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ABSTRACT 

ENVIRONMENTAL NOISE EXPOSURE AND ITS ASSOCIATION WITH 

ELEMENTARY STANDARDIZED TESTING SCORES AND ADULT MENTAL 

ILL-HEALTH IN LOUISVILLE, KENTUCKY 

Lindsey A. Wood  

July 13, 2022 

 

Background and Aim: The current body of literature on the associations of 

environmental noise exposure with varying psychological outcomes is 

inconclusive, with many conflicting findings. Limitations include exposure 

measurement error and lack of investigation of effect modification by important 

factors. This dissertation aims to expand on the current understanding of these 

relationships by limiting exposure measurement error and by assessing effect 

modification. 

Methods: We estimated the distribution of total environmental noise in Louisville, 

Kentucky for several time-periods using land use regression (LUR) 

methodologies. Additionally, through multiple regression models, we estimated 

the association of environmental noise during relevant time-periods with 

childhood cognition using standardized testing scores at the school-level, and 

mental health outcomes of adults at the census-tract and individual levels. We 
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assessed effect modification of these associations by several demographic, 

socioeconomic, and health behavioral factors. Data linkage of several sources 

was utilized throughout analyses.  

Results: Environmental noise in Louisville was louder in areas where the majority 

of the population is non-white or lower income. Generally, louder noise was not 

associated with school-level standardized testing scores. At the census-tract 

level, louder noise was significantly associated with higher prevalence of mental 

ill-health. Also, individuals with the loudest environmental noise exposures had 

significantly higher odds of depression than those exposed to the quietest 

exposures. However, results suggest that socioeconomic and health behavioral 

factors – like race, income, stress, and sleep – may confound or modify these 

associations. Findings suggest that white, higher income, and less stressed 

individuals living within louder, less-white, low-income, high-stress areas are the 

most negatively impacted by louder environmental noise in relation to 

psychological outcomes. 

Conclusion: Non-white, lower income, and more stressed individuals living within 

these areas may have higher baseline allostatic loads, such that the effects of 

louder noise may be negligible. However, noise mitigation efforts will need to be 

implemented at large, neighborhood levels to effectively break the cycle of 

environmental health disparities from environmental noise, especially among 

underserved Louisville communities that endure the loudest environmental noise 

exposures. 
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INTRODUCTION 

 

 

Environmental noise exposure is rapidly becoming a public health 

concern, particularly in urban areas in which there are many noise polluters – 

such as airports, roadways with high traffic volume, railway, and construction. 

The World Health Organization (WHO) has reported that noise exposure is 

responsible for 45,000 disability-adjusted life years for childhood cognitive 

impairment.1 Further, in 1999, the WHO recognized environmental noise 

exposure for its potential to harm the mental health of adults.2 Nearly ten years 

later, in 2018, the WHO published guidelines for environmental noise, which 

recommended noise levels for road-traffic, railway, aircraft, wind turbine, and 

even leisure noise.3 In developing guidelines, WHO considered evidence of noise 

associations with several adverse health outcomes, including cognitive 

impairments of children and mental health.3 However, evidence of the 

association between environmental noise with childhood cognition4 and with 

mental ill-health5 was not strong enough to be considered when developing the 

WHO guidelines.  

Although several studies exist on the relationships of environmental noise 

with childhood cognition6–22 and mental ill-health in adults,23–37 effect estimates 
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and levels of confidence are inconsistent and vary widely. The inconsistency in 

findings is partially attributable to the varying definitions of cognition and mental 

ill-health. Childhood cognition definitions include reading comprehension,6–16 

varying types of memory,6–10,17 and attention.7–11,18 Although it may important to 

understand the relationship between environmental noise and specific facets of 

cognition, it may be more meaningful to determine the association with cognitive 

proxies that predict later-life outcomes, such as standardized testing scores.38 To 

date, few studies utilize standardized testing scores as proxies of cognition.19–22 

For adult mental ill-health, definitions include diagnosed mental illness,23–25 

questionnaires that assess mental illness symptomology,25–31 self-assessments 

of mental health,36 emergency admissions due to mental illnesses,37 suicide 

rates,37 and medication use.31–35 The varying definitions of mental ill-health affect 

the interpretation of effect estimates. For instance, emergency admissions and 

suicide rates capture those with the most severe mental illness and medication 

use captures those being treated, whereas questionnaires and self-reports may 

capture those who are not truly mentally ill or miss those who are being treated.  

 Further, environmental noise is generally defined as source-specific noise, 

such as road traffic or aircraft noise, which may not be fully representative of total 

environmental noise exposures. Additionally, there is a general lack of 

accounting for spatial-temporal movements of individuals, which determines 

individual noise exposures.36,39 Consider that noise at one’s home may be 

quieter than at one’s work location, and noise at all locations may vary by the 

hour. As such, estimations of environmental noise exposure should account for 
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the location of individuals and the hours during which individuals are at specific 

locations. Although the fool-proof method of estimating an individual’s noise 

exposure is through personal noise monitors, their cost limits the ability of 

researchers to conduct concurrent exposure assessments of large-enough 

samples that are required for powerful epidemiologic analyses.36,40,41 

Additionally, personal noise monitors may be a nuisance for individuals to wear 

for extended periods of time, and therefore prohibits long-term exposure 

assessments.36,40,41 

Noise modeling via land use regression (LUR) may be a useful tool to 

estimate total environmental noise exposure. LUR is a spatial statistics method 

used to estimate exposures based on geographical characteristics. LUR has 

been widely used and consistently successful in modeling air pollutants.42 More 

recent studies have tested LUR in modeling environmental noise and have 

shown that LUR is a reliable method to estimate noise exposures,43–45 and the 

application of LURs has been specifically recommended for estimating total 

environmental noise exposure in epidemiologic studies.44 What’s more, multiple 

LUR models can be used to estimate environmental noise distributions for 

specific time-periods, such as the times that individuals would be at their work 

locations versus at their homes. 

To date, there are no studies of environmental noise in association with 

childhood cognition and adult mental ill-health based in the US, but Louisville, 

Kentucky is an urban US area in which such a study could be conducted. 

Environmental noise is abundant in Louisville, with numerous roadways, 
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including five interstate systems, and railways, as well as the Muhammad Ali 

International Airport (SDF) (Figure 0.1), all of which are located in or around 

residential areas (Figure 0.2), raising concern for the health of Louisville 

residents. SDF is home of the United Postal Service (UPS) Worldport, which is 

responsible for hundreds of low-flying aircrafts (Figure 0.3) a day, many of which 

occur at times during which residents are likely asleep; a total of 260 UPS flights 

arrived to and departed from SDF between 10:00 PM to 7:00 AM on August 10-

11.46 Additionally, environmental noise in Louisville is likely not geographically 

homogenous, with many areas being absent of large noise polluters, and others 

being in close proximity to more than one large noise polluter; Figure 0.4 

illustrates transportation noise in Louisville, with some areas having sound 

pressure levels above 100 decibels (equivalent to a gas lawn mower running 

from three feet away) and others having less than 35 decibels. 

At a localized level, variations in noise exposure are present in Louisville 

neighborhoods. Data collected by the Green Heart Louisville study, conducted in 

South Louisville neighborhoods, suggests that 24-hour environmental noise 

varies between two collection sites, of which are roughly 1.2 miles apart, as 

displayed in Figure 0.5. The difference in 57.7 decibels at Site A and 52.1 

decibels at Site B is 5.6 decibels. For context, 57.7 decibels is about the same 

loudness of a microwave from one foot away, while 52.1 decibels is about the 

same loudness of a microwave from nine feet away. Further, changes in noise of 

three decibels are barely perceivable to humans, whereas changes of five 

decibels are readily perceivable, and changes in 10 decibels are perceived as 
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double or half the amount of loudness.47 Therefore, one would be able to readily 

perceive the differences in noise exposure after traveling only 1.2 miles, from 

Site A to Site B.  

In terms of standardized testing scores in Louisville, the standardized 

testing scores of 3rd, 4th, and 5th graders in 2019 in Reading and Math are 

considerably lower when compared to all elementary schools in the state of 

Kentucky; 54.6% and 48.6% of elementary schoolers in Kentucky reached 

Proficient or Distinguished scores in Reading and Math, respectively, while only 

45.5% and 39.7% meet these standards in Lousiville.48 In the same year, it was 

estimated that 17.2% of Kentuckians would experience 14+ days in the past 30 

days in which their mental health would not be good.49 Louisville mental ill-health 

statistics were comparable to Kentucky, with an estimated 16.1% experience 14+ 

poor mental health days in the past month.50 However, the prevalence of mental 

ill-health varies widely within Louisville, with census-tract level prevalence 

estimations ranging from 8.2% to 27.4% of the population experiencing 14+ bad 

mental health days within a month.50  

In brief, the abundance and variation of noise sources, the relatively low 

standardized testing scores of elementary schools, and the variation in census-

tract level estimated prevalence of mental ill-health justify investigation of the 

association of environmental noise levels with standardized testing scores and 

mental ill-health in Louisville. Therefore, the purpose of this dissertation is to 

estimate the total environmental noise distribution in Louisville and to assess the 

association of environmental noise with standardized testing scores of 
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elementary schools, and with adult mental ill-health at an ecological and 

individual level. Importantly, environmental noise exposures will be 

representative of total noise rather than source-specific noise. Further, multiple 

estimations of noise will represent noise levels during varying seasons and 

varying time-periods within the 24-hour day.  

 

Specific Aims 

AIM 1: Develop and validate noise models of Louisville using land-use 

regression (LUR) by collecting noise readings throughout the city and 

integrating with various datasets on noise predictors including elevation, 

distance from major noise sources (e.g. roadways, trains, airports), land 

use, and other environmental factors. Separate LUR models will estimate 

environmental noise during different seasons (i.e. spring/summer and 

fall/winter) and times of day to capture noise during school-time and 

home-time.  

Hypotheses: Noise will be higher in the downtown, West, and South 

ends of Louisville; winter months will have louder environmental 

noise than spring months. 

 

AIM 2: Determine the association of spring school-time and home-time 

noise estimates on standardized testing scores at the school-level using a 

linear regression adjusted for various student-, teacher-, and school-

related factors. Spring environmental noise will most closely represent 
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noise exposure at the time of standardized testing that occurs in April; 

further the 7-hour school-time equivalent (9:00 AM to 4:00 PM) will 

represent noise exposure at school when tests would be administered, 

whereas the 17-hour home-time equivalent (4:00 PM to 9:00 AM) will 

represent noise exposure while students are at home during the testing 

season.  

Hypotheses: Schools with higher 7-hour school-time environmental 

noise will have lower testing scores, and schools with higher 17-

hour home-time environmental noise will have lower testing scores. 

 

AIM 3: Determine the association of winter and spring 16-hour (5:00 PM to 

9:00 AM) home-time noise estimates on adult mental ill-health parameters 

using a regression adjusted for demographics and socioeconomic factors, 

as well as other community characteristics predictive of mental ill-health. 

SUBAIM 3A: Examine the association of seasonal home-time 

environmental noise estimates with census-tract level prevalence of adult 

mental ill-health using the CDC PLACES Study.  

SUBAIM 3B: Determine the association of spring home-time 

environmental noise with depression status in the Green Heart Louisville 

cohort. 

Hypothesis: Higher environmental noise will be associated with 

higher estimates of mental ill-health.  
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Figure 0.1: Noise sources in Louisville, Kentucky.  

Noise Sources in Louisville, Kentucky 
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Proximity of Noise Sources to Residential Areas in Louisville, Kentucky 

Figure 0.2: Proximity of noise sources to residential areas in Louisville, Kentucky. 
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Figure 0.3: Low-flying aircraft as seen from University of Louisville. (Photo by Dr. Brian 
Guinn.) 
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Figure 0.4: Transportation noise in Louisville, Kentucky. 

Transportation Noise in Louisville, Kentucky 
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Figure 0.5: Noise meter sites in South Louisville, Kentucky. 
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Introduction  

Exposure to environmental noise, or noise pollution, is a growing concern 

for public health, particularly in urban areas consisting of loud noise polluters 

(e.g., airports, busy roadways, construction) that contribute to urban areas 

generally being 20 decibels louder than rural areas.51 Notably, the World Health 

Organization (WHO) has published several extensive reports regarding noise 

exposure and its association with varying facets of health including 

cardiovascular and metabolic illnesses,52 adverse birth outcomes,53 hearing loss 

and tinnitus,54 and annoyance.55 Further, there is now enough evidence for 

adverse health outcomes attributable to noise exposure that WHO has estimated 

the burden of disease from environmental noise in high-income western 

European countries as 60,000 disability-adjusted life years (DALYs) for ischemic 

heart disease, 21,000 DALYs for tinnitus, 654,000 DALYs for annoyance, 

903,000 DALYs for sleep disruption, and 45,000 DALYs for childhood cognitive 

impairment.1  

Assessing the association of environmental noise with health outcomes 

requires large epidemiologic studies with individual-level exposure assessment of 

environmental noise. Individual-level noise exposure is dependent on the 

movement of an individual and the duration of time spent at a single location by 

an individual. Therefore, individual exposure assessment of environmental noise 

can be performed with the use of personal noise monitors that capture the 

variation of noise an individual is exposed to as they move through space and 

time. Recent epidemiological studies that have utilized personal noise monitoring 
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have included relatively short duration of sampling times of 5 hours, 48 hours, 

and 7 days, with sample sizes of 46, 117, and 78, respectively.36,40,41 However, 

this method can be expensive and generally prohibitive for long-term exposure 

assessment or sample sizes large enough to precisely determine effects of noise 

exposure on health outcomes.  

Land Use Regression (LUR) techniques are a potentially useful tool in 

conducting exposure assessment of noise for large populations. LUR has been 

widely successful in modeling air pollutants.42 More recently, LUR has been 

utilized in modeling environmental noise in urban areas, though all have been 

conducted outside of the United States.43–45,56–60 Several studies have 

demonstrated LUR as a reliable and valid method to estimate noise exposures, 

with R2 values ranging from 0.44 to 0.93 and prediction errors within five 

decibels.43–45,56–62 Throughout the literature, noise is generally defined by specific 

sources (e.g. road traffic)43,44,61–63 or by cumulative environmental noise.43,45,56–60 

For those estimating cumulative environmental noise, common predictors 

retained in LUR models include various road traffic measures such as length of 

roads, traffic volume, and distance from roads; distance to aircraft flyovers or 

airport noise contours; area of green spaces or other estimates of vegetation like 

Normalized Difference Vegetation Index (NDVI); area of building coverage and 

industrial, residential, and commercial land uses.43,45,56–60 

Often, noise estimates from LUR studies represent the average noise 

levels within 24 hours. Commonly used measures are the average A-weighted 

(representative of the sensitivity of human hearing) sound pressure level of day-
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evening-night (LAden) that more heavily weights evening and night noise and the 

average A-weighted sound pressure level of 24 hours (LAeq24).56–60 When these 

estimates are applied as individual exposure assessment to an individual’s home 

address, the spatial and temporal movement of individuals is ignored, as the 

average person is not at their home for 24 hours a day. Ryu et al., applying the 

logic that most individuals stay in their residence during the nighttime, estimated 

road traffic noise for nighttime only.61 

Further, seasonal differences in environmental noise may be present in 

urban areas. Daigle et al. demonstrates that atmospheric conditions, such as 

temperature, can affect sound pressure levels heard from a distant noise 

source.64 When atmospheric conditions are cooler, sound waves travel farther 

than when atmospheric conditions are warmer. For a stationary listener, noise 

sources from further distances will be better heard when the air is cooler. 

Additionally, patterns of road traffic – an important predictor of environmental 

noise – vary throughout the year, with higher traffic volumes in warmer seasons 

and lower volumes in cooler seasons.65 Therefore, for accurate noise exposure 

assessments, seasonal LUR models should be considered. 

To the best of our knowledge, LUR methodologies in the context of 

cumulative environmental noise have yet to be applied to urban areas in the 

United States. In Louisville, Kentucky (Louisville Metro area), noise exposure is 

likely not geographically homogenous. One major factor that could lead to 

variation in noise exposure is the Louisville Muhammad Ali International Airport 

(SDF), which is located in the central part of the county. In the 2020 calendar 
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year, SDF operated 151,641 in- and out-bound flights.66 In 2019, SDF was 

ranked second in the United States and fourth in the world for cargo movement.67 

The amount of cargo transported through SDF is attributable to the main air hub 

of the United Parcel Service (UPS) being located at SDF. UPS estimates a daily 

average of 387 in- and out-bound flights at SDF.68 A majority of these flights are 

arriving to and departing from the airport during night-time hours. For example, 

from 10:00 PM on August 10, 2021 to 7:00 AM on August 11, 2021, UPS had 

133 flights arrive and 127 flights depart from SDF, totaling 260 flights.46 

Additionally, five busy interstate systems (I-65, I-64, I-71, I-264, and I-265) and 

several major roads weave through Louisville, contributing to Louisville’s 2019 

rank as the 110th most congested city in the United States and 597th in the 

world.69 In 2019, the annual average daily traffic in Louisville was 10,922,711 

vehicles traveling cumulatively on all roads.70 Some major roadways as well as 

the airport are located in or near residential areas, creating both a concern about 

the impact of environmental noise exposure on the health of the population and a 

need for estimations of environmental noise. 

The purpose of this study was to apply LUR methodologies to estimate 

cumulative and geographically specific environmental noise exposure throughout 

residential areas of Louisville, Kentucky for varying times of day and seasons, 

and assess geographic predictors of noise exposure. Models were developed to 

represent evening and nighttime noise (5:00 PM to 9:00 AM) in both the winter 

and spring seasons and daytime noise (9:00 AM to 4:00 PM) in the spring 

season. 
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Methods and Materials 

Noise Data Collection  

 Convenience sampling, through personal contacts, was used to determine 

15 noise collection sites across residences in multiple regions in Louisville, 

Kentucky (Figure 1.1) at two time points: January/February 2021 and April/May 

2021. The distance between nearest locations ranged from 1.40 and 5.51 miles 

(2.25 and 8.88 kilometers). At each location, collection consisted of a 24-hour 

noise reading with noise levels recorded every ten seconds using a Class 1 noise 

meter (Type 2236, Brüel & Kjær, Naerum, Denmark). The noise meter was 

attached to a tripod – which was weighted down to prevent any moving or falling 

– and connected to an external power source (Figure 1.2). Two collection periods 

occurred at each site: one 24-hour collection in January or February 2021 to 

represent environmental noise in the winter season, and another 24-hour 

collection in April or May to represent environmental noise in the spring season. 

