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ABSTARCT 

 
COMPUTER AIDED DIAGNOSIS SYSTEM FOR BREAST CANCER USING DEEP 

LEARNING 

 

Asma Baccouche 

 

July 25, 2022 

 
The recent rise of big data technology surrounding the electronic systems and developed toolkits 

gave birth to new promises for Artificial Intelligence (AI). With the continuous use of data-centric systems 

and machines in our lives, such as social media, surveys, emails, reports, etc., there is no doubt that data has 

gained the center of attention by scientists and motivated them to provide more decision-making and 

operational support systems across multiple domains. 

With the recent breakthroughs in artificial intelligence, the use of machine learning and deep 

learning models have achieved remarkable advances in computer vision, ecommerce, cybersecurity, and 

healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists and doctors 

for medical imaging analysis, which has remained the essence of the visual representation that is used to 

construct the final observation and diagnosis. 

Medical research in cancerology and oncology has been recently blended with the knowledge gained 

from computer engineering and data science experts. In this context, an automatic assistance or commonly 

known as Computer-aided Diagnosis (CAD) system has become a popular area of research and development 

in the last decades. As a result, the CAD systems have been developed using multidisciplinary knowledge 

and expertise and they have been used to analyze the patient information to assist clinicians and practitioners 

in their decision-making process. Treating and preventing cancer remains a crucial task that radiologists and 

oncologists face every day to detect and investigate abnormal tumors. Therefore, a CAD system could be 

developed to provide decision support for many applications in the cancer patient care processes, such as 

lesion detection, characterization, cancer staging, tumors assessment, recurrence, and prognosis prediction.
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Breast cancer has been considered one of the common types of cancers in females across the world. 

It was also considered the leading cause of mortality among women, and it has been increased drastically 

every year. Early detection and diagnosis of abnormalities in screened breasts has been acknowledged as the 

optimal solution to examine the risk of developing breast cancer and thus reduce the increasing mortality 

rate. 

Accordingly, this dissertation proposes a new state-of-the-art CAD system for breast cancer 

diagnosis that is based on deep learning technology and cutting-edge computer vision techniques. 

Mammography screening has been recognized as the most effective tool to early detect breast lesions for 

reducing the mortality rate. It helps reveal abnormalities in the breast such as Mass lesion, Architectural 

Distortion, Microcalcification. With the number of daily patients that were screened is continuously 

increasing, having a second reading tool or assistance system could leverage the process of breast cancer 

diagnosis. Mammograms could be obtained using different modalities such as X-ray scanner and Full-Field 

Digital mammography (FFDM) system. The quality of the mammograms, the characteristics of the breast 

(i.e., density, size) or/and the tumors (i.e., location, size, shape) could affect the final diagnosis. Therefore, 

radiologists could miss the lesions and consequently they could generate false detection and diagnosis. 

Therefore, this work was motivated to improve the reading of mammograms in order to increase the accuracy 

of the challenging tasks. 

The efforts presented in this work consists of new design and implementation of neural network 

models for a fully integrated CAD system dedicated to breast cancer diagnosis. The approach is designed to 

automatically detect and identify breast lesions from the entire mammograms at a first step using fusion 

models’ methodology. Then, the second step only focuses on the Mass lesions and thus the proposed system 

should segment the detected bounding boxes of the Mass lesions to mask their background. A new neural 

network architecture for mass segmentation was suggested that was integrated with a new data enhancement 

and augmentation technique. Finally, a third stage was conducted using a stacked ensemble of neural 

networks for classifying and diagnosing the pathology (i.e., malignant, or benign), the Breast Imaging 

Reporting and Data System (BI-RADS) assessment score (i.e., from 2 to 6), or/and the shape (i.e., round, 

oval, lobulated, irregular) of the segmented breast lesions. 
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Another contribution was achieved by applying the first stage of the CAD system for a retrospective analysis 

and comparison of the model on Prior mammograms of a private dataset. The work was conducted by joining 

the learning of the detection and classification model with the image-to-image mapping between Prior and 

Current screening views. 

Each step presented in the CAD system was evaluated and tested on public and private datasets and 

consequently the results have been fairly compared with benchmark mammography datasets. The integrated 

framework for the CAD system was also tested for deployment and showcase. The performance of the CAD 

system for the detection and identification of breast masses reached an overall accuracy of 97%. The 

segmentation of breast masses was evaluated together with the previous stage and the approach achieved an 

overall performance of 92%. Finally, the classification and diagnosis step that defines the outcome of the 

CAD system reached an overall pathology classification accuracy of 96%, a BIRADS categorization 

accuracy of 93%, and a shape classification accuracy of 90%. Results given in this dissertation indicate that 

our suggested integrated framework might surpass the current deep learning approaches by using all the 

proposed automated steps. Limitations of the proposed work could occur on the long training time of the 

different methods which is due to the high computation of the developed neural networks that have a huge 

number of the trainable parameters. 

Future works can include new orientations of the methodologies by combining different 

mammography datasets and improving the long training of deep learning models. Moreover, motivations 

could upgrade the CAD system by using annotated datasets to integrate more breast cancer lesions such as 

Calcification and Architectural distortion. 

The proposed framework was first developed to help detect and identify suspicious breast lesions in 

X-ray mammograms. Next, the work focused only on Mass lesions and segment the detected ROIs to remove 

the tumor’s background and highlight the contours, the texture, and the shape of the lesions. Finally, the 

diagnostic decision was predicted to classify the pathology of the lesions and investigate other characteristics 

such as the tumors’ grading assessment and type of the shape. 

The dissertation presented a CAD system to assist doctors and experts to identify the risk of breast 

cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep 

learning, and image-to-image translation for a biomedical application.
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CHAPTER I 

INTRODUCTION 

 

A. Breast Cancer 

In recent decades, cancer diseases have occurred in many cases worldwide and the global number 

is predicted to grow to 27.5 million new cases by 2040 [1]. Cancer is described by the uncontrolled growth 

of abnormal cells within the body. There are quite 100 different types of cancer diseases which will occur 

anywhere within the body, but they are mainly described in five categories: carcinomas (i.e., skin and tissues 

affecting the inner organs), sarcomas (i.e., muscles, bones, or cartilage), leukemia (i.e., blood and bone 

marrow), lymphomas (i.e., immune system), and central nervous system (i.e., brain and spinal cord) [2]. Most 

commonly, lung cancer and prostate cancer occur in men, and breast cancer occurs in women. 

Over years, breast cancer has remained the foremost frequently diagnosed non-skin cancer and 

therefore the leading explanation for death among females with a rate of 32% of total cancer cases [3]. 

According to the American Cancer Society, it is estimated that over 290,000 new cases will be reported, and 

43,780 women will die from breast cancer in 2022 [4]. Early detection and diagnosis of breast cancer is the 

most effective way to treat this disease and reduce the mortality rate [5]. 

Breast cancer starts at the breast and replicates abnormal cells into lumps, often called tumors, as 

shown in Figure 1. Certain factors can increase the risk of developing the disease like aging and genetics [6]. 

The tumor can be classified as malignant or benign. While benign tumors are considered non-cancerous, the 

risk of malignant tumors must be studied before being spread into other health organs such as bones, lungs, 

liver, and adrenal gland [7]. Consequently, early detection and diagnosis of breast cancer has become required 

to reduce the high mortality rate among women; thus, diagnostic systems have been studied to help 

radiologists with more precise analysis [8-11]. 
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FIGURE 1: Breast composition in case of metastatic breast cancer 

Source: https://www.cancersupportcommunity.org/metastatic-breast-cancer 

B. Mammography 

Since the invention of X-rays, medical imaging has significantly affected the cancerology. Over the 

last decades, a variety of imaging modalities and techniques have contributed to the screening process such 

as the computed tomography (CT), the ultrasonography, the magnetic resonance imaging (MRI), and the 

digital radiography [12]. Consequently, medical imaging has played a very important role within the 

diagnosis for acquiring medical images that are presented to radiology experts for interpretation and 

investigation as shown in Figure 2. 

https://www.cancersupportcommunity.org/metastatic-breast-cancer
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FIGURE 2: Medical imaging for investigating and screening of breast lesions 

Source; https://nypost.com/2019/09/03/breast-cancer-treatment-could-lead-to-incurable-tumors-years-later/ 

Mammography has been proven the most reliable and preferred tool employed by radiologists to screen 

and investigate suspicious breast lesions [13]. The common clinical modalities that have been used since the 

2000s are the real-time 3D ultrasound imaging, 2D and 3D cone-beam CT and full-field digital 

mammography (FFDM). The techniques are categorized into film-screen mammography, which creates a 

scanned photographic film, and digital mammography. Particularly, the FFDM method replaces the X-ray 

films by electronics and creates digital images. The general process of screening takes a few moments and 

uses a low-dose X-ray system to see inside the breasts and visualize any abnormal clusters and irregular 

nodules. The patient having the mammogram places their breast between two clear plates to be squeezed and 

scanned into digital images [14] as illustrated in Figure 3. The machine should take a picture from two angles 

for bilateral comparison into a mediolateral oblique (MLO) view and craniocaudal (CC) view. Correct 

positioning is critical to capture the whole breast and find out any abnormal regions. 

https://nypost.com/2019/09/03/breast-cancer-treatment-could-lead-to-incurable-tumors-years-later/
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FIGURE 3: Mammography screening process 

Mammograms visualize the whole breast tissue on the MLO projection on a single image where the 

nipple should be well-positioned at the lower level of the pectoralis major. The CC view should show the 

medial tissue without the axillary tail of the breast and with a pectoralis major situated at the center of the 

view. Samples of mammograms from MLO and CC views are demonstrated in Figure 4 and Figure 5. 

 

FIGURE 4: Samples mammograms of Mediolateral oblique (MLO) views 
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FIGURE 5: Samples mammograms of craniocaudal (CC) views 

Radiologists should visually detect any area that does not look like normal tissue and may be a clear 

indicator of a cancer risk. During the diagnosis, the experts often search for areas of white, their position in 

the breast and note the density of the fatty tissue or/and the shape and size of the breast. A main concern 

taken from an observation occurs when a lump of a clear tumor appears as a condensed white area on a 

mammogram. A malignant tumor is likely to grow and change shape into a mass lesion. However, a benign 

tumor is usually non-cancerous and does not present a health risk and it is unlikely to grow. Other forms of 

irregular tissue can appear in the form of white spots and dots, and they are usually harmless. However, a 

continuous follow-up is required to track their shape and pattern that may lead to a sign of cancer. These 

abnormalities include calcification, asymmetry, architectural distortion, etc. Most of the non-mass lesions are 

benign and caused by summation of artifacts [15]. Samples below in Figure 6 present examples of 

mammograms that belong to public and private mammography datasets, and they were acquired using 

different modalities such as FFDM and digital mammographic screening. 
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FIGURE 6: Samples mammograms with Mass lesions (first row) and with Calcification lesions (second row) 

It is clear in Figure 6 that mammograms look different because they have different resolution and 

capture quality due to the different modality that was used to extract and save the images. Every mammogram 

may indicate one or more lesions of varying sizes and locations. Samples below present examples of different 

breast lesions that are commonly inspected in mammograms. Radiologists often investigate different 

screening views at different times and make a comparison to spot any unusual change or verify any suspected 

symptoms of breast cancer the patient has noticed. 

Figure 7 shows samples of breast Mass lesions. Breast mass is a nodule or growth of tissue with 

defined borders. It is often characterized with a firm and hard area that causes a change in the tissue, the 

color, the size, or the density of the breast. A breast mass may be benign (non-cancerous) or malignant 

(harmful). A breast tumor can be confirmed with the feel (i.e., firm, margin, squishy, mobile), with 
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appearance in mammograms (i.e., fuzzy, lumpy, round, uniform), in an MRI (rapid or slow to light up), or 

with a biopsy (i.e., clusters of cells, irregular nuclei). 

 

FIGURE 7: Samples of region of interest (ROI) OF breast Mass lesions from public and private datasets 

Moreover, non-cancerous breast lesions like calcification and architectural distortion are shown in 

Figure 8 and Figure 9. Calcifications are often small deposits of calcium that are manifested in the form of 

white spots and dots. During the mammography, this built-up calcium absorbs the X-rays and shows up as a 

bright marker as shown in samples of Figure 8. Calcifications are not associated with breast cancer, and they 

are eventually benign cells, however they may be associated with presence of ductal carcinoma in situ [16]. 

Studies showed that a large calcification, known as macro calcification, is less specious. They should appear 

well-defined as dots and specks. On the other side, micro-calcifications are smaller and resemble mini flecks, 

but they require more follow-up. 
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FIGURE 8: Samples of region of interest (ROI) OF breast Calcification lesions from public and private datasets 

Other common harmless breast lesions are the architectural distortion that refers to clear distortion 

of the breast lobule without defining mass [17]. As shown in Figure 9, these non-cancerous lesions often 

appear as thin straight lines of spiculum in the form of dots, distortion, and focal retraction [18]. Architectural 

distortion is the third most common breast lesion, and it may be associated with calcifications or asymmetry, 

and it may represent an early indicator of breast cancer. Moreover, it is considered the hardest to diagnose, 

particularly in 2D mammography as it appears in variable presentation, size, and location. 
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FIGURE 9: Samples of region of interest (ROI) OF breast Architectural Distortion lesions from public and private 

datasets 

During the last decades, breast cancer reporting has been standardized using the Breast Imaging 

Reporting and Data System (BI-RADS) that is universally used by radiologists and experts for risk 

assessment and tumor grading. BI-RADS was developed by the American College of Radiology [19] that 

scaled the diagnosis assessment with a score from 0 to 6. The score is commonly used in all screening 

modalities to help determine the severity of the breast lesions and quantify the finding. It also contributes to 

the tracking of change in breast lesions and classifies the growth of the lesions. Table 1 summarizes the 

assessment categories and description. 

Table 1: BI-RADS assessment categories 

Category Diagnosis assessment 

0 Incomplete: Not enough information 

1 Negative: No assessment 

2 Benign 

3 Probably benign: High probability of benign 

4 Probably malignant: Reasonable probability of malignancy 

5 High suggestive of malignancy 

6 Known biopsy proven malignancy 

Mammograms are used for detection and segmentation of abnormalities in the breast to remove the 

tumors background and provide affordable diagnosis like the tumor’s pathology (i.e., malignant, or benign) 

and classifying its shape and grading (i.e., BI-RADS score). Because most of these clinical tasks are usually 

conducted manually, their precision and efficiency are usually associated with the radiologist’s expertise. In 

fact, automated analysis of mammograms could enhance the reading and reduce the false detection and 

decision towards the breast cancer diagnosis.  

C. Artificial Intelligence and CAD systems for Breast Cancer 

Studies emphasized the importance of frequent mammography screening to reduce the mortality 

rate by early detecting the breast tumors before being spread to normal tissues and other healthy organs [20]. 

Therefore, mammograms are inspected every day by radiology experts to search for abnormal lesions and 

detect the location, shape, and type of any suspicious regions in the breast [21]. Although this process is 
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considered crucial and requires more precision and accuracy, it remains expensive and exposed to error, due 

to the increasing number of daily-screened mammograms [22]. 

During the screening process, radiologists should detect the abnormal lesions; determine their 

location on the breast mammogram, and identify their type to distinguish between mass, calcification, and 

other common abnormalities. Another task the medical experts conduct is the image segmentation, which 

helps doctors to extract detailed information of the suspicious regions of tumors for further diagnosis and 

pathology findings. Finally, the doctors should make a final decision regarding the tumors and determine 

their BI-RADS grading assessment and pathology diagnosis. 

With the increase in the number of daily-screened mammograms, an efficient diagnostic 

methodology is necessary to assist doctors in the timely procedure of breast cancer. Thus, computer-aided 

diagnosis (CAD) systems could provide a second suggestion and reading to the final examination of the 

experts regarding the presence of breast cancer [23]. The automated systems are designed to perform 

computational image analysis and benefit from the high number of mammograms to handle the screening 

process automatically [24]. 

In the last years, the advance of Artificial Intelligence (AI) in computer vision applications has 

presented algorithms that showed remarkable results in developing tools to assist doctors. The systems could 

handle detecting, segmenting, and classifying tumors with the lowest possible error in many medical image 

applications and particularly in mammography [25, 26, 27]. 

Conventional systems relied on extracting hand-crafted and low-level features to localize and 

classify potential regions using simple image processing and machine learning techniques [28, 29, 30]. So 

far, these solutions have become inaccurate and resulted in a high false positive rate, and thus they have been 

substituted with the novel deep learning approaches [31, 32, 33, 34]. Accordingly, traditional techniques for 

tumor segmentation, such as region-growing, active contour, and watershed, relied on extracting handcrafted 

features that only represent gray-level, texture, and morphology to label the pixels and indicate the contour 

surrounding the mass tumors, while excluding the background tissue [35, 36]. Moreover, different algorithms 

have been widely implemented in CAD systems for tumor classification, and the most used algorithms are 

conventional machine learning classifiers and threshold-based methods that are based on handcrafted features 

[35, 36, 37]. 
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With the continuous enhancement of computational capacity of computers, different deep learning 

models have been widely implemented to offer a better alternative. They aim to automatically extract deep 

and high-level features directly from raw images without knowledge requirement [38]. It has helped to 

improve results of automated systems and maintain a good tradeoff between precision of lesions detection 

and accuracy of distinguishing between different types of lesions from a single mammogram [39, 40, 41]. 

Deep learning algorithms can extract deep and multiple-scaled information and integrate them to help experts 

in making final decisions. Accordingly, their strength to adapt to different cases has been proved for objects 

detection and classification tasks in many applications [42, 43, 44, 45]. 

The development of computer-aided diagnosis (CAD) for breast cancer imaging has lately been 

revised to deal with the rapid rise of deep learning algorithms and artificial intelligence, and it emphasizes 

innovative systems that may have significant potential to improve clinical treatment [46, 47, 48]. 

With the practical challenges that breast tumors offer due to their variation in size, shape, location, and 

texture, there has been a significant need to improve the overall performance of CAD systems and reduce 

false positive and negative cases. Consequently, deep learning methodology has been broadly suggested in 

biomedical applications and particularly in CAD systems for mammography [49, 50, 51]. 

In the last two decades, deep learning has shown a growing success in many computers vision tasks 

and has proven a capability to overcome complex problems in the medical imaging domain. As a result, 

several works have been suggested and applied particularly in mammography, such as for tumors detection 

[52, 53], breast lesions segmentation [54, 55], and classification [56, 57]. 

D. Dissertation organization 

The dissertation consists of five main chapters as detailed in the following paragraph: 

• Chapter I presents the scope of the research, and it introduces the motivations taken from applying 

medical imaging for breast cancer. It also presents the mammography process and the role of AI in 

CAD systems. 

• Chapter II surveys the related works and the state-of-the-art methodologies of computer vision for 

CAD applications. It also reveals the limitations and challenges of AI techniques and deep learning 

technology for breast cancer diagnosis and highlights the potential solutions for improving the CAD 

system performance. 
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• Chapter III focuses on the proposed methods and techniques presented towards an integrated 

framework for a CAD system. It details the novel implementations and deep learning architectures 

that were proposed for each step defining the entire CAD system for breast cancer diagnosis. 

• Chapter IV details the used mammography datasets and the setting and metrics employed for the 

experimental evaluation. Before presenting the general discussion and the comparative results, it 

illustrates a testing and deployment section for showcase of the integrated CAD system. 

• Chapter V summarizes the entire work and the proposed methodologies and lays out ten future 

works. 
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CHAPTER II 

LITTERATURE REVIEW MODELS AND METHODS FOR BREAST 

CANCER DIAGNOSIS 

 

The present chapter highlights the recent success of several research studies on developing 

automated solutions using cutting-edge technology for many medical applications and particularly breast 

cancer. Computer vision and AI technology have been merged to produce feasible Computer-aided diagnosis 

(CAD) systems to assist doctors during the diagnosis task. As a medical imaging application, an automated 

CAD system could be beneficial to save the time on the screening procedure and provide a second reading 

that helps reveal any hidden pattern and indication of cancer that could be overlooked. The CAD system 

could also contribute to lowering the mortality rate and decreasing the false positive and negative diagnosis. 

All the surveyed works in this chapter are based on image analysis and processing methods, pattern 

recognition techniques, and machine learning and deep learning technologies. The chapter is organized 

according to the main steps that form the integrated framework of a CAD system: tumor detection and 

identification, tumor segmentation and background masking, and tumor classification and diagnosis that 

presents the final decision. The tasks were conducted in the order we mentioned so that the segmentation step 

was applied on the detected region of interest (ROI) of tumors, and similarly the classification and diagnosis 

step was applied on the detected and segmented ROI of tumors. 

In this chapter, the state-of-the-art methods and architecture models are presented with their applications and 

performance results that will be later compared to our proposed methodologies. 

A. Introduction 

Breast cancer is the most common type of cancer that is leading to death among women, where 

43,250 death cases were reported in the United States in 2022 and it represents a rate of 15% of estimated 

deaths against the other types of cancer. However, the overall death rate decreased by 1% per year from 2013 
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to 2020 because of treatment advancements and early diagnosis through screening. The median age of women 

to have cancer is 60 but the risk may occur from the age of 30 to 50. Early detection and diagnosis of breast 

cancer is the most effective way to treat the disease to postpone its spread to other healthy organs. The process 

of screening may reveal small indicators of abnormalities that may lead later to risky factors of cancer. The 

most common screening procedure is the digital mammography that takes snapshot images of the breast 

composition and visualizes any irregular pattern for breast cancer. 

Due to the increasing number of daily screening mammograms, automated machine could benefit 

from the huge amount of the stored medical images and develop a CAD system that performs computational 

image analysis and advance features extraction to automatically decide toward the location of the abnormal 

tumors, their type, pathology, shape, and assessment. 

Accordingly, as shown in Figure 10, a completely integrated CAD system would start its first stage, 

with the detection and localization of suspicious lesions and distinguishing between their types, i.e., mass, 

calcification, architectural distortion, etc. Then, at a second stage, the CAD system should perform a 

segmentation of the obtained region of interest (ROI) surrounding the breast lesion to recognize its anatomical 

contour and remove its tissue background without losing its shape precision. Finally, diagnostic information 

could be extracted regarding the pathology to classify the decided lesion as either malignant or benign and 

identify its characteristics such as a tumor grading using Breast Imaging Reporting and Data System (BI-

RADS) score, or/and a shape categorization. As the automated procedure relies on connected stages, each 

output information must be generated precisely to generate a fast and accurate final decision.  

