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ABSTRACT 

SOLVING THE CHALLENGES OF CONCEPT DRIFT IN DATA 

STREAM CLASSIFICATION 

Hanqing Hu 

6/6/2022

The rise of network connected devices and applications leads to a significant 

increase in the volume of data that are continuously generated overtime time, called data 

streams.  In real world applications, storing the entirety of a data stream for analyzing 

later is often not practical, due to the data stream’s potentially infinite volume. Data 

stream mining techniques and frameworks are therefore created to analyze streaming data 

as they arrive. However, compared to traditional data mining techniques, challenges 

unique to data stream mining also emerge, due to the high arrival rate of data streams and 

their dynamic nature. In this dissertation, an array of techniques and frameworks are 

presented to improve the solutions on some of the challenges. 

First, this dissertation acknowledges that a “no free lunch” theorem exists for data 

stream mining, where no silver bullet solution can solve all problems of data stream 

mining. The dissertation focuses on detection of changes of data distribution in data 

stream mining. These changes are called concept drift. Concept drift can be categorized 

into many types. A detection algorithm often works only on some types of drift, but not 
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all of them.  Because of this, the dissertation finds specific techniques to solve specific 

challenges, instead of looking for a general solution. 

Then, this dissertation considers improving solutions for the challenges of high 

arrival rate of data streams. Data stream mining frameworks often need to process vast 

among of data samples in limited time. Some data mining activities, notably data sample 

labeling for classification, are too costly or too slow in such large scale. This dissertation 

presents two techniques that reduce the amount of labeling needed for data stream 

classification. The first technique presents a grid-based label selection process that apply 

to highly imbalanced data streams. Such data streams have one class of data samples 

vastly outnumber another class. Many majority class samples need to be labeled before a 

minority class sample can be found due to the imbalance. The presented technique 

divides the data samples into groups, called grids, and actively search for minority class 

samples that are close by within a grid. Experiment results show the technique can reduce 

the total number of data samples needed to be labeled. The second technique presents a 

smart preprocessing technique that reduce the number of times a new learning model 

needs to be trained due to concept drift. Less model training means less data labels 

required, and thus costs less. Experiment results show that in some cases the reduced 

performance of learning models is the result of improper preprocessing of the data, not 

due to concept drift. By adapting preprocessing to the changes in data streams, models 

can retain high performance without retraining.  

Acknowledging the high cost of labeling, the dissertation then considers the 

scenario where labels are unavailable when needed. The framework Sliding Reservoir 

Approach for Delayed Labeling (SRADL) is presented to explore solutions to such 
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problem. SRADL tries to solve the delayed labeling problem where concept drift occurs, 

and no labels are immediately available. SRADL uses semi-supervised learning by 

employing a sliding windowed approach to store historical data, which is combined with 

newly unlabeled data to train new models. Experiments show that SRADL perform well 

in some cases of delayed labeling. 

Next, the dissertation considers improving solutions for the challenge of 

dynamism within data streams, most notably concept drift. The complex nature of 

concept drift means that most existing detection algorithms can only detect limited types 

of concept drift. To detect more types of concept drift, an ensemble approach that 

employs various algorithms, called Heuristic Ensemble Framework for Concept Drift 

Detection (HEFDD), is presented. The occurrence of each type of concept drift is voted 

on by the detection results of each algorithm in the ensemble. Types of concept drift with 

votes past majority are then declared detected. Experiment results show that HEFDD is 

able to improve detection accuracy significantly while reducing false positives. 

With the ability to detect various types of concept drift provided by HEFDD, the 

dissertation tries to improve the delayed labeling framework SRADL. A new combined 

framework, SRADL-HEFDD is presented, which produces synthetic labels to handle the 

unavailability of labels by human expert. SRADL-HEFDD employs different synthetic 

labeling techniques based on different types of drift detected by HEFDD. Experimental 

results show that comparing to the default SRADL, the combined framework improves 

prediction performance when small amount of labeled samples is available. 

Finally, as machine learning applications are increasingly used in critical domains 

such as medical diagnostics, accountability, explainability and interpretability of machine 
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learning algorithms needs to be considered. Explainable machine learning aims to use a 

white box approach for data analytics, which enables learning models to be explained and 

interpreted by human users. However, few studies have been done on explaining what 

has changed in a dynamic data stream environment. This dissertation thus presents Data 

Stream Explainability (DSE) framework. DSE visualizes changes in data distribution and 

model classification boundaries between chunks of streaming data. The visualizations can 

then be used by a data mining researcher to generate explanations of what has changed 

within the data stream. To show that DSE can help average users understand data stream 

mining better, a survey was conducted with an expert group and a non-expert group of 

users. Results show DSE can reduce the gap of understanding what changed in data 

stream mining between the two groups. 
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CHAPTER 1. INTRODUCTION

The increased use of network connected Internet-of-Things, social networks and 

other digitally connected technologies means that the data from these sources have also 

increased significantly. Data from these sources are often generated continuously, and are 

called data streams (Gao et al, 2007). Mining these data stream can produce valuable 

knowledges, but traditional data mining techniques might not be equipped to handle the 

unique characteristics of data stream mining. Three major differences of characteristic exist: 

1. Fixed Size vs Unknown Size of Data. Traditional data classification tasks are

performed on fixed- size dataset. The data set contains all available data instances 

and is usually divided into training  data and testing data. Data streams usually 

does not have a known size (Zliobaite et al., 2014).  There is no access to all 

available data instances. Only a small portion of data samples are gathered from the 

stream to train a new learning model. 

2. Static vs Dynamic Data. Because data set used in traditional classification has

definitive size and is fully available, all characteristics of the data is known, such 

as data distribution and class  imbalance. Traditional dataset is therefore static. In 

data streams, the current data characteristics may not represent the entire data 

stream. The data distribution often changes unpredictably and therefore it is 

dynamic (Webb et al., 2016). 
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3. One-time Processing vs Repeated Processing. Data processing tasks include

cleaning, annotating, and labeling the data. Since traditional dataset is fully 

available, such tasks can be done once. For data streams, processing tasks might be 

done repeatedly as new data instances arrives overtime. Many processing tasks also 

has high cost (Ramírez-Gallego et al, 2017), which makes repeat expensive. 

Data stream mining frameworks and techniques are thus created to meet the 

requirement for these new characteristics of streaming data. In practice, however, issues of 

data stream mining emerge due to the size and dynamism of data streams, which hinders 

the performance and practicality of the frameworks (Krempl et al, 2014). This dissertation 

identifies three major challenges that need to be addressed for data stream mining: 

1.1 Challenge One: Dynamisms in Data Streams – Concept Drift 

Because data streams often have unknown size, it is impractical to store all data in 

a data stream and analyze together. Each portion of data used in analysis therefore only 

shows the snapshot of the current data stream environment. In an evolving data stream, the 

data environment, which include range of data and distribution of data, often changes. 

Learning models trained on previous portions of data stream might have lower performance 

in the new data environment. 

Figure 1.1. Demonstrating concept drift 

Time
a. Linear classification 
boundary trained on 
initial training data
separating two classes

b. Classification boundary
becomes vertical after
concept drift changing 
class distribution
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Formally, in the domain of data stream classification, the underlying data 

distribution of the dataset is called a concept (Webb et al., 2016)(Lu et al, 2018). This 

definition of concept considers data samples as n-dimensional vector of features. One can 

then plot the data samples onto a n-dimensional data space. The space where the data 

sample occupies is the distribution of the data, or the concept. A concept drift describes the 

change in such data distribution. Another definition considers concept as the true 

classification prediction target (Harel et al, 2014). A concept drift describes the change in 

the prediction results for similar data samples. The two definitions thus define concept both 

from the angle of prediction input and prediction outcome. An illustrative example is 

shown in Figure 1.1. A linear classification model was trained in Figure 1.1.a, using 

existing two-dimensional training data at the beginning of the time axis. The linear model 

separates two classes of samples denoted by empty and filled circles. After some time has 

passed, in Figure 1.1.b the underlying data distribution changed, creating concept drift. 

This concept drift forced the linear classification model to change to a new vertical one.  

Concept drift can take other forms and have other effect on learning models. To 

discuss concept drift in general, a concept of data distribution can be expressed through 

probabilities, as shown in equation 1.1 (Gao et al., 2007).  

 

P(X, Y) is the joint probability of data sample X with respect to class label Y. 

Equation 1.1 states that the probability for data sample X to be of Y label equals to 

probability of label Y given sample X (P(Y|X)) multiply by probability of sample X (P(X)). 

P(X) means how likely for a sample X to appear in the data stream. A higher P(Y|X) means 

                                   P(X, Y) = P(Y|X) * P(X)                                                            (1.1) 
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samples are more probable to be of class Y given the values of data feature X. A change in 

P(Y|X) in data stream thus means the classification criteria have changed, since the same 

X values now have a different probability of being class Y. A change in P(X) means that 

the likelihood of value X within the data stream changed. This implies that there are 

changes statistical distribution of feature values. Combined, equation 1.1 reflects both 

definitions of concept. 

There are many more types of concept drift than shown in Figure 1.1 (Minku et al., 

2010)(Gama et al., 2014)(Webb et al., 2016). Concept drifts can be categorized based on 

the characteristics of the change in underlying data environment. For example, one can 

divide concept drift based on how fast the change occurs into abrupt and gradual drift. 

Other categories also exist for how severe the change is and how many times it repeats. 

One assumption of concept drift is that the timing and types of future concept drift 

are initially unknown to the learners, hence unpredictable. Most machine learning 

frameworks need first detecting a concept drift occurs, then react to it by trying to learn the 

new data distribution and new classification model (Ramakrishna & Rao, 2017) (Sethi et 

al., 2018). This approach is illustrated in Figure 1.2, which showed three main components 

in the data stream classification framework: Concept Drift Detection Unit, Classification 

Figure 1.2. Flow chart for a common data stream classification framework 

Stream Data
Samples

Concept Drift
Detection Unit

Classification
Unit

New Classifier
Training Unit

No Detection

Concept Drift
Detected

Data Stream Classification Framework

Replace or 
Include
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Unit and New Classifier Training Unit. In the beginning of a classification task, Concept 

Drift Detection Unit and Classification Unit are initialized using existing training data 

collected from the data stream. During initialization, parameters of the training process are 

determined, and necessary classifiers are trained. As new unclassified data samples from 

stream are ready for classification, they are first tested through Concept Drift Detection 

Unit. If there is no concept drift, the samples are then sent to the Classification Unit for 

prediction. If concept drift is detected, new classifiers will be trained using most recent 

data samples in the New Classifier Training Unit. The new classifiers are then used to 

replace or to combine with the existing classifiers. This puts concept drift detection in a 

critical spot for most data stream classification frameworks. 

Designing high performance concept drift detection approach is not a trivial matter. 

There is often a trade-off between cost efficiency and performance among frameworks 

(Zliobaite et al., 2014)(Sethi & Kantardzic, 2017). On one hand, relative high performance 

can be achieved with labeled data, but labeling or even only partial labeling of an unlabeled, 

high-volume, indefinite-sized data stream using human experts may involve high cost 

(Zliobaite et al., 2014). This leads to the next challenge: high cost in data stream mining. 

1.2 Challenge Two: High Cost in Data Stream Mining 

There is cost associate with every aspect of data stream mining (De Francisci 

Morales, et al., 2016). However, labeling cost stands out among others because the 

unavoidable involvement of human labor (Žliobaite, 2010): if a machine exists that can 

label samples for model training, then one can use the same machine directly for 

classification instead. The scale of modern-day machine learning applications and the 

volume of data makes high label availability a luxury. To highlight the problem of labeling 



 
 

6 
 

cost, consider the task of detecting hate speech from live tweets (Burnap & Williams, 2016), 

using a classification system facing the twitter stream (estimated at 500M daily tweets). If 

only 0.5% of the tweets are requested to be labeled, using crowd sourcing websites such as 

Amazon’s Mechanical Turk, this would imply a daily expenditure of $50K (each worker 

paid $1 for 50 tweets). It will also require a continuous availability of 350 crowd sourced 

workers (assuming each can label 10 tweets per minute, and work for 12 hours/day), every 

single day, for this task alone. Due to practical and economic limitations, data stream 

classification applications need to be able to operate from unlabeled, or at most sparsely 

labeled data, to be of any real use.  

Although unlabeled data can be used for concept drift detection, eliminating the 

cost of human intervention (dos Reis et al., 2016)(Cabanes & Bennani, 2012), this often 

results in lowered detection performance, since concept drifts take on various forms and 

are unpredictable (Hu et al., 2018). To illustrate the difficulty involved in unlabeled 

concept drift detection, two examples are shown in Figure 1.3. In Figure 1.3.a, the data 

stream seemingly undergoes no change when labels information is absent. Once labels are 

obtained in Figure 3.b, concept drift is shown rotated initial classification model from 

 

Figure 1.3. Detecting various types of concept drift is difficult without label  

a. Data without labels 
showing no change before 
and after

c. Data without labels having a 
new region of data, signaling 
concept drift

b. Data with labels showing class 
distribution change 

d. Data with labels shows new 
region does not affect existing 
classification
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horizontal to vertical. In this case, a false negative of concept drift detection is likely to be 

produced. In Figure 3.c, a new group of data samples appeared outside of existing data 

distribution, thus signaling a possible concept drift. After obtaining labels in Figure 1.3.b, 

the new samples are of the same class as the empty circles. There is no real concept drift 

because the classification model is not affected. In this case, a false positive detection is 

likely produced. Excessive false alarms make data stream mining framework unreliable 

(Wares et al, 2019). 

To reduce the cost associated with labeling, semi-supervised learning methods are 

often employed (Reddy et al, 2018). A semi-supervised learning methods only requires 

part of the training dataset to be labeled, thus reducing labeling cost. However, the same 

trade-off between performance and cost still exists (Li & Liang, 2019). Semi-supervised 

learning can only reduce labeling cost to a certain degree before the lack of labels impacting 

the performance. It is therefore important to inform users of data stream mining 

frameworks whether such unreliability is prevalent in their applications. By explaining how 

data stream has changed, a user can make educated decision on whether the stream mining 

application is working as intended. This brings the third challenge: explain changes in data 

stream. 

1.3 Challenge Three: Explainable Machine Learning and Explanation of Change in 

Data Stream Mining 

Current machine learning frameworks mostly operate like a black-box (Holzinger, 

2018): uses cannot see how the learning model is trained and how a classification decision 

is made. The problem of such black-box approach is the lack of understanding and 

accountability (Veale et al., 2018). If accident occur, in some cases it is impossible to tell 
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if it is the user’s fault or the data mining algorithm’s fault. A good example is Neural 

Network deployed for medical image diagnostic (Singh et al., 2020). As machine learning 

application becomes more and more mainstream in every aspect of society, the 

accountability of the learning models has become an important topic due to the following 

reasons (Adadi & Berrada, 2018): 

1. A need to justify prediction result. Current Artificial Intelligence/Machine

Learning (AI/ML) applications are not perfect. There needs to have some mechanism 

to explain the decision-making process when unexpected results are obtained. 

Through the decision-making process we can arrive at reasons and justifications for 

the decisions being made. In addition, many AI/ML enabled systems yield results that 

are biased and discriminatory (Caruana et al, 2015)(Howard et al, 2017). 

Model explainability can show bias exists and provide important information on 

where the bias and discrimination are generated within the 

process. Explainability ensures a way to prove that algorithmic decisions are fair and 

ethical. 

2. User’s right to explanation. This is an EU regulation included in the

General Data Protection Regulation being in effect since May 25th, 2018. The right to 

explanation states that “Such rights primarily refer to individual rights to be given an 

explanation for decisions that significantly affect an individual, particularly legally or 

financially”. For critical applications involving AI/ML, such as medical decisions and 

loan approval, the end user receiving the decision from some algorithm has the right 

to be informed how the decision about them is made. 
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3. Accountability and responsibility. In the case where AI/ML applications 

has made major errors that result in significant loss, it is important to identify all 

responsible parties involved. Explainability will be able to answer important 

questions, including but not limited to: Was the algorithm implemented correctly? 

Was the learning model trained correctly and sufficiently without bias? Was this 

application outside the capability of the AI algorithm? Was the application deployed 

correctly given the training data? By answering these questions, one can see whether 

the application developers made mistakes, or the application users operate it wrong, 

or the application is simply outside the capability of existing algorithms.   

4. Control of errors.  Explainability not only can justify decisions and assign 

responsibility when something goes wrong, it also can prevent errors being made in 

the first place. Explainability provide visibility to inner workings of the AI algorithm, 

which potentially exposes limitations, vulnerabilities and flaws. Understanding the 

limitations of the algorithm prevent applications to be used outside its own capability. 

Knowledge of the vulnerabilities prevent the application to be taken advantage of by 

adversaries. Awareness of the flaws reduces the damage and loss when an erroneous 

decision is made.  

5. Improving algorithm. Many AI/ML applications need constant 

improvement to meet ever increasing demand. It is easier to improve an AI/ML 

model when it can be explained and understood compared to a black-box model. In 

explainable models, experts can find out the process behind an erroneous AI decision 

and find a way to fix the error.  
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6. Gaining knowledge. An explainable AI/ML application can increase

human understanding of the problem at hand. A good performing AI/ML model may 

find hidden patterns and relationships that human expert previously overlooked. For 

instance, an AI model exceling in early detection of disease may help doctors better 

understanding the cause and progression of the disease. Many mathematic and 

scientific discoveries come from simulations of theories at hand and then apply real 

data to confirm it. It is reasonable to speculate that machine learning can also help in 

similar ways by making sense of the data at hand first and then formulate theories to 

understand them. To achieve such goal, the explainability of the AI/ML model is 

required. 

Model Explainability is the ability to explain to machine learning application users 

how a prediction or recommendation decision is made (Holzinger, 2018). It aims to be a 

white-box approach to machine learning application, as opposed to traditional black-box 

approaches. Existing state-of-the-art studies on Explainable Machine Learning focus on 

providing explanation to static learning models (Roscher et al. 2020)(Linardatos et al., 

2020). As mentioned above, data stream classification frameworks employ different 

strategies than traditional frameworks due to dynamisms in streaming data. Because of the 

differences, static explainable machine learning approach, though adequate for traditional 

data mining applications, may not be sufficient for data stream mining applications (Hoens 

et al, 2012). Figure 1.4 demonstrates the different between static explainable machine 

learning versus explainability in a data stream. 
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Figure 1.4.a shows the structure of a typical static model explanation framework 

(Lundberg  and Lee, 2017). A prediction model is trained using the static data. At the same 

time, the model explanations are generated uses the same data set and information from the 

trained model. Figure 1.4.b shows in a stream mining framework, multiple learning models 

might be created, and each will require a model explanation. Besides the model 

explanations, there should be extra explanations of change needed for data stream mining 

applications. These explanations should show what has changed in the data stream that 

caused the changes in the learning model. As discussed above, the unpredictability of 

concept drift and the limited label availability can result in many false alarms of concept 

 

a. Traditional model explanation framework construct model explanation with 
static model 

 

b. Explanation of changes in model in a dynamic data stream mining application 

 

Fig 1.4 Difference between static model explanation framework structure vs dynamic 
explanation of change framework structure 
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drift detection. In the case of concept drift being detected, it is important to understand why 

it is detected and how the drift affects previous learning models. Through its explanation, 

one can decide whether the detection is legitimate or a false positive. Equally important is 

that in the case of concept drift not being detected, one should know if it is a false negative. 

In either case, the explanation of changes brings interpretability and accountability of 

concept drift detection to data stream mining frameworks, 

1.4 Solving Data Stream Mining Challenges 

This dissertation aims to find solutions that can help to solve the three 

aforementioned challenges for data stream mining. The complexity of data stream mining 

means that finding a best solution might be difficult, or impossible. Chapter 2 of the 

dissertation shows that improving data stream mining follows the “No Free Lunch” 

theorem of optimization. The theorem states that no general-purpose optimization strategy 

exists, only specific solutions for specific problems. In the case of data stream mining, 

different types of concept drift require different assumptions to be made about the nature 

of the data stream. Without prior assumptions, a general optimized solution doesn’t exist. 

Therefore, the dissertation presents specific solutions to solve specific problems within the 

domain of data stream mining. 

The dissertation first presents two techniques that try to reduce the impact of 

labeling cost challenge associated with data stream mining. Chapter 3 formulates a sample 

selection algorithm that reduces the number of labels required for model training in highly 

imbalanced data stream classification. An imbalanced data stream has one class of data 

samples outnumbers another class. To train a learning model separating the two classes, 

labeled data samples from both classes are needed. In the case of a highly imbalanced data 
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stream, many data samples might need to be labeled before a single minority class samples 

can be found. To avoid unnecessary labeling of non-minority class samples, the presented 

algorithm search for minority data close to existing known minority class samples within 

a data grid.  Result shows that this approach can reduce the number of samples needed for 

labeling.  Chapter 4 shows adaptive preprocessing can reduce the frequency of retraining 

new models due to changes in the data stream. The presented preprocessing framework 

adjusts preprocessing parameters based on the new data range after concept drift is detected. 

Results show that in some cases, detected concept drifts were false positives and the real 

reason was improper preprocessing parameters. Thus, the framework can reduce the 

number of unnecessary model retraining, and reduce labeling costed associated with 

retraining.   

Acknowledging limited label availability due to cost, Chapter 5 considers 

solutions for when label is not available when needed. The delayed labeling problem is 

presented in this Chapter. The problem occurs when labels are required for new model 

training after concept drift, but not immediate available. The framework Sliding 

Reservoir Approach for Delayed Labeling (SRADL) is presented. SRADL uses semi-

supervised learning by employing a sliding windowed approach to store historical labeled 

data, which is combined with newly unlabeled data to train new models. The Chapter 

defined two scenarios of delayed labeling. The first scenario has all labels available only 

after a fixed delayed time. The second has small amounts of labeled samples trickling in, 

until all labels becoming available after the same fixed delayed time. Experiment results 

show that SRADL improve performance in the second scenario due to semi-supervised 

learning taking advantages of small numbers of labeled data.  
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Next, the dissertation considers improvements in solutions to the concept drift 

detection challenge of data stream mining. Concept drift can be divided into many 

different types based on different characteristics of the change. Existing detection 

algorithms often makes assumptions about some characteristics of the concept drift being 

detected. The “No Free Lunch” theorem in Chapter 2 shows that these algorithms are not 

the general solution to detect all concept drift due to their assumptions. To increase the 

types of concept drift detected, an ensemble approach that employs various algorithms, 

called Heuristic Ensemble Framework for Concept Drift Detection (HEFDD), is 

presented in Chapter 6. Since multiple algorithms are employed in the ensemble, the 

detection range of concept drift types can be increased. The occurrence of each type of 

concept drift is voted on by the detection results of each algorithm in the ensemble. Types 

of concept drift with votes past majority are then declared detected. Experiment results 

show that HEFDD can improve detection accuracy significantly while reducing false 

positives. 

Since HEFDD provides the ability to detect different types of concept drift, such 

information can help producing synthetic labels in semi-supervised learning.  A new 

combined framework, SRADL-HEFDD is presented in Chapter 7. SRADL-HEFDD 

employs different synthetic labeling techniques based on different types of drift detected. 

The synthetic labels are then used in semi-supervised model training as temporary 

replacement for true labels generated by human experts.  The correctness of synthetic 

labels is of major concern, especially in high dimensional data streams. Experimental 

results show that comparing to the default SRADL, the combined framework improves 

prediction performance in low dimensional data stream. 
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Chapter 8 of the dissertation presents a framework that aims to bring explainbility 

of change to data stream mining. The Data Stream Explainability (DSE) framework 

divides data stream into chunks of data and visualizes data distribution and model 

classification boundaries for each chunk. Visualizations from multiple chunks are 

compared and changes of the data stream can be explored. Visualizations from both 

concept drifting and non-drifting chunks are shown such that false positive and false 

negative can be identified.  The visualizations can then be used by a data mining 

researcher to generate explanations of what has changed or has not changed within the 

data stream. To show that DSE can help average users understand data stream mining 

better, a survey was conducted with an expert group and a non-expert group of users. 

Results show DSE can reduce the gap of understanding what changed in data stream 

mining between the two groups. 
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CHAPTER 2. NO FREE LUNCH THEOREM FOR CONCEPT DRIFT 

DETECTION1

As mentioned in chapter 1, data stream classification has become a very important 

topic of study as the amount of digital data increases rapidly Traditional classification 

problems consist of learning an underlying data distribution, called concept, among several 

data classes from a static dataset. The dataset is assumed to contain all information needed 

for training classifiers. This model is insufficient when applying to real-world data stream 

classification applications because many of those applications, such as online sentiment 

analysis, intrusion detection, and fraud detection, have dynamic data stream. For example, 

a new type of credit card fraud can appear that tries to circumvent existing fraud detection 

set in place. These changes in data streams, named concept drift (Pinage et al., 2016)(Sethi 

et al., 2018), often affect the underlying data distribution and reduce the performance of 

existing classifiers. 

Concept drift is a complex phenomenon. There can be many different types of 

concept drifts, categorized by speed, severity and distribution of change. It is important to 

identify the best detection approaches to be used under each specific stream classification 

application environment, which include labeled/unlabeled data, fast/slow drift, 

1 This chapter has been published at Hu et al, 2020. 
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repeated/non-repeated drift, etc. It is difficulty to have a general-purpose universal 

strategy for concept drift. This is why concept drift detection follows the No Free Lunch 

Theorem (Ho & Pepyne, 2002), which means that there is no one-fit-all approach for 

concept drift detection. This chapter looks at ways to classify concept drift and the 

studies that try to handle these different types of algorithms. 

2.1 Concept Drift with New Class or New Feature 

In some real-word applications, it is reasonable to assume that the number of classes 

may not be constant. This situation happens when the new samples are considered a new 

class (Masud et al., 2009), demonstrated in Figure 2.1. Figure 2.1.a shows the stream 

initially having two class, circle and triangle, with a dashed line between the two classes 

as classification decision boundary. Later on in the stream, new samples (square) arrive, 

and they are considered as a novel class. There can be two cases of novel class. The first 

case is shown in Figure 2.1.b. where new class samples appear outside of existing circle 

and triangle class, and the decision boundary between circle and triangle remains the same. 

The second case is shown in Figure 2.1.c. Here, new square samples appear between the 

circle samples and triangle samples, which changes the original decision boundary. A 

Figure 2.1. Novel class in streaming data 

a. Initially two classes
occupy a data stream

b. Novel class appear in a 
new data region

c. Novel class appear in 
existing data region
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possible application that involves such drift is online topic classification, where each topic 

is a class, and a classification framework tries to decide which text message belongs to 

which topic. New topics can appear while old topics can disappear in online conversation. 

Thus, the classification framework needs to deal with new class labels and forgetting old 

class labels.  

