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ABSTRACT

ROLE OF DEEP LEARNING TECHNIQUES IN NON-INVASIVE DIAGNOSIS OF

HUMAN DISEASES

Hisham Abouelseoud Elsayem Abdeltawab

July 11, 2022

Machine learning, a sub-discipline in the domain of artificial intelligence, concen-

trates on algorithms able to learn and/or adapt their structure (e.g., parameters) based on

a set of observed data. The adaptation is performed by optimizing over a cost function.

Machine learning obtained a great attention in the biomedical community because it offers

a promise for improving sensitivity and/or specificity of detection and diagnosis of dis-

eases. It also can increase objectivity of the decision making, decrease the time and effort

on health care professionals during the process of disease detection and diagnosis. The

potential impact of machine learning is greater than ever due to the increase in medical

data being acquired, the presence of novel modalities being developed and the complexity

of medical data. In all of these scenarios, machine learning can come up with new tools

for interpreting the complex datasets that confront clinicians. Much of the excitement for

the application of machine learning to biomedical research comes from the development of

deep learning which is modeled after computation in the brain. Deep learning can help in

attaining insights that would be impossible to obtain through manual analysis. Deep learn-

ing algorithms and in particular convolutional neural networks are different from traditional

machine learning approaches. Deep learning algorithms are known by their ability to learn

complex representations to enhance pattern recognition from raw data. On the other hand,
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traditional machine learning requires human engineering and domain expertise to design

feature extractors and structure data. With increasing demands upon current radiologists,

there are growing needs for automating the diagnosis. This is a concern that deep learning

is able to address. In this dissertation, we present four different successful applications

of deep learning for diseases diagnosis. All the work presented in the dissertation utilizes

medical images.

In the first application, we introduce a deep-learning based computer-aided diag-

nostic system for the early detection of acute renal transplant rejection. The system is

based on the fusion of both imaging markers (apparent diffusion coefficients derived from

diffusion-weighted magnetic resonance imaging) and clinical biomarkers (creatinine clear-

ance and serum plasma creatinine). The fused data is then used as an input to train and test

a convolutional neural network based classifier. The proposed system is tested on scans

collected from 56 subjects from geographically diverse populations and different scanner

types/image collection protocols. The overall accuracy of the proposed system is 92.9%

with 93.3% sensitivity and 92.3% specificity in distinguishing non-rejected kidney trans-

plants from rejected ones.

In the second application, we propose a novel deep learning approach for the auto-

mated segmentation and quantification of the LV from cardiac cine MR images. We aimed

at achieving lower errors for the estimated heart parameters compared to the previous stud-

ies by proposing a novel deep learning segmentation method. Using fully convolutional

neural networks, we proposed novel methods for the extraction of a region of interest that

contains the left ventricle, and the segmentation of the left ventricle. Following myocardial

segmentation, functional and mass parameters of the left ventricle are estimated. Auto-

mated Cardiac Diagnosis Challenge dataset was used to validate our framework, which

gave better segmentation, accurate estimation of cardiac parameters, and produced less er-

ror compared to other methods applied on the same dataset. Furthermore, we showed that

our segmentation approach generalizes well across different datasets by testing its perfor-
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mance on a locally acquired dataset.

In the third application, we propose a novel deep learning approach for automated

quantification of strain from cardiac cine MR images of mice. For strain analysis, we

developed a Laplace-based approach to track the LV wall points by solving the Laplace

equation between the LV contours of each two successive image frames over the cardiac

cycle. Following tracking, the strain estimation is performed using the Lagrangian-based

approach. This new automated system for strain analysis was validated by comparing the

outcome of these analysis with the tagged MR images from the same mice. There were

no significant differences between the strain data obtained from our algorithm using cine

compared to tagged MR imaging.

In the fourth application, we demonstrate how a deep learning approach can be

utilized for the automated classification of kidney histopathological images. Our approach

can classify four classes: the fat, the parenchyma, the clear cell renal cell carcinoma, and

the unusual cancer which has been discovered recently, called clear cell papillary renal cell

carcinoma. Our framework consists of three convolutional neural networks and the whole-

slide kidney images were divided into patches with three different sizes to be inputted to

the networks. Our approach can provide patch-wise and pixel-wise classification. Our

approach classified the four classes accurately and surpassed other state-of-the-art methods

such as ResNet (pixel accuracy: 0.89 Resnet18, 0.93 proposed).

In conclusion, the results of our proposed systems demonstrate the potential of deep

learning for the efficient, reproducible, fast, and affordable disease diagnosis.
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CHAPTER I

INTRODUCTION

For decades, the disease diagnosis process has relied on the conventional approaches

where the physician analyzes symptoms, perform lab tests, and refer to medical diagnos-

tic guidelines. However, there are limitations in these approaches. For example, lab tests

might be late indicator for some diseases such as acute renal transplant rejection. Further-

more, traditional approaches might be slow and require intensive workload and consider-

able time in order to reach an accurate diagnosis. Other limitations include the case where

the healthcare professionals are not available in certain local areas or the case where the

cost of the diagnosis is not affordable by the patient. Therefore, there is unmet need and

another approach for diseases diagnosis is required to overcome the mentioned limitations

in the traditional approaches. Computer-aided diagnosis and detection can offer promis-

ing solutions to the current limitations in the medical diagnosis field. By utilizing medical

imaging, researchers can implement computer-aided diagnosis systems that can detect the

disease early and with an accuracy that is comparable to the human operators. Usually,

these systems can be implemented by the power of artificial intelligence (AI). The prospect

of predictive analysis can be offered by the AI and its subfield of deep learning. Deep

learning can help in attaining insights that would be impossible to obtain through manual

analysis. Deep learning algorithms and in particular convolutional neural networks (CNNs)

are different from traditional machine learning approaches. Deep learning algorithms are

known by their ability to learn complex representations to enhance pattern recognition from

raw data. On the other hand, traditional machine learning requires human engineering and

domain expertise to design feature extractors and structure data. The application of deep

learning in medical imaging is a promising field. The interpretation of the human radiol-
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ogist for the medical images, regardless of modality, is required to obtain a diagnosis in

a timely fashion. With increasing demands upon current radiologists, there are growing

needs for automating the diagnosis. This is a concern that deep learning is able to address.

In order to integrate deep learning into routine clinical practice, we must obtain a diagnostic

accuracy that is comparable or superior to healthcare professionals. Furthermore, the pro-

posed solutions must present other benefits such as efficiency, speed, cost, and maintenance

of ethical conduct.

In this dissertation, we present four different successful applications of deep learn-

ing for diseases diagnosis. All the work presented in the dissertation utilizes medical

images. Therefore, we present below an overview on the medical imaging and the used

modalities in the proposed applications.

A. Medical Imaging

There is a plenty of medical imaging modalities and their use frequency is increas-

ing. Smith-Bindman et al. [15] investigated the use of medical imaging modalities from

1996 to 2010 in six large healthcare facilities in the United States, where they looked at

30.9 million examinations. They found that over the investigation period, positron emis-

sion tomography (PET), magnetic-resonance imaging (MRI), and computed tomography

(CT) usage increased 57%, 10%, and 7.8%, respectively.

Modalities of medical images include X-ray, CT, MRI, PET, single photon emis-

sion computed tomography (SPECT), histology slides, retinal photography, and and der-

moscopy images. Examples of medical images are shown in Fig. 1. Some of these tech-

niques scan multiple organs such as CT and MRI, while others examine certain organs

such as retinal photography, and dermoscopy. Also, the size of the generated data from

each modality varies. Therefore, there are technical implications on the method of data

pre-processing and on the selection of the architecture of the algorithm, in the context of

memory and processor limitations. We can classify medical images based on their modali-
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ties (Fig. 1) or based on the nature of the information obtained from the technique (i.e., the

structure or the function of the organ being scanned, refer to Fig. 2). In this dissertation,

all of our work deals with the analysis of MRI images and histology slides, therefore,

the details of these imaging modalities are presented below.

FIGURE 1: Examples of medical images, from left to right, top to bottom: an axial CT

lung scan with Covid-19 lesion, a short-axis view MRI scan for the left ventricle, a normal

chest X-ray scan, an ultrasound image of a fetus in the womb, PET scan for the brain, and

a histology digital image for clear cell renal cell carcinoma.

1. Magnetic Resonance Imaging

MRI is a medical imaging modality that follows the same principles of nuclear

magnetic resonance spectroscopy [16]. MRI is considered the most central and powerful

non-invasive tool for the clinical diagnosis of diseases [17]. The basic idea of MRI relies

on the usage of a strong static magnetic field. In that field, the hydrogen nuclei of the

water molecules in human tissues are aligned to the magnetic field. Then, an external

radio frequency (RF) wave/pulse is applied to the unpaired magnetic spins aligned in the
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FIGURE 2: Classes of medical image modalities based on the nature of the information

that they provide about the organ being scanned, i.e., structural or functional imaging.

Categories written in green color are the focus of this dissertation.

magnetic field. The application of the RF pulse change the direction of spinning of the

spins [18]. The interaction between the RF pulse and the spins results in periodic absorption

and emission of energy. The protons tend to relax back by returning to their lower energy

state. This relaxation leads to the release of detectable signals that are spatially encoded

to construct the MR image. Different types of tissues (fat, muscle, cerebral spinal fluid,

etc.) send back tissue specific signals after the application of the same RF wave. The way

the image is acquired strongly determines the contrast of the MR image. Different parts

of the scanned region can be highlighted utilizing different pulse sequences: a preselected

shape, strength, and timing of the used RF and gradient pulses (external fields). In general,

MRI can be used to construct 2D images, 3D volumes, or sequences of 3D volumes (i.e.,

4D images). The following sub-sections describe the structural MRI and the MRI

techniques which are used throughout this dissertation.

a. Structural MRI Structural MRI includes the techniques that show the struc-

ture of the body and its tissues. These techniques are T1-weighted MRI, T2-weighted MRI,
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and proton density (PD). The signal strength (amount of energy) of each of these three tech-

niques mainly relies on the magnetic relaxation properties of body atomic nuclei. The time

spent by nuclei to return to their relaxation states after the application of the RF pulse is

known as the time of relaxation. There are two relaxation times: longitudinal relaxation

time (T1) or transverse relaxation time (T2), based on the orientation of the component

with respect to the magnetic field. In the human body, every tissue has its own T1 and T2

values, that depend on the concentration of protons in the human tissue in the form of wa-

ter and macromolecules. T1-weighted and T2-weighted scans are the most common MRI

sequences. T1-weighted images are generated by the usage of short time to echo (TE) and

repetition time (TR). The T1 properties of the tissue predominately determine the contrast

and the brightness of the image. Conversely, T2-weighted images are generated by the us-

age of longer TE and TR times. In these images, T2 properties of the tissue predominately

determine the contrast and the brightness. In practice, complementary information can be

obtained from both T1- and T2-weighted images. Therefore, the two methods are important

for characterizing abnormalities. On the other hand, the proton density weighted images

have no T1 or T2 contrast. The signal differences come from the differences in the amount

of available spins in the tissue. The prime advantage of these proton density weighted scans

is the increase in the contrast between fluid and non-fluid regions. However, proton density

weighted images have lower contrast than T1-weighted and T2-weighted images, because

the difference in hydrogen concentration of soft tissues is relatively low.

b. Diffusion MRI MRI techniques that use contrast agent (e.g., gadolinium)

might be harmful to some patients, especially, patients that suffer from kidney problems.

In recent years, researchers avoided the use of contrast agents by introducing an MRI tech-

nique called diffusion imaging. Diffusion MRI is considered a functional technique that

rely on the measurement of the micro-movements (Brownian, random) of extracellular wa-

ter molecules in the body. An indirect information about the structure surrounding these

molecules can be obtained from these micro-movements. Diffusion MRI is considered a
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noninvasive method that has the advantages of rapid acquisition without the need of any

contrast agent or specialized hardware. We can classify diffusion MRI into three main cat-

egories, namely, diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), and

diffusion spectrum imaging (DSI). In this thesis, we use DWI in the project of transplanted

kidney classification.

In DWI, the contrast of the images depends on the differences in water molecule

mobility. This can be performed by the addition of diffusion magnetic field gradients during

data acquisition. The b-factor (in s/mm2) determines the degree of diffusion weighting

of the sequence. The b-factor relies on the amplitude of the field gradient, time of the

application, and the time interval between magnetic field gradients. A typical DWI-MRI for

the kidney is shown in Figure 3. Researchers used DWI as well-established MRI technique

for investigation of brain disorders, such as multiple sclerosis, epilepsy, brain abscesses

and tumors and hypertensive encephalopathy [19], tumor localization and diagnosis [20],

and in-vivo study of tissue micro-structure [21].

c. Tagged Magnetic Resonance Imaging Tagged MRI is a popular MRI tech-

nique for noninvasive and detailed visualization of cardiac motions [22]. This imaging

method can facilitate the localization of cardiac diseases (e.g., coronary atherosclerosis).

Furthermore, it can help in the evaluation of cardiac strain [23]. A pre-specified pattern

of temporary markers is placed in cardiac tagged MRI. These markers are called tags and

are placed inside the soft body tissues. For example, tag lines constructed by patterns of

magnetic spin in the examined tissues so that the movement in the tagged tissues can be

measured from the images [24].

This modality is considered a complement for traditional anatomical imaging and

can obtain a detailed cardiac information over time. The tag lines can help in computing

displacement, rotation, velocity, elongation, twist, and strain of the heart. While conven-

tional MRI methods carry information only about the motion at the boundaries of an object,

the tag lines allow us to investigate the displacement and the strain of the interior of the tis-
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FIGURE 3: Example of diffusion weighted imaging: A coronal kidney cross-section of a

stable transplanted kidney at 12 b-values.

sue in much details [25]. A typical tagged MRI time series of the heart is shown in Figure

4.

d. Histopathological Images Valuable information for the clinicians and pathol-

ogists can be obtained from histopathological images [26]. Histopathology is a medical

field where pathologists study the disease by a microscope that examines a tissue biopsy

placed in glass slides. The glass slides are then digitized by a scanner to produce digi-

tal histopathological images that can be stored on a computer for processing and analysis.

Stains are used as a dye for the tissue to show the different parts of the tissue under the
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FIGURE 4: An example of cardiac tagged MRI time series.

microscope. Pathologists have used Hematoxylin-Eosin (H and E) stain for more than a

hundred year. Hematoxylin dyes the nuclei by blue colour. On the other hand, Eosin dyes

cytoplasm and connective tissue by pink colour, see Figure 5. The disadvantages of using

H and E images for disease diagnosis are the inter-operator variability, the effort, and the

time required for the examination and diagnosis.

FIGURE 5: An example of a histology image that shows renal cell carcinoma. (I) is the

whole digitized slide, and (II) is a zoomed region.
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B. Automated Diseases Diagnosis using Deep Learning and Medical Imaging

The prospect of predictive analysis can be offered by the artificial intelligence (AI)

and its subfield of deep learning [27]. Deep learning can help in attaining insights that

would be impossible to obtain through manual analysis [28]. Deep learning algorithms and

in particular convolutional neural networks (CNNs) are different from traditional machine

learning approaches. Deep learning algorithms are known by their ability to learn complex

representations to enhance pattern recognition from raw data. On the other hand, traditional

machine learning requires human engineering and domain expertise to design feature ex-

tractors and structure data [11]. The application of deep learning in medical imaging is a

promising field [29,30]. The interpretation of the human radiologist for the medical images,

regardless of modality, is required to obtain a diagnosis in a timely fashion. With increasing

demands upon current radiologists, there are growing needs for automating the diagnosis.

This is a concern that deep learning is able to address [31]. In order to integrate deep learn-

ing into routine clinical practice, we must obtain a diagnostic accuracy that is comparable

or superior to healthcare professionals. Furthermore, the proposed solutions must present

other benefits such as efficiency, speed, cost, and maintenance of ethical conduct.

The goal of this work is to develop automated computer aided diagnostic system

for disease diagnosis using deep learning and medical imaging. The dissertation proposes

four different systems. The first system aimed at developing an automated tool for the

early detection of acute renal transplant rejection using DWI. The second system aimed at

developing an automated tool for the segmentation and quantification of the left ventricle

from cardiac cine MRI. The third system aimed at developing an automated tool for the

assessment of LV strain using mice cine MRI and tagged MRI. The fourth system aimed at

developing an automated tool for the detection of renal cell carcinoma from histopatholog-

ical kidney images.
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1. Early Detection of Renal Transplant Rejection

Acute renal transplant rejection is a critical problem in the urology field. In the

United States, approximately 22,393 kidney transplants were performed in 2018 [32]. Usu-

ally, the number of kidney donors is limited. Therefore, it is important to maintain the trans-

planted kidney in a healthy state. Acute renal rejection can occur in up to 40% in kidney

recipients within 3 weeks after transplantation. Typically, high-dose steroids or antibody

therapy can treat acute renal rejection. A gradual damage in the transplanted kidney func-

tion leads to chronic rejection, which starts about at 3 months after transplantation [33].

Given that providing an effective therapy for chronic rejection is an open area of research,

avoiding acute renal rejection is the most promising way to prevent chronic rejection [34].

Therefore, it is of paramount importance to early detect rejection to intervene with the

suitable medical and immune therapy in kidney transplant recipients [35].

Currently, initial assessment of kidney transplant function is based on blood and

urine tests such as plasma creatinine and creatinine clearance. creatinine clearance is a

laboratory test that can be used to evaluate kidney function, such as glomrular filtration

rate (GFR). Urologists consider creatinine clearance as a practical measurement to eval-

uate kidney function. However, we can not rely on such index to effectively detect renal

rejection due to the following reasons: (1) creatinine clearance gives an overall idea about

the function of both kidneys together not about a specific kidney [36], (2) we can observe a

significant change in creatinine level only after 60% loss of kidney function [37]. Biopsy is

considered the gold standard to evaluate graft function, but only as the last option because

it is associated with potential morbidity and high costs. Also, the invasive nature of this

procedure imposes a risk of infection and bleeding to the patients. Furthermore, the sample

that we get from the needle biopsy is small and might lead to underestimation or overesti-

mation of the degree of inflammation in the entire graft [38]. Therefore, a technology that

is based on accurate and noninvasive techniques is so much needed to evaluate transplanted

kidney function and to early detect acute renal rejection.
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Various noninvasive imaging techniques have been used in clinical settings to eval-

uate the function of transplanted kidney. Graft function can be evaluated quantitatively

and qualitatively by an imaging modality called radionuclide imaging [39]. However,

this technique suffers from limited spatial resolution, therefore, it does not show accurate

anatomical information of functional abnormalities inside the kidney [40]. Additionally,

radionuclide imaging is associated with exposure to radiation which limits the range of its

applications. Ultrasound imaging can be used to assess the function of the graft early in the

postoperative period and it is suitable for long-term evaluation of the graft. However, this

modality suffers from the following drawbacks: (1) investigator’s experience greatly affects

the sensitivity and reliability of this technique, (2) it has low signal-to-noise ratio, (3) it suf-

fers from shadowing artifacts and speckles which decrease the diagnostic confidence [41].

Computed tomography (CT) is successful in diagnosing post transplantation complica-

tions [42]. However, it has low specificity and its process contains nephrotoxic agent.

Different magnetic resonance imaging (MRI) techniques have been introduced to perform

assessment for kidney transplant function. For instance, dynamic contrast enhanced (DCE)

MRI utilizes contrast agents, such as gadolinium to assess tissue perfusion, which gives an

idea about kidney function [43]. Despite the fact that good anatomical and functional infor-

mation can be obtained from DCE-MRI, the use of the contrast agent (gadolinium) can lead

to nephrogenic systemic fibrosis [44], especially when GFR < 30 ml/min per 1.73 m2.

Blood oxygen level dependent (BOLD) MRI which assess the renal oxygenation level has

been utilized for the evaluation of kidney transplant function and the detection of acute

renal rejection [45]. However, BOLD-MRI has several limitations such as susceptibility to

breathing motion artifact and bowel gas artifacts [46, 47].

Diffusion weighted (DW) MRI is an imaging modality that is not associated with

contrast agents. DW-MRI has been successful in detecting and characterizing tumors, neu-

roimaging, and kidney transplant function evaluation [48]. DW-MRI measures water’s

motion inside the tissue, and thus it is considered a way to evaluate the diffusion charac-
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teristics for the tissue. We can obtain apparent diffusion coefficient (ADC) from DW-MRI.

ADCs are quantitative maps which represent the diffusion and can be measured at differ-

ent magnetic field strengths and duration noted as b-values [48]. In this dissertation, we

propose a machine learning framework that aims at classifying stable transplanted kidneys

(non-rejection transplants) versus acute renal rejection transplants by analyzing DW-MRI

data, see Figure 6. Our framework is efficient in terms of it does not require kidney seg-

mentation, and non-invasive in terms of it requires only imaging and clinical biomarkers.

Furthermore, our framework is intended to early detect acute renal transplant rejection. It

is composed of the following three steps: (1) preprocessing where we perform histogram

equalization and region of interest (ROI) extraction, (2) feature extraction where we esti-

mate the 3D ADC maps and fuse the clinical biomarkers, (3) CNN based classification to

non-rejection and acute renal rejection transplants.

FIGURE 6: The proposed machine learning framework for early detection of acute renal

rejection using DW-MRI analysis. The framework is composed of three main steps. In

the first step, we equalize the histogram to reduce the inhomogeneity and noise. Then, we

construct an ROI that encloses the kidney for each subject. In the second step, we estimate

the 3D ADC maps for the chosen ROI and we fuse the clinical biomarkers (creatinine

clearance (CrCl) and serum plasma creatinine (SPCr)). Finally, the fused markers (3D

volumes of size 150x150x24) are inputted to the CNN classifier to classify non-rejection

versus acute rejection allografts.
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2. Automated Segmentation and Quantification of the Left Ventricle of the Human Heart

CVDs are dangerous heath issues as they are responsible for the highest rate of

mortality worldwide [49]. About 836,546 patients in the United States die each year be-

cause of CVDs [50]. A non-invasive quantitative evaluation for the heart functionality

can be available for the cardiologist from Cardiac magnetic resonance (CMR) which is an

important imaging technique. The cardiologist can get functional heart indexes from per-

forming segmentation for the LV in CMR short-axis view cine images [51]. These indexes

are ESV, EDV, EF, wall mass, and regional indexes (e.g., wall thickening) which are es-

sential for heart diagnosis and treatment. However, to estimate these parameters, accurate

delineation of myocardial walls is required. Manual segmentation of LV in CMR short-

axis view images requires significant effort and time. Furthermore, manual segmentation

is prone to inter- and intra-operator variability [52]. Therefore, an alternative technique

to manual segmentation is needed to perform automated segmentation for the LV cavity

and myocardium. Furthermore, this technique should be accurate to obtain left ventricular

functional metrics with high accuracy.

The need for accurate and automated estimation of left ventricular parameters, and

the success of the CNNs motivated us to build a framework for the automated functional

assessment of the heart. This framework should segment and quantify the LV with a com-

parable accuracy to the human operator. In this dissertation, we propose a novel fully

automated framework that segment and quantify the LV from CMR cine images. Our pro-

posed framework for the automated segmentation and quantification of the LV is shown in

Figure 7. The quantification is performed by the calculation of left ventricular functional

parameters and mass. Our framework consists of four main steps: (1) ROI extraction using

a FCN called FCN1, where the center of the ROI is at the center of left ventricular cavity,

(2) Image cropping for all CMR images using the extracted ROI, (3) Segmentation of the

left ventricular cavity and myocardium using a FCN called FCN2, and (4) Calculation of

left ventricular functional parameters and mass.
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FIGURE 7: Illustration for the proposed framework for automated left ventricle segmenta-

tion and quantification (calculation of LV functional indexes and mass).

We performed segmentation to the LV cavity and myocardium to estimate the heart

physiological parameters. Our main achievement is the accurate quantification of the LV

indexes and reaching a lower error compared to other previous techniques applied on the

same dataset. Our framework that is based on FCN has the following contributions:

• We propose an efficient method that is based of FCN to extract a region-of-interest

(ROI) that contains the LV from CMR cine images. We perform this extraction pro-

cess in the beginning to alleviate the class-imbalance problem and reduce the memory

and computational requirements.

• After ROI extraction, we use a novel FCN model for cardiac segmentation. The

architecture of this novel model is inspired from the U-net; i. e., the input is passed to

a contracting path followed by an expanding path. The addition to the conventional

model is the incorporation of multiple bottleneck layers that describe the input by

multiple representations. The bottleneck layers are up-sampled and combined to

estimate the final segmentation. Our proposed model requires less fewer number

of parameters than the state-of-the-art models such as U-net, yet it showed better

performance.

• We propose a novel loss function that works on minimizing the difference between

the ground truth LV contours and the predicted contours. We refer to the new loss by
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radial loss and we incorporate it with the cross-entropy loss.

• We evaluated the generalization strength of our proposed segmentation method by

estimating the segmentation performance of our method when we use the ACDC

2017 data as a training set and a local dataset as a testing set. Our segmentation

approach demonstrated good segmentation accuracy that is comparable to another

model that uses only our local dataset.

3. Automated Assessment of the strain of the Left Ventricle in Mice

Mice are the most preferable species for cardiovascular modeling for several rea-

sons including the low procedure costs, ease of handling, and the capability to manipulate

the mouse genome [53]. By utilizing animal models, we increase our knowledge for im-

proving the diagnosis and treatment of cardiovascular diseases. For cardiac function quan-

tification, MRI is considered the most accurate imaging technique (gold standard) [54–58].

The major advantages of MRI are ability to rebuild 3D structure and function, clear tis-

sue structure, and high reproducibility [59]. currently, cardiac MRI is clinically utilized

to evaluate myocardial function, heart structure, perfusion, and viability in humans [60].

Multiple mouse works by our group and others [54,61–63] got benefit from the use of stan-

dard cardiac cine MRI to evaluate heart structure and functional indexes, e.g., EDV, ESV,

and EF. However, tagged cardiac MRI is required for strain analysis of myocardial contrac-

tility. Tagged cardiac MRI takes considerable time and difficult to interpret, especially in

mice. It is difficult to interpret because of the small size of the mice heart, which prevent

the creation of multiple 1mm2 diamonds within the wall of the ventricle for strain analysis.

Therefore, researchers abstain from performing strain analysis from tagged MRI. On the

other hand, the picture of the heart function is fully completed by strain analysis which is

an essential component because it is the only parameter that distinguish between active and

passive movement of myocardial segments, assess longitudinal myocardial shortening, and

15



quantify intraventricular dyssynchrony. Furthermore, evaluating myocardial strain gives

us a comprehensive evaluation of diastolic myocardial function, that is not inferred from

EF [64].

