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ABSTRACT 

DATA LINKAGE FOR CRASH-INJURY OUTCOME ASSESSMENT 

Aryan Hosseinzadeh 

April 28, 2022 

Introduction: 

Traffic crash reports lack detailed information about emergency medical service (EMS) 

responses, the injuries, and the associated treatments, limiting the ability of safety analysts to 

account for that information. Integrating data from other sources can enable a better 

understanding of the characteristics of serious crashes and further explain variance in injury 

outcomes. In this thesis, first, a heuristic approach is proposed and implemented to link crash 

data to EMS run data, patient care reports, and trauma registry data. Next, the method was 

adapted through larger datasets in a statewide linkage effort. The performance of the heuristic 

method was compared with the Bayesian probabilistic linkage method. Further, EMS times, 

along with other crash-related explanatory variables, were used to investigate influential factors 

on injury severity.  The level of consistency in injury severity estimation among medical experts 

based on trauma registry data was investigated and factors that contribute to misclassification 

of injury severity in crash reports were identified. 

Methods: 
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A heuristic framework was developed to match EMS run reports to crashes through time, 

location, and other indicators present in both datasets. A comparative bias analysis was 

implemented on several key variables. Bayesian record linkage was also performed, and the 

results were compared with the heuristic one.  A random-effects ordered probit approach was 

implemented by employing crash-EMS runs linked data to study the impact of crash-related 

effective factors along with EMS times on injury severity. Three models of (1) crash-related 

variables, (2) crash-related and EMS times, and (3) crash-related, EMS times and interaction 

effects of EMS times and injury location on the body were developed. Furthermore, the 

discrepancy between police-reported injury severities and physicians’ evaluations of 

corresponding trauma records was modeled using crash-related linked data. The trauma data 

were reviewed and classified by a panel of emergency physicians. Analysis of Variance was 

applied to model variation within the panel. An ordered probit model was used to model 

factors contributing to misclassification between police reports and emergency physicians. 

Results: 

72.2% of EMS run reports matched to a crash record, and 69.3% of trauma registry records 

matched with a crash record. Females, individuals between 11 to 20 years old, and individuals 

involved in single-vehicle or head-on crashes were more likely to be present in linked data sets. 

The heuristic linkage method performs better compared to Bayesian linkage, and the reasons 

behind the linkage rate gap were discussed. In EMS times impact on injury severity analysis, 

although the outcome could not find the impact of faster EMS times on injury severity in the 

general model, but when the interaction effects were considered, faster EMS response time 

was associated with decreasing the severity of entire-body injuries. According to 

the discrepancy analysis results, age, internal injury, and a proposed field - injury visibility- 



vi 

were found to be contributing factors to injury severity discrepancy. Internal injury and injury 

visibility were among the trauma-related factors that were developed to explore their impact 

on injury severity discrepancy. Results show inconsistent physicians’ injury severity evaluation 

based on injuries’ detailed information. 

 Conclusions: 

Linking data from other sources can significantly enhance the information available to address 

road safety issues, data quality issues, and more. Linking data can result in biases that should 

be investigated as they relate to the use-case for the data. Based on the EMS times association 

with injury severity outcome, although a significant relationship between EMS times and injury 

severity in all types of injuries was not found, EMS times based on injured body locations shed 

light on the relationship between EMS times and injury severity. In discrepancy 

analysis, findings indicate officers tended to underestimate injuries associated with a high gore 

factor, increasing age and the presence of an internal injury, specifically among trauma 

patients. 

Practical Applications: 

Linked crash-related datasets provide a valuable opportunity to evaluate the impact of 

prehospital care and emergency department care on crash outcomes. In general, policy steps 

could be taken to require cross-reporting and linkage of the data sets as the events occur to 

better monitor outcomes of injury crashes without requiring post-hoc linkage. This method 

can also realistically be integrated into a tool or software to undergo record linkage 

automatically. The findings of this study could act as a base for further investigation of EMS 

impact on injury severity, particularly with respect to effective use of EMS times in the 

evaluation of service quality. Further research should also be devoted to developing field tests 
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that support officer injury assessment and identifying the factors leading to underestimating 

injuries identified in this study. Also, results suggest that injury visibility is important and 

should be investigated further for reporting purposes. 
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CHAPTER 1 

INTRODUCTION 
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1.1 Introduction and contributions 

Inaccurate crash injury severity identification in crash reports may result in missed injuries in 

the field, incorrect estimation of parameters in models, and low-impact roadway safety 

investments. Identifying the factors that lead to misclassification is crucial to improving the 

data quality. Traffic crash reports lack detailed information about emergency medical service 

(EMS) responses, the injuries, and the associated treatments, limiting the ability of safety 

analysts to account for that information. Integrating data from other sources can enable a 

better understanding of the characteristics of serious crashes and further explain variance in 

injury outcomes. EMS runs, and trauma registry data are not an inherent part of traffic crash 

reports. By linking crash-related databases, a vast opportunity comes up to expand the 

knowledge regarding the variables affecting the crash injury outcome, including post-crash 

variables, such as EMS times. Moreover, detailed descriptions available in trauma registry 

records can be used to cross-check and verify the credibility of police-reported injury data.  

Contributions in this dissertation are in two main domains: 

1. Introducing a method to link crash-related datasets to use for safety analysis and 

evaluating characteristics of the resulting dataset. Crash-related datasets, including 

police-reported crash data, Emergency Medical Services – Computer Aid Dispatch 

(EMS CAD) data, and Patient Care Report (PCR) and Trauma Registry were included 

in the linkage. Further, the transferability of linkage expanded into a larger dataset and 

a larger geographical context.  

 

2. Applying methods to analyze the linked crash-related dataset in transportation safety. 

The linked dataset has unleashed new potential in safety analysis by adding new 
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variables to explain variance in safety research, including EMS runs data and trauma 

registry data. Investigating the association of EMS times and injury severity, exploring 

factors affecting EMS times, and identifying factors contributing to the 

misclassification of injury severity in police crash reports are among the linked data 

applications that were investigated.
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1.2 Structure of this dissertation 

This dissertation follows with Chapter 2 includes a review of the existing literature on data 

linkage and further analysis. Chapters 3 to 5 of this dissertation are five academic papers and 

a technical report. The chapters are therefore self-contained, that is, each of them has its own 

introduction, method, results, discussion and conclusion and notations.  

Chapter 2 is an overview of the existing literature, focusing on three main topics: (a) crash-

related data linkage, (b) Association of injury severity and EMS times, and (c) Injury severity 

misclassification in motor vehicle crashes 

Chapter 3 includes two sections. First, an academic paper proposes a heuristic algorithm to 

link crash data, EMS runs and trauma registry records in Jefferson County, Kentucky. In the 

second section of chapter 3, the heuristic algorithm expanded and adapted for the Kentucky 

statewide crash-related dataset. Integrating data from other sources can enable a better 

understanding of the characteristics of serious crashes and further explain variance in injury 

outcomes. Furthermore, the selectivity biases were investigated and based on a manual review 

of the records, and the reasons behind linkage failure in records were categorized. 

Chapter 4 compares the heuristic algorithm developed in this study with a Bayesian 

probabilistic record linkage. The records were categorized based on the ones matched in both 

methods; the ones matched as the outcome of only one of the methods and the ones that 

resulted differently based on each of the two approaches. Different types of matches were 

investigated, and the reasons behind each of the groups were discussed.  

Chapter 5 explores the applications of the linked data in transportation safety. First, the 

association between EMS times, along with other crash-related explanatory variables and 
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injury severity were investigated. Next, EMS response time was modeled and compared using 

four machine-learning approaches, as well as regression analysis. Furthermore, factors 

contributing to the misclassification of injury severity in police crash reports were identified. 

The discrepancy between police-reported injury severities and physicians’ evaluations of 

corresponding trauma records was modeled. The trauma data were reviewed and classified by 

a panel of emergency physicians. 

Chapter 6 provides a summary, highlights the contributions, and offers future directions. In 

this chapter, crash-related linkage research framework was discussed in a bigger picture and 

outreach and potential transferability of approaches in other linkage frameworks were 

emphasized. Figure 1.1 shows the steps that were taken to conduct this research. 

 

Figure 1.1. Research steps were taken in the dissertation 
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CHAPTER 2 

BACKGROUND 

  



 
 

7 

 

 

 

2.1 Objective 

In this section, an overview of previous studies related to data linkage was reviewed. The 

objective in the first part of the paper is to review crash-related data linkage, including the type 

of datasets, methods, linkage rate and geographical contexts. The objective of the second part 

is regarding a review of the literature about the applications of the linked data. The applications 

included three parts of “association of injury severity and EMS times,” “determinants of EMS 

times,” and “injury severity discrepancy.” 
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2.2 Introduction 

Crashes are one of the leading causes of preventable death in the United States, and they carry 

a severe burden on public health and wellness. Police-reported crash data is the primary source 

of information for transportation engineers to address safety systematically. However, 

additional data sets exist that can help explain factors associated with variance in crash 

outcomes and inform safety assessments. Emergency medical services (EMS) and hospitals 

both collect data about victims of traffic injuries. Both include specifics of the injury (Burch 

et al., 2014; Hosseinzadeh and Kluger, 2021a; Hosseinzadeh and Kluger, 2021b) through 

diagnoses and narratives. However, to date, they are rarely used to inform transportation 

engineering decision-making. Specifically, linking the crash records with trauma registry 

records and further analysis based on resulting data has been recognized as a gap in the 

literature (Tainter et al., 2020).  

 Several issues of interest can be investigated or addressed by linking crash data with 

other public health data sets. Some studies have expressed doubt about the accuracy of the 

crash reports, specifically, the injury severity field (Couto et al., 2016; McDonald et al., 2009; 

Watson et al., 2015). The KABCO scale is used by officers in the United States filing crash 

reports with the following designations: K – fatal; A – incapacitating injury; B – non-

incapacitating injury; C – possible injury; and O – no injury. These definitions can vary slightly 

by state (for example, some list A as suspected serious injury).  In recent years, crash reports 

have been subject to scrutiny regarding the quality of injury ratings. Crash injury severity is 

recorded using the officer’s judgment based on limited information at the crash scene and can 

be incorrect when compared with medical professionals’ assessments of a victim’s condition 

(Benavente et al., 2006). Therefore, tracking crash injuries through emergency services and 
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hospitals can provide valuable knowledge about crashes and could be used to cross-check 

fields in the police reports for severe crashes. By linking crashes to a data set containing 

medical experts’ diagnoses, the factors affecting injury severity discrepancy between police-

reported crash data and trauma data could be investigated. Inaccuracies in severity reporting 

may also alter decision-making surrounding road safety issues (Das et al., 2021; Khoda Bakhshi 

& Ahmed, 2020). Furthermore, by relying solely on police-reported crashes, a portion of 

crashes might go unreported (Amoros et al., 2006; Boufous et al., 2008; Loo and Tsui, 2007; 

McDonald et al., 2009; Sciortino et al., 2005; Short and Caulfield, 2016; Tin et al., 2013a; 

Yannis et al., 2014), particularly for vulnerable road users such as bicyclists and pedestrians 

(Alsop and Langley, 2001; Amoros et al., 2006; Bakhshi and Ahmed, 2020; Loo and Tsui, 

2007; Sciortino et al., 2005; Short and Caulfield, 2016; Tin et al., 2013b; Watson et al., 2015). 

While these issues are prevalent in crash data across the United States, police records are 

currently the most comprehensive source of information for monitoring road safety. 

One of the potential factors that could have an impact on reducing severity is quick 

and efficient Emergency Medical Services (EMS). EMS characteristics are neglected in most 

studies, mainly due to data availability. Specifically, in the U.S., EMS characteristics are not an 

inherent part of datasets provided in the police-reported crash records that utilize database 

structure following Model Minimum Uniform Crash Criteria guidelines (NHTSA, 2017). 

There are numerous challenges currently associated with linking crash data with EMS 

data and trauma records in the United States. Different agencies are responsible for collecting 

different information in EMS data and trauma records, open record data does not contain 

identifiable information such as name or driver license number, and privacy laws, such as the 
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Health Insurance Portability and Accountability Act (HIPAA), makes it so that health 

information and personal information are often inaccessible. 

2.3 Crash-related data linkage 

Record linkage is the process of linking data from different sources. There are three techniques 

used to link data: manual, deterministic, and probabilistic. Manual linkage is defined as “a 

process that requires human labor and involves visually comparing two (or more) data sets 

and determining whether each individual episode is the same across data sets” (Dean et al., 

2001). Manual linkage is impractical with large volumes of records. Deterministic linkage 

“involves linking records based on an exact agreement of the selected match variables,” such 

as personal identifiers (Karmel et al., 2010). The deterministic approach requires strong 

identifiers to be present in both data sets, which is often not the case, particularly in data sets 

that are open to the public, which have often been stripped of identifiers. Probabilistic linkage 

is defined as “linking records in two (or more) files and is based on the probabilities of 

agreement and disagreement between a range of match variables” (Karmel et al., 2010). 

Probabilistic linkage utilizes models to determine the likely matches. 

A commonly used probabilistic approach is Bayesian record linkage (Conderino et al., 

2017; McGlincy, 2004, 2006; Short and Caulfield, 2016; Watson et al., 2015; Winkler, 2002). 

Multiple existing software suites can guide users through the implementation of the Bayesian 

record linkage approach (Cook et al., 2015). Bayesian record linkage has also been used in the 

transportation safety context. A study in Dublin, Ireland, used Bayesian record linkage to link 

crash data with both hospital  discharge records, and injury insurance claims based on age, 

gender, time, road user type, collision type, crash severity, and county. Their findings indicated 

a substantially lower match rate among bicyclist and motorcyclist injuries (Short and Caulfield, 
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2016). Conderino et al. (2017) used Bayesian record linkage, to link crash and in-patient 

hospitalization administrative records in New York City, NY, linking 52% of total hospital 

records to a crash by using date, time, gender, age, role, collision type, injury body location, 

and injury occurrence (Conderino et al., 2017). Milani et al. (2015) noted that the complexity 

of the Bayesian approach to probabilistic record linkage was one of the barriers to 

implementation in states across the U.S. (Milani et al., 2015).  

In the United States, Crash Outcome Data Evaluation System (CODES) was a 

national effort led by the National Highway Traffic Safety Administration (NHTSA) to link 

hospital records with crash data (Cook et al., 2015). Each participating state was responsible 

for implementing linkage, and numerous studies utilized the linked data sets to investigate 

healthcare costs related to specific circumstances such as demographics (Shen and Neyens, 

2015), aggressive driving (Chitturi et al., 2011), barrier and median-crossing crashes (Conner 

and Smith, 2014), seatbelt usage (Han et al., 2017), and motorcycle crashes (Olsen et al., 2014). 

CODES data sets have also been used to evaluate the quality of police reporting of injuries 

compared to injury severity ratings by medical professionals. Burdett et al. (2015) found 

significant differences between KABCO injury severity and Maximum Abbreviated Injury 

Scale (MAIS) in Wisconsin (Burdett et al., 2015). Burch et al. (2014) found consistency 

between distributions of injury reports in Maximum Abbreviated Injury Scale (MAIS) between 

Utah and Maryland crash data among injured persons involved in crashes, while KABCO 

injury severity varied (Burch et al., 2014).  In the United States, the focus has been to link 

various hospital data sets with crash data, primarily through CODES (Cook et al., 2015), while 

only few studies were identified by the authors that linked EMS data with crash data. 
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Regarding studies across the world, a study in Portugal linked EMS, crash, and hospital 

data (Amorim et al., 2014) and used it to assess the quality of injury severity classification by 

the police using MAIS and length of hospital stay from the hospital data (Couto et al., 2016; 

Ferreira et al., 2017; Ferreira et al., 2015). The method was also used to assess the length of 

the prehospital impact on crash injury (Ferreira et al., 2019). A study in Queensland, Australia, 

linked patient admissions and crash data sets and found that motorcyclists, bicyclists, males, 

younger demographics, and injuries occurring in remote locations were more likely to go 

unlinked (Watson et al., 2015). 

Errors and bias associated with data linkage is a relevant issue in data linkage exercises. 

Cryer et al. (2001) found significant differences in the distributions of variables including age, 

gender, and road user type between crash and hospital admissions data sets (Cryer et al., 2001). 

Justrap et al. (2014) found that certain attributes, including injury severity, speed, lane numbers, 

pedestrians, and females were more likely to result in a record being present in both trauma 

registry and crash data (Justrap et al., 2014). Tarko and Azam (2011) found selectivity bias in 

a linked crash and hospital data set to predict low injury levels among pedestrian-involved 

crashes. They found gender, age, crash type, and roadway geometry at the crash location were 

associated with the presence of a record in the linked data set (Tarko and Azam, 2011). Moore 

(1998) linked crash-hospital data in Alaska. Significant differences were not found between 

the age and gender of linked and unlinked records; however, significant differences were 

observed based on geographical location and crash type (Moore, 1998). Across the studies on 

selectivity bias in linking crash data to public health data, specific characteristics were 

consistent in most of them, including gender and injury severity or proxy for injury severity 

such as speed and crash type. 
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Table 2.1 summarizes the crash-related data linkage in previous studies, the method 

for data linkage used, the data sets, and their match rates. The match rate among studies in the 

literature varies from 29.8% to 74%. Most of the literature employed police-reported crash 

data and either EMS dispatch data or hospital data. Utilizing four crash-related data sets 

provides an opportunity to track and monitor crash injuries in each phase of the emergency. 

Due to the lack of personal identifiers and the complexity of the Bayesian approach raised in 

the literature (Milani et al., 2015), this study proposed an adaptive iterative heuristic approach 

to link crash data and public health-related datasets. Various sources of hospital-related 

datasets such as trauma registry, hospital admissions, hospital discharge, and in-patient hospital 

records were labeled as hospital data in Table 2.1 

 



Table 2.1. Summary of crash-related data linkage implementations 

Study Objective Method Data sets Linkage rate Geographical context 

(Moore, 1998) Comparison of young and 
adult crashes 

MINICODES software 
(Probabilistic method) 

- Police-reported crash data 

- Hospital data  

69% of MVC-related hospital 
data 

Alaska, U.S. 

(Stutts and Hunter, 
1999) 

Pedestrian and bicyclist 
crash analysis  

Deterministic - Police-reported crash data 

- Hospital data  

California: 43%*, 45%** 
New York: 42%*, 56%** 
North Carolina: 66%*, 
67%** 
*of Bicycle MVC-related
hospital data 
**of Pedestrian MVC-related 
hospital data 

California, U.S. 
New York, U.S. 
North Carolina, U.S. 

(Cryer et al., 2001) Investigating if hospital 
admission data linked to 
police MVC reports results 
in less biased information 
for the injury prevention 
policymaker and planner 
than police MVC reports 
alone. 

Manual method - Police-reported crash data 

- Hospital data 

50% of MVC-related hospital 
admissions were found in the 
linked data set 

England 

(Alsop and Langley, 
2001) 

Exploring under-reporting 
of motor vehicle traffic 
crash 

Automatch software 
package 

- Police-reported crash data 

- Hospital data 

63% of the total MVC-
related hospital data 

New Zealand 

(Langley et al., 2003) Exploring match rate of 
cyclist and the factors 
associated with the cyclist 
match rate  

Automatch software 
package 

- Police-reported crash data 

- Public road data 

22% of cyclist crashes on 
public roads linked to a crash 
report 

New Zealand 

(Sciortino et al., 
2005) 

pedestrian injury 
surveillance 

Matching thresholds - Police-reported crash data 

- Hospital data 

59% of the pedestrian MVC-
related hospital data 

California, U.S. 

(Benavente et al., 
2006) 

Analysis of Injury Specifics 
and Crash Compatibility 
Issues 

Probabilistic method - Police-reported crash data 

- Hospital data 

46% of MVC-related hospital 
admitted patients 

Massachusetts, U.S. 

(Boufous and 
Williamson, 2006) 

Investigating factors 
affecting work-related 
traffic crashes 

Probabilistic method - Police-reported crash data 

- workers compensation data 

46% of MVC-related work 
compensation claims 

Australia 

(Amoros et al., 2006)  Exploring under-reporting 
of road crash casualties 

Semi-automated record-
linkage procedure 

- Police-reported crash data 

- Hospital data 

37% of the total MVC-
related hospital data 

France 

(Gonzalez et al., 
2006) 

Exploring factors affecting 
mortality in rural areas 

Probabilistic algorithm - Police-reported crash data 73% of the total MVC-
related patient care reports 

United States 
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- Patient Care Reports 

- Hospital data 
(Lujic et al., 2008) How comparable are road 

traffic crash cases in hospital 
admissions data and police 
records? 

Linkage Wiz software - Police-reported crash data 

- Hospital data 

45% of the total MVC-
related hospital data 

Australia 

(Tarko and Azam, 
2011) 

Investigating linked data 
selection bias in pedestrian 
crashes 

Probabilistic method - Police-reported crash data 

- Hospital data 

51% of the MVC crashes 
matched with hospital 
records 

Indiana, U.S. 