Collection was avoided on days with 1) a thick blanket of snow on the ground 

because thick snow absorbs sound waves,71 2) precipitation rates greater than 

0.05 inches per hour, and 3) consistent wind speeds greater than 10 miles per 

hour or 5 kilometers per second.56 Importantly, collection in the spring season 

was completed before the 2021 emergence of the Brood X cicadas in Kentucky.  

Once collection was completed at each site, the data were transmitted 

from the noise meter to a computer using Protector Software (Type 7825, Brüel & 

Kjær, Naerum, Denmark). An example of transmitted data is shown in Figure 1.3, 

where the y-axis represents noise (dB) and the x-axis represents time. Noise 
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data are represented as ten second A-weighted equivalent sound level (LAeq) 

throughout the 24-hour collection period. 

Geographic Data Collection for Environmental Noise Predictors 

Collection sites were geocoded, and several buffers of varying radii were 

created around each site. Buffer radii included 50, 100, 150, 300, 500, 750, 

1,000, 1,500, 2,000, and 2,500 meters (Supplemental Figure 1.1). We 

considered 14 variables that are thought to be considered predictors of 

environmental noise including: being within one kilometer of the airport’s 60-

decibel Noise Exposure Map (NEM) contour; length of local roads, major roads, 

railroads, and streams; area of building coverage, industrial land use, residential 

land use, and commercial land use; traffic volume; Normalized Difference 

Vegetation Index (NDVI); and distance to nearest hospital, fire station, and police 

station. These geographic characteristics were calculated within buffer zones for 

each collection site (Table 1.1) and are described below. All geographic data 

were computed in ArcGIS 10.7.1. 

Data for length of local and major roads, railroads, and streams; building 

coverage; industrial, residential, and commercial land use; and hospital, fire 

station, and police station locations were obtained from The Louisville/Louisville 

Information Consortium (LOJIC). Local and major roads data from 2018 were 

measured by the Kentucky Transportation Cabinet (KYTC), while railroad and 

stream data from 2019 were collected and measured – using 

photogrammetrically interpreted polygons – by LOJIC. Local and major roads, 

railroad, and stream data were represented as line features. For these line 
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variables, we determined the total length in meters of each characteristic that 

was present within buffer sizes. LOJIC and the Louisville/Louisville Metropolitan 

Sewer District (MSD) photogrammetrically interpreted polygons to derive building 

coverage data for 2020. The Louisville Metro Planning and Design Services 

derived land use data for 2017 parcel property class, aerial photography, and 

field surveys. Building coverage and land use data were represented as polygon 

features and we determined the total area in meters2 of building coverage and of 

each land use type within buffer sizes. Hospital location data from 2021 were 

collected by the Kentucky Cabinet for Health & Family Services (CHFS) and the 

Kentucky State Health Operations Center (SHOC). Fire station location data from 

2015 were collected by the Louisville Fire Department. Police station location 

data from 2014 were collected by the Louisville Metro Police Department. 

Hospitals, fire stations, and police stations were represented as point features. 

Distance in meters from collection sites to the nearest hospital, fire station, and 

police station were calculated in ArcGIS (Generate Near Table tool). 

Traffic volume data for 2020 were collected by and obtained from KYTC. 

Annual average daily traffic (AADT) data were estimated by KYTC by computing 

monthly average daily traffic for each month based on available traffic counts 

within some temporal period (i.e. one hour, 5 minutes, 1 minute).72 These 12 

monthly averages were then used to calculate the AADT.72 For all roads, the 

AADT for the prior year (2019) was multiplied by the length (meters) of the road, 

which represented the total number of meters traveled on each roadway. We 
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calculated the cumulative number of meters traveled on all roadways within 

buffer sizes as an estimate of traffic volume. 

Due to the SDF airport and its housing of the UPS hub, aircraft noise is a 

large contributor to environmental noise in Louisville. Therefore, we considered 

proximity to the 60-decibel NEM contour that serves as a proxy for the aircraft 

noise attributable to the major commercial and cargo flyovers in Louisville. NEMs 

display noise contours surrounding airports in five decibels increments based on 

aircraft traffic. In the United States, NEMs represent noise levels in decibels 

based on yearly averages of Day-Night Sound Levels (DNL), which includes a 10 

decibels correction applied during nighttime hours (10:00 PM to 7:00 AM).73 

These noise levels are predicted based on varying characteristics (i.e. aircraft 

type, elevation of the aircraft, flight paths, time of flights) of aircraft traffic coming 

into and out of the airport. NEMs are used to identify land use surrounding an 

airport that may be affected by noise exposure from air traffic. The 60-decibel 

contour was chosen for two reasons: 1) the 60-decibel contour is the lowest 

predicted contour and therefore includes land use located within higher noise 

contours (i.e. 65 dB, 70 dB, 75 dB); 2) Goudreau et al. utilized the Noise 

Exposure Forecast (NEF) 25 contour in Canada,58 which is equivalent to the 60-

decibel NEM contour.73 The 2016 NEM Forecast contour data for SDF were 

obtained from the Airport Authority’s Noise Officer (NEM for SDF shown at 

https://www.flylouisville.com/wp-content/uploads/2019/06/2021-NEM.pdf). These 

contours include a five-year forecast of NEM contours for 2021, which were the 

contours used for this analysis. Distance from collection sites to the 60-decibel 
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NEM contour was calculated in ArcGIS. As no collection sites were within the 60-

decibel NEM contour, sites were then categorized into two groups – a method 

used by Goudreau et al.58 – as 1) being within one kilometer of the 60-decibel 

NEM contour, or 2) being further than one kilometer to the 60-decibel NEM 

contour. 

 NDVI was calculated using bands obtained from Landsat8 from the United 

States Geological Survey (USGS) Earth Resources Observation and Science 

(EROS) Center Science Processing Architecture (ESPA) On Demand Interface74 

using EarthExplorer.75 NDVI is a representation of the amount of greenness 

and/or the density of vegetation within an area. Vegetation absorbs visible red 

(R) light wavelengths and reflects invisible near-infrared (NIR) light 

wavelengths.76 The amount of these wavelengths being absorbed and reflected 

on land surfaces are measured by satellite sensors.76 These satellite data can 

then be translated to NDVI values by calculating the ratio of R to NIR values 

using the equation: NDVI = (NIR - R) / (NIR + R).76,77 The NDVI scale ranges 

from -1 to +1; spaces with low vegetation (i.e. barren areas, rocks, sand, snow, 

water) typically have NDVI values between 0 to at or below 0.1, spaces with 

sparse vegetation (i.e. areas with bushes, crops, or residential neighborhoods) 

typically have values between 0.2 and 0.5, and spaces with highly dense 

vegetation (i.e. temperate forests, tropical forests, peak crops) typically have 

values greater than 0.6;76 negative NDVI values represent water. R and NIR 

bands from January 6th, 2020 (cloud coverage of 6.09%) were used to represent 

winter NDVI, while R and NIR bands from August 17th, 2020 (cloud coverage of 
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1.05%) were used to represent spring NDVI. Bands 4 – representing R 

wavelengths – and 5 – representing NIR wavelengths – for each season were 

used to create the seasonal NDVI rasters using the established equation: NDVI = 

(Band 5 – Band 4) / (Band 5 + Band 4), which is appropriate for Landsat8 data.77 

Average NDVI within buffers was calculated using ArcGIS (Zonal Statistics tool). 

Statistical Analyses 

Noise Data and Reproducibility  

Multiple time-equivalents for each season were calculated by averaging 

the noise levels within the time windows: 16 hours (5:00 PM to 9:00 AM) and 7 

hours (9:00 AM to 4:00 PM). Due to unforeseen intermittent monitor 

malfunctions, data for short periods of time were sometimes missing from the 24-

hour reading (0.01% of winter data; 1.46% of spring data). In these cases, data 

were imputed with the average noise level. Paired t-tests were utilized to 

determine if noise levels in the same timeframe varied by season or if noise 

levels within the same season varied by timeframe.  

Reproducibility of noise collection measures was assessed by intraclass 

correlation coefficients (ICC). During the winter collection, four sites were 

sampled for an additional 24-hour collection, resulting in four sites with two 

measurements contributing to the winter ICC calculation. Due to the oncoming 

emergence of the Brood X cicadas in May 2021, time allowed for only two sites 

to be sampled for an additional 24-hour collection in the spring, resulting in two 

sites with two measurements each contributing to spring ICC calculations. 

Land Use Regression (LUR) Modeling 
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We utilized LUR models to estimate the A-weighted equivalent sound level 

(LAeq) at the 15 locations for the following different times of day and seasons: 

1) Winter 16-hour (5:00 PM to 9:00 AM) equivalent (LAeq16winter) to 

represent environmental noise during winter months and during the times 

that most adults would presumably be at home,  

2) Spring 16-hour (5:00 PM to 9:00 AM) equivalent (LAeq16spring) to 

represent environmental noise while most adults are home during the 

spring,  

3) Spring 7-hour (9:00 AM to 4:00 PM) equivalent (LAeq7spring) to represent 

the spring season during the times that school children would be in school.  

Linear LUR models were built using the geographic characteristics as predictor 

variables and the continuous time-equivalent noise values for each of the 15 

sites as the outcome. We took two approaches to build the LUR models. 1) We 

used a widely practiced supervised forward selection method that strongly relies 

on statistical tests78 and can be underpowered with small sample sizes; for this 

paper, we have coined this approach as the “Conventional Approach.” 2) We 

used an a priori approach based on our a priori knowledge of the current 

literature on community noise predictors43,45,56–60 that is coined here as the “A 

Priori Approach”. Variables tested in LUR modeling and considered for the A 

Priori Approach are shown in Table 1.1.  

For the Conventional Approach, the order of variables to be entered into 

models were determined by their R2 values in univariate linear regression 

analysis, where the variable with the largest R2 value had a higher priority of 
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model inclusion. For each variable with buffers, we selected a single buffer size 

to include in models based on the highest R2 value in univariate analysis. 

(Supplemental Table 1.1 displays univariate results from LAeq16spring as an 

example of the variable selection process.) To assess if more explanation of 

variance within the Conventional Approach models was possible, other buffer 

sizes of each variable included were tested in place of the original buffer size. 

Pearson correlation coefficients between all included variables were estimated; 

however, due to the small sample size, correlation coefficients were heavily 

influenced by random error. Therefore, strong correlation between variables was 

not used as a justification for predictor exclusion. For transparency, we report the 

Pearson correlation coefficients for variables included in all final models in 

Supplemental Table 1.2.  

For the A Priori Approach, a subset of predictors was identified for 

consideration of model inclusion based on their consistent association with noise 

in prior literature. Similar to the Conventional Approach, the order of inclusion 

was determined by their R2 values in univariate analyses. However, if a variable 

entered into the LUR model did not match the expected sign of the β coefficient 

(see Table 1.1; positive coefficients expected for length of local roads, major 

roads, and railroads; traffic volume; area of building coverage and industrial land 

use; negative coefficients expected for increased distance from the 60-decibel 

NEM contour, NDVI, length of streams, area of residential and commercial land 

use, and distance to nearest hospital, fire station, and police station), other buffer 

zones or variables were used in its place as an attempt to have an exhibition of 
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the β coefficient that agrees with not only previous literature but with acoustical 

physics and noise dynamics. Additionally, if an added variable resulted in 

incongruous signs of β coefficients for variables already in the model, the added 

variable was dropped (so long as other buffer sizes of the added variable did not 

correct the issue).  

For all models, regardless of the Approach, unstandardized and 

standardized β coefficients and 95% confidence intervals were used to determine 

the strength and significance of association between variables and noise. 

Although multicollinearity was assessed for all models, the small sample size 

limited the ability of relying upon condition indexes and variance decomposition 

proportions. For this reason, multicollinearity of predictor variables was not used 

as a driving factor in modeling decisions – an approach that mimics that of 

Goudreau et al.58 However, for transparency, we report the condition indexes for 

final LUR models. The performance of the final models was evaluated based on 

their R2 value. All statistical analyses were performed using SAS Software 

(version 9.4).  

Validation of the LUR-estimated Noise 

For model validation, the leave-one-out cross-validation (LOOCV) method 

was performed on each LUR model to assess model reliability. LOOCV consists 

of comparing a built model against the observed data while excluding a single 

observation and repeating this process multiple times. The number of 

permutations of LOOCV that were computed for each LUR model was equal to 

the number of observations included in each model. The prediction error of the 
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final models was quantified based on their LOOCV root mean square error 

(RMSE).  

Determining Final LUR Models 

In modeling LAeq16winter via the A Priori Approach, being within one 

kilometer of the 60-decibel NEM contour, traffic volume, NDVI, and length of 

streams were considered for inclusion. However, due to an incongruous sign for 

traffic volume, the variable was replaced with the length of major roads in the 

1500-meter buffer. For two of the 15 collection sites, there were no major roads 

present in the 1500-meter buffer, resulting in only 13 collection sites being used 

in modeling.  

During Conventional Approach modeling for LAeq16spring, two models were 

built; Conventional model 1 included NDVI in the 1,000-meter buffer, while 

Conventional model 2 included NDVI within the 150-meter buffer. In A Priori 

Approach modeling, variables considered for inclusion were being within one 

kilometer of the 60-decibel NEM contour, traffic volume in the 750-meter buffer, 

NDVI in the 1,000-meter buffer, and length of streams in the 2,000-meter. Both 

traffic volume in the 750-meter buffer and NDVI in the 1,000-meter buffer had β 

coefficients with the incongruous sign. Ultimately, after testing all buffer sizes, A 

Priori model 1 included the 500-meter buffer for traffic volume and the 300-meter 

buffer for NDVI. A Priori model 2 was built and included length of major roads in 

the 1,500-meter buffer in the place of traffic volume in the 500-meter buffer. 

For LAeq7spring, variables considered for inclusion in the A Priori Approach 

were being within one kilometer of the 60-decibel NEM contour, traffic volume in 
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the 750-meter buffer, NDVI in the 150-meter buffer, and length of streams in the 

2,000-meter were considered for inclusion. For the length of streams in the 

2,000-meter buffer, the β coefficient consisted of the incongruous sign. Inclusion 

of all other buffer sizes for the length of streams did not correct the sign of the 

streams β coefficient. Therefore, length of streams was dropped from the model 

altogether.  

When models from both approaches – the Conventional Approach and A 

Priori Approach – were built and validated, the R2 values and LOOCV RMSE 

values were compared to determine the most reasonable model for each time 

equivalent.  

Estimating and Mapping Noise in Louisville, Kentucky 

The final LUR models were then applied to predict noise throughout the 

entirety of Louisville. All shapefiles for included variables were converted to 

rasters with a 10-meter x 10-meter resolution. After rasters for all retained 

variables were created, the Raster Calculator tool was used to apply the LUR 

equation to the variable rasters. The 10-meter by 10-meter raster layer output 

predicted noise levels throughout the county based on the LUR equation. Noise 

estimation and mapping were computed in ArcGIS 10.7.1.  

Applying Certain LUR Models to Other Time-equivalents 

To determine if models were appropriate for the same period of time 

between seasons, the selected model predictors for LAeq16winter noise were 

tested on the LAeq16spring noise data and vice versa. Further, the selected model 
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predictors for LAeq16spring were tested on the LAeq7spring data to determine if the 

model was appropriate for a different period of time within the same season. 

 

Results 

The ICC for LAeq16winter, LAeq16spring, and LAeq7spring were 0.986 (n=4 sites, 

8 samples), 0.857 (n=2 sites, 4 samples), and 0.968 (n=2 sites, 4 samples), 

respectively. Descriptive statistics of noise data at the 15 collection sites for each 

time equivalent are shown in Table 1.2. Mean noise levels at the 15 collection 

sites for LAeq16winter, LAeq16spring, and LAeq7spring were 49.81 decibels (SD=4.8), 

52.21 decibels (SD=4.8), and 55.05 decibels (SD=5.0), respectively. Within the 

spring season, noise was significantly louder in the daytime (LAeq7spring) than the 

time window that included nighttime hours (LAeq16spring; t(14)=5.52, p<0.01). 

Similarly, when comparing the same time of day across seasons, noise was 

louder in the spring season (LAeq16spring) than in the winter season (LAeq16winter), 

albeit non-significantly (t(14) -1.87, p=0.08). 

Table 1.3 displays descriptive statistics of predictor variables and buffers 

that were retained in final models. In univariate analysis, all predictor variables 

were associated with noise in the direction of which they were expected.  

LAeq16winter LUR Modeling Results 

The resulting Conventional model for LAeq16winter included being within one 

kilometer of the 60-decibel NEM contour, traffic volume in the 2,500-meter buffer, 

NDVI in the 150-meter buffer, length of railroads in the 2,500-meter buffer, and 

length of streams in the 2,000-meter buffer. This model had an R2 value of 
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0.4387 and an LOOCV RMSE value of 5.85 decibels. For the A Priori model 

(n=13), the R2 and LOOCV RMSE values were 0.7341 and 2.98 decibels, 

respectively. The A Priori model 1 (n=13), accounted for more variance in noise 

and had a lower prediction error than the Conventional. Therefore, the final LUR 

model (shown in Table 1.4) for LAeq16winter had a sample of 13 collection sites 

and included being within one kilometer of the 60-decibel NEM contour, length of 

major roads in the 1500-meter buffer, NDVI in the 150-meter buffer, and length of 

streams in the 2000-meter buffer. 

 Compared to being within one kilometer of the 60-decibel NEM contour, 

living further than one kilometer resulted in lower LAeq16winter noise estimates (β=-

4.86, 95% CI: -11.67, 1.95; standardized β=-0.43, 95% CI: -0.86, 0.14). A 10-

kilometer increase in length of major roads resulted in a higher noise estimate 

(β=1.54, 95% CI: -3.32, 6.41; standardized β=0.17, 95% CI: -0.33, 0.64). NDVI 

was inversely associated with noise, with a 0.1 increase resulting in lower noise 

estimates (β=-2.01 95% CI: -9.60, 5.59; standardized β=-0.17, 95% CI: -0.68, 

0.40). An increase of 100 kilometers in the length of streams resulted in lower 

estimates of noise (β=-4.06, 95% CI: -13.04, 4.93; standardized β=-0.30, 95% CI: 

(-0.81, 0.31). Based on the standardized beta coefficients, being within one 

kilometer compared to being further than one kilometer of the 60-decibel NEM 

contour had the strongest association with predicted noise than other predictors. 

As mentioned prior, the R2 value of the final model was 0.7341 with an LOOCV 

RMSE value of 2.98 decibels, indicating that the model was well fit and had a low 

prediction error. The condition index for the model was 26.03. When this model 
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was applied to Louisville (shown in Figure 1.4), estimated noise ranged from 

47.53 decibels to 66.37 decibels.  