 

FIGURE 10: Integrated framework of CAD system for breast cancer (A mammogram case with a malignant mass lesion, 

BI-RADS score of 4 and irregular shape). 
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The rest of the chapter details recent works that were proposed for each step of the CAD system 

showing recent techniques and models for implementing every task accordingly. Each subsection compares 

the performance results for the conducted task and presents their advantages and limitations. 

B. Breast Cancer Detection and Identification 

Since its discovery in 1913, mammography has been considered an essential key for early detection 

and diagnosis of specious lesions. Mammography screening has helped radiologists identify breast cancer 

and several studies showed its impact for a significant reduction in mortality rate [58]. With the remarkable 

advances in computer vision and artificial intelligence to assist doctors for medical imaging analysis, many 

studies showed the effectiveness of CAD systems to automatically detect suspicious lesions from raw 

screened mammograms [59]. The introduction of neural network models changed the CAD’s approach and 

substituted the use of hand-crafted features extraction with deep learning architectures that are capable of 

learning complex features at different scales [60]. 

With the development of machine learning technology, many applications have given more attention 

in adopting deep learning to solve complex problems, particularly in the fields of computer vision, image 

recognition, object detection [32, 38, 39] and segmentation [40, 41]. Due to the limitations of hand-crafted 

features derived from raw images, many studies have shown that traditional methodologies have tried to 

establish highly accurate models. Indeed, traditional CAD systems that were proposed for breast lesions 

detection and classification could not overcome the huge variations in lesions size and texture, compared to 

deep learning methods [51, 52]. As a result, several CAD systems based on deep learning architectures have 

been successfully developed to improve the detection and classification of organ lesions such as liver lesions, 

lung nodules, and, in particular, breast lesions [57, 58]. 

Researchers have demonstrated the feasibility of regional-based models to build an end-to-end 

system for detecting and classifying malignant and benign tumors in the INbreast mammograms and achieved 

a detection rate of 89.4% [52]. Peng et al. provided an alternative approach in a recent paper. [61] that 

introduced an automated mass detection approach. The method integrated the Faster R-CNN model and 

multiscale-feature pyramid network and yielded a true positive rate of 0.93 on CBIS-DDSM and 0.95 on 

INbreast dataset. 
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Accordingly, Al-Antari et al. [62] employed the YOLO model for breast masses detection that 

reported a detection accuracy of 98.96%. The output served after that for mass segmentation and recognition 

to provide a fully integrated CAD system for digital X-ray mammograms. Another work by Al-Antari et al. 

[63] in 2020 improved the results of the breast lesions detection and classification by adopting first the YOLO 

model for detection and then compared feedforward CNN, ResNet-50, and InceptionResNet-V2 for 

classification. Similarly, Al-masni et al. [49] proposed a CAD system framework that first detected breast 

masses using YOLO model with an overall accuracy of 99.7%, and then classified them into malignant and 

benign using FC-NNs (Fully Connected Neural Networks) that achieved with an accuracy of 97%. 

Deep convolutional neural networks (DCNN) were also suggested for mammographic mass 

detection by using transfer-learning strategy from natural images [64]. Ribli et al. presented a paper in 2018 

[65] and proposed a CAD system based on Faster R-CNN framework to detect and classify malignant and 

benign lesions and obtained an AUC score of 0.95 on INbreast dataset. Another work employed a fully 

convolutional network (FCN) with adversarial learning in an unsupervised fashion to align different domains 

while conducting mass detection in mammograms [66]. 

Indeed, the breast tumor detection task is a crucial step that remains a challenge for CAD systems 

where many reliable models were used to support the automatic diagnosis. For example, Singh et al. relied 

on the Single Shot Detector (SSD) model to localize tumors in mammograms, and then extracted output 

boxes to apply segmentation and classification tasks [67]. It yielded a sufficient true positive rate of 0.97 on 

the INbreast dataset. Other recent studies proposed using the YOLO model to achieve a better performance 

in detecting bounding boxes surrounding breast tumors. For example, Al-masni et al. [68] presented a YOLO-

based CAD system that achieved an overall accuracy of 85.52% on DDSM dataset. 

Moreover, a tumor localization task was conducted in a detection framework for cancer metastasis 

using a patch-based classification stage and a heatmap-based post-processing stage [69]. It achieved a score 

of 0.7051 and served for whole slide image classification. Breast tumor detection was also addressed in 2016 

by Akselrod-Ballin et al. [70] where images were divided into overlapped patches and fed into a cascaded R-

CNN model to first detect masses and then classify them into malignant or benign. Dhungel et al. presented 

research in 2015 [71] and relied on a multi-scale Deep Belief Network (DBN) to first extract all suspicious 

regions from entire mammograms and then filter out the best regions using Random Forest (RF). The 
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technique achieved a true positive rate of 96%. Akselrod-Ballin et al. presented a paper in 2017 [72] and 

developed a three-stage cascade of Faster-RCNN models to detect and classify abnormal regions in 

mammograms. The work was evaluated on the INbreast dataset and achieved an overall detection and 

classification accuracy of 72% and 77%. 

In another work by Li et al. [73], a bilateral mass detection method was introduced using two 

networks: a registration network between left and right breasts and a Siamese-Faster-RCNN network to detect 

masses from pairs of registered mammograms. They reported results of a true positive rate of 0.88 on the 

INbreast dataset and 0.85 on a private dataset. In addition, Hamed et al. [74] presented a YOLOV4-based 

CAD system with 2-path detection of masses in full and cropped mammograms and then classified them into 

benign and malignant. 

Moreover, early detection and diagnosis of breast cancer in mammography using the deep learning-

based CAD systems can help prevent development of tumors by marking lesions, and thus it can effectively 

decrease death rate [75]. A retrospective study by Watanabe et al. [76] showed a potential area of 

improvement for radiologists’ interpretation of screening mammograms for early detection using Artificial 

Intelligence. The studied CAD system succeeded to mark 30 (86%) of 35 missed micro-calcifications and 58 

(73%) of 80 missed masses. In addition, missed malignant lesions were flagged as early as 70 months Prior 

to recall or diagnostic follow-up. In consequence, CAD systems could benefit from the change that occurred 

between Prior and Current mammographic exams. A recent work by Timp et al. [77] tried to improve the 

characterization of mass lesions by adding information about the tumor behavior over time. The authors 

presented a CAD program to detect temporal changes between two consecutive screening images using a 

regional registration method to localize lesions detected on the current views and their corresponding on the 

Prior views. After that, a Support Vector Machines (SVM) classifier was applied to show the effectiveness 

of temporal features. In a different study, Timp et al. [78] attempted to improve detection methods by 

including temporal information in the CAD system. A regional registration technique along feature space 

was used to map suspicious locations on the Current mammograms with a corresponding location on the 

Prior mammograms with 72% accuracy. Accordingly, Loizidou et al. [79] tried to increase the 

microcalcification detection accuracy to 99.2% by adding temporal subtraction between mammogram pairs 

before applying SVMs classifier. In the same context, a recent study by Loizidou et al. [80] extended their 
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previous work of breast micro-classification detection and classification by adding an image registration step 

of Prior mammograms before applying temporal subtraction of pairs. In a different work by Zheng et al. [81], 

follow-up digital mammography images were integrated together to develop a CAD method for breast cancer 

detection. All regional images were detected using the Haar features, local binary pattern, and histogram of 

oriented gradient via the AdaBoost approach and then fed into a CNN to filter out the false positive cases. 

Most of the reviewed works and their diagnosis results showed how artificial intelligence has 

successfully contributed to solve the challenge of breast cancer detection. In fact, practical implementation, 

and system evaluation, as well as the tremendous complexity of memory and time, remain unsolved issues. 

Most of the works have tackled the problem of detecting only mass tumors in the entire breast and then 

classifying them into malignant and benign. Our approach was developed differently to address the task of 

detection and identification of at least two types of breast lesions (i.e., mass and calcification). Our 

methodology was also expanded by presenting a fusion-models approach that combines predictions of 

different models to improve the results. 

C. Breast Cancer Segmentation 

With the significant advance in computer vision applications, several studies have focused on 

developing deep learning methods for the detection and segmentation of breast mass tumors [82, 83, 84]. 

Convolutional Neural Networks (CNNs) were among the first architectures that attempted to automatically 

learn features from raw images to label pixels surrounding objects at different scales and shapes [85]. 

Regarding medical image segmentation, one of the well-known architectures is the Fully 

Convolutional Network (FCN), which introduced the first encoder-decoder network design. In fact, the 

encoder part applies convolutional, max-pooling and down-sampling layers and finally fully connected layers 

of VGG-16 to end up with low-level features. The decoder part is like the encoder part by using a 

deconvolutional and up-sampling layer [86]. The network was introduced by Hai et al. [87] that added 

multiscale image information for automated breast tumor segmentation, and it achieved a Dice score of 

76.97% and an IoU score of 60.41% on a private dataset. Al-antari et al. introduced the Full resolution 

Convolutional Network (FrCN) [62], which is a version of the FCN, to segment the detected breast masses, 

and it produced a Dice score of 92.69% and a Jaccard similarity coefficient of 86.37% on INbreast dataset. 

Accordingly, Zhu et al. [88] employed a multi-scale FCN model followed by a conditional random field 
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(CRF) for mammographic mass segmentation, and they achieved Dice score of 90.97% on the INbreast 

dataset and 91.30% on the DDSM-BCRP dataset. Another work proposed by Singh et al. [89] was inspired 

by the FCN architecture and developed a conditional Generative Adversarial Network (cGAN) for breast 

tumor segmentation. The work achieved a Dice score of 92.11% and an IoU score of 84.55% on the INbreast 

dataset and a Dice score of 88.12% and an IoU score of 79.87% on a private dataset. 

Medical image segmentation usually presents challenging cases; and consequently, this type of 

network suffers from low segmentation accuracy due to the loss of spatial resolution in case of small objects 

and irregular shapes. As a result, Ronneberger et al. developed a new model called UNet [90] to overcome 

the limitation of FCN models. UNet proposed to integrate the high-level features from the decoder, which 

preserve the semantic information, with the low-level features from the encoder, which represent the spatial 

information. The fusion was maintained with the skip connections that made the UNet architecture adequate 

in several medical applications and particularly in mammography. A work presented by Sathyan et al. [91] 

employed the UNet model to segment mass and calcification in whole mammograms and achieved a Dice 

score of 67.3% on the CBIS-DDSM dataset. Another work by Soulami et al. [92] relied on an end-to-end 

UNet model for the detection, segmentation, and classification of breast masses in one stage, where the 

segmentation evaluation showed a Dice score of 90.5% for both DDSM and INbreast datasets. 

Many potential scopes of improvement were recently suggested on the UNet architecture to improve 

its performance and enhance the quality of the segmentation [93]. Inspired by the residual mechanism, 

Abdelhafiz et al. [94] proposed the residual UNet, called RUNet or ResUNet, by adding residual blocks to 

the standard convolutional layer in the encoder pathway to add a deeper effect to the network. The work was 

applied for mass segmentation and then detected binary maps were fed to a ResNet model for classification 

into benign or malignant. Segmentation results yielded a Dice score of 90.5% and a mean IoU score of 89.1% 

on the INbreast dataset. Similarly, Ibtehaz et al. [95] developed a novel architecture, called MultiResUNet, 

which showed a remarkable gain in performance for biomedical image datasets. The work replaced the 

standard blocks of the encoder-decoder by multi-residual blocks and altered the plain skip connection with 

residual paths. Accordingly, a Conditional Residual UNet, called CRUNet, was also suggested by Li et al. 

[96] to improve the performance of the standard UNet for breast mass segmentation, and it achieved a Dice 

score of 92.72% on the INbreast dataset. 
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Another variation of the UNet was suggested using the attention mechanism that showed remarkable 

success in medical image segmentation [97]. Consequently, Oktay et al. [98] integrated the attention gate 

into the standard UNet to propose a new Attention UNet, called AUNet. It improved the prediction 

performance across CT pancreas segmentation and yielded a Dice score of 83.1%. Similarly, Li et al. [99] 

developed an Attention dense UNet for breast mass segmentation that achieved better results than UNet, 

AUNet and DenseNet with a Dice score of 82.24% on the DDSM database. In another work suggested by 

Sun et al. [100], a novel attention-guided dense-upsampling network was developed for breast mass 

segmentation in whole mammograms. The architecture achieved a Dice score of 81.8% on the CBIS-DDSM 

dataset and 79.1% on the INbreast dataset. Similarly, Ravitha Rajalakshmi et al. [101] introduced a deeply 

supervised U-Net model (DS U-Net) associated with dense CRFs to segment suspicious regions on 

mammograms. The model was tested and gave a Dice score of 82.9% and 79% respectively on CBIS-DDSM 

and INbreast datasets. 

Aligned with the improvement made in encoder-decoder architecture to deal with the limitations 

encountered in medical images segmentation, the Atrous Spatial Pyramid Pooling (ASPP) module was 

successfully integrated in many networks [102]. It showed effectiveness in breast mass segmentation in a 

work presented by Wang et al. [103] that achieved a Dice score of 91.10% and 91.69%, respectively on the 

INbreast and DDSM-BCRP datasets. 

The depth of the UNet architecture was exposed through studying it, as well as the limited design 

of skip connections. Therefore, a novel architecture, named UNet++, was introduced by Zhou et al. [104] to 

alleviate the network depth and redesign the standard skip connections. The research was tested on six 

medical image datasets with diverse modalities, and it showed similar results for semantic and instance 

segmentation tasks. A similar variation model, called U-Net+, was employed by Tsochatzidis et al. [105] to 

segment ROI mass before integrating it with the classification stage by a CNN model. On the CBIS-DDSM 

and DDSM-400 datasets, the segmentation performance had a Dice score of 0.722 and 0.738, and a Jaccard 

index of 0.565 and 0.585, respectively. 

Furthermore, to cope with difficult medical imagery, Jha et al. [106] presented a DoubleUNets 

architecture that uses two encoders and two decoders in sequence and an ASPP module. On four medical 

segmentation datasets, the network outperformed both the baselines and UNet Das et al. [107] proposed a 
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Contour-Aware Residual W-Net, termed WRC-Net, which consists of double UNets. The first UNet was 

designed to predict objects boundaries and the second UNet generated the segmentation map. The work was 

evaluated on stained cell images, and it outperformed the state-of-the-art nuclei segmentation techniques. 

Additionally, a new variation of the UNet was presented by Tran et al. [108], named TMD-UNet, 

that modified the interconnection of the network node, replaced the standard convolutions with dilated 

convolutions layers, and developed new dense skip connections. For liver, polyp, skin lesion, spleen, nuclei, 

and left atrium segmentation, the network outperformed popular models. 

D. Image-to-image Translation 

With the significant attention given on improving the performance of neural networks algorithms, 

many studies have focused on enhancing the quality of medical images that are acquired using multiple 

imaging modalities. Lately, image-to-image translation has been employed to solve many computer vision 

applications in medical imaging, such as image synthesis and reconstruction. 

In fact, deep learning models require a large amount of annotated data to achieve a robust behavior. 

However, it is often difficult for medical applications to collect enough instances. Therefore, synthetic data 

was recently adopted to increase the size of dataset, within either the same image modality, or using cross-

modality translation. In a work presented by Senaras et al. [109], a conditional Generative Adversarial 

Network was applied to generate synthetic images that were indistinguishable from real images of a breast 

cancer database. Accordingly, Alyafi et al. [110] employed Deep Convolutional GAN (DCGAN) to generate 

synthetic mammograms with mass lesions to enhance the classification performance in imbalanced datasets. 

Another recent technique that was widely used for unpaired image-to-image translation is the cycle-

consistent Generative Adversarial Network (CycleGAN), and it was developed by Zhu et al. [111]. The 

technique learns two mappings by transforming images between two different domains using two GANS and 

maintains their reconstruction by a cycle-consistency loss and hence the name. Becker et al. [112] presented 

CycleGAN model to artificially inject or remove suspicious features and thus increase the size of the BCDR 

and INbreast datasets. Moreover, a cross-modality synthesis approach was introduced by Cai et al. [113]. It 

was motivated by CycleGAN between CT and MRI, and it was tested on 2D/3D images for segmentation.  

Another similar work by Hiasa et al. [114] extended the CycleGAN approach by adding gradient 

consistency loss and aimed for MRI-to-CT synthesis. The work yielded a better segmentation precision on 
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musculoskeletal images. Upon such an idea, Huo et al. [115] proposed an end-to-end synthesis and 

segmentation network (EssNet) to conduct the unpaired MRI to CT images synthesis and CT splenomegaly 

segmentation without using manually annotated CT. It achieved a higher Dice score of 91.88% than the state-

of-the-art performance. 

A similar architecture called Pix2Pix was also suggested for image-to-image translation but using 

paired datasets [116]. A recent application by Shen et al. [117] employed the Pix2Pix network for image-to-

mask segmentation in mammography. Pix2pix was also employed by Liao et al. [118] to artificially remove 

artifacts in CT scans and the method showed improvement for clinical image reconstruction. 

E. Breast Cancer Pathology & Diagnosis Classification 

Computer-aided diagnosis (CAD) systems have recently used advanced computer vision techniques, 

artificial intelligence, and machine learning approaches to automatically extract information from digital 

medical images to assist experts in their final diagnostic decisions. Several research studies have attempted 

to suggest methods to assist doctors in their diagnosis and have focused on improving results of breast mass 

classification in digital mammography. In this context, Dhahri et al. [119] used a Tabu search to select the 

most significant features and then fed them into a K-Nearest Neighbors (KNN) algorithm to classify breast 

lesions into malignant or benign. This methodology required four iterative stages and achieved an accuracy 

of 98.24% on the WDBC dataset. 

Since their development, many studies have given more attention to incorporating deep learning 

methods in CAD systems as they showed better efficiency than traditional CAD systems that require 

extensive features extraction. For instance, an end-to-end approach was developed by Shen et al. [38] to 

classify whole-digital mammograms into cancer or normal. The work demonstrated a new CNN structure 

using VGG network and the residual network (ResNet) and accomplished an AUC of 0.91 on the CBIS-

DDSM dataset and an AUC of 0.98 on the INbreast dataset. Another end-to-end model, called DiaGRAM, 

was built by Shams et al. [120] that combined CNN and Generative Adversarial Networks (GAN). The work 

was conducted to classify mammograms as benign or cancerous. Experiments showed an accuracy of 89% 

on the DDSM dataset and 93.5% on the INbreast dataset. An improved deep learning method, called the new 

DenseNet-II model, was invented in a work by Li et al. [121] for classification of benign and malignant 

mammography images. The model was analyzed and applied on a private collection of mammography images 
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and reached an accuracy of 94.55%. Accordingly, a novel model for mass classification was proposed by 

Zhang et al. [122] that fused texton features from local binary pattern extraction, with deep CNN features. 

The model was tested on a CBIS-DDSM dataset and achieved an accuracy of 94.30%. In another work by 

Muramatsu et al. [123], a CNN model’s performance was improved by adding synthetic data generated from 

lung nodules in computed tomography (CT) using cycle generative adversarial networks. The classification 

performance was tested on a DDSM dataset and achieved an accuracy of 81.4%. Recently, Chakravarthy et 

al. [124] proposed a novel method that coordinates the deep learning with an extreme learning machine 

(ELM) optimized by employing a basic crow-search algorithm for classifying ROI images with abnormality 

into malignant or benign. The proposed work achieved a maximum overall accuracy of 97.19% on DDSM, 

98.13% on the Mammographic Image Analysis Society (MIAS) dataset and 98.26% on INbreast datasets. In 

a recent work by Khan et al. [125], multi-view feature fusion (MVFF) based-CAD system was implemented 

to increase the performance of CNN by combining information of four views of mammograms to classify 

them first into abnormal or normal, then into mass or calcification, and finally into malignant or benign. The 

final pathology classification achieved an AUC of 0.84 on the CBIS-DDSM and mini-MIAS databases. 

Moreover, Kumar et al. [126] suggested a classification framework for breast density using an 

ensemble of 4-class neural network classifiers. The work showed an overall classification accuracy of 90.8% 

on the DDSM dataset. Besides ensemble learning mythology, transfer learning was also adapted with deep 

learning techniques to develop an approach for differentiation between benign and malignant breast cancer 

cases in X-ray images [127]. Hence, in a work by Alkhaleefah et al. [128], double-shot transfer learning 

(DSTL) was used by fine-tuning various pre-trained networks once on an ImageNet dataset, and another time 

on a larger dataset like the target dataset. The method was trained on CBIS-DDSM and showed a better 

performance than single-shot transfer learning with an average AUC of 0.99 on the MIAS dataset and 0.94% 

on the BCDR dataset. Similarly, Falconí et al. [129] used transfer learning on a NasNet Mobile model and 

fine tune on VGG models to classify mammogram images according to the BI-RADS scale. The work 

achieved an accuracy of 90.9% on the INbreast dataset. Recently, a work by Medeiro et al [130] combined 

DenseNet201 and multi-perceptron layer (MLP) models to classify the pathology within BI-RADS levels 3 

and 4 for malignancy of breast masses. The model achieved an accuracy of 63% surpassing the performance 

of a human expert by 9.0%. 
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To accomplish an efficient mass classification and diagnosis procedure, researchers have shown that 

capturing texture and morphological characteristics could help doctors understand the nature of the breast 

tumor and assess its malignancy scale. For instance, research by Bi et al. [131] showed that the probability 

of malignancy is highly correlated with the shape and morphology of a breast lesion. Therefore, several works 

have incorporated the segmentation stage to provide a complete, significant diagnosis [132]. In a previous 

work by Tsochatzidis et al. [105] modified convolutional layers of a CNN to integrate both input images and 

their corresponding segmentation maps to improve the diagnosis of breast cancer in mammograms. The 

method was applied on DDSM-400 and CBIS-DDSM datasets and achieved a diagnosis performance AUC 

of 0.89 and 0.86. Similarly, a dual convolutional neural network was suggested by Li et al. [133], which 

computed the mass segmentation and simultaneously predicted the diagnosis results. The model contributed 

an improvement to the mass segmentation and cancer classification problem at the same time and achieved 

an AUC of 0.85 on the DDSM dataset and 0.93 and the INbreast dataset. 