(Wilson et al., 2012) Validity of using linked 
hospital and police traffic 
crash records to 
analyse motorcycle injury 
crash characteristics 

Automatch software - Police-reported data 

- Hospital data 

46% of the hospital data, 
60% of serious injuries and 
41% of moderate  

New Zealand 

(Kudryavtsev et al., 
2013) 

Evaluating reliability of 
police and healthcare data 

Manual - Police-reported crash data 

- Hospital data 

162 matched fatality cases 
among 217 police records 
(74%) and 237 healthcare 
data (68.3%) 

Russia 

(Tin Tin et al., 
2013a) 

Completeness and accuracy 
of cyclist crash outcome 
Data  

deterministic - Police-reported crash data 

- Hospital data 

- Insurance data 

- Mortality record 

13% of hospital reported 
crashes and 64% of hospital 
reported crashes were 
matched with police records, 
39% of police reported 
crashes and 43% of police 
reported crashes were 
matched with hospital 
records 

New Zealand 

(Mitchell et al, 2015) Comparison of novice and 
full-licensed driver common 
crash types 

Choice maker software 
(Probabilistic method) 

- Police-reported crash data 

- Hospital data 

54% of MVC-related hospital 
admitted patients 

Australia 

(Watson et al., 2015)  Estimating under-reporting 
of road crash injuries 

Linkage Wiz software 
(Combination of both 
deterministic and 
probabilistic approaches) 

-  Police-reported crash data 

- Hospital data 

- EMS data 

- Injury surveillance unit data 

54% of MVC-related hospital 
admitted patients 
29% of MVC-related EMS 
dispatch data 
36% of MVC-related injury 
surveillance unit:  

Australia 

(Paixao et al., 2015) Exploring motor vehicle 
crash death in high-risk 
population subgroup 

Link Plus (Probabilistic 
approach 

- Police-reported crash data 

- Mortality information system 

1,072 resulted in initial match 
but manual review showed 
311 of them are true matches 

Brazil 
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(Short and Caulfield, 
2016) 

Linking police data with 
hospital and injury claims 
data 

Probabilistic approach 
(Bayesian) 

- Police-reported crash data 

- Hospital data 

- Injury claims 

-  

61% of the total MVC-
related hospital data 

Ireland 

(Janstrup et al., 2016) Understanding traffic crash 
under-reporting 

Deterministic approach - Police-reported crash data 

- Hospital data 

23% of the total MVC-
related hospital data 
34% of the MVC crashes 
matched with hospital 
records 

Denmark 

(Conderino et al., 
2017) 

Linking traffic crash and 
hospitalization  

LinkSolv 9.0 (probabilistic 
approach) 

- Police-reported crash data 

- Hospital data 

52% of the total MVC-
related hospital record 

New York, U.S. 

(Kamaluddin et al., 
2018) 

Matching of police and 
hospital road crash casualty 
records to investigate 
underreporting 

Deterministic and 
probabilistic using Microsoft 
SQL 

- Police-reported crash data 

- Hospital data 

4% of MVC-related hospital 
records matched with police-
reported crash data 

Malaysia 

(Tainter et al., 2020) Data linkage approach to 
investigate potential 
reductions in motor vehicle 
crash severity 

Iterative approach - Police-reported crash data 

- EMS data 

58% of the total MVC-
related EMS data 

Massachusetts, U.S. 

(Ceklic et al., 2021) Investigating MVC 
characteristics that are 
predictive of high acuity 
patients 

Linkage Tool (v2. 1.5, 
Emory University, U.S.) 

- Police-reported crash data 

- EMS data 

-  

62% of MVC-related EMS 
record matched with police-
reported crash data 

Australia 
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2.4 Association of injury severity and EMS times 

EMS play a vital role in linking individuals with trauma injuries to emergency care systems. 

EMS runs include phases, defined in Figure 2.1 by the National EMS Information System 

(NEMSIS). In terms of prehospital time, there is not a consensus among researchers about 

the impact on injury outcome (Harmsen et al., 2015, Lu and Davidson 2017, Ferreira et al., 

2019, Katayama et al., 2019, Medrano et al., 2019). While some recent studies have focused 

on how reducing the prehospital time impacts fatality (Lee et al., 2018, Medrano et al., 2019, 

Nasser et al., 2020), other studies cast doubt about the universal effectiveness of reducing 

prehospital time (Newgard et al., 2010, Dharap et al., 2017, Möller et al., 2018). A shorter 

prehospital time can provide the injured individual with more advanced hospital care as quickly 

as possible. However, in some cases, on-scene care is shown to be more critical (Doggett et 

al., 2018a). Moreover, some severe injuries require transport to more advanced, potentially 

farther emergency departments. 
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Figure 2.1. EMS times timeline (NEMSIS, 2013) 

Some studies have explored the impact of response time on injury severity. Zeng et al. (2019) 

considered response time among explanatory variables and concluded that every minute 

increase in EMS response time increased the probability of medium and severe crash injuries 

by 0.36% and 0.11%, respectively (Zeng et al., 2019). Sanchez-Mangas et al. (2010) explored 

the leading factors for death in a crash and found EMS response time influential. According 

to their results, they estimated that traffic accident fatalities could be reduced by 30% by 

decreasing the average response time from 25 minutes to 15 minutes in Spain (Sánchez-

Mangas et al., 2010). Lee et al. (2018) studied the impact of response time as well as two other 

prehospital times on injury severity. These intervals included crash-reporting time (the interval 

between occurrence and notification to EMS), response time, and transport time. Fatality 

Analysis Reporting System (FARS) data were utilized in this study which limited the EMS runs 

to the ones only including at least a fatal injury. Based on their model, they concluded 

increasing all three prehospital factors significantly increased the severity of the crash (Lee et 

al., 2018). 

Feero et al. (1995) investigated the impact of out-of-hospital EMS time on survival 

and found shorter EMS time is significantly associated with unexpected survivors. This study 

was conducted among 848 injuries, of which 52% of them were related to motor vehicle 

crashes (Feero et al., 1995). Chen et al. (1995) found a higher preventable death rate among 

crashes in urban settings compared with crashes in rural areas with higher out-of-hospital time. 

Although the authors expected higher preventable death in rural areas due to longer EMS 

times, the outcome shows a 37.1% preventable death rate in rural settings compared to 48% 

in urban areas (Chen et al., 1995). Lovely et al. (2018) also did not find a significant relationship 
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between in-hospital mortality and either scene time or transport time. This study was 

conducted among about 4,000 injuries in Pennsylvania, United States (Lovely et al., 2018). 

2.5 Crash-related determinants of emergency response time 

Shorter prehospital time can quickly provide the injured individual with more advanced 

hospital care. However, in some cases, prehospital care administered by first responders such 

as paramedics or emergency medical technicians is shown to be more critical (Doggett et al., 

2018a). Due to uncertainty around the impact of prehospital time on injury outcome, 

researchers focused on decreasing the response time, or the time specifically between an injury 

occurring and EMS arrival to the scene. The World Health Organization (WHO) has set 

reducing EMS response time as a goal, as it is expected to save lives (World Health 

Organization, 2009). A study in Costa Rica reported almost half of the fatalities are on the 

scene and could be partly due to insufficient EMS (Picado-Aguilar & Aguero-Valverde, 2020). 

Gonzalez et al. (2009) found a significantly higher EMS response time for fatal crashes when 

compared to non-fatal crashes in rural areas of Alabama (Gonzalez et al., 2009). Sanchez-

Mangas et al. (2010) estimated that traffic crash fatalities could be reduced by 30% by 

decreasing the average response time from 25 minutes to 15 minutes in Spain (Sánchez-

Mangas et al., 2010). 

Since there are many ongoing efforts to reduce response time, some studies propose 

a practical threshold for response time and investigate the impacts. It has been generally 

recommended that response time be less than 8 minutes for at least 90% of calls (Stiell et al., 

1999). In a county-level analysis in 2,268 counties across the US using National Emergency 

Medical Services Information System (NEMSIS) data from 2013 to 2015, longer response 
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times were significantly associated with higher rates of MVC fatalities. While the median 

county response time was 9 minutes, response times over 12 minutes have a 46% higher 

fatality rate ratio than those less than 7 minutes. In a study in Denver, Colorado, an eight-

minute threshold did not result in a significantly lower fatality rate (Pons & Markovchick, 

2002). A study in Calgary, Canada, also found the eight-minute threshold to be insignificant; 

however, there was a statistically significant decline in fatality for rising response time by one-

minute increments (Couperthwaite, 2015). Ma et al. (2019), studied the response time in the 

United States and found two critical values: 5.5 minutes as the fastest decline in chance of 

survival and 17 minutes as the most critical cutoff for saving lives (Ma et al., 2019). 

Due to the importance of response time in crash injury outcomes, some studies 

explored the factors affecting the EMS response time. He et al. (2019) used a spatial analysis 

approach to examine the impact of case-specific and service-specific variables on response 

time. Case-specific variables included caller’s complaint (severe or minor), response mode 

(light/siren on or not), time of the day (day or night), time of the week (weekday or weekend), 

location (public or private area), visibility, wind speed and weather indicators. Service-specific 

variables included highway density, highway connectivity, speed, level of proficiency, and the 

number of ambulance and EMS demand. According to the results, response mode, mean 

visibility, EMS demand, highway connectivity, and level of proficiency were found significant 

(He et al., 2019). A five-year analysis in Michigan indicated that urban classification, day of the 

week, and month of the year were influential. In this regard, crashes in rural areas, on 

weekends, and during December, January and February showed higher EMS response time 

(Kumar et al., 2017). In a study in Malaysia, travel distance, age of patients, type of treatment, 

and peak hours were found as significant factors on EMS response time (Chin et al., 2017). A 
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study in Singapore explored the factors affecting short, intermediate, and long EMS response 

times and found weather, traffic, and location as significant impedances of swift response 

(Lam et al., 2015). Zhan et al. (2020) investigated the impact of call volume, precipitation, and 

temperature on response time. Based on their results, every additional EMS call, one °C 

increase in temperature, and one mm increase in daily precipitation could increase response 

time up to 8.79, 2.44, and 9.01 seconds, respectively (Zhan et al., 2020). 

While a limited number of studies were investigated the determinants of EMS 

response time, other similar related definitions were used in safety literature, such as traffic 

incident duration (Cong et al., 2018; Hojati et al., 2013; Laman et al., 2018; Li et al., 2018), the 

incident response time (Hou et al., 2013) and clearance time (Ding et al., 2015; Tang et al., 

2020). For example, Hojati et al. (2013) investigated the determinants of traffic incident 

duration in Southeast Queensland, Australia. They found variables such as distance from the 

central business district, being a major event, diversion/towing/medical requirement, and PM 

peak as significant factors (Hojati et al., 2013). Hou et al. (2013) developed a probability model 

to mathematically formulate incident response process based on incident response truck 

activities based on freeway incident data in Washington, United States. Debris, 

shoulder/median involved, total closure, injury involved, heavy trucks involved, work zone 

involved, average annual daily traffic, and weekends were identified associated with more 

prolonged incident response truck activities (Hou et al., 2013). Ding et al. (2015) used an 

endogenous switching model and found total closure, injury involved, work zone-involved 

and heavy truck-involved as influencing factors on clearance time (Ding et al., 2015). 

2.6 Injury Severity Misclassification in Motor Vehicle Crashes 
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In recent years, crash reports have been subject to scrutiny regarding the quality of injury 

ratings. Crash injury severity is recorded using the officer’s judgment, which is based on limited 

information at the crash scene and can be incorrect when compared with medical 

professionals’ assessments of a victim’s condition (Benavente et al., 2006). Brubacher et al. 

(2019) found that only half of the hospitalized crash injuries in their study were classified as a 

serious injury on the report (Brubacher et al., 2019). A study in Queensland, Australia, found 

a rate of discordance 45% to 70% between police-reported crash data and other trauma-related 

data sources (Watson et al., 2015). Overestimation, or reporting an injury that was more 

serious than the true injury, was observed in one-third of recorded data in different studies 

(Dove et al., 1986; Popkin et al., 1991). However, Dove et al. (1986) also reported 

underestimation in another third of their data (Dove et al., 1986). Morris et al. (2003) found 

both overestimation and underestimation cases after comparing police data with Abbreviated 

Injury Scale (AIS) in the UK. However, the number of overestimations was significantly higher 

(Morris et al., 2003). The state of practice for injury severity scoring in motor vehicle crash 

reports, used by police and transportation engineers, is to use the KABCO scale outlined in 

the Highway Safety Manual (AASHTO, 2010). 

Few studies assessed the determinant of injury severity misclassification. Tsui et al. 

(2009) utilized a linked crash–hospital data set in Hong Kong and evaluated the agreement 

between police-reported injury severity and the Injury Severity Scale (ISS). The results show 

the police data greatly overestimated the injury severity. Age and position of the victims in the 

vehicle were significant in specifying the level of misclassification (Tsui et al., 2009). Further, 

a study in New Zealand revealed 15% of reported minor injuries in police data were, in fact, 

life-threatening. 
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Moreover, they found that females, single-vehicle crashes, and victims aged 65 and 

above were more likely to lead police officers to overestimate the severity of the crash injury 

(McDonald et al., 2009).  Ferreira  et al. (2015) found a significant tendency to overestimate 

the injury severity and identified victims above 65 years old, females, single-vehicle crashes 

and crashes in suburban areas were more susceptible to misclassified (Ferreira et al., 2015). A 

similar trend was found across eight other countries in Europe (Couto et al., 2016). 

Taking advantage of CODES datasets, Burdett et al. (2015) evaluated the quality of 

police reporting of injuries compared to injury severity ratings by medical professionals in 

Wisconsin. They compared the injury severity of KABCO scale with the maximum 

abbreviated injury scale (MAIS) and found two-thirds of victims’ injury severities were 

overestimated while only 2.9% were underestimated. They furthered their study by exploring 

the under/overestimation in nine body regions among victims. For instance, while only 7.2% 

of crashes included head injuries, 16.8% of underestimations were related to head injuries. 

Their outcome shows overestimation and underestimation were statistically significant in 

almost all body regions (Burdett et al., 2015). Farmer (2003) conducted a comparison of police-

reported data and the National Automotive Sampling System/Crashworthiness Data System 

(NASS/CDS), which included injury severity of medical records. The study outcome shows 

49% of reported incapacitating injuries were not more than minor injuries. Overestimation 

was more frequent among females and young to middle-aged adults (Farmer, 2003). 
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3.1 Objectives 

In this chapter, an approach was developed to link EMS computer-aided dispatch (CAD), 

EMS patient care reports (PCR) and a hospital trauma registry with police-reported crashes in 

Jefferson County, Kentucky, an urban county surrounding the city of Louisville, KY and 

expanding the results for the whole state of Kentucky. The seven main objectives in this 

research include: (1) proposing an adaptive stepwise algorithm to link four crash-related data 

sets, (2) defining types of matched and unmatched records, (3) comparing the match rate 

results with the previous data linkage frameworks in the literature, (4) identifying factors that 

affect records linkage and bias, (5) visualizing the results and drawing some inferences from 

the matched data, (6) tracking the injuries from crash to EMS and trauma registry and 

highlighting the potential discrepancies, and (7) exploring the transferability of the already 

developed method for other datasets. This study suggests an approach to linking 

transportation safety data sets for future analysis to investigate factors associated with variance 

in crash frequency and severity, evaluate EMS response times, and study health outcomes as 

they relate to crash circumstances
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3.2 Data Linkage for Crash Outcome Assessment in Jefferson County, 

Kentucky: Linking Police-reported Crashes, Emergency Response Data, 

and Trauma Registry Records1

3.2.1 Data Description 

This study uses four data sets in Jefferson County, KY. Crash records were collected by the 

Kentucky State Police through local law enforcement (Kentucky State Police, 2018), EMS 

CAD data was generated by dispatch software used by Louisville Metro Government’s 

Department of Emergency Services, PCR data is reported by the EMS unit responding to an 

emergency, and trauma registry records are compiled by physicians at the University of 

Louisville Hospital (ULH). The study period was from July 2018 to March 2019. The data sets 

include all individuals involved in crashes in Kentucky over the study period. Figure 3.1 shows 

the visual framework of the data linkage used in this study. 

Figure 3.1. Visual framework of data linkage

1 Sections from “Hosseinzadeh, A., Karimpour, A., Kluger, R., & Orthober, R. (2022). Data linkage for crash 
outcome assessment: Linking police-reported crashes, emergency response data, and trauma registry 
records. Journal of Safety Research (in press).” Included in this chapter. 
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Table 3.1 provides a summary of the data sets used, and the following sections describe them 

in further detail. Key fields used in the linkage methodology in EMS, PCR, and trauma registry 

were over 90% complete and over 70% complete in crash data. It should be noted that the 

incompleteness in crash data is mostly related to the events which were not severe and did not 

warrant immediate care; hence the detailed information regarding those events may not have 

been recorded. For more information regarding the fields available in the data sets and their 

completeness, please see the entity-relationship diagram in Figure 3.2. 



Figure 3.2. Entity Relationship diagram of study databases – Crash, EMS, PCR and Trauma - fields (completeness %) 

   
 2

8
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Table 3.1. Summary of Jefferson County data sets used 

Data Source Number of records Linkage variables 
Data 
completeness 

EMS 5,473 records 

Lat/long 99.9% 
Event type 100% 
Date 100% 
Create time 100% 
Scene time - 
Transport time - 

PCR 
4,242 records 

Incident date 100% 
Dispatch time 100% 
Age 99.9% 
Gender 94.5% 

Crash 
(Event Table) 

21,358 records 

Lat/long 100% 
Crash time 100% 
Number of injuries 100% 
Number of killed 100% 
Street/intersection  95.3% 

Crash 
(Person Table) 

80,786 records 
Age 70.2% 
Gender 72.9% 
Was transported? 92.3% 

Trauma Registry 163 records 
Arrival Date/time 100% 
Age 100% 
Gender 100% 

The 9-month period contained 21,358 crash records with the database structure following 

Model Minimum Uniform Crash Criteria guidelines, including a crash table, person table, and 

vehicle table with records from each table linked by a key field (NHTSA, 2017). 

CAD data is collected by software used by emergency dispatchers who field 911 calls 

and direct first responders to the scene. CAD systems record information from emergency 

services, including police, fire, and EMS. A total of 5,473 EMS run reports were recorded for 

Motor Vehicle Crashes (MVC) during the study period. The data includes run time features 

(create, dispatch, en-route, arrive, transport, and transport arrived), approximate location 

(block-level address), event type, and run priority. The locations were made available through 

an open record request but were reduced to the block level to avoid HIPAA violations. 
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Patient Care Report data is gathered by the first responders as they respond to 

incidents. A total of 4,242 PCR records across 2,883 EMS run reports, labeled as a MVC 

during the study period, were used. Unlike EMS CAD data, which only contains run time 

features, the PCR provides information regarding the patient’s condition. The data includes 

run time features, approximate address, patient dispositions, injury impression, patient 

complaint at the scene, and patient socio-demographic information. PCR events contain a run 

ID, which enables a direct linkage with EMS CAD data. PCR data collected follows national 

standards for EMS care reporting outlined in the National EMS Information System 

(NEMSIS) (Legler et al., 2017). 

All level 1 Trauma Centers in the United States are required to maintain a registry of 

trauma cases for performance evaluation. Trauma registry data was obtained from the 

Emergency Department (ED) at ULH over the study period. The data set contains 194 records 

where a patient was admitted to the ED with an MVC injury. 163 of those patients arrived at 

the ED via EMS and included a corresponding valid EMS run ID linked back to the CAD 

system at Louisville Metro’s Department of Emergency Services. The variables included are 

patient characteristics, including age, gender, race, ethnicity, height and weight, arrival and 

admission date/time, and injury severity indicators, including injury severity score (ISS), length 

of stay in the hospital, and length of stay in the intensive care unit. ISS ranges from 1 - 75 and 

is based on the worst injuries in six different parts of the body: head and neck, face, chest, 

abdomen, extremity and external (Baker et al., 1974, Greenspan et al., 1985). 

ULH is the only Level 1 Trauma Center in Jefferson County. The majority of the most 

severe injuries involving motor vehicles should end up at ULH, however, lower severity 

injuries may be taken to other hospitals in the region depending on proximity to the hospital 
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and patient preference. Additionally, patients will arrive from crashes in nearby counties in 

many cases. 

3.2.2 Methodology 

In this section, the heuristic framework to link data is proposed. In the first step, various 

thresholds of time and distance differences in crash and EMS runs were tested. Further, the 

initial matches based on different thresholds went through an adaptive iterative framework to 

reduce the number of duplicates and find the unique associated records. In the next step, 

random manual checks were conducted to investigate the fidelity of the proposed algorithm 

and to clarify some suspicious cases. In the final step, some variables of interest were visualized 

to investigate the linkage bias and examine linkage credibility. 

Linkage framework 

In this section, the possible match outcomes are defined and then the methodology to arrive 

at those outcomes has been described. The match rate of crash-related databases was defined 

in Equation 3.1. This match rate includes true matches and, presumably some false matches. 

Match rate =  
𝑇𝑟𝑢𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 

𝐴𝑙𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
                    (3.1) 

 

 

Most literature reviewed simply provided a match rate in their results (Alsop and Langley, 

2001; Conderino et al., 2017; Short and Caulfield, 2016). However, not all unmatched records 

are the same. In this study, possible match outcomes were defined to improve understanding. 

The proposed matching approach has a finite set of pre-defined outcomes encompassing all 

possible cases, presented in Table 3.2. 

 Table 3.2. Classification of match types 
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To meet objective (1) of proposing an adaptive stepwise algorithm to link the study data sets, 

a heuristic algorithm was developed. Figure 3.3 summarizes the record linkage process in this 

study. The proposed approach implements a series of checks and filters to match records in a 

stepwise manner. For this section, the subscript C corresponds to a field from the crash data, 

E corresponds to the EMS CAD data 

Match Outcome Description 

1 Crash – 0 EMS run 
report 

In this case, the crash was not linked with an EMS run report. The crash most likely did not 
require EMS to be sent to the scene. 

1 Crash – 1 EMS run 
report 

In this case, only one crash feasibly matched the EMS run report after the approach was 
implemented. 

1 Crash – 2+ EMS 
run reports 

In this case, two or more independent EMS run reports were sent to locations near a crash 
the method was unable to establish which EMS run was intended for the crash. 

0 Crash – 1 EMS run 
report 

In this case, the EMS run report was not successfully linked to a crash, despite being tagged 
as an MVC in the CAD data. These cases are unreported crashes, erroneously labeled in 
CAD, or maybe entries for complicated scenarios. 

2+ Crashes – 1 EMS 
run report 

In this case, two or more crashes occurred near each other at a similar time, and the 
approach was unable to distinguish for which crash the EMS run report was called. 



Figure 3.3. Heuristic algorithm to link crash data and EMS data
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The initial check utilizes a time-distance boundary to determine a pool of possible matches 

between EMS run reports and crash events. Date-time was extracted from the EMS CAD data 

as the time the 911 call was received, while the time of crash filed in the police report was used 

for the crash data. Equation 3.2 defines two distance thresholds D, as a function of time, 𝐷𝑡 , 

and Euclidian distance, 𝐷𝑑 (using position, x, and y) and allocates the EMS run report (j) to a 

crash event set (i). 