LAeq16spring LUR Modeling Results 

Conventional model 1 for LAeq16spring included being within one kilometer 

of the 60-decibel NEM contour, traffic volume in the 750-meter buffer, NDVI in 

the 1,000-meter buffer, length of railroads in the 2,500-meter buffer, and length of 

streams in the 2,000-meter buffer. This model had an R2 value of 0.5430 and an 

LOOCV RMSE value of 6.16 decibels. Conventional model 2, which utilized 

NDVI in the 150-meter buffer, had an R2 value of 0.5719 and an LOOCV RMSE 

value of 5.92 decibels. The resulting A Priori model 1 had an R2 value of 0.3738 

and a LOOCV RMSE value of 9.87 decibels, while A Priori model 2 resulted in an 

R2 value of 0.4478 and an LOOCV RMSE value of 8.03 decibels. Both A Priori 

models had lower R2 values and higher LOOCV RMSE values than the 

Conventional models. Of the two Conventional models, model 2 had the highest 

explanation of variance and lowest prediction error. Therefore, the Conventional 

model 2 was chosen as the final model for LAeq16spring. 

 Compared to being within one kilometer of the 60-decibel NEM contour, 

living further than one kilometer resulted in lower noise estimates (β=-3.73, 95% 

CI: -30.04, 22.59; standardized β=-0.27, 95% CI: -2.20, 1.65). A 1,000,000-

kilometer increase in traffic volume resulted in higher noise estimates (β=4.16, 

95% CI: -121.79, 130.11; standardized β=0.07, 95% CI: -1.93, 2.06). NDVI was 

inversely associated with noise, with a 0.1 increase resulting in lower noise 

estimates (β=-2.92, 95% CI: -11.36, 5.52; standardized β=-0.22, 95% CI: -0.84, 
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0.41). As the length of railroads increased by 10 kilometers, the noise estimates 

also increased (β=2.50, 95% CI: -2.46, 7.46; standardized β=0.39, 95% CI: -0.38, 

1.15). An increase of 100 kilometers in the length of streams resulted in a lower 

estimate of noise (β=-0.16, 95% CI: -13.02, 12.89; standardized β=-0.01, 95% 

CI: -0.81, 0.79). Based on the standardized beta coefficients, length of railroads 

had the strongest association with predicted noise relative to other predictors. 

The final model had an R2 value of 0.5719 and an LOOCV RMSE value of 6.49 

decibels, indicating that the model had a satisfactory fit and prediction error. The 

model resulted in a condition index of 78.75. When this model was applied to 

Louisville (shown in Figure 1.5), estimated noise ranged from 49.73 decibels to 

80.16 decibels.  

LAeq7spring LUR Modeling Results 

The Conventional model for LAeq7spring included being within one kilometer 

of the 60-decibel NEM contour, traffic volume in the 750-meter buffer, NDVI in 

the 150-meter buffer, and length of railroads in the 2,500-meter buffer. The R2 

value was 0.4897 and the LOOCV RMSE value was 6.77 decibels. The resulting 

A Priori model had an R2 value of 0.5005 and an LOOCV RMSE value of 5.83 

decibels. These values indicated that the A Priori model was better fit and had a 

lower prediction error than the Conventional model and was therefore chosen as 

the final model. 

For LAeq7spring, being further than one kilometer resulted in lower noise 

estimates when compared to being within one kilometer of the 60-decibel NEM 

contour (β=-0.99, 95% CI: -19.49, 17.50; standardized β=-0.07, 95% CI: -1.36, 
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1.22). A 1,000,000-kilometer increase in traffic volume resulted in an increased 

noise estimate (β=20.41, 95% CI: -72.03, 112.85; standardized β=0.64, 95% CI: -

1.09, 1.71). A 0.1 increase in NDVI resulted in a lower noise estimate (β=-5.97, 

95% CI: -14.23, 2.30; standardized β=-0.42, 95% CI: -1.01, 0.16). The final 

model had a satisfactory fit and prediction error, with an R2 value of 0.5005 and 

an LOOCV RMSE value of 6.47 decibels. The condition index value was 52.31. 

When this model was applied to Louisville (shown in Figure 1.6), estimated noise 

ranged from 42.57 decibels to 74.12 decibels.  

Application of Certain LUR Models to Other Time-equivalents 

 When applying the selected LAeq16winter model to LAeq16spring noise data 

(Table 1.5), the R2 was lower and the LOOCV RMSE value was higher than 

those of the selected LAeq16spring model. This indicated that the model built to 

predict noise from 5:00 PM to 9:00 AM in the winter was not as well fit for 

predicting noise from the same hours in the spring as the model built for 

LAeq16spring. Additionally, the length of major roads and noise were inversely 

associated in the spring when applying the winter model, which violated the rule 

of having β coefficients with the correct expected sign. Upon testing all other 

buffer sizes for the length of major roads, the sign remained in the incongruous 

direction. Similarly, the selected LAeq16spring model was not a good fit for the 

LAeq16winter noise data (Table 1.6). When applied to the LAeq16winter data, the 

LAeq16spring model resulted in a similar LOOCV RMSE value but a much lower R2 

value than that of the LAeq16winter built model. An inverse association was 

detected between traffic volume and noise and the inclusion of other buffer sizes 
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did not correct the sign. Therefore, it was determined that models built for 

specific hours in one season could not be applied to the same subset of hours in 

the opposite season and that individual LUR models were needed for LAeq16winter 

and LAeq16spring. 

 Applying the selected LAeq16spring model to LAeq7spring noise data (Table 

1.6) resulted in a similar R2 value but higher LOOCV RMSE value than that of the 

selected LAeq7spring model, indicating that the LAeq16spring model contained more 

error in predicting LAeq7spring noise than the selected LAeq7spring model. Further, 

two predictors, traffic volume and length of streams, were associated with noise 

in the incongruous direction. Replacing the buffer sizes of these predictors with 

other buffer sizes did not correct the issue. Therefore, the model built for 

predicting noise in daytime hours could not be used for predicting noise in 

nighttime hours, even within the same season; individual models LAeq16spring and 

LAeq7spring were required. 

 

Discussion  

Although varying models were applied to varying time equivalents, 

distance to the 60-decibel NEM contours and NDVI were consistent predictors of 

noise across seasons and time windows, which is consistent with findings from 

other studies. Other predictors, such as traffic volume and length of streams, 

were retained in multiple models, again consistent with extant literature. 

However, the strength of the association for these common predictors of noise 

varied across time equivalents.  
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Most notably, spring noise during the daytime was more strongly 

associated with traffic volume (LAeq7spring standardized β=0.64, 95% CI: -1.09, 

1.71) than spring nighttime noise (LAeq16spring standardized β=0.07, 95% CI: 95% 

CI: -1.93, 2.06). While both are not statistically significant, these differing 

strengths of association with noise for traffic volume across times of day is likely 

due to the increased activity of traffic in the daytime compared to nighttime. 

Conversely, noise was more strongly determined by proximity to the 60-decibel 

NEM contour during the nighttime (LAeq16spring standardized β=-0.27, 95% CI: 

2.20, 1.65) than in the daytime (LAeq7spring standardized β=-0.07, 95% CI: -1.36, 

1.22). These varying coefficient estimates are likely attributable to frequency of 

UPS aircraft flyovers during the nighttime. The current observation emphasizes 

the need for varying models to be applied to varying time-equivalents, especially 

when considering urban areas in which environmental noise exposure may have 

a large temporal variance within 24 hours. Some cumulative environmental noise 

exposure assessment studies59,60 have used LAden estimates of noise, which is a 

measure of the average noise within a 24-hour day but includes a five decibels 

penalty for the evening hours and a 10 decibels penalty for the night hours. This 

measure of noise is useful in that the average noise level of the full 24 hours is 

weighted more heavily by evening noise and even more heavily by nighttime 

noise, which can account for the relative impacts of noise exposure at different 

times of the day. However, since LAden is a single estimate of averaged noise, 

the noise exposure within varying time periods throughout the day cannot be 

assessed. The current study proposes the idea that environmental noise 
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exposure assessments should include the use of multiple noise estimating LUR 

models to represent varying times of day. When these time equivalent noise 

estimates are extracted by the location of an individual during these times, the 

true noise exposure of individuals may be better reflected. Future studies, 

especially those of which use LUR models as a means of exposure assessment 

of noise, should seek to improve noise estimating LUR modeling for specific time 

equivalents that may be important for assessing impacts on health outcomes.  

Interestingly, during model building traffic volume was chosen for only 

spring noise, while length of major roads was chosen for winter noise. Although 

neither were significantly associated with noise levels, it was expected that the 

same variable – either traffic volume or major road length – would be associated 

with noise in both seasons. The unanticipated discordance in chosen variables 

between seasons may be attributable to the timing of noise data collection. 

During the January/February 2021 noise collection, strict social restrictions in 

response to the COVID-19 pandemic were still in place, with many in Louisville 

still working and attending school from home.79 This likely led to a lower-than-

normal amount of traffic volume in the winter and potentially a lower-than-normal 

amount of environmental noise being produced by traffic. As the traffic volume 

data was represented by the annual average of 2019 – a year in which no 

extenuating circumstances were affecting traffic in Louisville – it is likely that the 

traffic volume variable was not an adequate reflection of traffic volume in 

January/February 2021 but was a better predictor of the April/May 2021 season 

when social restrictions were beginning to be lifted as result of vaccination 
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efforts.79 Further, when comparing counts in 2021 to the pre-pandemic year of 

2019, traffic in the US declined by 65%.80 Regardless, when comparing the 5:00 

PM to 9:00 AM time window between seasons, the strength of association 

between traffic volume in the spring season (LAeq16spring standardized β=0.07) 

was less than that of the major road length in the winter season (LAeq16winter 

standardized β=0.17).  

Similar to the findings of the current study, Goudreau et al. – who modeled 

summer and winter environmental noise via LUR in Montreal, Canada – reported 

models that varied by two seasons.58 Common predictors of both summer and 

winter noise reported by the authors included: NDVI; area of residential, 

industrial, and commercial land use; the length of highways and bus lines; and 

proximity to airport noise contours.58 Although the current study confirmed the 

importance of NDVI, roadway variables (e.g. traffic volume or length of major 

roads), and proximity to airport noise contours, future studies should seek to 

further explicate these seasonality differences in noise exposure. 

In the current study, several predictors of noise were not retained in any 

LUR models. These predictors include the length of local roads; the area of 

building coverage; the area of industrial, residential, and commercial land use; 

and the distance to the nearest hospital, fire station, and police station. Length of 

local roads may not have been contributing to noise levels as strongly as length 

of major roads due to the reduced speed limit on local roads relative to major 

roads. Indeed, the faster a vehicle is moving, the louder it will be as it passes.81 

For their respective chosen buffer zones for the LAeq16winter data, the area of 
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building coverage in the 1,000m buffer was highly correlated with the length of 

local roads in the 1,000m buffer (Pearson Rho=0.82, p-value<0.001). However, it 

appears that the strength of correlation between the two predictors decreases as 

the difference in their buffer sizes increases (LAeq7spring: area of building 

coverage in the 150m buffer and length of local roads in the 300m buffer, 

Pearson Rho=0.57, p-value=0.03; LAeq16spring: area of building coverage in the 

1,000m buffer and length of local roads in the 150m buffer, Pearson Rho=0.31, 

p-value=0.26). This is plausible since the value for one predictor will increase 

directly with increased buffer zone. Regardless of the statistics, it seems 

reasonable that the area of building coverage and the length of local roads would 

be correlated, as most buildings would be located near local roads. If local roads 

were contributing to increased noise, buildings can potentially attenuate the 

loudness of local roads by acting as a barrier; essentially, the two predictors may 

“cancel out” the other’s effect on noise.47,82  

Regarding, the area of industrial and commercial land use, the lack of 

consistent presence throughout the county may have contributed to their non-

retention in modeling; for all site locations, the amount of commercial and 

industrial land in surrounding areas was low. The opposite was true for the 

amount of residential land surrounding site locations. This is because all site 

locations were homes in residential areas. The lack of variability in the area of 

these land uses may have led to an incapability of detecting their associations 

with noise. Since all site locations were within residential areas, the distance to 

the nearest hospital, fire station, and police station, may have been so far 
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removed from site locations that noise generated at/around these locations by 

their respective response vehicles was negligible. In Louisville, there are two fire 

stations (range of distance from sites to nearest fire station: 404 to 8,678 meters) 

and no police stations (range of distance from sites to nearest police: 511 to 

5,623 meters) or hospitals (range of distance from sites to nearest hospital: 877 

to 10,778 meters) in residential areas. Future studies should aim for higher 

variability within all potential predictor variables. Further, there may be high 

variability in the presence of conditions requiring fire, police, and/or ambulance 

vehicle response in any given 24-hour period; a larger sample with multiple or 

longer collections per site are likely needed to capture the patterns of emergency 

response by fire, police, or ambulance vehicles. 

The statistical methods –namely the supervised forward stepwise 

approach – that have been used in prior investigations of LUR-estimated 

noise44,56,57,59,60,63 were applied in the current study; however, the resulting 

estimates of noise for the county were not as reasonable for some time 

equivalents as the alternative A Priori Approach estimates that were based on 

our knowledge of noise from the current body of literature. This observation is 

consistent with that of Fallah-Shorshani et al., who note that multiple approaches 

to building noise-estimating LUR models may be necessary.57 The authors report 

that the noise-estimating LUR models built using the conventional approach 

included incongruous signs of some coefficient estimates and benefitted from 

manual modification of predictor variables included.57 The modification efforts 

included exchanging buffer sizes of a predictor variable.57 This modification 
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approach was implemented in the current study during the model building 

process; however, we expand the use of manual modifications by applying a 

priori knowledge of important predictor variables to build separate LUR models.  

Limitations and Strengths 

The current study has limitations that should be considered during 

interpretation of results. First, the use of convenience sampling may have 

resulted in less-than-desirable variation of noise exposure throughout the study 

area. Other techniques, such as algorithmic selection of collection site locations, 

may result in a larger variance of environmental noise. However, the range of 

noise levels throughout the three time-equivalents were sufficiently broad; 

LAeq16winter, LAeq16spring, and LAeq7spring, consisted of ranges of 15.50 decibels, 

17.33 decibels, and 15.77 decibels, respectively. Considering that an increase in 

noise of 10 decibels results in a two-times greater perceived loudness,47 even the 

smallest range of 15.50 decibels results in the loudest location being perceived 

as 2.5 times louder than the quietest location. The perceived difference of 15 

decibels is equivalent to the difference in loudness of conversational speech from 

3 feet away (60 decibels) and a vacuum cleaner from 10 feet away (85 decibels), 

or in the difference of a vacuum cleaner from 10 feet away (85 decibels) and a 

gas lawn mower from 3 feet away (100 decibels).  

The current study was also limited by the use of only one noise monitor 

during noise collection, which resulted in a 24-hour collection from each 

collection site on different days. Ideally, multiple noise monitors would be 

deployed concurrently for several days at a time across all sites. Using one 
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monitor for 24-hour collection periods resulted in a lack of temporally concurrent 

noise measurements, which may be problematic if environmental noise is 

variable from day-to-day. Day-to-day variability of environmental noise in an 

urban area was found to be present by Geraghty and O’Mahony, who reported 

that noise levels by the day were statistically significantly different from each 

other and followed no clear pattern.83 Therefore, the noise estimates of the 

current study may not accurately represent long-term noise exposure. For best 

practice, environmental noise monitoring at multiple locations should be 

concurrent in nature and be deployed for longer than 24 hours at a time.  

Further, the sample size of the current study (N=15) was rather small, 

which may have impacted the specificity and variability of noise data. Due to this, 

modeling statistics such as correlation coefficients, multicollinearity diagnostics, 

and β coefficient p-values could not be fully relied upon. In most LUR modeling 

strategies, predictor variables are only retained in models if they are statistically 

significant predictors of noise at the 0.05 level. In the case of having only 15 

collection sites, no predictor variables were detected to be statistically 

significantly associated with noise at the 0.05 level and 95% confidence intervals 

were extremely wide. Additionally, a small sample size limits the number of 

predictor variables that can be included in the model before the data becomes 

too sparse; in the current study, there exists the potential of models being overfit. 

The presence of multicollinearity in models indicates this overfitting, and the 

inability to reduce multicollinearity between variables resulted in inflated standard 

errors of beta coefficients such that significance could not be detected. The lack 
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of confidence likely explains the unexpected directions of beta coefficients in 

Conventional models. As such, our A Priori Approach may not be necessary for 

larger samples that allow for models to have a greater number of predictors and 

less sensitive beta coefficient estimates that may swing in the expected direction.  

Further, the small sample size could also have led to a limited amount of 

complexity in the combination of predictor variables. This is made evident by the 

relatively large R2 values (range: 0.5005 – 0.7341) of the final LUR models 

presented; Basagaña et al. suggest that, in LUR models of air pollution, R2 

values will be lower with increased site locations due to an increased amount of 

complexity in predictor combinations being captured.84 Additionally, high R2 

values may be an indication that models are overfit, which likely exists in the 

current study; however, the estimation of prediction error via LOOCV RMSE 

values limits the likelihood of high R2 values as a result of overfitting. Other 

studies of LUR modeling of cumulative environmental noise with larger sample 

sizes have reported comparable R2 values, ranging from 0.83 – which utilized 99 

noise collection site locations in Tel Aviv, Israel – to 0.40 – based on noise 

collected during the winter from 62 site locations in Montreal, Canada.43,58 

Further, Chang et al. and Wang et al. utilized 50 site locations for LUR modeling 

of noise in Taichung, Taiwan62,63 – an area of 855 square miles – yielding 17.1 

square miles per site; 15 sites in Louisville, an area of 398 square miles, results 

in 26.5 square miles per site. Although comparable, this larger ratio of study area 

to number of collection sites may contribute to a more limited distribution of 

geographic data, such that the presence of certain geographic variables could 
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only be detected in larger buffer sizes. For example, data on length of streams 

and major roads were present for 15 sites only within the 2,000-meter buffer and 

when smaller buffer sizes were utilized, there was not sufficient variability in the 

data (ex. all sites had values of 0). Similarly, the dichotomous nature of the being 

within 1 kilometer of the airport 60-decibel NEM contour created a spatially 

instantiation in estimates, which may not accurately represent the influence of 

aircraft flyovers in some areas. It may also be possible that resulting predictors of 

noise may not act as noise producers, but rather as proxies of other noise 

sources; for example, estimated coefficients of NDVI may indicate fewer 

producers of noise rather than indicating the noise mitigation potential of 

greenness.  

