∈U

1Ou,i>0

P (i ∈ T) =
minj∈I(popj)

popi

(3.19)

In order to limit the number of new items in the test data, we cap the probability of

an item being selected in the test set to 0.9. In other words, the least popular items

that have P (i ∈ T) > 0.9 are set to P (i ∈ T) = 0.9. So, the least popular items

are present in the training data as well. Note that the popularity distribution in the

training data is different from that in the validation and test data. The remaining

70% of the data represent the training data.

Data Prepossessing: The popularity matrix, as defined by equation 3.1, denotes the

average item popularity computed by counting the number of interactions each item gets.

Note that the range of the popularity scores is different from the rating range which may

cause the loss function to be biased towards the popularity embedding reconstruction. To

avoid this problem which risks leading to a vanishing contribution of the rating recon-

struction loss, we split the popularity scores into five buckets based on their percentiles

[per1, per2, per3, per4, per5]. Then, the least popular item will have a score 1 and the most

popular item will have a score 5. This results in scaled popularity scores which range be-

tween 1 and 5 just like the ratings. As a result, the rating and popularity loss components

will end up contributing equally to the combined loss.

Hyper-parameter tuning: Hyper-parameter tuning for all baselines was done using

Optuna [105] employing a Tree-structured Parzen Estimator as a sampler. The hyper-

parameter tuning was done using 10% validation data. The hyper-parameters to tune

42

are: the relevance embedding’s latent dimensionality, the conformity embedding’s latent

dimensionality, the weight parameter λ, the gradient update’s learning rate, and the L2

regularization weight. We varied the learning rate between [0.001, 0.1]. The embedding

dimension sizes varied in {8, 16, 32, 64, 128} for the relevance and conformity embedding,

separately. This means that each embedding can have a different dimensionality. We varied

the trade-off parameter λ in [0.1, 1] and the L2 regularization weight in [0.0001, 0.1]. The

baselines are tuned using the same strategy for a fair comparison. For the optimizer, we

chose between Adam [106] and the Adaptive Gradient Algorithm (Adagrad) [107]. We

varied the batch size in {64, 128, 256, 512}. We selected the hyper-parameters based on

the evolution of root mean square error (RMSE) on the validation dataset. Note that each

of the baselines was trained using the hyper-parameters providing its own best results.

3.3.2 Performance Evaluation of PCMF in the Regular Setting

In this section, we will answer the first two research questions RQ1 and RQ2. We

report PCMF’s performance results on the Movielens-100k and Movielens-1M data sets

in the regular setting (where the data is used as is and not skewed to reflect bias). The

convergence of the algorithm is declared when the RMSE on the validation set does not

decrease for five epochs. We run each experiment 5 times and we report the mean and

the standard deviation. First, we evaluate the model on the recommendation performance

which includes the rating prediction accuracy and the ranking quality. Second, we evaluate

the model on the popularity bias correction task. The values in bold denote a significant

improvement (p− values < 0.05).

RQ1: How does our proposed approach compare to other state-of the art meth-

ods in terms of recommendation relevance performance? To answer this question,

we investigate the recommendation accuracy metrics on two real world datasets, Movielens-

100K and Movielens-1M, as shown in Table 3.3 and Table 3.4, respectively.

• Results on Movielens-100K: our model outperforms the baselines in terms of

43

TABLE 3.3

Accuracy performance of PCMF compared to different baseline on Movielens-100K. We ob-
serve that our model has higher RMSE and Precision while having comparable performance
in terms of ranking precision, NDCG and RMSE.

Dataset Movielens-100K - Regular Setting

Metric RMSE Precision @5 Recall@5 NDCG@5

MF 0.94 +/- 0.002 0.22 +/- 0.004 0.6 +/-0.013 0.81 +/1 0.002

IPSMF 0.95 +/- 0.008 0.33 +/- 0.003 0.63 +/- 0.014 0.83 +/- 0.004

ItemPop NA 0.28 0.5 0.8

PCMF 0.91 +/- 0.001 0.348 +/- 0.002 0.625 +/- 0.012 0.83+/- 0.003

TABLE 3.4

Accuracy performance of PCMF compared to different baselines on Movielens-1M. We no-
tice that our model outperforms all the baselines on all the performance metrics

Dataset Movielens-1M - Regular Setting

Metric RMSE Precision @5 Recall@5 NDCG@5

MF 1.15 +/- 0.006 0.39+/- 0.001 0.43 +/-0.001 0.76 +/- 0.008

IPSMF 1.1 +/- 5e-06 0.29 +/- 0.38 +/- 0.0003 0.69 +/- 0.005

ItemPop NA 0.34 0.39 0.75

PCMF 0.91 +/- 0.004 0.42 +/- 0.005 0.46 +/- 0.006 0.77 +/- 0.001

RMSE and precision. PCMF improved the ranking precision by 58% compared to Ma-

trix Factorization (MF) and by 6% compared to IPSMF. PCMF gives better NDCG

compared to MF, and comparable results to IPSMF. In terms of recall, PCMF pro-

vides the second best performance after IPSMF. However, the performance on the

recall of PCMF is better than MF. Overall, PCMF provides better results in terms of

recommendation ranking quality on Movielens-100K.

• Results on Movielens-1M: PCMF shows similar performance compared to Movielens-

100K. Our model outperforms the baselines on all recommendation accuracy metrics.

Compared to the state-of-the art bias correction model IPSMF, our model improved

the precision by 45%, the recall by 20% and NDCG by 10%.

44

To summarize, PCMF outperformed baselines in terms of recommendation quality

on both Movielens-1M and Movielens-100K. Based on these results, we conclude that our

model learns more accurate embeddings through modelling the preference of the user to

popular items. We also notice that our model outperforms both MF and IPSMF in terms

of rating prediction and ranking performance. Which means that adding the popularity

correction component helps predict both accurate rankings and accurate ratings.

RQ2: How does our proposed approach compare to other state-of the art meth-

ods in terms of promoting diverse non-popular items? To answer this question, we

investigate the bias metrics on two real world datasets, Movielens-100K and Movielens-1M

as shown in Table 3.5 and Table 3.6 respectively.

• Results on Movielens-100K: In terms of popularity bias correction, PCMF reduced

the average popularity by 20% compared to MF. This means that our model recom-

mends more accurate long tail items making the recommendation lists not dominated

by popular items. PCMF provides more diverse and novel recommendation lists. In

fact, PCMF increased the novelty by 9% in terms of ILD compared to MF and MF

+ MAB; and by 12% compared to IPSMF.

• Results on Movielens-1M: Similar performance has been achieved on the ML-1M

dataset. PCMF reduces the average popularity by 42% compared to MF and MF +

MAB, and by 50% compared to IPSMF. In terms of diversity, PCMF increased the

diversity by 20% on average compared to the baselines.

Overall, PCMF succeeded to significantly decrease the popularity bias of the recommender

system. It also outperformed other debiasing strategies such Multi-Armed Bandits and

Inverse Propensity weighting on several bias metrics. Although our model is not designed

to specifically reduce popularity bias, it manages to keep a low level of bias (in terms of

popularity and diversity) in both datasets.

45

TABLE 3.5

Bias results on Movielens 100K using a random split. We notice that our method manages
to have comparable performance compared to MAB which is a post-processing method

Dataset Movielens - 100K - Regular Setting

Metric Avg Pop ILD MILD Gini

MF 0.26 +/- 0.01 0.6 +/- 0.01 0.33 +/- 0.008 0.18 +/- 0.005

MF + MAB 0.17 +/- 0.002 0.6 +/- 0.015 0.4 +/- 0.02 0.264 +/- 0.007

IPSMF 0.22 +/- 0.011 0.58 +/- 0.008 0.356 +/- 0.012 0.167 +/- 0.004

ItemPop 0.44 0.51 0.25 0.03

PCMF 0.21 +/- 0.002 0.65 +/- 0.007 0.38 +/- 0.004 0.19 +/- 0.006

TABLE 3.6

Bias results on Movielens 1M dataset. We notice that our method manages to outperform
all the baselines in terms of decreasing the average popularity and increasing the diversity
of the recommendations.

Dataset Movielens - 1M - Regular Setting

Metric Avg Pop ILD MILD Gini

MF 0.35 ± 0.002 0.51 ± 0.002 0.34 ± 0.004 0.08 ± 0.002

MF + MAB 0.35 ± 0.005 0.52 ± 0.004 0.378 ± 0.003 0.07 ± 0.002

IPSMF 0.44 0.51 0.25 0.03

ItemPop 0.39 0.47 0.26 0.03

PCMF 0.2 ± 0.004 0.61 ± 0.005 0.4 ± 0.004 0.13 ± 0.006

3.3.3 Performance Evaluation of PCMF on the Skew data Setting

In this section, we want to answer RQ3. The main goal is to test whether our

method can perform well with a heavily biased dataset. Hence, this experiment will mimic

a real world scenario. In fact, in the real world, there is always a distribution shift that

makes the test data differ in distribution from the training data. In our experiment, the

skew test data has more unpopular items than the training data, and hence the popularity

distribution of the test is different from that of the training set. In fact, if the model

manages to generalize on the test data, then this would demonstrate the robustness of our

approach and its generalization ability even for unpopular and new items.

46

RQ3: How does our proposed approach PCMF generalize on test data with

different popularity distribution? Table 3.7 and Table 3.8 list the results that answer

this question. In fact we notice that the Skew setting challenge resulted in a drop in accuracy

for all the other methods. However, our model maintains its superior accuracy compared

to the other baselines. Our method has a 20% better recall and 20% better RMSE with an

increase in the NDCG which shows a superior ranking performance.

TABLE 3.7

Accuracy performance of PCMF compared to different baseline on Movielens-100K using a
skew split setting challenge. We observe that our model has a higher accuracy performance
compared to previous approaches. This indicates that our model is able to learn accurate
embeddings to represent the preference of the user and has a better generalisation ability

Dataset Movielens-100K - Skew Setting Challenge

Metric RMSE Precision @5 Recall@5 NDCG@5

MF 1.19 +/- 0.006 0.27 +/- 0.001 0.5 +/-0.005 0.76 +/- 0.009

IPSMF 0.98 +/- 0.004 0.3 +/- 0.003 0.58 +/- 0.004 0.77 +/- 0.001

ItemPop NA 0.35 0.41 0.71

PCMF 0.95 +/- 0.001 0.3 +/- 0.003 0.59 +/- 0.006 0.78 +/- 0.001

In terms of bias (Table 3.8), we notice that our proposed algorithm, PCMF, out-

performs all other debiasing approaches and has the highest diversity score in terms of

Intra-List Diversity (ILD) and Min-Intra-List-Diversity (MILD). PCMF also has a similar

coverage of popular items compared to IPSMF. These results show that our method learns

an accurate representation of the users even if the distribution of the future data is different

from the one used in training. This is useful to gauge the performance of PCMF in the

challenging realistic scenario of distribution shift and shows higher robustness.

3.3.4 PCMF Learned Embedding

In this section, we investigate RQ4. We mainly want to know what is captured by

the embedding that is learned by our PCMF model.

47

TABLE 3.8

Bias results on Movielens-100K using a skew split setting challenge. We notice that our
method manages to have comparable performance to IPSMF in terms of average popularity
and outperforms other baselines in terms of diversity.

Dataset Movielens-100K Skew Setting Challenge

Metric Avg Pop ILD MILD Gini

MF 0.3 +/- 0.006 0.57 +/- 0.009 0.32 +/- 0.007 0.16 +/- 0.004

MF + MAB 0.3 +/- 0.005 0.57 +/- 0.007 0.32 +/- 0.003 0.16 +/- 0.003

IPSMF 0.2 +/- 0.002 0.58 +/- 0.01 0.36 +/- 0.001 0.17 +/- 0.006

ItemPop 0.46 0.45 0.24 0.04

PCMF 0.2 +/- 0.002 0.65 +/- 0.007 0.4 +/- 0.004 0.23 +/- 0.006

RQ4: What do the relevance and popularity embeddings learn in the latent

space? In figure 3.4, we project all the users into a compressed representation using

TSNE [108] on a two dimensional space. In fact, we see that our model learns two kinds of

information, one that is captured by the popularity embedding and another that is captured

by the relevance embedding. This is in contrast to Matrix Factorization (MF), where all the

embeddings are covering a single dimension. This shows that learning a second embedding

from the popularity information in the data can help capture an additional dimension of

the user preference.

In Figure 3.5, we plot the representation of items on a two dimensional space using

the embeddings that are learned by the popularity component of our model. We also color

code the points so that items with higher popularity scores will have a darker color. We

notice how the embeddings learn the popularity of items by clustering together items with

similar popularity. Basically, this shows that if two items are close to each other in the latent

space, then the items will have similar popularity scores. This again shows the ability of

incorporating the popularity information of the items in the model without explicitly using

it as a feature.

48

Figure 3.4. Representation of user embeddings on a two dimensional space. We notice that
our model learns two different dimensions referring to the preference toward popular items
and the general interest of the user

3.3.5 Ablation Study

In this section, we are interested in answering RQ5 and RQ6. We start by in-

vestigating the usefulness of including a learnable personalized parameter αu compared to

a constant hyperparameter for all users. Then we study the effect of λ as a balancing

parameter for the multitask learning.

RQ5: What is the role of the personalized-parameter αu in predicting relevant

and diverse recommendations? To answer this question, we use a constant α as a

hyperparameter instead of a user personalized learnable vector. This means that all users

will have the same balance between popularity preference and relevance. Table 3.9 shows

the results of both variants of the model. We notice that a personalized αu yields a better

accuracy compared to the non-personalized variation. We also notice that using a constant α

returns better bias which is expected since the lower accuracy means that more exploration is

introduced into the results. Hence, the personalized αu is an additional learnable parameter

that helps learn a personalized preference for popular items for each user.

49

Figure 3.5. Representation of the learned popularity embedding of the items, color-coded to
represent the popularity of the items. We notice that popular items are clustered together,
meaning that our model is able to capture such a property through the embeddings

50

T
A

B
L

E
3.