{

 |𝑡𝐶𝑖 − 𝑡𝐸𝑗| ≤ 𝐷𝑡 𝑎𝑛𝑑 √(𝑥𝐶𝑖 − 𝑥𝐸𝑗)
2 + (𝑦𝐶𝑖 − 𝑦𝐸𝑗)

2 ≤ 𝐷𝑑        𝑗 ∈ 𝑖  

|𝑡𝐶𝑖 − 𝑡𝐸𝑗| > 𝐷𝑡 𝑜𝑟 √(𝑥𝐶𝑖 − 𝑥𝐸𝑗)
2 + (𝑦𝐶𝑖 − 𝑦𝐸𝑗)

2 > 𝐷𝑑            𝑗 ∉ 𝑖

      
(3.2) 

The result of implementing Eq. 3.2 is i crash “event sets” (1 for each crash), with each set 

containing elements of EMS run IDs potentially matched to the crash. The majority of simple 

cases will be matched as 1 Crash-1 EMS matches or 1 Crash-0 EMS matches, using Equation 

3.2 assuming the distance threshold is set reasonably, as the probability of multiple crashes 

occurring at the same time within a short distance of each other and both requiring EMS is 

low. After implementing the time/distance threshold in equation 3.2, a series of additional 

checks are conducted for cases where any the following was true: 

1. EMS run report j was not matched to a crash event set i.

2. EMS run report j was uniquely matched to a crash event set i.

3. Multiple EMS run reports {j1, j2, …} were matched to crash event set i.

4. Crash event set i was not matched to an EMS run report j.

5. EMS run report j was assigned to multiple crash event sets. {i1, i2, …}.
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a. Multiple EMS run reports {j1, j2, …} were each matched to multiple crash 

event sets {i1, i2, …}. 

In case 1, an EMS run report was not associated with any crashes resulting in a 0 Crash-1 EMS 

Match. In case 2, a unique EMS run reports matched with a unique crash. In case 3, two or 

more EMS run reports were made to locations near a crash. In case 4, a crash was not 

successfully linked to an EMS run report, despite being tagged as an MVC in the CAD data. 

In case 5, two or more crashes occurred within the proximity of an EMS run report. A special 

scenario of case 5 involved two or more EMS run reports to the proximity of two or more 

crashes, so two crash event sets were assigned had the same possible EMS matches. 

After the time distance threshold was implemented, each event set underwent several 

checks to find inconsistencies. For example, pedestrian/bicycle crash was a strong indicator 

of a likely match for EMS run reports that were labeled and matched to a crash with a 

pedestrian or bicyclist as the likelihood of two pedestrian/bicyclist involved crashes in the 

same short time period is even lower than that of two crashes occurring within a short 

timeframe. Validation of matches was conducted through a set of manually implemented 

diagnostic procedures. The first manual check was conducted by randomly sampling matches 

and examining all the fields. The locations were plotted on a map, and checks were made 

regarding the details of both the EMS run report and the crash event. Particular attention was 

paid to cases other than 1 Crash-1 EMS matches to determine why the algorithm was unable 

to identify a match. Figure 3.4 shows an example of a manual check conducted. Crash A and 

the EMS run report share the same road name (Road/Intersection Name check). Furthermore, 

there are four injuries in crash A and the EMS run report transported a crash victim to the 

ED (Transport Field/Injury Field check). Louisville Metro Government’s Department of 
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Emergency Services conducted additional validation by auditing a set of specifically identified 

cases that were unable to be explained within the existing data and manual validation process. 

The audit involved utilizing the CAD ID to read narratives written by police, fire, and EMS 

who responded to the event. Some interesting lessons from the audit are shared in the results 

section. 

Figure 3.4. Visual Representation of Initial match candidates - Crashes and EMS locations 

Once the EMS run reports were matched to crashes, the trauma registry data could be matched 

to the specific occupants of the vehicles from the person table in the crash data. The EMS run 

reports were already linked to the Trauma Registry via the EMS run ID, but the individual 

person in the crash person table still can be matched to a trauma record. After identifying the 
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crash-EMS match from the heuristic algorithm described, the demographic information 

between crash occupants in the person table and trauma registry records linked to the EMS 

run reports were compared. Age and gender were the primary fields used to match the specific 

occupants to the trauma record. Most cases of matched records were not present in the trauma 

registry as it requires the patient to be transported and admitted to the emergency department 

at ULH. 

Linkage credibility and bias investigation 

Using the linked data to build a model is going to result in some standard error associated with 

both modeling process and linkage process. Two possible issues can arise from linkage 

process: random error and bias. Random error is an error associated with incorrect linkage 

due to random chance, while bias is induced because certain data types may be more or less 

likely to be linked for systemic reasons within either the linkage process or the data itself. 

Without ground truth data, simulation can be used to investigate the impact of random 

error on the modeling process. By simulating specifically erroneous data points, one can 

investigate how sensitive the results are to errors rates in linkage. If the results are highly 

sensitive to simulated errors in data, the model results may be unreliable if the user has doubt 

about the fidelity of the linkage process. This approach could be implemented on any 

modeling or data analytics exercise using the linked data. 

For bias, quantitative bias analysis can be used to examine biases that may be in the 

data set. Quantitative bias analysis is a general approach to understand the extent that these 

errors produce bias on the results (Doige and Harron, 2019; Harron et al., 2020; Harron et al., 

2014; Janstrup et al., 2016; Tarko and Azam, 2011). The first step is comparing linkage rates 

between different study variables to assess how much and in which direction the results might 
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have been influenced by bias. Visualizing variables of interest can help to gain deeper 

understanding regarding the bias imposed by data linkage. Also, the results should be in line 

with the expectation, for example, in our study, there were lower matches among individuals 

with no injury. This can be explained because emergency services are called less frequently for 

low-severity events. When looking to use a linked data set for modeling, it is important to 

investigate variables of interest for bias and better understand the population contained in the 

data set. 

3.2.3 Results 

 R Programming Language (R Core Team., 2019) was used for data wrangling and matching. 

As stated in section 3 (Data Description), matching was conducted in the first stage using Eq. 

2. Different thresholds for distance (𝐷𝑑) and time (𝐷𝑡) were tested. By implementing the

distance and time thresholds, the (1 km, 60 min) and (1 km, 120 min) thresholds resulted in 

similar numbers of 1 Crash-1 EMS matches. However, the lower time threshold removed 

many more of the 1 Crash-2+ EMS and 2+ Crash-1 EMS sets. The threshold has an inherent 

trade-off between false positive and true negative pairs. As the threshold becomes stricter, the 

probability of matching events incorrectly lowers but it can also eliminate the true matches. 

How the remaining steps perform in reducing the size of 1 Crash-2+ EMS and 2+ Crash-1 

EMS cases will dictate how restrictive the threshold should be. After applying the remaining 

steps proposed in the algorithm, Table 3.3 presents different match type numbers based on 

𝐷𝑑 , and 𝐷𝑡 . The 1 km and 60 minutes threshold were chosen and used for further analysis. 

Dd ≤  1 km 
Dt ≤  60 min 

Dd ≤  0.5 km 
Dt ≤  60 min 

Dd ≤  1 km 
Dt ≤  30 min 

Dd ≤  0.5 km 
Dt ≤  30 min 

Dd ≤  1 km 
Dt ≤  120 min 
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 Table 

3.3. 

Record 

matching 

after the 

algorithm process 

  

 

 

 

 

The full narrative was investigated manually by Louisville Metro Government’s Department 

of Emergency Services for specific cases to determine the possible reasons behind the match 

type. The cases with an EMS run, but no crash, were of particular interest since these cases 

may be able to provide an indicator of underreporting of injury crashes. Some of the 

interesting cases discovered include 1) an officer was on the scene but did not file the report 

for an unknown reason 2) an arrest was made at the scene of the crash after a police chase and 

only an arrest report was filed. The first case is a clear case of underreporting, while the second 

would be an example of a more complicated scenario. 

Of the 163 trauma records with arrival to the ED via EMS, 113 of them were matched 

to a crash and validated through the person table records of that crash. The unmatched records 

likely include a mix of invalid EMS Run IDs in the trauma data set, unreported crashes, 

unsuccessful matches, and most likely, crashes that happened outside of Jefferson County 

1 Crash – 0 EMS  17144 17466 17432 17710 16878 

0 Crash – 1 EMS  1351 1607 1576 1831 1194 

1 Crash – 1 EMS  3955 3780 3787 3587 4019 

1 Crash – 2+ EMS  107  44 68 34 176 

2+ Crash – 1 EMS  258 93 118 44 498 
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where the patient was taken to the University of Louisville hospital due to the severity of the 

injury and the quality of the hospital. 13 Trauma records where a motor vehicle crash was the 

cause of injury indicated an arrival by personal vehicle. These indicate either unreported injury 

crashes or crashes that were reported where the person declined EMS and chose to go to the 

ED later. These 13 records could not be matched to a specific crash through this methodology. 

As the outcome of linkage process, three linked data sets were generated: 1) crash-

EMS CAD with 3955 records, 2) Crash-EMS CAD-PCR with 3002 records, and 3) Crash-

EMS CAD-PCR-trauma with 113 records. To meet objective (3), the results of this study were 

compared with the similar studies and the heuristic algorithm outperformed in terms of match 

rate. This study was able to link 72.2% (3,955/5,473) of the MVC-related EMS data to a crash 

and 69.3% (113/163) of the MVC-related trauma registry data to a crash, respectively. 18.5% 

(3,955/21,358) of crashes were linked to an EMS record. The complete structure of the linked 

database is presented in the entity-relationship diagram in figure 3.2 . The current framework's 

most important advantage is utilizing an adaptive approach iteratively evaluates the pair’s 

status at each stage. 

3.2.4 Discussion 

Linked data bias 

Before diving into the applications of the linked data, this section investigates the biases 

associated with the linked data set to fulfil objective (4). Figure 3.5 shows the percentage of 

crashes in the crash-EMS CAD linked data set broken down by (a) crash type, (b) number of 

injuries, and (c) injury severity. Distribution of variables’ break down based on their categories 

in linked data could be different from either crash data or PCR data. Three factors could be 

the leading causes: first, some characteristics inherently have a higher chance of getting 
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reported in the linked data. For example, more severe crashes have a higher chance of requiring 

EMS and subsequently ending up in hospital. Second, some could be due to false matches. 

However, by applying rigorous stepwise adaptive algorithm and random manual checks, we 

are confident that this error is negligible. Third, under-reporting crashes or EMS runs. For rest 

of the section, some variables of interest were visualized to diagnose the biases in the linked 

data set. 

Figure 3.5(b) demonstrates that crashes with injuries are more likely to be present in 

the data set. Also, according to Figure 3.5(a) it can inferred that the distribution of crash types 

in the linked data is different than distribution of crash types in crash data. This could be true 

for any other variable of interest. While it is not surprising, it is important to consider when 

developing research questions and applications that use this data set. 
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Figure 3.5. Percent of crashes in the crash-EMS CAD linked data set broken down by (a) crash 
type, (b) number of injuries, and (c) injury severity.  

The age distribution was also investigated for bias. Figure 3.6(a) depicts the number of records 

in each age group of the crash-EMS CAD-PCR linked records divided by the number of 

records in the same age group in PCR. Since records in PCR were already transported to the 

hospital, significant differences among specific age groups would represent underreporting 

bias. A discernable difference cannot be captured in Figure 3.6(a).  Figure 3.6(b) shows the 

number of each age group records in the crash-EMS CAD linked records divided by the 

number of records in the same age group in police-reported crash data. However, based on 

Figure 3.6(b), it can be speculated that younger individuals 11 to 20 years old and elderly 

individuals are more likely to be present in the crash-EMS CAD linked data because those 

individuals are either more likely to go to a hospital for care or are more frequently involved 

in serious crashes. 
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Figure 3.6. (a) Percent of PCR records by age range Y linked to crash victims (b) Percent of crash 
records by age range Y linked to PCR records 

 

Investigation of gender shows that females are more likely to be captured in the linked data 

(Figure 3.7), despite the number of males in police-reported crash data (n=35,397) being 

higher than females (n=31,528). The numbers of females in PCR (2,099 female vs. 1,907 male) 

and crash-EMS CAD-PCR linked data (1,624 female vs. 1,377 male) were higher.  
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Figure 3.7. (a) Percent of PCR records by gender Y linked to crash victims (b) Percent of crash 
records by gender Y linked to PCR records 

In terms of event type, bicycle, pedestrian, and motorcycle crashes are linked at a lower rate 

than general MVC crashes (Figure 3.8). One of the reasons could be higher under-reporting 

of motorcycle, bicycle and pedestrian crashes, which were found in other studies as well 

(Doggett et al., 2018b; Short and Caulfield, 2016). 

Figure 3.8. Percent of EMS CAD records by event type Y linked to crash victims 
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Using the linked data sets, general safety monitoring, and data quality measures were obtained 

for four linked data sets to meet objective (5). In the next section the Crash-EMS CAD 

matches were used to compare EMS response time with crash data broken down by severity. 

In the section after, Crash-Trauma matched data was used to quantify the quality of injury that 

was reported in crash data by comparing ISS and emergency department disposition with 

KABCO injury severity. 

Crash – EMS CAD 

The time gap between when the CAD system received the 911 call and when the crash was 

reported by the officer has the potential to impact real-time applications of safety monitoring. 

If the time on the police report is assumed to be the exact time of the crash, an error will be 

induced when modeling the relationship between that crash time data from other sources at 

the time of the crash. In this effort, 11.9% of the matched records had police-reported times 

after the 911 call had been received in the CAD system, while 4.6% had a reported time more 

than 10 minutes after the 911 call was received. Assuming that the 911 call would not be made 

before the crash occurred, then these occurrences are possible errors in the police report. 

Figure 3.9 shows a sample chart comparing the EMS response to features of the crash 

table. Response time is defined as the time between the 911 call and the EMS arrival at the 

scene. The importance of EMS response time is highlighted in the literature as a factor that 

impacts the survival rate (Amorim et al., 2019; Hu et al., 2017; Ma et al., 2019). EMS response 

time in Louisville was shown as a function of injury severity. Figure 3.9 contains 3,520 records. 

The parameter did not exhibit a clear pattern. This is not surprising as EMS typically makes 
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every effort to arrive on the scene as quickly as possible regardless of severity since the 

information dispatch receives from the callers is not always comprehensive. 

Figure 3.9. Distribution of response time (minutes) by KABCO injury severity (N = 3520) 

Crash – EMS CAD – PCR - Trauma Registry 

Figure 3.10 displays the relationship between the crash tables and the ULH trauma registry. 

Figure 3.10(a) displays the relationship between ED disposition and their police-reported 

injury severity. 13/113 records involved a B or C level injury ended up in either the Intensive 

Care Unit (ICU) or the Operating Room (OR). Figure 3.10(b), compares ISS to police-

reported injury severity.  ISS between 9 and 15 indicates a severe, non-life-threatening injury 

while an ISS of 16 or higher is life-threatening (Copes et al., 1988). Again, multiple C and one 
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O level crash were classified with an ISS of 16+ by a physician. These findings demonstrate 

that data linkage can help with tracking crash injuries to satisfy the objective (6). They also 

highlight the changing nature of injuries during the emergency response.  
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Figure 3.10(a) Distribution of ED disposition by KABCO injury severity (N = 113), (b) 

Distribution of ISS by KABCO injury severity (N = 113) 

It should be noted that using the data for crash analysis purposes requires careful consideration 

of the study's objective. Some characteristics enhance the chance that the data go 

underreported and introduce bias to the analysis. For instance, pedestrian and bicycle crashes 

are more likely to go unreported, according to previous studies (Sciortino et al., 2005). This 

study’s results should only apply to the cases where the outcome of the linked data is valuable. 

For instance, the trauma data cannot use to predict crash frequency since the data was reduced 

in size and in a biased way. However, it could be used to look at commonalities in crashes that 

end up in the trauma registry. 

3.2.5 Conclusions 
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This study proposes a scalable heuristic algorithm for matching crashes to EMS and hospital 

trauma data; data sets that are not already inherently linked despite the clear benefits 

demonstrated both in this paper and other literature. The approach was implemented on a 9-

month data sample from KY State Police, Louisville Metro Government, and the University 

of Louisville Hospital. 

The six main objectives in this research included: (1) proposing an adaptive stepwise 

algorithm to link four crash-related data sets, (2) defining types of matched and unmatched 

records, (3) comparing the match rate results with the previous data linkage frameworks in the 

literature, (4) identifying factors that affect records linkage and bias, (5) visualizing the results 

and drawing some inferences from the matched data, (6) tracking the injuries from crash to 

EMS and trauma registry and highlighting the potential discrepancies. All six objectives were 

addressed in this paper. Based on the selected thresholds, results show 72.2% matches in EMS 

CAD data and 69.3% match rates in trauma registry records which are decent results 

comparing the studies in the literature. The sensitivity analysis result also suggests 

underreporting crash data. Further efforts have been conducted to provide some practical 

outcomes of the linked data. 

The results of this study indicate that heuristic algorithms can achieve high linkage 

rates compared to previously achieved rates. A similar algorithm can be implemented beyond 

Jefferson County with some small adjustments to input parameters. It is anticipated that the 

distance and time threshold may need adjustment based on local crash frequency. While all 

the data sets used in this study followed nationally recognized standards, if users had additional 

fields with which to use in matching, those could be easily integrated within the heuristic 

proposed through a further check. When implementing the heuristic algorithm, it is critical 
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that users conduct a manual review of the results, and when using the data for subsequent 

analyses, the user should investigate biases associated with variables of interest. 

Future studies could relax some of the assumptions made, such as restricting the EMS 

CAD data and trauma data to MVC-labelled, to evaluate the match rate further. Additionally, 

identifying a way to reliably match patients in the trauma registry that did not arrive by EMS 

to crashes would be valuable for quantifying underreporting. More investigation on bias, such 

as applying a statistical analysis approach to investigate which factors affect linkage rate and 

induce a bias is necessary. Moreover, a margin of error in the linkage is an inherent part of the 

linked data. Therefore, a sensitivity analysis needs to be conducted to quantify how the 

different error rate would affect the robustness of further inference. Finally, further research 

should be conducted to determine how to best use the resulting linked data to model and 

improve highway safety monitoring and data quality. 

3.2.6 Practical Implications 

Linked crash - EMS CAD – PCR – trauma registry data provides a valuable opportunity to 

evaluate the impact of prehospital care and emergency department care on crash outcomes. 

In general, policy steps could be taken to require cross-reporting and linkage of the data sets 

as the events occur to better monitor outcomes of injury crashes without requiring post-hoc 

linkage. This method can also realistically be integrated into a tool or software to undergo 

record linkage automatically. 
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3.3 Kentucky Statewide Crash-related Data Linkage2 

3.3.1 Introduction 

In this chapter, the process and outcome of a data linkage effort between the Kentucky State 

Crash Database, Kentucky Emergency Medical Services Information System, and the 

Kentucky State Trauma Registry were described. The result shows linked crash rate (linked 

crashes/total crashes) varies 0% to 23.9%, county-level injured persons match rate (linked 

individuals/total injured crash-involved individuals) ranges from 0% to 57.3% and county-

level patient care reports match rate (linked individuals/total patient care reports) varies from 

0% to 75%. A variable-level analysis was conducted to show which variables were more likely 

to be present in the linked data set compared to the individual data sets. The project team 

recommends investigation into additional data sets for inclusion in the linkage activities 

moving forward, updating query language for improved linkage rates, and investigation into 

low-linkage rate counties. 

 

3.3.2 Data Sources and Management 

This section will outline which and how datasets were obtained, and what fields were used in 

the data linkage approach. All datasets obtained were from 2018-2019.  

Crash Data 

Crash data consists of key information collected on police reports filed for crashes across the 

state. Crash data were obtained from the Kentucky State Police under a memorandum of 

understanding (MOU). The data are formatted following Minimum Model Uniform Crash 

 
2  Sections from “Kluger, R., Hosseinzadeh, A., Souleyrette, R. and Wang, T. Statewide Linkage of Crash, 

EMS, and Trauma Records. Kentucky Transportation Cabinet, 2022.” included in this sub-chapter. 



52 

Criteria (MMUCC) standards (National Highway Traffic Safety Administration, 2017) with 

three tables (crash, vehicle, and person) linked by a unifying crash ID field. Both the crash and 

the person tables were used extensively in the data linkage. 

Each crash record has a unique crash ID field and contains information about crash time, 

location, type, and more. In 2018, a total of 157,351 crash records were obtained. Table 3.4 

outlines all fields present in the crash table. The specific fields used in the data linkage are in 

bold font. 

Table 3.4. Fields available in crash table dataset 

Master File # Mile Post 

Collision Date Motorcyclist 

Collision Time Commercial Vehicle 

Latitude Decimal Number Young Driver 

Longitude Decimal Number Mature Driver 

Weather Code Pedestrian 

First Aid Scene Indicator Bicyclist 

Time Notified Distracted 

Time Arrived Aggressive 

Time Roadway Opened Impaired 

Directional Analysis Unrestrained 

Time Last Left Intersection 

Year Lane Departure 

KABCO Roadway Departure 

KTC_RT Median Crossover 
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For every individual involved in the crash, there is a record in the person table. Each person 

has a unique ID and is mapped to an individual crash through the crash ID. For 2018, a total 

of 458,546 crash–person records were obtained. Table 3.5 outlines all fields present in the 

person table. The specific fields used in the data linkage are in bold font. 

Table 3.5. Fields available in a crash-person table dataset 

Master File # Injury Location Code 

Unit Number Position In/On Vehicle Code 

Person Number Restraint Use Code 

Person Type Code Trapped Code 

Birth Date Ejection From Vehicle Code 

Death Date Ejection Path Code 

Age at Collision Time Suspected Drinking Indicator 

Gender Code Year 

Injury Severity 

Figure 3.11 shows the distribution of crashes in Kentucky. Note the larger clusters of crashes 

in Jefferson (Louisville), Fayette (Lexington), and northern Kentucky counties (Campbell, 

Kenton, and Boone). 
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Figure 3.11. Distribution of crashes in Kentucky 

EMS Data 

EMS data contain a wide range of information about the EMS response to 911 calls. Each 

record represents a patient care report (PCR) filed by the team that responded to the 

emergency. KBEMS collects the data from EMS agencies across the state, standardizes it, and 

stores it in a state database called KEMSIS. The KEMSIS database follows National EMS 

Information System (NEMSIS) standard and contains 11 Tables: 

• Table 1: EMS responded agency information

• Table 2: Patient medical examinations outcome

• Table 3: Injury automated collision notification
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• Table 4: Patient medications given 

• Table 5: Patient general body assessments 

• Table 6: EMS response description 

• Table 7: Scene information and status 

• Table 8: EMS times 

• Table 9: Vitals information 

• Table 10 & 11: Patient examination information 

In this study, EMS data were obtained through an open records request to KBEMS which 

required IRB protocols to be filed with the University of Louisville (U of L) and Kentucky 

Community and Technical College System (KCTCS), the parent organization of KBEMS. In 

the open records request, the following criteria were used to query the data from the KBEMS 

data repository: 

1) Response Type (eResponse.05) matches 911 Response (Scene) 

2) Complaint Reported by Dispatch (eDispatch.01) matches Traffic/Transportation 

Incident OR Scene Incident Location Type (eScene.09) contains any Street, 

Highway, Roadway. 