Recently, most of the developed CAD systems have automated the breast cancer diagnosis procedure that 

gets an entire mammogram image and returns a final diagnosis. Thus, many studies have integrated the first 

stage of identifying the suspicious region of breast lesions and based on its automated output, performed the 

segmentation and classification tasks. For instance, Sarkar et al. [134] proposed an automated CAD system 

that detects suspicious regions of potential lesions using a deep hierarchical prediction network and then 

classifies them into mass or non-mass, and finally into malignant or benign using a CNN structure. The work 

was tested and achieved an accuracy of 98.05% on the DDSM dataset and 98.14% on the INbreast dataset. 

Another fully automated system by Dhungel et al. [135] for breast mass classification integrated mass 

detection and segmentation in a complete CAD system. The methodology used a multi-scale deep belief 

network (m-DBN) classifier followed by a cascade of CNNs and random forest classifiers for false positive 

reduction for mass detection, a conditional random field (CRF) for mass segmentation, and a multi-view deep 

residual neural network (mResNet) for mass classification. The proposed work achieved an AUC of 0.8 on 

the INbreast dataset. Another recent work by Singh et al. [136] presented automatic workflow that detects 

breast tumor regions from mammograms using the Single Shot Detector (SSD), and then outlines its 

segmented mask using conditional Generative Adversarial Network (cGAN) that was finally used for shape 

classification using a CNN. The framework achieved an overall accuracy of 80% for the shape classification. 
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Similarly, Al-Antari et al. [62] proposed a fully integrated CAD system for digital mammograms via deep 

learning techniques. It started with a mass detection using the You-Only Look Once (YOLO) architecture 

model, then performed a mass segmentation on the detected regions using Full resolution convolutional 

network (FrCN), and finally classified the detected and segmented masses into benign or malignant using a 

CNN model. The entire framework had an overall classification accuracy of 95.64% on the INbreast dataset. 

The mass classification step was differently solved in a recent work of Al-Antari et al. [137] that separately 

adopted three conventional deep learning models including regular feedforward CNN, ResNet-50, and 

InceptionResNet-V2. The work achieved a maximum accuracy of 95.32% on the INbreast dataset. 

F. Conclusion and discussion 

The reviewed state-of-the-art works highlighted models that have proved outstanding success on 

medical images. These models were evolved from a simple Convolutional Neural Networks (CNNs) model 

to present other variations such as R-CNNs, Fast CNNs and Faster R-CNNs Models. These popular models 

have overcome many limitations of deep learning such as computational time, redundancy, overfitting, and 

parameter size. However, most of these models take a long time to train and implement and require a lot of 

computing resources. Therefore, another variation called You-Only-Look-Once (YOLO), which is 

characterized with a low-memory dependence, has been recently recognized as a fast object detection model 

and suitable for CAD systems.  

In this dissertation, we propose an end-to-end system that is based on the YOLO-based model to 

simultaneously detect and identify breast lesions into two most common abnormalities, Mass tumors or 

Calcification. Our approach contributes with a new feature, which is an end-to-end system that can recognize 

both types of suspicious lesions whether only one type exists in an image, or both simultaneously appear in 

the same image. As the choice of YOLO model was stated earlier, the proposed implementation will also 

serve as a basic step for the integrated framework for CAD system to present a complete breast cancer 

diagnosis. 

The performance of the first step was demonstrated on different mammography datasets using deep 

learning methodologies (i.e., data augmentation, early stopping, hyperparameters tuning and transfer 

learning). An additional contribution was presented in this work to boost the lesions detection and 

identification performance as follows. Because the performance varies according to the input data of the 
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model, single evaluation results were first reported over the variations of images, then different fusion models 

were developed to increase the final detection accuracy rate and join models with different configurations. 

The suggested methodology will ensure the best-detected bounding boxes and remove the bad predictions 

that can mislead the future diagnostic tasks. Experiments were conducted on two most widely used datasets: 

CBIS-DDSM and INbreast, and on an independent private dataset. The outcome of this work will justify the 

performance of the YOLO-based model for deep learning lesion detection and identification on 

mammography. It will also serve as a comparison study of YOLO-based model performance on various 

mammograms. 

Inspired by the reviewed works and their diagnosis results, we expanded the study on another 

mammography dataset that includes Current and Prior screening views for conducting an early detection task 

retrospectively. We first apply the YOLO-based fusion models on the most recent screening mammograms 

to detect and identify three types of breast lesions (i.e., Mass, Calcification, Architectural distortion). Second, 

we suggest replicating the early-screened mammograms with cancer diagnosis and maintaining prior shape 

and appearance into synthetic Prior mammograms that resemble the Current mammograms. The model that 

was trained on the Current views will be inferred retrospectively on the new Prior views to predict the 

suspicious findings that were missed at initial screening. 

We evaluated two state-of-the-art techniques for image-to-image translation, CycleGAN and Pix2Pix and 

compared their performance on predicting location and type of lesions on Prior mammograms at early 

screening. 

Motivated by the surveyed works on breast tumors segmentation, we suggest a novel architecture 

that incorporates all the recent approaches that were suggested to improve the breast masses segmentation 

task. We elaborate a new segmentation architecture that is based on the standard UNet and its two variations. 

Our approach also aims to evoke the CycleGAN method for a synthetic data augmentation between different 

mammography datasets to make benefit from the similar domains. 

The second step of the CAD system was applied only on the detected Mass lesions after filtering 

their type and location from the mammograms. Other abnormalities were discarded for the lack of their 

ground truth diagnostic information. 
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Inspired by the continuous success of the CNN model and its variations for breast mass 

classification, and the high performance of the ensemble model technique on machine learning, we propose 

a stacked ensemble of residual network (ResNet) models to classify and diagnose previously detected and 

segmented mass lesions. The proposed model uses three different architectures of the ResNet model, 

ResNet50V2, ResNet101V2, and ResNet152V2 that are transferred and fine-tuned on the public and private 

mammography datasets. The models’ layers are stacked together and reconfigured into a new entire model 

for an overall classification and diagnosis of 1) the pathology as malignant or benign; 2) the BI-RADS 

category as assessment score from 2 to 6; and 3) the shape as round, oval, lobulated, or irregular. All surveyed 

works are grouped and categorized into the Table 2. 

Table 2: Related works  

Reference Year Methods Dataset 

1) Breast Lesions Detection & Identification 

Kozegar et al. [31] 2013 Adaptive threshold machine learning INbreast 

Agarwal et al. [32] 2019 
CNN patch classifier and mass probability 

map (MPM) 

CBIS-DDSM 

INbreast 

Al-masni et al. [49] 2018 YOLO DDSM 

Aly, G. et al. [52] 2020 YOLO INbreast 

Peng et al. [61] 2020 Faster R-CNN 
CBIS-DDSM 

INbreast 

Al-Antari et al. [62] 2018 YOLO INbreast 

Al-Antari et al. [63] 2020 YOLO INbreast 

Singh et al. [89] 2020 Single Shot Detector (SSD) INbreast 

Ribli et al. [65] 2018 Faster R-CNN + FCN INbreast 

Al-masni et al. [68] 2017 YOLO DDSM 

Akselrod-Ballin et al. [70] 2016 cascaded R-CNN INbreast 

Dhungel et al. [71] 2015 Deep Belief Network (DBN) 
DDSM-BCRP 

INbreast 

Akselrod-Ballin et al. [72] 2017 three-stage cascade of Faster-RCNN models INbreast 

Li et al. [73] 2020 Siamese-Faster-RCNN INbreast 

Hamed et al. [74] 2021 YOLOV4 INbreast 

Watanabe et al. [76] 2019 cmAssist – Custom deep learning networks Private 

Timp et al. [77] 2007 temporal change features + SVM Private 

Timp et al. [78] 2006 regional registration technique Private 

Loizidou et al. [79] 2019 Temporal subtraction Custom 
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Loizidou et al. [80] 2020 Image registration Custom 

Zheng et al [81] 2018 

Detection: 3 cascading detectors (Haar, LBP, 

and HOG) UCHCDM 

Classification: VGG-19 

Dhungel et al. [167] 2017 Cascade Deep Learning and Random Forest INbreast 

Dhungel et al. [83] 2015 Deep structured output learning + refinement INbreast 

Dhungel et al. [135] 2017 conditional GAN (cGAN) INbreast 

Isfahani et al. [186] 2021 Growth regional method MIAS 

Silalahi et al. [187] 2021 CNN (VGG + ResNet) MIAS 

Yassir et al. [188] 2022 YOLOv5 + Mask RCNN INbreast 

2) Biomedical Lesions Segmentation 

Al-Antari et al. [62] 2018 AUNet INbreast 

Hai et al. [87] 2019 Fully connected VGG-16 Private 

Zhu et al. [88] 2018 Full resolution convolutional network (Front) INbreast 

Singh et al. [89] 2020 CNN + CRF INbreast 

Ronneberger et al. [90] 2015 UNet Biomedical Images 

Sathyan et al. [91] 2020 UNet CBIS-DDSM 

Soulami et al. [92] 2021 UNet 
INbreast 

DDSM 

Abdelhafiz et al. [94] 2019 UNet-128 INbreast 

Ibtehaz et al. [95] 2020 MultiResUNet Biomedical Images 

Li et al. [96] 2018 Conditional Residual Unet INbreast 

Oktay et al. [98] 2019 Attention dense Unet DDSM 

Sun et al. [101] 2020 
ASPP-FC-DenseNet private 

R-Unet INbreast 

Ravitha Rajalakshmi et al. 

[101] 
2020 

ResNet34 + ASPP INbreast 

CRUNet INbreast 

Wang et al. [103] 2019 Multi-scale FCN-CRF INbreast 

Zhou et al. [104] 2019 Unet++ Biomedical Images 

Tsochatzidis et al. [105] 2021 Unet+ CBIS-DDSM 

Jha et al. [106] 2020 DoubleUNets Biomedical Images 

Das et al [107] 2019 Contour-Aware Residual W-Net (WRC-Net) Biomedical Images 

Tran et al. [108] 2021 TMD-Unet Biomedical Images 

Irfan et al. [182] 2021 Di-CNN + morphological erosion operation. Ultrasonic 

Li et al. [183] 2022 
Class activation mapping and deep level set  

(CAM-DLS) 
Breast Ultrasound 

Sharma et al. [184] 2022 Xception model + SVM classifier Histology Images 
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3) Breast Cancer Diagnosis & Classification 

Shen et al. [38] 2017 CNN + VGG 
CBIS-DDSM 

INbreast 

Singh et al. [89] 2020 CNN DDSM 

Al-Antari et al. [62] 2018 Ensemble of AlexNet-based CNN INbreast 

Shams et al. [120] 2018 CNN + GAN 
DDSM 

INbreast 

Li et al. [121] 2019 DenseNet-II Private 

Zhang et al. [122] 2020 Local binary patter and Deep CNN features CBIS-DDSM 

Chakravarthy et al. [124] 2020 
Improved Crow-Search Optimized Extreme 

Learning Machine (ICS-ELM) algorithm 
INbreast 

Khan et al. [125] 2019 multi-view feature fusion (MVFF) CBIS-DDSM 

Alkhaleefah et al. [128] 2020 
AlexNet, VGG, GoogLeNet, ResNet  

+ fine tuning 
CBIS-DDSM 

Falconí et al. [127] 2019 MobileNet and NasNet + fine tuning CBIS-DDSM 

Medeiro et al [130] 2020 DenseNet201 + MLP CBIS-DDSM 

Li et al. [133] 2020 
DualCoreNet: Texture  

and shape features fusion 
INbreast 

Tsochatzidis et al. [105] 2021 CNN CBIS-DDSM 

Dhungel et al. [135] 2017 
multi-view deep residual neural network 

(mResNet) 
INbreast 

Falconí et al. [129] 2020 NasNet + fine tuning on VGG16 and VGG19 INbreast 

Falconí et al. [178] 2020 VGG16 + fine tuning CBIS-DDSM 

Irfan et al. [182] 2021 

Fusion of CNN-activated feature vectors and 

DenseNet201-activated 

feature vectors combined with SVM 

Ultrasonic 

Ayana et al. [184] 2022 
esNet50-Adagrad-based multistage transfer 

learning (MTL) 
Ultrasonic 

Zhou et al. [189] 2022 Resolution adaptive network (RANet) Histopathological  
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CHAPTER III 

PROPOSED METHODOLOGY 

 

A. Introduction 

This chapter presents technical details about the architecture models and approaches that were 

adapted to develop a complete CAD system for breast cancer diagnosis. The models are based on deep 

learning technology and motivated by the latest cutting-edge computer vision techniques. Each step of the 

integrated CAD system is solved using a novel architecture model that was trained on mammograms to extra 

deep features for the detection of breast abnormalities and localize them in the entire mammogram; the 

segmentation of the breast tumors and masking their background; and the classification of the tumors for a 

final diagnostic decision. The proposed detection and identification step was conducted with a fusion-models 

approach that is based on the YOLO architecture model. The same idea was tested on an external dataset that 

acquires current mammograms and their corresponding prior screening views. The model was inferred on 

synthetic prior images that were generated using an image-to-image translation technique Pix2Pix and 

retrospective analysis was used to evaluate the early detection and classification of abnormalities in prior 

mammograms. Next, the segmentation step was solved with a novel segmentation architecture model, called 

Connected-UNets. The performance was enhanced using additional synthetic images using image-to-image 

translation methods. Finally, the classification step was developed using a stacked ensemble of Residual 

Neural Networks (ResNet) models. 

The following sections detail each methodology and approach that was proposed in this work. 

B. YOLO-based fusion model for Abnormalities Detection and Identification 

1. YOLO-Based Model 

Object detection refers to a regression problem that maps the right coordinates of image pixels to a 

bounding box that surrounds a specific object. After being fed into a CNN that builds a convolutional feature 
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map, popular regional-based neural networks models predict multiple bounding boxes and use regions to 

locate objects within images. This approach applies a selective search that extracts most adequate regions 

from images and then predicts the offset values for the final bounding boxes. Typically, this technique is 

experimentally slow and memory consuming, therefore YOLO (You-Only-Look-Once) deep learning 

network was proposed where a single CNN predicts at the same time bounding boxes allocation and their 

class label probabilities from entire images. The fact that YOLO does not involve extracting features from 

sliding windows leads to its low computing cost. In fact, it only uses features from the entire image to directly 

detect each bounding box and predict its class label probability. 

YOLO architecture, as explained in Figure 11, is simply based on the fully convolutional neural 

network (FCNN) design. Particularly, it splits each entire image into m x m grids and for each grid, B 

bounding boxes are returned with a confidence score and C class probabilities. 

 

FIGURE 11: Proposed YOLO-based architecture 

Confidence score is computed by multiplying the probability of an existing class object with the intersection 

over the union (IoU) score as detailed in Eq. (1). 

Confidence = Prob (object) × IoU score                                                                                 (1) 

In addition, the detected object is classified as mass or calcification according to its class probability and its 

confidence score for that specific class label as explained below in Eq. (2). 

C class probability = Prob (Class object) × IoU score                                                            (2) 
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In this dissertation, at the time our recent work was published, we adopted YOLO-V3, which is the 

third improved version of YOLO networks, to detect more different scaled objects, and it uses multi-scale 

features extraction and detection. As shown in Figure 11, the architecture first employs an extraction step 

that is based on the DarkNet backbone framework [138]. It was inspired by the ResNet architecture and 

VGG-16, and it presents a new design of 53 layers, as illustrated in the lowest block in Figure 11. The model 

uses skip connections to prevent gradients from diminishing and vanishing while propagating through deep 

layers. After that, the extracted features at different scales are fed into the detection part that presents three 

fully connected layers. After that, it applies the concept of anchor boxes that is borrowed from Faster-RCNNs 

model. In fact, the prior boxes were pre-determined by training a K-means algorithm on the entire images. 

After that, the output matrixes of multi-scale features were defined as grid cells with anchor boxes. This helps 

to determine the IoU percentage between the defined ground-truth and anchor boxes. It also ensures selecting 

the boxes with the best scores compared to a certain threshold. At the end, four offset values of bounding 

boxes against each anchor box were predicted with a confidence score and a class label probability. Hence, 

the detection considered correct bounding boxes that had both scores exceeding a certain threshold [139]. 

2. Fusion Models Approach 

According to the generalized YOLO-based model we presented earlier in Figure 11, the bounding 

boxes that surround suspicious breast lesions are detected with certain confidence scores as explained in the 

previous subsection. This score is affected by model settings, input data provided to the model, and YOLO's 

internal classification process to calculate the class label probability score (i.e., Mass or Calcification). Based 

on this hypothesis, evaluation of such a model can be expanded to improve the final predictions results. 

We proposed in this dissertation that the best predicted bounding boxes be chosen first among all 

augmented images (i.e., rotated, morphed, translated, etc.) based on their IoU score. The idea helped to 

determine the best representative mammograms to correctly localize and classify breast lesions. Second, we 

suggested joining different predictions of the model’s implementation to lower the error rate and combine 

performance of differently configured models. These models were trained and set differently, resulting in a 

fusion-based model devoted to achieving the best results. 

In fact, we note that Model1, referred to as M1, is trained and configured differently for one class 

targeting either Mass or Calcification. Therefore, the two developed models from M1 are now referenced as 
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M1(Mass) for Mass class and M1(Calcification) for Calcification class. Model2, referred to as M2, is 

configured for multi-class training and identification and used for fusion to improve the performance of 

single-class models. The model M2 will now be identified as M2(Mass and Calcification) since it targets 

multiple classes. 

After developing and testing each model Mi, our proposed fusion approach is to create a fusion 

model for Mass class using M1(Mass) and for Calcification class using M1(Calcification), while benefiting 

from the M2(Mass and Calcification) to improve the performance of the M1 models. 

We first report the Mass predictions1 using M1(Mass) that have IoU score more than threshold1. 

Next, we select only images with Mass lesions and report their predictions using M2(Mass and Calcification) 

and another threshold2. After that, we filter out predicted images that are not within the Mass predictions1 

and save them as Mass predictions 2. We finally combine the two predictions into final Mass predictions as 

shown in Figure 12. We repeat the same logic for Calcification predictions according to the flow in Figure 

12. In all our fusion models, we used a threshold1 to be 0.5 and threshold2 to be 0.35 that yielded satisfying 

results. 

 
FIGURE 12: Flow chart of the fusion models’ approach for the final prediction (examples of Input mammography images 

that includes single lesions and different lesions cases from the CBIS-DDSM dataset) 

C. Early Detection and Classification of Abnormalities in Prior Mammograms 

As the previous work detailed, we employed a YOLO-based model in a different evaluation fashion. 

The basic model was initially trained using different configurations (i.e., target class labels). Then, each 

experiment was evaluated by selecting the best predicted bounding boxes within all augmented images (i.e., 

original, and rotated images) having the highest confidence score. The technique proved an effective way to 
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determine the best representative images to precisely detect and classify breast lesions in each mammogram. 

After that, as shown in Figure 13, the idea of YOLO-based fusion models was implemented to improve the 

final prediction results. Different predictions were joined to lower the final error rate and to combine models 

that were differently configured. We used the same notation by referring Model1 to the YOLO-based model 

that was trained and configured for one class either Mass, Calcification, or Architectural Distortion. 

Therefore, Model2 refers to the YOLO-based model that was configured for multiple classes training (i.e., 

all three classes together). Finally, the Fusion Model refers to the combined evaluation of Model1 and Model2 

that was used to improve the overall detection performance. The final model should select predictions that 

were not within the single class predictions according to a threshold of 0.5, which showed satisfying results. 

All models were developed and tested on the Current mammograms from the most recent screening, with 

either Mass, Calcification or Architectural Distortion lesions. Different from our previous work, we added a 

class label, ‘Normal’ for the current mammograms that were not diagnosed with abnormal findings during 

the follow-up screening. Our trained YOLO-based model on abnormal mammograms was applied on Normal 

mammograms to ensure that no bounding boxes were predicted, and consequently, classify the mammograms 

as Normal. 

 

FIGURE 13: YOLO-based Fusion model - Example of mammogram with a Mass lesion 

In this task, we first apply and evaluate the YOLO technique on the Current mammograms to detect 

different breast lesions and classify them into Mass, Calcification, or Architectural Distortion, and the rest to 

Normal. Second, we consider two image-to-image techniques, Pix2Pix and CycleGAN, to learn mapping 

between Current mammograms and their corresponding Prior mammograms. As shown in Figure 14, new 

synthetic Prior mammograms are generated to overcome the misalignment between the screenings due to 
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temporal and texture changes. Next, the trained models on the first step are used to predict the location and 

type of breast lesions on the translated Prior mammograms. Predicting the bounding boxes for suspicious 

lesions of “future cancers” in Prior mammograms is challenging. Therefore, we integrate all diagnostic 

information into one framework that explores possible evidence of invisible patterns for indicating the risk 

of “future cancer”. Inference models are directly applied on translated Prior mammograms and evaluation 

was carried out using true bounding boxes’ positions and class labels of their corresponding Current 

mammograms. 

 
FIGURE 14: Framework for early detection and classification on Prior mammograms (Example of Prior mammogram 

with normal diagnosis and Current mammogram with Mass lesions (red bounding boxes)) 

D. Novel Connected-UNets architecture model for Breast Mass Segmentation 

UNet is considered as a state-of-the-art model for medical image segmentation. Inspired by the Fully 

Convolutional Network (FCN), it is based on the encoder-decoder structure by removing the fully connected 

layers. The network has a symmetric architecture with a u-shape, as the name suggests. It has two paths: one 

for down-sampling and one for up-sampling. The remarkable contribution of UNet architecture was the 

introduction of the skip connections path that added an advantage to the standard encoder-decoder 

architecture. This helps recover the spatial information that gets lost during the down-sampling path due to 

the pooling operations. 
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Inspired by the efficiency of the skip connections, we propose a new architecture, called Connected-

UNets, which connects two UNets using additional skip connections. Figure 15 shows an overview of the 

proposed architecture, where it consists of two standard encoder and decoder blocks and two Atrous Spatial 

Pyramid Pooling (ASPP) blocks for the transition between the two pathways. We suggest connecting the first 

decoder and the second encoder blocks with new modified skip connections to reconstruct the decoded 

information in the first UNet before being encoded again in the second UNet. Each encoder block includes 

two convolution units, which consist of 3 x 3 convolutions followed by an activation ReLU (Rectified Linear 

Unit) and a batch normalization (BN) layer. Before sending the information to the next encoder, each encoder 

block's output is subjected to a maximum pooling function. Each decoder block consists of a 2 x 2 transposed 

convolution unit (i.e., deconvolution layer) that is concatenated with the previous encoder output, and then 

the result is fed into two convolution blocks, which consist of 3 x 3 convolutions followed by an activation 

ReLU and a BN layer. 