There are also strengths of this study. One strength is that noise 

monitoring during data collection only occurred on days of which extreme 

weather was not present. Intense wind speeds, heavy rains, and thick blankets of 

snow were avoided so that collection would be as representative as possible of 

normal weather conditions. This allowed for the exclusion of weather variables as 

predictors of environmental noise since there was an absence of highly variable 

weather conditions. Additionally, noise estimates of Louisville from the varying 

LUR models resulted in a fine spatial resolution of 10 meters. This resolution is 

more specific than the 20-meter,58,59 50-meter,44 100-meter,43 and 200-meter45 

resolutions of estimated noise from similar studies. Higher resolution allows for 

higher accuracy in spatial features (i.e., estimated noise) which is beneficial 

when applying LUR-estimated noise levels as an exposure assessment of 
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individuals. Further, to date, studies regarding the utilization of LUR modeling for 

estimating cumulative environmental noise have been conducted in Ireland,56 

Israel,43 Canada,57–59 South Africa,60 and China.45 To the best of our knowledge, 

the current study is the first-of-its-kind to be conducted in the United States. 

 

Conclusion  

The current study utilized the application of two approaches to LUR 

modeling of cumulative environmental noise and demonstrated that the use of a 

priori modeling strategies may be just as useful as the conventional approach. 

Although the strongest predictors of environmental noise were transportation 

related – whether road-traffic, distance to aircraft flyovers, or railways – the 

effects of each on predicted noise varied by time of day and season.  Therefore, 

we highlight the use of multiple noise estimating LUR models to represent 

varying times of day and seasons. Future investigations of cumulative 

environmental noise estimation should consider the use of multiple models for 

varying time equivalents, especially when applying the noise estimates as an 

exposure assessment for epidemiologic investigations of cumulative 

environmental noise exposure during specific seasons and times of day in 

relation to health outcomes of individuals.
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Figure1.1: Noise collection sites in Louisville, Kentucky for winter and spring 2021 noise collections. 
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Figure 1.2: Set up of noise monitor. 

Figure 1.3: Example of transmitted noise data. 
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Figure 1.4: Noise estimation in decibels for winter season 16 hour (5:00 PM – 9:00 AM) in Louisville. 

Estimated LAeq16winter Noise (dB) in Louisville, Kentucky 
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Figure 1.5: Noise estimation in decibels for spring season 16 hour (5:00 PM – 9:00 AM) in Louisville. 

Estimated LAeq16spring Noise (dB) in Louisville, Kentucky 
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Figure 1.6: Noise estimation in decibels for spring season 7 hour (9:00 AM – 4:00 PM) in Louisville. 

Estimated LAeq7spring Noise (dB) in Louisville, Kentucky 
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Table 1.2: Descriptive statistics for noise time-equivalents based on data from 
the 15 collection sites. 

Time-Equivalent Min Max Mean (SD) Median (IQR) 

LAeq16winter 42.00 57.50 49.81 (4.76) 49.10 (46.80 – 55.20) 

LAeq16spring 47.11 64.44 52.21 (4.81) 51.03 (48.44 – 54.92) 

LAeq7spring 50.68 66.45 55.05 (5.03) 52.37 (51.53 – 59.03) 

Data are expressed as decibels (dB). 

 

Table 1.1: Variables and buffer sizes considered for LUR modeling. 

Geographic Variable Buffer Radii (meters) Expected Sign 
Considered for the 
A Priori approach 

Within 1 km of the Airport 60-dB NEM contour, yes/no NA - Yes 

Local Roads Length within the Buffer, meters  50/100/150/300/500/750/1,000 + Yes 

Major Road Length within the Buffer, meters 1,500/2,000/2,500 + Yes 

Traffic Volume within the Buffer, meters traveled 50/100/150/300/500/750/1,000 + Yes 

Average NDVI 50/100/150/300/500/750/1,000 - Yes 

Railroad Length within the Buffer, meters 1,500/2,000/2,500 + Yes 

Stream Length within the Buffer, meters 750/1,000/1,500/2,000 - Yes 

Industrial Land Use Area within the Buffer, meters2 1,000/1,500/2,000 + Yes 

Residential Land Use Area within the Buffer, meters2 50/100/150/300/500/750/1,000 - No 

Commercial Land Use Area within the Buffer, meters2 750/1,000/1,500 - No 

Building Coverage Area within the Buffer, meters2 50/100/150/300/500/750/1,000 + No 

Distance to nearest hospital, meters NA - No 

Distance to nearest fire station, meters NA - No 

Distance to nearest police station, meters NA - No 
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Table 1.3: Descriptive statistics for noise predictor variables for the 15 noise collection sites. 

Variable and Buffer Min Max Mean (SD) Median [IQR] 

Distance to Airport 60-dB NEM contour, 
kilometers 

0.29 16.94 7.74 (5.23) 7.10 [3.82 – 13.06] 

Major Road Length in 1,500m Buffer, 
kilometers 

0 17.15 6.70 (5.46) 6.01 [2.68 – 10.64] 

Traffic Volume in 750m Buffer, 
kilometers traveled 

1.99 255.68 66.84 (76.29) 35.72 [27.85 – 94.25] 

Average NDVI (Winter) in 150m Buffer 0.09 0.21 0.15 (0.03) 0.15 [0.13 – 0.18] 

Average NDVI (Spring) in 150m Buffer 0.25 0.37 0.31 (0.04) 0.30 [0.28 – 0.34] 

Railroad Length in 2,500m Buffer, 
kilometers 

0 25.42 7.64 (7.42) 5.46 [3.79 – 9.26] 

Stream Length in 2,000m Buffer, 
kilometers 

6.13 104.44 53.52 (29.63) 54.35 [32.75 – 76.98] 

Table 1.4: Estimated beta coefficients (95% confidence intervals) for the final LUR models for LAeq16winter, LAeq16spring, and LAeq7spring. 

 LAeq16winter 

(5:00 PM – 9:00 AM) 
(n=13) 

LAeq16spring 
(5:00 PM – 9:00 AM) 

(n=15) 

LAeq7spring 
(9:00 AM – 4:00 PM) 

(n=15) 

R2 0.7341 0.5719 0.5005 
LOOCV RMSE 2.98 5.92 5.83 

Range of Estimated Noise in 
Louisville 

47.53 dB – 66.37 dB 47.73 dB – 80.16 dB 42.57 dB – 74.12 dB 

 Unstandardized β 
(95% CI) 

Standardized β 
(95% CI) 

Unstandardized β 
(95% CI) 

Standardized β 
(95% CI) 

Unstandardized β 
(95% CI) 

Standardized β 
(95% CI) 

Intercept 
61.83 

(45.42, 78.24) 
0.00 

(-0.59, 0.13) 
66.01 

(1.41, 130.62) 
0.00 

(-0.48, 0.48) 
73.82 

(20.08, 127.56) 
0.00 

(-0.46, 0.46) 

Distance to Airport  
60-dB NEM contour  

≤ 1 kilometer 
REF REF REF 

> 1 kilometer 
-4.86 

(-11.67, 1.95) 
-0.43 

(-0.86, 0.14) 
-3.73 

(-30.04, 22.59) 
-0.27 

(-2.20, 1.65) 
-0.99 

(-19.49, 17.50) 
-0.07 

(-1.36, 1.22) 

Major Road Length in 1,500m 
Buffer, per 10 kilometers  

1.54 
(-3.32, 6.41) 

0.17 
(-0.33, 0.64) 

- - 

Traffic Volume in 750m Buffer,  
per 1,000,000 kilometers  

- 
4.16 

(-121.79, 130.11) 
0.07 

(-1.93, 2.06) 
20.41 

(-72.03, 112.85) 
0.31 

(-1.09, 1.71) 

NDVI in 150m Buffer,  
per 0.1 units  

-2.01 
(-9.60, 5.59) 

-0.17 
(-0.68, 0.40) 

-2.92 
(-11.36, 5.52) 

-0.22 
(-0.84, 0.41) 

-5.97 
(-14.23, 2.30) 

-0.42 
(-1.01, 0.16) 

Railroad Length in 2,500m 
Buffer, per 10 kilometers  

- 
2.50 

(-2.46, 7.46) 
0.39 

(-0.38, 1.15) 
- 

Stream Length in 2,000m 
Buffer, per 100 kilometers  

-4.06 
(-13.04, 4.93) 

-0.30 
(-0.81, 0.31) 

-0.16 
(-13.20, 12.89) 

-0.01 
(-0.81, 0.79) 

- 

Notes. 95% CI = 95% confidence interval. 
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Table 1.5: Applying the LAeq16winter LUR model to the LAeq16spring data. 

 LAeq16winter 
(5:00 PM – 9:00 AM) 

(n=13) 

LAeq16spring 
(5:00 PM – 9:00 AM) 

(n=13) 

R2 0.7341 0.4640 
LOOCV RMSE  4.57 7.82 

Range of Outcome in Louisville 47.53 dB – 66.37 dB 50.16 dB – 73.04 dB 

 Unstandardized β 
(95% CI) 

Unstandardized β 
(95% CI) 

Intercept 61.83 (45.42, 78.24) 74.33 (23.25, 125.41) 

Distance to Airport 60-dB NEM contour  
≤ 1 kilometer 

REF REF 

> 1 kilometer -4.86 (-11.67, 1.95) -5.98 (-17.45, 5.50) 

Major Road Length in 1,500m Buffer, 
per 10 kilometers 

1.54 (-3.32, 6.41) -0.272 (-10.56, 10.01) 

NDVI in 150m Buffer, per 0.1 units -2.01 (-9.60, 5.59) -3.15 (-17.43, 11.13) 

Stream Length in 2,000m Buffer,  
per 100 kilometers 

-4.06 (-13.04, 4.93) -2.46 (-16.01, 11.09) 

Notes. 95% CI = 95% confidence interval. 

Table 1.6: Applying the LAeq16spring LUR model to the LAeq16winter and LAeq7spring data. 

 LAeq16spring 
(5:00 PM – 9:00 AM)  

(n=15) 

LAeq16winter 
(5:00 PM – 9:00 AM)  

(n=15) 

LAeq7spring 
(9:00 AM – 4:00 PM)  

(n=15) 

R2 0.5719 0.4318 0.5149 
LOOCV RMSE  6.49 4.55 7.56 

Range of Outcome in 
Louisville 

49.73 dB – 76.43 dB 43.80 dB – 73.55 dB 48.6 3 dB – 91.81 dB 

 Unstandardized β 
(95% CI) 

Unstandardized β 
(95% CI) 

Unstandardized β 
(95% CI) 

Intercept 66.01 (1.41, 130.62) 75.26 (31.60, 118.91) 86.43 (14.53, 158.33) 

Distance to Airport 60-dB 
NEM contour  
≤ 1 kilometer 

REF REF REF 

> 1 kilometer -3.73 (-30.04, 22.59) -9.53 (-29.57, 10.51) -7.52 (-36.80, 21.77) 

Traffic Volume in 750m 
Buffer, per 1,000,000 

kilometers 

4.16 
(-1217.91, 1301.08) 

-28.27 
(-129.57, 73.03) 

-7.88 
(-148.05, 132.29) 

NDVI in 150m Buffer,  
per 0.1 units 

-2.92 (-11.36, 5.52) -4.49 (-13.73, 4.75) -6.57 (-15.97, 2.82) 

Railroad Length in 2,500m 
Buffer, per 10 kilometers 

2.50 (-2.46, 7.46) 1.45 (-3.17, 6.07) 1.26 (-4.26, 6.78) 

Stream Length in 2,000m 
Buffer, per 100 kilometers 

-0.16 (-13.20, 12.89) -9.53 (-29.57, 10.51) 4.39 (-10.13, 18.91) 

Notes. 95% CI = 95% confidence interval. 
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Supplemental Figure 1.1: Buffer zones for 15 Louisville, Kentucky noise collection sites. 
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Supplemental Table 1.1: R2 values from univariate 
analyses of individual variables with the LAeq16spring 
estimate.  

Variable R2 

Traffic Volume in 750m Buffer 0.4437 

Railroad Length in 2,500m Buffer 0.4062 

Distance to Airport 60-dB NEM contour  
(≤ 1 km or > 1 km) 

0.3925 

NDVI (spring) in 1,000m Buffer* 0.3531 

Building Coverage Area in 1,000m Buffer 0.2732 

Industrial Land Use Area in 1,000m Buffer 0.2601 

Stream Length in 2,000m Buffer 0.2106 

Residential Land Use Area in 100m Buffer 0.2100 

Commercial Land Use Area in 1,000m Buffer 0.1689 

Distance to Nearest Police Station 0.0722 

Distance to Nearest Hospital 0.0597 

Major Road Length in 1,500m Buffer 0.0469 

Distance to Nearest Fire Station 0.0113 

Public Land Use Area in 500m Buffer 0.0047 

*Variable was not chosen to remain in model upon 
implementing manual manipulation methods.  
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Supplemental Table 1.2: Correlation matrix of Pearson correlation coefficients. 

 Distance to Airport 
60-dB NEM 

contour 
(≤ 1 km or > 1 km) 

Major Road 
Length in 

1,500m Buffer 

Traffic 
Volume in 

750m Buffer 
NDVI (winter) 
in 150m Buffer 

NDVI (spring) 
in 150m Buffer 

Railroad 
Length in 

2,500m Buffer 

Stream Length 
in 2,000m 

Buffer 

Distance to Airport 
60-dB NEM 

contour  
(≤ 1 km or > 1 km) 

1       

Major Road 
Length in 1,500m 

Buffer 

Rho=-0.41 
p=0.13 

1      

Traffic Volume in 
750m Buffer 

Rho=-0.92 
p<0.01 

NA 1     

NDVI (winter) in 
150m Buffer 

Rho=0.51 
p=0.05 

Rho=-0.37 
p=0.18 

NA 1    

NDVI (spring) in 
150m Buffer 

Rho=0.41 
p=0.12 

NA 
Rho=-0.54 

p=0.04 
NA 1   

Railroad Length in 
2,500m Buffer 

Rho=-0.44 
p=0.10 

NA 
Rho=0.58 

p=0.02 
NA 

Rho=-0.40 
p=0.14 

1  

Stream Length 
in 2,000m Buffer 

Rho=0.62 
p=0.01 

Rho=-0.08 
p=0.77 

Rho=-0.48 
p=0.07 

Rho=0.56 
p=0.03 

Rho=0.29 
p=0.30 

Rho=-0.48 
p=0.07 

1 
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TRANSITION 1 

 

 

 The preceding chapter assessed geographic predictors of environmental 

noise and described the environmental noise distribution in Louisville, Kentucky. 

Particularly, we determined the distribution of spring environmental noise during 

the seven hours between 9:00 AM and 4:00 PM and the 17 hours between 4:00 

PM and 9:00 AM (not shown in Aim 1 manuscript).  

 Evidence exists to suggest that environmental noise exposure is 

associated with impaired cognition in children. In the following chapter, we utilize 

the 7-hour and 17-hour environmental noise distributions modeled in Aim 1 to 

determine the association of school-level environmental noise exposures during 

school hours and at-home hours with school-level performance on Math, 

Reading, Science, and Writing standardized tests among elementary schools in 

Louisville, Kentucky. 
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Introduction  

Cognitive ability consists of sensation and perception, motor skills and 

construction, attention, memory, executive functioning, processing speed, and 

language/verbal skills.85 Cognitive ability in childhood is an important predictor of 

later-life health, and lower childhood cognition is associated with increased odds 

of coronary heart disease,86 mental illness,87–90 brain pathologies,91,92 and health 

behaviors like alcohol intake,93 food consumption,94 and physical activity.94 

Standardized testing scores are often used as a proxy of cognition,95–98 and 

scores in childhood may be associated with later life social determinants of 

health, such as educational attainment and income.99,100 

However, the World Health Organization (WHO) recognizes environmental 

noise exposure attributing to 45,000 disability-adjusted life years (DALYs) for 

cognitive impairment in children,3 relying on evidence suggesting that 

environmental noise exposure is associated with significant declines in various 

cognitive skills in children.10,15,17,101 Associations have been observed between 

environmental noise exposure and standardized testing scores of primary and 

elementary school-children,19–22,102 but noise exposure is usually defined as 

source-specific noise, such as aircraft20,21,102 or road traffic noise.22 Few studies 

have assessed ambient or total environmental noise exposure in relation to early-

childhood standardized testing scores.19,102 Further, Pujol et al. observed that 

ambient noise exposure at home was negatively associated with children’s 

standardized testing scores,19 but investigation of at-home noise exposure in 

relation to testing scores has yet to be repeated. Moreover, Sharp et al. reported 
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on ambient environmental noise in relation to testing scores of children attending 

schools surrounding the 50 largest airports in the United States (US)102 and 

observed that aircraft noise exposure was more strongly associated with testing 

scores among non-disadvantaged children compared to disadvantaged 

children.102 However, analyses of total environmental noise at localized levels do 

not exist in the US, and effect modification by socioeconomic status on the 

relationship between total environmental noise and testing scores has not been 

done.  

Louisville, KY, which was included in the Sharp et al. analysis, presents as 

an urban US area in which to conduct such analysis. The purpose of this study 

was to determine the association of total environmental noise at school and at 

home with the distribution of standardized testing scores of elementary schools in 

Louisville, KY. Additionally, we assessed effect modification by race, family 

income, and income of surrounding neighborhoods of schools.  

 

Methods and Materials 

Exposure Data – 7-hour and 17-hour Environmental Noise 

Detailed descriptions of noise data are documented elsewhere (see Aim 1 

manuscript). Briefly, noise data were collected during April/May 2021 at 15 sites 

throughout Louisville. At every site, noise was recorded every 10 seconds for 24 

hours using a Class 1 noise meter (Type 2236, Brüel & Kjær, Naerum, Denmark) 

and averaged for two time-periods: 7-hour (9:00 AM and 4:00 PM) chosen to 

represent times when children would be in school and 17-hour (4:00 PM and 
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9:00 AM) when children would most likely be home. Both the 7-hour and 17-hour 

noise distributions in Louisville, KY were estimated using land use regression 

(LUR) models with several geographic characteristics of sites used as the 

predictors of noise (e.g., normalized difference vegetation index, distance to 

airport flyovers, annual average road traffic, length of streams). The 7-hour 

model resulted in a R2 of 0.70 and leave-one-out cross-validation (LOOCV) root 

mean square error (RMSE) of 6.47 decibels, and the 17-hour model resulted in a 

R2 of 0.59 and a LOOCV RMSE of 6.25 decibels, indicating that both models 

consisted of satisfactory fit and prediction error. Noise at each elementary school 

during the school hours was determined by extracting the 7-hour LUR-estimated 

noise distribution at the school address. To represent noise exposure of students 

at their residences during non-school hours, the average 17-hour noise was 

estimated for each ZIP code, and a school-level weighted average of ZIP-code 

level noise was calculated based on the proportion of students residing within 

each ZIP code.  