3) Patient Care Report Narrative (eNarrative.01) contains one of the following 

keywords: 

Motor vehicle crash, Motor vehicle, accident, Motor vehicle incident, Car 

crash, Car accident, Car incident, Traffic crash, Traffic accident, Traffic 

incident, Transportation incident, Car wreck, Traffic collision, Motor vehicle 

collision, Fender bender, Automobile accident, Rollover, Hit-and-run, Traffic 

Incident, Transportation Incident, Truck Crash 
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For 2018-2019, a total of 57,083 records were requested. Under the HIPAA privacy rule 

requirements for de-identification, personally identifiable information was stripped from the 

dataset. 

Figure 3.12.  Distribution of EMS runs in Kentucky 

Figure 3.12 shows the density of EMS runs at the county-level. Note the pronounced 

differences between counties. Jefferson County (26.72 per sq.mi) and Fayette County (13.07 

per sq.mi) are the only counties with a density of EMS over 10. At the other extreme, 78 

counties (out of 120) recorded less than 1 EMS run per square mile. 



57 

Trauma Registry Data 

The State Trauma Registry is owned by the Cabinet for Health and Family Services (CHFS) 

and maintained by KIPRC. It contains data on emergency department admissions reported by 

trauma registries across the state. 

The acquisition of Trauma Data required the signing of a data sharing agreement between U 

of L, UK and CHFS. Data is accessed through a secure virtual machine housed at KIPRC 

through a VPN. Table 3.6 outlines all fields present in the trauma data. 

Table 3.6. Fields available in a trauma dataset 

Date of Birth Hospital Arrival Date & Time 

Age Temperature 

Race Alcohol Use 

Gender Drug Use 

Incident Date & Time Emergency Department Discharge Disposition 

Injury Zip Code Comorbid Condition 

Airbag Deployment Injury Diagnosis 

EMS Notify Date and Time Total ICU Level of Service 

EMS Arrival Date and Time Total Vent Days 

EMS Left Date and Time Hospital Discharge Date and Time 

Transport Mode AIS Severity 

EMS Pulse Rate Trauma Type 

EMS Respiratory Rate Cause Code 

EMS Glasgow Coma Scale Injury Detail 

Inter Facility Transfer Death in Emergency Department 



58 

Injury Severity Score Trauma Type 

Admit Service Blood Alcohol Level 

Injury Details Position in the Vehicle 

International Classification of Diseases, Tenth 
Revision (ICD-10) 

 ICD-10 Procedure 

For 2018-2019, 12,803 trauma records are available in the dataset. Among them, 2979 records 

labeled as motor vehicle crashes, 267 pedestrian and 167 bikes. Also, there are 734 unlabeled 

records, 1217 records labeled as “other”, 32 records labeled as unspecific, 12 not elsewhere 

classified and 7 not documented in the dataset that could possibly be related to motor vehicle 

crashes. However, due to the fact that the cause of the injury could be reported as “not-motor 

vehicle crashes” but still be related to motor vehicle crashes, the other causes of injury were 

not filtered out. A closer examination of the cases was conducted after linkage to filter out 

incorrect matches. 

3.3.3 Method

Data Management and Preparation 

MySQL was used in this project for data management, and datasets were stored in a relational 

database. R studio software was used for data management and statistical analysis (R Core 

Team, 2019). ArcGIS was used for mapping and spatial analysis. Moreover, although PCR 

data included latitude and longitude of the events, crash data used the addresses. The Google 

Maps platform (geocoding API3) was employed to provide latitude and longitude of crash 

locations. The addresses were prepared in a single field to be readable by the Google API. Of 

3 https://developers.google.com/maps/documentation/geocoding/overview 
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158,332 addresses (Jan 2018 to September 2019) representing all EMS runs, 150,662 were 

successfully geocoded (geocoding rate: 95.1%). The remaining 7760 records were returned as 

“NA” or the coordinate found was out of the study area and clearly wrong. For the rest of 

7760, the google spreadsheet geocoding add-in tool (Awesome Table) was used. Using this 

tool successfully geocoded 6540 addressed in the study area (successful geocoding rate: 

84.2%). With limiting the data to transportation-related EMS runs and 2018, the number of 

EMS runs entered to the linking process was 57,083. 

Data Linkage 

EMS runs and crash incidents are linked through location, time, age, and gender. Incidents 

reported within a three-kilometer distance and a 3-hour time window, for individuals with the 

same age and gender in the EMS PCR and crash reports database were considered to be 

matching pairs.  Loops in R studio software were used to compare every two pairs in the crash 

and EMS data to find candidate matches.  Figure 3.13 shows the algorithm used for this task.



Figure 3.13. The algorithm applied to link PCR data and crash data 
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Figure 3.14. Entity relationship diagram of linked dataset
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Figure 3.14 shows the entity-relationship diagram of datasets used in this project and 

relationships among them. A unique match is the favorable result (i.e., one crash-person linked 

with one EMS PCR). There were a few duplicate matches (i.e., one crash-person linked with 

two and more EMS runs, or one EMS run linked with two and more crash- persons), but these 

were not considered for further analysis in this project. 

3.3.4 Police-reported Crash-EMS Linkage - State and County-Level Results 

Key metrics tracked include the total number of records in each linked database and the rate 

at which a match was obtained for each database. These metrics were calculated for the entire 

state, as well as on a county-by-county basis. Table 3.7 shows the linkage rates of matched 

records on a state-level basis. 

Table 3.7. Linkage percentage of crash-events/crash-person/EMS runs 

Metric Description State-level 
Outcome 

Map 

% of linked crash 

records 

# of linked crash IDs (matched with EMS runs) / 

# of all crash IDs 

8.4% Figure 3.15 

% of linked crash-

person records 

# of linked crash-person IDs (matched with EMS 

runs)/ # of all crash-person IDs 

5.5% Figure 3.16 

% of linked injured 

crash-person records 

# of linked injured crash-person IDs (matched 

with EMS runs)/ # of all injured crash-person IDs 

44.7% Figure 3.17 

% of linked EMS runs # of linked EMS runs (match with crash- person 

table) / # all EMS runs 

44.9% Figure 3.18 

Figure 3.15 shows the county-level crash data match rate (Linked Crashes/Total Crashes). 

Note that the match rate varies from 0 to 23.9% across counties. Most crashes do not require 

EMS, so the low percentage of total crashes linked is expected. 
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Figure 3.15. County-level crash data match rate 

Figure 3.16 shows the county-level crash-person data match rate (Linked Crash-persons/Total 

Crash persons). Note that the match rate varies from 0 to 17.2% across counties. 
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Figure 3.16. County-level crash-person data match rate 

Figure 3.17 shows the county-level injured persons match rate (Linked Individuals/Total 

Injured Crash-involved Individuals). The match rate varies from 0 to 57.3% across counties. 
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Figure 3.17. County-level injured persons match rates 

Figure 3.18 shows the county-level PCR match rate (Linked Individuals/Total Patient Care 

Reports). The match rate varies from 0 to 75% across counties. 
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Figure 3.18.  County-level PCR data match rate 

Several observations can be made regarding the linkage success rate. While one would not 

expect every crash to match to an EMS patient care report, it should be expected that most 

EMS patient care reports should be assigned to a crash-involved individual, given how the 

EMS runs were queried. 

Lower rates of crash linkages can be explained through several characteristics. First, and 

foremost, not all crashes require an EMS response. Of those that do require an EMS response, 

fatal crashes where this is not an opportunity to provide care also do not have patient care 

reports filed. Finally, it is possible that the query used excluded some cases. For example, if an 

EMS agency doesn’t define a motor vehicle crash correctly, it might not end up in the EMS 

runs dataset based on the search parameters defined. 
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3.3.5 Variable-level Analysis of Match Rates 

This section investigates differences between the linked datasets and the original datasets in 

terms of variable distributions. Table 3.8 displays characteristics of several variables among 

the linked data, crash data, and PCR data. 

Table 3.8. Descriptive comparison of records in linked data, crash data and PCR data 

Linked dataset 
(n = 25,664) 

Crash data 
(n = 157,351) 

PCR data 
(n = 57,083) 

Avg sd Avg sd Avg sd 
Age 38.23 20.17 37.91 19.69 40.36 21.01 

Linked dataset 
(n = 25,664) 

Crash data 
(n = 157,351) 

PCR data 
(n = 57,083) 

Gender 
Male  47.99% 52.83% 54.16% 
Female 52.01% 47.17% 45.84% 
Injury severity 
O 37.87% 90.19% - 
C 33.05% 5.42% - 
B 22.61% 3.39% - 
A 5.29% 0.78% - 
K 1.15% 0.20% - 
Pedestrian 
Yes 2.59% 0.77% 1.48% 
No 97.41% 99.23% 98.52% 
Bicycle 
Yes 0.62% 0.18% - 
No 99.38% 99.82% - 
Intersection 
Yes 35.44% 25.93% - 
No 64.56% 74.07% - 
Suspect of Drinking 
Yes 4.66% 2.18% - 
No 95.34% 97.82% - 
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Although the average age in the linked data and crash data are almost the same, injuries 

transferred to the hospital averaged approximately two years older. More males were involved 

in the crashes. However, more females were transferred to the hospital, and more females 

were available in the linked data. Moreover, more than 90 percent of the incidents in crash 

data are labeled as no-injury crashes. In comparison, this percentage for linked data is less than 

40 percent. It’s expected to have fewer no injury crashes in the linked data since the probability 

of request for an EMS would decrease for cases without injuries. The percentage of pedestrian 

and bicycle crashes is more than three times that of the linked data. More intersection crashes 

are also available in the linked data, probably because intersection crashes tend to be more 

severe than other crashes and involve more people (since there are usually multiple cars), 

leading to more opportunities for injury. Suspected of drinking cases were found to be more 

likely to be linked. 

At the county level, there are different reasons for low match rates PCR data. First, these are 

the counties with very low numbers of crash/EMS runs, sometimes just because of the small 

size of the county. For example, the match rate in Roberson County is only 9 percent. 

However, one should consider that only 11 EMS runs met the query criteria in this county in 

2018. In some counties, the match rate is suspiciously low.  For example, for Lee and Wolfe 

counties, no traffic incident EMS runs were reported in 2018. Wolfe County had 448 crashes 

and 92 injuries during that time period. One recommendation from this finding is to reevaluate 

the query used and to investigate further how possible errors in reporting may have led to this 

issue. 

Some counties with even relatively high numbers of EMS runs produced poor linkage results.  

For instance, in Leslie County, among 176 EMS runs, only nine were matched by PCR (5 
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percent). Pulaski (75 percent), McCracken (66 percent), and Meade (59 percent) counties have 

the highest PCR data match rates (Although in Pulaski, only 4 EMS runs were recorded in 

2018). 

Police reported Crash - EMS Runs -Trauma Linkage 

The police-reported crash - EMS runs -trauma linkage was conducted between the linked 

dataset and trauma data. Date of birth, age, gender and race of the injured individuals in the 

linked data matched with the ones in the trauma data. Also, crash date and time in crash data 

matched with hospital admission time and a window of 12 hours have been used as the 

threshold. Incident date and time and EMS times reported in trauma data were also used; 

however, this field is not reported for most of the crashes thus were not helpful extensively. 

Incident zip codes in trauma data were the only location specific field to use for the linkage 

and matched with zip code reported in crash data. 

After performing the initial linkage a few steps were conducted to validate the linked 

data. First, a couple of fields, such as position in the vehicle in both crash data and trauma 

data were compared. Second, the based on the location of the hospitals that the injured 

individuals were transported, the cases with high transported distance (more than 100 km) 

from scene to the hospital were gone under close attention to make sure these cases are true 

matches. The third step focused on injury details description. Text mining approach was used 

to make sure all the records, regardless of injury cause listed in another field, are actually related 

to motor vehicle crashes. The fourth step was a manual random check to ensure there is no 

systematic error in the matched dataset and figuring out the reasons for unmatched pairs. A 

detailed elaboration on the reasons of unmatched pairs were provided in the next section. 
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As a result of the matching process, the final linked crash, EMS runs, and trauma data is 

included 235 records. Table 3.9 shows the attributes of the linked dataset and the descriptive 

information of the fields. 

Table 3.9. Descriptive statistics of some of variables in crash-EMS runs-trauma registry linked data 

Attributes Frequency Percentage 

Injury severity 

K 8 3.4% 
A 93 39.6% 
B 75 31.9% 
C 51 21.7% 
O 8 3.4% 

Pedestrian 23 9.7% 

Bicyclist 2 0.8% 

Gender 

Male 138 58.7% 
Female 97 42.3% 

Transport Mode 

Ground ambulance 205 87.3% 
Helicopter 26 11.1% 
Private/public vehicle 3 1.2% 
NA 1 0.4% 

Admit Service 

Trauma 148 58.4% 
Neurosurgery 9 3.5% 
Orthopedics 30 11.8% 
Medicine 12 4.7% 
Others/NA 36 15.3% 

Position in the car 

Driver 147 58.1% 
Front Passenger 27 10.6% 
Back Passenger 6 2.3% 
Not specified/ NA 73 28.8% 

Attribute Average S.D. Min Max 

Age 43.1 21.8 1 96 
Injury Severity Score 11.9 10.11 1 66 

The matching process of the trauma data was conducted separately with police-reported crash 

dataset and EMS runs. 246 crash-trauma data and 286 EMS-trauma records were available in 

the these linked datasets.
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3.3.6 Discussion, Recommendations and Conclusions 

The objective of this sub-chapter included building and applying a framework to link crash 

data to EMS records and trauma records on a statewide, county-by-county basis in Kentucky. 

Data were obtained from Kentucky State Police (KSP), the Kentucky Board of EMS 

(KBEMS), and the Kentucky Injury Prevention Research Center (KIPRC). The results section 

outlined the linkage performance at the state and county levels. 

There are some suspicious results in which further investigation into the data is needed. For 

example, although there were 191 individuals involved in crashes, including 25 injury 

individuals in Lee County in 2018, there were no EMS runs reported during the same period. 

Additional suspicious results such as Pulaski County (6527 crash-person records, 930 injured 

crash-person records and only 4 EMS runs in 2018) and Rowan County (2797 crash-person 

records, 341 injured crash-person records and 3 EMS runs in 2018). These warrant a deeper 

look into the queries made for EMS data, the methods implemented, and more.
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Non-matched Records 

The manual review provides an opportunity to ascertain the performance of the linkage 

algorithm. Overall, more than 100 records were reviewed manually to investigate the quality 

of the matching algorithm and further fine tune the parameters. Specifically, we reviewed non-

matches and how inconsistencies lead to a lower match rate. 

a) Data incompleteness

Some variables play a vital role in the linkage process as strong identifiers such as 

age, exact date of birth and gender. However, data incompleteness in these 

attributes causes the linkage serious problems. Data incompleteness in some of the 

important attributes is provided in Table 3.10. 

Table 3.10. Incompleteness percentage in some of the important attributes 

Attribute No. of incomplete 
records 

Total No. of 
Records 

Incompleteness 
percentage 

Age (EMS runs) 10,487 57,082 18.37% 
Gender (EMS runs) 10,427 57,082 18.26% 

Date of Birth (Crash data) 72,260 458,545 15.70% 
Age (Crash data) 72,260 458,545 15.70% 

Gender (Crash data) 55,343 458,545 12.10% 

b) Incomplete or Inconsistent Formatting of Text Fields

Due to the formatting of addresses in the EMS data, geocoding was implemented 

to determine the latitude and longitude in EMS data. The addresses sometimes are 

incomplete or imprecise resulting in geocoding failures. For example, there is a 

pair of records in trauma data, and linked crash-EMS run data in which all the 

indicators matched except the location. After a careful deeper look at the attribute, 

it can be realized the issue is how precise the recorded address was in the EMS 
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data. The address was “KY-194, Pikeville, KY 41501” which could be the span 30 

kilometers of a road. Formatting of addresses was also a notable issue. 

c) Data Entry Error

Another case found was two pairs of matches in linked crash-EMS runs and 

trauma in which the birthday of the injured individual may have been recorded 

incorrectly. While all the other attributes matched and insinuated the pair records 

were related to a specific injured individual, the birthday in EMS data was 

“10/3/1986”, while it was recorded as “10/3/1987” in trauma data. It is not 

possible to fully correct for data entry errors, though it is possible to implement 

checks and relax the parameters of the matching algorithm to catch the most 

common suspected errors. The most common entry errors must first be identified 

to account for this. 

d) Transported with the helicopter or private/public vehicle

Some of the true matches that were not matched successfully through the linkage 

scheme are related to the fact that the injured individuals in cases were transported 

by a helicopter or private/public vehicles. So, these cases are not in EMS runs data 

then cannot find in the crash-EMS runs linked dataset previously matched. 

Therefore, it’s not available in the crash-EMS runs-trauma linked data. 67.52% 

(8,645/12,803) of the records used ground ambulance for the EMS transport 

mode and the rest of 32.48% of the records were used other methods of transport. 

EMS data is a critical part of the linkage methodology, and the gap will lead to 

lower success rates in matching. 

e) The transported from the referred facility
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Some EMS runs included inter-facilities transfers (transfers between hospitals). In 

these cases, the time between the crash and hospital admission might be several 

days, even since the EMS run is still associated with a crash. In these cases, it’s 

difficult to ensure the matches are accurate. Only 39.1% (5018/ 12803) of the 

records were transported straight from the scene to the hospital. 

f) Recorded as motor vehicle crashes but it’s not

Some cases in trauma records are recorded as MVC in trauma records but may not 

be classical cases included in other datasets. Digging into the injury detail 

description shows this phenomenon. For example, one record was recorded as 

“Ped vs. dump truck while working”. This will count as an unsuccessful match of 

an MVC-related trauma record even though matching this type of case is not 

among the objectives of this analysis. 

g) Reporting

Gaps in reporting varied among datasets. Follow up with data managers indicated 

that several agencies are failing to fully report data to their respective systems, 

particularly within KEMSIS and the Trauma Registry. For example, Rowan 

County reported three total EMS runs that were valid to be included within the 

linkage. 

h) Categorization and Capture of Data

When querying the data sets from their original sources it is possible that the query 

did not capture how certain counties or agencies recorded information. A review 

of the consistency and quality of reported data may help to ensure each field is 

operating as intended. 
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3.3.7 Recommendations 

Based on the project outcomes the team recommends the following steps be taken to further 

the findings of this project. 

1. Additional quality checks into counties with low linkage rates relative to expected.

Subsequent adjustments to the algorithm to improve linkage rates. 

2. Modeling of expected linkage rates for key benchmarks based on county characteristics

3. Identifying new data sources for inclusion in this database to improve linkage rates or

data coverage. 

4. Continue data linkage efforts moving into 2022.
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CHAPTER 4 

FIDELITY OF HEURISTIC ALGORITHM COMPARED 

TO OTHER LINKAGE METHODS 
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4.1 Objectives 

The objective of this chapter is to compare approaches to data linkage in traffic safety. This 

study used police-reported crash data, and emergency medical services run data in Louisville, 

Kentucky, from July 2018 to March 2019 and implemented a Bayesian record linkage with 

improved prior probability informativeness along with a stepwise adaptive heuristic algorithm. 

None of the previous studies were found by the authors to compare crash-related data linkage 

approaches. This study compared two common approaches, and consistency rate and 

discrepancy rate were reported. The results suggest (1) an approach to improve prior 

probability informativeness in the Bayesian record linkage of crash data (2) the superiority of 

the proposed heuristic algorithm compared to the Bayesian record linkage in terms of match 

rate (3) the consistency of more than 94% between the match pairs resulted from the two 

approaches. Moreover, the possible reasons behind these findings were discussed. Crash-

related data could potentially provide a valuable opportunity to evaluate the impact of 

prehospital care and emergency department care on crash outcomes. Gaining in-depth 

knowledge regarding the linkage method can result in better quality linked safety dataset. 
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4.2 Introduction 

Motor vehicle crashes (MVC) are one of the leading causes of death globally, and they impose 

a severe threat to public health. Police-reported crash data is the main source of information 

for safety analysis. However, other additional datasets can add further explanations to 

associated crash outcomes. Emergency Medical Services (EMS) data contains data about crash 

injuries and includes specifics of the injury (Burch et al., 2014), which often are not included 

in the safety analysis. The EMS records are neither inherently linked nor do they include an 

identifier to connect datasets. However, there is valuable information in EMS records related 

to traffic safety. 

Historically, probabilistic record linkage has been the preferred method in research to 

link crash-related datasets. Specifically, Bayesian record linkage, is a powerful statistical 

approach to quantifying the probability that two records belong to the same event. Bayesian 

record linkage has been found to be difficult to implement in practice and can have limitations 

associated with the informativeness of prior probabilities (Milani et al., 2015). Meanwhile, 

deterministic approaches that do not quantify probabilities have also been implemented 

historically (Karmel et al., 2010). The objective of this research is to compare the results of 

deterministic and probabilistic record linkage for crash data. 

In this research, Bayesian probabilistic record linkage was compared with a previously 

developed heuristic algorithm by the authors for linking datasets. Linkage was implemented 

to connect two datasets (EMS computer-aided dispatch (CAD) and EMS Patient Care Reports 

(PCR)) with police-reported crashes to improve road safety monitoring capabilities in 

Jefferson County, Kentucky, an urban county surrounding the city of Louisville. CAD systems 

collect EMS run data, and PCR data is information recorded by paramedics or emergency 
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medical technicians. CAD and PCR data can both bring forth information about the EMS 

response time to the crash and aspects of patient transport to the hospital, both of which can 

influence the injury outcome of the crash. In this research, first, the Bayesian record linkage 

approach was applied considering the available information to enhance the prior probability 

informativeness, and second, the results were compared with a stepwise adaptive heuristic 

algorithm previously developed by the authors (Hosseinzadeh et al., 2022) to investigate 

differences in the outcome across methods. 