 

FIGURE 15: The proposed Connect-UNets architecture 

An ASPP block is used to transition between the down-sample and up-sample routes. As the name 

indicates, this technique uses “Atrous” (which means “holes” in French) convolution to allow having a larger 

receptive field in the transition path without losing resolution. As shown in Figure 16, it is composed of four 

dilated 3 x 3 convolutions layers with dilation rate r = {0, 6, 12, 18} and followed by BN layers. The four 

sup-blocks are next added to create a multi-scaled features block that is finally fed into a 1 x 1 convolutions 

layer. 
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FIGURE 16: The Atrous Spatial Pyramid Pooling (ASPP) block 

After going through the first UNet, a second UNet is attached through new skip connections that 

use information from the first up-sampling pathway. First, the result of the last decoder block is concatenated 

with the same result after being fed into a 3 x 3 convolutions layer followed by an activation ReLU and a BN 

layer. This is used as the input for the second UNet's initial encoder block. After that, the output of the 

maximum pooling operations of each three encoder blocks are fed into 3 x 3 convolutions layers and then 

concatenated with the output of the last previous decoder block. The result is next down sampled to the next 

encoder block. The second UNet's last encoder block is transferred to the ASPP block, and the rest is the 

same as the first UNet. Finally, the last output is given to a 1 x 1 convolutions layer that is followed by a 

sigmoid activation layer to generate the predicted mask. 

In addition to the proposed design, which is based on the standard UNet, we present the AUNet 

model, which includes an attention block throughout the up-sampling process. This combines the attention 

technique with the encoder and decoder blocks' skip connections. Indeed, the additional attention block 

should allow the network to weight the low-level features (i.e., information that has been down-sampled) 

before being concatenated with the high-level features (i.e., up-sampled information) during the skip 

connections. Thus, a new Connected-AUNets architecture is introduced as illustrated in Figure 17. 
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FIGURE 17: The proposed Connect-AUNets architecture 

In fact, the attention block, as shown in Figure 18, consists of a 2 x 2 transposed convolutions layer 

with strides equal to (2,2) and takes low-level features as input. Next, the output is concatenated with the 

high-level features and the result is fed into a ReLU activation layer followed by a 2 x 2 transposed 

convolutions layer with strides equal to (1,1) and a sigmoid activation layer. This generates the attention map 

that is next multiplied by the skip connect input to produce the final output of the attention block, which 

serves as a new input of the decoder block. 

 

FIGURE 18: The attention block 

We replace the usual convolution blocks with residual convolution blocks, motivated by the 

improvement made to the UNet architecture to make it strong enough for segmenting medical images with 



 39 

diverse sizes. Therefore, the proposed architecture has become the Residual UNet (ResUNet), and 

consequently we proposed a new Connected-ResUNets architecture as detailed in Figure 19. 

 

FIGURE 19: The proposed Connect-ResUNets architecture 

Consequently, adding the residual convolution blocks should enhance the UNet architecture to 

reconcile the features learnt at each scale of the down-sampling pathway and take full advantage of the 

information propagated, which may result in the deep network's degeneration. As shown in Figure 20, a 

residual convolution block consists of two 3 x 3 convolution layers, followed by BN and ReLU activation 

layers. The output of the residual block is then yielded by adding the input features to the outputs of the 

stacked layers. 

 

FIGURE 20: The residual block 

 

E. Image Synthesis for Data Quality Enhancement and Augmentation 

Deep convolutional networks have been enormously improved to provide cutting-edge solutions to 

computer vision and they have given the ability to manipulate images for complex image-related tasks such 
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as image synthesis, image reconstruction, image translation, etc. Recently, these tasks were significantly 

treated thanks to the discovery of Generative Adversarial Networks (GANs) architecture. A standard GAN 

comprises two models, a generator, and a discriminator. These models compete against each other to produce 

fake data that is realistic enough to fool the discriminator. The architecture has known success in medical 

imaging applications [140] and many variants were introduced such as conditional GAN (cGAN), 

Wasserstein Generative Adversarial Network (WGAN), etc. Further work extended the idea to create 

multiple GANs that can serve for synthetic data augmentation, domain adaptation, and style transfer. This 

allowed using a pair of generators to learn mappings of images and a pair of discriminators to distinguish 

two different types of images. The idea emphasized the image-to-image translation task that leverages 

external labeled dataset to effectively reconstruct the source domain images with additional characteristics 

of a target domain such as pixels, color distribution, shape, and texture. In this context, Pix2Pix and 

CycleGAN are two common models that were developed to apply image-to-image translation techniques. As 

shown in Figure 21, like the standard GAN, the two models have the target of translating images between 

two domains. However, the difference is that the Pix2Pix model works with paired data sets but only accepts 

one image from source domain (A) and indeed it corrects and updates the training using its corresponding 

image from a target domain (B). Differently, CycleGAN model works with unpaired datasets, accepts two 

images, and performs a cyclic translation across domains to return new synthetic images. 

In fact, Pix2Pix [141] is based on conditional GAN (cGAN) architecture to learn a mapping between 

images where the network is composed from a generator 𝐺𝐴→𝐵  and a discriminator D. The generator has an 

encoder-decoder structure, and it tries to transfer special characteristics of an input image 𝑥𝑟
𝐴 to get an output 

image 𝑥𝑔
𝐵 . The discriminator uses PatchGAN architecture, and it compares the input image to the generated 

image on one time and the input image to the corresponding image from the external dataset 𝑥𝑟
𝐵  another time 

to update the generator learning. 

Moreover, the Cycle Generative Adversarial Network, called CycleGAN [142], was designed to 

learn mapping between images without the need to have correlations and one-to-one matches. The idea was 

built on the top of Pix2Pix architecture but with the use of two generators 𝐺𝐴→𝐵 and 𝐺𝐵→𝐴 for cycled images 

mapping and two discriminators 𝐷𝐴 and 𝐷𝐵 to distinguish between real and synthetic images. Additionally, 

the CycleGAN technique employs a cycle consistency for the generators to ensure a good reconstruction of 
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the new image back to their original look. Consequently, the technique helps to capture both domains’ 

features and style without mismatch. 

 
FIGURE 21: Comparative scheme of standard GAN vs two variants for image-to-image translation: Pix2Pix and 

CycleGAN 

Given the limited size of annotated datasets and the difference of their resolutions, we propose to apply image 

synthesis on our mammography datasets to improve the results of the segmentation. In a CycleGAN 

architecture, a deep learning model learns the mapping pixel, color distribution, shape, and texture between 

two datasets [143]. It has been considered as an effective deep learning technique for style transfer, domain 

adaptation and data synthesis [144, 145, 146, 147]. Figure 22 details the CycleGAN architecture that 

additionally evokes a cycle consistency for the generators G and F to ensure the reconstruction of the images 

back to their original domains, where F(G(X)) = X and G(F(Y)) = Y. This helps the final model to capture 

the characteristic features of the two domains and transfer the style without requiring any paired dataset. 

Thus, the network uses the standard adversarial losses and a cycle consistency loss, defined as 

‖𝐹(𝐺(𝑋)) − 𝑋‖1 + ‖𝐺(𝐹(𝑌)) − 𝑌‖1. 
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FIGURE 22: CycleGAN architecture for data synthesis 

 In this work, we developed the CycleGAN model using the tutorial available in Keras webpage 

(https://keras.io/examples/generative/cyclegan). The architecture model has two generators and two 

discriminators’ networks. The generator network consists of two down-sampling blocks with filter sizes 

{128, 256}, nine residual blocks with filter size 256, and two up-sampling blocks with filter sizes {128, 64}. 

The discriminator network is based on four down-sampling blocks with filter sizes {64, 128, 256, 512}. For 

the Pix2Pix model, we similarly used two generators and two discriminators’ networks. The generator 

network contains seven down-sampling and up-sampling blocks with filter sizes {64, 128, 256, 512, 512, 

512, 512} and we used the same discriminator network from the CycleGAN architecture model. 

F. Stacked Ensemble of Neural Networks for Tumors Classification and Diagnosis 

In this step, we propose a stacked ensemble of models to classify and diagnose detected and segmented 

breast masses. The base model comes from the ResNet architecture and its variations. Our methodology 

employs different strategies: transfer learning, stacked ensemble learning, and image data augmentation. 

1. ResNet base model: transfer learning and fine-tuning 

Since its introduction, ResNet has been one of the recent architectures that has known common success 

in medical imaging applications [148, 149]. ResNet is a deep CNN architecture suggested by He et al. [150] 

https://keras.io/examples/generative/cyclegan
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that uses residual blocks with skip connection between layers to bypass a few convolution layers at a time. 

This new architecture accelerated the convergence of a larger number of deep layers, and consequently it has 

been found efficient to provide a compact representation of input images and improve the classification task 

performance [151]. The ResNet has some common architectures such as ResNet-50, 101, and 152, which 

indicate the number of deep layers, but all use the same residual blocks containing three convolutional layers 

with stride 1 and 3 followed by a Batch Normalization (BN) layer and a non-linearity layer Rectified Linear 

Unit (ReLU) on its shortcut path [152]. Alternatively, ResNet architecture presented an improved version 

ResNetV2 by He et al. [153], where the last ReLU was removed to clear the shortcut path using a simple 

identity connection, as shown in Figure 23. 

 

FIGURE 23: Residual block of ResNetV2 

Our methodology employs three pre-trained ResNetV2 architectures, detailed below in Table 3. The 

architectures accept RGB input images of size 224 x 224, and they are composed of an initial convolutional 

layer with a filter size 7 x 7 and stride 2, followed by a pooling layer of size 3 x 3 and stride 2. The base 
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architecture should then use four residual blocks with different kernel sizes of 64, 128, 256, and 512. Each 

architecture has a different number of residual blocks that define the depth of layers. Finally, a global average 

pooling layer with size 7 x 7 is used with a final fully connected layer (FC). 

Table 3: ResNetV2 architecture layers 

Layer Name Output Size ResNet50V2 ResNet101V2 ResNet152V2 

Input Layer  224 x 224 x 3 

conv1 112 x 112 x 64 

Number of filters = 64 

Filter size = 7 x 7 

Strides = 2 

Padding = 3 

pool1 56 x 56 x 64 
Strides = 2 

Pooling size = 3 x 3 

conv2_x 56 x 56 x 64 [
1 × 1 , 64
3 × 3 , 64
1 × 1 , 256

] x 3 [
1 × 1 , 64
3 × 3 , 64
1 × 1 , 256

] x 3 [
1 × 1 , 64
3 × 3 , 64
1 × 1 , 256

] x 3 

conv3_x 28 x 28 x 128 [
1 × 1 , 128
3 × 3 , 128
1 × 1 , 512

] x 4 [
1 × 1 , 128
3 × 3 , 128
1 × 1 , 512

] x 4 [
1 × 1 , 128
3 × 3 , 128
1 × 1 , 512

] x 8 

conv4_x 14 x 14 x 256 [
1 × 1 , 256
3 × 3 , 256
1 × 1 , 1024

] x 6 [
1 × 1 , 256
3 × 3 , 256
1 × 1 , 1024

] x 23 [
1 × 1 , 256
3 × 3 , 256
1 × 1 , 1024

] x 36 

conv5_x 7 x 7 x 512 [
1 × 1 , 512
3 × 3 , 512
1 × 1 , 2048

] x 3 [
1 × 1 , 512
3 × 3 , 512
1 × 1 , 2048

] x 3 [
1 × 1 , 512
3 × 3 , 512
1 × 1 , 2048

] x 3 

Global average 

pooling 
2048 

Pooling size = 7 x 7 

Strides = 7 

Fully connected 1000 1 x 1 x 2048 

 

Training a deep learning model often requires a large amount of annotated data that helps optimize 

the high number of parameters and computations needed in the architecture. However, a limited size of 

medical imaging datasets are usually available that suffer from either missing labels or imbalanced data 

distribution. To overcome these challenges, transfer learning has been a common solution used in many 

recent medical image application [154, 155] by training a model on a large and diverse dataset (i.e., ImageNet, 

MSCOCO, etc.) to capture universal features like curves, edges, and boundaries in its early layers that are 

relevant for image classification. After that, the pre-trained model should be alerted and fine-tuned on a 

custom and specific dataset to reflect the final classification. This procedure provides a fast and generalizable 

training of small datasets and avoids the overfitting problem that deep learning commonly suffers from. 
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As Figure 24 indicates, we apply transfer learning to the base architecture ResNetV2 for our 

proposed methodology to become a TF-ResNetV2. In fact, the model was initially pre-trained on ImageNet, 

and then the first four residual blocks of layers were frozen with exception to the BN layers that needed to 

be retrained to improve the training convergence. After that, the entire architecture was modified by adding 

another FC layer with size of 1024, followed by a dropout regularization layer to maintain a generalization 

aspect for the training. A new final FC layer was placed according to the number of classes for each 

classification task and the entire TF-ResNetV2 is re-trained. 

 

FIGURE 24: Framework of the classification base model: a TF-ResNetV2 model which is a ResNetV2 model pre-trained 

on ImageNet data and modified and fine-tuned on mammography dataset 

2. Stacked Ensemble of ResNet models for Breast tumors classification 

Ensemble learning has been considered efficient to improve the classification task results. Combining 

weaker classifiers to create a better final classification prediction has been adopted by either bagging, 

boosting, or stacking models [156]. While bagging is achieved by learning independently from different 

models and then averaging the predictions, boosting happens by sequentially learning from homogenous 

learners and iteratively combining them into a final model. On the other hand, stacking has been considered 

a way to learn different weak learners parallelly and combine them into a meta-model that is later trained to 

achieve the classification prediction [157]. 

We propose a stacked ensemble of three different ResNet models to conduct our classification tasks. 

After removing the last FC layer of each ResNetV2 architecture, a two-layer network is considered as a meta-

classifier model that concatenates the three models’ layers, and stacks three different FC layers of size 1000, 

100 and 10, coupled with activation functions Sigmoid and ReLU. As shown in Figure 25, pre-trained weights 
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of each model were extracted as images features of size 1024 based on previous layer predictions and 

considered as new input of the entire stacked ensemble of ResNet models for the final class prediction after 

training independently ResNet50V2, ResNet101V2, and ResNet152V2. 

 

FIGURE 25: Framework of the classification Stacked Ensemble of ResNet models 

G. Integrated Framework of CAD system for Breast Cancer 

Our final framework detects and localizes breast masses in a first step, and then segments them in a 

second step. As a preparatory step before implementing the mass segmentation, an advanced data-

enhancement method is used. This approach will not only improve the quality of low-resolution 

mammograms, but it will also increase the size of mammography datasets. 

In fact, the new architecture is used to apply to the ROIs of breast masses discovered in the previous 

stage. Our framework applied the You- Only-Look-Once (YOLO) model in the previous step to locate 

suspicious breast lesions and distinguish between mass and calcification lesions. As a result, the full 

mammograms were used to forecast bounding boxes around worrisome items. At this stage, the architecture 

is applied only on the ROIs of breast masses that were detected from the previous stage. Due to the lack of 

ground truth annotation of the calcification lesions, only mass lesions segmentation is conducted in this study.  
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Our framework applied the YOLO-based fusion model from the first step to locate suspicious breast 

lesions and distinguish between mass and calcification lesions. Hence, the detected ROI masses are fed 

directly into the second segmentation step using our new proposed architecture as shown in Figure 26. Given 

the different scale of breast masses, our methodology expands some bounding boxes coordinates by adding 

extra space around the small tumors. Thus, we obtain the ROI images, and we scale them into 256 x 256 

pixels, which is the optimal input size found experimentally for segmentation networks. 

 

FIGURE 26: The proposed integrated framework 

(a) Original mammogram with ground truth of mass (red), (b) Detected ROI of mass (yellow) superimposed on the 

original mammogram, (c) Detected ROI (i.e., input mass) obtained with ground truth (red), (d) Output segmented binary 

mask of input mass, and (e) Segmented output mass where tissue is masked 

After that, we enhanced the performance by integrating synthetic images as shown in Figure 27. 

During the segmentation, the original detected ROI masses’ images and their generated synthetic images are 

fed directly into the segmentation stage using our proposed architecture. 

 

FIGURE 27: The proposed integrated framework 

(a) Original mammogram with ground truth of mass (red). (b) Detected ROI of mass (yellow) superimposed on the 

original mammogram. (c) Detected ROI (i.e., input mass) obtained with ground truth (red) (Domain X). (d) Detected 

ROI obtained from a different mammography dataset (Domain Y). (e) Original ROI (Domain X) and Synthetic ROI 
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(transferred from Domain Y to Domain X). (f) Output segmented binary mask of input mass. (g) Segmented output mass 

where tissue is masked. 

Finally, the segmented and detected ROI of breast masses generated with masked tissue are used 

for the third and final classification step. The stacked ensemble of ResNet models is trained independently 

on the input ROI masses for each classification task to finally predict the pathology as either malignant or 

benign, the BI-RADS category with an assessment score between 2 to 6, or/and the shape as either round, 

oval, lobulated or irregular. Therefore, the final framework is complete with all automated steps for breast 

cancer analysis and diagnosis as shown in Figure 28. 

 

FIGURE 28: The proposed integrated CAD framework 

(a) Original mammogram with ground truth of mass (red), (b) Detected ROI of mass (yellow) superimposed on the 

original mammogram, (c) Detected ROI mass obtained with ground truth (red), (d) Output segmented binary mask of 

ROI mass, and (e) Segmented ROI mass with marked tissue. 
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CHAPTER IV 

EXPERIMENTAL RESULTS & DISCUSSION 

 

A. Introduction 

In this chapter, different experiments will be detailed to explain the evaluation of all proposed 

methods and models. As mentioned before, the integrated framework of the CAD system was designed to 

present a complete diagnosis of breast cancer as shown in the Figure 29. However, every step forming the 

CAD system should return an output that was used somehow as an input of the consecutive step. Therefore, 

all steps should be evaluated individually and together to ensure the final performance. The used 

mammography datasets are annotated to help validate the learning and evaluation metrics were used 

accordingly for each specific task. This chapter presents the datasets we used for this dissertation, details the 

evaluation metrics, and finally reports the results of each proposed methodology. 

 

FIGURE 29: The sequence of different experiments using the public and private mammography datasets 
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B. Mammography Datasets 

In this dissertation, we evaluated the proposed architectures models and methods on two public datasets, 

the CBIS-DDSM and INbreast datasets and two private datasets that will be detailed in the subsections. 

1. Public datasets 

a. Curated Breast Imaging Subset of DDSM dataset 

The Curated Breast Imaging Subset of DDSM (CBIS-DDSM) dataset [158] is an updated and 

standardized version of the DDSM dataset, in which images were transformed from Lossless Joint 

Photographic Experts Group (LJPEG) to Digital Imaging and Communications in Medicine (DICOM) 

format. After removing incorrect samples, it was evaluated by radiologists and validated with 

histopathological classification. It was reviewed by radiologists after eliminating inaccurate cases and 

confirmed with the histopathology classification. It contains 2907 mammograms from 1555 patients, and it 

is organized in two categories of pathology: Mass images (50.5%) and Calcification images (49.5%). 

Mammograms were collected with two different views for each breast (i.e., MLO and CC) and samples are 

presented in Figure 30. Original images have average size of 3000 × 4800 pixels and are associated with their 

pixel-level ground-truth for suspicious regions location and type, and class labels annotation (i.e., Pathology, 

BI-RADS category and Shape). 
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FIGURE 30: Samples of mammograms from the CBIS-DDSM dataset. Cases with benign and malignant images of Mass 

and Calcification lesions 

b. INbreast dataset 

INbreast [159] is a public dataset of images acquired using the MammoNovation Siemens Full-Field 

Digital Mammography (FFDM) that are stored in DICOM format. Normal mammograms were eliminated 

from the database, which comprises 410 mammograms, 235 of which had anomalies in both MLO and CC 

views from 115 patents. Images are also represented with their annotated ground-truth and have average size 

of 3328 × 4084 pixels. There are 45.5% of images that include Mass lesions and 54.5% of images that include 

Calcifications lesions, and samples are shown in Figure 31. 
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FIGURE 31: Samples of mammograms from the INbreast dataset. Cases with benign and malignant images of Mass and 

Calcification lesions 

2. Private Datasets 

a. INCAN private collection 

A private dataset was acquired from the National Institute of Cancerology (INCAN) in Mexico City. 

It contains 489 mammograms with only stage 3 and 4 breast cancer (i.e., malignant) where 487 cases include 

abnormal lesions from 208 patients, where 80% of images include Mass lesions and the rest includes 

Calcifications. Images have an average of 300 × 700 pixels collected from CC, and MLO views. All 

mammograms may have one or multiple lesions with different sizes and locations and are presented in Figure 

32. 
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FIGURE 32: Samples of mammograms from the INCAN private dataset. Only cases with malignant images of Mass and 

Calcification lesions 

b. UCHCDM private collection 

Another collection of private datasets was acquired from the University of Connecticut Center 

(UCHC), named UCHC DigiMammo (UCHCDM) database [160]. The dataset contains screening 

mammograms of 230 patients, where each case had an initial screening, called Prior exam, and a second 

follow-up screening between 1 to 6 years, called the Current exam, and samples are displayed in Figure 33. 
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FIGURE 33: Samples of Prior and Current mammograms screenings 

Row 1: Case# 31 for Right CC View and Prior exam 2.5 years. Row2: Case#14 for Left CC View and Prior exam 3 years. 

(a) Prior exam with Normal mammogram (i.e., No diagnosis). (b) Current exam with Mass present. 

This dataset was specially used for the early detection in prior screening views using a retrospective 

analysis. Each screening in the dataset acquires two different views, CC, and MLO. All images were saved 

with the Digital Imaging and Communications in Medicine (DICOM) format and were annotated by expert 

radiologists in a description text file with corresponding pathology of a mammographic finding (i.e., Mass, 

Calcification, Architectural Distortion, Normal), as shown in Figure 34. Pixel-level ground-truth images were 

also provided separately where suspicious locations were circulated. A total of 413 mammograms are 
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considered separately for Current (cancerous and healthy) and Prior exams (i.e., non-cancerous), and they 

have an average size of 2950 x 3650 pixels. 

