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ABSTRACT

STATISTICAL METHODS FOR PERSONALIZED TREATMENT
SELECTION AND SURVIVAL DATA ANALYSIS BASED ON

OBSERVATIONAL DATA WITH HIGH-DIMENSIONAL
COVARIATES

Don Ramesh Dinendra Sudaraka Tholkage

July 01, 2022

Due to the wide availability of functional data from multiple disciplines, the

studies of functional data analysis have become popular in the recent literature. How-

ever, the related development in censored survival data has been relatively sparse. In

Chapter 2, we consider the problem of analyzing time-to-event data in the presence

of functional predictors. We develop a conditional generalized Kaplan Meier (KM)

estimator that incorporates functional predictors using kernel weights and rigorously

establishes its asymptotic properties. In addition, we propose to select the optimal

bandwidth based on a time-dependent Brier score. We then carry out extensive nu-

merical studies to examine the finite sample performance of the proposed functional

KM estimator and bandwidth selector. We also illustrated the practical usage of

our proposed method by using a data set from Alzheimer’s Disease Neuroimaging

Initiative data.

Estimating the optimal treatment regime based on individual patient char-

acteristics has been discussed in many forums. Advanced computational power has

added momentum to this discussion over the last two decades, and practitioners have
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advocated using new methods to determine the best treatment. Treatments geared

towards the ”best” outcome for a patient based on their genetic markers and charac-

teristics are highly important. In Chapter 3, we develop an approach to predict the

optimal personalized treatment based on observational data. We have used inverse

probability of treatment weighted machine learning methods to obtain score func-

tions to predict the optimal treatment. Extensive simulation studies showed that our

proposed method has desirable performance in selecting the optimal treatment. We

provided a case study to examine the statin use on cognitive function to illustrate the

use of our proposed method.

Personalized treatment selection methods that assign individuals to treatments

based on patients’ characteristics have been widely recognized in modern medicine.

Survivorship is considered the most representative of clinical effectiveness among

many clinical outcomes. As a result, in personalized treatment selection, survival time

is arguably a better choice for a patient’s outcome. Many methods have been devel-

oped for randomized experimental data, which may not be suitable for observational

data due to the confounding between treatment assignment and outcome variable.

In Chapter 4, we propose a penalized semiparametric modeling approach to estimate

the optimal treatment regime, which is suitable for both randomized experimental

and observational data. The proposed method has a variable selection feature so

that it can handle high-dimensional covariates as well as censored observations. The

proposed method has been developed to identify the optimal treatment in multiple

treatment settings. Extensive simulation studies showed that our proposed method

has desirable performance in selecting the optimal treatment. We demonstrated the

application of the proposed method using data obtained from the Kentucky Medicaid

database on patients diagnosed with cirrhosis.
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CHAPTER 1

INTRODUCTION

High-quality observational studies play a significant role in biomedical research be-

cause they can investigate issues that would otherwise be difficult or impossible to

investigate. Major technological advances have contributed significantly to obtain-

ing high-quality data, especially in biomedical research. As a result, functional data

analysis methods have become one of the most active and significant areas in the field

of statistics, and most classical multivariate problems have a comparable functional

component. In the first project, we focus on the related development of the survival

data, which is relatively sparse in the literature.

Estimating the optimal treatment regime based on individual patient charac-

teristics has been discussed in many forums. In the second project, we develop an

approach to predict the optimal personalized treatment based on observational data.

Survivorship is considered the most representative of clinical effectiveness among

many clinical outcomes. Therefore the survival time is arguably a better choice for

the outcome for a patient in personalized treatment selection. In the third project,

we propose a penalized semiparametric modeling approach to estimate the optimal

treatment regime with high-dimensional covariates in the presence of censored obser-

vations.
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1.1 Conditional kaplan-meier estimator with functional covariates for

time-to-event data

The development of technology has greatly improved the ability to record and store

complex data. In many scientific fields such as biomedical, economic, and environ-

mental studies, sampled data are functions of certain index variables, such as time,

location, and temperature over a continuum. For example, in optical spectrometric

data collected to analyze different compounds in food samples, the intensity of light is

a function of continuous wavelength (e.g. Borggaard and Thodberg, 1992); in speech

recognition, human voices of pronouncing certain word are digitized and recorded as

a function of time (e.g. Ferraty and Vieu, 2003); In Febrero et al. (2008), the NOx

level in the air is measured over the course of a day near an industrial area. For more

examples of functional data, we refer readers to Ramsay and Silverman (2002).

Let {X(s), s ∈ S} denote a function variable, where s is some index variable

on a continuum S. However, due to the limitation of measurement and storage, X(s)

is usually collected only on a grid GS = {s1, · · · , sp} over S in practice. Therefore,

the measured data are often in the form of discretized vectors (X1, X2, · · · , Xp)
T with

Xk = X(sk), k = 1, · · · , p. When the grid GS is fine, the covariate vector resembles a

smooth variation of X(s).

Although functional data is commonly represented by vectors, it is inherently

different from ordinary multivariate vectors, due to the temporal/spatial intercorre-

lation between consecutive entries. As a result, direct use of traditional multivariate

statistical methods inevitably faces the difficulty of multicollinearity, and therefore

may not produce reliable results (see, e.g., Ramsay and Silverman, 2002). Moti-

vated by this, enormous efforts have been devoted to developing statistical tools for

functional data analysis. For instance, Müller and Stadtmüller (2005) considered

the generalized functional linear models with functional covariates; James (2002) de-

2



veloped functional principal component analysis (FPCA); Marx and Eilers (1999),

Cardot et al. (1999, 2003), and Cardot and Sarda (2005) investigated functional B-

splines regression methods; Ferraty and Vieu (2006) and Ferraty et al. (2007) studied

nonparametric kernel methods.

In biomedical applications, there are also tons of functional data available,

such as the cornea images in ophthalmology (Locantore et al., 1999), the magnetic

resonance imaging in the studies of Alzheimer’s Disease (Kong et al., 2018), the

electrtroencephalography in psychiatry (Hasenstab et al., 2017), and the electrocar-

diograms in cardiology (Zhou and Sedransk, 2009). In many of those studies, the

response variable of primary interest is the time-to-event time in the presence of

censoring. For example, Fang et al. (2016) investigated multiple myeloma patient’s

disease free survival against absolute lymphocyte cell counts, which were measured

as a function of time. Gellar et al. (2015) examined the association between the

post-hospital mortality of the patients who suffer from acute lung injury/respiratory

distress syndrome and the sequential organ failure assessment score, as a function of

ICU time.

However, the related development for the time-to-event time subject to cen-

soring has been relatively sparse in functional data analysis. James (2002) proposed

a functional censored regression model coupled with an EM algorithm introduced by

Schmee and Hahn (1979) to assess the expected survival time. Müller and Zhang

(2005) incorporated functional covariates as longitudinal covariates and developed

time varying functional principal component scores for predicting age-at-death distri-

butions. However, their method does not account for censoring. Gellar et al. (2015)

developed a penalized signal regression for mixed effect proportional hazard models.

Kong et al. (2018) utilized FPCA and introduced a functional linear cox regression

Model (FLCRM).

Kaplan-Meier (KM) estimator proposed by Kaplan and Meier (1958) has been

3



a popular method in time-to-event data (see, e.g., Beran, 1981; Gentleman and Crow-

ley, 1991; Gonzalez-Manteiga and Cadarso-Suarez, 1994), as it is a nonparametric ap-

proach without stringent model assumptions and describes the survival probabilities

directly. KM estimator has also been used in functional data. For example, Rutikanga

et al. (2021) employed it to estimate the extreme quantiles. However, to the best of

our knowledge, the asymptotic properties of the functional KM estimator have not

been thoroughly investigated and thus the procedures built upon it lack theoretical

guarantees. In this paper, we raise to this challenge by developing a generalized con-

ditional KM estimator with desirable asymptotic properties for functional data. We

also develop a bandwidth selection approach based on time dependent Brier scores

(Graf et al., 1999; Gerds and Schumacher, 2006) so that users can confidently apply

our proposed estimator to study functional time-to-event data.

The chapter 2 is organized as follows. In Section 2.1 we discuss the model

setup and develop the functional KM estimator. We provide theoretical properties

including consistency and asymptotic normality of the proposed estimator in Section

2.2. In Section 2.3, we carry out extensive numerical studies to examine the finite

sample performance of the proposed method. In Section 2.4, we illustrate the practical

use of our proposed method by a case study on Alzheimer’s Disease Neuroimaging

Initiative Data. Section 2.5 provides a discussion and some concluding remarks. All

proofs are relegated to the Appendix A.

1.2 Personalized treatment selection using observational data

Estimating the optimal treatment regime based on individual patient characteristics

has been a topic of discussion in many forums. Advanced computational power that is

fairly inexpensive to handle vast amounts of data has added momentum to this discus-

sion over the last two decades and practitioners have been advocating the use of new

methods in determining the best treatment (Van’t Veer and Bernards, 2008; Vazquez,
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2013). Treatments that are geared towards the “best” outcome (e.g., survival time)

for a patient based on his/her genetic and genomic markers are of high importance.

Literature on this topic largely deals with deciding between treatments based on a sin-

gle outcome measure modeled against patient characteristics. Assuming without any

loss of generality that a larger outcome is better, the methods developed in the litera-

ture essentially determine the best treatment as the one associated with the largest of

a measure of dominance. Majority of the existing literature use either a conditional

location parameter(Cai et al., 2011; Qian and Murphy, 2011; Zhao et al., 2012; Zhang

et al., 2012; Zhao et al., 2015) or a measure based on a conditional probability of an

outcome for one treatment exceeding the outcomes for others(Siriwardhana et al.,

2019) given the set of markers for the patient. In recent literature, using covariate

information to construct different treatment rules has attracted a lot of attention and

discussion. Wang et al. (2019) and Li et al. (2021) considered a linear combination of

covariate values to derive the treatment assignment using a two-stage multiple change

point detection method. Jiang et al. (2019) proposed an entropy learning approach for

estimating optimal treatment rules. Almost all existing optimal treatment selection

procedures based on prior data from randomized clinical trials (RCTs) for compar-

ing treatments are either using a classification algorithm or a reward maximization

scheme. While the RCT framework generates high-quality data for treatment com-

parisons by removing the selection bias arising from treatment assignment, there are

many situations where a RCT cannot be conducted. When such infeasibilites arise,

one resorts to using observational studies to make comparisons. Observational stud-

ies can be riddled with bias due to confounding variables which are causally related

to both treatment assignment and outcome variable. When one can measure all the

confounding variables which are the source of treatment assignment bias, an obser-

vational study can provide valuable information for a comparative study. There is a

modest amount of literature on optimal treatment selection using observational data.
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Again, these methods are rooted either in single stage classification concepts or two-

stage value optimization methods (see Tao and Wang, 2017; Huang et al., 2019, and

Hreferences therein).

In this study, we propose a treatment selection procedure based on existing

observational data. Our approach is similar to the method proposed by Cai et al.

(2011), which was generalized by Siriwardhana et al. (2019), where we use a summa-

rized covariate information called a score to generate smoothed versions of responses

for each treatment and estimate the optimal treatment for a new covariate value based

on those smoothed past responses. In contrast to the method in Siriwardhana et al.

(2019), we use a weighted estimation where the weights are inverse probability of get-

ting a treatment, to adjust for bias due to confounding. Related to this is work done

by Ma et al. (2015), who discuss the possibility of using observational data for optimal

treatment selection for the two treatment case using a regression based approach. In

our exploration we introduce and combine several regression related procedures such

as Generalized Boosting and Adaptive LASSO which have not been studied before in

the context of a search for the optimal conditional reward. As shown in the sequel

via a detailed simulation study, the method we propose appears to select the optimal

treatment with high accuracy under a variety of conditions.

The chapter 3 is organized as follows. In Section 3.1, we describe response

models under consideration and develop the estimation method. In Section 3.2, we

provide extensive simulation studies which show that our proposed method has de-

sirable performance in selecting the optimal treatment. In Section 3.3, we provide

a case study to illustrate the use of our proposed method. Section 3.4 provides a

discussion and a few concluding remarks.
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1.3 Identifying optimal treatment regimes using single index models

for survival data

Modern medicine has widely recognized that the reaction of patients in response to

a certain treatment varies significantly. A treatment that is beneficial to a majority

of individuals may fail to work for patients with specific characteristics (Sorensen,

1996). For instance, selective serotonin reuptake inhibitors (SSRIs) have been con-

sidered standard treatments for patients with panic disorder. However, Zamorski

and Albucher (2002) discovered that 30% of patients are not able to tolerate these

drugs or have an unfavorable response and proposed investigating the optimization

of SSRI dosing based on patients’ characteristics. As a result, personalized treat-

ment selection methods that assign a patient to the optimal treatment to achieve the

best clinical outcome based on the patient’s characteristics have attracted increasing

research interest.

There have been extensive studies on identifying optimal individualized treat-

ment rules (ITR), using data from either randomized clinical trials (RCT) or observa-

tional studies. The RCT framework is favorable in personalized treatment selection

since it generally does not involve any selection bias arising from the treatment assign-

ment (Ma et al., 2015). However, there are many situations where an RCT cannot

be conducted because they are either unethical or expensive. On the other hand,

the advancement of modern technology has made the data from observational studies

widely available. The major limitation in observational studies is that the association

between the treatment and the outcome variable is distorted by the confounding vari-

ables. Under the assumption that there are no unmeasured confounding variables,

the optimal treatment selection methods with appropriate control of confounding can

still be developed. For example, Kulasekera et al. (2022) recently proposed a pa-

tient specific score based method to select the optimal treatment using observational

7



data, where the inverse probability of treatment weighting was used to remove the

confounding effect.

In the literature, there are two main approaches to identifying the ITR: Q-

learning (Murphy, 2003, 2005; Moodie et al., 2012) and A-learning (Robins, 2004; Lu

et al., 2013; Schulte et al., 2014). In Q-learning, the optimal treatment regimes are

decided using a posited parametric regression model between the outcome variable

and covariates and treatments. In A-learning, a semiparametric approach is used

to estimate the contrast function between treatment and control, and the optimal

treatment regimes hence can be determined by the contrast function (Schulte et al.,

2014). The other approaches include the outcome-weighted learning method proposed

by Zhao et al. (2012), in which the estimation of the optimal treatment regimes was

shown to be equivalent to a weighted classification problem. In this article, we focus

on estimating the contrast function, since the contrast function not only helps identify

the ITR but also gauges the individual treatment effect.

Among many clinical outcomes, survivorship can be considered the most rep-

resentative of clinical effectiveness (Ma et al., 2015). Nonetheless, the majority of

the aforementioned methods were restricted to complete data, and the development

of survival data has been relatively sparse. There are two major aspects to consider

for survival outcomes resulting from observational studies: the censoring observations

and the other is the confounding variables. A Q-learning method that is adjusted for

censored data uses inverse probability of censoring weights as was proposed by Gold-

berg and Kosorok (2012). A-learning approach implemented through additive hazard

models (Kang et al., 2018) and semiparametric models (Geng et al., 2015; Jiang et al.,

2017) on the estimation of the ITR with survival data have been proposed. Zhao et al.

(2015) extended the outcome weighted learning method (Zhao et al., 2012) to accom-

modate censored data by incorporating the inverse probability of censoring weights.

To handle the confounding variables, the propensity-score-based methods have been

8



developed in both Q-learning (Zhao et al., 2020) and A-learning (Geng et al., 2015;

Jiang et al., 2017; Kang et al., 2018) approaches, censoring is present. However, there

are several limitations in the aforementioned studies. In the Q-learning approaches,

the simple linear models may be severely misspecified and may lead to inaccurate

estimates of ITR. The A-learning approaches are more robust to model misspecifi-

cation than Q-learning in estimating optimal ITR. However, in Geng et al. (2015);

Jiang et al. (2017); Kang et al. (2018), the contrast function between treatment and

control is assumed to be linear and fails to capture the underlying contrast function

when the contrast function is nonlinear. All of the above methods discussed are not

designed to work in the presence of high-dimensional covariates and also fail to work

in multiple treatment settings.

