
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

5-2022 

Machine learning analysis of acoustic attenuation measurements Machine learning analysis of acoustic attenuation measurements 

for cellular characterization. for cellular characterization. 

John T. Moore 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Biomedical Engineering and Bioengineering Commons 

Recommended Citation Recommended Citation 
Moore, John T., "Machine learning analysis of acoustic attenuation measurements for cellular 
characterization." (2022). Electronic Theses and Dissertations. Paper 3918. 
https://doi.org/10.18297/etd/3918 

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/229?utm_source=ir.library.louisville.edu%2Fetd%2F3918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3918
mailto:thinkir@louisville.edu


MACHINE LEARNING ANALYSIS OF ACOUSTIC ATTENUATION 

MEASUREMENTS FOR CELLULAR CHARACTERIZATION 

 

 

 

 

 

 

By 

John T. Moore 

B. S. Bioengineering, University of Louisville, May 2021 

 

A Thesis 

Submitted to the Faculty of the 

University of Louisville 

J.B. Speed School of Engineering 

As Partial Fulfillment of the Requirements 

For the Professional Degree 

 

MASTER OF ENGINEERING 

 

Department of Bioengineering 

 

May 2022 

 



ii 

 

 

  



iii 

 

ACKNOWLEDGEMENTS 

 

 I would first like to thank Dr. Jonathan Kopechek for being a mentor to me 

throughout my college career. You have been an invaluable part of my success thus far. I 

am extremely grateful for your guidance and support throughout my undergraduate and 

Masters years and I am excited to continue working with you into my Ph.D.  

 

Next, I would like to thank the following University of Louisville faculty members 

for agreeing to be part of my defense committee and for the time they have spent reviewing 

this thesis to ensure it will add to the body of scientific knowledge:  

Dr. Hermann Frieboes                    Dr. Kavitha Yaddanapudi 

 

I would also like to thank the members of Dr. Kopechek’s Theranostic Ultrasound 

Laboratory for their help on this thesis, specifically Ekaterina “Katya” Kovatsenko and 

Zachary Fowler, as well as Mariah Priddy for her assistance back to when I was first 

starting at the lab. I also want to thank Connor Centner for being a role model of mine and 

another mentor to me throughout my time working at the lab. I wish you the best of luck 

in all your future endeavors. 

 

Finally, I must thank my parents and my friends for all their unwavering support 

and motivation throughout my academic career and life. My achievements so far have 

stemmed from you all, and I cannot thank you enough for all you have done for me.  

  



iv 

 

ABSTRACT 

 

 T-cell therapies have been gaining popularity in recent years due to their cancer 

fighting potential. With remission rates improving in this field of immunotherapy, the 

demand for T-cell therapies has also increased; however, the cell processing techniques for 

these therapeutic products have yet to rise to the level of demand. The manufacturing 

process takes too long and a significant amount of processed cell batches can fail to meet 

safety requirements. These limitations of cell processing can be detrimental to patients 

seeking T-cell therapies. While current products have improved the time it takes to 

manufacture these therapeutic products, there is still a lack of an in-line non-destructive 

sample quality control monitoring system to reduce the risk of batch failures and delays. 

In this thesis, theoretical and experimental testing was conducted to serve as a proof of 

concept that machine learning analysis of acoustic attenuation signals could be utilized for 

cellular characterization. A machine learning analysis method was able to determine sizes 

of theoretical microparticles and concentrations of different cell lines from acoustic 

attenuation signals collected in a static ultrasound chamber, as well as a continuous flow 

ultrasound chamber. It was found that the machine learning technique called scratch 

learning generally served as a better model for these cellular characterization trials, rather 

than transfer learning. With further refinement of the scratch learning architecture, as well 

as the further development of the attenuation signal acquisition system, optimization of 

classification accuracy of the machine learning analysis method could be further improved. 

This optimization could enable an in-line ultrasound-based quality control module for 

classification of multiple cell characteristics to be implemented into cell processing 

procedures for T-cell therapies.  
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I. INTRODUCTION 

 

A. Cell Processing 

The idea for this research stems from an invention disclosure that was submitted by 

the University of Louisville Theranostic Ultrasound Laboratory in 2020. The main goal of 

the invention disclosure was to address the unmet needs of an improved cell manufacturing 

process to enable more widespread adoption of T-cell therapies. With these life-saving 

therapies achieving higher remission rates compared to conventional treatments, some with 

efficacy exceeding 80%, there is currently a higher demand for these T-cell therapies [9].  

The interest in using a patient’s own immune cells to treat their diseases has 

skyrocketed in the past years. Billions of dollars are being invested into new therapies that 

utilize this concept. For example, Bristol Myers Squibb acquired Celgene for $74 billion 

in 2019, and sales for these types of companies are forecasted to be in the billion-dollar 

range as well due to their cell therapies [17]. Despite this significant growth in cell 

therapies, the process of manufacturing the therapeutic products is still challenging [8]. 

The current processing time takes four or more weeks before processed cells can be re-

infused into a patient, and there is a significant number (10% of runs) of processed cell 

batches that routinely fail to meet quality standard requirements [8]. Quality failures of T-

cell therapies can result in significant side effects that can cause permanent multiorgan 

damage, such as cytokine release syndrome, in addition to neurologic toxicity and an 

increased risk of pathogenesis [19]. 

There have been several automated cell processing systems that have come to the 

market to address these limitations. These systems, while improving cell processing times, 

are lacking in-line sample quality control monitoring system. Current cell processing 
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products still perform product testing and characterization off-line with samples that were 

taken from the final cell therapy product that cannot be used in patients afterwards. This 

current procedure can be considered a waste of time and material, and needs to be 

addressed, especially since CAR T-cell therapy could cost an average individual patient 

between $373,000 and $475,000 [3]. Redoing or delaying a patient’s therapy treatment 

could be detrimental. One study showed that when increasing the wait time of receiving 

CAR T-cell therapy from 1 to 9 months, the 1-year mortality rate would increase from 

36.1% to 76.3% [20]. Needless to say, it is paramount to the patient’s health that cell 

processing runs efficiently.  

To address this, researchers at the University of Louisville submitted an invention 

disclosure to develop a new “acoustofluidic” cell processing module that would consist of 

single-use sterile flow chamber cartridges and two ultrasound transducers for acoustic 

detection and machine learning analysis. The module would utilize low-energy ultrasound 

waves for non-destructive, in-line characterization and cell separation/sorting. Having a 

module like this could improve the manufacturing process of the cell therapy T-cells as 

well as improve batch-to-batch consistency. 

In this thesis, acoustic attenuation measurements were investigated. Acoustic 

attenuation is the decrease in ultrasound pressure amplitude due to scattering or absorption 

of energy by cells or particles within the ultrasound field, which occurs due to changes in 

acoustic impedance caused by differences in density and speed of sound of materials. The 

measurements of the acoustic attenuation can give an insight on the acoustic properties of 

any particles or cells in solution because ultrasound waves will reflect or scatter off 

interfaces that have a different density or speed of sound compared to the surrounding 
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media [12]. Acoustic attenuation would be influenced by particle size, the concentration of 

those particles, and potentially other properties, such as shape, that cause differences in the 

particle’s density or speed of sound. A larger cell or particle would most likely have a 

higher attenuation when compared to a smaller cell or particle of the same material. Even 

when cells or particles are at the same concentration, the set of larger cells would have a 

higher acoustic attenuation than a set of smaller cells. Cell aggregation could also impact 

acoustic attenuation measurements. Acoustic attenuation can indicate differences in cell 

properties similar to methods such as flow cytometry, which can sense cell properties using 

optical detection. The main difference is that flow cytometry utilizes lasers to detect 

fluorescence and light scattering, while acoustic attenuation uses ultrasound waves. 

There are multiple published instances of prior research utilizing machine learning 

analysis on flow cytometry measurements. Different machine learning algorithms, such as 

support vector machines with kernel methods, convolutional neural networks, and deep 

neural networks, have been used for such analysis [1, 18, 15]. These publications have 

shown the possibility of use machine learning algorithms for cellular characterization from 

light scattering imagery and other mediums. In contrast, this thesis applied the idea of 

characterizing cells with machine learning using acoustic attenuation measurements 

instead.  

This thesis is a proof of concept for the cell characterization and machine learning 

portions of that invention disclosure. The main focus was to determine if a machine 

learning algorithm could distinguish theoretical signals of varying micro-particle sizes as 

well as experimentally acquired signals of varying cell concentrations. Other properties, 

including activation status, viability, and possibly identification of sample contamination, 
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a major limitation of current quality control plans in cell therapies, could be investigated 

in later research projects [10]. The machine learning methods tested in this thesis utilized 

spectrograms of advanced ultrasound frequency-sweep attenuation waveforms to train 

their convolutional neural network (CNN) models.  