 

FIGURE 34: Samples of Current mammograms screenings including cases with Mass, Calcification, and Architectural 

distortion 

3. Datasets annotation distribution 

All the tasks that were conducted during the CAD system require ground-truth annotation and class 

labels to train the machine learning techniques. The proposed methods and models should use labeled datasets 

to classify the images according to each task and predict the outcomes precisely and accurately. All the deep 

learning models we suggested in this dissertation are based on a supervised machine learning technique that 

adjusts the model’s weights through iterations until the model is fitted appropriately. Each subsection below 
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describes how the data is distributed according to the class labels that were truly annotated by experts and 

radiologists. 

a. Detection and Identification task 

During the simultaneous detection and identification of abnormal lesions in mammograms, the 

proposed YOLO-based fusion model should predict the class label probability of the detected bounding 

boxes. The data that was fed to the model should have either single class labels, either Mass or Calcification, 

or multiple labels. In this first step of the CAD system, we used the two public datasets, and the private 

dataset and details are shown in Table 4. It is to mention that some mammograms may have one or multiple 

lesions with different sizes and locations. 

Table 4: Breast lesions data distribution 

Dataset Mass Calcification Total Unique Patients 

CBIS-DDSM 1,467 1,440 2,907 1,555 

INbreast 107 128 235 410 

INCAN 390 97 487 208 

* We only consider images with existing Ground truth (pixel-level) for the segmentation task 

b. Early detection of abnormalities in prior mammograms task 

In this step, the first task of detection and identification was re-evaluated on an external private 

dataset to detect different breast lesions and classify them into Mass, Calcification, or Architectural Distortion 

and the rest to Normal as detailed in Table 5. After that, the proposed framework was furthermore developed 

to integrate the Prior mammograms corresponding to all used follow-up screenings and provide an early 

detection and classification on initial screened mammograms. The work evaluated the retrospective 

prediction on Prior mammograms that were diagnosed as Normal but at a later stage, they were reported with 

a clear presence and progress of abnormal findings. 

Table 5: Current and Prior data distribution 

Dataset Normal Mass Calcification 
Architectural 

distortion 
Total 

Unique 

Patients 

Prior views 413 0 0 0 
413 230 

Current views 42 181 116 74 
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c. Mass segmentation task 

After detecting the location of abnormal lesions and distinguishing between their types, the outcome 

of the first step is coordinates of the ROI images that surround each abnormality and indicate their class label 

probability. In this dissertation, we only focused on ROI masses due to the lack of pixel-level annotation of 

other lesions in some datasets. Hence, the detected ROIs of only mass cases were retained for the second step 

of segmentation and samples of entire mammograms and their ROI masses are illustrated in Figure 35. It can 

be visually observed that the images have different resolution, and this is due to the different modality and 

tools configuration that were used to acquire and store the mammograms. 

 

FIGURE 35: Samples from the public and private mammography datasets with zoomed-in ROI of mass ground truth 

(red). (a) Example from the CBIS-DDSM mammogram with MLO view, (b) Example from the INbreast mammogram 

with MLO view, and (c) Example from the INCAN mammogram with CC view 
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d. Tumor Classification and Diagnosis task 

In the last step, after segmenting the detected ROI of masses, the predicted binary masks showing 

only the tumors’ contours were applied on the ROIs images. The outcome of the second step should predict 

the pixel-level labels to mask the background of the breast mass and emphasize the texture and the 

morphology of the tumors. Figure 36 illustrates samples of original mammograms and their ROI masses 

compared to the detected and segmented ROI masses from different datasets. 

 

FIGURE 36: Samples of entire mammograms and ROI of detected and segmented Masses from different mammography 

datasets with their ground-truth of location and contour in red 

Each mammography dataset has a different quality of images in terms of pixel quality, existing 

annotated labels, and class distribution, as detailed in Table 6, 7 and 8. In fact, only the CBIS-DDSM dataset 

includes true class labels for lesions’ shape. Accordingly, the INbreast dataset indicates cases with BI-RADS 
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score from 2 to 6, however the CBIS-DDSM dataset presents cases in the BI-RADS category 2 to 5, and both 

INCAN and UCHCDM private datasets have only malignant cases as they indicate breast cancer cases from 

only stage 3 and 4. Consequently, all mammograms from the private datasets fall into BI-RADS categories 

4 and 5. 

Table 6: Pathology class labels distribution for only Mass lesions 

Dataset 
Pathology 

Benign Malignant 

CBIS-DDSM* 717 750 

INbreast** 44 63 

INCAN*** 0 390 

UCHCDM*** 0 181 

* Cases with Benign_without_callback are considered Benign 

** Cases with BI-RADS score > 3, are considered Malignant otherwise Benign 

*** Only Malignant Cases with BI-RADS score = 4 and 5 

Table 7: BI-RADS category class labels distribution for only Mass lesions 

Dataset 
BI-RADS 

Category 2 Category 3 Category 4 Category 5 Category 6 

CBIS-DDSM 189 323 388 567 0 

INbreast 22 13 21 43 8 

INCAN 0 0 211 287 0 

UCHCDM 0 0 105 76 0 

 

Table 8: Shape class labels distribution for only Mass lesions 

Dataset 
Shape 

Round Oval Lobulated Irregular 

CBIS-DDSM 132 341 352 642 

 

4. Data preparation 

All mammogram images were collected using the scanning technique of digital X-Ray mammography 

that usually compresses the breast. The technique may generate deformable breast regions and degrade the 

quality of mammography images [161, 162]. Therefore, some preprocessing steps could be applied to correct 

the data and remove additional noise [47, 63]. In this work, we only applied the histogram equalization 
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technique on the public and private datasets to enhance any compressed region and create a smooth pixel-

equalization that could help distinguish suspicious regions from the normal regions.  

Furthermore, our suggested YOLO-based model requires input mammograms and their corresponding 

ground-truth coordinates of regions of interest (ROI) that surround the breast lesions. According to the 

existing annotation that represents the experts’ annotations, we extracted the lesion coordinates represented 

in x, y, width and height and the class (Mass or Calcification) accordingly. Next, all mammograms were 

resized using a bi-cubic interpolation over a 4 x 4 neighborhood. For experimental reasons, we used images 

sizes of 448 x 448 because the input size should be divisible by 32 according to DarkNet backbone 

architecture of YOLO-V3, and this size should also fit on the GPU memory. Samples of original and 

preprocessed images are illustrated below in Figure 37. 

 

FIGURE 37: Samples from Current exams of original (upper row) and preprocessed mammograms (bottom row) 

Deep learning models require a huge quantity of labeled data to be trained, which improves in their 

generalization. For medical applications, most of the collected datasets have small numbers of instances and 

often suffer from an imbalanced distribution, which remains a challenge for training deep learning models 
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[163]. Many researchers have lately used two techniques to solve this problem: data augmentation and 

transfer learning. Data augmentation is a technique for extending the quantity of a dataset in an experimental 

setting. In this work and for the detection task, we augmented the original mammograms six times. First, we 

rotated original images with the angles Δ𝜃 = {0°, 90°, 180°, 270°} and we transformed them using Contrast 

Limited Adaptive Histogram Equalization (CLAHE) method [164] with two variations {tile grid size of (4, 

4) and a contrast threshold of 40, tile grid size of (8, 8) and a contrast threshold of 30}. Thus, a total of 18,909; 

1,410; 2,922 and 1,652 mammograms were respectively collected for the CBIS-DDSM and INbreast public 

datasets, and the INCAN and UCHCDM private datasets to train and test the proposed model. 

The initialization of the trainable parameters is the first step in deep learning models (i.e., weights, 

biases). To do that, there are two commonly adopted methods: random initialization and transfer learning 

[165, 166]. We exclusively used the transfer learning approach in our work, which involved applying the 

weights of a pre-trained model on a larger annotated dataset (i.e., ImageNet, MSCOCO, etc.) and then re-

training and fine-tuning the new weights on our unique task and augmented dataset. This helped to accelerate 

the convergence and avoid overfitting problems. As a result, we employed the weights that were learned on 

the Microsoft COCO dataset using the DarkNet backbone architecture. The pre-trained model architecture 

was originally based on the VGG-16 model. 

In the segmentation stage, only detected and classified masses from the two public dataset and the 

INCAN private dataset there were correctly predicted by the YOLO model were considered and the false 

predictions were discarded as similarly highlighted in previous works [167, 168]. The UCHCDM private 

dataset was not used because it does not acquire pixel-level annotation. 

Some cases of mammograms have more than one detected mass lesion, therefore, a total of 1,467, 

112, and 638 masses were respectively considered from the CBIS-DDSM, INbreast, and the INCAN dataset. 

Because our network only works on single detected ROIs, we wanted to examine mammograms with multiple 

lesions at the detection stage and treat them as single mass lesions ROIs. The estimated ROI masses were 

then downsized into 256 x 256 using either a bi-cubic interpolation or an inter-area resampling interpolation, 

depending on whether the original size was small or big. All images were preprocessed to remove additional 

noise and degradation caused by the scanning technique of digital X-ray mammography [49, 80]. As a result, 

we used histogram equalization to improve the compressed regions and smooth the pixel distribution, which 
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also improves the pixel segmentation. All images were normalized to a range of [0, 1]. Samples of ROI 

images of masses and their pixel-level mapping are shown in Figure 38. 

To generalize the learning curve of the proposed segmentation deep learning models, many 

annotated samples need to be provided. Because each dataset has a restricted number of ROI masses, we 

have augmented the original ROIs four times by rotating them at angles of 0°, 90°, 180°, and 270°. We also 

used the Contrast Limited Adaptive Histogram Equalization (CLAHE) approach to alter them twice. To train 

and evaluate the suggested architectures, raw data of single ROI images were augmented six times into a 

total of 8,802; 672, and 3,828 ROI masses were prepared, respectively, from the CBIS-DDSM, INbreast, and 

INCAN private datasets. 

 

FIGURE 38: Samples of ROI masses and their ground-truth masks from each mammography dataset used for 

segmentation 

Finally, the detected and segmented ROIs from the previous steps are used for the last classification 

and diagnosis step. The outcome of the last third step defines the diagnostic decision of the CAD system that 

provides a class label probability of the pathology, the BI-RADS category or/and the shape. Furthermore, the 

pre-trained ResNet models, which were used for the last step, require input image size of 224 x 224; therefore, 

the detected and segmented ROIs were down sampled from 256 x 256 using an inter-area resampling 

interpolation. Finally, all images were normalized to a range of [0, 1]. Samples of input data for each 

classification class are illustrated in Figure 39 where ROIs are distributed according to different class labels 

from the mammography datasets. 
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FIGURE 39: Samples of the detected and segmented ROI masses for each class within different classification tasks from 

different mammography datasets 

C. Evaluation Metrics & Experiments Setups 

1. Detection and Identification metrics 

In this dissertation, we used only object detection and identification measures to evaluate the 

performance of our proposed YOLO-based model. To ensure the true detection of breast lesions in the 

mammograms, we first measured the intersection over union (IoU) score between each detected box and its 

ground-truth (i.e. (x, y, h, w) coordinates and class label), and then we verified if it exceeded a particular 

confidence score threshold of 0.35 that will be discussed later. Eq. (1) details the IoU score formula. 

𝐼𝑜𝑈 𝑠𝑐𝑜𝑟𝑒 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

(1) 

We also used an objective metric that considered the genuine detected boxes' estimated class 

probability. Inspired by the work [139], we computed the number of true detected masses and calcifications 

over the total number of mammograms as defined in Eq. (2). 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒 =
𝑇𝑟𝑢𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
 

(2) 

This means that before estimating the final detection accuracy rate, we removed cases with a lower 

IoU score. Predicted boxes with confidence probability scores equal to or greater than the confidence score 

threshold were only considered when calculating the final detection accuracy rate. We measured the detection 

accuracy rate globally and for each independent class to evaluate the performance of the simultaneous 

detection and classification. 
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2. Retrospective early detection metrics 

In this part, the YOLO-based fusion model was trained on the Current views of the UCHCDM private 

dataset. The same evaluation metrics for detection and identification were used as explained above. 

Additionally, we particularly reported the Current mammograms prediction results using the area under curve 

(AUC) that reflects the performance of the model and the trade-off between the true positive rate and false 

positive rate for each target class label. We used three additional metrics called precision, recall, and 

sensitivity that are computed using the TP, FP, and FN that are defined per predicted class to represent the 

number of true positive, false positive, and false negative predictions, respectively as shown in Eq. (3), Eq. 

(4), and Eq. (5). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 1 − 𝐹𝑁𝑅 = 1 −
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

(5) 

The early detection of abnormalities in Prior mammograms was evaluated using two metrics, a true 

prediction rate and false prediction rate. We considered a true prediction where the location and type of breast 

lesions were correctly captured using the inference model, retrospectively on non-cancerous screening views 

at t=0 years. The inference evaluation was concluded using the ground-truth labels of the Current views that 

were generated by experts later at t= [1, 6] years. Consequently, all predictions should be fairly compared to 

0 predictions (i.e., all were missed) by experts at t=0. Both metrics were compared to the “Experts prediction” 

that missed detecting the risk of future breast cancer. 

3. Segmentation metrics 

Segmentation stage is evaluated using the Dice similarity score, also called F1-score, which 

represents a coupled average of the intersection between areas and the total areas as indicated in Eq. (6). 

Accordingly, we use another evaluation metric, the Intersection Over Union (IoU) score, also called the 

Jaccard score, which is detailed in Eq. (7). The pixels surrounding all the masses are correctly segmented, 

resulting in a binary mask being formed from the segmented contour of the mass lesions with a high Dice 

score and IoU score. 
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𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 (𝐴, 𝐵) =  
2 × 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝐴, 𝐵)

𝐴𝑟𝑒𝑎 𝑜𝑓 (𝐴) + 𝐴𝑟𝑒𝑎 𝑜𝑓 (𝐵)
=

2 × (𝐴 ∩  𝐵) 

𝐴 + 𝐵
 

(6) 

𝐼𝑜𝑈 𝑠𝑐𝑜𝑟𝑒 (𝐴, 𝐵) =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (𝐴, 𝐵)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 (𝐴, 𝐵)
=

𝐴 ∩  𝐵

𝐴 ∪  𝐵
 

(7) 

To train the proposed architecture models, a learning rate of 0.0001 with Adam optimizer is 

employed. A weighted sum of Dice and IoU losses is used as a segmentation loss function using the Dice 

score and IoU score between true and predicted samples, as detailed in Eq. (8). 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠(𝑡𝑟𝑢𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

= −(0.4 × 𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒(𝑡𝑟𝑢𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) + 0.6 × 𝐼𝑜𝑈(𝑡𝑟𝑢𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)) 

(8) 

 To evaluate our integrated framework system, we first define a segmentation accuracy measure 

to be the mean IoU score for correctly identified ROIs based on a 90% overlap threshold and we refer to it 

as IoU90 score as shown in Eq. (9). Then, a final segmentation accuracy is introduced as an end-to-end 

accuracy for the two stages, explained in Eq. (10). 

𝐼𝑜𝑈90 𝑠𝑐𝑜𝑟𝑒 = {𝑚𝑒𝑎𝑛 (𝐼𝑜𝑈 𝑠𝑐𝑜𝑟𝑒𝑠 ∀ 𝑅𝑂𝐼𝑠)               𝑖𝑓 𝐼𝑜𝑈 𝑠𝑐𝑜𝑟𝑒 (𝐴, 𝐵)

≥ 90  𝑁𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒                       𝑖𝑓 𝐼𝑜𝑈 𝑠𝑐𝑜𝑟𝑒 <  90              

(9) 

𝐹𝑖𝑛𝑎𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒 × 𝐼𝑜𝑈90 𝑠𝑐𝑜𝑟𝑒 (10) 

4. Classification and Diagnosis metrics 

All classification tasks are evaluated overall using the accuracy, and area under curve (AUC) that 

reflect the performance of the model while considering the unbalanced mammography datasets. Particularly, 

for pathology classification, which presents a binary-class case, we use three additional metrics called 

sensitivity, specificity scores, and F1-score, as shown in Eq. (11), Eq. (12), and Eq. (13). The F1-score is a 

coefficient that represents a harmonic average between the specificity and sensitivity, where its maximum 

score of 1 indicates perfect specificity and sensitivity and of 0 the worst performance. Moreover, the accuracy 

score is a rate of correct predictions over all cases as detailed in Eq. (14) where TP, TN, FP, and FN are 

defined per predicted class to represent the number of true positive, true negative, false positive, and false 

negative predictions, respectively. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(11) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(12) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(13) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(14) 

In the pathology classification, positive refers to the malignant class and negative refers to the 

benign class. In the BI-RADS category and shape classification, macro-averaging is used to compute the 

accuracy and the AUC scores. Consequently, a confusion matrix can be driven from these measurements to 

show the tradeoff between the true and predicted class labels. 

5. Experimental setups 

The proposed YOLO-based model presents a list of hyperparameters that includes learning rate, 

number of epochs, dropout rate, batch size, number of hidden units, confidence score threshold and so on. 

Only three hyperparameters were chosen for tuning because of their impact on the model's performance. For 

all datasets, we randomly split all mammograms for each class into groups of 70%, 20%, and 10% 

respectively for training, testing, and validation sets. 

Trainable parameters were kept constant while hyperparameters were modified in each experiment. 

Adam was used to optimize all experimental datasets, and the detection accuracy rate was utilized to report 

all experiments. First, we set the learning rate to 0.001, number of epochs to 100 and the batch size to 64 

according to the work [47], and then we trained the model with different confidence score thresholds until 

we report the value that provided satisfying detected objects for further tasks (i.e., segmentation and shape 

classification). As shown in Figure 40a, the best confidence score value for all datasets is 0.35 to accept all 

detected objects the model confident from them by more than 35%. Next, we repeated the experiments, but 

we varied learning rate values to report the best detection accuracy rate for all datasets as shown in Figure 

40b. In addition, the early stopping strategy for the second half of iterations was used to reduce the learning 

rate by 10% if the loss function did not decrease every 10 epochs.  

Next, we selected the best learning rate, which is 0.001, and we varied the batch size to report the 

best results for the three datasets as illustrated in Figure 40c. Finally, we modified the number of epochs until 

all datasets indicated the greatest performance for 100 epochs, as shown in Figure 40d. 
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FIGURE 40: Hyperparameters tuning; (a) confidence score; (b) learning rate; (c) batch size and (d) number of epochs 

Similarly, for the segmentation step, each mammography dataset is randomly split into groups of 

70%, 20%, and 10%, respectively, for training, testing, and validation sets as detailed in Table 9. It is 

important to highlight that some of the raw MGs have multiple ROIs. Accordingly, 100 epochs and 8 mini 

batches were used to optimize the network parameters with the training and validation sets. 

Table 9: Data distribution of the mammography datasets 

Dataset 

Raw 

MGs 

Data 

Raw 

ROIs 

Data 

Augmented 

Data 

(ROIs*6) 

Training 

Data (70%) 

Testing 

Data (20%) 

Validation 

Data (10%) 

CBIS-

DDSM 
1,467 1,467 8,802 6,161 1,760 881 

INbreast 107 112 672 470 134 68 

INCAN 389 638 3,828 2,679 766 383 

Furthermore, for the two image-to-image translation models, they were trained and evaluated on 

100 epochs and optimized using the Adam technique with learning rate of 0.0002 and beta score of 0.5. 

During the early detection on prior mammograms, the YOLO-based fusion model was differently evaluated 

using a 5-fold cross validation by training and testing the model using different test sets of random 



 68 

mammograms to ensure the model robustness. Consequently, the entire UCHCDM dataset was randomly 

divided into equal 5 folds of 1,324 training images (80%) and 328 testing images (20%) with respect to the 

imbalanced classes as detailed in Table 10. Finally, we reported the average of results over all the folds. 

Table 10: Cross Validation Folds: Data distribution across class labels 

Data 

Breast Lesions 

Normal Overall 
Mass Calcification 

Architectural 

Distortion 

Training 578 373 243 130 1,324 

Testing 144 92 60 32 328 

Total 722 465 303 162 1,652 

For all experiments using the YOLO-based model, we set the learning rate to be 0.001, the batch 

size to be 8, and the number of epochs to be 100. The loss function combined the bounding box regression 

loss, the class label loss, and the confidence loss. All functions were based on cross-entropy, and they were 

scaled to handle the imbalance of class labels on each batch. In addition, the early stopping method was used 

for the second half of iterations to dynamically reduce the learning rate by 10% every 10 epochs in case of 

constant loss function value. To prevent overfitting, all models were initialized by weights from a pre-trained 

model on a large public dataset, MSCOCO. Then, the models were re-trained and new layers were fine-tuned 

on our mammography dataset. 

Finally, during the classification and diagnosis step, extensive experiments with different variations 

in hyperparameters were conducted to select the best parameters for the base ResNetV2 model. Considering 

their effect on the classification performance, only hyperparameters detailed in Table 11 were tuned to select 

the best configured network that outperforms the evaluated networks on all mammography datasets. 

Table 11: Hyperparameters for the ResNetV2 base model 

Hyperparameters Values explored Description 

Batch size 32, 64 mini-batch training size 

Epochs 20, 30, 50 Number of training epochs 

Dropout 0%, 20%, 30% % of neuron of hidden layers “dropped” for regularization 

LR 10-1, 10-2, 10-3 Learning rate for the Adam optimizer 

Smoothing 0% 20%, 25% % of label smoothing for the loss function 
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For all datasets, we randomly split images for each class into groups of 80% for training, 20% 

divided equally between testing and validation sets. In each experiment, the same trainable parameters were 

used and each hyperparameter was varied accordingly. For all datasets and classification tasks, we used Adam 

optimized and evaluation was reported with a weighted accuracy score to reflect the class imbalance during 

the training and testing. The loss function was employed according to the classification task, a Binary Cross-

entropy function for binary classes and Categorical Cross-entropy for multiple classes. In both cases, a label 

smoothing technique for regularization to help overcome overfitting and provide a generalized model. The 

technique works by explicitly updating the labels during the loss function and decreasing the model’s 

confidence when it starts diverging [169]. In addition, training was monitored using a method that reduces 

the learning rate if the accuracy stops improving. Thus, we applied the stated strategy with a factor of 0.5 

when the accuracy did not improve after two iterations.  Conclusively, the best evaluation was reported with 

a batch size of 32, 30 epochs, a dropout rate of 30%, a learning rate of 10-2, and a smoothing label of 25%. 

