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ABSTRACT 

       UTILIZING SHOCKWAVE THEORY AND DEEP LEARNING TO 

ESTIMATE INTERSECTION TRAFFIC FLOW AND QUEUE LENGTH BASED ON 

CONNECTED VEHICLE DATA 

Abdulmaged Algomaiah 

April 25, 2022  

 

The development of Connected Vehicles (CV) facilitates the use of trajectory data 

to estimate queue length and traffic volume at signalized intersections. The previously 

proposed models involved additional information that may require conducting different 

types of data collection. Also, most models need higher market penetration rate or more 

than a vehicle per cycle to provide adequate estimation. This is mainly because a 

significant number of the estimation models utilized only queued vehicles. However, the 

state of motion in non-queued vehicles, particularly slowed-down vehicles, provides 

much information about the traffic characteristics. There is a lack of exploiting the 

information from slowed-down vehicles in identifying the last queued vehicle to improve 

the estimation models. The importance of this work is to propose a cycle-by-cycle queue 

length and traffic volume estimation models by utilizing the slowed-down vehicles. It 

proposes a sophisticated model to estimate the queue length and traffic volume from 
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connected vehicles with low market penetration rate (MPR) by utilizing shockwave 

theory and deep learning technique (artificial neural network). The work starts with 

establishing a relationship between the slowed-down vehicles and last queued vehicles 

based on shockwave theory and traffic flow dynamics. Then, the queue estimation 

algorithm is modeled based on the capacity state and deep learning technique. The traffic 

volume algorithm modeled is based on the queue length information. Four experiments 

were conducted to investigate the performance of the queue length and traffic volume 

estimation models on dataset from simulation environment and real-world data. The 

queue length results of the simulation experiment demonstrated an adequate mean 

absolute percentage error (MAPE) of 13.44%, which means an accuracy of 86.56%. The 

highest MAPE was 19.16% (80.84% accuracy) and the lowest was 7.36% (92.64%). The 

results of the queue length algorithm applied on real-world data demonstrated an MAPE 

of 21.97% (78.03% accuracy).  The performance of the traffic volume algorithm on 

simulation data demonstrated an excellent MAPE of 11.8% (88.2% accuracy). The 

performance of the algorithm based on real-world data from demonstrated an MAPE of 

23.57% (76.43% accuracy). Although the previous models can provide similar accuracy 

rates, they require higher MPR. With the low MPR of 10%, the proposed models 

revealed an adequate estimation accuracy of the cycle-by-cycle queue length and traffic 

volume.   
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1. CHAPTER I: INTRODUCTION 

The estimation of queue length and traffic volume are essential inputs for 

optimizing the traffic signal timing and evaluating other traffic signal measurements. The 

conventional methods of estimating queue length and traffic volume mainly require other 

traffic flow characteristics such as previous traffic volumes and speed acquired from 

physical sensors such as loop detectors, radar, and video cameras (Liu et al., 2009; 

Sharma et al., 2007; Skabardonis & Geroliminis, 2008; Vigos et al., 2008). The 

information from devices with global positioning system (GPS) devices provides the 

chance to use the data in terms of time and location in the estimation of many traffic 

characteristics. Some smartphone applications record vehicle positions every 0.1 second, 

which improves the accuracy of the estimation models (Zhang et al., 2020). The recent 

advancements in communication in terms of Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) has provided a great opportunity to utilize the trajectory data of 

connected vehicles (CVs) as probe vehicles. In other words, trajectory data of CVs is 

represented in time and distance, and it can be used to recognize the spatial-temporal 

characteristics of the traffic. This new method is a promising solution as it provides a 

cost-effective advantage of queue length and traffic volume estimation without the need 

of installing additional devices at the signalized intersections. 
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Some of the proposed models provide adequate queue length and traffic volume 

estimations when there is a sufficient market penetration rate (Cheng et al., 2012; 

Tiaprasert et al., 2015; Zhang et al., 2019). However, when the market penetration rate is 

realistically low, the models show instability and inaccuracy, which makes the 

implementation of the models in the near future potentially unattainable. Other models 

demonstrate a good queue length or traffic volume accuracy with lower market 

penetration rate (Hao et al., 2013; Tan et al., 2021). Nevertheless, the main limitation of 

the models is the requirement of market penetration rate as an input in the models along 

with the information from the adjacent intersections, which requires more data 

collections. Some other models can estimate the queue length or traffic volume with a 

low market penetration rate yielding an improved accuracy (Tan et al., 2021; Wang et al., 

2020; Zheng et al., 2019). Yet, the models lack independency as they require additional 

information of some intersection parameters such as shockwave speed and free-flow 

speed, which limits the estimation model to intersections where data collection has been 

previously conducted. Furthermore, all other previous studies rarely utilize the 

information from non-queued vehicles in their models (Tan et al., 2021), which limits the 

state of motion in non-queued vehicles includes slowed-down vehicles that provide much 

information about the traffic characteristics. A major advantage of the slowed-down 

vehicle is the proximity of the last queued vehicle, which is a key element as it states the 

boundary of the queue length and the traffic flow during red time. Therefore, estimating 

the last queued vehicle through the slowed-down vehicles can improve the accuracy of 

the queue length and traffic volume estimation. 
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There is a lack of research that establishes the relationship between the slowed-

down vehicles and the last queued vehicles and integrates it in traffic volume estimation 

model. Based on the traffic flow dynamics, vehicles slow down approaching the 

signalized intersection when the shockwave is still dissipating. The slowed-down 

vehicles join the moving queue in the capacity state where the queued vehicles are 

increasing their speed in a particular pattern. The spatiotemporal speed distribution of the 

queued vehicles in the capacity state can be modeled to identify the last queued vehicle 

from the time, distance, and speed of the slowed-down vehicles. Based on a prior 

sampled trajectory data with the traffic signal information only, a deep learning technique 

(artificial neural network) is utilized to obtain queue length and traffic volume estimation 

model. After that, the real-time trajectory data of each cycle can be implemented in the 

trained algorithm to estimate the traffic volume. 

1.1. Research Gap and Motivation 

Based on the shortcomings in current models, the research gaps in queue length 

and traffic volume estimation from connected vehicle data are highlighted as the 

following: 

• The requirement of additional information attained by conducting different types 

of data collection, 

• The need of higher market penetration rate or more than a vehicle per cycle to 

provide adequate estimation, and 
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• The lack of exploiting the information from non-queued vehicles, particularly 

slowed-down vehicles, in identifying the last queued vehicle and estimating the 

queue length and traffic volume. 

The motivation of this work is to fill the research gap by proposing sophisticated 

queue length and traffic volume estimation algorithms that utilize slowed-down vehicles. 

The algorithm relies on previous trajectory data as a training dataset without the need of 

different types of data collection. In this novel technique, one slowed-down vehicle per 

cycle can be enough to provide adequate queue length and traffic volume estimation by 

utilizing shockwave theory and deep learning technique without the need of external 

traffic parameters.  

1.2. Contribution and Objectives 

The contribution of this paper focuses on filling the research gap by proposing a 

novel model that leverages slowed-down vehicles in identifying the position of the last 

queued vehicle to eventually estimate the queue length and traffic volume. The proposed 

model avoids external dependencies and relies on learning about the macroscopic 

parameters (for the signalized intersections) and microscopic parameters (for the 

vehicles) from a prior day of CV trajectory data. Thus, shockwave theory and deep 

learning technique are utilized to incorporate macroscopic and microscopic parameters in 

the estimation model. This method is adopted because the speed distribution of the queue 

dissipation process in the capacity state can facilitate identifying the speed of the last 

queued vehicle, therefore, demonstrating the position the last queued vehicle.  
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The training of data to learn from the prior dataset aims to predict the microscopic 

and macroscopic characteristics of the traffic at the signalized intersection without the 

need of interpretation. The learning in artificial neural network (ANN) meets the 

prediction requirement in this work beside the fact that its learning curve might include 

different local minima and might converge to different non-nested sequential 

architectures (Ripley, 1996). These advantages make ANN more flexible than other deep 

learning techniques and encourage applying it in the training, testing, and validating in 

the estimation process.  

By considering the research gap and the unique contribution of this work, the 

objectives of this paper are summarized as the following:  

• Objective 1: Establishing a relationship between the slowed-down vehicle and 

last queued vehicle based on shockwave theory and the capacity state,  

• Objective 2: Utilizing only a prior dataset and a deep learning technique to 

identify the last queued vehicle information based on the slowed-down vehicle,  

• Objective 3: Proposing a queue length estimation algorithm based on lower 

market penetration rates., and 

• Objective 4: Developing a traffic volume estimation algorithm considering the 

queue length estimation model.  

1.3. Dissertation Organization 

To address the research gaps and achieve the objectives of this dissertation, the 

rest of the manuscript is organized as the following: 
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• Chapter II: highlights the literature review of the research related to queue length 

and traffic volume estimation from trajectory data, 

• Chapter III: establishes the theoretical relationship between the slowed-down 

vehicle and last queued vehicle based on shockwave theory and the capacity state, 

• Chapter IV: enhances the relationship between the slowed-down vehicle and last 

queued vehicle with empirical evidence from the data, 

• Chapter V: describes the methodology of the queue length and traffic volume 

estimation. Algorithms based on deep learning techniques, 

• Chapter VI: reveals the results and analyzes the performance of the queue length 

and traffic volume estimation algorithms based on the simulation and real-world 

experiments, 

• Chapter VII: draws the conclusions from the experiments and highlights the 

findings to make the recommendations from the dissertation 
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2. CHAPTER II: LITERATURE REVIEW  

The estimation of queue length at signalized intersections from trajectory data was 

introduced as a cutting-edge solution by using different algorithms. Early works in the 

area started to develop a real-time queue length estimation using trajectory data from CV 

with the demand of a sufficient percentage of trajectory data (Tan et al., 2021). Since 

then, the area of queue length estimation has evolved to consider lower market 

penetration rate (MPR) with relatively higher accuracy. Among early works Skabardonis 

and Geroliminis (2008), and Vigos et al. (2008), and Liu et al. (2009) developed real-time 

models of queue length estimation. Since then, there has been a growing attention to the 

estimating of queue length from connected vehicle data for real-time purposes during the 

last decade. Almost all works follow either a deterministic or a stochastic approach to 

estimate the queue length.  

2.1. Queue Length and Traffic Volume Estimation  

Deterministic methods are mostly built on traffic flow theories by using direct 

mathematical relationship to estimate the queue length. Ban et al. (2011), Hao and Ban 

(2015), Liu et al. (2009), Wang et al. (2019), and Wang et al. (2017) determined the 

shockwave profile to estimate queue length through stochastic approaches that use travel 

times from connected vehicle trajectory data. 
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Among the notable works, Cheng et al. (2012), Ramezani and Geroliminis (2015), Li 

et al. (2017), Yin et al. (2018), and Zheng et al. (2019) utilized shockwave theory in 

terms of dissipation and forming queues to identify the critical trajectory points of joining 

and leaving the queue. However, those deterministic methods are capable of providing 

decent queue length estimations only when there is a sufficient trajectory sample. For 

example, there is a need of at least two queued probe vehicles to have a decent result 

based on the mentioned studies.  

The stochastic methods depend on probabilistic models to estimate the parameters 

and the queue length of the cycle. Most of the stochastic models assumed a Poisson 

distribution of vehicle arrivals and a conditional probability distribution utilized a 

conditional probability distribution. Comert and Cetin (2011) and Comert (2013) 

introduced an analytical model to estimate a cycle-by-cycle queue length by estimating 

the arrival rate through probe vehicle proportion. Hao et al. (2013) and Hao and Ban 

(2015) estimated a cycle-by-cycle queue length using a Bayesian network method that 

utilizes the relationship between the forming, queuing, and dissipating positions of the 

probe vehicles. Tiaprasert et al. (2015) proposed a mathematical model based on discrete 

wave transform without the use of signal time information or traffic flow characteristics. 

Li et al. (2017) introduced a queue length estimation model using flow rate and travel 

time with the consideration of the queue spillover. The model was based on a 

macroscopic model using a first-in-first-out concept to find the maximum queue length. 

Rostami Shahrbabaki et al. (2018) proposed a fusion method using the data from a fixed 

detector an earlier location of the traffic signal approach and the data from connected 

vehicles. The study modeled a nonlinear function that uses the information from 
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connected vehicles to identify the number of vehicles in the queue. Zhao et al. (2019) 

established a queue length distribution model using Bayes theory through analyzing the 

statistical distribution of the position of queued vehicles. By using the distribution of the 

traffic flow and the market penetration rate, the mentioned studies could provide reliable 

estimation results. However, those methods face the challenge of verifying the arrival 

distribution by empirical data collection and the difficulty of obtaining the market 

penetration rate of probe vehicles. These two points are considered as the main 

limitations of both the stochastic and the deterministic methods.  

2.2. Traffic Flow Theory 

Traffic flow models in terms of shockwave theory and car-following models have 

been widely considered in the estimation of the traffic characteristic. The need of traffic 

flow models is explained by the essential role of understanding the nature of traffic flow 

and the behavior of drivers. The effect of traffic flow theory has been applied directly or 

indirectly in the estimation or modeling of traffic characteristics.  

