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ABSTRACT

UTILIZING SHOCKWAVE THEORY AND DEEP LEARNING TO
ESTIMATE INTERSECTION TRAFFIC FLOW AND QUEUE LENGTH BASED ON
CONNECTED VEHICLE DATA
Abdulmaged Algomaiah

April 25, 2022

The development of Connected Vehicles (CV) facilitates the use of trajectory data
to estimate queue length and traffic volume at signalized intersections. The previously
proposed models involved additional information that may require conducting different
types of data collection. Also, most models need higher market penetration rate or more

than a vehicle per cycle to provide adequate estimation. This is mainly because a
significant number of the estimation models utilized only queued vehicles. However, the
state of motion in non-queued vehicles, particularly slowed-down vehicles, provides
much information about the traffic characteristics. There is a lack of exploiting the
information from slowed-down vehicles in identifying the last queued vehicle to improve
the estimation models. The importance of this work is to propose a cycle-by-cycle queue
length and traffic volume estimation models by utilizing the slowed-down vehicles. It

proposes a sophisticated model to estimate the queue length and traffic volume from

vi



connected vehicles with low market penetration rate (MPR) by utilizing shockwave
theory and deep learning technique (artificial neural network). The work starts with
establishing a relationship between the slowed-down vehicles and last queued vehicles
based on shockwave theory and traffic flow dynamics. Then, the queue estimation
algorithm is modeled based on the capacity state and deep learning technique. The traffic
volume algorithm modeled is based on the queue length information. Four experiments
were conducted to investigate the performance of the queue length and traffic volume
estimation models on dataset from simulation environment and real-world data. The
queue length results of the simulation experiment demonstrated an adequate mean
absolute percentage error (MAPE) of 13.44%, which means an accuracy of 86.56%. The
highest MAPE was 19.16% (80.84% accuracy) and the lowest was 7.36% (92.64%). The
results of the queue length algorithm applied on real-world data demonstrated an MAPE
0f'21.97% (78.03% accuracy). The performance of the traffic volume algorithm on
simulation data demonstrated an excellent MAPE of 11.8% (88.2% accuracy). The
performance of the algorithm based on real-world data from demonstrated an MAPE of
23.57% (76.43% accuracy). Although the previous models can provide similar accuracy
rates, they require higher MPR. With the low MPR of 10%, the proposed models
revealed an adequate estimation accuracy of the cycle-by-cycle queue length and traffic

volume.
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CHAPTER I: INTRODUCTION

The estimation of queue length and traffic volume are essential inputs for
optimizing the traffic signal timing and evaluating other traffic signal measurements. The
conventional methods of estimating queue length and traffic volume mainly require other
traffic flow characteristics such as previous traffic volumes and speed acquired from
physical sensors such as loop detectors, radar, and video cameras (Liu et al., 2009;
Sharma et al., 2007; Skabardonis & Geroliminis, 2008; Vigos et al., 2008). The
information from devices with global positioning system (GPS) devices provides the
chance to use the data in terms of time and location in the estimation of many traffic
characteristics. Some smartphone applications record vehicle positions every 0.1 second,
which improves the accuracy of the estimation models (Zhang et al., 2020). The recent
advancements in communication in terms of Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) has provided a great opportunity to utilize the trajectory data of
connected vehicles (CVs) as probe vehicles. In other words, trajectory data of CVs is
represented in time and distance, and it can be used to recognize the spatial-temporal
characteristics of the traffic. This new method is a promising solution as it provides a
cost-effective advantage of queue length and traffic volume estimation without the need

of installing additional devices at the signalized intersections.



Some of the proposed models provide adequate queue length and traffic volume
estimations when there is a sufficient market penetration rate (Cheng et al., 2012;
Tiaprasert et al., 2015; Zhang et al., 2019). However, when the market penetration rate is
realistically low, the models show instability and inaccuracy, which makes the
implementation of the models in the near future potentially unattainable. Other models
demonstrate a good queue length or traffic volume accuracy with lower market
penetration rate (Hao et al., 2013; Tan et al., 2021). Nevertheless, the main limitation of
the models is the requirement of market penetration rate as an input in the models along
with the information from the adjacent intersections, which requires more data
collections. Some other models can estimate the queue length or traffic volume with a
low market penetration rate yielding an improved accuracy (Tan et al., 2021; Wang et al.,
2020; Zheng et al., 2019). Yet, the models lack independency as they require additional
information of some intersection parameters such as shockwave speed and free-flow
speed, which limits the estimation model to intersections where data collection has been
previously conducted. Furthermore, all other previous studies rarely utilize the
information from non-queued vehicles in their models (Tan et al., 2021), which limits the
state of motion in non-queued vehicles includes slowed-down vehicles that provide much
information about the traffic characteristics. A major advantage of the slowed-down
vehicle is the proximity of the last queued vehicle, which is a key element as it states the
boundary of the queue length and the traffic flow during red time. Therefore, estimating
the last queued vehicle through the slowed-down vehicles can improve the accuracy of

the queue length and traffic volume estimation.



There is a lack of research that establishes the relationship between the slowed-
down vehicles and the last queued vehicles and integrates it in traffic volume estimation
model. Based on the traffic flow dynamics, vehicles slow down approaching the
signalized intersection when the shockwave is still dissipating. The slowed-down
vehicles join the moving queue in the capacity state where the queued vehicles are
increasing their speed in a particular pattern. The spatiotemporal speed distribution of the
queued vehicles in the capacity state can be modeled to identify the last queued vehicle
from the time, distance, and speed of the slowed-down vehicles. Based on a prior
sampled trajectory data with the traffic signal information only, a deep learning technique
(artificial neural network) is utilized to obtain queue length and traffic volume estimation
model. After that, the real-time trajectory data of each cycle can be implemented in the

trained algorithm to estimate the traffic volume.

1.1. Research Gap and Motivation

Based on the shortcomings in current models, the research gaps in queue length
and traffic volume estimation from connected vehicle data are highlighted as the
following:

e The requirement of additional information attained by conducting different types
of data collection,
e The need of higher market penetration rate or more than a vehicle per cycle to

provide adequate estimation, and



e The lack of exploiting the information from non-queued vehicles, particularly
slowed-down vehicles, in identifying the last queued vehicle and estimating the
queue length and traffic volume.

The motivation of this work is to fill the research gap by proposing sophisticated
queue length and traffic volume estimation algorithms that utilize slowed-down vehicles.
The algorithm relies on previous trajectory data as a training dataset without the need of
different types of data collection. In this novel technique, one slowed-down vehicle per
cycle can be enough to provide adequate queue length and traffic volume estimation by
utilizing shockwave theory and deep learning technique without the need of external

traffic parameters.

1.2. Contribution and Objectives

The contribution of this paper focuses on filling the research gap by proposing a
novel model that leverages slowed-down vehicles in identifying the position of the last
queued vehicle to eventually estimate the queue length and traffic volume. The proposed
model avoids external dependencies and relies on learning about the macroscopic
parameters (for the signalized intersections) and microscopic parameters (for the
vehicles) from a prior day of CV trajectory data. Thus, shockwave theory and deep
learning technique are utilized to incorporate macroscopic and microscopic parameters in
the estimation model. This method is adopted because the speed distribution of the queue
dissipation process in the capacity state can facilitate identifying the speed of the last

queued vehicle, therefore, demonstrating the position the last queued vehicle.



The training of data to learn from the prior dataset aims to predict the microscopic
and macroscopic characteristics of the traffic at the signalized intersection without the
need of interpretation. The learning in artificial neural network (ANN) meets the
prediction requirement in this work beside the fact that its learning curve might include
different local minima and might converge to different non-nested sequential
architectures (Ripley, 1996). These advantages make ANN more flexible than other deep
learning techniques and encourage applying it in the training, testing, and validating in
the estimation process.

By considering the research gap and the unique contribution of this work, the

objectives of this paper are summarized as the following:

¢ Objective 1: Establishing a relationship between the slowed-down vehicle and
last queued vehicle based on shockwave theory and the capacity state,

e Objective 2: Utilizing only a prior dataset and a deep learning technique to
identify the last queued vehicle information based on the slowed-down vehicle,

e Objective 3: Proposing a queue length estimation algorithm based on lower
market penetration rates., and

e Objective 4: Developing a traffic volume estimation algorithm considering the

queue length estimation model.

1.3. Dissertation Organization

To address the research gaps and achieve the objectives of this dissertation, the

rest of the manuscript is organized as the following:



Chapter II: highlights the literature review of the research related to queue length
and traffic volume estimation from trajectory data,

Chapter I1I: establishes the theoretical relationship between the slowed-down
vehicle and last queued vehicle based on shockwave theory and the capacity state,
Chapter IV: enhances the relationship between the slowed-down vehicle and last
queued vehicle with empirical evidence from the data,

Chapter V: describes the methodology of the queue length and traffic volume
estimation. Algorithms based on deep learning techniques,

Chapter VI: reveals the results and analyzes the performance of the queue length
and traffic volume estimation algorithms based on the simulation and real-world
experiments,

Chapter VII: draws the conclusions from the experiments and highlights the

findings to make the recommendations from the dissertation



CHAPTER II: LITERATURE REVIEW

The estimation of queue length at signalized intersections from trajectory data was
introduced as a cutting-edge solution by using different algorithms. Early works in the
area started to develop a real-time queue length estimation using trajectory data from CV
with the demand of a sufficient percentage of trajectory data (Tan et al., 2021). Since
then, the area of queue length estimation has evolved to consider lower market
penetration rate (MPR) with relatively higher accuracy. Among early works Skabardonis
and Geroliminis (2008), and Vigos et al. (2008), and Liu et al. (2009) developed real-time
models of queue length estimation. Since then, there has been a growing attention to the
estimating of queue length from connected vehicle data for real-time purposes during the
last decade. Almost all works follow either a deterministic or a stochastic approach to

estimate the queue length.

2.1. Queue Length and Traffic Volume Estimation

Deterministic methods are mostly built on traffic flow theories by using direct
mathematical relationship to estimate the queue length. Ban et al. (2011), Hao and Ban
(2015), Liu et al. (2009), Wang et al. (2019), and Wang et al. (2017) determined the
shockwave profile to estimate queue length through stochastic approaches that use travel

times from connected vehicle trajectory data.



Among the notable works, Cheng et al. (2012), Ramezani and Geroliminis (2015), Li
et al. (2017), Yin et al. (2018), and Zheng et al. (2019) utilized shockwave theory in
terms of dissipation and forming queues to identify the critical trajectory points of joining
and leaving the queue. However, those deterministic methods are capable of providing
decent queue length estimations only when there is a sufficient trajectory sample. For
example, there is a need of at least two queued probe vehicles to have a decent result
based on the mentioned studies.