 

B. Machine Learning 

Over the past years, machine learning has seen a rise in popularity. Machine 

learning has revolutionized data analysis in so many fields, from the commercial world to 

bioinformatics [14]. There are many advantages to machine learning. Some examples 

would be that machine learning can review large volumes of data and easily identify 

patterns, it can be continuously improved, it has a wide range of applications, and it is 

completely automated [2, 5]. Since the research conducted for this thesis was to be a proof 

of concept for utilizing acoustic attenuation measurements for cell characterization, using 

machine learning could be beneficial for an in-line quality control module for cell 

processing. The machine learning models can be trained and then used in a product on the 

market. The commercial module would take advantage of the fact that machine learning 

can work efficiently all the time without human intervention needed, and can up upgraded 

at any time in order to improve the accuracy of its analysis. Utilizing machine learning for 

the future in-line fully-automated acoustofluidic quality control module is the most logical 

path. 

The two machine learning methods investigated were transfer learning and scratch 

learning. Transfer Learning is a machine learning method of taking a prebuilt and 

pretrained CNN, modifying it, and retraining it for another task. This method is used to 

improve a model for one domain by transferring information from another domain. An 
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example of transfer learning would be two people learning how to play the piano. One 

person already has musical knowledge from playing another instrument, and the other has 

no musical knowledge. Transfer learning is like the person who already knows how to play 

an instrument, and applying that knowledge to learning a new instrument [21]. Scratch 

learning is a machine learning method, where instead of taking an already pretrained CNN, 

modifying it, and retraining it like in transfer learning, the programmer builds all layers of 

the CNN themselves. 

The deep learning CNN algorithm was chosen for this research over other machine 

learning algorithms due to its ability to analyze large data sets efficiently and automatically 

detect important features without human supervision [4, 7]. In addition, CNN models can 

be run on any device, making it an ideal choice for a future in-line, non-destructive, fully-

automated acoustofluidic quality control module for cell processing. 

 

C. Objective 

The objective of this thesis was to compare two different machine learning CNN 

methods for detection of two properties, size and concentration, of theoretical 

microparticles and two cell lines, respectively, from ultrasound attenuation measurements. 

This thesis serves as a proof of concept for utilizing machine learning for analysis of 

acoustic attenuation measurements for cell characterization.   



6 

 

II. METHODS 

 

A. Static Cuvette Acoustic Attenuation Setup 

 A device system was designed at the University of Louisville Theranostic 

Ultrasound Laboratory that consisted of a 3-D printed container for two ultrasound 

transducers and a cuvette. This design was developed in SolidWorks. The SolidWorks part 

model and the completed device can be seen in Figures 1 and 2, respectfully.  

 

 
Figure 1: Renderings of the static cuvette acoustic attenuation device as a SolidWorks 

assembly. The gray parts constitute the device, while the red and blue parts indicate 

where the cuvette and ultrasound transducers are placed, respectfully. 

 

       
Figure 2: Images of the printed and completed static cuvette acoustic attenuation device.  

 

Within this device, one ultrasound transducer transmits an ultrasound frequency-

sweep (“chirp”) of 3.0 MHz to 3.6 MHz through the cell sample within the cuvette, as well 

as the water surrounding the cuvette, and would be received by the second transducer. The 
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frequency of the chirp was based on the fundamental frequency of the transducer used, 

which was determined to be 3.3 MHz. The frequency chirp was created as an arbitrary 

waveform in MATLAB and a Rigol DG800 Function Generator was used power the 

transmitting ultrasound transducer. As the generated ultrasound waveform passes through 

the sample, the strength of the waveform is reduced, or attenuated. The attenuated signal 

was then acquired by the receiving ultrasound transducer and displayed on a Rigol 

DS1000Z-E Oscilloscope. This acoustic attenuation signal data, shown on the oscilloscope, 

was collected and processed in MATLAB. All attenuation waveform signals were 

converted into spectrograms to be used in the machine learning training. A stir bar was 

added into the sample cuvette to ensure the sample was well mixed and the cells did not all 

fall to the bottom of the cuvette during measurement acquisition. The entire static cuvette 

acoustic attenuation setup is shown in Figure 3. 

 

 

Figure 3: Image of entire static cuvette acoustic attenuation setup. Function generator (on 

right) is connected to the transmitting ultrasound transducer of the device. Device is 

placed on hot plate (in middle). No heat was used. The hot plate was only set to stir. 

Oscilloscope (on left) is connected to receiving ultrasound transducer of the device, and 

is displaying attenuation waveform.  
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Initial testing of the static cuvette acoustic attenuation setup was conducted with 

solutions of varying cationic microbubble concentrations, shown in Table 1 [6]. This was 

done to determine if the static setup could successfully acquire attenuation waveforms. 

These waveforms were used in the calculation of the attenuation coefficient for each 

concentration based on the following equation from Kopechek et. al:  

𝛼𝑑𝐵(𝑓) =  
10 log10(

⟨𝑆𝑟(𝑓)⟩

⟨𝑆𝑠(𝑓)⟩
)

𝑥
,                                               (1) 

where ⟨𝑆𝑠(𝑓)⟩ and ⟨𝑆𝑟(𝑓)⟩ are the average power spectrum with and without scatters, 

respectfully, and 𝑥 is the acoustic path length within the sample [13]. 

 

Table 1: Table of all concentrations of Cationic Microbubbles in solution used.  

 
 

Once the initial testing of the static cuvette acoustic attenuation setup was complete, 

samples of varying red blood cell concentrations and Jurkat T-cell concentrations, shown 

in Table 2, were then tested individually in the setup. The starting concentrations were 

determined using a hematology analyzer for the red blood cells and a hemocytometer for 

the Jurkat T-cells. A trypan blue assay was used to count the number of viable Jurkat T-

cells. Subsequent concentrations were created with serial dilutions. The red blood cells 

came from porcine whole blood collected from an abattoir. They were isolated via serial 

centrifugation and were stored in CPD/AS-3 solution for up to 4 weeks. The Jurkat T-cells 

were cultured with complete RPMI-1640 (10% fetal bovine serum, 1% 
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penicillin/streptomycin) at 37°C and 5% CO2 in a flat-bottom tissue culture flask. They 

were harvested when 70-90% confluent and were resuspended in complete RPMI-1640 at 

a concentration of 100,000 cells per mL after centrifugation at 1500 g for 5 min at 4°C. 

Examples of experimentally acquired attenuation waveforms, along with the Fast Fourier 

Transform of each waveform, can be seen in Figures 4 through 7.  

 

Table 2: Table of all concentrations of Red Blood Cells and Jurkat T-Cells used.  

 
 

 

Figure 4: Acoustic attenuation waveform from static cuvette acoustic attenuation setup 

for 6 billion red blood cells per mL. The red rectangle represents the Hanning window 

applied to the waveform for spectrogram creation. 
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Figure 5: Fast Fourier Transform (FFT) spectra of acoustic attenuation waveform from 

static cuvette acoustic attenuation setup for 6 billion red blood cells per mL vs reference 

FFT for only deionized water showing how waveform become attenuated with addition 

of cells. Harmonics produced by the transducer can be observed around the fundamental 

frequency of approximately 3.3 MHz. 

 

 

Figure 6: Acoustic attenuation waveform from static cuvette acoustic attenuation setup 

for 10 million Jurkat T-cells per mL. The red rectangle represents the Hanning window 

applied to the waveform for spectrogram creation. 
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Figure 7: Fast Fourier Transform (FFT) spectra of acoustic attenuation waveform from 

static cuvette acoustic attenuation setup for 10 million Jurkat T-cells per mL vs reference 

FFT for only deionized water showing how waveform become attenuated with addition 

of cells. Harmonics produced by the transducer can be observed around the fundamental 

frequency of approximately 3.3 MHz 

 

The acoustic attenuation waveforms acquired from the static cuvette acoustic 

attenuation setup for all concentrations of red blood cells and Jurkat T-cells were used to 

calculate the attenuation coefficients for each concentration with Equation 1. Statistical 

analysis was performed on all experimentally measured and calculated attenuation 

coefficients for the concentrations of cationic microbubbles, red blood cells, and Jurkat T-

cells using ANOVA for comparison of multiple experimental groups. Tukey tests were 

also performed for post-hoc analysis. These waveforms were preprocessed with a Hanning 

window which was applied to the first 450 samples in each signal, as denoted with a red 

rectangle in Figures 4 and 6, and were converted into spectrograms to be used in the 

training, validation, and testing of the machine learning models. A total of 18,000 

spectrograms were created (1,500 of each concentration) for the red blood cells and Jurkat 

T-cells. Example spectrograms are shown in Figures 8 and 9. 
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Figure 8: Spectrogram of signal from static cuvette acoustic attenuation setup for 6 

billion (6000 million) concentration red blood cells per mL. 

 

 

Figure 9: Spectrogram of signal from static cuvette acoustic attenuation setup for 10 

million Jurkat T-cells per mL. 