Shockwave theory was introduced by Lighthill and Whitham (1955) and adopted 

in traffic theory by Richards (1956). Since then, researchers in transportation engineering 

started to utilize shockwave theory in different applications of transportation network 

(Ban et al., 2011; Liu et al., 2009; Michalopoulos et al., 1981; Skabardonis & 

Geroliminis, 2008; Wu & Liu, 2011; Wu et al., 2011). Among the earliest work about 

utilizing shockwave theory were Cheng et al. (2012), Cheng et al. (2011), and Ramezani 

and Geroliminis (2015). A recent work by proposed a queue profile estimation model 

based on the spatiotemporal propagation of shockwaves (Wang et al., 2020).  
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Car-following model is necessary to understand the longitudinal behavior of 

vehicles in the traffic flow. One of the first recognized works in car-following models 

was introduced by Newell (1961). A significant amount of research followed to explain 

the car-following behavior to achieve more realistic modeling of the traffic flow 

(Addison & Low, 1998; Brackstone & McDonald, 1999; Gipps, 1981; Lenz et al., 1999; 

Newell, 1965; Sharma et al., 2007; Vigos et al., 2008; Zhang & Kim, 2005). The car-

following models are influenced by factors different based on the site specifications and 

driving behavior. An important factor is the discharge headway as it directly affects the 

parameters of the car-following model (Akçelik & Besley, 2002; Al-Ghamdi, 1999; Hung 

et al., 2003; Lin & Thomas, 2005; Radhakrishnan & Ramadurai, 2015; Shao & Liu, 

2012; Tong & Hung, 2002) 

Understanding the behavior of traffic flow has extended to understand the 

behavior of drivers approaching the signalized intersection and its relation to the 

macroscopic diagram including queue length (Al-Ghamdi, 1999; Dion et al., 2004; Sheffi 

& Mahmassani, 1981; Viloria et al., 2000; Yeo & Skabardonis, 2009). Other works 

attempted to study the relation between signalized intersections and the fundamental 

traffic diagrams (Kerner et al., 2006; Mühlich et al., 2015; Othayoth & Rao, 2020; Yuan 

et al., 2017). A good number of studies focused on the queue discharge at signalized 

intersections and its relation to the traffic capacity (Fourati & Friedrich, 2019, 2021; Li et 

al., 2017; Liu et al., 2009; Wu & Liu, 2011; Yin et al., 2018; Yuan et al., 2017). 
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2.3. Deep Learning  

The estimation models of traffic flow characteristics started to utilize machine 

learning and deep learning techniques about two decades ago. The main advantage of 

data mining models is their capacity in capturing non-linear temporal correlations. A 

significant amount of research applied machine learning and deep learning in the 

application of traffic characteristics (Koesdwiady et al., 2016; Lv et al., 2015; Polson & 

Sokolov, 2017; Wu et al., 2018; Zhang et al., 2019). Support Vector Regression (SVR) is 

among the first data mining models utilized in the estimation of the traffic flow 

characteristics such as traffic flow prediction (AiLing et al., 2002; Yang et al., 2014; 

Zhang & Xie, 2007), travel time prediction (Chun-Hsin et al., 2004), and traffic speed 

prediction (Vanajakshi & Rilett, 2004; Wang & Shi, 2013). 

The ability of deep learning techniques in modeling complex non-linear relationships 

invited researchers to utilize and different deep learning techniques in traffic flow 

estimations. Conventional neural network (CNN) is able to capture the local 

dependencies of traffic data and it is known to be less sensitive to noise in traffic (Li et 

al., 2020). In another traffic flow application, Song et al. (2017) proposed a speed 

prediction model based on CNN and Multi-Layer Perceptron (MLP) models. The 

comparison revealed that CNN demonstrated higher prediction accuracy than MLP. Ma 

et al. (2017) introduced a speed prediction model utilizing CNN model for a large-scale 

transportation network. The model revealed a good accuracy in predicting traffic speed 

for the long term. Another work by Ke et al. (2020) explored the use of CNN in the 
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prediction of traffic speed based on the correlation between spatiotemporal dimension 

and traffic volume. 

More recently, deep learning techniques have been widely applied in the estimation 

of traffic characteristics with promising results (Mahmoud et al., 2021, 2022). Among the 

greatest advantages of deep learning is the flexibility that makes them able to model 

nonlinearity and distinguish the spatiotemporal features within the traffic flow. There are 

various versions of neural network based on the structure and the properties such as input 

cell, hidden cell, recurrent cell, and kernel. Some studies compared different types of 

neural networks in applications related to the traffic flow on freeways and found that 

Bayesian Combined Neural Network (BCNN) demonstrated better performance than the 

single neural network models (NN) and Radial Basis Function Neural Networks 

(RBFNN) in terms of accuracy (Zheng et al., 2006; Zhu et al., 2014). Another deep 

learning technique that has been frequently utilized is Long Short-Term Memory (LSTM) 

in estimating short-term traffic parameters such as cycle-by-cycle traffic volume and 

queue length (Cui et al., 2020; Mahmoud et al., 2021). Different types of neural network 

such as Convolutional Neural Network (CNN) have been developed to estimate traffic 

volume at signalized intersections (Zhang et al., 2019; Zhao et al., 2020; Zheng et al., 

2019). 

2.4. Summary of Chapter II 

For queue length estimation, recent works such as Yao and Tang (2019), Mei et al. 

(2019), Wang et al. (2020), and Tan et al. (2021) proposed models with relatively 

improved accuracy. However, the current models face some challenges from two main 



 13 

aspects including the need of additional information about the traffic flow characteristics 

and the requirement of more than one sampled vehicle per cycle to achieve a decent 

accuracy. The additional information is not always available, and it may require data 

collection in some cases.  In fact, the need of market penetration rate opened another 

stream of research to estimate the market penetration rate (Wong et al., 2019; Zhao et al., 

2019). This demand of additional information increases the internal and external 

dependencies of the queue estimation models. Also, the other aspect of requiring more 

than one sampled vehicle limits the applicability of the queue estimation models. 

Therefore, there is a plenty of room for improvement to estimate queue length without 

external dependency and without the need of more than one sampled vehicle. Zhao et al. 

(2021) proposed a queue estimation algorithm based on hidden Markov model that 

utilizes the stopping positions only. Their proposed model considered using 20% of 

market penetration rate without testing other reasonable rates assuming a constant traffic 

pattern.  

From the literature review of all related works of queue length and traffic volume 

estimation from sampled trajectory data in connected vehicle environment based on 

traffic theory, the findings can be summarized as the following: 

• There is a lack of independency as the current models require some intersection 

parameters that might need other types of data collection from the site such as 

shockwave speed and free-flow speed. This gap limits the use of current 

estimation models to the intersections where in-site data collection has been 

previously conducted.  
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• All the previous works classified vehicles into queued vehicles and non-queued 

vehicles only. In such classification, the queue length estimation models mainly 

utilize the queued vehicles only, while the non-queued vehicles are used as a 

boundary for the model.  

• There is a lack of utilizing the information from slowed-down vehicles to estimate 

the queue length. The uniqueness of this work is utilizing the information of 

slowed-down vehicle to identify the last queued vehicle.  
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3. CHAPTER III: THE DYNAMICS OF TRAFFIC FLOW AT 

THE SHOCKWAVE DISSIPATION 

Most research classifies the traffic flow into stopping (queueing) vehicles and 

passing vehicles to estimate the traffic characteristics (i.e., traffic volume and queue 

length). At isolated intersections, a vehicle approaches the intersection with three main 

possible scenarios:  

• Free-flow state (the signal is green, and the queue has already dissipated), 

• Jam state (the signal is red, and all vehicles are queued), or  

• Capacity state (the signal is green, and the queue is dissipating). 

Figure 3.1 displays the trajectories of vehicles approaching the traffic signal in 

Case A, Case B, and Case C. The vehicles are supposed to approach the intersection 

within the speed limit, which is known as the free-flow state. When the vehicles arrive to 

the intersection, they will either continue in Case A (pass the intersection within the 

speed limit), get into Case B (stop at the traffic signal), or get into Case C (slow down 

and join the dissipating queue). Case C provides the most valuable information about the 

traffic characteristics that is worth utilizing. Here, Case C is called a capacity state which 

includes the saturation state and its transition state as identified by Fourati and Friedrich 

(2021). 
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Figure 3.1 The Traffic State During Shockwave Propagation and Dissipation 

3.1. The Characteristics of Different Traffic States 

The change of vehicles from Case A to Case B provides information about the 

speed of shockwave propagation (queue formation). However, in a sampled trajectory 

data with limited market penetration rate, a single queued vehicle does not provide 

adequate information about the queue formation. On the other hand, a single vehicle that 

changes from Case A to Case C can provide information about the speed of the 

shockwave dissipation (queue dissipation), and it can also assist in finding the queue 
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length and the traffic volume, which is the merit of this work.  

 

Figure 3.2 The Speed Distribution During Shockwave Propagation and Dissipation 

3.1.1. The Queue Dissipation Process 

By looking at Figure 3.2, the queue dissipation process begins when the traffic 

signal turns to green while the speed is zero, and the process of dissipating continues to 

increase the speed to reach a free-flow speed. In this capacity state (Case C), the 

sequential departure of vehicles makes the flow saturated, creating a particular follow 

pattern. In Case B, however, the queue formation follows random patterns due to the 

random arrival of vehicles. When a vehicle in Case A (free-flow speed) approaches the 

signalized intersection while the queue is dissipating, the vehicle has to slow down to join 

the moving queue in the capacity state (Case C). The time, distance, and speed of the 

slowed-down vehicle can help estimate the stopping position of the last queued vehicle. 

Finding the stopping position of the last queued vehicle is the most critical piece of 



 18 

information in identifying the queue length and then the traffic volume. As Figure 3.2 

shows, the slope in red formed by the queued vehicles creates the shockwave formation 

speed (𝜔!") based on the arrival rate. The slope in green formed by the first move of 

vehicles creates the shockwave dissipation speed (𝜔"#), which is almost constant in most 

cases. The slope in yellow formed by the slowed-down vehicles creates the forward-

moving shockwave speed (𝜔!#) based on the arrival rate. The significance of the capacity 

state (Case C) is seen in its ability to connect between the slowed-down vehicles and the 

last queued vehicle. The information about the capacity state can be obtained from the 

prior data, while the slowed-down vehicle is obtained from the real-time data of the 

cycle. 

3.1.2. The Queue Dissipation in Relation to the Traffic Flow 

The purpose of discussing the different traffic states of the shockwave diagram is 

to relate the shockwave dissipation. Therefore, it is important to connect the shockwave 

formation and dissipation with the traffic flow. To visualize this relationship, the 

following figure is plotted.  
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Figure 3.3 Vehicle Classifications and Traffic States on the Fundamental Diagram 

(Flow Vs Density) 

As shown in Figure 3.3, 𝜔!#  is the slope between Case A and Case C in terms of 

flow and density, which both are missing in sampled trajectory data. Since 𝜔"#  is 

relatively constant and the capacity of the intersection is constant as well, the last queued 

vehicle is following the same departure pattern, which means its speed can indicate its 

stopping position (the queue length). Moreover, the speed of the slowing down vehicle is 

related to the speed of the last queued vehicle at Case C based on car-following model. 

Utilizing all these pieces of information from speed distribution at the capacity state and 

the slowing down vehicle can lead to an estimate of the stopping position of the last 

queued vehicle, which represents the queue length. Technically, the furthest (maximum) 

position of a queued vehicle (𝑝$%) from the stop bar equals the queue length (𝐿$) as the 

following: 

 



 20 

𝐿$ = 	𝑚𝑎𝑥	(𝑝$%)        (3.1) 
 

The relationship between queue length and traffic volume is influenced by the 

waiting time based on Little’s Law (Little, 1961). According to Little’s Law, the general 

relationship is described as the following: 

 

𝐿$ = 	𝑞	 ×	𝑡&         (3.2) 

 

3.2. Slowed-down Vehicles and the Last Queued Vehicle 

To understand the interactions between the slowed-down vehicle and the last 

queued vehicle, the interaction between the two vehicles needs to be established in a 

microscopic level and macroscopic level. The microscopic interaction is illustrated by the 

car-following model and the macroscopic interaction is influenced by the traffic state, 

particularly the queue dissipation. 

3.2.1. The Microscopic Interaction in Terms of Car-Following 

Model 

The relationship between the slowed-down vehicle and the last queued vehicle 

can be described by a car-following model. Most car-following models share certain 

principles about headway and speed. The slowed-down vehicle (the following vehicle) 

reacts according to the queued vehicle (the leading vehicle) based on the traffic flow 
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dynamics. By taking into consideration Newell’s car-following model (Newell, 1965), 

the speed of the slowed-down vehicle when it joins the dissipating queue follows: 

 

𝑣'( = 𝑚𝑖𝑛	(𝑣) ,
'
*
)        (3.3) 

 

3.2.2. The Macroscopic Interaction in Terms of the Speed at the 

Capacity State 

Based on Equation (3.3), the speed of the slowed-down vehicle will be correlated 

with the speed of the last queued vehicle as illustrated in Figure 3.4. The speed of the 

vehicles in the capacity state is called speed distribution with spatiotemporal 

consideration. The speed distribution considers the time and distance in the capacity state 

by obtaining the speed of the queued vehicles as they move from jam state (their stopping 

positions) to the capacity state (shockwave dissipation). Figure 3.4 shows the interaction 

between slowed-down vehicles and the queued vehicles with the spatiotemporal speed 

distribution in the capacity state (Case C).  
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Figure 3.4 The Interactions Between Slowed-down Vehicle and Queued Vehicles in 

the Capacity State 

The first slowed-down vehicle in Figure 3.4 (the one to the left) joined the queue 

at a spatiotemporal cell closer to the queued vehicle. The speed at this cell is 

approximately equal to the speed of the queued vehicle. Therefore, uniform speed 

distribution at the capacity state represents the minimum speed of the last queued vehicle: 

 

𝑣$% ≥	𝑣#'         (3.4) 

 

Figure 3.4 also shows a second slowed-down vehicle (to the right) that was 

extremely distant from the last queued vehicle that approaches the stop bar. This ultimate 

example justifies the use of the stop bar as the maximum speed of the queued vehicle: 

 

𝑣$% ≤	𝑣'"         (3.5) 
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The jam state at the signalized intersection forces approaching vehicles to slow 

down even when the signal is green due to the required time for the shockwave to 

dissipate. That means when slowed-down vehicles approach the moving queue, the free-

flow speed will be higher than the speed of the queued vehicles. The increase of the 

speed of the moving queue during the queue dissipation process means the slowed-down 

vehicles will increase their speed as well. Therefore, the lowest speed of the slowed-

down vehicle will be considered as the moment of joining the moving queue.  

3.3. Summary of Chapter III 

From the theoretical basis discussed in this chapter, the findings of this chapter 

can be summarized as the following: 

• The queue dissipation and capacity state have a uniform pattern in terms of time, 

space, and speed, 

• The speed of queued vehicles increases with the increase of the green time until 

the last queued vehicle, 

• The slowed-down vehicle interacts with the last queued vehicle based on the car-

following model 
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4. CHAPTER IV: THE OBSERVATIONAL 

CHARACTERISTICS OF VEHICLE CLASSIFICATIONS 

The role of the prior data is to find the characteristics of the capacity state at the 

signalized intersection. The speed distribution of the queued vehicles can identify the 

spatiotemporal propagation and dissipation of the shockwave. This helps to recognize the 

boundaries of the capacity state and to understand the relation between the queued 

vehicles and the slowed-down vehicles.  

4.1. The Macroscopic Description of the Shockwave 

Figures 4.1, 4.2, 4.3, and 4.4 plot the trajectory data of one day from 7 am to 7 pm 

based on the time, distance, and speed of all vehicles and sampled vehicles.  The red line 

in Figure 4.1 shows the dissipation shockwave speed, and the red shades displays the 

speed pattern at the capacity state (Case C) based on the entire trajectories of the queued 

vehicles (100%). The same details about the intersection are still visible in Figure 4.2 

from queued vehicles with only a sampled trajectory data (10% only).  
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Figure 4.1 The Macroscopic Shockwave Based on the Spatiotemporal Speed 

Distribution of Queued Vehicles (100%) 

 

Figure 4.2 The Macroscopic Shockwave Based on the Spatiotemporal Speed 

Distribution of Queued Vehicles (10%) 
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Figures 4.3 and 4.4 plot the speed distribution of slowed-down vehicles. The 

slowed-down vehicle in Figure 4.3 shaped the dissipation shockwave speed (the red 

slope) due to the relation between the slowed-down vehicles and the queued vehicles. 