This study proposes a novel method to identify the optimal treatment regime

in a multiple treatment setting. The proposed loss function takes the form of A-

learning, as it directly estimates the contrast function and does not require the correct

specification of the baseline function. Therefore, the proposed approach is robust

against model misspecification. We propose to estimate the contrast functions using

partial linear models, which offer flexibility and reasonable efficiency in modeling a

wide range of data. In addition, to cope with the high dimensional data that often

appears in clinical studies, we incorporate shrinkage methods to carry out variable

selection. Furthermore, we utilize the inverse probability of censoring weights and

propensity scores to account for the censored nature of the data and the potential

confounding factors, respectively. Thus, the proposed method can provide consistent

estimations of the contrast function in the presence of data from both RCT and

observational studies.

The chapter 4 is organized as follows. Section 4.1 introduces the response

model and describes the proposed estimator, which employs a modified loss function.

Section 4.2 contains extensive simulation studies under various scenarios to demon-
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strate the performance of our method in selecting optimal treatment. In section 4.3,

we demonstrate the application of our method using data obtained from the Kentucky

Medicaid database on the patients diagnosed with cirrhosis. Section 4.4 concludes

with a discussion and a few closing remarks.
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CHAPTER 2

CONDITIONAL KAPLAN-MEIER ESTIMATOR WITH

FUNCTIONAL COVARIATES FOR TIME-TO-EVENT DATA

2.1 Model setup and estimation method

We begin with introducing some notations to present our proposed procedure. For

generic variables U and V , let FU(·) and SU(·) = 1−FU(·) denote the cumulative dis-

tribution function and the survival function of U , respectively. Additionally, FU(·|V )

and SU(·|V ) denote the conditional cumulative distribution and survival functions,

respectively, of U given V . Moreover, the conditional hazard and cumulative hazard

functions of U given V are denoted by λU(·|V ) and ΛU(·|V ) respectively. We denote

the L2 norm of a functional covaraite x by ∥x∥ and denote the cardinality of a set

A by |A|. Given two sequences s1n and s2n, we use the notation s1n ≃ s2n to denote

s1n = O(s2n) and s2n = O(s1n).

2.1.1 The proposed method

In this section, we describe the proposed procedure for estimating ST (·|X), where

T is the time-to-event of interest, subject to the right censoring by C and X =

(X(1)(s), · · · , X(p)(s))T, s ∈ S is a p-dimensional vector of functional covariates cor-

responding to the patient. Without loss of generality, we assume that S = [0, 1].

Here, any scalar covariate Z can also be represented as a constant function Z(s) =

Z, ∀s ∈ S. For the simplicity of presentation, we only consider X = X(s), s ∈ S

as a 1-dimensional functional covariate in this work. However, the proposed method
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can be readily applied to scenarios with p > 1, as demonstrated in our numerical

analysis. Throughout the rest of this paper, we may write the functional covariate

X(s), s ∈ S as X for simplicity in notation when there is no confusion. We also

denote the functional space of X by X .

Let Y = min{T,C} and δ = 1{T < C} be the observed outcome variable and

the censoring indicator respectively, where 1{·} is an indicator function. The observed

data consists of n i.i.d replicates of (Y, δ,X), denoted by {(Yi, δi, Xi), i = 1, · · · , n}.

Under the conditional independence between T and C given X, the conditional sur-

vival function of Y given X is SY (·|X) = ST (·|X)SC(·|X). By simple algebra,

ΛT (t|X) = − logST (t|X) = −
∫ t

0

dST (u|X)

ST (u|X)
=

∫ t

0

dH(u|X)

SY (u|X)
, (2.1)

where H(t|X) = P (Y ≤ t, δ = 1|X) is the sub-distribution of Y in the absence

of censoring. As H(·|X) and SY (·|X) in Equation (2.1) involve only the observed

variables, we can estimate them by kernel-type methods (see, e.g., Parzen, 1962;

Nadaraya, 1964; Watson, 1964; Gasser and Müller, 1979).

A common approach to dealing with functional covariates is utilizing the

Karhunen-Loève expansion (see, e.g., Ma, 2016; Kong et al., 2018). Namely, we

first find L orthogonal basis functions defined on S and represent each Xi(·) by scores

{ξil, i = 1, · · · , n; l = 1, · · · , L} obtained from projecting Xi(·) onto the space gener-

ated by L basis functions. However, as L is required to increase with the sample size

n (de Boor, 2001), the typical kernel estimation based on ξil’s would inevitably suffer

from the curse of dimensionality and lead to inefficient estimation.

To overcome this challenge, we follow Ferraty et al. (2007) and employ the

functional kernel estimator directly. Let K(·) be some kernel function and hn be a

sequence of positive real numbers. We may suppress the subscript of hn when there

is no confusion. We obtain Nadaraya-Watson type weights {Bnj(x), j = 1, · · · , n, x ∈
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X} as

Bnj(x) =
K(h−1 ∥Xj − x∥)∑n
r=1K(h−1 ∥Xr − x∥)

.

Subsequently, the kernel type estimators of H(t|x) and SY (t|x) can be constructed

as Ĥ(t|x) =
∑n

j=1 1{Yj ≤ t, δj = 1}Bnj(x) and ŜY (t|x) =
∑n

j=1 1{Yj ≥ t}Bnj(x), for

x ∈ X . Given that the argument inside the kernel function K above is positive, K

is typically an asymmetric probability density function. Following Dabrowska (1987,

1989), we acquire a natural estimator of ΛT (·|x)

Λ̂T (t|x) =
∫ t

0

dĤ(u|x)
ŜY (u|x)

=
n∑
j=1

1{Yj ≤ t, δj = 1}Bnj(x)∑n
r=1 1{Yr ≥ Yj}Bnr(x)

, (2.2)

where the second equality follows from the fact that Ĥ(·|x) and ŜY (·|x) are piece-

wise constant functions that only jump at Yj’s. Then by Equation (2.1), a generalized

conditional KM estimator of ST (t|x) can be immediately obtained as

ŜT (t|x) =


∏n

j=1 exp
(
− 1{Yj≤t,δj=1}Bnj(x)∑n

r=1 1{Yr≥Yj}Bnr(x)

)
, t ≤ Y(n)

0 , t > Y(n)

(2.3)

Remark 2.1.1. Our proposed method can also be applied to settings where multiple

functional or regular covariates are present. Let Z denote an additional covariate.

We can construct multi-dimensional Nadaraya-Watson type weights Bnj(x, z) as

Bnj(x, z) =
K1(h

−1
1 ||Xj − x||)×K2(h

−1
2 ||Zj − z||)∑n

j=1K1(h
−1
1 ||Xj − x||)×K2(h

−1
2 ||Zj − z||)

,

where K1 is an asymmetric kernel, and K2 is either an asymmetric kernel (can be

K1) in case Z is a functional covariate or a symmetric kernel in case Z is a scalar

covariate. Here, h1 and h2 are the bandwidths associated respectively. We can then

obtain ŜT (t|x, z) by replacing Bnj(x) with Bnj(x, z) in Equation (2.3). It should be

noted that convergence rates are negatively impacted when we have a product weight
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such as the above.

2.1.2 Bandwidth selection

It is well-known that the bandwidth selection is crucial to the performance of kernel-

type estimator (see, e.g., Ferraty et al., 2007; Kara-Zaitri et al., 2017). One appealing

approach is to study the asymptotic properties of ŜT (t|x) and derive the optimal band-

width by minimizing the mean integrated squared errors (Berg and Suaray, 2010).

However, it is very challenging to obtain a closed form of the asymptotic variance

of a generalized KM estimator (see, e.g., Gonzalez-Manteiga and Cadarso-Suarez,

1994). We thus propose to select the optimal bandwidth by a data-driven m-fold

cross validation as follows:

1. Randomly split the index set {1, 2, · · · , n} intom equal-size blocks: I1, · · · , Im.

Let I−k be the collection of indices that are not contained in Ik.

2. Given a bandwidth h, for each k = 1, · · · ,m,

(a) obtain ŜT (t|x), the estimates of the survival probability based on the

observations {(Yi, δi, Xi), i ∈ I−k}.

(b) obtain the fitness score Ek(h) for the estimates ŜT (t|x) in 2(a) following

certain model fitness metric E, based on the observations {(Yi, δi, Xi), i ∈

Ik}.
3. Summarize the overall fitness as EA(h) = m−1

∑m
k=1Ek(h).

4. Choose ĥn = argminhEA(h) as the selected bandwidth.

For survival data, many fitness metrics often used for model selection may not be

suitable, as they fail to account for censoring. The concordance index (Harrell et al.,

2015) and time-dependent Brier scores (Graf et al., 1999; Gerds and Schumacher,

2006) are commonly used to evaluate the fitness of survival models (Kattan and

Gerds, 2018). In this study, we chose to use the Brier score, which takes into account
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both discrimination and calibration to assess the model fitness. In contrast, the

concordance index reflects only discrimination (Zhang et al., 2018). The estimated

Brier scores of observations with indices in Ik at time t can be obtained as follows:

B̂S(t) =
1

|Ik|
∑
i∈Ik

Ŵi(t)(1{Yi > t} − ŜT (t|Xi))
2, (2.4)

where Ŵi(t) is the inverse probability censoring weight (IPCW) of subject i at time

t, given by,

Ŵi(t) =
1{Yi ≤ t, δi = 1}
1− ŜC(Yi|Xi)

+
1{Yi > t}

1− ŜC(t|Xi)
. (2.5)

ŜT (t|x) and ŜC(t|x) in (2.5) are the estimated survival probabilities of T and C from

2(a). We further adopted a more general version of the IPCW Brier score (Kvamme

and Borgan, 2019) with |Ik| in 2.4 replaced by
∑
Ŵi(t). Now we can calculate the

evaluation score Ek(h) in step (2.b), averaging the Brier scores over a range of t > 0.

Then following steps 3 and 4, we can select the optimal bandwidth.

2.2 Theoretical properties

In this section, we establish the theoretical properties of the proposed conditional

KM estimator. We begin with imposing the following theoretical conditions, which

facilitate our technical derivations.

(C1) Let T = [0, τ ] for some constant τ > 0. Given x ∈ X , let B(x, ε) = {x′ ∈

X , ||x − x′|| ≤ ε} be a ball being centered at x and of radius ε (Ferraty and

Vieu, 2006). There exists some ε∗ > 0, such that,

sup
x∈X

sup
x1,x2∈B(x,ε∗)

sup
t1,t2∈T

|ST (t1|x1)− ST (t2|x2)| ≤ C(||x1 − x2||2 + |t1 − t2|2).

(C2) The kernel function K(·) > 0 is Lipschitz-continuous over its support [0, 1],
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satisfying
∫ 1

0
K(v)dv = 1 and 0 < infv∈[0,1]K(v) ≤ supv∈[0,1]K(v) <∞.

(C3) Let ϕx(ε) = P (X ∈ B(x, ε)) > 0 denote the probability of the functional

variable X in B(x, ε). There exists a function ϕ(·) and constants C1, C2, A > 0

such that 0 < C1ϕ(ε) ≤ infx∈X ϕx(ε) ≤ supx∈X ≤ C2ϕ(ε) < ∞, and ϕ′(ε) <

A,∀ε < ε∗.

(C4) Let ψ(ε) = log(Nε(X )), where Nε(X ) is the minimal number of B(x, ε)’s to

cover X . This is called the Kolmogorov’s ε-entropy of X (Ferraty et al., 2010).

For n large enough, (log n)2/nϕ(h) < ψ(log n/n) < nϕ(h)/ log n and for some

β > 1,
∞∑
j=1

j exp

[
(1− β)ψ

(
log j

j

)]
<∞.

The lipschitz continuous condition (C1) has been widely adopted in the literature

(see, e.g., Ferraty and Vieu, 2006; Kara-Zaitri et al., 2017) to ensure the smoothness

of functional operators. The conditions on kernel function in (C2) have been adopted

in the functional nonparametric estimation literature (Ferraty et al., 2007; Bouzebda

and Nemouchi, 2020). K(·) is chosen to be an asymmetric kernel because ∥Xj−x∥ is

always positive. The bounded support of K(·) and that K(·) is bounded away from

0 are technical conditions to simplify the theoretical derivations. In the numerical

studies, we chose the asymmetric Gaussian kernel and the results showed that it works

quite well.

Conditions (C3) and (C4) follow from Ferraty et al. (2010). They are needed to

establish the uniform consistency of the proposed conditional KM estimator over X .

ϕ(ε) in Condition (C3) controls the concentration of the probability measure of the

functional variable X, which is related to all the asymptotic results in nonparametric

statistics for functional variables, as indicated by Ferraty and Vieu (2006). It is

analogous to the assumed density condition when X is a scalar or vector (see, e.g.,

Dabrowska, 1989). ψ(ε) in condition (C4) is a measure of the complexity of X . A
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larger ψ(ε) means that X is a more complex function space. Condition (C4) essentially

requires X to have some suitable complexity so that local smoothing can be applied.

It is analogous to the entropy condition that is often assumed in empirical process

(see, e.g., Van Der Vaart and Wellner, 1996; Kosorok, 2008). Conditions (C3) and

(C4) are often satisfied in practice. We refer the reader to Section 2 in Ferraty et al.

(2010) for some common examples where these two conditions are met.

We first establish the estimation consistency results of Ĥ and ŜY .

Theorem 2.2.1. Under Conditions (C1)-(C4), if h→ 0 and (nϕ(h))−1ψ(log n/n) →

0, then

sup
x∈X

sup
t∈T

|Ĥ(t|x)−H(t|x)| = o

(
h2 +

(
ψ(log n/n)

nϕ(h)

)1/2
)

a.s.

sup
x∈X

sup
t∈T

|ŜY (t|x)− SY (t|x)| = o

(
h2 +

(
ψ(log n/n)

nϕ(h)

)1/2
)

a.s.

If X is a compact set in R and the density of X is bounded below and above,

then ψ(log /n) ≃ log n and ϕ(h) ≃ h. Thus, Theorem 2.2.1 boils down to the results

for the ordinary conditional KM estimator (see, e.g., Dabrowska, 1989; Gonzalez-

Manteiga and Cadarso-Suarez, 1994).

Next, we derive an almost sure representation for the cumulative hazard func-

tion ΛT (t|x), in terms of a sum of independent random variables as follows.

Theorem 2.2.2. Under the same conditions as in Theorem 2.2.1,

Λ̂T (t|x)−ΛT (t|x) = ST (t|x)−1

n∑
j=1

Bnj(x)ξ(Yj, δj, t, x)+o

(
h2 +

(
ψ(log n/n)

nϕx(h)

)3/4
)

a.s.,

where

ξ(Yj, δj, t, x) = ST (t|x)

[
−
∫ min{Yj ,t}

0

dH(u|x)
SY (u|x)2

+
1{Yj ≤ t, δj = 1}

SY (Yj|x)

]
.

17



There are two remainder terms in Theorem 2.2.1, One of them, h2, is the

bias term, and the other one,
(
ψ(logn/n)
nϕx(h)

)3/4
, is a dispersion component. Since they

increase and decrease, respectively as the bandwidth increases, we need to chose a

suitable bandwidth to balance this trade-off. Noting that ŜT (t|x) = exp(−Λ̂T (t|x)),

we can obtain the following corollary.

Corollary 2.2.1. Under the same assumptions as in Theorem 2.2.2,

ŜT (t|x)− ST (t|x) =
n∑
j=1

Bnj(x)ξ(Yj, δj, t, x) + o

(
h2 +

(
ψ(log n/n)

nϕx(h)

)3/4
)

a.s

Moreover, if nϕx(h)h
4 → 0 and (nϕx(h))

−1(ψ(log n/n))3 → 0, ∀x ∈ X ,

(nϕx(h))
1/2[ŜT (t|x)− ST (t|x)] →d N(0, V (x, t))

for some variance function V (x, t).

The form of V (x, t) is quite complicated and the estimation of V (x, t) is beyond

the scope of this work.

2.3 Simulation study

In this section, we conduct extensive simulation studies to examine the finite sam-

ple properties of our proposed procedure. We consider the following four different

Scenarios.

• Scenario 1: T (X) =
∫ +1

−1
|X(s)|(1 − cos(πs))ds + ϵ, where X(s) = sin(ωs) +

(A + 2π)s + B, s ∈ (−1, 1), A,B ∼Unif(0, 1), ω ∼Unif(0, 2π), and ϵ ∼ N(0, 2)

distribution.

• Scenario 2: T (X) =
∫ +1

−1
|X(s)|(1− cos(πs))ds+2.5Z+ ϵ, where X(s) and ϵ are

generated in the same way as in scenario 1, and Z follows a standard normal
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distribution.