 

B. Theoretical Microparticle Sizes 

 A MATLAB program, based on the work done by Kopechek, et al, was created by 

researchers at the University of Louisville Theranostic Ultrasound Laboratory to simulate 
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a frequency sweep, like what was used in the static cuvette acoustic attenuation setup, 

passing through a sample of polystyrene microparticles of with varying radius sizes of 40 

µm, 50 µm, and 60 µm, with a density of 1055 g/cm3 and a speed of sound of 2380 m/s 

[13]. The MATLAB program produced the theoretical attenuation waveforms of a solution 

containing those varying sized microparticles, using the following equation: 

        𝛼𝑑𝐵(𝑓) =  ∑ (𝑛(𝑎𝑚)
2𝜋

𝑘2
∑ (2𝑞 + 1)|𝐴𝑞,𝑚|

2𝑞𝑚𝑎𝑥
𝑞=0 )𝑚 ,                         (2) 

where m indexes bins corresponding to microspheres of radius 𝑎𝑚, 𝑛(𝑎𝑚) is the number 

density of microspheres of radius 𝑎𝑚, and 𝑘 is the wavenumber outside the scatter 

corresponding to frequency, 𝑓. 𝐴𝑞,𝑚 is the amplitude of scattered partial waves, 𝑞 indexes 

over the spherical Bessel function order used in computing 𝐴𝑞,𝑚, and 𝑞𝑚𝑎𝑥 is the highest 

order spherical Bessel function used [13]. An example is shown in Figure 10. Gaussian 

white noise was added to the waveforms with a mean of 0 and a variance of 0.001. Then 

the waveforms were converted into spectrograms for the machine learning model training 

and validation. An example is shown in Figure 11. A total of 3,000 spectrograms were 

created (1,000 of each size) for the theoretical microparticles.  
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Figure 10: Theoretical data of acoustic attenuation coefficient over frequency sweep 

through solution with 40, 50, and 60 µm microspheres (200 per mL). 

 

 

Figure 11: Theoretical data of spectrogram for frequency sweep through solution with 60 

µm microspheres (200 per mL). 

 

C. Machine Learning Methods 

 Once all spectrograms were created, two different machine learning methods for 

CNNs were investigated: Transfer Learning and Scratch Learning. In this research, the 
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GoogLeNet CNN was used for transfer learning. This architecture consists of twenty-two 

layers and was pretrained on the ImageNet data set. Utilizing a CNN that was pretrained 

on the ImageNet data set was useful for the type of classification in this research since 

spectrograms are visual representations of a signal waveform through a spectrum of 

frequencies as it changes over time.  

The training parameters of the transfer learning model consisted of the “adam” 

optimizer, a piecewise learning rate schedule, a learning rate drop period of 20, and a max 

epochs of 30. All other training parameters were set to default. These parameters were 

chosen from a tutorial course for using deep learning techniques in MATLAB. They were 

not changed for this use of this research, but optimization of these parameters could lead 

to shorter training times and better accuracy of models in the future [16]. 

The scratch learning model developed for this thesis consisted of thirty layers. All 

training parameters for the model were set to default other than the “adam” optimizer, a 

piecewise learning rate schedule, a learning rate drop period of 15. These parameters and 

the architecture of the scratch learning model were based on those from a tutorial course 

for using deep learning techniques in MATLAB [16]. 

The experiments above were conducted to explore the analysis of acoustic 

attenuation signals by machine learning methods in order to determine which method, 

transfer or scratch learning, would be better suited for a future in-line acoustofluidic 

attenuation module for cell characterization. This thesis represents a preliminary proof of 

concept and suggests areas for further optimization of the machine learning techniques 

tested. This thesis provides a starting point for further research concerning the use of 

machine learning analysis for characterizing cell properties.   
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III. RESULTS/DISCUSSION 

 

A. Acoustic Attenuation Coefficient Measurements 

Experiments conducted with varying cationic microbubble concentrations were 

initially done to determine if the attenuation signals collected from this setup were accurate. 

Instead of converting the attenuation waveforms into spectrograms, the attenuation 

coefficient was calculated for these samples using Equation 1 [13]. The attenuation 

coefficient measurements, shown in Figure 12, follow what would be expected: the higher 

the concentration of microbubbles in the sample, the higher the attenuation coefficient. 

There is a significant difference between the two higher concentrations and the three lower 

concentrations.  

 

 

Figure 12: Acoustic attenuation coefficient measurements of cationic microbubble 

concentrations. Concentration groups of 5.0% and 10.0% were significantly different 

from the other groups at a p-value < 0.001. 
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The acoustic attenuation coefficients were calculated, using Equation 1, for all the 

red blood cells and Jurkat T-cell concentrations, shown in Figures 13 and 14 [13]. The 

difference in acoustic attenuation is easily distinguishable for the red blood cell 

concentrations, however that is not the case for the Jurkat T-cell concentrations.  

 

 

Figure 13: Acoustic attenuation coefficient measurements of red blood cell 

concentrations. Concentration groups of 6000, 3000, and 1500 million (6 billion, 3 

billion, and 1.5 billion) cells per mL were all individually significantly different at a p-

value < 0.001. 
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Figure 14: Acoustic attenuation coefficient measurements of Jurkat T-cell concentrations. 

No statistically significant differences were observed when comparing all six 

concentrations between 0.3125 million (312.5 thousand) and 10 million cells per mL. 

 

The three highest red blood cell concentrations are significantly different from the 

lower concentrations, and the differences between these concentrations can be visibly seen 

when looking at their attenuation coefficients. When looking at all six concentrations of 

the Jurkat T-cells, no groups are significant, and the correlation coefficient between the 

concentrations is 0.22. The lowest Jurkat T-cell concentration gives an abnormally large 

attenuation coefficient value, so it was determined that analysis with the five other 

concentrations, excluding the 0.3125 million (312.5 thousand) cells per mL, should be 

investigated. With this exclusion, the 10 million cells per mL concentration becomes 

significantly different, at a p-value of 0.040, from the 0.625 million (625 thousand) cells 

per mL, and the data set has a correlation coefficient of 0.92. 
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B. Machine Learning Models Analysis 

Both transfer and scratch learning models were programmed to split the data set 

being analyzed into training, external validation, and testing sets at an 80-to-10-to-10 split. 

They were also programmed to display a Training Progress window to show the training 

and validation accuracy, as well as loss while the models were trained. In addition to these 

plots, confusion charts were generated, and their metrics calculated, for all datasets in order 

to determine which predictions from the models were false. These data sets were analyzed 

using simulated acoustic attenuation data with polystyrene microspheres, as well as 

experimental acoustic attenuation data acquired with red blood cells and Jurkat T-cells.  

 

1. Theoretical Microparticle Sizes 

 The outputs of the transfer learning and scratch learning models that were trained 

on the theoretical microparticle sizes are shown in Figures 15 and 17, respectfully. 

Confusion charts and their metrics for each model type are shown in Figures 16 and 18, as 

well as Tables 3 and 4.  
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Figure 15: Transfer learning model training progress for theoretical data spectrograms of 

varying microparticle sizes. The validation accuracy was 33.33%. 

 

 

 

Figure 16: Confusion chart for transfer learning model training progress on theoretical 

data spectrograms of varying microparticle sizes. 
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Table 3: Confusion chart metrics for transfer learning model on theoretical data 

spectrograms of varying microparticle sizes. 
 

 
 

 

Figure 17: Scratch learning model training progress for theoretical data spectrograms of 

varying microparticle sizes. The validation accuracy was 100%. 
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Figure 18: Confusion chart for scratch learning model training progress on theoretical 

data spectrograms of varying microparticle sizes. 

 

Table 4: Confusion chart metrics for scratch learning model on theoretical data 

spectrograms of varying microparticle sizes. 
 

 

 

 For the models pertaining to the theoretical microparticle sizes, the transfer learning 

model had a validation accuracy of 33.33%, while the scratch learning model achieved a 

validation accuracy of 100%.  

 

2. Experimentally Measured in Static Cuvette Setup  

 There are multiple differences between the characteristics of red blood cells and 

Jurkat T-cells. There is a major size difference between these two cell types. A typical red 

blood cell has a biconcave-discoid shape with a diameter of about 7 to 8 micrometers, while 

Jurkat T-cells have a spherical shape with a diameter ranging from 10 to 16 micrometers 
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[11, 22]. These differences in size and shape will cause differences in the acoustic 

attenuation measurements of these cell types based on their acoustic impedance. If the 

acoustic attenuation of both red blood cells and Jurkat T-cells were measured at equal cell 

concentrations, the Jurkat T-cells would be expected to show a higher attenuation 

coefficient due to its larger size compared to the red blood cells. Other parameters, such as 

any dynamic changes or inaccuracies of the cellular concentrations, could potentially affect 

the acoustic attenuation measurements, as well as the machine learning analysis accuracy. 

This would occur due to the change in the number of cells, or the summated density of the 

cells, within the ultrasound field.  

 

a. Red Blood Cell Concentrations 

 The outputs of the transfer learning and scratch learning models that were trained 

on the six red blood cell concentrations are shown in Figures 19 and 21, respectfully. 

Confusion charts and their metrics for each model type are shown in Figures 20 and 22, as 

well as Tables 5 and 6. 
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Figure 19: Transfer learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data for red blood cell concentrations acquired in static 

cuvette acoustic attenuation setup. The validation accuracy was 93.11%. 

 

 

Figure 20: Confusion Chart for transfer learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for red blood cell 

concentrations acquired in static cuvette acoustic attenuation setup. 