In this dissertation, we aimed at the development of an automated framework for

the accurate estimation of strain from standard cardiac cine MRI of mice. The used mice

are sham and myocardial infarction (MI) cases. Our work is an alternative to tagged imag-

ing of mice. Myocardial segmentation is an important initial step for the estimation of LV

functional indexes. Therefore, a deep-learning based technique was proposed for the auto-

mated segmentation of LV borders. Subsequently, we developed a Laplace based technique

to track myocardial points along the cardiac cycle to accurately evaluate the strain from the

standard cardiac cine MRI. We validated the Laplace-based technique by performing a

comparison between the Laplace-based technique and the analyzed strain outcome resulted

from the tagged imaging which is considered the current gold standard for strain analysis.

Finally, we also utilized our framework to calculate other global and local cardiac indexes.

Our framework consists of two primary stages. The first stage is the segmentation of the LV

cavity and myocardium using a deep learning approach that is based on a FCN. The second

stage is the calculation of the functional and structural heart parameters. The parameters

include global volumetric indexes (e.g., EDV, ESV, EF) and local indexes involving wall

thickening and myocardium strain. Fig. 8 depicts the overall framework. The development

and validation of the framework will be described in detail in the upcoming subsections.

4. Automated Detection of Renal Cell Carcinoma

Kidney cancer is an abnormal cell growth in the kidney. Kidney cancer is ranked

fourteenth among common cancers and contributes about 2.4% of the total number of diag-

nosed cancers [65]. A recent estimate by the American Cancer Society revealed that in the

United States about 76,080 new patients will be diagnosed with kidney cancer and about

13,780 patients will die from the disease [66]. Cancers of the kidney are of several types,
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FIGURE 8: The proposed framework for the quantification of left ventricular functional

and structural parameters.

renal cell carcinoma (RCC) being the most prevalent, accounting for nearly 85% of kidney

cancers. RCC is itself a heterogeneous set of cancers with distinct molecular character-

istics, responses to treatment, and clinical outcomes [67]. The most prevalent subtypes

of RCC include clear cell (70%—80%), papillary (14%-–17%), chromophobe (4%—8%),

and clear cell papillary RCC (4%) [68]. We can classify RCC subtypes by utilizing the

morphological features observed on histopathological slides stained with hematoxylin and

eosin. However, there is a significant morphological overlap between clear cell RCC and

clear cell papillary RCC subtypes due to the presence of clear cells. It is critical to be

able to classify between clear cell RCC and clear cell papillary RCC to determine the cor-

rect patient management. Clear cell RCC is associated with poor prognosis because it is

likely to metastasize, while clear cell papillary RCC is considered an indolent neoplasm,

which is not associated with metastatic spread [69]. When there is a significant overlap

in morphological features, immunohistochemistry helps in separating the two subtypes of

the tumor. However, we cannot find immunohistochemistry in all areas of the world. We

can use deep learning algorithms to differentiate between the types of tumor by analyzing

histopathological images.

In this dissertation, we propose a computer aided diagnostic system that uses CNNs
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for the automated classification of kidney tissues and RCC, see Figure 9. Our framework

can partition histology images into four classes including fat, parenchyma, clear cell RCC,

and clear cell papillary RCC. Our framework has the following contributions:

• The first study to discriminate between clear cell RCC and clear cell papillary RCC.

This classification has high clinical relevance.

• We propose a pyramidal deep learning model that utilizes a hierarchy of three CNNs

that process different image sizes. The deep learning improves the precision of the

diagnosis and decrease human error. Furthermore, it produces reproducible results

and objective assessment.

• Our approach can provide both patch-wise classification and pixel-wise classifica-

tion.

• We incorporate a statistical approach based on Markov-Gibbs random field (MGRF)

to remove inconsistencies in the final pixelwise classification.

FIGURE 9: Schematic illustration of the proposed computer aided diagnostic system for

automated classification of kidney tissues.
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C. Dissertation Organization

This dissertation consists of seven chapters. The following remarks summarize the

scope of each chapter:

• Chapter I presents some basic concepts about medical imaging and the used imaging

modalities in this dissertation. Furthermore, the chapter provides a brief summary

for the the basic contributions of the proposed research.

• Chapter II introduces what is meant by deep learning and the most popular algorithms

used in this domain. Furthermore, the chapter presents the use of deep learning in

the medical imaging domain.

• Chapter III presents a novel deep learning based approach for early detection of acute

renal transplant rejection using diffusion weighted magnetic resonance imaging.

• Chapter IV presents a novel deep learning based approach for the automated segmen-

tation and quantification of the left ventricle from cardiac cine magnetic resonance

imaging.

• Chapter V presents a novel approach for the automated assessment of left ventricle

strain using mice cine MRI and tagged MRI.

• Chapter VI presents a deep learning based approach for the automated detection of

renal cell carcinoma from histopathological whole slide images.

• Chapter VII concludes the work presented in this dissertation and outlines future

directions.
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CHAPTER II

DEEP LEARNING

This chapter introduces deep learning and its algorithms. Deep learning is as sub-

field in machine learning which in turn is a sub-field in the artificial intelligence. One of

the algorithms of deep learning is artificial neural networks which are considered math-

ematical function approximators and are inspired from the workings of the brain and the

connections of the nervous system. The basic unit of artificial neural network is the neuron.

The chapter introduces the feedforward neural network, activation functions, loss function,

and network optimization. Another algorithm in deep learning is convolutional neural net-

works which are inspired from the human visual cortex. It is the first choice in computer

vision applications. Furthermore, the chapter introduces deep learning in medical imaging.

A. Introduction

Until recently, shallow-structured architectures had been adopted in most machine

learning (ML) and signal processing techniques. Typically, these architectures include at

most one or two nonlinear features transformations layers. Examples of shallow architec-

tures involve linear or nonlinear dynamical systems, Gaussian mixture models (GMMs),

maximum entropy (MaxEnt) models, conditional random fields (CRFs), logistic regression,

support vector machines (SVMs), multilayer perceptrons (MLPs) with only one single hid-

den layer [70]. Various simple or well-constrained problems can be solved effectively by

shallow architectures. However, complicated real-world applications can not be solved by

shallow architecture due to their limited modeling and representational power. Real-world

applications involve natural signals such as natural sound, human speech and language, and
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natural images and medical images.

Processing mechanisms of human information (e.g., audition and vision) suggest

the need for deep architectures for building internal representation and extracting complex

structure from rich sensory inputs. For instance, systems of production and perception of

human speech are equipped with layered hierarchical structures for converting the informa-

tion from its waveform level to its linguistic level [71]. Similarly, The human visual system

is hierarchical in the perception and in the generation sides [72]. Historically, from the do-

main of artificial neural network research originated the concept of deep learning. There-

fore, one might hear the discussion of the new generation of neural networks. Deep learning

is considered a subfield of ML which in turn is a subfield of artificial intelligence (AI) as

shown in Figure 10. Feed forward neural networks or multi layer perceptrons (MLPs) that

contain many hidden layers are usually referred to deep neural networks (DNNs). DNNs

are typical examples of deep architectures models. The parameters of DNNs need to be

learned during the training process. In 1980, Back-propagation (BP) algorithm became

popular for learning these parameters. In practice, BP alone did not achieve good results

for learning the parameters of networks with high number of hidden layers [73]. The dif-

ficulty in the learning that BP experiences is due to the presence of many local optima and

the optimization difficulties in the non-convex objective function of the DNNs. BP uses lo-

cal gradient information and its work starts with selecting random initial points. Therefore,

it can be trapped in unsatisfactory local optima when we use batch-mode or even the algo-

rithm of stochastic gradient descent BP. The more the network depth increases, the more

the severity increases. ML researches steer away from using DNNs because of this train-

ing difficulty and they prefer to use shallow architectures that have convex loss function

(e.g., CRFs, SVMs, and MaxEnt models). These shallow models can reach global optima

efficiently, however, they have a reduced modeling power [70].

Different nonlinearities and better learning algorithms contributed to the success of

DNNs. In the case of the training set is large, the Stochastic gradient descend (SGD) al-
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FIGURE 10: A Venn diagram that shows the relationship between artificial intelligence

sub-domains [4].

gorithm is very efficient [74]. Recently, researchers used SGD for parallel computations

over many machines [75] or over multiple GPUs [76]. Furthermore, SGD can jump out

of local optima because it involves the estimation of noisy gradients from a small batch of

samples. We can find similar ability in other learning algorithms such as Krylov subspace

methods [77] or Hessian free [78]. When the optimization problem of the DNN is highly

non-convex, it is obvious that good initialization methods for network parameter will re-

sult in good models. However, it is not obvious how to correctly initialize the network

parameters and how big amounts of training data can mitigate the learning problem till

more recently [73, 79]. Unsupervised pretraining method is an initialization method which
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attracted a lot of attention [80].

A source of difficulty in real world AI applications is that there are factors of vari-

ations that affect every observed single piece of data. For example, the red pixels of a car

in an image might appear black at night. Also, the viewing angle determines the shape

of the silhouette of the car. Therefore, we need to disentangle these factors of variations.

However, it is very challenging to extract such abstract features from the raw data. Deep

learning solves this challenge of representation learning by making representations that are

described in terms of other simpler representations. Deep learning allows the computer to

make complex concepts from simpler concepts [4]. Figure 11 demonstrates how a deep

learning model can describe complex concept such as an image of a person by integrating

simpler concepts, such as the contours which are in turn described in terms of edges.

B. Artificial Neural Networks

Artificial neural networks (ANNs) are mathematical function approximators that

are commonly used in the field of computational intelligence [81]. They are inspired from

the workings of the brain and the connections of the nervous system [82]. For more than

seventy years, researchers studied ANNs [83]. Given enough computational resources and

data, non-linear and complex functional mapping can be learned using ANNs. The more

training data, the better results of ANNs. In the following subsections, we will discuss the

basic architecture and the widely used model of ANNs to analyze data.

1. Artificial Neuron

The basic unit of ANNs is the neuron. Figure 12(a) shows the neuron and its com-

ponents. The basic components of an artificial neuron are an input x which is a vector

valued where x ∈ Rn (n is the dimension of the input), bias b which is a scalar value,

weight w which is a vector valued where w ∈ Rn, an activation function ϕ, and an output
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FIGURE 11: Demonstration of a deep learning model. The function that maps a set of

pixels to an object identity is complicated. The learning of this mapping is very challenging

if we want to evaluate it directly. Deep learning solves this difficulty by breaking the

complex mapping into a series of simpler mappings. Each mapping is described by a layer

in the model. That is how a deep learning model can describe complex concept such as an

image of a person by integrating simpler concepts, such as the contours which are in turn

described in terms of edges. [4]

y. The argument of the activation function is z = wTx + b. The output of the neuron is

defined as

y = ϕ(z) = ϕ(wTx+ b) (1)

If we have only the argument z, we will get a linear discriminant function [84].
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However, using the activation function ϕ which is also known as the transfer function, we

can obtain a non-linear transformation. The non-linear transformation useful because it

mimics the real world which is non-linear. There are many types of the activation func-

tions, such as hyperbolic tangent, ReLu, sigmoid, Heaviside function, Signum function,

and softmax.

FIGURE 12: (A) Schematic illustration of mathematical artificial neuron. (B) Simplified

artificial neuron [5].

ReLu is an abbreviation for rectified linear unit which is the most widely used ac-

tivation function in ANNs [85]. Another popular function is the softmax activation func-

tion [86]:

yi =
exi∑n
j e

xj
(2)

The softmax function transform the vector x of n-dimension into a vector y of n-

dimension and y satisfies that
∑

yi = 1 Therefore, softmax produces a vector contains

probabilities for each of the n-elements. Researchers often use softmax as the final layer

of the neural network. The model of the neuron is called perceptron if the Heaviside step

function is used as an activation function [87].

Usually, the artificial neuron is represented in a simplified form by reducing the

focus of its important components. Figure 12(B) shows the artificial neuron in its simplified

form.
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2. Feedforward Neural Networks

It is required that the neurons connect with each other, in order to construct neu-

ral networks (NN). Feedforward architecture is the simplest structure of a NN. Figure 13

shows exemplary architectures of the shallow and deep NN. The number of the non-linear

transformations between the disconnected layers is referred to the network depth, while the

network width is the number of the hidden layers. For example, the shallow network in

Figure 13(A) has a depth of 2 and a width of 1 whereas the network in Figure 13(B) has a

depth of 4 and width of 3. The researchers calls a network deep network when it has more

than 2 hidden layers [73].

FIGURE 13: Two examples of feedforward NN. (A) Shallow feedforward NN. (B) Deep

feedforward NN with three hidden layers [5].

The feedforward NN is also known as multilayer perceptron where linear or non-

linear activation functions can be used. The feedforward NN has no cycles. The output of
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the multilayer perceptron is defined as follows [84]:

f(x) = ϕ(2)(W (2)ϕ(1)(W (1)x+ b(1)) + b(2)) (3)

Equation 3 is defined as the discriminant function of the NN. A learning rule is

required to obtain the optimal parameters of the NN. Researchers state an error function

(called the cost function) and an optimization algorithm to obtain the best parameters of

the network. This is usually done by minimizing the cost function for the training data.

3. Activation Functions

In order to allow the network to learn complex patterns in the data, activation func-

tions were added to the ANN. When comparing activation function with the model of a

neuron in our brains, the activation function lies at the end where it decides what is to be

fired to the next neuron. It receives the output from the previous cell and converts it to

another form. Then this new form is given as input signal to the next cell [88]. Figure 14

summarizes the comparison between the neuron model and the activation function.

FIGURE 14: A cartoon drawing of a biological neuron (left) and its mathematical model

(right) [6]

Activation functions are important elements to the network for various reasons.

First, it is biologically inspired from the model of the neuron in our brains. Second, acti-

vation functions keep the value of the neuron’s output restricted to a certain required limit.
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Keeping the output of the neuron at a certain limit is important because the output can go

very high in magnitude, particularly when the network is very deep. Third, the most im-

portant benefit of activation functions is that they add non-linearity into ANN. The ability

of the ANN to learn non-linear patterns depends the addition of non-linear layers such as

activation functions. Non-linearity is common in real world datasets. For example, voice

recordings, images, or videos are composed of various dimensions, and thus, they can not

be described with linear transformations. Activation functions have to be differentiable.

This is necessary to perform the optimization strategy of back-propagation. In the learn-

ing context, the gradient descent (GD) optimization algorithm uses back-propagation. GD

adjusts the weights of the neurons by estimating the gradient of the loss function.

Most of the activation functions struggle with the issue of vanishing gradient prob-

lem. As we add more layers with a certain activation function to an ANN, the gradients of

the loss function start to be near zero which freezes network training. A near zero gradient

dictates that the biases and weights of the first layers will not be updated efficiently during

network training, and this can result in a loss of accuracy because the network is unable to

recognize essential elements from the input data, which often happen at model entrance.

Figure 15 summarizes the most widely used activation functions. We will discuss

them one by one. The sigmoid is an activation function which has an output range from

0 to 1. Therefore, it is used for networks where we need to predict the probability as an

output. It is also centered between 0 and 1, which makes the gradient updates become too

far in different directions, and thus, the optimization problem is harder than using other

alternatives to the sigmoid activation function. The main issue with using the sigmoid

activation function is that it is affected by the vanishing gradient problem and therefore,

it is recommended to use the sigmoid activation function only with networks with low

number of layers. The Tanh function looks similar to the sigmoid, however, the Tanh

function is centered between -1 and 1. When we have two class classification problem,

we can use the Tanh function. On the other hand, Tanh function is also affected by the
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vanishing gradient problem, and thus we should consider the appropriate network size.

The softamax is a generalized logistic activation function that can be used for multi-class

classification, not just binary classification. It maps each output in such a way that the

sum = 1. Given that its output is a probability distribution, we can use softmax as the

final layer in an ANN classifier. ReLU is a very efficient and simple activation function

that gained a lot of attention recently, especially in convolutional neural networks (CNN).

It avoids the vanishing gradient problem. However, ReLU has a slope of 0 for negative

values. Therefore, if a neuron stuck in negative values, it will always outputs zero (dead

neuron). This problem is known as dying ReLU. There are other variants of ReLU where

there is a non-zero slope at negative values [88].

FIGURE 15: Popular activation functions [7].

4. Loss Function

In the domain of optimization, a candidate solution (i.e. set of weights) is evaluated

using a function called the objective function. Our job might be minimizing or maximizing
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the objective function, which means that we are looking for a candidate solution that has

the lowest or the highest score, respectively. In the domain of ANN, we desire to minimize

the objective function. Therefore, the cost/loss function term is used to refer to the objec-

tive function. We call the value estimated by the loss function as the loss. In other words,

the loss function describes the prediction error that we want to minimize. The loss function

distills all the aspects of the network into a single value and improvements in that value

indicates an improvement in the model [4]. There are many loss functions: Mean Squared

Error (MSE), Binary Crossentropy (BCE), Categorical Crossentropy (CCE), Sparse Cate-

gorical Crossentropy (SCCE), etc. MSE loss is usually used for regression problems. This

loss is estimated by taking the average of squared differences between the actual values

and the predicted outputs. In binary classification problems, BCE is used with a network

that contains only one output neuron to classify the data into two classes. In order to limit

the range of the output between 0 and 1, we should pass the output through a sigmoid

activation function. CCE loss is used when we want to perform multi-class classification.

The number of output neurons must equal the number of classes. The output neurons must

pass through a softmax activation function to obtain a probability distribution. SCCE loss

is similar to CCE loss. However, in SCCE, we do not need to encode the target vector by

one hot encoding.

5. Network Optimization

Gradient descent (GD) is an optimization algorithm that aims at finding the min-

imum of a function. In NN domain, the function that we want to minimize is the loss

function. GD is a popular way to optimize neural NN [4]. Let us refer to the loss function

we want to minimize by J(θ) which is parameterized by the model weights/parameters

θ ∈ Rd. The algorithm finds the best solution by updating the weights in the opposite

direction of the derivative of the loss function (∇θJ(θ)) with respect to the weights. The

size of the step that the algorithm takes is determined by the learning rate η. There are 3
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variants of GD, where each one uses different amount of data to estimate the gradient of

the loss function. Therefore, there is a trade off between the time needed to make an update

and the accuracy of the weight update.

1. Batch gradient descent: it is also called vanilla GD. The entire training dataset is

used to estimate the gradient of the loss function w.r.t. the weights θ.

θ = θ − η · ∇θJ(θ) (4)

As shown in Equation 4, we update our parameters in the opposite direction of the

gradient with the learning rate controls the size of the step. To perform one update,

it is required to estimate the gradients for the entire dataset. If the dataset does not fit

in memory, batch GD became very slow and intractable. Updating the model online

with new examples is not available in batch GD.

2. Stochastic gradient descent: compared to batch GD, SGD updates the parameters for

each training example x(i) and label y(i).

θ = θ − η · ∇θJ(θ;x
(i); y(i)) (5)

For large datasets, GD can be very slow because one iteration requires a prediction

for all training examples. Therefore, SGD is recommended for large datasets where

training is much faster and a good set of parameters is reached after one to ten passes

through the dataset. SGD is associated with frequent updates with high variance

which lead to fluctuations in the loss function.

3. Mini-batch gradient descent: mini-batch GD makes an update for every min-batch of

n samples.

θ = θ − η · ∇θJ(θ;x
(i:i+n); y(i:i+n)) (6)

Mini-batch GD has advantages such as (1) it has stable convergence because the

variance of the parameter updates is reduced, and (2) it uses highly optimized matrix
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computations that are found in the deep learning libraries. Therefore computing the

gradients is performed in highly efficient way. Mini-batch GD is the algorithm of

choice when training NN. Usually SGD term is used also when mini-batches are

used.

Mini-batch GD has many problems:

1. Selecting the appropriate learning rate is challenging. The model will converge

slowly if the learning rate is small. On the other hand, a high learning rate can hinder

convergence and lead to fluctuations in the loss function around the minimum.

2. We should adjust the learning rate during training by using learning rate schedules.

This is done by reducing the learning rate at a pre-defined schedule or when the loss

function falls below a certain threshold. We have to define the schedules and the

thresholds in advance. Therefore, these values do not adapt to the characteristics of

the dataset.

3. NNs have non-convex error function. Therefore, mini-batch GD algorithm might be

trapped in one of suboptimal local minima.

To overcome the aforementioned limitations, various optimizers have been pro-

posed in the literature. For example, Nesterov accelerated gradient [89], Adagrad [90],

Adadelta [91], and Adam [92].

C. Convolutional Neural Networks

CNNs are inspired by the human visual cortex [93]. It is popular and the first choice

in computer vision applications such as object classification and detection, and video recog-

nition. CNN can also be used in other fields such as drug discovery [94] and natural lan-

guage processing [95]. Figure 16 illustrates an example CNN that is used for the classifi-

cation of hand written digits. The input to the CNN is a 2D image with size 28 × 28 × 1
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pixels. Generally, the CNN is composed of a series of convolution and down-sampling lay-

ers and at the end a fully connected layer followed by a normalizing layer such as softmax

activation function. A progressively more refined features are created by the series of the

convolution layers that are present from the input to the output layers. The fully connected

layer that follows the series of the convolution and down-sampling layers performs clas-

sification. Between the convolution layers, down-sampling or pooling layers are usually

inserted.

FIGURE 16: Example of a convolutional neural network for hand-written digits classifica-

tion [8]

The kernels or filters are group of 2D neurons which are the basic components of

each layer. Unlike traditional NN, in CNN the neurons are not connected to all neurons

in the previous layer. Instead in the CNN, there is a concept of the receptive field where

the neurons are only connected to a fixed number of neurons. The connection between two

adjacent layers is determined by the spatial mapping. Reducing the number of connections

between adjacent layers decreases chances of overfitting and training time. The neurons

of the kernel are connected to the same number of neurons in the previous layer or feature
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map. These facts reduce the learning time and decrease network’s memory requirement.

Therefore, each neuron in the kernel finds the same texture but in different areas of the

image. Figure 17 shows an example of convolving a 5× 5× 1 image with a kernel of size

3× 3× 1 to get a 3× 3× 1 feature map.

FIGURE 17: Convolution operation in the convolution layer of the CNN [9].

If we have a stride length = 1, the kernel will shift 9 times. Figure 18 shows the

movement of the kernel. The kernel shifts to the right with a stride = 1 until it parses the

complete width. Then, the kernel hops down to the beginning of the image with the same

stride value, repeating the same operation till the whole image is traversed.

FIGURE 18: Movement of the kernel during the convolution operation [9].
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Down-sampling or pooling layers decrease the size of the network. It also work on

reducing the susceptibility of the network to scale, shift, and distortion of images [96]. To

achieve down-sampling, max-pooling or average-pooling are often used. Figure 19 shows

an example of applying max-pooling on an image of size 4× 4× 1 with a 2× 2× 1 kernel

and stride = 2.

FIGURE 19: Pooling operation [6].

Actual classification is performed by the final layers in the CNN where layers are

fully connected. The fact that the CNN is a deep architecture results in good quality repre-

sentations and in the same time reducing parameters, maintaining locality, and invariance

to minor changes in the input image [97]. Usually, backpropagation is performed to CNN

training to get the optimal network parameters (weights and biases).

D. Encoder-Decoder Architectures

Fully convolutional neural networks (FCNN) is a CNN with only convolutional and

down-sampling layers [98]. In other words, FCNN is a CNN with the final fully connected

layer replaced with convolutional layer. FCNN is mainly used for image semantic segmen-

tation. Image semantic segmentation involves classification for the pixels of the image.

FCNN has an encoder-decoder architecture which is a popular end-to-end model. Other

architectures include U-net [10] and Deeplab [99]. In these models, image features are ex-
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tracted by an encoder, while the original image size is restored from the image features by a

decoder. The decoder also produces the final segmentation. Although the end-to-end archi-

tecture is useful for medical image segmentation, it works on reducing the interpretability

of the model. The U-net is the first high impact encoder-decoder architecture proposed by

Ronneberger et al. [10]. The U-net which is shown in Figure 20 has been widely used for

performing segmentation for medical images.

FIGURE 20: U-net architecture [10].

U-net uses a perfectly symmetric structure with skip connections. Apart from usual

image segmentation tasks, the segmentation of medical images needs to tackle the noise

and blurring in the image. Therefore, it is challenging to recognize objects in medical

imaging by relying only on the low-level features of the image. Meanwhile, it is difficult

to get accurate boundaries by relying only on semantic features of the image because there

is a lack in image details. On the other hand, U-net makes a fusion between low-level

and high-level features of the image. This is performed by integrating low-resolution and

high-resolution feature maps through skip connections. Skip connection is a perfect solu-

tion for performing segmentation for medical images. Currently, U-net is considered the

benchmark for medical image segmentation and resulted in a lot of successes.

36



E. Deep Learning Tools

1. TensorFlow

TensorFlow is an open-source ML platform [100]. It is used to implement deep

learning applications. Google team created TensorFlow to research and develop on fantastic

ideas of AI. To use TensorFlow, we program in Python programming language, and thus it

is considered easy to use and interpret. TensorFlow has the following features:

• It optimizes and estimates mathematical expressions easily with the use of arrays

called tensors. Tensors are the data structures in TensorFlow platform, see Figure 21.

• It features various levels of abstraction, thus you can select the right level for your

task. For example, you can choose the high-level Keras API that makes building ML

applications easy.

• It offers a direct path to production. Whether you intend to build your application

on servers, web, or edge devices, TensorFlow allows you to train and deploy your

model very easily, regardless of the programming language or platform you use. For

example you can use TensorFlow Lite to run inference on edge devices and mobile,

and you can use TensorFlow.js to train and deploy applications in JavaScript envi-

ronments.

• You can build and train state-of-the-art architectures without sacrificing performance

or speed. You can use Keras Functional API or Model Subclassing to build complex

architectures.

• It harness the power of GPU to improve model performance.
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FIGURE 21: Different dimensions of the tensors in TensorFlow platform [9].

2. CAFFE

CAFFE (Convolutional Architecture for Fast Feature Embedding) is an open-source

deep learning framework developed at University of California by Yangqing Jia during his

Ph.D. at the university [101]. CAFFE is written in C++ programming language with a

Python interface. CAFFEE has the following features:

• It supports various types of deep learning models, such as CNN, region based CNN,

long short term memory (LSTM), and fully connected ANN.

• It supports CPU- and GPU-based acceleration computational libraries such as Intel

MKL and NVIDIA cuDNN

• It can be used in academic tasks, startup prototypes, and even industrial applications

in speech, vision, and multimedia.

3. Pytorch

Pytorch is an open-source ML library that is based on the Torch library [102]. The

AI research lab at Facebook developed Pytorch which has a Python and C++ interfaces.

38



Pytorch has the following features:

• Production ready.

• Distributed Training.

• Robust ecosystem.

• Cloud support.