Masud et al. (Masud et al., 2009) proposed a non-parametric ensemble approach 

that detects emergence of novel class by separating test and training instances and 

measuring cohesion among unlabeled test instances. More recent studies also employ the 

ensemble strategy.  Lughofer et al (Lughofer  el al., 2015) employs evolving fuzzy 

classifiers (EFCs) to integrate new classes. EFCs is able to incrementally adapt structure 

and parameters on the fly when new classes appear. The approach is applied to visual 

inspection in the study but can be readily extended to stream classification. Haque and 

Baron (Haque et al., 2016) proposed SAND: Semi-Supervised Adaptive Novel Class 

Detection and Classification. The SAND framework keeps an ensemble of classifiers, each 

of which trained on a dynamically determined chunk of data. The ensemble detects novel 

class using similar cohesion measurement among unclassified outliers. Al-Khateeb et al. 

(Al-Khateeb et al., 2016) proposed a class-based ensemble that distinguish between novel 

class and recurring class. A recurring class is a class that disappear in the stream then 

reappear later on. The base learner of the ensemble is trained based on each class and 

“remembers” existing class information. Sun et al. (Sun et al., 2016) also proposed a class-

based ensemble that is able to handle gradually evolved classes. Mustafa et al. (Mustafa et 

al., 2017) proposed an approach that utilize feature learning and denoising autoencoding 

to detect novel class. It is a neural-network-based approach that is non-parametric. 
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Mohamad et al. (Mohamad et al., 2018) proposed an active learning framework for novel 

class detection. A non-parametric Bayesian model is applied so that active learning 

implementation can cope with the lack of prior knowledge about the new class. Recently, 

Saha et al. (Saha et al., 2018) detects novel class using instance distribution in decision tree 

leaves. 

For data stream, it is not necessary to have fixed feature space. New feature can 

appear in mid-stream. And this case is illustrated in Figure 2.2. Figure 2.2.a shows a data 

stream with two features and two classes (circle and triangle) initially. After some time, a 

third feature appear in the stream as presented in Figure 2.2.b. These new samples arrive 

with three dimensions, but the number of classes is still two. The classification model 

transforms from a linear model in a two dimensional data space to a plane in a three 

dimensional data space. Masud et al. (Masud et al., 2013) proposed an ensemble framework 

that contains both novel class and feature drift detection element. Each base learner is 

equipped with novel class detection. A feature set homogenization technique is applied to 

deal with evolving features. 

Figure 2.2. Novel features in streaming data 

a. Initial data in stream showing 
only  two dimensions

b. A new feature appears in data 
stream
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2.2 Concept Drift Types without New Class or Feature 

This section assumes the data stream with no new feature appearing and no new 

class being designated, as opposed to the previous secton. Table 2.1 shows the overview 

of concept drift types. The types are compiled from studies done by Minku et al. (Minku 

et al., 2010), Gama et al. (Gama et al., 2014), Webb et al. (Webb et al., 2016) and Khamassi 

et al. (Khamassi et al., 2019). The left most column shows two different scopes of drift 

detection. Single Drift means that the detection process only looks for the current drift. It 

does not take previous drifts into consideration, or drift detection without memory. Drift 

Sequence means that detection process takes multiple historical drifts up to the current 

drifts into account, or drift detection with memory. The middle column in Table 2.1 shows 

the criteria of categorization. In Single Drift, the speed of change categorizes drifts based 

on how fast the classification boundary of underlying model changes. Sudden drift occurs 

immediately, while Gradual and Incremental drift occur slowly. The distribution of change 

categorizes drifts based on whether the drift is happening in place, called Fixed Space drift 

or happening at a new place in the feature space, called Non-fixed Space drift. For Drift 

Sequence approaches two criteria are considered: Recurrence and Time interval. 

Recurrence categorizes a series of drifts into Recurrent, where a single drift in the series 
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repeats itself, and Non-recurrent, where repeating drift is absent. Finally, time Interval 

describes whether a series of drifts occurs in periodically or with an irregular interval.  

2.2.1 Speed as Criteria in Categorizing Concept Drifts 

The speed of change in data from one data distribution before concept drift to 

another after concept drift is measured by the number of time steps needed for the change 

to complete (Minku et al., 2010). A concept drift is complete when the data distribution 

settled at its final place. A time step can be the arrival of a single sample, a group of samples, 

or a fixed time interval. The less time steps it takes for the concept to complete, the faster 

Table 2.1. Overview of concept drift types 

Detection Scope Criteria Type 

Single Drift 
(Drift Without Memory) 

Speed Sudden/Abrupt 

Gradual 

Incremental 

Distribution Fixed Space 

Non-fixed Space 

Drift Sequence 
(Drift With Memory) 

Recurrence Recurrent 

Non-recurrent 

Time Interval Periodic 

Irregular 

Figure 2.3. Sudden, Incremental and Gradual Drift classified by speed of change 
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the drift is. If the drift is completed in one time step, it is called a Sudden or an Abrupt 

Drift. An example of data stream with sudden drift is one-dimensional sensor data for 

monitoring machine conditions. A fault in a machine part is caused by sudden change in 

the sensor reading to a new value, illustrated in Figure 2.3.a. If the drift takes more than 

one time step, it is either an Incremental Drift or a Gradual Drift. The difference between 

Incremental and Gradual drift is whether there are intermediate samples between the initial 

and final stage of concept drift. Gradual drift can happen in technology adoption data 

stream when a new technology emerges. Some consumers will switch to the new 

technology immediately while others will continue use the old technology, but slowly 

adopting the new over time. Incremental drift can happen in city demographic data where 

population shift can happen over several years. Visually, all three types of drift categorized 

by speed of change is illustrated in Figure 2.3. 

Each dot in Figure 2.3 is a time step of a one-dimensional data stream. The drift 

shown in Figure 2.3.a is the Sudden Drift, where the data mean of the samples abruptly 

shifts to a higher value. The entire process is complete in one time step. Incremental Drift, 

shown in Figure 2.3.b, has data mean slowly shifting upwards. After 5 time steps the final 

data mean settles, completing the drift. The data samples that arrive during the 5 time steps 

have data mean that are between the initial and final data means. These samples are 

intermediate samples. When these intermediate samples are absent and the drift is not 

sudden, then it is a Gradual Drift, shown in Figure 2.3.c. This drift also takes 5 timesteps 

to complete. However, the data mean changes back and forth between the initial and the 

final, with no intermediate values. 

2.2.2 Data Distribution as Criteria in Categorizing Concept Drifts 
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This criterion divides concept drift based on whether there is change in the global 

data distribution after concept drift is completed (Gama et al., 2014). By definition, a 

concept drift means changes in classification model, resulted from individual class 

distribution change. However, it is possible that individual class distribution change does 

not affect the overall global distribution, as in the case of Fixed space concept drift (Hu & 

Kantardzic, 2022), as shown in Figure 2.4.a. The global data distribution remains the same 

before and after the drift. However, within the global data distribution, single class 

distributions indeed may change, which alters the classification model between the two 

classes. An example of Fixed space concept drift, Bio-reactor data stream can have bacteria 

growth condition shifts under different production stages, but the condition remains in a 

fixed range to keep the population alive. A non-fixed space drift alters the global data 

distribution during the drift process (Hu & Kantardzic, 2022). Online trending topic data 

stream is a good example of non-fixed space drift (Lee et al., 2011), where a completely 

new trend can emerge in time. In Figure 2.4.b, the global distribution along with single 

class distribution changes after the drift. A new group of samples form a dense region 



24 

outside the initial global distribution, and it causes changes in the model. This is a non-

fixed space drift. 

2.2.3 Combinations of Drift Types Using Two Criterias: Speed and Distribution 

Since speed and distribution are two independent criteria, the combinations of 

concept drift types under the two criteria yields six different types of concept drift: Fixed 

space sudden, fixed space gradual, fixed space incremental, non-fixed space sudden, non-

fixed space gradual and non-fixed space incremental (Hu et al., 2020). These types are 

summarized in Figure 2.5. 

Fixed space sudden (FSS) drift is illustrated in Figure 2.5.a. Initially, the linear 

model between the circle and triangle classes is slanted upwards. Within one time step 

between time steps 2 and 3, the class boundary shifts to slating downwards. Although 

Figure 2.4. Illustration of Fixed space and Non-fixed space drifts 

a. Fixed space drift

b. Non-fixed space drift
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individual class distributions have changed, the global distribution remains the same. 

Because the drift completes in one time step and the global distribution is fixed, this is a 

fixed space sudden drift. 

Fixed space gradual (FSG) drift is illustrated in Figure 2.5.b. The stream start with 

an upward class boundary. After the first time step, new data samples display a downward 

class boundary, which is again reversed to the previous upward boundary in time step 3. 

Eventually starting from time step 4, the class boundary settles to be a downward sloped. 

Since this drift remains in the same global space and takes more than one time step to 

complete but do not contain intermediate samples, this is a fixed space gradual drift. 

Figure 2.5.c shows the fixed space incremental drift (FSI). The drift slowly occurs 

between time step 1 and 4. In time step 2 and 3, intermediate samples rotates the decision 

boundary slowly. Eventually the class boundary settles at time step 4. The presence of 

intermediate samples differentiates this drift from the gradual drift example above. 

Figure 2.5. Illustration of combination between speed and distribution of change 

Time Step1 2 3 4
a. Fixed space sudden drift

Time Step1 2 3 4 5
b. Fixed space gradual drift

Time Step1 2 3 4 5

c. Fixed space incremental drift

Time Step1 2 3 4
d. Non-fixed space sudden drift

Time Step1 2 3 4 5
e. Non-fixed space gradual drift

Time Step1 2 3 4 5
f. Non-fixed space incremental drift
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Figure 2.5.d shows the non-fixed space sudden drift (NSS). During time step 1 and 

2, both classes start off with an upward slanted class boundary. Suddenly in time step 3, a 

sudden shift in distribution of the circle class changed the decision boundary to be 

downward. In addition to the class boundary change, the circle class distribution changes 

also changed the shape of the global data space. Hence this drift is called non-fixed space 

sudden drift. 

In Figure 2.5.e the data stream displays non-fixed space gradual drift (NSG). 

Similar to fixed space gradual drift, the data first drifted to a new distribution and class 

boundary in time step 2, then reverting the drift in time step 3. After step 3, the data settles 

at the new boundary and distribution and drift is completed in 3 time steps. Again because 

there is no intermediate samples, the drift is a gradual drift.  

For non-fixed incremental drift (NSI), the illustration is shown in Figure 2.5.f. 

Similar to illustration above, the drift takes 3 timesteps to complete. The class boundary 

changed from upward sloped to downward sloped. In addition to the boundary, the global 

distribution of data also changed. Different from above is the presence of intermediate data 

in time step 2 and 3. The circle class slowly shifts its distribution to the lower right corner, 

rotating the decision boundary slowly in the process. Eventually in step 4 the boundary and 

data distribution settle, completing the drift. 

The reason for combining speed of change and distribution of change into six 

categories is because current concept drift detection methodologies are with different 

sensitivities to these six types of concept drift (Minku et al., 2010)(Gama et al., 

2014)(Webb et al., 2016). Some focus on detecting sudden concept drift, while others focus 

detecting non-fixed concept drift. These different emphasises of detection methodologies 
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result in concept drift detection approaches being only suitable to a subset of the six concept 

drift types. This aspect of concept drift detection is discussed further in Section 2.5. 

2.2.4 Recurrence of Drift 

When analyzing a sequence of drifts, a concept drift that repeats itself is called a 

recurrent drift, or cyclic drift. An example of recurrent drift is energy consumption data, 

where the day/night consumption level repeats. Recognizing a recurrent drift can help 

stream mining framework save resources. After the first occurrence of the drift, the 

classification model trained after the drift can be stored for later use. Once the drift occurs 

again, the same model can be retrieve from storage without training a new model. Visually, 

this is illustrated in Figure 2.6. 

The time step in Figure 2.6 shows t1, t2, etc instead of 1, 2, etc because between 

each drift there are enough time passed such that the drift can be considered complete. 

Therefore, the figure shows a series of drifts instead of one single gradual drift. The focus 

is on the relationships and patterns between four concept drifts at time t1, t2, t3 and t4.  At 

time step t2, a sudden drift changed the class boundary from upward sloped in t1 to 

horizontal. Then at t3, a sudden drift reverts the drift at t2. Again, at t4, the drift of t2 is 

repeated to bring class boundary to horizontal again. The drift at t4 is a recurrent drift from 

Figure 2.6. Illustration of recurrent drift 

Time Stept1 t2 t3 t4… … …
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t2, therefore this sequence of drifts is a recurrent sequence. Obviously, a non-recurrent drift 

sequence does not contain drifts that repeat. 

2.2.5 Time Interval of Drift 

In a sequence of drifts, the time interval between each drift can be the same or 

different. When each drift occurs exactly the same time apart, then the drift sequence is 

called a periodic drift. Otherwise the drifts are irregular if they are not appearing in fixed 

time interval. It is important to recognize that each concept drift in this sequence maybe 

completely different. An example of periodic drift is sun energy data, where the movement 

of the sun over seasons is highly periodic. Visually, Figure 2.7 demonstrates periodic drift 

sequence, showing that the time step between each drift is fixed n. 

2.2.6 Combination of Recurrence and Time Interval in Concept Drift 

Similar to combining speed and distribution types in a single drift, recurrence and 

time interval types of a drift sequence can be combined as well. The combinations have 

four types of drift sequences shown in Figure 2.8.  Figure 2.8.a, shows periodic recurrent 

drift, where a sequence of two types of concept drifts repeat in a fixed time step interval. 

Figure 2.8.b shows periodic non-recurrent drift, where each drift occurs in a fixed time 

interval but no drift repeats. An irregular recurrent drift is shown in Figure 2.8.c where 

 

Figure 2.7. Illustration of periodic drift 

Time Stept1 t1+n t1+2n t1+3n… … …
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drifts repeat but the interval between each drift are not fixed. Finally Figure 2.8.d shows 

irregular non-recurrent drift, where each drift doesn’t repeat and occurs irregularly. 

2.3 Detection of Single Drift 

The studies on concept drift detection can be roughly divided into two groups 

(Table 2.2): a) performance-based approach and b) data distribution-based approach. 

Performance based techniques continuously monitor the sequence of performance metrics, 

such as accuracy, F-measure, precision and recall; to signal a change, in the event of a 

significant drop in these values. These techniques require labeled data and therefore are 

often called supervised approaches (Gama et al., 2014). Data distribution-based approaches 

Figure 2.8. Illustration of combination between recurrent and periodic drift 

Time Stept1 t1+n t1+2n t1+3n… … …

Time Stept1 t1+n t1+2n t1+3n… … …

a. Periodic recurrent drift

Time Stept1 t2 t3 t4… … …

Time Stept1 t2 t3 t4… … …

b. Periodic non-recurrent drift

c. Non-Periodic recurrent drift

d. Non-Periodic non-recurrent drift
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monitor distribution change such as location, density and range. These techniques can use 

labeled or unlabeled data, and approaches using unlabeled data are called unsupervised 

approach (Gemaque et al., 2020). The two groups can be further divided based on different 

detection methods and metrics, each having their pros and cons. 

Performance based approaches are able to detect all types of single concept drifts 

(Hu et al., 2020). Regardless of types, concept drift changes the underlying classification 

model, which manifests as a change in the performance of the current model. However, 

performance-based approach requires labeled data instances to obtain accurate 

measurement. Given the large quantity and speed of real-world data stream, this is not 

always feasible in real-world applications. In contrast, data distribution-based approaches 

may not be able to detect all types of concept drift, because they can do so with little to no 

labels. The two groups of approach are a trade-off between resources and effectiveness: 

performance-based approaches requires high amount of resources but also can be more 

effective. Whereas data distribution-based approaches require less resources but may also 

be less effective.  

A compromise between the two groups exists where unlabeled data can be used to 

measure classification confidence or uncertainty. This measurement shows how confident 

the classifier is to predict a class label for a particular sample. A change in confidence or 

uncertainty can signal potential concept drift. Monitoring such measurement is similar to 

monitoring classification performance and therefore this detection approach will be briefly 

discussed together with performance-based approach.  
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2.3.1 Performance Based Approach for Concept Drift Detection 

Statistical test can be applied to detect changes in performances. The drift detection 

techniques based on Statistical Process Control monitor the online trace of error rates, and 

Table 2.2. Overview of concept drift detection approaches 

Detection Target Detection Method Example Studies 

Performance Based 

(Require labelled data) 

Statistical Test 

DDM (Gama et al., 2004), 

STEPD (Nishida & Yamauchi, 

2007), ECDD (Ross et al., 

2012),FHDDM (Pesaranghader 

& Viktor, 2016), Fisher’s Exact 

Test (de Lima Cabral & de 

Barros, 2018), … 

Ensemble 

ASHT(Bifet et al., 2009), 

AUE(Brzeziński & Stefanowski, 

2011), DDD(Minku & Yao, 

2012), DDWM (Sidhu & Bhatia, 

2018), KME(Ren et al., 2018), … 

Others 

RBM (Jaworski et al., 2017), 

OHNBC (Astudillo et al., 

2016), … 

Data Distribution Based 

(Can use unlabeled data) 

Statistical Test 

Kolmogorov-Smirnov (KS) Test 

(Polonik, 1999)(Kifer et al., 

2004)(dos Reis et al., 

2016)(Spinosa et al., 2007), 

Multi-kernel (Siahroudi et al., 

2018), Multi-component (Liu et 

al., 2018), … 

Density 

OLINDDA (Spinosa et al., 2007), 

SAND (Haque et al., 2016), 

Clustering (Kantardzic et al., 

2010), GC3(Sethi et al., 

2016)(Sethi et al., 2014), … 

Classification Margin 

1-norm SVM (Dries & Rückert, 

2009), MD3 (Sethi & 

Kantardzic, 2017), Model 

Explanation (Demšar & Bosnić, 

2018), … 

Others 

SOM (Cabanes & Bennani, 

2012), One-class Classifier 

(Krawczyk & Woźniak, 2015), … 
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detects deviations based on ideas taken from control charts. A significantly increased error 

rate violates the performance distribution model, and as such is assumed to be a result of 

concept drift. The basic principle of performance based statistical testing is illustrated in 

Figure 2.9. The performance of some classifier has a statistical distribution before the drift 

occurs. After the concept drift, the performance distribution shifted to a lower mean. If the 

shift is significant enough according to statistical test, then a concept drift is detected.  

Gama et al. (Gama et al., 2004) proposed Drift Detection Method (DDM) that 

detects significant changes in streaming data classifiers’ performance. The DDM approach 

monitors the probability of error at time 𝑡 as 𝑝𝑡 and the standard deviation as (2) 

𝑠𝑡 =  √𝑝𝑡(1 − 𝑝𝑡)/𝑖                                                                    (2) 

When, 𝑝𝑡 + 𝑠𝑡 reaches its minimum value, the corresponding values are stored in 

pmin and smin. A warning is signaled when 𝑝𝑡 + 𝑠𝑡 >  𝑝𝑚𝑖𝑛 + 2 ×  𝑠𝑚𝑖𝑛, and a drift is 

signaled when 𝑝𝑡 + 𝑠𝑡 >  𝑝𝑚𝑖𝑛 + 3 ×  𝑠𝑚𝑖𝑛. An improved version of DDM, called Early 

Drift Detection Method (EDDM) was proposed by Baena-Garcıa et al. (Baena-García et 

al., 2006). EDDM’s advantage is to be able to detect gradual drift earlier than DDM. The 

(3) 

 

Figure 2.9. Basic principle of performance based statistical testing 
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EDDM was developed as an extension of DDM, and was made suitable for slow moving 

gradual drifts, where DDM previously failed. EDDM monitors the number of samples 

between two classification errors, as a metric to be tracked online for drift detection. It was 

assumed that, in stationary environments, the distance (in number of samples) between two 

subsequent errors would increase. A violation of these condition was seen to be indicative 

of drift. Nishida et al. (Nishida & Yamauchi, 2007) applied statistical test of equal 

proportions (STEPD) to concept drift detection problem. STEPD computes the accuracy 

of a chunk C of recent samples and compares it with the overall accuracy from the 

beginning of the stream, using a chi-squares test to check for deviation. Another approach, 

proposed by Ross et al. (Ross et al., 2012), utilizes exponentially weighted moving average 

charts for detecting concept drift (ECDD or EWMA). The moving average is created for 

the overall performance of the classifier so that any significant deviants from historical 

normal values can be detected as concept drift. The metric M at time t is updated as per (3) 

𝑀0 =  𝜇0, 

𝑀𝑡 =  𝛿 × 𝑀𝑡−1 + (1 − 𝛿) × 𝜖𝑡   (3) 

Where, 𝜇0 and 𝜎0 are mean and standard deviation obtained from the training data, 

by random sampling. The error rate at time t is given by 𝜖𝑡 , θ is the acceptable deviation 

in terms of number of standard deviations from the mean and 𝛿 is the forgetting factor 

which controls the effect of previous data on the current sample. In (3), a new metric M at 

time t is updated by multiplying previous error rate with forgetting factor 𝛿 and adding 

current error rate of time t multiplying by 1 − 𝛿. Finally, the criterion for concept drift 

detection is given by (4) 
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𝑖𝑓 𝑀𝑡 −  𝜇0 >  𝜃 × 𝜎0, 𝐷𝑟𝑖𝑓𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑                               (4) 

Frías-Blanco et al. (Frías-Blanco et al., 2015) proposed an incremental framework 

called Hoeffding Drift Detection Methods (HDDM) that uses Hoeffding Bounds as the 

statistical test for concept drift detection. The approach tracks the moving average of 

classifiers’ performance. To detect concept drift, Hoeffdings’ inequality was applied to 

detect significant changes in the moving average.  Pesaranghader et al. (Pesaranghader & 

Viktor, 2016) proposed using Hoeffding’s inequality as the statistical test for detection 

called Fast Hoeffding Drift Detection Method (FHDDM). The test compares the maximum 

overall probability of a correct prediction and the most recent probability of a correct 

prediction. Similar to STEPD, if the stream is non-drifting, then the two probably should 

be very similar. Drift is detected if there are significant difference between the two values. 

Yu and Abraham (Yu & Abraham, 2017) proposed a framework that utilize a hierarchical 

set of hypotheses testing to accurately detect concept drift. The first layer detects concept 

drift by tracking classifiers’ previous and current performance and applying Linear Four 

Rates test to detect significant changes. The second layer uses output of the first layer and 

employs permutation test procedure to validate detection from first layer. Cabral et al. (de 

Lima Cabral & de Barros, 2018) proposed drift detection method using Fisher’s Exact Test, 

another statistical hypothesis testing tool.  An efficient implementation of Fisher’s Exact 

Test enables the test to be applied to streaming data. Results show the test is superior to 

previous approaches such as STEPD (Nishida & Yamauchi, 2007), ECDD (Ross et al., 

2012) and FHDDM (Pesaranghader & Viktor, 2016).  Wang et al. (Wang et al., 2018) 

proposed Multiscale Drift Detection Test approach that employs resampling and paired 
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student t-test. The approach emphasizes on lowering computation cost of concept drift 

detection. 

Another common strategy for performance-based drift detection uses ensemble 

learning. The basic principle for this strategy is illustrated in Figure 2.10. Each ensemble 

is composed of multiple diverse base classifiers. Concept drift affect each base classifier 

differently. Either the overall ensemble performance or individual base classifier 

performance can be monitored for concept drift detection. In Figure 2.10, the ensemble 

contains classifier A, B and C with varying accuracy and weight assigned. After the 

concept drift, all A, B and C see significant decline in accuracy, which triggers drift 

detection. If classifier C falls below performance threshold, a new classifier D is trained to 

replace C and all classifiers’ weights are adjusted as well. Also, ensemble-based approach 

often tie concept drift detection with concept drift handling. Meaning by the time concept 

drift is detected, the ensemble approaches often have the mechanism to adjust the models 

to the change immediately. 

Wang et al. (Wang et al., 2003) proposed a weighted ensemble that assign weights 

to each base classifier based on their current performance. Bifet et al. (Bifet et al., 2009) 

utilized two different bagging approach for their proposed windowed ensemble framework: 

ADWIN Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. A windowed 

approach is where a certain number of data samples from stream is grouped together, 

forming a window, or chunk, of grouped data samples. All activities of the framework, 

including concept drift detection, model learning, model evaluation, etc., are all performed 

within each window or chunk.  Bifet et al.’s bagging approach can prune under-performing 

classifier and thus makes the ensemble more efficient in real-world application. In case 
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change is present, the window is shrunk and vice-versa. Whenever two large enough sub 

windows exhibit distinct averages of the performance metric, a drift is detected.  

 

Brzeziński and Stefanowski (Brzeziński & Stefanowski, 2011) proposed an 

Accuracy Updated Ensemble (AUE) framework that uses Hoeffding Trees as base 

classifiers. Each base classifier incrementally adapts to concept drift while the entire 

ensemble also weighs each classifier based on their accuracy. Thus, AUE is able to react 

to both sudden and gradual change in classifier performance. Minku et al. (Minku & Yao, 

2012) proposed Diversity for Dealing with Drifts (DDD). DDD acknowledges the diversity 

of different types of concept drift and tries to incorporate a variety of base classifiers in 

their ensemble. Each base classifier is assigned a level of diversity and the ensemble 

maintains multiple levels of diversities to detect various types of concept drift. An online 

bagging approach was used to prune the base classifiers. Dehghan et al. (Dehghan et al., 

2016) proposed an approach that processes samples one by one and monitors the 

ensemble’s error distribution. A measurement called Number and Distance of Errors (NDE) 

was created to describe the error of each sample’s classification result. If the recent NDE 

is significantly different from overall NDE, then a concept drift is detected. Sidhu and 

 

Figure 2.10. Basic principle of performance-based drift detection using ensemble learning 
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Bhatia (Sidhu & Bhatia, 2018) presented diversified dynamic weighted majority (DDWM). 

Similar to DDD, classifiers are grouped into two sets of different levels of diversity. When 

concept drift occurs, base classifier in either ensemble is removed if its accuracy falls too 

low. A new base classifier is added in either ensemble when its accuracy is comparable or 

better than the global prediction accuracy. Khamassi et al. (Khamassi et al., 2019) proposed 

an ensemble called EnsembleEDIST2 approach that uses Error Distance Approach for Drift 

Detection and Monitoring (EDIST2) to track detect concept drift by tracking ensemble’s 

performance. EDIST2 is a concept drift detection based on the Khamassi et al.’s earlier 

work (Khamassi et al., 2015). The ensemble utilizes three diversity methods to benefit from 

their advantage and limit their disadvantages. Nikzad-Langerodi et al (Nikzad-Langerodi 

et al., 2018) proposed an ensemble of partial least square (PLS) models for applications in 

Melamine resin production. A committee disagreement measurement is calculated, and 

changes are detected using PageHinkley (PH) statistic on this metric. The study also 

explored supervised and unsupervised strategies using this framework. 