9

C
om

p
ar

in
g

a
d

iff
er

en
t

va
ri

at
io

n
of

P
C

M
F

u
si

n
g

a
co

n
st

an
t

la
m

b
d

a
as

a
tr

ad
e-

off
p

ar
am

et
er

.
W

e
n

o
ti

ce
th

a
t

u
si

n
g

a
co

n
st

a
n
t

la
m

b
d

a
y
ie

ld
s

b
et

te
r

d
eb

ia
si

n
g

m
et

ri
cs

b
u

t
on

ly
at

th
e

ex
p

en
se

of
a

si
gn

ifi
ca

n
t

d
ro

p
in

ac
cu

ra
cy

.
T

h
is

sh
ow

s
th

a
t

le
a
rn

in
g

a
p

er
so

n
a
li

ze
d

p
op

u
la

ri
ty

p
re

fe
re

n
ce

gi
v
es

m
or

e
re

le
va

n
t

re
su

lt
s.

D
at

as
et

M
ov

ie
le

n
s

-
10

0K

M
et

ri
c

B
ia

s
M

et
ri

cs
A

cc
u
ra

cy
M

et
ri

cs

A
v
g

P
op

IL
D

M
IL

D
G

in
i

R
M

S
E

P
@

5
R

@
5

N
D

C
G

@
5

P
C

M
F

-
C

on
st

an
t

al
p
h
a

0
.1

6
+

/
-

0
.0

2
2

0
.7

4
+

/
-

0
.0

0
9

0
.4

8
+

/
-

0
.0

1
9

0
.2

+
/
-

0
.0

3
4

1
+

/-
0.

01
0.

3
+

/-
0.

01
0.

57
+

/
-

0
.0

1
0
.8

+
/
-

0
.0

0
2

P
C

M
F

0
.2

+
/
-

0
.0

0
4

0.
61

+
/-

0.
00

5
0
.4

+
/
-

0
.0

0
4

0.
13

+
/-

0
.0

06
0
.9

1
+

/
-

0
.0

0
1

0
.3

4
8

+
/
-

0
.0

0
2

0
.6

2
5

+
/
-

0
.0

1
2

0
.8

3
+

/
-

0
.0

0
3

51

RQ6: What is the role of the added conformity embedding and how does the

trade-off parameter λ effect the recommendation performance? In order to study

the effect of the added conformity embedding, we monitored the performance of the PCMF

algorithm while varying the trade-off parameter λ. We vary λ in [0, 1] and we report RMSE,

NDCG, precision, recall, and the average popularity. Figure 3.6 shows the results. Figure 3.6

(a) shows that the RMSE increased when λ increased. Increasing λ means that we attribute

the majority of the predicted ratings to conformity at the expense of relevance. This leads

to deteriorating the rating prediction, as is shown by the decrease in the RMSE. Figure

3.6 (b) shows the effect of varying λ on NDCG. Similar to the RMSE, NDCG decreases

when the recommendation is based on the conformity and not on the relevance. In fact,

when λ increases, the contribution of learning the relevance embedding to the loss function

decreases and the convergence of the algorithm is biased towards optimizing the conformity

embedding loss. We noticed a similar behavior for the Precision and Recall metrics, as

shown in Figure 3.6 (c) and Figure 3.6 (d). We noticed, however, that the decrease in

precision and recall is not as fast as the one we observed with RMSE and NDCG. This

means that for a range of λ, we can decrease the popularity bias without loosing much in

terms of accuracy. Figure 3.6 (e) shows the effect of varying λ on the average popularity.

As expected, the higher λ is, the higher the penalization when recommending popular

items. It means that the weight we attribute to the relevance embedding is low during the

training. As a result, the recommendations are getting closer to random recommendations

which leads to less popularity bias. To conclude, for a range of λ, PCMF is able to reduce

popularity bias without affecting the ranking accuracy. This range varies depending on the

application and the data, and λ needs to be tuned to control the trade-off between accuracy

and bias correction.

52

(a) Effect of λ on the RMSE (b) Effect of λ on the NDCG.

(c) Effect of λ on the Precision. (d) Effect of λ on the Recall.

(e) Effect of λ on the Average Popularity.

Figure 3.6. Effect of varying parameter λ on the different evaluation metrics. We
observe that for λ ∈ [0.1, 0.3], PCMF decreases the average popularity signifi-
cantly without decreasing the precision and the recall of the recommendation.
Recall that the parameter λ controls the trade-off between recommendation
accuracy and bias correction

53

3.4 Summary

In this chapter, we proposed a novel approach to learn a better representation of the

user’s interest while accounting for varying conformity and popularity bias. We performed

an extensive experimental evaluation on several real world datasets in order to assess the

performance of our model in terms of relevance and bias. We concluded that PCMF is

able to learn a better representation of users and items in two latent embedding spaces,

and provides more accurate results while reducing the popularity bias and increasing the

diversity of the recommendations. Finally, we performed an ablation study to assess the

effect of the different components of our model.

54

CHAPTER 4

MULTI-BIAS CORRECTION MATRIX FACTORIZATION

In this chapter, we extend the work presented in Chapter 3 by proposing a new

approach for handling two types of bias simultaneously by combining (1) the IPS debiasing

framework [100] to account for biases in the data collection step and (2) our popularity

correction matrix factorization (PCMF) presented in Chapter 3, to account for the model

popularity bias during the training.

4.1 Motivation and Problem Description

In chapter 3, we presented the PCMF algorithm that tackles popularity bias by

disentangling the user’s conformity bias from the true relevance. We simplified the problem

by assuming that the system suffers only from popularity bias. However, this assumption

does not hold in most real world recommendation systems, since the logged data is also

affected by other biases such as selection bias, exposure bias, presentation bias, etc. Those

biases emerge from the users’ interactions with the recommended items. If an item is not

clicked or rated, this does not necessarily imply that the user did not like it. This is in

part because the user can not rate items that she has not been exposed to. The exposure

of the user is typically controlled by the recommender system’s previous outputs and the

social circle of the user. Presentation bias may change the click behavior of the user as well.

For instance, items that are presented higher in the recommendation list have a higher

probability of being observed/ examined by the user [59] [109], and the user is typically not

exposed to the items ranked low in the recommendation list. Hence, the missing feedback

might be a result of an exposure bias and not a lack of relevance to the user. To conclude,

the feedback received by the system, i.e. ratings in this context, can be distorted by multiple

55

biases.

In this chapter, we focus on mitigating two biases simultaneously, i.e. exposure bias

and popularity bias. In Chapter 3, we corrected for popularity bias by learning separate

embeddings for relevance and conformity using the empirical risk minimization framework

and the Average Over All (AOA) estimator [110]. In order to derive a robust learning

framework given the presence of exposure bias during the data collection step, we adopt

a counterfactual modelling approach using Inverse Propensity Scoring (IPS). It is worth

noting that to the best of our knowledge, our work is the first work that studies the effect of

popularity bias and exposure bias simultaneously in the collaborative filtering recommen-

dation system setting. We also present extensive empirical results to study the importance

of correcting for two biases during the recommendation training phase. The remaining of

the chapter is organized as follows: we start by presenting a counterfactual estimator to

train PCMF while accounting for exposure bias in addition to the popularity bias, then

we present our experimental results using 2 real-world datasets to test the performance

of our algorithm and to test the effectiveness of accounting for two biases, and finally we

summarize the cumulative takeaways from both Chapter 3 and Chapter 4.

4.2 Multi-bias Correction Matrix Factorization

4.2.1 Notation and Problem Statement

In this chapter, we adapt the same notation as chapter 3. We define a recommender

system using explicit feedback data, where U is set of the users and I is the set of items.

R represents the rating matrix where each entry rui represents the rating assigned by user

u to item i. O represents the observation matrix Ou,i ∈ {0, 1} where each entry denotes if

user u has been exposed to item i. Ou,i = 1 means that the user has been exposed to item

i, whereas Ou,i = 0 means that the user has not been exposed to item i. Each entry Ou,i

is a Bernoulli random variable indicating if a user u has been exposed to an item i. For

ease of reading, we include below, the same notation table from Chapter 3, with the added

newly defined variables we will need for this chapter (see table 4.1).

56

Notation Definition

U Set of users

I Set of items to be recommended

O Binary Observation matrix indicating if user u observed item i

R Rating matrix where ru,i is rating of user u to item i

R̂ Predicted rating matrix

Pop
Popularity matrix where popu,i is the popularity of an item i

clicked by user u

P̂ op Predicted popularity matrix

S User conformity embedding

V Item popularity embedding

P User embedding

Q Item embedding

P (Oui = 1) Propensity of the user u and item i

αu, βu Personalized bias parameter vectors

γ L2-Regularization weights

λ
Hyperparameter controlling the personalized linear combination between

relevance and conformity

η Learning rate

δu,i(., .) Recommender system performance evaluation measure

ξ Parameter control for the severity of position bias

Iu Recommended list to user u

TABLE 4.1

Notation and Definitions - Chapter 4

In the explicit feedback setting, one goal is to predict an accurate rating matrix R̂.

In chapter 3, we used empirical risk minimization framework to train our model. In order

to estimate the predicted ratings, we used the Average Overall All (AOA) estimator. We

start by presenting the loss function for PCMF in Equation 4.16.

LAOAclicks(R̂, P̂ op) =
1

|{(u, i) : Ou,i = 1}|
∑

(u,i):Ou,i=1

[ru,i − r̂u,i]2 + λ[popu,i − p̂opu,i]2

r̂u,i = βupu.q
T
i + αusu.v

T
i

p̂opu,i = su.v
T
i

(4.1)

57

Where R is the true rating matrix with entry ru,i, R̂ is the predicted rating matrix with

entry r̂u,i which is the linear combination between the relevance and the conformity scores.

Pop is the popularity matrix with popu,i representing the popularity score of item i clicked

by user u, P̂ op represent the predicted popularity matrix with entry p̂opu,i. The relevance

score is the dot product between the user u embedding vector pu and the item i embedding

vector qi. The conformity score is the dot product between the user u conformity embedding

vector su and the item i popularity vector vi. αu, βu are personalized trade-off parameter

controlling the relative contribution of the relevance component pu.q
T
i and the popularity

component su.v
T
i for each user. We define δu,i(., .) as the Mean Square Error (MSE) as

shown in Equation 4.2.

δu,i(R, R̂) = (ru,i − r̂u,i)2

δu,i(Pop, P̂ op) = (popu,i − p̂opu,i)2
(4.2)

The AOA estimator used to learn PCMF can be written as Equation 4.3:

LAOAclicks(R̂, P̂ op) =
1

|{(u, i) : Ou,i = 1}|
∑

(u,i):Ou,i=1

δu,i(R, R̂) + λδu,i(Pop, P̂ op) (4.3)

The AOA estimator uses the average over only the collected (or observed) ratings.

In fact, in real world applications, recommender systems operate in a partial-information

environment where only a few ratings are available for each user. In an ideal setting, the

ratings are estimated assuming that we have full-knowledge information about the system.

Equation 4.4 formalizes the PCMF loss function for the rating prediction task in the ideal

setting [100].

Lidealclicks(R̂, P̂ op) =
1

|U | |I|
∑
u∈U

∑
i∈I

δu,i(R, R̂) + λδu,i(Pop, P̂ op) (4.4)

This requires collecting the users’ ratings for all the items in the system. The scenario is not

feasible in real life applications with millions or even billions of items, which leads to using

the observed ratings (AOA estimator) to predict the missing ratings. The AOA estimator is

statistically unbiased under the condition that the data is Missing Completely At Random

58

(MCAR). In other words, the collected ratings are a result of the user’s interactions with

recommendation lists including items chosen randomly.

Proposition 4.2.1. Assuming the data rui is missing Completely At Random, the AOA

estimator LAOAclicks is an unbiased estimator of the ideal loss Lidealclicks

Proof. In order to prove that an estimator is unbiased, we need to show that E(LAOAclicks) =

Lidealclicks Before starting the proof, we should note that the AOA loss could also be written as

LAOAclicks(R̂, P̂ op) =
∑
u∈U

∑
i∈I

Ou,i(δu,i(R, R̂) + λδu,i(Pop, P̂ op)) (4.5)

E(LAOAclicks) =
∑
u∈U

∑
i∈I

E(Ou,i)(δu,i(R, R̂) + λδu,i(Pop, P̂ op)) (4.6)

and since Oui is a Bernoulli variable, E(Oui) = P (Oui = 1). Thus, we have

E(LAOAclicks) =
∑
u∈U

∑
i∈I

P (Oui = 1)(δu,i(R, R̂) + λδu,i(Pop, P̂ op)) (4.7)

If the data rui is MCAR, then this means that for all u and i, P (Oui = 1) = 1
|U ||I|

Therefore:

E(LAOAclicks) =
1

|U | |I|
∑
u∈U

∑
i∈I

(δu,i(R, R̂) + λδu,i(Pop, P̂ op)) (4.8)

However, the MCAR assumption does not hold in the recommendation system set-

ting. In this context, it means the users’ missing ratings are missing at random, which is not

true. For instance, a rating can be missing due to multiple reasons: The user may not have

been exposed to the item, neither through the recommendation system, nor through their

social circle, marketing campaigns, etc. In this case, the item may not have been observed

by the user and thus can not be rated. This means that the missing data is Missing Not

At Random (MNAR), which leads to poor generalisation ability and misleading judgments

of the recommendation results based on the offline evaluation metrics. The misjudgment

error is due to multiple biases affecting the data, such as exposure bias where users can not

rate items that they have not been exposed to, or popularity bias where popular items get

59

recommended more often than long tail items or are pushed higher in the recommendation

list. Under the presence of the latter biases, the AOA estimator LAOAclicks(R̂, P̂ op) becomes a

biased estimate of the true performance Lidealclicks(R̂, P̂ op), meaning that [111]:

EO(LAOAclicks(R̂, P̂ op)) 6= Lidealclicks(R̂, P̂ op) (4.9)

Our goal is to tackle the challenge of accounting for several biases simultaneously. As

a start, we will explore considering two sources of biases: popularity bias and exposure bias.

Chapter 3 described our Popularity bias-aware Correction Matrix Factorization method

(PCMF) under the assumption that the data is only affected by popularity bias. In this

chapter, we relax the latter assumption by also considering the existence of exposure bias.

We will use the inverse propensity estimator to train PCMF in order to mitigate both

exposure and popularity bias.