F. Deep Learning in Medical Imaging

Deep learning can be used to build computer-aided diagnosis (CAD) systems for

disease diagnosis and classification. Deep learning can be used in such systems because it

has shown great successes in many medical imaging applications such as image classifica-

tion, image segmentation, image registration, image restoration, and image generation and

transformation. In the following sections we will discuss medical image classification and

segmentation which are the focus of this dissertation.

1. Medical Image classification

Image classification is a task where we need to assign one label from a fixed group

of categories to the input image. In supervised deep learning, we train the model by a set of

training images and their associated ground truth labels. Then, we test the model by test-

ing images and evaluate its performance by comparing the actual model’s output with the

ground truth labels of the testing images. One important task for physician is proper differ-

ential diagnosis for the medical images of patients. This task is a classification task which

involves a wide range of applications from detecting the presence or absence of a disease

to determining the type of malignancy. CNN has showed great successes in image-based

classification applications such as kidney diagnosis [103], diagnosis of diabetic retinopa-

thy [104], and diagnosis of skin cancers [105]. Figure 22 shows that CNNs can be trained
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by various medical imagery such as radiology, dermatology, pathology, and ophthalmol-

ogy. The values of the softmax layer (the output vector) can refer to the probabilities of the

presence of disease or the type of abnormality.

FIGURE 22: Convolutional neural networks can be trained by various medical imagery

such as radiology, dermatology, pathology, and ophthalmology. [11]

2. Medical Image Segmentation

Image segmentation involves assigning a label to each pixel in the input image.

Segmentation task can be considered classification task in the spatial domain of the input

image. Therefore, images segmentation is a dense classification because we classify each

pixel in the input image. Encoder-decoder architectures segment medical images with high

accuracy such as the segmentation of the heart [106], and the kidney [107]. Figure 23

shows an application of encoder-decoder architecture for segmenting the heart from cardiac

magnetic resonance images.
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FIGURE 23: Encoder-decoder architectures can be used for medical image segmentation.

The figure shows two architectures one without skip connections and one with skip con-

nections. The blue, green, red colors refer to the left ventricle blood pool, left ventricle,

and right ventricle, respectively [12]
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CHAPTER III

EARLY DETECTION OF ACUTE RENAL TRANSPLANT REJECTION USING
DIFFUSION WEIGHTED MRI AND CLINICAL BIOMARKERS

In this chapter, a novel machine learning framework for the classification of non-

rejection (stable) versus acute renal rejection status of kidney transplants is proposed. The

proposed framework uses the diffusion weighted (DW) MRI and clinical biomarkers to per-

form its function. From the DW-MRI, we estimate the image markers which is the apparent

diffusion coefficients (ADC) which represent the perfusion of the blood and the diffusion

of the water in renal graft. The clinical biomarkers are creatinine clearance (CrCl) and

serum plasma creatinine (SPCr) which are considered kidney functionally indices. There-

fore, our framework is a non-invasive diagnostic tool for the early detection of acute renal

transplant rejection. The framework consists of three main steps. In the first step, we apply

preprocessing for the DW-MRI data where we perform histogram equalization and region

of interest (ROI) extraction. In the second step, we perform feature extraction where we

estimate the 3D ADC maps and fuse the clinical biomarkers with the ADC to produce

new maps with more discriminatory power. In the third step, we employ a CNN based

classification system to differentiate between non-rejection and acute renal rejection. The

framework is trained and evaluated using DW-MRI scans obtained from 56 cases who be-

long to geographically diverse populations. Furthermore, different imaging systems and

protocols were used. The proposed framework achieved an overall accuracy of 92.9%, sen-

sitivity of 93.3%, and specificity of 92.3% in distinguishing non-rejection from acute renal

rejection kidneys. Our results established the potential of the proposed framework for the

reliable and non-invasive diagnosis of kidney transplant status for any DW-MRI scans, re-

gardless of imaging protocol and/or geographical differences. Furthermore, our framework
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does not require kidney registration and segmentation steps which add complexity in the

system as previously presented in the literature.

A. Kidney Function, Anatomy, and Transplanted Kidney Diseases

The kidneys are important organs that perform various functions in the human body.

First, kidneys excrete metabolic waste products, drugs, foreign chemicals, and hormone

metabolites. The waste products that the kidneys eliminate are no longer needed by the

body. Examples of these products are urea, creatinine, uric acid, metabolites of various

hormones, and end products of hemoglobin breakdown. These products should be removed

from the body as fast as they are produced. The kidneys also remove foreign substances that

are created by the human body or ingested, such as drugs, pesticides, and food additives.

Second, kidneys regulate water and balance electrolytes. They maintain homeostasis by

excreting water and electrolytes with an amount equal the intake. The person’s eating

and drinking habits govern the intake of water and electrolytes and the kidneys adjust the

removal rate to equal the intake of different substances. Third, kidneys regulate arterial

pressure. Kidneys excrete variable amount of sodium and water. Therefore, they regulate

the arterial pressure in a long-term. The kidneys also regulate the arterial pressure in a

short-term by secreting hormones and vasoactive substances. Fourth, kidneys regulate acid-

base balance. Fifth, kidneys regulate erythrocyte production. Finally, the kidneys play an

important role in glucose synthesis from amino acids during fasting [13].

The two kidneys lie outside the peritoneal cavity on the posterior wall of the ab-

domen (Figure 24). The kidney of the adult person has a size of a clenched fist and weighs

150 grams approximately. The hilum is an indented region that lies at the medial side of

each kidney. The renal artery and vein, nerve supply, lymphatics, and ureter pass through

the hilum. The urine is carried by the ureter from the kidney to the bladder. The urine

remains in the bladder until it is emptied through the urethra. The inner structures of the

kidney are protected by a tough capsule that surrounds the kidney. If we bisected the kid-
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ney from top to bottom, we will find two major regions which are the inner medulla and the

outer cortex regions. The medulla contains cone-shaped structures of tissue named renal

pyramids. Approximately 22 percent of the cardiac output flows to the two kidneys through

the renal artery which enters the organ through the hilum.

FIGURE 24: Organization of the urinary system and the kidneys [13].

The functional unit of the kidney is the nephron. A person’s normal kidney contains

approximately 800,000 to 1,000,000 nephrons. The nephron is responsible for urine for-

mation. The number of functioning nephrons gradually decreases with normal aging, renal

injury, or disease. Each nephron has two main components: (1) a glomerulus which is a

tuft of glomerular capillaries. In the glomerulus large amounts of the fluid are filtered. (2)

a long tubule where the urine is formed from the filtered fluid (see figure 25). The glomeru-

lus contains a network of capillaries that have high hydrostatic pressure. The glomerulus

is covered by Bowman’s capsule that receives the fluid filtered from the capillaries of the

glomerulus. Then, the fluid enters the proximal tubule which is located in the kidney’s cor-

tex (Figure 26). After leaving the proximal tubule, the fluid enters the loop of henle. The

loop consists of a descending limb and an ascending limb. Then, the fluid travels in many
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tubular segments until it reaches the collecting duct as shown in Fig. 26. The normal urine

of well-functioning kidney must be free from blood cells, protein, and glucose.

FIGURE 25: Schematic illustration for a section in a human kidney that shows the micro-

circulation of the nephron and the main vessels that are responsible for blood supply [13].

Large amounts of fluid is filtered from the glomerular capillaries to Bowman’s cap-

sule and this represents the first step in urine formation where about 180 liters are filtered

each day. However, most of the filtered fluid is reabsorbed and only one 1 liter is excreted

each day. The glomerular filtration rate (GFR) is controlled by two factors (1) the balance
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FIGURE 26: The main tubular segments of the nephron [13].

of colloid osmotic and hydrostatic forces and (2) the capillary filtration coefficient. The

GFR of an average adult human is about 125 ml/min, or 180 liters/day. Approximately

20% of the plasma entering the kidney is filtered by the glomerulus capillaries.

The transplanted kidney can experience various renal complications that deterio-

rate its function, as shown in Figure 27 there are 6 categories: (1) fluid collections, (2)

urologic complications, (3) Neoplasmas, (4) vascular complications, (5) recurrent disease,

(6) graft dysfunction [108]. Transplant fluid collections include urinomas, lymphoceles,

hematomas, and abscesses. These complications are reported in up to fifty percent of re-

nal transplantations and their size, location, and growth possibility significantly affect their

clinical relevance [109]. Within two weeks from transplantation, urologic complications

can happen and they are manifested as urine leaks with discharged urinomas. Urinary

obstruction and calculous disease are additional complications that the renal transplant

patients can experience. Cancer development is increased by kidney transplantation, es-

pecially with extended immunosuppression period. Examples of neoplasms risks are re-

nal cell carcinoma and lymphomas [110]. Vascular complications encompass transplanted

artery infarction, stenosis, renal vein thrombosis, and arteriovenous fistulas and pseudoa-

neurysms. The prevalence of these complications is only 10% of transplantation subjects.
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However, they are associated with grave graft dysfunction with high death rate [111]. The

prevalence of the recurrent diseases is very low in the early stage after transplantation.

However, recurrent diseases can be found after a long-term in patients who suffer from

diabetes, cystinosis, or amyloidosis [112]. Graft dysfunction is another type of renal com-

plications which is considered one of the major problems that causes graft loss [113]. Graft

dysfunction can cause acute tubular necrosis, drug nephrotoxicity, and rejection [39]. Acute

tubular necrosis is related to the donor kidney and is widely detected in patients whose re-

nal transplant are from living relatives [34]. Drug toxicity is another form of the problems

that deteriorate renal graft function. Cyclosporine is an immunosuppressive drug that has

a high nephrotoxic potential with an effect on glomerular arterioles [33]. A major cause

of renal transplant dysfunction is acute renal rejection which represents the response of the

immune system to the foreign organ. Acute renal rejection can lead to a complete loss of the

transplanted kidney. In the next section, we will provide more details regarding acute renal

rejection, which is the focus of this dissertation. We will also introduce current approaches

that aim to the early detection of this kidney disease [114].

FIGURE 27: The different complications of renal transplant.

47



B. Acute renal transplant rejection

Acute renal transplant rejection is a critical problem in the urology field. In the

United States, approximately 22,393 kidney transplants were performed in 2018 [32]. Usu-

ally, the number of kidney donors is limited. Therefore, it is important to maintain the trans-

planted kidney in a healthy state. Acute renal rejection can occur in up to 40% in kidney

recipients within 3 weeks after transplantation. Typically, high-dose steroids or antibody

therapy can treat acute renal rejection. A gradual damage in the transplanted kidney func-

tion leads to chronic rejection, which starts about at 3 months after transplantation [33].

Given that providing an effective therapy for chronic rejection is an open area of research,

avoiding acute renal rejection is the most promising way to prevent chronic rejection [34].

Therefore, it is of paramount importance to early detect rejection to intervene with the

suitable medical and immune therapy in kidney transplant recipients [35].

Currently, initial assessment of kidney transplant function is based on blood and

urine tests such as plasma creatinine and creatinine clearance. creatinine clearance is a lab-

oratory test that can be used to evaluate kidney function, such as GFR. Urologists consider

creatinine clearance as a practical measurement to evaluate kidney function. However, we

can not rely on such index to effectively detect renal rejection due to the following reasons:

(1) creatinine clearance gives an overall idea about the function of both kidneys together

not about a specific kidney [36], (2) we can observe a significant change in creatinine level

only after 60% loss of kidney function [37]. Biopsy is considered the gold standard to

evaluate graft function, but only as the last option because it is associated with potential

morbidity and high costs. Also, the invasive nature of this procedure imposes a risk of

infection and bleeding to the patients. Furthermore, the sample that we get from the nee-

dle biopsy is small and might lead to underestimation or overestimation of the degree of

inflammation in the entire graft [38]. Therefore, a technology that is based on accurate and

noninvasive techniques is so much needed to evaluate transplanted kidney function and to

early detect acute renal rejection.
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Various noninvasive imaging techniques have been used in clinical settings to eval-

uate the function of transplanted kidney. Graft function can be evaluated quantitatively

and qualitatively by an imaging modality called radionuclide imaging which is a tradi-

tional renal imaging method used to screen for common complications [39]. However,

this technique suffers from limited spatial resolution, therefore, it does not show accurate

anatomical information of functional abnormalities inside the kidney [40]. Additionally,

radionuclide imaging is associated with exposure to radiation which limits the range of its

applications. For example, it can not be used to monitor diseases such as acute tubular

necrosis or cyclosporin [115]. Ultrasound imaging can be used to assess the function of the

graft early in the postoperative period and it is suitable for long-term evaluation of the graft.

Ultrasound is non-nephrotoxic modality and relatively cheap. However, this modality suf-

fers from the following drawbacks: (1) investigator’s experience greatly affects the sensi-

tivity and reliability of this technique, (2) it has low signal-to-noise ratio, (3) it suffers from

shadowing artifacts and speckles which decrease the diagnostic confidence [41]. Computed

tomography (CT) is successful in diagnosing post transplantation complications [42]. CT

is better than radionuclide imaging in terms of safety. However, it has low specificity and

its process contains nephrotoxic agent. Different magnetic resonance imaging (MRI) tech-

niques have been introduced to perform assessment for kidney transplant function. For

instance, dynamic contrast enhanced (DCE) MRI utilizes contrast agents, such as gadolin-

ium to assess tissue perfusion, which gives an idea about kidney function [43]. Despite

the fact that good anatomical and functional information can be obtained from DCE-MRI,

the use of the contrast agent (gadolinium) can lead to nephrogenic systemic fibrosis [44],

especially when GFR < 30ml/min per 1.73m2. Blood oxygen level dependent (BOLD)

MRI which assess the renal oxygenation level has been utilized for the evaluation of kidney

transplant function and the detection of acute renal rejection [45]. However, BOLD-MRI

has several limitations such as susceptibility to breathing motion artifact and bowel gas

artifacts [46, 47].
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Diffusion weighted (DW) MRI is an imaging modality that is not associated with

contrast agents. DW-MRI has been successful in detecting and characterizing tumors, neu-

roimaging, and kidney transplant function evaluation [48]. DW-MRI measures water’s

motion inside the tissue, and thus it is considered a way to evaluate the diffusion charac-

teristics for the tissue. We can obtain apparent diffusion coefficient (ADC) from DW-MRI.

ADCs are quantitative maps which represent the diffusion and can be measured at different

magnetic field strengths and duration noted as b-values [48].

C. Related Work

The applicability of DW-MRI in kidney transplant function assessment. has been

investigated in multiple studies [116–126]. In these studies, they used the ADC as a dis-

criminatory feature to classify between biopsy proven healthy renal allografts and unstable

allografts that have problems such as acute tubular necrosis and acute renal rejection. The

results of those studies demonstrated that allografts with deteriorated function have lower

ADC values compared to stable allografts. Furthermore, a positive correlation was found

between the estimated GFR and the ADC values. On the other hand, these studies have

drawbacks. First, the ADCs were estimated from the middle or the largest cross-section

at a specific b-value only. Second, they did not study the result of integrating clinical and

imaging biomarkers to classify between stable and allografts with acute renal rejection. Fi-

nally, they did not investigate the potential of deep learning as a valuable tool for disease

diagnosis and image classification.

The application of machine learning and deep learning in kidney diagnosis and clas-

sification has gained some attention. Pedraza et al. [127] investigated the use of CNN that

is based on a pre-trained AlexNet model [128]. Their study aimed at classifying glomerular

tissue versus non-glomerular tissue. They trained their network by images obtained from

tissue slides extracted from kidney biopsies and they achieved a performance of 0.999

(F-score). Yang et al. [129] proposed a method based on CNNs to classify histological kid-
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ney images adapted from tissue microarrays. They prepared the microarrays from kidney

biopsies from tumor and notmal subjects. Their classification accuracy was 97%. Ko-

lachalama et al. [130] investigated the use of CNN to predict the stage of chronic kidney

disease, nephrotic-range proteinuria, and baseline serum creatinine. Their study was based

on the analysis of richrome-stained images adapted from kidney biopsy samples and re-

ported a classification accuracy that is comparable to an expert nephropathologist. March

et al. [131] proposed an extended version of a pre-trained model to classify non-sclerosed

versus sclerosed glomeruli. From the analysis of frozen sections obtained from kidney

biopsies, they aimed to assess the eligibility of a donated kidney before renal transplanta-

tion to minimize the complications of post-transplantation. In spite of the success of the

mentioned computational methods [127, 129–131], they rely on an invasive procedure (re-

nal biopsy). Shehata et al. [1] proposed a deep learning framework that is based on stacked

nonnegative constrained autoencoders. The framework aimed at classifying stable renal

allografts versus allografts with acute renal rejection from DW-MRI data. However, their

method contains a segmentation step for the kidney where they use deformable model. This

step adds a computational burden to the overall system.

D. Methods

In this chapter, we propose a machine learning framework that aim at classifying

stable transplanted kidneys (non-rejection transplants) versus acute renal rejection trans-

plants by analyzing DW-MRI data, see Figure 28. Our framework is efficient in terms of it

does not require kidney segmentation, and non invasive in terms of it requires only imaging

and clinical biomarkers. Furthermore, our framework is intended to early detect acute renal

transplant rejection. It is composed of the following three steps: (1) preprocessing where

we perform histogram equalization and region of interest (ROI) extraction, (2) feature ex-

traction where we estimate the 3D ADC maps and fuse the clinical biomarkers, (3) CNN

based classification to non-rejection and acute renal rejection transplants.
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FIGURE 28: The proposed machine learning framework for early detection of acute renal

rejection using DW-MRI analysis. The framework is composed of three main steps. In

the first step, we equalize the histogram to reduce the inhomogeneity and noise. Then, we

construct an ROI that encloses the kidney for each subject. In the second step, we estimate

the 3D ADC maps for the chosen ROI and we fuse the clinical biomarkers (creatinine

clearance (CrCl) and serum plasma creatinine (SPCr)). Finally, the fused markers (3D

volumes of size 150x150x24) are inputted to the CNN classifier to classify non-rejection

versus acute rejection allografts.

1. Patient Data and MRI Acquisition Protocol

In this study, we collected data for 56 patients who had renal transplantation. The

data is composed of DW-MRI images (image markers) and clinical biomarkers, i.e., the

creatinine clearance (CrCl) and serum plasma creatinine (SPCr). We used the collected data

to train and evaluate our proposed machine learning framework. The protocols followed

in our experiments were approved by the Institutional Review Boards (IRB) of University

of Louisville, USA; the University of Michigan, USA; and University of Mansoura, Egypt.

We carried out the experiments in accordance with the relevant regulations and guidelines.

A written and/or a verbal consent were obtained from the participants after fully informing

them regarding the aims of the study. The number of males was 38 participants and the

number of females was 18 participants. The average of their age was 34 ± 15.62 with a

range of 12 to 65. We divided the subjects into two groups: patients with stable allograft

functionality or Non-rejection group (N = 26) and patients with acute renal rejection (N =
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30).

The DW-MRI data was collected from different sources/scanners. The first source

was 3T scanner: MRI Ingenia, Philips Medical System, Amsterdam, Netherlands, where

we collected 17 DW-MRI scans in the United States. The MRI sequence was gradient

single-shot spin-echo echoplanar with body coil. Imaging parameters were as follows:

TR/TE = 8000/93, slice size = 256x256 pixels, inter-section gap = 0 mm, section thickness

= 4 mm, field of view = 360×360×152 mm3. To cover the whole kidney, 38 coronal

cross-sections were acquired in 60 s. The second source was 3T scanner: MRI Ingenia,

Philips Medical System, Amsterdam Netherlands, where we collected 5 DW-MRI scans

in Egypt. The MRI sequence was gradient single-shot spin-echo echoplanar with body

coil. Imaging parameters were as follows: TR/TE = 4400/82, slice size = 176×176 pixels,

intersection gap = 0 mm, section thickness = 4 mm, field of view = 220×195×96 mm3. To

cover the whole kidney, 24 coronal cross-sections were acquired in 30-60 s at each b-value.

The third source was 1.5T scanner: SIGNA Horizon, General Electric Medical Systems,

Milwaukee, WI where we collected 34 DW-MRI scans in Egypt. The MRI sequence was

gradient single-shot spin-echo echoplanar with body coil. Imaging parameters were as

follows: TR/TE = 8000/61.2, slice size = 256×256 pixels, intersection gap = 0 mm, section

thickness = 4 mm, field of view = 360×360×152 mm3. To cover the entire kidney, 50

coronal cross-sections were acquired in 60-120 s. In addition to the DW-MRI data, we

collected clinical biomarkers (CrCl and SPCr) for each patient.

Kidney motion will not affect our analysis because surgeons implanted the allograft

in the iliac region, and therefore, the implanted kidney is less sensitive to respiration than

a native kidney. Furthermore, operators asked the patients to hold their respiration dur-

ing image acquisition to minimize any possible respiratory motion artifacts. We believe

that single direction will reduce the acquisition time to about 12 min compared to three

direction which needs about 31 min. Therefore, we were able to acquire 12 b-value scans.

Lower b-values are responsible for capturing the blood perfusion while higher b-values
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are responsible for capturing water diffusion effects. The acquisition of 12 b-values will

enhance the final diagnostic performance because our decision will be based on integrat-

ing individual decisions from the 12 b-values. The acquired b-values are 0, 50, 100, 200,

300, 400, 500, 600, 700, 800, 900, and 1000 s mm−2. Figures 29, 30 show examples of

cross-sections for non-rejection and acute rejection kidneys at all b-values, respectively.

FIGURE 29: A coronal kidney cross-section of a non-rejection kidney (stable) at the men-

tioned 12 b-values.
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FIGURE 30: A coronal kidney cross-section of an acute rejection kidney at the mentioned

12 b-values.

2. Data Preprocessing and ROI selection

A histogram equalization with non-parametric bias field correction was applied on

the DW-MRI as a preprocessing step to reduce inhomogeneity of intensities or the noise

and inconsistencies resulted from low-frequency non-uniformity. After preprocessing, we

construct an ROI that encloses the kidney for each subject. The largest kidney size was used

to determine the size of the ROI and this size was kept fixed for all subjects. To construct

an ROI that encompasses the entire kidney of a specific subject, we choose the slice that

contains the largest cross section and a software user is asked to determine the approximate
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centroid (center of the ROI) of this cross section. Then, for this specific subject, we crop

the DW-MRI kidney volumes based on this rectangular ROI at all b-values. Cropping the

DW-MRI scans has two advantages. First, complex registration and segmentation of the

kidney are no longer required, and thus, the complexity of the system is reduced. Second,

the computational cost of network training and testing is reduced because, the size of the

input data is reduced. In our study, the size of the original kidney volumes ranges from

176×176×24 to 256×256×38 voxels. After ROI-cropping, the size of the kidney volumes

became 150×150×24 voxels.

3. ADC Maps and Clinical Biomarkers

As illustrated in Figure 31, an ADC map which quantifies the diffusion at a certain

b-values can be estimated from two DW-MRI images: one at the baseline signal intensity

(b = 0 smm−2) and the other one at this specific b-value, as follows:

ADC =
−(ln(Sb)− ln(S0))

b
(7)

Where ADC, Sb, S0 are the apparent diffusion coefficient, signal intensity at b-value

= b, base line signal intensity, respectively. The ADC maps were estimated for all of the

cropped DW-MRI kidney volumes at all b-values.

In the clinical practice, different biomarkers are used for kidney function evalua-

tion. One of these markers is creatinine which is the metabolic waste result of creatine in

muscle. The level of creatine in the blood and urine can be measured by SPCr, and CrCl

tests, respectively. Therefore, we can use these tests as indicators for GFR and kidney

function. Usually, urologists carry out the SPCr and CrCl tests for patients after kidney

transplantation [132].

To increase the discriminatory power of our ADC data, we fused the measured ADC

maps with the clinical biomarkers (the CrCl and SPCr values) which are obtained during
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FIGURE 31: Voxel wise ADC estimation at a voxel (x, y, z) for b-vlaue = 500 smm−2:

(left) the cropped ROI kidney volume at the base line b0, (middle) the cropped ROI kidney

volume at the base line b500, and (right) The estimated ADC maps for the constructed ROI.

routine monitoring after transplantation. We trained our machine learning framework with

the fused data which we call FBio. As shown in Figure 32, for each subject we added his

clinical biomarkers to his ADC maps at all b-values. We refer to the fused data as FBio. To

underline the advantages of the integration process of both markers, we adopted two main

scenarios. First, we used the estimated ADC maps alone to evaluate the functionality of the

allograft. Second, we used the FBio maps resulted from the fusion process of the estimated

ADC maps and the clinical biomarkers to evaluate the functionality of the allograft. In

the two scenarios, the maps were constructed at the 11 b-values. Then, the two types of

maps were used to train and evaluate our CNN-based classifier usine a leave one subject

out (LOSO) cross-validation strategy. We discuss the proposed CNN-based classifier in the

next section.

4. The Proposed Machine Learning Framework

Our machine learning framework is based on CNNs and SVM. The input which

consists of 11 3D volumes is first fed to 11 CNNs that share the same architecture. Then,

the decisions of the 11 CNNs is fused using a SVM classifier. Therefore, the input 3D maps
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FIGURE 32: Illustration of the efficacy of the integration (fusion) of image markers with

the clinical markers. In this study, the measured ADC maps are fused with CrCl and SPCr

which both are one-dimensional values obtained from routine monitoring after transplan-

tation. We first normalize the clinical biomarkers for each subject with respect to the max-

imum values of each marker. Then, we add the normalized values to the ADC maps at

all the b-values by voxel-wise operations. In the figure, pixel values were color coded.

As demonstrated in the figure, it is challenging to discriminate between the non-rejection

kidney (a), and acute rejection kidney (b) using the ADC maps alone due to the overlap

between the ADC values between these two cases. After the fusion process of both mark-

ers, we can visually differentiate between the two cases. Poor kidney function appears as a

dark green color (i.e. low CrCl + high SPCr + low ADCs), while normal kidney function

appears as an orange-yellowish color (i.e. high CrCl + low SPCr + high ADCs).

are first processed by convolution layer. Figure 33 illustrates how the 3D input is process

by the convolution layer. First, we will discuss how we reached the best CNN architecture.

Second, we will discuss how we trained our machine learning framework. Finally, we will

discuss how we fused CNN decisions which leads to final diagnosis.