The same details were visible by using a sampled trajectory data (10% only) of the 

slowed-down vehicles as shown in Figure 4.4. This example from the data establishes 

empirical evidence of the relation between slowed-down vehicles and the queued 

vehicles as well as the ability of time, distance, and speed to identify the shockwave 

propagation and dissipation.  

 

Figure 4.3 The Macroscopic Shockwave Based on the Spatiotemporal Speed 

Distribution of Slowed-down Vehicles (100%) 
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Figure 4.4 The Macroscopic Shockwave Based on the Spatiotemporal Speed 

Distribution of Slowed-down Vehicles (10%) 

4.2. The Interactions Between the Slowed-down Vehicle and the 

Last Queued Vehicle 

Figures 4.5 to 4.10 illustrate empirical evidence of the relationship between the 

shockwave characteristics, queued vehicles, and slowed-down vehicles. They show the 

time and position of the first stop of the queued vehicles, the first move of the queued 

vehicles, and the least speed of the slowed-down vehicles. The backgrounds of the 

figures are the speed distribution from Figures 4.1 and 4.2 to emphasize the relationship 

between the shockwave characteristics and the vehicle classifications.  

Figures 4.5 to 4.7 are plotted with 100% of the trajectory data, while Figures 4.8 

to 4.10 are plotted with only 10% of the trajectory data. The red points in Figure 4.5 are 
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the first stops of the queued vehicles at the signalized intersection. The red points shaped 

the jam state (Case B) as Figure 4.5 shows. The green points in Figure 4.6 are the first 

move of the queued vehicles at the signalized intersection. The green points shaped the 

dissipation shockwave speed, which is the transition between the jam state (Case B) and 

the capacity state (Case C) as illustrated in Figure 4.6. It is worth mentioning that the 

dissipation shockwave speed has a very uniform pattern due to the nature of queue 

dissipation when vehicles are moving in a repeated sequence. The yellow points in Figure 

4.7 are the least speed of the slowed-down vehicles when they are joining the moving 

queue. The yellow points are scattered in the capacity state (Case C) closer to the 

shockwave dissipation slope. This finding enhances the relationship between the slowed-

down vehicles and the queued vehicles based on the shockwave analysis.  
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Figure 4.5 The Macroscopic Shockwave based on the Speed Distribution with the 

First Stop of the Queued Vehicles (100%) 
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Figure 4.6 The Macroscopic Shockwave based on the Speed Distribution with the 

First Move of the Queued Vehicles (100%) 
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Figure 4.7 The Macroscopic Shockwave based on the Speed Distribution with the 

Least Speed of the Slowed-down Vehicles (100%) 

By looking at Figures 4.8 to 4.10, the same finding from Figures 4.5 to 4.7 can be 

observed. The only difference is the intensity of red, green, and yellow points due to the 

lower number of vehicles as a result of selecting a random sample of 10%. This enhances 

the assumptions the sampled vehicles are able to capture the shockwave characteristics.  
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Figure 4.8 The Macroscopic Shockwave based on the Speed Distribution with the 

First Stop of the Queued Vehicles (10%) 
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Figure 4.9 The Macroscopic Shockwave based on the Speed Distribution with the 

First Move of the Queued Vehicles (10%) 
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Figure 4.10 The Macroscopic Shockwave based on the Speed Distribution with the 

Least Speed of the Slowed-down Vehicles (10%) 

To enhance the findings from Figures 4.6, 4.7, 4.9, and 4.10 about the relationship 

between the queued vehicles and the slowed-down vehicles based on the shockwave 

dissipation, the regressions of vehicle time and position are plotted in Figures 4.11 and 

4,12. By looking at Figure 4.11, the linear regression of the departure of the queued 

vehicles represents the shockwave dissipation speed (slope) with a very high R-squared 

value of 0.99. The linear regression from the last queued vehicles shaped a similar slope 

with a relatively high R-squared value of 0.76. Figure 4.11 was plotted using the entire 

data (100%). The same findings are illustrated by Figure 4.12 based on the sampled 

trajectory data (10%). 
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Figure 4.11 The Regression of the Departure of the Queued Vehicles and the 

Slowed-down Vehicles (100%) 
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Figure 4.12 The Regression of the Departure of the Queued Vehicles and the 

Slowed-down Vehicles (10%) 

Identifying the moment when a slowed-down vehicle joins the moving queue (the 

capacity state) is related to the vehicle’s speed and acceleration behavior. Since the 

general behavior of queued vehicles at the capacity state is governed by the acceleration 

activity to increase the speed after stopping, a slowed-down vehicle decelerates from 

free-flow speed until joining the moving queue when it starts to accelerate as other 

queued vehicles in the capacity state. Figure 4.13 illustrates the trajectory data of a 

typical cycle with queued vehicles, slowed-down vehicles, and a passing vehicle (free-

flow speed).  

 



 37 

 

Figure 4.13 The Shockwave Based with Speed on the Time-Space Diagram of One 

Cycle 

The lowest speed of the slowed-down vehicles exists nearby the moving queue 

before they started to accelerate and increase the speed. Figures 4.14 and 4.15 display the 

lowest speed of the slowed-down vehicles (SD) in relation to the last queued vehicle in 

terms of time and distance, respectively. In this example, the lowest speed of all the three 

slowed-down vehicles happened when the joined the moving queue (in the capacity state) 

before they started to increase the speed. It is also clear that there is a spatiotemporal 

proximity between the slowed-down vehicles and last queued vehicle as shown in Figure 

4.14 in terms of time proximity and Figure 4.15 in terms of space proximity.  
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Figure 4.14 The Speed of the Slowed-down Vehicles with Time Joining the Moving 

Queue 
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Figure 4.15 The Speed of the Slowed-down Vehicles with Distance Joining the 

Moving Queue 

4.3. Queued Vehicle Characteristics during Shockwave 

Dissipation 

There is no expected relationship between the arrival time of the queued vehicles 

and their speed at the stop bar. The disassociation is related to the inconsistent arriving 

pattern of vehicles to the signalized intersection. As Figure 4.16 shows, the time of 

joining the queue by the vehicles and their speed at the stop bar illustrates scattered 

points along the X and Y axis. On the other hand, there is an expected relationship 

between the departure time of the queued vehicles and their speed at the stop bar. The 
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correlation is based on the expected queue dissipation pattern when the traffic signal is 

green. By looking at Figure 4.17, the departure time of the queued vehicles and their 

speed at the stop bar indicates a logarithmic pattern along the X and Y axis. The same 

logarithmic pattern is expected from the relation between the position of the queued 

vehicles and their speed at the stop bar. Figure 4.18 plots the position of the queued 

vehicles and their speed at the stop bar, which indicates almost an identical pattern that 

was found in Figure 4.17. This is justified by the high correlation between the queue 

position and the departure time of the queued vehicles.  

 

 

Figure 4.16 The Time of the First Stop of the Queued Vehicles and the Speed at the 

Stop Bar 
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Figure 4.17 The Time of the First Move of the Queued Vehicles and the Speed at the 

Stop Bar 
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Figure 4.18 The Stopping Position of the Queued Vehicles and the Speed at the Stop 

Bar 

Based on Figure 4.17 and 4.18, the stopping position, the departure time, and the 

speed at the stop bar have a clear relationship. Therefore, Figure 4.19 is plotted to explore 

the relationship between the stopping position, the departure time, and the speed at the 

stop bar in one graph. By looking at Figure 4.19, the three variables are highly correlated 

due to the nature of queue dissipation process, as mentioned earlier.  
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Figure 4.19 The Relationship between Stopping Position, Departure Time, and the 

Speed at the Stop Bar 

4.4. Slowed-down Vehicle Interactions with Queue Length and 

Traffic Volume 

The least speed of the slowed-down vehicles is considered in this work as the 

moment of joining the moving queue and the key of estimating the traffic volume. 

Figures 4.20 to 4.23 explore the relationship of the slowed-down vehicle characteristics 

int terms of time, distance, and speed with other factors such as queued vehicle speed, 

queue length, and traffic volume. Figure 4.20 shows the least speed of the slowed-down 

vehicles on the time-space diagram. The lowest speed (dark blue) aligns with queued 
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vehicle departure found in Figure 4.19. When shorter queues exist, the least speed of the 

slowed-down vehicles increase as a result of the faster queue dissipation process. Figure 

4.21 shows the speed difference between the slowed-down vehicle and the queued 

vehicle. The negative speed difference indicates a higher speed of the slowed-down 

vehicles than the queued vehicle. There are multiple cases of negative speed difference 

that happened way before the slope of the shockwave dissipation (upper left of the 

figure), which are treated as outliers.  

 

Figure 4.20 The Interactions between the Time, Position, and Least Speed of the 

Slowed-down Vehicles 
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Figure 4.21 The Interactions between the Time, Position, and Speed Difference of 

the Slowed-down Vehicles and the Last Queued Vehicles 

To investigate the relationship between the slowed-down vehicle characteristics 

and the queue length and traffic volume, Figures 4.22 and 4.23 are plotted, respectively. 

Figure 4.22 indicates clear effects of the least speed, time, and distance of the slowed-

down vehicles on the queue length. The same effect is visible on the traffic volume as 

shown in Figure 4.23. This is another empirical evidence of the of the relationship 

between the slowed-down vehicle and the last queued vehicle in identifying the traffic 

flow characteristics. 
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Figure 4.22 The Interactions between the Time, Position, Least Speed of the Slowed-

down Vehicles, and the Queue Length 
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Figure 4.23 The Interactions between the Time, Position, Least Speed of the Slowed-

down Vehicles, and the Queue Length 

 

4.5. The Relationship between Queue Length and Traffic 

Volume 

The influence of the slowed-down vehicles on the queue length is justified earlier 

as there is a relationship with the last queued vehicle. The effect of the slowed-down 

vehicles on the traffic volume is justified by the high correlation between the queue 

length and the traffic volume. If a signalized intersection has the same arrival distribution 

and the same red time, the increase of traffic volume will increase the queue length. 
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Figure 4.24 plots the queue length and the traffic volume for more than 60 cycles. The 

figure illustrates a high level of correlation between the two key flow characteristics, 

which justifies the utilization of the slowed-down vehicles and queue length in estimating 

the traffic volume as will be described in the following sections. 

 

Figure 4.24 The Empirical Relationship between Queue length and Traffic Volume  

4.6. Summary of Chapter IV 

From the empirical indications discussed in this chapter, the findings of this 

chapter can be summarized as the following: 

• The macroscopic shockwave can be illustrated by the speed distribution based on 

a sampled trajectory data, 
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• There is a relationship between the slowed-down vehicles and the last queued 

vehicles around the dissipation shockwave based on the macroscopic shockwave, 

• There is a spatiotemporal proximity between the slowed-down vehicles and the 

last queued vehicles from the empirical cycle results, 

• The departure time and the distance to the stop bar are associated with the speed 

at the stop bar, 

• The speed of the queued vehicles at the stop bar increase with the increase of the 

green time, 

• The least speed of the slowed-down vehicles is correlated with the green time and 

distance, 

• The least speed of the slowed-down vehicles is associated with the queue length 

and the traffic volume, 

• At the same signalized intersection, there is a correlation between the queue 

length and the traffic volume. 
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5. CHAPTER V: THE ESTIMATION MODELS BASED ON 

DEEP LEARNING 

Utilizing the prior data (at least one day) provides valuable information about the 

traffic characteristics during different patterns at the signalized intersection. This dataset 

is a sample of the traffic flow at the site of interest, and the percentage of the sampled 

vehicles is based on the market penetration rate. The major training models that lead to 

the queue length estimation are:  

• Speed at the stop bar,  

• Speed at the capacity state, and  

• Queue position. 

 The traffic volume is calculated based on the flow rate during the red time. With 

the increase of each time interval, the speed at the stop bar in the capacity state area 

increases due to the queue departure process. With the fact that the time headway at the 

stop bar decreases with the increase of green time, the traffic flow and the speed of 

vehicles increase with time as well. Flow has an inverse relationship with the headway 

and a direct relationship with speed and density as the following: 

 

𝑞+ =	
,!
-!
=	 ,!

∑ /"!
# !

=	 0
/$
=	𝑣1 	× 	𝑘1      (5.1) 
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Therefore, the increase of speed at the stop bar with time can be utilized as the 

maximum limit of the speed of queued vehicles and, eventually, can be integrated in the 

queue estimation algorithm as will be described in the following sections. 

Assuming a uniform acceleration behavior, the speed of the queued vehicle at the 

stop bar indicates its stopping position. Based on the relationship between speed, 

distance, and time, the stopping position of the queued vehicle can be obtained as the 

following: 

 

𝑝$% =		 𝑣'" 	× 	 𝑡2        (5.2) 

 

Also, the time since the first move and the speed at the capacity state indicates the 

stopping position of the queued vehicle: 

 

𝑝$% =	𝑣$% 	× 	 𝑡2        (5.3) 

 

The time since the first move of the queued vehicle is related to the vehicle 

sequence at the queue and the time since the green time started: 

 

𝑡2 =	 𝑡3 −	𝑡+         (5.4) 

 

The queue position is the sum of the moving distance from the stopping position 

and the distance to the stop bar: 
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𝑝$% =	𝑑2 +	𝑑'"        (5.5) 

 

In fact, the speed of the queued vehicle since its first move can indicate its 

stopping position: 

 

𝑣$% =		
)%
-%
	         (5.6) 

 

5.1.1. Speed at the Stop Bar  

The stop bar represents the limit of the capacity state (Case C) as appears in 

Figure 4. The speed of the queued vehicles at the stop bar can be estimated based on the 

green time by relying on the training dataset and deep learning techniques as the 

following: 

 

𝑣'" = 	𝑓(𝑡3)         (5.7) 

 

5.1.2. Speed Distribution at the Capacity State 

If the acceleration of vehicles and the sequence of moving are constant, the speed 

at each combination of time and distance is constant too. This means the speed 

distribution at the capacity state is a function of time and distance, which can be 

represented in term of cells as appears in Figure 3.4 The increase of speed is associated 

with the increase of time and distance. Modeling this relationship is influenced by the 
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acceleration profile of the individual queued vehicles and their time sequence of moving. 