4.2.2 Multi-bias Correction Matrix Factorization Estimator

The AOA estimator, using the observed data, will lead to a biased estimation of

the PCMF performance. We assume that each item has a non-zero marginal probability

P (Ou,i = 1) of being observed. This probability is called propensity [100]. Using a coun-

terfactual modeling framework, the goal is to get an unbiased estimate of δu,i(R, R̂) and

δu,i(Pop, P̂ op) via an Inverse Propensity scoring (IPS estimator). In order to mitigate the

effect of exposure bias in the training phase, we use the Inverse Propensity Weighting (IPW)

framework [100] by weighting each rated item by its propensity of being observed.

LIPSclicks(R̂, P̂ op) =
1

|U ||I|
∑

(u,i):Ou,i=1

1

P (Ou,i = 1)
.(δu,i(R, R̂) + λδu,i(Pop, P̂ op)) (4.10)

Theorem 4.2.2. The IPS-PCMF loss defined by:

LIPSclicks(R̂, P̂ op) =
1

|U ||I|
∑

(u,i):Ou,i=1

(δu,i(R, R̂) + λδu,i(Pop, P̂ op))

P (Ou,i = 1)
(4.11)

is an unbiased estimator of the ideal loss Lidealclicks

Proof.

EOi [L
IPS
clicks(R̂, P̂ op)] =

1

|U | |I|
EOi [

∑
(u,i):Ou,i=1

δu,i(R, R̂) + λδu,i(Pop, P̂ op)

P (Ou,i = 1)
]

60

By linearity of expectation:

=
1

|U | |I|
∑

(u,i):Ou,i=1

EOi [
δu,i(R, R̂) + λδu,i(Pop, P̂ op)

P (Ou,i = 1)
]

=
1

|U | |I|
∑
u

∑
i

EOi [
δu,i(R, R̂) + λδu,i(Pop, P̂ op)

P (Ou,i = 1)
.Ou,i]

=
1

|U | |I|
∑
u

∑
i

EOi [Ou,i].
δu,i(R, R̂) + λδu,i(Pop, P̂ op)

P (Ou,i = 1)

=
1

|U | |I|
∑
u

∑
i

P (Ou,i = 1).
δu,i(R, R̂) + λδu,i(Pop, P̂ op)

P (Ou,i = 1)

=
1

|U | |I|
∑
u

∑
i

δu,i(R, R̂) + λδu,i(Pop, P̂ op)

EO[LIPSclicks] = Lideal(R̂, P̂ op)

Line 4 results from the fact that Ou,i is a Bernoulli random variable, thus E[Ou,i] =

P (Ou,i = 1). Line 5 is due to the fact that P (Ou,i = 1) > 0, as all items have a non zero

probability of being observed.

4.2.3 Propensity Score Estimation

In order to correctly estimate the effect of the exposure bias, the propensity scores

need to be calculated. As it is impossible to know exactly the exposure model of the

user, we use models that approximate this exposure based on different assumptions. One

popular [112] way to model the propensity score is using the popularity model where:

P (Ou,i = 1) =

∑
u∈U 1Ou,i>0

|U |
(4.12)

This model assumes that the exposure is directly correlated to the popularity of

the item. Although this is a valid assumption (the more popular the item, the higher its

exposure across all users), it neglects other sources of exposure such as location, the user’s

social circle, marketing campaigns, etc.

Another way to calculate the probability of exposure is using the position or rank

of the items when shown in a recommendation list. This requires the position information

61

to be available in the data. One proposed model to estimate the exposure from the rank of

the observed item is [113]:

P (Ou,i = 1|rank(i, Iu)) =

(
1

rank(i, Iu)

)ξ
(4.13)

Where Iu is the recommended item list for user u and ξ is a parameter to control for the

severity of the position bias: The higher ξ, the higher the position bias. Assuming that the

probability of an item being observed depends only on the position bias, the rank based

propensity will account for the position bias in the data. The main drawback of the above

modeling approach is that it requires rank information which is usually hard to collect and

is not available in most public datasets.

Another way to estimate the propensity score is by using Poisson factorization [114].

In fact the exposure of each user differs for each individual and usually depends on many

factors such as the social circle, user history and previously interacted items. More involved

models can be used in order to estimate the propensity score. One model that was shown

to have great potential [112] at modeling the exposure is Poisson Factorization [115–117]:

P (Ou,i = 1) ∼ Poisson(θTu φi) (4.14)

Where θu and φi are representations of users and items in a latent space verifying the below

equation:

θu, φi ∼ Γ(k, θ) (4.15)

where k and θ are parameters of the Poisson distribution. In our experiments we use Poisson

Factorization as our model for the propensity scoring function for both IPS and IPS-PCMF.

4.2.4 Update equations and algorithm

We now show the derivations that are needed to obtain the update equations for

an algorithm that will learn the optimal parameters for dual (popularity and exposure)

bias-aware recommendation. We use the following combined MSE loss in order to train our

model.

62

LAOAclicks(R̂, P̂ op) =
1

|U ||I|
∑

(u,i):Ou,i=1

1

P (Oui = 1)
.[(ru,i − (βupu.q

T
i + αusu.v

T
i))2+

λ(popu,i − su.vTi)2 + γ(‖pu‖2 + ‖qi‖2 + ‖su‖2 + ‖vi‖2)]

(4.16)

The update equations are similar to the PCMF model except for adding the IPS

weight 1
P (Oui=1) . Denoting ν as the learning parameter, the latent factor vectors for the

user and item relevance and popularity embeddings, as well as the user personalization

coefficients for relevance and popularity conformity bias βu and αu, respectively, are given

by

p(t+1)
u ← p(t)u −

η

P (Oui = 1)
[−2β(t)u (q

(t)
i)T (ru,i − r̂(t)u,i) + 2γ

∥∥∥p(t)u ∥∥∥] (4.17)

q
(t+1)
i ← q

(t)
i −

η

P (Oui = 1)
[−2β(t)u p(t)u (ru,i − r̂(t)u,i) + 2γ

∥∥∥q(t)i ∥∥∥] (4.18)

s(t+1)
u ← s(t)u −

η

P (Oui = 1)
[−2λ(v

(t)
i)T (popu,i − p̂op(t)u,i)− 2α(t)

u (v
(t)
i)T (ru,i − r̂(t)u,i) + 2γ

∥∥∥s(t)u ∥∥∥]

(4.19)

v
(t+1)
i ← v

(t)
i −

η

P (Oui = 1)
[−2λs

(t)
i (popu,i− p̂op(t)u,i)−2α(t)

u s
(t)
i (ru,i− r̂(t)u,i)+2γ

∥∥∥v(t)i ∥∥∥] (4.20)

α(t+1)
u ← α(t)

u −
η

P (Oui = 1)
[−2s

(t)
i (v

(t)
i)T (ru,i − r̂(t)u,i)] (4.21)

β(t+1)
u ← β(t)u −

η

P (Oui = 1)
[−2p

(t)
i (q

(t)
u,i)

T (ru,i − r̂(t)u,i)] (4.22)

IPS-PCMF is a two-stage approach. First, we train the exposure model on the

observation matrix O to compute the propensity scores P (Ou,i = 1). Then, we use the

learnt propensity scores to train our PCMF model. Algorithm 4.1 describes the steps of the

IPS-PCMF approach.

4.3 Experimental Results

In this section we present our evaluation experiments which aim to answer the fol-

lowing research questions:

• RQ 5.1: How effective is IPS-PCMF at removing the exposure bias in the data on

an initially unbiased test dataset, compared to other baselines?

63

Algorithm 4.1 Dual Popularity and Exposure Bias Correction MF

Input: Rating matrix R : {ru,i : (u, i) ∈ O}, Popularity matrix Pop : {pu,i : (u, i) ∈ O},
Regularization parameter γ, Trade-off parameter λ, Observation matrix O

Output: User Conformity latent factors S1:U , V1:I , User relevance latent factors P1:U , Q1:I ,
Personalized bias vector αu, βu
Learn propensity scores Pu,i from observation matrix O using Equation 4.14
Randomly initialize S1:U , V1:I , P1:U , Q1:I , αu, βu
while not converged do

for u← 1 : U do
Update S1:U , P1:U using Eq 4.19 & Eq 4.17
Update α1:U , β1:U using Eq 4.21 & Eq 4.22

end for
for i← 1 : I do

Update V1:I , Q1:I using Eq 4.20 & Eq 4.18
end for

end while
return S1:U , P1:U , V1:I , Q1:I

• RQ 5.2: How do the relevance of the IPS-PCMF recommendations compare to other

baselines on a biased dataset?

• RQ 5.3: How does the debiasing performance of IPS-PCMF compare to other base-

lines?

• RQ 5.4: How effective is the IPS scoring at improving the results of IPS-PCMF?

4.3.1 Experimental Setting

4.3.1.1 Dataset:

In order to evaluate the performance of our models we used two real world datasets,

namely the Movielens-100K and Yahoo!R3 Music dataset.

• Movielens-100K 1: This dataset contains around 1700 items and 1000 users with

100K collected ratings. It has a density of 4%.

• Yahoo!R3 2: This dataset has 300K ratings as training data and 54K ratings as test

data. The main characteristic of this dataset is that it contains an ”unbiased” test-set.

1https://grouplens.org/datasets/movielens/100k/
2http://webscope.sandbox.yahoo.com/

64

The 54K-ratings test set is collected by showing to the users random recommendations

and asking the user to provide feedback. Therefore, the data is free from exposure

bias. We use the unbiased dataset to be able to evaluate an unbiased performance of

our model

4.3.1.2 Baselines:

We compare our method mainly to Inverse Propensity Scoring (IPS) [18] combined

with MF. As MF is still a leading model providing state of the art results on Collaborative

Filtering tasks [57]. Combined with IPS, IPS-MF is a state of the art method to learn

unbiased recommendations [100]. We also compare our method to a Multi-Armed Bandits

strategy in order to assess the exploration ability of our model [104].

4.3.1.3 Experimental set-up

In this section, we discuss the implementation details of the proposed approach. We

use Poisson Factorization in order to estimate the propensity score as defined by equation

4.14. The PCMF component used is similar to the model introduced in the previous chapter.

We tune our models using Optuna [105] on a separate validation set. We adopt a 80-10-10

split on the Movielens-100K data and 80-20 split on the Yahoo!R3 dataset, while using

the unbiased Yahoo!R3 dataset for testing. All the models were implemented using the

Pytorch framework [118] and executed on a Tesla V100 cluster. We report accuracy and

bias metrics.

4.3.1.4 Metrics

The aim of IPS-PCMF is to provide relevant, unbiased and diverse recommendations

by using an intentional mitigation of both exposure and popularity bias. For this reason, we

use accuracy metrics such as RMSE for rating prediction, NDCG for Ranking, and Precision

and Recall to measure the accuracy of retrieval. We also use the Yahoo!R3 unbiased test

data in order to assess the unbiaseness of the result. An unbiased prediction would yield a

65

better RMSE on a randomly collected test data.

In order to assess the diversity of the predictions, we use the same metrics defined

in Chapter 3. Hence, we mainly focus on how our proposed methods affect (1) the popu-

larity level of the results through the average popularity metric and (2) the diversity of the

recommendations through the ILD and MILD metrics.

4.3.2 Experimental results

RQ 5.1: How effective is IPS-PCMF at removing the exposure bias in the

data on an initially unbiased test dataset, compared to other baselines? Table

4.2 shows the accuracy metrics of our model compared to different baselines. We notice

that our model outperforms previous baselines in terms of RMSE and Precision. This

result is expected since we use an unbiased estimator of the MSE in order to optimize

the performance of the model. One future possibility that can also improve the ranking

performance of the model is to use a ranking based loss such as BPR [119].

TABLE 4.2

Accuracy Performance of PCMF-IPS on the Yahoo!R3 unbiased test Dataset. Our model
succeeds to significantly improve the RMSE compared to IPS+MF.

Dataset Yahoo! R3 Dataset

Metric RMSE Precision @5 Recall@5 NDCG@5

MF 1.41 +/- 0.00015 0.02 +/- 0.0006 0.56 +/- 0.011 0.46 +/- 0.019

MF+MAB 1.41 +/- 0.002 0.02 +/- 0.002 0.54 +/- 0.05 0.47 +/- 0.048

IPS+MF 1.37 +/- 0.007 0.034 +/- 7e-05 0.71 +/- 0.002 0.5 +/- 0.007

PCMF 1.209 +/- 0.005 0.025 +/- 0.0001 0.49 +/- 0.002 0.49 +/- 0.002

PCMF+IPS 1.2 +/- 0.005 0.035 +/- 0.0001 0.5 +/- 0.002 0.5 +/- 0.01

We observe that our model manages to maintain a lower error compared to IPS+MF.

This means that the popularity component in our model does indeed help improve the

learning performance, while also keeping the results unbiased. Therefore we conclude that

our model is effective at learning accurate and unbiased recommendations, and that it

accomplishes this significantly better than the compared baselines, which answers RQ 5.1.

66

RQ 5.2: How do the relevance of the IPS-PCMF recommendations compare to

other baselines on a biased dataset? Table 4.3 shows the accuracy performance of our

model on the Movielens-100K dataset. In this experiment, we manage to outperform the

competitive baselines on most metrics, which demonstrates that our model is able to provide

more accurate predictions than the compared baselines, when tested on biased datasets.

TABLE 4.3

Accuracy performance of PCMF + IPS compared to different baselines on Movielens-100K.
We observe that our model has lower RMSE than the other baselines, including the state of
the art IPS+MF, while reaching similar levels of precision, recall and NDCG as IPS+MF

Dataset Movielens - 100K -

Metric RMSE Precision @5 Recall@5 NDCG@5

MF 0.94 +/- 0.002 0.22 +/- 0.004 0.6 +/-0.013 0.81 +/1 0.002

MF+MAB 0.932 +/- 0.012 0.21 +/- 0.003 0.56 +/- 0.013 0.79 +/- 0.002

IPS+MF 0.95 +/- 0.008 0.33 +/- 0.003 0.63 +/- 0.014 0.83 +/- 0.004

PCMF 0.91 +/- 0.001 0.34 +/- 0.002 0.625 +/- 0.012 0.83+/- 0.003

PCMF + IPS 0.90 +/- 0.007 0.34 +/- 0.009 0.62 +/- 0.01 0.83 +/- 0.003

We particularly observe that our model significantly improves the RMSE perfor-

mance (while other metrics remained at similar levels to the state of the art baseline

IPS+MF). This is is due, as we have previously explained, to using an accurate and unbi-

ased estimation of the Mean Squared Error function, when training the model. Also, we

can conclude that correcting for two biases simultaneously (PCMF+IPS) further improves

the RMSE compared to correcting for only popularity bias (PCMF).