To find the optimal CNN architecture for our problem, we used a total of 20 subjects

(10 non-rejection and 10 acute rejection) as an independent set for training the CNN. This
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FIGURE 33: Schematic illustration for how a single volume is process by a convolution

layer in the CNN. The figure shows how an input of size 150×150×24 voxels is convolved

with a kernel of size K×K×24. Ususlly, we use multiple kernels and the shown operation

is performed again for each kernel to result in several feature maps. The result of the

convolution layer is a volume of feature maps.

set was not used during the validation of the framework. With the classification accuracy

is the metric to be optimized, we adopted a grid search approach to find the optimal val-

ues for the following: number of the convolution layers (search range 2 to 5), number of

convolutional kernels (search range 3 to 15), kernel stride (search range 1 to 3), and con-

volutional or pooling kernel size (search range 3 to 7). The searching operation resulted in

a global average accuracy of 96.4% in a 10 training iterations in a row. Our network was

organized as a processing blocks. The order of the layers in each block was as follows:

convolution layer, batch-normalization layer to speed-up the CNN training [133], ReLU

activation layer, and possible average pooling layer based on the result of the grid search.

Our proposed CNN has 3 processing blocks followed by concatenation layer and a fully

connected layer with two neuron for two classes, as shown in Figure 34(a). The input to
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the first block of our CNN is the 3D fused maps with size of 150×150×24 voxels. This

input is procssed by the CNN until it is converted to a vector of seven neurons after the

third block in the concatenation layer. The output of the concatenation layer is fed to a

fully connected layer with two neurons and finally to a soft-max layer which performs two

class classification. Please refer to Figure 34(a) and Table 1 for more information about the

CNN configuration.

TABLE 1: The proposed CNN configuration

Layer kernel Stride Depth Spatial Size Parameters

Input — — 24 150× 150× 24 0

1. Conv. 5× 5 2× 2 3 73× 73× 3 5× 5× 24× 3

2. Conv. 5× 5 2× 2 3 34× 34× 3 5× 5× 3× 3

3. Avg 5× 5 2× 2 3 15× 15× 3 0

4. Conv. 5× 5 2× 2 7 6× 6× 7 5× 5× 3× 7

5. Avg 6× 6 1× 1 7 1× 1× 7 0

6. Concat. — — 1 7× 1 0

7. Full — — 1 2× 1 7× 2

Total number of parameters = 2564

We optimized our CNNs using stochastic gradient descent (SGD) optimizer. We

started by a learning rate of 0.1 which was reduced to 0.0001 over 70 epochs. The complex

architecture of CNNs makes them prone to overfitting problem. We said that a network

is overfitting the training data when the network learns features special to the training set

and on the other hand, fails to generalize well to unseen input. To override overfitting, the

dropout technique was proposed [134]. Applying the dropout technique allows modeling

various representations for the relationships found in the input data. Typically, we achieve

this by deactivating a proportion of neurons in a random manner in each iteration during

training. By deactivating these neurons, we avoid complex co-adaptations during training.
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FIGURE 34: The architecture of the proposed machine learning framework, where (a)

shows the configuration of the designed CNN and its processing blocks, and (b) illustrates

the process of the fusion of CNN decisions using SVM classifier. At each b-value, we

trained and validated the CNN apart form the other b-values. At each b-value, we have 56

samples and each sample represents a 3D volume for a specific subject. The volume size is

150× 150× 24 voxels. We feed the 3D volume to the CNN as a one sample of the set. By

combining the output probabilities of all CNNs (all b-values), we get the final classification

result. The fusion is performed using SVM where each sample inputted to the SVM has 22

features (two probabilities for 2 classes resulted from the CNN at a certain b-value times

11 b-values)
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Although, some neurons are randomly deactivated in each iterations, these neurons may be

active in the next iterations. In our designed CNN, a dropout of factor 0.5 was used. Py-

Torch deep learning framework [135] was used to implement our network. All experiments

were done using NVIDIA Quadro P4000 GPU.

FBio maps (the fused image and clinical biomarkers) were used as input to the CNN

at 11 different b-values. Then, we collect the predicted probabilities given for each class at

the 11 b-values. To enhance the classification accuracy, we fused all of the CNN decisions

(11 decisions for 11 b-values) by using SVM classifier. In other words, each subject has

22 probabilities ( 2 classes times 11 b-values). We feed each subject as a single sample

with 22 features to the SVM classifier to obtain the final diagnosis. To sum up, we use data

fusion and decision fusion for better diagnosis accuracy.

E. Experimental Results

We used LOSO and 10 fold cross validation to evaluate our proposed pipeline. For

the NR group, the average of the CrCl values was 72.62 ± 17.58 ml/min, and the average

of the SPCr values was 1.16 ± 0.23 mg/dl. For the ARR group, the average of the CrCl

values was 39.63 ± 11.98 ml/min, and the average of the SPCr values was 2.23 ± 0.71

mg/dl. Figure 32 shows the efficacy of the integration between image and clinical markers.

This fusion helps in differentiating a NR subject from ARR subject. As shown in Figure

32, it is challenging to discriminate between the normal and abnormal cases using the

ADC alone, demonstrated in Table 2. We can justify this difficulty by the large degree of

overlap between the ADC values of both subjects, which can be better manifested by the

color coded maps. These two subject can be visually discriminated after fusing the clinical

biomarkers (FBio maps). Therefore, We use FBio maps as our input discriminatory features

for kidney transplant function assessment.

We adopted two training and testing scenarios: one using ADC maps only and

one with FBio maps which result from the fusion process. For all available subjects, we
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TABLE 2: A comparison between NR (non-rejection) and ARR (acute renal rejection)

cases based on the average value of the ADC maps alone at the 11 b-values.

Average ADC Values at Individual b-values: mean(std) ≈

b-value b50 b100 b200 b300 b400 b500 b600 b700 b800 b900 b1000

NR 3.0(1.17) 2.63(0.72) 2.59(0.50) 2.46(0.41) 2.43(0.37) 2.21(0.33) 2.10(0.08) 2.09(0.26) 2.05(0.25) 1.95(0.23) 1.90(0.21)

ARR 2.85(1.79) 2.97(0.98) 2.81(0.53) 2.33(0.42) 2.28(0.29) 2.12(0.25) 2.09(0.24) 1.93(0.22) 1.90(0.22) 1.87(0.19) 1.83(0.17)

constructed these maps at the 11 individual b-values. Table 3 reports the individual ac-

curacies for each b-value and the accuracy resulted from the fusion process, for both the

mentioned scenarios. To make sure that our approach is robust, We performed a 10-fold

cross-validation strategy using the FBio maps and our CNN-based classifier. The 10-fold

cross-validation resulted in accuracy = 91%, sensitivity = 90%, and specificity = 92%. To

find the contribution of clinical biomarkers vs. imaging markers to the overall diagnostic

accuracy, we conducted a comparison between the performance of the CNN using FBio,

CNN using ADC maps alone, and the SVM classifier using the clinical biomarkers alone

(ClinBio). Table 4 summarizes the resultant performance in terms of accuracy, sensitiv-

ity, and specificity. The overall diagnostic performance of our proposed machine learning

framework is compared with other deep learning approach that aims at evaluating trans-

planted kidney function. Specifically, our approach was compared with an approach that

uses stacked auto-encoders (SAEs) with input data that is composed of the cumulative dis-

tribution function of the ADC of the segmented kidney [1]. Table 4 summarizes the results

from our approach and the other approach in the literature. As demonstrated in Table 4, our

machine learning framework outperforms the SAEs method. The advantages of our method

over the SAEs approach is that our framework dos not require kidney registration or seg-

mentation which are difficult processes because of inter-patient anatomical differences the

diffused boundaries. Therefore, our proposed framework is efficient in terms of time and

computational complexity.

Furthermore, receiver operating characteristic (ROC) was used to assess the robust-

ness of our machine learning framework. The ROC curves of individual b-values and their
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TABLE 3: The diagnostic classification accuracy of individual b-values and fused b-values

(F11) resulted from three scenarios. The first scenario (S1) uses the ADC maps alone and

our machine learning framework. The second scenario uses the fused data FBio and our

machine learning framework. The third scenario uses the cumulative distribution function

of the ADCs of the segmented kidney along with stacked auto-encoders (SAEs) [1]

Different b-values Classification Accuracy % ≈

Method b50 b100 b200 b300 b400 b500 b600 b700 b800 b900 b1000 F11

SAEs(CDFs) [1] 68 50 77 68 82 68 73 64 75 86 68 86

S1(ADC only) 59 50 64 59 59 59 68 64 77 73 68 82

S2(FBio) 68 68 73 80 83 73 85 86 75 86 86 93

TABLE 4: A comparison between the diagnostic performance of four scenarios. The first

scenario (S1) uses the ADC maps alone and our machine learning framework. The second

scenario uses the fused data FBio and our machine learning framework. The third sce-

nario uses the cumulative distribution function of the ADCs of the segmented kidney along

with stacked auto-encoders (SAEs) [1]. The fourth scenario uses the clinical biomarkers

(ClinBio) only with the SVM classifier. The performance is reported in terms of accuracy,

sensitivity, specificity, and area under curve (AUC).

Performance of the Final Diagnosis

Method Accuracy% ≈ Sensitivity% ≈ Specificity% ≈ AUC ≈

SAEs(CDFs) [1] 86 70 100 0.88

SVM(ClinBio) 77 80 73 0.80

S1(ADC only) 82 80 83 0.83

S2(FBio) 93 93 92 0.93

64



FIGURE 35: Receiver operating characteristics (ROC) curves for the fused image and

clinical markers (FBio) for individual b-values and their fusion.

fusion for the proposed framework is presented in Figure 35. As shown in Figure 35, de-

cision fusion of individual b-values increased the overall diagnostic accuracy by reporting

an AUC = 0.93. Furthermore, we analyzed the ROC curves of all scenarios mentioned

in this chapter and the previous method that was based on SAEs, as shown in Figure 36.

Particularly, the SAEs approach achieved an AUC that is less than our approach by 0.05.

The above analysis and comparisons have established the potential of our framework for

the early detection of ARR

F. Discussion

Early detection of ARR can prolong the renal graft normal function, because the

early detection of such a problem allow the urologists to intervene with an appropriate

65



FIGURE 36: Receiver operating characteristics (ROC) curves for our CNN-based frame-

work (for both scenarios S1 and S2), the support vector machine (SVM) classifier with

clinical biomarkers (ClinBio), and the stacked auto encoders (SAEs) system [1].

treatment. Typically, there various types of ARR and the selection of the suitable treat-

ment depends on the type of rejection. For instance, urologists treat acute cellular rejection

with a high dose of corticosteroids, taken intravenously as a first line treatment [136, 137].

The administration of methylprednisolone for 3 consecutive days is the most popular reg-

imen [136]. A second biopsy is needed in the following cases: (1) there is a persistent

renal deficiency with the steroid and/or antithymocyte globulin, (2) there is a new defect

in kidney function after curing ARR. The second biopsy will help urologists to find ad-

ditional causes of kidney dysfunction. ARR episodes that do not respond to steroids and

aggressive vascular cellular rejection are treated with T-cell depleting antibodies [138]. On

the other hand, plasmapheresis, intravenous immunoglobulin, immunoadsorption, or mon-

oclonal antibodies are suggested for antibody mediated rejection [139].

It is worth noting that most of the clinical studies do not estimate the ADC at 11 b-
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values and only a few b-values are selected [116–126]. Usually, these studies choose a low

b-value and high b-value along with the baseline b0. Typically, low b-values are responsible

for blood perfusion, while high b-values are responsible for water diffusion [140–143]. To

efficiently discover the differences in blood perfusion and water diffusion between NR

and ARR groups, we used 11 b-values. And to get more accurate diagnosis we fused the

decisions from the 11 individual b-values. It is worth mentioning that this fusion helped

with tackling any problems that may occur during the acquisition process of one or two

b-values because of existing artifacts or chemical shifts.

To summarize, a machine learning framework that is based on CNN and SVM was

proposed. This framework was developed as a non-invasive evaluation of kidney transplant

status using the integration between DW-MRI derived markers and clinical biomarkers.

Our framework is a non-invasive tool to differentiate between NR (stable allograft) and

allograft with ARR. This integration process resulted in a well-separated maps that were

fed to CNN as kidney status discriminatory features. These maps affected the individual

and global diagnostic accuracy of the proposed framework. Our framework is considered a

computer aided diagnostic system for kidney transplant function evaluation. Our results es-

tablished the potential of this CAD system as a non-invasive and reliable kidney transplant

diagnostic tool. The CAD system is independent of imaging protocol and/or the scanner

type that has been used to acquire the DW-MRI. Furthermore, it does not depend on the

geographical area where the DW-MRI data were acquired. Complex kidney registration

and segmentation are not required in our CAD system. Therefore, it is more efficient in

terms of reduced processing time without compromising the final diagnosis accuracy.

Currently, we are using 11 different b-values that include low and high b-values.

This helped us to collect all possible information that leads developing a non-invasive and

accurate diagnostic tool. The tool is intended to be an alternative to biopsy for kidney trans-

plant function assessment. On the other hand, we plan to perform a statistical analysis to

identify what is the most informative b-values. When we achieve that goal, we can remove
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some of the b-values from our analysis and this will leads to a reduction in DW-MRI ac-

quistion time. Future work includes the use of a larger sample size collected from different

transplantation centers and/or various imaging systems and protocols. Furthermore, we are

planning to explore additional biomarkers.
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CHAPTER IV

LEFT VENTRICLE SEGMENTATION AND QUANTIFICATION USING DEEP
LEARNING

Cardiac MRI is a widely used noninvasive tool that can provide us with an eval-

uation of cardiac anatomy and function. It can also be used for heart diagnosis. Heart

diagnosis through the estimation of physiological heart parameters requires careful seg-

mentation of the left ventricle (LV) from the images of cardiac MRI. Therefore, we aim at

building a new deep learning method for the automated delineation and quantification of

the LV from cine cardiac MRI. Our goal is to reach lower errors for the calculated heart pa-

rameters than the previous works by introducing a new deep learning cardiac segmentation

method. Our pipeline starts with an accurate LV localization by finding LV cavity center-

point using a fully convolutional neural network (FCN) model called FCN1. Then, from

all heart sections, we extract a region of interest (ROI) that encompasses the LV. A seg-

mentation for the LV cavity and myocardium is performed from the extracted ROIs using

FCN called FCN2. The FCN2 model is associated with multiple bottleneck layers and uses

less memory footprint than traditional models such as U-net. Furthermore, we introduced

a novel loss function called radial loss which works on minimizing the distance between

the ground truth LV contours and the predicted contours. After myocardial segmentation,

we estimate the functional and mass parameters of the LV. We used the Automated Car-

diac Diagnosis Challenge (ACDC-2017) dataset to validate our pipeline, which provided

better segmentation, accurate calculation of heart parameters, and produced fewer errors

compared to other approaches applied on the same dataset. Additionally, our segmenta-

tion approach showed that it can generalize well across different datasets by validating its

performance on a locally collected cardiac dataset. To sum up, we propose a novel deep
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learning framework that we can translate it into a clinical tool for cardiac diagnosis.

A. Heart: Anatomy, Function, and Diseases

The heart is an important muscular organ that has two main functions: (1) the con-

tinuous collection of the blood from different parts of the body and the pumping of the

blood to the pulmonary system and (2) the continuous collection of the blood from the

pulmonary system and the pumping of the blood to all body’s tissues. The heart lies at

the center of the circulatory system. The circulatory system is composed of a complicated

network of blood vessels, such as arteries, arterioles, capillaries, and veins. These vessels

are responsible for carrying the blood to and from the tissues of the body [14].

An electrical system that is composed of electrical signals is responsible for giving

the heart its contractile function. These electrical signals allow the heart to contract and

pump the blood into the blood vessels. The heart contains valves that force the blood to

move in the correct direction.

The heart is crucial for the health of the human and his tissues. Without a working

heart, the body loses the circulation of the blood to the tissues. In order to work and grow

normally, the organs need oxygen and nutrients carried and delivered by the blood. Carbon

dioxide and waste products are also carried by the blood to the lungs where the body gets

ride of them into the air. A certain amount of blood at a certain rate is required to be

pumped by the heart to different body parts in order to maintain a healthy status. If there is

a disease or an injury in the heart, the body tissues will not receive its sufficient amount of

blood for normal working [14].

1. Location, Size and Shape of the Heart

The heart is located in the protective thorax and occupies the area between lungs in

a compartment called the mediastinum [144]. The mediastinum is the area inside the mem-

70



brane enclosing the heart, the pericardium. The heart is located posterior to the sternum

and costal cartilages and above the surface of the diaphragm at the fifth or the sixth rib. It

has an oblique position in the chest and its two-thirds lies in the left of the midline. Figure

37 shows the location of the heart in the thorax. The heart is roughly the size of the fist

of the man and weigh about 250-350 grams [145]. The heart has the shape of an inverted

cone. The apex of the heart is the narrow end and is located above the diaphragm. While

the base of the heart is the broad end which is located at the level of the second rib.

FIGURE 37: Location of the heart in the chest. Its boundaries are the sternum, lungs,

diaphragm, and esophagus [14].

The pericardium is a double-layered fibrous sac that encloses the heart and contains

the roots of the great vessels (Superior vena cava, Inferior vena cava, Pulmonary arteries,

Pulmonary veins, Aorta). It has two layers: the outer layer called fibrous pericardium and

the inner layer called serous pericardium. The serous pericardium in turn consists of two

layers: the parietal and visceral pericardium. There is a cavity in the pericardium called

pericardial cavity which contains pericardial fluid. The fluid is a serous fluid secreted by
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the serous pericardium into the cavity. Figure 38 describes the structure of the pericardium.

The pericardium has multiple functions. It places the heart into its position in the thorax.

The fluid forms as a lubricant to the outer wall of the heart. Therefore, the heart beats

without friction. Also, the pericardial sac prevents infections and over-expanding to the

heart.

The heart wall consists of three layers: epicardium (visceral pericardium), my-

ocardium, and endocardium, as shown in Figure 38. The epicardium is the outer layer

in the heart wall. The epicardium is known also as the visceral pericardium (the inner sur-

face of the pericardium). The epicardium has two tissue layers: the outer surface made of

simple squamous tissue which secrets a fluid for lubrication into the pericardial cavity, and

the inner surface made of areolar tissue.

The myocardium is the thick layer that lies at the center of the heart wall. It is

composed of abundant cardiac muscle fibers that envelope the heart wall. When the my-

ocardium contracts, the aorta and the pulmonary arteries receive the pumped blood from

the heart.

The endocardium covers the inner surface of the heart wall and it also lines the heart

valves and tendons. It meets the endothelium that covers the blood vessels that linked to the

heart. Like the epicardium, simple squamous and areolar tissues constitute the composition

of the endocardium

2. Anatomy of The Heart and Circulation System

The heart contains four chambers that consist of cardiac muscle or myocardium. At

the upper level there are two chambers: the right atrium (RA) and the left atrium (LA),

as shown in Figure 39. The function of the atria is to collect the blood. At the lower

level, there are another two chambers: the right ventricle (RV) and the left ventricle (LV).

The function of the ventricle is to pump the blood [144]. The function of the right atrium

and right ventricle is the collection of the blood from body parts and pumping it to the
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FIGURE 38: Structure of the pericardium and the heart wall. [14].

pulmonary system. The function of the left atrium and left ventricle is the collection of

the blood from the pulmonary system and pumping it into the tissues of the body. A set of

four valves are used to maintain a one-direction of blood movement throughout the heart.

The tricuspid and bicuspid valves (atrioventricular valves) assure that the blood moves only

from the atria to the ventricles. The pulmonary and semilunar valves assure that the blood

moves from the ventricle to the great arteries.

Despite the fact that the heart contains a high amount of blood, the heart gives a

small amount of blood to its tissues. The heart tissues receive the blood by an independent

vessel supply. From the aorta arise the left and the right coronary arteries that supply the

heart with nourishment and oxygen. Cardiac veins receive the deoxygenated blood from

the heart tissues and return it to the right atrium.

The superior vena cava and inferior vena cava transport deoxygenated blood sys-

temic circulation to the right atrium. Deoxygenated blood from the head and upper ex-

tremities is transported via superior vena cava while deoxygenated blood from lower ex-

tremities, abdomen, and thorax are transported via inferior vena cava. The blood moves
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from right atrium to the right ventricle through tricuspid valve. The blood leaves the right

ventricle through pulmonary artery which forks into the right and left pulmonary arteries

which transport deoxygenated blood to the lungs. Then, gas exchange happens in the lung.

The oxygenated blood from the right pulmonary vein and left pulmonary vein moves to the

left atrium. The blood travels from the left atrium to the left ventricle through the bicuspid

valve. The left ventricle pumps the oxygenated blood to the circulatory system through the

aorta.

FIGURE 39: Anatomy of the heart and the movement of the blood through the heart cham-

bers, valves, and arteries. [14].

3. Cardiac Cycle

The events of the heart that happens from the start of one heartbeat to the start of

the next are referred as the cardiac cycle. The action potential of the sinus node initiates

spontaneously the cardiac cycle. The action potential moves through the right and left

atrium and then in the A-V bundle to the ventricles. The cardiac cycle is composed of two
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periods: diastole and systole. The diastole is a relaxation period in which the blood fills the

heart. The systole is a contraction period in which the heart pumps the blood. The heart

rate (HR) is the reciprocals of the cardiac cycle (sum of the diastole and systole periods).

The normal heart rate is 72 beats/minute, where the cardiac cycle is 0.833 second per beat

[1]. The function of the heart depends greatly on the performance of the left ventricle. The

performance of the left ventricle is assessed mainly by some volumetric parameters. Let us

define some volumetric measures related to the left ventricle.

1. End Diastolic Volume (EDV): The volume of the LV at the end of the diastole. Nor-

mal values are 142 mL (± 21 mL) [146].

2. End Systolic volume (ESV): The volume of the LV at the end of the systole. Normal

values are 47 mL (± 10 mL) [146].

3. Stroke Volume (SV): The volume of blood pumped by the LV per minute. SV =

EDV − ESV . Normal values are 95 mL (± 14 mL) [146].

4. Cardiac Output (CO): The volume of the blood pumped by the left ventricle per unit

time. It is the product of the HR and SV, i.e. CO = HR ∗ SV . Normal values are

4.0–8.0 L/minute [146].

5. Ejection Fraction (EF): The volumetric fraction pumped from the LV with each heart-

beat. EF = EDV−ESV
EDV

∗ 100. Normal values are 67% (± 4.6%) [146].

4. Cardiovascular Diseases

Cardiovascular diseases (CVDs) are a group of diseases associated with heart and

blood vessels. Each disease has its own mechanism. Here, we will mention some of the

most common CVD.

• Coronary Artery Disease: It is known as ischemic heart disease [147]. This is disease

is caused due to the reduction of the blood supply to the cardiac muscle when there is
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a build-up of plaque (atherosclerosis) in the heart arteries. The types of this disease

are:

– Angina: Pressure or chest pain due to insufficient blood supply to the heart.

– Myocardial Infarction: It is known as heart attack. It is a damage to the heart

muscle which happens when the blood supply decreases or stops to an area of

the heart. The symptoms of this type include chest pain which might traverse

to the arm, neck, or back.

– Cardiac Arrest: Sudden loss of blood supply caused by the inability of the heart

to pump normally. Symptoms involve the loss of consciousness and breathing.

If the treatment not delivered in minutes, it leads to death.

• Heart Failure: It happens when the heart is unable to pump sufficient blood to meet

the body needs. It can happen after myocardial infarction that reduces the heart

performance to pump blood. Symptoms involve short breath, intense tiredness, and

leg swelling. Heart failure causes a reduction in the EF. The European Society of

Cardiology posted guidelines for the diagnosis and treatment of acute and chronic

heart failure [148]. These guidelines defined the categories of the heart failure based

on the value of the EF as follows.

– Normal ejection fraction: EF ≥ 50%

– Moderately reduced ejection fraction: 40% ≥ EF ≥ 49%

– Reduced ejection fraction: EF < 40%

In the united states a threshold of 30% for EF is used by the authorities to present

disability benefits to the patients.

B. Left Ventricle Segmentation and Quantification
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CVDs are dangerous heath issues as they are responsible for the highest rate of

mortality worldwide [49]. About 836,546 patients in the United States die each year be-

cause of CVDs [50]. A non-invasive quantitative evaluation for the heart functionality

can be available for the cardiologist from Cardiac magnetic resonance (CMR) which is an

important imaging technique. The cardiologist can get functional heart indexes from per-

forming segmentation for the LV in CMR short-axis view cine images [51]. These indexes

are ESV, EDV, EF, wall mass, and regional indexes (e.g., wall thickening) which are es-

sential for heart diagnosis and treatment. However, to estimate these parameters, accurate

delineation of myocardial walls is required. Manual segmentation of LV in CMR short-

axis view images requires significant effort and time. Furthermore, manual segmentation

is prone to inter- and intra-operator variability [52]. Therefore, an alternative technique

to manual segmentation is needed to perform automated segmentation for the LV cavity

and myocardium. Furthermore, this technique should be accurate to obtain left ventricular

functional metrics with high accuracy.

Currently, deep learning has achieved great success over conventional image pro-

cessing methods in many medical imaging analysis domains [29, 103]. Deep learning is a

subdomain in ML that has the power of automated representation learning from the raw data

itself without the need for manually crafting the appropriate features from the data. Con-

volutional neural network (CNN) is a deep learning algorithm that is widely used for pro-

cessing image data and has demonstrated great success in computer vision tasks [128,149].

Researchers initially used CNNs to classify images by assigning the whole image to a spe-

cific class. On the other hand, CNNs are now redesigned to perform image segmentation.

The new design is the fully convolutional neural network (FCN) which replaces the fully

connected layers in the CNN by convolution layers. In a FCN algorithm, we perform dense

classification in the image domain where each pixel is assigned to a certain class with the

highest predicted probability.

The need for accurate and automated estimation of left ventricular parameters, and
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the success of the CNNs motivated us to build a framework for the automated functional

assessment of the heart. This framework should segment and quantify the LV with a com-

parable accuracy to the human operator. In this chapter, we propose a novel fully automated

framework that segment and quantify the LV from CMR cine images. We performed seg-

mentation to the LV cavity and myocardium to estimate the heart physiological parameters.

Our main achievement is the accurate quantification of the LV indexes and reaching a lower

error compared to other previous techniques applied on the same dataset. Our framework

that is based on FCN has the following contributions:

• We propose an efficient method that is based of FCN to extract a region-of-interest

(ROI) that contains the LV from CMR cine images. We perform this extraction pro-

cess in the beginning to alleviate the class-imbalance problem and reduce the memory

and computational requirements.

• After ROI extraction, we use a novel FCN model for cardiac segmentation. The

architecture of this novel model is inspired from the U-net; i. e., the input is passed to

a contracting path followed by an expanding path. The addition to the conventional

model is the incorporation of multiple bottleneck layers that describe the input by

multiple representations. The bottleneck layers are up-sampled and combined to

estimate the final segmentation. Our proposed model requires less fewer number

of parameters than the state-of-the-art models such as U-net, yet it showed better

performance.