Therefore, deep learning is utilized to estimate the speed distribution at the capacity state 

based on all queued vehicles in the training dataset using the green time and distance to 

the stop bar as the following: 

 

𝑣#' = 	𝑓(𝑡3 , 𝑑$%)        (5.8) 

 

5.1.3. Identifying Queue Position 

Due to the complexity of including different factors such as acceleration and 

perception-reaction time, modeling the time of the first move based on the queue position 

can be difficult to achieve. Therefore, deep learning techniques can be utilized to identify 

the queue position (𝑝$%) based on the green time and speed from the training data as the 

following: 

 

𝑝$% = 	𝑓(𝑡3 , 𝑣$%)        (5.9) 

 

5.2. The Estimation of Queue Length from Cycle Data 

When all models are trained from the prior data, from now on, the slowed-down 

vehicles in the cyclic data can be implemented in the models to estimate the queue 

position of the last queued vehicle (queue length). 
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5.2.1. Speed of the Last Queued Vehicle  

The time of the moment the slowed-down vehicle joins the moving queue will be 

implemented in the training model of the stop bar speed (Equation 5.7): 

 

𝑣'" = 	𝑓(𝑡'()         (5.10) 

 

The time and distance of the moment the slowed-down vehicle joins the moving 

queue will be implemented in the training model of the speed distribution at the capacity 

state: 

 

𝑣#' = 	𝑓(𝑡'( , 𝑑'()        (5.11) 

 

The speed of the last queued vehicle needs to be estimated based on stop bar 

speed and speed at the capacity state (speed distribution). Estimating the speed of the last 

queued vehicle is described as the following: 

 

𝑣4$% = 	𝑓(𝑣'" , 𝑣#')        (5.12) 

 

Based on the mentioned speed limits stated in Equations (3.4) and (3.5), the speed 

of last queued vehicle is a value between the speed distribution and the speed at the stop 

bar as the following: 

 

𝑣#' < 𝑣4$% < 𝑣'"        (5.13) 
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The distance between the slowed-down vehicle and the last queued vehicle is 

unattainable due to the variation in space headway and the possibility of having other 

slowed-down vehicles between the consider slowed-down vehicle and the last queued 

vehicle. Therefore, the estimated speed of the queued vehicle is modeled as the 

following: 

 

𝑣4$% =
5&'65'(

7
        (5.14) 

 

5.2.2. Final Queue Length Model 

The time from the slowed-down vehicle and the estimated speed of the last 

queued vehicle will be implemented in the training model of the queued vehicle position 

as the following: 

 

𝐿4$ = 	𝑓(𝑡'( , 𝑑'( , 𝑣4$%)      (5.15) 
 

5.2.3. Final Traffic Volume Model 

As Figure 4.22 showed, there is a high correlation between the queue length and 

the traffic volume. The relationship between queue length and traffic volume is 

influenced by the waiting time based on Little’s Law. According to Little’s Law, the 

general relationship is described in Equation (3.2). To find the traffic volume, the 

estimated queue length will be utilized to obtain the traffic flow for the period from the 
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red time to the time when the slowed-down vehicle joined the dissipating queue. Since 

the slowed-down vehicle is considered in the traffic flow, one more vehicle is added to 

the queue length. The traffic flow is calculated as the following: 

 

𝑞4 =	
8)*60	
-'+

         (5.16) 

 

To compute the traffic volume per cycle, the traffic follow is multiplied by the 

cycle time as the following: 

 

𝑉4 =	𝑞4 	× 	𝐶         (5.17) 

 

5.3. The Process and Components of the Estimation 

Algorithms 

Figure 5.1 is the flowchart of estimating traffic volume, and it explains the 

process in terms of data inputs, models, and outputs. The algorithm requires a prior 

trajectory dataset with the traffic signal information of the intersection (without the need 

of traffic volume nor queue length information). From the prior dataset, the queued 

vehicle trajectories will be utilized to obtain three models including speed distribution 

model, stop bar speed model, and queuing position model by using deep learning 

technique (ANN). After that, the traffic volume of any future cycle can be estimated 

through the trajectories of slowed-down vehicles. 
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Figure 5.1 The Flowchart of the Estimation Algorithm of Queued Vehicles and 

Traffic Volume  

5.4. The Inputs and Output of the Algorithm 

As the flowchart in Figure 5.1 shows, the training and testing datasets from the 

prior data are utilized to find three essential models related to the speed distribution at the 

capacity state, queuing position of vehicles from speed at the capacity state, and the speed 

at the stop bar. The speed distribution model relies on the green time and the distance to 
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the stop bar as inputs. The queuing position model is based on tracking the green time 

and the speed of each queued vehicle at the capacity state with the stopping position 

being constant for each vehicle. Table 5.1 summarizes the inputs and outputs of the 

training models of the speed distribution and the queuing position. For the stop bar speed 

model, the green time is the only influencing variable that has been used as an input in 

the model due to the direct relationship between the green time and the speed at the stop 

bar, which has been demonstrated earlier in the area (Lee & Chen, 1986). 

 

Table 5.1 Training Models from Queued Vehicles 

Speed Distribution Model Queuing Position Model 

Input Output Input Output 

Green Time (𝑡3) Speed (𝑣#') Green Time (𝑡3) Queuing Position (𝑝$%) 

Distance to Stop Bar (𝑑$%)  Speed (𝑣$%)  

 

The slowed-down vehicle trajectories from the real-time cycle data will be 

implemented in the three models. From the cycle data, the least speed of the slowed-

down vehicle and its corresponding green time and distance to stop bar will be used to 

estimate the speed of the queued vehicle (𝑣4$%) as per Equation (5.14). The estimated 

value of 𝑣4$% is then implemented in the queuing position model to estimate the queue 

length. The validation model based on the slowed-down vehicles is summarized in Table 

5.2. 
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Table 5.2 Validation Models Using Slowed-down Vehicles 

Validation (Speed Distribution) Validation (Estimated Queue Length) 

Input Output Input Output 

Green Time (𝑡'() Speed 

(𝑣#') 

Green Time (𝑡'() Queue Length 

(𝐿4$) 

Distance to Stop Bar (𝑑'()  Distance to Stop Bar (𝑑'()  

  Estimated Speed (𝑣4$%)  

 

The estimated queue length is the key in the finding the flow rate that eventually 

leads to the traffic volume of the cycle as described in Equation (5.17). 

5.5. Deep Learning Technique for the Estimation Models 

Estimating a continuous output variable such as speed and stopping position can 

be done through different types of deep leaning models. However, MLP, a type of ANN, 

is suitable for estimation purposes rather than interpretation purposes. MLP is known as a 

provider of an efficient representation of the characteristics of the data with high 

accuracy and reasonable development time. The MLP was applied using the machine 

learning software WEKA. The appendix includes information about the software and the 

used MLP package.  
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Figure 5.2 The General Structure of ANN with Inputs, Outputs, and Hidden Layers   

Figure 5.2 illustrates the general structure of ANN where (𝑥) represents the 

selected inputs and (𝑦) represents the output based on the estimation model. The structure 

of MLP relies on (𝑥) as the main inputs of the model and (𝑦) as the main output 

(prediction). Between the inputs and the output, there are hidden layers (ℎ) and neurons 

that can be modified based on the nature of the data. The neurons are linked by 

connectors with weights (𝑤), which are also modifiable. The final output (𝑦) in the 

estimation models using MLP is described as the following: 

 

𝑦 = 𝜎(𝑧) = 0
06:,-

        (5.18) 
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The logistic function is represented by the sigmoid activation function (𝜎). The 

variable (𝑧) is based on a non-linear activation function, which aims to create non-

linearity into the output of the neurons, and can be described as the following:  

 

𝑧 = ∑(𝑥 ∙ 𝑤) + 𝑏        (5.19) 

 

The value (𝑏) a bias that creates an offset to move the entire activation function to 

the left or right towards output values. The summation of the vectors (𝑥) and (𝑤) is the 

dot product of the vectors as the following:  

 

∑(𝑥 ∙ 𝑤) = (𝑥0 ∙ 𝑤0) + (𝑥7 ∙ 𝑤7) + ⋯+	(𝑥, ∙ 𝑤,)    (5.20) 

The inputs (𝑥) and outputs (𝑦) are different in each of the three models: speed 

distribution, speed at the stop bar, and queuing position. The details of inputs and outputs 

are as described in the previous section. 

In most of ANN applications, one and two hidden layers are widely used as there 

is no theoretical reason for deciding more than two hidden layers. For the number of 

neurons, researchers have been using multiple rule-of-thumb methods as a start point to 

determine the optimal number of neurons in the hidden layers by considering the number 

of inputs and outputs (Ibnu Choldun R et al., 2020; Stathakis, 2009). In this work, the 

adopted rule-of thumb method is number of hidden neurons to be less than twice the size 

of the input layer. Therefore, one to three hidden layers have been tested with 

combinations of different number of neurons. The best combination of hidden layers and 

hidden neuros for each model was selected based on the accuracy of the testing results. 
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Figure 5.3 shows the selected structure of the MLP for the last step of finding the queue 

length. 

 

Figure 5.3 The Structure of the adopted MLP Structure with Inputs, Outputs, and 

Hidden Layers   

5.6. Summary of Chapter V 

From the methodology discussed in this chapter, the findings of this chapter can 

be summarized as the following: 

• By utilizing deep learning technique, multilayer perceptron (MLP), three models 

are formed: 

o The speed at the stop bar model based on the green time, 
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o The speed distribution model based on the green time and distance to the 

stop bar, 

o The queue length estimation model based on the green time and the 

estimated speed of the last queued vehicle. 

• The speed of the last queued vehicles is formulated as the average speed between 

the stop bar and the capacity state 

• The traffic volume estimation is based on the traffic flow at the arrival of the 

slowed-down vehicle by dividing the queue length and one more slowed-vehicle 

by the time of the least speed vehicle. 
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6. CHAPTER VI: THE VALIDATION OF THE ESTIMATION 

MODELS 

The second and third objectives of this dissertation are to propose a queue length 

model and to develop a traffic volume estimation model. The two developed models in 

Chapter V needs to be evaluated. The results in this chapter are dedicated to analyzing the 

performance of the proposed models.  

6.1. Experiment Design 

To analyze and evaluate the performance of the algorithm, four experiments have 

been conducted on simulation and real-world data. The first experiment is a simulation-

based with the aim of testing the accuracy of the queue length algorithm and the effect of 

different factors. The second experiment examined the queue length estimation algorithm 

on real-world data (NGSIM). The third experiment evaluates the traffic volume 

estimation algorithm on simulation data algorithm and tests the effect of different factors 

on the estimation accuracy. The fourth experiment examined the traffic volume 

estimation algorithm on NGSIM data. The experiments in this work assume that the 

signalized intersection is isolated with a pre-timed signal control and the lane-changing 

activities are neglected. 
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6.1.1. Simulation Experiment 

The signalized intersection in the simulation has three lanes with middle lane 

(through) is being studied as it appears in Figure 6.1. The scenarios were implemented in 

the simulation software package (VISSIM). 

  

(a) (b) 

 

Figure 6.1 The Conceptual Design of the Site in the Experiments 

The traffic signal has 120-sec cycle length, and the through lane has 40-sec green 

phase. To evaluate the model with different traffic volumes, the traffic flow fluctuates 

between high, moderate, and low traffic flow. Table 6.1 shows the minimum and 

maximum traffic flow and queue lengths of the validation dataset at the simulated 

signalized intersection.  
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Table 6.1 The Traffic Characteristics of the Site in the Simulation Experiment 

 
Traffic Flow 

(Veh/hr/ln) 

Traffic 

Volume 

(Veh/Cycle/ln) 

Queue Length 

(Veh/Cycle/ln) 
Traffic Signal (Sec) 

Min 270 9 4 
Green 

Time 
40 

Max 960 32 19 
Cycle 

Length 
120 

 

The simulation results created a prior data of a full day from 7:00 AM to 7:00 

PM.  The samples of 5%, 10%, 15%, 20% have been randomly selected from the 

trajectories to study different market penetration rate. In most cases in the analysis, 

market penetration rate of 10% was selected. The data contains cycle time during red and 

green, distance to stop bar, and speed. The real-time data (cycle data) is another day from 

1:00 PM to 1:30 PM and from 4:00 PM to 5:00 PM. 

6.1.2. Real-world Experiment 

The real-world experiment has been implemented on the through lane in the 

second signalized intersection of NGSIM data (Atlanta, Georgia) as shown in Figure 6.2. 

A disadvantage about NGSIM is that the dataset was collected for only 15 minutes in 

peak period and 15 minutes in off-peak period. In this work, the off-peak data has been 

utilized as prior dataset to train and test the models, and the peak data has been utilized to 

validate the algorithm. The major limitation of NGSIM dataset is the short period, 

especially for data mining and deep learning models. However, several studies have 
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utilized NGSIM in data mining and deep learning applications (Jazayeri et al., 2021; 

Jiang et al., 2019; Mercat et al., 2019; Shi et al., 2021). 

 

Figure 6.2 The Site Description of the Real-world Experiment (Cambridge 

Systematics, 2007) 

The cycle time during red and green, distance to stop bar, and speed of queued 

vehicles in the prior dataset (off-peak) has been processed to find the estimation models. 

The peak data was, firstly, processed to find the traffic volume and queue length of each 

cycle. Then, the slowed-down trajectories of the real-time dataset (peak) have been 

implemented in the estimation models. Table 6.2 summarizes the traffic details of the 

validation dataset in the real-world experiment.  
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Table 6.2 The Traffic Characteristics of the Real-world Experiment 

 
Traffic Volume 

(Veh/Cycle/ln) 

Queue Length 

(Veh/Cycle/ln) 
Traffic Signal (Sec) 

Min 4 2 
Green 

Time 
32 

Max 14 7 
Cycle 

Length  
100 

 

6.2. Measure of Effectiveness 

The evaluation of performance requires a comparison between the ground truth 

and the predicted value. The Mean Absolute Percentage Error (MAPE) calculates the 

percentage of error by comparing the actual value with the estimated value to observe the 

variation in traffic volume. In this paper, MAPE will be used as the performance 

evaluation measurement, and it can be calculated as the following: 

 

𝑀𝐴𝑃𝐸 = 0
,
∑ I!.;4.

!.
I,

-<0        (6.1) 

 

Where: 𝑛 is number of times the summation iteration, 𝐴- is actual value, and 𝐸- is 

estimated value. 
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6.3. The Performance of Queue Length Estimation Model 

The performance of the queue length estimation model is evaluated based on the 

measure of effectiveness (MAPE) to assess the accuracy of the algorithm for simulation 

data and real-world data.  