D. Evaluation Results 

All experiments using the proposed methods were conducted on a PC with the following 

specifications: Intel(R) Core (TM) i7-8700K processor with 32 GB RAM, 3.70 GHz frequency, and one 

NVIDIA GeForce GTX 1090 Ti GPU. Python 3.6 was used for conducting all experiments. 

1. Detection and Identification 

During the first step of the CAD system, different experiments were conducted to assess the effect 

of varying input images data and target classes (i.e., Mass, Calcification) of our suggested YOLO-based 

model. To improve the outcomes, more tests were undertaken with the fusion model’s technique. 

a. Single Models Evaluation 

 The breast lesions detection and classification model was trained differently over the mammography 

datasets. We varied the input data fed to the model and configured the classification to be with multiple 

classes using M2. Performance of the model is reported in Table 12. 
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Table 12: Model performance for different configurations 

Dataset Configuration 
Overall Detection accuracy 

rate (%) 

Inference time per 

image (s) 

CBIS-

DDSM 

Original images + Original size 63.7 1.23 

Augmented images + Resize 

448 x 448 
73.7 0.57 

INbreast 

Original images + Original size 75.2 0.98 

Augmented images + Resize 

448 x 448 
81.7 0.57 

INCAN 

Original images + Original size 62.4 0.79 

Augmented images + Resize 

448 x 448 
92 0.57 

Results show the advantage of data augmentation and resize over the original mammography 

datasets. In fact, the performance increased with 10% for CBIS-DDSM dataset with almost half of inference 

time. Similarly, the model achieved a better detection accuracy rate with more than 6.5% and 40% less 

inference time. The same improvement with 29.6% is noticed on the INCAN private dataset with a 28% 

drop-in inference time. Accordingly, using the augmented and resized datasets, we varied the prediction 

classes by training M1 independently on Mass and Calcification, and M2 on both, and results are reported in 

Table 13 below 

Table 13: Model performance for different prediction classes 

Dataset 

Detection accuracy rate (%) 
Inference time per image 

(s) 
Model1 Model2 

Mass Calcification Mass Calcification Overall 

CBIS-DDSM 85.1 62.2 84.7 60.2 73.7 0.55 

INbreast 93.4 71.8 93.1 68.7 81.7 0.58 

INCAN 97.9 68.5 96.2 67.8 92 0.52 

Results show that INCAN private dataset had the highest performance compared with the public 

datasets and this can be explained with the good resolutions and the easy localization of most of the lesions 

in those mammograms. Furthermore, the public datasets had more degraded lesions, which are more difficult 

to identify and classify at the same time. Accordingly, results in Table 13 show the clear ability of the YOLO-

based model to better detect and classify the mass lesions from the entire mammograms than the calcification 
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lesions. This corresponds to the differences in shape, size, and texture of the two types of lesions. In fact, 

calcifications are often small and randomly distributed in challenging positions within the breast [170]. As 

shown in Figure 41, calcifications do not have standard shape and they can be bilateral, thick linear, clustered, 

pleomorphic, and vascular, etc. These varied shapes can limit the detection and classification for this type of 

lesions and yield more failed cases than for the other lesions. Below in Figure 41, it shows a case of a coarse-

like calcification that has crossed thick lines with irregular size (image on the left, taken from the CBIS-

DDSM dataset). Pleomorphic calcifications with a random distribution are seen in another example (image 

on the middle, taken from the INbreast dataset). In addition, an example of clustered calcifications located 

on the pectoral muscle that presents a challenging case in mammography (image on the right, taken from the 

INCAN private dataset). 

Moreover, we notice that both models have the best results toward mass lesions using the INCAN 

private dataset, and toward calcification lesions using the INbreast dataset. This can be explained with the 

degraded quality presented in the digitized X-rays mammograms of CBIS-DDSM dataset. Consequently, 

performance is affected by the image quality and our study proved that detection and classification highly 

require full-field digital mammography images which involve direct conversion and preserve the shape and 

textures of breast lesions [171]. 

 

FIGURE 41: Examples of different calcifications shape and localization (ground-truth of calcification is marked in green, 

ground-truth of mass is marked in red) for CBIS-DDSM, INbreast and INCAN private datasets (from left to right) 
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Moreover, Table 13 demonstrates that training the model on both prediction classes slightly 

decreased the performance and this can be explained by the inability of the YOLO-based model to detect and 

distinguish some different types of lesions having similar shapes. However, we proved the robustness of our 

suggested model toward mass detection with a maximum detection accuracy rate of 96.2 using the private 

dataset. Inference time was similar in all studies, with a maximum of 0.58 seconds. Examples from each 

dataset are illustrated in Figure 42, and each lesion's breast has its confidence score. Multiple lesions were 

accurately discovered in the same mammogram, as we can see. 

 

FIGURE 42: Examples of breast lesions detection and classification results and their confidence score toward different 

classes on CBIS-DDSM, INbreast and INCAN private datasets (from left to right): mass (green boxes) and calcification 

(yellow boxes) 

b. Fusion Models Evaluation 

To test the simultaneous detection and classification model, this study introduced an additional step. 

It presents an expanded evaluation which fuses models that are trained with different settings as detailed in 

the previous chapter. In fact, before presenting the results, single models M1 and M2 were first reported over 

best-selected mammograms from the augmented datasets. This means for every set of predicted 

mammograms including the original and their five augmented images (i.e., rotated, transformed), we selected 

the image having the highest IoU score. Next, different models were fused into a new Fusion model, as 

detailed in Table 14, and we measured the detection accuracy rate toward every prediction class. 
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Table 14: Comparison performance using fusion models’ approach 

Dataset 

Detection accuracy rate (%) 

Model1 Model2 Fusion model 

Mass Calcification Mass Calcification Mass Calcification 

CBIS-DDSM 85.1 62.2 84.7 60.2 95.7 74.4 

INbreast 93.4 71.8 93.1 68.7 98.1 72 

INCAN 97.9 68.5 96.2 67.8 98 73.2 

 Indeed, the performance of detection and classification using the fusion model was increased for 

each type of breast lesion compared to the single models. For the CBIS-DDSM dataset, mass lesions had a 

detection accuracy rate of 95.7%, which is higher than 85.1%. Besides, we boosted the performance with 

12.2% for calcification lesions. For the INbreast dataset, we achieved a final detection accuracy rate of 98.1% 

for mass lesions and 72% for calcification lesions, which are better than results reported for single 

experiments in Table 13. Similarly, performance was improved for the private dataset with 98% detection 

accuracy rate for mass lesions and 73.2% for calcification lesions. 

Our proposed fusion models significantly increased the detection and classification outcomes on 

mammography pictures, as can be seen. Indeed, fusion strategies were reviewed in the past for medical image 

segmentation [172, 173, 174], and our approach is a new decision-level fusion strategy for object detection 

and classification that proved the advantage of fusing results of multiple models. 

 Finally, a comparison of mass detection results of the latest studies and similar methods are listed in 

Table 15. Our method, which is based on fusion models, is sufficiently fast and accurate. Comparing both 

detection accuracy rate and inference time with the other works shows that we achieved a better overall 

performance on the public datasets: CBIS-DDSM with a detection accuracy rate of 95.7% and INbreast with 

a detection accuracy rate of 98.1%. 

 It's worth noting that comparing results with state-of-the-art approaches were based on both detection 

accuracy rate and testing inference time, thus while Al-Antari et al. [62] exceeded the INbreast detection 

results, it was more expensive in terms of inference time than our implementation. Furthermore, the trials in 

each paper used distinct preprocessing strategies that performed differently on both standard datasets. The 

framework of the YOLO-based fusion model for the detection and identification of breast cancer 
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abnormalities was published in the Computers, Materials & Continua Journal at the Recent Advances in Deep 

Learning for Medical Image Analysis Special Issue [175]. 

Table 15: Comparison of mass detection with other works 

Reference Year Method Dataset 

Detection 

accuracy rate 

(%) 

Inference time 

per image (s) 

Dhungel et al. 

[167] 
2017 

Cascade Deep 

Learning and 

Random Forest 

INbreast 96 39 

Kozegar et al. 

[31] 
2013 

Adaptive 

threshold 

machine learning 

INbreast 87 108 

Agarwal et al. 

[32] 
2019 

CNN patch 

classifier and 

mass probability 

map (MPM) 

CBIS-DDSM 82 

NA 

INbreast 98 

Aly, G. et al. [52] 2021 YOLO INbreast 89.5 0.009 

Peng et al. [61] 2020 Faster R-CNN 
CBIS-DDSM 93.45 

0.134 
INbreast 95.54 

Al-Antari et al. 

[62] 
2018 YOLO INbreast 98.96 3 

Al-Antari et al. 

[63] 
2020 YOLO INbreast 97.27 0.025 

Singh et al. [89] 2020 
Single Shot 

Detector (SSD) 
INbreast 97 NA 

Proposed 

Methodology 
2021 

YOLO-based 

Fusion Models 

CBIS-DDSM 95.7 0.55 

INbreast 98.1 0.58 

INCAN 98 0.52 

 

2. Early detection of abnormalities in prior mammograms 

a. Evaluation of YOLO-based model on Current Mammograms 

First part of the study considered only Current mammograms from the most recent screening exams. 

The YOLO-based models were trained differently over the Current views of the UCHCDM private dataset. 

We varied the models according to the input dataset and the target class. Hence, Model1 was configured for 

https://www.techscience.com/cmc/special_detail/mia_deep-learning
https://www.techscience.com/cmc/special_detail/mia_deep-learning
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single classes and Model2 was configured for mixed classes. Finally, the Fusion Model was designated to 

combine Model1 and Model2 for each target class according to the approach previously. Table 16 shows 

quantitative comparison of the detection accuracy rate and count that were reported using the 5-fold cross 

validation as μ ± σ, where μ and σ refer to the mean and standard deviation, respectively. 

Table 16: Comparison performance for different models across labeled classes on Test sets 

Models Results 

Breast Lesions 

Normal Overall 

 

Inference time 

per image 

(sec) 

Mass Calcification 
Architectural 

Distortion 

Model1 
Count 

μ ± σ 

113 

79% ± 

0.09 

74 

80% ± 0.05 

49 

82% ± 0.03 

25 

78% ± 

0.01 

261 

79% ± 

0.04 

0.60 

Model2 
Count 

μ ± σ 

110 

76% ± 

0.03 

79 

86% ± 0.04 

51 

85% ± 0.02 

28 

87% ± 

0.05 

268 

82% ± 

0.03 

0.62 

Fusion 

Model 

Count 

μ ± σ 

135 

93% ± 

0.118 

81 

88% ± 0.09 

57 

95% ± 0.06 

30 

94% ± 

0.11 

303 

92% ± 

0.09 

0.62 

Results show the advantage of the adapted Fusion Model and confirm its highest results overall and 

for each class label. Fusion Model had the highest score of 95% for Architectural Distortion lesions and a 

score of 92% overall. Moreover, results in Table 16 show the ability of YOLO architecture to detect and 

classify the breast lesions with a maximum accuracy rate of 93% for mammograms with Mass lesions, 88% 

for mammograms with Calcification lesions, and 95% for mammograms with Architectural Distortion 

lesions. Appropriately, Normal mammograms were also correctly classified with a maximum accuracy score 

of 94% where no bounding boxes were detected. All experiments had similar inference time with a maximum 

value of 0.62 seconds per image. 

Additionally, to get a better understanding of the models’ performance, we generated the free-

response receiver operating characteristic (FROC) curves to illustrate the number of false positives per image 

(FPI) for each target class label. Plots of the FROCs between Average sensitivity and the average number of 

false positives are shown in Figure 43 that specifically compares Model1, Model2, and the Fusion Model. 
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FIGURE 43: FROC curve plots of the YOLO based proposed Detection and identification models per class label on Test 

sets 

By varying the threshold and the range of false positives between 0.05 and 0.20 overall, we could 

achieve an average sensitivity between 0.7 and 0.95 for all cases. Figure 43 clearly shows that the Fusion 

model had the highest performance compared to the other evaluated models. It is observed that the proposed 

model could obtain an average sensitivity of more than 0.90 with an average FPI of 0.20 for Mass lesions, an 

average sensitivity of more than 0.85 with an average FPI of 0.12 for Calcification lesions, and an average 

sensitivity of more than 0.90 with an average FPI of 0.175 for Architectural Distortion lesions. Accordingly, 

Normal cases in Current views were evaluated using the FROC analysis and a false positive was considered 

when no detection should have occurred in a non-cancerous case, but it was missed by the model. It is to 

notice that we could obtain an average sensitivity of around 0.95 with an average FPI of 0.20. 

Finally, we analyzed the performance results with a particular focus on the classification task that 

was conducted by the YOLO-based Fusion model. Table 17 explores the calculated classification metrics by 
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each class label, where we achieved the highest sensitivity of 94.11% on the cancer cases with Architectural 

Distortion and a sensitivity of 92.09% on the non-cancerous cases. 

Table 17: Performance results for Detection and Classification on Test sets 

Class Label Accuracy Precision Recall Sensitivity AUC 

Mass 0.94 0.94 0.94 0.93 0.95 

Calcification 0.93 0.88 0.88 0.88 0.94 

Architectural Distortion 0.98 0.95 0.95 0.94 0.95 

Normal 0.98 0.94 0.94 0.92 0.96 

Additionally, Figure 44 illustrates a visual comparison of the trade-off between the false positive 

rate (FPR) and the true positive rate (TPR) according to the ROC curve plot between the different cases. We 

observed a highest AUC score of 0.95 for the Mass and the Architectural Distortion cases, and an AUC score 

of 0.96 for the Normal cases. The low results for the Calcification lesions could be explained with the fact 

that this type of breast lesions do not have standard shape and location and they are often small and randomly 

distributed which can limit the automatic detection.  

 

FIGURE 44: ROC curve plots of the proposed YOLO-based Fusion Model per class label on Test sets 

Moreover, Figure 45 illustrates the confusion matrix for the classification of the true detected 

bounding boxes applied on the Current mammograms, where three types of lesions are presented with the 

Normal cases (i.e., correct prediction without detected lesions). Clearly, the prediction error for different 

classes is low with a high rate of 6.2% corresponding to the Normal class label and 7.6% corresponding to 
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the Calcification cases. The distribution of error within classes could be explained by the inability of the 

YOLO-based model to detect and distinguish some different types of lesions having similar shapes such as 

Calcification and Architectural Distortion that often have irregular shapes in challenging positions within the 

breast. 

 

FIGURE 45: Confusion matrix of prediction results for Current Mammograms 

 

b. Evaluation of YOLO-based model on Prior Mammograms 

Second part of the study focused on using the pairs of mammograms, including current views and 

their Prior screening exams to provide an early detection and classification of lesions on the Prior screening 

exams. All Prior mammograms were not annotated with diagnosis and thus were considered Normal (i.e., 

non-cancerous, corresponding to 0s in “Experts prediction” row in Tables 18a, 18b, and 18c). In this part, we 

introduce a retrospective approach to look back at the Prior mammograms and try to explore any patterns of 

breast lesions before waiting on a follow-up screening. 

Our methodology is based on joining the learned mapping between the temporal views and a trained 

model on Current mammograms that were annotated by experts. First, the pairs of datasets were prepared 

using the same configuration, and two image-to-image translation models were trained between the two 

datasets to determine the images mapping. Consequently, synthetic mammograms from Prior screening 
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exams were generated to resemble the Current mammograms and preserve the general texture of the Prior 

mammograms. 

After that, the YOLO-based model that was trained and validated previously on the Current mammograms, 

was saved, and used for inference on Prior mammograms. Experiments were evaluated using only the Fusion 

Model that showed the highest performance in the previous section. We first evaluated the performance using 

the original Prior mammograms without image-to-image translation and later compared to the Prior 

mammograms that were translated using the CycleGAN and Pix2Pix techniques. 

Table 18a, 18b and 18c present results of early prediction on Prior mammograms that are reported 

using the 5-fold cross validation as μ ± σ, where μ and σ refer to the mean and standard deviation, 

respectively. We considered a true prediction where the location and type of breast lesions were correctly 

captured using the inference model, retrospectively on non-cancerous screening views at t=0 years. The 

inference evaluation was concluded using the ground-truth labels of the Current views that were generated 

by experts later at t= [1, 6] years. Consequently, all predictions should be fairly compared to 0 predictions 

(i.e., all were missed) by experts at t=0. 

Table 18a: Inference results of YOLO Fusion model on Test sets of original Prior Mammograms 

Results for Prior 

Mammogram 

Prediction 

Breast Lesions 

Normal Overall 

Inference 

time per 

image (sec) 
Mass Calcification 

Architectural 

Distortion 

True prediction 

μ ± σ 

33 

22% ± 

0.09 

16 

17% ± 0.07 

19 

31% ± 0.06 

26 

81% ± 

0.02 

94 

28% ± 

0.06 

0.62 Experts’ prediction 0 0 0 0 0 

False prediction 

μ ± σ 

111 

77% ± 

0.08 

76 

82% ± 0.16 

41 

68% ± 0.03 

6 

18% ± 

0.17 

234 

71% ± 

0.03 
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Table 18b: Inference results of YOLO Fusion model on Test sets of Prior Mammograms using CycleGAN method 

Results for Prior 

Mammogram 

Prediction 

Breast Lesions 

Normal Overall 

Inference 

time per 

image (sec) 
Mass Calcification 

Architectural 

Distortion 

True prediction 

μ ± σ 

32 

22% ± 

0.02 

10 

10% ± 0.08 

22 

36% ± 0.06 

26 

81% ± 

0.02 

91 

27% ± 

0.07 

0.63 Experts’ prediction 0 0 0 0 0 

False prediction 

μ ± σ 

112 

77% ± 

0.07 

82 

89% ± 0.03 

38 

63% ± 0.13 

6 

18% ± 

0.07 

237 

72% ± 

0.02 

 

Table 18c: Inference results of YOLO Fusion model on Test sets of Prior Mammograms using Pix2Pix method 

Results for Prior 

Mammogram 

Prediction 

Breast Lesions 

Normal Overall 

Inference 

time per 

image (sec) 
Mass Calcification 

Architectural 

Distortion 

True prediction 

μ ± σ 

52 

36% ± 

0.01 

13 

14% ± 0.01 

30 

50% ± 0.02 

29 

90% ± 

0.06 

124 

37% ± 

0.1 

0.63 Experts’ prediction 0 0 0 0 0 

False prediction 

μ ± σ 

92 

63% ± 

0.08 

79 

85% ± 0.08 

30 

50% ± 0.01 

3 

9% ± 

0.03 

204 

62% ± 

0.12 

Results in Table 18a, 18b and 18c show the count and percentage of mammograms for each class 

and overall, that were correctly predicted at Prior views and considered for an early detection and 

classification. All true predictions presented two scenarios; one for all correct predictions on both Current 

mammograms and their corresponding Prior views from the first exams (i.e., t=0), and another scenario for 

only correct prediction on Prior mammograms even though their corresponding Current views were not 

correctly predicted. 

It is observed that the highest results were reported by the YOLO-based model that was inferred on 

synthetic Prior mammograms by Pix2Pix technique, where a total number of 52 mammograms (36% ± 0.01) 
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were accurately anticipated. We also noticed a high percentage of 36% ± 0.01 was shown for Mass lesions, 

14% ± 0.01 for Calcification lesions, and 50% ± 0.02 for Architectural Distortion lesions. In addition, 90% 

± 0.06 of Normal mammograms were accordingly classified on Prior exam screenings. The inference time 

per each configuration was reported with a maximum value of 0.63 seconds per image. 

Consequently, the Pix2Pix model indicates the most effective technique for image-to-image 

translating mammograms from Prior to Current appearance to help increase the number of correct detection 

and categorization of breast lesions at t=0. An overall true prediction rate of 37% was reported using the 

proposed methodology that reveals the success of our suggested framework to help an early diagnosis without 

the urgent need of a follow-up screening that might occur at a late stage for breast cancer. 

We also reported the false prediction rate that counted the missed cases on Prior views by the inference 

model. The reported numbers could be explained by the fact that we did not train the model on Prior views 

as they were annotated by experts as being Normal at t=0. 

Although the gold standard of the retrospective comparison we presented is 0 predictions at t=0, we 

also noticed a drop of 9% on the false prediction using the synthetic Prior images that were generated by the 

Pix2Pix model for image-to-image translation with an overall value of 62%. 

Additionally, Figure 46 illustrates the confusion matrix for the classification of the true detected 

bounding boxes on the Prior mammograms, where three types of lesions are presented with the Normal cases 

(i.e., correct prediction without detected lesions). Prediction error for different classes is low with a maximum 

rate of 3.5%. 



 82 

 

FIGURE 46: Confusion matrix of prediction results for Prior Mammograms 

c. Retrospective analysis for the early detection and identification on prior 

mammograms 

In this part, we investigate the follow-up exam time (i.e., originally between 1 to 6 years) of the true 

early prediction results for each class label. Figure 47 illustrates retrospectively that our suggested 

methodology can anticipate the presence of breast lesions that were originally diagnosed at a later exam (i.e., 

t>0). Mass lesions were predicted beforehand but later detected by experts and radiologists within 2 to 3.5 

years. The comparative figure also represents the latest follow-up exam time of results from using the image-

to-image translation techniques versus the original mammograms. 
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FIGURE 47: Comparison of Mean follow-up exam time for prediction results across classes with and without image-to-

image translation Pix2pix and CycleGAN on Prior mammograms 

Moreover, Figure 48 illustrates a comparison of inference results of the YOLO-based model with 

and without image-to-image translation across the different classes and overall. We can visually conclude 

that the Pix2Pix translation method had the best performance, which could also be explained by the fact the 

Pix2Pix model was trained between paired images, compared to the CycleGAN model that used unpaired 

images. Hence, the Pix2Pix model is more efficient than the CycleGAN for the task of image-to-image 

translation considering the advantage of image alignment it presents between the paired datasets.  
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FIGURE 48: Comparison performance of YOLO Fusion model across classes with and without image-to-image 

translation 

Furthermore, we compared results of the early detection and classification across the Prior exam’s 

time that varied between 1 to 6 years. Figure 49 provides a visual observation of the percentage of correctly 

predicted Prior mammograms for each class label using the best-reported experiment (i.e., using the Pix2Pix 

translation). The follow-up exam time of 1 year had the highest rate of predicted images. This emphasizes 

the success of our methodology to early localizing and identifying lesions that are often considered the 

hardest to diagnose. Another observation is that our methodology captured the Mass lesions that had follow-

up requests of later than 3 years, which might be too late to diagnose patients with Mass breast lesions. 