 



25 

 

Table 5: Confusion chart metrics for transfer learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for red blood cell 

concentrations acquired in static cuvette acoustic attenuation setup. 
 

 
 

 

Figure 21: Scratch learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data for red blood cell concentrations acquired in static 

cuvette acoustic attenuation setup. The validation accuracy was 89.00%. 
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Figure 22: Confusion chart for scratch learning model training progress for spectrograms 

of experimentally measured acoustic attenuation data for red blood cell concentrations 

acquired in static cuvette acoustic attenuation setup. 

 

Table 6: Confusion chart metrics for scratch learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for red blood cell 

concentrations acquired in static cuvette acoustic attenuation setup. 
 

 

 

 For the models pertaining to the red blood cell concentrations, the transfer learning 

model achieved a validation accuracy of 93.11%, while the scratch learning model had a 

validation accuracy of 89.00%.  
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b. Jurkat T-Cell Concentrations 

The outputs of the transfer learning and scratch learning models that were trained 

on the six Jurkat T-cell concentrations are shown in Figures 23 and 25, respectfully. 

Confusion charts and their metrics for each model type are shown in Figures 24 and 26, 

as well as Tables 7 and 8. 

 

 

 

 

 
 

Figure 23: Transfer learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data for Jurkat T-Cell concentrations acquired in static 

cuvette acoustic attenuation setup. The validation accuracy was 16.67%. 
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Figure 24: Confusion chart for transfer learning model training progress for spectrograms 

of experimentally measured acoustic attenuation data for Jurkat T-cell concentrations 

acquired in static cuvette acoustic attenuation setup. 

 

Table 7: Confusion chart metrics for transfer learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for Jurkat T-cell 

concentrations acquired in static cuvette acoustic attenuation setup. 
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Figure 25: Scratch learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data for Jurkat T-cell concentrations acquired in static 

cuvette acoustic attenuation setup. The validation accuracy was 51.78%. 

 

 

Figure 26: Confusion chart for scratch learning model training progress for spectrograms 

of experimentally measured acoustic attenuation data for Jurkat T-cell concentrations 

acquired in static cuvette acoustic attenuation setup. 
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Table 8: Confusion chart metrics for scratch learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for Jurkat T-cell 

concentrations acquired in static cuvette acoustic attenuation setup. 
 

 

 

 For the models pertaining to the six Jurkat T-cell concentrations, the transfer 

learning model had a validation accuracy of 16.67%, while the scratch learning model 

achieved a validation accuracy of 51.78%.  

 In the attenuation coefficient measures, it was shown that when excluding the 

0.3125 million (312.5 thousand) Jurkat T-cells per mL concentration as an outlier, the 10 

million cells per mL concentration became significantly different from the 0.625 million 

(625 thousand) cells per mL concentration at a p-value of 0.040. Because of this, the 

transfer and scratch learning models were retrained for only the five Jurkat T-cell 

concentrations (0.625 to 10 million cells per mL) to see if the accuracy and loss would 

improve without the outlier. The outputs of the transfer learning and scratch learning 

models that were trained on these five Jurkat T-cell concentrations are shown in Figures 

27 and 29, respectfully. Confusion charts and their metrics for each model type are shown 

in Figures 28 and 30, as well as Tables 9 and 10. 
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Figure 27: Transfer learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data for Jurkat T-cell concentrations (omitting 0.3125 

million, or 312.5 thousand, cells per mL as an outlier) acquired in static cuvette acoustic 

attenuation setup. The validation accuracy was 20.00%. 

 

 

Figure 28: Confusion chart for transfer learning model training progress for spectrograms 

of experimentally measured acoustic attenuation data for Jurkat T-cell concentrations 

(omitting 0.3125 million, or 312.5 thousand, cells per mL as an outlier) acquired in static 

cuvette acoustic attenuation setup. 
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Table 9: Confusion chart metrics for transfer learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for Jurkat T-cell 

concentrations (omitting 0.3125 million, or 312.5 thousand, cells per mL as an outlier) 

acquired in static cuvette acoustic attenuation setup. 
 

 
 

Figure 29: Scratch learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data for Jurkat T-cell concentrations (omitting 0.3125 

million, or 312.5 thousand, cells per mL as an outlier) acquired in static cuvette acoustic 

attenuation setup. The validation accuracy was 56.40%. 
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Figure 30: Confusion chart for scratch learning model training progress for spectrograms 

of experimentally measured acoustic attenuation data for Jurkat T-cell concentrations 

(omitting 0.3125 million, or 312.5 thousand, cells per mL as an outlier) acquired in static 

cuvette acoustic attenuation setup. 

 

Table 10: Confusion chart metrics for scratch learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for Jurkat T-cell 

concentrations (omitting 0.3125 million, or 312.5 thousand, cells per mL as an outlier) 

acquired in static cuvette acoustic attenuation setup. 
 

 

 

 For the models pertaining to the remaining five Jurkat T-cell concentrations, the 

transfer learning model had a validation accuracy of 20.00%, while the scratch learning 

model achieved a validation accuracy of 56.40%.  
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3. Acoustofluidic Attenuation Setup 

The steps taken in this research were to be a proof of concept for utilizing machine 

learning for analysis of acoustic attenuation measurements for cell characterization that 

would be eventually used in an in-line acoustofluidic quality control module for cell 

processing of cancer immunotherapies. An acoustofluidic attenuation setup, shown in 

Figure 31, was developed at the University of Louisville Theranostic Ultrasound 

Laboratory that uses the same basic components as the static cuvette acoustic attenuation 

setup. 

 

         

Figure 31: Rendering of acoustofluidic attenuation device as in SolidWorks (left) and two 

angles of 3D printed device with attached transducers and tubing (middle and right). 

 

Just like the static cuvette device, the acoustofluidic attenuation device utilizes a 

transmitting ultrasound transducer driven by a function generator producing the same 

frequency sweep that was used in the static setup, and a receiving ultrasound transducer 

connected to an oscilloscope for attenuation waveform acquisition. The acoustofluidic 

device utilizes a peristaltic pump to achieve a continuous flow of the sample being 

measured to imitate a future in-line model and ensure the solution stays well mixed. The 
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solution fills up the attenuation chamber enclosed in the device. The path length of 

ultrasound waveforms through the solution in this chamber is the same as that in the static 

attenuation device (10mm), but with the cylindrical shape of the acoustofluidic chamber 

and the circular shape of the transducers, a larger volume of cells is contained within the 

ultrasound field, potentially increasing the signal-to-noise ratio to improve the accuracy of 

acoustic attenuation measurements. 

Some experiments with this acoustofluidic attenuation device design were run 

using Jurkat T-Cell concentrations, since it was determined by the trials conducted with 

the static cuvette acoustic attenuation setup that the Jurkat T-cell concentrations were more 

difficult to distinguish. The acoustic waveform data collected with this device were 

converted into spectrograms using the same procedure as the signals acquired with the 

static setup, and those spectrograms were used for training and validation of transfer and 

scratch learning models. There was a total of 6,000 spectrograms generated (1,000 for each 

concentration) for the Jurkat T-cells. 

 

a. Experimentally Measured Jurkat T-Cell Concentrations  

The outputs of the transfer learning and scratch learning models that were trained 

on all six Jurkat T-cell concentrations measured in the acoustofluidic attenuation setup 

are shown in Figures 32 and 34, respectfully. Confusion charts and their metrics for each 

model type are shown in Figures 33 and 35, as well as Tables 11 and 12. 
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Figure 32: Transfer learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data for all Jurkat T-cell concentrations acquired in 

acoustofluidic attenuation setup. The validation accuracy was 16.67%. 

 

 

Figure 33: Confusion chart for Transfer learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for all Jurkat T-cell 

concentrations acquired in acoustofluidic attenuation setup. 
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Table 11: Confusion chart metrics for Transfer learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for all Jurkat T-cell 

concentrations acquired in acoustofluidic attenuation setup. 
 

 
 

 

Figure 34: Scratch learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data for all Jurkat T-cell concentrations acquired in 

acoustofluidic attenuation setup. The validation accuracy was 56.50%. 
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Figure 35: Confusion chart for scratch learning model training progress for spectrograms 

of experimentally measured acoustic attenuation data for all Jurkat T-cell concentrations 

acquired in acoustofluidic attenuation setup. 

 

Table 12: Confusion chart metrics for scratch learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for all Jurkat T-cell 

concentrations acquired in acoustofluidic attenuation setup. 
 

 

 

 For the models pertaining to the six Jurkat T-cell concentrations measured in the 

acoustofluidic attenuation setup, the transfer learning model had a validation accuracy of 

16.67%, while the scratch learning model achieved a validation accuracy of 56.50%.  

Since the Jurkat T-cell concentrations measured in the static cuvette setup were 

analyzed a second time with the machine learning models, while excluding the 0.3125 
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million (312.5 thousand) Jurkat T-cells per mL concentration as an outlier, the same was 

done for the measurements acquired using the acoustofluidic attenuation setup. 