• We propose a novel loss function that works on minimizing the difference between

the ground truth LV contours and the predicted contours. We refer to the new loss by

radial loss and we incorporate it with the cross-entropy loss.

• We evaluated the generalization strength of our proposed segmentation method by

estimating the segmentation performance of our method when we use the ACDC

2017 data as a training set and a local dataset as a testing set. Our segmentation
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approach demonstrated good segmentation accuracy that is comparable to another

model that uses only our local dataset.

C. Related Work on Left Ventricle Segmentation and Quantification

Over the past years, considerable attention has been devoted to the problem of LV

segmentation from CMR cine images. Firstly, semi-automatic segmentation methods have

been proposed by researchers, see the review by Petitjean et al. [150]. These approaches

such as presented in [151–154] used graph cut, active contours, dynamic programming,

or atlas-based methods. On the other hand, significant user intervention is required in

semi-automatic methods. Therefore, they are not suitable when fast segmentation feature

is required. To remedy that limitation, researches proposed fully-automatic approaches

for heart segmentation. Queiros et al. [155] and Liu et al. [156] proposed automatic ap-

proaches that are based on the level set. Despite the high accuracy they obtained from

their approaches, level-set is associated with initialization and it is designed to delineate

one anatomical structure only. Wang et al. [157] and Ringenberg et al. [158] proposed

methods that are based on traditional image processing such as edge detection, threshold-

ing, and morphology procession. However, when the prior assumptions of these methods

are not satisfied, these methods do not work well. Furthermore, shape priors models have

been added to the cardiac segmentation methods, such as the work of [159–161]. However,

sub-optimal segmentation is achieved when the prior information is imperfect. The shape

prior may be restricted by certain assumptions that do not work well with the underlying

testing image. On the other hand, we can obtain automatic representation learning from

deep learning given sufficient training dataset. Therefore, with the power of deep learning,

we do not need shape prior information because automated segmentation for the test image

can be directly obtained from the FCN.

Deep learning has been successfully applied on the problem of cardiac segmenta-
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tion. Tran et al. [162] proposed the first application of FCN in cardiac image segmentation.

They extracted an ROI which was centered at the LV cavity before segmentation. They

assumed that the cavity center is at the image center which may lead to inaccurate results.

A recurrent FCN was proposed by Poudel et al. [163]. Their network was a modified ver-

sion of U-net. the spatial dependencies between slices were used during the segmentation

of the left ventricular endocarduim. Linear regression using CNN was proposed by Tan et

al. [164] to segment the LV. Their method was composed of two main stages: finding the

left ventricular center followed by the calculation of the endocardial contour (EnC) radius

and epicardial contour (EpC) radius in polar space. A regularized CNN was proposed by

Oktay et al. [165]. The regularization is performed by the addition of anatomical prior.

Their model is suitable for cardiac image analysis problems such as enhancement and seg-

mentation. An iterative heart segmentation approach was proposed by Zheng et al. [166].

Their approach starts from the base of the LV to the apex. In each iteration, a new model

of the U-net performs segmentation to the heart and the output is utilized for the predic-

tion of the next slice and thus they maintain 3D consistency. An FCN that was inspired

from VGG-16 [167] was proposed by Bai et al. [168] for the segmentation of the LV and

right ventricle (RV) from CMR short-axis view, and right atrium and left atrium from CMR

long-axis view. A novel computationally efficient DenseNet was proposed by Khened et

al. [2]. Their model is based on FCN for heart segmentation. To build a system for cardiac

disease classification, they calculated the clinical indexes from the segmentation maps. The

U-net was employed in the work of Tao et al. [169]. Their work aimed at the calculation of

LV parameters from CMR images. They evaluated the performance of their approach by a

multi-vendor and multi-center cardiac data.

D. Methods

Our proposed framework for the automated segmentation and quantification of the

LV is shown in Figure 40. The quantification is performed by the calculation of left ven-
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tricular functional parameters and mass. Our framework consists of four main steps: (1)

ROI extraction using a FCN called FCN1, where the center of the ROI is at the center of

left ventricular cavity, (2) Image cropping for all CMR images using the extracted ROI, (3)

Segmentation of the left ventricular cavity and myocardium using a FCN called FCN2, and

(4) Calculation of left ventricular functional parameters and mass. The following section

explains our framework in detail.

FIGURE 40: Illustration for the proposed framework for automated left ventricle segmen-

tation and quantification (calculation of LV functional indexes and mass).

1. Region-of-Interest (ROI) Extraction

In CMR short-axis view image, the hear occupies a small proportion compared to

the surrounding tissues that occupies larger proportion. In this situation, deep learning

models that make dense classification in the spatial domain of the image become biased

towards the surrounding tissues which is considered the majority class. Therefore, it is

a necessary processing step to extract an ROI that encompasses the heart tissues before

performing the final segmentation. Also, ROI extraction leads to a reduction in the com-

putational load and boosts speed. In our framework, ROI extraction is performed using a

bounding box of size 128 × 128 pixels. The center of the bounding box was at the center

of the left ventricular center point. We calculated the left ventricular center point by a deep

learning method that is based on a FCN, called FCN1, which is similar to the U-net. Figure
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41 depicts the ROI extraction process.

FIGURE 41: The extraction of the LV-ROI is performed using a FCN called FCN1. The

original 2D CMR cine image is the input to the network. All images are resized to 256×256

pixels. The output of the network is a segmentation map for the left ventricular cavity. The

map is resized to the same spatial dimensions of the input image (M ×N ). The blue arrow

refers to the successive operations of convolution (filter size 3 × 3), batch normalization,

ReLU. For the convolution operation, the number of filters increases from 32 to 512 in the

encoder path, and decreases from 512 to 1 in the decoder path. To maintain the same spatial

dimension after convolution, we used zero padding. The red arrow indicates max-pooling

operation that decreases spatial dimension by a factor of 2. The green arrow indicates up

convolution that increases the spatial dimension by a factor of 2. Finally, the contextual

information is copied from the contracting path and is concatenated to the expanding path

by the dashed arrows that are called skip connections.

We trained the network to segment the left ventricular cavity from the original CMR

cine images. Then, the center of mass of the segmented region is estimated. Then, we set

the center of the ROI to this center of mass. Finally, the gray image is cropped to a 128x128
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image using the estimated ROI center. The output of the model might suffer from the class

imbalance problem that leads to a high number of false negative (FN) pixels. However,

this network is not intended to segment the cavity ideally, but it is intended to provide an

estimate for the left ventricular center point. The left ventricular cavity in the apical slices

occupies a very small part of the entire image. Therefore, due to the high degree of the

class imbalance, the model may fail to segment the cavity. To overcome this issue, we use

the center of the cavity of the previous slice as a center for the slice that leads to a black

map from FCN1. By adopting this strategy, the 3D consistency of the LV is maintained

without negatively affecting the overall performance because the extracted ROIs that truly

not associated with LV tissues will again lead to black maps from FCN2.

Despite the effort required to train a FCN and to tune its hyper-parameters, the

trained network takes little time to extract the LV-ROI. Our method is much faster than

other approaches that use Hough Transform [2].

E. Cardiac Segmentation

Figure 42 shows our proposed model for the segmentation of left ventricular cavity

and myocardium. The model is inspired from the FCN that was employed for segmenta-

tion tasks [98]. By convention, the input of the FCN is passed through an encoder path

followed by a decoder path. In the encoder path, we reduce the spatial dimensions pro-

gressively until we reach a bottleneck layer where the input is described by an abstract and

dense representation. On the other hand, in the decoder path, we restore the original input

dimensions from the bottleneck layer by applying transposed convolutions. The bottleneck

layer is located between an encoder and decoder path, and it involves a representation for

the input in a reduced dimensionality form [10]. Our proposed model has multiple encoder

paths that restore the input dimensions from multiple bottlenecks with various representa-

tions to the input. Then, the output of each encoder path is concatenated into a single layer

that is fed to an inception module that is based on Google research [170]. Figure 43 depicts
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the used inception module. The learning of multiple-scales features can be obtained from

the integration of the inception module that has filters with different sizes. Small cardiac

regions are detected by filters with small sizes while lager cardiac areas are detected by the

larger filter sizes. Also, filters with large sizes remove the false positive regions that are

similar to the targeted cardiac areas. Finally, we process the output of the inception module

with a convolution layer to get the segmentation map. We apply a sigmoid layer on the

output of the network. Network FCN2 involves various versions of FCN1 with different

depths. Typically, FCN2 has 4 versions of FCN1’s architecture and they all have the same

encoder path. We concatenated the output of each network into one layer to obtain the final

segmentation. Figure 44 demonstrates the relationship between FCN1 and FCN2.

1. Loss Function

The class imbalance problem is mitigated by the extraction of a LV-ROI. Further-

more, the extraction of a ROI boosts the performance of the CE loss. We kept using CE

loss for its advantages such as smooth training and we proposed a novel loss called the

radial loss which gives us a good segmentation for the left ventricular contours. Other loss

functions have been proposed in deep learning literature and utilized segmentation metrics

such as Dice loss [171]. However, these loss functions result in under-segmented areas with

many false positives [171]. Therefore, we excluded these functions from our analysis. Let

θ indicates the parameters of the trained model, X = {X1, X2, .., XN} indicates to the set

of training images with size N , and Y = {Y1, Y2, .., YN} indicates the set of ground truth

segmentation labels. Then, the CE is given by the following equation:

LCE = − log p(Yi|Xi, θ) = −
C∑
c=1

∑
pj∈Xi

Yi,c,pj log Ŷi,c,pj (8)

Where p(Yi|Xi, θ) refers to the probabilistic map predicted by the network after the sigmoid

layer. Xi refers to the network’s input. c indicates the class index. pj represents a pixel in
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FIGURE 42: The proposed model for cardiac segmentation. The model is fed the extracted

LV-ROI of size 128 × 128 pixels to produce an output that represent the segmentation

map for the input ROI. In the map, red refers to LV cavity and green refers to the LV

myocardium. The blue arrow refers to the successive operations of convolution (filter size

3 × 3), batch normalization, ReLU. For the convolution operation, the number of filters

increases from 16 to 256 in the encoder path, and decreases from 256 to 1 in the decoder

path. To maintain the same spatial dimension after convolution, we used zero padding.

The red arrow indicates max-pooling operation that decreases spatial dimension by a factor

of 2. The green arrow indicates up convolution that increases the spatial dimension by a

factor of 2. Finally, the contextual information is copied from the contracting path and is

concatenated to the expanding path by the dashed arrows that are called skip connections.

image Xi. Yi,c,pj represents the true probability that pj in the class c, and Ŷi,c,pj refers to the

predicted probability that pj in the class c.

We exploited the fact that LV is associated with a radial shape to propose a new

radial loss function. We define the radial distance (RD) at a specific angel by the distance

between the center of mass of a segmented area to its surface at a specific direction. Thus,

if we have a ground truth surface G and a segmented area surface S, the error of the local

radial distance d at an angle θ is demonstrated in Figure 45 and is defined in Equation 9

d = sθ − gθ (9)
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FIGURE 43: The structure of the employed inception module in FCN2 network. The

module contains parallel processing paths with kernels of various sizes, i.e., 1 × 1, 3 × 3,

and 5 × 5 convolutions, and average pooling operations with kernel of size 3 × 3. The

feature maps obtained from these paths are then concatenated in the final layer.

Where the RDs from the center of mass point to the surfaces G and S are described by gθ

and sθ , respectively. Now, if we constructed an equi-spaced radial lines, we could calculate

the RDs for the surfaces G and S, and save them in the same radial order in vectors g and

s, respectively. We can define the RD loss as L2 penalty:

LRD =
1

M
∥s− g∥2 (10)

Wher M refers to the number of radial lines. By applying a Sobel filter on the ground truth

Yi and the predicted probabilistic map Ŷi we can obtain the surfaces G and S, respectively

for an input image Xi. The loss function is an Euclidean norm, thus, it is differentiable by

a deep learning library. The loss function LRD can be employed for both EnC and EpC of

the LV as follows:
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FIGURE 44: The relationship between model FCN1 and FCN2. Model FCN2 contains 4

FCN1s with different depths and the output of each model is concatenated to obtain the

final segmentation.

LRD =
1

M
∥sEnC − gEnC∥2 +

1

M
∥sEpC − gEpC∥2 (11)

We can define the final loss function as follows:

L = LCE + LRD (12)

2. Network Training Settings

We used Pytorch deep learning framework to build both FCN1 and FCN2. Kaiming

initialization [172] was used to initialize the weights of the convolutional layers. The vari-

ables that must be set before training the network are called network’s hyper-parameters.

These variables identify the architecture of the network such as the number of filters. They

also determine network’s training such as learning rate. The optimal values of the hyper-

parameters were calculated using a grid search approach when the segmentation accuracy

is our criterion to optimize. The search space for the initial number of filters = {8, 16, 32}.

We used Adam optimizer with a learning rate that has the search space = {0.01, 0.001,
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FIGURE 45: The solid line refers to the rue contour while the dashed line refers to the

predicted contour in polar space. The local radial distance error at an angle θ is described

by d.

0.0001} and the learning momentum = {0.9}. The search space of the batch size = {8, 16,

32}. The search space for the number of the epochs = 100:50:300. The size of the train-

ing set can be increased using the data augmentation approach. Data augmentation also

helps in overcoming the problem of over-fitting during network’s training. Thus, a data

augmentation strategy that was associated with random translations, scaling, and rotation

was adopted.

F. Experimental Results

1. Cardiac Datasets

The left ventricular segmentation and function quantification were performed on

two different cardiac datasets. Namely, the ACDC cardiac dataset which is publicly avail-
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able from MICCAI 2017 challenge [173], and a locally-acquired cardiac dataset.

ACDC-2017 Dataset: The dataset is composed of 150 exams for various patients. The

patients are divided into 5 categories according to physiological heart parameters. The cat-

egories are (1) normal subjects, (2) patients with dilated cardiomyopathy, (3) patients with

previous myocardial infarction, (4) patients with abnormal right ventricle. (5) patients with

hypertrophic cardiomyopathy. The data providers divided the dataset into two sets: (1) A

set for training which is composed of 100 cases along with their ground truth manual seg-

mentation at the ED and ES phases in all acquired heart slices; (2) A set for testing which is

composed of 50 cases without annotation. The two sets have even arrangement of patients

categories. The cardiac cine images were acquired in breath hold with a retrospective or

prospective gating and with a SSFP sequence in short-axis orientation. The LV was covered

entirely by the short-axis slices. The imaging parameters were: slice thickness equals 5 or

8 mm, inter-slice gap equals 5 or 8 mm, and spatial resolution equals 1.37-1.68 mm2/pixel.

Locally-acquired dataset: This dataset was utilized to answer the question whether our

segmentation method is generalizable by evaluating its performance on this dataset which

was not used in training. In this set, cross-sectional cardiac cine images were acquired from

11 patients with known history of myocardial infarction. The institutional review board

(IRB) approved our study. The dataset is composed of 26 cardiac scans that cover various

heart sections. Twenty-five frames were captured at each section to cover the cardiac cycle.

The sum of the 2D images was about 6,000 images.

2. Framework Training and Validation

The ACDC dataset was used to analyze the performance of our novel framework for

the automated left ventricular segmentation and quantification through the calculation of

physiological heart indexes introduced in IV.A.3. The dataset is composed of 100 patients

along with their ground truth manual annotation. A ten-fold cross-validation was adopted

to train and validate FCN1 and FCN2. In each fold, we had an equal number of patients
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from the five introduced heart diagnoses. This was achieved by stratified sampling. We can

reformulate our description of network evaluation by saying that we trained the networks

ten times and in each time we used a training set of 90 cases (average of 1800 2D images)

and a testing set of 10 cases (average of 200 2D images). Furthermore, the generalization

of our segmentation approach was tested using the locally collected dataset.

A probabilistic map is the result of our segmentation network. This map is com-

posed of pixels and each pixel is given a probability of belonging to the object. We applied

Otsu thresholding [174] on the probabilistic map to get the final segmented binary mask.

Additionally, To eliminate the false positive pixels, we looked for the connected compo-

nents in the binary mask. Finally, morphological operations, such as gap filling were ap-

plied on the resulted binary segmentation. We used segmentation metrics such as Dice

score and Hausdorff distance (HD) to assess the segmentation accuracy of our approach.

3. Evaluation of LV-ROI Extraction

To assess the performance of our novel approach of LV-ROI extraction, we trained

and validated FCN1 by the ACDC dataset using a ten-fold cross-validation strategy. In

each fold, we estimated the center of mass of the segmented left ventricular cavity Ps for

each image. Then, we used two measures/metrics to evaluate the network performance;

namely (i) the Euclidean distance between the center point of our predicted segmentation

Ps and the center of mass of LV cavity from manually annotated segmentation Pm, and

(ii) the percentage of the images with ROI prediction that encompasses all pixels of left

ventricular cavity and myocardium. the statistics of the Euclidean distance between Pm

and Ps is shown in Table 5. The statistics are for 1902 images from the ACDC dataset. Our

method resulted in a good accuracy and surpassed the method in [2]. Our approach takes

on average a 700 msec to extract the desired ROIs of one case at the phases of ED and ES.

Furthermore, the resulted ROIs encompassed all the left ventricular cavity and myocardium

tissues,
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TABLE 5: The statistics of difference in pixels between the predicted left ventricular center

of mass point (Ps) and the center of mass resulted from manual annotation (Pm). The table

compares our approach with the method of [2]. STD refers to standard deviation.

Mean STD Max.

Hough transform [2] 4.00 3.83 36.24

Proposed (FCN1) 1.41 1.65 5.00

4. Evaluation of the Proposed Loss Function

After the extraction of the ROI, cardiac segmentation was performed using FCN2.

We used LCE loss only in one time and the proposed loss LCE + LRD in another time.

A comparison between the segmentation metrics resulted from the two loss functions are

shown in Table 6. The table shows the segmentation for both LV cavity and myocardium

(MYO). We can notice that when we used LCE alone, we obtained a good segmentation

performance because the issue of class-imbalance was mitigated by the ROI extraction step.

While, our proposed novel loss function resulted in a superior performance in terms of the

used segmentation metrics. Furthermore, a better segmentation quality resulted from our

proposed loss, as shown in Figure 6. Thanks to the capability of the RD loss in which the

distance between the predicted contours and the true contours is minimized.

TABLE 6: The average segmentation accuracy of our segmentation approach when using

two different loss functions in a ten-fold cross-validation strategy applied on the ACDC

dataset.

Loss Function Dice Coeff. HD (mm)

LV Cavity MYO LV Cavity MYO

LCE 0.93 0.86 9.52 11.41

LCE + LRD 0.94 0.89 6.71 7.13
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FIGURE 46: Comparison between the ground truth annotation of the LV in phases of

ED and ES, the predicted LV delineation from FCN2 with LCE loss, and the predicted

delineation from FCN2 with our loss (LCE + LRD). Green and red areas indicate the LV

myocardium and cavity, respectively. Blue color indicates the segmentation error. We can

notice visual qualitative improvement for the delineation of our proposed loss function.

5. Evaluation of the Proposed Network Model FCN2

To evaluate the performance of our proposed network FCN2, a comparison was

made with two other methods: (i) the original model of the U-net [10] with 4 layers and ini-

tial convolutional layers that had 64 filters, (ii) the ConvDeconv model introduced in [175].

We trained all of the three networks with the same configurations as explained in section

IV.F.2 in a ten-fold cross-validation strategy. Table 7 shows a comparison in terms of the re-

sultant segmentation accuracy between the proposed FCN2 model against the other models.

The table also shows the number of the learnable parameters required by each model. This

reflects the required computational cost by each model. As indicated, FCN2 resulted in the

best segmentation performance for all segmented regions, while ConvDeconv model re-
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sulted in the lowest performance. The inferiority associated with the ConvDeconv net may

be due to the lack of skip connections that works on adding high resolution features to the

expanding path. Furthermore, FCN2 works better than the original U-net model that starts

with 64 filters. Therefore, U-net with fewer filters were excluded with our comparison.

Another advantage for our proposed FCN2 network is that it requires fewer parameters,

and thus, it requires less training time and GPU memory usage.

TABLE 7: A comparison between three different segmentation methods in terms of the

segmentation metrics (Dice and HD). The values of the metrics are presented as the average

values when we trained the model using a ten-fold cross-validation strategy. The number

of learnable parameters are also shown.
Method Dice Coefficient HD (mm) # of Param.

LV Cavity MYO LV Cavity MYO

ED ES ED ES ED ES ED ES

U-net [10] 0.94 0.90 0.83 0.85 8.22 10.53 9.81 11.51 31M

ConvDeconv net [175] 0.92 0.88 0.80 0.83 9.14 11.34 10.81 11.95 252M

FCN2 (proposed) 0.96 0.92 0.88 0.89 6.31 7.42 7.11 7.25 2.5M

Segmentation results of FCN2 are shown in Figure 47. The figure contains three

different short-axis slices of a heart along with their ground truth segmentation at phases

of ED and ES of the cardiac cycle. Overall, our method (FCN2) resulted in accurate seg-

mentation with some errors at apical slices. After all of the described analysis, we decided

to choose the segmentation results of FCN2 for the estimation of heart’s physiological pa-

rameters.

6. Generalization Evaluation

After obtaining good segmentation results from our approach applied on ACDC

dataset only, it is time to assess the generalization capability of our method. We have two

models using our method:

1. Our method when we use the local dataset for both training and testing.
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FIGURE 47: Left ventricular segmentation of FCN2 model at ED and ES phases of one

case during the ten-fold cross-validation. Green, and red regions refer to the LV my-

ocardium, and cavity, respectively. The basal, mid-cavity, and apical slices are indicated by

the letters B, M, and A, respectively.

2. Our method when we use ACDC dataset for training and the local dataset for testing.

The segmentation performance of the two models is shown in Table 8. In the second model,

although for training we used ACDC dataset which consists of about 1.4K images acquired

at the phases of ED and ES, we obtained good segmentation accuracy for the LV at all

cardiac phases of the local dataset. In the first model, the same dataset distribution was

used for training and testing. Therefore, the results of the first model are slightly better

than the second model that uses different distribution for training and testing. We can

conclude that our approach generalizes well to different data. Furthermore, segmentation

for the full cardiac cycle was obtained from our approach when trained only using a data

that has annotation for the phases of ED and ES.
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TABLE 8: The segmentation performance of two models. In model A, the local dataset

was used for training and testing. In model B, ACDC dataset was used for training and the

local dataset was used for testing. The estimates are mean values.

Model Dice Coef. HD (mm)

LV Cavity MYO LV Cavity MYO

Model A 0.95 0.87 9.31 8.52

Model B 0.94 0.85 11.12 9.74

7. Physiological Parameters Estimation

After performing segmentation for the LV cavity and myocardium from the car-

diac images, we estimated five functional parameters; namely the EDV, the ESV, the LVM,

the SV, and the EF. These parameters were described in IV.A.3. To calculate the degree

of agreement between the estimated values from the output segmentation and the esti-

mated values from ground truth segmentation, we constructed Bland-Altman plots [176],

as shown in Figure 48. These figures demonstrate the bias µ (mean difference) and the 95%

agreement limits (σ± 1.96 SD). In Bland-Altman plots, we must check the normality of

the differences. Therefore, Shapiro-Wilk test for normality was used with 5% significance

level. The obtained p-values were 0.082, 0.052, 0.061, 0.154, 0.787 for the EDV, the ESV,

the LVM, the SV, and the EF, respectively. Given that the p-values are higher than 0.05, the

test accepted normality. Our calculated parameters have a mean of only 3 outlying points

which is considered only 3% of the involved cases.

The error statistics are summarized in Table 9. The table shows the statistics for the

EDV, the ESV, and the EF estimations of our approach and other approaches applied on

the ACDC dataset. The lowest bias and standard deviation were obtained from the errors

of the EDV and the ESV measures. Additionally, the error of the EF estimate has a lower

standard deviation than the approach in [177]. Overall, our method resulted in acceptable
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FIGURE 48: Bland-Altman plots for physiological parameters. The figure shows EDV,

ESV, LVM, SV, and EF from top to down. The bias of the calculated values from the

ground truth is indicated by µ. µ± 1.96σ indicates the 95% confidence interval. To obtain

a good agreement, the bias should be near the zero value and the error points should be

within the confidence interval.
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differences that are comparable with intra- and inter-subject variability associated with the

manual calculation of functional parameters from cardiac images as reported in [178,179].

TABLE 9: A comparison between our approach and other methods that aim at the auto-

mated estimation of functional LV parameters. The values indicate the average (std.) of the

differences between the automated and manual estimation.

Reference EDV (ml) ESV (ml) EF (%)

Wolterink et al. [177] -1.57 (6.31) -2.51 (7.66) 1.23 (4.99)

Grinias et al. [180] 1.43 (9.95) 2.61 (17.60) -0.05 (8.61)

Proposed -1.27 (5.31) -2.11 (6.06) 1.03 (5.42)

G. Discussion

In this chapter, we aimed at developing a deep learning based method for efficient

and accurate segmentation to the LV myocardium and cavity. Our method is fully auto-

mated and provides accurate LV quantification through the estimation of LV functional

parameters which are widely used for heart functional evaluation. Our framework features

a novel network architecture and major contributions are explained below.

Firstly, we introduced the idea of building an initial network (FCN1) for the task

of automated ROI extraction from original CMR images. It turned out that this idea was

successful in providing accurate estimates for LV center point. This idea was also fast

during detection. A comparison was made between our approach and other approach that

has the same aim of LV localization and ROI-extraction; however, it uses Hough transform.

Table 5 demonstrates how our approach surpassed an approach which relies on Hough

transform for ROI extraction. Additionally, the ROI of one patient at ED and ES were

extracted by our method in only 700 msec. Our extracted ROIs contained all of the desired

LV cavity and myocardium tissues. Thus, our extraction method is fast, accurate, and
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reliable.

We selected the suitable ROI size based on the minimum size that resulted in my-

ocardial segmentation without clipping, assuring that there is no clipping for the LV is

necessary for further accurate calculation of heart physiological parameters. In our experi-

ments, an ROI of size 128×128 was chosen because this size provided the smallest area that

encompasses the LV tissues in our CMR dataset. Extracting an ROI of size 128× 128 has

two advantages: (1) it reduced the time and computational requirements during the training

and inference of the network, (2) it mitigated the class imbalance problem by discarding

the unwanted surrounding tissues. Anyway, our implementation can work with arbitrary

ROI sizes.

Secondly, our proposed final segmentation is constructed by network FCN2 from

various bottleneck layers. These bottleneck layers are different representations to the input

image with different dimensionalities. Our network FCN2 resulted in accurate segmenta-

tion for the LV cavity and myocardium as demonstrated in Figure 47. It also surpassed

state-of-the-art models such as U-net and ConvDeconv networks in terms of the segmenta-

tion accuracy as demonstrated in 7. Another advantage of our network is the efficient use

of time and memory by requiring a fewer number of learnable parameters.