• Scenario 3: T (X) = 1+2.5
∫ +1

−1
(1−cos(πs))ds+ϵ. ,where X(s) and ϵ generated

in the same way as in scenario 1.

• Scenario 4: T (X) ∼ exp(h0(t) exp{
∫ 1

0
X(s)β0(s)ds}), where h0(t) = 1, X(s) =

U1 + U2s +
∑10

j=1[νj1 sin{2(2j − 1)πs} + νj2 cos{2(2j − 1)πs}], with U1, U2 ∼

N(0, 1), νj1, νj2 ∼ N(0, 1/j), and β0(s) = 0.6[sin(πs)− cos(πs) + sin(3πs/10)−

cos(3πs)+sin(5πs)/9−cos(5πs)/9+sin(7πs)/16−cos(7πs)/16+sin(9πs)/25−

cos(9πs)/25 + (2π)−1/2 exp{−2−1(s− 0.5)2}] for 0 ≤ s ≤ 1.

Scenario 1 follows from Ferraty et al. (2007) where the survival time depends on the

functional covariates. In Scenario 2, we considered an extra covariate in addition to

functional covariates to elaborate what we discussed in Remark 2.1. Scenario 3

is considered to examine the performance of the proposed method when the time is

independent of the covariates. Scenario 4 is a functional Cox regression model and

was considered in Kong et al. (2018)

The censoring time in each scenario was generated independently from a uni-

form distribution Unif(0, c0), where c0 is chosen to achieve the desired censoring rates

of 15% and 25%, representing low and mild censoring, respectively. In addition, we

consider two sample sizes n = 100 and 400, simulating the small and moderate sample

sizes, respectively. For each combination of scenario, censoring rate, and sample size,

we generate 100 replications.

In each replication, we standardize the functional covariates by first centering

them according to their means and then scaling them by the standard deviation of

their L2 norms. The standardization of the covariates is critical for us to specify a

uniform grid of bandwidth. We chose the kernel function K(.) to be the asymmetrical

Gaussian kernel. To speed up locating the optimal bandwidth associated with the

kernel function, we carried out a 2-fold search. We first considered a coarse grid

19



of bandwidth, {0.5, 1, · · · , 20} and selected a pilot bandwidth h̃, according to the

procedure described in Section 2.2. Then we constructed a refined grid (h̃− 1, h̃+1)

of size 20 to select the optimal bandwidth.

In Scenario 2, we consider an additional grid of bandwidth for the Gaussian

kernel function associated with the scalar covariate, Z. According to the silverman’s

rule of thumb (Silverman, 2018), the optimal choice is approximately 1.06σn−1/5 ≈

0.42 (n = 100). We thus consider a grid of bandwidth {0.20, 0.25, · · · , 1}. We conduct

the cross validation method in section 2.2 to obtain a pair of optimal bandwidths for

the two kernel functions simultaneously. In scenario 3, we only conducted the search

on the coarse grid as we expect the bandwidth to be large.

To evaluate the performance of our proposed bandwidth selection procedure,

we compare the selected bandwidth to a hypothetical one obtained by using the mean

squared error (MSE)

MSE(t) =
1

m

m∑
k=1

∑
i∈Ik

[ST (t|Xi)− ŜT (t|Xi)]
2 (2.6)

as the fitness metric E in our proposed cross validation procedure in Section 2.2. This

can be done since ST (t|X) is known in the simulations.

Figures 2.1 and 2.2 plot the average Brier score over 100 replications at different

bandwidths against the bandwidth under four scenarios for sample sizes 100 and 400

respectively. The vertical lines in Figures 2.1 and 2.2 indicate the average optimal

bandwidths selected from using Brier score (dotted) and MSE (dashed).

Figures 2.1 and 2.2 indicates a good performance of our proposed bandwidth

selector. For scenarios 1,2, and 4, it can be seen that the optimal bandwidth selected

using the Brier score is close to the “oracle” optimal bandwidth selected based on

MSE, which assumes that the true conditional survival probabilities are known in

advance. As the censorship rate decreases, the difference between the two selected
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bandwidths becomes smaller. In Scenario 3, since the survival time is independent

of the covariates, the regular KM estimator should be used and the theoretical op-

timal bandwidth for our proposed conditional KM estimator is infinite so that all

observations would be used to estimate the survival probability. Large bandwidths

were selected by our proposed bandwidth selector as expected, and thus the resulting

estimator would be similar to regular Kaplan-Meier estimator.

We compare the proposed method to two benchmark methods: the regular

KM estimator and FLCRM (Kong et al., 2018). We considered the regular KM

estimator for all scenario and FLCRM for Scenario 4. The functional Cox regres-

sion model was implemented using the R codes provided by Kong et al. (2018). We

assess the predictive performance of the three methods as follows: in each repli-

cation, we generate additional test data set of sample size 100. For the proposed

method, we compute ŜT (Yi|Xi) for each (Yi, Xi) in the testing data, based on (2.3)

with the training data and the selected optimal bandwidth from the training data

set. Then we calculated the mean squared prediction error (MSPE) of the estimates

as
∑100

i=1(ŜT (Yi|Xi)−ST (Yi|Xi))
2/100. For the benchmark methods, we also obtained

their corresponding predicted survival probabilities and MSPE. The summary of the

results are presented in Figure 2.3 and Table 2.1.

Figure 2.3 shows that for Scenarios 1, 2, and 4, the proposed method has

comparatively lower MSPEs than the other methods. Furthermore, we can observe

that the performance of the proposed estimator based on the bandwidth selected

using the Brier score and “oracle” MSE (2.6) is comparable, confirming a good per-

formance of our proposed bandwidth selector. Moreover, we note that as the sample

size increases, the performance of our proposed conditional functional KM estimator

enhances with lower MSPEs in all scenarios. On the contrary, the MSPE from the

regular KM estimator does not necessarily gets lower as the sample size increases.

Table 2.1 shows that the MSPE of our conditional functional KM estimator decreases
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at a lower censoring rate, as expected. When the survival time is independent of

covariates (Scenario 3), the regular KM estimator is expected to achieve the best

performance. But the proposed estimator performs on par with the regular KM esti-

mator because our bandwidth selector chose a large bandwidth and the conditional

KM estimator converges to KM estimator as the bandwidth increases. Therefore,

regardless of the various scenarios considered in this study, we can claim that the

proposed estimator performs the same or better than the comparison methods.

2.4 Case study

In this section, we illustrate the practical use of our proposed method by analyzing

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data (Kong et al., 2018).

Alzheimer’s disease is one of the most common causes of memory loss and dementia in

which roughly more than 5 million Americans are affected, and is the 6th leading cause

of death in the USA. It is a progressive disease. In earlier stages of the disease, the

symptoms are mild and the treatment is more likely to be beneficial as the symptoms

gradually worsen over time. Therefore an earlier and more accurate diagnosis is one

of the most important goals in this area of research. The phase of mild cognitive

impairment (MCI) is considered as the initial stage of dementia, and the time that

takes an individual to convert from MCI to AD is of primary interest in various studies

(see, e.g., Jack et al., 1999; Fjell et al., 2010; Barnes et al., 2014; Li et al., 2017).

The hippocampus is an area in the brain that is important for learning and

memory. It is also vulnerable to affect at the early stage of AD. Multiple studies

(Thompson et al., 2004; Apostolova et al., 2006; Blanken et al., 2017) have proposed

to use hippocampal radial distances for studying the changes in the hippocampus

of the AD patients, as hippocampal radial distances are the distances between the

medial core of the hippocampus and the corresponding vertex, and can reflect the

hippocampal shape and size. In this study, we use the hippocampal radial distances
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of 30,000 surface points on the left and right hippocampal surfaces at baseline as

functional covariates. In Figure 2.4, we plotted the hippocampal radial distance curves

for two randomly chosen patients ((a) and (b)) and the curves of all the patients in an

overlayed plot (c). Additionally, we also consider the Alzheimer’s Disease Assessment

Scale-Cognitive Subscale (ADAS-Cog) score as it was identified to be one of the most

significant scalar covariates in predicting the time of conversion from MCI to AD in

Kong et al. (2018). The data consists of 373 MCI patients where 161 of them had

developed AD before study completion.

The functional covariate (hippocampal radial distances) and the scalar covari-

ate (ADAS-Cog score) were both scaled prior to the estimation. We split the data

into a training and testing set. The training set contains 273 randomly chosen obser-

vations and was used to calculate the optimal bandwidth. The testing set is of sample

size 100, to which we apply the proposed method and compare the performance of

other methods considered in this work. To select the the optimal bandwidths for the

functional covariates and scalar covariate, we employed the same approach used in

Scenario 2 of our simulation studies and used the same grids of bandwidths for the

functional and scalar covariates. The optimal bandwidth for the functional and scalar

covariates were found to be 1.1 and 0.6, respectively. Then we computed the pre-

dicted survival probability for the testing data and subsequently obtained the Brier

scores. To compare the performance of the proposed method, we also used FLCRM

and regular KM methods to estimate the survival probabilities of the testing data

and calculated their corresponding Brier scores. Noting that a smaller value of the

Brier score indicates a more accurate estimation of survival probability, Figure 2.5

demonstrates that the performance of the proposed method is superior to the other

two methods at most of the time points in the range of T . Furthermore, we estimated

the area under the brier score curve (AUC) for each method. The proposed condi-

tional functional KM has a significantly lower AUC (219.5) than FLCRM (326.7) and
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the regular KM method (418.7).

2.5 Discussion

Recent technological advancement has made functional data widely available in mul-

tiple disciplines, especially biomedical studies, where the response variable is often

the time-to-event time in the presence of censoring. Therefore, it would be practically

appealing to develop a conditional KM estimator that takes the functional covariates

into account. In this paper, we rise to this challenge and propose a kernel-based

conditional generalized KM estimator to analyze time-to-event data in the presence

of functional covariates. We rigorously establish the proposed estimator’s asymptotic

properties and develop a Brier scores-based bandwidth selector. The numerical stud-

ies in this paper evince the satisfactory performance of our proposed estimator when

the functional covariate is present.

Wang and Wang (2009) and Leng and Tong (2013) studied the weighted quan-

tile regression for censored survival data with weights constructed from the conditional

KM estimator. The quantile regression can accommodate and investigate the hetero-

geneous effects of covariates on the survival time. It is possible to develop a quantile

regression for functional covariates and examine their varying effects, which often

entail significant practical implications (see,e.g., Peng and Huang, 2008; Zheng et al.,

2018). The detailed development is beyond the scope of this paper and will be studied

in our forthcoming work.
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2.6 Tables and Figures

Table 2.1: The MSPEs of the survival probability in the test data using conditional
functional KM, regular KM, and FLCRM under different scenarios.

15% Censoring 25% Censoring
n Method Mean SD Mean SD

Scenario1 100 Cond.KM.MSE 0.0588 0.0118 0.0618 0.0106
Cond.KM.Brier 0.0617 0.0123 0.0644 0.0113
KM 0.1034 0.0064 0.1035 0.0063

400 Cond.KM.MSE 0.0381 0.0047 0.0421 0.0060
Cond.KM.Brier 0.0393 0.0051 0.0437 0.0067
KM 0.0990 0.0052 0.0992 0.0053

Scenario2 100 Cond.KM.MSE 0.0817 0.0095 0.0886 0.0103
Cond.KM.Brier 0.0853 0.0103 0.0936 0.0129
KM 0.2064 0.0124 0.2073 0.0108

400 Cond.KM.MSE 0.0556 0.0059 0.0600 0.0062
Cond.KM.Brier 0.0570 0.0063 0.0624 0.0070
KM 0.2050 0.0110 0.2046 0.0095

Scenario3 100 Cond.KM.MSE 0.0378 0.0130 0.0417 0.0149
Cond.KM.Brier 0.0392 0.0129 0.0437 0.0149

KM 0.0362 0.0122 0.0398 0.0133
400 Cond.KM.MSE 0.0210 0.0066 0.0237 0.0082

Cond.KM.Brier 0.0227 0.0072 0.0251 0.0083

KM 0.0204 0.0064 0.0228 0.0079

Scenario4 100 Cond.KM.MSE 0.0817 0.0103 0.0946 0.0172
Cond.KM.Brier 0.0860 0.0128 0.1000 0.0170
KM 0.1633 0.0115 0.1726 0.0173
FLCRM 0.1503 0.1011 0.1942 0.1173

400 Cond.KM.MSE 0.0601 0.0075 0.0703 0.0111
Cond.KM.Brier 0.0626 0.0081 0.0767 0.0112
KM 0.1616 0.0111 0.1677 0.0124
FLCRM 0.1666 0.1157 0.1842 0.1185

Cond.KM.Brier= Conditional Kaplan-Meier (Bandwidth selection based on Brier scores),
Cond.KM.MSE= Conditional Kaplan-Meier (Bandwidth selection based on MSE), KM= Kaplan-
Meier and FLCRM= Functional Linear Cox Regression Model
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Figure 2.1: Simulation results of the average Brier score for sample size 100 over 100
replications plotted against the grid of bandwidth for different scenarios. The vertical
lines indicate the optimal bandwidth based on Brier scores and MSE.
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Figure 2.2: Simulation results of the average Brier score for sample size 400 over 100
replications plotted against the grid of bandwidth for different scenarios. The vertical
lines indicate the optimal bandwidth based on Brier scores and MSE.
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Figure 2.3: The boxplots represent the sampling distribution of the MSE based on
the 100 simulation test sets using different methods: Cond.KM.Brier= Conditional
Kaplan-Meier (Bandwidth selection based on Brier scores), Cond.KM.MSE= Condi-
tional Kaplan-Meier (Bandwidth selection based on MSE), KM= Kaplan-Meier and
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CHAPTER 3

PERSONALIZED TREATMENT SELECTION USING

OBSERVATIONAL DATA

1

3.1 Treatment selection method

In this section, we describe the proposed procedure for the selection of optimal treat-

ment. Let us denote the observed triplet for a patient as (Y,X, T ), where Y is the

outcome variable, X is a vector of r covariates, and T is the treatment received among

the K treatment choices, say T ∈ {1, · · · , K}. Note that each subject has potentially

K treatment choices. Let (Y ∗
1 , ..., Y

∗
K)

′ be the hypothetical (counterfactual, potential)

responses for a patient where he/she can have given one of K treatments where larger

values of the responses are indicative of better outcomes. Although there areK poten-

tial responses for K treatment choices, in practice one can not observe the whole vec-

tor (Y ∗
1 , ..., Y

∗
K)

′ for a single patient. Instead, one can only observe the outcome (say

Y ) corresponding to the treatment received (say T ). That is, Y =
∑K

k=1 I{T=k}Y
∗
k .

Thus, we cannot sample from the joint distribution of (Y ∗
1 , ..., Y

∗
K ,X)′. In a random-

ized trial, we may consider pairs of random variables (Y,X) with T = k, denoted as

(Yk,Xk), drawn from marginal distributions of (Y ∗
k ,X)(k = 1, ..., K). Then, in meth-

ods based on conditional means, one would use E[Yk|Xk = x] (k = 1, ..., K) to select

1The work has been published in Journal of Applied Statistics. The citation is ”Kulasekera,
K. B., Tholkage, S., Kong, M. (2022). Personalized treatment selection using observational data.
Journal of Applied Statistics, 1-13.”
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the best treatment. In an observational study, this may not be true, and the optimal

treatment selection based on E[Yk|Xk = x] (k = 1, ..., K) may be inappropriate. Here

we use the notation Xk to indicate that the sampling is done from each group. In

addition, when X has a very high dimension, a natural choice is to use a composite

score U(X) that has a much smaller dimension.

If the available data had resulted from a randomized clinical trial (RCT), then

the treatment selection based on pairs (Yk,Xk), k = 1, ..., K has been addressed by

many authors (Cai et al., 2011; Siriwardhana et al., 2019). In such data there are

no confounding covariates and therefore the treatment assignment would not have

been impacted by covariates. However, when the pairs (Yk,Xk) are from an observa-

tional study, treatment selection can be highly impacted by confounding covariates

and (Yk,Xk) can not be considered as a random observation drawn from marginal

distributions of (Y ∗
k ,X)(k = 1, ..., K). Therefore, the methods based on RCT data

for optimal treatment selection are no longer applicable. To account for confounding

effects we propose to use the generalized propensity score (Imbens, 2000) in our de-

velopment below. Given there are K possible treatments, the generalized propensity

score for a given set of covariates X is defined as

pk(x) = P [T = k|X = x]; k = 1, ..., K (3.1)

where T is the assigned treatment in conducting the observational study. There

is abundant literature on the properties of generalized propensity scores and their

applications in balancing covariates (Rosenbaum and Rubin, 1983; Franklin et al.,

2014; Abdia et al., 2017; Yan et al., 2019). One powerful approach is to use the inverse

probability of treatment weighting scheme, which is adopted here in our proposed

method.