Mahdi et al. (Mahdi et al., 2018) integrates the entropy drift detection with 

ensemble classifier. Using information entropy as concept drift detector is first proposed 

by Vorburger et al. (Vorburger & Bernstein, 2006), then improved using a dynamic sliding 

window by Du et al. (Du et al., 2014). Mahdi et al. calculates entropy for each base 

classifier from a fixed-sized block of data. The classifiers are added or removed based on 

whether their entropy is of a desirable level. Ren et al. (Ren et al., 2018) combined both 

performance-based approach and distribution-based approach for concept drift detection. 

Their framework Knowledge-maximized ensemble (KME), uses both labeled and 

unlabeled data to maximize information on knowledge of the current concept, including 
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both classifier performance and sample distribution. This approach is included in the 

performance-based approach section because weighting the KME ensemble using 

classifier performance is a major part of the framework. The approach still heavily relies 

on labeled data. Krawczyk and Cano (Krawczyk & Cano, 2018) modified existing 

ensemble voting mechanism by allowing base classifiers to abstain from contributing to 

final decision. Each classifier’s confidence level is monitored sample by sample and only 

classifiers with confidence over certain threshold is selected. The threshold is dynamic 

chosen based on current data stream environment. The abstaining option enhance the 

ensemble’s ability to deal with noisy data stream. 

Some ensemble approaches also try to address the cost of labeling by using partial 

labeled data. Ditzler et al. (Ditzler & Polikar, 2011) applied semi-supervised support vector 

machine to stream data mining problems. Their ensemble is trained, tested and updated 

using both labeled and unlabeled data. Ahmadi & Beigy (Ahmadi & Beigy, 2012) applied 

majority voting, previously used for fully labeled classification problems, to the ensemble 

of partially labeled semi-supervised classifiers. Hosseini et al.. (Hosseini et al., 2016) 

proposed an ensemble semi-supervised classification framework that is able to handle 

concept drift and partial labeling. Each of their classifier represents a single concept. The 

classifiers are updated using the latest partially labeled data. 

Several performance-based approaches use neither statistical test nor ensemble 

learning. Rutkowski et al. (Rutkowski et al., 2014) proposed a new decision tree 

construction method for stream data mining. The study derived a new splitting criterion 

based on misclassification errors. When combined with the Gini index, their decision tree 

was able to achieve high prediction accuracy in a concept drifting stream. Du et al. (Du et 



39 

al., 2014) calculated information entropy from an adaptive sliding window, which is then 

used for concept drift detection. The sliding window is dynamically determined, and the 

approach is able to detect the exact moment for retraining classification model. Jaworski 

et al. (Jaworski et al., 2017) applies Restricted Boltzmann Machine (RBM), a type of neural 

network, to detect concept drift by evaluating free energy and reconstruction error from 

RBM. Another neural network-based concept drift detection is proposed by Lobo et al. 

(Lobo et al., 2018), which uses Evolving Spiking Neural Networks. Astudillo (Astudillo et 

al., 2016) proposed using Online Histogram-based Naïve Bayes Classifier (OHNBC) and 

the change in classification performance to detect concept drift. OHNBC has the advantage 

of dealing with data stream that have label and unlabeled data instances mixed, with 

training, testing and deployment of classification model interleaved.  

When labels are not available, it is possible to estimate classifier performance by 

measuring classification confidence or classification uncertainty. Lughofer et al (Lugofer 

et al., 2016) explained such concept drift detection scheme in their study. Classifier 

behavior is monitored and a modified version of Page-Hinkley test is employed to detect 

statistically meaningful changes in classification uncertainty. The study proposed two 

variants of frameworks to deal with both semi-supervised and unsupervised classification. 

Kim & Park (Kim & Park, 2017) used probabilistic estimation on classification result to 

detect concept drift in data streams with limited or no access to labeled data. Random 

samples are selected, and a classification confidence vector is calculated. A windowed 

monitoring approach is then used to detect significant changes in confidence for potential 

concept drift. 
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2.3.2 Comparisons among Performance Based Approaches for Concept Drift 

Detection 

Pesaranghader et al. (Pesaranghader & Viktor, 2016) summarized comparison of 

experimental results between several approaches: FHDDM, DDM (Gama et al., 2004), 

EDDM(Baena-García et al., 2006), ADWIN(Bifet et al., 2009) and HDDM(Frías-Blanco 

et al., 2015). The comparison contains two version of HDDM with two different statistical 

test metric: A-test and W-test. The classifiers used are Hoeffding Tree (HT) and Naïve 

Table 2.3. Comparison of Experimental result compiled by (Pesaranghader & Viktor, 2016) 

Algorithms 

            Data Sets 

Detection  

Approach 

Electric Market 

(Zliobaite, 2013) 

Airline (Ikonomovska, 

2011) 

Poker Hand (Cattral 

& Oppacher, 2017) 

# of 

Drifts 
Accuracy 

# of 

Drifts 
Accuracy 

# of 

Drifts 
Accuracy 

HT 

FHDDM 

(Pesaranghader & 

Viktor, 2016) 

77 84.38% 339 65.66% 1557 76.45% 

DDM (Gama et al., 

2004) 
169 84.41% 14 65.29% 1046 72.74% 

EDDM (Baena-

García et al., 2006) 
191 84.91% 54 65.06% 4806 77.30% 

ADWIN (Bifet et al., 

2009) 
110 83.40% 341 65.25% 2373 74.56% 

HDDMA-test 

(Rutkowski et al., 

2014) 

210 85.71% 88 64.99% 2565 76.40% 

HDDMW-test 

(Rutkowski et al., 

2014) 

117 85.06% 652 65.02% 2211 77.11% 

NB 

FHDDM 96 82.69% 297 66.44% 1660 76.30% 

DDM 143 81.18% 13 65.33% 433 61.97% 

EDDM 203 84.83% 23 65.18% 4863 77.48% 

ADWIN 128 81.63% 300 66.79% 2453 74.60% 

HDDMA-test 211 84.92% 72 67.22% 2615 76.48% 

HDDMW-test 132 84.09% 620 65.34% 2312 77.11% 
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Bayes (NB). The dataset used are Electric Market (EM) (Zliobaite, 2013), Airline 

(Ikonomovska, 2011) and Poker Hands (Cattral & Oppacher, 2017). Table 2.3 shows the 

number of drifts detected and average accuracy of underlying classifiers under three 

datasets. 

Several observations can be made from Table 2.3. First, no one detection algorithm 

has the best result for all three datasets. This means that even performance-based approach 

can detect all types of drift, their performance is still depended on nature of the data stream 

itself. Second, high number of concept drift detected does not necessarily mean high 

accuracy. For instance, for the airline dataset using HT as classifier, the highest number of 

drifts detected is 652 by HDDMW-test and the lowest number of drift detected is 14 by 

DDM. However, DDM has the highest average accuracy in this experiment whereas 

HDDMW-test scores in the middle. It means that a lot of these detections are false positive. 

This may be due to the parameter set by the experimenter being very sensitive. Third, the 

accuracy gain within each dataset is limited. The majority of the results shows that 

performance difference between lowest accuracy and highest accuracy is less than 3%. 

Exceptions are Poker Hand with HT and Poker Hand with NB, with differences being 4.56% 

and 15.51% respectively. This further show that performance-based approach is still 

heavily affected by the characteristic of the stream data set. 

2.3.3 Data Distribution Based Approach for Concept Drift Detection 

Data distribution-based approach has the advantage of being able to process both 

labeled and unlabeled data. When this group of approaches work with labeled data, their 

detection performance can be on par with that of performance based approach (Dries & 
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Rückert, 2009)(Sethi & Kantardzic, 2017). When working with unlabeled data, however, 

each approach is best suitable for a subset of concept drift types. 

Statistical test is used in data distribution-based approach. Instead of tracking 

classifier performances, here the test is applied to track significant data distribution change. 

This is illustrated in Figure 2.11 using two-dimensional data (X, Y). The actual underlying 

class boundary of the demonstrated two-dimensional data would be unknown if class labels 

are not available. However, there are changes in the probability distribution of the two 

features before and after the drift, as shown in Figure 2.11.a and 2.9.b. If such features pass 

some statistically test to be significant different, then a concept drift can be detected 

without label. Polonik (Polonik, 1999) generalized Kolmogorov-Smirnov (KS) test to use 

beyond simple one-dimensional data. KS test determines whether two distributions from 

two sets of samples are equal. When applied in streaming data, data samples from two 

different time spans have their respective probability distributions D and F. If D does not 

equal to F according to KS test, then it is possible that concept drift has occurred. Kifer et 

al. (Kifer et al., 2004) applied KS test for concept drift detection. Glazer et al. (Glazer et 

al., 2012) applied KS test for detection of change of high-density area in high dimensional 

data. The study modified classic minimum-volume set (MV-set) estimators for density 

estimation and enables KS test to be applied to high dimensional data. The author also 

noted that change in high density area is directly related to concept drift detection in 

streaming data. Sobolewski and Wozniak (Sobolewski & Wozniak, 2013) proposed a KS 

test concept drift detection framework with that can work on unlabeled data stream. The 

approach acknowledges that concept drift that does not change the global distribution 

cannot be detected. This study thus demonstrated that KS test drift detector, when applied 



43 

to unlabeled data, is not suitable for detecting fixed space drift. dos Reis et al. (dos Reis et 

al., 2016) modified KS test to be able to perform incrementally. Traditional non-

incremental KS test requires O(NlogN) whereas the new proposed test requires O(logN). 

The fast test is suitable for stream data with big volume and still produce the same result 

as traditional KS test. However, because the test is unsupervised, traditional KS test 

limitations on unlabeled data still applies. 

Besides using KS test, Song et al. (Song et al., 2007) applied kernel density to detect 

concept drift. This study identifies suitable kernel width using expectation maximization 

algorithm. A density test was performed on each data samples to check if it is from the 

same underlying data distribution. Shaker (Shaker & Lughofer 2014) applied an extended 

version of Page-Hinkley test to detect and quantify concept drift for regression. An 

Figure 2.11. Basic principle of data distribution based statistical testing 
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adaptive forgetting factor are integrated based on intensity of the drift, and a local 

forgetting factor are used to address different drift intensity in different local regions of 

feature space.  Siahroudi et al. (Siahroudi et al., 2018) computes multiple kernels of the 

data space and specifying class boundary using combined kernels. A concept drift is 

detected if new samples appear outside existing class boundary. Lee and Magoules (Lee & 

Magoules, 2012) utilized correlation information of value distribution in a windowed 

detection approach. Faithfull et al. (Faithfull et al., 2019) applied an ensemble of univariate 

change detector to a multivariate change detection problem. The ensemble outperforms 

pure multivariate approaches in their experiments. Liu et al. (Liu et al., 2018) proposed a 

three-component, statistical-test based framework for concept drift detection. The first 

component uses K-nearest neighbours to construct data subspaces for density estimation. 

The second component applies a distance function that accumulates density discrepancies 

in each subspace and calculate overall differences. Third component uses statistical test on 

density discrepancies to determine the confidence interval of concept drift occurring. 

Statistical test is best suited for non-fixed space drift (Sobolewski & Wozniak, 2013) 

as illustrated in Figure 2.12, which shows the linear classification model rotates in a fixed 

data space. The overall data distribution shows no change. Since label is unavailable, it is 

impossible to track individual class’s distribution change. Therefore, statistical test fails 

for this case. Also, studies using KS test may be better suited for quicker drift than slower. 

Since KS test drift detector comparing distributions of data from two different time interval, 

the sensitivity of detection is determined by length of the time interval. For a very slow 

gradual or incremental drift, short interval KS test will not be able to detect significant 

difference between consecutive intervals.  
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Another group of data distribution-based method look for changes in dense regions 

of the data. These methods are capable of identifying uncertain suspicious samples, which 

need further evaluation. They define an additional ’Unknown’ class label to indicate that 

these suspicious samples do not fit the existing view of the data (Spinosa et al., 2007). 

Clustering and outlier-based approaches are popular implementation strategies for 

detecting novel patterns, as they summarize current data and can use dissimilarity metrics 

to identify new samples (Kantardzic et al., 2010). Only changes in dense regions are 

considered. Changes outside the dense area has less impact on the overall classification 

performance. These changes can be considered as outliers appearing in a data stream; thus, 

they don’t represent a concept drift. A change in the dense area, in contrast, involves much 

larger number of samples. The impact on performance is therefore significant. This process 

Figure 2.12. When distribution based statistical testing fails 
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is illustrated in Figure 2.13. The few triangles class that appears above the class boundary 

in time step t2 is considered outlier since the impact on class boundary is small. Later in 

time step t3, the same region becomes filled with the triangle class. The appearance of such 

dense region has a large impact on classification performance and should be considered a 

candidate for concept drift. 

 There are several approaches to monitor dense area of a data stream. The first one 

is to use clustering. Lazarescu et al. (Lazarescu et al., 2004) uses a multi-windowed 

approach with clustering for concept drift detection. The clusters were constructed to 

describe each current concept. When concept drift occurs, new clusters constructed after 

the drift will be significantly different from existing cluster and thus the drift can be 

detected. Spinosa et al. (Spinosa et al., 2007) applied K-means clustering algorithm for 

concept drift detection in a framework named n OnLIne Novelty and Drift Detection 

Algorithm (OLINDDA). K clusters were initially generated by the K-means algorithm. The 

overall arithmetic mean of between the initial cluster centroids were calculated. As new 

sample arrives, new samples are clustered into a candidacy cluster. If the mean distance 

between centroid of this candidacy cluster and initial clusters are smaller than the initial 

mean distance, then this candidacy cluster is considered valid, and no concept drift 

occurred. Otherwise, the new candidacy cluster forms a new concept outside the initial K-

 

Figure 2.13. Basic principle of data distribution-based density monitoring 
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clusters, forming a new dense data region. Kantardzic et al. (Kantardzic et al., 2010) 

proposed a framework that work with partially labeled data stream. Similar to OLINNDA, 

the framework creates initial clusters at beginning of the data stream. The centroid and 

radius of each cluster is remembered by the framework. New data samples is said to belong 

to existing clusters if it is within the radius from some existing centroids. For samples that 

are not within existing cluster, the framework will try to cluster them. If a new cluster 

emerges from these samples, it means a new dense region appeared and concept drift is 

detected. Haque et al. (Haque et al., 2016) proposed SAND framework, discussed in 

section 2 as novel class detector, is also used for concept drift detection. The ensemble 

created clusters and use these clusters to determine existing data regions. If a new cluster 

appears, the new dense region can be a new class or a new concept, depends on labels of 

the samples. Masud et al. (Masud et al., 2010) proposed a framework that is similar to 

SAND, where K-means clusters were used initially to create K clusters. New samples 

outside of existing clusters are counted as outliers. Similar to (Kantardzic et al., 2010), if 

the outliers form a new cluster, then either a concept drift or a novel class is detected. 

Tu and Chen (Tu & Chen, 2009) proposed a framework that has an online 

component that map each data samples to a grid in the data space, and an offline component 

that compute grid density. Clusters are constructed based on the calculated density of each 

grid. A density decaying mechanism was applied to forget older samples so that new dense 

grid can be discovered. Sethi et al. (Sethi et al., 2016) applied the principle of the grid to 

concept drift detection in the Grid density-based Clustering for Classification of streaming 

data with Concept drift (GC3) framework. The framework detects concept change when a 

new grid becomes dense, or an existing grid is no-longer dense because of forgetting 



48 

mechanisms. The detection part of the framework can work without labels.  An improved 

ensemble-based grid density framework was proposed by Sethi et al. (Sethi et al., 2014) to 

tackle concept drift in both spatial and temporal component of the data stream. The grid 

initially maps out the special characteristics of the data space using grid density clustering. 

A set of base classifiers were trained on each cluster so the temporal change within the 

cluster can be monitored as well, with the help of a few labeled samples within each cluster. 

When labels are unavailable, clustering approach will not be able to generate 

clusters for each class individually. For stationary drift, when the global data distribution 

does not change, no new clusters will be generated, and no concept drift can be detected 

using the clustering approaches. Therefore, in an unlabeled data stream these approaches 

are, hypothetically, best suited for non-stationary drift. Figure 2.14 demonstrated this 

limitation by showing a fixed space drift. When labels are available, as shown in Figure 

Figure 2.14. When data distribution-based density monitoring fails 
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2.14.a, clusters are generated for each class in the data and there is clearly a change in 

cluster distribution before and after concept drift. When labels are not available in Figure 

2.14.b, clusters can only be generated on the global data distribution and there shows no 

change before and after. The clustering approach cannot detect such change. 

Several studies use the underlying classification model’s characteristics for concept 

drift detection. Dries et al. (Dries & Rückert, 2009) proposed three approaches in their 

study: a) density estimation on binary representation of the data, b) measures average 

margin of 1-norm SVM and c) average error rate generated by SVM. The study shows that 

the SVM approach (second approach) has the best precision and recall. The linear SVM 

creates a margin between two supports. Concept drift can be detected if there are significant 

changes between the margins. Sethi et al. (Sethi & Kantardzic, 2017) further improve the 

margin approach by extending it to partially labeled data stream. The proposed framework 

Margin Density Drift Detection (MD3) first trains an initial SVM on a portion of the data 

stream. New data that arrives between the existing SVM’s support are considered critical 

points. The density of critical points is given by (5) 

𝜌 =  
# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑚𝑎𝑟𝑔𝑖𝑛

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
(5) 

The assumption is that if the class boundary does not change, then the density of 

the critical points should remain the same over time. Concept drift is detected when a 

significant change in the density happens. This is illustrated in Figure 2.15. Initially in 

Figure 2.15.a, two classes of samples are separated by a horizontal decision boundary, with 

margin density 0.4 (2 critical points within margin divided by 5 total samples) and 0.5 (3 

critical points within margin divided by 6 total samples) for each class respectively. After 



50 

concept drift occurs in Figure 2.15.b, the decision boundary changed, as a result, the margin 

density changes to 0.8 and 0.66 respectively. After retraining SVM, the new decision 

boundary reflects post-drift reality in Figure 2.15.c, and the margin density returns to 

normal value of 0.6 and 0.5 respectively. Demšar and Bosnić (Demšar & Bosnić, 2018) 

computes multiple model explanations, which is composed of attribute-value contributions 

for prediction outcomes, for a given classifier. Concept drift is detected if significant 

changes occurs in the composition of these attribute-value contributions. 

When applying approaches that uses classification characteristics to unlabeled data, 

concept drift can be detected only if changes occur close to the class boundary. This is 

illustrated in Figure 2.16. If a new concept appears far away from the boundary such as 

Figure 2.15. Illustration of Margin Density drift 

detection 

a b c

Figure 2.16. Margin Density failed to detect concept 

drift 

a b
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those in non-stationary drift shown in Figure 2.34.b, the margin density will not change. 

The number of samples inside the margin are the same between Figure 2.16.a and 2.16.b. 

Therefore, this approach is best suited for stationary drift. For speed of change, margin 

density approaches such as (Dries & Rückert, 2009) (Sethi & Kantardzic, 2017) may not 

be suited for very slow drift as the density is calculated, depending on window size. Since 

the density is calculated window by window, for slow drift each consecutive window might 

not have significant change between each other. A memory of historical density measure 

is needed to change detection for very slow drifts. 

Several studies use other mathematical constructs or algorithms for concept drift 

detection. Da Costa et al. (da Costa et al., 2017) proposed Multidimensional Fourier 

Transform (MDFT). The framework quantifies variations in data spaces using Shannon’s 

Table 2.4. Comparison of Experimental result compiled from (Sethi et al., 2016) and (Sethi & 

Kantardzic, 2017)  

Datasets 

Algorithm 

EM (Zliobaite, 2013) with 

weighted F-score 

MAGIC (Bock et al., 2004) 

with weighted F-score 

GC3(Sethi et al., 2016) 0.7333 0.9627 

Clustering(Kantardzic et al., 2010) 0.643 0.774 

SVE (Street & Kim, 2001) 0.688 0.789 

WE (Wang et al., 2003) 0.564 0.655 

Datasets 

Algorithm 

EM (Zliobaite, 2013) with 

Accuracy 

Covtype (Blackard & Dean, 

1999) with Accuracy 

MD3-SVM(Sethi & Kantardzic, 2017) 66.9% 71.3% 

MD3-RS(Sethi & Kantardzic, 2017) 67.7% 75.4% 

ECDD (Ross et al., 2012) 68.4% 74.2% 

HDDDM (Ditzler & Polikar, 2011) 66.4% 74.9% 

L2F3(Krawczyk & Woźniak, 2015) 74.04% 75.76% 

IOCSVM(Li et al., 2009) 70.42% 71.08% 
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and Von Neumann’s Entropies. In an unlabeled stationary drift environment, the global 

variations of data do not occur. This approach is not suited for stationary drift. Cabanes 

and Bennani (Cabanes & Bennani, 2012) proposed an unsupervised concept drift detection 

framework that utilize self-organizing map (SOM). In the study the data stream is divided 

into regular intervals (windows), and a SOM is constructed for each interval. Based on 

SOM, the density and variability of the data is computed to describe the neighborhood of 

constructed SOM. These measurements are compared between each interval and concept 

drift is detected if significant changes happen. Depends on parameters, this approach may 

or may not be sensitive enough for stationary drift or slow drift. However, SOM should be 

able to detect sudden and non-stationary drift easily. Krawczyk and Woźniak (Krawczyk 

& Woźniak, 2015) applied weighted one class SVM classifier for concept drift detection, 

inspired by previous one-class data stream classification framework by Zhang et al. (Zhang 

et al., 2009) and Liu et al. (Li et al., 2009). Since one-class classifier predicts whether a 

data sample belongs to a certain class, new samples are tested by each classifier to see 

whether they fit into existing concept. If a significant number of samples do not fit into 

existing concept, then there is a potential concept drift in the data stream. This approach is 

best suited for non-stationary drift. If all new samples appear within existing one-class 

classifier, then this approach will fail to detect concept drift. 

2.3.4 Comparisons among Data Distribution Based Approaches for Concept Drift 

Detection 

To evaluate performance of data distribution-based approach, several surveyed 

approaches’ experimental results on benchmark dataset are compiled. First three columns 

of Table 2.4 show the results compiled from (Sethi et al., 2016), comparing drift detection 
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approach GC3 (Sethi et al., 2016) (grid density based) to Clustering (Kantardzic et al., 2010) 

(clustering based), SVE (Street & Kim, 2001) (performance ensemble based) and WE 

(Wang et al., 2003) (performance ensemble based). Next 3 columns of Table 2.4 also show 

the results compiled from (Sethi & Kantardzic, 2017) and (Krawczyk & Woźniak, 2015), 

comparing MD3 (Sethi & Kantardzic, 2017) (margin density based) to ECDD (Ross et al., 

2012) (performance moving average), HDDDM (Ditzler & Polikar, 2011) (semi-

supervised ensemble), L2F3 (Krawczyk & Woźniak, 2015) (one-class classifier), 

IOCSVM (Li et al., 2009) (one-class SVM). All results use labeled or partially labeled data. 

When labels are available, data distribution-based detection approaches can have 

performance on par or better than performance-based detection approaches. This is evident 

in the comparison among GC3, a distribution-based approach, SVE and WE, both 

performance-based approach. It is also clear the L2F3 and IOCSVM, both one-class based 

drift detection suited for non-fixed space drift, outperform MD3, margin density-based 

detection suited for fixed space drift. This may be because EM and Covtype has more non-

fixed space concept drift than fixed space concept drift. More evidence of this can be 

obtained by examining GC3 results under EM, which has the highest weighted F-score 

among the four approaches.  GC3 is suitable for non-fixed space concept drift as it is a grid 

density-based approach. The reason GC3 scores the best may be because EM’s concept 

drift is mainly of the non-fixed space type. 

2.4 Implications of “No Free Lunch Theorem” in This Dissertation 

A simple explanation for the “No Free Lunch Theorem” is that  a complex problem 

often does not have one silver-bullet solution that solves everything (Ho & Pepyne, 2002). 

The theorem applies to the complex problem of detecting and handling concept drift in data 
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stream classification. Therefore, this dissertation does not attempt to find a comprehensive 

solution that tries to “solve” concept drift. Instead, the dissertation looks for improvements 

in separate aspects of data stream mining: from lower the cost of data stream mining, to 

detect different types of concept drifts, to visualize changes in data stream for data stream 

mining explanations. Each investigated aspect has its own unique situations and challenges. 

This dissertation thus weighs different approaches mentioned above and choose the most 

applicable strategies. This process provides the foundations for discussion in the following 

chapters. 
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CHAPTER 3. SELECTING SAMPLES FOR LABELING IN 

UNBALANCED STREAMING DATA ENVIRONMENTS2

In a stream data environment, time is an important constraint. The data mining 

process needs to keep up with high volume of incoming data in real time. To complicate 

the problem at hand, sometimes a process called concept drift will occur in a streaming 

data environment, in which the data’s distribution, classification or association will change 

overtime (Widmer & Kubat, 1996). In this case the static data mining model might not be 

suitable for the drifted data and for classification purpose a new classifier should be trained 

every time there are significant drifts in the data stream. To train the new classifier the new 

incoming data sample needs to be labeled. However, labeling may be time consuming and 

very expensive. Therefore, we want to reduce the amount of streaming data points to be 

labeled as much as possible. 

For a more or less evenly distributed data set in which every class has about the 

same amount of data points, previous work has shown sampling 10% of data for labeling 

is sufficient to have a new classifier trained (Widmer & Kubat, 1996)(Kantardzic et al. 

2010). The scenario is different in an extreme unbalanced data set where the minority class 

occupies only 1-10% of the entire data samples. Potentially to obtain every minority sample 

2 This chapter has been published at Hu et al, 2013 
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one needs to sample 99 majority data. To achieve a meaningful amount of minority class, 

a huge number of samples need to be selected and labeled. 

In this chapter we are looking for ways to reduce the total number of labeling 

required in an extremely unbalanced data stream scenario. The default approach is to select 

random samples from a pool of data points. In order to obtain acceptable classification 

results later, a minimal required number of minority class data points are needed. Therefore, 

potentially the random approach will need to label large amounts of streaming data points, 

mostly of the majority class, to get a handful of minority class points. In our approach, we 

assume that the minority class may cluster inside the data space. Once the first minority 

class is obtained, we actively search for nearby data points to get more minority class. 

Approaches such as the one proposed by Chen and Tu, (Chen and Tu, 2007), will be useful 

because the minority class will have high density in some of the grids. We can focus on 

sampling these grids to get enough samples for minority class and reduce the total number 

of samples needed for labeling. 