Moreover, we carefully chose the components of our deep learning model because

this is essential for the overall success of the model. For instance, a novel loss function was

implemented and we called it radial loss which is appropriate for LV segmentation task be-

cause of the underlying radial shape of EpC and EnC. Our final loss function is the sum of

both the baseline cross-entropy and the radial loss. Cross-entropy is popular in the domain

of deep learning segmentation because it is associated with the ability to provide smooth

training and it has nice differentiable properties. Researchers consider cross-entropy as the

standard loss in various applications, especially image segmentation. As demonstrated in

Table 6 and Figure 45, our loss provided a better segmentation performance when com-

pared to cross-entropy alone. Our loss function showed superior performance due to the
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fact that radial loss minimizes the distances between the actual contours and the predicted

contours of the LV. The problem of over-fitting can be avoided by a smart way called data

augmentation. Data augmentation also works on increasing the training samples which is

useful in case of scarce annotated data. By adopting data augmentation, we reached good

mean Dice and HD values the delineation of LV cavity and myocardium.

Regarding Figure 48, in the EDV and ESV measurements, there are small negative

biases which mean that we slightly underestimated this measurement. We can also notice

that EDV had a lower bias than the ESV and, consequently, the calculated EF had a positive

bias. If there are points outside the confidence interval, we might have a wrong diagnosis

for patients with CVD due to these errors. Therefore, an accurate LV segmentation ap-

proach should not result in outlying points by reducing the segmentation errors that are

transferred to the next step of functional parameters estimation.

Finally, a comparison has been made between our approach and other approaches

that aimed at quantification of LV using the ACDC dataset to establish the merit of our

method based on the reported errors of each approach. In general, our framework resulted

in acceptable errors for the calculated parameters and surpassed the previous frameworks,

as indicated in Table 9. Additionally, we would like to note that our framework is not

limited to a specific dataset; we proved that our method can provide good results by using a

different dataset, even with a network trained by a sparse data (ACDC-2017) and validated

on a dense data that covers the whole cardiac cycle.
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CHAPTER V

CARDIAC STRAIN ANALYSIS FROM CINE MRI IMAGING IN MICE

Cardiac magnetic resonance (MR) imaging is a useful form of imaging that can be

used to assess cardiac function. Strain analysis enables us to comprehensively assess di-

astolic myocardial function that is not indicated by estimating systolic functional indices

utilizing a normal cine imaging module. Because of the small size of mice heart, it is not

feasible to perform appropriate tagged MRI to assess strain. In this chapter, we imple-

mented and developed a novel artificial intelligence framework to automatically quantify

myocardial strain from cine cardiac MRI. Our framework starts by efficient segmentation

of the LV from the cine MR images by fully convolutional neural network (FCN) architec-

ture. To estimate myocardial strain, a Laplace-based approach was developed to track the

LV wall points. The tracking is performed by obtaining a solution for the Laplace equation

between the LV boundaries of each two consecutive image frames over the cardiac cycle.

After tracking, the strain calculation is performed by adopting a Lagrangian-based method.

Our novel framework for myocardial strain analysis was validated by performing a com-

parison between the outcome of these analyses with the outcome of tagged MRI obtained

from the same mice. Notably, our developed algorithm, which uses cine MRI, produced

strain values that are quite similar to the values obtained from tagged MRI. Furthermore,

our novel algorithm established the potential of determining the strain difference between

diseased and normal hearts.

A. Introduction

Mice are the most preferable species for cardiovascular modeling for several rea-
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sons including the low procedure costs, ease of handling, and the capability to manipulate

the mouse genome [53]. By utilizing animal models, we increase our knowledge for im-

proving the diagnosis and treatment of cardiovascular diseases. For cardiac function quan-

tification, MRI is considered the most accurate imaging technique (gold standard) [54–58].

The major advantages of MRI are ability to rebuild 3D structure and function, clear tis-

sue structure, and high reproducibility [59]. currently, cardiac MRI is clinically utilized

to evaluate myocardial function, heart structure, perfusion, and viability in humans [60].

Multiple mouse works by our group and others [54,61–63] got benefit from the use of stan-

dard cardiac cine MRI to evaluate heart structure and functional indexes, e.g., EDV, ESV,

and EF. However, tagged cardiac MRI is required for strain analysis of myocardial contrac-

tility. Tagged cardiac MRI takes considerable time and difficult to interpret, especially in

mice. It is difficult to interpret because of the small size of the mice heart, which prevent

the creation of multiple 1mm2 diamonds within the wall of the ventricle for strain analysis.

Therefore, researchers abstain from performing strain analysis from tagged MRI. On the

other hand, the picture of the heart function is fully completed by strain analysis which is

an essential component because it is the only parameter that distinguish between active and

passive movement of myocardial segments, assess longitudinal myocardial shortening, and

quantify intraventricular dyssynchrony. Furthermore, evaluating myocardial strain gives

us a comprehensive evaluation of diastolic myocardial function, that is not inferred from

EF [64].

Deep learning approaches, particularly, CNN [181] showed successful results in

medical imaging tasks that range from traditional image processing problems such as reg-

istration and segmentation to the development of advanced computer aided diagnostic sys-

tems for disease diagnosis [182, 183]. From only convolutional layers, we can build FCN

which is a deep learning model that can be trained to provide object segmentation or se-

mantic segmentation for the input image [98]. Several implementations of FCNs have been

proposed in the literature for automatic segmentation and quantification of the human LV
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from cine cardiac MRI images [168,184–186]. Although, these techniques resulted in suc-

cessful development of tools for segmentation and quantification of the LV, there has been a

very limited research in the domain of deep learning applied on cardiac data of mice [187].

The primary aim of this chapter is the development of an automated framework

for the accurate estimation of strain from standard cardiac cine MRI of mice. The used

mice are sham and myocardial infarction (MI) cases. Our work is an alternative to tagged

imaging of mice. Myocardial segmentation is an important initial step for the estimation

of LV functional indexes. Therefore, a deep-learning based technique was proposed for

the automated segmentation of LV borders. Subsequently, we developed a Laplace based

technique to track myocardial points along the cardiac cycle to accurately evaluate the

strain from the standard cardiac cine MRI. We validated the Laplace-based technique by

performing a comparison between the Laplace-based technique and the analyzed strain

outcome resulted from the tagged imaging which is considered the current gold standard

for strain analysis. Finally, we also utilized our framework to calculate other global and

local cardiac indexes.

B. Methods

We propose an automated framework that quantify LV functional and structural

parameters. This framework consists of two primary stages. The first stage is the segmen-

tation of the LV cavity and myocardium using a deep learning approach that is based on a

FCN. The second stage is the calculation of the functional and structural heart parameters.

The parameters include global volumetric indexes (e.g., EDV, ESV, EF) and local indexes

involving wall thickening and myocardium strain. Fig. 49 depicts the overall framework.

The development and validation of the framework will be described in detail in the upcom-

ing subsections.
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FIGURE 49: The proposed framework for the quantification of left ventricular functional

and structural parameters.

1. Mice Data

The procedures of all animals were performed in accordance with the guide of the

National Institutes of Health for the Care and Use of Laboratory Animals. Furthermore,

our procedures were approved by the University of Louisville Institutional Animal Care and

Use Committee. We performed the surgeries as described in [62, 188–190]. The dataset is

composed of cross-sections cine MRI and tagged MRI of 6 cases. Approximately, seven-

teen temporal frames for each cross-section through the cardiac cycle were acquired. Eight

cross-sections were obtained to completely cover the LV for each subject. The dataset

contains 3 sham and 3 MI subjects.

All MRI mice data were obtained utilizing Agilent 9.4T horizontal bore system.

Agilent 205/120 HD gradient coil (Agilent Technologies, Santa Clara, CA, USA) operates

with the MRI system. For signal transmission, we used a RAPID 72-mm volume coil.

For signal detection, we used a 4-channel mouse heart surface coil. We positioned the

surface coil below the mouse body. During in-vivo scans, We anesthetized the mice with

1.5% isoflurane in 100%O2. Breath rate, Electrocardiography (ECG) signals, and body

temperature were continuously monitored utilizing a small animal monitoring and gating

system (Model 1030, SA Instruments, Inc., Stony Brook, NY, USA). We gated the cine and
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tagged MRI scans with ECG and breathing. High resolution short-axis view cine images

were acquired utilizing the following imaging parameters: TR/TE equals 5.0/1.6 msec;

matrix size equals 30×30mm2; flip angle equals 15o; field of view (FOV) equals 256×256

mm2; eight slices with a thickness equals 1.0mm; and number of averages equals two. For

black blood tagged cine, we used the following scanning parameters: TR/TE equals 5.0/1.9

msec; matrix size equals 30× 30mm2; flip angle equals 20o; FOV equals 128× 128mm2;

eight slices with a thickness of 1.0mm; number of averages equals four; tagging resolution

equals 0.3mm with 0.6mm separation; and tag time equals 16.24 msec.

2. Development of an Automated Approach for LV Segmentation

Recently, traditional image segmentation techniques have been outperformed by

deep learning based segmentation techniques. In this work, we utilized an FCN that is is

similar to the U-net which was implemented to achieve medical image segmentation [10].

Figure 000 shows the architecture of the used FCN. The input to the network is a 2D car-

diac image. The image passes through a contracting route followed by an expanding route.

In the contacting route, a processing by successive blocks occurs to the image, where each

block consists of convolutional layer, RelU activation, and max-pooling layer. The re-

sult of this processing is the the reduction in the spatial dimensions and the production of

an abstract representation for the input image. This representation is the end of the the

contracting route in a layer called bottleneck. In the expanding route, we restore the spa-

tial dimensions by applying up-convolution. The resolution of the input is increased by

up-convolution operation which uses a deconvolution filter which can be learned during

the training of the network [98]. Furthermore, skip connections have been added to the

network. These connections copy and concatenate the maps that contain high resolution

feature from the contacting route to the expanding route. Skip connections work on pro-

viding fine segmentation. We train the network by pairs of cardiac cine MRI images, X ,

and their corresponding manual segmentation for LV (binary masks), Y . The outcome of

104



the segmentation network to an input image x is a one layer segmentation map ŷ, where

we classify each pixel in the map by assigning a probability to it. This value represents the

probability of being an object. The segmented object in our work is the LV myocardium.

A sigmoid layer is employed as the final layer in the FCN to obain the map ŷ . Then, we

use a loss function to make a comparison between the predicted map and the true binary

image y.

A dense classification is performed in the spatial domain of the image when seg-

menting the LV myocardium using FCN. A big obstacle is that the network is prone to

class-imbalance problem when the majority of the pixels in the image belong to the sur-

rounding tissues. This class-imbalance problem is found in our segmentation task because

the myocardium comprises small proportion in the image compared to the other tissues.

When using the BCE loss alone, the network is susceptible to class-imbalance issue [191].

Therefore, we propose a new loss function that is composed of two terms to present a so-

lution to the class-imbalance problem. First term is the conventional BCE loss function

defined as follows:

LBCE =
N∑
i=1

−(yoi log(ŷoi) + ybi log(ŷbi))) (13)

Where N refers to the number of pixels. ybi, and yoi are the true annotations for

pixel i resulted from manual segmentation y (ybi is 1 when i lies in the background and

0 for the object, and vice versa with yoi). ŷbi and ŷoi are the predicted probabilities that a

pixel i in the background and the object, respectively. The second term is a loss function

that combines the sensitivity and specificity and is described as follows:

Lss = 2− (Sensitivity + Specificity)

= 2− (
∑N

i=1 ŷoiyoi∑N
i=1 ŷoiyoi+

∑N
i=1 ŷbiyoi

+
∑N

i=1 ŷbiybi∑N
i=1 ŷbiybi+

∑N
i=1 ŷoiybi

)

(14)

By definition, high specificity and sensitivity require minimization of false positives (FPs)

and false negatives (FNs). Our final loss function L is the summation of the two terms as
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follows:

L = αLBCE + βLss (15)

Where α and β are hyper-parameters that govern the assigned weights for the two terms

in the equation. α + β = 1 in our formulation. We assigned higher value to β compared

to α, this will help us to reduce the class-imbalance effect resulted from BCE and in the

same time assign a higher weight to the minimization of the summation of FNs and FPs.

We adopted a grid search strategy to calculate the optimal values of α and β when the

optimization criterion is the value of DSC. The search space of α and β ranges from 0

to 1 with 0.1 step and α + β = 1 constraint. A novel loss called Tversky loss has been

introduced by Salehi et al. [192] to account for the class-imbalance issue in deep learning

segmentation. To assess the potential of our new loss, we compared its performance with

other existing methods.

When the input of the network is a test image x∗, the output of the network will

be the corresponding predicted segmentation map ŷ∗. In this map, each pixel is assigned a

probability of belonging to the object by the sigmoid layer. A binary segmentation map is

then obtained by applying Otsu thresholding [174] on ŷ∗. We applied extra post-processing

on the binary map: (1) Connected region with the maximum number of pixels was kept

and the remaining FP regions were discarded, (2) gap filling to fill the gaps. Following

post-processing, the segmentation quality of our method was inferred for both LV cavity

and myocardium.

Cardiac cine MRI images of 6 mice were used to train and test our proposed FCN

in a leave-one-out cross-validation strategy. In this strategy, six iterations of successive

training and testing were made. In each iteration, the 2D images of 5 cases (about 750

images) were used as a training set for the network and the remaining images of the last

case (about 150 images) were used as a testing set. For segmentation performance evalu-

ation, we estimate the averages of the segmentation metrics along the tested images. This
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FIGURE 50: The architecture of the used FCN for LV segmentation.

methodology was repeated 6 times and the final averages of segmentation metrics were cal-

culated. We reported these values to assess the performance of our segmentation method.

We re-scaled the images to the spatial dimension of 256×256. A data augmentation scheme

that involves random translation, rotation, and scaling was adopted. The initialization of

the convolutional layers was performed using The Kaiming initialization [92]. We used the

Adam optimizer [172] with a learning momentum of 0.9 and a learning rate of 0.001. A

total of 100 epochs was used with a stopping criterion of five waiting iterations. To make

an early stoppage, we utilized the loss value of a validation set that is composed of twenty

percent of the training set. Therefore, our network makes an early stoppage before the end

of the 100 epochs, if the loss value of the validation set did not improve for five successive

epochs. Finally, the lowest loss value on the validation gave us the best model that will

be used for testing. We used Pytorch software to develop, train, and test our deep learning

model.

3. Algorithm for Calculating Cardiac Function and Structure Parameters

Following the delineation of the LV myocardial boundaries, both local and global

physiological heart parameters can be estimated for heart functional evaluation. Accurate
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segmentation of the inner and outer borders is required for the calculation of the local and

global ventriculometrics. The estimation of Strain which is a local ventriculometric re-

quires tracking of the contour points of the myocardium. The estimation of wall thickness

requires the accurate co-allocation of the corresponding points on the heart wall. There-

fore, the crucial step is the careful localization of the myocardial points. To anticipate for

the problems associated with the lack of strong edges and intensity variations between sub-

jects’ scans, we adopted a method that benefits from geometric features instead of image

intensities. This process tracks myocardial points or co-allocates the corresponding border

pairs through the cardiac cycle. We applied a geometric technique to determine geometric

features and by solving the Laplace equation between two consecutive contours, we match

myocardial points through various time frames [193–195]:

∇2γ =
∂2γ

∂x2
+

∂2γ

∂y2
= 0 (16)

The estimated electric field between the inner and outer wall boundaries is γ(x, y). In gen-

eral, the solution of Eq. 16 leaded to intermediate equipotential surfaces and streamlines.

These streamlines are described as being everywhere orthogonal to all equipotential sur-

faces and they also establish natural pixel correspondences between the boundaries. To

calculate γ(x, y), we used a 2nd order central difference technique and the iterative Jacobi

method as given by:

γi+1(x, y) =
1

4
{γi(x+∆x, y) + γi(x−∆x, y) + γi(x, y +∆y) + γi(x, y−∆y)} (17)

During the ith iteration, the estimated electric field at (x, y) is defined as γi(x, y).

∆x and ∆y are defined as the step length or resolution in directions of x and y, respec-

tively. Algorithm 1 demonstrates basic necessary steps for the co-allocation of pixel-wise

correspondences utilizing the Laplace equation.
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Algorithm 1 The solution of Laplace equation between wall boundaries (tracking over the

time series)

1. Delineate the LV myocardium boundaries from the input cardiac data.

2. Initial condition: set the minimum and maximum potential γ at the reference bound-

ary and the corresponding target boundary, respectively.

3. Calculate γ between both boundaries by Eq. 17 (Jacobi method) and the initial con-

dition at Step 2.

4. Iterate Step 3 till convergence is reached (i.e., there is no change in the calculated γ

values between iterations).

a. Algorithm for estimating myocardial strain from cine MR data Various heart

diseases including coronary atherosclerosis can be detected by accurately estimating my-

ocardial strain. By convention, tagged MRI data is utilized to estimate myocardial strain.

Acquisition of tagged MRI is usually performed during the acquisition of cardiac cine MRI

for the same subject. However, because of changes in the protocols of acquisition, es-

timation of strain using cardiac cine MRI from mice is proposed. Specifically, a single

modality will be used for complete analysis of a subject. By adopting this strategy, we can

avoid problems such as different slice locations, an unequal number of slices, and different

number of frames per slice. We estimated the circumferential and radial strain.

Strain calculation from cine cardiac images depends primarily on tracking the LV

wall geometry. In this chapter, we implemented a Laplace-based method to track the LV

wall points. The tracking is performed by solving the Laplace equation between LV con-

tours of each two consecutive frames over the heart cycle, as described in Algorithm 1. Af-

ter tracking, the strain calculation was done utilizing a Lagrangian-based method. We used

the Lagrangian strain estimation for finite small displacement to estimate the strain [196]:
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ϵL =

 ϵx1 ϵx1x2

ϵx2x1 ϵx2

 (18)

where ϵx1 and ϵx2 refer to the normal strain components. ϵx1x2 and ϵx2x1 refer to the

shear strain components. According to the cardiac data in Fig. 51, we consider our strain

cycle complete within the seventeen frames of the cine and tagged images. Therefore, our

analysis is focused on the first frame to the seventeenth frame of the cardiac cycle. The

basic necessary steps for estimating myocardial strain are summarized in Algorithm 2 for

radial and circumferential directions.

FIGURE 51: Explanation of the process of tracking throughout the heart cycle to calculate

the radial and circumferential strains. The figure also shows systolic slope (S1) and dias-

tolic slope (S2) which are two functional metrics on the circumferential and radial strain.

b. Algorithm for estimating myocardial strain from tagged MR data The stan-

dard way for strain analysis is performed using tagged MRI. Therefore, strain was esti-

mated from tagged MRI. Myocardial tagging is considered an MRI method specialized in
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Algorithm 2 Necessary steps for estimating the circumferential and radial strain

1. Track the boundary at inner, mid, and outer wall along the time series images by

Algorithm 1.

2. Calculate the circumferential strains by performing tracking for the fractional change

in Euclidean distance between two adjacent reference correspondence points on the

same boundary, i.e. inner, mid, or outer wall (refer to Fig. 51).

3. Calculate the average radial strain (between inner and mid walls, called inner strain,

or between mid and outer walls, called outer strain) by performing tracking for the

fractional change in Euclidean distance between the two adjacent tracked reference

points along the radial direction (refer to Fig. 51).

the evaluation of cardiac contractile function. In this technique, the cardiac motion is cap-

tures by making a spatial arrangement of saturated magnetization in the wall of the heart at

a specific time. Then, the deformation of that arrangement is captured during the cardiac

cycle. When performing cardiac strain analysis, we prefer tagged MRI over conventional

MRI, because the latter has no well identifiable landmarks within the heart wall. On the

other hand, the tagged MRI data of mice has a very low signal-to-noise ratio and poor

resolution compared to human tagged MRI. These disadvantages constitute an obstacle to-

wards using commercially available tools to get reliable strain measurements. Therefore,

we implemented a tracking technique to calculate the myocardial motion during the cardiac

cycle. Valuable information can be obtained from myocardial motion and this information

is used for cardiac strain assessment. We identified the tracking points of tagged MRI by

determining the maximum correlation between a 3×3 window and a 5×5 window for pixel

(i, j) in frame n and frame n + 1, respectively, as explained in Fig. 52. Furthermore, the

basic necessary steps for calculating myocardial strain from tagged MRI are summarized

in Algorithm 3.

111



FIGURE 52: Tracking of tagged MRI pixel (i, j) in frame n by identifying the maximum

correlation between a 3× 3 window and a 5× 5 window in frame n+ 1.

c. Wall thickness and thickening In addition to the estimation of local strain,

we estimated the wall thickness during systole and diastole. Systole leads to an increase

in the thickness of the LV wall. In order to determine the wall thickness and thickening,

we used the distances between the corresponding points on the inner and the outer wall

boundaries. By solving Laplace equation between the segmented heart boundaries (refer

to Algorithm 1), we obtain a field vector from which we estimate the co-localization of the

corresponding points on the heart wall.
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Algorithm 3 Strain estimation using tagged MRI

1. Divide the LV myocardium into 4 even sectors in the 1st frame.

2. Choose a candidate point from each sector and label it as a starting point for Per-

forming myocardial tracking through the frames.

3. Find the maximum correlation between a 3× 3 window centered at the starting point

in the 1st frame, and a window in the 2nd frame that shifts in 5 × 5 searching space

(explained in Fig. 52). By this process we perform myocardial tracking between two

consecutive frames.

4. Estimate the myocardial strain from the tracked points across the cardiac cycle.

Following thickening estimation, we used a color-coded parametric map for visual-

ization. A schematic demonstration for the estimation and visualization of the thickening

is shown in Fig. 53. In addition to parametric maps, we conducted an analysis for the wall

thickness utilizing a seventeen-segment model. This model dictates that the heart should

be divided into 6 segments at the basal and mid-cavity levels, and should be divided into

4 segments at the apical level. At the tip of the heart, there is the last segment where no

analysis is performed (refer to Fig. 54). The goal of this analysis is to find changes in

myocardial function.

FIGURE 53: The consecutive steps for the wall thickening analysis and visualization uti-

lizing parametric maps.

113



FIGURE 54: Demonstration of the seventeen segments model [3] for one case. Section

division starts counterclockwise from the green arrows.

d. Global Ventriculometrics In addition to the local ventriculometrics, global

volumetric parameters were estimated to reliably evaluate the heart function. Global pa-

rameters are EDV, ESV, and EF. The goal of our methodology is to provide an accurate

and automated way to assess global heart function. Therefore, the parameters related to the

LV function and mass [51] were estimated. Please refer to chapter 000 section 000 for the

definition of these parameters.

C. Experimental Results

The main goal of this chapter is to implement a tool that is able to estimate my-

ocardial strain from cine MRI of mice without the need for tagged MRI. Additionally, the

proposed technique will allow an accurate estimation of the correlation coefficients be-

tween the strain index and other global indices obtained from cine data, such as EF, and

114



local indices (e.g., wall thickening).

1. Myocardial segmentation

Myocardial segmentation is the first step and important part in the analysis of car-

diac cine data. LV myocardial boundary segmentation was performed using our proposed

deep learning framework demonstrated in section V.B.2. An expert performed the manual

segmentation of the LV wall borders. Therefore, we now have a ground truth for the cine

data. Figure 000 shows sample results obtained from our proposed deep learning segmen-

tation method.

FIGURE 55: Sample LV segmentation results for subjects with sham and myocardial in-

farction (MI) statuses at various cross-sections of the heart. The delineation shows the LV

cavity and myocardium utilizing our framework (green) and manual segmentation (red).

To assess the performance of our deep learning segmentation framework, the DSC

and HD metrics were used. The DSC characterize the spatial overlap between the ground

truth and the segmented region for each LV slice. The HD works on characterizing the

closeness of the segmented borders to their ground truth counterparts, for each LV slice.
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Table 10 summarizes the overall segmentation accuracy for the delineation of LV cavity and

myocardium with respect to the manual segmentation. The table also compares between

our proposed loss function and other loss functions. The table shows the mean delineation

accuracies per LV slice. The optimal performance for our proposed segmentation technique

was obtained when α = 0.2 and β = 0.8.

TABLE 10: The segmentation performance of our proposed framework with the novel loss

in comparison with other other techniques. The performance is characterized by the DSC

and HD metrics and they are shown in the form of average±SD for the LV cavity and

myocardium (Myo) of the heart.

BCE Loss Proposed Loss Tversky Loss

Cavity Myo Cavity Myo Cavity Myo

DSC (%) 90.02±2.11 87.33±2.22 96.45± 1.56 93.26± 2.21 94.55±1.41 92.32±1.74

HD (mm) 0.91±0.16 1.23±0.14 0.59 ± 0.05 0.87 ± 0.15 0.63±0.07 0.91±0.13

2. Global ventriculometrics

The quantification of cardiac function and the detection of local and global heart

diseases can be accurately obtained from functional indices. A commonly used global

evaluation of the heart are EDV, ESV, EF, LVM, and SV indices. To obtain these param-

eters, we construct LV volume curves at any time-point during the cardiac cycle. Then,

we can derive relevant parameters from those curves. Figure 56 illustrates how the EDV

and ESV are estimated from the LV curves. The LVM, SV, and EF can be computed using

Eqs. 00 00 00, respectively. Figure 57 (a, b) shows the LV curves for all sham and MI

subjects, respectively. Furthermore, the results for all functional parameters ( EDV, ESV,

EF, LVM, and SV) are computed and summarized as a bar plot of the mean of all cases for

these parameters and their standard error for mean (SEM) bar (refer to Fig. 57 (c))

We performed the two-sample Student’s t-test to compare between each functional
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FIGURE 56: The construction of the LV curve by estimating the cavity volume across the

cardiac cycle.

parameter for sham and MI groups (see Fig. 57 (c)). In the animal experiments, 3 mice

per group were used. We applied log transformation, because there were high standard

deviations between the two groups. From the test results, there were statistically significant

differences (P-value ¡ 0.05) in EDV, ESV, and EF between the two groups. A higher EF

was noticed in the sham group compared to the MI group. The values of EDV and ESV

of the MI group were much higher than those of the sham group. On the other hand, there

was not any statistically significant difference (P-value ¿ 0.05) when comparing the LVM

and SV of the two groups. The average value of the SV of the sham group is approximately

equal the average value of the MI group.