In our proposed treatment selection method, we start with the assumption that
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a part of the r dimensional covariate vector X is providing contributing information

and the remainder are nuisance variables. In this, we assume there are unknown r0

contributing covariates and the remaining r−r0 covariates are junk variables. The r0

covariates are either confounders or predictors. Literature has shown that including

both confounders and predictors in the propensity score model increases the precision

of the causal parameter estimation (see Craycroft et al., 2020, and references therein).

Using

Yk = gk(X) + ϵk, (3.2)

we model responses in relation to covariates for each treatment k, where k = 1, ..., K.

In the above model (2), ϵk ∼ N(0, σ2) and gk(X) is the mean of Yk given X where

each gk is assumed to be a smooth function. Given that we have data from each

model above, our goal is to devise a method to estimate the best treatment for a new

patient with r dimensional covariate value X0. In particular, let

Yki = gk(Xki) + ϵki; i = 1, ..., nk k = 1, ..., K (3.3)

be the outcome model for kth group based on the set of nk observations.

Our first step is to select contributing variables to the outcome, which include

confounding variables and predictor variables. We further use the inverse probability

of treatment weightings to create K weighted samples such that the distributions of

the the contributing variables are similar across the K weighted samples. Thus, the

predicted model based on each sample can be applicable to the entire population. As-

suming a linear approximation to gk(Xki) we can use many existing approaches such

as Adaptive LASSO (Zou, 2006) or generalized boosted method (GBM) (Greenwell

et al., 2019) for variable selection. LASSO assumes a linear relationship between co-

variates and outcome variable, while GBM assumes a possibly non-linear relationship.

In the following we describe our approach using the GBM while a similar approach
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can be carried out using LASSO.

GBM is a tree-based machine learning method and has several parameters

which can be tuned. We tune the shrinkage parameter, which is also called the

learning rate, using a grid of (0.3, 0.1, 0.05, 0.01, 0.005). We use a preset tuning

parameter interaction.depth=3 to incorporate interactions and higher order main

effects for each group. We apply a five-fold cross validation approach to obtain the

optimal shrinkage parameter and the number of trees that minimize the root mean

squares for errors (RMSE). Once the optimal tuning parameters are obtained, a GBM

model with the selected tuning parameters is obtained. The important variables are

then selected based on the relative influence of each variable. More specifically, we

obtain the GBMmodel for treatment group k using all the covariatesXk in the models

to estimate gk(X) (k = 1, · · · , K). We select the variables where the contribution

to the model is more than 5%. The variables selected by the GBM may not be the

same for all groups. Suppose the union of the set of covariates selected from each

group is X̃ with a dimension r̃. Now, instead of using X, we estimate the generalized

propensity score using X̃ as

pk(X̃) = P [T = k|X̃], k = 1, ..., K (3.4)

via an available method such as multinominal regression or the boosted logistic re-

gression (Ridgeway et al., 2020).

Now, generalizing the approach in Cai et al. (2011), we define an appropriate

treatment-specific score U for each patient in each treatment group as follows. First

we define,

Sk(X) = ĝk(X)−max
j ̸=k

{ĝj(X)}

where ĝk(X) is the predicted mean from the GBM for observations in the kth group

at a given vector of covariates X. Note that here we use all covariate values for
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the estimation of gk in each group and also calculating Sk(k = 1, ..., K). Next we

define the overall score to be the combination of the maximum of these treatment-

specific scores, and an index that indicates for which treatment the maximum has

been achieved for the particular covariate value. That is, we define

S(X) = max
k∈{1,··· ,K}

{Sk(X)} and δ(X) = argmax
k∈{1,··· ,K}

{Sk(X)}.

Then for a patient with covariate value X, we define the patient score as U(X) =

(S(X), δ(X))′. Note that Sk is actually a measure of regret (Murphy, 2003), which

provides the decrease (regret) in the benefit-to-go that we forego by making decision

k rather than the optimal decision δ(X), i.e. the predicted effect of the kth treatment

from the optimal treatment effect. In our approach we are generalizing this regret to

the K > 2 setting and choose to use maxSk. One could instead use the minimum

regret and in that case we get the negative value for S. Now, we use the patient

outcome conditional on patient specific scores to obtain patient-level outcome models

for each treatment group. That is, we estimate

µk(u) = E[Y ∗
k |U(X) = u], k = 1, ..., K, (3.5)

and the optimal treatment is the one which has the largest estimated value of µk(u)

for k = 1, ..., K for a given U-score. Note that if one chooses not to develop a lower

dimensional score, i.e., U(X) = X, then µk(U) = gk(X). We estimate µk(u) using

either the Nadaraya-Watson (NW) (Li and Racine, 2007) smoothing method or local

linear estimation (Li and Racine, 2007) using the inverse of probability of treatment

weighted sample to make the distribution of a covariate at kth sample similar to the

distribution of the covariate in the population (i.e., balance covariates) so that we

can use observed sample to estimate E[Y ∗
k |U(Xk) = u]. For example, for a given
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u = (s, δ), we define our NW type estimator of µk(u) as,

µ̂k(u) =

∑nk

i=1 Ykiϕ(
Ŝ(Xki)−s

hkδ
)I(δ(Xki) = δ)wki∑nk

i=1 ϕ(
Ŝ(Xki)−s

hkδ
)I(δ(Xki) = δ)wki

; i = 1, ..., nk; k = 1, ..., K (3.6)

where we use standard Gaussian density ϕ(.) as the kernel function. Here hkδ is the

bandwidth for the NW estimator, which is calculated using the Asymptotic Mean In-

tegrated Squared Error (AMISE) minimized with respect to the smoothing parameter

as given in Scott(Scott, 2015) for each group. The variable δ in U is a discrete variable

with values 1, .., K and weights wki are defined as wki = 1/pk(X̃ki) where pk(X̃ki)s

are estimated using a suitable method as described subsequent to (3.4) above. The

optimal bandwidths can be selected using the h.amise function in the kedd R-package.

Alternatively, we may fit a local linear model instead of the NW estimator to

estimate each conditional mean µk(u). In that case, our estimator is

µ̂k(u) = e′1(Z
′
kWkZ)

−1(Z′
kWkYk) (3.7)

where,

Zk =



1 (S(Xk1)− s)

1 (S(Xk2)− s)

. .

1 (S(Xknk
)− s)


,

Wk is a nk × nk diagonal matrix whose diagonal elements are w11, ..., wnknk
with

wii = ϕ( Ŝ(Xki)−s
hkδ

)I(δ(Xki) = δ)/pk(X̃ki), Yk = (Yk1, .., Yknk
)′ and e1 = (1, 0)′. The

smoothing parameter hkδ is selected using the AMISE based smoothing parameter

selection method given by ScottScott (2015).

Now, for a new patient with a covariate value X0, we can estimate the corre-

sponding realization of the score u0 by û0 = (ŝ0 = Ŝ(X0), δ̂0 = δ̂(X0)) and estimate
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µk(u0), k = 1, .., K by µ̂k(û0) to find

k̂∗ = argmax µ̂k(û0).

Now, we select the treatment k̂∗ as the optimal treatment for that patient.

3.2 Simulation study

In this section, we conduct a detailed simulation study to examine finite sample

properties of the proposed procedures introduced in the previous section.

We carried out the simulation study to investigate the accuracy of the proposed

treatment selection procedure using the frequency of correct selection of the optimal

treatment. We used three treatments (K = 3) in the simulations with n1 + n2 +

n3 = 500 as the total sample size. Our primary focus is on the accuracy of the

treatment assignment, where larger values of the responses indicate better outcomes.

The models for each treatment group have been defined in a manner that no model

will dominate others over the whole covariate domain, which is the primary reason for

choosing the best treatment among several based on underlying covariate information.

In this study, we first simulate n = 500 iid multivariate normal random vec-

tors Xi, i = 1, ..., 500 of dimension r = 10 from MVN(0, Ir) distribution. For each

covariate value Xi, we calculate a probability p̃k(Xi); k = 1, 2, 3 where
∑

k p̃k = 1.

Then we assign each patient with a covariate value Xi into one of the three treat-

ment groups according to a multinomial distribution with corresponding probabilities

p̃1(Xi), p̃2(Xi) and p̃3(Xi). Here we used

p̃k(Xi) =
exp(−2 + α′

kXi)

1 +
∑2

k=1 exp(−2 + α′
kXi)

for k = 1, 2,
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and

p̃3(Xi) = 1− p̃1(Xi)− p̃2(Xi)

with α′
1 = (3, 07, 2.5, 2) and α′

2 = (−3, 07, 1.5,−3) with 07 being a vector of zeros

of length 7. We consider three different functional forms for the outcome models

(3) for each treatment. The errors ϵki in each outcome model were generated from

a normal distribution with zero mean and standard deviation 0.1. We used three

different scenarios to increase the complexity of outcome models from simple linear

form to a complex non-linear form containing interactions and higher order terms

of the covariates (Table 3.1). While we have conducted simulations using numerous

models, we are only presenting variations of these selected few models that have also

been used in a previous article by Lu et al. (2013) for evaluating a selection procedure

for data from a randomized clinical trial. We feel that these models represent the

variety needed for establishing the required accuracy of selecting a treatment from

multiple choices.

Table 3.1: Three different simulation scenarios which correspond to different com-
plexities of outcome models.

Outcome models

Scenario 1: Group-1 1 + γ′1Xi + β′
1Xi

Linear Group-2 1 + γ′1Xi + β′
2Xi

Outcomes Group-3 1 + (γ′1Xi)
Scenario 2: Group-1 1 + (γ′1Xi)(γ

′
2Xi) + β′

1Xi

Quadratic Group-2 1 + (γ′1Xi)(γ
′
2Xi) + β′

2Xi

Outcomes Group-3 1 + (γ′1Xi)(γ
′
2Xi)

Scenario 3: Group-1 1 + 0.5 sin(πγ′1Xi) + 0.25(1 + γ′1Xi)
2 + β′

1Xi

Nonlinear Group-2 1 + 0.5 sin(πγ′1Xi) + 0.25(1 + γ′1Xi)
2 + β′

2Xi

Outcomes Group-3 1 + 0.5 sin(πγ′1Xi) + 0.25(1 + γ′1Xi)
2

γ′
1 = (−2, 07, 0.8,−1.1), γ′

2 = (−1, 07,−2, 0.8), β′
1 = (1, 07, 1.5, 2) and β′

2 = c(−1, 07,−1, 2).

Once the samples were generated, we first estimated mean functions gk(X)

for each treatment group using the GBM method (or LASSO) and select the union

X̃ of contributing covariates from the three groups to estimate propensity scores
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pk(X̃i) for k = 1, 2, 3 and i = 1, ..., n. Then we used the estimated mean functions

gk(X), k = 1, 2, 3 to estimate the scores (U(Xi) = (S(Xi), δ(Xi))
′) for i = 1, ..., n.

In the case of variables selected from the GBM method, we used the mnps function

from the R package twang to estimate the propensity scores with boosted logistic

regression. If variables were selected from LASSO method, we used the multinom

function from the R package nnet to estimate the propensity scores with multinomial

logistic regression.

Now, a new covariate vector X0 was generated form the same multivariate

normal distribution above, and the corresponding score û0 was estimated to calcu-

late µ̂k(û0) for k = 1, 2, 3. The kernal function in this estimation was taken to be

the standard normal pdf while the optimal bandwidths in (5) were calculated using

Asymptotic Mean Integrated Squared Error (AMISE) method given by ScottScott

(2015) using the h.amise function from the R package kedd (Guidoum, 2015). Then,

corresponding to this X0, we generated treatment responses Y ∗
k0; k = 1, 2, 3 for each

treatment group using the outcome models in Table 3.1. We define the treatment

assignment to be correct if

argmax
k

{µ̂k(û0)} = argmax
k

{Y ∗
k0}.

We generated 1000 such test cases and calculated the relative frequency of

correct treatment assignment for each setting and repeated this procedure 500 times

to get a sample distribution of these relative frequencies. For comparison purposes,

we also carried out the analysis without using propensity score weighting to estimate

the µ̂k(û0). The boxplots of the predicted accuracies based on the 500 simulation

test sets are reported in Figure 3.1, and their means are summarized in Table 3.2, for

different methods used.

We have additionally assessed the performance of the proposed method using

39



the composite average gain of responses. This measure helps us to understand the

impact of possible wrong assignments by comparing the treatment chosen by our

method (the treatment with the largest µ̂) with its nearest competitor as well as its

worst competitor. Suppose that for a new covariate value X0, the ordered µ̂i(û0)s are

µ̂i1(û0) ≥ µ̂i2(û0)... ≥ µ̂iK (û0). Define λ12(û0) and λ1K(û0) as

λ12(û0) = µ̂i1(û0)− µ̂i2(û0)

and

λ1K(û0) = µ̂i1(û0)− µ̂iK (û0).

Now letting C be the maximum difference between any pair of µiks within

the whole covariate domain, we average λ12/C and λ1K/C for new test cases and

denote them as Λ12 and Λ1K respectively. Positive values of Λ12 and Λ1K indicate

relative average gains in the expected treatment outcome by the treatment selection

technique. Then we get sampling distribution of these Λ12 and Λ1K by repeating the

procedure for 500 times. Table 3.2 reports the sample means of these estimates.

To our knowledge, there is no literature on selecting a treatment based on ob-

servational data using propensity scores for the case K > 2. Tables and graphs above

show the selection accuracy of selecting a treatment for multiple possible variations

of the proposed procedure based on observational data (see Table 3.2 and 3.3; Fig-

ure 3.1). Second and third columns of Tables 3.2 and 3.3 show various combinations

that can be used in the proposed procedure. Based on these results we conclude

that, under Scenario 1, the proposed procedure with Nadaraya-Watson estimation

technique seems to show higher accuracy compared with the local linear choice for

this novel approach. We can especially observe that the propensity score weighting

has improved the prediction accuracy in all methods. Even though the method using

the LASSO-NW combination has a slightly higher average prediction accuracy than
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the combination of GBM-NW, the latter appears to produce more consistent results

according to box-plots. Under Scenarios 2 and 3, the GBM method seems to perform

better. However, weighting on propensity scores have neither decreased nor improved

the prediction accuracy under Scenarios 2 and 3.

3.3 Case study

In this section, we illustrate the use of our proposed method for the variety of choices

using an observational data set obtained from a computerized pharmacy database on

statin use (Joosten et al., 2014). Statins are one of most commonly prescribed lipid-

lowering medications to help reduce cholesterol and reduce the risk of cardiovascular

diseases. The primary objective of the study done by Joosten et al. (2014) was to

evaluate the association between statin use and cognitive function. According to the

literature, statin use has been recommended over a longer period to have a positive

effect on cognitive function. Therefore, long-term observational studies are preferred

to evaluate statin use on cognitive function since RCTs of longer duration are generally

not feasible. Our objective in this analysis is merely to show the applicability of our

method using this data set. We are not critiquing medical aspects of the above study

in our discussion below.

In this study, a total of 4,095 community-dwelling participants aged 35-82

years were included and 904 participants (about 22%) used statin. The statins can be

categorized based on the solubility as hydrophilic and lipophilic. In general, lipophilic

statin tend to have a high central nervous system penetration while hydrophilic statins

tend to have less central nervous system penetration. In this study, we consider three

treatment groups: treatment 1 is the use of lipophilic statin (470 patients), treatment

2 is the use of hydrophilic statin (340 patients) and 3 is no statin use (3165 patients).

The outcome variable was considered as the cognitive function, which was

measured by the Ruff Figural Fluency Test (RFFT: the worst score at 0 points to the
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best score at 175 points). In this study, we used predictor variables such as demo-

graphic information of patients (age, sex, ethnicity, and educational level), history of

cardiovascular events, diabetes mellitus, smoking status, hypertension, BMI, systolic

blood pressure (mmHg), diastolic blood pressure (mmHg), mean arterial pressure

(mmHg), estimated glomerular filtration rate (MDRD), albuminuria in three cate-

gories (0 = “0 to < 10”, 1 = “10 to < 30”, 2 = “ ≤ 30 mg/24hr”), total cholesterol

(mmol/L) and HDL cholesterol (mmol/L).