 

 

 

 
Figure 36: Transfer learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data Jurkat T-cell concentrations (omitting 0.3125 million, 

or 312.5 thousand, cells per mL) acquired in acoustofluidic attenuation setup. The 

validation accuracy was 60.40%. 
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Figure 37: Confusion chart for transfer learning model training progress for spectrograms 

of experimentally measured acoustic attenuation data for Jurkat T-cell concentrations 

(omitting 0.3125 million, or 312.5 thousand, cells per mL) acquired in acoustofluidic 

attenuation setup. 

 

Table 13: Confusion chart metrics for scratch learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for Jurkat T-cell 

concentrations (omitting 0.3125 million, or 312.5 thousand, cells per mL) acquired in 

acoustofluidic attenuation setup. 
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Figure 38: Scratch learning model training progress for spectrograms of experimentally 

measured acoustic attenuation data Jurkat T-cell concentrations (omitting 0.3125 million, 

or 312.5 thousand, cells per mL) acquired in acoustofluidic attenuation setup. The 

validation accuracy was 69.20%. 

 

 

Figure 39: Confusion chart for scratch learning model training progress for spectrograms 

of experimentally measured acoustic attenuation data for Jurkat T-cell concentrations 

(omitting 0.3125 million, or 312.5 thousand, cells per mL) acquired in acoustofluidic 

attenuation setup. 
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Table 14: Confusion chart metrics for scratch learning model training progress for 

spectrograms of experimentally measured acoustic attenuation data for Jurkat T-cell 

concentrations (omitting 0.3125 million, or 312.5 thousand, cells per mL) acquired in 

acoustofluidic attenuation setup. 
 

 

 

 For the models pertaining to the remaining five Jurkat T-cell concentrations 

measured in the acoustofluidic attenuation setup, the transfer learning model had a 

validation accuracy of 60.40%, while the scratch learning model achieved a validation 

accuracy of 69.20%.  

In terms of accuracy, transfer learning was more successful in predicting the correct 

concentrations of red blood cells; however, scratch learning was more successful in 

predicting the sizes of the theoretical microparticles and the concentrations of the Jurkat T-

cells. It is believed that transfer learning worked better for the red blood cell concentrations 

because those measurements had a much higher signal-to-noise ratio, as demonstrated by 

the higher acoustic attenuation coefficient values shown in Figure 13. Looking at the 

attenuation coefficient measurements for those concentrations, there is a significant 

difference between the red blood cell concentrations. In contrast, the attenuation coefficient 

measurements for the Jurkat T-cell concentrations were more difficult to distinguish. This 

is most likely due to the low signal-to-noise ratio. Since concentrations for the red blood 

cells ranged from 187.5 million to 6 billion cells per mL, that dataset would have a higher 

signal-to-noise ratio, while the concentrations of the red blood cells ranged from 312.5 

thousand to 10 million cells per mL.  
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IV. CONCLUSIONS 

 

The research conducted for this thesis demonstrates that machine learning analysis 

can be applied to acoustic signals for characterization of cells and particles. In a majority 

of the data sets, the scratch learning model achieved a higher validation accuracy than the 

transfer learning model. Transfer learning only had a higher accuracy for the red blood cell 

concentrations, but that was only by approximately 4%. These results show that transfer 

learning may work for data sets containing samples with a higher signal-to-noise ratio, 

while scratch learning will work better for data sets containing samples with a lower signal-

to-noise ratio.  

The research conducted for this thesis showed that having a larger volume of cells 

within the ultrasound field, as was the case in the acoustofluidic attenuation setup 

compared to the static cuvette setup, appears to increase the signal-to-noise ratio as well as 

the accuracy of the machine learning analysis. This research also shows that the scratch 

learning machine learning analysis method works better for a continuous-flow acoustic 

attenuation cell characterization device compared to a transfer learning analysis method. 

The scratch learning model in this thesis serves as a base for more advanced models to be 

developed in the future. The scratch learning model used in this thesis can to be further 

optimized to identify other cell characteristics, but this model has provided proof of 

concept that machine learning methods can be used in the analysis of acoustic attenuation 

measurements for characterization of cell properties.   
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V. RECOMMENDATIONS 

 

Multiple aspects of this research could be improved upon in order to achieve a 

higher accuracy for the machine learning models. The first topic to look into would be to 

re-evaluate the frequency spectrum of the transducers used. From looking at the data for 

the theoretical microparticle sizes spectrograms, it might be beneficial to investigate an 

increased broadband of frequencies. The theoretical microparticle sizes spectrograms were 

created with a frequency sweep from 1 to 25 MHz, while the frequency sweep used in the 

experimentally acquired measurements was only from approximately 3.0 to 3.6 MHz based 

on the fundamental resonance frequency of the transducers being utilized in the devices. 

New transducers might need to be implemented to the acoustic attenuation devices, but 

once an optimized frequency sweep has been determined, that could be applied to the 

acoustofluidic attenuation device.  

Another aspect to investigate would be the parameters and architecture of the 

scratch learning model. Optimization is a major topic to improve the accuracy of the 

machine learning model. The parameters and architecture of scratch learning model used 

in this research were based on a model that did not have the same end-goal as this project. 

There are more than twenty parameters that could be investigated to improve the accuracy 

and reduce training and predicting times of the scratch learning model. The architecture of 

the model could also be investigated, such as introducing new layers or altering current 

layers, could also lead to improved efficiency.  

 The results from this thesis have shown that, after some optimization, machine 

learning techniques can be used for analysis of acoustic attenuation measurements, that can 

be implemented in an in-line quality control module for cell processing applications.   
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APPENDIX 

 

Acoustic Attenuation Data Acquisition Using Arbitrary Waveform Code: 

% Program used to collect attenuation data 
% Made to work with function generator, oscilloscope, and attenuation 

devices 
% Last Updated by John Moore on 26 February 2021 
% This program is set to use the cuvette attenuation system set to 3.3 

MHz with PBS as reference 
%**Will need to change CHAN1:SCALe and CHAN1:RANGe to optimize for 

other frequencies and reference types** 

  
%----- DS1202 Z-E Oscilloscope Data Collection Program ----- 
clear; clc; close all; 
warning('off','instrument:fread:unsuccessfulRead'); 

  
groups = inputdlg('How many samples are you running?'); 
groups = str2num(groups{1}); 

  
ntimepoints = inputdlg('How long do you want to read the signals for 

each sample (in minutes):'); 
ntimepoints = str2double(ntimepoints); 

  
refs = 10; 
refAmount = questdlg(sprintf('Would you like to run %d reference 

measurements?',refs),'Reference Measurement Amount','YES','NO','NO'); 
switch refAmount 
    case 'NO' 
        input = inputdlg('Enter number of reference measurements you''d 

like to conduct'); 
        refs = cellfun(@str2num,input); 
end 

  
%-- Find a VISA-USB object -- 
obj1 = instrfind('Type', 'visa-usb', 'RsrcName', 

'USB0::0x1AB1::0x0517::DS1ZE214503265::0::INSTR', 'Tag',''); 
%%Find oscilloscope – Instrument Address Infor needs to be updated for 

each specific instrument 

  
obj2 = instrfind('Type', 'visa-usb', 'RsrcName', 

'USB0::0x1AB1::0x0643::DG8A213101492::0::INSTR', 'Tag', ''); 
%%Find function generator – Instrument Address Infor needs to be 

updated for each specific instrument 

  
%-- Create the VISA-USB object if it does not exist -- 
%%otherwise use the object that was found 
if isempty(obj1) 
    obj1 = visa('NI', 

'USB0::0x1AB1::0x0517::DS1ZE214503265::0::INSTR'); 
else 
    fclose(obj1); 
    obj1 = obj1(1); 
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end 

  
if isempty(obj2) 
    obj2 = visa('NI', 'USB0::0x1AB1::0x0643::DG8A213101492::0::INSTR'); 
else 
    fclose(obj2); 
    obj2 = obj2(1); 
end 

  
%-- Preset obj1 settings (before fopen)-- 

  
obj1.InputBufferSize = 1280; %Sets input buffer size 

  
%-- Connect to instrument object, obj1 and obj2 -- 
fopen(obj1); fopen(obj2); 

  
%-- Set funciton generator parameters 
cycles = 500; 
burst = questdlg('Would you like Burst on or off? (Off = 

Continuous)','','ON','OFF','OFF'); 
switch burst 
    case 'ON' 
        fcngen_parameters.frequency = 3300000; 
        fcngen_parameters.Vpp = 20; 
        fcngen_parameters.cycles = 500; 
        prevParameters = questdlg(sprintf('Are these function generator 

parameters correct? \nFreq = %d MHz \nVpp = %d Volts \nCycles = 

%d',(fcngen_parameters.frequency/1e6),fcngen_parameters.Vpp,fcngen_para

meters.cycles),'Function Generator Parameters','YES','NO','NO'); 

         
        switch prevParameters 
            case 'NO' 
                input = inputdlg('Enter frequency (MHz)'); 
                fcngen_parameters.frequency = cellfun(@str2num,input) * 