 

FIGURE 49: Comparison performance of YOLO Fusion model and Pix2Pix for image-to-image translation for different 

classes across follow-up exam time (years) 

Finally, two samples of mammograms that were taken from different patients, including Prior exam 

views and their corresponding Current exam views are shown below in Figure 50. Two cases of results are 

demonstrated: 1) When both Current and Prior mammograms were correctly predicted, and 2) When only 

the Prior mammograms were correctly predicted. It seems that when the model failed to predict lesions in 
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some Current mammograms, their corresponding Prior mammograms were successfully predicted using the 

inference model. Predicted bounding boxes were slightly different between views but they exceeded the 

threshold score, and this could be explained with the different quality of the acquired images and the type of 

the detected lesions. Moreover, Normal mammograms were shown in the last row accordingly where correct 

predictions were demonstrated for both screening and for only Predicted mammograms. 
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Figure 50: Example results on Prior mammograms vs Current mammograms using the YOLO-based Fusion model that 

was inferred on the translated Prior images from Pix2Pix method across classes: Mass (red bounding boxes, first row), 

Calcification (green bounding boxes, second row), and Architectural Distortion (yellow bounding boxes, third row). Red 

arrows point to the ground truth location. Last row belongs to the Normal class 

Finally, a comparison of latest studies and similar methods were reported against our proposed 

methodology. For a complete and fair comparison, only works that were applied for Mass lesions detection 

were reported and compared in Table 19. Comparing both detection accuracy rate and inference time with 

the other works that were evaluated on the two public datasets CBIS-DDSM and INbreast, our YOLO-based 

fusion models achieved overall better than previous works. Our recent work was considered having the best 

trade-off between the detection accuracy and testing time comparing to the work by Peng et al. [61] that had 

a better inference time of 0.134 second per image but it only had a detection accuracy rate of 93.45% on the 

CBIS-DDSM dataset. Accordingly, the work by Al-Antari et al. [63] had faster inference time of 0.025 

seconds per image on Mass detection for the INbreast dataset, but our results exceeded their detection 

accuracy rate of only 97.27%. Additionally, it is fair to mention that all experiments in the related works were 

conducted using different configurations and preprocessing techniques, which may show different 

performance on public datasets. We also compared the work of Zheng et al. [152] that similarly conducted 

the detection and classification tasks on the UCHCDM dataset. Although the surveyed work achieved a better 

overall performance of 92.8% than our reported results, the tasks were not simultaneous and required separate 

inference time of 0.62 seconds per image for the detection method and 0.88 seconds per image on the 

classification. 

The framework of the retrospective analysis of YOLO-based fusion model prediction on prior 

mammograms was recently published in the Computer Methods and Programs in Biomedicine Journal [190]. 
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Table 19: Comparison of Mass detection with other works 

Reference Year Method Dataset 

Detection 

accuracy rate 

(%) 

Inference time 

per image 

(sec)) 

Al-masni et al. 

[68] 
2017 YOLO DDSM 85.25 NA 

Dhungel et al. 

[167] 
2017 

Cascade Deep Learning 

and Random Forest 
INbreast 96 39 

Al-masni et al. 

[49] 
2018 YOLO DDSM 99.7 NA 

Zheng et al [81] 2018 

Detection: 3 cascading 

detectors (Haar, LBP, and 

HOG) 
UCHCDM 92.8 

0.62 

Classification: VGG-19 0.88 

Agarwal et al. 

[32] 
2019 

CNN patch classifier and 

mass probability map 

(MPM) 

CBIS-

DDSM 
82 

NA 

INbreast 98 

Aly, G. et al. 

[52] 
2020 YOLO INbreast 89.5 0.009 

Peng et al. [61] 2020 Faster R-CNN 

CBIS-

DDSM 
93.45 

0.134 

INbreast 95.54 

Al-Antari et al. 

[63] 
2020 YOLO INbreast 97.27 0.025 

Singh et al. [89] 2020 
Single Shot Detector 

(SSD) 
INbreast 97 NA 

Proposed 

Methodology 

2021 
YOLO-based Fusion 

Models 

CBIS-

DDSM 
95.7 0.55 

INbreast 98.1 0.58 

INCAN 98 0.52 

2022 

YOLO-based Fusion 

Models 

(Current mammograms) 

UCHCDM 92.09 0.62 

Furthermore, we compared the effort of similar works on conducting an early detection of breast 

lesions against our work contribution. Table 20 shows two recent works that had the closest similarity on 



 88 

integrating Prior mammograms views to predict the location and type of abnormal lesions. Our work 

surpassed the work of Watanabe et al. [168] that was able to accurately detect and distinguish Mass lesions 

with an early detection accuracy rate of 27%. However, our proposed methodology had a lower early 

detection accuracy rate on Calcification lesions where they had 20% on a custom dataset that was generated 

using the temporal subtraction technique. Genuinely, all the reviewed works were assessed on private datasets 

and the reported results could be distinctive compared to our study’s outcome. All comparable works did not 

measure the testing time, but our proposed method achieved an inference time of only 0.63 seconds per 

image. 

Table 20: Comparison of Early detection with other works 

Reference Year Method Dataset Class Label 

Early 

Detection 

accuracy 

rate (%) 

Inference 

time per 

image (sec) 

Watanabe et 

al. [76] 
2019 

cmAssist – 

Custom deep 

learning networks 

Private Mass 27 NA 

Loizidou et al. 

[79] 
2019 

Temporal 

subtraction 
Custom Calcification 20 NA 

Proposed 

Methodology 
2022 

YOLO-based 

Fusion Models + 

Pix2Pix 

translation 

(Prior 

mammograms) 

UCHCDM 

+ 

Synthetic 

dataset 

Mass 36 ± 0.01 

0.63 

Calcification 14 ± 0.01 

Architectural 

Distortion 
50 ± 0.02 

Normal 90 ± 0.06 

Overall 37 ± 0.10 

 

3. Breast Mass Segmentation 

a. Quantitative segmentation results 

As shown in Table 21, the results are measured for each testing set where we computed the two-

evaluation metrics for the segmented maps per pixel and compared them to the original ground truth. 

Table 21: Segmentation performance of our proposed networks on the test sets 
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Proposed 

Architectures 

Dice score 

(%) 

IoU score 

(%) 

Dice score 

(%) 

IoU score 

(%) 

Dice score 

(%) 

IoU score 

(%) 

CBIS-DDSM INbreast INCAN 

Standard UNet 78.62 64.87 89.21 79.5 89.87 86.43 

Connected-UNets 82.22 69.82 93.36 85.75 95.72 91.95 

Standard AUNet 80.39 67.29 91.35 82.59 90.25 88.02 

Connected-AUNets 83.84 72.19 93.52 86.01 95.82 92.17 

Standard ResUNet 80.94 68.05 92.71 84.58 93.58 89.79 

Connected-

ResUNets 
85.01 73.95 94.13 87.63 95.88 92.27 

The results reveal that the proposed Connected-UNets architecture outperforms the regular UNet in 

terms of Dice and IoU scores across all experimental datasets. We also enhanced the segmentation 

performance of the standard AUNet and ResUNet using the architecture. As a result, the results reveal a 

comparison of the conventional architectures, with ResUNet outperforming the AUNet and the later 

architecture outperforming the UNet. The findings highlight the benefits of the attention mechanism as well 

as the residual blocks added to the simple UNet. We clearly notice an improvement of Dice score by 3.6% 

using the Connected-UNets, 3.4% using the Connected-AUNets, and 4% using the Connected-ResUNets on 

the CBIS-DDSM dataset. With the Connected-UNets, we enhanced the Dice score by 4.15 %, 2.17 % with 

the Connected-AUNets, and 1.42 % with the Connected-ResUNets for the INbreast dataset. Similarly, we 

had an improvement of Dice score on the INCAN private dataset by 5.85% using the Connected-UNets, 

5.57% using the Connected-AUNets, and 2.3% using the Connected-ResUNets. 

Furthermore, the area under curve (AUC) over test sets of all datasets was used to evaluate the 

segmentation performance of our proposed Connected-UNets and its modifications against the conventional 

UNet, AUNet, and ResUNet. Each model was used to create segmented images with pixels estimated to be 

between 0 and 255. The anticipated images were then normalized using scores between 0 and 1. Ground truth 

images were similarly adjusted to have values of 0 or 1. As a result, the problem was turned into a binary 

pixel classification task, and the receiver operating characteristic (ROC) between the predicted pixels and 

their true values was calculated. Figure 51 shows a comparison of ROC curves where we clearly notice that 

the proposed architectures outperform all standard models with an average AUC of 0.79 for the CBIS-DDSM, 

0.94 for the INbreast, and 0.95 for the INCAN private dataset. 



 90 

 
FIGURE 51: Performance of mass segmentation using the different architectures in terms of ROC curves on the test sets 

of CBIS-DDSM, INbreast, and the INCAN private datasets 

ROC curve plots with True positive Rate (TPR) against the False Positive Rate (FPR) and area under curve for pixel-

wise evaluation of the standard models (UNet, AUNet, and ResUNet) and for the proposed architecture models 

(Connected-UNets, Connected-AUNets, and Connected-ResUNets). 

According to Table 21, the INCAN private dataset had the best segmentation performance along 

with the proposed architectures as it represents the best image resolution among the used mammography 

datasets. Therefore, we applied the CycleGAN model to translate images from CBIS-DDSM and INbreast 

datasets (i.e., weak domains) into the INCAN private dataset (i.e., strong domain). After training the 

CycleGAN model between the unpaired datasets and producing new ROI masses for the CBIS-DDSM and 

the INbreast, synthetic pictures were constructed, as demonstrated in the examples below in Figure 52, where 

we clearly see the enhanced quality of the new ROI masses that benefit from each dataset’s texture. 
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FIGURE 52: Samples of synthetic data from CBIS-DDSM and INbreast datasets generated by CycleGAN model using 

the INCAN private dataset. 

Furthermore, we trained the proposed architectures on the original and synthetic images to predict 

the segmentation mappings. Table 22 shows the improvement of segmentation’s performance of all the 

standard and architectures using the joined dataset of original and synthetic images. In fact, we notice an 

increase of Dice score on the CBIS-DDSM by 3.76% using the standard UNet, 3.97% using the standard 

AUNet, and 4.17% using the ResUNet. Similarly, we have an improved Dice score of 4.8% using the 

Connected-UNets, 4.11% using the Connected-AUNets, and 4.51% using the Connected-ResUNets. 
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Table 22: Comparison of the proposed architectures after adding synthetic CBIS-DDSM and INbreast 

Proposed 

Architectures 

Dice 

score 

(%) 

IoU 

score 

(%) 

Dice 

score 

(%) 

IoU 

score 

(%) 

Dice 

score 

(%) 

IoU 

score 

(%) 

Dice 

score 

(%) 

IoU 

score 

(%) 

CBIS-DDSM 

without Synthetic 

data 

CBIS-DDSM with 

Synthetic data 

(CycleGAN) 

INbreast 

without 

Synthetic data 

INbreast with 

Synthetic data 

(CycleGAN) 

Standard UNet 78.62 64.87 82.38 72.59 89.21 79.5 93.45 87.54 

Connected-

UNets 
82.22 69.82 87.02 77.07 93.36 85.75 95.16 90.77 

Standard 

AUNet 
80.39 67.29 84.36 74.02 91.35 82.59 94.73 89.99 

Connected-

AUNets 
83.84 72.19 87.95 78.89 93.52 86.01 94.89 90.28 

Standard 

ResUNet 
80.94 68.05 85.11 76.13 92.71 84.58 94.48 89.59 

Connected-

ResUNets 
85.01 73.95 89.52 80.02 94.13 87.63 95.28 91.03 

Finally, all the suggested models are used to evaluate the integrated framework. As the end-to-end 

performance depends on the first detection and localization step which used the YOLO model, the 

segmentation step was first reported using the segmentation accuracy measure IoU90 score that was later 

multiplied by the detection accuracy rate to form a final segmentation accuracy. Table 23 shows a comparison 

of final segmentation results of the different models after using the detection accuracy rate of 95.7%, 98.1%, 

and 98%, respectively, for CBIS-DDSM, INbreast, and the INCAN private dataset. Consequently, we 

reported a final segmentation performance with a maximum accuracy of 86.91%, 93.03%, and 95.39% using 

the Connected-ResUNets architecture model, respectively, for CBIS-DDSM, INbreast, and the INCAN 

private dataset. 
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Table 23: Final Segmentation performance of our proposed networks on the test sets 

Proposed 

Architectures 

IoU90 

score 

(%) 

Final 

Segmentation 

accuracy (%) 

IoU90 

score 

(%) 

Final 

Segmentation 

accuracy (%) 

IoU90 

score 

(%) 

Final 

Segmentation 

accuracy (%) 

CBIS-DDSM INbreast INCAN 

Connected-UNets 90.05 86.18 94.06 92.27 96.99 95.05 

Connected-AUNets 90.24 86.36 94.63 92.83 97.22 95.27 

Connected-ResUNets 90.82 86.91 94.83 93.03 97.34 95.39 

Finally, a comparison of the results of the latest state-of-the-art methods and models to segment the 

breast masses is listed in Table 24. Our proposed architectures outperformed the UNet model and its current 

variations. On the two public datasets, we achieved the best segmentation performance using the designs 

when comparing the Dice and IoU scores to the other methods: CBIS-DDSM with a Dice score of 89.52% 

and an IoU score of 80.02%, and INbreast with a Dice score of 95.28% and an IoU score of 91.03% using 

the Connected-ResUNets. We outperformed Ravitha Rajalakshmi et al. [53] by 6.62% Dice score on the 

CBIS-DDSM dataset, and the work of Li et al.32 by 2.56% Dice score on the INbreast dataset. 

The integrated framework of the new Connected-UNets architecture model and the previous YOLO-

based fusion model was published in the Nature Partner Journal – Breast Cancer [176]. 

Table 24: Comparison of the proposed architectures and state-of-the-art methods 

Reference Year Method Dataset 
Dice score 

(%) 

IoU score 

(%) 

Dhungel et al. [76] 2015 
Deep structured output 

learning + refinement 
INbreast 85 -- 

Dhungel et al. [135] 2017 CNN + CRF INbreast 90.06 -- 

Zhu et al. [88] 2018 Multi-scale FCN-CRF INbreast 90.97 -- 

Al-Antari et al. [62] 2018 

Fully resolution 

Convolutional Network 

(FrCN) 

INbreast 92.63 86.37 

Li et al. [96] 2018 
Conditional Residual 

UNet 
INbreast 92.72 -- 

Wang et al. [103] 2019 ResNet34 + ASPP INbreast 91.1 -- 

Abdelhafiz et al. [94] 2019 R-UNet INbreast 90.5 89.1 

Sun et al. [100] 2020 Attention UNet INbreast 79.1 -- 
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CBIS-DDSM 81.8 -- 

Ravitha Rajalakshmi et 

al. [101] 
2020 

Deeply supervised U-Net 

(DS U-Net) 

INbreast 79 83.2 

CBIS-DDSM 82.9 -- 

Singh et al. [89] 2020 conditional GAN (cGAN) INbreast 91.47 83.58 

Tsochatzidis et al. [105] 2021 UNet+ CBIS-DDSM 72.2 56.5 

Proposed architectures 2021 

Connected-UNets 
INbreast 95.16 90.77 

CBIS-DDSM 87.02 77.07 

Connected-AUNets 
INbreast 94.89 90.28 

CBIS-DDSM 87.95 78.89 

Connected-ResUNets 
INbreast 95.28 91.03 

CBIS-DDSM 89.52 80.02 

 

b. Qualitative segmentation results 

We performed a post-processing step on all segmented ROI masses by simply eliminating any 

outlier points that were too far away from the lesions' primary contour. As a result, we took all the possible 

contours from the binary masks and only chose the one with the greatest area. The output of the conventional 

UNet models, the Connected-UNets model, and their variants were subjected to this. 

Figure 53 shows examples of the segmented ROI masses generated by the experimental models 

against their ground truth images. We can plainly see that the Connected-UNets segmentation maps and 

outcomes are of varying quality, and that their variations always contain less error and capture more precision 

than the ground truth. We can see from the segmentation results that Connected-ResUNets is better than the 

other designs at predicting the smallest aspects of the tumor's boundaries. 
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FIGURE 53 Examples of the segmentation results on the test set of the datasets. Subplot on the top shows two samples 

of mammograms from the CBIS-DDSM dataset. 

Overall, the proposed architectures outperform the typical architectures, demonstrating their ability 

to learn complicated features thanks to the connections made between the two UNets in the proposed 

Connected-UNets, which uses decoded features as an additional input in the encoder route. 

As a result, Figure 54 shows a visual comparison of the Connected-ResUNets model, which uses 

the recommended ASPP block to connect each encoder and decoder, against the same model without the 

ASPP block. We can conclude that the ASPP block improved the segmentation results' precision. 
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FIGURE 54: Examples of the segmentation results for the proposed architecture Connected-ResUNets comparing with 

and without using ASPP block. 

After that, a qualitative segmentation comparison of the proposed Connected-ResUNets against the 

basic ResUNet architecture is presented in Figure 55. In addition, for each associated ROI mass, a comparison 

of Dice and IoU scores is made. We found that the proposed architecture model can capture the tiniest 

characteristics of tumors of all forms and sizes across all datasets. As a result, it is obvious that the Connected-

ResUNets predicted contours are the most like the ground truth contours, as seen by the greatest Dice and 

IoU score values. After adding the synthetic images created by the CycleGAN model to the training data, we 

compared the segmentation results of one of the recommended architecture models, Connected-ResUNets. 
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FIGURE 55: Examples of the segmented masses for the proposed architecture Connected-ResUNets comparing with the 

ResUNet 

Figure 56 shows a better segmented contour of the mass tumor using the additional synthetic images. 

The new training data produces more exact pixel segmentation that closely resembles the ground truth 

images. As a result, the quality of the segmentation findings demonstrates the benefit of using synthetic 

images to improve segmentation quality, as well as the capacity of cross-modality synthesis to increase data 

quantity and improve quality by incorporating additional related domains. Finally, we applied two state-of-

the-art methods that we discussed, by Al-Antari et al. [22] and Li et al. [32], to segment ROIs from all the 

mammography datasets, and visual comparison shows that predictions of two suggested models FrCN and 

CRUNET are slightly close to the ground truth images but they do not represent the contours exactly. 
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FIGURE 56: Examples of the segmentation results for the proposed architecture Connected-ResUNets with and without 

adding the synthetic data 

Examples shown in Figure 57 are selected to be challenging for segmentation and our proposed 

architecture models showed better visual results to segment the mass lesions. 

 

FIGURE 57: Examples of the segmentation results for the proposed architecture models again two state-of-the-art 

methods FrCN and CRUNET 
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4. Classification and Diagnosis 

a. Quantitative classification results 

The proposed breast mass classification model was trained and compared to single base models for 

each presented task on the different mammography datasets. We also compared the stacked ensemble of 

models to a conventional average of different models’ weights with an XGBoost classifier. 

i. Pathology classification 

As shown in Table 25a, Table 25b, and Table 25c, the pathology classification results are compared 

between different models respectively for CBIS-DDSM, INbreast, and INCAN private datasets. It is 

reasonable to mention that because the INCAN private dataset includes only malignant cases, we trained and 

tested the model on a combination of all datasets. 

Table 25a: Pathology classification results on the CBIS-DDSM dataset 

Model Accuracy Sensitivity Specificity 
F1-

score 
AUC 

Model1: ResNet50V2 89.97 0.89 0.91 0.9 0.9 

Model2: ResNet101V2 93.57 0.92 0.95 0.94 0.93 

Model3: ResNet152V2 92.11 0.92 0.92 0.92 0.92 

Average Weights of Model1, Model2 and 

Model3 + XGBoost Classifier 
91.04 0.85 0.98 0.91 0.91 

Stacked Ensemble of models 95.13 0.93 0.97 0.95 0.95 

 

Table 25b: Pathology classification results on the INbreast dataset 

Model Accuracy Sensitivity Specificity 
F1-

score 
AUC 

Model1: ResNet50V2 98.52 1.0 0.93 0.97 0.96 

Model2: ResNet101V2 95.58 1.0 0.80 0.93 0.9 

Model3: ResNet152V2 96.6 1.0 0.90 0.91 0.94 

Average Weights of Model1, Model2 and 

Model3 + XGBoost Classifier 
97.9 1.0 0.96 0.98 0.97 

Stacked Ensemble of models 99.2 1.0 0.98 0.99 0.99 
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Table 25c: Pathology classification results on the INCAN private dataset 

Model Accuracy Sensitivity Specificity 
F1-

score 
AUC 

Model1: ResNet50V2 92.83 0.94 0.90 0.91 0.92 

Model2: ResNet101V2 94.18 0.94 0.95 0.93 0.94 

Model3: ResNet152V2 94.60 0.94 0.94 0.94 0.94 

Average Weights of Model1, Model2 and 

Model3 + XGBoost Classifier 
94.89 0.94 0.97 0.93 0.94 

Stacked Ensemble of models 95.88 0.93 0.97 0.95 0.96 

The comparative results show that the proposed stacked ensemble of models performs better than 

the base ResNet models having different numbers of deep layers (i.e., ResNet50V2, ResNet101V2 and 

ResNet152V2). Accordingly, our proposed methodology outperformed the average ensemble of models with 

an XGBoost classifier that performed slightly better than individual models. We clearly notice a high 

accuracy of 95.13% on the CBIS-DDSM dataset, 99.2% on the INbreast dataset, and 95.88% on the INCAN 

private dataset. Besides, our proposed model achieved a high sensitivity rate of 0.93 on the CBIS-DDSM 

dataset, 1.0 on the INbreast dataset, and 0.93 on the INCAN private dataset. Consequently, the results 

emphasize generally the advantage of ensemble learning technique on improving the classification 

performance, and particularly the improvement achieved by the stacking method using deep learning models. 