We conducted the analysis using a five-fold cross-validation. First we randomly

partitioned patients from kth (k = 1, 2, 3) treatment group into five folds. In the first

iteration, we kept the first fold of each treatment group for testing and the remaining

data for training. We estimated the mean function gk(X)(k = 1, 2, 3) using the GBM

method and selected the union of contributing covariates from the three groups (say,

X̃) to estimate propensity scores pk(X̃i) for k = 1, 2, 3 combining the three training

data sets. Then using the estimated mean functions gk(X)s we estimated the scores

for patients in the training set. Then using the proposed weighted Nadaraya-Watson

method we assigned the patients in the testing data to a treatment based on their

estimated scores. The predicted optimal treatments for the testing fold in the first

iteration is reported in Table 3.4A. We repeated the process for each fold, and the

treatment assignment based on this repeated 5-fold cross-validation is summarized in

Table 3.4B. The intermediate estimation results for the first iteration of the 5-fold

cross validation are reported in the Appendix B.

The assignment probabilities seem to be consistent on optimal treatment as-

signments resulted from one-fold testing (Table 3.4A) versus five fold testing (Ta-

ble 3.4B). Among the patients who were originally given lypophilic statin (treatment

1), the proposed optimal assignment remained unchanged for 33.8% of the patients

while the rest of the patients were recommended to receive the other two options.

Among the patients who were originally given hydrophilic statin (treatment 2), the
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proposed optimal assignment remained unchanged for 32.4% of the patients while the

rest of the patients were recommended to receive the other two options. For the pa-

tients who were originally not given a statin, the proposed method assigned 12.7% to

the lipophilic statin, 27.9% to the hydrophilic statin, 59.4% of the patients remained

not to give any statins. Overall, we recommend switching the treatments to gain

a better outcome for some patients based on their covariate information. We also

calculated the composite average gain of response, averaging the Λ12 and Λ13 values

of the five folds in the 5-fold cross validation as Λ12 = 0.271 and Λ13 = 0.378.

3.4 Discussion

In this paper, we proposed a novel method to estimate the optimal personalized treat-

ment based on observational data. This framework allows the proposed method to

focus on the most important covariates and the use of inverse probability of treatment

weighting helps to adjust for bias due to confounding. In the empirical study, the

proposed method was tested under different scenarios and the GBM-NW combination

appears to outperform other compared methods in selecting the optimal treatment

in a multiple treatment setting. The sampling distributions of prediction accuracy

were considered to compare the methods in a broader perspective. Our method was

applied on a real observational data set with multiple treatment options to observe

how the treatments could be assigned based on patient characteristics in order to gain

a better outcome. Although in the real data analyses the proposed method doesn’t

provide a general optimal treatment, rather it recommends patients to stay on the

current treatment or switch from the current treatment to other available treatments

based on their characteristics at individual level, in practice this method proposes the

best treatment at an individual patient level.

The proposed method is based on a single outcome measure and for future

work we would extend our method to explore the situations with multiple outcome
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measures on observational data. Time to event data is also another aspect that

requires attention on the problem we discussed in this paper and will be considered

in future work.
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3.5 Tables and Figures

Table 3.2: The average prediction accuracy based on 500 test sets using different
methods under different scenarios.

Unweighted Weighted

Scenario 1 LASSO NW 0.5180 0.8515
LL 0.4788 0.7358

GBM NW 0.7169 0.8243
LL 0.6510 0.7571

Scenario 2 LASSO NW 0.7269 0.6973
LL 0.7278 0.7076

GBM NW 0.8130 0.8128
LL 0.7955 0.7919

Scenario 3 LASSO NW 0.5672 0.6477
LL 0.5788 0.6366

GBM NW 0.7175 0.7175
LL 0.6996 0.6977

GBM= GBM for variable selection; LASSO=LASSO for variable selection; LL= Local
Linear Estimator; NW= Nadaraya-Watson type estimator.
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Table 3.3: The composite average gain of responses to choose the optimal versus the
second optimal treatment (Λ12), and the optimal versus the worst treatment (Λ13).

Unweighted Weighted

Λ12 Λ13 Λ12 Λ13

Scenario 1 LASSO NW 0.2240 0.3692 0.2094 0.3733
LLE 0.0309 0.0653 0.0356 0.0807

GBM NW 0.1934 0.3144 0.1987 0.2938
LLE 0.0371 0.0745 0.0505 0.0943

Scenario 2 LASSO NW 0.0572 0.2865 0.0471 0.2642
LLE 0.0305 0.2229 0.0255 0.2166

GBM NW 0.1698 0.3023 0.1570 0.2761
LLE 0.0406 0.1032 0.0385 0.1032

Scenario 3 LASSO NW 0.1565 0.3671 0.1279 0.3423
LLE 0.0196 0.1511 0.0178 0.1452

GBM NW 0.1216 0.2589 0.1159 0.2512
LLE 0.0270 0.1331 0.0314 0.1383

GBM= GBM for variable selection; LASSO=LASSO for variable selection; LL= Local
Linear Estimator; NW= Nadaraya-Watson type estimator.

Table 3.4: Summarized optimal treatment assignments compared with the original
assignments based on one-fold testing data as well as based on 5-folds testing data.

A: Proposed optimal assignment based on the 1st iteration of 5-fold CV
1 2 3 Total

1: lipo. count 32 36 26 94
statin % 34.0% 38.3% 27.7% 100.0%

Original 2: hydro. count 13 22 33 68
Assignment statin % 19.1% 32.4% 48.5% 100.0%

3: no count 83 184 366 633
statin % 13.1% 29.1% 57.8% 100.0%

B: Proposed optimal assignment based on all the iterations of 5-fold CV
1 2 3 Total

1: lipo. count 159 170 141 470
statin % 33.8% 36.2% 30.0% 100.0%

Original 2: hydro. count 78 110 152 340
Assignment statin % 22.9% 32.4% 44.7% 100.0%

3: no count 401 884 1880 3165
statin % 12.7% 27.9% 59.4% 100.0%
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Scenario 3: Nonlinear outcomes

Scenario 2: Quadratic outcomes

Scenario 1: Linear outcomes

GBM.LL GBM.LL.W GBM.NW GBM.NW.W Lasso.LL Lasso.LL.W Lasso.NW Lasso.NW.W
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Figure 3.1: The boxplots of the predicted accuracy based on the 500 simulation test
sets using different methods under three different scenarios. GBM= GBM for vari-
able selection; LASSO=LASSO for variable selection; LL= Local Linear Estimator;
NW= Nadaraya-Watson type estimator; .W=Methods that used inverse probability
of treatment weights
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CHAPTER 4

IDENTIFYING OPTIMAL TREATMENT REGIME USING

SINGLE INDEX MODELS FOR SURVIVAL DATA

4.1 Treatment selection method

In this section, we describe the proposed procedure for identifying the optimal treat-

ment. Let T denote the survival time of a patient, which is subject to random right

censoring C. Thus, the observed information for a patient is T̃ = min(T,C) and

∆ = 1{T ≤ C}, where 1{·} is the indicator function. We use (X,Z) ∈ Rp × Rq to

denote the covariate information of a patient with X ∈ Rp being continuous covari-

ates and Z ∈ Rq being categorical covariates. Suppose there are K + 1 treatments

available indexed by k = 0, 1, · · · , K. Let A denote the treatment that a patient

received, and A ∈ {0, 1, ..K}. We impose the independent censoring assumption that

the censoring time C is independent of T , (X,Z), and A. The observed data consists

of n i.i.d. replicates of (T̃ ,∆, (X,Z), A), denoted by {(T̃i,∆i, (Xi,Zi), Ai)}ni=1.

Let Y = log T and Ỹ = log T̃ . In addition, let Y (k) be the potential (i.e.,

counterfactual) log-survival time of a patient of receiving the kth treatment, k =

0, 1, · · · , K. Let A(k) = 1{A = k} denote the dummy variable of a patient receiving

treatment k (k = 0, 1, · · · , K). Since a patient is given only one of K + 1 treat-

ments, we naturally have Y =
∑K

k=0A(k)Y
(k), which is coincided as the consistency

assumption in the causal inference literature.

In this work, we consider a semiparametric partial linear model for the coun-
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terfactual log-survival time of receiving the kth treatment, namely,

E[Y (k)|X,Z] = h∗0(X,Z) + ZTθ∗
k + g∗k(X

Tβ∗
k), k = 1, · · · , K, (4.1)

where h∗0(·) = E[Y |A = 0,X = x,Z = z] is a baseline mean function for k = 0,

θ∗
k = (θ∗k1, ..., θ

∗
kq)

T is a q-dimensional vectors of unknown coefficients for Z for the

kth treatment, and g∗k(·) is an unknown smooth function with β∗
k = (β∗

k1, ..., β
∗
kp)

T as

a p-dimensional vector of unknown coefficients for the kth treatment. Thus, ZTθ∗
k +

g∗k(X
Tβ∗

k) is the contrast function between treatment k and control. The consistency

assumption Y =
∑K

k=0A(k)Y
(k) and (4.1) together lead to

E[Y |A,X,Z] = h∗0(X,Z) +
K∑
k=1

A(k)[Z
Tθ∗

k + g∗k(X
Tβ∗

k)]. (4.2)

We assume that ∥β∗
k∥2 = 1 and β∗

k1 > 0 in order for the model to be identifiable.

Let g∗0(·) = 0 and θ∗
0 = 0. Under model (4.2), the optimal treatment regime is

argmax0≤k≤K ZTθ∗
k + g∗k(X

Tβk).

Let θ = (θT
1 , · · · ,θT

K)
T, g = (g1, · · · , gK)T and β = (βT

1 , · · · ,βT
K)

T. We pro-

pose to estimate the optimal treatment regime by minimizing the following objective

function

1

n

n∑
i=1

∆i

G(Ti)

[
Ỹi − ϕ(Xi,Zi;γ)−

K∑
k=1

(Ai(k) − πk(Xi,Zi))[Z
T
i θk + gk(X

T
i βk)]

]2
,

(4.3)

with respect to γ, g, θ, and β. In (4.3), Yi = log(Ti), πk(x,Z) = P (Ai = k|Xi =

x,Zi = z) is the propensity score, G(·) is the survival function of censoring time

C, and ϕ(x, z;γ) is a posited parametric/semiparametric function with parameters

γ = (γT
1 ,γ

T
2 )

T, where γ1 ∈ Rp and γ2 ∈ Rq. ϕ(.;γ) can take various forms. For

example, we can choose ϕ(.;γ) as a constant function or a linear function (Lu et al.,

2013), (i.e., ϕ(X,Z;γ) = XTγ1+ZTγ2) or a partial linear function (i.e., ϕ(X,Z;γ) =
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m(XTγ1) + ZTγ2, for some known/unknown link function m(·)). We can show that

as long as πk(X,Z) is correctly specified, the estimation of θ, β and g would be

consistent regardless of the choice of ϕ(·;γ). Thus, we can use γ̃, a working value of γ

in (4.3). In practice, the censoring probability G(·) and the propensity scores πk(x,Z)

are typically unknown. But they can be replaced by their corresponding consistent

estimators Ĝ and π̂k(x,Z). For example, we can obtain Ĝ(·) using Kaplan-Meier

method (Kaplan and Meier, 1958) and implement multinomial logistic regression

to estimate πk(x,Z) (Yan et al., 2019). As a result, we minimize Ln(g,θ,β; γ̃),

which is the objective function (4.3) with ϕ(Xi,Zi;γ), G, and πk(x,Z) replaced by

ϕ(Xi,Zi; γ̃), Ĝ, and π̂k(x,Z), respectively.

Ln(g,θ,β; γ̃) =
1

n

n∑
i=1

∆i

Ĝ(Ti)

[
Ỹi − ϕ(Xi,Zi; γ̃)

−
K∑
k=1

(Ai(k) − π̂k(Xi,Zi))[Z
T
i θk + gk(X

T
i βk)]

]2
.

(4.4)

The contrast function between treatment k and control, gk(.)(k = 1, ...K), is

an unspecified smooth function, and can be approximated by B-splines (de Boor,

2001). Assume that max1≤k≤K supX |XTβk| is bounded above. Let

[ak, bk] = [inf
X
(XTβk), sup

X
(XTβk)]

denote the support of gk(.), 1 ≤ k ≤ K. The interior knots of B-splines can then be

obtained by partitioning the [ak, bk] with equally spaced knots, ak = t0,k < t1,k < ... <

tNk,k < bk = tNk+1,k. The number of internal knots is actually allowed to increase

with n. But for notation simplicity, we suppress the dependence of Nk on n when

there is no confusion (i.e., Nk = Nk,n). Based on these knots, we then divide [ak, bk]

into sub-intervals Il,k = [tl,k, tl+1,k), 0 ≤ l ≤ Nk−1 and INk
= [tNk,k, tNk+1,k] satisfying

max0≤l≤Nk
|tl+1,k− tl,k|/min0≤l≤Nk

|tl+1,k− tl,k| ≤M uniformly in n for some constant
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0 < M < ∞. Then we can define the normalized B-spline basis of this space as

Bk(.) = {Bl,k(.) : 1 ≤ l ≤ Lk}T , where Lk = Nk + vk is the number of basis spline

functions and vk − 1 is the spline order. By de Boor (2001), we can approximate

the nonparametric function gk as gk(X
Tβk) ≈ Bk(X

Tβk)
Tδ∗

k, where δ∗
k minimizes

supt∈[ak,bk] |gk(t) − Bk(t)
Tδk| over δk ∈ RLk . In this work, we choose Nk = 5 and

vk = 4(k = 1, · · · , K) for computational convenience. It has been shown that a

large number of knots may lead to over-fitting the data and as small as five knots

is sufficient for cubic splines (Gauthier et al., 2020). It is worth noting that vk = 4

corresponds to cubic splines.

Let δ = (δT
1 , · · · , δT

K)
T. We can approximate (4.4) by

L̃n(δ,θ,β; γ̃) =
1

n

n∑
i=1

∆i

Ĝ(Ti)

[
Ỹi − ϕ(Xi,Zi; γ̃)

−
k∑
k=1

(Ai(k) − π̂k(Xi,Zi))
[
ZT
i θk +Bk(X

T
i βk)

Tδk

]]2
.

(4.5)

Let βk,−1 be a vector obtained by removing the first element of βk. To obtain the

estimates of δ,θ, and β, we employ an iterative algorithm as follows:

Step 1 Obtain initial estimates: the initial estimates of θ and β are obtained by

minimizing (4.8) by treating gk as identity functions, i.e., gk(X
Tβk) = XTβk.

Step 2 Update δ, θ, and β: denote the current estimates of θk by θoldk and βk by

βoldk for k = 1, · · · .K. Let βk,−1 be a vector obtained by removing the first

element of βk.

(a) Update δnew given θold and βold: given θold and βold, the estimate of δ can

be updated by δnew = (BTWB)−1BTWD1, where W is a diagonal matrix

with diagonal elements wii = Ĝ(Ti)
−1
∆i, D1 is a n× 1 vector with the ith

element being Ỹi−ϕ(Xi,Zi; γ̃)−
∑k

k=1(Ai(k)− π̂k(Xi,Zi))Z
T
i θ

old
k , and B is
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a n×KL matrix with the ith row being

(Ai(1) − π̂1(Xi,Zi))B
T
1 (X

T
i β

old
1 ), · · · , (Ai(K) − π̂K(Xi,Zi))B

T
K(X

T
i β

old
K ).

(b) Update βnew given δnew, θold, and βold: given δnew and βold, we can ap-

proximate g̃k(X
Tβk) := B(XTβk)

Tδnewk as

g̃k(X
Tβk) ≈ g̃k(X

Tβoldk ) + g̃′k(X
Tβoldk )XTJ(βoldk )(βk,−1 − βoldk,−1)

where

J(βk) =
∂βk
∂βk,−1

=

 −βT
k,−1/

√
1− ||βk,−1||22

Ip−1


is the p×(p−1) Jacobian matrix, and It is a t-dimensional identity matrix.