3. Wall thickening

Figure 53 demonstrates the calculation of the wall thickness of the LV from the

point-to-point correspondences on the segmented cardiac images. A pixel-wise (color-

coded) parametric map was used for visualization evaluation of the wall thickening. Figure

58 shows a representation example for wall thickening color-map. The maximum a pos-

terior (MAP) estimates of a three-dimensional generalized Gauss-Markov random field
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FIGURE 57: Global functional parameters for the sham and myocardial infarction (MI)

cases: (a) left ventricular curves for the sham cases, (b) left ventricular curves for MI

cases, and (c) a bar plot of the mean of all cases for functional parameters (EDV, ESV, EF,

LVM, and SV) and their standard error for mean (SEM) bar. A t-test was performed for

comparison.

(GGMRF) model [197] was employed as a continuity analysis to reduce the effect of the

noisy calculations of the wall thickening measures and to preserve consistency. We did not

use only the parametric-maps visualization, but also local wall thickening which can be

calculated in each of the seventeen segments of the heart [3]. Table 11 presents the esti-

mations for the seventeen segments of the LV myocardium for sham and MI groups. For

further explanation for the seventeen segments, please refer to Fig. 54.
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FIGURE 58: Wall thickening represented as a color-map. The first row shows the represen-

tation for a sham subject, while the second row shows the representation for a myocardial

infarction (MI) subject. The maximum and minimum thickening relate to the red and the

blue hues of color scale, respectively. For continuity, we modeled the estimated maps uti-

lizing a Gauss-Markov random field (GGMRF) model.

4. A Comparison between myocardial strain resulted from tagged MRI images vs. cine

Important insights regarding cardiac function can be obtained from strain analysis.

A geometrical-based method was used for tracking the myocardial boundary to calculate

functional strain from cine MRI. We used Algorithm 2 to calculate the strain (both circum-

ferential and radial strains) and generate strain curves from cine images. The circumfer-

ential and radial strains can be estimated by a tracking process through the cardiac cycle,

shown in Fig. 51. To estimate the strain from tagged MRI images, Algorithm 3 was used.

For cine and tagged MRI images, we present in Fig. 59 the estimated average radial strain

curves for each cardiac cross-section (i.e., basal, mid-cavity, apical) for the two animal

categories (i.e., sham and MI). From Fig. 59, a similar trend and a good agreement can

be noticed from the cine and tagged MRI strain curves. It is worth noting that the end of
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TABLE 11: Wall thickening estimations for all cases utilizing the standardized myocardial

seventeen-segments model [3].

Section Number Sham 1 Sham 2 Shame 3 MI 1 MI 2 MI 3

Normalized wall thickening

1 0.63 0.35 0.44 0.58 0.27 0.63

2 0.43 0.35 0.44 0.58 0.27 0.43

3 0.21 0.35 0.44 0.58 0.27 0.21

4 0.26 0.35 0.44 0.58 0.27 0.26

5 0.41 0.35 0.44 0.58 0.27 0.41

6 0.64 0.35 0.44 0.58 0.27 0.64

7 0.15 0.82 0.65 0.44 0.46 0.15

8 0.14 0.63 0.43 0.25 0.39 0.14

9 0.22 0.21 0.33 0.36 0.24 0.22

10 0.26 0.18 0.49 0.43 0.17 0.26

11 0.20 0.31 0.54 0.38 0.08 0.20

12 0.25 0.62 0.44 0.46 0.23 0.25

13 0.16 0.60 0.15 0.27 0.14 0.16

14 0.16 0.60 0.15 0.27 0.14 0.16

15 0.16 0.60 0.15 0.27 0.14 0.16

16 0.16 0.60 0.15 0.27 0.14 0.16

the cardiac cycle is not shown in the figure and we showed up to frame seventeen out of

twenty-two frames. This is because of the existence of artifacts in the tagged MRI images

at the end of the heart cycle. This problems occur because of the small size of the heart

of the mice and the incompatibility associated with the diamond structure of tagged MRI

images.

Besides the visual comparison, a statistical metric and Bland-Altman plots were

used to evaluate curves agreement. First, we estimate the mean squared error (MSE) and the

correlation coefficient (CorCoef) between the two curves. The average CoreCoef and MSE

values are shown in Table 12. These values compare the strain curves estimated from Cine

MRI and tagged MRI for both the two animal groups at different cross-sections. As shown

in the Table, a high CorCoef was obtained with a range between 0.737 and 0.966 for all

the animal groups. Additionally, a low MSE was obtained with a range between 0.024 and

0.08. As shown in Fig. 59, the same trend exists between strain curves from cine MRI and
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FIGURE 59: Visualization of the constructed average strain curves from cine images (ra-

dial strain) and the tagged MRI images. The rows show the strain at different cross-sections.

The columns represent different animal groups (i.e., sham and MI).

tagged MRI, which is aligned with the quantitative results in Table 12. The Bland-Altman

analysis is a good tool to assess measurements agreement. Therefore, we constructed the

Bland-Altman plots to validate the agreement of the curves. We performed this analysis

for the slope of diastolic phase (S1), the slope of diastolic phase (S2), and the peak strain

value for the calculated strain curves. As demonstrated in Fig. 60, there are excellent
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agreements for the estimated metrics for both the animal groups. In the Bland-Altman

analysis, we must verify the normality of the differences. Therefore, the Shapiro-Francia

test was applied to check for normality of the differences with 5% significance level. The P-

values were (0.0914, 0.9767), (0.9434, 0.7446), and (0.0609, 0.1241) for S1 (sham, MI), S2

(sham, MI), and peak (sham, MI), respectively. We obtained P-values which are larger than

0.05, therefore, the test accepted normality. Furthermore, data normality were accepted

using DAgostino Pearson, Jarque-Berat, and Kolmogorov-Smirnov [198] tests.

TABLE 12: A quantitative evaluation for the degree of agreement between the strain cal-

culated from cine MRI (radial) and tagged MRI for both animal groups. CorCoef and MSE

refer to the correlation coefficient and mean squared error, respectively.

Basal Mid-Cavity Apical

CorCoef MSE CorCoef MSE CorCoef MSE

Sham 0.909 0.028 0.966 0.023 0.812 0.039

MI 0.920 0.025 0.737 0.033 0.783 0.079

a. Circumferential strain from cine MRI Algorithm 2 was used for the estima-

tion of the circumferential strain and the construction of strain curves. Figure 61 shows an

example for the calculation of the circumferential strain for a sham and an MI case. The

strain was calculated for all cases for the inner, mid and outer walls at different cardiac

cross-section. As we can notice from the figure, the strain curves of the sham group differ

from the MI group. A reduced strain value is manifested in the MI group particularly at

the outer wall. Furthermore, different locations of the heart show different circumferential

strain values. For instance, a higher range was obtained for the inner wall in comparison

with the mid and outer walls. We performed quantitative analysis for the resulted strain

curves by the calculating S1 and S2 for the curves as shown in Fig. 51. Figure 62 shows a

bar plot for the mean and SEM of S1 and S2 for the basal, mid-cavity, apical cross-sections

for the sham and MI groups. Additionally, the two sample student’s t-test was used to
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FIGURE 60: The Bland-Altman analysis for the systolic phase (S1), the diastolic phase

(S2), and the peak value of the strain curves from the cine and tagged MRI images. The

analysis was performed for the two animal groups. Note that STD refer to standard devia-

tion.

perform statistical analysis for each cross-section, see Fig. 62. Three slices were included

for the basal and mid-cavity sections, and only two were included in the apical section.

Then, we obtain the average for each section for each case. These data were utilized to

investigate the group difference between the two animal groups. To make measurement

variable follow a normal distribution with homogeneous data, we used log transformation.
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As shown in Fig. 62, all sections showed a statistically significant difference (P-value <

0.05) between the sham and the MI groups.

FIGURE 61: The calculated circumferential strain of the LV for the inner, mid and outer

walls (at different slices) for a sham case (left) and a myocardial infarction (MI) case (right).

b. Radial strain from cine MRI We estimated the radial strain for the inner and

the outer walls, besides the circumferential strain. The outer radial strain is estimated

between the mid and outer walls , while the inner radial strain is estimated between the

inner and mid walls. Fig. 63 shows the radial strain results for two cases at different cross-

sections. A high level of variation exists between the inner and the outer radial strains.
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FIGURE 62: A bar plot representation for the mean and standard error of the mean (SEM)

of systolic slope (S1) and diastolic slope (S2) for the circumferential strain calculated for

the three cross-sections (basal, mid-cavity, apical) to both animal groups (sham and my-

ocardial infarction (MI)). The student’s t-test was used to obtain the P-values.

Approximately, the value of the outer strain is zero at all the frames. on the other hand the

inner radial strain exhibits convex curves. Additionally, a bar plot for the mean and SEM

of S1 and S2 was plotted for the radial strain for the basal, mid-cavity, and apical cross-

sections for both animal groups, see Fig. 64. We performed our the statistical analysis

of this part in a similar way such as the analysis of the circumferential strain in Section

V.C.4.a. There are a statistically significant differences (P-value < 0.05) between both

animal groups for all section except the apical section for slope S2.

c. Sector strain Besides the circumferential and the radial stain curves, we can

estimate local strain in each of the seventeen segments represented in Fig. 54. Fig. 65

shows the strain for sixteen-sectors at the inner wall for an MI and a sham cases. The

mid-cavity and basal levels contain 6 curves, with a curve for each sector, and apical level

contains 4 curves. Fig. 66 shows the strain for sixteen-sectors at the outer wall for an MI

and a sham cases.

d. Validation for Strain estimation Two validation experiments were performed

to validate our proposed methods for strain estimation using real and synthetic data. Syn-
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FIGURE 63: The calculated inner radial strain and outer radial strain of the LV at different

cross-sections for a myocardial infarction (MI) case (right) and a sham case (left).

thetic phantom images were used to validate the strain calculation from cine MRI. The LV

response and the physiological features during the cardiac cycle affect the phantom model.

To represent the LV motion, a geometric transformations that include translation, shearing,

torsion, rotation, and compression were utilized. Using these transformations, we map each

location in the LV model to corresponding spatial point at a specific time instant [199,200].

An inverse motion map was generated utilizing these transformations and the map is esti-
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FIGURE 64: A bar plot representation for the mean and standard error of the mean (SEM)

of systolic slope (S1) and diastolic slope (S2) for the radial strain calculated for the three

cross-sections (basal, mid-cavity, apical) to both animal groups (sham and myocardial in-

farction (MI)). The student’s t-test was used to obtain the P-values.

mated analytically. Therefore, we can establish correspondences between 2 points at any 2

time instants.

Figure 67 compares the calculated strain of the mid-wall from our developed method

with the ground truth strain. Both the original and the normalized strain values are illus-

trated in the figure. The strain curves from the two methods show a good agreement.

Furthermore, the agreement was confirmed by statistical metrics such as CorCoef and the

MSE. There was a high correlation (CorCoef = 0.89) between the estimated strain and

the ground truth, and there was a low MSE (2.7%). This validates the usefulness of our

proposed strain estimation method.

Additionally, we also validated the strain estimation method from tagged MRI.

Three mice subjects were used to validate our strain estimation method from tagged MRI.

Myocardial points in the tagged MRI were chosen and an expert manually tracked these

points over the cardiac cycle for all image frames of the three subjects. Then, we con-

structed the strain curve from the tracked points. Then, our strain estimation method was

applied on the tagged MRI data using the chosen points of the first frame. Our method
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FIGURE 65: Examples for sector-strains calculated at the inner wall for myocardial infarc-

tion (MI) and sham cases.

resulted in a strain curve. We performed quantitative comparison between the results of

the two methods. The CorCoef was 0.941 and the MSE was 15e-4. Furthermore, Fig. 68

demonstrates the visual comparison between the curves resulted from the two methods for

a mouse subject.

D. Discussion
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FIGURE 66: Examples for sector-strains calculated at the outer wall for myocardial infarc-

tion (MI) and sham cases.

An automated and accurate algorithm for the evaluation of global LV function, LV

structure, and LV localized strain was developed utilizing cine MRI in mice. Our experi-

ments showed the potential of our technique to efficiently work on mice hearts, regardless

of their tiny sizes. Recent studies utilized cine MRI for estimating strain for human hearts.

Tommaso MAns et al. [201] used the diffeomorphic demons which is non-linear registra-

tion algorithm to estimate 3D myocardium strain from cine images by inserting 2 physical

constraints. By constraining the deformations to be divergence-free, Myocardium near in-
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FIGURE 67: A comparison between our estimated strain and the ground truth strain (re-

sulted from the phantom’s deformation). (a) demonstrates the comparison with the original

values of the strain (raw data). (b) demonstrates the comparison with the normalized strain

values (between zero and one).

FIGURE 68: A visual comparison between the strain estimated by automated tracking of

tagged MRI (our method) and the strain estimated from manual tracking by an expert.

compressibility was ensured. They also use smooth vector filters to model myocardium

elasticity. Hao Gao et al. [202] used a b-spline deformable image registration technique

to estimate myocardial strain from cine images. They determined both LV strain, struc-

ture, and both regional and global function. The advantages of the proposed method are

the reduction of the cost and MRI scanning time. It also estimates the myocardial indices
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reliably. The novel algorithms proposed in this chapter allow the opportunity to reliably

analyze myocardial strain in the mice heart. We can extend our application to estimate

myocardial strain in humans.

Different anatomical structures can be segmented efficiently using FCN architec-

ture. In this chapter, the application of FCN in segmenting the LV from cine MRI of mice

(both sham and MI) was proposed. As demonstrated in Table 10, our method resulted in

accurate LV segmentation in terms of DSC and HD, which are popular segmentation per-

formance metrics. Furthermore, our results in Fig. 55 indicate that our method achieved

good segmentation results at different LV slices, including the slices where the LV occupies

a small area in the image. These slices are at the apical part of LV which are difficult to

segment. The LV tissue occupies a smaller area compared with other surrounding tissues

in cine MRI. This problem makes the deep learning model biased towards the majority

category (background tissues). To solve this problem, we developed a novel loss function

that accounts for this category-imbalance and penalizes the action of the cross-entropy loss

which is susceptible to category-imbalance problem. The potential of our novel loss func-

tion is established by providing good segmentation. As shown in Table 10, in comparison

with the BCE loss (where the issue of category-imbalance is more severe), better results

were obtained from our loss function. Furthermore, the results obtained from our loss

function is better than the results of Tversky loss that was presented to overcome category-

imbalance. Besides our novel loss, data augmentation is another important factor that en-

hanced the performance of our approach. We obtained a higher sample size by adopting

data augmentation, and thus the over-fitting is reduced. Human cine MRI is the main focus

for the majority of the recent heart image analysis works [153]. The human cine MRI has

better contrast and higher signal-to-noise (SNR) ratio than mice cardiac MRI. Therefore,

the task of segmenting the LV is easier in human cardiac MRI. Due to the fact that mice

MRI has low SNR, we can conclude that the prime merit of our work is the application of

convolutional neural networks on mice data to obtain preclinical and accurate tool for heart
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segmentation.

To fully characterize cardiac function and structure, local (regional) and global in-

dices are important to estimate. EF, SV, and LVM are global indices, while myocardial

strain, wall thickness, and thickening are local indices. To estimate cardiac structure and

function indices, different algorithms that are based on the Laplace equation were used.

We solved the Laplace equation between wall boundaries and this enabled us to co-allocate

corresponding pairs on the boundaries to calculate the wall thickness and thickening. Previ-

ous studies focused on radial-based or center-line-based methods [203]. These approaches

are not suitable for noisy images and result in high errors because of the lack of strong

edges. Furthermore, these approaches assume heart circular symmetry, and this assump-

tion can increase the error. To obtain a high accuracy for myocardial points co-localization,

Algorithm 1 was adopted as it depends on geometric features, refer to V.C.3.

Myocardial strain is another important local index, that is usually obtained from

tagged MRI to evaluate the contractile function of the heart. However, in the cases of

rapid motion between consecutive image frames or large displacement, the methods that

are based on tagged MRI fail [204]. Due to the fact that strain is not the only parameter

that quantifies the functionality and workings of the heart, other performance parameters

are required (e.g., wall thickness, EF) and are obtained from cine cardiac MRI. The aim of

our study is to implement and develop a framework that is able to calculate the myocardial

strain and other cardiac parameters from a single modality (i.e., cine cardiac MRI). This

approach has advantages of avoiding the inter-slice variability and producing better corre-

lated parameters for heart function. Specifically, we used the solution of Laplace equation

to track myocardial points over the heart cycle between consecutive frames. The proposed

approach demonstrated the capability of tracking the movement and rotation of the heart.

Therefore, our approach puts a limit for the effect of the noise that comes from cardiac mo-

tion and enables accurate strain calculation utilizing the Lagrangian-based method (refer

to Algorithm 2). Our results and statistical analyses in Figs. 59, 60 and Table 12, demon-

132



strated that we can obviate the need of tagged imaging for strain calculation by using cine

MRI. In this chapter, we addressed the ability of our approach to assess strain from cine

cardiac MRI to avoid performing tagged MRI for the small mice hearts. There are high

consistency between myocardial strain obtained from tagged MRI and cine MRI.

One of the limitations of our work is the small size of our cohort (n=6). Despite the

small size of subjects, our developed methodology demonstrated the ability of accurately

estimating strain and other heart functional parameters from a single cardiac MRI modality

(cine MRI). It is important to note that, for the MI group, we intentionally induced different

degrees of MI, to assess the capability of our algorithm to detect the changes in the my-

ocardial strain in different degrees of heart failure. In our MI cohort, MI-1 has more serious

heart failure and dilation in comparison with the remaining two animals (refer to Fig. 57).

In future, we plan to adopt a larger cohort size to test and validate our algorithm potential.

In spite of these limitations, our methodology demonstrated the feasibility of accurately

calculating the strain indices, which might obviate the need for tagged MRI clinically.
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CHAPTER VI

A PYRAMIDAL DEEP LEARNING PIPELINE FOR KIDNEY WHOLE-SLIDE
HISTOLOGY IMAGES CLASSIFICATION

Histopathological images can provide histological features that are important for

disease diagnosis and these images are considered the gold standard for cancer diagnosis

and recognition. The manual analysis of histopathological images takes time and effort

from the pathologist. On the other hand, automated analysis helps the pathologist diagnose

the disease and alleviates his work load. Renal cell carcinoma is the most prevalent kidney

cancer. Renal Cell carcinoma has various subtypes with different clinical behavior. In this

work, we demonstrate how a deep learning approach can be utilized for the automated clas-

sification of kidney histopathological images. Our approach can classify four classes: the

fat, the parenchyma, the clear cell renal cell carcinoma, and the unusual cancer which has

been discovered recently, called clear cell papillary renal cell carcinoma. Our framework

consists of three convolutional neural networks and the whole-slide kidney images were

divided into patches with three different sizes to be inputted to the networks. Our approach

can provide patch-wise and pixel-wise classification. The kidney histology images consist

of 44 image slides that belong to the four mentioned tissue types. Our framework results

in an image map that classify the slide image on the pixel-level. Furthermore, we applied

Gauss-Markov random field smoothing to maintain consistency in the map. Our approach

classified the four classes accurately and surpassed other state-of-the-art methods such as

ResNet (pixel accuracy: 0.89 Resnet18, 0.93 proposed). We conclude that deep learning

has the potential of alleviating the work-load on the pathologist by providing accurate au-

tomated classification for histopathological images.
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A. Introduction

Kidney cancer is an abnormal cell growth in the kidney. Kidney cancer is ranked

fourteenth among common cancers and contributes about 2.4% of the total number of diag-

nosed cancers [65]. A recent estimate by the American Cancer Society revealed that in the

United States about 76,080 new patients will be diagnosed with kidney cancer and about

13,780 patients will die from the disease [66]. Cancers of the kidney are of several types,

renal cell carcinoma (RCC) being the most prevalent, accounting for nearly 85% of kidney

cancers. RCC is itself a heterogeneous set of cancers with distinct molecular character-

istics, responses to treatment, and clinical outcomes [67]. The most prevalent subtypes

of RCC include clear cell (70%—80%), papillary (14%-–17%), chromophobe (4%—8%),

and clear cell papillary RCC (4%) [68]. We can classify RCC subtypes by utilizing the

morphological features observed on histopathological slides stained with hematoxylin and

eosin. However, there is a significant morphological overlap between clear cell RCC and

clear cell papillary RCC subtypes due to the presence of clear cells. It is critical to be

able to classify between clear cell RCC and clear cell papillary RCC to determine the cor-

rect patient management. Clear cell RCC is associated with poor prognosis because it is

likely to metastasize, while clear cell papillary RCC is considered an indolent neoplasm,

which is not associated with metastatic spread [69]. When there is a significant overlap

in morphological features, immunohistochemistry helps in separating the two subtypes of

the tumor. However, we cannot find immunohistochemistry in all areas of the world. We

can use deep learning algorithms to differentiate between the types of tumor by analyzing

histopathological images.

Recently, deep learning algorithms have achieved outstanding success in various

fields. Convolutional neural networks (CNNs) are deep learning models that are excel-

lent at processing 2D and 3D images with great success in object detection [205], image

recognition [128,167,206], and image segmentation [10,207]. Particularly, there have been

many applications of CNNs in the domain of histopathological image analysis. Cruz-Roa
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et al. [208] presented a new method that is based on CNN for the detection of invasive

breast cancer in whole-slide images. Their analysis involved various sites and scanners.

They assessed their approach for classifying breast cancer without direct comparison with

pathologists. Han et al. [209] proposed a technique for the multi-way classification of breast

cancer using histopathological images. Their technique was based on structured learning

and achieved a high accuracy of 93.2%. They used pre-trained models that use imagenet

database. Coudray et al. [210] trained a CNN called inception v3 to classify between nor-

mal lung tissue, adenocarcinoma, and squamous cell carcinoma using whole-slide images.

They achieved an accuracy that is comparable with the pathologist. However, they did not

study less common lung cancers such as large-cell carcinoma and small-cell lung cancer.

Wang et al. [211] implemented a CNN to recognize tumor regions in lung pathology im-

ages. They extracted features from tumor regions and associated them with the survival

outcome of the patients. However, their CNN model is sensitive to out-of-focus tissue such

as macrophages, red blood cells, and stroma cells. Khosravi et al. [212] demonstrated the

use of deep learning techniques to identify cancer subtypes such as lung cancer. However,

there was discordance between pathology results and their findings due to the small num-

ber of the used tumor images. Jimenez–del–Toro et al. [213] used CNN to classify prostate

histology from whole-slide images. Their method was evaluated on a limited settings as a

binary classification problem on a limited set of Gleason scores. Karimi et al. [214] pro-

posed a CNN based method for the automated grading of prostate cancer using a limited

number of pathology images. They implemented a new data augmentation strategy to im-

prove the classification accuracy. However, their method has a low classification accuracy

when differentiating between grade 4 and grade 5 tumors. Tabibu et al. [215] implemented

a deep learning approach based on Resnet to classify between three subtypes of RCC. How-

ever, they did not study clear cell papillary RCC. As we can see, there has been a limited

work in the kidney histopathological image analysis.

We propose a computer aided diagnostic system that uses CNNs for the automated
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classification of kidney tissues and RCC. Our framework can partition histology images

into four classes including fat, parenchyma, clear cell RCC, and clear cell papillary RCC.

Our framework has the following contributions:

• The first study to discriminate between clear cell RCC and clear cell papillary RCC.

This classification has high clinical relevance.

• We propose a pyramidal deep learning model that utilizes a hierarchy of three CNNs

that process different image sizes. The deep learning improves the precision of the

diagnosis and decrease human error. Furthermore, it produces reproducible results

and objective assessment.

• Our approach can provide both patch-wise classification and pixel-wise classifica-

tion.

• We incorporate a statistical approach based on Markov-Gibbs random field (MGRF)

to remove inconsistencies in the final pixelwise classification.

FIGURE 69: Schematic illustration of the proposed computer aided diagnostic system for

automated classification of kidney tissues.
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B. Materials and Methods

We propose a computer aided diagnostic system (shown in Fig. 69) that is based

on deep learning for the automated classification of four kidney tissues: fat (class 1),

parenchyma (class 2), clear cell RCC (class 3), and clear cell papillary RCC (class 4).

We first start with dividing the whole slide images into small patches in order to be fed

to the CNNs. Then, we preprocess these patches to enhance their visual appearance and

features. Then, the patches are used to train and test our deep learning framework.

The institutional review board (IRB) approved our study. Before digitization, we

de-identified all the slides which are stained with hematoxylin and eosin. We removed all

identifiers that link to the patients from all the used image files. From the institution files,

we randomly chose 30 cases which are diagnosed with clear cell RCC and 22 cases which

are diagnosed with clear cell papillary RCC. A pathologist with expertise in genitourinary

pathology reviewed these cases. From each case, we selected one representative slide from

each case. Then, we selected 7 slides for the parenchyma tissue type and 5 slides for the

fat tissue type. Then, we scanned the slides with a Philips UFS. A pathologist manually

segmented the images into 4 tissue classes: fat, renal parenchyma, clear cell RCC, and

clear cell papillary RCC.

1. Patch Generation

Our dataset consists of 64 image slides (30 slides of clear cell RCC, 22 slides of

clear cell papillary RCC, 7 slides of parenchyma, and 5 slides of fat). To follow the best

practice in validating our deep learning framework, the data were divided into two sets

that contain different image slides. We kept the first set, which is composed of forty-

four image slides, for training and testing. We kept the second set, which is composed of

20 image slides, for final validation. Table 13 describes how we divided our data. The

image slides is very large in size to be processed by a CNN. Therefore, generating image
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patches form the image slides produces a suitable image size for the CNN and creates

high sample size which is necessary for obtaining good accuracy from the deep learning

framework. Overlapping patches were generated from the slides of the first set where we

create three different patch sizes: small size = 250×250, medium size = 350×350, and large

size = 450×450. Therefore, we create three folders for each image slide where each folder

contains a specific patch size. A fifty percent overlap was kept between each patch and

the next one. The overlap between patches results in learning multiple viewpoints within

the tissue by the deep learning framework. We removed the patches that are dominated by

background pixels. We kept about 70% of the patches for training and the reminder for

the testing keeping in mind that the slides used for training are different from the slides

used for testing. Figure 70 shows samples for the patches of the first set at different sizes.

Overlapping patches were generated for the second set (i.e. validation set). Similarly, for

each image slide we created three different sizes in three different folders but the degree

of overlap was higher than of the first set: there was a 5-pixels shift in both dimensions

between each patch and the next one. During inference by our deep learning framework,

we assign a label for each input patch and we can obtain multiple labels for the same pixel

because a pixel can belong to multiple patches.

TABLE 13: The number of slides in each set.

Number of Slides

Training Testing Final Validation

Fat 2 1 2

Parenchyma 4 1 2

Clear Cell Papillary RCC 14 2 6

Clear Cell RCC 18 2 10
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FIGURE 70: Samples of the generated patches from different image slides at different

patch sizes. Note that C1, C2, C3, and C4 refer to class 1, class2, class 3, and class 4, re-

spectively.