After a review of data linkage methods and challenges in the literature, the study data 

was described, the fundamentals of both the probabilistic Bayesian method and the heuristic 

algorithm were presented and an approach to assess prior and posterior probabilities were 

outlined. Next, the results of different probability thresholds were presented and followed 

with a discussion, conclusion and practical implications regarding the linkage findings. 

4.3 Method 

4.3.1 Initial Assessment of Potential Matches

The initial check utilizes a time-distance boundary to determine a pool of possible matches 

between EMS run reports and crash events. Date-time was extracted from the EMS CAD data 

as the time the 911 call was received, while the time of crash filed in the police report was used 

for the crash data. Equation 4.1 defines two distance thresholds D, as a function of time, 𝐷𝑡 , 

and Euclidian distance, 𝐷𝑑 (using position, x, and y) and allocates the EMS run report (j) to a 

crash event set (i). 



 

80 
 

 

{
 

 |𝑡𝐶𝑖 − 𝑡𝐸𝑗| ≤ 𝐷𝑡 𝑎𝑛𝑑 √(𝑥𝐶𝑖 − 𝑥𝐸𝑗)2 + (𝑦𝐶𝑖 − 𝑦𝐸𝑗)2 ≤ 𝐷𝑑         𝑗 ∈ 𝑖  

|𝑡𝐶𝑖 − 𝑡𝐸𝑗| > 𝐷𝑡 𝑜𝑟 √(𝑥𝐶𝑖 − 𝑥𝐸𝑗)2 + (𝑦𝐶𝑖 − 𝑦𝐸𝑗)2 > 𝐷𝑑            𝑗 ∉ 𝑖

      

 

(4.1) 

The threshold used for the Bayesian approach was 3-day and 3-km and for the heuristic 

algorithm a boundary of 1-hour and 1-km was used. The Bayesian used a larger span to allow 

the probability to filter pairs based on the probability of match outcome. Meanwhile, a 

heuristic should be more restrictive when determining likely matches and lean on the idea that 

two crashes at the same location and the same time are inherently unlikely. The Bayesian 

approach resulted in 582,298 EMS and crash pairs, while for the heuristic method, 5,382 

potential pairs. 

4.3.2 Bayesian Record Linkage 

Considering crash record, Ci, and EMS record, Ej, and the definition of conditional probability 

and implementing Bayes theorem, the following can be derived: 

𝑃(𝐶�̅�)  =  1 −  𝑃(𝐶𝑖)     (4.2) 

𝑃(𝐶𝑖|𝐸𝑗)  =  
𝑃(𝐸𝑗|𝐶𝑖) 𝑃(𝐶𝑖)

𝑃(𝐸𝑗)
     (4.3) 

𝑃(𝐶�̅�|𝐸𝑗)  =  
𝑃(𝐸𝑗|�̅�𝑖) 𝑃(�̅�𝑖)

𝑃(𝐸𝑗)
     (4.4) 

 

By dividing the two probability equations in equations 4.3 and 4.4, the following can result: 

 

𝑃(𝐶𝑖|𝐸𝑗)

𝑃(�̅�𝑖|𝐸𝑗)
= 

𝑃(𝐶𝑖)

𝑃(�̅�𝑖)
 
𝑃(𝐸𝑗|𝐶𝑖)

𝑃(𝐸𝑗|�̅�𝑖)
    (4.5) 
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The components in equation 4.5 are classified based on Bayes theorem. 
𝑃(Ci|𝐸𝑗)

𝑃(�̅�𝑖|𝐸𝑗)
 is called 

posterior odds, 
𝑃(Ci)

𝑃(�̅�𝑖)
 is called prior odds and 

𝑃(𝐸𝑗|Ci)

𝑃(𝐸𝑗|�̅�𝑖)
 is called the likelihood ratio. Assuming 

𝐸1|Ci, . . . 𝐸𝑗|Ci  are independent and implementing Bayes theorem: 

𝑃(Ci|𝐸1,𝐸2...𝐸𝑗)

𝑃(�̅�𝑖|𝐸1 ,𝐸2...𝐸𝑗)
= 
𝑃(Ci)

𝑃(�̅�𝑖)
 
𝑃(𝐸1|Ci)

𝑃(𝐸1|�̅�𝑖)
 .  .  .

𝑃(𝐸𝑗|Ci)

𝑃(𝐸𝑗|�̅�𝑖)
 (4.6) 

Equation 4.6 is the general form of equation 4.5 when there is more than one likelihood ratio. 

𝑃(Ci) denotes the probability that a record in the crash data matches its associated EMS runs 

by random chance. 𝑃(𝐸1|Ci) is the probability that EMS record E1 matches crash record Ci 

based on the information of first criteria prior information, and 𝑃(𝐸1|𝐶�̅�) is the probability 

that EMS record E1 does not match crash record Ci based on the information of first criteria 

prior information (Clark, 2004). 

Prior odds ratio assessment 

In Bayesian record linkage, the prior odds are the probability of two records getting matched 

divided by the probability of those records not getting matched based on prior information. 

The next step is evaluating prior probability for each of the matching criterion. Figure 4.1 

shows the frequency of crashes by spatial distribution (𝑃(CDi)), Figure 4.2 demonstrates the 

frequency of crashes by age (𝑃(CAi)), Figure 4.3 exhibits the frequency of crashes by time of 

the day (𝑃(CTi)), and Figure 4.4 displays the frequency of crashes by gender (𝑃(CGi)). The 

information gained through the matching criteria distributions was applied to generate prior 

probabilities. 
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Figure 4.1. The frequency of crashes in sq-km unit cells in Jefferson County, Kentucky (July 2018 – 
March 2019)  

Figure 4.2. The frequency of crash-person records by age in Jefferson County, Kentucky (July 2018 – 
March 2019)  
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Figure 4.3. The frequency of crashes by time of the day in Jefferson County, Kentucky (July 2018 – 
March 2019)  

Figure 4.4. The frequency of crashes by gender in Jefferson County, Kentucky (July 2018 – March 
2019) 

Likelihood odds ratio assessment 

In Bayesian record linkage, the likelihood probability assessment is the probability of two 

records matching based on the features. In this chapter, first, a large set of all possible matches 

was created using the Euclidean distance in equation 4.1. Reducing pairs of EMS runs and 
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Crash events that happened very far apart before implementing the Bayesian approach, 

reduced the computational burden. Afterward, features specific to potential EMS and Crash 

matches were used in the record linkage approach, including distance, time, gender, and age 

were considered as matching criteria.  

 Furthermore, likelihood probabilities based on each matching criterion were found. 

Two decay functions were used to assess the probability of matching for time and location. 

Based on these two decay functions, the probability of matching decreases as the distance and 

time between the two pairs increase. Since records were eliminated as possible matches if the 

time or distance boundary from the crash event was 3 km or 3 hours using equation 4.1, the 

decay function ranges from 1 to 0. Also, the likelihood was assumed for gender and age, as 

shown in Table 4.1. If the age exactly matches, 𝑃𝐺(𝐸𝑗|Ci) considered as 0.99. If there is a one-

year difference, there is still a chance but not as high as being exactly match, so it was assumed 

as 0.8. In cases of more than one-year difference, the probability was assigned as 0.01. It means 

if the pairs are real matches, the other indicators should be completely matched to make up 

for the inaccuracy in the age, and the final likelihood ends up being more than 90%. For the 

records that age and gender were not available, the likelihood probability was calculated only 

using distance and time. 

Table 4.1. The likelihood ratio of matching criteria assessment 

Matching Criteria  Likelihood Ratio 

Distance 
𝑃(𝐷𝑖𝑗|𝐶𝑖𝐸𝑗)  =  1 − (

𝐷𝑖𝑗

3
)2 

Time 
𝑃(𝑇𝑖𝑗|𝐶𝑖𝐸𝑗)  = 1 − (

𝑇𝑖𝑗

3
)2 

Gender  𝐼𝑓 (( 𝐺𝑖  = 𝐺𝑗), 𝑃(𝐺𝑖𝑗|𝐶𝑖𝐸𝑗)=0.99),  

𝐼𝑓 (( 𝐺𝑖  ≠ 𝐺𝑗), 𝑃(𝐺𝑖𝑗|𝐶𝑖𝐸𝑗)= 0.01) 
Age 𝐼𝑓 (( 𝐴𝑖 = 𝐴𝑗), 𝑃(𝐴𝑖𝑗|𝐶𝑖𝐸𝑗)=0.99),  

𝐼𝑓 (abs (𝐴𝑖 − 𝐴𝑗) = 1, 𝑃(𝐴𝑖𝑗|𝐶𝑖𝐸𝑗)= 0.8), 
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𝐼𝑓 (( 𝐴𝑖 ≠ 𝐴𝑗), 𝑃(𝐴𝑖𝑗|𝐶𝑖𝐸𝑗)= 0.01) 

4.4 Results 

Types of different possible match outcomes are discussed in table 3.2. Each record status is 

described with one of the linkage terms defined in the table 3.2. 

The results of implementing two record linkage approaches are presented in Table 4.2. The 

first row represents pairs of records whose posterior probability was higher than 99% in the 

Bayesian approach. The second column shows all the matches gained through Bayesian, 

including duplicate matches. Duplicate matches happen when an EMS run matches with more 

than one crash or a crash matches with more than one EMS run. After filtering out the results 

based on the calculated match probability, results demonstrate crash-EMS unique matches 

(column 3). The number of records with unique matches after applying the heuristic algorithm 

is shown in the fourth column. For example, for 99% threshold, Bayesian reached to 903 

unique crash- EMS events match and the heuristic algorithm reached to 3955. The fifth and 

sixth columns demonstrate the number of unique matches in the Bayesian approach only and 

heuristic only, respectively. For example, the Bayesian approach identified 196 unique matches 

that the heuristic did not if the Bayesian probability threshold was 99%. Common crash/EMS 

event here means the ones that a crash or an EMS event in one can be found in the other one. 

The following columns show how many common crashes/EMS events were identical and 

how many of them were different. 

The number of common crashes/EMS events decreased as the cut-off threshold decreased 

from 99% to 90%. The same trend was observed in the number of the same matches between 

the two approaches. Results of the Bayesian approach in all three thresholds show substantial 

differences to the outcome of the heuristic algorithm. The 99% probability of a match reached 
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22.8% (903/3955) of the heuristic algorithm unique matches, and this rate for 95% and 90% 

thresholds were 15.4% and 17.2% of the unique matches in the heuristic algorithm. This 

outcome shows with loosening the threshold, the number of all Bayesian matches, including 

duplicates, would increase; however, it doesn’t guarantee that the number of unique Bayesian 

matches also increases. 

 Among the unique matches from the Bayesian approach, 81.3% (735/903), 74.6% 

(457/612), and 57.8% (432/682) of 99% to 90% thresholds were found in the heuristic 

unique matches. 96.1% (707/735), 96.4% (441/457) and 94.4% (408/432) of the unique 

matches were available in both linked datasets for 99%, 95% and 90% thresholds, 

respectively, were identical. Figure 4.5 shows the visual representation of the two methods in 

different probability thresholds. 

Table 4.2. Comparison of the Bayesian and heuristic data linkage results 

1 2 3 4 5 6 7 8 9 
Probability 
threshold 
(Bayesian) 

All 
Bayesian 
matches- 
crash -
person 
records 

(Including 
duplicates) 

Bayesian 
unique 

matches 

Heuristic 
unique 

matches 

Bayesian 
only 

Heuristic 
only 

Bayesian 
and 

heuristic 
in 

common 
Crash 
ID or 

EMS ID 

Same 
Crash
-EMS 
match 

Differen
t Crash-

EMS 
match 

> 99% 2,755 903 3,955 196 3248 735 707 28 

> 95% 7,522 612 3,955 171 3514 457 441 16 

> 90% 12,287 682 3,955 274 3547 432 408 24 
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Figure 4.5. Venn diagram of linkage comparison (a) probability threshold > 99%, (b) 
probability threshold > 95%, (c) probability threshold > 90%   

 

4.5 Discussion 

Comparing two record linkage approaches shows the superiority of the heuristic stepwise 

adaptive algorithm compared to the Bayesian approach. The Bayesian approach was just able 

to reach up to 22.8% of the number of match records of the heuristic algorithm. However, 

there is no way to determine which one of the pairs available in heuristic algorithm matches 

and Bayesian matches are true matches. 

The performance of the heuristic and Bayesian approaches highly depends on the 

linkage features available in both datasets. The main factor that drives the wide gap between 

two linkage approaches is the adaptive nature of the heuristic algorithm. The heuristic 

algorithm reconsiders the duplicates to find the true match between them. It moves the already 

unique match pairs to the unique match records in every step, freeing the chance to find a 

unique match for the potential match pairs that used to be among duplicates in the previous 
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step. Both datasets inevitably might include some false matches. However, the possibility is 

lower for the ones found as unique matches as a result of both approaches. The discrepancy 

between the two approaches was 3.9%, 3.6% and 5.6% for various thresholds suggesting a 

high overlap between the two approaches. However, comparing two approaches also allows 

taking different matches under close attention to distinguish some potential false matches. 

While there are no external independent data sources to verify the validity of matches, 

comparing would provide a valuable opportunity to double-check the matched pairs. One of 

the upsides of the Bayesian linkage record is the fact that each linkage record is provided with 

the probability of match leaving a margin of error, which is not able to be assessed for the 

pairs in the heuristic algorithm.  

4.6 Conclusion 

The data linkage gives significant insight into injury trends in several safety emphasis areas and 

provides a variety of underlying factors which would not be available without linking datasets. 

This research examined and compared two record linkage methods, which could help explain 

crash safety assessment. Results show the superiority of the proposed heuristic record linkage 

compared to the Bayesian approach, as the Bayesian approach reached only up to 22.8% of 

unique match pairs. Also, the results shed light on some match discrepancies for further 

investigation. 

There are several limitations in this study that are necessary to point out. First, none 

of the match outcomes can be surely verified unless a unique identifier is present. To 

counteract this, manual review was conducted extensively, however there is no way to perfectly 

quantify the match rate. Second, the functions used to determine the likelihoods for time, 

distance, age and other factors can be optimized through further research. While these 
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assumptions are reasonable, further investigation might help to find the optimized decay 

functions. These likelihood ratio assumptions depend on the quality of the data of the study. 

For example, with a manual review of a sample of available Crash-EMS run linked data, it’s 

possible to evaluate a more accurate likelihood ratio. Third, age and gender information in 

crash data was 70.2% and 72.9% complete, preventing inclusion in the analysis and reducing 

the match rate. However, the completeness for more severe injuries was higher. 

4.7 Practical Implications 

Policy steps could be taken to require cross-reporting and linkage of the datasets as the events 

occur to better monitor outcomes of injury crashes without requiring post hoc linkage. 

Incorporating two linkage methods (i.e., heuristic algorithm and Bayesian probabilistic linkage) 

to get a deeper insight into consistent and inconsistent records could possibly strengthen the 

linked data quality. This study layout the initial steps moving forward toward this goal. 
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CHAPTER 5 

APPLICATIONS OF THE LINKED DATA 
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5.1 Objective 

 

This chapter showcases what can be explored by using the linked crash-related datasets. After 

conducting the linkage and making sure the linked dataset adequately represents the datasets 

involved in the linkage process, applications of the resulted linked dataset can be investigated. 

Crash linked dataset added a couple of variables that have an impact on the crash outcome 

but were not available in police-reported and therefore were not included in the traditional 

safety analysis. These variables included the aftermath of the crash from on-scene to the 

hospital, such as EMS runs and trauma registry information. The following sub-chapters 

represent three examples of linked data usage. First, the association of injury severity and EMS 

times were explored. Furthermore, factors affecting EMS times were investigated. Last but 

not least, the injury misclassification of police officers and emergency physicians and the 

reasons behind the discrepancy were explored. 
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5.2 Do EMS Times Associate with Injury Severity?4 

5.2.1 Introduction 

In this section, two EMS times, response time and on-scene time, along with other crash-

related explanatory variables, have been modeled to investigate influential factors on injury 

severity. It is worth noting that, among EMS times, transport time was not included in the 

model since the police-reported injury severity evaluations are often done on-scene without 

knowledge of transport and therefore transport time cannot impact the police-reported injury 

severity.  To dig more into EMS times impact on crash outcome, the interaction effects of 

EMS times and injury location on the body were investigated in a separate model. Three sets 

of explanatory variables were considered in each model: 

(1) crash-related variables 

(2) crash-related variables + EMS times 

(3) crash-related variables + EMS times + interaction effects of EMS times and injury 

location on the body 

A limited number of studies are conducted to account for the role of EMS times on 

injury severity. These studies in the U.S. are scarce due to the fact that EMS data is not an 

inherent part of crash data. This study accounts for EMS times along with crash-related factors 

in estimating injury severity. Moreover, new variables are introduced, including patient level 

of distress and injury location on the body. Utilizing a linked dataset in this study explores the 

4 Sections from “Hosseinzadeh, A., & Kluger, R. (2021). Do EMS times associate with injury severity? Accident 
Analysis & Prevention, 153, 106053. Included in this chapter. 
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relationship between EMS times and injury severity among all injured individuals who were 

transferred to the hospital via EMS. The study also assesses the importance of EMS 

performance on injury severity in Motor Vehicle Crashes (MVC). 

5.2.2 Data preparation 

Police-reported crash data and EMS runs linkage in Jefferson County, Kentucky were used in 

this research. Table 5.1 shows the datasets and fields that were used for linkage. Furthermore, 

records which include missing KABCO injury severity, EMS runs that did not return to an 

emergency department, because either it was not serious or there was a death on the scene 

were, and no injury individuals (O level in KABCO scale) kept out of the further analysis. The 

‘O’ crashes were excluded to make sure the data point actually required an emergency response 

and was not called out of precautionary measures. Figure 5.1 shows the linkage framework. 

Table 5.1. Summary of datasets used for linkage purpose 

Data Source Number of records Field name 

Crash 
(Event Table) 

21,358 records 

Lat/Long 
Crash time 
Crash type 
Number of injuries 
Number of fatalities 

Crash 
(Person Table) 

80,786 records 
Age 
Gender 

EMS 
5,473 records 

Lat/Long 
Event Type 
Date 
Create Time 
Scene Time 
Transport time 

PCR 
4,242 records 

Incident date 
Dispatch time 
Age 
Gender 
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Figure 5.1. Visual framework of data linkage 

The final linked data contained 1,572 unique MVC events and 2,192 unique people-crashes in 

Jefferson County, Kentucky, between July 2018 and March 2019.  Attributes in the study are 

introduced in Table 5.2. 

Table 5.2. The dependent and independent variables utilized in the model 

Variable Unit Description Levels/Interval Frequency Percentage 

Dependent variable 

Injury 
severity 

Injury severity based 
on KABCO scale 

1.fatal and incapacitating
(K& A) 
2. non-incapacitating (B)
3. possible (C)

139 

843 
1210 

6.3% 

38.5% 
55.2% 

Independent variables 

Crash 

Age Injured age 1. under 18 294 13.4 
2. 18-65 1722 78.6 
3.over 65 176 8.0 

Gender Injured gender 1.male
2.female

1023 
1169 

46.7 
53.3 

Crash type Crash type 1.angle
2.head on
3.opposing left turn
4.rear end
5.sidewipe

852 
119 
152 
490 
189 

38.9 
5.4 
6.9 
22.4 
8.6 
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6.single vehicle 390 17.8 
Injury 
location 
code 

 Location of the injury 
on the body 

1.head/face/ neck 
2. chest/back/ 
abdomen/pelvis 
3.arms/hands/legs/feet 
4.multiple-entire body 

735 
462 
 
422 
573 

33.5% 
21.1 
 
19.3% 
26.1% 

Position in 
vehicle 

 Injured position in  1.front seat - left side 
2.front seat – right side 
3.second seat – left side 
4.second seat – middle 
5.second seat – right side 
6.third seat 
7.none 

1394 
385 
110 
51 
114 
56 
82 

63.6% 
17.6% 
5.0 
2.3 
5.2 
2.6 
3.7 

Trapped   If the victim was 
trapped in the vehicle  

1. not trapped 
2.trapped 

2078 
114 

94.8% 
5.2% 

Ejection  If the victim was 
ejected from the 
vehicle 

1.not ejected 
2. ejected 
 

2145 
47 
 

97.9% 
2.1% 
 

Suspect of 
drinking 

 DUI test in a case 
that the injured was 
driver 

1.no 
2.yes 

1749 
443 

79.8% 
20.2% 

License 
restriction 

 License restriction in 
a case that the injured 
was driver 

1.no 
2.yes 

1660 
532 

75.7% 
24.3% 
 

Patient 
level of 
distress 

 Patient level of 
distress 

1.none 
2.mild 
3.moderate 
4.severe 

490 
1146 
373 
183 

22.4% 
52.3% 
17.0% 
8.3% 

Airbag   Airbag deployment 
status 

1.air bag(s) deployed 
2.no airbag(s) deployed 
3.no airbag present 

997 
905 
290 

45.5% 
41.3% 
13.2% 

Hwy  Highway 1.no 
2.yes 

1891 
301 

86.3% 
13.7% 

Weather  Weather status 1.clear 
2.cloudy 
3.rain/snow/fog 

1381 
432 
379 

63.0% 
19.7% 
17.3% 

Hit and run  Hit and Run 1.no 
2.yes 

2047 
145 

93.4% 
6.6% 

Roadway 
character 

 Roadway 
characteristics 

1.curve  
2.straight 

237 
1955 

10.8% 
89.2% 

Light 
condition 

 Light condition 1.dark 
2.dark – highway lighted 
3.daylight 
4.dawn 
5.dusk 

184 
530 
1324 
68 
86 

8.4% 
24.2% 
60.4% 
3.1% 
3.9% 

Time of the 
day 

 Crash time interval 1.early morning 
2.morning peak 
3.mid-day 
4.evening peak 
5. night 

336 
218 
636 
636 
366 

15.3% 
9.9% 
29.0% 
29.0% 
16.7% 

Week time  Weekday/weekend 1.weekday 
2.weekend  

1539 
653 

70.2% 
29.8% 

EMS 

Response 
time 

 EMS Response time 
in seconds 

Base: RT < 240  323 
 

14.7% 

   240 < RT < 360  466 21.3% 
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360 < RT < 480 475 21.7% 
480 < RT < 600 343 15.6% 
600 < RT < 900 414 18.9% 
RT > 900  171 7.8% 

On-scene 
time 

EMS on-scene time 
in seconds 

Base: OT < 900  405 18.5% 

900 < OT < 1200  508 23.2% 
1200 < OT < 1500 486 22.2% 
1500 < OT < 2100 503 22.9% 
OT > 2100  290 13.2% 

5.2.3 Method 

Identifying factors that affect injury severity through various modeling frameworks has been 

covered well in the literature. A typical approach in these studies is to use a statistical modeling 

approach, with crash severity as a dependent variable and characteristics of the crash, driver, 

roadway, weather, etc. as independent variables (Mannering and Bhat 2014). A wide range of 

modeling approaches, including parametric and non-parametric, have been used in crash 

severity studies. In this study, a random effects ordered probit approach is utilized to model 

injury severity and study the impact of EMS response time. Assuming individuals involved in 

the same crash are expected to have comparable unobserved variables affecting their injury 

severity, a random-effect component was utilized in the model. Ignoring the similarity in each 

cluster (i.e., crash), known as intra class correlation (ICC), violates observations’ independence 

assumption and leads into incorrect outcomes. Equation 5.1 shows the modeling formulation: 

𝑦𝑖𝑗
∗  = 𝑋𝑖𝑗𝛽 + 𝑣𝑖𝑗  +  𝑢𝑖             (5.1) 

Where 𝑋𝑖𝑗 is a (1×k) vector of observed explanatory variables of the ith individual in jth crash; 

𝛽 is a (k × 1) vector of coefficients for the explanatory variables, 𝑣ij is the random-effects for 

individuals involved in the same crash j and 𝑢i is individual-level random-effects. 𝑦ij
∗ is a latent
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variable. The observed variable with three injury severity levels of: (1) fatal/ incapacitating 

injury, (2) non-incapacitating injury and (3) possible injury can be written as equation 5.2.