Let β−1
= (βT

1,−1,β
T
2,−1, · · · ,βT

K,−1)
T ∈ RK(p−1) andRik = g̃′k(X

T
i β

old
k )XT

i J(β
old
k ) ∈

Rp−1(k = 1, · · · , K). Now we can obtain βnew−1
as a minimizer of the ob-

jective function

1

n

n∑
i=1

(D2i −VT
i β−1

)2 (4.6)

where D2i = w
1/2
ii (Ỹi − ϕ(Xi,Zi; γ̃) −

∑K
k=1(Ai(k) − π̂k(Xi,Zi))[Z

T
i θ

old
k +

g̃k(X
T
i β

old
k )−RT

ikβ
old
k,−1]) andVi = w

1/2
ii ((Ai(1)−π̂1(Xi,Zi))R

T
i1, · · · , (Ai(K)−

π̂K(Xi,Zi))R
T
iK)

T.

Subsequently, we obtain βnewk = (
√

1− ||βnewk,−1||22,βnewTk,−1 )
T.

(c) Update θnew given δnew and βnew: given δnew and βnew, we can obtain
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θnew as a minimizer of the objective function

1

n

n∑
i=1

(D3i −UT
i θ)

2 (4.7)

whereD3i = w
1/2
ii (Ỹi−ϕ(Xi,Zi; γ̃)−

∑k
k=1(Ai(k)−π̂k(Xi,Zi))Bk(X

T
i β

new
k )Tδnewk )

and Ui = w
1/2
ii ((Ai(1) − π̂1(Xi,Zi))Z

T
i , · · · , (Ai(K) − π̂K(Xi,Zi))Z

T
i )

T.

Step 3 Repeat Step 2 (a), (b), and (c) until convergence.

After the convergence of the algorithm, we obtain the final estimates θ̂, β̂ and

δ̂, and consequently ĝk(·) = Bk(·)Tδ̂k. Let ĝ0(·) = 0 and θ̂0 = 0. Then for a given

patient with covariate information (x, z),

k̂ = argmax
0≤k≤K

zTθ̂k + ĝk(x
Tβ̂k),

is selected as the optimal treatment for that patient.

When X and Z are high dimensional, we impose parameter regularization to

explore the sparsity and consider a penalized version of L̃n(g,θ,β; γ̃) in (4.9) as

L̃n(g,θ,β; γ̃) +
K∑
k=1

P1k(θk;λ1k) +
K∑
k=1

P2k(βk,−1;λ2k), (4.8)

where Ptk(.;λtk) are appropriate penalty functions with tuning parameters λtk, (t =

1, 2; k = 1, · · · , K). For example, we can choose Ptk(·;λtk) as adaptive-LASSO (Zou,

2006), MCP (Zhang, 2010), or SCAD (Fan and Li, 2001) functions. The estimates

θ̂, β̂ and δ̂ can be obtained using the same iterative algorithm with (4.6) and (4.7)

replaced by their penalized versions n−1
∑n

i=1(D2i−VT
i β−1

)2 +
∑K

k=1 P2k(βk,−1;λ2k)

and n−1
∑n

i=1(D3i −UT
i θ)

2 +
∑K

k=1 P1k(θk;λ1k).
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L̃n(δ
(a),θ(a),β(a); γ̃)

=
1

n

n∑
i=1

∆i

Ĝ(Ti)

[
Ỹi − ϕ(Xi,Zi; γ̃)−

k∑
k=1

(Ai(k) − π̂k(Xi,Zi))
[
ZT
i θk +Bk(X

T
i βk)

Tδk

]]2

+
K∑
k=1

P1k(θk;λ1k) +
K∑
k=1

P2k(βk,−1;λ2k). (4.9)

4.2 Simulation study

In this section, we conduct extensive simulation studies to investigate the empirical

performance of the proposed method on optimal treatment selection under various

settings. We consider three treatments (i.e.,K = 2) in the simulation studies. The

dimensions of continuous and discrete covariates are chosen as 10 and 2, (i.e., p = 10

and q = 2).

We first generate X̃ = (X̃1, · · · , X̃p)
T following a multivarivate normal distri-

bution with mean 0 and covariance Corr(X̃j, X̃l) = 0.5|j−l|, 1 ≤ j ≤ l ≤ 10. Then

the continuous covariates vector X is generated by truncating X̃ between (-2,2). The

discrete variables, Z = (Z1, Z2)
T are generated as Z1 ∼ Bernoullie(0.6) and Z2 ∼

Bernoullie(0.2). To simulate observational data, we assign a patient with covariates

(X,Z) into one of the three treatment groups (k = 0, 1, 2), according to a multinomial

distribution with probabilities πk(X,Z), where π0(X,Z) = 1− π1(X,Z)− π2(X,Z),

πk(X,Z) =
exp(log(0.4/0.6) + (X,Z)Tαk)

1 +
∑2

l=1 exp(log(0.4/0.6) + (X,Z)Tαl)
for k = 1, 2,

α1 = (1, 07,−0.5, 1, 1.2,−0.7)T, α2 = (0.5, 07,−0.8,−1,−0.2, 0.5)T and 0l denotes a

vector of zeros of length l.

Recall that A(k) = 1{A=k} is the indicator variable on whether the patient

receives treatment k. For the simulations we used slightly modified versions of the
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outcome models that was designed for binary-valued outcomes with binary treatments

used in Guo et al. (2021). We consider the following outcome models with different

complexities:

Model 1: log(T ) = 1 +XTγ∗
1 + ZTγ∗

2 +
∑2

k=1A(k)[Z
Tθ∗

k +XTβ∗
k] + ϵ1,

Model 2: log(T ) = 1 + (XTγ∗
1)(1 −XTγ∗

1) + ZTγ∗
2 +

∑2
k=1A(k)[Z

Tθ∗
k +XTβ∗

k(1 −

XTβ∗
k)] + ϵ2,

Model 3: log(T ) = 1+(XTγ∗
1)(1−XTγ∗

1)+ZTγ∗
2+A(1)[Z

Tθ∗
1+XTβ∗

1(1−XTβ∗
1)]+

A(2)[Z
Tθ∗

2 + sin(π(XTβ∗
2)/2)] + ϵ3.

In the three models, γ∗
1 = 1√

2
(1, 08, 1)

T,γ∗
2 = (0.3,−0.6)T,θ∗

1 = (0.6, 0.5)T,θ∗
2 =

(−0.4, 0.4)T, β∗
1 = 1√

4.25
(1.5, 07,−1, 1)T, β∗

2 = 1√
6
(1, 07, 1,−2)T, and the error terms

ϵ1, ϵ2 and ϵ3 follow normal distributions with mean 0 and standard deviations σ1 =

0.4 or 0.6, σ2 = 0.5 or 0.7 and σ3 = 0.5 or 0.7, respectively. The two choices

for the error standard deviations in each model represent high (3.2) and low (2.2)

signal/noise ratios respectively. The censoring times are independently generated

from a uniform distribution U(0, τ), where τ is chosen to achieve 10% or 30% censoring

rates representing low and high rates of censoring. We also consider two sample sizes

n=600 and 1200. Thus, we carried out simulations under the following 24 settings:

3 outcome models × 2 signal/noise ratios × 2 censoring rates × 2 sample sizes. For

each setting, we run 500 replications.

The B-spline basis functions and their derivatives used in the estimation pro-

cess were calculated using the splineDesign function in R package splines. We con-

sidered three choices for the baseline function ϕ(X,Z;γ):

1. Constant function: ϕ(X,Z;γ) = γ

2. Linear function: ϕ(X,Z;γ) = XTγ1 + ZTγ2

3. Partial linear function: ϕ(X,Z;γ) = m(XTγ1) + ZTγ2
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We obtain γ̃, a working value of γ by minimizing the following objective function

1

n

n∑
i=1

∆i

Ĝ(Ti)

[
Ỹi − ϕ(X,Z;γ)

]2
.

The estimation of baseline function under the 1st choice (i.e., the constant function),

was simply the weighted least squares method with intercept only model. To estimate

the baseline function under the 2nd choice (i.e., the linear function), we used the

weighted least squares method with all the covariates. The estimation of the 3rd

choice (i.e., the partial linear function) was based on the same iterative approach we

described in the methodology section for estimating the contrast functions, where we

used B-splines regression to estimate m(·) without involving treatment information.

In the simulation studies, since Z was only two-dimensional, we only obtained

the sparse estimates for βk. We choose to use the adaptive -LASSO penalties, that

is, P2(βk,−1;λ2k) = λ2k
∑p

l=2wkl|βkl|, where w
−1
kl = |β̃kl| and β̃k = (β̃k1, · · · , β̃kp)T are

some pilot estimates of β∗
k. We obtained β̃k’s by minimizing the unpenalized version

of loss function (4.9) using LARS algorithm (Efron et al., 2004) . To select the tuning

parameters, we used a BIC-type criteria (Zou, 2006). We estimated the propensity

scores using multinomial logistic regression and G(·) using Kaplan-Meier method.

We compare the proposed semiparametric method with estimated propensity

scores, denoted by SC.Est, to another two approaches. The first one is actually

the proposed method but without the propensity score being set to 1/3 for each

treatment, i.e., assuming that the data came from a randomized study. It is denoted

by SC.const. The second one is a penalized A-learning method developed by Lu et al.

(2013), which assumes the linear contrast functions. It is denoted by LC.est.

We compare the three methods by their performances in variable selection

and optimal treatment assignment. For the performance in variable selection, we

calculate the proportion of zero coefficients correctly identified (Correct zeros) and

56



the proportion of non-zero coefficients correctly identified (Correct non-zeros) through

500 replications. For the performance in the optimal treatment assignment, we obtain

the proportion of correct decisions (PCD) in each replication as

1

n

n∑
i=1

1

{
argmax
0≤k≤K

{ZT
i θ

∗
k + g∗k(X

T
i βk)} = argmax

0≤k≤K
{ZT

i θ̂k + ĝk(X
T
i β̂k)}

}
,

and average the PCDs over 500 replications.

The simulation results under different conditions were summarized in Tables

4.1–4.4. Tables 4.1 and 4.2 reported the summarized results for high signal/noise

ratio (around 3.2), under censoring rates 10% and 30% respectively, while Tables 4.3

and 4.4 reported the summarized results lower signal/noise ratio (around 2.2), under

censoring rates 10% and 30% respectively.

In the case of the linear contrast function (model 1), the 2nd choice with the

linear model for the baseline function ϕ(.) had a higher PCD in all three contrast

function estimation methods. However, the LC.est method with the 2nd choice for

ϕ(.) had the best PCD among all the combinations. When 2nd choice was used

to estimate ϕ(.), the proportion of correct identification of non-zero coefficients was

comparatively high in the LC.est method. We can also see that the 3rd choice for

ϕ(.) with the LC.est method had a very close PCD (0.876) to the one with the 2nd

choice (0.895). In the case of the non-linear contrast function (model 2 & 3), the 3rd

choice with the partial linear model for the baseline function ϕ(.) had a significantly

higher PCD in all three contrast function estimation methods. However, the best

PCD was reported when the contrast function was estimated using SC.est, while ϕ(.)

was estimated with the 3rd choice. We can also see that in Models 2 & 3, the 3rd

choice for ϕ(.) with the LC.est method had higher accuracy regarding the correct

identification of both zero and non-zero coefficients. However, when the sample size

was increased, the proportions of correct identification of both zero and non-zero
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coefficients were increased significantly compared to LC.est and SC.const methods.

All in all, we can say that even though a correct specification of the baseline function

is not required to estimate the optimal treatment regime, a better estimation of ϕ(.)

improves the accuracy of the method.

When the censoring rate was increased from 10% to 30%, we can observe the

same combinations of estimating ϕ(.) and contrast function dominating both PCD

and variable selection measures under all three models with a slight reduction in the

measures. When the signal/noise ratio decreased by half (from ≈ 10 to ≈ 5), the

same patterns of PCD and variable selection measures were reported with a slight

reduction in accuracy for the case of lower signal/noise ratio.

When the sample size was increased from 600 to 1200, the PCD and the vari-

able selection measures improved significantly, as expected. Overall, in both linear

and non-linear scenarios, we can see substantially better performance when the esti-

mated propensity scores are used instead of fixed ones. The performance of the LC.est

method in Model 1 is expected to be better as the linear contrast is the true model.

However, the SC.est method is a good competitor in estimating the contrast function

in Model 1. In conclusion, we can say that regardless of the situation, the combi-

nation of 3rd choice for estimating ϕ(.) and the SC.est for estimating the contrast

function gives desired results in terms of both PCD and variable selection.

4.3 Case study

In this section, we illustrated the use of our proposed method using data obtained

from the Kentucky Medicaid database on the patients diagnosed with cirrhosis. Cir-

rhosis of the liver is identified to be a chronic liver damage that leads to scarring and

liver failure due to various causes. The most common causes of cirrhosis are known

as chronic alcohol abuse and hepatitis. Damage to the liver caused by cirrhosis can

hinder it from performing key functions such as eliminating toxins from the body
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and aiding digestion. Furthermore, it can lead to complications such as portal hyper-

tension, varices, fluid buildup, liver cancer and hepatic encephalopathy (Heidelbaugh

and Sherbondy, 2006). Even though cirrhosis isn’t curable, it can be treated. The

patients we considered in this study are known to be of the diagnostic domains of

alcohol abuse and/or alcohol dependence.

In this study we obtained data from the Kentucky Medicaid database of the

patients diagnosed with cirrhosis in years 2015/2016 based on international classifi-

cation of diseases (ICD) 9th edition and 10th edition clinical modification codes until

the last observed follow-up date, 12/31/2020. The main variable of interest, the time

to death was calculated from the difference of the date of diagnosed to the date of

death. The patients who had not experienced death by the end of the follow-up period

were considered as censored observations. The initial cohort was targeted on study-

ing the prevalence of alcohol use disorder (AUD), and we considered the use of both

pharmacotherapy and psychosocial treatments for the patients diagnosed with cirrho-

sis. If a patient has received any of the FDA-approved drugs for treating AUD, such

as naltrexone, disulfiram, acamprosate, or topiramate, we considered them to have

had pharmacotherapy treatment. The patients received psychosocial and behavioral

therapies, such as AUD counseling and rehabilitation/detoxification were considered

to have received psychosocial treatments. The said treatment options were identi-

fied via ICD-9 procedure codes and HCPCS procedure codes. Due to the lack of

patients who received both treatments, we include patients who had received either

pharmacotherapy or psychosocial treatment but not both. A total of 264 cirrhosis

patients, ranging in age from 24-81 years, were enrolled in this study, with 92 of them

receiving pharmacotherapy treatments, 72 receiving psychosocial treatments and 100

receiving neither of the treatments during the year of diagnosis. Among 264 patients,

57.6% were identified as censored. The covariates observed at the baseline contain

demographic information (age in years, gender (male and female) and Rural-Urban
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Continuum (RUC)), tobacco use, alcohol abuse, mental disorder (anxiety and/or ma-

jor depressive disorder) and Charlson score that measures comorbidity of the patients

at the baseline (Murray et al., 2006).

The baseline function, ϕ(.) was estimated using the bsplines. Considering Z is

high dimensional, we use adaptive-LASSO penalty to obtain sparse estimates for θk

and γ2. The mental disorder variable appears to be the only binary covariate included

in the model based on the baseline function. In the estimation of contrast functions,

no binary covariates were included in the model when the adaptive-LASSO penalty

was considered. The Table 4.5 summarizes the proposed optimal treatment for the

patients with their original assignment. Among the patients who were originally

given pharmacotherapy treatment, the proposed optimal treatment didn’t change for

33.7% of the patients, while 33.7% patients were recommended to receive psychosocial

treatment. Among the patients who were originally given psychosocial treatment, the

proposed optimal treatment didn’t change for 16.7% of the patients, while 40.3% pa-

tients were recommended to receive pharmacotherapy treatment. Among the patients

who didn’t receive any treatment, 44% and 33% were recommended to receive phar-

macotherapy and psychosocial treatments respectively. In Table 4.6, we present the

estimation results for two sets of patients with similar characteristics to investigate

the behavior of proposed optimal treatment. Patient 1 and patient 2, both of whom

were 55 years old at the time of the baseline, had an RUC of 5, a Charlson score of 0,

and under the alcohol abuse, were initially assigned to pharmacotherapy and received

no treatment, respectively. Patient 1, who underwent pharmacotherapy treatment,

appears to have a longer survival time than patient 2, who didn’t received treat-

ment. For both patients with similar characteristics, the proposed method suggests

pharmacotherapy treatment. This means that, even if patients with similar features

received different treatment options, the proposed method will assign the treatment

that maximizes survival time to both patients. The same results can be observed
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for patients 3 and 4 in Table 4.6. Overall, based on the covariate information, we

recommend switching treatments for some patients to achieve a better outcome.