RQ 5.3: How does the debiasing performance of IPS-PCMF compare to other

baselines? Table 4.4 and Table 4.5 show the results in terms of bias metrics of our

model compared to other baselines. We notice that PCMF+IPS significantly improves the

diversity of the recommendations on the Yahoo!R3 dataset. In fact, it improves the Average

popularity by 30 % compared to IPS+MF and improves the ILD metric by 17 % and the

MILD metric by 10 %, compared to IPS+MF and improves MILD by 16 % compared to

MF and Multi-Armed Bandits.

67

We also notice that on the biased dataset, our model manages to maintain a good

level of diversity. In fact, it improves the ILD metric by 8 % compared to IPS+MF, MF

and MAB, while keeping a comparable Average Popularity metric compared to MF.

We conclude that our model manages to generate diverse recommendations, while

also achieving a high coverage by recommending items from the long tail.

TABLE 4.4

Bias Performance of our IPS-PCMF on Movielens-100K. Our model manages to maintain
the same popularity results provided by PCMF while increasing the diversity of the recom-
mendation list

Dataset Movielens - 100K

Metric Avg Pop ILD MILD Gini

MF 0.26 +/- 0.01 0.6 +/- 0.01 0.33 +/- 0.008 0.18 +/- 0.005

MF + MAB 0.17 +/- 0.002 0.6 +/- 0.015 0.4 +/- 0.02 0.264 +/- 0.007

IPSMF 0.2 +/- 0.011 0.6 +/- 0.02 0.39 +/- 0.016 0.2 +/- 0.022

PCMF 0.21 +/- 0.002 0.65 +/- 0.007 0.38 +/- 0.004 0.19 +/- 0.006

PCMF + IPS 0.2 +/- 0.003 0.65 +/- 0.01 0.4 +/- 0.002 0.19 +/- 0.005

TABLE 4.5

Bias Performance on the Yahoo!R3 dataset. Our model outperforms all the baselines in
terms of decreasing the popularity and providing diverse recommendations to the user.

Dataset Yahoo!R3 Dataset

Metric Avg Pop ILD MILD Gini

MF 0.2 +/- 0.0013 0.76 +/- 0.001 0.57 +/- 0.006 0.21 +/- 0.003

MF + MAB 0.19 +/- 0.013 0.77 +/- 0.02 0.58 +/- 0.013 0.23 +/- 0.033

IPSMF 0.23 +/- 0.001 0.72 +/- 0.0008 0.62 +/- 0.001 0.133 +/- 0.002

PCMF 0.156 +/- 0.004 0.797 +/- 0.009 0.64 +/- 0.001 0.21 +/- 0.005

PCMF + IPS 0.14 +/- 0.003 0.82 +/- 0.006 0. 68 +/- 0.01 0.23 +/- 0.004

RQ 5.4: How effective is the IPS scoring at improving the results of IPS-PCMF?

In our previous results, we compared IPS-PCMF to the vanilla (single bias) version PCMF,

presented in Chapter 3. We now evaluate their performance in terms of relevance and

68

diversity on both the Yahoo!R3 and Movielens-100K datasets.

• Performance on the Movielens 100K dataset: IPS-PCMF improves upon the perfor-

mance of PCMF in terms of RMSE, meaning that we manage to get better rating

prediction accuracy. We also improve the diversity of the results and the popularity

level by recommending more unpopular and diverse items. This shows that adding

the IPS debiasing weights helps improving the quality of the recommendations.

• Performance on the Yahoo!R3 dataset: The effect of the debiasing strategy on PCMF

is even more noticeable on this dataset since the IPS component helps in reducing the

bias in the estimation of the performance via the debiased loss function and therefore

yields a better performance on the test set. IPS-PCMF improves the accuracy of

the results across all metrics (RMSE, Precision, Recall and NDCG). It also succeeds

in providing significantly less biased recommendations by improving the popularity

bias by 10% and providing more diverse recommendation by scoring 0.82 on the ILD

metric and 0.68 on the MILD metric vs. 0.79 and 0.64 for the PCMF respectively.

Based on our results, we conclude that adding IPS to PCMF helps reduce the exposure bias

further as demonstrated by the improved results in terms of both accuracy and diversity.

4.3.3 Future directions

Our multi objective framework combined with IPS training provides an appealing

way to combine multiple biases, an area that until now, has been understudied in the

literature. In fact, tackling multiple biases at the same time is important to reduce their

combined effect. As biases do not act individually and are often inter-related, it is important

to study their joint effect on different modeling approaches. In the future, further debiasing

techniques could be added to study their effect on the recommendation system. One way to

achieve this is to study post-processing techniques such as by using Multi-Armed Bandits

in combination with our recommendation algorithm. Another area of expansion would be

to study the iterative behavior of our algorithm. In fact, recommender systems work in a

69

dynamic environment and this dynamic aspect should be incorporated into the modeling of

different debiasing approaches.

4.4 Summary

In this chapter, we proposed a multi-bias framework that helps reduce the popu-

larity and exposure bias simultaneously through incorporating the IPS training framework

within the PCMF modeling. We provided a problem statement and motivation behind our

approach by studying the limitations of previous models, then we described our modeling

approach and provided a theoretical analysis of our method. Finally we presented an ex-

tensive empirical evaluation on different datasets to test the performance of our algorithm

in terms of accuracy and bias, in comparison with competitive baselines.

70

CHAPTER 5

BRIDGE FUNCTION FOR BIAS CORRECTION

In this chapter, we present a new approach to adjust for confounders in recommen-

dation systems. In order to do this, we reframe the recommendation system within a causal

framework and then propose to use a proximal causal inference framework [22] to adjust

for confounders. Confounders are variables that may affect the predicted ratings leading

to biased estimates that can be misleading. This may mislead the prediction of the user

preference, and in turn yield a weaker recommendation performance.

5.1 Motivation and Problem Description

The goal of recommendation systems is to provide the users with useful recommen-

dations. Given the users past interactions with the system (i.e. ratings or clicks), the

recommendation algorithm learns the users’ preferences and interests and provide the users

with a potential list of items they will like. The recommendation algorithm learns to predict

the users’ ratings for items that they did not previously rate. Then based on these predic-

tions, the user is provided with a list of items they are predicted to rate highly, according

to the recommendation algorithm predictions. In this section, we will reframe the recom-

mendation system problem as a causal inference problem, where the rating predictions will

be considered to be causal predictions. We focus on Matrix Factorization, however our

approach is applicable to any base recommendation model.

In a traditional setting, Matrix Factorization (MF) [57] is trained on the observed

ratings. The recommendations provided by MF would be unbiased only if the training data

was independent and identically distributed (iid) [100]. This would imply that the ratings

would have been collected randomly, which is, however, not the case in a recommendation

71

system setting. In fact, users generally do not rate movies that they did not watch. This

means that the ratings are not collected randomly, they are selected by the recommenda-

tion algorithm and self-selected by the user. In other words, MF’s estimates using observed

data are biased. In addition to the bias from missing ratings, even the non-missing rat-

ings themselves may incorporate a variety of inherent user biases, such as conformity bias,

presentation bias, or preference for popular items, etc. All these diverse types of bias may

interact together and affect both the input ratings and the output recommendations (and

hence the user’s exposure to certain items).

Framing the recommendation problem as a causal inference problem will give us the

opportunity to study the recommender system’s behavior in a cause-effect setting. Modeling

the recommendations with respect to the causes could in turn provide a more robust system.

The recommendation (analogous to treatments in a medical study) can be seen as treatments

and a rating can be considered to be an outcome variable. Hence predicting the users’ ratings

for unseen movies is equivalent to answering the following “counterfactual” causal question:

“What would the rating be if the user was in a setting where they were asked to watch

and then rate the movie?”

Because the “observed” ratings are not collected randomly, it is challenging to answer

the above causal question since using only the observed data is biased. In order to have an

unbiased estimate of the treatment effect (which would also require the ratings for unseen

movies), one must account for all possible confounders [120]. This assumption is known as

the ignorability or exchangeability assumption [120], which is impossible to verify in real

life. Confounders are variables that may affect both the movies recommended to the user

(the treatment) and the user’s ratings (the outcome). Specifying the possible confounders

is subjective and is often left to domain-expert judgments [22]. For example, a user may

choose to watch a movie because she is a fan of the leading actor; in this case the preference

for the leading actor is a confounder. The challenge is the fact that not all counfounders

can be measured or observed. For instance, the user’s tendency to be influenced by public

ratings, may affect their rating of a given movie. Social influence may also affect the user’s

72

rating. The intensity of the conformity bias is yet another example of an immeasurable

confounder. This is why in practice, one may hope to find proxies that are a good reflection

of the unmeasured confounder.

In order to overcome the above challenges, we adopt a proximal causal inference

framework [22] to deal with the presence of unobserved confounders. This framework ac-

knowledges the fact that the observed covariates are imperfect proxies for the underlying

confounder mechanisms, and presents an approach to measure the potential outcome in

settings where the exchangeability assumption does not hold. Our proximal causal rec-

ommender system builds on classical matrix factorization (MF) and aims to correct for

unobserved confounders. The approach leverages two negative control variables [121] to ad-

just for unobserved confounders. One negative control outcome variable, which is a variable

that is causally independent of the exposure variable responsible for exposing the user to

an item via a prior recommendation and affects only the ratings (outcome variable). The

second is a negative control exposure variable, a variable that affects only the exposure, but

is causally independent of the outcome (ratings). If there exists a confounding bridge func-

tion [121] that captures the link between the ratings (potential outcome) and the negative

outcome control distribution, then the bridge function can be identified using the negative

control exposure variable (i.e., when the user does not get exposed to the item through a

recommendation). The bridge function is a given transformation of the observed variable

and can be considered as a mediator that capture the unmeasured confounders’ effect on the

observed data. The expected value of the learnt bridge function can therefore provide rat-

ings that are adjusted for unobserved confounders. This step can be seen as a preprocessing

step, where the bridge function is used to reconstruct the observed rating while accounting

for unobserved confounders. These adjusted ratings can then be used to predict potential

ratings.

The proximal causal recommender aims to correct for the potential unobserved con-

founders. Our approach is a two-stage approach. First, we learn the bridge function to

adjust for unobserved confounders using a pair of negative control variables that we will

73

define in the upcoming sections. Second, we fit a MF model on the adjusted ratings that

are predicted by the bridge function learnt in the first stage. This procedure is expected to

correct for the bias in the predicted ratings with respect to unobserved confounders.

5.2 Bridge Function for Bias Correction

In this section, we present the components of our proposed approach. We start by the

notation used and the problem formulation. Then, we provide causal graph interpretations

of existing approaches as well as our proposed approach for comparison purposes and to

distinguish our contribution from existing work. Next, we state the assumptions that need

to be met to guarantee the identification of the causal effects. Finally, we present our design

choices and the proposed loss functions for the learning task.

5.2.1 Notation and Definition

Let A be a binary exposure variable, indicating whether user u has received the

“treatment” (which is to be exposed to the item via a previous recommendation and prior

to rating it). The exposure variable A controls which items will be recommended to the

users. Let U and I denote the set of users and the set of items, respectively. The exposure

variable A is a binary matrix where au,i = 1 if the user u has rated item i and au,i = 0

otherwise. Let Y be the outcome variable representing the ratings. Following the convention

in causal inference, let yu,i(1) denote the potential rating assigned by user u to item i, if she

were to watch the movie. yu,i(1) represents the potential outcome under an intervention or

treatment, meaning the rating that user u will give to item i, if she was asked to watch it

and then rate it. yu,i(1) is observed if user u rated item i, otherwise it is unobserved. For

the recommendation system problem, the unobserved ratings are yu,i(0) = 0, since users

can not rate movies that they have not seen. Table 5.1 summarises the notation used in

this chapter.

74

(a) Causal Graph for Classic MF (b) Causal Graph for IPS MF in the presence of ob-
served confounders X

(c) Causal Graph in the presence of Observed con-
founders (X) and Unobserved Confounders (V)

Figure 5.1. Causal graphs of different Recommendation systems, where X de-
notes user and item features, A stands for the exposure variable, Y denotes the
potential rating, and V denotes an unobserved confounder

75

Notation Definition

U Set of users

I Set of items to be recommended

A Binary Exposure variable indicating if user u observed item i

Y Rating matrix where yu,i(a = 1) is the rating of user u to item i

Ŷ Predicted rating matrix

X User and item covariates

W Negative Control Outcome variable (NCO)

Z Negative Control Exposure variable (NCE)

h Outcome Confounding Bridge

γu,i(., .) Recommender system performance evaluation measure

⊥⊥ independent of

y(aui = 1) treatment effect (Rating) under a positive exposure aui = 1

y(aui = 0) treatment effect (Rating) under a negative exposure aui = 0

TABLE 5.1

Notation and Definitions used in Chapter 5

5.2.2 Causal Graph Interpretation of Recommendation System

In this section, we introduce a causal view of classic recommendation approaches and

compare it to our proposed approach. A causal graph is a directed acyclic graph G where

the nodes represent the set variables and the edges represent the Cause-effect relationship

between the variables. Figure 1(a) represents the causal graph, without loss of generality, of

the majority of collaborative filtering recommendation approaches, including matrix factor-

ization (MF). The variable A represents the exposure variable indicating whether the user

has been exposed to a movie or not (analogous to whether a patient has received a treatment

or not in a medical study). The algorithms rely on user and item features, denoted as X, to

predict the user’s ratings for unseen items assuming the existence of no confounder between

the exposure variable and the ratings. Matrix Factorization (MF), for instance, follows the

causal graph in figure 1(a). MF learns the similarity between users and items using the

dot product between the user and item features X (user and item embeddings). Given the

theory around potential outcomes, the rating estimates are unbiased assuming ignorability

76

/ exchangeability stating that (y(au,i = 1), y(au,i = 0)) ⊥⊥ A [120]. This means that the

user ratings would be the same independently of being exposed to all the items or none of

them. This, of course, does not hold in the real world recommendation setting since the

user’s ratings are not independent of the user being exposed to the items. For instance, the

users generally do not rate movies they have not been exposed to and the recommendation

process is rather personalized and not random.