2. Preprocessing

To enhance the visual appearance of the patches, we used two preprocessing tech-

niques for the first and the second datasets. Fist, we applied adaptive histogram equaliza-

tion. Second, we applied edge enhancement.

a. Adaptive Histogram Equalization We used adaptive histogram equalization

as an image processing technique to improve the contrast of the image patches [216]. In

this technique, we address different parts in the image where we compute a histogram for

each part. However, in ordinary histogram equalization, only one histogram is computed

for the whole image. In adaptive histogram equalization, we use the multiple histograms

to redistribute the pixel values of the image. By doing this redistribution, the local contrast

and the edges are enhanced in each part of the image. However, adaptive histogram equal-

ization is prone to noise amplification within homogeneous regions of the image where the
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histogram is highly concentrated. To prevent noise amplification a variant is utilized which

puts a limit on the amplification. This variant is called contrast limited adaptive histogram

equalization. After the equalization step in contrast limited adaptive histogram equaliza-

tion, the artificially generated boundaries are removed by employing bilinear interpolation

between neighbouring regions. Figure 71 shows examples for histogram equalization of

the image patches.

FIGURE 71: Examples of preprocessing step where original patches are shown in (A) and

their histogram equalized versions are in (B) followed by edge enhancement (C).

b. Image Edge Enhancement The edges of the first and the second datasets are

enhanced. In this operation we enhance the edges of the important objects in image patches.

The result of image edge enhancement is the improvement of the visual perception of the

image patches. The improvement results from the suppression of low frequency compo-

nents in the image. This high-pass filtering can be done in the spatial or the frequency

domain; we filter the image patches by performing a convolution with a sharpening filter

(shown in Fig. 72) in the spatial domain. Suppose that the filter is h(m,n) and the input

image patch is x(m,n), the filtered image patch is given by Eq. (19).

y(m,n) = h(m,n) ∗ x(m,n) (19)
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where ∗ is the convolution operator. Figure 71 shows examples for edge enhancement of

the image patches.

FIGURE 72: Weights of employed sharpening filter.

3. The Proposed Deep Learning Framework

The proposed deep learning framework is shown in Fig 73. The framework is com-

posed of three CNNs. Each CNN is designed to process a specific patch size. We refer to

the three CNNs by CNNS , CNNM , and CNNL which process patches with small (250 x

250), medium (350 x 350), and large (450 x 450) sizes, respectively. We designed the three

CNNs to have the same architecture except the input size. As shown in Fig. 73, the archi-

tecture of our CNNs is composed of a series of convolutional blocks where each block con-

tains two convolutional layers followed by max-pooling layer. After convolutional blocks,

there are two fully connected layers. Finally, the output of the fully connected layers was

fed to a soft-max layer. The purpose of the convolutional layer is to extract feature maps

by convolving the input image with a group of trainable kernels/filters. The feature maps

contain features that describe the input objects in the input image. Each convolutional layer

produces a volume of feature maps because we use a group of filters. In our design, we

use filters of size 3x3 and stride of 1. The spatial dimensions of the feature maps were

reduced by a factor of two in max-pooling layers. The purpose of the max-pooling layers

is to keep the most prominent features and discard those less important. Furthermore, max-

pooling layers reduces the training time and the computational cost. We used a stride of

2 in max-pooling layers. To summarize, each CNN contains 8 convolutional layers and 4

max-pooling layers. The first fully connected layer was composed of twelve neurons and
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the second fully connected layer was composed of four neurons for four class classifica-

tion. The purpose of the soft-max layer is to take the output of the last fully connected layer

and convert it to class probabilities in the range of zero to one. The neuron which has the

highest probability is the classification result for the input image patch. Table 15 shows our

CNN configuration for an input patch of size 250× 250. Similarly, the same concepts can

be applied on the other patch sizes. Each CNN was trained by finding the minimum of the

cross-entropy loss. In this loss the cross-entropy between the predicted class probabilities

and the ground truth labels is minimized. The cross-entropy loss is defined as follows:

LBCE = −
M∑
i=1

yo,i log(Po,i) (20)

Where M is the number of classes. yo,i is a binary indicator (0 or 1) which indicates the

correct classification that observation o belongs to class i. Po,i is the predicted probability

that observation o belongs to class i. To overcome network overfitting, we used a drop out

with a rate 0.2 in the convolutional and fully connected layers.

a. Output Of The Deep Learning Framework The input image patches are clas-

sified to one of the four classes. Then, we assembled the classification of the patches to

obtain a classification map for the whole-slide image. Each CNN in our deep learning

framework can provide a patch-wise and pixel-wise accuracy. Our CNNs provide patch-

wise accuracy because it can classify the input patch to one of the four classes. For one

slide image, the patch-wise accuracy is defined as follows:

Patchwise Accuracy =
number of correctly classified patches

total number of patches
(21)

We estimated the patch-wise accuracy for all slide images. Then, we estimated the average

accuracy along slide images.

Patches of the second dataset had a five pixels shift between each other. Therefore,

each pixel in the image can belong to several patches. Normally, when we classify a single

patch, we assign a label for this patch then we give the same label to the pixels of this patch.

When we assign the patch label to all pixels in the patch, we check if there are background
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FIGURE 73: The pyramidal deep learning framework which consists of three convolutional

networks for the automated classification of kidney histopatological images.

pixels (pixels with green color) in the patch. Then, the background pixels are assigned a

background label which is kept until the final labeling. Given that pixels belong to many

patches, each pixel can have several labels. We used majority voting to convert the several

labels of a pixel into one label. Then, a labelled slide image (on the pixel level) was created

for each slide image. For a single slide image, the pixel-wise accuracy is defined as follows:

Pixelwise Accuracy =
number of correctly classified pixels

total number of pixels
(22)

The average of accuracies for all slide images was then estimated. To get an improved

pixel-wise accuracy, we combined the result of the three CNNs. Given that our framework

contains three CNNs, we obtained three labels for each pixel in an inputted slide image.

Again, we adopted a majority voting strategy to get one label for each pixel. Finally, the

final pixel-wise accuracy and the average accuracy over all slide images were estimated

after combining CNNs results.
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TABLE 14: The proposed CNN configuration for an input patch of size 250× 250.

Layer Depth kernel Stride Spatial Size Parameters

Input 3 — — 250× 250× 3 0

1. Conv. 9 3× 3 1× 1 248× 248× 9 3× 3× 3× 9

2. Conv. 9 3× 3 1× 1 246× 246× 9 3× 3× 9× 9

3. Max-pool 9 2× 2 2× 2 123× 123× 9 0

4. Conv. 9 3× 3 1× 1 121× 121× 9 3× 3× 9× 9

5. Conv. 9 3× 3 1× 1 119× 119× 9 3× 3× 9× 9

6. Max-pool 9 2× 2 2× 2 59× 59× 9 0

7. Conv. 9 3× 3 1× 1 57× 57× 9 3× 3× 9× 9

8. Conv. 9 3× 3 1× 1 55× 55× 9 3× 3× 9× 9

9. Max-pool 9 2× 2 2× 2 27× 27× 9 0

10. Conv. 9 3× 3 1× 1 25× 25× 9 3× 3× 9× 9

11. Conv. 9 3× 3 1× 1 23× 23× 9 3× 3× 9× 9

12. Max-pool 9 2× 2 2× 2 11× 11× 9 0

13. Concat. 1 — — 1089× 1 0

14. Full 1 — — 12× 1 1089× 12

15. Full 1 — — 4× 1 12× 4

16. Softmax 1 — — 4× 1 0

Total number of parameters = 18462

TABLE 15: The proposed CNN configuration for an input patch of size 250× 250.

b. Gauss-Markov Random Field Smoothing We assigned a label for each pixel

in the slide image. Therefore, the result is a labelled image for the whole slide image. To

preserve continuity and remove inconsistencies (smooth) the labelled image, we consid-

ered the estimated labels (denoted δ) as samples generated from a generalized 2-D Gauss-
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Markov random field (GGMRF) model [197]. There is eight-neighborhood for each pixel

as shown in Fig. 74. The voxel-wise relaxation [217] and maximum a posteriori estimates

amplify the continuity of the δ values:

δ̂s =δ̂s
{|δs − δ̂s|α + ραλβ

∑
r∈νs

ηs,r|δ̂s − δr|β} (23)

Where the original label and its expected estimates are denoted by δs and δ̂s, respectively,

at s = (x, y) which is the observed 2D location. The GGMRF potential is denoted by ηs,r.

The eight-neighborhood voxel set is denoted by νs (Fig. 74). ρ and λ are scaling factors.

α ∈ 1, 2 is a parameter that determines the Laplace (α = 1) or the gaussian (α = 2)

estimator’s prior distribution. β is a parameter that controls the degree of smoothness. We

set α = 2, β = 1.01, ρ = 1, λ = 5, and ηs,r =
√
2. Our hypothesis is that GGMRF

smoothing can increase the pixel-wise accuracy of the labelled slide image.

FIGURE 74: For eight neighbors, the figure shows the Pairwise voxel interaction in a 2-D

GGMRF image model.

Algorithm summarizes how our deep learning framework produced a pixel-wise

classification map for the tested slide image and how we estimated classification accuracy.

We reported in the Results section the average accuracy over all slide images.
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Algorithm 4 Pixel-wise Classification
A pixel-wise classification map Divide the input slide images into overlapped patches each

CNN Assign a label for each patch Estimate the patch-wise accuracy by Eq. 21 Assign

labels for each pixel Apply majority voting for the labels of each pixel Apply GGMRF

smoothing Estimate the pixel-wise accuracy by Eq.22 Apply majority voting for the re-

sults of the CNNs (fusion) Apply GGMRF smoothing Estimate the pixel-wise accuracy

by Eq.22

C. Results

The deep learning library TensorFlow [218] was used to develop our deep learning

framework. The parameters of our deep learning framework, such as network architecture,

should be optimized to obtain the optimal accuracy. We performed this optimization pro-

cess using grid search strategy by searching for the framework parameters that give the

best system performance. The searched parameters are: 1) the number of convolutional

layers, 2) kernel size, 3) initialization of the convolutional kernels, 4) number of filters,

5) stride, 6) patch size, 7) number of epochs, 8) learning rate, 9) type of optimizer. The

best parameters from the grid search is presented in Table 16. During training of our deep

learning framework, we kept 20% of the training data for validation. After each epoch

we estimate the validation accuracy and validation loss. The best final model is the one

that gave the highest validation accuracy. Data augmentation is a way to increase training

data to avoid overfitting. We adopted a data augmentation strategy that consists of random

rotation, scaling, and flipping.

We trained our framework by 70% of the patches of the first dataset and the remain-

ing 30% was used for testing. During training and testing, each CNN of the three CNNs

was fed by the appropriate patch size. After testing, we calculated the patch-wise accuracy

for the four tissue types. Table 17 shows the patch-wise accuracy for each tissue type. Fur-
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TABLE 16: Optimal parameters of our deep learning framework.

Parameter Value

Number of convolutional layers 8

Kernel size 3×3

Kernel initialization He initialization [172]

Number of filters 9

Stride 1 (convolution), 2 (max-pooling)

Patch size 32

Number of epochs 60

Learning rate 0.001

Optimizer Adam

thermore, Fig. 75 shows samples of correctly and wrongly classified patches for the four

kidney tissue types.

TABLE 17: The estimated patch-wise accuracy for the testing set. The table shows the

accuracy for the four tissue types at different patch sizes.

Tissue Type
Patch Size

250×250 350×350 450×450

Fat 0.89 ± 0.01 0.91 ± 0.02 0.90 ± 0.11

Parenchyma 0.88 ± 0.11 0.91 ± 0.12 0.90 ± 0.24

Clear cell papillary RCC 0.86 ± 0.23 0.90 ± 0.21 0.89 ± 0.21

Clear cell RCC 0.85 ± 0.02 0.89 ± 0.31 0.89 ± 0.03

After testing the framework using the testing set, we performed final validation us-

ing the second dataset. In the second dataset we made 5 pixels shift between successive

patches because we want to perform pixel-wise classification besides the patch-wise clas-

sification. We feed the second dataset to our framework one slide at time. In other words,
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FIGURE 75: Samples of correctly and wrongly classified patches for the four tissue types.

we divide the slide image into the three mentioned patch sizes, and we perform patch and

pixel classification for that slide image. Then, we report the average accuracy over slide

images for each tissue type in the data. Tables 18 shows the average of patch-wise accu-

racy and the average of pixel-wise accuracy of fat, parenchyma, clear cell papillary RCC,

and clear cell RCC cases, respectively. We combine the classification of the three CNNs.

Therefore, each pixel in the tested slide image can have three labels and by applying ma-

jority voting we obtain one label for each pixel. Then, we estimate the pixel-wise accuracy

for the labelled slide image. To remove inconsistencies, we apply GGMRF smoothing on

the labelled slide image. To assess the performance of our method after obtaining the final

labeling, we constructed a confusion matrix from which we can estimate the accuracy, sen-

sitivity and specificity for detecting each tissue type. Table 19 shows the confusion matrix

of our proposed method and Table 22 shows the performance metrics for detecting each

tissue type.

To compare the performance of our proposed approach with other deep learning

models, we used two pre-trained models: ResNet18 and ResNet34. In these two models,
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TABLE 18: For the fat, parenchyma, clear cell papillary RCC, and clear cell RCC cases

of the second dataset, we estimated the average patch-wise accuracy and the pixel-wise

accuracy. The table shows the accuracy at different patch sizes.

Tissue
Patch Size

250×250 350×350 450×450

Fat
patch-wise 0.87 ± 0.04 0.90 ± 0.11 0.89 ± 0.05

pixel-wise 0.89 ± 0.01 0.91 ± 0.08 0.91 ± 0.11

Parenchyma
patch-wise 0.85 ± 0.11 0.88 ± 0.21 0.87 ± 0.03

pixel-wise 0.88 ± 0.05 0.90 ± 0.08 0.89 ± 0.16

Clear cell papillary RCC
patch-wise 0.84 ± 0.14 0.87 ± 0.06 0.86 ± 0.07

pixel-wise 0.86 ± 0.11 0.90 ± 0.05 0.90 ± 0.21

Clear cell RCC
patch-wise 0.83 ± 0.20 0.86 ± 0.01 0.86 ± 0.02

pixel-wise 0.85 ± 0.05 0.89 ± 0.04 0.88 ± 0.11

we replaced the last layers with two output layers. Then, fine-tuning was performed by

using the kidney data. Tables 20, 21 show the confusion matrices for the labeling resulted

from the use of ResNet18, and ResNet 34, respectively. Table 23 demonstrates a quan-

titative comparison in terms of accuracy, sensitivity, and specificity between our frame-

work and ResNets. To establish a statistical significance for our method, we performed a

t-test to show that there is a significant difference between our approach and ResNets. We

obtained a p-value of 0.01 for ResNet18 and a p-value of 0.02 for ResNet34. The p-values

are less than 0.05. Therefore, the null hypothesis can be rejected in the two tests. We

can conclude that the differences between our method and other models are statistically

significant. Figures 76, 77, 78, 79 show the labeling on the pixel level for the four tissue

types.

D. Discussion
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TABLE 19: Confusion matrix based on the final labeling obtained from our proposed ap-

proach, where class 1, class 2, class 3, and class 4 refer to fat, parenchyma, clear cell

papillary RCC, and clear cell RCC. Values are shown as percentages.

Actual Label

Class 1 Class 2 Class 3 Class 4

Predicted Label

Class 1 92.98% 2.68% 1.75% 1.69%

Class 2 2.22% 92.41% 3.75% 2.66%

Class 3 1.92% 2.51% 91.35% 4.38%

Class 4 2.87% 2.41% 3.15% 91.30%

TABLE 20: Confusion matrix based on the labeling obtained from ResNet18, where class

1, class 2, class 3, and class 4 refer to fat, parenchyma, clear cell papillary RCC, and clear

cell RCC. Values are shown as percentages.

Actual Label

Class 1 Class 2 Class 3 Class 4

Predicted Label

Class 1 90.13% 3.78% 3.31% 3.08%

Class 2 3.52% 90.00% 4.70% 4.04%

Class 3 2.59% 3.13% 88.50% 4.87%

Class 4 3.75% 3.09% 3.49% 88.00%

A computer aided diagnostic system that is able to automatically classify kidney

histopathological images was proposed in this chapter. In particular, we target the challeng-

ing task of classifying between clear cell papillary RCC and clear cell RCC. The morpho-

logical features of these tumor subtypes overlap; however, they have different prognosis.

Therefore, our task is necessary to best determine the appropriate clinical management. We

used deep learning algorithms to build our system of classification. Our design of pyrim-

idal CNN successfully determined the normal tissues and abnormal tissues and managed

to differentiate between clear cell papillary RCC and clear cell RCC. Our approach also
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TABLE 21: Confusion matrix based on the labeling obtained from ResNet34, where class

1, class 2, class 3, and class 4 refer to fat, parenchyma, clear cell papillary RCC, and clear

cell RCC. Values are shown as percentages.

Actual Label

Class 1 Class 2 Class 3 Class 4

Predicted Label

Fat 89.10% 4.31% 2.91% 2.78%

Parenchyma 3.83% 89.00% 5.94% 2.87%

Clear Cell Papillary RCC 2.99% 3.79% 87.50% 7.35%

Clear Cell RCC 4.08% 2.89% 3.66% 87.00%

TABLE 22: Performance metrics for the labeling obtained from our framework for each

tissue type. The values in the table are based on the confusion matrix in Table 19.

Tissue Accuracy Sensitivity Specificity

Fat 0.98 0.93 0.98

Parenchyma 0.97 0.92 0.97

Clear cell papillary RCC 0.95 0.91 0.96

Clear cell RCC 0.94 0.91 0.97

generates classification maps that classify the kidney histopathological images on pixel-

level. Finally, our method remove inconsistencies from the generated maps using GGMRF

smoothing.

An enormous amount of information can be found in the whole-slide histopatho-

logical images. Therefore, the pathologist spends significant time and effort to manually

examine the histology image. On the other hand, fast and accurate analysis of histology

images is needed because there is a growth in the number of diagnosed cancer cases. Our

study addresses this shortcoming by proposing a computer aided diagnostic system that is

able to automatically classify kidney tissues and detect kidney cancers. Our approach can

be adopted to other the diagnosis of other cancers.
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TABLE 23: Quantitative comparison between our approach and other deep learning mod-

els. The values are the estimated averages across tissue types.

Average Accuracy Average Sensitivity Average Specificity

ResNet18 0.942 0.892 0.961

ResNet34 0.937 0.882 0.957

Proposed without GGMRF smoothing 0.946 0.911 0.965

Proposed with GGMRF smoothing 0.957 0.920 0.971

FIGURE 76: Example for the output from our framework. (I) whole-slide fat image. (II)

is zoomed region, (III) is the labelled region before GGMRF smoothing, and (IV) is the

labelled region after GGMRF smoothing. Green (Class 1), yellow (Class 2), red (Class 3),

and blue (Class 4) refer to fat, parenchyma, clear cell papillary RCC, and clear cell RCC,

respectively.

As shown in Table 18, our approach gave a high patch-wise accuracy. In other

words, our framework can determine tissue types from image patches with different sizes.

Patch size of 350×350 resulted in the best patch-wise accuracy. For the cases of fat,

parenchyma, and clear cell papillary RCC, patch size of 350×350 resulted in better patch-

wise accuracy. For the case of clear cell RCC, patch sizes of 350×350 and 450×450 re-
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FIGURE 77: Example for the output from our framework. (I) whole-slide parenchyma

image. (II) is zoomed region, (III) is the labelled region before GGMRF smoothing, and

(IV) is the labelled region after GGMRF smoothing. Green (Class 1), yellow (Class 2), red

(Class 3), and blue (Class 4) refer to fat, parenchyma, clear cell papillary RCC, and clear

cell RCC, respectively.

sulted in similar patch-wise accuracy; however, patch size of 350×350 gave better accuracy

than patch size of 250×250.

Our pyramidal framework allows us to analyze the histopathological images at var-

ious spatial scales. Then, we combine the classifications of the three CNNs to obtain a

better pixel-wise classification. Combining the results allows us to get better accuracy than

the one obtained from a single CNN. Furthermore, we give the pathologist the opportunity

to analyze the pathology regions at small scale because our framework results in pixel-level

classification. Patch size of 350×350 gave the best pixel-wise accuracy. For the cases of
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FIGURE 78: Example for the output from our framework. (I) whole-slide clear cell papil-

lary RCC image. (II) is zoomed region, (III) is the labelled region before GGMRF smooth-

ing, and (IV) is the labelled region after GGMRF smoothing. Green (Class 1), yellow (Class

2), red (Class 3), and blue (Class 4) refer to fat, parenchyma, clear cell papillary RCC, and

clear cell RCC, respectively.

parenchyma and clear cell RCC, better pixel-wise accuracy can be obtained from patch size

of 350×350. Similar pixel-wise accuracy resulted from patches with sizes 350×350 and

450×450 for the cases of fat and clear cell papillary RCC; however, patch size of 350×350

had better accuracy than patch size of 250×250.

Table 22 shows that the fusion of CNN classifications produced a good classification

for the pixels in terms of accuracy, sensitivity, and specificity. After fusion, we obtained the

best performance metrics from fat cases while clear cell papillary RCC and clear cell RCC

gave the lowest performance metrics. We can conclude that CNNs extract new features

related to the underlying tissue texture from each patch size and fusing between CNN

classifications resulted in enhancing the final classification.

Finally, using GGMRF smoothing enhanced the labeling of the input slide image as
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FIGURE 79: Example for the output from our framework. (I) whole-slide clear cell RCC

image. (II) is zoomed region, (III) is the labelled region before GGMRF smoothing, and

(IV) is the labelled region after GGMRF smoothing. Green (Class 1), yellow (Class 2), red

(Class 3), and blue (Class 4) refer to fat, parenchyma, clear cell papillary RCC, and clear

cell RCC, respectively.

it works on removing inconsistencies, Table 23. Furthermore, our deep learning framework

surpassed other state-of-the-art models such as ResNet18 and ResNet34, Which demon-

strates that the notion of fusing CNN decisions is fruitful for obtaining improved classifi-

cation.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

The work presented in this dissertation documents the ability of the deep learning

algorithms to provide an automated and efficient tools for the diagnosis of human diseases

using medical images. The effectiveness of the deep learning algorithms has been success-

fully tested for the automated disease diagnosis in four different case studies. The first

case study aimed at developing an automated tool for the early detection of acute renal

transplant rejection using DWI. The second second case study aimed at developing an au-

tomated tool for the segmentation and quantification of the left ventricle from cardiac cine

MRI. The third case study aimed at developing an automated tool for the assessment of LV

strain using mice cine MRI and tagged MRI. The fourth case study aimed at developing

an automated tool for the detection of renal cell carcinoma from histopathological kidney

images. Summary of the main contributions of this dissertation are as follows:

• In the first case study, we propose an automated framework that combines the ad-

vantages of both DW-MRIs and deep learning to classify renal allografts into non-

rejection and acute rejection status by using data generated from the fusion of voxel-

wise ADCs and the clinical biomarkers. To the best of our knowledge, this is the

first automated non-invasive CAD system of its kind to assess renal transplant status

using the integration of the DW-MR image markers and clinical biomarkers along

with convolutional neural networks.

• In the second case study, the contributions are (i) The extraction of a region-of-

interest (ROI) that encompasses the LV from CMR images using an efficient method

that is based on FCN. ROI extraction before final cardiac segmentation alleviates the
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class-imbalance problem and reduces the computational and memory requirement.

(ii) A novel FCN architecture for cardiac segmentation following ROI extraction.

The network follows the same idea of the U-net of passing the input to a contract-

ing path followed by an expanding path. However, it has several bottleneck layers

that refer to different representation to the input. The up-sampling of these layers

are combined to obtain the final segmentation. The proposed architecture has less

number of parameters than the established models such as U-net, yet it demonstrated

a better performance. (iii) A novel loss function called radial loss that minimizes

the difference between the predicted LV contours and the ground truth contours was

incorporated with the cross-entropy loss. (iv) The generalization strength of our pro-

posed segmentation approach was evaluated by measuring the segmentation perfor-

mance of our approach when trained on the whole ACDC training dataset and tested

on another dataset (local dataset). We achieved good segmentation accuracy which

was comparable to another model that used only our local dataset.

• In the third case study, we developed an automated pipeline for accurate estimation

of strain from standard cine MRI in mice for both sham and myocardial infarction

(MI) subjects, to obviate the need for tagged imaging in mice. Since myocardial seg-

mentation is a crucial first step in processing and analyzing LV functional indices,

a deep learning-based approach for automatic segmentation of myocardium borders

was developed. Subsequently, a Laplace-based approach to track myocardial points

through the cardiac cycle was developed to accurately assess the strain from the stan-

dard cine cardiac MRI. The Laplace-based method was validated by comparing it to

the strain analysis outcome obtained by the tagged imaging which is currently the

gold standard for strain analysis. Finally, we also used our pipeline to estimate other

global and local cardiac indices.

• In the fourth case study, the contributions are (i) the first study to discriminate be-
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tween clear cell RCC and clear cell papillary RCC. This classification has high clin-

ical relevance. (ii) We propose a pyramidal deep learning model that utilizes a hier-

archy of three CNNs that process different image sizes. The deep learning improves

the precision of the diagnosis and decrease human error. Furthermore, it produces

reproducible results and objective assessment. (iii) Our approach can provide both

patch-wise classification and pixel-wise classification. (iv) We incorporate a statisti-

cal approach based on Markov-Gibbs random field (MGRF) to remove inconsisten-

cies in the final pixelwise classification.

Several possibilities for the future work of this dissertation include, but are not

limited to, the following:

• In the first case study, we are planning to extend our study by performing a statistical

analysis to determine the most informative b-values. Once we reach this point, we

could sacrifice some of the b-values that are unsatisfactory informative, which in turn

will reduce the DW-MRI acquisition time. Future progress includes the usage of a

larger sample size collected at different transplant centers and/or different imaging

systems and collection protocols, and the exploration of additional biomarkers, such

as genomic information that will augment personalized data in the cohort.

• In the second case study, we are planning to extend our deep learning algorithms

to process 3D cardiac data. This will help us to easily estimate left ventricular func-

tional indexes. Furthermore, our future work incorporates a complete computer aided

diagnostic system for cardiac disease classification and detection.

• In the third case study, we are planning to test and validate the algorithm potential

using a larger cohort. Despite these limitations, this study demonstrates the feasibility

of accurately estimating myocardial strain indices, which may obviate the need for

tagged MR clinically.
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• In the fourth case study, we are planning to include all renal carcinoma sub-types in

our classification system. We can also extend our system to assess the grading of

kidney cancer.
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