𝑦𝑖𝑗  = {

1    𝑖𝑓                        𝑦𝑖𝑗
∗  ≤  𝜇1

2    𝑖𝑓             𝜇1 < 𝑦𝑖𝑗
∗  ≤  𝜇2

3    𝑖𝑓                        𝜇2 < 𝑦𝑖𝑗
∗  

      (5.2) 

Where the thresholds 𝜇1 and 𝜇2 are parameters to be jointly estimated with the vector of 

parameters 𝛽. ICC also is defined as portion of between cluster (i.e., crash) variance to total 

variance, as shown in equation 5.3. 

ICC = 
𝑉𝑎𝑟 (𝑣𝑖𝑗)

𝑉𝑎𝑟 (𝑦𝑖𝑗
∗ )

           (5.3) 

In this study, three models of (1) crash-related variables, (2) crash-related and EMS times and 

(3) crash-related, EMS times and interaction effects were estimated to identify the impact of 

factors on injury severity in MVC with a focus on EMS times. “Mixor” package (Archer et al., 

2018) in R studio software was used in this study (R core team, 2019). 

5.2.4 Results 

Table 5.3 presents the outcome of each model. The first column shows model 1, consisting 

of only crash related variables. The second column shows the model that includes crash related 

variables in addition to EMS times. The third column includes the model with interaction 

effects. Significant variables are in bold font. According to Table 5.3, in all three models, age 

of the injured individual, trapped/ejected injuries of the crash in a motor vehicle, airbag status, 

weather, manner of collision and patients’ levels of distress were found to be significantly 

associated with injury severity in a crash. Older occupants, trapped/ejected individuals, 

vehicles with the deployed airbag or without airbag available, cloudy/ foggy weather, single-
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vehicle crashes, individuals with a position in the vehicle after the second-row seats, individuals 

with higher distress level were more likely to be more severe. Moreover, individuals with injury 

location of chest/back/abdomen/pelvis and arms/hands/legs/feet found to have less severe 

injuries than individuals with head/face/neck injuries. 

In the second model, the EMS times were added to the model. Among EMS times, in 

the second model, none of the EMS times were found significant. In the third model, with 

interaction effects, injured individuals with entire body injuries and faster response time were 

associated with less severe injuries compared to the based level (response time < 4 minutes 

and injury location of head/face/ neck). Moreover, entire body injuries with low on-scene 

time were associated with more severe injuries compared to the base level. In 

arms/hands/legs/feet injuries, both very low and very high on-scene time were found to be 

significantly associated with more severe injuries. Light condition, time of the day and 

weekdays/weekends and the crash occurring on the highway are among the variables which 

were not found significant. 

The intra class correlations were found as 0.575, 0.564 and 0.549 in first, second and 

third models, respectively, which imply the modeling approach was chosen properly. In terms 

of model fit, considering EMS times in model two (AIC = -1678) and EMS times + 

interactions in model three (AIC = -1684) improved the fit marginally compared to the model 

with only crash-related factors (AIC = -1696). 
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Table 5.3. Random effects ordered probit models 

Model (1) crash-related variables Model (2) crash-related variables + 
EMS times 

Model (3) crash-related variables + 
EMS times + interaction effects of 
EMS times and injury location on 

the body 

Variable Levels Coef Std Err P > z Coef Std Err P > z Coef Std Err P > z 

Intercept 3.37 0.35 0.001 3.37 0.39 0.001 3.29 0.46 0.001 
Age Base: 18 < age < 65 

Under 18 0.49 0.16 0.003 0.48 0.08 0.004 0.53 0.17 0.002 
Upper 65 -0.14 0.15 0.367 -0.13 0.15 0.397 -0.13 0.16 0.422 

Gender Base: Male 
Female -0.01 0.09 0.932 -0.01 0.09 0.940 0.01 0.09 0.979 

Airbag Base: No airbag deployed 
Airbag deployed -0.58 0.11 0.001 -0.57 0.11 0.001 -0.60 0.12 0.001 

No airbag present -1.05 0.16 0.001 -1.05 0.17 0.001 -1.02 0.09 0.001 
Highway No 

Yes 0.21 0.15 0.156 0.19 0.15 0.200 0.21 0.15 0.168 
Weather Clear 

Cloudy -0.31 0.13 0.026 -0.31 0.13 0.024 -0.31 0.14 0.027 
Fog -0.70 0.71 0.051 -0.76 0.72 0.066 -0.86 0.79 0.041 

Raining 0.12 0.14 0.383 0.12 0.14 0.379 0.11 0.15 0.439 
Snowing 1.11 0.89 0.211 1.09 0.87 0.212 1.24 0.87 0.153 

Crash type Base: Angle 
Head on -0.18 0.25 0.465 -0.21 0.26 0.419 -0.22 0.27 0.414 

Opposing left turn -0.09 0.22 0.660 -0.11 0.22 0.623 -0.15 0.23 0.491 
Rear end 0.05 0.14 0.721 0.04 0.14 0.781 0.04 0.15 0.753 
Sideswipe -0.12 0.19 0.516 -0.16 0.19 0.413 -0.15 0.20 0.454 

Single vehicle -0.30 0.15 0.051 -0.30 0.15 0.053 -0.31 0.16 0.054 
Roadway 

characteristics 
Base: Straight 

Curve 0.14 0.16 0.371 0.11 0.16 0.473 0.10 0.17 0.525 
Hit and Run Base: False 

True -0.22 0.20 0.269 -0.21 0.20 0.296 -0.22 0.20 0.277 
Light Condition Base: Dark 

Dark-highway lighted on 0.10 0.20 0.624 0.10 0.20 0.619 0.10 0.21 0.640 
Dawn 0.25 0.33 0.454 0.22 0.33 0.497 0.32 0.34 0.354 

Daylight 0.32 0.23 0.159 0.34 0.23 0.142 0.33 0.24 0.172 
Dusk 0.01 0.34 0.99 0.03 0.34 0.928 0.08 0.35 0.810 

Position in Vehicle Base: Front seat – left side 
Front seat – right side -0.01 0.14 0.94 -0.01 0.14 0.961 -0.03 0.15 0.822 
Second seat – left side 0.39 0.26 0.128 0.40 0.26 0.118 0.43 0.28 0.120 

Second seat – middle side -0.20 0.27 0.467 -0.23 0.28 0.399 -0.29 0.28 0.307 
Second seat – right side 0.26 0.23 0.249 0.27 0.23 0.242 0.25 0.24 0.300 

Third seat 0.70 0.35 0.044 0.70 0.35 0.044 0.58 0.37 0.124 
After third seat 0.57 0.28 0.044 0.17 0.28 0.035 0.55 0.29 0.063 

Trapped Base: No 
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Yes -0.99 0.17 0.001 -0.99 0.17 0.001 -1.01 0.18 0.001 
Ejected Base: No 

Yes -1.09 0.35 0.001 -1.09 0.35 0.001 -1.17 0.36 0.001 
Driving under 

influence 
Base: No 

Yes -0.20 0.14 0.162 -0.20 0.14 0.166 -0.18 0.15 0.220 
License restriction Base: No 

Yes -0.04 0.12 0.719 -0.04 0.12 0.714 -0.03 0.13 0.820 
Time of day Base: Mid-day 

Early morning -0.04 0.21 0.833 -0.02 0.21 0.905 -0.06 0.21 0.774 
Morning peak -0.04 0.19 0.415 -0.15 0.19 0.420 -0.16 0.20 0.416 
Evening peak -0.01 0.15 0.962 -0.01 0.15 0.943 -0.01 0.15 0.907 

Night -0.15 0.22 0.482 -0.13 0.22 0.538 -0.15 0.22 0.496 
Weekend Base: No 

Yes -0.15 0.11 0.178 -0.15 0.11 0.199 -0.12 0.12 0.322 
Patient level of 

distress 
Base: None 

Mild -0.15 0.12 0.211 -0.15 0.12 0.213 -0.13 0.13 0.292 
Moderate -0.71 0.15 0.001 -0.69 0.15 0.001 -0.71 0.16 0.001 

Severe -1.04 0.18 0.001 -1.04 0.19 0.001 -1.05 0.20 0.001 
Injury Location Base: Head/face/neck 

Chest/back/abdomen/pelvis 0.68 0.12 0.001 0.69 0.12 0.040 0.74 0.46 0.108 
Arms/hands/legs/feet 0.29 0.13 0.026 0.30 0.13 0.023 0.64 0.42 0.131 

Multiple-entire body 0.04 0.12 0.720 0.05 0.12 0.655 0.36 0.38 0.340 

Response time Base: RT < 240 
(Seconds) 240 < RT < 360 -0.03 0.17 0.837 -0.34 0.27 0.219 

360 < RT < 480 0.17 0.17 0.318 0.04 0.27 0.862 
480 < RT < 600 0.11 0.18 0.519 0.16 0.30 0.577 
600 < RT < 900 0.07 0.18 0.661 -0.08 0.29 0.771 

RT > 900 0.16 0.23 0.475 0.23 0.37 0.533 
On-scene time Base: OT < 900 

(Seconds) 900 < OT < 1200 -0.21 0.15 0.161 0.24 0.25 0.335 
1200 < OT < 1500 -0.12 0.15 0.436 0.18 0.26 0.487 
1500 < OT < 2100 -0.08 0.16 0.597 0.10 0.25 0.683 

OT > 2100 0.03 0.20 0.869 0.36 0.31 0.252 

Response time Injury location 
240 < RT < 360 Chest/back/abdomen/pelvis 0.23 0.44 0.599 
360 < RT < 480 Chest/back/abdomen/pelvis -0.27 0.44 0.542 
480 < RT < 600 Chest/back/abdomen/pelvis -0.27 0.45 0.542 
600 < RT < 900 Chest/back/abdomen/pelvis 0.48 0.46 0.299 

RT > 900 Chest/back/abdomen/pelvis -0.23 0.56 0.677 
240 < RT < 360 Arms/hands/legs/feet 0.25 0.42 0.544 
360 < RT < 480 Arms/hands/legs/feet 0.53 0.41 0.202 
480 < RT < 600 Arms/hands/legs/feet 0.04 0.51 0.923 
600 < RT < 900 Arms/hands/legs/feet 0.49 0.43 0.263 

RT > 900 Arms/hands/legs/feet -0.19 0.63 0.756 
240 < RT < 360 Multiple-entire body 0.70 0.38 0.069 
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360 < RT < 480 Multiple-entire body 0.34 0.41 0.397 
480 < RT < 600 Multiple-entire body -0.02 0.43 0.946 
600 < RT < 900 Multiple-entire body -0.20 0.42 0.637 

RT > 900 Multiple-entire body 0.08 0.57 0.883 
On scene time Injury location 

900 < OT < 1200 Chest/back/abdomen/pelvis -0.32 0.41 0.437 
1200 < OT < 1500 Chest/back/abdomen/pelvis 0.03 0.41 0.933 
1500 < OT < 2100 Chest/back/abdomen/pelvis 0.07 0.38 0.840 

OT > 2100 Chest/back/abdomen/pelvis 0.11 0.50 0.822 
900 < OT < 1200 Arms/hands/legs/feet -0.86 0.41 0.038 
1200 < OT < 1500 Arms/hands/legs/feet -0.63 0.41 0.125 
1500 < OT < 2100 Arms/hands/legs/feet -0.60 0.41 0.145 

OT > 2100 Arms/hands/legs/feet -0.86 0.51 0.073 
900 < OT < 1200 Multiple-entire body -0.46 0.24 0.063 
1200 < OT < 1500 Multiple-entire body -0.68 0.37 0.069 
1500 < OT < 2100 Multiple-entire body -0.30 0.37 0.417 

OT > 2100 Multiple-entire body -0.62 0.47 0.193 

𝜇1 0.35 0.06 0.001 0.33 0.06 0.001 0.31 0.06 0.001 

𝜇2 1.80 0.06 0.001 1.79 0.06 0.001 1.80 0.06 0.001 

ICC 0.575 0.007 0.001 0.564 0.005 0.001 0.549 0.005 0.001 

LL -1633 -1630 -1615 
AIC -1678 -1684 -1696 
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5.2.5 Discussion 

Model Interpretation 

While the association between EMS times and injury severity is investigated in this study, it is 

important to ensure the outcome is not under the influence of simultaneity. Simultaneity in 

this study would occur when EMS times impact injury severity while injury severity 

simultaneously influences EMS times. To alleviate the impact of simultaneity first, the no-

injury crashes had to be excluded from the analysis. No-injury crashes seem to impact the 

EMS times since the lack of urgency likely results in the first responders taking their time. In 

those cases, it is possible one of the individuals still requests transfer to the hospital. In the 

injury cases, it seems the first responders behave in a relatively consistent manner following 

policy. Among 2480 injured individuals’ data, 288 O injuries were excluded; therefore, the data 

reduced to 2192 injuries with (1) fatal and incapacitating (K&A) injuries (2) non-incapacitating 

(B) injuries, and (3) possible (C) injuries. By doing this we believe we have eliminated at least 

the worst cases of injury dictating EMS times. However, to ensure reverse causality was not 

extensively impacting our model, further diagnostics were completed. Considering equation 1 

as the modeling formulation, in the presence of simultaneity effects, equation 5.4 should also 

be true. 

𝑋𝑖𝑗 = 𝛽𝑦𝑖𝑗
∗  + 𝑣𝑖𝑗  +  𝑢𝑖     (5.4)

Based on the reverse causation formula, if  𝑋𝑖𝑗 found not to be correlated with the error 

term, it could be claimed that the reserve causation is not a valid argument (Katz, 2006). 

We explored this argument's validity by comparing the distribution of correct and wrong 

classifications in different EMS times intervals (Table 5.4). The Chi-square analysis result in 
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Table 5.4 indicates that the proportion of the wrong prediction to correct predictions by 

different response time intervals was not significant. Therefore, response time is not 

apparently correlated with the residual error. For on-scene time, the simultaneous effect was 

also not captured (Table 5.5) in a Chi-Square analysis. 

Table 5.4. The prediction distribution based on response time 

RT < 240 240 < RT < 360 360 < RT < 480 480 < RT < 600 600 < RT < 900 RT > 900 

Correct prediction 270 395 394 288 362 146 

Wrong prediction 53 71 81 55 52 25 

(Wrong/ correct) pct. 19.6% 17.9% 20.5% 19.1% 14.3% 17.1% 

Chi-square: 0.547 

Table 5.5. The prediction distribution based on on-scene time 

OT < 900  900 < OT < 1200 1200 < OT < 1500  1500 < OT < 2100  OT > 

2100 

Correct prediction 314 413 295 402 431 

Wrong prediction 56 80 50 74 77 

(Wrong/ correct) pct. 17.8% 25.4% 15.9% 23.5% 24.5% 

Chi-square: 0.970 

Model Outcome 

The results showed, considering the age of those injured, younger individuals saw less severe 

injuries. Moreover, cloudy and foggy weathers were associated with more severe crashes in 

Jefferson County, Kentucky. In terms of weather impacts on injury severity, there is not a 

consensus among researchers. The results were interpreted in different ways; resulting in losing 

control of the vehicle and ending up more severe crashes (Eluru et al., 2008, Yu and Abdel-

Aty 2014, Haleem et al., 2015) or making the drivers more cautious and resulting in a less 

severe crash (Naik et al., 2016). 

Ejected and trapped individuals sustained more severe injuries. Individuals' position 

after the second-row seats in the vehicles with more than two-row seats involved in the crashes 
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saw less severe injuries than those in the front two rows. Moreover, single-vehicle crashes (e.g., 

pedestrian-/cycle- involved, rollover crashes) were found to be related to more severe injuries 

compared to the base case of angle crashes. The higher severity of single-vehicle crashes has 

been found in other recent literature (Hosseinzadeh et al., 2021b).  

Results show individuals with higher distress levels were associated with more severe injuries. 

It seems individuals have the right perception about their level of injuries, or officers may be 

basing injury designation on distress level. Furthermore, crashes in which either the airbag 

deployed, or an airbag was not available were associated with a more severe injury outcome. 

The results are expected since the airbag status shows either it was that serious enough for the 

airbag to deploy, or it was not available in the first place. 

Injury locations of chest/back/abdomen/pelvis and arms/hands/legs/feet were 

associated with less severe injuries than the base level of head/face/neck in the first and 

second models. However, entire body injuries were not found significantly different than 

head/face/neck injuries. The results indicate either chest/back/abdomen/pelvis and 

arms/hands/legs/feet led to less severe injuries than head/face/neck or 

chest/back/abdomen/pelvis and arms/hands/legs/feet injuries led officers to evaluate these 

injuries less severe than head/face/neck injuries. 

While response time was not significant in the second model, the third model found 

that it was important interacting with multiple body injuries associated with less severe injuries. 

The second model results are in line with Lovely et al. (2018), who found no significant 

relationship between increasing response time and more severe injuries in general injuries 

(Lovely et al., 2018). This research, in the third model, found a significant relationship between 

reducing response time and decreasing the severity of injuries. This finding highlights the 
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importance of fast response in cases with entire body injuries. It is worth noting that the urban 

and suburban study areas in Jefferson County led to relatively fast EMS response with low 

variability. The authors believe that a rural setting with sparser EMS coverage and hospital 

density may see different results, with response time and scene time having a larger impact. 

The outcome indicated on-scene time was not significant, according to the second 

model results. However, the third model results showed individuals with multiple parts of 

body injuries, and low scene time was associated with more severe injuries compared to the 

base case (On-scene time < 15 minutes and head/face/neck injuries). This finding highlights 

the importance of injury assessment on-scene by Emergency medical technicians (EMT) and 

taking adequate precautionary acts to stabilize individuals' status on-scene with entire body 

injuries. Moreover, arms/hands/legs/feet injuries with either very low or high on-scene time 

were related to more severe injuries. 

5.2.6 Conclusion 

Although the importance of optimized and efficient EMS in saving lives is undisputable, there 

is not a consensus on how EMS times impact injured individuals of the crashes. This study 

took into account EMS times along with other crash related variables to explore the impact 

on injury severity. Based on the outcome, although the authors did not find a significant 

relationship between EMS times and injury severity in all types of injuries, EMS times based 

on injured body locations shed light on the relationship between EMS times and injury 

severity. The outcome showed faster response time was associated with less severe injuries in 

cases with an entire body injury. Accounting for on-scene time, the results indicated that either 

very low on-scene times or very high on-scene times were related to more severe injuries in 

entire body parts and arms/hands/legs/feet injuries. Adding EMS times and interaction 
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effects of EMS times and injury location on the body to the model, improved the model quality 

marginally. 

This study also has some limitations. First, the outcome showed some EMS-related 

factors were correlated with crash injury severity; However, the relationship does not imply 

causation. For instance, although outcome indicated the higher response time in cases with 

multiple body location injuries were associated with higher injury severity, it does not mean 

higher response time cause severe injuries. Response time may have contributed to the injury 

severity, injury severity may have led to the response time or there could be a latent factor 

correlated with both EMS response time and injury severity. Second, fatal and incapacitating 

injuries were merged into one category due to low numbers of fatalities in the data. There is a 

possibility that faster response time increases the chance of survival that the current research 

was not able to capture. In the current dataset, among fatal injuries, three individuals with 

average EMS response time of approximately 11 minutes died at the scene, while the same 

measure for 13 individuals who died at the hospital was about eight minutes. Further, 126 

individuals with incapacitating injuries who survived had also about eight minutes response 

times. However, the insufficient records impede statistical investigation of those impacts. This 

could be further researched employing larger sample size. Third, the area of research was in 

an urban and suburban area, which resulted in low variation in EMS response time. Further 

research could elaborate on more diverse geographical area. The findings of this study could 

act as a base for further investigation of EMS impact on injury severity, particularly with 

respect to effective use of EMS times in evaluation of service quality. 
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5.3. Exploring Influencing Factors on Crash-related Emergency 

Response Time5 

5.3.1 Data preparation 

This section utilized linked police-reported crash data and EMS data from Jefferson, County 

KY (Figure 5.1). Jefferson County is a largely urban and suburban county in western KY where 

Louisville is located. The final linked data contained 2,009 unique MVC events and 2,977 

unique people-crashes in Jefferson County, Kentucky, between July 2018 and March 2019. 