6.3.1. Queue Length Estimation Analysis of the Simulation 

Experiment 

The results of the simulation of 33 cycles during peak and off-peak (1:00 PM to 

1:30 PM and 4:00 PM to 5:00 PM) is shown in the following table. The accuracy of the 

model during the 33 cycles was 86.53% as MAPE was 13.44%. The results are based on 

(10%) penetration rate. The results in the table indicate some cases of overestimation and 

underestimation. To have a deeper look at the results, Figure 6.3 is also plotted with 

traffic volume, actual queue length, and estimated queue length.  

Table 6.3 The Results of the Queue Length Estimation Model for Simulation Data 

Cycle Traffic 

Volume 

(Veh/ln/Cycle) 

Queue Length 

(Veh/ln/Cycle) 

Estimation 

(Veh/ln/Cycle) 

APE(%) 

1 24 11 9.9 9.18% 

2 12 5 4.1 17.82% 

3 26 16 15.1 6.08% 

4 27 18 16.1 10.46% 

5 22 10 8.5 14.85% 

6 25 15 13.2 12.19% 
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7 23 11 10.0 8.89% 

8 19 7 6.6 6.25% 

9 16 5 5.2 4.52% 

10 20 10 10.1 0.12% 

11 12 5 4.3 14.79% 

12 18 7 6.4 8.61% 

13 17 8 7.2 9.88% 

14 26 14 12.7 9.58% 

15 25 12 11.0 8.13% 

16 23 12 10.9 9.37% 

17 24 11 9.8 11.26% 

18 7 3 2.4 18.11% 

19 20 9 7.9 11.40% 

20 15 6 7.4 22.56% 

21 18 8 9.1 13.14% 

22 13 3 3.6 20.79% 

23 16 6 7.8 29.84% 

24 22 10 11.8 17.80% 

25 13 4 4.9 22.75% 

26 18 9 12.8 42.50% 

27 26 13 13.9 7.01% 

28 11 5 5.5 9.69% 

29 21 11 12.0 9.20% 

30 11 5 5.1 1.38% 

31 12 4 5.2 29.55% 

32 12 5 5.9 17.97% 

33 18 6 6.5 7.96% 

Min APE 0.12% 

Max APE 42.50% 

STD 8.74% 
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MAPE 13.44% 

 
From Figure 6.3, the estimation algorithm demonstrated an excellent performance 

as it followed the fluctuation of the traffic length along different cycles. As the figure 

shows, there are more overestimations than underestimations by the algorithm. The 

overestimation seems to be associated with the longer queues. This might be because the 

higher probability of having more slowed-down vehicles in front of the utilized slowed-

down vehicle when the queue is longer. This raises a question about the effect of different 

variables in the performance of the algorithm. Also, it urges the investigation of which 

slowed-down vehicle to use when there are two slowed-down vehicles in one cycle. To 

answer those questions, the section of The Effective Factors in the Queue Length 

Estimation Model is included to investigate the relationship between the performance of 

the model and green time, distance to stop bar, speed of the slowed-down vehicle, and the 

sequence of the used vehicle among the slowed-down vehicle in the cycle. 
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Figure 6.3 Th Performance of the Queue Length Estimation Model in the 

Simulation Experiment 

6.3.2. Queue Length Analysis of the Real-world Experiment 

Due to the limited amount of data in the validation data (only 15 minutes), one 

slowed-down vehicle was randomly selected for each cycle. NGSIM data has nine cycles 

during the 15-minute dataset where seven of them had slowed-down vehicles. The results 

of the algorithm demonstrated an MAPE of 21.97%, which means an accuracy of 

78.03%. The following table summarizes the performance of the algorithm. 
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Table 6.4 The Results of the Queue Length Estimation Model for Real-world Data 

Cycle 
Traffic Volume 

(Veh/ln/Cycle) 

Queue Length 

(Veh/ln/Cycle) 

Estimation 

(Veh/ln/Cycle) 
APE (%) 

1 7 2 2.1 33.68% 

2 9 2 2.5 11.27% 

3 3 3 2.6 8.66% 

4 5 3 3.1 4.42% 

5 5 4 1.4 60.10% 

6 9 4 3.8 5.42% 

7 14 7 4.3 30.24% 

Min APE 4.42% 

Max APE 60.10% 

STD 20.54% 

MAPE 21.97% 

 
To visualize the performance of the algorithm across the cycles, Figure 6.4 shows 

the estimated and actual queue lengths along with the traffic volume. There is one 

significant underestimation in cycle 5 with 60.1% MAPE. After investigating the data, it 

was found that the stopping position of the last queued vehicle had been changing before 

it started the acceleration process. In other words, the last queued vehicle kept an 

extremely long distance with the leading vehicle before it reduced the gap when the 

traffic signal turned green. This significant underestimation influenced the final MAPE of 

the algorithm, and if it was replaced with the second higher APE (33.68%), the MAPE 

would be 17.86%. The short period of training data (only 15 minutes) can be an effective 

factor in increasing the MAPE as it limits learning all the traffic patterns. Larger training 

dataset is expected to lower the MAPE and increase the accuracy of the algorithm.  
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Figure 6.4 Th Performance of the Queue Length Estimation Model in the Real-

world Experiment 

6.3.3. The Effective Factors in the Queue Length Estimation Model 

To instigate the effective factors in the queue length estimation model, the MAPE 

was plotted against different inputs. In this investigation, the simulation data has been 

utilized as it provides higher sample data. 

By looking at Figures 6.5 to 6.8, there seems to be a correlation between the 

queue length and MAPE of the algorithm. In other words, the accuracy of the model 

increases with the increase of the queue length. This might be because the longer queue 

provides higher probability of the slowed-down vehicle to be closer to the last queued 
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vehicle. This is enhanced by Figures 6.5 and 6.6 where higher green time and longer 

distance from the bar are associated with lower MAPE (higher accuracy).  

 

 

Figure 6.5 Th Effect of Cycle Time on the Performance of the Queue Length 

Estimation Model 
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Figure 6.6 Th Effect of Distance on the Performance of the Queue Length 

Estimation Model 

To have a closer look at the relationship between MAPE and the most effective 

factors, Figures 6.7 and 6.8 are plotted with the speed of the slowed-down vehicle and its 

sequence after the last queued vehicle, respectively. From both figures, the lower MAPE 

is scattered in the lower speed and lower sequence of slowed-down vehicles. The relation 

between the speed and sequence of slowed-down vehicle is justified by the nature of 

queue dissipation process as the speed at capacity state keeps increasing during the green 

time, which means the earlier slowed-down vehicle in sequence will have a lower speed. 

Therefore, when there is more than one slowed-down vehicle in one cycle, the earlier in 

the sequence will be selected for queue length estimation.  This is a significant 
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consideration when different penetration rates are compared. With higher penetration 

rates, there are higher probability of having more slowed-down vehicles.  

 

 

Figure 6.7 Th Effect of the Speed on the Performance of the Queue Length 

Estimation Model 
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Figure 6.8 Th Effect of the Vehicle Sequence on the Performance of the Queue 

Length Estimation Model 

To have a better visualization of the relationship between the characteristics of the 

slowed-down vehicles and the estimation accuracy, Figure 6.9 is plotted. The sequence of 

the slowed-down vehicle has a direct relationship with the MAPE. In other words, the 

model demonstrated a higher accuracy when the slowed-down vehicle has a closer 

distance to the queued vehicle. The lower MAPE (higher accuracy) is associated with the 

lower slowed-down sequence, lower speed, and longer queue length.  
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Figure 6.9 Th Effect of Speed and Sequence of the Slowed-down Vehicle on the 

Performance of the Queue Length Estimation Model 

 

The data about the relationship between slowed-down vehicle characteristics and 

the accuracy of the queue length estimation as appeared in Figures 6.5 to 6.9 are 

summarized in the following table.  

 

Table 6.5 The Data of the Slowed-down Vehicle Characteristics and the Accuracy of 

the Queue Length Estimation 

SD Speed 

(m/s) 
Time (s) 

Distance 

(m) 

Traffic 

Volume 

(veh) 

Queue 

Length 

(veh) 

MAPE 

(%) 



 80 

10.97 96.5 62.75 16 7 16.74% 

9.79 92 74.46 15 6 29.39% 

0.92 91 74.38 14 8 7.94% 

8.64 106.3 111.58 27 14 21.84% 

16.96 102.2 127.47 21 12 40.95% 

13.51 100.7 73.77 23 9 72.00% 

15.49 105.5 150.85 24 14 27.36% 

11.96 111.7 138.07 29 17 6.15% 

16.82 109.9 169.49 27 17 6.15% 

11.78 105.8 156.05 33 17 6.14% 

10.33 109 128.39 30 16 6.10% 

9.48 98.4 78.51 22 10 6.59% 

11.00 96.2 62.97 20 8 2.29% 

8.90 97 72.12 18 9 4.54% 

4.09 90.7 48.29 12 5 16.61% 

7.41 98.1 107.03 22 12 16.37% 

5.22 106.4 145.69 27 17 6.12% 

6.49 94.5 69.81 14 8 0.29% 

1.60 93.2 80.02 20 10 6.23% 

10.43 92.4 49.3 14 5 23.40% 

10.58 109.2 109.23 28 15 19.12% 

9.90 99.1 87.67 21 11 7.80% 

9.48 103.5 117.07 25 14 14.19% 

6.25 99.8 107.94 22 12 16.53% 

14.09 108.8 129.34 29 17 0.51% 

14.60 101 103.93 21 12 62.00% 

3.09 100.9 119.67 25 14 10.88% 

1.08 92.5 70.1 22 8 2.88% 

3.70 94.7 74.17 21 8 6.09% 

11.79 108.1 124.39 24 16 12.23% 
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4.23 97.6 99.72 23 12 8.21% 

11.40 87.4 94.11 9 3 58.26% 

10.56 103 113.73 20 14 9.56% 

10.03 94.9 66.39 16 7 11.30% 

9.79 92 74.46 15 6 29.39% 

0.73 89.1 62.29 14 8 18.02% 

5.42 102.6 111.55 27 14 6.90% 

16.96 102.2 127.47 21 12 40.95% 

13.51 100.7 73.77 23 9 25.87% 

10.14 101.3 119.68 24 14 10.67% 

11.96 111.7 138.07 29 17 6.15% 

1.93 103.8 138.6 27 17 5.96% 

11.65 102.7 161.36 33 17 5.85% 

9.99 105.6 134.1 30 16 5.87% 

9.48 98.4 78.51 22 10 6.59% 

11.00 96.2 62.97 20 8 2.29% 

7.88 95.8 70.44 18 9 3.21% 

3.63 89.2 46.71 12 5 10.49% 

7.41 98.1 107.03 22 12 16.37% 

5.22 106.4 145.69 27 17 6.12% 

6.49 94.5 69.81 14 8 0.29% 

1.60 93.2 80.02 20 10 6.23% 

5.39 90 48.45 14 5 14.61% 

10.21 105.7 116.88 28 15 14.91% 

9.16 97.9 85.42 21 11 1.25% 

2.90 106.2 170.97 25 14 27.37% 

6.25 99.8 107.94 22 12 16.53% 

14.09 108.8 129.34 29 17 0.51% 

14.60 101 103.93 21 12 16.40% 

1.97 99.3 115.32 25 14 6.69% 
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1.08 92.5 70.1 22 8 2.88% 

3.70 94.7 74.17 21 8 6.09% 

11.32 111 122.72 24 16 12.38% 

4.23 97.6 99.72 23 12 8.21% 

4.50 86.7 28.57 9 3 29.82% 

10.56 103 113.73 20 14 9.56% 

 

There is an effect of the market penetration rate on the performance of the model. 

Table 6.6 shows the results of testing 5%, 10%, 15%, and 20%. A direct relationship 

between percentage of the sampled vehicles (market penetration rate) and the accuracy of 

the model. The maximum accuracy is almost 100% and the minimum accuracy is 

approximately 38%. The results indicate a bigger gap in MAPE (larger accuracy 

improvement) between 5% MPR and 10% MPR. The improvement of MAPE tends to 

become smaller between 10% MPR, 15% MPR, and 20% MPR. This might be because 

the increase of market penetration rate will be less likely to change the slowed-down 

vehicle to be earlier in the sequence. 

Table 6.6 The Results of the Queue Length Estimation with Different MPR 

 MPR (5%) MPR (10%) MPR (15%) MPR (20%) 

MAPE 19.16% 13.44% 9.17% 7.36% 

Min APE 0.12% 0.12% 0.01% 0.01% 

Max APE 62.26% 62.26% 62.26% 32.1% 

STD APE 13.37% 8.74% 7.63% 5.94% 

 

Figure 6.10 demonstrates a better performance of the algorithm with the increase 

of the market penetration rate (MPR). Obviously, the lowest MPR of 5% shows the 

highest MAPE and the highest MPR of 20% provides the lowest MAPE. The highest 



 83 

MAPE was 19.16% (accuracy of 80.84%) and the lowest was 7.36% (accuracy of 

92.64%).  

 

Figure 6.10 The Performance of the Queue Length Estimation Model with Different 

MPR 

6.4. The Performance of Traffic Volume Estimation Model 

The performance of the queue length estimation model is evaluated based on the 

measure of effectiveness (MAPE) to assess the accuracy of the algorithm for simulation 

data and real-world data.  

 



 84 

6.4.1. Traffic Volume Estimation Analysis of the Simulation 

Experiment 

By applying the algorithm on the validation dataset, the MAPE was 11.85%, 

which means an accuracy of 88.15%. The maximum MAPE was 27.68% and the 

minimum MAPE was 0.31% (accuracy of 72.32% and 99.69%). The following table 

summarizes the results of the model for each cycle based on the simulation data.  