The stochastic methods depend on probabilistic models to estimate the parameters
and the queue length of the cycle. Most of the stochastic models assumed a Poisson
distribution of vehicle arrivals and a conditional probability distribution utilized a
conditional probability distribution. Comert and Cetin (2011) and Comert (2013)
introduced an analytical model to estimate a cycle-by-cycle queue length by estimating
the arrival rate through probe vehicle proportion. Hao et al. (2013) and Hao and Ban
(2015) estimated a cycle-by-cycle queue length using a Bayesian network method that
utilizes the relationship between the forming, queuing, and dissipating positions of the
probe vehicles. Tiaprasert et al. (2015) proposed a mathematical model based on discrete
wave transform without the use of signal time information or traffic flow characteristics.
Liet al. (2017) introduced a queue length estimation model using flow rate and travel
time with the consideration of the queue spillover. The model was based on a
macroscopic model using a first-in-first-out concept to find the maximum queue length.
Rostami Shahrbabaki et al. (2018) proposed a fusion method using the data from a fixed
detector an earlier location of the traffic signal approach and the data from connected

vehicles. The study modeled a nonlinear function that uses the information from



connected vehicles to identify the number of vehicles in the queue. Zhao et al. (2019)
established a queue length distribution model using Bayes theory through analyzing the
statistical distribution of the position of queued vehicles. By using the distribution of the
traffic flow and the market penetration rate, the mentioned studies could provide reliable
estimation results. However, those methods face the challenge of verifying the arrival
distribution by empirical data collection and the difficulty of obtaining the market
penetration rate of probe vehicles. These two points are considered as the main

limitations of both the stochastic and the deterministic methods.

2.2. Traffic Flow Theory

Traffic flow models in terms of shockwave theory and car-following models have
been widely considered in the estimation of the traffic characteristic. The need of traffic
flow models is explained by the essential role of understanding the nature of traffic flow
and the behavior of drivers. The effect of traffic flow theory has been applied directly or
indirectly in the estimation or modeling of traffic characteristics.

Shockwave theory was introduced by Lighthill and Whitham (1955) and adopted
in traffic theory by Richards (1956). Since then, researchers in transportation engineering
started to utilize shockwave theory in different applications of transportation network
(Ban et al., 2011; Liu et al., 2009; Michalopoulos et al., 1981; Skabardonis &
Geroliminis, 2008; Wu & Liu, 2011; Wu et al., 2011). Among the earliest work about
utilizing shockwave theory were Cheng et al. (2012), Cheng et al. (2011), and Ramezani
and Geroliminis (2015). A recent work by proposed a queue profile estimation model

based on the spatiotemporal propagation of shockwaves (Wang et al., 2020).
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Car-following model is necessary to understand the longitudinal behavior of
vehicles in the traffic flow. One of the first recognized works in car-following models
was introduced by Newell (1961). A significant amount of research followed to explain
the car-following behavior to achieve more realistic modeling of the traffic flow
(Addison & Low, 1998; Brackstone & McDonald, 1999; Gipps, 1981; Lenz et al., 1999;
Newell, 1965; Sharma et al., 2007; Vigos et al., 2008; Zhang & Kim, 2005). The car-
following models are influenced by factors different based on the site specifications and
driving behavior. An important factor is the discharge headway as it directly affects the
parameters of the car-following model (Akgelik & Besley, 2002; Al-Ghamdi, 1999; Hung
et al., 2003; Lin & Thomas, 2005; Radhakrishnan & Ramadurai, 2015; Shao & Liu,
2012; Tong & Hung, 2002)

Understanding the behavior of traffic flow has extended to understand the
behavior of drivers approaching the signalized intersection and its relation to the
macroscopic diagram including queue length (Al-Ghamdi, 1999; Dion et al., 2004; Sheffi
& Mahmassani, 1981; Viloria et al., 2000; Yeo & Skabardonis, 2009). Other works
attempted to study the relation between signalized intersections and the fundamental
traffic diagrams (Kerner et al., 2006; Miihlich et al., 2015; Othayoth & Rao, 2020; Yuan
et al., 2017). A good number of studies focused on the queue discharge at signalized
intersections and its relation to the traffic capacity (Fourati & Friedrich, 2019, 2021; Li et

al., 2017; Liu et al., 2009; Wu & Liu, 2011; Yin et al., 2018; Yuan et al., 2017).

10



2.3. Deep Learning

The estimation models of traffic flow characteristics started to utilize machine
learning and deep learning techniques about two decades ago. The main advantage of
data mining models is their capacity in capturing non-linear temporal correlations. A
significant amount of research applied machine learning and deep learning in the
application of traffic characteristics (Koesdwiady et al., 2016; Lv et al., 2015; Polson &
Sokolov, 2017; Wu et al., 2018; Zhang et al., 2019). Support Vector Regression (SVR) is
among the first data mining models utilized in the estimation of the traffic flow
characteristics such as traffic flow prediction (AiLing et al., 2002; Yang et al., 2014;
Zhang & Xie, 2007), travel time prediction (Chun-Hsin et al., 2004), and traffic speed
prediction (Vanajakshi & Rilett, 2004; Wang & Shi, 2013).

The ability of deep learning techniques in modeling complex non-linear relationships
invited researchers to utilize and different deep learning techniques in traffic flow
estimations. Conventional neural network (CNN) is able to capture the local
dependencies of traffic data and it is known to be less sensitive to noise in traffic (Li et
al., 2020). In another traffic flow application, Song et al. (2017) proposed a speed
prediction model based on CNN and Multi-Layer Perceptron (MLP) models. The
comparison revealed that CNN demonstrated higher prediction accuracy than MLP. Ma
et al. (2017) introduced a speed prediction model utilizing CNN model for a large-scale
transportation network. The model revealed a good accuracy in predicting traffic speed

for the long term. Another work by Ke et al. (2020) explored the use of CNN in the
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prediction of traffic speed based on the correlation between spatiotemporal dimension
and traffic volume.

More recently, deep learning techniques have been widely applied in the estimation
of traffic characteristics with promising results (Mahmoud et al., 2021, 2022). Among the
greatest advantages of deep learning is the flexibility that makes them able to model
nonlinearity and distinguish the spatiotemporal features within the traffic flow. There are
various versions of neural network based on the structure and the properties such as input
cell, hidden cell, recurrent cell, and kernel. Some studies compared different types of
neural networks in applications related to the traffic flow on freeways and found that
Bayesian Combined Neural Network (BCNN) demonstrated better performance than the
single neural network models (NN) and Radial Basis Function Neural Networks
(RBFNN) in terms of accuracy (Zheng et al., 2006; Zhu et al., 2014). Another deep
learning technique that has been frequently utilized is Long Short-Term Memory (LSTM)
in estimating short-term traffic parameters such as cycle-by-cycle traffic volume and
queue length (Cui et al., 2020; Mahmoud et al., 2021). Different types of neural network
such as Convolutional Neural Network (CNN) have been developed to estimate traffic
volume at signalized intersections (Zhang et al., 2019; Zhao et al., 2020; Zheng et al.,

2019).

2.4. Summary of Chapter 11

For queue length estimation, recent works such as Yao and Tang (2019), Mei et al.
(2019), Wang et al. (2020), and Tan et al. (2021) proposed models with relatively

improved accuracy. However, the current models face some challenges from two main
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aspects including the need of additional information about the traffic flow characteristics
and the requirement of more than one sampled vehicle per cycle to achieve a decent
accuracy. The additional information is not always available, and it may require data
collection in some cases. In fact, the need of market penetration rate opened another
stream of research to estimate the market penetration rate (Wong et al., 2019; Zhao et al.,
2019). This demand of additional information increases the internal and external
dependencies of the queue estimation models. Also, the other aspect of requiring more
than one sampled vehicle limits the applicability of the queue estimation models.
Therefore, there is a plenty of room for improvement to estimate queue length without
external dependency and without the need of more than one sampled vehicle. Zhao et al.
(2021) proposed a queue estimation algorithm based on hidden Markov model that
utilizes the stopping positions only. Their proposed model considered using 20% of
market penetration rate without testing other reasonable rates assuming a constant traffic
pattern.

From the literature review of all related works of queue length and traffic volume
estimation from sampled trajectory data in connected vehicle environment based on
traffic theory, the findings can be summarized as the following:

e There is a lack of independency as the current models require some intersection
parameters that might need other types of data collection from the site such as
shockwave speed and free-flow speed. This gap limits the use of current
estimation models to the intersections where in-site data collection has been

previously conducted.
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All the previous works classified vehicles into queued vehicles and non-queued
vehicles only. In such classification, the queue length estimation models mainly
utilize the queued vehicles only, while the non-queued vehicles are used as a
boundary for the model.

There is a lack of utilizing the information from slowed-down vehicles to estimate
the queue length. The uniqueness of this work is utilizing the information of

slowed-down vehicle to identify the last queued vehicle.
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CHAPTER III: THE DYNAMICS OF TRAFFIC FLOW AT

THE SHOCKWAVE DISSIPATION

Most research classifies the traffic flow into stopping (queueing) vehicles and
passing vehicles to estimate the traffic characteristics (i.e., traffic volume and queue
length). At isolated intersections, a vehicle approaches the intersection with three main
possible scenarios:

o Free-flow state (the signal is green, and the queue has already dissipated),

e Jam state (the signal is red, and all vehicles are queued), or

e Capacity state (the signal is green, and the queue is dissipating).

Figure 3.1 displays the trajectories of vehicles approaching the traffic signal in
Case A, Case B, and Case C. The vehicles are supposed to approach the intersection
within the speed limit, which is known as the free-flow state. When the vehicles arrive to
the intersection, they will either continue in Case A (pass the intersection within the
speed limit), get into Case B (stop at the traffic signal), or get into Case C (slow down
and join the dissipating queue). Case C provides the most valuable information about the
traffic characteristics that is worth utilizing. Here, Case C is called a capacity state which
includes the saturation state and its transition state as identified by Fourati and Friedrich

(2021).
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Figure 3.1 The Traffic State During Shockwave Propagation and Dissipation

3.1. The Characteristics of Different Traffic States

The change of vehicles from Case A to Case B provides information about the
speed of shockwave propagation (queue formation). However, in a sampled trajectory
data with limited market penetration rate, a single queued vehicle does not provide
adequate information about the queue formation. On the other hand, a single vehicle that
changes from Case A to Case C can provide information about the speed of the

shockwave dissipation (queue dissipation), and it can also assist in finding the queue
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length and the traffic volume, which is the merit of this work.
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Figure 3.2 The Speed Distribution During Shockwave Propagation and Dissipation
3.1.1. The Queue Dissipation Process

By looking at Figure 3.2, the queue dissipation process begins when the traffic
signal turns to green while the speed is zero, and the process of dissipating continues to
increase the speed to reach a free-flow speed. In this capacity state (Case C), the
sequential departure of vehicles makes the flow saturated, creating a particular follow
pattern. In Case B, however, the queue formation follows random patterns due to the
random arrival of vehicles. When a vehicle in Case A (free-flow speed) approaches the
signalized intersection while the queue is dissipating, the vehicle has to slow down to join
the moving queue in the capacity state (Case C). The time, distance, and speed of the
slowed-down vehicle can help estimate the stopping position of the last queued vehicle.