1e6; 
                fcngen_parameters.Vpp = inputdlg('Enter Vpp (Volts)'); 
                fcngen_parameters.cycles = inputdlg('Enter number of 

cycles'); 
        end 

         
        freq = str2num(string(fcngen_parameters.frequency)); 
        Vpp = str2num(string(fcngen_parameters.Vpp)); 
        cycles = str2num(string(fcngen_parameters.cycles)); 

         
    case 'OFF' 
        fcngen_parameters.frequency = 3300000; 
        fcngen_parameters.Vpp = 20; 
        prevParameters = questdlg(sprintf('Are these function generator 

parameters correct? \nFreq = %d MHz \nVpp = %d 

Volts',(fcngen_parameters.frequency/1e6),fcngen_parameters.Vpp),'Functi

on Generator Parameters','Yes','No','No'); 

         
        switch prevParameters 
            case 'No' 
                input = inputdlg('Enter frequency (MHz)'); 
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                fcngen_parameters.frequency = cellfun(@str2num,input) * 

1e6; 
                fcngen_parameters.Vpp = inputdlg('Enter Vpp (Volts)'); 
        end 

         
        freq = str2num(string(fcngen_parameters.frequency)); 
        Vpp = str2num(string(fcngen_parameters.Vpp)); 
end 

  
fcngen_output = [':SOUR2:APPL:SIN 

',num2str(freq),',',num2str(Vpp),',0,0'];fprintf(obj2, fcngen_output); 
%%Enables the harmonic function of CH1 and set the fundamental waveform 

(Sine) parameters: 
%%3.3 MHz frequency, 20 Vpp amplitude, 0 Vdc offset, and 0° start phase 
fprintf(obj2, fcngen_output); 
fprintf(obj2, [':SOUR2:BURS ', burst]); %Enables burst function of CH1 
% having burst set to "OFF" would make the signal continuous 
fprintf(obj2, ':SOUR2:BURS:MODE TRIG'); %Sets burst type of CH1 to N 

cycle 
fprintf(obj2, [':SOUR2:BURS:NCYC ',num2str(cycles)]); %Sets # cycles in 

the N cycle burst of CH1 to 5 
fprintf(obj2, ':SOUR2:BURS:INT:PER 0.01') %Sets internal burst period 

of the N cycle burst of CH1 to 0.01 s 
fprintf(obj2, ':SOUR2:BURS:TRIG:SOUR INT'); %Sets trigger source of the 

burst mode of CH1 to Internal 
fprintf(obj2, ':SOUR2:BURS:TRIG:TRIGO POS'); %Sets edge type of trigger 

output signal of CH1 to Rising edge 
fprintf(obj2, ':SOUR2:BURS:TDEL 0.00'); %Sets burst delay of the N 

cycle burst of CH1 to 0.0 s 
fprintf(obj2, ':SOURce2:BURSt:IDLE FPT'); %Sets idle level position to 

First Point 

  
%--- Adjust acquisition parameters --- 

  
fprintf(obj1, ':ACQuire:TYPE NORMal'); %Sets acquisition mode 
%%Options include {NORMal|AVERages|PEAK|HRESolution} 

  
%fprintf(obj1, ':ACQuire:AVERages 128'); %Sets number of averages under 

averages acquistion mode 
%%Range includes 2^n where n is an integer between 1 and 10 

  
%--- Adjust scale --- 
pause(1.0); 

  
fprintf(obj1, ':TIMebase:MODE MAIN'); 
%%Options: {MAIN|XY|ROLL} where MAIN = YT 

  
fprintf(obj1, ':TIMebase:MAIN:SCALe 0.00001'); %Sets the main timebase 

scale to 200?s/div (time/div) 
%%YT mode: 5ns/div to 50s/div in 1-2-5 step; Roll mode: 200ms/div to 

50s/div in 1-2-5 step 

  
fprintf(obj1, ':CHAN1:PROBe 1'); %Sets probe ratio of specified channel 
%%Options: {0.01|0.02|0.05|0.1|0.2|0.5|1|2|5|10|20|50| 

100|200|500|1000} 
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fprintf(obj1, ':CHAN2:PROBe 1'); %Sets probe ratio of specified channel 
%%Options: {0.01|0.02|0.05|0.1|0.2|0.5|1|2|5|10|20|50| 

100|200|500|1000} 

  
fprintf(obj1, ':CHANnel1:OFFSet 0.00'); %Sets vertical offset of 

specified channel 
%%Related to the current vertical scale and probe ratio 
%%When the probe ratio is 1X, vertical scale?500mV/div: -100V to +100V 

vertical scale<500mV/div: -2V to +2V 
%%When the probe ratio is 10X, vertical scale?5V/div: -1000V to +1000V 

vertical scale<5V/div: -20V to +20V 

  
fprintf(obj1, ':CHANnel2:OFFSet 0.00'); %Sets vertical offset of 

specified channel 
%%Related to the current vertical scale and probe ratio 
%%When the probe ratio is 1X, vertical scale?500mV/div: -100V to +100V 

vertical scale<500mV/div: -2V to +2V 
%%When the probe ratio is 10X, vertical scale?5V/div: -1000V to +1000V 

vertical scale<5V/div: -20V to +20V 

  
fprintf(obj1, ':CHAN1:SCALe 0.48'); %Sets vertical scale of specified 

channel FOR 3.3MHz 
%%Related to the current probe ratio 
%%When the probe ratio is 1X: 1mV to 10V 
%%When the probe ratio is 10X (default): 10mV to 100V 

           
%fprintf(obj1, ':CHAN2:SCALe 0.01'); %Sets vertical scale of specified 

channel 
%%Related to the current probe ratio 
%%When the probe ratio is 1X: 1mV to 10V 
%%When the probe ratio is 10X (default): 10mV to 100V 

  
fprintf(obj1, ':CHAN1:RANGe 3.84'); %Sets range of vertical scale of 

specified channel FOR 3.3MHz 
%%Related to the probe ratio 
%%When the probe ratio is 1X: 8mV to 80V 
%%When the probe ratio is 10X: 80mV to 800V 

  
%fprintf(obj1, ':CHAN2:RANGe 0.08'); %Sets range of vertical scale of 

specified channel 
%%Related to the probe ratio 
%%When the probe ratio is 1X: 8mV to 80V 
%%When the probe ratio is 10X: 80mV to 800V 

  
fprintf(obj1, ':TIMebase:MAIN:OFFSet 0.000081'); %Sets main timebase 

offset 

  
%--- Adjust channel and data intake settings--- 
fprintf(obj1, ':WAVeform:SOURce CHAN2'); %Sets channel from which the 

waveform is read 
%%Options: {CHANnel1|CHANnel2|MATH} 

  
fprintf(obj1, ':WAVeform:MODE NORM'); %Sets reading mode 
%%Options: {NORMal|MAXimum|RAW} 
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fprintf(obj1, ':CHAN1:COUPling DC') %Sets coupling mode of selected 

channel 
%%Options: {AC|DC|GND} 

  
fprintf(obj1, ':ACQuire:MDEPth 12000') %Sets memory depth (number of 

waveform points that can be stored in a single trigger sample) 
%%Units: points; memory depth = sample rate * waveform length (timebase 

scale) 
%%Options: Single channel: {AUTO|12000| 

120000|1200000|12000000|24000000}. 
%%Dual channels: {AUTO|6000|60000| 600000|6000000|12000000}. 

  
%--- Adjust Trigger Settings  --- 
fprintf(obj1, ':TRIGger:COUPling DC'); %Sets trigger coupling 
%%Options: {AC|DC|LFReject|HFReject} 

  
fprintf(obj1, ':STOP'); 

  
fprintf(obj1, ':TRIGger:SWE:AUTO'); %Sets trigger mode to auto 

  
fprintf(obj1, ':RUN'); 

  
fprintf(obj1, ':TRIGger:MODE EDGE'); %Sets trigger mode 
%%{EDGE|PULSe|RUNT|WIND|NEDG|SLOPe|VIDeo| 

PATTern|DELay|TIMeout|DURation|SHOLd| RS232|IIC|SPI} 

  
fprintf(obj1, ':TRIGger:EDGe:SOURce EXT'); %Sets trigger source 
%%Options: {CHANnel1|CHANnel2|AC|EXT} 

  
fprintf(obj1, ':TRIGger:EDGe:SLOPe POS'); %Sets edge type in edge 

trigger 
%%Options: {POSitive|NEGative|RFALl} 

  
fprintf(obj1, ':TRIGger:EDGe:LEVel 1'); %Sets trigger level in edge 

trigger 
%%Range: (-5 x VerticalScale - OFFSet) to (5 x VerticalScale - OFFSet) 

  
%-- Organization system for folders -- 

  
currentfolder = pwd; %Requests current file directory 
selpath = uigetdir('Data files'); %Requests user to choose a file 

directory 
cd(selpath) %Changes file path to selected path(selpath) 

  
d = dir(selpath); % Gets the folder contents 
dfolders = d([d(:).isdir]); % Removes all files (isdir property is 0) 
dfolders = dfolders(~ismember({dfolders(:).name},{'.','..'})); % 

Removes '.' and '..' 