3.1 Related Work on Data Stream Labeling 

Concept drift is a problem unique to stream data. In the traditional data mining task, 

all data points are present at one time and the data distribution is fixed, whereas in a 

streaming data environment new data could be arriving at any given time. It is never certain 

that one data model trained on initial data will be suitable throughout the streaming process 

(Tsymbal, 2004). Some adaptive system is required to handle those changes. Wang et al 

proposed a system that copes with concept drift using ensemble method (Wang, 2003). In 

their system, the weight on each of the vote from the committees of classifiers changes 

when the actual accuracy of one classifier becomes significantly different from the 
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expected accuracy. Kolter and Maloof proposed a similar system in their research where a 

dynamic weighted majority adapts to change of performance in the ensemble classifiers 

(Kolter & Maloof, 2003). However, weighted voting and majority voting have their 

limitations in that the underlying ensemble classifiers never changed. Tsymbal et al. 

created a new system where new classifiers are built over a time period and the best models 

are selected to be included in the ensemble learner (Tsymbal et al., 2008). In the research 

they have shown that their system outperforms both dynamic weighting total and dynamic 

majority voting. 

To create a new classifier for the ensemble method, labeled samples are needed for 

the training process. In real world applications, however, the ensemble classifiers often 

need to deal with unlabeled data. Unlabeled data provides two challenges. First, we do not 

know the accuracy of our existing system with unlabeled data, therefore making detecting 

concept drift, or deciding when to train a new classifier, difficult (Zhang et al, 2009). 

Second, sample labeling is expensive and time consuming, but this task is required because 

labeled training samples are needed for building new classifiers for the ensemble learner. 

In an effort to reduce cost of the labeling process, Kantardzic et al combined clustering 

with ensemble classifiers to detect concept drift and decided when to train a new classifier 

used for ensemble learner based on partially labeled streaming data (Kantardzic et al, 2010). 

In their research a density-based clustering algorithm was used to detect the change of data 

distribution. If a new cluster emerges, it means there are enough data that potentially not 

fit in existing ensemble classifiers and the system should train a new model for the new 

data distribution. They have shown that by actively detecting concept drift, their system is 

more efficient and accurate than systems that train models over a fixed period amount of 
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time. They have also shown that their system needs roughly only 10% of the sample labeled 

in order to have a good classification result. 

Even though the number of samples needed to be labeled is reduced by previous 

work, labeling is still a performance bottleneck because manually labeling is frequently 

necessary. Random sampling was used for sampling imbalanced data set under streaming 

data environment (Kantardzic et al, 2010). The problem is more apparent in an extremely 

unbalanced data set where minority class is less than 10% of the total data instances. A 

large number of data instances are needed in order to obtain sufficient number of minority 

class samples. However, if minority class samples are clustered, then finding such clusters 

can help increase the chance of selecting minority class instances. Tu and Chen created a 

grid density clustering algorithm which can be used in locating minority class clusters (Tu 

& Chen, 2009). In their research they divide the data space into grids and fit data points 

into the grids. If there is enough density in one grid, then that grid will become a cluster. If 

several adjacent grids all have enough density, then these grids will together form a larger 

cluster. In our research, our methodology is inspired by their approach, and it will be 

discussed in detail in the next section. 

3.2 Grid-based Labeling Approach 

 

Figure 3.1. Demonstration of an unbalanced 2D data set. 
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The eventual goal of this research is to help increase the efficiency of stream data 

classification by reducing the cost of labeling. For our approach we assume the minority 

class forms a cluster. Figure 3.1 demonstrates the scenario. The basic idea of our approach 

is: 

1. We select a random instance in a set of streaming data points available for

training a new classifier in the ensemble learner. 

2. Once we selected an instance that belongs to the minority class, stop the

random selection process and look for data points close to the selected minority class point. 

3. Continue step 2 to select a certain number of data points close to the

minority class instance selected, and then if more minority samples are required, continue 

1 and 2. 

We chose a basic version of the Grid Density Clustering algorithm by Tu and Chen 

(Tu & Chen, 2009). The grid density algorithm provides a fast and efficient way to identify 

dense areas of data points. If the data forms a cluster, the grid will be able to detect the 

density of the data and map out a profile of the cluster. It is not constrained by shape 

compared to density algorithm based on a radius (Kantardzic et al, 2010). It provides a 

simplified definition of distance between data points and therefore able to quickly locate 

and sample data points in the region of minority class cluster. Our basic version of the grid 

density clustering process is demonstrated in Figure 3.2. 

Using the grid density clustering, we proposed a new approach for sampling data 

points to train new classifier in streaming ensemble learner. The control approach was 

random data selection where a random instance was selected for labeling until there were 

enough samples for both the majority class and minority class. The other four all used grid 

density cluster algorithm to try to find the area in data space where minority class were 

concentrated. 



60 

We defined the percentage of minority class in a set number of data points as P. We 

defined a data set as extremely unbalanced when P < 10%. Our goal was to find at least M 

minority class instances with fewest overall data points sampled. The expected number of 

total sampled data points for the control approach is therefore M/P. When P < 10%, M/P 

is much larger than M, meaning the control approach is inefficient on extremely 

unbalanced dataset. Assume the data points has i dimensions and each dimension was 

divided into j grids. The total number of grids is j i. However, data points usually won’t fill 

the entire data space and minority data points will only occupy a small number of grids. 

Therefore we defined the number of occupied grids as k where k <= j i and the number of 

grids that contain minority class as km .We also defined Pkm (i) as the probability of 

finding a minority class in grid i. Define Max(Pkm) as the maximum value of all Pkm. 

Figure 3.2. The basic Grid Density algorithm for clustering 
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A. Random Selection 

This was the control approach. A data point from the sample was randomly selected 

for sampling. The random selection continued until we had obtained a required number of 

minority data points. 

B. Random Grid Selection 

This was an alternative to Random Selection in order to take advantage of the 

benefit of the gird. In this approach, a random occupied grid was first selected. Then a 

random data point was selected from that grid. The probability of selecting a minority class 

point is: 

The ideal scenario of this approach is when data points are closely clustered and 

minority class points are also clustered with other minority class points. In this case k is 

small and Max(Pkm) is close to 1. As a result, p is much larger than P and the expected 

value N/p is much smaller than N/P. 

C. Grid Search 

This is our proposed approach. As mentioned above, we assumed that minority 

class points form a cluster. Therefore, if one grid containing the minority class was found, 

then potentially most of the other minority class data points were also in that grid. The 

process for sampling is shown in Figure 3.3. 
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Figure 3.3 can be summarized as the following: 

1. A data point was randomly sampled from the set of currently available data

points.

2. If the sampled instance was of majority class, continue 1.

Otherwise go to 3.

3. If the sample was of minority class, then select no more than 1/P more

samples from that grid.

4. If the required number of samples for labeling is not met, go to 1.

The expected number of data points to get the first minority class is 1/P. At most 

1/P samples were selected from a grid and among these samples, (1/P)*Pk are of minority 

class. The expected total number of data points sampled is s * (2/P) where s is the number 

of iterations. If minority data points were indeed clustered, then Max(Pk) is close to 1 and 

(1/P)* Max(Pk) is large such that s, the number of iterations, is small. 

D. Combining Grid Search with Random Grid Selection 

Procedure Grid Search: 

Input: List of available data points d, list of grid cells g, percentage of minority 

class p, required total number of labeled samples T 

Output: s, list of samples labeled 

While (|s| < T), do: 

Let dr = data point randomly selected from d in grid cell g[i]; 

Label dr with human expert; 

Add dr to s 

If (label of dr is of majority class), continue; 

Let count = (1/p) * # of samples in g[i]; 

While (count >= 0), do: 

Let dr = data point randomly selected from d in grid cell g[i]; 

Label dr with human expert; 

Add dr to s 

count --; 

Return s 

Figure 3.3: Algorithm for Grid Search strategy of labeling samples 
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The two approaches B and C were combined into a new approach. The process for 

sampling is shown in Figure 3.4. 

Figure 3.4 can be summarized as the following:  

1. A grid was first randomly selected and a sample from that grid was 

randomly selected. 

2. If the sampled instance was of majority class, continue 1. Otherwise go to 

3. 

3. If the sample was of minority class, then select no more than 1/P more 

samples from that grid. 

4. If the required number of samples for labeling is not met, go to 1. 

 

The total expected number of samples selected is: 

 

where s is the number of iterations. 

Procedure Grid Search: 

Input:  List of grid cells g, percentage of minority class p, required total number of 

labeled samples T 

Output: s, list of samples labeled 

While (|s| < T), do: 

 Let gr = grid randomly selected from g 

Let dr = data point randomly selected from gr; 

Label dr with human expert; 

Add dr to s 

If (label of dr is of majority class), continue; 

Let count = (1/p) * # of samples in gr; 

While (count >= 0), do: 

 Let dr = data point randomly selected from gr; 

 Label dr with human expert; 

Add dr to s 

 count --; 

Return s 

 

Figure 3.4: Algorithm for Combining Grid Search with Random Grid Selection of 

labeling samples 
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As discussed before, p will be large when k is small and Max(Pkm) is close to 1. 

Therefore 1/p is small compared to 1/P while Pkm(i) is large, making s, the number of 

iterations, small. 

E. Projected Grid Search with Dimentionality Reduction 

High dimensionality creates a problem in our basic grid density algorithm in that 

there will be too many grids for data points. For instance, for a data set with 50 dimensions, 

there will be at least 250 grids assuming each dimension needs to be divided into at least 

two sections. Potentially for a small data set there will be only 2 or 3 data points in each 

grid, making the number of iterations s in the above approaches very large. To tackle such 

issue, we proposed preprocessing the data to reduce the dimensionality, and then construct 

grids on the preprocessed data space. The preprocessing we used was standard Principal 

Component Analysis. The sampling method we used on the preprocessed data was Grid 

Search (Section 3.2 C). 

3.3 Experiments on Different Labeling Strategy with Different Dataset 

To evaluate the effectiveness of each of the above labeling strategy, experiments 

were carried out over a synthetic dataset and two real world datasets. Since our goal is to 

make the labeling process more efficient, the evaluation metric for our approach is the total 

number of samples that was selected for labeling. Clearly the fewer samples needed the 

faster a new classifier can be trained and integrated into the streaming data ensemble 

learner. Therefore, we are looking for approaches that sample the least amount of data 

instances to achieve the required number of minority class instances. 

3.3.1. Data Sets 
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A two-dimensional synthetic data was used to prove our concept. The synthetic 

data was generated such that x and y were randomly assigned an integer. If x was within 

range [20, 30] and y was within range [60, 70], then the generated data point was a minority 

class until there are 100 minority class within this region. Any extra data points in this 

range were labeled as majority class. If x was within range [30, 90] and y was in the range 

[10, 60] and [70, 80] then the data point was labeled as majority class. The total x range 

was [20, 90] and the total y range was [10, 80]. The data set description is shown in Table 

3.I. The data distribution is visualized in Figure 3.5. 

Two real world data sets, Yeast and Satimag from the UCI Machine Learning 

Repository, was used to test our approaches. The two data sets were selected because they 

have extremely unbalanced classes based on our definition and all attributes are numerical, 

which simplify the definition of distance and grid size. Table 3.2 lists the basic description 

of the data sets. 

       Table 3.1. Synthetic Data Set Description 

Case Min. Maj. Class Dist. x y 

10,000 100 900 0.01:0.99 [20,90] [10,80] 

 

 

Table 3.2. Real world data set Yeast and Satimag Description 

Data Set Cases # of minority Dimensions 

Yeast 1484 44 9 

Satimag 4435 415 36 
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The Yeast data set has 9 dimensions and 10 classes. The first feature of the data set 

is the sequence name of the strain and was ignored. The remaining 8 features are numeric 

and were considered in the experiment. To make testing simple, the data set was converted 

to a two-class data set such that class ME1 was selected as the minority class and the rest 

classes were deemed as the majority class. The numeric values were normalized between 

0 and 100. The SATIMAG data set has 36 numeric dimensions and 6 classes. Class 4 was 

selected as the minority class and the rest majority class. The numeric values were 

normalized between 0 and 100 as well. 

All the data points were labeled in these data sets. To create unlabeled data, the 

class label dimension of the data set was ignored when data was mapped onto the grid. The 

class label was only used when a data point was sampled out of the data points on the grid 

in order to check if the instance was a majority class or a minority class. 

Figure 3.5 Synthetic unbalanced 2D data set visualization. X-

axis starts at 20 and y axis starts at 10. 
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3.3.2 Data Sampling Result 

In the synthetic data set experiment the number of samples required for majority 

and minority class, N, was set as 20. Figure 3.6 shows the result of different approaches on 

a varying grid size. Each grid has equal distances on the edges so that a grid with size 2 in 

a two-dimensional space means it is a 2 by 2 grid. Similarly, in n dimensional space a size 

m grid means it is a grid with length m on each edge of the grid. For the synthetic data, 

Approach E was not tested here because the dimensionality was not necessary for reduction. 

As shown in Figure 3.6, Grid Search (C) and Combining Grid Search with Random 

Grid Selection (D) outperformed the Random Search (A) and Random Grid Selection (B) 

as expected until the grid size became very large. As the grid size increased, more samples 

were contained in each grid and the benefit of the grid diminishes. The result with large 

grid size being worse than random selection is most possibly because of sampling from a 

grid with only a few minority class instances but lots of majority class instances. In 

 

Figure 3.6. Total Number of data instances required to obtain 100 minority class 

samples under various grid size using Random Search (A), Random Grid Selection (B), Grid 

Search (C), Combining B and C (D). 
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approach C and D this scenario results in over-sampling in a certain grid with only few 

minority class samples. 

From the synthetic data we observed that the result varies when different grid sizes 

were applied. Four factors, the number of samples, the percentage of minority class in the 

data set, number of dimensions and grid size all potentially impact how many samples are 

contained in each grid, which increases or diminishes the grid’s ability of accurately 

mapping out the region of dense minority class population. In two extreme cases, when 

each grid only contains one sample, or when one grid contains all the samples, our proposed 

approach degrades into the random selection approach. However, between the two extreme 

cases, there could be a range of grid size where our approach can show improvement. To 

test such claim, the sampling algorithms were tested on real world data. 

The Projected Grid approach (E) was introduced on real world data sets because of 

the high dimensionality problem stated before in Section III.E. Principal Component 

analysis was used to aggressively reduce the number of dimensions to 2 to show the 

difference between dimensionally reduced and non-reduced data. Then the preprocessed 

data was used instead of the original data for sampling. The Projected Grid was compared 

to Grid Search on non-projected data. Each algorithm was run 20 times and the average 

total number of sampled data instances for each approach was recorded. 

For the Yeast data set, the required number of minority class samples was 20, given 

that there is only 44 minority class samples total. The sampling result with varying grid 

size is shown in Table 3.3 and it was plotted in Figure 3.7. 
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Figure 3.7. Experiment result of Yeast data (Table III) plotted to the number of 

samples needed to obtain 100 minority samples from the Yeast dataset under different grid 

size using Random Search (A), Random Grid Selection (B), Grid Search (C), Combining B 

and C (D) 

 

 

Table 3.3. Total Number of data instances required to obtain 20 Yeast minority class 

samples under various grid sizes using Random Search (A), Random Grid Selection (B), Grid 

Search (C), Combining B and C (D) 

Grids Non-projected Results Projected Results 

Grid 

Span 

# of Grids Containing 

Samples 

A B C D # of Projected 

Grids Containing 

Sample 

E 

E 

1 1450 629 664 609 636 927 612 

2 1449 670 626 632 630 498 580 

5 1419 684 627 632 645 151 548 

10 1008 624 549 604 587 53 514 

20 337 660 437 498 472 20 516 

50 49 671 629 549 598 6 637 
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Comparing our proposed Grid Search (C) to Random Approach (A), there are 

reduction in number of samples required in each Grid Span. Comparing C and B, 

improvements were made in Grid Span 1 and 50. Comparing our proposed Combined Grid 

Search (D) to Random Approach (A), there are reduction in number of samples required in 

each Grid Span. Comparing D and B, improvements were made in Grid Span 1 and 50. 

Projected Grid Search was slightly better than the non- projected approaches at grid span 

2, 5, 10 and 50. At the optimal grid span in our experiment, Grid Span 20 and 50 for non-

projected grids, our proposed approach (C) had an average improvement of 19.4% and the 

Combined Grid Search (D) had an average improvement of 17.6%. When grid span was 

between 2 and 20, Projected Grid Search (E) had an average improvement of 18.2%. 

Approach E does not have large gain versus the other approaches because the 

dimensionality of the Yease data set is still relatively small. 

For the Satimag data set, the required minority class number is 100 and class 4 was 

considered the minority class while all other classes were grouped as the majority class. 

The result is listed in Table 3.4 and plotted in Figure 3.8. 

In this high dimensionality case, when grid size is small each grid contains only 

one data point. This is shown in Table IV where the number of grids that contain samples 

is equal to data set size. The grid sampling approach degrades into random selection as the 

results from approach B, C and D showed no meaningful difference with random selection 

until the total grid number was brought down by a very large grid size. On the other hand, 

the projected grid reduced the number of grids to below 1000 and improved the results. 

However, when grid span was at 50, the projected grid has too few grids (5 grids total). 
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Figure 3.8. Experiment result of Satimag data (Table IV) plotted to the number of 

samples needed to obtain 100 minority samples from Satimag dataset under different grid size 

using Random Search (A), Random Grid Selection (B), Grid Search (C), Combining B and C 

(D) 

 

 

Table 3.4. Total Number of data instances required to obtain 100 Satimag minority 

class samples under various grid sizes using Random Search (A), Random Grid Selection (B), 

Grid Search (C), Combining B and C (D) 

Grids Non-projected Results Projected Results 

Grid 

Span 

# of Grids Containing 

Samples 

A B C D # of Projected 

Grids 

Containing 

Sample 

E 

E 

1 4436 1061 1040 1073 1052 1742 815 

2 4436 1057 1045 1081 1063 755 755 

5 4436 1073 1084 1052 1033 180 731 

10 4433 1039 1062 1080 1074 55 796 

20 3750 1047 1153 891 1002 20 732 

50 1688 1061 1191 1006 1092 5 1006 
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When the number of grids are low, the result was not as good in that too many samples are 

in each grid and over-sampling within grids occurs. In this experiment the optimal number 

of non- projected grids was between 3750 and 1688, and our proposed approach (C) had 

an average improvement of 5.3% and the combined (D) had an average improvement of 

0.7%. The result was not impressive due to high dimensionality. On the other hand, the 

optimal number of projected grids in our experiment was between 1742 and 20, which had 

average improvement of 27.4%. Projected Grid improved the result significantly. 

3.3.3 Dimensionality Reduction Analysis 

The Projected Grid described above reduces the original Satimag data into two 

dimensions. It is unclear whether varying the number of dimensions will have an effect on 

the result of Projected Grid. This analysis was to explore such effect by fixing the size of 

the grid but reducing the dimensionality of Satimag data to various numbers of dimensions. 

The grid size was fixed at 20, an optimal grid size for Projected Grid. Principle 

Component Analysis was used to reduce the Satimag data set into various dimensions. The 

result is shown in Table 3.5 

The number of dimensions has an impact on the number of grids and therefore 

affects the sampling result. When dimensions were reduced to 1, Projected Grid shows 

only 10.6% improvement compared to the optimal 31.7% improvement achieved at 

reducing dimensions to 4. When dimensions were reduced to a still relatively large number, 

the results show no significant improvement over random selection approach. This again 

confirms the observation that too few dimensions created too few grids while too many 

dimensions resulted in too many grids. Both cases diminish the grid ability to locate 
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minority class clusters. According to our result, if Satimag was reduced to 4-16 dimensions 

using Principal Component Analysis, we see average 28.9% improvement over the random 

selection process. 

Table 3.5. Total Number of data instances required to obtain 100 Satimag minority 

class samples using Projected Grid which reduce the original data into various dimensions. 

Dimension # of Grid Containing Samples A E 

1 6 1057 944 

2 20 1051 771 

4 147 1061 725 

8 891 1050 750 

16 3231 1092 776 

24 4373 1051 1045 

32 4434 1090 1055 
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CHAPTER 4. A FRAMEWORK OF ADAPTIVE PREPROCESSING IN 

CONCEPT DRIFTING DATA STREAM MINING 3

In real world applications, well preprocessed data can potentially increase the 

performance of the learning model significantly (Crone et al, 2006). In some situations, 

such as multimedia (video, voice, images, etc.) stream mining, preprocessing is a required 

step to increase the quality of the data (Kotsiantis et al, 2004). Therefore, preprocessing 

plays an important role in improving the final quality of adaptive stream mining 

frameworks. 

Despite the importance of preprocessing, not many studies have been done on how 

the preprocessing step of a stream mining framework should be handled when there are 

changes in a data stream. Majority of studies tie preprocessing and model retraining 

together: only when the model needs to be adjusted is the preprocessing step updated. This 

approach assumes the only reason for decreases in model quality to be that the underlying 

data model has changed. While most of the time such assumption is valid, in some cases 

the data model does not change but instead the data values were not correctly preprocessed. 

This is when the preprocessing step needs to be adjusted to correctly handle the new data. 

By doing so the framework can still use existing models. One study demonstrated that it is 

3 This chapter has been published at Hu and Kantardzic, 2016 
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necessary to adaptively adjust preprocessing and separate it from modeling to have the best 

overall classification quality (Zliobaite & Gabrys, 2012). 

In this Chapter we introduce Smart Preprocessing for Streaming Data (SPSD) 

approach that separates minmax normalization of numerical features from classification 

modeling. SPSD is different from previous study in that it does not re-normalize for each 

new chunk of data. Instead SPSD calculates two metrics. Metric 1 is the percentage of 

samples that fall outside of existing min-max range. Metric 2 is the percentage of difference 

between new sample values and recorded historical min-max values. When these two 

percentages reach above their threshold values, SPSD triggers a re-normalization using the 

latest minmax value in the stream. The metrics are used to avoid unnecessary re-

normalization when there are noise and outliers in a stream. We demonstrate that in some 

cases SPSD can maintain comparable accuracy of stream mining framework without the 

need of retraining a new model, which reduces costs associated with model generation. The 

contributions are the following: 

• We formulate the concept of smart preprocessing for numerical features.

• We developed a framework for preprocessing through re-normalization in

streaming data environment.

• We demonstrate through experimental evaluation that data stream mining can

benefit from smart normalization.

4.1 Related Work on Preprocessing in Stream Data 

Yan (Yang et al, 2006) proposed two algorithms that are able to perform efficient 

and fast dimension reduction on large scale streaming data. The algorithms improved the 

existing Orthogonal Centroid algorithm to make it scalable to handle streaming data. Reddy 

et al, 2013 proposed an algorithm approach to preprocess web usage data, which is a type 
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of streaming data. They presented several techniques that identify sessions and users of a 

web usage log. Zliobaite & Gabrys, 2012 proposed a framework where adaptive 

preprocessing is used to adjust to changes in the data stream. Their study demonstrates that 

there are benefits in separately handling preprocessing and model. For every chunk of data, 

they employed 5 different combinations of handling preprocessing and models: the “old-

old” uses old model and old preprocessing; the “new-old” uses new preprocessing and old 

model; the “old-new” uses old preprocessing and retrained model; the “new-new” uses new 

preprocessing and retrained model; the “select” select the best performance amount the 4 

combination above. In their experiments they identified “select” to perform the best as it 

combines the benefits of all other 4 approaches. Within the “select” approach, there were 

cases when “new-old” or “old-new” were selected, thus demonstrating the benefit of 

decoupling preprocessing with learning model. 

4.2 Smart Preprocessing for Streaming Data (SPSD) 

We propose SPSD approach that re-normalize the data when needed, without 

changing the underlying model. The goal was to improve accuracy of a stream data mining 

framework by only adjusting the normalization step, thus reducing the number of times a 

new model is trained. The approach actively measures the amount of changes that have 

occurred in the current chunk. SPSD only calls for renormalization when the change 

amount exceeds some threshold value to avoid unnecessary re-normalization on noisy 

samples or samples with outliers. 

As stream data samples arrives, they are grouped into equal sized chunks. All 

operations on the data samples are based on the current available chunk. The merits of 

chunk based approach is that it is capable of adapting to various types changes in data 
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stream (Street & Kim, 2001)(Wang et al, 2003).Chunk based approach also makes it easy 

to evaluate the quality of the framework. 

 

Traditional metrics such as accuracy and F-score can be simply calculated within 

each chunk (Wang et al, 2003). The overall accuracy of chunk-based frameworks can be 

estimated by averaging all accuracy measures across all chunks. The first chunk of data 

was used to set the minmax parameter for normalization and send the normalized data to 

the underlying learning model for training. The first chunk was set as a reference point 

whose min-max values would be used as referenced min-max range when compared to by 

later chunks. This reference point is denoted as Po (mino, maxo). 

Procedure Metrics: 

Input: Current chunk of data cur, referenced minimum values for each dimension 

refmin, referenced maximum value refmax, metric 1 threshold m1, metric 2 

threshold m2, chunk size size. 

Output: true, re-normalize and false, no re-normalizatin. 

Let metric1 = false, metric2 = false 

Let metric1count = 1 

For each c in cur, do: 

 For each dimension d of cur[c], do 

  If ( c[d] < refmin[d] ) 

   metric1counter++; 

   break; 

  If ( c[d] > refmax[d] ) 

   metric1counter++; 

   break; 

If ( metric1counter / size  >  m1 ) metric1 = true; 

For each c in cur, do: 

 For each dimension d of cur[c], do: 

  If ( ( refmin[d] - c[d] ) / refmin[d] > m2 ) 

   metric2 = true; 

  If ( ( c[d] - refmax[d] ) / refmax[d] > m2) 

   metric2 = true; 

Return metric1 && metric2; 

 

Figure 4.1: Metrics algorithm for smart normalization. 

 

 

Figure 4.1: Metrics algorithm for smart normalization. 
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The approach uses two metrics that measure numerical feature value changes that 

appeared in the new data chunk: 

• Metric 1: The percentage of samples in the new chunk that have at least one

dimension fall outside of the referenced min-max value range.

• Metric 2: The maximum percentage of difference between new sample's values in

each dimension and the referenced min-max value for that dimension.

Metric 1 is to separate noises and outliers from actual changes in a data stream. 

Metric 2 is to reduce the number of re-normalizations needed to speed up the approach. A 

threshold value for each metric was used, and the framework only calls for are-

normalization when both metrics pass their respective threshold values. The algorithm for 

calculating metrics and determining whether the framework needs renormalization is 

described in Procedure Metrics in Figure 4.1. Procedure Metrics iterates through one chunk 

of data and calculate metric 1 and 2 separately. 

For a new chunk of data, the samples were tested using Procedure Metrics. If 

Procedure Metrics returned true, re-normalization would update the recorded minmax 

values by the new min-max values found in the current data chunk. SPSD would normalize 

the current chunk of data using the new min-max value and send the normalized data to the 

underlying learning model for classification. The current chunk would replace the first 

chunk as the new reference point in the data stream. The new minimum value and 

maximum value of the chunk would form the new referenced min-max range. This 

reference point is denoted as Pi (mini, maxi), where i is the chunk number. If Procedure 

metrics returns false, then SPSD would not trigger renormalization in the current chunk. 