Given the fact that user and item features X affect the exposure variable A, the

process by which the user receives recommendations, we present a more realistic causal

graph in Figure 1(b). The causal graph shown in figure 1(b) depicts how recommendation

systems operate in an observational setting, where observed confounders X, representing

user and item features affect both the ratings and the exposure. Theory around potential

outcomes states that, an unbiased estimate of the ratings is possible when controlling for

all variables (covariates) that can affect both the treatment and the outcome [122] [123].

This is known as the conditional ignorability assumption [122] [123], stating that (y(au,i =

1), y(au,i = 0)) ⊥⊥ A|X. Note that the conditional ignorability assumption is untestable.

Suppose, we collect all user and item counfounders satisfying the conditional ignorability

assumption, classical causal inference controls for the confounders in the outcome model.

In real world applications, given the curse of dimensionaly, it may be challenging to control

for all confounders. Research [124] [125] has shown that it is sufficient to control for the

propensity of an item being observed given the observed confounders X, such that P (au,i =

1|X).

Assumption 5.2.1. (y(au,i = 1), y(au,i = 0)) ⊥⊥ A|P (A = 1|X).

This has led to the Inverse Propensity Weighed Matrix Factorization [100]. Inverse

propensity training has gained popularity in recent years in the recommendation system

community, where it has been used to correct for the bias in the training phase. The

estimator follows Equation 5.1.

LIPS(Ŷ |P) =
1

|{(u, i) : au,i = 1}|
∑

(u,i):au,i=1

γu,i(Y, Ŷ)

P (au,i = 1|X)
(5.1)

77

Where γu,i(., .) denotes a recommender system performance evaluation measure. The esti-

mator in Equation 5.1 can be shown to be statistically unbiased. The inverse propensity

weighed Matrix Factorization performance depends on the propensity scores’ estimation,

since the propensity scores are unknown and need to be estimated from the observed data.

Estimating propensity solely relies on the collection of rich observed covarites that

capture all sources of confounding, so that the conditional ignorability holds. The chal-

lenge is the presence of potential unmeasured confounding variables (V), as shown is Figure

1(c). In this case, the ignorability assumption fails, and the inverse propensity weighting

correction method may become severely biased and potentially misleading [22]. In rec-

ommendation systems, such unobserved unmeasured confounders exist. For instance, the

user’s conformity level while rating the movies may impact the outcome and may impact

the exposure as well. The user’s conformity in this case is an unobserved confounder that

is difficult to quantify. In this work, we will adopt the potential outcome framework for

proximal causal learning [22] which offers the opportunity to correct for the bias, when

conditional ignorability on the basis of measured confounders fails. The approach relies

on a pair of negative control variables to learn a bridge function that captures the effect

of the unobserved confounder of the ratings. Then, after learning the bridge function, the

adjusted ratings are used to predict the potential ratings using MF. The predictd ratings

are unbiased under a set of assumptions. In the next section, we will present a brief sum-

mary of the theory behind it and we will state the sufficient assumptions for non-parametric

identification of the causal effect [22].

5.2.3 Theory of Identification with Negative Control Variables (NC)

In this section, we present the sufficient assumptions for identification, using two

negative control variables following [22]. Specifically, we use one Negative Control Outcome

(NCO) and one Negative Control Exposure (NCE) as defined below in the following as-

sumptions. We will start by giving an overview of the background for the Proximal Causal

Inference. We should note that the following theoretical analysis was proven in [22] in

78

the context of a causal inference problem, and we here adopt it for the special case of

recommendation taking the ratings as outcomes.

As discussed in the previous section, the conditional ignorability assumption fails

in the presence of unobserved confounder (V). This assumption is relaxed by making the

latent ignorability assumption 5.2.2 [22]:

Assumption 5.2.2. (Latent ignorability): (y(au,i = 1), y(au,i = 0)) ⊥⊥ A|X,V

Assumption 5.2.2 states that the user and item features X and the unobserved confounder

V are sufficient to capture the confounding between the potential ratings y(au,i) and the

exposure variable A. Note that the latent ignorability assumption has no restrictions about

the nature of the unobserved confounder V . This assumption, which is a weaker assump-

tion than the conditional ignorability assumption, leads to Equation 5.2 which states that

the potential rating can be recovered by conditioning on the observed covariates X, the

unobserved confounder V and the exposure variable A [22]:

E[Y (au,i)] = E[E(Y |X,V,A = au,i)] (5.2)

The proposed approach for handling unmeasured confounders relies on the presence

of two negative control variables that satisfy the following conditions. The first variable is

called negative control outcome and can be defined as follows [22]:

Assumption 5.2.3. (Negative Control Outcome (NCO)): The NCO W is an auxiliary

variable such that: W ⊥⊥ A|X,V .

The Negative Control Outcome (NCO) is an auxiliary variable that is associated with the

unmeasured confounder but is not causally affected by the exposure variable controlling for

what items users are exposed to. An example of NCO is the item average rating before the

user had rated it. Let us suppose that the user watched and rated the movie at instant t,

this exposure could not not causally affect the item average rating at instant t− 1 because

the future cannot causally affect the past. In the next section, we will formally define our

choice of W .

79

The second type of auxiliary variables is the negative control exposure that needs to

satisfy the following assumption [22]:

Assumption 5.2.4. (Negative Control Exposure (NCE)): The NCO Z is an auxiliary

variable such that: Z ⊥⊥ Y |A,X, V and Z ⊥⊥W |A,X, V .

Assumption 5.2.4 states that the NCE is an auxiliary variable that does not affect the

potential ratings and the NCO given the treatment, the latent confounder V and the user

and item features X. For example, popularity can be considered an NCE. This is because

popularity affects what the recommender system presents to the user as well as what items

the user click on, but it does not affect the rating value (assuming in general that the user

rates an item according to their own preference). In the next section, we will formally define

our choice for NCE.

Figure 5.2. Proximal causal graph for a recommendation system where A denotes the
exposure variable, Y denotes the outcome variable, X denotes the user and item covariates,
V denotes the latent confounder, W denotes the negative control outcome (NCO),and Z
denotes the negative control exposure (NCE).

Figure 5.2 shows a more complete causal graph for recommendation systems. The

graph allows for the presence of observed covariates X (user and item features) as well as

latent confounder V . Note that confounder V does not need to be specified since the theory

does not require it. It is preferable to know the latent confounder to facilitate the choice

80

of the negative control variables, since the negative control variables need to be associated

with the latent confounder. In this work, we did not specify the latent confounder.

Assuming a valid selection of NCO and NCE, then according to [22], there exists a

function h, called the outcome confounding bridge function, relating the confounder’s effects

on the negative control outcome W to the confounder’s effects on the potential rating Y ,

as shown in the following assumption.

Assumption 5.2.5. (Outcome Confounding Bridge): there exists a function h(W,au,i, X)

such that for au,i ∈ {1, 0}:

E[Y |A = au,i, X, V] = E[h(W,au,i, X)|A = au,i, X, V)]

Assumption 5.2.5 claims that the effect of confounder V on the ratings Y is equal to the

effect of confounder V on a transformation h of W . This assumption entails that the NCO

W captures the variability in the confounder V . Given assumption 5.2.2 - 5.2.3 - 5.2.5, the

potential ratings’ mean can be identified as shown in proposition 5.2.6 [22].

Proposition 5.2.6. Under assumption 5.2.2 - 5.2.3 - 5.2.5, for au,i ∈ {1, 0} we have:

E[Y (au,i)] = E[h(W,au,i, X)] (5.3)

Proof. Using Assumption 5.2.5, we have:

E[Y |A = au,i, XV] = E[h(W,au,i, X)|A = au,i, X, V)]

Therefore using an expectation over V , we obtain

E(E[Y |A = au,i, X, V]) = E(E[h(W,au,i, X)|A = au,i, X, V)])

Using Assumption 5.2.2 which entailed Eq. 5.2, we have

E(E[Y |A = au,i, X, V]) = E(E(Y (aui)|V)) = E(Y (aui))

81

Using Assumption 5.2.3 we obtain:

E(E(h(W,aui))|X,A = aui) = E(E(h(W,aui)|V)) = E(h(W,aui))

We finally get our result:

E[Y (au,i)] = E[h(W,au,i, X)]

What Proposition 5.2.6 suggests is that it is enough to know h(W,aui, X) in order

to determine the effect E(Y (aui)) without additional assumptions. Mainly, it is enough

to learn a transformation of the NCO variable and use it to determine E(Y (aui)). The

remaining challenge is identifying the bridge function h. Without access to the unobserved

confounders, one cannot totally identify h. We thus use another proxy variable NCE Z in

order to identify h. In fact, [22] proposed a framework for identifying the bridge function

using the NCE variable. According to [22], the effect of the NCE variable Z on the ratings

Y is the same as the effect of Z on a transformation h of W thanks to Assumption 5.2.4.

Therefore we get

E(Y |Z,A) = E(h(W,A)|Z,A). (5.4)

It was further proven in [22] that h is a unique solution to Equation 5.4. We use

this result in order to learn the function h.

To summarize, our goal is to learn the potential ratings Ŷ under an unobserved con-

founder V . The problem is that the unobserved confounder cannot be correctly measured.

Therefore, we use a bridge function h to estimate its effect on Y . The bridge function is

a transformation of the Negative Control Outcome (NCO) variable W that also depends

on the treatment A. To identify the bridge function h, we use a NCE variable Z. In fact,

Equation 5.4 allows us to learn the function h in an unbiased way. We summarize all the

steps of our approach in Figure 5.3.

Note that the identification process does not put any restrictions on the bridge

function type. In other words, the function h can be parametric, semi-parametric, or non-

parametric. In the next section, we will discuss an estimation protocol of the potential

82

Figure 5.3. Pipeline for learning the de-confounded ratings. We start by learning a bridge
function using NCO and NCE. Then we use the predicted ratings from the bridge function
h to learn unbiased ratings

rating for matrix factorization. Note that our estimation approach is valid for the majority

of recommendation algorithms, which makes our approach modular and easy to implement.

5.2.4 Bridge Matrix Factorization

In this section, we propose to debias matrix factorization using negative control

variables and a bridge function in order to adjust for unobserved confounders. We start

by presenting our choice for the negative control variables and the bridge function h. As

mentioned before, the theory does not put any restrictions on the choice of the bridge

function. Finally, we propose a two-stage approach to estimate the bridge function and the

(adjusted) rating outcomes ŷ(au,i = 1).

5.2.4.1 Negative Control Variables

We propose a potential choice for the Negative Control Outcome (NCO) and the

Negative Control Exposure (NCE) adhering to Assumption 5.2.3 and Assumption 5.2.4

83

respectively. According to Assumption 5.2.3, NCO is a variable W that directly affects the

rating Y and is not causally affected by the exposure A. In the recommender system context,

we can set W to be the user’s average rating at t−1. This is because the exposure at t does

not affect the user’s average rating at time t− 1, as required by the causal independence of

the past on the future. The NCO can therefore be computed using Equation 5.5:

wtu =

∑t−1
k=1 y

k
u

nt−1
, (5.5)

where wtu stands for NCO at time t for user u, yku stands for the user’s rating at time stamp

k, and nt−1 stands for the number of items that the user has rated up until timestamp t−1.

We now propose a potential choice for the Negative Control Exposure (NCE) Z.

According to Assumption 5.2.4, Z is a variable that affects the exposure variable A, which

denotes the set of items that are exposed (via recommendations) to the user. By definition

of the NCE, Z should be causally independent of the outcome variable Y (potential rating)

and the NCO W given the observed and unobserved confounders. However it has to causally

affect the exposure A (the set of items recommended or exposed to the user up to time t).

The average popularity of the items can be used as a Negative Control Exposure (NCE).

In fact, as proven in Chapter 3, the more popular the item is, the more likely it is to be

recommended (hence exposed to the user). Thus the popularity affects the exposure variable

A which controls what items the users are exposed to. Also, the more popular the item

is, the more likely that the user had been exposed to it either through a recommendations

or from the user’s social circle. Furthermore, we assume that the popularity of the items

does not causally affect the user’s individual rating on the item because we can argue (and

assume) that after the user watches a movie, the typical user’s rating will be a reflection of

their own interest and satisfaction with the movie. The Negative Control Exposure zi can

therefore be defined using Equation 5.6:

zi =
∑
u∈U

1yu,i>0, (5.6)

since the popularity for each item is defined by the number of ratings, i.e., (yu,i > 0) an item

84

gets from all users. Popularity over time can also be used to capture the time dependency

in the exposure. However, in this work, we focus on the popularity in a static setting.

5.2.4.2 Bridge Function

After defining the negative control outcome W and the negative control exposure Z,

We introduce our choice for the bridge function. As we have mentioned, the theory does

not put any restrictions on the bridge function, which can be parametric, semi-parametric,

or non-parametric. In this work, we propose a parametric bridge function using Neural

Networks. The adjusted ratings ybridgeu,i (a) can thus be computed using Equation 5.7, where

xu and xi are the user and item latent features, respectively; wu,i and zu,i denote the NCO

and NCE, respectively,; and a is the boolean exposure:

ybridgeu,i (a) = h(W,Z,X,A) = max(0, xTu .xi.a+ αwu,i + λzu,i + β0) (5.7)

Figure 5.4 shows the overall architecture of the bridge model.

Figure 5.4. Bridge Function Network Architecture.