Finding the stopping position of the last queued vehicle is the most critical piece of
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information in identifying the queue length and then the traffic volume. As Figure 3.2
shows, the slope in red formed by the queued vehicles creates the shockwave formation
speed (w,4p) based on the arrival rate. The slope in green formed by the first move of
vehicles creates the shockwave dissipation speed (wg), which is almost constant in most
cases. The slope in yellow formed by the slowed-down vehicles creates the forward-
moving shockwave speed (w,¢) based on the arrival rate. The significance of the capacity
state (Case C) is seen in its ability to connect between the slowed-down vehicles and the
last queued vehicle. The information about the capacity state can be obtained from the
prior data, while the slowed-down vehicle is obtained from the real-time data of the

cycle.

3.1.2. The Queue Dissipation in Relation to the Traffic Flow

The purpose of discussing the different traffic states of the shockwave diagram is
to relate the shockwave dissipation. Therefore, it is important to connect the shockwave
formation and dissipation with the traffic flow. To visualize this relationship, the

following figure is plotted.
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Figure 3.3 Vehicle Classifications and Traffic States on the Fundamental Diagram

(Flow Vs Density)

As shown in Figure 3.3, wy is the slope between Case A and Case C in terms of
flow and density, which both are missing in sampled trajectory data. Since wg is
relatively constant and the capacity of the intersection is constant as well, the last queued
vehicle is following the same departure pattern, which means its speed can indicate its
stopping position (the queue length). Moreover, the speed of the slowing down vehicle is
related to the speed of the last queued vehicle at Case C based on car-following model.
Utilizing all these pieces of information from speed distribution at the capacity state and
the slowing down vehicle can lead to an estimate of the stopping position of the last
queued vehicle, which represents the queue length. Technically, the furthest (maximum)
position of a queued vehicle (pgy) from the stop bar equals the queue length (L) as the

following:
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Lo = max (pgy) 3.1

The relationship between queue length and traffic volume is influenced by the
waiting time based on Little’s Law (Little, 1961). According to Little’s Law, the general

relationship is described as the following:

Lo=q X t, (3.2)

3.2. Slowed-down Vehicles and the Last Queued Vehicle

To understand the interactions between the slowed-down vehicle and the last
queued vehicle, the interaction between the two vehicles needs to be established in a
microscopic level and macroscopic level. The microscopic interaction is illustrated by the
car-following model and the macroscopic interaction is influenced by the traffic state,

particularly the queue dissipation.

3.2.1. The Microscopic Interaction in Terms of Car-Following

Model

The relationship between the slowed-down vehicle and the last queued vehicle
can be described by a car-following model. Most car-following models share certain
principles about headway and speed. The slowed-down vehicle (the following vehicle)

reacts according to the queued vehicle (the leading vehicle) based on the traffic flow
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dynamics. By taking into consideration Newell’s car-following model (Newell, 1965),

the speed of the slowed-down vehicle when it joins the dissipating queue follows:

vsp = min (vg,2) (3.3)

3.2.2. The Macroscopic Interaction in Terms of the Speed at the

Capacity State

Based on Equation (3.3), the speed of the slowed-down vehicle will be correlated
with the speed of the last queued vehicle as illustrated in Figure 3.4. The speed of the
vehicles in the capacity state is called speed distribution with spatiotemporal
consideration. The speed distribution considers the time and distance in the capacity state
by obtaining the speed of the queued vehicles as they move from jam state (their stopping
positions) to the capacity state (shockwave dissipation). Figure 3.4 shows the interaction
between slowed-down vehicles and the queued vehicles with the spatiotemporal speed

distribution in the capacity state (Case C).
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Figure 3.4 The Interactions Between Slowed-down Vehicle and Queued Vehicles in

the Capacity State

The first slowed-down vehicle in Figure 3.4 (the one to the left) joined the queue
at a spatiotemporal cell closer to the queued vehicle. The speed at this cell is
approximately equal to the speed of the queued vehicle. Therefore, uniform speed

distribution at the capacity state represents the minimum speed of the last queued vehicle:

Vov = Vcs (3 4)

Figure 3.4 also shows a second slowed-down vehicle (to the right) that was
extremely distant from the last queued vehicle that approaches the stop bar. This ultimate

example justifies the use of the stop bar as the maximum speed of the queued vehicle:

Vov < Vsp (3.5
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The jam state at the signalized intersection forces approaching vehicles to slow
down even when the signal is green due to the required time for the shockwave to
dissipate. That means when slowed-down vehicles approach the moving queue, the free-
flow speed will be higher than the speed of the queued vehicles. The increase of the
speed of the moving queue during the queue dissipation process means the slowed-down
vehicles will increase their speed as well. Therefore, the lowest speed of the slowed-

down vehicle will be considered as the moment of joining the moving queue.

3.3. Summary of Chapter III

From the theoretical basis discussed in this chapter, the findings of this chapter
can be summarized as the following:
e The queue dissipation and capacity state have a uniform pattern in terms of time,
space, and speed,
e The speed of queued vehicles increases with the increase of the green time until
the last queued vehicle,
e The slowed-down vehicle interacts with the last queued vehicle based on the car-

following model
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CHAPTER IV: THE OBSERVATIONAL

CHARACTERISTICS OF VEHICLE CLASSIFICATIONS

The role of the prior data is to find the characteristics of the capacity state at the
signalized intersection. The speed distribution of the queued vehicles can identify the
spatiotemporal propagation and dissipation of the shockwave. This helps to recognize the
boundaries of the capacity state and to understand the relation between the queued

vehicles and the slowed-down vehicles.

4.1. The Macroscopic Description of the Shockwave

Figures 4.1, 4.2, 4.3, and 4.4 plot the trajectory data of one day from 7 am to 7 pm
based on the time, distance, and speed of all vehicles and sampled vehicles. The red line
in Figure 4.1 shows the dissipation shockwave speed, and the red shades displays the
speed pattern at the capacity state (Case C) based on the entire trajectories of the queued
vehicles (100%). The same details about the intersection are still visible in Figure 4.2

from queued vehicles with only a sampled trajectory data (10% only).
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Figure 4.1 The Macroscopic Shockwave Based on the Spatiotemporal Speed
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Figures 4.3 and 4.4 plot the speed distribution of slowed-down vehicles. The
slowed-down vehicle in Figure 4.3 shaped the dissipation shockwave speed (the red
slope) due to the relation between the slowed-down vehicles and the queued vehicles.
The same details were visible by using a sampled trajectory data (10% only) of the
slowed-down vehicles as shown in Figure 4.4. This example from the data establishes
empirical evidence of the relation between slowed-down vehicles and the queued
vehicles as well as the ability of time, distance, and speed to identify the shockwave

propagation and dissipation.
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Figure 4.4 The Macroscopic Shockwave Based on the Spatiotemporal Speed

Distribution of Slowed-down Vehicles (10%)

4.2. The Interactions Between the Slowed-down Vehicle and the

Last Queued Vehicle

Figures 4.5 to 4.10 illustrate empirical evidence of the relationship between the
shockwave characteristics, queued vehicles, and slowed-down vehicles. They show the
time and position of the first stop of the queued vehicles, the first move of the queued
vehicles, and the least speed of the slowed-down vehicles. The backgrounds of the
figures are the speed distribution from Figures 4.1 and 4.2 to emphasize the relationship
between the shockwave characteristics and the vehicle classifications.

Figures 4.5 to 4.7 are plotted with 100% of the trajectory data, while Figures 4.8

to 4.10 are plotted with only 10% of the trajectory data. The red points in Figure 4.5 are
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the first stops of the queued vehicles at the signalized intersection. The red points shaped
the jam state (Case B) as Figure 4.5 shows. The green points in Figure 4.6 are the first
move of the queued vehicles at the signalized intersection. The green points shaped the
dissipation shockwave speed, which is the transition between the jam state (Case B) and
the capacity state (Case C) as illustrated in Figure 4.6. It is worth mentioning that the
dissipation shockwave speed has a very uniform pattern due to the nature of queue
dissipation when vehicles are moving in a repeated sequence. The yellow points in Figure
4.7 are the least speed of the slowed-down vehicles when they are joining the moving
queue. The yellow points are scattered in the capacity state (Case C) closer to the
shockwave dissipation slope. This finding enhances the relationship between the slowed-

down vehicles and the queued vehicles based on the shockwave analysis.
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Figure 4.7 The Macroscopic Shockwave based on the Speed Distribution with the

Least Speed of the Slowed-down Vehicles (100%)

By looking at Figures 4.8 to 4.10, the same finding from Figures 4.5 to 4.7 can be
observed. The only difference is the intensity of red, green, and yellow points due to the
lower number of vehicles as a result of selecting a random sample of 10%. This enhances

the assumptions the sampled vehicles are able to capture the shockwave characteristics.
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Figure 4.10 The Macroscopic Shockwave based on the Speed Distribution with the

Least Speed of the Slowed-down Vehicles (10%)

To enhance the findings from Figures 4.6, 4.7, 4.9, and 4.10 about the relationship
between the queued vehicles and the slowed-down vehicles based on the shockwave
dissipation, the regressions of vehicle time and position are plotted in Figures 4.11 and
4,12. By looking at Figure 4.11, the linear regression of the departure of the queued
vehicles represents the shockwave dissipation speed (slope) with a very high R-squared
value of 0.99. The linear regression from the last queued vehicles shaped a similar slope
with a relatively high R-squared value of 0.76. Figure 4.11 was plotted using the entire
data (100%). The same findings are illustrated by Figure 4.12 based on the sampled

trajectory data (10%).