Outcome Data – School Percentage of Proficient or Distinguished Scores 

Data for standardized testing scores at elementary schools (N=91) were 

obtained from publicly available reports from Jefferson County Public Schools 

(JCPS).103 JCPS reports standardized testing scores at each school as the 

percentage of students who scored Novice, Advanced, Proficient, Distinguished, 

and Proficient or Distinguished for each subject.  

We retained the 2019 percentages of Proficient or Distinguished scores at 

each school for the state-standardized Math and Reading tests. From the school 
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profile webpages,104 we further retained the combined percentage of students 

who scored Proficient or Distinguished on Math or Reading tests (n=90; one 

school was closed by the time of data collection and no longer had a school 

profile webpage, and the combined percentage cannot be derived from individual 

subject percentages). Math and Reading tests are taken by all 3rd, 4th, and 5th 

graders, resulting in a total of 21,607 tests taken for Math and for Reading in, and 

42,980 tests taken for combined Math and Reading. Due to the large number of 

students taking Math and Reading tests, within school error was minimal. 

Therefore, Math, Reading and combined Math and Reading were the primary 

outcomes of this analysis. 

 We also retained the 2019 percentages of Proficient or Distinguished 

scores at each school for the state-standardized Science and Writing tests. 

Science tests are only taken by 4th graders, resulting in 7,154 tests taken, while 

Writing tests are only taken by 5th graders, resulting in 7,353 tests taken. Due to 

these tests being taken by fewer students, likely contributing to higher within 

school error, Science and Writing scores were analyzed as secondary outcomes.  

 To match the year during which exposure data was collected, we 

additionally retained data on 2021 percentages of Proficient or Distinguished 

scores at each school for all subjects. However, large portions of testing scores 

were missing for the 2021 testing year (n=63 for Math, n=89 for Reading, n=31 

for Science, and n=43 for Writing) and combined Math or Reading scores were 

not available for 2021 testing year. Due to missing data for 2021, subject scores 

represent 11,367 tests taken for Math, 14,713 for Reading, 2,092 for Science, 
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and 2,899 for Writing. Therefore, 2021 scores were used as outcomes for 

sensitivity analysis. Percent of Proficient or Distinguished scores between 2019 

and 2021 for each subject were strongly correlated (Supplemental Table 2.1). 

Covariate Data 

 A directed acyclic graph (Figure 2.1) was constructed to guide variable 

selection for regression modeling and to aid in the visualization of the school-

level relationship between environmental noise and standardized testing scores. 

Given the ecological nature of the current study, the DAG is not meant to imply 

causation, but rather display how the exposure, the outcome, and school 

characteristics may be related. According to the DAG, potential school-level 

confounders of the association between environmental noise and school-level 

standardized testing scores are student aptitude, student race, student family 

income, student absences, teacher quality, school resources, median income of 

the school ZIP code, and school safety events to enrollment ratio.  

Student-, teacher-, and school-related data for covariates and potential 

confounders were obtained from publicly available JCPS data. Student variables 

considered for model inclusion included aptitude variables, such as percentages 

of Gifted and Talented, Advanced Program, and mentally or physically disabled 

students; race/ethnicity variables, such as percentages of black, Hispanic (JCPS 

reports Hispanic as a race rather than an ethnicity), white, or other race, and 

limited English proficient students; percentage of male students; family income 

variables, such as percentages of free and reduced lunch participation and 

homeless students; and percentage of chronically absent students. Teacher 
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quality variables included the percent of full-time teachers with a master’s degree 

or higher and the average years of experience of full-time teachers. School 

variables included those related to resources – such as per pupil spending 

($USD) and receiving Title 1 grants (yes/no) – as well as safety events to 

enrollment ratio. Additionally, median income of the school ZIP code, obtained 

from the 2015-2019 American Community Survey 5-year estimates, was also 

considered for model inclusion.  

Statistical Analyses 

To better understand the school-level difference in noise exposures during 

school hours and at-home, we plotted the bivariate distributions of school-level 7- 

and 17-hour environmental noise exposures. School-level descriptive 

characteristics were assessed by tertiles of 7-hour and 17-hour environmental 

noise levels. To limit issues of multicollinearity, we selected individual variables 

to represent student aptitude, student race, student family income, teacher 

quality, and school resources. For student aptitude variables, the Advanced 

Program was strongly correlated with the percentage of Gifted and Talented 

students (Supplemental Table 2.2) and had a larger distribution than did the 

percentage of disabled students, so the percentage of Advanced Program 

students was chosen to represent student aptitude. Due to the majority student 

population most often being white, we selected the percentage of white students 

to represent the distribution of race/ethnicity of students. The student family 

income variables were strongly correlated with each other (Supplemental Table 

2.2), and the percentage free and reduced lunch participation was chosen to 
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represent student family income. Similarly, the teacher quality variables were 

strongly correlated with each other (Supplemental Table 2.2), and the average 

years of teacher experience was selected as the teacher quality variable. Finally, 

school-level per pupil spending was chosen to represent school resources since 

nearly all JCPS elementary schools were eligible for Title 1 grants regardless of 

whether a school was receiving grants. Therefore, the variables selected to be 

tested in modeling were the percentage of Advanced Program students, the 

percentage of white students, the percentage of students participating in free and 

reduced lunch, percentage of chronically absent students, average years of 

teacher experience, per pupil spending, median income of the school ZIP code, 

and school safety events to enrollment ratio. Correlation coefficients between all 

variables chosen for model inclusion are reported in Supplemental Table 2.3. 

To determine the association of louder school and at-home noise with 

testing scores, we utilized multivariable linear regression with continuous 7-hour 

or 17-hour environmental noise as the exposure and the percentage of Proficient 

or Distinguished scores for each subject as the outcome. The above covariates 

were added into models to determine how variables altered the strength of the 

association between noise and testing scores. Final models were achieved when 

further addition of covariates did not materially change the noise β coefficient. 

Performance of final models was determined by R2 values, and presence of 

multicollinearity was indicated by condition indexes greater than 30. When 

multicollinearity was present, the variables were centered on their mean where 

appropriate. 
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We assessed effect modification for several variables using the fully 

adjusted models. Based on our previous findings (see the Aim 3A Manuscript) 

and that of others’, variables of interest included the percentage of students with 

free and reduced lunch102 and percentage of white students. Additionally, we 

considered median income of school ZIP code as an effect modifier due to 

evidence that suggests that neighborhoods around high-scoring schools are 

more expensive than low-scoring schools,105 and that low-income students 

perform better in schools with middle- or high-income student populations 

compared to low-income students in schools with low-income student 

populations.105 Median income of school ZIP code was dichotomized by the 

median to create a low and high group. Tertiles were created for percentages of 

free and reduced lunch and white students based on their one-third percentiles. 

The significance of effect modification was determined by the Wald X2 p-value 

upon inclusion of noise*binary effect modifier, or the Likelihood Ratio Test p-

value with 2 degrees of freedom upon inclusion of noise*tertiary effect modifier. 

Due to the lack of temporality between the exposure and the outcome, we 

conducted a sensitivity analysis using 2021 testing scores as the outcome. As 

mentioned previously, the sample sizes for the 2021 scores were much lower 

than those of 2019. Additionally, changes in JCPS reporting between 2019 and 

2021 prevented the use of identical covariates in 2021 models. Therefore, we 

used two sets of covariates for the 2021 models: 1) many covariates from 2019 

(i.e., percentage Advanced Program students, percentage of chronically absent 

students, safety events to enrollment ratio, and average experience in years of 
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full-time teachers) to be comparable to the main results, but the data on 

percentages of white students and free and reduced lunch students from the 

2021 school year to reflect the 2021 testing population, and 2) covariates from 

2021 school data that are similar to 2019 covariates but not always identical (i.e., 

percentage of white students, percentage of free and reduced lunch students, 

percentage of Gifted and Talented students, percentage of chronically absent 

students, safety events to enrollment ratio, percentage of full-time teachers with a 

Master’s degree or higher), and 2019 data for per pupil spending and school ZIP 

code median income. All statistical analyses were performed using SAS Software 

(version 9.4). 

 

Results 

 Figure 2.1 displays the bivariate distributions of school-level 7- and 17-

hour environmental noise exposures. Of the 91 schools, nine had louder 17-hour 

environmental noise exposures than 7-hour exposures by five decibels or more, 

whereas four schools had louder 7-hour exposures than 17-hour exposure by 

five decibels or more. Descriptive student-, teacher-, and school-related 

characteristics of the 91 elementary schools by tertiles of 7-hour and 17-hour 

environmental noise are displayed in Table 2.1. Schools with louder 7-hour and 

17-hour noise had lower percentages of Proficient or Distinguished testing scores 

for all subjects in the 2019. Schools with louder noise had lower percentages of 

Gifted and Talented (17-hour only) and Advanced Program students, higher 

percentage of disabled students, lower percentages of white and higher 
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percentages of black or other race, lower family income (i.e., had higher 

percentages of free and reduced lunch participation and homelessness), and 

higher chronic absentees. Full-time teachers at schools with louder noise were 

less likely to have a Master’s degree or higher and had fewer years of 

experience. Schools with louder noise spent more money per student, were 

located in ZIP codes with lower median incomes, and had higher safety events to 

enrollment ratios. School-level percentages of male or Hispanic students did not 

vary meaningfully across noise tertiles. Schools with louder 7-hour noise had 

lower percentages of limited English proficient students, but schools with louder 

17-hour had higher percentages of limited English proficient students. Further, 

there was no meaningful variation in reception of Title 1 grants across 7-hour 

noise tertiles, but schools with louder 17-hour noise were more likely to be 

receiving Title 1 grants.  

 Linear regression modeling results for the association between 7-hour and 

17-hour environmental noise with the percent of Proficient or Distinguished 2019 

scores in Math, Reading, and combined Math or Reading are shown in Table 2.2. 

In crude models, a one-decibel increase in 7-hour noise was nonsignificantly 

associated with lower percentages of Proficient or Distinguished scores in Math 

(β=-1.10, 95% CI: -2.56, 0.36), Reading (β=-0.92, 95% CI: -2.33,0.49), combined 

Math or Reading (β=-1.20, 95% CI: -2.55, 0.15), scores by 1.10, 0.92, and 1.20, 

percentage points, respectively. Variables retained in fully adjusted models were 

the percentage of students that are of white race, percentage of students who 

participate in free and reduced lunch, percentage of students who are in 
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Advanced Placement classes, percentage of chronically absent students, median 

income of the ZIP in which the school is located, safety events to enrollment 

ratio, average experience in years of full-time teachers, and per pupil spending. 

After all adjustments, one-decibel louder 7-hour noise was not associated with 

percentages of Proficient or Distinguished scores in Math (β=-0.20, 95% CI: -

0.83, 0.43), Reading (β=0.03, 95% CI: -0.48, 0.53), or combined Math or 

Reading (β=-0.20, 95% CI: -0.73, 0.33). Similar null associations were observed 

between 17-hour noise and percentages of Proficient or Distinguished scores in 

Math (β=-0.24, 95% CI: -1.31, 0.82), Reading (β=0.29, 95% CI: -0.57, 0.1.14), 

and combine Math or Reading (β=-0.20, 95% CI: -1.10, 0.69). R2 values for Math, 

Reading, and combined Math or Reading were 0.83, 0.89, and 0.87 for 7-hour 

final models, and 0.85, 0.89, and 0.86 for 17-hour models, indicating that the 

models were explaining most of the variance in the testing score outcomes. 

Condition index values for fully adjusted models were 102.7 for 7-hour noise with 

all three outcomes, and 158.1 for 17-hour noise with all three outcomes, 

indicating that multicollinearity was present. However, in all models, variance 

decomposition proportions indicated that the multicollinearity was driven by the 

noise exposure variable and the model intercept, not between covariates. As 

such, noise exposure variables were centered on their mean values, and all 

results presented represent models in which multicollinearity was eliminated. 

Using the fully adjusted model, results of effect modification analysis of 

Math, Reading, and combined Math or Reading are presented in Table 2.3 

Among the schools with the lowest free and reduced lunch participation, louder 
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7-hour noise by one decibel was significantly associated with lower percentages 

of Proficient or Distinguished Math scores by 1.22 percentage points (low free 

and reduced lunch participation, β=-1.22, 95% CI: -2.25, -0.19), which varied 

significantly from the null associations observed among schools with moderate or 

high free and reduced lunch participation (moderate β=0.11, 95% CI: -1.08, 1.31; 

high β=0.84, 95% CI: -0.40, 2.07; LRT p-value=0.040). The percentage of white 

students was a significant effect modifier of the association between 17-hour 

noise and the percentage of Proficient or Distinguished Reading scores (LRT p-

value=0.041), but the associations were generally null across schools with low, 

moderate, and higher percentages of white students (low β=-1.02, 95% CI: -2.18, 

0.15; moderate β=0.79, 95% CI: -0.38, 1.97; high β=-0.34, 95% CI: -1.31, 0.63). 

In the fully adjusted models, one-decibel louder 7-hour noise was not 

associated with Science nor Writing scores (Science β=-0.02, 95% CI: -0.67, 

0.63; Science R2=0.80; Writing β=0.07, 95% CI: -0.81, 0.94; Writing R2=0.73; 

Supplemental Table 2.4). Similarly, one-decibel louder 17-hour noise was not 

associated with Writing but was significantly associated with higher percentages 

of Proficient or Distinguished scores in Science (Science β=1.30, 95% CI: 0.23, 

2.37; Science R2=0.81; Writing β=-0.15, 95% CI: -1.63, 1.33; Writing R2=0.73; 

Supplemental Table 2.4). Additionally, significant effect modification of the 

association between 7-hour noise and percentage of Proficient or Distinguished 

Writing scores was observed by the median income of school ZIP codes, but the 

associations were null for lower and higher school ZIP-code level median income 
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(low β=0.88, 95% CI: -0.15, 1.91; high β=-1.28, 95% CI: -2.69, 0.14; X2 p-

value=0.014; Supplemental Table 2.5).  

 When considering the sensitivity analysis using the 2021 testing scores, 

regardless of the set of covariates used for models (i.e., 2019 covariates or 2021 

covariates), associations between 7-hour noise and 17-hour noise with testing 

scores were generally null and comparable to the main results, indicating that the 

effect estimates were not sensitive to variable selection. However, the 

association between 17-hour noise and percentage of Proficient or Distinguished 

scores in Science was comparable to the main results when 2019 covariates 

were used, but were null when 2021 covariates were used (2019 covariate model 

β=1.57, 95% CI: 0.08, 3.05; 2021 covariate model β=1.65, 95% CI: -0.19, 3.49; 

Supplemental Table 2.6), indicating that the effect estimate was sensitive to the 

included confounders.  

 

Discussion  

 The current study examined the association of school-level total 

environmental noise during school-time hours and during the non-school time 

hours with school-level standardized testing scores among public elementary 

schools in Louisville, Kentucky. After adjusting for several confounders, we 

observed no association between neither 7-hour nor 17-hour environmental 

noise with school-level standardized testing scores of Math, Reading, combined 

Math or Reading, or Writing. Furthermore, schools with lower percentages of 

students participating in free and reduced lunch had stronger inverse 
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associations between 7-hour noise and Math scores than schools with moderate 

or high percentages of students participating in free and reduced lunch. Similarly, 

schools with lower percentages of white students had stronger inverse 

associations between 17-hour noise and Reading scores than schools with 

moderate or high percentages of white students, and schools located in ZIP 

codes with higher median incomes had strong associations between 17-hour 

noise and Writing scores than schools in lower income ZIP codes.  

The null findings in the current study is congruent with the previous null 

findings of the association between individual-level aircraft noise and 

standardized testing scores of 11,000 6th graders20 and between reduced aircraft 

noise and elementary school-level verbal test failure rates.21 With the use of total 

environmental noise in the current study, the null findings may be due in part to 

the noise exposure levels used, which were estimated from land use regression 

models built from a small sample of 15 sites. Although this small sample may 

have negatively impacted the reliability and validity of noise estimates, samples 

had acceptable levels of intra-class correlation and models resulted in acceptable 

levels of prediction error (see Aim 1 manuscript). Additionally, all 15 sampling 

sites were located in residential areas and noise estimates most closely 

represent areas of similar land use, which may not accurately reflect noise at 

school locations that may not be located in residential areas. Further, the lack of 

significance may be partially attributed to the presence of multicollinearity 

between covariates in models, as multicollinearity can inflate standard errors of 

effect estimates and therefore inflate p-values and widen confidence intervals.  
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The null results of this study are not congruent with the Sharp et al. 

observation of a significant 3-4 percentile decrease in state-standardized test 

ranking for a 10-decibel increase in total environmental noise.102 However, 

percentile-rankings of schools between states ignores the inherent rigorousness 

of state-standardized tests, and a 3-4 percentile decrease in ranking says little 

about student competency. Pujol et al., who reported on 586 children in 31 

schools and mutually adjusted for school-level noise and individual-level at-home 

noise, observed a significant inverse association between school-level ambient 

environmental noise with French scores by 0.48 points and Math scores by 0.44 

points, but null associations between at-home noise with French and Math 

scores.19 However, school-level noise may not have been representative of noise 

exposure at schools, as school-level noise was representative of 6:00 AM to 6:00 

PM, which includes times during which children would not be in school. 

We observed that school racial composition modified the association of 7-

hour school noise with Math scores, and school percentages of students 

participating in free and reduced lunch modified the association of 17-hour at-

home noise with Reading scores. These findings may be due to chance, as the 

sample size in each category was rather small (n=31 or 30 for the three 

categories of each variable). However, black children and children living in 

poverty have been observed to experience higher levels of chronic stress than 

white children and children from families with higher incomes.106 It may be 

possible that the effects of noise on stress and allostatic load107–117 may be more 

impactful for children with lower stress levels, whereas the impacts of noise on 
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stress may not be meaningful for children with high levels of stress; certain racial 

and income groups, such as non-white and lower-income populations, 

disproportionately experience additional stressors compared to other racial and 

income groups, like white and higher-income populations.118,119 However, further 

work is needed to better understand the potential of modified associations 

between noise and testing scores for schools with varying racial and 

socioeconomic distributions of student populations. 

Limitations and Strengths  

 The current study has some limitations that should be considered. First, 

the study was ecological in nature, and individual-level noise exposures and 

testing scores were unknown. Therefore, findings should not be interpreted as 

individual-level associations. Additionally, there lacked temporality between the 

2021 noise exposure estimates and 2019 testing scores outcome, and analyses 

of 2021 noise exposure with 2021 testing scores are cross-sectional. As such, 

causation cannot be inferred from the findings. Further, this study consisted of a 

sample of 91 elementary schools, which limits the power associated with 

calculating effect estimates and may contribute to the largely null results 

observed in this study.  