  
% **********BEGIN LOOP FOR REFERENCE MEASUREMENTS ******************* 
for refCount = 1:refs 

     
    foldername = strcat('Ref_Trial',(num2str(refCount))); 
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    i=1; 
    while i <= length(dfolders) 
        invalidchar = ["\","/",":","?","*","<",">","|",'"'] ; 
        invalidid = contains(foldername,invalidchar); %First check for 

invalid characters 

         
        while invalidid ==1 
            invalidchar = ["\","/",":","?","*","<",">","|",'"']; 
            invalidid = contains(foldername,invalidchar); %Loop until 

special characters are removed 

             
            if invalidid == 1 
                foldername = inputdlg('Please input a unique test name 

without invalid special characters such as     [ \ / : ? * < > | " : 

]'); %Requests user to rename folder 
                foldername = 

char(strcat((foldername),'_Trial',(num2str(refCount)))); 
            end 
        end 
        checkfolder = dfolders(i).name; 
        tf = strcmpi(checkfolder,foldername); %Checks if the chosen 

folder name exists already 
        if tf == 1 
            foldername = inputdlg('The file name you selected already 

exists. Please select a unique name'); %Requests user to rename folder 
            foldername = 

char(strcat((foldername),'_Trial',(num2str(refCount)))); 
            i = 0; 
        end 
        i = i+1; 
    end 

     
    %-- Data processing -- 

     
    %pause(0.2); % in case it is sluggish the first time... 
    nframes = 26; 
    fprintf(obj1, strcat(':FUNCtion:WRECord:FEND ',num2str(nframes))); 

%Sets max # frames recorded to 26 
    fprintf(obj1, ':FUNCtion:WRECord:FINTerval 0.001'); %Sets time 

interval between frames in recording to 1 ms 
    fprintf(obj1, ':FUNCtion:WRECord:ENABle 0'); %Enables waveform 

recording ability 
    fprintf(obj1, ':FUNCtion:WRECord:OPERate RUN'); %Enables ability to 

RUN 

     
    for j = 1:2 
        if j == 1 

             
            %-- Acquires Reference Data --% 
            if refCount == 1 
                m = msgbox(sprintf('Press OK to start acquiring 

reference data for %s', foldername)); 
                uiwait(m); 
            end 
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            h = msgbox(sprintf('Acquiring reference data for %s', 

foldername)); 

             
            cd(selpath); 
            mkdir(strcat(foldername,'_attenuation_reference'))%Creates 

folder with selected name 
            datahome = 

strcat(selpath,'\',foldername,'_attenuation_reference'); %Defines 

location of data folder 
            cd(datahome); %Sets current directory to data folder 
            tic 
            for k = 1:1 
                fprintf(obj1, ':WAVeform:SOURce CHAN1'); %Sets channel 

from which the waveform is read 
                %%Options: {CHANnel1|CHANnel2|MATH} 

                 
                fprintf(obj1, ':WAVeform:MODE NORM'); %Sets reading 

mode 
                %%Options: {NORMal|MAXimum|RAW} 

                 
                fprintf(obj1, ':CHAN1:COUPling DC') %Sets coupling mode 

of selected channel 
                %%Options: {AC|DC|GND} 

                 
                fprintf(obj1, ':ACQuire:MDEPth 12000') %Sets memory 

depth (number of waveform points that can be stored in a single trigger 

sample) 
                %%Units: points; memory depth = sample rate * waveform 

length (timebase scale) 
                %%Options: Single channel: {AUTO|12000| 

120000|1200000|12000000|24000000}. 
                %%Dual channels: {AUTO|6000|60000| 

600000|6000000|12000000}. 
                fprintf(obj1, ':CHANnel1:DISPlay ON'); 
                fprintf(obj1, ':CHANnel2:DISPlay OFF'); 
                pause(1.0); 
                i = 1; 
                while i < 101 
                    %vertscal = query(obj1, ':CHAN1:SCALe'); 
                    fprintf(obj2, ':OUTP1 OFF'); %Turns on output for 

CH1 for function generator 
                    fprintf(obj2, ':OUTP2 ON'); %Turns on output for 

CH2 for function generator 
                    fprintf(obj2, ':SOUR2:BURS:TRIG'); %Triggers a 

burst output immediately on CH1 for fungen 
                    %fprintf(obj1, ':SINGle'); %Enables single playback 

- Only plays once 
                    fprintf(obj1, ':TRIGger:SWE:AUTO'); %Sets trigger 

mode to auto 
                    pause(0.4); 

                     
                    fprintf(obj1, ':wav:data?'); 
                    %yinc = (vertscal/25); %in NORM mode 
                    %yorig = str2num(query(obj1, 

':WAVeform:YORigin?')); 
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                    %yref = str2num(query(obj1, 

':WAVeform:YREFerence?')); 

                     
                    %Request the data 
                    [data1,len1]= fread(obj1); 

                     
                    %subtract = yorig + yref 
                    %newdata 0= ([data] - subtract)*yinc 

                     
                    %Obtain oscilliscope properties 
                    fprintf(obj1,':MEASure:SOURce CHANnel1'); %Obtain 

parameters from CHANNEL 1 
                    scopeprop(i).Period = str2double(query(obj1, 

':MEASure:ITEM? PERiod')); %Obtain period 
                    scopeprop(i).tVmax = str2double(query(obj1, 

':MEASure:ITEM? TVMAX')); %Obtain time of Vmax 
                    scopeprop(i).tVmin = str2double(query(obj1, 

':MEASure:ITEM? TVMIN')); %Obtain time of Vmin 
                    scopeprop(i).Vmax = str2double(query(obj1, 

':MEASure:ITEM? VMAX')); %Obtain max voltage (in Volts) 
                    scopeprop(i).Vmin = str2double(query(obj1, 

':MEASure:ITEM? VMIN')); %Obtain min voltage (in Volts) 
                    scopeprop(i).SampleRate = str2double(query(obj1, 

':ACQuire:SRATe?')); %Obtain sampling rate (Sa/s) 

                     
                    query(obj1, ':WAVeform:PREamble?'); %Queries 

waveform parameters 
                    

%%<format>,<type>,<points>,<count>,<xincrement>,<xorigin>,<xreference>,

<yincrement>,<yorigin>,<yreference> 

                     
                    %Waveform display on MATLAB 
                    yincr1 = query(obj1, ':WAVeform:YINCrement?'); 
                    yoffset1 = str2num(query(obj1, 

':CHANnel1:OFFSet?')); 
                    wave = str2num(yincr1)*(data1(12:(len1-1))-127); 
                    waves(k,i,:) = double(wave'); 
                    %    figure(1); 
                    %    plot(squeeze(waves(k,i,:))); 
                    %    pause(0.005); 
                    new_offset1 = yoffset1 - mean(waves(k,i,:)); 
                    fprintf(obj1, char(strcat(':CHANnel1:OFFSet ',{' 

'},num2str(new_offset1)))); %Sets vertical offset of specified channel 
                    pause(0.1) 
                    i = i + 1; 
                end 

                 
                figure(5) 
                plot(squeeze(mean(waves(k,:,:),2))) 

                 
                %leng = 1200; %# of samples 
                xincr = query(obj1, ':WAVeform:XINCrement?'); 
                Fs = (1/str2num(xincr)); 
                N = size(waves,3); 
                y = mean(fft(squeeze(waves(k,:,:))'),2); 
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                f = (0:N/2-1)*(Fs/N); %Frequency range 
                pow = (abs(y(1:N/2)).^2)/N; %Power spectrum 
                figure(6) 
                plot(f/1e6,10*log10(pow)) 
                xlabel('\bfFrequency (MHz)'); 
                ylabel('\bfMagnitude'); 

                 
                %f = Fs*(0:(leng/2))/leng; 
                %F = (log10(mean(abs(fft(waves')),2))); 
                %plot(f,F(1:(length(f)))) 
                elapsedtime(k) = toc; 
                PkV(k) = max(pow(find(f > 0 & f < 1e7))); 
            end 

             
            wavesRef = waves; 
            xincrRef = xincr; 

             
            clear wave tf checkfolder currentfile currentfolder 

invalidchar invalidid len; 
            currentfile = 

strcat('ScopeDataAttenuation_',datestr(now,'yyyy_mm_dd_HH_MM_SS_FFF'),'

.mat'); 
            save(currentfile); 
            plot(elapsedtime,PkV,'-o'); 
            xlabel('Time Elapsed (seconds)') 
            ylabel('Peak Frequency Value') 
            clear waves scopeprop; 
            clear PkV; 
            %-- Reference Data Acquired --% 
        end 
    end 

     
    delete(h); 
    if refCount == refs 
        m = msgbox('Reference measurements are done.'); 
        uiwait(m); 
    end 
end 

  
% **********BEGIN LOOP FOR SAMPLE MEASUREMENTS ******************* 
for groupCount = 1:groups 

     
    foldername = inputdlg('Unique Test Name for Sample Measurement:'); 