34



20

E
i
o
m 15 -
g £
n -y
o
8 10 ‘g
c
=
2
Q poAO2Ex e 42004 | ‘ ; 5

R« 09009

e
R‘=07024 i
0 10 20 30 40 50 60 70 80 90 100 110 120
Time Since the Cycle Starts (sec)
»»w= Tha First Move of 3 Queued Vehicle (100%) Tha Least Speed of A Slowad-cown Vahicle (100%)

Figure 4.11 The Regression of the Departure of the Queued Vehicles and the

Slowed-down Vehicles (100%)

35



(=

& 8 8§ B8
Speed (m/s)

-
o

Distance to Stop Bar (m)

115
100 :
120 . 14
y = £.0068x » 430,70 :
140 R'= 08852 5
160 il ,
0

0 10 20 30 40 50 60 70 80 90 100 110 120
Time Since the Cycle Starts (sec)

w=ws The First Move of a Quaued Vehicle (100%) Tha Least Speed of A Sliowad-gown Vahicle (100%)

Figure 4.12 The Regression of the Departure of the Queued Vehicles and the

Slowed-down Vehicles (10%)

Identifying the moment when a slowed-down vehicle joins the moving queue (the
capacity state) is related to the vehicle’s speed and acceleration behavior. Since the
general behavior of queued vehicles at the capacity state is governed by the acceleration
activity to increase the speed after stopping, a slowed-down vehicle decelerates from
free-flow speed until joining the moving queue when it starts to accelerate as other
queued vehicles in the capacity state. Figure 4.13 illustrates the trajectory data of a
typical cycle with queued vehicles, slowed-down vehicles, and a passing vehicle (free-

flow speed).
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Shockwave Propagation from Trajectories
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Figure 4.13 The Shockwave Based with Speed on the Time-Space Diagram of One

Cycle

The lowest speed of the slowed-down vehicles exists nearby the moving queue
before they started to accelerate and increase the speed. Figures 4.14 and 4.15 display the
lowest speed of the slowed-down vehicles (SD) in relation to the last queued vehicle in
terms of time and distance, respectively. In this example, the lowest speed of all the three
slowed-down vehicles happened when the joined the moving queue (in the capacity state)
before they started to increase the speed. It is also clear that there is a spatiotemporal
proximity between the slowed-down vehicles and last queued vehicle as shown in Figure

4.14 in terms of time proximity and Figure 4.15 in terms of space proximity.
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4.3. Queued Vehicle Characteristics during Shockwave

Dissipation

There is no expected relationship between the arrival time of the queued vehicles
and their speed at the stop bar. The disassociation is related to the inconsistent arriving
pattern of vehicles to the signalized intersection. As Figure 4.16 shows, the time of
joining the queue by the vehicles and their speed at the stop bar illustrates scattered
points along the X and Y axis. On the other hand, there is an expected relationship

between the departure time of the queued vehicles and their speed at the stop bar. The
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correlation is based on the expected queue dissipation pattern when the traffic signal is
green. By looking at Figure 4.17, the departure time of the queued vehicles and their
speed at the stop bar indicates a logarithmic pattern along the X and Y axis. The same
logarithmic pattern is expected from the relation between the position of the queued
vehicles and their speed at the stop bar. Figure 4.18 plots the position of the queued
vehicles and their speed at the stop bar, which indicates almost an identical pattern that
was found in Figure 4.17. This is justified by the high correlation between the queue

position and the departure time of the queued vehicles.

" Stopping Time Vs Stop Bar Speed

- n
" (=]

Spead at Stop Bar (m/s)
=

0 20 40 60 80 100 120
Time of Joining the Queue (Sec)

Figure 4.16 The Time of the First Stop of the Queued Vehicles and the Speed at the

Stop Bar
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Figure 4.17 The Time of the First Move of the Queued Vehicles and the Speed at the

Stop Bar
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Stopping Position Vs Stop Bar Speed
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Figure 4.18 The Stopping Position of the Queued Vehicles and the Speed at the Stop

Bar

Based on Figure 4.17 and 4.18, the stopping position, the departure time, and the
speed at the stop bar have a clear relationship. Therefore, Figure 4.19 is plotted to explore
the relationship between the stopping position, the departure time, and the speed at the
stop bar in one graph. By looking at Figure 4.19, the three variables are highly correlated

due to the nature of queue dissipation process, as mentioned earlier.
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Stopping Position, Departure Time, and Stop Bar Speed
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Figure 4.19 The Relationship between Stopping Position, Departure Time, and the

Speed at the Stop Bar

4.4. Slowed-down Vehicle Interactions with Queue Length and

Traffic Volume

The least speed of the slowed-down vehicles is considered in this work as the
moment of joining the moving queue and the key of estimating the traffic volume.
Figures 4.20 to 4.23 explore the relationship of the slowed-down vehicle characteristics
int terms of time, distance, and speed with other factors such as queued vehicle speed,
queue length, and traffic volume. Figure 4.20 shows the least speed of the slowed-down

vehicles on the time-space diagram. The lowest speed (dark blue) aligns with queued
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vehicle departure found in Figure 4.19. When shorter queues exist, the least speed of the
slowed-down vehicles increase as a result of the faster queue dissipation process. Figure
4.21 shows the speed difference between the slowed-down vehicle and the queued
vehicle. The negative speed difference indicates a higher speed of the slowed-down
vehicles than the queued vehicle. There are multiple cases of negative speed difference
that happened way before the slope of the shockwave dissipation (upper left of the

figure), which are treated as outliers.
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Figure 4.20 The Interactions between the Time, Position, and Least Speed of the

Slowed-down Vehicles
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Slowed-Down Vehicles Vs Queued Vehicles
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Figure 4.21 The Interactions between the Time, Position, and Speed Difference of

the Slowed-down Vehicles and the Last Queued Vehicles

To investigate the relationship between the slowed-down vehicle characteristics
and the queue length and traffic volume, Figures 4.22 and 4.23 are plotted, respectively.
Figure 4.22 indicates clear effects of the least speed, time, and distance of the slowed-
down vehicles on the queue length. The same effect is visible on the traffic volume as
shown in Figure 4.23. This is another empirical evidence of the of the relationship
between the slowed-down vehicle and the last queued vehicle in identifying the traffic

flow characteristics.
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Slowed-down Vehicles and Queue Length
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Figure 4.22 The Interactions between the Time, Position, Least Speed of the Slowed-

down Vehicles, and the Queue Length
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Slowed-down Vehicles and Traffic Volume
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Figure 4.23 The Interactions between the Time, Position, Least Speed of the Slowed-

down Vehicles, and the Queue Length

4.5. The Relationship between Queue Length and Traffic

Volume

The influence of the slowed-down vehicles on the queue length is justified earlier
as there is a relationship with the last queued vehicle. The effect of the slowed-down
vehicles on the traffic volume is justified by the high correlation between the queue
length and the traffic volume. If a signalized intersection has the same arrival distribution

and the same red time, the increase of traffic volume will increase the queue length.
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Figure 4.24 plots the queue length and the traffic volume for more than 60 cycles. The
figure illustrates a high level of correlation between the two key flow characteristics,
which justifies the utilization of the slowed-down vehicles and queue length in estimating

the traffic volume as will be described in the following sections.

Traffic Volume and Queue Length
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Figure 4.24 The Empirical Relationship between Queue length and Traffic Volume

4.6. Summary of Chapter IV

From the empirical indications discussed in this chapter, the findings of this
chapter can be summarized as the following:

e The macroscopic shockwave can be illustrated by the speed distribution based on

a sampled trajectory data,
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There is a relationship between the slowed-down vehicles and the last queued
vehicles around the dissipation shockwave based on the macroscopic shockwave,
There is a spatiotemporal proximity between the slowed-down vehicles and the
last queued vehicles from the empirical cycle results,

The departure time and the distance to the stop bar are associated with the speed
at the stop bar,

The speed of the queued vehicles at the stop bar increase with the increase of the
green time,

The least speed of the slowed-down vehicles is correlated with the green time and
distance,

The least speed of the slowed-down vehicles is associated with the queue length
and the traffic volume,

At the same signalized intersection, there is a correlation between the queue

length and the traffic volume.
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CHAPTER V: THE ESTIMATION MODELS BASED ON

DEEP LEARNING

Utilizing the prior data (at least one day) provides valuable information about the
traffic characteristics during different patterns at the signalized intersection. This dataset
is a sample of the traffic flow at the site of interest, and the percentage of the sampled
vehicles is based on the market penetration rate. The major training models that lead to
the queue length estimation are:

e Speed at the stop bar,

e Speed at the capacity state, and

¢ Queue position.

The traffic volume is calculated based on the flow rate during the red time. With
the increase of each time interval, the speed at the stop bar in the capacity state area
increases due to the queue departure process. With the fact that the time headway at the
stop bar decreases with the increase of green time, the traffic flow and the speed of
vehicles increase with time as well. Flow has an inverse relationship with the headway

and a direct relationship with speed and density as the following:

np _ om0 1
e Tl L (5.1)
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Therefore, the increase of speed at the stop bar with time can be utilized as the
maximum limit of the speed of queued vehicles and, eventually, can be integrated in the
queue estimation algorithm as will be described in the following sections.

Assuming a uniform acceleration behavior, the speed of the queued vehicle at the
stop bar indicates its stopping position. Based on the relationship between speed,
distance, and time, the stopping position of the queued vehicle can be obtained as the

following:

Pov = VUsp X tpy (5.2)

Also, the time since the first move and the speed at the capacity state indicates the

stopping position of the queued vehicle:

Pov = Vov X Unm (5.3)

The time since the first move of the queued vehicle is related to the vehicle

sequence at the queue and the time since the green time started:

t, = te— t; (5.4)

The queue position is the sum of the moving distance from the stopping position

and the distance to the stop bar:
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Pov = dm + dsp (5.5)

In fact, the speed of the queued vehicle since its first move can indicate its

stopping position:

vy = 1% (5.6)

5.1.1. Speed at the Stop Bar

The stop bar represents the limit of the capacity state (Case C) as appears in
Figure 4. The speed of the queued vehicles at the stop bar can be estimated based on the
green time by relying on the training dataset and deep learning techniques as the

following:

vsg = f(tc) (5.7)

5.1.2. Speed Distribution at the Capacity State

If the acceleration of vehicles and the sequence of moving are constant, the speed
at each combination of time and distance is constant too. This means the speed
distribution at the capacity state is a function of time and distance, which can be
represented in term of cells as appears in Figure 3.4 The increase of speed is associated

with the increase of time and distance. Modeling this relationship is influenced by the
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acceleration profile of the individual queued vehicles and their time sequence of moving.
Therefore, deep learning is utilized to estimate the speed distribution at the capacity state
based on all queued vehicles in the training dataset using the green time and distance to

the stop bar as the following:

Ves = f(te, dov) (5.8)

5.1.3. Identifying Queue Position

Due to the complexity of including different factors such as acceleration and
perception-reaction time, modeling the time of the first move based on the queue position
can be difficult to achieve. Therefore, deep learning techniques can be utilized to identify

the queue position (pgy) based on the green time and speed from the training data as the

following:

Pov = f(te vov) (5.9)

5.2. The Estimation of Queue Length from Cycle Data

When all models are trained from the prior data, from now on, the slowed-down
vehicles in the cyclic data can be implemented in the models to estimate the queue

position of the last queued vehicle (queue length).
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5.2.1. Speed of the Last Queued Vehicle

The time of the moment the slowed-down vehicle joins the moving queue will be

implemented in the training model of the stop bar speed (Equation 5.7):

vsg = f(tsp) (5.10)

The time and distance of the moment the slowed-down vehicle joins the moving
queue will be implemented in the training model of the speed distribution at the capacity

state:

Ves = f(tsp, dsp) (5.11)

The speed of the last queued vehicle needs to be estimated based on stop bar
speed and speed at the capacity state (speed distribution). Estimating the speed of the last

queued vehicle is described as the following:

Vegv = f (s, Vcs) (5.12)

Based on the mentioned speed limits stated in Equations (3.4) and (3.5), the speed
of last queued vehicle is a value between the speed distribution and the speed at the stop

bar as the following:

Ves < Vggv < Usp (5.13)
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The distance between the slowed-down vehicle and the last queued vehicle is
unattainable due to the variation in space headway and the possibility of having other
slowed-down vehicles between the consider slowed-down vehicle and the last queued
vehicle. Therefore, the estimated speed of the queued vehicle is modeled as the

following:

Vpoy = (5.14)

5.2.2. Final Queue Length Model

The time from the slowed-down vehicle and the estimated speed of the last
queued vehicle will be implemented in the training model of the queued vehicle position

as the following:

Lgg = f(tsp,dsp, Vegv) (5.15)

5.2.3. Final Traffic Volume Model

As Figure 4.22 showed, there is a high correlation between the queue length and
the traffic volume. The relationship between queue length and traffic volume is
influenced by the waiting time based on Little’s Law. According to Little’s Law, the
general relationship is described in Equation (3.2). To find the traffic volume, the

estimated queue length will be utilized to obtain the traffic flow for the period from the
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red time to the time when the slowed-down vehicle joined the dissipating queue. Since
the slowed-down vehicle is considered in the traffic flow, one more vehicle is added to

the queue length. The traffic flow is calculated as the following:

Lgo+1

qr = (5.16)
tsp

To compute the traffic volume per cycle, the traffic follow is multiplied by the

cycle time as the following:

5.3. The Process and Components of the Estimation

Algorithms

Figure 5.1 is the flowchart of estimating traffic volume, and it explains the
process in terms of data inputs, models, and outputs. The algorithm requires a prior
trajectory dataset with the traffic signal information of the intersection (without the need
of traffic volume nor queue length information). From the prior dataset, the queued
vehicle trajectories will be utilized to obtain three models including speed distribution
model, stop bar speed model, and queuing position model by using deep learning
technique (ANN). After that, the traffic volume of any future cycle can be estimated

through the trajectories of slowed-down vehicles.
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Figure 5.1 The Flowchart of the Estimation Algorithm of Queued Vehicles and

Traffic Volume

5.4. The Inputs and Output of the Algorithm

As the flowchart in Figure 5.1 shows, the training and testing datasets from the
prior data are utilized to find three essential models related to the speed distribution at the
capacity state, queuing position of vehicles from speed at the capacity state, and the speed

at the stop bar. The speed distribution model relies on the green time and the distance to
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the stop bar as inputs. The queuing position model is based on tracking the green time
and the speed of each queued vehicle at the capacity state with the stopping position
being constant for each vehicle. Table 5.1 summarizes the inputs and outputs of the
training models of the speed distribution and the queuing position. For the stop bar speed
model, the green time is the only influencing variable that has been used as an input in
the model due to the direct relationship between the green time and the speed at the stop

bar, which has been demonstrated earlier in the area (Lee & Chen, 1986).

Table 5.1 Training Models from Queued Vehicles

Speed Distribution Model Queuing Position Model
Input Output Input Output
Green Time (t;) Speed (v¢s) | Green Time (t;) | Queuing Position (pgy)
Distance to Stop Bar (dy) Speed (voy)

The slowed-down vehicle trajectories from the real-time cycle data will be
implemented in the three models. From the cycle data, the least speed of the slowed-
down vehicle and its corresponding green time and distance to stop bar will be used to
estimate the speed of the queued vehicle (vgqy) as per Equation (5.14). The estimated
value of v,y is then implemented in the queuing position model to estimate the queue

length. The validation model based on the slowed-down vehicles is summarized in Table

5.2.
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Table 5.2 Validation Models Using Slowed-down Vehicles

Validation (Speed Distribution) Validation (Estimated Queue Length)
Input Output | Input Output
Green Time (tgp) Speed Green Time (tgp) Queue Length
(Ves) (Lgg)
Distance to Stop Bar (dgp) Distance to Stop Bar (dgp)
Estimated Speed (vgqy)

The estimated queue length is the key in the finding the flow rate that eventually

leads to the traffic volume of the cycle as described in Equation (5.17).

5.5. Deep Learning Technique for the Estimation Models

Estimating a continuous output variable such as speed and stopping position can
be done through different types of deep leaning models. However, MLP, a type of ANN,
is suitable for estimation purposes rather than interpretation purposes. MLP is known as a
provider of an efficient representation of the characteristics of the data with high
accuracy and reasonable development time. The MLP was applied using the machine
learning software WEKA. The appendix includes information about the software and the

used MLP package.
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utput

Figure 5.2 The General Structure of ANN with Inputs, Outputs, and Hidden Layers

Figure 5.2 illustrates the general structure of ANN where (x) represents the
selected inputs and (y) represents the output based on the estimation model. The structure
of MLP relies on (x) as the main inputs of the model and (y) as the main output
(prediction). Between the inputs and the output, there are hidden layers (h) and neurons
that can be modified based on the nature of the data. The neurons are linked by
connectors with weights (w), which are also modifiable. The final output (y) in the

estimation models using MLP is described as the following:

y=o0(z) = (5.18)
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The logistic function is represented by the sigmoid activation function (o). The
variable (z) is based on a non-linear activation function, which aims to create non-

linearity into the output of the neurons, and can be described as the following:

z=Y(x-w)+b (5.19)

The value (b) a bias that creates an offset to move the entire activation function to
the left or right towards output values. The summation of the vectors (x) and (w) is the

dot product of the vectors as the following:

2(x-w) =0 -wy) + (g o wy) + o+ (- wy) (5.20)

The inputs (x) and outputs (y) are different in each of the three models: speed
distribution, speed at the stop bar, and queuing position. The details of inputs and outputs
are as described in the previous section.

In most of ANN applications, one and two hidden layers are widely used as there
is no theoretical reason for deciding more than two hidden layers. For the number of
neurons, researchers have been using multiple rule-of-thumb methods as a start point to
determine the optimal number of neurons in the hidden layers by considering the number
of inputs and outputs (Ibnu Choldun R et al., 2020; Stathakis, 2009). In this work, the
adopted rule-of thumb method is number of hidden neurons to be less than twice the size
of the input layer. Therefore, one to three hidden layers have been tested with
combinations of different number of neurons. The best combination of hidden layers and

hidden neuros for each model was selected based on the accuracy of the testing results.
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Figure 5.3 shows the selected structure of the MLP for the last step of finding the queue

length.
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Figure 5.3 The Structure of the adopted MLP Structure with Inputs, Outputs, and

Hidden Layers

5.6. Summary of Chapter V

From the methodology discussed in this chapter, the findings of this chapter can

be summarized as the following:

¢ By utilizing deep learning technique, multilayer perceptron (MLP), three models

are formed:

0 The speed at the stop bar model based on the green time,
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0 The speed distribution model based on the green time and distance to the
stop bar,
0 The queue length estimation model based on the green time and the
estimated speed of the last queued vehicle.
The speed of the last queued vehicles is formulated as the average speed between
the stop bar and the capacity state
The traffic volume estimation is based on the traffic flow at the arrival of the
slowed-down vehicle by dividing the queue length and one more slowed-vehicle

by the time of the least speed vehicle.

63



CHAPTER VI: THE VALIDATION OF THE ESTIMATION

MODELS

The second and third objectives of this dissertation are to propose a queue length
model and to develop a traffic volume estimation model. The two developed models in
Chapter V needs to be evaluated. The results in this chapter are dedicated to analyzing the

performance of the proposed models.

6.1. Experiment Design

To analyze and evaluate the performance of the algorithm, four experiments have
been conducted on simulation and real-world data. The first experiment is a simulation-
based with the aim of testing the accuracy of the queue length algorithm and the effect of
different factors. The second experiment examined the queue length estimation algorithm
on real-world data (NGSIM). The third experiment evaluates the traffic volume
estimation algorithm on simulation data algorithm and tests the effect of different factors
on the estimation accuracy. The fourth experiment examined the traffic volume
estimation algorithm on NGSIM data. The experiments in this work assume that the
signalized intersection is isolated with a pre-timed signal control and the lane-changing

activities are neglected.
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6.1.1. Simulation Experiment

The signalized intersection in the simulation has three lanes with middle lane
(through) is being studied as it appears in Figure 6.1. The scenarios were implemented in

the simulation software package (VISSIM).

(a) (b)

Figure 6.1 The Conceptual Design of the Site in the Experiments

The traffic signal has 120-sec cycle length, and the through lane has 40-sec green
phase. To evaluate the model with different traffic volumes, the traffic flow fluctuates
between high, moderate, and low traffic flow. Table 6.1 shows the minimum and
maximum traffic flow and queue lengths of the validation dataset at the simulated

signalized intersection.
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Table 6.1 The Traffic Characteristics of the Site in the Simulation Experiment

Traffic
Traffic Flow Queue Length
Volume Traffic Signal (Sec)
(Veh/hr/In) (Veh/Cycle/ln)
(Veh/Cycle/ln)
Green
Min 270 9 4 40
Time
Cycle
Max 960 32 19 120
Length

The simulation results created a prior data of a full day from 7:00 AM to 7:00
PM. The samples of 5%, 10%, 15%, 20% have been randomly selected from the
trajectories to study different market penetration rate. In most cases in the analysis,
market penetration rate of 10% was selected. The data contains cycle time during red and
green, distance to stop bar, and speed. The real-time data (cycle data) is another day from

1:00 PM to 1:30 PM and from 4:00 PM to 5:00 PM.

6.1.2. Real-world Experiment

The real-world experiment has been implemented on the through lane in the
second signalized intersection of NGSIM data (Atlanta, Georgia) as shown in Figure 6.2.
A disadvantage about NGSIM is that the dataset was collected for only 15 minutes in
peak period and 15 minutes in off-peak period. In this work, the off-peak data has been
utilized as prior dataset to train and test the models, and the peak data has been utilized to
validate the algorithm. The major limitation of NGSIM dataset is the short period,

especially for data mining and deep learning models. However, several studies have
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utilized NGSIM in data mining and deep learning applications (Jazayeri et al., 2021;

Jiang et al., 2019; Mercat et al., 2019; Shi et al., 2021).
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Figure 6.2 The Site Description of the Real-world Experiment (Cambridge

Systematics, 2007)

The cycle time during red and green, distance to stop bar, and speed of queued

vehicles in the prior dataset (off-peak) has been processed to find the estimation models.

The peak data was, firstly, processed to find the traffic volume and queue length of each

cycle. Then, the slowed-down trajectories of the real-time dataset (peak) have been

implemented in the estimation models. Table 6.2 summarizes the traffic details of the

validation dataset in the real-world experiment.
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Table 6.2 The Traffic Characteristics of the Real-world Experiment

Traffic Volume Queue Length
Traffic Signal (Sec)
(Veh/Cycle/ln) (Veh/Cycle/ln)
Green
Min 4 2 32
Time
Cycle
Max 14 7 100
Length

6.2. Measure of Effectiveness

The evaluation of performance requires a comparison between the ground truth
and the predicted value. The Mean Absolute Percentage Error (MAPE) calculates the
percentage of error by comparing the actual value with the estimated value to observe the
variation in traffic volume. In this paper, MAPE will be used as the performance

evaluation measurement, and it can be calculated as the following:

Ar—E
A

1
MAPE = =37,

(6.1)

Where: n is number of times the summation iteration, A, is actual value, and E; is

estimated value.
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6.3. The Performance of Queue Length Estimation Model

The performance of the queue length estimation model is evaluated based on the
measure of effectiveness (MAPE) to assess the accuracy of the algorithm for simulation

data and real-world data.