Moreover, the pathology classification performance was compared against the different models 

using the AUC over the test sets of all datasets. Figure 58 shows plots of the Receiver Operating 

Characteristic (ROC) curves of the True positive Rate (TPR) against the False Positive Rate (FPR), and we 

clearly notice that the proposed model outperformed all experimental techniques with an AUC of 0.95 for 

the CBIS-DDSM dataset, 0.99 for the INbreast dataset, and 0.96 for the INCAN private dataset. 
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FIGURE 58: Performance of pathology classification using different models in terms of ROC curves and AUC score 

ii. BI-RADS category classification 

Results shown in Table 26a, Table 26b and Table 26c for BI-RADS category classification illustrate 

the comparison between different models for all mammography datasets. As mentioned in the section on 

Datasets description, each dataset has different class labels that vary from category 2 to category 6.  

Table 26a: BI-RADS category classification results on the CBIS-DDSM dataset 

Model Accuracy AUC 

Model1: ResNet50V2 80.07 0.93 

Model2: ResNet101V2 77.12 0.92 

Model3: ResNet152V2 80.08 0.93 

Average Weights of Model1, Model2 and 

Model3 + XGBoost Classifier 
79.48 0.85 

Stacked Ensemble of models 83.84 0.94 
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Table 26b: BI-RADS category classification results on the INbreast dataset 

Model Accuracy AUC 

Model1: ResNet50V2 98.0 0.94 

Model2: ResNet101V2 98.0 0.97 

Model3: ResNet152V2 96.1 0.92 

Average Weights of Model1, Model2 and 

Model3 + XGBoost Classifier 
97.1 0.99 

Stacked Ensemble of models 99.0 1.00 

 

Table 26c: BI-RADS category classification results on the INCAN private dataset 

Model Accuracy AUC 

Model1: ResNet50V2 91.91 0.91 

Model2: ResNet101V2 92.43 0.92 

Model3: ResNet152V2 94.25 0.94 

Average Weights of Model1, Model2 and 

Model3 + XGBoost Classifier 
92.95 0.93 

Stacked Ensemble of models 96.08 0.95 

The classification results presented above demonstrate a clear improvement of the performance 

using our proposed stacked ensemble of models comparing to the basic models with an accuracy of at least 

3.78% on the CBIS-DDSM dataset, 1% on the INbreast dataset, and 1.83% on the INCAN private dataset. 

Moreover, our methodology achieved a better AUC score than the average ensemble model with an XGBoost 

classifier where we notice a high AUC of 0.94 for the CBIS-DDSM dataset, 1.00 on the INbreast dataset, 

and 0.95% on the INCAN private dataset. This can be confirmed with a visual comparison of ROC curve 

plots between employed models as illustrated in Figure 59. 
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FIGURE 59: Performance of BI-RADS category classification using different models in terms of ROC curves and AUC 

score 

iii. Shape classification 

Lastly, the proposed model was trained on the CBIS-DDSM dataset for classifying the shape of 

breast masses, as it is the only dataset that possesses shape annotation by experts. Equivalently, all trained 

models were tested, and comparison is shown in Table 27. Undoubtedly, our suggested stacked ensemble of 

models had the highest accuracy score of 90.02% among the employed models, which improved the 

performance of separate models notably with 1.7% and remarkably with 10.66% compared to the average 

ensemble of models with an XGBoost classifier. 

Table 27: Shape classification results on the CBIS-DDSM dataset 

Model Accuracy AUC 

Model1: ResNet50V2 75.51 0.90 

Model2: ResNet101V2 89.90 0.95 

Model3: ResNet152V2 88.32 0.97 

Average Weights of Model1, Model2 and 

Model3 + XGBoost Classifier 
79.36 0.84 

Stacked Ensemble of models 90.02 0.98 



 104 

Furthermore, Figure 60 presents a comparison of ROC curve plots for the different employed models 

and represents the AUC score accordingly. We clearly notice that our proposed model had the highest AUC 

of 0.98 among the presented models, which was close to the ResNet152V2 performance but with a slightly 

better accuracy rate. 

 
FIGURE 60: Performance of Shape classification using different models in terms of ROC curves and AUC score 

b. Qualitative classification results 

Previous comparison results highlighted that our proposed methodology yielded the best results for 

the different classification tasks. Consequently, we analyzed the classification prediction between different 

datasets using the confusion matrix that summarizes the results across the class labels. 

Figure 61, Figure 62, and Figure 63 respectively present the normalized confusion matrix plots for 

each classification problem. As indicated below, the INbreast dataset had the best pathology classification 

tradeoff between malignant and benign classes, and this can be explained with the high-quality resolution of 

the mammograms collected in FFDM format that helps distinguish between the two class labels. The INCAN 

private dataset had also a remarkable confusion matrix with close recall and precision scores, which were 

like the CBIS-DDSM dataset’s performance.  

Moreover, the INbreast dataset had the best BI-RADS categorization tradeoff with a notable 

prediction per class from 0.92 to 1.0. Concerning the INCAN private dataset, it has only two BI-RADS 

categories 4 and 5, and we notice a similar satisfying confusion matrix with prediction scores of 0.93 and 

0.96. The CBIS-DDSM dataset has a slightly worse tradeoff for the BI-RADS category classification, and 
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this is due to the low resolution of deteriorated ROI images from the digitized X-rays mammograms. In fact, 

the confusion matrix shows values from 0.80 to 0.89 and we clearly notice that the four categories have a 

close prediction score due to the similarity of the pixel distribution caused by the quality presented in the 

public dataset. 

Finally, the confusion matrix for the shape classification showed an overall sufficient tradeoff 

between the class labels. We clearly observe similar predicted results for the irregular and lobulated cases 

with a maximum value of 0.93, and this can be interpreted by the close appearance of the two lesions’ shape. 

However, oval, and round cases had worse results, and in particular, the round class label had a performance 

score of 0.73. 

 

FIGURE 61: Confusion matrix of the stacked ensemble of models for the pathology classification on the mammography 

datasets 

 

FIGURE 62: Confusion matrix of the stacked ensemble of models for the BI-RADS category classification on the 

mammography datasets 
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FIGURE 63: Confusion matrix of the stacked ensemble of models for the Shape classification on the datasets 

Additionally, we reported the classification results of the final integrated CAD system using the 

segmentation step and compared it to results of the proposed method without using the segmented ROIs. 

Table 28 shows a better classification performance for each task on all mammography datasets, where the 

pathology classification demonstrated improvement of 4.26% on the CBIS-DDSM dataset, 4% on the 

INbreast dataset, and 5.5% on the INCAN private dataset. Accordingly, the BI-RADS category classification 

presented enhanced performance using the detected and segmented images with accuracy difference of 3.69% 

on the CBIS-DDSM dataset, 1.5% on the INbreast dataset, and 0.38% on the INCAN private dataset. Finally, 

the CBIS-DDSM dataset had improved the shape classification results with 4.36% accuracy. Consequently, 

it is clearly observed that the CAD system with the integrated detection and segmentation stages achieved 

much better results for the classification and diagnosis of breast masses. 

Table 28: Comparison of classification performance (accuracy %) using the proposed CAD system with and without 

mass segmentation 

Dataset 

Pathology BI-RADS Category Shape 

CAD system 

without mass 

segmentation 

CAD system 

with mass 

segmentation 

CAD system 

without mass 

segmentation 

CAD system 

with mass 

segmentation 

CAD system 

without mass 

segmentation 

CAD system 

with mass 

segmentation 

CBIS-

DDSM 
90.87 95.13 81.69 85.38 85.66 90.02 

INbreast 95.20 99.20 97.50 99 NA NA 

INCAN 90.38 95.88 95.70 96.08 NA NA 
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Finally, a comparison of results of the latest state-of-the-art methods and similar models to classify 

the breast masses is listed in Table 29. Our proposed CAD system that integrates the previous detection and 

segmentation steps and the current proposed classification framework outperformed the previous deep 

learning models applied for pathology, BI-RADS category, and shape classification. Compared with other 

techniques that used segmented ROIs, we exceeded the performance of the work by Falconí et al. [127] that 

only achieved an accuracy of 78.4% using the MobileNet model on the CBIS-DDSM dataset. On the other 

hand, we also outperformed the work of Alkhaleefah et al. [128] even though they did not use segmented 

input images and reported an accuracy of 93.47%. Moreover, recent works on the INbreast dataset were all 

surpassed where the highest accuracy of 98.26% was reported by Chakravarthy et al. [124] using the ICS-

ELM algorithm on original ROI masses. We also reported better accuracy score for the pathology 

classification applied on segmented ROIs from the INbreast dataset, where Al-Antari et al. [62] only achieved 

an accuracy of 95.64% and an AUC score of 0.94. The results of the BI-RADS categorization also 

outperformed the previous works on CBIS-DDSM dataset with the work suggested by Medeiros et al. [130] 

that applied DenseNet201 on original ROI masses and only achieved an accuracy of 63.4%. No previous 

work applied the BI-RADS category classification on segmented images and therefore we could not compare 

with our proposed work. Accordingly, our method surpassed the performance on the INbreast dataset by the 

work of Falconí et al. [129] that only reported an accuracy of 90.9% using NasNet and VGG models. Lastly, 

our methodology gained the best shape classification performance compared to a recent work of Singh et al. 

[89] that applied a CNN model on a similar dataset, and it is reasonable to say that this reviewed work is the 

only comparable work that applied shape classification on detected and segmented ROIs but only achieved 

an accuracy of 80%. 

The entire integrated framework of the Stacked Ensemble of Residual neural networks model and 

the previous Connected-UNets architecture model and the YOLO-based fusion model was submitted to the 

Scientific Reports Journal, and it is currently under revision [177]. 
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Table 29: Comparison of the proposed methodology and state-of-the-art methods 

Reference Year Method Classification Dataset 
Segmented 

Images 
Accuracy AUC 

Dhungel et al. 

[135] 
2017 

multi-view 

deep residual 

neural network 

(mResNet) 

Pathology INbreast Yes -- 0.80 

Al-Antari et 

al. [62] 
2018 

Ensemble of 

AlexNet-based 

CNN 

Pathology INbreast Yes 95.64 0.94 

Falconí et al. 

[127] 
2019 

MobileNet and 

NasNet + fine 

tuning 

Pathology 
CBIS-

DDSM 
Yes 78.4 -- 

Falconí et al. 

[178] 
2020 

VGG16 + fine 

tuning 
Pathology 

CBIS-

DDSM 
No 84.4 0.84 

Chakravarthy 

et al. [124] 
2020 

Improved 

Crow-Search 

Optimized 

Extreme 

Learning 

Machine (ICS-

ELM) 

algorithm 

Pathology INbreast No 98.26 -- 

Alkhaleefah 

et al. [128] 
2020 

AlexNet, VGG, 

GoogLeNet, 

ResNet 

+ fine tuning 

Pathology 
CBIS-

DDSM 
No 93.47 0.97 

Medeiros et al 

[130] 
2020 

DenseNet201 + 

MLP 
BI-RADS 

CBIS-

DDSM 
No 63.4 -- 

Falconí et al. 

[129] 
2020 

NasNet + fine 

tuning on 

VGG16 and 

VGG19 

BI-RADS INbreast No 90.9 0.99 

Singh et al. 

[89] 
2020 CNN Shape DDSM Yes 80 0.80 

Li et al. [133] 2021 
DualCoreNet: 

Texture and 
Pathology INbreast Yes -- 0.93 
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shape features 

fusion 

Proposed 

Methodology 
2022 

Stacked 

Ensemble of 

ResNet models 

Pathology 

CBIS-

DDSM 
Yes 

95.13 0.95 

INbreast 99.20 0.99 

INCAN 95.88 0.95 

BI-RADS 

CBIS-

DDSM 
Yes 

85.38 0.94 

INbreast 99 1.00 

INCAN 96.08 0.95 

Shape 
CBIS-

DDSM 
Yes 90.02 0.98 

E. Testing & Deployment 

The entire connected framework we suggested for the CAD system of breast cancer diagnosis was 

deployed on a server to showcase the performance and results of the experimental tool. To deploy the 

developed tool that is based on several deep learning architecture models, all the trained models’ weights and 

biases were saved for inference. Because of the large number of parameters and weights matrix in each model, 

we tried first to lightweight the saved models before being used in the final implementation. To do that, we 

applied a post-training quantization technique to the models we saved in Keras framework [179, 180]. 

Therefore, we optimized the deployment of our CAD tool by reducing the size of the entire model while 

maintaining the performance and accuracy. 

During the training and validation stages, we relied on a GPU and large storage to learn the large 

models where each model was worth at least 3 GB. However, during the deployment, the server may accept 

the size of the inferred models, but it would not respond fast. Consequently, the tool will perform expensive 

computations and generate late results. 

We applied the post-training optimization technique that reduces the CPU and hardware accelerator 

latency and processing and optimized the model size with quite a drop in performance [181]. The technique 

applies to convert the already-trained Tensorflow models into Tensorflow Lite models.  As a result, the 

models were saved into TFLite format files that will be placed within the backend package for the 

deployment. In fact, the files’ sizes have been reduced to 75% using the quantized models. 
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We initially tested the integrated CAD system offline to evaluate the TFLite conversion by building 

a script that calls and executes the three main steps in the order of the suggested logic. As we discussed in 

the previous chapters, the output of one-step should serve as an input of the next step, and the integrated 

framework should be starting from an entire mammogram to yield the final diagnosis prediction results that 

include the pathology, the BI-RADS assessment score, and the shape. 

Before applying the model quantization to the deployment, the offline testing took around 6 minutes 

per image to execute the whole system, which is unfortunately slow. However, after using the post-training 

dynamic range optimization, the testing time changed to less than 1 minute per image thanks to the 

lightweight models. 

After preparing the backend package, we implemented the design of web service that was developed 

using JavaScript and React library. As shown in in Figure 64, the web server should process users’ requests 

by just allowing them uploading mammography images, in either DICOM format or image format (i.e. .png, 

.jpg, etc.). After that, the system accepts the images and assigns a corresponding transaction code to the user 

to start the processing.  

Next, the backend script should sequentially execute an image, first return the detected ROI, and 

then identify if it is Mass lesion where the detected ROI box is also highlighted on the entire mammogram. 

Second, the system should generate the segmented image of the detected ROI, and finally return the three 

classification and diagnosis.  As soon as the system is ready to return the results, the code assigned to the 

user should be used to check the results and send an e-mail to notify the user with the results. 

FIGURE 64: Framework of the deployed CAD system 
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F. Discussion 

In this dissertation, we have designed implemented an integrated CAD system using deep learning 

models for detection and identifying abnormal lesions in mammograms, segment and mask the background 

of masses, and classifying their pathology and final diagnosis. 

In the first step, we have implemented a deep learning YOLO model to simultaneously detect and 

classify the suspicious lesions in the breast. Similar studies focused solely on the identification of mass 

lesions and the extraction of areas of interest for further diagnosis. In contrast, our study expands the ability 

of YOLO-based model to conduct simultaneous detection and classification on mammograms [49]. 

Furthermore, the presented approach revealed the advantage of YOLO model as detector and 

classifier toward different clinical mammographic images (i.e., digitized X-rays, full-field digital 

mammography, etc.). The resilience of YOLO to correctly identify breast lesions above pectoral muscle, near 

to breast nipples, or over thick tissues is also demonstrated by the quality of anticipated pictures, as illustrated 

in Figure 41. Experimental results showed that training YOLO-based deep learning model is overall fast and 

accurate, where our results outperform the SSD method [89], the Faster R-CNN model [63], the CNN model 

[32] and other machine learning techniques [31, 167] that had a maximum detection accuracy rate of 98% on 

INbreast dataset but a significantly high inference time. The comparison revealed that YOLO model is the 

right choice for mass detection in mammography as presented in other existing YOLO implementations [52, 

632, 63] with a maximum detection accuracy rate of 97.27% on INbreast dataset, and our study enhanced the 

state-of-the-art results to be 98.1%. However, the suggested YOLO model has constraints in the training 

configuration, which is dependent on creating the correct format of input data. Thus, input images should be 

accompanied by the true locations and class labels of the lesions during the training. As a result, the YOLO 

model has an input dependency since the locations of lesions must be extracted from the ground truth. 

In the second step, we introduced a novel architecture, called Connected-UNets, which fully 

connects two single UNets using additional skip connection paths. The ASPP mechanism is also used by the 

network as a transition block to address the problem of resolution loss, which is particularly problematic in 

the case of small tumors. The proposed mass segmentation architecture expands the ability of skip 

connections to reconstruct the details lost in the encoding pathway by revoking the first decoded features and 

connect them with the additional encoded inputs. The design was implemented on two UNet variants: the 
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Attention UNet (AUNet) and the Residual UNet (ResUNet). The results of the proposed architectures showed 

the segmentation improvement compared to the basic architectures as shown in Table 21 with a maximum 

Dice score of 89.52% on the CBISDDSM dataset and 95.28% on the INbreast dataset. Furthermore, the 

quantitative examination revealed that ResUNet and AUNet had an edge in segmenting bulk tumors. Hence, 

the improved architectures’ Connected-AUNets and Connected-ResUNets outperformed the Connected-

UNets in all the used mammography datasets. Comparison of the segmentation map results of each model 

approve the enhancement made to the standard models to provide a precise segmentation of the mass 

boundaries as shown in Figure 52. Limitations of the proposed architectures can occur on the long training 

time of an average of 0.638 s per epoch, which is due to the high computation of the neural networks that 

have more trainable parameters than the standard architecture models. 

Finally, in the last step, we have implemented a stacked ensemble of ResNet models to classify 

breast masses as malignant or benign and diagnose their BI-RADS category assessment with a score from 2 

to 6 and their shape as oval, round, lobulated or irregular. The results of the proposed methodology showed 

the classification performance’s improvement compared to the individual architectures and to the other 

methods applied on the existing benchmark datasets. Tab.10 shows that we achieved the highest pathology 

classification performance on the two public datasets: CBIS-DDSM with an accuracy of 95.13% and an AUC 

score of 0.95, and INbreast with an accuracy of 99.20% and an AUC score of 0.99. Furthermore, we surpassed 

the results of other models for the BI-RADS categorization on the CBIS-DDSM dataset with an accuracy of 

85.38% and an AUC score of 0.94, and on the INbreast dataset with an accuracy of 99% and an AUC score 

of 1.0. We also reported the highest results on the shape classification for the CBIS-DDSM dataset with an 

accuracy of 90.02% and an AUC score of 0.98. 

Comparing with the similar frameworks that applied the presented classification tasks on segmented 

ROI masses, our model outperformed the MobileNet and NasNet models [129] for the pathology 

classification on the CBIS-DDSM dataset and the Ensemble of AlexNet-based CNN model [150] on the 

INbreast dataset. Moreover, the shape classification achieved better results on a similar dataset DDSM that 

was evaluated with an individual CNN model [149]. As a result, the stacking model technique provided an 

efficient way to learn from various depths of neural networks and combine them in another neural network 

classifier model to benefit from the different weights that were trained individually. Limitations of the 
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proposed methodology can occur on the long training time of 0.74s per epoch, which is due to the high 

number of trainable parameters and computations of the ResNetV2 model. 
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CHAPTER V 

CONCLUSION & FUTURE WORKS 

In this dissertation, we proposed an integrated framework for Computer-aided Diagnosis (CAD) 

system that is based on deep learning techniques. The system will serve as a second-reading tool to help 

doctors investigating the risk of breast cancer and provide an advanced analysis for the suspicious lesions. 

The presented work proposed three main steps to process a mammogram to first detect the location of 

abnormalities and distinguish their types to either Mass, Calcification, or Architectural distortion, etc. Next, 

the system focused on Mass lesions in mammograms and generated a precise contour of the Mass tumors to 

help determining their malignancy and grading score. Consequently, the ROI of masses were segmented to 

mask the tissue background and highlight the tumor. Finally, the integrated system predicted the pathology 

of the detected tumors and classified their BI-RADS score and shape. 

The first step was conducted with a YOLO-based fusion model and presented a method that 

overcomes the problem of predicting location and type of two common abnormal findings in the entire 

mammograms: Mass and Calcification. Results showed the capability of our proposed methodology to 

accurately achieve state-of-the-art performance. In addition, the dissertation provided feasible and promising 

results using the proposed fusion models approach that was considered to join different models and lower the 

miss-prediction error. 

Moreover, as the breast lesions detection plays a critical role in the CAD systems and fully integrated 

breast cancer diagnosis our methodology provided an improved detection performance compared with the 

recent deep learning models. This helps to prevent making additional mistakes when diagnosing the lesions 

that have been found. Furthermore, the second step provided a novel architecture to segment the breast 

masses in mammograms. The proposed architecture incorporated the recent modifications that were 

suggested to overcome the challenges of pixel-to-pixel segmentation in medical images, such as attention 
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mechanism, residual blocks, ASPP concept, etc. The improved segmentation performance was made after 

benefiting from the information decoded using one UNet and propagated again to a second UNet. In addition, 

synthetic data was developed to supplement the training data using the CycleGAN model. This uses a quality 

translation across domains to account for the various quality levels of current mammography datasets (such 

as X-ray filter and full-field digital mammography (FFDM)). 

Finally, the third step integrated our recent works of the YOLO-based fusion models [175] and the 

Connected-UNets model [176] that generated the detected and segmented ROIs of breast masses. The final 

diagnosis step was suggested using a stacked ensemble of Neural network models (ResNets) to predict the 

pathology (malignant or benign), the BI-RADS grading score (2 to 6), and the pathology (round, oval, 

lobulated, irregular) to provide an entire framework for breast cancer diagnosis that may also include clinical 

reports analysis. Indeed, an increase of performance using the segmented ROIs has indicated the advantage 

of masking the background tissues from the tumors’ boundaries to help improve the overall classification 

and diagnosis and decrease the false positive and negative rates. 

In summary, this dissertation presents the integrated framework for a breast cancer CAD system via 

deep learning models. The three stages of detection, segmentation and classification aim to provide a 

complete clinical tool that can assist radiologists with a second suggestion for an automated mass tumor 

diagnosis. 

Future works can include combining different mammography datasets and improving the long 

training of deep learning models for the three tasks. Potential ideas may include integrating more 

abnormalities to the entire system such as Calcification and Architectural distortion and upgrade the 

segmentation and classification with more annotated datasets. 

More orientations to the future could include the radiology reports and medical text data and merge them 

within the images data for more precision and affordable explainability to the AI and machine learning for 

medical applications. 

This work aimed to focus on mammography images for breast cancer analysis and diagnosis, but 

we believe it can be transferred to other medical imaging application such Lung cancer, Pulmonary diseases, 

Brain cancer, etc. Moreover, the proposed architecture models were designed for 2D medical images such 

mammograms, but we may be reconstructed for 3D medical images such as CT and MRI. 
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