Table 6.7 The Results of the Traffic Volume Estimation Model for Simulation Data 

Cycle 
Traffic Volume 

(Veh/ln/Cycle) 

Queue Length 

(Veh/ln/Cycle) 

Traffic Volume 

Estimation 

(Veh/ln/Cycle) 

APE 

(%) 

1 17 11 15 13.92% 

2 16 8 12 25.66% 

3 25 22 26 2.41% 

4 22 15 19 15.60% 

5 17 14 18 6.52% 

6 22 13 17 24.39% 

7 23 18 21 7.35% 

8 24 18 22 6.50% 

9 21 13 17 17.70% 

10 11 5 8 26.12% 

11 14 10 14 0.33% 

12 13 8 11 11.81% 

13 12 8 12 2.60% 

14 16 9 13 18.83% 

15 22 18 22 1.49% 

16 18 13 17 6.48% 
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17 23 13 17 27.68% 

18 10 5 8 18.92% 

19 8 6 9 13.39% 

20 11 8 12 4.67% 

21 25 20 24 3.63% 

22 16 12 16 0.31% 

23 17 10 14 18.78% 

24 14 11 15 6.26% 

25 23 15 19 16.85% 

26 25 15 19 25.87% 

27 21 15 19 11.58% 

28 25 19 22 13.36% 

29 20 17 21 3.45% 

30 9 6 9 3.02% 

Min APE 0.31% 

Max APE 27.68% 

STD APE 8.67% 

MAPE 11.85% 

 

To have a deeper look at the performance of the model, the estimation of the 30 

cycles is plotted in Figure 6.11. From the figure, an excellent performance by the model 

can be observed as estimated traffic volume followed the fluctuation of the actual traffic 

volume along different cycles. There seems to be more underestimations than 

overestimations by the algorithm. This might be because the traffic flow from the queued 

vehicles is less than the traffic flow in the entire cycle. Also, there is a probability of 

having more slowed-down vehicles in front of the utilized slowed-down vehicle.  
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Figure 6.11 Th Performance of the Traffic Volume Estimation Model in the 

Simulation Experiment 

6.4.2. Traffic Volume Estimation Analysis of the Real-world 

Experiment 

Because NGSIM data has a relatively small dataset of 15 minutes, only one 

slowed-down vehicle was randomly selected from each cycle. The validation data has 

nine cycles during the 15-minute dataset where six of them had complete trajectories with 

at least one slowed-down vehicle. The performance of the algorithm on real-world data 

demonstrated an MAPE of 23.57% (accuracy of 76.43%). Table 6.8 includes a summary 

of the performance of the algorithm for the six cycles. 
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Table 6.8 The Results of the Traffic Volume Estimation Model for Simulation Data 

Cycle Traffic 

Volume 

(Veh/ln/Cycle) 

Queue Length 

(Veh/ln/Cycle) 

Traffic Volume 

Estimation 

(Veh/ln/Cycle) 

APE (%) 

1 6 2 4 25.67% 

2 9 2 7 22.22% 

3 4 3 5 36.34% 

4 5 3 5 2.44% 

5 5 4 6 27.52% 

6 8 4 6 27.24% 

Min APE 2.44% 

Max APE 36.34% 

STD 11.36% 

MAPE 23.57% 

 

Figure 6.12 shows the estimated and actual queue lengths along with the traffic 

volume. There is more underestimation than overestimation as found in the performance 

of the model on simulation data. The lower accuracy of the real-world data compared to 

the simulation might be related to the two main reasons. First, the prior dataset (for 

training and testing) of NGSIM is relatively low that it does not represent different the 

traffic patterns, which might influence the accuracy of the models. The second reason is 

the low traffic volume and the low queue length per cycle in the signalized intersection 

explored in NGSIM dataset. 
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Figure 6.12 Th Performance of the Traffic Volume Estimation Model in the Real-

world Experiment 

6.4.3. The Effective Factors in the Traffic Volume Estimation Model 

To instigate the effective factors in the traffic volume estimation model, the 

MAPE was plotted against different inputs. In this investigation, the simulation data has 

been utilized as it provides higher sample data. 

From Figure 6.13, more accuracy (lower MAPE) was achieved when the time 

since green phase started was longer. This simply because the calculated flow rate closer 

to the end of the cycle covers almost longer time of the cycle, which means it represents 

almost the entire cycle. A similar finding in Figure 6.14 about the relationship between 

the distance to the stop bar and the MAPE. The longer the distance from the stop bar 
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yields a lower MAPE. This might be because the further the slowed-down vehicle from 

the stop bar means the longer the queue, which means longer time of the cycle.  

 

 

Figure 6.13 Th Effect of the Time on the Performance of the Traffic Volume 

Estimation Model 
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Figure 6.14 Th Effect of the Distance on the Performance of the Traffic Volume 

Estimation Model 

 

The findings in Figures 6.13 and 6.14 are supported by the finding from Figure 

6.15 where there was also a correlation between the number of queued vehicles and 

MAPE. The higher number of queued vehicles allows the flow rate part based on queue 

length in the algorithm to cover a larger portion. This is emphasized by Figure 6.16 when 

the queued vehicles are represented in terms of a ratio of the entire traffic flow.  
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Figure 6.15 Th Effect of the Queue Length on the Performance of the Traffic 

Volume Estimation Model 
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Figure 6.16 Th Effect of the Queued Vehicle Ratio on the Performance of the Traffic 

Volume Estimation Model 

The data about the relationship between slowed-down vehicle characteristics and 

the accuracy of the traffic volume estimation as appeared in Figures 6.13 to 6.16 are 

summarized in the following table.  

 

Table 6.9 The Data of the Slowed-down Vehicle Characteristics and the Accuracy of 

the Traffic Volume Estimation 

SD Speed 

(m/s) 
Time (s) 

Distance 

(m) 

Traffic 

Volume 

(veh) 

Queue 

Length 

(veh) 

MAPE 

(%) 

14.2027778 101.2 130.38 15 18 5.40% 
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17.6722222 98.4 108.98 11 17 13.92% 

0.3 90.8 64.4 8 16 25.66% 

9.48333333 107.8 144.02 22 25 2.41% 

16.2555556 103.4 169.3 15 22 15.60% 

5.38611111 99.4 93.1 14 17 6.52% 

11.0361111 101 90.53 13 22 24.39% 

6.84166667 107 121.98 18 23 7.35% 

2.97777778 101.6 113.24 18 24 6.50% 

0.14722222 97.2 100.72 13 21 17.70% 

3.66111111 88.6 42.73 5 11 26.12% 

7.41388889 94.6 68.79 10 14 0.33% 

4.74444444 102.2 113.88 18 22 1.41% 

7.86944444 93.2 51.57 7 14 26.43% 

13.2833333 94.2 81.21 8 13 11.81% 

8.82222222 93 47.28 7 13 20.60% 

0.02777778 92.4 75.93 11 13 19.88% 

9.6 105.2 119.72 18 21 3.20% 

4.81111111 89.4 41.45 5 11 26.78% 

13.6472222 92.4 80.45 8 12 2.60% 

2.86388889 92.8 70.54 10 16 11.10% 

11.8861111 96.8 95.34 12 17 5.20% 

1.08055556 92.4 67.44 9 16 18.83% 

0.43333333 106.8 151.07 24 27 4.04% 

9.79166667 100.4 113.4 16 19 6.94% 

8.94722222 118.8 170.41 27 27 4.75% 

10.1555556 105.2 122.23 18 22 1.49% 

15.3583333 100.6 126.51 14 18 0.60% 

15.425 99.8 134.09 13 18 6.48% 

10.8888889 101 98.65 13 23 27.68% 

6.30555556 97.6 96.8 15 20 1.64% 
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20.9305556 107.8 169.35 18 25 15.40% 

15.625 105 118.42 15 20 8.57% 

4.04166667 91 56.13 8 16 25.82% 

16.275 98.2 160.9 14 20 8.35% 

18.1444444 88.8 123.16 5 10 18.92% 

2.31944444 94 74.12 9 17 24.91% 

14.1833333 95.4 98.76 10 14 1.17% 

15.4527778 92.6 60.88 6 8 13.39% 

18.7333333 93.8 119.81 8 11 4.67% 

5.11111111 104.6 124.27 20 25 3.63% 

1.475 94.6 80.33 12 19 13.21% 

16.1638889 97.2 133.62 12 16 0.31% 

0.3 99 109.38 17 23 5.14% 

11.3138889 99.4 94.01 13 18 6.10% 

13.3388889 99 116.42 14 17 6.95% 

5.34166667 98 85.6 12 20 20.41% 

1.61388889 91.6 62.81 9 16 18.12% 

12.9888889 91.4 50.56 5 10 21.23% 

19.8055556 117.2 138.07 21 24 6.14% 

18.6 102.2 105.31 13 18 8.68% 

4.21944444 95.6 73.02 10 17 18.78% 

2.61111111 95.6 76.23 10 16 13.70% 

13.9527778 96.6 98.72 11 17 12.31% 

9.32777778 97.4 64.25 10 17 20.28% 

12.4805556 96.8 84.07 11 14 6.26% 

14.6888889 105 163.24 18 22 1.30% 

17.8527778 96.2 101.72 9 14 10.90% 

2.27777778 100.4 113.11 15 23 16.85% 

6.50555556 104 113.6 17 22 5.59% 

3.51388889 96.2 84.04 13 18 2.98% 
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11.8944444 103.6 125.5 15 25 25.87% 

20.7944444 103.4 150.2 15 21 11.58% 

19.7944444 110.8 149.66 19 25 13.36% 

9.74722222 98.4 84.97 13 17 0.43% 

19.0833333 104.4 170.95 17 20 3.45% 

9.94444444 90.6 50.07 6 9 3.02% 

0.125 88.2 51.53 6 14 31.97% 

11.3805556 93.6 59.3 8 13 11.24% 

11.6138889 103.8 112.2 15 22 15.92% 

 

The effect of market penetration rate on the performance of the algorithm is 

significantly high when MPR of 5% is compared with MPR of 20%. When 5% of vehicle 

trajectories are considered, MAPE was 16.01% (accuracy of approximately 84%), while 

MPR of 20% yields an MAPE of 7.81% (accuracy of 92.19%). The following table 

summarizes the effect of multiple market penetration rates on the performance of the 

system. 

 

Table 6.10 The Results of the Travel Volume Estimation with Different MPR 

 MPR (5%) MPR (10%) MPR (15%) MPR (20%) 

MAPE 16.01% 11.85% 9.72% 7.81% 

Min APE 0.40% 0.31% 0.20% 0.24% 

Max APE 38.14% 27.68% 24.91% 21.31% 

STD APE 11.81% 8.67% 7.41% 5.76% 

 
From Figure 6.17 the increase of the market penetration rate demonstrated an 

improved performance of the algorithm. By looking at the figure, there is bigger gap 

between the MPR of 5% and 10% in terms of MAPE, which indicates a larger 
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improvement of the accuracy of the model. The improvement seems less when the MPR 

of 10% increase to 15% and then to 20%. This might be because the flow rate value with 

the increase of market penetration rate was not highly influenced to change the traffic 

volume estimation.  

 

 

Figure 6.17 Th Performance of the Traffic Volume Estimation Model with Different 

MPR 

6.5. Summary of Chapter VI 

From the results from the simulation and real-world experiments, the findings of 

this chapter can be summarized as the following: 



 97 

• The queue length results of the simulation experiment demonstrated an adequate 

MAPE of 13.44% (accuracy of 86.56%), 

• The results of the queue length algorithm applied on real-world data demonstrated 

an MAPE of 21.97% (78.03% accuracy), 

• The performance of the traffic volume algorithm on simulation data demonstrated 

an excellent MAPE of 11.8% (88.2% accuracy), 

• The performance of the algorithm based on real-world data from demonstrated an 

MAPE of 23.57% (76.43% accuracy), 

• Lower MAPE of the queue length estimation was achieved when the time since 

green phase started and the distance to the stop bar were longer, 

• There was a correlation between the queue length and the accuracy of the queue 

estimation model, 

• The effect of market penetration rate on the performance of the algorithm is 

significantly high when MPR of 5%, and 

• The improvement of MAPE tends to become smaller between 10% MPR, 15% 

MPR, and 20% MPR. 
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7. CHAPTER VII: CONCLUSIONS AND 

RECOMMENDATIONS 

This dissertation proposed a sophisticated model based on slowed-down vehicle 

trajectories to estimate real-time queue length and traffic volume from connected 

vehicles. The model tackles the low market penetration rate by relying on the 

spatiotemporal speed distribution of the queued vehicle to learn from the data about the 

propagation and dissipation of the shockwave through a deep learning technique. The 

significance of this work is highlighted by avoiding external dependencies of other 

parameters and the ability to estimate traffic volume with one sampled vehicle per cycle. 

The model is based on only a prior dataset of trajectories with signal time information 

and trajectories from real-time cycle data.  

The four objectives of this paper are (1) establishing a relationship between the 

slowed-down vehicle and last queued vehicle based on shockwave theory and the 

capacity state; (2) utilizing only a prior dataset and a deep learning technique to identify 

the last queued vehicle information based on the slowed-down vehicle; (3) proposing a 

queue length estimation algorithm based on lower market penetration rates; and (4) 

developing a traffic volume estimation algorithm considering the queue length estimation 

model.  
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7.1. Conclusions 

By achieving the first two objectives of this dissertation, the conclusions are 

formed by the observations from Chapter III and Chapter IV. The significant findings can 

be highlighted as the following: 

• The queue dissipation and capacity state have a uniform pattern in terms of time, 

space, and speed, 

• The speed of queued vehicles increases with the increase of the green time until 

the last queued vehicle, 

• The slowed-down vehicle interacts with the last queued vehicle based on the car-

following model 

• The macroscopic shockwave can be illustrated by the speed distribution based on 

a sampled trajectory data, 

• There is a relationship between the slowed-down vehicles and the last queued 

vehicles around the dissipation shockwave based on the macroscopic shockwave, 

• There is a spatiotemporal proximity between the slowed-down vehicles and the 

last queued vehicles from the empirical cycle results, 

• The departure time and the distance to the stop bar are associated with the speed 

at the stop bar, 

• The speed of the queued vehicles at the stop bar increase with the increase of the 

green time, 
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• The least speed of the slowed-down vehicles is correlated with the green time and 

distance, 

• The least speed of the slowed-down vehicles is associated with the queue length 

and the traffic volume, 

• At the same signalized intersection, there is a correlation between the queue 

length and the traffic volume. 

Achieving the third and fourth objectives is determined by the performance of the 

models in estimating the actual values of the queue length and traffic volume. To analyze 

and evaluate the performance of the algorithm, four experiments have been conducted on 

simulation and real-world data. The first experiment is a simulation-based with the aim of 

testing the accuracy of the queue length algorithm and the effect of different factors. The 

second experiment examined the queue length estimation algorithm on real-world data 

(NGSIM). The third experiment evaluates the traffic volume estimation algorithm on 

simulation data algorithm and tests the effect of different factors on the estimation 

accuracy. The fourth experiment examined the traffic volume estimation algorithm on 

NGSIM data.  

• The queue length results of the simulation experiment demonstrated an adequate 

MAPE of 13.44% (accuracy of 86.56%), 

• The results of the queue length algorithm applied on real-world data demonstrated 

an MAPE of 21.97% (78.03% accuracy), 

• The performance of the traffic volume algorithm on simulation data demonstrated 

an excellent MAPE of 11.8% (88.2% accuracy), 
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• The performance of the algorithm based on real-world data from demonstrated an 

MAPE of 23.57% (76.43% accuracy), 

• Lower MAPE of the queue length estimation was achieved when the time since 

green phase started and the distance to the stop bar were longer, 

• There was a correlation between the queue length and the accuracy of the queue 

estimation model, 

• The effect of market penetration rate on the performance of the algorithm is 

significantly high when MPR of 5%,  

• The improvement of MAPE tends to become smaller between 10% MPR, 15% 

MPR, and 20% MPR. 