6.3.1. Queue Length Estimation Analysis of the Simulation

Experiment

The results of the simulation of 33 cycles during peak and off-peak (1:00 PM to
1:30 PM and 4:00 PM to 5:00 PM) is shown in the following table. The accuracy of the
model during the 33 cycles was 86.53% as MAPE was 13.44%. The results are based on
(10%) penetration rate. The results in the table indicate some cases of overestimation and
underestimation. To have a deeper look at the results, Figure 6.3 is also plotted with
traffic volume, actual queue length, and estimated queue length.

Table 6.3 The Results of the Queue Length Estimation Model for Simulation Data

Cycle Traffic Queue Length | Estimation APE(%)
Volume (Veh/In/Cycle) | (Veh/In/Cycle)
(Veh/In/Cycle)
1 24 11 9.9 9.18%
2 12 5 4.1 17.82%
3 26 16 15.1 6.08%
4 27 18 16.1 10.46%
5 22 10 8.5 14.85%
6 25 15 13.2 12.19%
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7 23 11 10.0 8.89%
8 19 7 6.6 6.25%
9 16 5 52 4.52%
10 20 10 10.1 0.12%
11 12 5 4.3 14.79%
12 18 7 6.4 8.61%
13 17 8 7.2 9.88%
14 26 14 12.7 9.58%
15 25 12 11.0 8.13%
16 23 12 10.9 9.37%
17 24 11 9.8 11.26%
18 7 3 24 18.11%
19 20 9 7.9 11.40%
20 15 6 7.4 22.56%
21 18 8 9.1 13.14%
22 13 3 3.6 20.79%
23 16 6 7.8 29.84%
24 22 10 11.8 17.80%
25 13 4 4.9 22.75%
26 18 9 12.8 42.50%
27 26 13 13.9 7.01%
28 11 5 5.5 9.69%
29 21 11 12.0 9.20%
30 11 5 5.1 1.38%
31 12 4 52 29.55%
32 12 5 5.9 17.97%
33 18 6 6.5 7.96%
Min APE 0.12%
Max APE 42.50%
STD 8.74%
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MAPE 13.44%

From Figure 6.3, the estimation algorithm demonstrated an excellent performance
as it followed the fluctuation of the traffic length along different cycles. As the figure
shows, there are more overestimations than underestimations by the algorithm. The
overestimation seems to be associated with the longer queues. This might be because the
higher probability of having more slowed-down vehicles in front of the utilized slowed-
down vehicle when the queue is longer. This raises a question about the effect of different
variables in the performance of the algorithm. Also, it urges the investigation of which
slowed-down vehicle to use when there are two slowed-down vehicles in one cycle. To
answer those questions, the section of The Effective Factors in the Queue Length
Estimation Model is included to investigate the relationship between the performance of
the model and green time, distance to stop bar, speed of the slowed-down vehicle, and the

sequence of the used vehicle among the slowed-down vehicle in the cycle.
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Figure 6.3 Th Performance of the Queue Length Estimation Model in the

Simulation Experiment
6.3.2. Queue Length Analysis of the Real-world Experiment

Due to the limited amount of data in the validation data (only 15 minutes), one
slowed-down vehicle was randomly selected for each cycle. NGSIM data has nine cycles
during the 15-minute dataset where seven of them had slowed-down vehicles. The results
of the algorithm demonstrated an MAPE of 21.97%, which means an accuracy of

78.03%. The following table summarizes the performance of the algorithm.
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Table 6.4 The Results of the Queue Length Estimation Model for Real-world Data

Cyele Traffic Volume | Queue Length | Estimation APE (%)
(Veh/In/Cycle) | (Veh/In/Cycle) | (Veh/In/Cycle)
1 7 2 2.1 33.68%
2 9 2 2.5 11.27%
3 3 3 2.6 8.66%
4 5 3 3.1 4.42%
5 5 4 1.4 60.10%
6 9 4 3.8 5.42%
7 14 7 4.3 30.24%
Min APE 4.42%
Max APE 60.10%
STD 20.54%
MAPE 21.97%

To visualize the performance of the algorithm across the cycles, Figure 6.4 shows
the estimated and actual queue lengths along with the traffic volume. There is one
significant underestimation in cycle 5 with 60.1% MAPE. After investigating the data, it
was found that the stopping position of the last queued vehicle had been changing before
it started the acceleration process. In other words, the last queued vehicle kept an
extremely long distance with the leading vehicle before it reduced the gap when the
traffic signal turned green. This significant underestimation influenced the final MAPE of
the algorithm, and if it was replaced with the second higher APE (33.68%), the MAPE
would be 17.86%. The short period of training data (only 15 minutes) can be an effective
factor in increasing the MAPE as it limits learning all the traffic patterns. Larger training

dataset is expected to lower the MAPE and increase the accuracy of the algorithm.
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Figure 6.4 Th Performance of the Queue Length Estimation Model in the Real-

world Experiment
6.3.3. The Effective Factors in the Queue Length Estimation Model

To instigate the effective factors in the queue length estimation model, the MAPE
was plotted against different inputs. In this investigation, the simulation data has been
utilized as it provides higher sample data.

By looking at Figures 6.5 to 6.8, there seems to be a correlation between the
queue length and MAPE of the algorithm. In other words, the accuracy of the model
increases with the increase of the queue length. This might be because the longer queue

provides higher probability of the slowed-down vehicle to be closer to the last queued
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vehicle. This is enhanced by Figures 6.5 and 6.6 where higher green time and longer

distance from the bar are associated with lower MAPE (higher accuracy).
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To have a closer look at the relationship between MAPE and the most effective
factors, Figures 6.7 and 6.8 are plotted with the speed of the slowed-down vehicle and its
sequence after the last queued vehicle, respectively. From both figures, the lower MAPE
is scattered in the lower speed and lower sequence of slowed-down vehicles. The relation
between the speed and sequence of slowed-down vehicle is justified by the nature of
queue dissipation process as the speed at capacity state keeps increasing during the green
time, which means the earlier slowed-down vehicle in sequence will have a lower speed.
Therefore, when there is more than one slowed-down vehicle in one cycle, the earlier in

the sequence will be selected for queue length estimation. This is a significant
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consideration when different penetration rates are compared. With higher penetration

rates, there are higher probability of having more slowed-down vehicles.
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To have a better visualization of the relationship between the characteristics of the
slowed-down vehicles and the estimation accuracy, Figure 6.9 is plotted. The sequence of
the slowed-down vehicle has a direct relationship with the MAPE. In other words, the
model demonstrated a higher accuracy when the slowed-down vehicle has a closer
distance to the queued vehicle. The lower MAPE (higher accuracy) is associated with the

lower slowed-down sequence, lower speed, and longer queue length.
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The data about the relationship between slowed-down vehicle characteristics and
the accuracy of the queue length estimation as appeared in Figures 6.5 to 6.9 are

summarized in the following table.

Table 6.5 The Data of the Slowed-down Vehicle Characteristics and the Accuracy of

the Queue Length Estimation

Traffic Queue
SD Speed Distance MAPE
Time (s) Volume Length
(m/s) (m) (%)
(veh) (veh)
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10.97 96.5 62.75 16 7 16.74%
9.79 92 74.46 15 6 29.39%
0.92 91 74.38 14 8 7.94%
8.64 106.3 111.58 27 14 21.84%
16.96 102.2 127.47 21 12 40.95%
13.51 100.7 73.77 23 9 72.00%
15.49 105.5 150.85 24 14 27.36%
11.96 111.7 138.07 29 17 6.15%
16.82 109.9 169.49 27 17 6.15%
11.78 105.8 156.05 33 17 6.14%
10.33 109 128.39 30 16 6.10%
9.48 98.4 78.51 22 10 6.59%
11.00 96.2 62.97 20 8 2.29%
8.90 97 72.12 18 9 4.54%
4.09 90.7 48.29 12 5 16.61%
7.41 98.1 107.03 22 12 16.37%
5.22 106.4 145.69 27 17 6.12%
6.49 94.5 69.81 14 8 0.29%
1.60 93.2 80.02 20 10 6.23%
10.43 92.4 49.3 14 5 23.40%
10.58 109.2 109.23 28 15 19.12%
9.90 99.1 87.67 21 11 7.80%
9.48 103.5 117.07 25 14 14.19%
6.25 99.8 107.94 22 12 16.53%
14.09 108.8 129.34 29 17 0.51%
14.60 101 103.93 21 12 62.00%
3.09 100.9 119.67 25 14 10.88%
1.08 92.5 70.1 22 8 2.88%
3.70 94.7 74.17 21 8 6.09%
11.79 108.1 124.39 24 16 12.23%
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4.23 97.6 99.72 23 12 8.21%
11.40 87.4 94.11 9 3 58.26%
10.56 103 113.73 20 14 9.56%
10.03 94.9 66.39 16 7 11.30%
9.79 92 74.46 15 6 29.39%
0.73 89.1 62.29 14 8 18.02%
5.42 102.6 111.55 27 14 6.90%
16.96 102.2 127.47 21 12 40.95%
13.51 100.7 73.77 23 9 25.87%
10.14 101.3 119.68 24 14 10.67%
11.96 111.7 138.07 29 17 6.15%
1.93 103.8 138.6 27 17 5.96%
11.65 102.7 161.36 33 17 5.85%
9.99 105.6 134.1 30 16 5.87%
9.48 98.4 78.51 22 10 6.59%
11.00 96.2 62.97 20 8 2.29%
7.88 95.8 70.44 18 9 3.21%
3.63 89.2 46.71 12 5 10.49%
7.41 98.1 107.03 22 12 16.37%
5.22 106.4 145.69 27 17 6.12%
6.49 94.5 69.81 14 8 0.29%
1.60 93.2 80.02 20 10 6.23%
5.39 90 48.45 14 5 14.61%
10.21 105.7 116.88 28 15 14.91%
9.16 97.9 85.42 21 11 1.25%
2.90 106.2 170.97 25 14 27.37%
6.25 99.8 107.94 22 12 16.53%
14.09 108.8 129.34 29 17 0.51%
14.60 101 103.93 21 12 16.40%
1.97 99.3 115.32 25 14 6.69%
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1.08 92.5 70.1 22 8 2.88%
3.70 94.7 74.17 21 8 6.09%
11.32 111 122.72 24 16 12.38%
4.23 97.6 99.72 23 12 8.21%
4.50 86.7 28.57 9 3 29.82%
10.56 103 113.73 20 14 9.56%

There is an effect of the market penetration rate on the performance of the model.
Table 6.6 shows the results of testing 5%, 10%, 15%, and 20%. A direct relationship
between percentage of the sampled vehicles (market penetration rate) and the accuracy of
the model. The maximum accuracy is almost 100% and the minimum accuracy is
approximately 38%. The results indicate a bigger gap in MAPE (larger accuracy
improvement) between 5% MPR and 10% MPR. The improvement of MAPE tends to
become smaller between 10% MPR, 15% MPR, and 20% MPR. This might be because
the increase of market penetration rate will be less likely to change the slowed-down
vehicle to be earlier in the sequence.