The outcomes and exposures included in this analysis may have 

consisted of measurement error. All students in 3rd through 5th grades take Math 

and Reading tests, so the number of these tests taken were relatively large, 

yielding stable distributions of testing scores within schools. On the contrary, 

Science tests are only taken by 4th graders and Writing tests by only 5th graders, 
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and the number of tests taken for these subjects is rather smaller, such that 

distributions of testing scores may not be stable enough to accurately reflect 

Science or Writing scores for the school, as shown by the lower R2 values of the 

Science and Writing models compared to the Math and Reading models. 

Inherent limitations of noise estimates, such as a non-concurrent collection and 

the small sample of 15 collection sites, may have contributed to exposure 

measurement error, and findings of the current study may be due to chance. 

Further, the school-level 17-hour at-home noise exposure was determined by a 

weighted average of ZIP-code level environmental noise based on the full 

enrollment (K – 5) distribution of students residing in each ZIP code, which may 

not be representative of test-taking students, and therefore limits the 

interpretation of the effect estimates, especially for Science and Writing models. 

Hence, measurement error may erroneously contribute to the significant findings 

of the association between 17-hour at-home noise with Science testing scores 

and effect modification by the median income of school ZIP code on the 

association between 17-hour noise with Writing scores, and findings should be 

interpreted with caution. Also, it is possible that all variables, which are 

representative of the full enrollment, may not be representative of student 

enrollment in test-taking grades. As such, results should be interpreted at the 

school-level rather than at specific grade-levels. 

 Despite these limitations, the study has several strengths. Rather than 

source-specific noise, we utilized total environmental noise as the exposure, 

which may be more important to testing scores of elementary school children, as 
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Sharp et al. observed that total noise exposure was more strongly associated 

with state-rank of standardized testing scores than aircraft noise exposure 

alone.102 Further, we individually assessed the associations of school-hour 

environmental noise and at-home environmental noise with standardized testing 

scores of schools that allowed for noise estimates based on the times in which 

children would likely be located at either location. Similarly, the land use 

regression models utilized to determine noise exposure levels were built from 

noise collections that occurred during April or May, which are representative of 

the season in which standardized tests are taken. Finally, although there lacked 

temporality between the noise exposure and testing scores outcome, the 

distribution of 2019 and 2021 scores were highly correlated, and the sensitivity 

analysis indicated that the associations of noise levels were not sensitive to the 

year in which tests were taken.  

 

Conclusion 

The current study generally observed no associations between school-

level total environmental noise, either during school hours or at home, and the 

percentage of students who scored Proficient or Distinguished on standardized 

testing scores in varying subjects. However, certain associations of noise 

between testing scores did vary by racial composition of the school, the 

percentage of the students that participate in free and reduced lunch, and the 

median income of the school. To gain a better understanding of the relationship 
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between environmental noise exposure and standardized testing scores of 

elementary school children, individual-level analyses are needed.  
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Figure 2.1: Bivariate distribution and absolute difference of 17-hour (4:00 PM – 9:00 AM) and 7-hour (9:00 AM – 
4:00 PM) noise of schools. 
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Table 2.1: Descriptive Characteristics of Elementary Schools by Noise Exposure Levels (N=91). 

 Average 7-Hour School-time (9:00 AM – 4:00 PM)  

Noise of Schools 

Average 17-Hour (4:00 PM – 9:00 AM) Noise of Schools  

(Weighted by ZIP Code Residence of Students) 

Low: 

51.75 – 54.14 dB 
(n=31) 

Moderate: 

54.20 – 56.10 dB 
(n=30) 

High: 

56.26 – 64.93 dB 
(n=30) 

Low: 

52.22 – 55.09 dB 
(n=31) 

Moderate: 

55.17 – 57.29 dB 
(n=29) 

High: 

57.33 – 62.15 dB 
(n=31) 

Percentage of Proficient or 
Distinguished Scores 

      

  Math 2019 40.5 (21.4) 41.2 (19.2) 32.1 (19.3) 51.3 (18.1) 41.5 (16.4) 21.4 (13.1) 

  Reading 2019 46.3 (19.6) 47.1 (17.7) 38.0 (20.4) 56.3 (15.9) 48.9 (16.3) 26.5 (12.1) 

  Science 2019 20.9 [7.8,32.9] 21.4 [10.5,41.7] 13.9 [6.5,29.1] 32.1 [18.6,50.6] 24.6 [13.3,41.1] 8.1 [4.5,11.5] 

  Writing 2019 34.9 [20.6,49.4] 35.2 [19.0,52.3] 21.8 [12.9,48.2] 46.7 [34.9,63.4] 36.9 [21.4,53.1] 16.4 [8.8,29.3] 

Student Variables, 
Percentage of Students 

      

  Aptitude       

Gifted and Talented 9.3 [5.5,13.8] 11.5 [7.0,18.0] 9.6 [5.0,10.9] 11.8 [9.2,16.3] 9.9 [5.0,15.0] 7.0 [4.3,10.4] 

Advanced Placement 3.9 [2.2,7.3] 5.0 [2.7,10.4] 2.6 [1.1,4.6] 7.3 [3.2,12.4] 3.9 [1.8,10.0] 2.3 [1.1,3.7] 

Disability 12.6 (3.1) 12.9 (3.5) 14.9 (4.5) 12.3 (2.8) 12.3 (3.8) 15.7 (3.9) 

  Race & Ethnicity       

White race 44.9 [24.5,59.5] 46.1 [29.4,59.2] 27.3 [15.8,46.9] 59.5 [47.6,64.7] 44.9 [31.0,51.1] 15.8 [7.7,27.1] 

Black race 26.1 [13.9,42.0] 27.4 [19.0,35.8] 43.8 [34.2,62.5] 18.7 [12.5,22.2] 32.7 [26.3,41.4] 58.0 [44.4,79.4] 

Hispanic “race”* 12.7 [6.0,21.1] 8.1 [6.4,20.6] 7.2 [4.2,15.6] 9.0 [6.0,17.6] 7.2 [4.6,22.2] 10.2 [4.5,20.6] 

Other race (2 or more, 
AAPI, Native) 

11.8 [7.1,14.7] 10.0 [7.9,14.2] 9.1 [6.6,13.3] 13.3 [9.6,15.2] 10.3 [8.0,12.9] 7.1 [5.4,11.9] 

Limited English 
Proficient  

17.6 [6.9,28.3] 8.3 [4.3,27.8] 7.7 [3.0,22.1] 9.3 [5.0,21.3] 9.9 [3.1,28.2] 16.8 [3.1,38.2] 

  Male 52.5 (2.5) 50.8 (3.4) 50.1 (3.4) 51.5 (2.8) 50.5 (4.6) 51.4 (2.1) 
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Table 2.1: Descriptive Characteristics of Elementary Schools by Noise Exposure Levels (N=91). 

 Average 7-Hour School-time (9:00 AM – 4:00 PM)  

Noise of Schools 

Average 17-Hour (4:00 PM – 9:00 AM) Noise of Schools  

(Weighted by ZIP Code Residence of Students) 

Low: 

51.75 – 54.14 dB 
(n=31) 

Moderate: 

54.20 – 56.10 dB 
(n=30) 

High: 

56.26 – 64.93 dB 
(n=30) 

Low: 

52.22 – 55.09 dB 
(n=31) 

Moderate: 

55.17 – 57.29 dB 
(n=29) 

High: 

57.33 – 62.15 dB 
(n=31) 

  Family Income       

Free and Reduced 
Lunch 

73.5 [57.5,84.0] 69.6 [45.9,80.0] 83.6 [50.2,87.6] 58.2 [35.0,70.2] 68.7 [46.5,80.1] 85.7 [81.0,89.2] 

Homeless 4.3 [2.8,9.7] 5.3 [3.4,6.8] 7.3 [3.9,12.4] 3.9 [1.6,6.2] 4.3 [2.8,6.4] 10.8 [7.2,13.4] 

  Chronically Absent 15.6 (6.6) 15.2 (6.4) 18.1 (8.8) 12.8 (6.6) 14.5 (6.8) 21.4 (5.9) 

Full Time Teacher Quality       

  Percent with Master’s 
  Degree or Higher 

83.7 [78.8,92.1] 80.7 [71.9,92.6] 78.4 [63.6,88.2] 89.3 [81.5,92.9] 81.0 [76.7,90.6] 74.1 [59.4,82.1] 

  Average Years of 
  Experience  

11.6 (3.4) 11.7 (2.8) 9.8 (3.4) 12.7 (2.9) 11.7 (3.4) 8.7 (2.3) 

School Variables       

  Resources       

Per Pupil Spending,    
thousands ($USD) 

15.28 
[14.42,17.13] 

15.41 
[14.69,16.00] 

15.82 
[14.55,17.91] 

14.61 
[14.01,15.63] 

15.28  
[14.73,16.39] 

17.46  
[15.48,18.45] 

Title 1 School 
Receiving Grants, %(n) 

67.7 (21) 63.3 (19) 66.7 (20) 41.9 (13) 58.6 (17) 96.8 (30) 

  School ZIP Code Median  
  Income, thousands $USD  

31.85 
[30.44,37.71] 

33.59 
[30.74,41.42] 

25.85 
[21.54,36.75] 

37.29 
[31.22,41.42] 

32.77  
[29.37,37.96] 

25.85  
[21.46,30.75] 

  Safety Events to  
  Enrollment Ratio 

0.2 [0.0,0.3] 0.2 [0.1,0.4] 0.3 [0.1,0.9] 0.1 [0.0,0.3] 0.2 [0.1,0.4] 0.5 [0.2,1.0] 

Values are means(SD) or medians[IQR] for continuous variables; %(n) for categorical variables. 

*JCPS reports Hispanic or Latino as a race rather than as an ethnicity distinct from race.  



 
 

8
0

 

Table 2.2: Beta coefficients for a one-decibel increase in 7-hour and 17-hour noise on the school-level 2019 percent of proficient or 
distinguished scores in Math, Reading, and combined in Math or Reading in various models (n=91 schools). 

 Math 
(21,607 tests taken) 

Reading 
(21,607 tests taken) 

Combined Math or Reading 
(N=90; 42,980 tests taken)* 

Model R2 
β Coefficient 

(95% CI) p-value R2 
β Coefficient 

(95% CI) p-value R2 
β Coefficient 

(95% CI) p-value 

7-Hour Noise (9:00 AM – 4:00 PM) 

Crude 0.02 -1.10 (-2.56, 0.36) 0.139 0.02 -0.92 (-2.33, 0.49) 0.201 0.03 -1.20 (-2.55, 0.15) 0.083 

Model 1 0.52 -0.01 (-1.07, 1.04) 0.980 0.56 0.18 (-0.79, 1.15) 0.714 0.84 -0.09 (-1.04, 0.86) 0.857 

Model 2 0.80 -0.31 (-0.99, 0.36) 0.365 0.85 -0.11 (-0.67, 0.45) 0.695 0.87 -0.33 (-0.89, 0.23) 0.243 

Model 3 0.84 -0.16 (-0.78, 0.45) 0.602 0.89 -0.01 (-0.48, 0.48) 0.996 0.87 -0.21 (-0.72, 0.30) 0.416 

Model 4 0.84 -0.29 (-0.92, 0.34) 0.371 0.89 -0.05 (-0.55, 0.44) 0.833 0.87 -0.27 (-0.79, 0.26) 0.322 

Model 5 0.85 -0.20 (-0.83, 0.43) 0.528 0.90 0.03 (-0.48, 0.53) 0.921 0.88 -0.20 (-0.73, 0.33) 0.455 

17-Hour Noise (4:00 PM – 9:00 AM; weighted by proportion of student ZIP residence from each school) 

Crude 0.42 -4.94 (-6.14, -3.75) <0.001 0.44 -4.87 (-6.00, -3.73) <0.001 0.45 -4.81 (-5.91, -3.70) <0.001 

Model 1 0.54 -1.89 (-3.49, -0.28) 0.021 0.58 -1.68 (-3.16, -0.20) 0.026 0.58 -1.89 (-3.34, -0.44) 0.011 

Model 2 0.80 -0.31 (-1.41, 0.79) 0.585 0.85 -0.12 (-1.03, 0.79) 0.797 0.84 -0.45 (-1.36, 0.46) 0.332 

Model 3 0.84 0.26 (-0.77, 1.28) 0.624 0.89 0.40 (-0.40, 1.19) 0.326 0.87 -0.02 (-0.87, 0.83) 0.961 

Model 4 0.84 0.03 (-1.05, 1.10) 0.960 0.89 0.33 (-0.52, 1.17) 0.447 0.87 -0.11 (-1.01, 0.79) 0.810 

Model 5 0.85 -0.24 (-1.31, 0.82) 0.655 0.90 0.29 (-0.57, 1.14) 0.511 0.88 -0.20 (-1.10, 0.69) 0.653 

The Crude model includes only noise.  
Model 1 includes the Crude model plus percentage of students that are of white race.  
Model 2 includes Model 1 plus percentage of students who participate in free and reduced lunch. 
Model 3 includes Model 2 plus percentage of students who are in Advanced Placement classes and percentage of chronically absent students. 
Model 4 includes Model 3 plus median income of the ZIP in which the school is located.  
Model 5 includes Model 4 plus safety events to enrollment ratio, average experience in years of full-time teachers, and per pupil spending. 
*No data available for one school. 
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Table 2.3: Effect modification of the association of a one-decibel increase in 7-hour or 17-hour noise and the school-level 2019 percent of 
proficient of distinguished scores in Math, Reading, and combined in Math or Reading using model 5.* 

 
Math 

(21,607 tests taken) 
Reading 

(21,607 tests taken) 
Combined Math or Reading 
(N=90; 42,980 tests taken)+ 

Effect Modifier 
β Coefficient 

(95% CI) 
X2 or LRT 
p-value 

β Coefficient 
(95% CI) 

X2 or LRT 
p-value 

β Coefficient 
(95% CI) 

X2 or LRT  
p-value 

7-Hour Noise (9:00 AM – 4:00 PM) 
Median Income of School ZIP Code  0.099  0.711  0.332 

< $31, 854.00 (n=45) 0.22 (-0.53, 0.98)  0.13 (-0.48, 0.74)  0.04 (-0.61, 0.68)  
≥ $31, 854.00 (n=46) -0.85 (-1.89, 0.19)  -0.07 (-0.91, 0.78)  -0.49 (-1.37, 0.38)  

Percentage of Students with Free and 
Reduced Lunch 

 0.040  0.404  0.089 

13.40% - 61.20% (n=31) -1.22 (-2.25, -0.19)  -0.40 (-1.23, 0.43)  -0.95 (-1.83, -0.07)  
64.40% - 81.30% (n=30) 0.11 (-1.08, 1.31)  0.03 (-0.93, 0.99)  0.04 (-0.98, 1.06)  
81.40% - 98.40% (n=30) 0.84 (-0.40, 2.07)  0.49 (-0.50, 1.49)  0.58 (-0.50, 1.67)  

Percentage of Students that are White  0.406  0.621  0.090 
2.15% - 27.43% (n=31) 0.23 (-0.66, 1.12)  0.16 (-0.57, 0.89)  0.45 (-0.28, 1.19)  
27.96% - 49.88% (n=30) -0.15 (-1.19, 0.89)  0.26 (-0.59, 1.11)  -0.65 (-1.50, 0.20)  
50.21% - 78.48% (n=30) -0.17 (-0.93, 0.58)  -0.05 (-0.67, 0.57)  0.07 (-0.55, 0.69)  

17-Hour Noise (4:00 PM – 9:00 AM; weighted by proportion of student ZIP residence from each school) 
Median Income of School ZIP Code  0.621  0.655  0.637 

< $31, 854.00 (n=45) 0.07 (-1.11, 1.25)  0.21 (-0.69, 1.19)  0.02 (-0.98, 1.02)  
≥ $31, 854.00 (n=46) -0.31 (-1.72, 1.09)  0.53 (-0.59, 1.64)  -0.28 (-1.45, 0.89)  

Percentage of Students with Free and 
Reduced Lunch 

 0.643  0.671  0.853 

13.40% - 61.20% (n=31) -1.34 (-3.47, 0.99)  0.86 (-0.89, 2.61)  -0.34 (-2.24, 1.55)  
64.40% - 81.30% (n=30) -0.26 (-1.75, 1.24)  0.03 (-1.14, 1.21)  -0.50 (-1.77, 0.77)  
81.40% - 98.40% (n=30) 0.02 (-1.70, 1.73)  -0.02 (-1.37, 1.33)  -0.02 (-1.52, 1.48)  

Percentage of Students that are White  0.238  0.041  0.676 
2.15% - 27.43% (n=31) -1.12 (-2.57, 0.34)  -1.02 (-2.18, 0.15)  -0.21 (-1.48, 1.05)  
27.96% - 49.88% (n=30) 0.55 (-0.92, 2.01)  0.79 (-0.38, 1.97)  -0.67 (-1.91, 0.56)  
50.21% - 78.48% (n=30) -0.77 (-1.99, 0.45)  -0.34 (-1.31, 0.63)  -0.06 (-1.10, 0.98)  

*Model covariates include percentage of students that are of white race, percentage of students who participate in free and reduced lunch, 
percentage of students who are in Advanced Placement classes, percentage of chronically absent students, median income of the ZIP in which 
the school is located, safety events to enrollment ratio, average experience in years of full-time teachers, and per pupil spending.  
+No data available for one school. 
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Supplemental Table 2.1: Spearman correlation coefficients of percentage of proficient or distinguished testing scores between subject within the 
same year and between years within the same subject. 

 2019 2021 

Math 
(N=91) 

Reading 
(N=91) 

Science 
(N=91) 

Writing 
(N=91) 

Math 
(n=63) 

Reading 
(n=89) 

Science 
(n=31) 

Writing 
(n=43) 

2
0
1
9

 

Math (N=91) 1        

Reading (N=91) 0.95 1       

Science (N=91) 0.89 0.93 1      

Writing (N=91) 0.82 0.84 0.78 1     

2
0
2
1

 

Math (n=63) 0.87    1    

Reading (n=89)  0.88   0.97 1   

Science (n=31)   0.79  0.89 0.92 1  

Writing (n=43)    0.67 0.59 0.69 0.40 1 
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Supplemental Table 2.2: Spearman correlation coefficients for variables within categories of variables representing a similar construct. 