%Requests user to name folder 
    ntrials = inputdlg('What trial are you testing for this 

experimental group?'); 
    foldername = char(strcat((foldername),'_Trial',(ntrials))); 

     
    i=1; 
    while i <= length(dfolders) 
        invalidchar = ["\","/",":","?","*","<",">","|",'"'] ; 
        invalidid = contains(foldername,invalidchar); %First check for 

invalid characters 

         
        while invalidid ==1 
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            invalidchar = ["\","/",":","?","*","<",">","|",'"']; 
            invalidid = contains(foldername,invalidchar); %Loop until 

special characters are removed 

             
            if invalidid == 1 
                foldername = inputdlg('Please input a unique test name 

without invalid special characters such as     [ \ / : ? * < > | " : 

]'); %Requests user to rename folder 
                foldername = 

char(strcat((foldername),'_Trial',(ntrials))); 
            end 
        end 
        checkfolder = dfolders(i).name; 
        tf = strcmpi(checkfolder,foldername); %Checks if the chosen 

folder name exists already 
        if tf == 1 
            foldername = inputdlg('The file name you selected already 

exists. Please select a unique name'); %Requests user to rename folder 
            foldername = char(strcat((foldername),'_Trial',(ntrials))); 
            i = 0; 
        end 
        i = i+1; 
    end 

     
    %-- Data processing -- 

     
    %pause(0.2); % in case it is sluggish the first time... 
    nframes = 26; 
    fprintf(obj1, strcat(':FUNCtion:WRECord:FEND ',num2str(nframes))); 

%Sets max # frames recorded to 26 
    fprintf(obj1, ':FUNCtion:WRECord:FINTerval 0.001'); %Sets time 

interval between frames in recording to 1 ms 
    fprintf(obj1, ':FUNCtion:WRECord:ENABle 0'); %Enables waveform 

recording ability 
    fprintf(obj1, ':FUNCtion:WRECord:OPERate RUN'); %Enables ability to 

RUN 

     
    for j = 1:2 
        if j == 1 

                        
            %-- Acquiring Sample Data --% 
            m = msgbox(sprintf('Press OK to start acquiring sample data 

for %s', foldername)); 
            uiwait(m); 
            h = msgbox(sprintf('Acquiring sample data for %s', 

foldername)); 

            
            cd(selpath); 
            mkdir(strcat(foldername,'_attenuation'))%Creates folder 

with selected name 
            datahome = strcat(selpath,'\',foldername,'_attenuation'); 

%Defines location of data folder 
            cd(datahome); %Sets current directory to data folder 
            tic 
            for k = 1:ntimepoints 
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                fprintf(obj1, ':WAVeform:SOURce CHAN1'); %Sets channel 

from which the waveform is read 
                %%Options: {CHANnel1|CHANnel2|MATH} 

                 
                fprintf(obj1, ':WAVeform:MODE NORM'); %Sets reading 

mode 
                %%Options: {NORMal|MAXimum|RAW} 

                 
                fprintf(obj1, ':CHAN1:COUPling DC') %Sets coupling mode 

of selected channel 
                %%Options: {AC|DC|GND} 

                 
                fprintf(obj1, ':ACQuire:MDEPth 12000') %Sets memory 

depth (number of waveform points that can be stored in a single trigger 

sample) 
                %%Units: points; memory depth = sample rate * waveform 

length (timebase scale) 
                %%Options: Single channel: {AUTO|12000| 

120000|1200000|12000000|24000000}. 
                %%Dual channels: {AUTO|6000|60000| 

600000|6000000|12000000}. 
                fprintf(obj1, ':CHANnel1:DISPlay ON'); 
                fprintf(obj1, ':CHANnel2:DISPlay OFF'); 
                pause(1.0); 
                i = 1; 
                while i < 101 
                    %vertscal = query(obj1, ':CHAN1:SCALe'); 

                     
                    fprintf(obj2, ':OUTP1 OFF'); %Turns on output for 

CH1 for function generator 
                    fprintf(obj2, ':OUTP2 ON'); %Turns on output for 

CH2 for function generator 
                    fprintf(obj2, ':SOUR2:BURS:TRIG'); %Triggers a 

burst output immediately on CH1 for fungen 
                    %fprintf(obj1, ':SINGle'); %Enables single playback 

- Only plays once 
                    fprintf(obj1, ':TRIGger:SWE:AUTO'); %Sets trigger 

mode to auto 
                    pause(0.4); 

                     
                    fprintf(obj1, ':wav:data?'); 
                    %yinc = (vertscal/25); %in NORM mode 
                    %yorig = str2num(query(obj1, 

':WAVeform:YORigin?')); 
                    %yref = str2num(query(obj1, 

':WAVeform:YREFerence?')); 

                     
                    %Request the data 
                    [data1,len1]= fread(obj1); 

                     
                    %subtract = yorig + yref 
                    %newdata 0= ([data] - subtract)*yinc 

                     
                    %Obtain oscilliscope properties 
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                    fprintf(obj1,':MEASure:SOURce CHANnel1'); %Obtain 

parameters from CHANNEL 1 
                    scopeprop(i).Period = str2double(query(obj1, 

':MEASure:ITEM? PERiod')); %Obtain period 
                    scopeprop(i).tVmax = str2double(query(obj1, 

':MEASure:ITEM? TVMAX')); %Obtain time of Vmax 
                    scopeprop(i).tVmin = str2double(query(obj1, 

':MEASure:ITEM? TVMIN')); %Obtain time of Vmin 
                    scopeprop(i).Vmax = str2double(query(obj1, 

':MEASure:ITEM? VMAX')); %Obtain max voltage (in Volts) 
                    scopeprop(i).Vmin = str2double(query(obj1, 

':MEASure:ITEM? VMIN')); %Obtain min voltage (in Volts) 
                    scopeprop(i).SampleRate = str2double(query(obj1, 

':ACQuire:SRATe?')); %Obtain sampling rate (Sa/s) 

                     
                    query(obj1, ':WAVeform:PREamble?'); %Queries 

waveform parameters 
                    

%%<format>,<type>,<points>,<count>,<xincrement>,<xorigin>,<xreference>,

<yincrement>,<yorigin>,<yreference> 

                     
                    %Waveform display on MATLAB 
                    yincr1 = query(obj1, ':WAVeform:YINCrement?'); 
                    yoffset1 = str2num(query(obj1, 

':CHANnel1:OFFSet?')); 
                    wave = str2num(yincr1)*(data1(12:(len1-1))-127); 
                    waves(k,i,:) = double(wave'); 
                    %    figure(1); 
                    %    plot(squeeze(waves(k,i,:))); 
                    %    pause(0.005); 
                    new_offset1 = yoffset1 - mean(waves(k,i,:)); 
                    fprintf(obj1, char(strcat(':CHANnel1:OFFSet ',{' 

'},num2str(new_offset1)))); %Sets vertical offset of specified channel 
                    pause(0.1) 
                    i = i + 1; 
                end 

                 
                figure(5) 
                plot(squeeze(mean(waves(k,:,:),2))) 

                 
                %leng = 1200; %# of samples 
                xincr = query(obj1, ':WAVeform:XINCrement?'); 
                Fs = (1/str2num(xincr)); 
                N = size(waves,3); 
                y = mean(fft(squeeze(waves(k,:,:))'),2); 
                f = (0:N/2-1)*(Fs/N); %Frequency range 
                pow = (abs(y(1:N/2)).^2)/N; %Power spectrum 
                figure(6) 
                plot(f/1e6,10*log10(pow)) 
                xlabel('\bfFrequency (MHz)'); 
                ylabel('\bfMagnitude'); 

                 
                %f = Fs*(0:(leng/2))/leng; 
                %F = (log10(mean(abs(fft(waves')),2))); 
                %plot(f,F(1:(length(f)))) 
                elapsedtime(k) = toc; 
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                PkV(k) = max(pow(find(f > 0 & f < 1e7))); 
            end 

             
            wavesSample = waves; 
            xincrSample = xincr;             

             
            clear wave tf checkfolder currentfile currentfolder 

invalidchar invalidid len; 
            currentfile = 

strcat('ScopeDataAttenuation_',datestr(now,'yyyy_mm_dd_HH_MM_SS_FFF'),'

.mat'); 
            save(currentfile); 
            plot(elapsedtime,PkV,'-o'); 
            xlabel('Time Elapsed (seconds)') 
            ylabel('Peak Magnitude') 
        end 
    end 

     
    delete(h); 
    if groupCount == groups 
        m = msgbox('Samples are done.'); 
        uiwait(m); 
    else 
        groupnum = iptnum2ordinal(groupCount); 
        m = msgbox(sprintf('Processing for sample ''%s'' is finished. 

\nPress OK when ready to start your next sample.',foldername)); 
        uiwait(m); 
        close all; 
    end 
end 

  
%-- Close the VISA object -- 
fprintf(obj1, ':FUNCtion:WRECord:ENABle 0'); %Enables waveform 

recording ability 
fclose(obj1); 
delete(obj1); 
fclose(obj2); 
delete(obj2); 
% clear obj1 tf checkfolder currentfile d currentfolder dfolders 

foldername i invalidchar invalidid len selpath; 
clear obj1 tf checkfolder currentfile d currentfolder dfolders 

foldername invalidchar invalidid len selpath; 
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