All data samples in the chunk were instead normalized using Pj (minj, maxj), where j is the 

previous reference chunk number. This process continues as more chunks of data come 

through the stream. The entire framework is described in Procedure SPSD in Figure 4.2. 



 
 

79 
 

Procedure SPSD initializes normalization using chunk i=0 then renormalize new chunks 

of data based on decision made in Procedure Metrics. 

4.3 Experimental Results 

In this section we applied SPSD approach to three datasets, two synthetic datasets 

and one real world Electricity Market (EM) dataset. We used synthetic datasets to show 

proof of concept and to compare two scenarios: normalization without model change 

versus normalization with model change. When applying minmax normalization, a scaling 

factor is applied to the datasets. As result the original model might change. We use the EM 

dataset for testing the approach and comparing with four traditional stream mining 

frameworks. In all experiments we used Support Vector Machine (SVM) as the underlying 

learning model 

4.3.1. Datasets 

Procedure SPSD: 

Input: Current chunk of data cur, metric 1 threshold m1, metric 2 threshold m2, 

chunk size size, chunk number i. 

Let refmin  = array( dimension of cur ); 

      refmax = array( dimension of cur ); 

If ( i  ==  0 ) do: 

 refmin = minimum values in each dimension of cur; 

 refmax = maximum values in each dimension of cur; 

              Send cur to underlying learning model;  

Else do: 

 If ( Metrics(cur, refmin, refmax, m1, m2, size)) do: 

  refmin = minimum values in each dimension of cur; 

  refmax = maximum values in each dimension of cur; 

  Normalize cur using refmin and refmax 

 Else do: 

  Normalize cur using refmin and refmax 

 Send cur to underlying learning model 

 

Figure 4.2: SPSD algorithm 
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The two synthetic datasets were numerical, two-dimensional and have two classes. 

In both datasets, the first 5000 samples were generated within range [0, 10] on both 

dimensions. Then the upper boundary of the range was increase by 1 for each 5000 samples 

(e.g. 5000–10000 samples were generated within range [0, 11] and so on). 

In total there were 55, 000 samples generated and the entire dataset's range was [0, 

20]. The difference between the two datasets is the decision boundary, one used equation 

(4.1) as decision boundary while the other used equation (4.2). 

y=x (4.1) 

y=0.8x+2 (4.2) 

If a data sample fell above the decision boundary, it was labeled as class 1 otherwise 

class 0. 

EM dataset is a popular data set for streaming mining research (Harries & Wales, 

1999). It contains 45, 312 samples. It is a near balanced dataset with two classes denoting 

whether the price of electricity has gone up or down. It has seven dimensions with five of 

them numerical and the rest two are date and time values. We removed the date and time 

dimensions, making the dataset fully numerical. 

4.3.2 Results of Experimenting SPSD on Synthetic Dataset 

In our experiments we compared SPSD with two baseline methods: 1) one that does 

not retrain learning model nor re-normalize the data, the “no-change” method and 2) one 

that re-normalizes and retrains the model in every chunk, the “all-change” method. We 

picked these two methods because they represent two extremes in data stream mining. “no-
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change” methods never responds to change in dataset, while the “all-change” method 

always tries to adapt. 

We applied our approach using 5% threshold value for metric 1, 5% for metric 2 

and 2500 as the chunk size. We selected 5% for each metric because the data was generated 

with at least 5% change in range, and we wanted to capture all these changes. We 

implemented our approach using python and the results are shown in Figure 4.3. 

Figure 4.3. Accuracy curve on synthetic data. A). Accuracy for the y = x decision 

boundary. B). Accuracy for the y = o.8x+2 decision boundary. 
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Figure 4.3 shows clearly that as data gradually increased in range, the “no-change” 

degraded along with the data change. This is expected because “no-change” did not adjust 

its model according to the data range change. The “all-change” method remained at very 

high accuracy because it was constantly adapting and retraining. SPSD had consistent high 

accuracy in the first dataset as shown in Figure 4.3a. In the second case, SPSD degraded 

overtime as well but at a slower rate than the “no-change” approach. 

As data increased from range [0, 10] to range [0, 20], the decision boundary of 

normalized data gradually moved down 0.1 unit. This change is illustrated in difference 

between Figure 4.4(A) and 4.4(B). 

The synthetic data demonstrated that in certain cases when normalization does not 

affect the overall model of the normalized data, then smart normalization is enough to 

maintain the accuracy of the data as shown in Figure 4.3.a. When normalization does affect 

the model, as shown in Figure 4.3.b, retraining the learning model is the best approach. 

4.3.3 Results of Experimenting SPSD on Real-world Dataset 

 

 
 

 

Figure 4.4. Decision boundary changes after re-normalization. 
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In order to have good accuracy with the result. We first tuned 3 parameters of SPSD: 

chunk size, metric 1 and 2 thresholds. A good chunk size should provide high accuracy for 

the initial SVM model using the first chunk of data. The chunk size should be sufficiently 

large so that a good model could be trained, but it also shouldn't be too large so that there 

were only a few chunks for the entire data set. We tested 5 chunk sizes: 2000, 2250, 2500, 

2750, 3000. The result is shown in Table 4.1. We can see that chunk sizes between 2000 

and 3000 does not affect accuracy much. The difference between the best and the worst is 

only 2.56%. We chose chunk size 2500 (18 chunks in total) as it gave the best initial model 

accuracy (82.56%). 

Next, we need to determine what threshold values of the two metrics produce the 

best overall result. Sensitivity analysis was performed on the two metrics. The first test we 

are looking to find optimal metric 1 value. We used 1%, 5%, 10%, 15%, and 20% for 

metric 1 and a fixed 10% threshold for metric 2. The result accuracy curve is shown in 

Figure 4.5.a. 

We found that 1% for metric 1 produced better accuracy result from chunk 1 to 5. 

Therefore, we pick 1% as threshold value for metric 1. We now vary metric 2 by using 1%, 

5%, 10%, 15% and 20% value. The result is shown in Figure 4.5.b. For metric 2 the Figure 

4.5.b shows that setting 2 at 1% improve the accuracy of the SVM from chunk 1 to 5. For 

the rest of the stream all metrics didn't show any difference. To get the best overall result, 

Table 4.1: Accuracy (in %) on first chunk of EM data with different chunk size 

Chunk Size 2000 2250 2500 2750 3000 

Accuracy 

of Initial 

SVM (%) 

79.95 79.91 82.56 81.56 80.93 
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we picked 1% for both metrics, meaning for each chunk of data if 1% of samples falls 

outside of existing min-max range and if the new min-max is at least 1% more than the 

current range, then SPSD triggers are-normalization. After selecting appropriate chunk size 

and metrics, we then applied our approach to compare with “no-change” and “all-change” 

approach. Figure 4.6 shows the experimental result. 

From Figure 4.6, the “no-change” approach’ accuracy degraded overtime as more 

data arrives. That is evidence that there might be changes in the data stream and an adaptive 

 

 

 
 

Figure 4.5 Sensitivity analysis for two metrics of SPSD. A) accuracy curves for 

varying metric 1 threshold. B) accuracy curves for varying metric 2 threshold. 
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mining framework is needed. The “all-change” approach performed erratically at the 

beginning of the stream, from chunk 0 to 3, then stabilized with accuracy consistently 

above the “no-change” approach for the rest of the stream. SPSD out-performed the “no-

change” approach significant at the beginning of the stream from chunk 0 to 8. After the 

initial chunks SPSD rapidly dropped accuracy but still with small improvement over the 

“no-change” approach from chunk 9 to 15. Eventually at the end of the stream the “no-

change” and SPSD approach converged. Upon close inspection, renormalization happened 

at chunk 2, 4, 6, 7, 8 and 10. Frequent re-normalization at the beginning means that there 

were significant data changes at the beginning of the stream. The high accuracy of SPSD 

indicates that these changes did not affect the underlying data model. This claim is also 

supported by the accuracy of SPSD compared to “all-change” between chunk 0 and 8. In 

those 9 chunks of data, SPSD was able to score higher accuracy than “no-change” 4 times. 

This means that retraining does not necessary produce better results in the first 9 chunks. 

Figure 4.6 Comparison of SPSD with “no-change” and “all-change” on the EM data 

set using chunk size 2500. 
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Starting at chunk 6 other changes in data started to appear. The change was significant 

enough that it sent all three approaches' accuracy down. From chunk 10 to 13 and after 

chunk 15 the “all-change” approach was able to adjust itself by generating new SVM model. 

Such adjustment resulted in significant higher accuracy of “all-change” compared to those 

of SPSD's and “no-change's”. When the underlying model changed, SPSD alone was not 

sufficient to maintain quality of the framework. All in all, although SPSD was not the 

overall best performing framework of all three, its accuracy in the first 9 chunks of data is 

high enough to justify keeping the underlying model unchanged for the first half of the 

entire dataset. SPSD was able to achieve this with only 5 re-normalizations performed out 

of 9 chunks. This result strongly demonstrates that smart preprocessing can reduce the 

number of re-preprocessing and retraining in a data stream mining framework. 

4.3.4 Comparison of SPSD with Tradition Data Stream Mining Framework 

We compared SPSD with SVM against four other traditional chunk-based stream 

mining frameworks: SEA (Street & Kim, 2001), AWE (Wang et al, 2003), ACE (Nishida 

& Omori, 2005) and MAE (Jiang & Lu, 2014). These approaches are all chunk-based 

ensemble classifiers that are able to detect and adjust to concept drift in the dataset. Jiang 

& Lu, 2014 compared the four approaches in their study on MAE framework. In their 

experiment, the chunk size was set to 500 for all frameworks. The maximum ensemble size 

was set at 25, meaning once the ensemble has 25 classifiers, newly trained models will 

replace older models using the respective replacement algorithm specified by each 

framework. We applied SPSD with chunk size 500 and 1% as both metric threshold values 

to EM dataset. Then we compared the resulting accuracy curve with those of Jiang & Lu. 

The comparison is shown in Figure 4.7. 
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First, we inspect the re-normalization pattern for the SPSD. The majority of the re-

normalizations happened at the first half of the data stream. Before chunk 30 (chunk 6 in 

previous experiment), there were 5 re-normalizations. Between 30 and 50 (chunk 10 in 

previous experiment) there were 7 renormalizations. This is consistent with previous 

experimental result: several re-normalizations in the beginning of the stream, then in the 

middle of the stream very frequent re-normalization. This again indicates that there were 

significant changes at the first half of the data stream. 

We compared the accuracy curved of SPSD against the other four frameworks. 

From Figure 4.7 we can see that SPSD was able to produce higher accuracy than AWE, 

ACE and MAE between chunk 0 and 10, and only produced lower accuracy than SAE in 

chunk 3, 6, 8 and 9. This again indicates that at the beginning of the stream, the underlying 

Table 4.2: Percentage of chunks SPSD could and could not improve with each framework and 

potential accuracy if SPSD is integrated with each framework 

SEA AWE ACE MAE 
No 
Benefit* 

Benefit** No Benefit Benefit No Benefit Benefit No Benefit Benefit 

57.7% 42.3% 65.6% 34.4% 51.1% 48.9% 61.1% 38.9% 

* Percent of chunks that do not benefit from SPSD

** Percent of chunks that do benefit from SPSD 

Figure 4.7 Comparison of SPSD with four traditional stream data mining frameworks 
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model does not change. Retraining does not provide added benefit. Between chunk 10 and 

70, SPSD ran in the middle of the pack most of the time, slightly under-performing from 

chunk 30 to chunk 40. In our previous experiment this section of the data was between 

chunk 6 and chunk 8, which was a period of steep decrease in accuracy for SPSD. The 

other four framework also ran very closely with each other, with occasional spikes from 

ACE. After chunk 70, the SPSD was mostly the least accurate, followed by SEA. 

Given the available accuracy on each chunk, we investigated what percentage of 

chunks SPSD could potentially eliminate retraining of models if integrated with traditional 

framework. In our comparison, if SPSD produced comparable accuracy than a particular 

framework in a chunk, we count the chunk as one that does not require new model. 

Otherwise, we count the chunk as not being able to benefit by SPSD. The result is shown 

in Table 4.2. The framework that potentially benefit the most from integrating SPSD is 

ACE, where almost 50% of all chunks of data does not require training new models. The 

framework that benefits the least from SPSD is AWE, which still could have one third of 

all chunks not training new models. This proves our hypothesis that data streaming mining 

framework is able to benefit from SPSD by not requiring to retrain new models in each 

chunk of data 
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CHAPTER 5. SLIDING RESERVOIR APPROACH FOR DELAYED 

LABELING IN STREAMING DATA CLASSIFICATION4

Concept drifting data streams require the data mining framework to be able to detect 

changes in the stream and adapt to them so that the learning model is kept up-to-date 

(Hoens et al, 2012). Numerous studies have been done on designing such adapting data 

mining frameworks (Farid et al, 2013)(Brzezinski & Stefanowski, 2013)(Rutkowski et al, 

2014). These frameworks continuously monitor the data stream for concept drift. Once a 

drift is detected, the frameworks adapt to the change by training new models or updating 

existing incremental models. Often the training process requires certain amount of labeled 

data to be effective. Most of the previous studies assumed that the required labels are 

available at the time before the training of a new model. This is not the case for many real-

world data streams, in which human experts are required to take time and perform the 

labeling. For instance, a framework for detecting spam emails often needs to adapt its 

learning models to new spam patterns. The adaptation usually does not happen immediately 

because the framework needs enough people to identify their emails as spams and report 

them. Lots of samples from the new spam pattern need to be reported in order to have a 

good sample size.  In cases like this there will most likely be a delay between the time 

when changes in data stream occur and the time when labels arrive. We call such cases, 

4 This chapter has been published at Hu and Kantardzic, 2017 
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where building a new model is necessary in response to concept drift but the required labels 

are not immediately available, the delayed labeling problem. 

A naive solution of the delayed labeling problem will be requesting labels 

immediately at the time of concept drift (Krempl et al, 2014). Then the framework waits 

for the labeling process to finish before building any updated models. We call this the wait-

and-train approach. This solution has risk of having outdated models during the waiting 

time. If the occurrence rate of concept drift is faster than the labeling process, the models 

of wait-and-train framework may be permanently outdated. Furthermore, if requested 

labels never become available, then the models will never be updated. Clearly, a more 

robust solution is needed other than wait-and-train. 

We propose Sliding Reservoir Approach for Delayed Labeling (SRADL) 

framework that addresses the problem. Our approach employs a novel method of storing 

and managing available labeled samples. SRADL contains three components. Each 

component handles different aspects in a streaming environment with delayed labeling: 

label reservoir that keeps track of the arrival of labeled samples, change detection that 

monitors concept drift, and semi-supervised learning that updates the framework’s 

predictive models. Our hypothesis is that SRADL will give better classification results in 

a delayed labeling setting when compared to the naïve wait-and-train approach. The 

contributions of the chapter are the following: 

1. We formulate and implement a streaming data classification framework that

handles delayed labeling. 

2. We show that the framework can produce better result than the naïve approach.
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There has been researches that mentioned delayed labeling problem. Those studies 

recognize that labels can be delayed, but they do not offer an entire framework to solve the 

problem. Mesterharm, 2005 focused on solving the problem of delayed label feedback. A 

delayed label feedback problem is where a learning model is trained using labeled samples. 

The learning model cannot be tested because labeled samples for testing are not available. 

The study focused on modifying existing learning framework to compensate for the delay.  

Zliobaite, 2010, proposed a change detection framework that is able to detect data changes 

with unlabeled data, thus reducing how much the framework relies on labeled data in order 

to adapt to concept drift.  Masud et al, 2010, demonstrated the problem of delayed labeling 

in novel class detection problem.  It addresses the fact that labels are not always available 

in a real-world streaming data environment. Their approach is able to utilize unlabeled data 

to reduce the need on labeled samples for novel class detection. 

5.1. Delayed labeling problem  

In a data stream, certain amount of labeled data samples is needed to be labeled for 

training new supervised or semi-supervised learning models when concept drifts occur 

(Hoens et al, 2012). A request for labels on selected data samples will be made prior to the 

training. If the labeling is not delayed, these requested samples will be labeled immediately, 

hence a new model can be trained shortly after. In a delayed labeling setting, the labels will 

not be immediately available and the amount of waiting time might or might not be known. 

When the labels do arrive, there are two scenarios in which labels are made available, 

illustrated in Figure 5.1.  
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Figure 5.1 assumes that a concept drift occurred at time T. To train new learning 

models after concept drift, 100 unlabeled data samples are required for human labeling.  

Figure 5.1.a shows the first scenario where the labeling process completes, and 100 

samples were obtained at T’. Figure 1b shows the second scenario where parts of the 100 

samples arrive incrementally over time, completing the labeling process at T’. In either 

case, traditional streaming mining methodology might need to wait until all requested 

labels are available at T’. Between T and T’, these frameworks are still using the model 

trained before T, which is likely outdated because of concept drift. In a real-world 

application, the interval of T and T’ might potentially be very long, thus reducing the 

overall performance of the framework. Therefore, the main challenge of delayed labeling 

is how to keep learning models up to date after a concept drift occurs without 

immediately available labels. The goal of solving the delayed labeling problem is to 

Figure 5.1 Illustration of two scenarios of delayed labeling. a) All labels become available 

after delay time T. b) Available labels trickle in until all labels become available after delay 

time T. 
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maintain the prediction performance during the waiting time so that the overall 

performance of the framework remains high. 

5.2.  Sliding Reservoir Approach for Delayed Labeling (SRADL) 

SRADL uses a chunk-based approach to handle concept drift detection and model 

training (Fan, 2004). A chunk-based approach divides data streams into fix-sized groups 

of data samples, or “chunks”. The framework then processes the data stream chunk by 

chunk. It also initializes itself by first using a chunk from the stream as the initial training 

dataset. The SRADL framework has three main components: Concept Drift Detection, 

Semi-supervised Learning, and Labeled Sample Reservoir. The structure of the framework 

is shown in Figure 5.2. 

The data from the stream are first sent through the Concept Drift Detection 

component. This module uses unsupervised approach to detect changes in the data stream 

(Ryu et al., 2012). Once detected, it signals the Semi-supervised Learning component to 

Figure 5.2. Overview of the SRADL framework. 



 
 

94 
 

start training a new model. The Semi-supervised Learning component then immediately 

trains a new model based on current unlabeled samples and stored labeled samples inside 

the Labeled Sample Reservoir. Concept Drift Detection also signals Labeled Sample 

Reservoir to make a labeling request. As labeled samples arrive in the future, they are 

stored and managed by the Labeled Sample Reservoir.  

5.2.1 Labeled Sample Reservoir in SRADL 

 The Labeled Sample Reservoir is an ordered, fixed-size list of labeled samples. Let 

R denotes the list: 

R = {rn: n=size of reservoir} 

 where  ri is a 4-tuple in the form of: 

ri = (Si, Li, RTi, ATi) 

Si is a data instance sampled from the data stream to be labeled. Li is the labeling 

result of the sample. RTi is the time at which the labeling was requested. It is instantiated 

when the sample is sent to experts for labeling. ATi is the time at which the label actually 

arrived. It is instantiated when a labeled sample returns to the reservoir from an expert. In 

a delayed labeling scenario, RTi ≤ ATi.  

R list is sorted by RT as the primary key and AT as the secondary key. The size n 

is the number of samples needed by the learning algorithm to successfully train and test a 

model. For example, if a learning model requires 100 samples to be labeled out of every 

1000 unlabeled samples, then n = 100. 
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The reservoir is initialized using labeled samples from the initial training dataset. 

Since we assume the initial training dataset is labeled, the RTs and ATs of these samples 

are instantiated to be 0. Every time a new labeled sample arrives, it replaces the oldest 

labeled sample in the reservoir according to RT first and AT second. In the extreme case, 

a particular newly arrived sample r’ can have RT’ earlier than all other samples in the 

reservoir. This means that the time it took to finish labeling r’ is so long that later requested 

labels already occupy the entire reservoir. In this case r’ is considered too out-of-date and 

is discarded. 

Since not all samples in the data stream are to be labeled, the Labeled Sample 

Reservoir can employ any labeling selection criteria, such as criteria used in (Wang et al, 

2012) and (Žliobaitė et al, 2013). The decision of which criteria to use should be 

determined by the nature of the dataset and the needs of the specific real-world application. 

To simplify our approach, we selected samples by random. 

5.2.2 Concept Drift Detection in SRADL 

 SRADL’s Concept Drift Detection module can use any concept drift detection 

algorithm. In this study SRADL employs a density-based concept drift detection approach 

similar to Ryu et.al. Density based detection assumes that samples of the same class form 

clusters. Each cluster C is defined by a radius radc and a cluster density dc: 

radc = longest distance between sample and its cluster center. 

dc = number of samples in cluster / rad 
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Euclidean distance is used for the calculation of radc 

Initial clusters of samples are obtained from the initial training set of the framework. 

K-means clustering algorithm is used (Hartigan & Wong, 1979). As new sample s arrives, 

if its distance from the center of any existing cluster C is less than radc, then the sample is 

included in cluster C. If there does not exist any cluster that s can be included in, then s is 

considered an un-assigned sample, denoted by ~s. As time progresses, more and more ~s 

can appear. SRADL will try to cluster ~s after each chunk of data. When some of the ~s 

samples form a new cluster, SRADL determines that a potential concept drift has happened. 

The detection process is illustrated by Figure 5.3. In Figure 5.3.a, two existing clusters of 

samples are divided by a classification model. Some newly arrived samples fall out of the 

existing clusters, but the density of the new samples is low. The learning model does not 

need adjustment. After some time more samples arrived. The new samples form a third 

cluster as shown in Figure 5.3.b. This event signals the framework that a potential drift has 

occurred. A new learning model is trained in response. 

5.2.3 Semi-Supervised Learning using Labeled Sample Reservoir 

Figure 5.3. Illustrating density-based concept drift detection. 
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 When concept drift is detected, SRADL immediately requests for labeling on 

samples from the current chunk of data. At the same time Semi-supervised Learning 

component uses labeled samples from the Labeled Sample Reservoir and unlabeled 

samples from the current chunk to train a new semi-supervised model. Any semi-

supervised learning algorithm can be used in this component, such as (Li et al, 2009)( Wang  

et al, 2010)(Bennett & Demiriz, 1999). In this study, SRADL is implemented with S3VM 

(Bennett & Demiriz, 1999). 

After the new model is trained, a performance evaluation is done on the new model 

when previously requested labels arrive later. This model-training-performance-evaluation 

process is visually illustrated in Figure 5.4. The “Data Stream” axis denotes the data stream 

through time. The “Labeling Process” axis denotes the labeling process through time. The 

“Labeled Sample Reservoir” and “Semi-supervised Learning” denotes the status of the two 

components through time. At the beginning of the stream (Figure 5.4.a), the first chunk of 

data is used for initial training. Its samples are partially labeled and put into the reservoir. 

An initial model M1 is also trained. At Chunk A, Concept Drift Detection detects a change 

in the stream. It signals Semi-supervised Learning to train a new model and at the same 

time it signals the SRADL framework to request for labeling on the current chunk of data. 

Semi-supervised Learning trains a new model M2 using labels from the reservoir and 

unlabeled samples in Chunk A. As requested labels arrive later in time (Figure 5.4.b), they 

are added to the reservoir and are used to test M2. If M2 is determined to be performing 

well, the model is kept unchanged. Otherwise, Semi-supervised Learning repeats a similar 

process to Figure 5.4.a to try to train a new model M2’. M2’ is trained using reservoir labels 

and unlabeled samples from the current chunk in the stream (different from the chunk used 
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to train M2). SRADL also requests for more labels from the M2’ chunk. Model After 

training, M2’ undergoes the same evaluation process as M2 (Figure 5.4.b). In the extreme 

case when required labels never become available, SRADL is still able to train new models 

using labels in the reservoir. However, the evaluation process will not be able to carry out 

since there is no labeled samples to test the performance of the new model. 

SRADL uses a performance threshold P to determine whether a learning model is 

low performing or not. Any model with performance below P will be retrained. P is a 

parameter that balances between computational intensity and performance. The value of P 

Figure 5.4 Illustration of building and evaluating a model after concept drift 

a. At the start of the stream, the first chunk of data is used to train the initial model (M1).
When concept drift is detected, labels are request and new Model M2 is requested using 
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is up to specific applications because it is difficult to determine the optimal P without the 

prior knowledge about the data. For example, an application for predicting which color will 

be trendy in fashion can have a lower P value than an application for predicting weather. 

To keep matters simple, in this study the value of P is determined empirically. 

5.3 Experimental Results 

5.3.1 Datasets 

 Two datasets were used in the experimentation: Rotating Hyperplane and Spam. 

Rotating Hyperplane dataset (Fan, 2004) is created with 10,000 samples. It is a binary class 

dataset with 10 numerical features ranging between 0 and 1. A high dimension hyperplane 

divide the dataset into its two classes. Concept drift is created by rotating the hyperplane. 

When generating the dataset, parameter K determines how many drift events occur and 

parameter T determines how much rotation is done for each drift. Our dataset was 

generated using K = 4 and T = 1.0.  Spam dataset is a real-world dataset. It is a text data 

converted numerical dataset, where each feature is the occurrence rate of a particular word 

in an email. The dataset has 500 features with two classes: spam and not spam. It has 9324 

samples in total. Our change detection algorithm detected 11 possible concept drifts in the 

Spam dataset. These two datasets were selected because they contain a good number of 

concept drift. 

5.3.2 Experimental set up 

 Two scenarios of labeling arrival time (Figure 1) were both explored. The labeling 

process was simulated by first hiding all class labels from the framework and only 

revealing the labels for samples that are requested to be labeled. The delay time is measured 
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by number of chunks between label requesting time and label finishing time. For example, 

a 6-chunk-delay problem when labeling is requested at chunk #5 will finish at chunk #11. 

For the first scenario, all requested labels are made available only after a pre-defined delay, 

as shown in Figure 1-a. To be precise, for n-chunk-delay experiment, if change were 

detected on the mth chunk, all K requested labels will be made available on the (m+n)th 

chunk. The second scenario is where labels are made available incrementally over a period 

of time (Figure 1-b). Each chunk after the mth chunk will get K/n number of labels. All K 

requested labels will still be made available on the (m+n)th chunk. The delay times for each 

experiment are arbitrarily chosen such that we can compare the performance of SRADL 

against other approaches in various length of delay. In real world scenarios, the delay time 

can vary for each application, and it is most likely determined by how long it takes the 

experts to finish labeling the data.       