85

In order to learn the bridge function h, we minimize the following loss function:

Lbridge(ŷbridgeu,i) =
1

|U ||I|
∑

u,i∈U,I
(ĥ(W,Z,X,A)− Yui)2 (5.8)

It is easy to notice that the loss defined in Equation 5.8 will yield an unbiased (least squares)

estimate of the outcome (rating) Yui with respect to the unmeasured confounder V since

E(h(A,W |Z)) = E(Y |Z,A))

5.2.4.3 Matrix Factorization using Negative Control Variables and a Bridge

Function

In the final stage of building the debiased recommendation model, and after generat-

ing ŷbridgeui using the procedure described in the previous section, we use the learned output

ratings as input to train a Matrix Factorization model. The bridge function therefore serves

as an intermediate data that generates a training data that is more robust to confounders,

thanks to including the NCO and NCE variables during the learning process. These learned

ratings will then serve for learning a more robust final model that takes into account the

effect of the unknown causal confounders V from the training data (ŷbridgeui), as shown in

Figure 5.3. We present the final debiased recommendation learning procedure in Algorithm

5.1

Algorithm 5.1 Bias correction learning using a causal bridge function

Input: Rating matrix Y , NCO W , NCE Z
Output: Predicted ratings Ŷ

Learn bridge function h by minimizing the loss in equation 5.8
Generate adjusted ratings (outcomes) using the bridge function: Ŷ bridge

ui = h(Y,W,Z)

Learn a Matrix Factorization (MF) model P,Q by training on adjusted ratings Ŷ bridge
ui

Generate final predicted ratings Ŷui using the MF model’s latent factor parameters: Ŷui =
pu.qi
return Ŷui

5.3 Experimental Results

In this section, we evaluate the performance of our proposed approaches. The first

approach focuses on adjusting for the unobserved confounders assuming the data is inde-

86

pendent and identically distributed i.i.d. Then, we relax this assumption by using the IPS

estimator to account for the exposure bias. We test our method on real-world datasets and

compare its performance to widely used baselines. We design our experiments to evaluate

the effectiveness of our proposed approach at providing unbiased recommendations. The

research questions we aim to answer are:

• RQ1: How does our proposed approach for adjusting for unobserved confounders

compare to other state of the art approaches in terms of providing unbiased recom-

mendations?

• RQ2: Does adjusting for observed confounders and unobserved confounders further

improve the results? This can be considered as treating two biases simultaneously.

In the following, we start by describing the experimental settings, including the eval-

uation protocol, data used, and the baseline methods. Then, we present our experimental

results in order to answer RQ1 and RQ2.

5.3.1 Experimental Setting

5.3.1.1 Evaluation Protocol in a Causal Setting

A classic recommender system evaluation protocol is to split the rating data ran-

domly into training and test sets. The performance metrics of the recommendation are then

reported on the test data by computing the average metric over all users. The problem with

this standard methodology is the test data is biased which in turn yields a biased evalua-

tion. In fact, the test data is biased towards popular items and active users. In addition,

the test data hides inherent biases underlying the training data itself. In order to have

an unbiased estimation of performance, we need to have access to all potential outcomes,

which is not feasible in a recommendation system setting. One way to mitigate this prob-

lem is to have a random test data, where the users are provided with a randomly selected

subset of items, that they need to rate to provide the ground truth ratings for evaluation.

The latter approach, ensures that the test data is collected randomly and therefore the

87

average over all users of the performance metrics will be unbiased. However, such a random

test data is expensive to collect as part of a recommendation system platform in the real

world, since it will hurt the user experience. That said, we found two public datasets that

include a training data that has been collected from the organic user interaction with the

recommendation system and a test data that has been collected randomly. These datasets

are the Yahoo!R3 dataset [126] and the coat shopping dataset [100].

5.3.1.2 Datasets

We used two publicly available datasets with a test data collected randomly to

evaluate the performance of our models:

• Yahoo!R3 [126]: Yahoo!R3 is a music rating dataset with ratings from 1 to 5. The

training dataset contains over 300k song ratings collected from the user interaction

with the Yahoo music recommendation service. This means that the training ratings

are self-selected by the users. The training data contains 15400 users and 1000 items.

The test data was collected by asking 5400 users to rate 10 randomly chosen songs.

The test data thus contains 54000 ratings. The data was collected during a survey

for research purposes.

• Coat [100]: Coat is a rating shopping dataset. The data contains ratings for 290

users and 300 items. The training data consists of 7000 ratings. Each user was asked

to rate 24 coats from the inventory. The user gets to choose what items to rate based

on their self exploration. However, for the test data collection, each user was asked

to rate 16 randomly picked items.

Table 5.2 summarizes the statistics of both datasets for the training and test data.

5.3.1.3 Evaluation Metrics

Our goal is to measure the performance of our models on two tasks: the rating pre-

diction performance and the ranking performance. In order to predict the rating prediction

88

TABLE 5.2

Dataset Statistics

Data Users Items Interactions

Yahoo!R3 - Train 15400 1000 300k

Yahoo!R3 - Test 5400 1000 54000

Coat - Train 290 300 6960

Coat - Test 290 300 4640

performance, we compute the Mean Square Error (MSE) defined in Equation 5.9. The lower

the MSE the better.

MSE(R, R̂) =

∑
(u,i)∈O (ru,i − r̂u,i)2

|R|
(5.9)

In order to evaluate the quality of the recommended lists’ ranking, we use the following

metrics: Normalized Discounted Cumulative Gain (NDCG@K) (see Equation 3.13), Preci-

sion@k (see Equation 3.14), and Recall@K (see Equation 3.15). The higher these ranking

metrics, the better the ranking quality.

5.3.1.4 Baselines

We compare our method to Matrix Factorization (MF) [57] and two state of the

art debiasing frameworks: Matrix Factorization with Inverse Propensity weights (IPS-MF)

[100], and the deconfounded Matrix Factorization [120].

• Matrix Factorization (MF) [57]: Matrix factorization is a popular CF technique

that learns an embedding of users and items by factoring the rating matrix into two

embedding vectors. It uses the dot product to map the embedding to predicted ratings.

• IPS-MF [100]: Inverse propensity Matrix factorization is an unbiased MF model to

correct for selection bias.

• Deconfounded MF [120]: Deconfounded MF is a debiasing technique relying on

estimating a substitute for the unobserved confounders.

89

5.3.1.5 Experimental set-up

For both data sets, we split the training data into 90% train and 10% validation.

Then the hyper-parameter tuning was done using the 10% validation data, for each eval-

uated approach, including the baselines, using Optuna [105]. We varied the learning rate

between [0.001, 0.1]. The embedding dimension sizes were varied in {8, 16, 32, 64, 128}

for matrix factorization, and the L2 regularization weight varied between [0.0001, 0.1]. For

the optimizer, we chose between Adam and the Adaptive Gradient Algorithm (Adagrad).

We varied the batch size in {64, 128, 256, 512}. We finally selected the hyper-parameters

based on the evolution of the mean square error (RMSE) on the validation dataset.

5.3.2 Performance Evaluation

In this section, we will answer the two research questions RQ1 and RQ2. We

report our performance results on the Yahoo!R3 and Coat datasets. The convergence of

the algorithm is declared when the RMSE on the validation set no longer decreases for

five epochs. We run each experiment 5 times and we report the mean and the standard

deviation.

TABLE 5.3

Accuracy performance of Bridge MF compared to different baselines on Yahoo!R3. We
observe that our model has lower MSE and higher NDCG, while having comparable per-
formance in terms of Precision and Recall.

Dataset Yahoo!R3

Metric MSE Precision @5 Recall@5 NDCG@5

MF [57] 1.98 +/- 0.002 0.02 +/- 0.0006 0.56 +/- 0.011 0.46 +/- 0.019

IPSMF [100] 1.87 +/- 0.008 0.034 +/- 7e-05 0.71 +/- 0.002 0.5 +/- 0.007

MF+Bridge 1.34 +/- 0.0003 0.034 +/- 1.5 e-05 0.71 +/- 0.0001 0.55 +/- 5e-05

IPSMF+Bridge 1.29 +/- 0.0005 0.034 +/- 9e-05 0.7 +/- 0.0017 0.55 +/- 0.0004

RQ1: How does our proposed approach for adjusting for unobserved con-

founders compare to other state of the art approaches in terms of providing

unbiased recommendations? Table 5.3 and Table 5.4 shows the performance of Bridge

90

Matrix Factorization compared to the baselines. We reported the results in two different

tables to add the deconfounded recommender system baseline. In fact, we reported the re-

sults reported in the original paper [120], where the precision was not reported and NDCG

was computed differently from our work. More specifically, they introduced a threshold to

determine whether an item is relevant or not. If rating > 3, the item’s relevance is the

rating; otherwise the relevance is set to 0. In our case, we do not introduce a threshold

since, we argue that it introduces bias, and we instead use the rating as relevance without

thresholding. For example, if an item is rated 1, then the relevance is 1; and if the item

is rated 5, then the relevance is 5. Table 5.3 and table 5.4 show that Bridge MF outper-

forms the baselines in terms of MSE, Recall@5 and NDCG@5, while shows comparable

performance in terms of Precision@5. Note that the Yahoo!R3 test set is not affected by

confounders, since the data was collected randomly. Bridge MF provides more accurate

recommendations on this unbiased test dataset, which means that our model adjusts better

for confounders. This is to be expected, since IPSMF relies on the propensity estimation

that depends on the collected observed confounders. In contrast, Bridge MF relies on the

same observed confounders, but it also assumes the presence of an unmeasured confounder

that may affect the ratings, namely the exposure and the observed confounders. If the MSE

does not improve, then this would mean that we do not have unmeasured confounders in

our system. Note that the MSE reported in our results on the Yahoo!R3 data is different

from the one reported in [100], since the propensities were estimated using Naive Bayes,

which in turn requires the presence of unbiased data. In our experiments, we did not use

an unbiased data to estimate the propensities since in the real world scenario, it is unlikely

to have access to unbiased data. Table 5.5 and Table 5.4 show the performance of our

proposed approach on the coat dataset. Bridge MF showed a better performance compared

to all the baselines. Thus the bridge function enables a better rating prediction accuracy

and better ranking performance. For the IPSMF, we used the propensities provided in the

data.

91

TABLE 5.4

Accuracy performance of Bridge MF compared to different baselines on the Coat Dataset.
We observe that our model has lower MSE and higher NDCG, Precision, and Recall.

Dataset Yahoo!R3 Coat

Metrics MSE Recall@5 MSE Recall@5

MF [57] 1.98 0.56 1.21 0.56

IPSMF [100] 1.87 0.71 1.089 0.56

Deconfounded MF [120] 1.768 0.64 1.341 0.569

MF+Bridge 1.34 0.71 1.00 0.61

IPSMF+Bridge 1.29 0.7 1.00 0.6

TABLE 5.5

Accuracy performance of Bridge MF compared to different baselines on the Coat Dataset.
We observe that our model has lower MSE and higher NDCG, Precision, and Recall.

Dataset Coat

Metric MSE Precision @5 Recall@5 NDCG@5

MF [57] 1.21 +/- 0.02 0.076 +/- 0.002 0.56 +/- 0.014 0.54 +/- 0.002

IPSMF [100] 1.08 +/- 0.009 0.077 +/- 0.005 0.56 +/- 0.005 0.53 +/- 0.002

MF+Bridge 1.00 +/- 0.0006 0.08 +/- 0.0015 0.61 +/- 0.015 0.56 +/- 0.0006

IPSMF+Bridge 1.00 +/- 0.005 0.078 +/- 0.002 0.6 +/- 0.025 0.56 +/- 0.002

RQ2: Does adjusting for observed confounders and unobserved confounders

further improve the results? This can be seen as treating two biases simulta-

neously. In the next experiment, we used the IPS estimator to estimate the predicted

ratings in the second stage of Bridge MF. According to the results in Tables 5.3, 5.4, and

5.5, using the IPS estimator did improve the rating prediction, but did not improve the

ranking quality of the recommender system. Our interpretation is that the adjusted ratings

provided by the bridge model succeeded to adjust for the confounders. Hence adding an

IPS estimator afterwards did not further improve the results.

92

5.4 Summary

In this chapter, we proposed a bias correction approach inspired from proximal

causal inference. The approach relies on a pair of negative control variables to identify the

causal effects of the exposure on the potential ratings, and this in turns allows adjusting or

correcting the ratings for bias before using them for training a recommendation model. We

evaluated our approach on two real-world datasets, and found that Bridge MF produced

promising results by outperforming the state of the art models. One limitation of Bridge

MF is the fact that it relies on a valid choice of negative control variables which is untestable

and depends on the expert’s judgment. Another limitation is that the choice of the bridge

function inherits the model bias which may raise concerns about introducing bias in the

results.

93

CHAPTER 6

CONCLUSION

The main goal of this dissertation is to propose novel debiasing approaches for recom-

mendation systems, that go beyond current efforts in debiasing by addressing some of their

known limitations. In Chapter 3, we introduced a novel approach to mitigate popularity

bias in the data by disentangling relevance and user conformity. Our approach outper-

formed state of the art methods in terms of recommendation accuracy as well as reducing

popularity bias and increasing the diversity in the recommended lists. We represented the

conformity bias using learned embeddings, which allowed for a richer representation. Given

that the users are affected by popular items differently, we learn a personalized user bias

vector to capture the preferences of each user for popular items. This approach overcomes

the limitation of using scalars to capture the conformity bias which is not accurate and does

not capture user-item specific conformity levels. Our approach is modular and can be easily

adapted to other collaborative filtering algorithms as base models. One limitation of our

proposed approach is assuming that the recommender system is affected only by popularity

bias. This assumption does not hold in real world recommendation systems.

In Chapter 4, we relaxed the assumption made in Chapter 3 and allow a recommender

system to be affected by both exposure bias and popularity bias. We proposed a multi-

bias framework that helps reduce the popularity and exposure bias simultaneously through

incorporating the IPS training framework along with PCMF modeling, that we proposed

in Chapter 3. Our proposed approach outperformed PCMF in terms of recommendation

performance as well as decreasing popularity bias. Our experimental results showed the

importance of correcting for multiple biases simultaneously.

In Chapter 5, we studied the recommender system from a causal perspective since it

94

improves the generalization and robustness of the model. We proposed a novel 2-stage debi-

asing approach inspired from proximal causal inference that aims at adjusting for observed

and unobserved confounders. The approach leverages a pair of negative control variables to

adjust for unobserved confounders. The fist stage is to learn the bridge function to adjust

for observed and unobserved confounders. The second stage, consists of learning a matrix

factorization model on the adjusted ratings. Our approach showed promising results by

outperforming state of the art models. One limitation of bridge matrix factorization is

the fact that it relies on the valid choice of negative control variables which is untestable

and depends on the expert’s judgment. Another limitation is that the choice of the bridge

function inherits the model bias which may raise concerns about introducing bias in the

results.