Table 6.6 The Results of the Queue Length Estimation with Different MPR

MPR (5%) MPR (10%) | MPR (15%) | MPR (20%)
MAPE 19.16% 13.44% 9.17% 7.36%
Min APE 0.12% 0.12% 0.01% 0.01%
Max APE 62.26% 62.26% 62.26% 32.1%
STD APE 13.37% 8.74% 7.63% 5.94%

Figure 6.10 demonstrates a better performance of the algorithm with the increase

of the market penetration rate (MPR). Obviously, the lowest MPR of 5% shows the

highest MAPE and the highest MPR of 20% provides the lowest MAPE. The highest
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MAPE was 19.16% (accuracy of 80.84%) and the lowest was 7.36% (accuracy of

92.64%).
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Figure 6.10 The Performance of the Queue Length Estimation Model with Different

MPR

6.4. The Performance of Traffic Volume Estimation Model

The performance of the queue length estimation model is evaluated based on the
measure of effectiveness (MAPE) to assess the accuracy of the algorithm for simulation

data and real-world data.
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6.4.1. Traffic Volume Estimation Analysis of the Simulation

Experiment

By applying the algorithm on the validation dataset, the MAPE was 11.85%,

which means an accuracy of 88.15%. The maximum MAPE was 27.68% and the

minimum MAPE was 0.31% (accuracy of 72.32% and 99.69%). The following table

summarizes the results of the model for each cycle based on the simulation data.

Table 6.7 The Results of the Traffic Volume Estimation Model for Simulation Data

Traffic Volume
Cyele Traffic Volume | Queue Length Estimation APE
(Veh/In/Cycle) (Veh/In/Cycle) (%)
(Veh/In/Cycle)
1 17 11 15 13.92%
2 16 8 12 25.66%
3 25 22 26 2.41%
4 22 15 19 15.60%
5 17 14 18 6.52%
6 22 13 17 24.39%
7 23 18 21 7.35%
8 24 18 22 6.50%
9 21 13 17 17.70%
10 11 5 8 26.12%
11 14 10 14 0.33%
12 13 8 11 11.81%
13 12 8 12 2.60%
14 16 9 13 18.83%
15 22 18 22 1.49%
16 18 13 17 6.48%
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17 23 13 17 27.68%
18 10 5 8 18.92%
19 8 6 9 13.39%
20 11 8 12 4.67%
21 25 20 24 3.63%
22 16 12 16 0.31%
23 17 10 14 18.78%
24 14 11 15 6.26%
25 23 15 19 16.85%
26 25 15 19 25.87%
27 21 15 19 11.58%
28 25 19 22 13.36%
29 20 17 21 3.45%
30 9 6 9 3.02%
Min APE 0.31%
Max APE 27.68%
STD APE 8.67%
MAPE 11.85%

To have a deeper look at the performance of the model, the estimation of the 30
cycles is plotted in Figure 6.11. From the figure, an excellent performance by the model
can be observed as estimated traffic volume followed the fluctuation of the actual traffic
volume along different cycles. There seems to be more underestimations than
overestimations by the algorithm. This might be because the traffic flow from the queued
vehicles is less than the traffic flow in the entire cycle. Also, there is a probability of

having more slowed-down vehicles in front of the utilized slowed-down vehicle.
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Figure 6.11 Th Performance of the Traffic Volume Estimation Model in the

Simulation Experiment

6.4.2. Traffic Volume Estimation Analysis of the Real-world

Experiment

Because NGSIM data has a relatively small dataset of 15 minutes, only one
slowed-down vehicle was randomly selected from each cycle. The validation data has
nine cycles during the 15-minute dataset where six of them had complete trajectories with
at least one slowed-down vehicle. The performance of the algorithm on real-world data
demonstrated an MAPE of 23.57% (accuracy of 76.43%). Table 6.8 includes a summary

of the performance of the algorithm for the six cycles.
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Table 6.8 The Results of the Traffic Volume Estimation Model for Simulation Data

Cycle Traffic Queue Length | Traffic Volume | APE (%)
Volume (Veh/In/Cycle) | Estimation
(Veh/In/Cycle) (Veh/In/Cycle)
1 6 2 4 25.67%
2 9 2 7 22.22%
3 4 3 5 36.34%
4 5 3 5 2.44%
5 5 4 6 27.52%
6 8 4 6 27.24%
Min APE 2.44%
Max APE 36.34%
STD 11.36%
MAPE 23.57%

Figure 6.12 shows the estimated and actual queue lengths along with the traffic

volume. There is more underestimation than overestimation as found in the performance

of the model on simulation data. The lower accuracy of the real-world data compared to

the simulation might be related to the two main reasons. First, the prior dataset (for

training and testing) of NGSIM is relatively low that it does not represent different the

traffic patterns, which might influence the accuracy of the models. The second reason is

the low traffic volume and the low queue length per cycle in the signalized intersection

explored in NGSIM dataset.
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world Experiment

6.4.3. The Effective Factors in the Traffic Volume Estimation Model

To instigate the effective factors in the traffic volume estimation model, the
MAPE was plotted against different inputs. In this investigation, the simulation data has
been utilized as it provides higher sample data.

From Figure 6.13, more accuracy (lower MAPE) was achieved when the time
since green phase started was longer. This simply because the calculated flow rate closer
to the end of the cycle covers almost longer time of the cycle, which means it represents
almost the entire cycle. A similar finding in Figure 6.14 about the relationship between

the distance to the stop bar and the MAPE. The longer the distance from the stop bar

88



yields a lower MAPE. This might be because the further the slowed-down vehicle from

the stop bar means the longer the queue, which means longer time of the cycle.
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The findings in Figures 6.13 and 6.14 are supported by the finding from Figure
6.15 where there was also a correlation between the number of queued vehicles and
MAPE. The higher number of queued vehicles allows the flow rate part based on queue
length in the algorithm to cover a larger portion. This is emphasized by Figure 6.16 when

the queued vehicles are represented in terms of a ratio of the entire traffic flow.

90



Traffic Volume Estimation

. 122“
o o

20 ©

0.25 . . ~ ‘ ' E
18 ©

14 o
& ' 128

01 102
|
< % j’:-:"s :

Actua| Traffic Volumo (Veh/Cycle)

MAPE of Traffic Volume
(=]
N

Figure 6.15 Th Effect of the Queue Length on the Performance of the Traffic

Volume Estimation Model

91



=) =) o
- o ) o w g
n (%) [ w 7] EN

MAPE of Traffic Volume

o
-

0,05

o

Figure 6.16 Th Effect of the Queued Vehicle Ratio on the Performance of the Traffic

Traffic Volume Estimation

10

°e
1.5

)
® §

®e
¥ o

20

Actual Traffic Volume (Veh/Cycle)

Volume Estimation Model

y

25

9
o

Queued Vehicle Ratio

g
©

o
~

o
o

0.5

The data about the relationship between slowed-down vehicle characteristics and

the accuracy of the traffic volume estimation as appeared in Figures 6.13 to 6.16 are

summarized in the following table.

Table 6.9 The Data of the Slowed-down Vehicle Characteristics and the Accuracy of

the Traffic Volume Estimation

Traffic Queue
SD Speed Distance MAPE
Time (s) Volume Length
(m/s) (m) (o)
(veh) (veh)
14.2027778 101.2 130.38 15 18 5.40%
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17.6722222 98.4 108.98 11 17 13.92%
0.3 90.8 64.4 8 16 25.66%
9.48333333 107.8 144.02 22 25 2.41%
16.2555556 103.4 169.3 15 22 15.60%
5.38611111 99.4 93.1 14 17 6.52%
11.0361111 101 90.53 13 22 24.39%
6.84166667 107 121.98 18 23 7.35%
297777778 101.6 113.24 18 24 6.50%
0.14722222 97.2 100.72 13 21 17.70%
3.66111111 88.6 42.73 5 11 26.12%
7.41388889 94.6 68.79 10 14 0.33%
4.74444444 102.2 113.88 18 22 1.41%
7.86944444 93.2 51.57 7 14 26.43%
13.2833333 94.2 81.21 8 13 11.81%
8.82222222 93 47.28 7 13 20.60%
0.02777778 92.4 75.93 11 13 19.88%
9.6 105.2 119.72 18 21 3.20%
481111111 89.4 41.45 5 11 26.78%
13.6472222 92.4 80.45 8 12 2.60%
2.86388889 92.8 70.54 10 16 11.10%
11.8861111 96.8 95.34 12 17 5.20%
1.08055556 92.4 67.44 9 16 18.83%
0.43333333 106.8 151.07 24 27 4.04%
9.79166667 100.4 113.4 16 19 6.94%
8.94722222 118.8 170.41 27 27 4.75%
10.1555556 105.2 122.23 18 22 1.49%
15.3583333 100.6 126.51 14 18 0.60%
15.425 99.8 134.09 13 18 6.48%
10.8888889 101 98.65 13 23 27.68%
6.30555556 97.6 96.8 15 20 1.64%
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20.9305556 107.8 169.35 18 25 15.40%
15.625 105 118.42 15 20 8.57%
4.04166667 91 56.13 8 16 25.82%
16.275 98.2 160.9 14 20 8.35%
18.1444444 88.8 123.16 5 10 18.92%
2.31944444 94 74.12 9 17 24.91%
14.1833333 95.4 98.76 10 14 1.17%
15.4527778 92.6 60.88 6 8 13.39%
18.7333333 93.8 119.81 8 11 4.67%
511111111 104.6 124.27 20 25 3.63%
1.475 94.6 80.33 12 19 13.21%
16.1638889 97.2 133.62 12 16 0.31%
0.3 99 109.38 17 23 5.14%
11.3138889 99.4 94.01 13 18 6.10%
13.3388889 99 116.42 14 17 6.95%
5.34166667 98 85.6 12 20 20.41%
1.61388889 91.6 62.81 9 16 18.12%
12.9888889 91.4 50.56 5 10 21.23%
19.8055556 117.2 138.07 21 24 6.14%
18.6 102.2 105.31 13 18 8.68%
4.21944444 95.6 73.02 10 17 18.78%
261111111 95.6 76.23 10 16 13.70%
13.9527778 96.6 98.72 11 17 12.31%
9.32777778 97.4 64.25 10 17 20.28%
12.4805556 96.8 84.07 11 14 6.26%
14.6888889 105 163.24 18 22 1.30%
17.8527778 96.2 101.72 9 14 10.90%
227777778 100.4 113.11 15 23 16.85%
6.50555556 104 113.6 17 22 5.59%
3.51388889 96.2 84.04 13 18 2.98%




11.8944444 103.6 125.5 15 25 25.87%
20.7944444 103.4 150.2 15 21 11.58%
19.7944444 110.8 149.66 19 25 13.36%
9.74722222 98.4 84.97 13 17 0.43%
19.0833333 104.4 170.95 17 20 3.45%
9.94444444 90.6 50.07 6 9 3.02%

0.125 88.2 51.53 6 14 31.97%
11.3805556 93.6 59.3 8 13 11.24%
11.6138889 103.8 112.2 15 22 15.92%

The effect of market penetration rate on the performance of the algorithm is

significantly high when MPR of 5% is compared with MPR of 20%. When 5% of vehicle

trajectories are considered, MAPE was 16.01% (accuracy of approximately 84%), while

MPR of 20% yields an MAPE of 7.81% (accuracy of 92.19%). The following table

summarizes the effect of multiple market penetration rates on the performance of the

system.