We compared SRADL with three other data stream mining approaches: a) static, b) 

no-delay, and c) wait-and-train. The static approach assumes there is no further changes in 

the data stream. The learning model was trained in the initial chunk and remained 

unchanged throughout the stream. This approach was used to show that concept drifts exist 

in the selected datasets. It provides a lower bound of performance. No-delay approach 

obtains labels immediately after requested, after which an updated model can be 

immediately trained. This approach was to give an upper bound of performance. Wait-and-

train approach is the naïve solution to delayed labeling problem. It waits for the labeling 

process to finish and only trains a new model after all requested labels arrive. Performance 

was measured in area under the prediction accuracy curve, calculated by the Trapezoidal 

Rule that simulates integrating of the curve. 
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5.3.3 SRADL Experiment with Synthetic Dataset 

 For the synthetic dataset the chunk size was chosen to be 300. This chunk size was 

chosen such that the initial model can obtain the highest accuracy. The threshold 

performance value P was empirically set to be 75% accuracy based on the average accuracy 

of the static model throughout the data stream, which is 75%. 

Figure 5.5 shows the experimental results of labeling scenario 1. The vertical line 

in the figure denotes the time when concept drift was detected. In Figure 5.5.a and 5.5.b, 

we can see that SRADL first performed slightly better than the naïve approach. Since the 

naïve approach waits for the labeling process to finish, at the beginning it had the same 

Figure 5.5. Experimental results of Hyperplane data with labeling scenario 1. Chunk size 300. 

Vertical line shows time of concept drift. 
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degrading performance as the static approach. After retraining, the wait-and-train bounced 

back nicely and even out-performed SRADL. In Figure 5.5.c, it shows that for larger delays 

SRADL was able to perform slightly better than the naïve approach from the beginning to 

the end. Table 5.1 computes the area under the curve presented in Figure 5.5. In 6 and 12 

chunk delays, the area under the curve showed that SRADL performed worse than wait-

and-train by 3.1% and 1.5% respectively. In 18 chunk delay, Table 5.1 shows SRADL had 

a 3.6% increase in performance. The small improvement of SRADL compared to wait-

and-train can be explained by the lack of new labels to update the reservoir during the 

labeling process. Since no new labels are available during the waiting time, SRADL and 

wait-and-train has the same knowledge about the data stream. Semi-supervised learning 

trained using outdated label with new unlabeled samples produced worse models than its 

wait-and-train counterpart, which used supervised learning models on all requested labels. 

Table 5.1 Area under the curve for labeling Scenario 1 experiments with rotating 

hyperplane 

DELAY STATIC NO-DELAY WAIT&TRAIN SRADL 

6 718.5 871.2 817.3 791.0 

12 718.5 871.2 761.6 749.5 

18 718.5 871.2 732.4 759.4 

Table 5.2 Area under the curve for labeling Scenario 2 experiments with rotating 

hyperplane 

DELAY STATIC NO-DELAY WAIT&TRAIN SRADL 

6 718.5 871.2 817.1 809.4 

12 718.5 871.2 761.6 785.7 

18 718.5 871.2 732.4 787.7 
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However, with larger delay, the S3VM semi-supervised learning algorithm was able to 

overcome such drawback. 

Figure 5.6 shows the accuracy curve of Scenario 2. Figure 5.6.a shows that SRADL 

performed similarly to wait-and-train until the chunk #20, where wait-and-train started to 

outperform. In 12 and 18 chunk delay experiments (Figure 5.6.b and 5.6.c), SRADL greatly 

outperformed wait-and-train for the entire dataset. In Table 5.2 we can see that for 6 chunk 

delay SRADL performed worse by merely 0.9% while in the other two cases it out-

performed wait-and-train by 3.1% and 7.5% respectively. 

When new labels constantly update the reservoir, SRADL is able to effectively 

utilize the new information by integrating them into the latest models. SRADL especially 

Figure 5.6. Experimental results of Hyperplane data with labeling scenario 2. Chunk size 300 

Vertical line shows time of concept drift. 
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showed its benefits on larger labeling delay. The naïve approach of wait-and-train is limited 

to an outdated model for a long period of time while SRADL improves the model 

immediately. 

5.3.4 SRADL Experiment with the SPAM Dataset 

 In the Spam experiment the chunk size was chosen at 200. In this dataset the 

average accuracy of static model is around 50%, which is too low of a performance to be 

a meaningful threshold. Therefore, the threshold performance value P is again set to be 75% 

accuracy. Shown in Figure 5.7 is the result of labeling scenario 1 experiment of the Spam 

dataset. SRADL performed much better at 6 chunk delay as shown in Figure 5.7a. The 

most performance gain came between chunk 15 and chunk 30. In 12 chunk delay, SRADL 

performed worse than the wait-and-train approach. Specifically, in Figure 5.7.b, SRADL 

performed similarly compared to wait-and-train until chunk 30-44 where SRADL fell 

below the naïve approach. For 18 chunk delay SRADL has a similar result than the wait-

and-train approach for the entire stream.  

Table 5.3 Area under the curve for labeling Scenario 1 experiments with SPAM 

Delay Static No-delay Wait&Train SRADL 

6 473.1 1815.3 1396.3 1490.0 

12 473.1 1815.3 1375.6 1280.7 

18 473.1 1815.3 1251.5 1267.3 
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Table 5.3 summarizes area under the curve computed from Figure 5.7, The worst 

performance loss of SRADL comes from 12 chunk delay, where SRADL performed worse 

than naïve case in the 12-chunk delay case by 6.9%. However, performance is gained in 

the other two cases. In 6 chunk delay case. SRADL outperformed wait-and-train by 6.7%. 

And in 18 chunk delay case SRADL outperformed wait-and-train by 1.2%. The result show 

that SRADL has more performance advantage than wait-and-train when the delay time is 

short. For longer delays, SRADL did not seem to benefit from semi-supervised learning 

algorithm in labeling scenario 1 since no new knowledge is gained about the data stream 

during the label waiting time. 

Figure 5.7. Experimental results of Spam data with labeling scenario 1. Chunk size 200. Vertical 

line shows time of concept drift. 
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Scenario 2 results are shown in Figure 5.8. For small delays of 6 shown in Figure 

5.8.a, SRADL had no large improvement over the wait-and-train approach. SRADL 

performed slightly worse for the majority of the stream. In Figure 5.8.b, SRADL performed 

slightly worse between chunk 20 and 30, but outperformed from chunk 5 to 15 and from 

chunk 30 to 40. In Figure 5.8.c SRADL clearly outperformed wait-and-train between 

chunks 15-40, a vast majority of the entire dataset.  

Table 5.4 summarizes area under the curve computed from Figure 5.8.  SRADL 

performed slightly worse on 6 chunk delay with 3.5% less area under the curve when 

compared to wait-and-train. On the 12-chunk delay, SRADL outperformed by 1.9%. On 

18-chunk delay, SRADL scored the most performance gain, 7.5% more area than wait-

and-train. The result shows that the SRADL semi-supervised learning is able to utilize 

Figure 5.8. Experimental results of Spam data with labeling scenario 2. Chunk size 200. Vertical 

line shows time of concept drift. 
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small amount of labeled data trickled in through time. Although limited in numbers, these 

labeled data enable better models to be trained when compared to the previous scenario. 

As the delay time lengthen from 6 chunks to 18 chunks, the advantage of better model 

earlier is reflected in the performance increase by SRADL. 

Both synthetic and real-world experiment results showed that different labeling 

scenarios have different effect on SRADL and wait-and-train. For labeling process that 

return all the labels all together, wait-and-train is the better approach. Whereas for labeling 

process that can return small number of labels from time to time, SRADL performs better. 

SRADL also universally benefits from larger chunk delays since the naïve approach keeps 

the outdated models for longer periods of time in these cases. 

Table 5.4 Area under the curve for labeling Scenario 2 experiments with Spam. 

Delay Static No-delay Wait&Train SRADL 

6 473.1 1815.3 1412.7 1362.7 

12 473.1 1815.3 1367.8 1394.6 

18 473.1 1815.3 1295.0 1393.4 
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CHAPTER 6. HEURISTIC ENSEMBLE FRAMEWORK FOR CONCEPT 

DRIFT DETECTION IN DATA STREAM CLASSIFICATION5

Majority of existing concept drift detection algorithms, while performing well with 

labeled data, may show limitations when presented with unlabeled data. The complex 

nature of concept drift brings many more types of drift other than the presence of 

distribution change (Minku et al., 2010) (Khamassi et al., 2019).  A drift can occur abruptly, 

or slowly over time (Gama et al., 2014). Drifts can occur repeatedly, or occur periodically 

(Webb et al., 2016). Algorithms that focus on one aspect of concept drift characteristics 

will inevitably fail when such characteristic does not appear in a particular drift. For 

instance, an algorithm that focuses on detecting new data distribution will be able to detect 

change in Figure 6.1.c most of the time even without class labels. However, such algorithm 

might fail at detection concept drift in Figure 6.1.a, because the characteristic of change in 

distribution required by the algorithm does not occur. Another algorithm, such as SVM 

Margin (Dries & Rückert, 2009), might be able to detect changes in Figure 6.1.a but not in 

Figure 6.1.c. A better strategy is therefore to combine the strength of both algorithms so 

that both types of concept drift scenario can be detected. 

5 This chapter has been published at Hu and Kantardzic, 2022 
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This chapter proposes Heuristic Ensemble Framework for Drift Detection (HEFDD) 

in streaming data. HEFDD applies the theory of ensemble to bring together multiple 

algorithms, each performing best at detecting some, but not all, types of concept drifts. A 

novel hierarchical voting mechanism ensures that different types of concept drift can be 

detected, even when global voting does not produce a majority.  Such voting mechanism 

also helps to reduce the number of false alarms raised by individual detection algorithms. 

Main contributions of this paper are: 

• Formulate a heuristic ensemble framework for unlabeled detection of various types

of concept drift.

• Outline criteria of algorithm selection for implementing the ensemble

• Experimentally show the advantage of the ensemble approach compared to variety

of single detection algorithm.

6.1 Heuristic Analysis on Related Concept Drift Detection Algorithm 

As mentioned in Chapter 2, The majority of current state of the art concept drift 

detection algorithms can be divided into two groups: a) performance based and b) 

distribution based. Performance based approaches require labeled data, because they track 

Figure 6.1. Detecting various types of concept drift is difficult without label 

a. Data without labels 
showing no change before 
and after

c. Data without labels having a 
new region of data, signaling 
concept drift

b. Data with labels showing class 
distribution change 

d. Data with labels shows new 
region does not affect existing 
classification
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the performance of the classification result. Without labels it is difficult to obtain an 

accurate performance evaluation. Data distribution-based approach has the advantage of 

being able to process both labeled and unlabeled data. When distribution based approach 

works with labeled data, its detection can be on par with that of performance based 

approach (Dries & Rückert, 2009)(Sethi & Kantardzic, 2017). When working with 

unlabeled data, however, distribution-based approaches often have limits on what types of 

concept drift each can detect. This is because most of the techniques are primarily based 

on assumptions of single type of concept drift detection, while the other types are rarely 

detected. Since the study focuses on unlabeled concept drift detection, distribution-based 

approaches will be reviewed in detail. Distribution based approaches can be further divided 

into three groups: a) Statistical test based, b) density based and c) Learning model based. 

Algorithms in each group employs similar detection techniques, which means they have 

Figure 6.2. Basic principle of data distribution based statistical testing 
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similar limitations on the types of concept drifts they can detect. This section will examine 

their limitations on which types of concept drift each group of algorithm is able to detect. 

6.1.1 Statistical Test Based Approaches 

Statistical-test-based approach utilize statistical test to track significant data 

distribution change. This is illustrated in Figure 6.2 using two-dimensional data (X, Y). 

The actual underlying class boundary of the demonstrated two-dimensional data would be 

unknown if class labels are not available. However, there are changes in the probability 

distribution of the two features before and after the drift, as shown in Figure 6.2. If such 

features pass some statistically test to be significant different, then a concept drift can be 

detected without label of data samples. Kifer et al. (Kifer et al., 2004) applied Kolmogorov-

Smirnov (KS) test for concept drift detection. Glazer et al. (Glazer et al., 2012) applied KS 

test for detection of change of high-density area in high dimensional data. The study 

modified classic minimum-volume set (MV-set) estimators for density estimation and 

enables KS test to be applied to high dimensional data. The author also noted that change 

in high density area is directly related to concept drift detection in streaming data. dos Reis 

et al. (dos Reis et al., 2016) modified KS test to be able to perform incrementally. Besides 

using KS test, Song et al. (Song et al., 2007) applied kernel density to detect concept drift. 

This study identifies suitable kernel width using expectation maximization algorithm. 

Kernel density test was performed on each data samples to check if it is from the same 

underlying data distribution. Siahroudi et al. (Siahroudi et al., 2018) computes multiple 

kernels of the data space and specifying class boundary using combined kernels. A concept 

drift is detected if new samples appear outside existing class boundary. Lee and Magoules 

(Lee & Magoules, 2012) utilized correlation information of value distribution in a 
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windowed detection approach. Faithfull et al. (Faithfull et al., 2019) applied an ensemble 

of univariate change detector to a multivariate change detection problem. The ensemble 

outperforms pure multivariate approaches in their experiments. Sobolewski and Wozniak 

(Sobolewski & Wozniak, 2013) proposed a KS test concept drift detection framework with 

that can work on unlabeled data stream. The approach acknowledges that concept drift that 

does not change the global distribution cannot be detected. This study thus demonstrated 

that KS test drift detector, when applied to unlabeled data, is not suitable for detecting fixed 

space drift 

6.1.2 Density Based Approaches 

Density based methods look for changes in dense regions of the data. These 

methods are capable of identifying uncertain suspicious samples, which need further 

evaluation. They define an additional ’Unknown’ class label to indicate that these 

suspicious samples do not fit the existing view of the data (Spinosa et al., 2007). Clustering 

and outlier-based approaches are popular implementation strategies for detecting novel 

patterns, as they summarize current data and can use dissimilarity metrics to identify new 

samples (Kantardzic et al., 2010). Lazarescu et al. (Lazarescu et al., 2004) uses a multi-

windowed approach with clustering for concept drift detection. The clusters were 

constructed to describe each current concept. When concept drift occurs, new clusters 

constructed after the drift will be significantly different from existing cluster and thus the 

drift can be detected. Spinosa et al. (Spinosa et al., 2007) applied K-means clustering 

algorithm for concept drift detection in a framework named n OnLIne Novelty and Drift 

Detection Algorithm (OLINDDA). K clusters were initially generated by the K-means 

algorithm. The overall arithmetic mean of distances between the initial cluster centroids 
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were calculated. As new sample arrives, new samples are clustered into a candidacy cluster. 

If the mean distance between centroid of this candidacy cluster and initial clusters are 

smaller than the initial mean distance, then this candidacy cluster is considered valid, and 

no concept drift occurred. Otherwise, the new candidacy cluster forms a new concept 

outside the initial K-clusters, forming a new dense data region. Kantardzic et al. 

(Kantardzic et al., 2010) proposed a framework that work with partially labeled data stream. 

Similar to OLINNDA, the framework creates initial clusters at beginning of the data stream. 

If a new cluster emerges from the data stream, it means a new dense region appeared and 

concept drift is detected. Masud et al. (Masud et al., 2010) proposed a framework where 

K-means clusters were used initially to create K clusters. New samples outside of existing 

clusters are counted as outliers. Similar to (Kantardzic et al., 2010), if the outliers form a 

new cluster, then either a concept drift or a novel class is detected. 

The limitation of clustering-based approach is that if global data distribution does 

not create new dense regions, then the detection will fail. This is explained in detail using 

algorithm by Kantardzic et al (Kantardzic et al., 2010). The algorithm assumes that 

samples of the same class form clusters. The detection process is explained in Section 

5.2.2. The case for detection failure for this algorithm is demonstrated in Figure 6.3. In 

Figure 6.3.b, all new samples fall within the existing cluster, which does not trigger drift 

Figure 6.3 Clustering based concept drift fail to detect when drift is stationary. 

a. Initially two cluster 
exists

b. Concept drift occurs
but no new clusters
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detection. Without labels, it is also impossible to differentiate differences of the new 

samples from current samples within the cluster. Therefore, this approach cannot detect 

drift under this scenario. 

Tu and Chen (Tu & Chen, 2009) proposed a framework that has an online 

component that map each data samples to a grid in the data space, and an offline component 

that compute grid density. A density decaying mechanism was applied to forget older 

samples so that new dense grid can be discovered. An ensemble-based grid density 

framework was proposed by Sethi et al. (Sethi et al., 2016) to tackle concept drift in both 

spatial and temporal component of the data stream. A grid of the data space is generated 

by dividing each feature of the data into fixed intervals, forming a grid. As samples arrive, 

they are assigned to their specific grid cell based on their feature values. The number of 

samples in each cell is recorded, and the cell becomes dense if the number rises beyond a 

threshold p. If at a moment a normal cell becomes dense, then it is clear that more data are 

arriving in the data space occupied by the cell, a potential concept drift. The grid detection 

has similar limitations to the clustering-based approach. The Grid Based Detection 

monitors changes in the shape of the data. If all new data only arrive in existing dense grids, 

then the overall shape of the data will not change. Since the data is unlabeled, it is 

impossible to track the shape of individual class of data. This limitation is shown in Figure 

6.4. Figure 6.4.a shows the initial decision boundary between the two classes with three 

dense grids. Figure 6.4.b, new samples arrive mostly in existing dense grids, but clearly 

decision boundary is shifted. This scenario cannot be detected by Grid Based drift detection. 

For this reason, in an unsupervised environment, this algorithm is best when used for non-

stationary drift 
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6.1.3 Learning Model Based Approaches 

This group of detection algorithms use the underlying classification model’s 

characteristics for concept drift detection. Dries et al. (Dries & Rückert, 2009) proposed 

three approaches in their study: a) density estimation on binary representation of the data, 

b) measures average margin of 1-norm SVM and c) average error rate generated by 

SVM. The study shows that the SVM approach (second approach) has the best precision 

and recall. The linear SVM creates a margin between two supports. Concept drift can be 

detected if there are significant changes between the margins. Sethi et al. (Sethi & 

Kantardzic, 2017) further improve the margin approach by extending it to partially 

labeled data stream. The approach (MD3) computes the density within a margin created 

by decision boundary and support of a linear SVM trained on original training data. Once 

the SVM is trained, the detection process does not require labels. The margin density is 

calculated by equation (6.1). 

ρ =  
#samples with abs(𝑤 • 𝑥𝑖 +  𝑏)  ≤  1 

#samples 
                 (6.1) 

#samples is the number of data samples within the current time step in data 

stream. The separating hyperplane of the SVM is defined by 𝑤 • x +  𝑏 = 0. The 

function abs() calculate the absolute value. For each sample i, if 𝑎𝑏𝑠(𝑤 • 𝑥𝑖 +  𝑏)  ≤ 1, 

 

Figure 6.4. Grid Based Drift Detection failed to detect drift 

a. Three dense 
grids exist

b. Concept drift occurs 
but no new grid appears
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then it falls between the defined margins. The maximum and minimum ρ are monitored 

for the current chunk. If ρ falls outside of the existing min-max range, then a potential 

drift is detected. The process is illustrated in Figure 6.5. Initially in Figure 6.5.a, two 

classes of samples are separated by a horizontal decision boundary, with margin density 

0.4 (2 out of 5 samples inside margin) and 0.5 (3 out of 6 samples inside margin) for each 

class respectively. After concept drift occurs in Figure 6.5.b, the decision boundary 

changed, as a result the margin density changes to 0.8 (4 out of 5 samples inside margin) 

and 0.66 (4 out of 6 samples inside margin) respectively. After retraining SVM, the new 

decision boundary reflects post-drift reality in Figure 6.5.c, and the margin density 

returns to normal value of 0.6 and 0.5 respectively. 

This approach is best used for stationary drift since the density is only calculated 

within a narrow region encompassing the decision boundary. The margin density will not 

change if data suddenly appear in a new region outside of the margin. This is shown in 

Chapter 2, Figure 2.16 

6.2 Heuristic Ensemble Framework for Drift Detection (HEFDD) 

Many distribution-based concept drift detection algorithms have limitations on 

which type of concept drift they are able to detect when labeled data aren’t available. The 

Figure 6.5. Illustration of Margin Density drift 
detection 

a. Initial Margin
with density

b. New margin with
increased density

c. New model reflecting
concept drift
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limitations are the result of their assumption about specific nature of the concept drift. 

For instance, Clustering and Grid approaches assume that concept drift occurs when new 

dense regions in the data space appear. But there are many cases where drift can occur in 

existing data regions. On the other hand, Margin Density approaches assume concept 

drift will be captured around existing data models, but there can be changes happening 

far away. Kolmogorov-Smirnov (KS) Test can detect samples from different populations 

but cannot identify changes from the same global population. The proposed framework, 

Heuristic Ensemble Framework for Drift Detection (HEFDD) aims to detect all types of 

concept drift in data streams by combining the strength of multiple concept drift detection 

algorithms. HEFDD divide data stream into chunks, where each chunk is a fixed number 

of data stream samples (Sethi & Kantardzic, 2017). This strategy is used because it is 

most flexible, as it can work with both chunk-based detection algorithm and incremental 

detection algorithm (dos Reis et al., 2016).   

6.2.1 Ensemble and Heuristic Voting 

The ensemble of HEFDD is consists of individual concept drift detection 

algorithms, illustrated in Figure 6.6.a. Each DD (DD1 to DD4) stands for a single Drift 

 

Figure 6.6. HEFDD Ensemble Structure  
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Detection algorithm. The arrows in Figure 6.6.a denote which concept drift type each DD 

is able to detect (DD1 is able to detect Fixed Space Gradual and Fixed Space Sudden, 

DD2 is able to detect Fixed Space Sudden and Non-fixed Space Sudden and so on). This 

is determined by analyzing theoretical approach used in a specific technique and on the 

experimental results of each concept drift detection algorithm. DD1 may have similar 

assumption on concept drift to Margin Density, and therefore it can only detect Fixed 

Space drifts. On the other hand, DD4 may have similar assumption to Clustering, so only 

Non-fixed Space drift can be detected. Each algorithm votes on the type of concept drift 

it can detect. Votes are not counted globally. Instead, each type of concept drift keeps 

track of votes from the subset of techniques that can detect it. In Figure 6.6.a, Fixed space 

Sudden and Non-fixed Space Gradual both potentially have three techniques’ vote while 

Fixed Space Gradual and Non-Fixed Space Sudden both potentially have one technique’s 

vote. As long as a concept drift type obtains a majority voting on its own total vote count, 

it is detected by HEFDD. This is further illustrated in Figure 6.6.b. As a chunk of data 

samples arrives, they are directed through each of the DDs. Solid arrows following the 

DD1 and DD2 means a concept drift is detected in the current chunk whereas dashed 

arrows following DD3 and DD4 means a concept drift is not detected. Based on heuristic 

voting, Fixed Space Gradual (FSG) is detected because it received one vote out of one 

total vote. Fixed space Sudden (FSS) is also detected because it received two votes out of 

three total votes, reaching a majority. Non-fixed space Gradual (NFSG) is not detected 

because it only received one vote out of three, and finally Non-fixed Space Sudden 

(NFSS) is also not detected by not receiving any vote. 

6.2.2 Component Selection for HEFDD 
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The selection of algorithm that constitute the ensemble is based on two principles:  

a) type of concept drift to be detected 

b) heuristic analysis of each algorithm 

 In this study six types of concept drift are identified by combining the speed and 

distribution classifying criteria, outlined in Section 2. Ideally, there should be several 

detection algorithms in the ensemble that is able to detect each of the six concept drift 

types. To increase confidence of detection and reduce false positive, each concept drift 

type is better to have more than one algorithm’s vote. In our review of algorithms in 

Section 3, we identified the limitations of Margin Density, Clustering, KS Test and Grid 

concept drift detection algorithms, which are summarized in Table 6.1. Margin Density 

can detect all Fixed Space concept drift while Clustering, KS Test and Grid can detect 

only Non-fixed Space drifts. An ensemble of these algorithms is therefore able to detect 

all six types of concept drift. At the same time, non-fixed space type drifts will have three 

algorithm voting for improved detection through the voting process. If two algorithms 

reach a majority vote, then there is a higher confidence that such type of concept drift is 

truly happening.  

6.3 Experiments 

Table 6.1. Different concept drift detection algorithms detect different types of drift 

                   Datasets 
Algorithm 

FSS  FSG  FSI NFSS NFSG NFSI 

Margin Density (Sethi & 
Kantardzic, 2017) 

YES YES YES NO NO YES 

Clustering (Kantardzic et 
al., 2010) 

NO NO NO YES YES YES 

KS Test (Sobolewski & 
Wozniak, 2013) 

NO NO NO YES YES YES 

Grid (Sethi et al., 2016) NO NO NO YES YES YES 
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Experiments were conducted using both synthetic and real-world dataset. 

Synthetic datasets were created so that each of the proposed type of concept drift can be 

accurately simulated. These datasets were used to confirm our analysis of each individual 

algorithms in Table 6.1 and prove the concepts of HEFDD approach. Real-world datasets 

were used to show the advantage of HEFDD methodology when compared to a detection 

strategy using only a single drift detection algorithm. 

6.3.1 Datasets 

Synthetic dataset was 2-dimensional input with the third dimension a binary class 

label. Fixed space and non-fixed space drifts were created as illustrated in Figure 6.7. 

Fixed space data were created with normalized input in range [0, 1]. A margin width of 

0.1 was defined between the two classes of samples. The margin rotates in place as more 

streaming samples were generated. Non-fixed space data were created by moving the 

data generation range from [0, 1] toward [6,7]. In both fixed and non-fixed drifts, the rate 

of change is also modified to create abrupt, gradual and incremental drift. In abrupt drifts, 

all margin rotation and data movement are completed in one chunk of data, while in 

gradual and incremental drift they take three chunks to complete. In total, 6 separate 

synthetic data sets were created, covering all six concept types in Table 6.1. Each dataset 

has 20 chunks, where each chunk has 500 data samples. The speed of changes is 

generated by controlling how fast concept drift occurs. In the sudden drift datasets (FSS 

and NFSS), three separate concept drifts occur in chunk 5, 10 and 15. In the gradual and 
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incremental drift datasets, three separate concept drifts occur from chunk 4 to chunk 6, 

from chunk 9 to chunk 11 and from chunk 14 to chunk 16. 