One area of expansion of our research is to study the iterative behavior of our

proposed algorithms. In fact, recommender systems act in a dynamic environment and this

aspect should be incorporated in the modeling of different debiasing approaches.

95

REFERENCES

[1] Yifan Hu, Yehuda Koren, and Chris Volinsky, “Collaborative filtering for implicit
feedback datasets,” in 2008 Eighth IEEE International Conference on Data Mining,
2008, pp. 263–272.

[2] Nishigandha Karbhari, Asmita Deshmukh, and Vinayak D. Shinde, “Recommenda-
tion system using content filtering: A case study for college campus placement,” in
2017 International Conference on Energy, Communication, Data Analytics and Soft
Computing (ICECDS), 2017, pp. 963–965.

[3] Robin Burke, “Hybrid recommender systems: Survey and experiments,” User mod-
eling and user-adapted interaction, vol. 12, no. 4, pp. 331–370, 2002.

[4] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He,
“Bias and debias in recommender system: A survey and future directions,” 2020.

[5] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel, “Unbiased learning-
to-rank with biased feedback,” CoRR, vol. abs/1608.04468, 2016.

[6] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft, “Unbiased
learning to rank with unbiased propensity estimation,” CoRR, vol. abs/1804.05938,
2018.

[7] Harald Steck, “Item popularity and recommendation accuracy,” in Proceedings of the
Fifth ACM Conference on Recommender Systems, New York, NY, USA, 2011, RecSys
’11, p. 125–132, Association for Computing Machinery.

[8] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Depeng Jin, and Yong Li, “Disen-
tangling user interest and conformity for recommendation with causal embedding,”
2021.

[9] Dawen Liang, Laurent Charlin, and David M. Blei, “Causal inference for recommen-
dation,” 2016.

[10] Wenlong Sun, Sami Khenissi, Olfa Nasraoui, and Patrick Shafto, Debiasing the
Human-Recommender System Feedback Loop in Collaborative Filtering, p. 645–651,
Association for Computing Machinery, New York, NY, USA, 2019.

[11] Sami Khenissi and Olfa Nasraoui, “Modeling and counteracting exposure bias in
recommender systems,” 2020.

[12] Dietmar Jannach and Michael Jugovac, “Measuring the business value of recom-
mender systems,” ACM Trans. Manage. Inf. Syst., vol. 10, no. 4, dec 2019.

[13] Hao Wang, Zonghu Wang, and Weishi Zhang, “Quantitative analysis of matthew
effect and sparsity problem of recommender systems,” in 2018 IEEE 3rd International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, 2018,
pp. 78–82.

96

[14] Sami Khenissi, Boujelbene Mariem, and Olfa Nasraoui, “Theoretical modeling of the
iterative properties of user discovery in a collaborative filtering recommender system,”
in Fourteenth ACM Conference on Recommender Systems, New York, NY, USA, 2020,
RecSys ’20, p. 348–357, Association for Computing Machinery.

[15] Ray Jiang, Silvia Chiappa, Tor Lattimore, András György, and Pushmeet Kohli,
“Degenerate feedback loops in recommender systems,” Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society, Jan. 2019.

[16] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher,
“The unfairness of popularity bias in recommendation,” CoRR, vol. abs/1907.13286,
2019.

[17] Himan Abdollahpouri and Masoud Mansoury, “Multi-sided exposure bias in recom-
mendation,” CoRR, vol. abs/2006.15772, 2020.

[18] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims, “Recommendations as treatments: Debiasing learning and eval-
uation,” CoRR, vol. abs/1602.05352, 2016.

[19] Khalil Damak, Sami Khenissi, and Olfa Nasraoui, “Debiased explainable pairwise
ranking from implicit feedback,” CoRR, vol. abs/2107.14768, 2021.

[20] Andrew Ying, Wang Miao, Xu Shi, and Eric J. Tchetgen Tchetgen, “Proximal causal
inference for complex longitudinal studies,” 2021.

[21] Eric J Tchetgen Tchetgen, Andrew Ying, Yifan Cui, Xu Shi, and Wang Miao, “An
introduction to proximal causal learning,” 2020.

[22] Wang Miao, Xu Shi, and Eric Tchetgen Tchetgen, “A confounding bridge approach
for double negative control inference on causal effects,” 2018.

[23] Peter Boström and Melker Filipsson, “Comparison of user based and item based
collaborative filtering recommendation services,” 2017.

[24] Y. Koren, R. Bell, and Ch. Volinsky, “Matrix factorization techniques for recom-
mender systems,” IEEE Computer 42, 8, pp. 30–37, 2009.

[25] Robert M. Bell and Yehuda Koren, “Lessons from the netflix prize challenge,”
SIGKDD Explor. Newsl., vol. 9, no. 2, pp. 75–79, dec 2007.

[26] Sebastian Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

[27] Amy Nicole Langville, Carl Dean Meyer, Russell Albright, James Cox, and David
Duling, “Algorithms, initializations, and convergence for the nonnegative matrix
factorization,” CoRR, vol. abs/1407.7299, 2014.

[28] Neil Houlsby, Jose Miguel Hernandez-Lobato, and Zoubin Ghahramani, “Cold-start
active learning with robust ordinal matrix factorization,” in Proceedings of the 31st
International Conference on Machine Learning, Eric P. Xing and Tony Jebara, Eds.,
Bejing, China, 22–24 Jun 2014, vol. 32 of Proceedings of Machine Learning Research,
pp. 766–774, PMLR.

[29] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme,
“Bpr: Bayesian personalized ranking from implicit feedback,” in Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Arlington, Virginia,
USA, 2009, UAI ’09, p. 452–461, AUAI Press.

97

[30] Jingtao Ding, Yuhan Quan, Quanming Yao, Yong Li, and Depeng Jin, “Simplify
and robustify negative sampling for implicit collaborative filtering,” in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds. 2020, vol. 33, pp. 1094–1105, Curran Associates, Inc.

[31] Jingtao Ding, Yuhan Quan, Quanming Yao, Yong Li, and Depeng Jin, “Simplify and
robustify negative sampling for implicit collaborative filtering,” 2020.

[32] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl, “Item-based collab-
orative filtering recommendation algorithms,” in Proceedings of the 10th International
Conference on World Wide Web, New York, NY, USA, 2001, WWW ’01, p. 285–295,
Association for Computing Machinery.

[33] Hailong Wen, Guiguang Ding, Cong Liu, and Jianming Wang, “Matrix factorization
meets cosine similarity: Addressing sparsity problem in collaborative filtering recom-
mender system,” in Web Technologies and Applications, Lei Chen, Yan Jia, Timos
Sellis, and Guanfeng Liu, Eds., Cham, 2014, pp. 306–317, Springer International
Publishing.

[34] Ludovico Boratto and Salvatore Carta, “Using collaborative filtering to overcome the
curse of dimensionality when clustering users in a group recommender system,” in
Proceedings of the 16th International Conference on Enterprise Information Systems
- Volume 2, Setubal, PRT, 2014, ICEIS 2014, p. 564–572, SCITEPRESS - Science
and Technology Publications, Lda.

[35] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua,
“Neural collaborative filtering,” 2017.

[36] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson, “Neural collaborative
filtering vs. matrix factorization revisited,” in Fourteenth ACM Conference on Rec-
ommender Systems, New York, NY, USA, 2020, RecSys ’20, p. 240–248, Association
for Computing Machinery.

[37] Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo, “Deep learning for sequen-
tial recommendation: Algorithms, influential factors, and evaluations,” 2020.

[38] Dongqing Liu and Gurbir Singh, “A recurrent neural network based recommendation
system,” 2016.

[39] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang,
“Bert4rec: Sequential recommendation with bidirectional encoder representations
from transformer,” 2019.

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understanding,” 2019.

[41] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie, “Autorec:
Autoencoders meet collaborative filtering,” in Proceedings of the 24th International
Conference on World Wide Web, New York, NY, USA, 2015, WWW ’15 Companion,
p. 111–112, Association for Computing Machinery.

[42] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara, “Varia-
tional autoencoders for collaborative filtering,” 2018.

[43] Adji B. Dieng, Yoon Kim, Alexander M. Rush, and David M. Blei, “Avoiding latent
variable collapse with generative skip models,” 2019.

98

[44] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng
Jin, and Yong Li, “Sequential recommendation with graph neural networks,” 2021.

[45] Shiwen Wu, Fei Sun, Wentao Zhang, and Bin Cui, “Graph neural networks in recom-
mender systems: A survey,” 2021.

[46] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and
Jure Leskovec, “Graph convolutional neural networks for web-scale recommender sys-
tems,” Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining, Jul 2018.

[47] Jinbo Song, Chao Chang, Fei Sun, Xinbo Song, and Peng Jiang, “Ngat4rec: Neighbor-
aware graph attention network for recommendation,” CoRR, vol. abs/2010.12256,
2020.

[48] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro, “Content-based recom-
mender systems: State of the art and trends,” Recommender systems handbook, pp.
73–105, 2011.

[49] Benedikt Schifferer, Gilberto Titericz, Chris Deotte, Christof Henkel, Kazuki On-
odera, Jiwei Liu, Bojan Tunguz, Even Oldridge, Gabriel De Souza Pereira Moreira,
and Ahmet Erdem, “Gpu accelerated feature engineering and training for recom-
mender systems,” in Proceedings of the Recommender Systems Challenge 2020, New
York, NY, USA, 2020, RecSysChallenge ’20, p. 16–23, Association for Computing
Machinery.

[50] Longteng Xu, Jiwei Liu, and Yu Gu, “A recommendation system based on extreme
gradient boosting classifier,” in 2018 10th International Conference on Modelling,
Identification and Control (ICMIC), 2018, pp. 1–5.

[51] Tianqi Chen and Carlos Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, New York, NY, USA, 2016, KDD ’16, p. 785–794, Asso-
ciation for Computing Machinery.

[52] Christopher J. C. Burges, Krysta M. Svore, Paul N. Bennett, Andrzej Pastusiak,
and Qiang Wu, “Learning to rank using an ensemble of lambda-gradient models,”
in Proceedings of the 2010 International Conference on Yahoo! Learning to Rank
Challenge - Volume 14. 2010, YLRC’10, p. 25–35, JMLR.org.

[53] Malay Haldar, Mustafa Abdool, Prashant Ramanathan, Tyler Sax, Lanbo Zhang,
Aamir Mansawala, Shulin Yang, Bradley Turnbull, and Junshuo Liao, “Improving
deep learning for airbnb search,” 2020.

[54] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg, and
Jure Leskovec, “Pinnersage: Multi-modal user embedding framework for recommen-
dations at pinterest,” in Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery Data Mining, New York, NY, USA, 2020, KDD ’20,
p. 2311–2320, Association for Computing Machinery.

[55] Erik Bernhardsson, Annoy: Approximate Nearest Neighbors in C++/Python, 2018,
Python package version 1.13.0.

[56] Sanjeevan Sivapalan, Alireza Sadeghian, Hossein Rahnama, and Asad M. Madni,
“Recommender systems in e-commerce,” in 2014 World Automation Congress
(WAC), 2014, pp. 179–184.

99

[57] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender
systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[58] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan He, Model-
Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender
System, p. 1791–1800, Association for Computing Machinery, New York, NY, USA,
2021.

[59] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay,
“Accurately interpreting clickthrough data as implicit feedback,” in Proceedings of the
28th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, New York, NY, USA, 2005, SIGIR ’05, p. 154–161, Association
for Computing Machinery.

[60] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei, “Modeling user
exposure in recommendation,” in Proceedings of the 25th International Conference
on World Wide Web, Republic and Canton of Geneva, CHE, 2016, WWW ’16, p.
951–961, International World Wide Web Conferences Steering Committee.

[61] Wei Ma and George H Chen, “Missing not at random in matrix completion: The
effectiveness of estimating missingness probabilities under a low nuclear norm as-
sumption,” in Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., pp.
14871–14880. Curran Associates, Inc., 2019.

[62] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi, “Doubly robust joint learning
for recommendation on data missing not at random,” Long Beach, California, USA,
09–15 Jun 2019, vol. 97 of Proceedings of Machine Learning Research, pp. 6638–6647,
PMLR.

[63] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft, “Unbiased
learning to rank with unbiased propensity estimation,” in The 41st International
ACM SIGIR Conference on Research Development in Information Retrieval, New
York, NY, USA, 2018, SIGIR ’18, p. 385–394, Association for Computing Machinery.

[64] Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rushton Wakeling, and
Yi-Cheng Zhang, “Solving the apparent diversity-accuracy dilemma of recommender
systems,” Proceedings of the National Academy of Sciences, vol. 107, no. 10, pp.
4511–4515, 2010.

[65] Natali Helberger, Kari Karppinen, and Lucia D’Acunto, “Exposure diversity as a
design principle for recommender systems,” Information, Communication & Society,
vol. 21, no. 2, pp. 191–207, 2018.

[66] James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues
Bouchard, Alois Gruson, and Rishabh Mehrotra, “Explore, exploit, and explain:
Personalizing explainable recommendations with bandits,” in Proceedings of the 12th
ACM Conference on Recommender Systems, New York, NY, USA, 2018, RecSys ’18,
p. 31–39, Association for Computing Machinery.

[67] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims, “Learning diverse rankings
with multi-armed bandits,” in Proceedings of the 25th International Conference on
Machine Learning, New York, NY, USA, 2008, ICML ’08, p. 784–791, Association for
Computing Machinery.

100

[68] Chang Li, Haoyun Feng, and Maarten de Rijke, “Cascading hybrid bandits: Online
learning to rank for relevance and diversity,” in Fourteenth ACM Conference on
Recommender Systems, New York, NY, USA, 2020, RecSys ’20, p. 33–42, Association
for Computing Machinery.

[69] Javier Parapar and Filip Radlinski, “Diverse user preference elicitation with multi-
armed bandits,” in Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, New York, NY, USA, 2021, WSDM ’21, p. 130–138, Asso-
ciation for Computing Machinery.