Furthermore, in Figure 4.1, we compared the Kaplan-Meier survival curves of

the patients in three treatment groups with the patients whose estimated treatment

using the proposed method agreed with the original treatment assignment. In order to

adjust the bias due to confounding, we weight the responses by their propensity scores.

According to the plot, we can see that the overall survival of the optimal treatment

group estimated using the proposed method is better compared to the individual

treatment groups. This result suggested that the estimated optimal treatment regime

can lead to greater survival compared to the original treatment assigned for the

patients who were diagnosed with cirrhosis.

4.4 Discussion

This study proposes a novel treatment selection method to estimate the optimal

treatment from multiple treatments that maximize the mean potential log survival

time. The proposed loss function that corresponds to a form of A-learning makes our

approach more robust to model misspecification as opposed to Q-learning since the

treatment decision is hinged upon the estimation of the contrast function. The esti-

mation is robust as the baseline mean function does not require a correct specification

as long as the propensity scores are correctly specified. Nevertheless, a more complex

baseline model can usually enhance the efficiency and accuracy of the estimation.

The proposed method is based on semi-parametric Single Index Models, which pro-

vide a great deal of flexibility and reasonable efficiency that can be used to model

a wide range of data. To account for the censored nature of the data and potential

confounding factors, we proposed to use the inverse probability of censoring weights

and propensity score, respectively. Furthermore, we incorporate shrinkage methods

in the loss function to select important variables associated with the optimal decision.
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The numerical studies provided satisfactory performance based on the probability of

correct decisions under different simulation settings. The proposed method was ap-

plied to a real observational data set with multiple treatment options to see how the

treatments could be assigned based on patient characteristics that can lead to great

survival.

Future work could concentrate on constructing a doubly robust estimator to

estimate the optimal treatment regime in the same context, where the correct specifi-

cation of either the posited baseline model or the propensity score model is sufficient

to obtain a better estimator.
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4.5 Tables and Figures

Table 4.1: Summarized simulation results for the settings with 10% censoring rate
and a high signal-noise ratio (≈ 3.2).

Correct zeros Correct non-zeros PCD

Sa
m
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e
Si
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n

B
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e
ϕ̂(
.)

L
C
.E
st
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.C
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SC
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L
C
.E
st

SC
.C
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st

SC
.E
st

L
C
.E
st

SC
.C
on
st

SC
.E
st

M
o
d
el

1

600 Const 0.990 0.915 0.870 0.429 0.711 0.620 0.644 0.661 0.688

Lin.model 0.975 0.978 0.982 0.998 0.950 0.924 0.937 0.841 0.897

Bspline 0.976 0.971 0.979 0.998 0.927 0.926 0.935 0.813 0.895
1200 Const 0.978 0.923 0.941 0.885 0.797 0.691 0.848 0.678 0.775

Lin.model 0.987 0.991 0.989 1.000 0.990 0.992 0.958 0.854 0.939

Bspline 0.986 0.986 0.988 1.000 0.984 0.992 0.957 0.833 0.938

M
o
d
el

2

600 Const 0.997 0.739 0.689 0.105 0.552 0.542 0.355 0.540 0.551
Lin.model 0.996 0.883 0.757 0.233 0.557 0.590 0.435 0.443 0.611

Bspline 0.949 0.843 0.928 0.821 0.748 0.765 0.724 0.726 0.787

1200 Const 0.992 0.817 0.759 0.274 0.576 0.610 0.461 0.547 0.653
Lin.model 0.986 0.887 0.843 0.592 0.623 0.673 0.626 0.460 0.712

Bspline 0.962 0.914 0.955 0.912 0.909 0.927 0.766 0.815 0.877

M
o
d
el

3

600 Const 0.998 0.763 0.708 0.045 0.535 0.552 0.251 0.505 0.526
Lin.model 0.996 0.919 0.795 0.170 0.561 0.585 0.333 0.433 0.584

Bspline 0.956 0.951 0.970 0.905 0.810 0.809 0.736 0.738 0.813

1200 Const 0.993 0.856 0.810 0.237 0.577 0.592 0.373 0.507 0.623
Lin.model 0.986 0.943 0.897 0.732 0.641 0.667 0.651 0.450 0.717

Bspline 0.969 0.969 0.986 0.960 0.955 0.945 0.770 0.806 0.903

LC.est= Linear contrast function estimated with penalized regression and estimated propensity scores.
SC.const= Semiparametric contrast function estimated with Bspline regression with fixed propensity scores 1/3.
SC.est= Semiparametric contrast function estimated with Bspline regression with estimated propensity scores.
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Table 4.2: Summarized simulation results for the settings with 30% censoring rate
and a high signal-noise ratio (≈ 3.2).

Correct zeros Correct non-zeros PCD
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.E
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M
o
d
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1

600 Const 0.976 0.851 0.789 0.330 0.616 0.553 0.419 0.616 0.549

Lin.model 0.951 0.968 0.960 0.975 0.951 0.904 0.895 0.856 0.856

Bspline 0.951 0.969 0.963 0.961 0.938 0.885 0.876 0.843 0.840
1200 Const 0.954 0.878 0.892 0.672 0.680 0.615 0.647 0.628 0.613

Lin.model 0.968 0.983 0.979 0.998 0.994 0.978 0.930 0.884 0.911

Bspline 0.969 0.982 0.979 0.993 0.987 0.969 0.913 0.872 0.899

M
o
d
el

2

600 Const 0.999 0.711 0.625 0.051 0.503 0.490 0.311 0.504 0.415
Lin.model 0.997 0.878 0.700 0.105 0.495 0.529 0.330 0.380 0.473

Bspline 0.943 0.770 0.897 0.736 0.681 0.696 0.633 0.640 0.719

1200 Const 0.996 0.802 0.707 0.115 0.540 0.543 0.324 0.526 0.473
Lin.model 0.989 0.909 0.780 0.289 0.553 0.595 0.393 0.392 0.573

Bspline 0.943 0.887 0.945 0.896 0.844 0.866 0.707 0.781 0.830

M
o
d
el

3

600 Const 0.997 0.725 0.669 0.033 0.506 0.516 0.237 0.471 0.446
Lin.model 0.998 0.897 0.729 0.066 0.484 0.549 0.252 0.388 0.502

Bspline 0.936 0.922 0.951 0.864 0.715 0.741 0.675 0.673 0.744

1200 Const 0.993 0.834 0.739 0.089 0.556 0.548 0.261 0.489 0.510
Lin.model 0.986 0.931 0.825 0.317 0.590 0.584 0.371 0.400 0.600

Bspline 0.948 0.955 0.973 0.936 0.904 0.902 0.719 0.785 0.853

LC.est= Linear contrast function estimated with penalized regression and estimated propensity scores.
SC.const= Semiparametric contrast function estimated with Bspline regression with fixed propensity scores 1/3.
SC.est= Semiparametric contrast function estimated with Bspline regression with estimated propensity scores.
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Table 4.3: Summarized simulation results for the settings with 10% censoring rate
and a low signal-noise ratio (≈ 2.2).

Correct zeros Correct non-zeros PCD
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st

L
C
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.C
on
st
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.E
st

M
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d
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1

600 Const 0.990 0.924 0.844 0.356 0.686 0.611 0.587 0.654 0.672

Lin.model 0.963 0.968 0.969 0.981 0.860 0.825 0.901 0.810 0.845

Bspline 0.960 0.968 0.966 0.977 0.836 0.821 0.897 0.785 0.841
1200 Const 0.979 0.925 0.940 0.814 0.772 0.665 0.815 0.672 0.756

Lin.model 0.977 0.982 0.981 0.999 0.945 0.932 0.938 0.839 0.905

Bspline 0.978 0.980 0.982 0.999 0.930 0.931 0.938 0.815 0.904

M
o
d
el

2

600 Const 0.999 0.709 0.673 0.081 0.554 0.525 0.337 0.536 0.524
Lin.model 0.997 0.894 0.723 0.171 0.530 0.558 0.392 0.432 0.569

Bspline 0.956 0.774 0.905 0.678 0.660 0.661 0.655 0.652 0.718

1200 Const 0.996 0.807 0.750 0.213 0.563 0.591 0.420 0.545 0.625
Lin.model 0.985 0.906 0.836 0.516 0.586 0.636 0.580 0.449 0.681

Bspline 0.955 0.904 0.958 0.879 0.806 0.818 0.746 0.760 0.826

M
o
d
el

3

600 Const 0.998 0.742 0.706 0.036 0.536 0.544 0.244 0.500 0.509
Lin.model 0.996 0.918 0.770 0.110 0.520 0.579 0.293 0.426 0.559

Bspline 0.946 0.938 0.953 0.823 0.666 0.688 0.687 0.661 0.732

1200 Const 0.995 0.849 0.788 0.192 0.565 0.583 0.339 0.505 0.602
Lin.model 0.983 0.949 0.890 0.595 0.612 0.618 0.565 0.436 0.678

Bspline 0.967 0.968 0.981 0.920 0.857 0.836 0.745 0.769 0.845

LC.est= Linear contrast function estimated with penalized regression and estimated propensity scores.
SC.const= Semiparametric contrast function estimated with Bspline regression with fixed propensity scores 1/3.
SC.est= Semiparametric contrast function estimated with Bspline regression with estimated propensity scores.
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Table 4.4: Summarized simulation results for the settings with 30% censoring rate
and a low signal-noise ratio (≈ 2.2).

Correct zeros Correct non-zeros PCD
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600 Const 0.975 0.838 0.745 0.247 0.579 0.551 0.350 0.604 0.517

Lin.model 0.940 0.950 0.950 0.896 0.793 0.740 0.836 0.787 0.780

Bspline 0.944 0.954 0.951 0.870 0.802 0.728 0.814 0.782 0.760
1200 Const 0.958 0.877 0.852 0.540 0.645 0.582 0.526 0.624 0.567

Lin.model 0.947 0.970 0.958 0.964 0.929 0.873 0.887 0.845 0.848

Bspline 0.949 0.970 0.961 0.950 0.925 0.861 0.872 0.837 0.836

M
o
d
el

2

600 Const 0.995 0.697 0.628 0.051 0.492 0.474 0.308 0.497 0.410
Lin.model 0.996 0.868 0.666 0.097 0.460 0.513 0.323 0.370 0.457

Bspline 0.959 0.715 0.825 0.527 0.582 0.606 0.517 0.554 0.631

1200 Const 0.995 0.791 0.685 0.109 0.527 0.537 0.318 0.520 0.457
Lin.model 0.990 0.923 0.770 0.255 0.516 0.581 0.374 0.379 0.541

Bspline 0.934 0.873 0.942 0.827 0.726 0.736 0.657 0.707 0.755

M
o
d
el

3

600 Const 0.996 0.703 0.651 0.039 0.495 0.497 0.236 0.462 0.424
Lin.model 0.997 0.883 0.699 0.047 0.455 0.529 0.244 0.382 0.471

Bspline 0.941 0.888 0.918 0.674 0.578 0.616 0.556 0.579 0.641

1200 Const 0.990 0.820 0.705 0.087 0.526 0.541 0.254 0.478 0.480
Lin.model 0.990 0.930 0.793 0.216 0.545 0.566 0.316 0.394 0.555

Bspline 0.930 0.947 0.959 0.888 0.754 0.763 0.674 0.704 0.767

LC.est= Linear contrast function estimated with penalized regression and estimated propensity scores.
SC.const= Semiparametric contrast function estimated with Bspline regression with fixed propensity scores 1/3.
SC.est= Semiparametric contrast function estimated with Bspline regression with estimated propensity scores.
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Table 4.5: Summarized optimal treatment assignments compared with the original
assignments.

Proposed
1 2 0 Total

Original treatment

1: Pharmacotherapy Count 31 31 30 92
% 33.7% 33.7% 32.6%

2: Psychosocial Count 29 12 31 72
% 40.3% 16.7% 43.1%

0: None Count 44 33 23 100
% 44.0% 33.0% 23.0%

Table 4.6: Comparison of optimal treatment assignment for two sets of patients with
similar characteristics.

log(T) Age RUC Comorbidity Abuse ∆ A Contrast1 Contrast2 Opt.treatment

Patient1 5.44 55 5 0 Yes 1 1 0.65 0.52 1
Patient2 4.91 55 5 0 Yes 1 0 0.65 0.52 1
Patient3 4.74 56 1 0 No 1 2 -1.12 -0.40 0
Patient4 5.41 56 1 0 No 1 0 -1.12 -0.40 0
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Figure 4.1: Kaplan-Meier survival curves for the three treatment groups and the
patients who received the estimated optimal treatment weighted by the respective
propensity scores.
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APPENDICES

A First Appendix

Let an ≃
(
h2 + [ψ(log n/n)/(nϕ(h))]1/2

)
and bn ≃ a

−1/2
n .

Proof of Theorem 2.2.1: Since the proofs of the consistency of ŜY and Ĥ are

similar, we only deal with ŜY . According to Lemma 12 of Ferraty et al. (2010), under

(C1) and (C4), we have

sup
x∈X

sup
t∈T

|E(ŜY (t|x))− SY (t|x)| = o(h2).

Moreover, following Lemma 13 of Ferraty et al. (2010), under (C1)–(C4), we

can obtain,

sup
x∈X

sup
t∈T

|ŜY (t|x)− E(ŜY (t|x))| = o

(√
ψ(log n/n)

nϕ(h)

)
a.s.

Combining the above two results together completes the proof of Theorem 2.2.1. □

Proof of Theorem 2.2.2: By simple algebra, we obtain the following decomposition:

Λ̂T (t|x)− ΛT (t|x) =

(
n∑
j=1

1{yj ≤ t, δj = 1}Bnj(x)

1−
∑n

r=1 1{yr < yj}Bnr(x)
−

n∑
j=1

1{yj ≤ t, δj = 1}Bnj(x)

1−
∑n

r=1 1{yr ≤ yj}Bnr(x)

)

+

(∫ t

0

dĤ(u|x)
ŜY (u|x)

−
∫ t

0

dH(u|x)
SY (u|x)

)
=: I + II

By Theorem 2.2.1 and the fact that supj Bnj(x) = o(n−1ϕ(h)−1), we can write I as
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follows

I =
n∑
j=1

1{yj ≤ t, δj = 1}Bnj(x)

1−
∑n

r=1 1{yr < yj}Bnr(x)
−

n∑
j=1

1{yj ≤ t, δj = 1}Bnj(x)

1−
∑n

r=1 1{yr ≤ yj}Bnr(x)

=
n∑
j=1

1{yj ≤ t, δj = 1}Bnj(x)[
∑n

r=1 1{yr < yj}Bnr(x)−
∑n

r=1 1{yr ≤ yj}Bnr(x)]

(1−
∑n

r=1 1{yr < yj}Bnr(x))(1−
∑n

r=1 1{yr ≤ yj}Bnr(x))

=
n∑
j=1

1{yj ≤ t, δj = 1}Bnj(x)
2

(1−
∑n

r=1 1{yr < yj}Bnr(x))(1−
∑n

r=1 1{yr ≤ yj}Bnr(x))
= o(n−1ϕ(h)−1).

Now let us write II = II1 + II2, where

II1 =

∫ t

0

(
1

ŜY (u|x)
− 1

SY (u|x)

)
dH(u|x) +

∫ t

0

(
1

SY (u|x)

)
d(Ĥ(u|x)−H(u|x)) and

II2 =

∫ t

0

(
1

ŜY (u|x)
− 1

SY (u|x)

)
d(Ĥ(u|x)−H(u|x)).

First, we deal with II1.