 

Three real-world datasets were used in the experiments. Electric Market (EM) 

dataset is a real-world dataset that keeps track of the rise and fall of electricity price 

(Zliobaite, 2013). Forest cover (Covtype) dataset contains forest cover type data from US 

Forest service (Blackard & Dean, 1999). Covtype was modified into a binary class 

dataset by selecting two classes with the most samples. SPAM dataset is a text dataset 

 

a. Fixed space drift was created by rotating the class boundary in place 

 

 

b. Non-fixed space drift was created by moving the data to a new area in the data space 

Figure 6.7. Synthetic data with fixed-space and non-fixed space drift 

Table 6.2. Dataset used in experiments 

Name # Samples # Input 

Attribute 
# Classes Chunk Size 

Synthetic 
(FSS, FSG, 

FSI, NFSS, 

NFSG, 

NFSI) 

10,000 2 2 500 

EM 45312 7 2 1500 

Covtype 218515 54 8 2000 

SPAM  6213 500 2 500 
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from SpamAssasin data collection (Blake & Merz, 1998). It contains a numerical 

representation of 6213 emails where some of these are spam emails. Although all 

available datasets contain class labels, the drift detection process does not take them into 

consideration to simulate unlabeled streaming data. Table 6.2 summarize the 

characteristic of each dataset and the size of data chunk used in the experiments. 

6.3.2 Experimental Results 

Table 6.3 shows the experimental results of four concept drift detection algorithm 

and their EFDD ensemble using synthetic data. For the fixed-space datasets, only Margin 

Density algorithm is able to detect any concept drift, which is expected result based on 

analysis in section 3. Since Margin Density constitute the only vote for fixed-space drift, 

EFDD produces the same detection of this drift type as Margin Density. Among the three 

Table 6.3. Different concept drift detection algorithms detect different types of drift in synthetic 

data sets 

 Datasets 
Algorithm 

FSS  FSG FSI NFSS  NFSG NFSI 

Actual Drifts 5, 10, 15 4-6, 9-11, 
14-16 

4-6, 9-11, 
14-16 

5, 10, 15 4-6, 9-11, 
14-16 

4-6, 9-11, 
14-16 

Margin Density 
(Sethi & Kantardzic, 

2017) 

5, 10, 15 4, 5, 10, 15 4, 6, 9, 
10,11, 
14, 16 

- - - 

Clustering 
(Kantardzic et al., 

2010) 

- - - 5, 10, 15 4, 9, 14 4, 5, 6, 9, 
10, 15, 

16 

KS Test 
(Sobolewski & 

Wozniak, 2013) 

- - - 5, 10, 15 4, 9, 14 4, 6, 10, 
11, 14, 

15 

Grid (Sethi et al., 
2016) 

- - - 5, 10, 15 4, 9, 14 4, 5, 6, 9, 
10, 11, 
14, 15 

HEFDD 5, 10, 15 4, 5, 10, 15 4, 6, 9, 
11, 14, 

16 

5, 10, 15 4, 9, 14 4, 5, 6, 9, 
10, 15 
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drift speeds, Margin Density is able to detect all cases of sudden drift. It has some 

detection delay and redundant detection for the FSG and FSI dataset. In the non-fixed 

space dataset, Clustering, KS Test, and Grid are able to detect any drift, also as expected. 

All algorithms detect NFSS and NFSG drifts without delay or redundancy. However, in 

NFSI, both algorithms created many redundant detections. EFDD is able to reduce the 

number of redundant detections requiring that at least two algorithms reaching a majority. 

The exact location of concept drifts for synthetic data is determined in advance, 

but this is not the case for real-world dataset. To overcome this problem, a performance-

based algorithm DDM (Gama et al., 2004) is chosen as the golden standard since DDM is 

able to detect all types of concept drift using labeled samples. Table 6.4 shows concept 

drift detection for real-world data stream comparing with DDM’s detection result using 

labeled data, considered to be gold standard for the other five unlabeled drift detection 

methodologies. The detection column shows the chunk number where drift is detected, 

and the accuracy column shows the corrected detection compared to DDM. Looking at 

the exact chunk number, HEFDD only correctly detected two chunks out of five from 

DDM. However, different algorithms have different sensitivity for concept drift. In 

addition, gradual and incremental drift may have a delayed detection because the change 

is very slow. For this reason, it is more useful to also consider adjacent chunks detection 

as hit when comparing drift detection result. That is, if chunk detection is only off by one 

chunk when compared to golden standard approach DDM, it is still considered the same 

detection. To better show detections that are adjacent, a notation A(B) is adopted where 

A is chunk number detected by any algorithm other than DDM and B is chunk number 
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detect by golden standard DDM. The accuracy column is calculated with adjacent chunk 

included.  

Each real-world dataset was classified chunk by chunk using a SVM with RBF 

kernel. In the first chunk of the data stream, an initial SVM was trained. A new SVM 

would replace the old one when concept drifts were detected in each chunk. On the 

chunks that does not detect concept drift, accuracy of the SVM predictions were 

measured and the average accuracy of the entire data stream were recorded. Table 6.5 

shows the results. 

 

 

Table 6.5. Impact of concept drift detection on data stream classification performance 

Datasets          
Algorithm 

Electric Market Spam Covtype 

DDM 75.2% 69.2% 63.3% 

Margin 58.8% 68.2% 56.1% 

Clustering 66.7% 65.2% 62.4% 

KS Test 62.3% 58.2% 59.9% 

Grid 64.6% 59.7% 63.1% 

HEFDD 68.8% 68.3% 63.1% 

 

Table 6.4. Experimental Result on Real-world Datasets 

 Datasets          
Algorithm 

Electric Market Spam Covtype 
Detection Accuracy Detection Accuracy Detection Accuracy 

DDM (Gama et 
al., 2004) 

4, 7, 10, 
13, 24 

100% 4, 10 100% 5, 9, 13, 16, 20, 23, 32, 
34, 40, 42, 47 

100% 

Margin 5 20% 1, 4, 12 50% 4, 5, 8, 10, 18, 24, 42 36.3% 

Clustering 1, 7, 10 40% 2, 6, 7, 10 50% 14, 17, 29, 33, 36, 38, 
39, 40, 44, 46 

54.5% 

KS Test 2, 7, 10 40% 4, 7 50% 5,7, 10, 18, 22, 23, 27, 
33, 39, 47 

54.5% 

Grid 7, 8, 9, 10 40% 7, 9, 10 50% 12, 13, 14, 20, 22, 26, 
30, 33, 39, 40, 43 

63.6% 

HEFDD 5, 7, 10 60% 1, 4, 7, 10, 
12 

100% 4, 5, 8, 10, 14, 18, 33, 
39, 40, 42 

63.6% 
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6.3.3 Discussion 

The synthetic dataset shows that the heuristic analysis of each algorithm matches 

their respective concept drift detection types. Margin density is able to detect all Fixed 

Space types but fails on all non-fixed space types. Clustering, KS Test and Grid is able to 

detect all non-fixed space types but fails on Fixed Space types. The speed of drift impacts 

the accuracy and precision of each detection algorithms. Ideally, concept drift detection 

algorithm should be able to detect a concept drift as early as possible and at the same 

time maintain a high precision and accuracy of detection. For example, in FSI ideal 

detection should detect concept drift at the beginning of chunk 4, 9 and 14. Margin 

density has chunk 6, 11, and 16 as redundant drift detection since they are the same drift 

started in chunk 4, 9 and 14. In real-world applications, because concept drifts are 

detected in these chunks, a streaming classification framework will likely spend resources 

on training new models. HEFDD helps by reducing the redundant detection in NFSI so 

that less resources are wasted.   

The Electric Market column of Table 6.4 shows detection results for the EM 

dataset. After taking into account of drift sensitivity, EFDD is able to detect three drifts 

compared to DDM at chunk 5(4), 7(7) and 10(10). HEFDD detections at chunks 7(7) and 

10(10) came from detection majority by Clustering, KS Test and Grid while chunk 5(4) is 

contributed by Margin. The EM stream dataset shows mostly non-stationary drift in the 

beginning, while stationary drift starts to appear at the middle of the stream. This 

confirms our hypothesis that real-world datasets may contain more than one type of 

concept drifts. Together, HEFDD is able to detect 60% of DDM’s detections, more than 

any individual algorithms that made up the HEFDD ensemble. The Spam column in 
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Table 6.5 shows Margin density correctly detected 4(4) with 12(10) as near miss being 

two chunks away from chunk 10. Clustering, KS Test and Grid produced majority at 

chunk 7 and a correct detection at chunk 10(10). Together, EFDD detected 100% DDM’s 

detection at 4(4) and 10(10), but with false positive at chunk 1, 7 and 12. The Covtype 

colum in Table 6.5 shows Margin density correctly detected 4(5), 5(5), 8(9), 10(9), 

24(23) and 42(42). Since chunk 4, 5 correspond to DDM detection of chunk 5 and chunk 

8, 10 correspond to DDM’s chunk 9, these four detections by margin density really are 

detecting only two drifts. EFDD is able to detect more drift than Margin Density and 

Clustering and detect the same number of drift with Grid. Counting false positive, EFDD 

has the lowest number of false positives compared to the other three algorithms. 

Averaging three dataset’s detection accuracy, statistical p-value test using z-score shows 

HEFDD has significance improvement at p < 0.05. 

Figure 6.8 summaries and compares the result of all four experiments. Figure 

6.8.a plots the accuracy of correctly detected concept drift as listed in Table 6.4. In most 

cases EFDD is able to detect more drifts than any individual algorithm. Exceptions are in 

Figure 6.8. Summary of experimental results 

a. Percentage of correct detection 
of each algorithm compared to DDM

b. Percentage of false positive
of each algorithm.
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hyperplane where EFDD detected the same number as Margin Density and in Covtype 

where EFDD equals Grid.  Figure 6.8.b shows the percentage of false positive detected 

by all four algorithms. The percentage is produced by dividing number of false positive 

detection by number of drifts detected by DDM. For instance, for hyperplane, there is one 

false positive by Margin Density and four drift detected by DDM. The false positive 

percentage is therefore 25%. The result shows the ability of EFDD to reduce the number 

of false positives compared to individual algorithms. In hyperplane, EFDD has more false 

positives than Cluster, KS Test and Grid because the latter three algorithms could not 

detect any drift. For real-world data sets, EFDD is able to reduce false positive in EM and 

Covtype dataset. 

The goal for achieve high concept drift detection performance is to increase the 

prediction performance of data stream classification framework. Average accuracy in 

Table 6.5 shows HEFDD can achieve higher accuracy when compared to individual 

algorithms. Column Electric Market shows that DDM achieve the highest accuracy while 

HEFDD achieve the best performance when compared to individual drift detection 

algorithm. It is able to outperform Margin Density by 10% because the latter is only able 

to detect one concept drift. The majority of EFDD’s detection in this dataset comes from 

Clustering and Grid and thus its performance is similar to the other two. It is still much 

lower than DDM because EFDD failed to detect a concept drift later in the stream. 

Column Spam shows each algorithm has similar overall performance with HEFDD 

performing slightly under DDM but above all other algorithms. The SPAM dataset has an 

important drift at chunk 4, therefore any algorithm that detects it relatively early will 



128 

have good performance. Covtype column shows Margin Density has the lowest 

performance because it fails to detect most of the concept drift. 
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CHAPTER 7. IMPROVING PERFORMANCE OF SRADL IN DELAYED 

LABELING DATA STREAM MINING USING HEFDD FRAMEWORK

This chapter aims to continue to refine the Sliding Reservoir Approach for Delayed 

Labeling (SRADL) framework that is developed for delayed labeling problem in Chapter 

5. The experiment results in Chapter 5 shows that using only semi-supervised learning and

historical labeled data, the improvement on classification performance is not significant. 

Noticeable increase in classification accuracy occurs only when a small portion of newly 

labeled data is received in the continuous-labeling scenario. As discussed in Chapter 5, 

although newly unlabeled data contain information about data distribution after concept 

drift, this information is unknown to the learner because it is unlabeled. Historically labeled 

data contains information before concept drift. Semi-supervised learners infer data 

distribution information only from labeled data. Therefore, when new labels are not 

available, SRADL is still training models using mostly information before concept drift. 

Furthermore, the original SRADL framework utilizes the clustering-based concept drift 

detection algorithm. The algorithm, as shown in Chapter 6, can only detect non-stationary 

drift. 

To improve SRADL, it is necessary to integrate more up-to-date information of the 

concept drift to the learning process. The framework Heuristic Ensemble Framework for 

Drift Detection (HEFDD), introduced in Chapter 6, can be used for this purpose. HEFDD 
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is able to not only detect concept drift, but also provide insights on what type of concept 

drift is detected.  With this knowledge, a framework can potentially have different 

strategies for each concept drift type. For instance, a non-stationary drift calls the 

framework to look for changes in global distribution whereas a stationary drift makes the 

framework to respond to local changes. Some concept drift types might not even need new 

models but new preprocessing of the data, as shown in Chapter 4. 

This chapter proposes an improved SRADL framework that integrates HEFDD as 

concept drift detection unit (SRADL-HEFDD). After the type of concept drift is 

determined, the SRADL-HEFDD framework will build model differently for different 

types of concept drift. The goal is to increase the performance of SRADL framework when 

new labels are completely unavailable, the delayed labeling scenario one in Chapter 5. 

7.1 SRADL-HEFDD Framework 

The SRADL-HEFDD continues to employ a chunk-based approach, meaning 

samples will be processed through the framework in fix-sized groups. The chunk-based 

approach is selected because of it can be used readily to construct a temporary 

understanding of the current data environment within the data stream. The disadvantage of 

the chunk-based approach is the selection of chunk size, which ultimately can have 

significant impact on the framework performance. The overall components of the SRADL-

HEFDD framework are shown in Figure 7.1. The HEFDD unit replaces the concept drift 

detection unit in original SRADL. Once concept drift is detected, it triggers labeling, which 

request human expert to label newly arrived samples. At the same time, historical samples 

are stored in the Labeled Sample Reservoir to be used in Semi-supervised learning. The 

concept drift also triggers new model training. Different from original SRADL, new model 
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is trained after a training strategy is selected. In SRADL-HEFDD, HEFDD provides 

information on concept drift types. Based on characteristics of the concept drift, a model 

training strategy best suited for the current concept drift type is selected. Currently, the 

strategies are not automatically generated but are curated by human expert. This means that 

for a selected group of few concept drift types, a model training strategy is developed by 

hand then integrated into SRADL-HEFDD.  

The difficulties of having a fully automated strategy selection are that sometimes 

the underlying assumption of data distribution, required by semi-supervised learning unit, 

changes when different concept drift types are involved. For instance, in non-stationary 

drift, semi-supervised learn may assume that samples belong to the same class will form 

distinctive clusters. This assumption helps assign temporary labels to unlabeled samples 

when they arrive outside of current distribution and are dense enough to be detected by 

clustering-based detection algorithm. In stationary drift, this assumption is useless because 

there is no new cluster being created after the concept drift. In order to create an automated 

strategy selection, a set of unified assumption needs to be created for concept drift and 

 

Figure 7.1. Overview of SRADL-HEFDD 
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semi-supervised learning. It is however possible to select a set of concept drift types that 

cover most of the cases. This proposal tries to formulate strategies for stationary versus 

non-stationary concept drift. The following two sections will discuss the proposed strategy 

in detail. 

7.1.1 Synthetic Labeling Strategy for Fixed Space Concept Drift 

K Nearest Neighbor (KNN) labeling strategy (Kang et al, 2006) is employed for 

fixed space concept drift. The strategy takes the majority label among the labeled 

“neighbors” and assign it to the unlabeled data sample. The neighbors are defined to be the 

Kth closest labeled samples to the unlabeled sample. The process is illustrated in Figure 

7.2. When new unlabeled samples arrive in Figure 7.2.b, one of the unlabeled samples has 

3 labeled samples as its neighbors (marked by red line). Since the orange class is the 

majority label in the neighborhood, the unlabeled samples is then synthetically labeled as 

orange. 

In a fixed space concept drift, the overall shape of the data distribution does not 

change much. The classification boundary rotates within the dataspace (Figure 2.4). New 

unlabeled samples will arrive near existing labeled samples, allowing accurate estimate of 

Figure 7.2. Illustration of KNN synthetic labeling strategy using K = 3 

a b c
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labels based on its neighborhood. The better the learning model separates the two classes 

of samples, the more accurate synthetic labels can be obtained from the KNN strategy. 

7.1.2 Synthetic Labeling Strategy for Non-fixed Space Concept Drift 

 KNN strategies might not work well for non-fixed space drift because of the case 

illustrated in Figure 7.3. The unlabeled samples are a continuation of the orange class 

samples. If KNN is applied, however, the end of the continuation will result in data samples 

been assigned to the blue class. To avoid such case, assigning labels based on maximizing 

similarity matrix or minimizing dissimilarity matrix is chosen as the synthetic labeling 

strategy for non-fixed space drift. A similarity matrix computes the pair-wise distance 

between unlabeled samples and labeled samples (Fritsch & Ickstadt, 2009). Ideally, an 

unlabeled sample should be synthetically assigned with the same label as its most similar 

labeled counterpart (Wang et al, 2013). The label assignments that maximize the similarity 

matrix thus meets such requirement. There are many ways to maximize similarity matrix 

or minimize dissimilarity matrix. Figure 7.4 demonstrates synthetic labeling using 

minimum spanning tree for minimizing dissimilarity matrix (Want & Zhang, 2007). 

 

 

Figure 7.3. KNN synthetic labeling strategy using K = 3 potentially fails to synthetically label 

unlabeled data in non-fixed space concept drift 
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When unlabeled data arrive in Figure 7.4.b, a dissimilarity matrix is calculated. To 

minimize the matrix, a minimum spanning tree are constructed in Figure 7.4.c. The final 

synthetic labels are assigned according to the connection within the minimum spanning 

tree in Figure 7.4.d 

7.2 Experiments 

Experiments were conducted using stream data set Hyperplane (Fan, 2004) and 

Spam Assassin (SPAM) (Blake & Merz, 1998). The dataset profiles are shown in Table 

7.1. Preprocessing was performed the same as HEFDD experiments in Section 6.3. 

7.2.1 Experimental Setup 

SRADL-HEFDD will be compared against two other approaches for delayed 

labeling problem: SRADL and wait-and-train. SRADL without HEFDD improvement 

uses S3VM for semi-supervised learning. More detailed description of SRADL is in 

Table 7.1. Datasets used in experiments 

Name # Samples # Input 

Attribute 

# Classes Chunk Size 

Hyperplane 10000 10 8 300 

SPAM  6213 500 2 500 

Figure 7.4. Demonstrate similarity matrix labeling strategy using minimum spanning tree 

a b c d
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Chapter 5. Wait-and-train is the default approach for delayed labeling, where the 

framework waits for all labeled data to be available before training a new sample. Each 

approach will be tested using the two datasets. Classification accuracies will be measured 

data chunk by data chunk. The final average accuracy of all data chunks will be used for 

comparison. 

Two scenarios of the delayed labeling problem will be implemented (Figure 5.1). 

Scenario 1 has all labels available after a fixed delay period while scenario 2 has labeled 

data trickle in throughout the delay period. Delay period is measured by how many data 

chunks has passed between concept drift is detected and labeling is complete. Three 

different delay periods, 6-chunk, 12-chunk, and 18-chunk are also tested in the 

experiment. 

7.2.2 Experiment Result 

Table 7.2 shows the result of Hyperplane dataset in both delay scenarios. In labeling 

scenario 1, wait-and-train outperform SRADL and SRADL-HEFDD. This is mostly 

consistent with results obtained in Table 5.1. The results further demonstrate that a total 

lack of labels after concept drift do not benefit semi-supervised learning or synthetic 

labeling. In labeling scenario 2, SRADL and SRADL-HEFDD could outperform wait-and-

train in the 12 and 18 chunk delay experiments. This means that a small number of labeled 

samples after concept drift can improve semi-supervised learning. Notably, SRADL-

HEFDD is able to produce better prediction accuracy than the default SRADL. In all 

experiments in both scenario 1 and 2, SRADL-HEFDD consistently outperforms the 

default SRAD. The largest gain made by SRADL-HEFDD against SRADL is 2.9% in 18-

chunk delay scenario 1 experiment. 
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Table 7.3 summaries the results from the SPAM dataset experiments. Consistent 

with Table 5.3, SRADL and SRADL-HEFDD had equal or slight worse performance than 

wait-and-train in labeling scenario 1. However, SRADL-HEFDD still was able to perform 

better than the default SRADL in the 6-chunk and 12-chunk experiments. In labeling 

scenario 2, both SRADL and SRADL-HEFDD outperformed wait-and-train significantly. 

SRADL-HEFDD outperforms SRADL consistently throughout all experiments, with 

largest gain of 11.2% in the 18 chunk delay experiments. 

7.3 Discussion 

 The above results show that SRADL-HEFDD, like SRADL, could not produce 

better predictive models when there are no new labeled samples available, as in delayed 

labeling scenario 1. Although in theory the synthetic labeling strategy can produce 

helpful labeled samples, it is proven difficult to perform well in a complex data set. As 

Table 7.2. SRADL-HEFDD, SRADL and Wait & Train average accuracy using hyperplane 
dataset 

a. Delayed Labeling Scenario 1 

Algorithm Average Accuracy for Different Delay Length 

6 chunk 12 chunk 18 chunk 

Wait & Train 76.4% 71.5% 68.5% 

SRADL  72.4% 68.1% 64.3% 

SRADL-HEFDD 73.4% 69.3% 67.4% 

b. Delayed Labeling Scenario 2 

Algorithm Average Accuracy for Different Delay Length 

6 chunk 12 chunk 18 chunk 

Wait & Train 76.4% 71.5% 68.5% 

SRADL  73.3% 71.9% 70.9% 

SRADL-HEFDD 75.7% 73.3% 72.4% 
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discussed in Chapter 5, historical labeled samples could not represent the current data 

environment after a concept drift. If the synthetic labels could not be assigned accurately, 

then SRADL-HEFDD will not outperform wait-and-train. 

What SRADL-HEFDD improves on compared to the default SRADL is the 

ability to capitalize on small number of labeled samples in delayed labeling scenario 2. In 

all experiments in scenario 2, SRADL-HEFDD consistently outperforms SRADL. This 

shows that the synthetic labeling strategies, being able to react to different types of 

concept drift, can outperform default semi-supervised learning. It thus demonstrates again 

that No Free Lunch Theorem exist in data stream mining. 

Table 7.3. SRADL-HEFDD, SRADL and Wait & Train average accuracy using SPAM 
dataset 

c. Delayed Labeling Scenario 1

Algorithm Average Accuracy for Different Delay Length 

6 chunk 12 chunk 18 chunk 

Wait & Train 50.2% 24.8% 20.6% 

SRADL 46.2% 20.7% 20.6% 

SRADL-HEFDD 49.3% 21.0% 20.7% 

d. Delayed Labeling Scenario 2

Algorithm Average Accuracy for Different Delay Length 

6 chunk 12 chunk 18 chunk 

Wait & Train 50.2% 24.8% 20.6% 

SRADL 61.2% 49.8% 44.3% 

SRADL-HEFDD 64.9% 53.5% 55.5% 
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CHAPTER 8. EXPLAINABLE DATA STREAM MINING: WHY THE 

NEW MODELS ARE BETTER

Previous chapters introduced multiple frameworks to tackle concept drift. These 

frameworks react to changes in data stream by updating the learning model using after 

concept drifts are detected. Such strategy is common among many other data stream mining 

frameworks (Wares et al, 2019). The performance measure, being accuracy or f-score, 

usually indicates that dynamic models, updated after detected concept drifts, performs 

better than static models. There is little understanding in how this improvement is achieved. 

The process is akin to a black box, where the inner working of the machine learning 

algorithms and the frameworks is unknown. 

Many explainable AI/ML algorithms have been developed in recent years. The 

majority of the studies focus on explain models for static data mining tasks, which involves 

only to explain how a decision is made through the prediction process. In data stream 

application, because the data is dynamic, it is also important to explain how the data is 

changed and how the model reacts to the changes in data, call change explainability. There 

are several problems that are unique to explainability of data stream mining compared to 

static model explainability. One problem is how to explain that the updated model is better 

fit for the data after concept drift compared to the old model. Such explanation will help to 

determine in what way the updated model improves from the old model within the current 



139 

data environment. Another problem is how to explain what triggered the detection of 

changes in the data. Since concept drift detections are mostly done using algorithms 

(Agrahari and Singh, 2021), the validity of these detection should also be explained to 

avoid false-positive detections. A third problem is when concept drift is absent or not 

detected, how to explain whether the current model still works well, because false-negative 

concept drift detections are possible. 

This chapter formalize a visualization framework that aims to solve the above 

problem. Current model explanation is produced using an improved version of current 

explainable machine learning frameworks. Key metrics from the explanation of current 

and previous models are then compared. The comparison results are then compiled into 

visualizations that explain what has changed between the two models. Our previous 

study, which provide explanation of what has changed in the data stream itself, will meet 

the third requirement. By showing changes in the underlying data distribution together 

with what has changed between models, the framework can produce explanation on what 

triggered the changes in the model 

8.1. Related Work 

Several methods and strategies have been proposed to explain the data mining 

process. According to Adadi, A., & Berrada, 2018, these strategies can be classified into 

three categories: complexity related, scope related and model related explainability. 

Complexity related strategies achieve interpretability by employing less complex 

machine learning methods. The less complex the methods are, the easier it is to be 

interpreted by users. Letham et al., 2015, proposed a model called Bayesian Rule Lists 
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(BRL). The model is based on decision tree. It is to provide a interpretable model to be 

used by domain experts. Caruana et al., 2015, described an application for the pneumonia 

problem using a learning method based on generalized additive models. By using real 

medical data and case studies, they showed the interpretability of their method. Xu et al., 

2015, proposed a model for describing the content of images. The model is attention 

based where the most important features of the image are emphasized. Visualizations 

were used to show how their result can be explainable. Ustun & Rudin, 2016, presented a 

data-driven scoring system called SLIM. SLIM used sparse linear model to score a 

certain decision from a machine learning system. The scores are used to provide users 

with qualitative understanding of the system. 

Scope related strategies achieve explainablility by either trying to understand the 

entire model behaviour, or by understanding each sample of data and corresponding 

predicted result. The former is called Global Interpretability and the later Local 

Interpretability. For global interpretability, Kuwajima et al, 2019, proposed a framework 

that improves interpretability of deep learning neural networks. The framework uses 

features analysis to understand the inference process within a deep learning framework. 

Yang et al., 2018, proposed a global interpretation model based on interpretation tree 

built using recursive partitioning, called GIRP. Their experiments show that their method 

is able to discover whether a learning model is overfitted to unreasonable degree. Zupon 

et al., 2019, proposed an approach that provides a global, deterministic interpretation by 

combine traditional bootstrapping model learning with explainable method. Their method 

is able to make representation learning interpretable. Nguyen et al., 2016, proposed an 

approach for image recognition. The approach is based on activation maximization, 
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which can generate preferred input for neurons in a neural network. The generated input 

is then used to interpretable model for image recognition. For local interpretability, 

Ribeiro et al., 2016, proposed Local Interpretable Model-Agnostic Explanation (LIME). 

LIME is used to approximate a black-box learning model locally in the area of interest. 