[70] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing
Xie, and Zhenhui Li, “Drn: A deep reinforcement learning framework for news recom-
mendation.,” in WWW, Pierre-Antoine Champin, Fabien L. Gandon, Mounia Lalmas,
and Panagiotis G. Ipeirotis, Eds. 2018, pp. 167–176, ACM.

[71] Yong Liu, Yinan Zhang, Qiong Wu, Chunyan Miao, Lizhen Cui, Binqiang Zhao, Yin
Zhao, and Lu Guan, “Diversity-promoting deep reinforcement learning for interactive
recommendation,” 2019.

[72] Olivier Jeunen, David Rohde, Flavian Vasile, and Martin Bompaire, “Joint policy-
value learning for recommendation,” in Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery Data Mining, New York, NY, USA,
2020, KDD ’20, p. 1223–1233, Association for Computing Machinery.

[73] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher, “Controlling popular-
ity bias in learning-to-rank recommendation,” in Proceedings of the Eleventh ACM
Conference on Recommender Systems, New York, NY, USA, 2017, RecSys ’17, p.
42–46, Association for Computing Machinery.

[74] Himan Abdollahpouri, Robin D. Burke, and Bamshad Mobasher, “Managing pop-
ularity bias in recommender systems with personalized re-ranking,” ArXiv, vol.
abs/1901.07555, 2019.

[75] Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac, “What
recommenders recommend: an analysis of recommendation biases and possible coun-
termeasures,” User Modeling and User-Adapted Interaction, vol. 25, no. 5, pp. 427–
491, July 2015.

[76] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay,
“Accurately interpreting clickthrough data as implicit feedback,” SIGIR Forum, vol.
51, no. 1, pp. 4–11, aug 2017.

[77] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski,
and Geri Gay, “Evaluating the accuracy of implicit feedback from clicks and query
reformulations in web search,” ACM Trans. Inf. Syst., vol. 25, no. 2, pp. 7–es, apr
2007.

[78] Katja Hofmann, Anne Schuth, Alejandro Belloǵın, and Maarten de Rijke, “Effects
of position bias on click-based recommender evaluation,” in Advances in Information
Retrieval, Maarten de Rijke, Tom Kenter, Arjen P. de Vries, ChengXiang Zhai, Fran-
ciska de Jong, Kira Radinsky, and Katja Hofmann, Eds., Cham, 2014, pp. 624–630,
Springer International Publishing.

[79] Nicolò Felicioni, Maurizio Ferrari Dacrema, and Paolo Cremonesi, “Measuring the
user satisfaction in a recommendation interface with multiple carousels,” 05 2021.

101

[80] Olivier Chapelle and Ya Zhang, “A dynamic bayesian network click model for web
search ranking,” in Proceedings of the 18th International Conference on World Wide
Web, New York, NY, USA, 2009, WWW ’09, p. 1–10, Association for Computing
Machinery.

[81] Georges E. Dupret and Benjamin Piwowarski, “A user browsing model to predict
search engine click data from past observations.,” in Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, New York, NY, USA, 2008, SIGIR ’08, p. 331–338, Association for Com-
puting Machinery.

[82] Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Shuai Li, Ruiming Tang, Xi-
uqiang He, Jianye Hao, and Yong Yu, A Graph-Enhanced Click Model for Web Search,
p. 1259–1268, Association for Computing Machinery, New York, NY, USA, 2021.

[83] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc Na-
jork, “Position bias estimation for unbiased learning to rank in personal search,”
in Proceedings of the 11th ACM International Conference on Web Search and Data
Mining (WSDM), 2018, pp. 610–618.

[84] Paul Covington, Jay Adams, and Emre Sargin, “Deep neural networks for youtube
recommendations,” in Proceedings of the 10th ACM Conference on Recommender
Systems, New York, NY, USA, 2016.

[85] Ayan Sinha, David F. Gleich, and Karthik Ramani, “Deconvolving feedback loops
in recommender systems,” in Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett, Eds., 2016, pp. 3243–3251.

[86] Yixin Wang, Dawen Liang, Laurent Charlin, and David M. Blei, Causal Inference
for Recommender Systems, p. 426–431, Association for Computing Machinery, New
York, NY, USA, 2020.

[87] Mengyue Yang, Quanyu Dai, Zhenhua Dong, Xu Chen, Xiuqiang He, and Jun Wang,
“Top-n recommendation with counterfactual user preference simulation,” CoRR, vol.
abs/2109.02444, 2021.

[88] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He,
“Bias and debias in recommender system: A survey and future directions,” 2020.

[89] Andrew Collins, Dominika Tkaczyk, Akiko Aizawa, and Jöran Beel, “A study of
position bias in digital library recommender systems,” CoRR, vol. abs/1802.06565,
2018.

[90] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui Ling,
and Yongdong Zhang, “Causal intervention for leveraging popularity bias in recom-
mendation,” in Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. jul 2021, ACM.

[91] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin, “Disentan-
gling user interest and popularity bias for recommendation with causal embedding,”
CoRR, vol. abs/2006.11011, 2020.

[92] Zihao Zhao, Jiawei Chen, Sheng Zhou, Xiangnan He, Xuezhi Cao, Fuzheng Zhang,
and Wei Wu, “Popularity bias is not always evil: Disentangling benign and harmful
bias for recommendation,” CoRR, vol. abs/2109.07946, 2021.

102

[93] Shuyuan Xu, Juntao Tan, Shelby Heinecke, Jia Li, and Yongfeng Zhang, “Decon-
founded causal collaborative filtering,” CoRR, vol. abs/2110.07122, 2021.

[94] Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike Pan,
and Zhong Ming, Mitigating Confounding Bias in Recommendation via Information
Bottleneck, p. 351–360, Association for Computing Machinery, New York, NY, USA,
2021.

[95] Yongkai Wu, Lu Zhang, and Xintao Wu, “Counterfactual fairness: Unidentification,
bound and algorithm,” in Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI-19. 7 2019, pp. 1438–1444, International Joint
Conferences on Artificial Intelligence Organization.

[96] Yongkai Wu, Lu Zhang, and Xintao Wu, “On discrimination discovery and removal
in ranked data using causal graph,” in Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery Data Mining, New York, NY, USA,
2018, KDD ’18, p. 2536–2544, Association for Computing Machinery.

[97] Xiaocong Chen, Lina Yao, Julian McAuley, Guanglin Zhou, and Xianzhi Wang, “A
survey of deep reinforcement learning in recommender systems: A systematic review
and future directions,” CoRR, vol. abs/2109.03540, 2021.

[98] Xiaoying Zhang, Junzhou Zhao, and John C.S. Lui, “Modeling the assimilation-
contrast effects in online product rating systems: Debiasing and recommendations,”
in Proceedings of the Eleventh ACM Conference on Recommender Systems, New York,
NY, USA, 2017, RecSys ’17, p. 98–106, Association for Computing Machinery.

[99] Tien T. Nguyen, F. Maxwell Harper, Loren Terveen, and Joseph A. Konstan, “User
personality and user satisfaction with recommender systems,” Information Systems
Frontiers, vol. 20, no. 6, pp. 1173–1189, dec 2018.

[100] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims, “Recommendations as treatments: Debiasing learning and eval-
uation,” in Proceedings of the 33rd International Conference on International Con-
ference on Machine Learning - Volume 48. 2016, ICML’16, p. 1670–1679, JMLR.org.

[101] Stephen Bonner and Flavian Vasile, “Causal embeddings for recommendation,”
CoRR, vol. abs/1706.07639, 2017.

[102] Arda Antikacioglu, Tanvi Bajpai, and R. Ravi, “A new system-wide diversity measure
for recommendations with efficient algorithms,” 2019.

[103] Zhu Sun, Di Yu, Hui Fang, Jie Yang, Xinghua Qu, Jie Zhang, and Cong Geng, “Are
we evaluating rigorously? benchmarking recommendation for reproducible evaluation
and fair comparison,” in Fourteenth ACM Conference on Recommender Systems, New
York, NY, USA, 2020, RecSys ’20, p. 23–32, Association for Computing Machinery.

[104] Gangan Elena, Kudus Milos, and Ilyushin Eugene, “Survey of multiarmed bandit
algorithms applied to recommendation systems,” International Journal of Open In-
formation Technologies, vol. 9, no. 4, pp. 12–27, 2021.

[105] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama,
“Optuna: A next-generation hyperparameter optimization framework,” CoRR, vol.
abs/1907.10902, 2019.

103

[106] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun, Eds., 2015.

[107] John Duchi, Elad Hazan, and Yoram Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

[108] Laurens van der Maaten and Geoffrey Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.

[109] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel, “Unbiased learning-
to-rank with biased feedback,” in Proceedings of the Tenth ACM International Con-
ference on Web Search and Data Mining, New York, NY, USA, 2017, WSDM ’17, p.
781–789, Association for Computing Machinery.

[110] Mathieu Rouaud, “Probability, statistics and estimation,” Propagation of uncertain-
ties, vol. 191, 2013.

[111] Harald Steck, “Training and testing of recommender systems on data missing not
at random,” in Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, 2010, KDD ’10, p.
713–722, Association for Computing Machinery.

[112] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei, “Modeling user
exposure in recommendation,” in Proceedings of the 25th International Conference
on World Wide Web, Republic and Canton of Geneva, Switzerland, 2016, WWW ’16,
pp. 951–961, International World Wide Web Conferences Steering Committee.

[113] Saúl Vargas and Pablo Castells, “Rank and relevance in novelty and diversity metrics
for recommender systems,” in Proceedings of the Fifth ACM Conference on Recom-
mender Systems, New York, NY, USA, 2011, RecSys ’11, p. 109–116, Association for
Computing Machinery.

[114] Prem Gopalan, Jake M. Hofman, and David M. Blei, “Scalable recommendation with
poisson factorization,” 2014.

[115] Prem Gopalan, Laurent Charlin, and David M. Blei, “Content-based recommenda-
tions with poisson factorization,” in Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2, Cambridge, MA, USA, 2014,
NIPS’14, pp. 3176–3184, MIT Press.

[116] Prem Gopalan, Francisco J.R. Ruiz, Rajesh Ranganath, and David M. Blei, “Bayesian
nonparametric poisson factorization for recommendation systems,” Journal of Ma-
chine Learning Research, vol. 33, pp. 275–283, 1 2014.

[117] Prem Gopalan, Jake M. Hofman, and David M. Blei, “Scalable recommendation with
poisson factorization,” CoRR, vol. abs/1311.1704, 2013.

[118] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala,
“Pytorch: An imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., pp. 8024–8035. Curran Associates,
Inc., 2019.

104

[119] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme,
“BPR: bayesian personalized ranking from implicit feedback,” CoRR, vol.
abs/1205.2618, 2012.

[120] Yixin Wang, Dawen Liang, Laurent Charlin, and David M. Blei, “The decon-
founded recommender: A causal inference approach to recommendation,” CoRR,
vol. abs/1808.06581, 2018.

[121] Wang Miao, Xu Shi, and Eric Tchetgen Tchetgen, “A confounding bridge approach for
double negative control inference on causal effects,” arXiv preprint arXiv:1808.04945,
2018.

[122] Donald B Rubin, “Causal inference using potential outcomes,” Journal of the Amer-
ican Statistical Association, vol. 100, no. 469, pp. 322–331, 2005.

[123] Judea Pearl, Causality, Cambridge University Press, 2 edition, 2009.

[124] PAUL R. ROSENBAUM and DONALD B. RUBIN, “The central role of the propen-
sity score in observational studies for causal effects,” Biometrika, vol. 70, no. 1, pp.
41–55, 04 1983.

[125] Paul R. Rosenbaum and Donald B. Rubin, “Reducing bias in observational studies
using subclassification on the propensity score,” Journal of the American Statistical
Association, vol. 79, no. 387, pp. 516–524, 1984.

[126] Benjamin M. Marlin and Richard S. Zemel, “Collaborative prediction and ranking
with non-random missing data,” in Proceedings of the Third ACM Conference on
Recommender Systems, New York, NY, USA, 2009, RecSys ’09, p. 5–12, Association
for Computing Machinery.

105

CURRICULUM VITAE

NAME: Mariem Boujelbene

ADDRESS: Computer Science and Engineering Department

J.B Speed School of Engineering

University of Louisville

Louisville, KY 40292

United States of America.

EDUCATION: Ph.D., Computer Science & Engineering, May 2022

University of Louisville, Louisville, KY, USA.

M.Sc. in Computer Science, May 2019

University of Louisville, Louisville, KY, USA.

B.Eng in Applied Mathematics, September 2017

Ecole Polytechnique de Tunisie, Tunisia

WORK EXPERI-

ENCE:

Graduate Assistant, University of Louisville, KY, USA,

2017 - 2022

Machine Learning Engineer intern, Linkedin, New

York, USA, May - August 2021

106

AWARDS: CSE Doctoral Award, 2022

Dean Citation for academic excellence , 2019, 2022

Speed School Fellowship, 2020

CSE Masters Award, 2019

PUBLICATIONS:

1.Mariem Boujelbene, Khalil Damak, Asuman Cagla Acun Sener, Jeffrey Lloyd Hieb,

Campbell R Bego, Patricia A Ralston, Olfa Nasraoui. 2020. A Data-science Approach

to Flagging Non-retention in Engineering Enrollment Data. 2020 ASEE Virtual Annual

Conference Content Access

2.Sami Khenissi, Mariem Boujelbene, Khalil Damak, Olfa Nasraoui. 2022. A New

Attention Framework for Promoting Diverse Recommendations. Under Review. ACM

SIGKDD 2022

3. Sami Khenissi, Boujelbene Mariem, and Olfa Nasraoui. 2020. Theoretical Modeling

of the Iterative Properties of User Discovery in a Collaborative Filtering Recommender

System. In Fourteenth ACM Conference on Recommender Systems (RecSys ’20). Associ-

ation for Computing Machinery, New York, NY, USA, 348–357.

107

	New debiasing strategies in collaborative filtering recommender systems: modeling user conformity, multiple biases, and causality.
	Recommended Citation

	tmp.1651260811.pdf.TBZxm