Table 5.6 represents the variables utilized in the study. 

Table 5.6. Variables utilized in the model 

Variable Description Levels/Interval Frequency/average Pct/sd 

Dependent variable 

EMS 
Response time 
(second) 

EMS Response time [36 – 2689] 495.73 293.47 

Independent variables 

Demographics 

Age Injured age [0 – 95] 35.44 19.33 
Gender Injured gender 1.male

2.female
1367 
1610 

46% 
54% 

Race Injured race 1.white
2.african-american
3.hispanic/latino
4.others

1391 
1358 
111 
117 

46% 
46% 
4% 
4% 

Weight (lbs) Injured weight [10 -475] 174.47 42.75 
Pregnant Injured pregnancy 

status 
1.no
2.yes

2871 
106 

96% 
4% 

Event time 
Time of the 
day 

Crash time interval 1.early morning
2.morning peak
3.mid-day
4.evening peak
5. night

421 
859 
855 
302 
540 

14% 
29% 
29% 
10% 
18% 

Crash Hour Crash time [0 – 23] 14.19 5.55 
Week time Week time of the crash 1.weekday 

2.weekend
2125 
852 

71% 
29% 

5 Sections from “Hosseinzadeh, A., Haghani, M., & Kluger, R. (2021a). Exploring Influencing Factors on Crash-
related Emergency Response Time: A Machine Learning Approach (No. TRBAM-21-00614).” Included in this 
section. 
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Police/EMS 
time 
discrepancy 
(minute) 

Time difference 
between events record 
in police-reported data 
and EMS CAD data 

[0 – 59] 5.18 9.17 

Police/EMS 
location 
discrepancy 
(meter) 

Police/EMS location 
discrepancy between 
events record in 
police-reported data 
and EMS CAD data 

[0 – 999] 141.48 240.11 

EMS 

EMS travel 
distance (mile) 

Since mileage from 
EMS center to event 
location 

[0.1,124] 8.34 15.55 

Disposition How the injuries are 
transported 

1.evaluated/treated on 
scene 
2.transported light/siren
3.transported no 
light/siren 
4. dead on scene

752 

408 
1812 

5 

25% 

14% 
60% 

1% 
Requested by Who requested for 

ambulance 
1.by stander
2.family
3.fire department
4.law enforcement
5.patient
6.other

1274 
185 
111 
305 
904 
198 

43% 
6% 
4% 
10% 
30% 
7% 

Patient level 
of distress 

Patient level of distress 1.none 
2.mild
3.moderate
4.severe

858 
1503 
402 
214 

29% 
50% 
14% 
7% 

Extrication 
required 

If extraction is 
required  

1.no
2.yes

2828 
149 

95% 
5% 

Estimated 
speed (Mph) 

Estimated speed of the 
vehicle at the crash 

[0,130] 27.93 14.85 

Airbag Airbag deployment 
status 

1.air bag(s) deployed
2.no air bag(s) deployed
3.no airbag present

1248 
1334 
395 

42% 
45% 
13% 

Vehicle type Type of vehicle of the 
injured person 

1.automobile
2.tractor-trailer
3.motorcycle
4.moped
5.others

2490 
34 
137 
125 
191 

84% 
1% 
5% 
4% 
6% 

Event type Event type 1.mvc- pedestrian
2.mvc-bicycle
3.mvc-motorcycle
4.mvc-injury
5.mvc-ejected/fire
6.mvc-rescue
7.mvc-rollover

104 
21 
43 
2465 
44 
221 
79 

3% 
1% 
1% 
83% 
1% 
7% 
3% 

EMS priority EMS priority 1.high priority
2.low priority

506 
2471 

17% 
83% 

Agency Agency which 
responded to the 
request 

1.louisivlle metro EMS
2.fire department

2914 
63 

98% 
2% 

Hwy Was the crash location 
on highways? 

1.no
2.yes

2553 
424 

86% 
14% 
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Motor 
vehicles 
involved 

Number of motor 
vehicles involved 

1.single vehicle
2.two vehicles involved
3.more than two vehicles
involved 

503 
2010 
464 

17% 
67% 
16% 

Number of 
fatalities 

Number of fatalities of 
the crash 

1.non-fatal crash
2.fatal crash

2953 
24 

99% 
1% 

Number of 
injured 

Number of injuries of 
the crash 

1.non-injury crash
2. 1 injury
3. 2 injuries
4. 3+ injuries

446 
1247 
699 
585 

15% 
42% 
23% 
20% 

Weather Weather status 1.clear
2.cloudy
3.raining
4.snowing
5.fog

1906 
570 
471 
18 
12 

64% 
19% 
16% 
1% 
1% 

Roadway 
condition 

Roadway condition 1.dry
2.wet /snow/flood/ice

2278 
699 

77% 
23% 

Hit and run Was the event because 
of hit and run? 

1.no
2.yes

2766 
211 

93% 
7% 

Roadway 
character 

Roadway 
characteristics 

1.curve and grade
2.curve and hillcrest
3.curve and level
4.straight and grade
5.straight and hillcrest
6.straight and level

74 
35 
233 
122 
65 
2448 

2% 
1% 
8% 
4% 
2% 
82% 

Light 
condition 

Light condition 1.dark
2.dark – highway lighted
3.daylight
4.dawn
5.dusk

249 
721 
1808 
89 
110 

8% 
24% 
61% 
3% 
4% 

Was 
transported 

If the EMS 
transported the injuries 
to hospital 

1.no
2.yes

863 
2114 

29% 
71% 

Crash 

Crash type Crash type 1.angle
2.head on
3.opposing left turn
4.rear end
5.rear to rear
6.sidewipe-opposing
direction 
7.sidewipe-same
direction 
8.single vehicle

1169 
154 
214 
661 
42 
49 

200 

488 

39% 
5% 
7% 
22% 
1% 
2% 

7% 

16% 
Injury severity Injury severity based 

on KABCO scale 
1.fatal (K)
2.incapacitating (A)
3.non-incapacitaing (B)
4.possible (C)

142 
871 
1261 
703 

5% 
29% 
42% 
24% 

Injury location  Location of the injury 
based on different 
areas of body 

1.head/face
2.neck
3.chest
4.back
5.abdomen/pelvis
6.arms/hands
7.legs/feet
8.multiple-entire body

546 
345 
279 
329 
204 
302 
334 
638 

18% 
12% 
9% 
11% 
7% 
10% 
11% 
21% 
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Position in 
vehicle 

Injured position in 1.front seat - left side
2.front seat – right side
3.second seat – left side
4.second seat – middle
5.second seat – right side
6.third seat
7.none

1930 
511 
150 
74 
182 
52 
78 

65% 
17% 
5% 
2% 
6% 
2% 
3% 

Trapped code How the injured 
trapped 

1. not trapped
2.trapped

2855 
114 

96% 
4% 

Ejection code How the injured 
ejected due to the 
crash 

1.not ejected
2. ejected

2928 
49 

98% 
2% 

Suspect of 
drinking 

DUI test in a case that 
the injured was driver 

1.no
2.yes

2462 
515 

83% 
17% 

License 
restriction 

License restriction if 
the injured individuals 
was driver 

1.no
2.yes

2334 
643 

78% 
22% 

5.3.2 Methodology 

In this research, a parametric approach, as well as four non-parametric approaches, were 

implemented. The comparison was conducted to choose the best model and find the most 

influential factors on EMS response time based on the results of the best model.  Four tree-

based ensemble learning approaches in two different categories were utilized: bagging and 

boosting. The former primarily focuses on understanding the variance, while boosting 

minimizes errors in prediction. For each category, two models with different functional forms 

were used to reach better results. 

Sampling Approach 

Bagging  

Bagging is an ensemble approach to reduce the variance of an estimate by averaging multiple 

estimates together (Breiman, 1996). Figure 5.2 depicts the process of bagging. Two bagging-

based methods (bagged tree and random forest) have been used in this study. 
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Figure 5.2. The process of bagging 

Bootstrap Aggregating (Bagged tree) Bagged tree is conducted based on creating many 

random sub-samples of a dataset with replacement. The basic motivation of implementing 

bagged tree is to combine the predictions of several base learners to create more accurate 

output. This method is a procedure that can be utilized for prediction as well as ranking the 

variable importance. Bagged tree only has one parameter, which is the number of trees to 

include. Tuning the model is based on finding the optimal number of trees that minimize Out-

Of-Bag (OOB) error. OOB is the part of the data that is not taken for each bagged sample. 

The performance of each model on its unsampled source when averaged can provide an 

estimated accuracy of the bagged models (Breiman, 1996). In this study, bagged tree was 

implemented using the “ipred” package in R Studio software (Team, 2015). 
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Random Forests (RF)  The RF approach generates multiple decision trees in parallel. Every 

single tree draws a random sample from the primary dataset when generating its splits. In order 

to prevent overfitting, a further element of randomness is added. The main principle of parallel 

methods is to exploit independence between the basic decision trees since the error can be 

decreased significantly by averaging. Implementing this method requires determination of the 

models’ hyperparameters, consisting of the number of trees to grow and set of variables 

randomly sampled to choose at each split. Hyperparameters were optimized to ensure the 

results are not strongly dependent on any individual feature and all potential predictive features 

are involved in the model. The basic difference between two introduced bagging approaches 

is the fact that in RF, only a portion of total features are randomly selected, and the best split 

feature from the subset is used to split each node in a tree; whereas in the bagged tree, all 

features are considered for splitting a node (Breiman, 2001). In this study, RF was 

implemented using the “randomForest” package in R Studio software (Team, 2015). 

Boosting Method 

Boosting is a family of methods that are able to transform weak learners into strong learners. 

The concept behind boosting is to fit a sequence of weak learners to weighted versions of the 

data. More weight is given to records that were misclassified by earlier iterations. To produce 

the final prediction, the predictions are combined through a weighted sum. The main 

difference between boosting and bagging is the fact that base learners are trained as a result of 

frequent iterations on a weighted form of the data (T. Chen & Guestrin, 2016; Schapire, 2003). 

Figure 5.3 shows the process of boosting. 
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Figure 5.3. The process of boosting 

Gradient Boosting Machine   (GBM) GBM is a generalization of boosting that implements 

an additive weighting scheme to improve the prediction performance. Consider data defined 

as {(𝑥𝑖, 𝑦𝑖)}𝑖 = 1
𝑛  and a differentiable loss function 𝑙(𝑦𝑖 , 𝐹(𝑥)) in which 𝑥𝑖 are explanatory

variables related to each EMS run, 𝑦𝑖 is the associated response time of that run and i refers 

to the EMS run. The model initializes with a constant value (equation 5.5). 

𝐹0(𝑥)  =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑙(𝑦𝑖 , 𝛾)
𝑛
𝑖 = 1 (5.5) 

Where 𝑦𝑖 refers to the observed value (EMS response time here) and  𝛾 represents the 

predicted value (equation 5.6). 

𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀: 𝑟𝑖𝑚  =  − [
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
] 𝐹(𝑥) =𝐹𝑚−1(𝑥)       𝑖 =  1, … ,𝑁      (5.6) 
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Where m refers to individual trees, M is the number of trees and 𝑟𝑖𝑚 represents to residual in 

EMS run i for tree m. The next stage is generating a regression tree to the 𝑟𝑖𝑚 values and 

creating terminal regions {R𝑗𝑚} 1
𝐽
 in which j is the index of each leaf in a tree. Furthermore,

the value of the leaf nodes in the regression tree are estimated (equation 5.7). 

𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑗𝑚: 𝛾𝑗𝑚  =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑙(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)  +  𝛾)𝑥𝑖∈ 𝑅𝑗𝑚          (5.7) 

According to equation 3, the final output is updated as it is shown in equation 5.8. 

𝐹𝑚(𝑥)  =  𝐹𝑚−1(𝑥)  +  𝜗 ∑ 𝛾𝑗𝑚 (𝑥 ∈  𝑅𝑗𝑚)        
𝐽𝑚
𝑗 = 1  (5.8) 

Where 𝜗 is the learning rate. A small learning rate reduces the effect each step has on the final 

prediction and this improves the accuracy in the long run. 𝐹𝑀(𝑥) is estimated iteratively (30). 

In this study, GBM was implemented using the “GBM” package in R Studio software (26). 

XGBoost   XGBoost is an ensemble method that is built upon iteratively growing weak 

learners (i.e., low-depth decision trees) to predict the dependent variable �̂�𝑖  based on 𝐾 

additive functions. Given a dataset with 𝑛 EMS runs and independent variables 𝑥𝑖 with m 

features ( 𝑥𝑖 ∈  ℝ
𝑚) and their corresponding dependent variable  𝑦𝑖 (𝑦𝑖 ∈ ℝ).

�̂�𝑖  =  ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘 = 1 , 𝑓𝑘 ∈  𝐹        (5.9) 

Where 𝑓𝑘 is an independent tree structure with leaf scores in the space of trees (𝐹). The final 

prediction is equal to summing up the score in the corresponding leaves. The goal is to 

minimize objective function (equation 5.10) at iteration 𝑡: 
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ℒ(𝑡) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)𝑛

𝑖 = 1 + 𝑓𝑡(𝑥𝑖)) +  Ω(𝑓𝑡)      (5.10) 

Where Ω(𝑓)  =  𝛶𝑇 + 
1

2
𝜆‖𝜔𝑖‖

2

Where 𝑙 is a differentiable convex loss function that measures residuals, 𝑇 is the number of 

terminal leaves in a tree, 𝛾 is a user-definable penalty meant to encourage pruning. 
1

2
 𝜆‖𝜔𝑖‖

2

is known as a regularization term, which helps to smooth the learning process to avoid 

overfitting. The main difference between GBM and XGBoost is in regularization term. Using 

second-order Taylor approximation at step 𝑡 and simplified objective function results in 

equation 5.11. 

ℒ̃(𝑡)   = ∑ [𝑛
𝑖 = 1 𝑔𝑖 𝑓𝑡(𝑥𝑖)  + 

1

2
 ℎ𝑖𝑓𝑡

2(𝑥𝑖)]  +  Ω(𝑓𝑡)      (5.11) 

In simple terms, every single low-depth decision tree is generated to minimize a loss function. 

In each stage, the estimation allocates more weight to the runs that were incorrectly predicted 

by preceding trees. The ultimate model outcome is collectively determined by the results of all 

the developed trees (T. Chen & Guestrin, 2016). In this study, XGBoost was implemented 

utilizing the “XGboost” package in R Studio software (Team, 2015). 

5.3.3 Results 

In this section, the results of implementing the models are presented. Bagged tree, RF, GBM 

and XGBoost, as well as a regression method, were implemented and compared to predict 

EMS response time. Comparisons were conducted to find the most successful 

approach. Figure 5.4 shows the comparison between the EMS response time and the 
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predicted response times using bagged tree, RF, GBM and XGBoost on the test set to evaluate 

the performance of trained models. 

A B

C D

E
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Figure 5.4. EMS response time vs predicted response time (A) Bagged tree (B)  RF (C) GBM (D) 
XGBoost (E) Linear Regression 

To compare the methods, Root Mean Square Error (RMSE), R-squared, adjusted R-squared 

and AIC were utilized as criteria. After running the model and assessing the predicted response 

times for each record in the test set, RMSE assessed them based on the difference between 

the results of the model response times and actual response times (i.e., residuals) for all models. 

Furthermore, R-squared, adjusted R-squared and AIC were calculated using the residual sum 

of squares, total sum of squares, number of independent variables and number of test set 

records. 

Table 5.7. Comparison between the machine learning models 

Models Bagged Tree RF GBM XGBoost Linear 
Regression 

RMSE 207.92 204.00 217.43 238.62 222.12 
R-Sq 44.19 50.72 44.27 34.51 43.95 
Adj R-Sq 41.14 48.03 41.22 30.93 41.20 
AIC 3601.85 3589.26 3629.94 3692.88 3645.52 

According to Table 5.7, RF was superior to other approaches in describing EMS response 

time. Therefore, RF results were used for further assessment of influential factors on EMS 

response time.  Figure 5.5 shows the ranks of important factors in describing response time. 
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Figure 5.5. Most influential factors on EMS response time (RF results) 

5.3.4 Discussion 

The distance between the dispatch center and the event location was expected to be the most 

influential factor, which the findings of this study confirmed. Figure 5.6A shows the direct 

relationship between EMS travel distance and response time. Police/EMS location 

discrepancy was found as the second most influential factor. Increasing the distance between 

the locations resulted in increasing the EMS response time (Figure 5.6B). The location of the 

event is reported by the caller who could be a bystander, an individual involved in the crash, 

or authorities near the scene. Since police officers file the report on the crash scene, the 

authors believe crash locations on police-reported data are more likely to be accurate than 

EMS CAD data, which is the location reported by the caller. The results indicate reporting 

inaccurate locations could cause confusion for dispatchers and hinder first responders from 

providing aid to the injuries as soon as possible. 
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Figure 5.6. The relationship between response time and (A) EMS travel distance (B) Police/EMS 
location discrepancy 

A B

A
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The third most important variable was crash type in the RF model.  According to Figure 

5.7(A), it is discernible that in some crash types the model performed better; for instance, crash 

types of single vehicle, sideswipe – opposite direction and rear to rear were more successful in 

predicting response time compared to opposing left turn and rear-end. Moreover, according 

to Figure 5.7(B), crash types of single vehicle and sideswipe – opposite direction showed faster 

response times compared to rear-end and sideswipe – same direction. 

Based on the results of Figure 5.8(B), as expected, the morning and evening 

peaks show higher response times. Figure 5.8(A) indicates that early morning was 

less successful than other times of day in predicting response time, probably because early 

mornings have more uncertainty in terms of fleet management and are harder to predict. 

Figure 5.7. (A) Response time vs. RF predicted response time for different crash types (B) response 
time box and whisker plot in different crash types 

B
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Figure 5.8. (A) Response time vs. RF predicted response time for different time of days (B) 
response time box and whisker plot in different time of days 

On average, the response time reduced slightly as the number of injuries involved in a crash 

increased, shown in Figure 5.9(B). From a model fit perspective, Figure 5.9(A) shows that 

there is not a discernable difference in predicting EMS response time based on the number of 

injuries in a crash. 

A

B
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Figure 5.9. (A) Response time vs. RF predicted response time for different number of injuries (B) 
response time box and whisker plot in different number of injuries 

The sixth variable was injury location. Injury location in police-reported crash data provide 

information about the part of the body that got injured in the crash. Figure 5.10 (B) shows the 

lower response time to injuries involving the legs and feet or the back. It seems that more 

apparent injuries resulted in faster response times. Any discernible differences are not 

recognized among the prediction of different injury locations (Figure 5.10 (A)). 

A

B
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Figure 5.10. (A) Response time vs. RF predicted response time for different injury location (B) 
response time box and whisker plot in different injury location 

The models resulted in some additional compelling findings. Injury severity was not found 

among high-importance factors in the model results. However, according to the outcome, 

crash types that were typically more severe (i.e., single vehicle) had slightly faster response. 

Surprisingly, disposition with light/siren was not among the high-importance factors in the 

RF model. Additionally, some studies found the impact of light/siren to increase the risk of 

emergency vehicle crashes (Bertholet et al., 2020; Watanabe et al., 2019). Adding these findings 

to the previous studies' results calls the functionality of light/siren in emergency vehicles into 

A

B
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question and suggest that further research should be done to identify best practices for their 

use. EMS priority also did not have a significant impact on response time. However, previous 

studies cast doubt about the accuracy of priority assigned by the dispatcher based on 

emergency medical technicians' evaluations on the scene (Palumbo et al., 1996; Slovis et al., 

1985). 

5.3.5 Conclusion 

This study explores factors influencing EMS response time to crashes in Jefferson County, 

KY. Minimizing EMS response time was identified as one of the factors that can save lives 

and reduce injury severity in crashes due to the provision of immediate medical care. EMS 

travel distance, as expected, was identified as the most important factor in EMS response time. 

Police/EMS location discrepancy, crash type, time of day, number of injuries and injury 

location were also found to influence EMS response time. The priority of the run and 

disposition with/without light/siren were not found among top important factors. 

Implementation of the study outcome in practice could help EMS to reach its goal of 

providing immediate care for injuries sustained in motor vehicle crashes. Discrepancies 

between EMS locations and crash report location suggest action is needed to improve the 

accuracy of the crash locations reported to EMS. Applying new emergency communication 

technology in the field of EMS could be a practical option to reduce errors. Considering the 

impact of time of day on EMS response time, optimizing ambulances’ fleet management may 

help to provide shorter response times by EMS are closer to likely emergency scenes. A 

thorough investigation is needed to determine whether using light/siren in emergency vehicles 

is beneficial since, based on the findings of this paper, light/siren did not play a significant 
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role in providing a faster response. Also, the method to assign high/low priority emergency 

events should be reconsidered as it does not show a statistically significant difference in EMS 

response time for crashes. 

5.4 Injury Severity Misclassification: Police Officers vs. 

Emergency Physicians Evaluation, What Drives the 

Difference?6 

5.4.1 Introduction 

Several issues highlight the importance of accurate crash injury reporting. First, inaccurate data 

may result in the wrong estimate of crash-related safety model parameters, and consequently, 

can lead to insufficient safety policies and inappropriately allocated road safety investments. 

Moreover, incorrect evaluation of injuries on the scene, especially underestimation of non-

apparent injuries such as internal injuries and low visibility injuries, may result in a life-

threatening injury not being treated. The results of these studies suggest that further 

investigation to distinguish factors associated with inaccurate crash severity classifications may 

help to address approaches to field evaluations. 