 Student Aptitude Student Family Income Full Time Teacher Quality 

Construct 
Construct 
Variables 

Percent 
Gifted and 
Talented 

Percent 
Advanced 
Program 

Percent 
Disabled 

Percent Free 
and Reduced 

Lunch 
Participation 

Percent 
Homeless 

Average 
Years of 

Experience 

Percent with 
Master’s 
degree or 

Higher 

Student 
Aptitude 

Percent Gifted 
and Talented 

1       

Percent 
Advanced 

Program 
0.67 1      

Percent Disabled -0.20 -0.33 1     

Student 
Family 
Income 

Percent Free and 
Reduced Lunch 

Participation 
   1    

Percent 
Homeless 

   0.84 1   

Full Time 
Teacher 
Quality 

Average Years of 
Experience 

     1  

Percent with 
Master’s degree 

or Higher 
     0.71 1 
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Supplemental Table 2.3: Spearman correlation coefficients between variables chosen for model inclusion. 

 

Percent 
Advanced 
Program 
Students 

Percent 
White 

Students 

Percent 
Free and 
Reduced 

Lunch 
Student 

Participants 

Percent 
Chronically 

Absent 
Students 

Average 
Years of 

Experience 
of Full Time 
Teachers 

Per Pupil 
Spending 

School ZIP 
Code 

Median 
Income 

Safety 
Events to 

Enrollment 
Ratio 

Percent Advanced 
Program Students 

1        

Percent White 
Students 

0.61 1       

Percent Free and 
Reduced Lunch 

Student Participants 
-0.64 -0.71 1      

Percent Chronically 
Absent Students 

-0.53 -0.50 0.80 1     

Per Pupil Spending 0.54 0.54 -0.72 -0.64 1    

Average Years of 
Experience of Full 

Time Teachers 
-0.36 -0.48 0.66 0.62 -0.42 1   

School ZIP Code 
Median Income 

0.33 0.53 -0.45 -0.43 0.34 -0.32 1  

Safety Events to 
Enrollment Ratio 

-0.37 -0.49 0.56 0.61 -0.40 0.55 -0.38 1 
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Supplemental Table 2.4: Beta coefficients for a one-decibel increase in 7-hour and 17-hour noise on the school-level 2019 percent of proficient 
or distinguished scores in Science and Writing in various models (n=91 schools). 

 
Science 

(7,154 tests taken) 
Writing 

(7,353 tests taken) 

Model R2 β Coefficient (95% CI) p-value R2 β Coefficient (95% CI) p-value 

7-Hour Noise (9:00 AM – 4:00 PM) 

Crude 0.01 -0.70 (-2.02, 0.62) 0.298 0.01 -0.62 (-2.14, 0.91) 0.428 

Model 1 0.49 0.26 (-0.71, 1.23) 0.596 0.35 0.33 (-0.93, 1.58) 0.611 

Model 2 0.79 -0.01 (-0.64, 0.62) 0.970 0.70 -0.02 (-0.87, 0.84) 0.969 

Model 3 0.80 0.01 (-0.61, 0.62) 0.993 0.72 0.12 (-0.71, 0.95) 0.776 

Model 4 0.80 -0.05 (-0.69, 0.59) 0.865 0.73 0.03 (-0.83, 0.89) 0.948 

Model 5 0.80 -0.02 (-0.67, 0.63) 0.958 0.73 0.07 (-0.81, 0.94) 0.880 

17-Hour Noise (4:00 PM – 9:00 AM; weighted by proportion of student ZIP residence from each school) 

Crude 0.31 -3.83 (-5.00, -2.66) <0.001 0.32 -4.47 (-5.80, -3.13) <0.001 

Model 1 0.49 -0.53 (-2.05, 0.99) 0.495 0.38 -2.20 (-4.12, -0.27) 0.025 

Model 2 0.80 1.02 (0.02, 2.02) 0.046 0.70 -0.38 (-1.76, 1.01) 0.593 

Model 3 0.81 1.27 (0.29, 2.26) 0.011 0.72 0.06 (-1.32, 1.43) 0.937 

Model 4 0.81 1.30 (0.25. 2.34) 0.015 0.73 -0.17 (-1.62, 1.29) 0.819 

Model 5 0.81 1.30 (0.23, 2.37) 0.017 0.73 -0.15 (-1.63, 1.33) 0.840 

The Crude model includes only noise.  
Model 1 includes the Crude model plus percentage of students that are of white race.  
Model 2 includes Model 1 plus percentage of students who participate in free and reduced lunch. 
Model 3 includes Model 2 plus percentage of students who are in Advanced Placement classes and percentage of chronically absent students. 
Model 4 includes Model 3 plus median income of the ZIP in which the school is located.  
Model 5 includes Model 4 plus safety events to enrollment ratio, average experience in years of full-time teachers, and per pupil spending. 
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Supplemental Table 2.5: Effect modification of the association of a one-decibel increase in 7-hour or 17-hour noise and the school-level 2019 
Percent of Proficient of Distinguished Scores in Science and Writing using Model 5.* 

 
Science 

(7,154 tests taken) 
Writing 

(7,353 tests taken) 

Effect Modifier 
β Coefficient 

(95% CI) 
X2 or LRT 
p-value 

β Coefficient 
(95% CI) 

X2 or LRT 
p-value 

7-Hour Noise (9:00 AM – 4:00 PM) 

Median Income of School ZIP Code  0.722  0.014 

< $31, 854.00 (n=45) 0.09 (-0.70, 0.89)  0.88 (-0.15, 1.91)  

≥ $31, 854.00 (n=46) -0.15 (-1.24, 0.93)  -1.28 (-2.69, 0.14)  

Percentage of Students with Free and Reduced Lunch  0.063  0.945 

13.40% - 61.20% (n=31) -1.03 (-2.01, -0.04)  -0.23 (-1.65, 1.20)  

64.40% - 81.30% (n=30) 0.10 (-1.05, 1.24)  0.11 (-1.54, 1.76)  

81.40% - 98.40% (n=30) 0.81 (-0.37, 1.99)  0.08 (-1.63, 1.78)  

Percentage of Students that are White  0.816  0.794 

2.15% - 27.43% (n=31) 0.20 (-0.74, 1.15)  0.42 (-0.85, 1.69)  

27.96% - 49.88% (n=30) 0.08 (-1.02, 1.18)  -0.08 (-1.56, 1.40)  

50.21% - 78.48% (n=30) 0.01 (-0.80, 0.80)  0.17 (-0.91, 1.24)  

17-Hour Noise (4:00 PM – 9:00 AM; weighted by proportion of student ZIP residence from each school) 

Median Income of School ZIP Code  0.858  0.834 

< $31, 854.00 (n=45) 1.23 (0.05, 2.41)  -0.06 (-1.69, 1.58)  

≥ $31, 854.00 (n=46) 1.38 (-0.03, 2.78)  0.17 (-1.78, 2.11)  

Percentage of Students with Free and Reduced Lunch  0.512  0.700 

13.40% - 61.20% (n=31) 0.70 (-1.38, 2.77)  0.02 (-2.95, 2.99)  

64.40% - 81.30% (n=30) 0.80 (-0.59, 2.19)  -0.10 (-2.09, 1.90)  

81.40% - 98.40% (n=30) 1.77 (0.17, 3.37)  -1.11 (-3.40, 1.17)  

Percentage of Students that are White  0.980  0.669 

2.15% - 27.43% (n=31) 1.06 (-0.46, 2.58)  -0.96 (-3.05, 1.12)  

27.96% - 49.88% (n=30) 1.10 (-0.43, 2.64)  0.14 (-1.96, 2.24)  

50.21% - 78.48% (n=30) 1.15 (-0.12, 2.42)  -0.52 (-2.26, 1.21)  

*Model covariates include percentage of students that are of white race, percentage of students who participate in free and reduced lunch, 
percentage of students who are in Advanced Placement classes, percentage of chronically absent students, median income of the ZIP in which 
the school is located, safety events to enrollment ratio, average experience in years of full-time teachers, and per pupil spending.  
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Supplemental Table 2.6: Beta coefficients for a one-decibel increase in 7-hour and 17-hour noise on the school-level 2021 Percent of Proficient 
or Distinguished Scores in Math and Reading. 

 
Math 

(N=63; 11, 367 tests taken) 
Reading 

(N=89; 14, 713 tests taken) 
Science 

(N=31; 2, 092 tests taken) 
Writing 

(N=43; 2, 899 tests taken) 

Model 
β Coefficient 

(95% CI) p-value 
β Coefficient 

(95% CI) p-value 
β Coefficient 

(95% CI) p-value 
β Coefficient 

(95% CI) p-value 

7-Hour Noise (9:00 AM – 4:00 PM) 

Model A* -0.37 (-1.02, 0.27) 0.259 0.05 (-0.37, 0.47) 0.815 0.71 (-0.93, 2.34) 0.398 -1.02 (-2.23, 0.20) 0.102 

Condition Index 100.34 101.87 165.22 99.06 

R2 0.73 0.89 0.69 0.61 

Model B+ -0.10 (-1.00, 0.19) 0.185 -0.01 (-0.43, 0.41) 0.971 -0.06 (-1.78, 1.66) 0.943 -0.73 (-1.94, 0.49) 0.240 

Condition Index 103.32 97.81 186.14 107.55 

R2 0.77 0.88 0.62 0.59 

17-Hour Noise (4:00 PM – 9:00 AM; weighted by proportion of student ZIP residence from each school in 2021) 

Model A* -0.07 (-1.32, 1.19) 0.916 0.23 (-0.47, 0.93) 0.522 1.57 (0.08, 3.05) 0.038 -0.88 (-3.01, 1.24) 0.415 

Condition Index 174.84 158.80 160.89 151.97 

R2 0.72 0.89 0.72 0.60 

Model B+ 0.47 (-0.74, 1.68) 0.444 0.10 (-0.34, 0.83) 0.797 1.65 (-0.19, 3.49) 0.078 -0.88 (-3.12, 1.36) 0.442 

Condition Index 185.32 158.98 203.72 152.19 

R2 0.76 0.88 0.65 0.58 

*Models utilize many covariates from 2019 (i.e., percentage of students who are in Advanced Placement classes, percentage of chronically 
absent students, safety events to enrollment ratio, and average experience in years of full-time teachers) to be comparable to the main table 
results, but the percentage of students that are of white race and percentage of students who participate in free and reduced lunch are from 
2021 school data. 
+Models utilize covariates from 2021 school data (i.e., percentage of students that are of white race, percentage of students who participate in 
free and reduced lunch, percentage of students who are in Gifted and Talented, percentage of chronically absent students, safety events to 
enrollment ratio, percent of full-time teachers with a Master’s degree or higher) that are similar to 2019 covariates but not always identical, 2019 
data for per pupil spending and school ZIP code median income. 
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TRANSITION 2 

 

 

 There are several reports that environmental noise exposure is associated 

with various facets of mental ill-health. In Aim 1, we estimated the distribution of 

environmental noise during the 16 hours between 5:00 PM and 9:00 AM during 

the winter and spring seasons. These estimates, which represent the times 

during which most adults would be at their homes, are utilized in the following 

subaims to examine the association of environmental noise with mental ill-health 

outcomes among adults in Louisville, Kentucky.  

 In Aim 3A, we determine the association between census-tract level winter 

and spring environmental noise with census-tract level prevalence of mental ill-

health. In Aim 3B, we assess spring environmental noise in relation to odds of 

depression among participants in a South Louisville cohort.  
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AIM 3A. THE ASSOCIATION OF SEASONAL ENVIRONMENTAL NOISE 

LEVELS WITH ADULT MENTAL ILL-HEALTH PREVALENCE: A CENSUS-

TRACT LEVEL STUDY IN LOUISVILLE, KENTUCKYc  

 

 

 
c Authors:  
Lindsey A. Wood1,2, Jeremy T. Gaskins3, Kira C. Taylor1, Ray Yeager2, Brian 
Guinn1, Natalie C. DuPré1 
 
Affiliations:  
1Department of Epidemiology and Population Health, University of Louisville 
School of Public Health and Information Sciences, Louisville, KY  
2Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 
3Department of Bioinformatics and Biostatistics, University of Louisville School of 
Public Health and Information Sciences, Louisville, KY  
 
Acknowledgments:  
The University of Louisville Center for Integrative Health Sciences NIEHS P30 
ES030283 (ND), University of Louisville Superfund Research Center NIEHS P42 
ES023716 (LW, RY), and University of Louisville Green Heart Louisville Project 
NIEHS R01 ES029846 (LW, RY) supported researchers on this project. 
 
Competing Financial Interests Declaration:  
The authors declare that they have no actual or potential competing financial 
interests. 



 

 
 90 

Introduction  

Mental illness, or mental ill-health, is a broad term used to describe a variety 

of conditions with varying levels of severity. As of 2019, the National Institute of 

Mental Health estimates that 51.5 million United States (US) adults are living with 

a mental illness, accounting for 20.6% of the US adult population.120 The 

development of mental ill-health is multicausal, with no single factor acting as the 

determinant of any mental illness.121 A growing body of evidence suggests that 

environmental exposures, such as the built and designed environment,122–125 

green spaces and time outdoors,126–129 air pollution,130–133 and varying heavy 

metals,134–137 are associated with mental ill-health. Environmental noise presents 

as another modifiable environmental exposure relevant to mental ill-health. In 

fact, the World Health Organization (WHO) has recognized potential negative 

impacts of noise on mental ill-health since 1999.2 However, in 2018, the WHO 

stated that their guidelines for environmental noise3 were not influenced by 

impacts on mental health, pointing to the weak body of existing evidence 

supporting the relationship.5  

The current lack of consistent findings between noise exposure and mental ill-

health23–37,138,139 may be partially attributed to the inconsistencies in the noise 

source and time-periods of exposure. Most studies restrict noise exposure to 

specific sources, such as road or rail-traffic, or aircraft flyovers,23–35,37,138,139 which 

may not fully capture the cumulative environmental noise to which individuals are 

exposed. Additionally, full-day noise exposures (LAeq24 or LAden) based on 

residential addresses are often used,23,25–29,31–35,37 and may not accurately 
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capture the true burden of individual-level noise exposure, which is dependent on 

spatial-temporal movements in and outside of the residence.36,39 A few studies 

have attempted to eliminate this issue by specifically examining noise exposure 

during nighttime hours, assuming that most individuals are located in their 

residence during these times.30,33,35 Nighttime noise exposure may be more 

impactful on mental ill-health than daytime exposure due to disturbances of 

sleep,28,140–142 which may mediate the association of noise with mental ill-

health.28,108–110,116,139,143–145  

Evidence suggests that mental ill-health outcomes vary between seasons.146–

149 Some have investigated the role of environmental factors in mental ill-health 

seasonality. For example, seasons with higher atmospheric concentrations of 

ozone and PM2.5 had significantly more emergency department visits for mental 

ill-health outcomes compared to seasons with lower concentrations.150 

Additionally, seasonal changes in monthly average rainfall were observed to 

significantly increase the likelihood of mental illness.151 Although environmental 

noise likely varies by season,152 its seasonal association with mental ill-health 

has not yet been studied. Moreover, disparities in mental ill-health exist by racial 

group and socioeconomic status,153,154 and effect modification by race and 

income on the associations of environmental exposures (exposures) with mental 

ill-health have been observed. For instance, PM2.5 concentration is more strongly 

associated with depression among individuals living in census tracts with higher 

population percentages of below-poverty income.155 Additionally, greenness is 

less protective on anxiety and on depression among black and other non-
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Hispanic individuals and among individuals with lower household income.156 

However, these potentially modifying factors have yet to be examined in the 

association of environmental noise with mental ill-health.  

To date, investigations into the environmental noise and mental ill-health 

relationship among adults has been focused in Europe23–35,37,138 or Asia36,139 and 

has yet to be conducted in North America. Louisville, Kentucky presents as an 

ideal candidate for a US based study, given its varying contributors of 

environmental noise, including the Louisville Muhammad Ali International Airport 

(SDF) – a passenger airport and major global cargo traffic hub – five busy 

interstate systems, and several major roads. SDF and a large proportion of the 

major roadways are in or near residential areas, creating concern about the 

impact of environmental noise exposure on the health of the population in 

Louisville. Therefore, the purpose of this study is to determine the association of 

seasonal 5:00 PM to 9:00 AM environmental noise and mental ill-health 

prevalence among adults at the census-tract level in Louisville, Kentucky, and to 

examine for modification by several factors.  

 

Methods and Materials 

Exposure Data – Winter and Spring 16-hour Noise 

 Detailed descriptions of noise data are documented elsewhere (see Aim 1 

manuscript). Briefly, noise data were collected in winter 2021 (January/February) 

and spring 2021 (April/May) at 15 sites throughout Louisville. For each collection 

period, noise was recorded every 10 seconds for 24 hours at each site using a 
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Class 1 noise meter (Type 2236, Brüel & Kjær, Naerum, Denmark). Average 

noise at each site was calculated for the 16-hour time-period between 5:00 PM 

and 9:00 AM, chosen to represent the presumed times that adults would likely be 

at their homes.24,30,33,35 We estimated winter 2021 and spring 2021 16-hour noise 

distribution in Louisville, Kentucky using land use regression models with 

geographic characteristics of collection sites as covariates (e.g. normalized 

difference vegetation index, distance to airport flyovers, annual average road 

traffic, length of streams) and averaged seasonal noise by census tracts 

(N=190). Models resulted in satisfactory fit and prediction error, with a winter 

model R2 of 0.73 and leave-one-out cross-validation (LOOCV) root mean square 

error (RMSE) of 2.98 decibels, and a spring model R2 of 0.57 and a LOOCV 

RMSE of 5.92 decibels. 