 

7.2. Recommendation and Future Directions 

The proposed estimation models based on slowed-down vehicles revealed an 

adequate accuracy by using only a prior trajectory dataset with low market penetration 

rate. From the findings of this dissertation, the recommendations are summarized as the 

following: 

• The proposed model can be applied in real-world scenarios for both real-time 

applications and off-line applications, 

• The consideration of non-queued vehicles, particularly slowed-down vehicles, can 

provide a positive impact on the estimation models of queue length and traffic 

volume based on this dissertation and might also provide positive impact on the 

estimation of other traffic characteristics, 
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• The utilization of slowed-down vehicles can be integrated with other vehicle 

classifications, particularly queued vehicles and passing vehicles, in one holistic 

estimation model, 

• Other variables such as acceleration and vehicle length can be included in the 

dataset to improve the accuracy of the estimation models. 

The models in this dissertation are limited to the cycles with slowed-down 

vehicles only considering an isolated signalized intersection. Another limitation is the 

short period of the NGSIM dataset, which did not only affect the results, but also 

restricted the investigation of MPR and other factors. The models consider stable driving 

conditions without any influence of external factors such as weather or accident. 

Although unusual conditions may affect the models, this work is limited to normal 

driving conditions.  

Future work might consider incorporating all vehicle classifications (slowed-down 

vehicles, queued vehicles, and passing vehicles) in one holistic model. Also, future work 

may consider applying a sensitivity analysis of MPR and other factors on a larger real-

world dataset. Also, future work might consider incorporating slowed-down vehicle 

information with other vehicle classifications, i.e., queued vehicles and passing vehicles, 

in one holistic model. Another aspect of future work might consider other variables such 

as acceleration and vehicle length to improve the accuracy of the estimation models. 

 

 



 103 

REFERENCES 

Addison, P. S., & Low, D. J. (1998). A novel nonlinear car-following model. Chaos: An 
Interdisciplinary Journal of Nonlinear Science, 8(4), 791-799. 
https://doi.org/10.1063/1.166364  

 
AiLing, D., XiangMo, Z., & LiCheng, J. (2002, 6-6 Sept. 2002). Traffic flow time series 

prediction based on statistics learning theory. Proceedings. The IEEE 5th 
International Conference on Intelligent Transportation Systems,  

 
Akçelik, R., & Besley, M. (2002). Queue Discharge Flow and Speed Models for Signalised 

Intersections. In M. A. P. Taylor (Ed.), Transportation and Traffic Theory in the 
21st Century (pp. 99-118). Emerald Group Publishing Limited. 
https://doi.org/10.1108/9780585474601-006  

 
Al-Ghamdi, A. S. (1999, 1999/01/01). Entering Headway for Through Movements at 

Urban Signalized Intersections. Transportation Research Record, 1678(1), 42-47. 
https://doi.org/10.3141/1678-06  

 
Ban, X., Hao, P., & Sun, Z. (2011, 2011/12/01/). Real time queue length estimation for 

signalized intersections using travel times from mobile sensors. Transportation 
Research Part C: Emerging Technologies, 19(6), 1133-1156. 
https://doi.org/https://doi.org/10.1016/j.trc.2011.01.002  

 
Brackstone, M., & McDonald, M. (1999, 1999/12/01/). Car-following: a historical review. 

Transportation Research Part F: Traffic Psychology and Behaviour, 2(4), 181-196. 
https://doi.org/https://doi.org/10.1016/S1369-8478(00)00005-X  

 
Cheng, Y., Qin, X., Jin, J., & Ran, B. (2012, 2012/01/01). An Exploratory Shockwave 

Approach to Estimating Queue Length Using Probe Trajectories. Journal of 
Intelligent Transportation Systems, 16(1), 12-23. 
https://doi.org/10.1080/15472450.2012.639637  

 
Cheng, Y., Qin, X., Jin, J., Ran, B., & Anderson, J. (2011, 2011/01/01). Cycle-by-Cycle 

Queue Length Estimation for Signalized Intersections Using Sampled Trajectory 
Data. Transportation Research Record, 2257(1), 87-94. 
https://doi.org/10.3141/2257-10  

 
Chun-Hsin, W., Jan-Ming, H., & Lee, D. T. (2004). Travel-time prediction with support 

vector regression. IEEE Transactions on Intelligent Transportation Systems, 5(4), 
276-281. https://doi.org/10.1109/TITS.2004.837813  

 



 104 

Comert, G. (2013, 2013/09/01/). Simple analytical models for estimating the queue lengths 
from probe vehicles at traffic signals. Transportation Research Part B: 
Methodological, 55, 59-74. 
https://doi.org/https://doi.org/10.1016/j.trb.2013.05.001  

 
Comert, G., & Cetin, M. (2011). Analytical Evaluation of the Error in Queue Length 

Estimation at Traffic Signals From Probe Vehicle Data. IEEE Transactions on 
Intelligent Transportation Systems, 12(2), 563-573. 
https://doi.org/10.1109/TITS.2011.2113375  

 
Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2020, 2020/09/01/). Stacked bidirectional and 

unidirectional LSTM recurrent neural network for forecasting network-wide traffic 
state with missing values. Transportation Research Part C: Emerging 
Technologies, 118, 102674. 
https://doi.org/https://doi.org/10.1016/j.trc.2020.102674  

 
Dion, F., Rakha, H., & Kang, Y.-S. (2004, 2004/02/01/). Comparison of delay estimates at 

under-saturated and over-saturated pre-timed signalized intersections. 
Transportation Research Part B: Methodological, 38(2), 99-122. 
https://doi.org/https://doi.org/10.1016/S0191-2615(03)00003-1  

 
Fourati, W., & Friedrich, B. (2019, 2019/10/01). Trajectory-Based Measurement of 

Signalized Intersection Capacity. Transportation Research Record, 2673(10), 370-
380. https://doi.org/10.1177/0361198119848412  

 
Fourati, W., & Friedrich, B. (2021, 2021/09/01/). A method for using crowd-sourced 

trajectories to construct control-independent fundamental diagrams at signalized 
links. Transportation Research Part C: Emerging Technologies, 130, 103270. 
https://doi.org/https://doi.org/10.1016/j.trc.2021.103270  

 
Gipps, P. G. (1981, 1981/04/01/). A behavioural car-following model for computer 

simulation. Transportation Research Part B: Methodological, 15(2), 105-111. 
https://doi.org/https://doi.org/10.1016/0191-2615(81)90037-0  

 
Hao, P., & Ban, X. (2015, 2015/12/01/). Long queue estimation for signalized intersections 

using mobile data. Transportation Research Part B: Methodological, 82, 54-73. 
https://doi.org/https://doi.org/10.1016/j.trb.2015.10.002  

 
Hao, P., Sun, Z., Ban, X., Guo, D., & Ji, Q. (2013, 2013/11/01/). Vehicle index estimation 

for signalized intersections using sample travel times. Transportation Research 
Part C: Emerging Technologies, 36, 513-529. 
https://doi.org/https://doi.org/10.1016/j.trc.2013.06.018  

 
Hung, W. T., Tian, F., & Tong, H. Y. (2003). Discharge headway at signalized intersections 

in Hong Kong. Journal of Advanced Transportation, 37(1), 105-117. 
https://doi.org/https://doi.org/10.1002/atr.5670370105  



 105 

 
Ibnu Choldun R, M., Santoso, J., & Surendro, K. (2020, 2020//). Determining the Number 

of Hidden Layers in Neural Network by Using Principal Component Analysis. 
Intelligent Systems and Applications, Cham. 

 
Jazayeri, M. S., Jahangiri, A., & Machiani, S. G. (2021). Predicting Vehicle Trajectories 

at Intersections using Advanced Machine Learning Techniques (SDSU-01-01) 
Version V1) VTTI. https://doi.org/doi:10.15787/VTT1/AKKZ6V 

 
Jiang, H., Chang, L., Li, Q., & Chen, D. (2019, 5-7 Sept. 2019). Trajectory Prediction of 

Vehicles Based on Deep Learning. 2019 4th International Conference on Intelligent 
Transportation Engineering (ICITE),  

 
Ke, R., Li, W., Cui, Z., & Wang, Y. (2020, 2020/04/01). Two-Stream Multi-Channel 

Convolutional Neural Network for Multi-Lane Traffic Speed Prediction 
Considering Traffic Volume Impact. Transportation Research Record, 2674(4), 
459-470. https://doi.org/10.1177/0361198120911052  

 
Kerner, B. S., Klenov, S. L., & Hiller, A. (2006, March 01, 2006). Criterion for traffic 

phases in single vehicle data and empirical test of a microscopic three-phase traffic 
theory. Journal of Physics A Mathematical General, 39, 2001-2020. 
https://doi.org/10.1088/0305-4470/39/9/002  

 
Koesdwiady, A., Soua, R., & Karray, F. (2016). Improving Traffic Flow Prediction With 

Weather Information in Connected Cars: A Deep Learning Approach. IEEE 
Transactions on Vehicular Technology, 65(12), 9508-9517. 
https://doi.org/10.1109/TVT.2016.2585575  

 
Lee, J., & Chen, R. (1986). Entering headway at signalized intersections in a small 

metropolitan area. Transportation Research Record, 1091, 117-126.  
 
Lenz, H., Wagner, C. K., & Sollacher, R. (1999, 1999/01/01). Multi-anticipative car-

following model. The European Physical Journal B - Condensed Matter and 
Complex Systems, 7(2), 331-335. https://doi.org/10.1007/s100510050618  

 
Li, F., Tang, K., Yao, J., & Li, K. (2017, 2017/01/01). Real-Time Queue Length Estimation 

for Signalized Intersections Using Vehicle Trajectory Data. Transportation 
Research Record, 2623(1), 49-59. https://doi.org/10.3141/2623-06  

 
Li, W., Wang, J., Fan, R., Zhang, Y., Guo, Q., Siddique, C., & Ban, X. (2020, 2020/02/01/). 

Short-term traffic state prediction from latent structures: Accuracy vs. efficiency. 
Transportation Research Part C: Emerging Technologies, 111, 72-90. 
https://doi.org/https://doi.org/10.1016/j.trc.2019.12.007  

 
Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves I. Flood movement in long 

rivers. Proceedings of the Royal Society of London. Series A. Mathematical and 



 106 

Physical Sciences, 229(1178), 281-316. 
https://doi.org/doi:10.1098/rspa.1955.0088  

 
Lin, F.-B., & Thomas, D. R. (2005, 2005/01/01). Headway Compression during Queue 

Discharge at Signalized Intersections. Transportation Research Record, 1920(1), 
81-85. https://doi.org/10.1177/0361198105192000110  

 
Little, J. D. C. (1961). A Proof for the Queuing Formula: L= λ W. Operations Research, 

9(3), 383-387. http://www.jstor.org/stable/167570  
 
Liu, H. X., Wu, X., Ma, W., & Hu, H. (2009, 2009/08/01/). Real-time queue length 

estimation for congested signalized intersections. Transportation Research Part C: 
Emerging Technologies, 17(4), 412-427. 
https://doi.org/https://doi.org/10.1016/j.trc.2009.02.003  

 
Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. (2015). Traffic Flow Prediction With Big 

Data: A Deep Learning Approach. IEEE Transactions on Intelligent 
Transportation Systems, 16(2), 865-873. 
https://doi.org/10.1109/TITS.2014.2345663  

 
Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., & Wang, Y. (2017). Learning Traffic as Images: 

A Deep Convolutional Neural Network for Large-Scale Transportation Network 
Speed Prediction. Sensors, 17(4), 818. https://www.mdpi.com/1424-8220/17/4/818  

 
Mahmoud, N., Abdel-Aty, M., Cai, Q., & Yuan, J. (2021, 2021/03/01/). Predicting cycle-

level traffic movements at signalized intersections using machine learning models. 
Transportation Research Part C: Emerging Technologies, 124, 102930. 
https://doi.org/https://doi.org/10.1016/j.trc.2020.102930  

 
Mahmoud, N., Abdel-Aty, M., Cai, Q., & Yuan, J. (2022, 2022/02/05/). Estimating cycle-

level real-time traffic movements at signalized intersections. Journal of Intelligent 
Transportation Systems. 
https://doi.org/https://doi.org/10.1080/15472450.2021.1890072  

 
Mei, Y., Gu, W., Chung, E. C. S., Li, F., & Tang, K. (2019, 2019/12/01/). A Bayesian 

approach for estimating vehicle queue lengths at signalized intersections using 
probe vehicle data. Transportation Research Part C: Emerging Technologies, 109, 
233-249. https://doi.org/https://doi.org/10.1016/j.trc.2019.10.006  

 
Mercat, J., Zoghby, N. E., Sandou, G., Beauvois, D., & Gil, G. P. (2019). Kinematic Single 

Vehicle Trajectory Prediction Baselines and Applications with the NGSIM Dataset. 
arXiv preprint arXiv:1908.11472.  

 
Michalopoulos, P. G., Stephanopoulos, G., & Stephanopoulos, G. (1981, 1981/02/01/). An 

application of shock wave theory to traffic signal control. Transportation Research 



 107 

Part B: Methodological, 15(1), 35-51. https://doi.org/https://doi.org/10.1016/0191-
2615(81)90045-X  

 
Mühlich, N., Gayah, V. V., & Menendez, M. (2015, 2015/01/01). Use of Microsimulation 

for Examination of Macroscopic Fundamental Diagram Hysteresis Patterns for 
Hierarchical Urban Street Networks. Transportation Research Record, 2491(1), 
117-126. https://doi.org/10.3141/2491-13  

 
Newell, G. F. (1961). Nonlinear Effects in the Dynamics of Car Following. Operations 

Research, 9(2), 209-229. https://doi.org/10.1287/opre.9.2.209  
 
Newell, G. F. (1965). Instability in dense highway traffic, a review. Proceedings of the 

Second International Symposium on the Theory of Traffic Flow, London 1963.  
 