Table 6.10 The Results of the Travel Volume Estimation with Different MPR

MPR (5%) MPR (10%) | MPR (15%) | MPR (20%)
MAPE 16.01% 11.85% 9.72% 7.81%
Min APE 0.40% 0.31% 0.20% 0.24%
Max APE 38.14% 27.68% 24.91% 21.31%
STD APE 11.81% 8.67% 7.41% 5.76%

From Figure 6.17 the increase of the market penetration rate demonstrated an

improved performance of the algorithm. By looking at the figure, there is bigger gap

between the MPR of 5% and 10% in terms of MAPE, which indicates a larger
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improvement of the accuracy of the model. The improvement seems less when the MPR
of 10% increase to 15% and then to 20%. This might be because the flow rate value with
the increase of market penetration rate was not highly influenced to change the traffic

volume estimation.

Traffic Volume Estimation

0.6 .80
MPR: 5%
- MPR: 10%
MPR: 15% 70

0.5 . MPR: 20%
I Actual Traffic Volume

. W <
o o o

w
o
Actual Traffic Volume (Veh/Cycle)

Cycle Number

Figure 6.17 Th Performance of the Traffic Volume Estimation Model with Different

MPR

6.5. Summary of Chapter VI

From the results from the simulation and real-world experiments, the findings of

this chapter can be summarized as the following:
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The queue length results of the simulation experiment demonstrated an adequate
MAPE of 13.44% (accuracy of 86.56%),

The results of the queue length algorithm applied on real-world data demonstrated
an MAPE of 21.97% (78.03% accuracy),

The performance of the traffic volume algorithm on simulation data demonstrated
an excellent MAPE of 11.8% (88.2% accuracy),

The performance of the algorithm based on real-world data from demonstrated an
MAPE of 23.57% (76.43% accuracy),

Lower MAPE of the queue length estimation was achieved when the time since
green phase started and the distance to the stop bar were longer,

There was a correlation between the queue length and the accuracy of the queue
estimation model,

The effect of market penetration rate on the performance of the algorithm is
significantly high when MPR of 5%, and

The improvement of MAPE tends to become smaller between 10% MPR, 15%

MPR, and 20% MPR.
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CHAPTER VII: CONCLUSIONS AND

RECOMMENDATIONS

This dissertation proposed a sophisticated model based on slowed-down vehicle
trajectories to estimate real-time queue length and traffic volume from connected
vehicles. The model tackles the low market penetration rate by relying on the
spatiotemporal speed distribution of the queued vehicle to learn from the data about the
propagation and dissipation of the shockwave through a deep learning technique. The
significance of this work is highlighted by avoiding external dependencies of other
parameters and the ability to estimate traffic volume with one sampled vehicle per cycle.
The model is based on only a prior dataset of trajectories with signal time information
and trajectories from real-time cycle data.

The four objectives of this paper are (1) establishing a relationship between the
slowed-down vehicle and last queued vehicle based on shockwave theory and the
capacity state; (2) utilizing only a prior dataset and a deep learning technique to identify
the last queued vehicle information based on the slowed-down vehicle; (3) proposing a
queue length estimation algorithm based on lower market penetration rates; and (4)
developing a traffic volume estimation algorithm considering the queue length estimation

model.

98



7.1. Conclusions

By achieving the first two objectives of this dissertation, the conclusions are
formed by the observations from Chapter III and Chapter IV. The significant findings can
be highlighted as the following:

e The queue dissipation and capacity state have a uniform pattern in terms of time,
space, and speed,

e The speed of queued vehicles increases with the increase of the green time until
the last queued vehicle,

e The slowed-down vehicle interacts with the last queued vehicle based on the car-
following model

e The macroscopic shockwave can be illustrated by the speed distribution based on

a sampled trajectory data,

e There is a relationship between the slowed-down vehicles and the last queued
vehicles around the dissipation shockwave based on the macroscopic shockwave,

e There is a spatiotemporal proximity between the slowed-down vehicles and the
last queued vehicles from the empirical cycle results,

e The departure time and the distance to the stop bar are associated with the speed
at the stop bar,

e The speed of the queued vehicles at the stop bar increase with the increase of the

green time,
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e The least speed of the slowed-down vehicles is correlated with the green time and
distance,

e The least speed of the slowed-down vehicles is associated with the queue length
and the traffic volume,

o At the same signalized intersection, there is a correlation between the queue
length and the traffic volume.

Achieving the third and fourth objectives is determined by the performance of the
models in estimating the actual values of the queue length and traffic volume. To analyze
and evaluate the performance of the algorithm, four experiments have been conducted on
simulation and real-world data. The first experiment is a simulation-based with the aim of
testing the accuracy of the queue length algorithm and the effect of different factors. The
second experiment examined the queue length estimation algorithm on real-world data
(NGSIM). The third experiment evaluates the traffic volume estimation algorithm on
simulation data algorithm and tests the effect of different factors on the estimation
accuracy. The fourth experiment examined the traffic volume estimation algorithm on
NGSIM data.

e The queue length results of the simulation experiment demonstrated an adequate

MAPE of 13.44% (accuracy of 86.56%),

e The results of the queue length algorithm applied on real-world data demonstrated
an MAPE of 21.97% (78.03% accuracy),
e The performance of the traffic volume algorithm on simulation data demonstrated

an excellent MAPE of 11.8% (88.2% accuracy),
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e The performance of the algorithm based on real-world data from demonstrated an
MAPE of 23.57% (76.43% accuracy),

e Lower MAPE of the queue length estimation was achieved when the time since
green phase started and the distance to the stop bar were longer,

e There was a correlation between the queue length and the accuracy of the queue
estimation model,

e The effect of market penetration rate on the performance of the algorithm is
significantly high when MPR of 5%,

e The improvement of MAPE tends to become smaller between 10% MPR, 15%

MPR, and 20% MPR.

7.2. Recommendation and Future Directions

The proposed estimation models based on slowed-down vehicles revealed an
adequate accuracy by using only a prior trajectory dataset with low market penetration
rate. From the findings of this dissertation, the recommendations are summarized as the
following:

e The proposed model can be applied in real-world scenarios for both real-time
applications and off-line applications,

e The consideration of non-queued vehicles, particularly slowed-down vehicles, can
provide a positive impact on the estimation models of queue length and traffic
volume based on this dissertation and might also provide positive impact on the

estimation of other traffic characteristics,

101



e The utilization of slowed-down vehicles can be integrated with other vehicle
classifications, particularly queued vehicles and passing vehicles, in one holistic
estimation model,

e Other variables such as acceleration and vehicle length can be included in the
dataset to improve the accuracy of the estimation models.

The models in this dissertation are limited to the cycles with slowed-down
vehicles only considering an isolated signalized intersection. Another limitation is the
short period of the NGSIM dataset, which did not only affect the results, but also
restricted the investigation of MPR and other factors. The models consider stable driving
conditions without any influence of external factors such as weather or accident.
Although unusual conditions may affect the models, this work is limited to normal
driving conditions.

Future work might consider incorporating all vehicle classifications (slowed-down
vehicles, queued vehicles, and passing vehicles) in one holistic model. Also, future work
may consider applying a sensitivity analysis of MPR and other factors on a larger real-
world dataset. Also, future work might consider incorporating slowed-down vehicle
information with other vehicle classifications, i.e., queued vehicles and passing vehicles,
in one holistic model. Another aspect of future work might consider other variables such

as acceleration and vehicle length to improve the accuracy of the estimation models.
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APPENDICIES

Appendix A

List of Notations
Notation Description
Lo Actual queue length
Pov Position of the queued vehicle
Psp Position of the slowed-down vehicle
Vov Speed of the queued vehicle
Vsp Speed of the slowing down vehicle
Vg Desired speed (speed limit)
Vsp Speed at the capacity state based on speed distribution
Ves Speed at the capacity state based on speed distribution
Vgov Estimated speed of the last queued vehicle
S Space gap between the leading and the following vehicle
T Time gap between the leading and the following vehicle
q: Flow rate during a period
n; Number of vehicles during a period
t; Time period
hy Mean headway
Vg Mean speed
k, Mean density
te Time since green phase has started
t; Time of the initial move of the vehicle during green time phase
tm Time since the vehicle has been moving
tsp Time when the slowing down vehicle joined the moving queue
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Distance the vehicle has moved after the full stop

dsp Distance from the vehicle to the stop bar

dov Distance from the queued vehicle to the stop bar

dsp Distance to the stop bar when slowing down vehicle joined the moving
queue

q Traffic flow rate

Lg Estimated queue length

tw Waiting time

dr Estimated traffic flow

Vi Estimated traffic volume

C Cycle length
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Appendix B

The interface of WEKA
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Multilayer Perceptron (MLP)

PR LAAM T e A P—. Ny S Aae
B I IR L e N T Y IR L e T

e Ay £ AR

Came MtsaynrParcuplron
e oy Lo
wta semdes Nedle 1emete

i . A e ®

v .-t .

va. La . herial hnabin bomy dlmaanio, Clesnilin T LT T Y -
it Lanliomiin , umbens Bt e St

B T e

B T

IR Ad it L o, Wiy » i e “ b MAs, ven L L »

4 hann s Pk e iy g s b W @ 4 s g o hatlly b Thor b o 0 o 0 iy @ aghe bt The . g ——— - b o o ol
R Mg . The i 0 0 b wd o ol il | arngt Bt s et Ul b it . 0 B e B gt o i il bbb | B

roud cqgrums oo

[ -

Lo

L e bt

v
IR shinls bn wtbamns & o 1, Melaall = 100

. mae—
L B T T T T T

IVolon Ahinld b bvdvmes & < 1, Smlaals = 0.2

115



Appendix C (2 out of 4)

Multilayer Perceptron (MLP)
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Multilayer Perceptron (MLP)
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Multilayer Perceptron (MLP)
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