II1 =

∫ t

0

(
1

SY (u|x)

)
d(Ĥ(u|x)−H(u|x)) +

∫ t

0

SY (u|x)− ŜY (u|x)
S2
Y (u|x))

dH(u|x)

+

∫ t

0

[
SY (u|x)− ŜY (u|x)
SY (u|x)ŜY (u|x)

− SY (u|x)− ŜY (u|x)
S2
Y (u|x)

]
dH(u|x)

= −
∫ t

0

ŜY (u|x)
S2
Y (u|x)

dH(u|x) +
n∑
j=1

1{yj ≤ t, δj = 1}Bnj(x)

SY (Yj|x)

+

∫ t

0

[SY (u|x)− ŜY (u|x)]2

S2
Y (u|x)ŜY (u|x)

dH(u|x)

= −
∫ t

0

1−
∑n

j=1 1{Yj ≤ u}Bnj(x)

S2
Y (u|x)

dH(u|x) +
n∑
j=1

1{yj ≤ t, δj = 1}Bnj(x)

SY (Yj|x)
+O(a2n) a.s,

where the last equality follows from Theorem 2.2.1. Noting that
∑n

j=1Bnj(x) = 1,
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we have

II1 = −
∫ t

0

∑n
j=1Bnj(x)−

∑n
j=1Bnj(x)1{Yj ≤ u}

S2
Y (u|x)

dH(u|x)

+
n∑
j=1

Bnj(x)
1{yj ≤ t, δj = 1}

SY (Yj|x)
+O(a2n)

= −
∫ t

0

∑n
j=1Bnj(x)1{Yj > u}

S2
Y (u|x)

dH(u|x) +
n∑
j=1

Bnj(x)
1{yj ≤ t, δj = 1}

SY (Yj|x)
+O(a2n)

= −
n∑
j=1

Bnj(x)

∫ t

0

1{u < Yj}
(SY (u|x))2

dH(u|x) +
n∑
j=1

Bnj(x)
1{yj ≤ t, δj = 1}

SY (Yj|x)
+O(a2n)

= −
n∑
j=1

Bnj(x)

∫ min{Yj ,t}

0

1

(SY (u|x))2
dH(u|x) +

n∑
j=1

Bnj(x)
1{yj ≤ t, δj = 1}

SY (Yj|x)
+O(a2n)

=
n∑
j=1

Bnj(x)

[
−
∫ min{Yj ,t}

0

dH(u|x)
(SY (u|x))2

+
1{yj ≤ t, δj = 1}

SY (Yj|x)

]
+O(a2n)

=
n∑
j=1

Bnj(x)
ξ(Yj, δj, t, x)

ST (t|x)
+O(a2n).

Next, we evaluate II2. Let 0 = t1 < t2 < · · · < tkn+1 = t denote a partition for the

interval [0, t], where kn ≃ {[ψ(log n/n)/(nϕ(h))]1/2 + h2}−1. By integration by parts

and Theorem 2.2.1,

|II2| =

∣∣∣∣∣
(

1

ŜY (u|x)
− 1

SY (u|x)

)(
Ĥ(u|x)−H(u|x))

) ∣∣∣t
0

−
∫ t

0

(Ĥ(u|x)−H(u|x))d

(
1

ŜY (u|x)
− 1

SY (u|x)

)∣∣∣∣∣ .
≤ sup

0≤u≤t

∣∣∣∣∣ 1

ŜY (u|x)
− 1

SY (u|x)

∣∣∣∣∣ ∑
1≤i≤kn

∣∣∣∣(Ĥ(u|x)−H(u|x)
) ∣∣∣ti+1

ti

∣∣∣∣
+ sup

0≤s≤t

∣∣∣Ĥ(u|x)−H(u|x)
∣∣∣ ∑
1≤i≤kn

∣∣∣∣∣
∫ ti+1

ti

d

(
1

ŜY (u|x)
− 1

SY (u|x)

)∣∣∣∣∣
≤knO(an)

{
max

1≤i≤kn

∣∣∣Ĥ(ti+1|x)−H(ti+1|x)− Ĥ(ti|x) +H(ti|x)
∣∣∣

+ max
1≤i≤kn

sup
y∈[ti,ti+1]

∣∣∣∣∣ 1

ŜY (y|x)
− 1

SY (y|x)
− 1

ŜY (ti|x)
+

1

SY (ti|x)

∣∣∣∣∣
}
.
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According to Condition (C1), there exists a constant C3 such that |SY (ti+1|x) −

SY (ti|x)| ≤ C3/kn. Now, divide each [ti, ti+1] into bn sub-intervals [tij, ti(j+1)], j =

1, ..., bn. Then we have, |SY (ti(j+1)|x) − SY (tij|x)| = O(a
3/2
n ). By Theorem 2.2.1, we

get

sup
0<t<τ

sup
x∈X

|ŜY (t|x)− SY (t|x)|2 = O(a2n).

These two results and the monotonicity of ŜY (t|x) over t together yield that

sup
y∈[ti,ti+1]

∣∣∣∣∣ 1

ŜY (y|x)
− 1

SY (y|x)
− 1

ŜY (ti|x)
+

1

SY (ti|x)

∣∣∣∣∣
≤ sup

y∈[ti,ti+1]

∣∣∣∣∣ ŜY (y|x)− SY (y|x)
SY (y|x)2

− ŜY (ti|x)− SY (ti|x)
SY (ti|x)2

∣∣∣∣∣+O(a2n)

≤ sup
y∈[ti,ti+1]

1

SY (ti+1|x)2
∣∣∣ŜY (y|x)− SY (y|x)− ŜY (ti|x) + SY (ti|x)

∣∣∣+O(a2n)

≤C4max
j

sup
y∈[tij ,ti(j+1)]

∣∣∣ŜY (y|x)− SY (tij|x)− ŜY (ti|x) + SY (ti|x)
∣∣∣+O(a3/2n ) +O(a2n)

≤C4max
j

∣∣∣ŜY (tij|x)− SY (tij|x)− ŜY (ti|x) + SY (ti|x)
∣∣∣+O(a3/2n ),

almost surely, where C4 is some constant. Then we have,

|II2| ≤ O(1) max
1≤i≤kn

∣∣∣Ĥ(tij|x)−H(tij|x)− Ĥ(ti|x) +H(ti|x)
∣∣∣

+ max
1≤i≤kn

max
1≤j≤bn

∣∣∣(ŜY (tij|x))− (SY (tij|x))− (ŜY (ti|x) + (SY (ti|x)))
∣∣∣+O(a3/2n )

As deduced in Gonzalez-Manteiga and Cadarso-Suarez (1994), we have

|II2| = O(a3/2n ) + h2.

Combining the results of I, II1 and II2 together completes the proof of Theorem 3.2.

□

Proof of Corollary 2.2.1: By Taylor’s expansion of the function exp(·) around
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−ΛT (t|x), there exists a Λ̃(t|x) between Λ̂(t|x) and Λ(t|x) such that

ŜT (t|x)− ST (t|x) = −
(
exp{−Λ̂T (t|x)} − exp{−ΛT (t|x)}

)
=− exp{−ΛT (t|x)} − exp{−ΛT (t|x)} × (−Λ̂T (t|x) + ΛT (t|x))

− exp(−Λ̃(t|x))(−Λ̃T (t|x) + ΛT (t|x))2 + exp{−ΛT (t|x)}

=− ST (t|x)× (−Λ̂T (t|x) + ΛT (t|x))− exp(−Λ̃(t|x))(−Λ̂T (t|x) + ΛT (t|x))2

Noting that

Λ̂T (t|x)− ΛT (t|x) =
∫ t

0

(
1

SY (u|x)

)
d(Ĥ(u|x)−H(u|x))

+

∫ t

0

(
1

ŜY (u|x)
− 1

SY (u|x)

)
dĤ(u|x) + o(n−1ϕx(h)

−1) a.s

by Theorem 2.2.1, we have,

sup
0<t<τ

sup
x∈X

|Λ̂T (t|x)− ΛT (t|x)| = o (an) a.s.

Therefore,

ŜT (t|x)− ST (t|x) = −ST (t|x)× (−Λ̂T (t|x) + ΛT (t|x)) + o (an) a.s.

By Theorem 2.2.2, we obtain

ŜT (t|x)− ST (t|x) =
n∑
j=1

Bnj(x)ξ(Yj, δj, t, x) + o

(
h2 +

(
ψ(log n/n)

nϕx(h)

)3/4
)

a.s.

If nh5 → 0 and n−1h−2(ψ(log n/n)/ϕx(h))
3 → 0,

(nh)1/2o

((
ψ(log n/n)

nϕ(h)

)3/4

+ h2

)
= o(1).
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Therefore, (nh)1/2[ŜT (t|x) − ST (t|x)] and (nh)1/2
∑n

j=1Bnj(x)ξ(Yj, δj, t, x) have the

same asymptotic distribution.

Since ξ(Yj, δj, t, x) satisfies E[ξ(Yj, δj, t, x)] = 0 and E[ξ2(Yj, δj, t, x)] <∞, for

j = 1, ..n and it is easy to see that E
[
h {Bnj(x)ξ(Yj, δj, t, x)}2

]
<∞, we have

(nh)1/2
n∑
j=1

Bnj(x)ξ(Yj, δj, t, x) →d N(0, V (x, t)),

by Central Limit Theorem, for some variance function N(0, V (x, t)). □
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B Second Appendix

Intermediate estimation results from real data example.

In this section, we explain the proposed method using the real data example.

The generalized boosted models (GBM) were used in estimating the ĝk(.), k = 1, 2, 3

and for variable selection in the proposed method. As mentioned in the section

4, we used a 5-fold cross validation method to summarize the optimal treatment

assignment, comparing with the original treatment assignment. Now we describe the

steps involved in selecting the optimal treatment using the data from the 1st step

of the 5-fold cross validation method, i.e the 1st combination of training and testing

data. First, we subset the training data in each of the 3 treatment groups. Then for

each treatment group, we perform the gbm method as described in section 2, using

all the covariates (Xk) to estimate ĝk(.), k = 1, 2, 3. After tuning the parameters of

the gbm models under each treatment group, we observe the following parameters for

the best models.

Table B.1: Parameters for the gbm model

Treatment k Shrinkage Number of trees

1 0.05 39
2 0.005 729
3 0.005 1085

From each of the gbm models, we select the variables, X̃k, using the rela-

tive influence. The Figure B.1 illustrates the importance of the covariates in each

treatment group based on the relative influence. The union of the selected covari-

ates, {X̃1

⋃
X̃2

⋃
X̃3} is then used in the propensity score estimation. For treatment

group 1 and group 2, the selected variables are X̃1 = X̃2 ={Age, Education, BMI,

Total cholesterol, estimated glomerular filtration rate} and for treatment group 3,

the selected variables are X̃3 ={Age, Education}. Therefore, the union of the vari-

ables selected in each group; Age, Education, BMI, Total cholesterol and estimated
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glomerular filtration rate were then used to estimate the propensity scores, using

boosted logistic regression. We use the mnps function from twang package using

5000 trees.

Figure B.1: Relative influence of the covariates obtained from the GBM models of
the three treatment groups.

Then using the estimates of ĝk(X) obtained from the GBM method, we cal-

culate the patient level scores U(X) that were defined in the section 2. In Table B.2,

we have provided the estimated U(X) scores for the first 10 patients in the training

data.

Now we estimate the patient level scores U(X0) for the testing data. The Table

B.3 shows the estimated scores for the first 10 patients in the testing data.

Then we estimate the µk(U(X0)), k = 1, 2, 3 for the patients in the testing

data using the NW estimator described in the section 2. The optimal bandwidths

were selected for each treatment group using the h.amise function in the kedd R-

package. The selected bandwidths for the three treatment groups are 2.68, 3.36 and

2.69 respectively. The Table B.4 presents the estimated µ̂k(U(X0)) and the proposed
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Table B.2: The estimated patient scores U(X) = (S(X), δ(X))T for the first 10
patients in the training data

i S(Xi) U(Xi)

1 0.4382 3
2 8.8367 2
3 3.3064 2
4 1.9863 2
5 2.5895 2
6 4.4242 3
7 5.6317 1
8 1.9030 2
9 1.9600 2
10 7.7091 3

Table B.3: The estimated patient scores U(X0) = (S(X0), δ(X0))
T for the first 10

patients in the training data

i S(X0i) U(X0i)

1 2.2899 3
2 14.0865 2
3 6.4727 2
4 7.0352 3
5 7.4772 3
6 7.2044 3
7 1.9484 3
8 8.1466 3
9 9.1050 3
10 11.4191 3

treatment for the first 10 patients.

89



Table B.4: Proposed treatment for the first 10 patients in the testing data

i µ̂1(U(X0i)) µ̂1(U(X0i)) µ̂1(U(X0i)) Original k̂∗ = argmaxk(µ̂k(U(X0i))

1 67.0158 66.3098 76.1271 1 3
2 56.4334 105.8077 65.9183 1 2
3 55.8858 78.1317 65.1130 1 2
4 69.1504 67.7253 82.6819 1 3
5 69.7832 67.5299 83.2943 2 3
6 69.3898 67.6580 82.9180 2 3
7 67.1128 66.0590 75.7446 2 3
8 70.7465 67.1185 84.1944 2 3
9 71.9809 66.3231 85.4302 3 3
10 73.8878 63.8497 88.2359 3 3
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C Third Appendix

The validity of the objective function (4.3)

We take the derivative of (4.3) with respect to θk and βk and obtain the

following

Sk(g,θ,β;γ) =


Sβk

(g,θ,β;γ)

Sθk
(g,θ,β;γ)

=


∂Ln(g,θ,β;γ)

∂βk

∂Ln(g,θ,β;γ)

∂θk

,

where

Sβk
(g,θ,β;γ) : = 2n−1

n∑
i=1

(Ai(k) − πk(Xi,Zi))g
′
k(X

T
i βk)Xi

∆i

G(Ti)

×

[
Yi − ϕ(Xi,Zi;γ)−

k∑
k=1

(Ai(k) − πk(Xi,Zi))[Z
T
i θk + gk(X

T
i βk)]

]
(4.10)

Sθk
(g,θ,β;γ) : = 2n−1

n∑
i=1

(Ai(k) − πk(Xi,Zi))Zi
∆i

G(Ti)

×

[
Yi − ϕ(Xi,Zi;γ)−

k∑
k=1

(Ai(k) − πk(Xi,Zi))[Z
T
i θk + gk(X

T
i βk)]

]
(4.11)
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We would like to show that the expectation of Sk(g,θ,β;γ) is 0.

E

Sβk
(g,θ,β;γ)

Sθk
(g,θ,β;γ)

 = 2E

[
(A(k) − πk(X,Z))

g′k(XTβk)X

Z

 ∆

G(T )

×

[
Ỹ − ϕ(X,Z;γ)−

k∑
k=1

(A(k) − πk(X,Z))[Z
Tθk + gk(X

Tβk)]

]]

=2E

[
(A(k) − πk(X,Z))

g′k(XTβk)X

Z

 ∆

G(T )

×

[
Y − ϕ(X,Z;γ)−

k∑
k=1

(A(k) − πk(X,Z))[Z
Tθk + gk(X

Tβk)]

]]

=2E

[
E

[
(A(k) − πk(X,Z))

g′k(XTβk)X

Z

 1{T < C}
G(T )

×

[
Y − ϕ(X,Z;γ)−

k∑
k=1

(A(k) − πk(X,Z))[Z
Tθk + gk(X

Tβk)]

] ∣∣∣∣∣T,X,Z, A
]]

=2E

[
E

[
(A(k) − πk(X,Z))

g′k(XTβk)X

Z


×

[
Y − ϕ(X,Z;γ)−

k∑
k=1

(A(k) − πk(X,Z))[Z
Tθk + gk(X

Tβk)]

] ∣∣∣∣∣X,Z, A
]]

=2E

[
(A(k) − πk(X,Z))

g′k(XTβk)X

Z


×
[
h0(X) +

K∑
k=1

A(k)[Z
Tθk + gk(X

Tβk)]− ϕ(X,Z;γ)

−
k∑
k=1

(A(k) − πk(X,Z))[Z
Tθk + gk(X

Tβk)]
]]

=2E

[
E
[
(A(k) − πk(X,Z))|X,Z

] g′k(XTβk)X

Z

[h0(X)− ϕ(X,Z;γ)

+
k∑
k=1

πk(X)[ZTθk + gk(X
Tβk)]

]]
= 0
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where the first two qualities are trivial, the third equality follows from that

E
[
1{T < C}/G(T )

∣∣∣T] = E
[
1{T < C}

∣∣∣T] /G(T ) = G(T )/G(T ) = 1, the fourth

equality follows from (4.2), and the last equality follows from that E[A = k|X,Z] =

πk(X,Z).
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