Othayoth, D., & Rao, K. V. K. (2020, 2020/01/01/). Investigating the Relation between 

Level of Service and Volume-to-Capacity ratio at Signalized Intersections under 
Heterogeneous Traffic Condition. Transportation Research Procedia, 48, 2929-
2944. https://doi.org/https://doi.org/10.1016/j.trpro.2020.08.190  

 
Polson, N. G., & Sokolov, V. O. (2017, 2017/06/01/). Deep learning for short-term traffic 

flow prediction. Transportation Research Part C: Emerging Technologies, 79, 1-
17. https://doi.org/https://doi.org/10.1016/j.trc.2017.02.024  

 
Radhakrishnan, S., & Ramadurai, G. (2015, 2015/01/01/). Discharge Headway Model for 

Heterogeneous Traffic Conditions. Transportation Research Procedia, 10, 145-
154. https://doi.org/https://doi.org/10.1016/j.trpro.2015.09.064  

 
Ramezani, M., & Geroliminis, N. (2015, 2015/06/01). Queue Profile Estimation in 

Congested Urban Networks with Probe Data [https://doi.org/10.1111/mice.12095]. 
Computer-Aided Civil and Infrastructure Engineering, 30(6), 414-432. 
https://doi.org/https://doi.org/10.1111/mice.12095  

 
Richards, P. I. (1956). Shock Waves on the Highway. Operations Research, 4(1), 42-51. 

https://doi.org/10.1287/opre.4.1.42  
 
Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University 

Press. https://doi.org/DOI: 10.1017/CBO9780511812651  
 
Rostami Shahrbabaki, M., Safavi, A. A., Papageorgiou, M., & Papamichail, I. (2018, 

2018/07/01/). A data fusion approach for real-time traffic state estimation in urban 
signalized links. Transportation Research Part C: Emerging Technologies, 92, 
525-548. https://doi.org/https://doi.org/10.1016/j.trc.2018.05.020  

 
Shao, C.-q., & Liu, X.-m. (2012, 2012/11/20). Estimation of Saturation Flow Rates at 

Signalized Intersections. Discrete Dynamics in Nature and Society, 2012, 720474. 
https://doi.org/10.1155/2012/720474  



 108 

 
Sharma, A., Bullock, D. M., & Bonneson, J. A. (2007, 2007/01/01). Input–Output and 

Hybrid Techniques for Real-Time Prediction of Delay and Maximum Queue 
Length at Signalized Intersections. Transportation Research Record, 2035(1), 69-
80. https://doi.org/10.3141/2035-08  

 
Sheffi, Y., & Mahmassani, H. (1981, 1981/02/01). A Model of Driver Behavior at High 

Speed Signalized Intersections. Transportation Science, 15(1), 50-61. 
https://doi.org/10.1287/trsc.15.1.50  

 
Shi, X., Zhao, D., Yao, H., Li, X., Hale, D. K., & Ghiasi, A. (2021, 2021/12/01/). Video-

based trajectory extraction with deep learning for High-Granularity Highway 
Simulation (HIGH-SIM). Communications in Transportation Research, 1, 100014. 
https://doi.org/https://doi.org/10.1016/j.commtr.2021.100014  

 
Skabardonis, A., & Geroliminis, N. (2008, 2008/05/06). Real-Time Monitoring and 

Control on Signalized Arterials. Journal of Intelligent Transportation Systems, 
12(2), 64-74. https://doi.org/10.1080/15472450802023337  

 
Song, C., Lee, H., Kang, C., Lee, W., Kim, Y. B., & Cha, S. W. (2017, 11-14 June 2017). 

Traffic speed prediction under weekday using convolutional neural networks 
concepts. 2017 IEEE Intelligent Vehicles Symposium (IV),  

 
Stathakis, D. (2009, 2009/04/20). How many hidden layers and nodes? International 

Journal of Remote Sensing, 30(8), 2133-2147. 
https://doi.org/10.1080/01431160802549278  

 
Tan, C., Yao, J., Tang, K., & Sun, J. (2021). Cycle-Based Queue Length Estimation for 

Signalized Intersections Using Sparse Vehicle Trajectory Data. IEEE Transactions 
on Intelligent Transportation Systems, 22(1), 91-106. 
https://doi.org/10.1109/TITS.2019.2954937  

 
Tiaprasert, K., Zhang, Y., Wang, X. B., & Zeng, X. (2015). Queue Length Estimation 

Using Connected Vehicle Technology for Adaptive Signal Control. IEEE 
Transactions on Intelligent Transportation Systems, 16(4), 2129-2140. 
https://doi.org/10.1109/TITS.2015.2401007  

 
Tong, H. Y., & Hung, W. T. (2002, 2002/01/01/). Neural network modeling of vehicle 

discharge headway at signalized intersection: model descriptions and results. 
Transportation Research Part A: Policy and Practice, 36(1), 17-40. 
https://doi.org/https://doi.org/10.1016/S0965-8564(00)00035-5  

 
Vanajakshi, L., & Rilett, L. R. (2004, 14-17 June 2004). A comparison of the performance 

of artificial neural networks and support vector machines for the prediction of 
traffic speed. IEEE Intelligent Vehicles Symposium, 2004,  

 



 109 

Vigos, G., Papageorgiou, M., & Wang, Y. (2008, 2008/02/01/). Real-time estimation of 
vehicle-count within signalized links. Transportation Research Part C: Emerging 
Technologies, 16(1), 18-35. 
https://doi.org/https://doi.org/10.1016/j.trc.2007.06.002  

 
Viloria, F., Courage, K., & Avery, D. (2000). Comparison of Queue-Length Models at 

Signalized Intersections. Transportation Research Record, 1710(1), 222-230. 
https://doi.org/10.3141/1710-26  

 
Wang, J., & Shi, Q. (2013, 2013/02/01/). Short-term traffic speed forecasting hybrid model 

based on Chaos–Wavelet Analysis-Support Vector Machine theory. 
Transportation Research Part C: Emerging Technologies, 27, 219-232. 
https://doi.org/https://doi.org/10.1016/j.trc.2012.08.004  

 
Wang, S., Huang, W., & Lo, H. K. (2019, 2019/07/01/). Traffic parameters estimation for 

signalized intersections based on combined shockwave analysis and Bayesian 
Network. Transportation Research Part C: Emerging Technologies, 104, 22-37. 
https://doi.org/https://doi.org/10.1016/j.trc.2019.04.023  

 
Wang, Z., Cai, Q., Wu, B., Zheng, L., & Wang, Y. (2017, 2017/01/01/). Shockwave-based 

queue estimation approach for undersaturated and oversaturated signalized 
intersections using multi-source detection data. Journal of Intelligent 
Transportation Systems, 21(3), 167-178. 
https://doi.org/https://doi.org/10.1080/15472450.2016.1254046  

 
Wang, Z., Zhu, L., Ran, B., & Jiang, H. (2020, 2020/11/01/). Queue profile estimation at a 

signalized intersection by exploiting the spatiotemporal propagation of 
shockwaves. Transportation Research Part B: Methodological, 141, 59-71. 
https://doi.org/https://doi.org/10.1016/j.trb.2020.08.009  

 
Wong, W., Shen, S., Zhao, Y., & Liu, H. X. (2019, 2019/08/01/). On the estimation of 

connected vehicle penetration rate based on single-source connected vehicle data. 
Transportation Research Part B: Methodological, 126, 169-191. 
https://doi.org/https://doi.org/10.1016/j.trb.2019.06.003  

 
Wu, X., & Liu, H. X. (2011, 2011/12/01/). A shockwave profile model for traffic flow on 

congested urban arterials. Transportation Research Part B: Methodological, 
45(10), 1768-1786. https://doi.org/https://doi.org/10.1016/j.trb.2011.07.013  

 
Wu, X., Liu, H. X., & Geroliminis, N. (2011, 2011/01/01/). An empirical analysis on the 

arterial fundamental diagram. Transportation Research Part B: Methodological, 
45(1), 255-266. https://doi.org/https://doi.org/10.1016/j.trb.2010.06.003  

 
Wu, Y., Tan, H., Qin, L., Ran, B., & Jiang, Z. (2018, 2018/05/01/). A hybrid deep learning 

based traffic flow prediction method and its understanding. Transportation 



 110 

Research Part C: Emerging Technologies, 90, 166-180. 
https://doi.org/https://doi.org/10.1016/j.trc.2018.03.001  

 
Yang, Z., Mei, D., Yang, Q., Zhou, H., & Li, X. (2014, 2014/08/12). Traffic Flow 

Prediction Model for Large-Scale Road Network Based on Cloud Computing. 
Mathematical Problems in Engineering, 2014, 926251. 
https://doi.org/10.1155/2014/926251  

 
Yao, J., & Tang, K. (2019, 2019/12/01/). Cycle-based queue length estimation considering 

spillover conditions based on low-resolution point detector data. Transportation 
Research Part C: Emerging Technologies, 109, 1-18. 
https://doi.org/https://doi.org/10.1016/j.trc.2019.10.003  

 
Yeo, H., & Skabardonis, A. (2009). Understanding Stop-and-go Traffic in View of 

Asymmetric Traffic Theory. In W. H. K. Lam, S. C. Wong, & H. K. Lo (Eds.), 
Transportation and Traffic Theory 2009: Golden Jubilee: Papers selected for 
presentation at ISTTT18, a peer reviewed series since 1959 (pp. 99-115). Springer 
US. https://doi.org/10.1007/978-1-4419-0820-9_6  

 
Yin, J., Sun, J., & Tang, K. (2018, 2018/12/01). A Kalman Filter-Based Queue Length 

Estimation Method with Low-Penetration Mobile Sensor Data at Signalized 
Intersections. Transportation Research Record, 2672(45), 253-264. 
https://doi.org/10.1177/0361198118798734  

 
Yuan, K., Knoop, V. L., & Hoogendoorn, S. P. (2017). A Microscopic Investigation Into 

the Capacity Drop: Impacts of Longitudinal Behavior on the Queue Discharge Rate. 
Transportation Science, 51(3), 852–862. https://doi.org/10.1287/trsc.2017.0745  

 
Zhang, H., Liu, H. X., Chen, P., Yu, G., & Wang, Y. (2020). Cycle-Based End of Queue 

Estimation at Signalized Intersections Using Low-Penetration-Rate Vehicle 
Trajectories. IEEE Transactions on Intelligent Transportation Systems, 21(8), 
3257-3272. https://doi.org/10.1109/TITS.2019.2925111  

 
Zhang, H. M., & Kim, T. (2005, 2005/06/01/). A car-following theory for multiphase 

vehicular traffic flow. Transportation Research Part B: Methodological, 39(5), 
385-399. https://doi.org/https://doi.org/10.1016/j.trb.2004.06.005  

 
Zhang, W., Yu, Y., Qi, Y., Shu, F., & Wang, Y. (2019, 2019/11/29). Short-term traffic 

flow prediction based on spatio-temporal analysis and CNN deep learning. 
Transportmetrica A: Transport Science, 15(2), 1688-1711. 
https://doi.org/10.1080/23249935.2019.1637966  

 
Zhang, Y., & Xie, Y. (2007, 2007/01/01). Forecasting of Short-Term Freeway Volume 

with v-Support Vector Machines. Transportation Research Record, 2024(1), 92-
99. https://doi.org/10.3141/2024-11  

 



 111 

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., & Li, H. (2020). T-
GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE 
Transactions on Intelligent Transportation Systems, 21(9), 3848-3858. 
https://doi.org/10.1109/TITS.2019.2935152  

 
Zhao, Y., Shen, S., & Liu, H. X. (2021, 2021/07/01/). A hidden Markov model for the 

estimation of correlated queues in probe vehicle environments. Transportation 
Research Part C: Emerging Technologies, 128, 103128. 
https://doi.org/https://doi.org/10.1016/j.trc.2021.103128  

 
Zhao, Y., Zheng, J., Wong, W., Wang, X., Meng, Y., & Liu, H. X. (2019, 2019/10/01/). 

Various methods for queue length and traffic volume estimation using probe 
vehicle trajectories. Transportation Research Part C: Emerging Technologies, 107, 
70-91. https://doi.org/https://doi.org/10.1016/j.trc.2019.07.008  

 
Zheng, W., Lee, D.-H., & Shi, Q. (2006, 2006/02/01). Short-Term Freeway Traffic Flow 

Prediction: Bayesian Combined Neural Network Approach. Journal of 
Transportation Engineering, 132(2), 114-121. 
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(114)  

 
Zheng, Z., Yang, Y., Liu, J., Dai, H., & Zhang, Y. (2019). Deep and Embedded Learning 

Approach for Traffic Flow Prediction in Urban Informatics. IEEE Transactions on 
Intelligent Transportation Systems, 20(10), 3927-3939. 
https://doi.org/10.1109/TITS.2019.2909904  

 
Zhu, J. Z., Cao, J. X., & Zhu, Y. (2014, 2014/10/01/). Traffic volume forecasting based on 

radial basis function neural network with the consideration of traffic flows at the 
adjacent intersections. Transportation Research Part C: Emerging Technologies, 
47, 139-154. https://doi.org/https://doi.org/10.1016/j.trc.2014.06.011  

 
 
 



 112 

APPENDICIES  

Appendix A 

List of Notations 

Notation Description 

𝐿$ Actual queue length  

𝑝$% Position of the queued vehicle 

𝑝'( Position of the slowed-down vehicle 

𝑣$% Speed of the queued vehicle 

𝑣'( Speed of the slowing down vehicle 

𝑣) Desired speed (speed limit)  

𝑣'" Speed at the capacity state based on speed distribution 

𝑣#' Speed at the capacity state based on speed distribution 

𝑣4$% Estimated speed of the last queued vehicle 

𝑆 Space gap between the leading and the following vehicle 

𝑇 Time gap between the leading and the following vehicle 

𝑞+ Flow rate during a period 

𝑛+ Number of vehicles during a period 

𝑡+ Time period 

ℎ1 Mean headway 

𝑣1 Mean speed 

𝑘1 Mean density 

𝑡3  Time since green phase has started 

𝑡+ Time of the initial move of the vehicle during green time phase 

𝑡2 Time since the vehicle has been moving 

𝑡'( Time when the slowing down vehicle joined the moving queue 
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𝑑2 Distance the vehicle has moved after the full stop 

𝑑'" Distance from the vehicle to the stop bar 

𝑑$% Distance from the queued vehicle to the stop bar 

𝑑'( Distance to the stop bar when slowing down vehicle joined the moving 

queue 

q Traffic flow rate 

𝐿4 Estimated queue length 

𝑡& Waiting time 

𝑞4 Estimated traffic flow 

𝑉4 Estimated traffic volume  

C Cycle length 
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Appendix B 

The interface of WEKA 
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Appendix C (1 out of 4) 

Multilayer Perceptron (MLP) 
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Appendix C (2 out of 4) 

Multilayer Perceptron (MLP) 
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Appendix C (3 out of 4) 

Multilayer Perceptron (MLP) 
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Appendix C (4 out of 4) 

Multilayer Perceptron (MLP) 
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