Thus, for a small number of decisions, LIME can explain the decisions of a previously 

difficulty-to-explain model. Another framework called anchors (Ribeiro et al., 2016) 

extends LIME using decision rules. Lei et al, 2018 proposed leave-one-covariate-out 

(LOCO) technique. LOCO is used to generate local models to measure local feature 

importance.  

Model related strategies are explainability methods that either explain a single 

type of model (model specific) or can be applied to any machine learning models (model 

agnostic). Many interpretability methods for critical applications uses model specific 

methods. Ghosal et al, 2018, proposed an explainable deep vision network to identify 

crop stress and disease. The framework not only can predict but also explain which visual 

symptoms are used for prediction. Lundberg et al., 2018, presented an explainable 

framework for preventing hypoxaemia during surgery. The prediction model provides 

risk factors in the decision-making process in real time during general anaesthesia. Their 

experiments suggest that these risk factors are consistent with current understanding of 

anaesthesia. Klauschen et al, 2018, proposed an approach to estimate the effect of 

lymphocytes on tumor. The approach uses heat map to show where the most impactful 

area of the image is for decision making. Lee et al, 2019, applied an explainable deep 

learning algorithm for detecting acute intracranial haemorrhage from small datasets. The 

prediction results are integrated with an attention map and a prediction basis from 
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training data to enhance explainability. Lundberg et al, 2017, proposed a unified 

approach for explainable AI. The approach is in parallel from model training. Once a 

learning model is trained, the same training data, along with the learning model, is given 

as input to their framework named Shapley Addictive Explanations (SHAP). The 

framework dissects each prediction made by the model and provide an explanation based 

on feature importance. 

For model agnostic method, the approach itself is independent from any models 

used. Model agnostic methods include visualization, knowledge extraction, and influence 

method. Visualization aims to understand the decision process through illustrative graphs. 

Knowledge extraction aims to generate rules from models that do not originally provide 

rules, such as artificial neural networks. Kuo et al, 2018 proposed an approach that 

utilized domain expert in explaining pattern recognized from clinical data mining. Their 

approach uses association rule mining and Bayesian Networks for explanation 

generation. Zhang et al, 2014, proposed an explainable framework for recommendation 

system. The framework, called Explicit Factor Model (EFM), extract product features. 

When recommendation is made based on user sentiment analysis, these features are given 

a score and used explain the reason behind recommendation. McInerney et al, 2018, 

formulate a recommendation engine that provides explainable exploitation and 

exploration aspect of a recommendation. The framework aims to balance suggesting 

similar product (exploitation) and provide new product (exploration) while explain the 

reason behind each decision.  Hu et al., 2018, proposed an explainable neural computing 

framework using stack neural model networks. The framework uses modules of sub 

neural network to break down prediction tasks into subtasks. The process of analysing 
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subtasks provide users insight into how intermediate results are obtained, therefore 

enhance explainability compared to tradition neural network. Previously mentioned 

SHAP method can also belong to this category. SHAP has a component that analyses 

feature importance for each sample and calculate how much each feature contribute to the 

decision. 

8.2. Data Stream Explainability (DSE) framework: Explaining Changes in Data 

Stream Mining Models 

The DSE framework produces visualization that utilize the SVM margin to show 

how concept drift makes old model in the stream outdated and how new model reflects 

the current data environment better. The DSE is a chunk-based framework, which split 

streaming data into fixed sized groups of samples, called chunks. The framework will 

detect concept drift in a chunk and will decide that the existing model no longer reflect 

the underlying data distribution. Thereafter, a new model is trained using the current data 

after concept drift and the old model is replaced. DSE thus tries to visualize and explain 

what has happened within each chunk. 

8.2.1 Visualizing Margin Density 

The Margin Density algorithm for concept drift detection was explained in detail 

in Section 6.1.3. In order to visualize high dimensional data samples and models, all 

visualizations are produced after the data space has been projected to a two-dimensional 

space using Principal Component Analysis. All discussions onward assume that the 

transformation has been performed prior to visualization. 
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To visualize the SVM model, the equation for the classification boundary and the 

two support vectors f1(x) and f2(x) are first obtained from the training of an SVM 

learning model. Contour of classification boundary is produced by finding points that 

satisfy equation 8.2: 

𝑤 • 𝑥𝑖  +  𝑏 =   0        (8.2) 

The xi denotes the vector for the data points, 𝑤 • 𝑥𝑖  +  𝑏 denotes the linear 

equation of the classification boundary in kernel space. Similarly, the support vectors’ 

contours can be obtained by equation 8.3  

𝑤 • 𝑥𝑖 +  𝑏 =  1 and 𝑤 • 𝑥𝑖  +  𝑏 =  −1                  (8.3) 

Since the data points for the classification boundary and support vectors are in 

high dimension, these pointes are projected into 2D space using the same PCA vectors as 

the data samples.   

An example visualization produced is presented in Figure 8.1. The two axes show 

the data value range. The blue and brown dots show the two classes of samples. The two 

 

Figure 8.1. Illustration of visualization of support, class boundary and number of data 
samples within the SVM margin. 
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dotted curve shows the support vectors, while the solid curve shows the class boundary. 

Notice that the support and class boundary are both non-linear, this is due to the RBF 

kernel. The number of data points within the margin is shown on the bottom of the 

visualization graph. Ideally, the SVM classification boundary should separate all blue 

samples to one side and brown samples to the other side. When this is not the case, it 

shows which samples the learning model predicts the wrong labels. The number of 

samples within the SVM margin is shown at the bottom of the graph. The visualization 

therefore presents the shape of the SVM model, how well it classifies the current chunk 

of data and how much margin density is in one visualization. 

8.2.2 Visualizing Changes of a Model 

Visualization such as the one shown in Figure 8.1 are produced chunk by chunk, 

regardless of the existence of concept drift. When no concept drift is detected, the 

visualization helps to explain how the current model is still suitable for the current data 

distribution. In an ideal situation, the visualization between two different chunks without 

concept drift should show that the margin density does not increase or decrease 

significantly and that the classification boundary of the SVM can separate the two classes 

well. However, it is possible for visualization to show the existence of the concept drift, 

but the concept drift detection in the explained framework failed to detect it. In this case, 

the proposed framework can help explain why a new model should have been trained. 

In the case of concept drift detection, the explained framework typically trains a 

new model using the chunk of data when a drift occurs. Due to this new model being 

trained, our proposed framework will produce two visualizations: one with the outdated 
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model and one with the new model. An example is demonstrated in Figure 8.2. The 

visualization on the left shows the current model does not classify well. There are many 

samples within the margin, and many samples are misclassified. The left visualization 

shows that the outdated model is no longer suited for the current data distribution. The 

visualization on the right shows the new updated model, trained after concept drift. There 

is clearly improvement in both the margin density. 

8.3. Explanation Evaluation* 

The framework is applied to several real-world datasets listed in Table 8.1. The 

Forest Cover Type (Blackard & Dean, 1999) dataset (Covtype) predicts the forest cover 

type from cartographic variables. This dataset is selected because it has been shown to 

contain multiple types of concept drift (Zhukov et al, 2016). The original dataset has 54 

features and 7 classes. To avoid the complications of predicting multiple class labels, 

only samples from 2 classes were used for model training, and explanation, making it a 

binary prediction problem. Electric Market (EM) dataset is a real-world dataset that keeps 

track of the rise and fall of electricity price (Zliobaite, 2013). Some features, such as date 

Figure 8.2. Illustration of visualization of models before and after concept drift 

Non-support data points in margin: 290 Non-support data points in margin: 36
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and time, of the original dataset are useless for concept drift detection. These features are 

removed to avoid their interference to the detection result. After the selection of the 

features, out EM dataset contains 6 features.  

Using the above dataset, the framework produced multiple explanations. These 

explanations are then compiled into a survey so that users can evaluate the effectiveness 

of the explanation. 

8.3.1 Survey Preparation 

A survey is prepared using visualizations produced by applying DSE to the above 

two data sets. For optimal detection of concept drift, Covtype dataset was split into 40 

chunks while EM dataset was split into 25 chunks. In survey 1 and 2, 11 and 9 

visualizations from Covtype were randomly selected respectively. In survey 3 and 4, 10 

visualizations from EM dataset were randomly selected respectively. For data mining 

experts, visualizations along might be enough, but for non-expert users, mere 

visualizations might not be enough to explain the situation. Therefore, written 

explanation made by machine learning researchers are provided on the bottom of the 

visualization. Thus, the visualization and the provided explanation constitutes a survey 

question. An example of the question is show in Figure 8.3. Since the explanation is 

provided, the survey does not measure how well users can formulate their own 

explanation based on the visualization. Instead, the effectiveness of the visualization is 

assessed on how much the average user agree with the written explanations. If non-expert 

Table 8.1. Overview of the datasets used in experiment 

Data Set # of Samples # of Features 
Forest Cover Type 
(Covtype) 

250K 54 

Electric Market (EM) 45K 6 
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users rated similarly as expert users in the survey, it shows that the visualizations can 

reduce the gap of understanding between non-expert and expert users. For each of the 

survey question, users assign a rating of 1 to 5 on how much they think they agree with 

the explanation provided within the survey. The meaning behind the rating is listed in 

Table 8.2, which is also explained to the surveyed users. 

The survey is provided to two group of users. Group one consists of seven peer 

data mining researchers who is experts on data stream mining. Group two consists of ten 

users who have little to no background knowledge to data mining. The first group’s 

Figure 8.3. An example question from the explanation effectiveness survey showing 

visualizations of chunks with concept drift 

Table 8.2. Meaning behind survey scoring 

Score Meaning 
1 The explanation is completely wrong. The visualizations do not reflect the 

conclusion provided by the explanation. 
2 The explanation is somewhat wrong. The visualizations do not support the 

explanations but there are some elements in the visualization that shows why 
the explanation is produced 

3 The explanation has some merit but also has some problems according to the 
visualizations. 

4 The explanation is somewhat correct. The visualizations support the explanation, 
but there are some problems in the visualizations that may need to be 

considered. 
5 The explanation is completely correct. The visualizations support the conclusion 

given by the explanation. 
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feedback will reflect how accurate the provided written explanation is and how well the 

visualization is presented. The second group’s feedback will be compared to the first 

group of users to see whether the ratings are statistically different. The average score and 

the standard deviation of the survey results will be used to construct 90% confidence 

interval using Student’s t-distribution. To show users agree with the explanation, the 

confidence interval should be greater than 3. A total of four surveys were conducted. 

8.3.2 Survey Result 

Group one’s average scores, standard deviations and 90% confidence interval are 

given in Table 8.3. The confidence interval of user group one most fell between the rating 

3 and 4 range. The highest interval of agreement score was achieved at Survey 4, 

between 3.212 and 4.388. The lowest interval was in survey 3, between 2.886 to 3.914 

Overall, based on score meaning in Table 8.2, the result shows that the group one users 

agree with the explanations but think there are problems within the visualization that 

need to be addressed.  

Further interview with the users from group one revealed several factors that limit 

the effectiveness of the visualization according. First, it is difficult to interpret when the 

SVM model is too complex in the 2D projected space. Although in higher kernel 

dimension SVM models are always linear, after projecting to lower dimension they can 

take on various shapes. A complex looking model reduces clearness in the explanation. 

Table 8.3. Average score, standard deviation, and confidence interval of group one user ratings 

 Average score Standard Deviation Confidence Interval 
Survey 1 3.6 0.6 [3.159, 4.041] 
Survey 2 3.3 0.3 [3.080, 3.520] 
Survey 3 3.4 0.7 [2.886, 3.914] 
Survey 4 3.8 0.8 [3.212, 4.388] 
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For example, in Figure 8.4, the SVM model presented is very complex in the 2D space. 

Since the two classes of data were also not separated well, it is almost impossible to 

explain if the current model is indeed suitable for the current data distribution. 

Second, the shape difference between new model and old model highly impacts 

perceived correctness on the explanation. The explanations produced within the DSE 

relies heavily on differences that can be identified visually to show changes in the model. 

When the differences cannot be visualized clearly, the explanation of changes in model 

can be unconvincing. An example is shown in Figure 8.5, which shows both the old and 

new models due to concept drift. In this case, the new model improved the margin 

density, reducing the number of samples within the margin from 132 to 107, an 18.9% 

drop. In the visualization however, the new model does not visually change in shape, and 

thus during the survey this visualization was not able to convince users that the new 

model has an improved performance. Upon closer inspection, the majority of the gain in 

reducing margin density occurred within the circled area in Figure 8.5. The new support 

vector is able to exclude many blue class samples from the margin area. Such details are 

Figure 8.4. An overly complex SVM model, due to projecting high dimensional kernel space 
model to 2D space 
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sometimes overshadowed by the overall similarities between the new model and the old 

model. 

Third, changes in data distribution shape affect perceived corrected of the 

explanation, regardless of if the change impacts model performance. While concept drift 

can be defined as data distribution change, not all distribution changes result in concept 

drift. Distribution changes with no impact on learning model performance do not need 

training a new model to replace the existing model. However, since the plotting of data 

samples makes most of the elements within the visualizations, changes in data 

distribution has a large impact on the visual representation of concept drift, or lack 

 

Figure 8.6. Changes in data distribution might not be concept drift, but it impacts perceived 

correctness in the explanation. Circled area shows the change in data distribution but does not 

result in worsening of model performance. 

 

Figure 8.5. Explanation is less convincing when the new model does not change 

significantly in shape compared to the old model. Circled area shows where the margin density 

is reduced the most. 
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thereof. An example is provided in Figure 8.6, which shows two chunks of data with no 

concept drift. The learning model does not perform significantly worse between the two 

chunks of data. The visualization, however, shows significant changes of data distribution 

both within and outside of the margin. The circled area shows why the distribution 

change did not result in worse performance. In chunk 2, the majority of data samples are 

overlapped in a small area, which makes it difficult to visually estimate accurately how 

many of sample there were. In chunk 3, those samples are more spread out. This change 

does not affect the model performance, but visually it looks as though some significant 

change has occurred within the data. 

Group two user rating averages are shown in Table 8.4. The group two users give 

lower average ratings with higher standard deviations compared with group one user 

ratings. While group one’s average ranged between 3.3 to 3.8, group two’s average 

ranged 3.0 to 3.2. This result is to be expected. Without data mining background, it is 

more likely that the group two users have less understanding of the meaning behind the 

visualization and the written explanation. The confidence intervals show that the ratings 3 

more or less fall in the middle of most of the intervals, which means that the user believe 

there are both merits and problems to the visualizations and written explanations. 

Table 8.4. Average score, standard deviation, and confidence interval of group two user ratings 

Average score Standard Deviation Confidence Interval 
Survey 1 3.1 1.1 [2.462, 3.738] 
Survey 2 3.2 1.0 [2.620, 3.780] 
Survey 3 3.0 1.1 [2.360, 3.640] 
Survey 4 3.1 1.0 [2.360, 3.640] 
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Figure 8.7 shows the comparison of confidence interval between expert (blue) and 

non-expert user (orange). Based on the Student’s T distribution, survey 2 and 3 show 

expert and non-expert users overlapping in most of the confidence intervals. Survey 1 and 

4 have less overlapping, which means that there are more differences between the expert 

and non-expert opinion. Overall, all confidence intervals between the two group overlaps, 

which means that group two users do not have statistically significant difference in 

ratings compared to group one at the 90% confidence level under Student’s T 

distribution. 

Table 8.5. Common improvement needed for DSE framework according to non-expert user 

feedback when the user rated less than 3 on a survey question 

 Improvement Needed 
1 The class boundary in the visualizations did not clearly separate the two 

classes 
2 Visualization does not show clear change in data or change in model 
3 Having more visual cue as to what component of the visualization means 

what 
4 The margins in some visualizations are confusing. It is difficult to tell where 

is inside or outside of the margin. 

 

 

 

Figure 8.7. 90% Student T's Confidence Interval Comparison between Expert and Non-
expert Group 
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A follow up questionnaire is provided for the group two users to identify what can 

be improved in the visualization. 4 out of the 10 group two users provided feedback. The 

questionnaire asks them what can be improved on the questions where they rated low and 

what is good on questions that they rated high. The common elements in their feed backs 

are compiled and sorted from the most common problem to the lest. The summary of 

improvement is shown in Table 8.5 and the summary of merit is shown in Table 8.6. The 

questionnaire also asks the user’s opinion where the user rated 3. 3 out of 4 responses 

said the rating is because the graphs did not clearly show the explanation is correct or 

wrong. 1 out of 4 responses said the explanation is not understandable. The questionnaire 

reveal that the non-expert users face the same difficulty as expert users when using the 

DSE framework. In both groups, the need to clearer representation of change and model 

performance is needed for understanding the explanation. 

8.4. Conclusion 

Current machine learning explanation framework aims to explain and interpret the 

decision-making process of complex machine learning algorithms. In the case of data 

stream mining, explaining individual learning model is not sufficient because of the 

existence of concept drift. Typical stream mining framework trains new model when 

concept drift is detected because the existing model no longer can predict the current data 

Table 8.6. Common merits for DSE framework according to non-expert user feedback when 

the user rated more than 3 on a survey question 

Improvement Needed 
1 The visualizations show clear change and improvement between chunks of 

data 
2 The model shown in the visualization is simple and easy to understand 
3 Multiple graphs were provided for comparison 
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distribution. It is therefore necessary to explain the difference between the new model 

and old model, to justify the change in the decision process. This paper proposed DSE, a 

visualization framework that shows how new model is better suited for the new data 

distribution when concept drifts occur, and also shows how current model is still 

sufficient when concept drift does not occur. The visualization uses the margin density 

method to compare classification confidence of the SVM learning model through the data 

stream. To measure the effectiveness of DSE, a survey was conducted between a group of 

data mining experts and non-expert users. The survey result showed that DSE is able to 

reduce the gap of understand concept drift between experts and non-expert users. The 

survey also identified problems of the visualization and points to the following 

improvement: 

• Better representation of high dimension data and learning model.

• Increase visual cues to highlight changes in model before and after concept drift.

• Increase visual cues to show data distribution change that does not affect model

performance.

Future works include making visualization more generalized for different learning 

models other than SVM, novel representation of high dimensional models in 2D or 3D 

space, and expand the explanation to ensemble frameworks, where models were not 

replaced but added to the ensemble. 

* Human subject study is approved by IRB on 5/4/2022. IRB number: 22.0369.

Reference number: 744438 
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CHAPTER 9. CONCLUSION

This proposal introduces the differences between data stream classification and 

traditional data mining tasks in three major area: fixed size vs unknown size of data, static 

vs dynamic data and one-time processing vs repeated processing of data. These differences 

bring unique challenges to data stream classification frameworks. The frameworks need to 

be able to adapt to changes in data stream, called concept drift, and at the same time balance 

performance and costs associated with model training. The proposal presented four 

frameworks that tries to maximize overall classification accuracy and minimizing labeling 

cost in the preprocessing, change detection and model training steps of stream classification.  

Chapter 3 tries to reduce labeling cost of extremely imbalanced data stream by 

presenting several alternative approaches to random selection for sampling and labeling. 

The goal was to reduce the total number of samples needed for labeling because labeling 

is time consuming and expensive. The approaches utilized a grid density algorithm to 

search for minority class clusters in order to retrieve these instances with fewer overall 

samples than the default random selection approach. A synthetic data set and two real world 

data sets, Yeast and Satimag from UCI machine learning repository, were used for 

experimentation. The results from the synthetic data set showed that the efficiency of the 

approaches varies when different grid sizes were applied. Specifically, the results for our 

approach were similar to the default random selection approach when either the grid was 
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too large or too small. In one of the extreme cases where each grid contains 1 sample, the 

results had no significant difference from the default approach. It is also clear at the other 

extreme where one grid contains all samples then our approach degrades into random 

selection. However, when the grid size was between the two extremes, the results from our 

approach showed improvement over the default random selection approach. The real-world 

data results confirmed that observation. At optimal grid configuration, our proposed 

approach Grid Search had an average improvement of 19.4% for Yeast and 5.3% for 

Satimag. The experimentation also showed that dimension reduction is useful for reducing 

the number of grids in high dimensional data space and thus increases sampling efficiency. 

The Projected Grid that reduced both data sets to 2 dimensions had an average 

improvement of 18.2% in Yease and 27.4% in Satimag. On a higher dimension data set, 

results from Projected Grid improved significantly from the non-reduced Satimag results. 

Between 4 to 16 dimensions, we saw an average 28.9% improvement over random 

selection. 

Chapter 4 explores the advantage of having a dynamic preprocessing strategy in 

data stream classification. The framework SPSD is proposed, which is a smart 

preprocessing approach that separates preprocessing from modeling in a stream mining 

framework. SPSD monitors the min-max range of each chunk of data and calculates two 

metrics to avoid unnecessary re-normalization in noisy data with outliers. Metric 1 is the 

percentage of samples that fall outside of previous min-max range. Metrics 2 is the 

percentage of difference between sample values and the referenced min-max value. If these 

two metrics reach above their respective threshold values, SPSD triggers a re-

normalization. In our real-world experiment, we compared SPSD with two stream data 
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classification strategies, one that does not adapt to change (“no-change”) and one that 

constantly retrains a new model at each chunk of data(“all-change”). SPSD is shown to 

perform better than the “no-change” and in 50% of all chunks better than “all-change”. The 

experiment demonstrated that 50% of retraining in all-change strategy can be avoided by 

simply preprocess the data using new parameters after concept drifts. We also compared 

SPSD with traditional streaming mining frameworks without SPSD: SEA, AWE, ACE and 

MAE. The comparison showed that among all four frameworks 34% to 48% of all chunks 

of data can benefit from SPSD so that no model retraining is need in those chunks. Our 

comparison showed that SPSD has the potential to reduce the cost associated with new 

model generation. SPSD demonstrates that for a streaming mining framework, one should 

not assume any component of the framework to be stationary. As demonstrated in our 

experiments, traditional frameworks can obtain better prediction results by not assuming 

that preprocessing step remains the same between model retraining. Because of the 

changing nature of non-stationary data streams, all components of a learning framework 

might benefit from an adaptive approach. 

Chapter 5 presents the SRADL framework, which solves the delayed labeling 

problem where labeled samples needed for training new models are not immediately 

available after concept drift. In this chapter we described the delayed labeling problem in 

streaming data classification. SRADL contains three components: Concept Drift Detection, 

Semi-supervised Learning and Labeled Sample Reservoir. Concept Drift Detection 

monitors the data stream and signals Semi-supervised Learning component to update its 

learning model. Semi-supervised learning then requests labels to be made and trains a new 

semi-supervised model using available labels in the Labeled Sample Reservoir. The 
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reservoir is updated whenever latest samples are labeled. Our experiments involved two 

scenarios of the labeling process. The first scenario assumes that labels will arrive all 

together after a certain delay. The second scenario assumes that labels arrive continuously. 

We compared SRADL with three approaches: static (no training of new model occur), no-

delay (all labeled samples are immediately available) and wait-and-train (wait for 

availability of labeled samples then train new model). In scenario 1, SRADL scored 

similarly compared to wait-and-train in some cases, and in some cases worse than wait-

and-train. For scenario 2, however, SRADL performed much better both in synthetic and 

real-word data set experiments in most cases. The most improvement occurred when 

labeling delay time were long. 

Chapter 6 demonstrated the complexity of real-world application requires an 

approach to cope with different types of concept drift to be detected in streams without 

labeling samples. Existing detection algorithms, which focus on only one type of concept 

drift, might not be able to detect drift in real-world streaming data where multiple types 

of concept drift occur. Framework HEFDD is proposed, which employs an ensemble of 

state-of-the-art concept drift detection algorithms with heuristic voting mechanism. 

Concept drift is detected as long as majority voting is reached for a specific type of 

concept drift. After each type of concept drifts is voted, the union of detection decisions 

for all types of drift is produced as the final detection decision. HEFDD was implemented 

using Margin Density, Clustering, Kolmogorov-Smirnov (KS) Test and Grid-Based drift 

detection algorithms as components of the ensemble. Stationary drifts are covered by 

Margin Density approach while non-stationary drifts are covered by Clustering, KS test 

and Grid-Based approach. HEFDD was tested with synthetic and real-word dataset, 
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including EM, Covtype and SPAM. For synthetic data set experiments, it is verified that 

different algorithms detect different types of drift, confirming our heuristic analysis. In 

real world experiment, HEFDD shows significant improvement at p < 0.05 using z-score 

test when compared to individual drift detection algorithm. In EM and Covtype HEFDD 

outperforms Margin Density by as much as 10% accuracy because it is able to detect 

more concept drifts in the stream. 

Chapter 7 improved default SRADL framework by combining it with HEFDD to 

produce the SRADL-HEFDD framework. The HEFDD framework enabled SRADL to 

react to different kind of concept drift using different synthetic labeling strategies. To 

handle fixed space drift, SRADL-HEFDD uses grid within SVM margins to assign 

synthetic labels to unlabeled samples. To handle non-fixed space drift, SRADL-HEFDD 

assumes samples from the same class will form clusters in the data space and assign 

synthetic labels using KNN. SRADL-HEFDD was compared to SRADL. The results 

showed SRADL-HEFDD can utilize small number of labeled samples more effectively 

than the default SRADL. 

Chapter 8 introduced Model Explainability and formalized the DSE framework. 

Existing model explainability frameworks focus on static model in static data mining. 

However, concept drifts in data streams require models to adapt to dynamic data 

environment. The changes between models before and after concept drifts were not 

explained using traditional model explainability framework. DSE is a visualization 

framework aims to explain changes in data stream mining models to data analyst experts 

and non-experts alike. DSE uses SVM and SVM related algorithms for model building 

and concept drift detection but can be extended to other algorithms. When concept drift 
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was detected. multiple visualizations of models before and after concept drift were 

created. They were compared to show how the new model fit the new data distribution 

after concept drift better. When concept drift was not detected, visualizations were also 

created to validate that this is not a false-negative detection. Since DSE aims to explain 

changes in models to non-experts, a survey was set up to measure DSE’s effectiveness. 

Visualizations and explanations were presented to an expert user group and a non-expert 

user group, and how much each group agreed with the explanation were recorded. 

Although the average agreement score in the non-expert group is lower than the expert 

group, the 90% confidence interval of t-distribution overlaps between the two group. This 

means that the agreement scores were not statistically significantly different between the 

two groups. The survey results showed that DSE is able to reduce the gap between expert 

and non-expert users in understanding changes in data stream mining. 

For future research, there are three main areas where this dissertation can be 

continued. First, semi-supervised learning with limited label availability can be further 

improved from SRADL and SRADL-HEFDD. More realistic assumptions of data 

distribution in data streams can be made, so that the process of synthetic labeling can be 

improved. Second, more types of concept drifts should be explored for HEFDD. Also, 

algorithms in reducing false negative and false positive concept drift detection should be 

proposed. Third, better visualization algorithms for DSE should be explored. The new 

algorithm should work better than Principal Component Analysis in visualizing high 

dimensional data and model. More learning models other than SVM should be integrated 

with DSE framework. 
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