While these issues are prevalent in crash data, police records are currently the most 

comprehensive source of information for monitoring road safety. In this regard, evaluating 

the misclassification records and identifying the influencing factors on the discrepancy of 

injury severity judgment is an important step to improve the quality. The objective of this 

chapter is to identify factors that contribute to the misclassification of injury severity in crash 

6 Sections from “Hosseinzadeh, A., Kuzel, A., Kluger, R. and Orthober, R. (2022). Injury Severity 
Misclassification: Police Officers vs. Emergency Physicians Evaluation, What Drives the Difference? 
Transportation Research Board” included in this sub-chapter. 
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reports and suggest focus areas where officer training may improve reporting quality. To 

accomplish those objectives, a panel of Emergency Department (ED) physicians, including 

medical doctors (MD) and doctors of osteopathic medicine (OD) reviewed detailed medical 

records of trauma registry patients that were successfully linked to a police report, and 

classified the severity of the injury according to KABCO scale definitions. To investigate the 

factors influencing the misclassification of injury severity, an ordered Probit model was 

employed. The contributing factors investigated in the model included individual-related, 

crash-related and trauma-related factors. 

5.4.2 Method 

Data Linkage 

This study utilized linked data of police-reported crash data from the Kentucky State Police, 

emergency medical services (EMS) patient care reports from Louisville Metro Government’s 

Department of Emergency Services and trauma registry data from the University of Louisville 

Hospital (ULH), the only Level One Trauma Center in Jefferson County, Kentucky. The 

merits of using the linked data were shown in crash analysis in some recent research 

(Hosseinzadeh et al., 2020; Ryan et al., 2020; Tainter et al., 2020). This data set analyzed 93 

individuals who were involved in the motor vehicle crash, were transported by EMS to ULH 

and included in the trauma registry. The data included all types of road users and all types of 

crashes. 

Within this dataset, inconsistency in injury classification can be seen by comparing the trauma 

records and the dispositions of the patients. Figure 5.11 compares the distribution of the 

severity of injuries sustained by using the crash severity, and Injury Severity Score (ISS)- a 

quantitative measurement-based value of the severity of injuries sustained in a traumatic event. 
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ISS uses Abbreviated Injury Scale (AIS) to categorize the severity of an injury by calculating 

the sum of squares of the three highest AISs.  The ISS ranges from 1 to 75 (Greenspan et al., 

1985). Based on Figure.5.11, 65% (31% ISS8-15 and 34% ISS1-7) of A-level injuries according to 

crash records had an ISS below 16, which classifies as minor injuries. 

Figure 5.11. Distribution of ISS by KABCO injury severity 

Data Preparation 

The police-reported variables were used to identify factors that led to discordance between 

two injury severity ratings are presented in Table 5.8. 

Table 5.8. Individual-related and crash-related explanatory variables in police-reported data 

Variable Levels/ interval 

Individual-related Gender (1) Female 

(2) Male 

Race (1) Non-white 

(2) White 
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Age [14 – 90] 

Crash-related Time of day 1. Day

2. Night
Weekend 1. No

2. Yes
Number of injuries 1. 1- 2

2. 2.   3+ 
Crash type 1. Angle

2. Head on

3. Single vehicle

4. Others

In our study, a hypothesis was head injuries, internal injuries and the visibility of injuries were 

all likely to contribute to the misclassification of injuries in the field. These factors were 

quantified in the data by manually reviewing the injury disposition that was reported by the 

physician at ULH in the patient’s medical record. Signs of both head and internal injuries 

among patients were tracked from the trauma registry data based on the patients’ charts. Table 

5.9 lists the specific injury dispositions that were mapped to head and internal injury indicators. 

Table 5.9.  Descriptions of head injury and internal injury 

Variables Description 

1 Head Injury head injury in trauma record: 

concussion neurological deficits 

GCS 14 or lower lacerations to the head 

positive loss of consciousness cerebral hemorrhage 

subdural hematoma cerebral contusions 

skull fracture diffuse axonal injury 

orbital floor fracture orbital wall fracture 

subarachnoid hemorrhage large scalp hematomas 

interventricular hemorrhage epidural hematoma 

2 Internal Injury internal injury in trauma record: 

kidney laceration adrenal gland hemorrhage 

subdural hematoma interventricular hemorrhage 

liver laceration epidural hematoma 

bowel perforation subarachnoid hemorrhage 

pneumomediastinum open book pelvic fracture with hemorrhage 
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An injury visibility factor was also proposed to describe the external manifestations of injuries 

sustained in motor vehicle collisions. The injury visibility factor was used to quantify the 

severity of the visible injuries sustained and to determine if officers on the scene of a motor 

vehicle crash rated injuries based on external injury visibility. The score was limited to charted 

injuries information from EMS records as well as documents from assessment within the 

trauma center. Those individuals with a lack of abrasions, lacerations, contusions, or blood 

present at the crash scene were afforded an injury visibility factor rating of 1 as there were no 

apparent injuries at the scene of the collision. The scoring scale increased based on 

documented external injuries, with 4 being the highest rating. An individual with a large 

laceration or multiple lacerations on multiple extremities, open fractures, joint instability, or 

evidence of contusions behind the ear or around the eye was afforded a score of 4. While the 

injury visibility rating is not an exact quantitative measurement, and much of the accuracy is 

limited to the charting performed by EMS or trauma center staff, it provided a rudimentary 

index to estimate the extent of external injuries that may influence an officer in their scoring 

of injury severity. Table 5.10 includes the criteria for rating the proposed injury visibility factor. 

Table 5.10. Description of injury visibility factor levels 

Levels Description 

level 1 No abrasions, lacerations, contusions, or blood present on the scene. 

level 2 Small or mild abrasions, lacerations or contusions. No signs of seatbelt sign (contusions 

to the abdomen or on the neck seen in the distribution of the seatbelt. 

hemothorax mesenteric tear or laceration 

spleen laceration diaphragm tear, laceration or rupture 

pneumothorax bowel or mesentery hematoma 

hemopneumothorax cerebral hemorrhage 

lung laceration pancreatic rupture or laceration 

hemomediastinum 
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level 3 Multiple lacerations, abrasions, and contusions. Seatbelt signs present. Moderate bloody 

appearance on face and extremities. 

level 4 Large laceration and/or multiple lacerations on multiple body systems. Open fracture or 

obvious extremity deformity. Joint instability observed. Evidence of basilar skull fracture 

(contusions behind the ear or around the eye). 

Physician Survey 

Injury severity was evaluated through a survey by a panel of six emergency physicians in an 

effort to capture variance in the opinion surrounding injury severity. Physicians were provided 

with standard KABCO definitions from the Model Minimum Uniform Crash Criteria 

(MMUCC) (NHTSA, 2017) and verbal instructions to rate the severity of each injury in the 

linked dataset on the KABCO scale based on the charted diagnosis from trauma records. After 

the survey, each injury had injury ratings from six emergency physicians as well as the official 

rating from the police report. 

The Discrepancy in Injury Severity Evaluation Modeling 

Discrete choice models for estimating ordinal response data have been applied in exploring 

injury severity in the traffic safety area (Kockelman & Kweon, 2002). In this application, the 

difference in occupant injury severity between physician reviews and officer evaluations in 

police data was modeled using the ordered Probit model. Underlying the indexing in such 

models is a latent but continuous descriptor of the response. In the ordered Probit model, the 

random error associated with this continuous descriptor is assumed to follow a normal 

distribution. Equation 5.12 shows the ordered Probit model. 

𝑇𝑛
∗ = 𝛽′𝑧𝑛  + 𝜀𝑛               (5.12) 

Where 𝑇𝑛
∗ is the latent and continuous measure of the difference in the evaluated injury severity

of injured individual n in a crash, 𝑧𝑛 is a vector of explanatory variables describing the 
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characteristics of individuals characteristics, crash features and detailed trauma registry data. β 

is a vector of parameters to be estimated, and 𝜀𝑛 is a random error term that is assumed to 

follow a standard normal distribution (Greene, 2000). 

The mode of evaluated injury severities of physician surveys was used in this study. Physicians-

surveyed injury severity ranged from 1 (=K) to 4 (=C), and police-reported injury severity 

ranged from 1 (=K) to 5 (=O). The difference (physician injury severity – police-reported 

injury severity) ranged from -3 to 1 in the mode of physician survey. 

The observed and coded discrete injury severity variable, 𝑇𝑛, is determined as follows (equation 

5.13): 

𝑇𝑛  = {0 𝑖𝑓 − ∞ ≤  𝑇𝑛
∗  ≤  𝜇1  (𝑃𝐸 −  𝑂𝐸)  =  {−2,−3}          (5.13) 

1 𝑖𝑓  𝜇1 ≤ 𝑇𝑛
∗  ≤  𝜇2  (𝑃𝐸 −  𝑂𝐸)  =  −1

2 𝑖𝑓  𝜇2 ≤ 𝑇𝑛
∗  ≤  𝜇3  (𝑃𝐸 −  𝑂𝐸) =  0

3 𝑖𝑓  𝜇3 ≤ 𝑇𝑛
∗  ≤  ∞  (𝑃𝐸 −  𝑂𝐸)  =  1}

Where the 𝜇𝑖 represent threshold to be estimated, PE represents the physician evaluation of 

injury severity in the survey and OE shows the reporting officer evaluation of injury severity. 

For more information on the ordered Probit model specification, see (Greene, 2000). It’s 

necessary to specify that only the variables of interest were kept in the analysis due to a limited 

number of observations. Even if the number of records was higher, it was not feasible to ask 

physicians to specifically go through each record’s detailed information and rate the severity 

while maintaining consistency and quality reviews. 

5.4.3 Results 
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The dependent variable was the difference between the mode of evaluated injury severity 

among physicians and police-reported injury severity. Table 5.11 shows the frequency of each 

observed discrepancy between the officer evaluation and mode of physician evaluation. 

Table 5.11. Frequency of injury severity mode differences among physicians 

PE-OE 

-2 & -3 -1 0 1 2 & 3 

13 35 35 10 0 

Table 5.12. Ordered Probit model results for the difference in injury severity 

Table 5.12 presents the ordered Probit model results. The coefficients, significance, odds ratio, 

and 95% confidence interval are also included in Table 5.11. The results indicate age, internal 

injury, and injury visibility factor were significant in misclassification. The negative sign on 

Variable Value SD t-value OR OR Lower 

bound 

OR 

upper 

bound 

Gender -0.032 0.248 -0.132 0.967 0.594 1.574 

Age -0.014 0.006 -2.195 0.985 0.972 0.998 

Race - white 0.176 0.271 0.650 1.192 0.701 2.03 

Crash type - head on -0.179 0.348 -0.514 0.835 0.422 1.653 

Crash type - single vehicle 0.154 0.302 0.510 1.167 0.645 2.114 

Crash type - others 0.026 0.375 0.070 1.026 0.491 2.142 

Time of day - night -0.091 0.252 -0.360 0.912 0.555 1.498 

Weekend - yes 0.074 0.266 0.280 1.077 0.639 1.816 

Number of Injuries – 2+ 0.169 0.287 0.590 1.185 0.674 2.083 

Internal injury - yes -0.486 0.269 -1.711 0.614 0.361 1.041 

Head injury - yes -0.009 0.288 -0.032 0.990 0.563 1.743 

Injury visibility - linear -0.587 0.342 -1.115 0.555 0.282 1.084 

Injury visibility - quadratic -0.215 0.285 -0.753 0.806 0.459 1.409 

Injury visibility - cubic -0.410 0.255 -1.607 0.663 0.401 1.092 

Thresholds 

𝝁𝟏 -1.718 0.513 -3.348 

𝝁𝟐 -0.499 0.488 -1.863 

𝝁𝟑 0.830 0.502  1.654 

Residual deviance 217.14 

AIC 251.14 

LL -108.57 

Likelihood odds ratio (𝝆𝟐) 0.074 
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coefficients indicates physicians viewed those factors as contributing to injuries that are more 

severe than the officers (PE > OE), which are cases of underestimation among trauma 

patients. All three of the statistically significant factors indicated that police were likely to 

underestimate the trauma injuries.  Thresholds reported in the model were found to be 

significant in all classes. Likelihood odds ratio indicates the ratio of maximum likelihood with 

the explanatory variable set divided by the maximum likelihood without the explanatory 

variable set. It’s important to note that the results are only informative among injuries that 

warranted inclusion in the ULH Trauma Registry. In other words, this model has identified 

factors that may lead to underestimations of severity, which may extend to the entire 

population of crash-involved individuals, but the rate at which this occurs cannot be 

determined here. 

5.4.4 Discussion and Practical Applications 

According to Table 5.12, age was found to be a significant factor in injury severity difference . 

The outcome shows that as the age increases, police officers were more likely to underestimate 

injury severity showing that crashes may lead to more complex and unknown injuries among 

older people. Another possibility could be the fact that older individuals are more prone to 

have a preexisting health condition, which exacerbates their situations later in the ED when 

their diagnoses are entered by trauma center staff. This result is in contrast with literature that 

found officers’ overestimation of 65 years old and older adults in Hong Kong (Tsui et al., 

2009) and New Zealand (McDonald et al., 2009), though differences in officer field training, 

cultural differences or other factors between the US and those countries may be the root cause 

of those differences. 
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In addition, reports of internal injuries in hospital records were associated with 

underestimation of injuries. It seems that officers were not able to identify cases with likely 

internal injuries among the cases evaluated. The presence of internal injuries, on average, is 

38.6% more likely to lead police officers to underestimate injury severity in this study. Internal 

injury is not generally available as a factor in hospital data, and it has not been considered as a 

contributing factor in other crash-hospital data linkage studies. Therefore, this finding may be 

extremely valuable and warrants further investigation, particularly surrounding how officers 

can be trained to recognize signs of internal injury. 

The injury visibility factor was found as an index in underestimating injury severity. 

According to the outcome, the more visible injuries are more likely to result in officers’ 

underestimation of injury severity. It is unclear why this is the case, but perhaps officers are 

too conservative about overestimating injuries or maybe the blood and/or swelling makes it 

hard to identify the severity of the injury. Again, the proposed injury visibility factor is limited 

to charting by hospital emergency personnel. Further study is needed to understand what 

visual cues officers may be using at the scene when filing injury information. 

Neither crash type nor the number of injuries of the crash was found to be significant 

factors. Although there was a presumption that more severe crash types (e.g., single-vehicle) 

and more injuries sustained from a crash (e.g., two and more) have an impact on officers’ 

misjudgment, the results did not show a significant relationship between them. The officer 

training surrounding the typical injuries based on crash type appears to be sufficient. Time of 

the day and weekday/weekend were the other two variables that did not show a significant 

effect on injury severity discordances in this study. 
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5.4.5 Conclusion, Limitations, and Future Work 

This chapter aims to investigate the factors associated with injury severity discrepancy in motor 

vehicle crashes. Findings indicate that officers tended to underestimate injuries specifically 

associated with high injury visibility, increasing age, and the presence of an internal injury. 

This study has several limitations that can be addressed with further research. Small sample 

size may influence the results. Specifically, the physician survey would be difficult to 

implement with a larger sample since it required a review of individual records and protected 

health information. Additionally, it would require a much larger sample of linked records with 

charting that met the standards of a level 1 trauma center. The other limitation is associated 

with taking the difference between physician and police-reported injuries. The difference 

implies that there is an equal “distance” between each level on the KABCO scale. However, a 

-1 value of the response variable could be an officer labeling B on a Physician-labelled A crash, 

or it could be an officer labeling C on a Physician-labelled O crash. Further research should 

also be devoted to developing field tests that support officer injury assessment. Also, results 

suggest that injury visibility is important and therefore should be investigated further for the 

purposes of reporting. 
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CHAPTER 6 

SUMMARY, CONTRIBUTIONS, AND FUTURE DIRECTIONS 
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In this dissertation, a framework was developed to link crash-related datasets. Furthermore, 

the linked dataset, which is not available traditionally and is not commonly used for safety 

analysis, was used for ad-hoc analysis. This dissertation aims to propose a method for linking 

crash-related datasets, examining the adaptability of the proposed method on another dataset, 

comparing different linkage methods, and providing some showcases of what the linked 

dataset can add to safety research. This dissertation suggests a holistic research approach 

regarding improving safety analysis by incorporating several crash-related datasets and how 

crash outcome assessment can benefit from a linked dataset. Here each chapter is adapted 

based on the available data, but the theme is transferable to other crash-related datasets, other 

geographical contexts, and other applications. 

In chapter 2, a review of the existing literature was conducted, and gaps were 

highlighted. In chapter 3, a heuristic framework is developed to match EMS run reports to 

crashes through time, location, and other indicators present in both datasets. Types of matches 

between EMS and crashes were classified. To investigate the fidelity of the matching approach, 

a manual review of a sample of data was conducted. A comparative bias analysis was 

implemented on several key variables. 72.2% of EMS run reports matched to a crash record, 

and 69.3% of trauma registry records matched with a crash record. Females, individuals 

between 11 to 20 years old, and individuals involved in single-vehicle or head-on crashes were 

more likely to be present in linked data sets. Using the linked data sets, relationships between 

EMS response time and reported injury in the crash report and between police-reported injury 

and injury severity score was examined. Linked crash - EMS CAD – PCR – trauma registry 

data provides a valuable opportunity to evaluate the impact of prehospital care and emergency 
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department care on crash outcomes. In general, policy steps could be taken to require cross-

reporting and linkage of the data sets as the events occur to better monitor outcomes of injury 

crashes without requiring post hoc linkage. This method can also realistically be integrated 

into a tool or software to undergo record linkage automatically. In chapter 4 Bayesian record 

linkage method was implemented and the results were compared with the already developed 

heuristic algorithm. The linkage rate was compared, and consistent and inconsistent pairs 

matches were identified. 

Chapter 5 highlights the applications of the linked data. Sub-chapter 5.2, utilized the 

linked data of police-reported crash data and EMS runs, including 2480 crash injuries that 

transferred to hospital. A random-effects ordered probit approach was implemented to 

identify effective factors on crash injury severity. Three models of (1) crash-related variables, 

(2) crash-related and EMS times and (3) crash-related, EMS times and interaction effects were 

estimated. The outcome could not find the impact of faster EMS times on injury severity. The 

highest scene time and the highest transport to hospital time categories resulted in a less severe 

outcome. Based on the outcome, the authors did not find a significant relationship between 

EMS times and injury severity. Adding EMS time and interaction effects of EMS times, based 

on different body injury locations to the model, improved the model quality marginally. 

In sub-chapter 5.3, EMS response time was modeled and compared using four 

machine-learning approaches, as well as regression analysis. The most successful approach in 

terms of root means square error and goodness of fit was chosen to represent contributing 

factors. The results show variables such as emergency medical services travel distance, the 

discrepancy between crash location reported in police and emergency medical services data, 

and crash type were important factors in EMS response time. The study outcome can be used 
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to guide practice and help EMS reduce the time to care for individuals injured in motor vehicle 

crashes. EMS travel distance, as expected, was identified as the most important factor in EMS 

response time. Police/EMS location discrepancy, crash type, time of day, number of injuries, 

and injury location were also found to influence EMS response time. The priority of the run 

and disposition with/without light/siren was not found among the top important factors. 

In sub-chapter 5.4, The discrepancy between police-reported injury severities and 

physicians’ evaluations of corresponding trauma records was modeled. The trauma data were 

reviewed and classified by a panel of emergency physicians. An ordered probit model was used 

to model factors contributing to misclassification between police reports and emergency 

physicians. According to the results, age, internal injury, and injury visibility rating were found 

to be contributing factors to injury severity discrepancy. Internal injury and injury visibility 

ratings were among the trauma-related factors that were developed to explore their impact on 

injury severity discrepancy. Findings indicate officers tended to underestimate injuries 

associated with high injury visibility, increasing age, and the presence of an internal injury, 

specifically among trauma patients. 

In summary, in this dissertation, an implementation of crash-related dataset was 

conducted as well as showcases of how and what analyzing these datasets can add to safety 

research. The first step was conducting the linkage. Since various agencies are responsible for 

gathering data, common identifiers are not available in the dataset; hence most of the times a 

deterministic linkage is not applicable. Therefore, a heuristic linkage framework or a 

probabilistic approach such as the Bayesian approach can be used for data linkage purposes. 

The next step is making sure that the linked data is a representative sample of each individual 

dataset to make sure the inferences are not biased. In chapter 3 of this dissertation, a 
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descriptive exploration was performed to ensure an unexpected bias was not imposed on the 

dataset. For instance, although about 65% of the crash-person records are no injury crashes, 

only 10% of the records ended up in the dataset. However, it’s not an unexpected bias since 

crashes with less severity has lower chance to be available in EMS runs data and trauma 

registry. As the final step of this section, the proposed heuristic algorithm expanded and 

adapted across the state of Kentucky to examine the adaptability. There are three possible 

future directions for this section: first, incorporating more data sources such as roadway 

inventories, traffic operations data (e.g., Waze), EMS dispatch data, Census data, medical 

billing data and driver/vehicle records in the linkage process. Second, joint modeling of 

selectivity bias among the linked dataset and individual datasets to determine which variables 

are significantly influential in leading biased datasets. Third, spatial analysis of county-level 

linkage rate and exploring associated factors. The next chapter examined the fidelity of linkage 

by comparing the results of the heuristic algorithm with the outcome of implementing the 

Bayesian probabilistic record linkage. 

The dissertation followed by the implications of the linked datasets to answer research 

questions that were not possible to answer without the linked dataset. The association between 

injury severity and EMS response time was investigated by analyzing police-reported crash 

data – EMS CAD - PCR data. Further exploration revealed the part of the injured body plays 

a role in the association of injury severity and EMS response time.  The second question of 

interest was exploring the factors impacting EMS response time, including the demographics, 

weather-related factors and crash characteristics. As future steps, spatial analysis of EMS 

response time and transport time and modeling hospital coverage area and reasons behind 

choosing the facilities can be considered. 
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The dissertation was followed by an investigation on misclassification of injury severity 

according to crash rating and emergency physician survey based on the detailed information 

in trauma registry data. The factors affecting the misclassification were investigated. However, 

it’s not possible to  distinguish the misclassification is a result of police officers’ over/under-

estimation or the status of the injured individuals changed during the transfer to hospital. 

Future studies can incorporate more data sources to differentiate between officers’ 

misjudgment and changing the status. For example, in Kentucky state data there is a field that 

states how the status of the injured individual has changed during the transport and upon 

arrival to the hospital. 

Linking the crash-related datasets unlock incredible potential for safety analysis. 

Linking datasets have not been extensively used or involved in safety narratives. In this 

dissertation, we elaborate on a data linkage and showcase the linkage application. In general, 

policy steps could be taken to require cross-reporting and linkage of the data sets as the events 

occur to better monitor outcomes of injury crashes without requiring post-hoc linkage. 
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