Outcome Data – Adult Mental Ill-Health Prevalence 

 Data for the outcome of interest were obtained from the Center for 

Disease Control and Prevention (CDC) 2020 PLACES (Population Level Analysis 

and Community Estimates: Local Data for Better Health) project. PLACES 

estimates the prevalence of 27 varying health-related measures (e.g., health 

status, chronic diseases, health risk behaviors, and prevention measures) across 

the US at multiple geographic levels, including nearly all US census tracts. To 

estimate the prevalence of health measures, the CDC PLACES uses a multilevel 

regression and poststratification approach to geographically link population 

demographic and socioeconomic data from Census Bureau 2010 or 2015-2019 

or 2014-2018 American Community Survey (ACS) to the 2017 or 2018 
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Behavioral Risk Factor Surveillance System (BRFSS) health surveys,157 which 

are conducted annually to willing participants above the age of 17 years using 

random digit dialing.158  

The variable used for our outcome of interest, adult mental ill-health 

prevalence, was that of “Mental Health Not Good For ≥14 Days Among Adults 

Aged ≥18 Years” from CDC PLACES 2020159 for the 190 census tracts in 

Louisville. This adult mental ill-health prevalence variable was derived from the 

2018 BRFSS, in which participants were asked “Now thinking about your mental 

health, which includes stress, depression, and problems with emotions, for how 

many days during the past 30 days was your mental health not good,” in which 

responses included one of the following: a number of days between 1 and 30, 

none, don’t know/not sure, or refused to answer.160 PLACES calculates and 

reports an annual crude prevalence at the census-tract level, where the 

numerator is the number of respondents in a census tract who answered 14 or 

more days in the past 30 days and the denominator is the number of all 

respondents in a census tract who gave a response of either none or any number 

of days.159  

Covariate Data 

 Census-tract level data for covariates and potential confounders were 

obtained from 2015-2019 ACS 5-year estimates and the CDC PLACES 2020 

project. Census-tract level variables obtained from the ACS 5-year estimates 

included, median age, median individual income, income inequality, prevalence 

of varying disabilities, and prevalence of male gender; white, black, or other race; 
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unmarried (divorced, widowed, or have never been married) individuals 25 years 

or older; and college-education or higher (attainment of bachelor’s degree or 

higher) among individuals 25 years or older. Income inequality is reported as the 

Gini Index, which represents income dispersion across the income distribution of 

a census tract; with a range from 0 to 1, values closer to 0 are indicative of 

perfect equality, and values closer to 1 are indicative of perfect inequality.161 

Chronic conditions, which are often associated with mental ill-health,162 came 

from PLACES 2020. Prevalence estimations for arthritis, asthma, high blood 

pressure, cancer, high cholesterol, chronic kidney disease, chronic obstructive 

pulmonary disease, coronary heart disease, diabetes, obesity, and stroke, were 

considered for model inclusion as potential confounders. Additionally, we 

considered the prevalence of physical ill-health, defined by PLACES as “Physical 

Health Not Good For ≥14 Days.” Finally, we considered health risk behavior 

measures such as the prevalence of insufficient sleepers (i.e., sleep less than 7 

hours per night), binge drinking, current cigarette smoking, and having no leisure-

time physical activity.  

Statistical Analyses 

Age-standardized descriptive statistics (mean and standard deviation) of 

census tracts were presented by tertiles of seasonal environmental noise and by 

tertiles of mental ill-health prevalence. To limit multicollinearity, we first reduced 

the number of covariates considered for statistical models. We observed strong 

correlations between the prevalence of specific disabilities and any disability 

(Supplemental Table 3A.1), and selected prevalence of any disability. Likewise, 
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we included the physical ill-health prevalence in our statistical models because 

the prevalence of specific chronic conditions (except for cancer) was moderately 

or strongly correlated with the physical ill-health prevalence (Supplemental Table 

3A.2). The population percentage of white race was selected to represent the 

racial distribution of census tracts as we could not include all race variables due 

to multicollinearity issues.  

To aid in variable selection for regression modeling, directed acyclic graphs 

(DAGs) (Figure 3A.1) were constructed to aid in the visualization of the 

ecological-level relationship between environmental noise and mental ill-health 

prevalence. The current DAGs do not imply causation, particularly given the 

ecologic nature of this study. Rather, they demonstrate the ways in which the 

exposure, the outcome, and population characteristics may be related 

ecologically. According to the DAGs, potential confounders of the association 

between seasonal environmental noise and mental ill-health prevalence within 

the population were age, race, marital status, education level, income, income 

inequality, disability, and chronic conditions. Therefore, the following variables 

were selected to be tested in modeling: median age; population percentages of 

white race, unmarried, and college-educated; median individual income; income 

inequality; prevalence of any disability; and prevalence of physical ill-health. 

To determine the association of a one-decibel increase in seasonal noise with 

mental ill-health prevalence, we utilized multivariable linear regression, with 

winter or spring 16-hour environmental noise as the continuous exposure and 

mental ill-health prevalence as the outcome. The above covariates were added 
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into the model one at a time to assess how each variable altered the strength of 

the association between noise and mental ill-health prevalence. Final models 

were achieved once the addition of further covariates did not change materially 

the seasonal noise β coefficient. The performance of final models was 

determined by R2 values and condition indexes greater than 30 indicated the 

presence of multicollinearity.  

We assessed effect modification for several variables using the fully adjusted 

model. Based on extant literature describing their potential to modify 

environmental effects on mental health outcomes, variables of interest were 

median individual income,35,156,163 population percentage of college-

educated,26,155,164 population percentage of white race,156,165 and physical ill-

health prevalence.155,156 These variables were dichotomized based on their 

median to create a low and high group. To test for effect modification of a 

variable of interest, an interaction variable was included in the final models. 

Although insufficient sleep prevalence was not utilized as a confounder, we 

additionally assessed effect modification by insufficient sleep prevalence based 

on prior findings that sleep disturbance may be important in the association of 

noise and mental ill-health.28,140–142 During analysis of effect modification by 

insufficient sleep prevalence, a dichotomized insufficient sleep prevalence 

variable, along with an interaction variable with noise, was added to the model. 

The Wald X2 p-value was used to determine whether the strength of the 

associations between groups differed significantly. When resulting beta 

coefficients of effect modification analysis were incongruous with the expected 
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direction, we additionally conducted a sensitivity analysis in which highly 

influential census tracts, determined by a Cooks D greater than 1, were removed 

from analysis. Further, median and IQR noise levels were calculated for each 

group to describe the noise distribution within categories of the effect modifier. 

We plotted the adjusted linear regression models to display the modified 

prediction of mental ill-health prevalence from noise levels between census tract 

groups of effect modifiers (only one plot shown). All statistical analyses were 

performed using SAS Software (version 9.4). 

 

Results 

 Tertiles of winter 16-hour (Figure 3A.2) and spring 16-hour environmental 

noise (Figure 3A.3) are displayed for Louisville census tracts (N=190). The mean 

winter noise across Louisville census tracts was 54.84 decibels (SD=2.89). For 

spring noise, the mean was 56.91 decibels (SD=4.26). The mean mental ill-

health prevalence of census tracts was 16.24% (SD=4.12%; Figure 3A.4).  

Table 3A.1 displays median age-adjusted characteristics of census tracts 

by tertiles of winter and spring 16-hour environmental noise, and by tertiles of 

mental ill-health prevalence. Census tracts with louder seasonal noise had a 

higher mental ill-health prevalence. Additionally, census tracts in high tertiles of 

seasonal noise and mental ill-health prevalence generally had a younger, less 

white and more black, and less college-educated population, compared to 

census tracts in low or moderate tertiles. Furthermore, these noisier census 

tracts had populations with higher percentages of unmarried, disabled (except 
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hearing disabled), chronically ill for most conditions (except cancer), and 

physically unhealthy populations compared to census tracts in low or moderate 

noise tertiles. Census tracts that were louder and had higher prevalence of 

mental ill-health also had higher prevalences of insufficient sleepers, current 

cigarette smokers, and physical inactivity, but lower prevalences of binge 

drinkers. The distribution of the male population did not differ across tertiles of 

seasonal noise nor tertiles of mental ill-health prevalence.  

Results of regression modeling are shown in Table 3A.2. In crude models 

a one-decibel increase in winter noise was significantly associated with a higher 

prevalence of mental ill-health by 0.84 percentage points (winter noise β=0.84, 

95% CI: 0.68, 1.00), while a one-decibel increase in spring noise was 

significantly associated with higher mental ill-health prevalence by 0.68 

percentage points (spring noise β=0.68, 95% CI: 0.58, 0.78). Confounders 

retained in modeling were census-tract level median age; population percentages 

of white race, unmarried, and college-educated; median individual income; 

income inequality; and prevalence of physical ill-health. After all adjustments, 

louder winter and spring noise by one-decibel increase was significantly 

associated with higher mental ill-health prevalence by 0.09 and 0.07 percentage 

points, respectively (winter noise β=0.09, 95% CI: 0.01, 0.16; spring noise 

β=0.07, 95% CI: 0.02, 0.13). Final models for both seasons of noise had an R2 

value of 0.94, indicating that the model was explaining most of the variation in 

mental ill-health prevalence. The winter model had a condition index of 109.29, 

while the spring model had a condition index of 91.22; these values indicate that 
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multicollinearity was present in both final models. However, multicollinearity 

inflates the standard errors of covariates, which can lead to a potential lack of 

significance of beta estimates; since the beta estimates in the final models were 

highly significant, the effects of multicollinearity did not appear to be an issue of 

major concern. 

Table 3A.3 shows the results for effect modification by income, race, 

education, insufficient sleep, and physical ill-health. Median individual income 

was observed as a significant effect modifier for winter noise (pinteraction<0.001), 

with louder winter noise by one decibel being significantly associated with higher 

mental ill-health prevalence by 0.14 percentage points among low-income 

census tracts (β=0.14, 95% CI: 0.07, 0.22). Conversely, louder winter noise by 

one decibel was significantly associated with lower mental ill-health prevalence 

by 0.15 percentage points among high-income census tracts (β=-0.15, 95% CI: -

0.28, -0.02). However, after removing one highly influential census tract (Cooks 

D>1), this association was no longer significant in high-income census tracts (β=-

0.10, 95% CI: -0.21, 0.01), but remained significant in low-income census tracts 

(β=0.12, 95% CI: 0.05, 0.19; pinteraction<0.001). Figure 3A.5 displays how the 

differing associations by low or high median individual income changes predicted 

prevalence of mental ill-health from noise level. The association between winter 

noise and mental ill-health prevalence was significantly positive in census tracts 

with low population percentages of white race (β=0.23, 95% CI: 0.14, 0.32) but 

null in census tracts with high population percentages of white race (β=0.06, 95% 

CI: -0.04, 0.16), with less white census tracts having a winter noise association 
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with mental ill-health prevalence that is nearly four-times that of more white 

census tracts (pinteraction=0.003). Further, louder winter noise was associated with 

higher mental ill-health prevalence among census tracts with higher prevalence 

of people with insufficient sleep (β=0.14, 95% CI: 0.06, 0.21), but louder winter 

noise was associated with lower mental ill-health prevalence in census tracts with 

lower insufficient sleep prevalence (β=-0.13, 95% CI: -0.24, -0.02; 

pinteraction<0.001). Upon removal of the highly influential census tract, the 

association in census tracts with low insufficient sleep prevalence were no longer 

significant (β=-0.09, 95% CI: -0.19, 0.01), but remained significant in census 

tracts with high insufficient sleep prevalence (β=0.12, 95% CI: 0.05, 0.18; 

pinteraction<0.001). For winter noise, there was no statistically significant effect 

modification by population percentage of college-educated (pinteraction=0.615) nor 

physical ill-health prevalence (pinteraction=0.067).  

 The association for spring noise with mental ill-health prevalence differed 

significantly by median individual income (pinteraction<0.001), with low-income 

census tracts having a significantly positive association (β=0.12, 95% CI: 0.06, 

0.17) and high-income census tracts having a significantly inverse association 

(β=-0.17, 95% CI: -0.28, -0.06). These associations were attenuated after 

removing a highly influential census tract but remained significant (low-income 

β=0.09, 95% CI: 0.05, 0.14; high-income β=-0.12, 95% CI: -0.22, -0.02; 

pinteraction<0.001).  Louder spring noise was associated with higher mental ill-

health prevalence among census tracts with greater prevalence of insufficient 

sleepers (β=0.09, 95% CI: 0.04, 0.14) but lower mental ill-health prevalence 
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among census tracts with lower insufficient sleep prevalence (β=-0.14, 95% CI: -

0.24, -0.03; pinteraction<0.001). Removal of the highly influential census tract 

attenuated these associations, but significance was still observed (low insufficient 

sleep prevalence β=-0.10, 95% CI: -0.19, -0.01; high insufficient sleep 

prevalence β=0.08, 95% CI: 0.03, 0.12; pinteraction<0.001). The associations of 

spring noise and mental ill-health prevalence did not differ significantly by 

population percentage of white race (pinteraction=0.406), population percentage of 

college-educated (pinteraction=0.138), nor physical ill-health prevalence 

(pinteraction=0.087). 

 

Discussion  

The current study examined the census-tract level association between 5:00 

PM to 9:00 AM winter and spring total environmental noise with the mental ill-

health prevalence among adults in Louisville, Kentucky. After adjusting for 

several confounders, we observed that census tracts with louder winter and 

louder spring nighttime/early morning environmental noise had higher prevalence 

of mental ill-health, and the associations between noise and mental ill-health 

prevalence were similar between seasons. Louder winter and louder spring noise 

by five decibels were associated with a 0.71 and 0.59 percentage point higher 

prevalence of mental ill-health, respectively. Furthermore, the associations of 

winter and spring noise with mental ill-health prevalence were stronger in census 

tracts with lower median individual income, higher prevalence of insufficient 

sleepers, and lower population percentages of white race. 
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Winter and spring noise had similar strengths of association with mental ill-

health prevalence. Although others have not assessed seasonality of the 

association, our findings of louder noise being associated with increased mental 

ill-health prevalence are congruous with other studies.25,27,29,36,37 However, we 

investigated total environmental noise rather than source-specific noise.25,27,29,37 

Our results are similar to those reported in Ma et al., who investigated individual-

level total environmental noise in association with mental ill-health in a cohort of 

117 participants, and reported that mental health was significantly lower with 

louder 24-hour noise.36 We further defined environmental noise to specific hours 

during which adults would likely be at their residences. Other studies have 

utilized nighttime noise30,33,35  and observed significant associations between 

louder noise and worse mental ill-health outcomes.33,35 Our investigation of total 

environmental noise during nighttime-inclusive hours may be more appropriate 

for the association with adult mental ill-health than those that use source-specific 

or residence-based 24-hour estimates of noise, which do not represent true 

exposures to noise if individuals are exposed to other sources of noise or are not 

in their homes at all hours.  

We observed nonsignificant effect modification by population percentage of 

college-educated and physical ill-health prevalence on the association of noise 

with mental ill-health prevalence, which are concordant with findings of 

others.24,29 However, we did observe significant effect modification by prevalence 

of insufficient sleepers, with louder winter and spring noise being associated with 

higher mental ill-health prevalence among census tracts with higher insufficient 
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sleep prevalence. Nighttime noise exposure may cause sleep disturbances28,111–

113,140,141,166,167 that can contribute to the development of mental ill-

health,108,109,115,116,168 and it is widely proposed that sleep may mediate the 

environmental noise and mental ill-health relationship.28,108–110,116,139,143–145 

Although the current study was not conducive to assessment of mediation by 

insufficient sleep prevalence, our findings provide further evidence that sleep 

may be a potentially important factor in the association between environmental 

noise and mental ill-health, and future studies should seek to expound potential 

mediation by sleep.  

Further, we observed that louder winter and spring noise was associated with 

higher prevalence of mental ill-health among census tracts with low median 

individual income and louder winter noise was associated with higher prevalence 

of mental ill-health among census tracts with lower population percentages of 

white race. Moreover, we observed louder distributions of winter and spring noise 

among census tracts with larger non-white and lower income populations, and 

the disproportionate exposure of noise may contribute to larger allostatic load 

and higher likelihoods of mental ill-health,107–117 especially since populations of 

black, Indigenous, and people of color (BIPOC) and lower-income 

disproportionately experience additional stressors of social determinants of 

health (e.g., housing, violence, economic instability, systemic racism).118,119 Our 

findings indicate that BIPOC and low-income communities in Louisville, KY may 

have disproportionately louder environmental noise exposures, which may 

explain non-linear associations between environmental noise and mental ill-
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health prevalence as we observed in our study (Figure 3A.6). Others who have 

explored non-linearity of the relationship between environmental noise and 

mental ill-health outcomes23,26,31,32 do not account for potential effect modification 

by population subgroups that may be disproportionately exposed to loud 

environmental noise, and thus have disproportionate mental ill-health outcomes. 

Future investigations should consider effect modification by socioeconomic 

factors and their potential for exposures to louder environmental noise.  

For both winter and spring noise, we observed that louder noise was 

associated with lower mental ill-health prevalence among census tracts with 

higher insufficient sleep prevalence, and among census tracts with lower median 

individual income. These peculiar observations may simply be due chance. 

Alternatively, the inverse association may be due to the sources contributing to 

louder noise within these census tracts; natural sources, such as bird song or 

running water, may have a protective association with mental ill-health.169–173 The 

distribution of natural and unnatural noise may also explain the effect 

modification observed by other factors (i.e., socioeconomic status and sleep), as 

natural noise sources are more desirable,174 more expensive,175 more relaxing,176 

and less harmful for sleep177 than unnatural noise sources. However, among the 

high-income census tracts, greenness was lower in louder tertiles of winter and 

spring noise (mean(SD) winter NDVI by increasing tertiles of winter noise: 0.17 

(0.02), 0.15 (0.02), 0.13 (0.03); mean(SD) spring NDVI by increasing tertiles of 

spring noise: 0.35 (0.03), 0.30 (0.02), 0.27 (0.03); winter and spring p-

value<0.001). Future investigations should seek to explicate the distributions of 
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natural and unnatural noise and the potentially varied associations with mental ill-

health.  

Limitations and Strengths 

First, the study was ecological, and the ecologic fallacy limits the 

interpretation of findings. For example, we do not know the noise exposure, 

mental ill-health status, or risk factor characteristics of individuals. As such, we 

cannot infer an individual-level association between environmental noise 

exposure and adult mental ill-health. Next, this study lacks temporality between 

the exposure and the outcome, and the findings should not be interpreted as 

necessarily causative. Additionally, mental ill-health prevalence, estimated by 

CDC PLACES, represents self-reported experiences of “stress, depression, and 

problems with emotions,”160 which may lack ample specificity and misclassify 

clinically mentally healthy individuals as “mentally ill,” overestimating true 

prevalence of mental ill-health. As such, effect estimates may be biased toward 

the null, and interpretation of findings may underestimate the true association 

between environmental noise and mental ill-health prevalence. Finally, although 

there were 190 census tracts included in analysis, noise estimates were derived 

from models built from collections at only 15 sites on different days due to the 

constraints of time and resources; the inherent limitations of the noise estimates 

may have contributed to exposure measurement error, and the findings of the 

current study may be due to chance. Additional testing sites and/or co-occurring 

testing may provide a better estimate for seasonal 5:00 PM to 9:00 AM 



 

 
 107 

environmental noise; however noise models resulted in acceptable levels of error 

(see Aim 1 manuscript).  

Despite the limitations, the current study has several strengths. Notably, to 

best represent true noise exposure, we utilized total environmental noise 

restricted to hours in which adults would likely be home, which included hours 

during which most individuals are home or at sleep. We also investigated 

potential seasonal differences of associations between environmental noise and 

mental ill-health. Through data-linkage, our estimations of association were 

adjusted for multiple confounders, including various socioeconomic, 

demographic, and health characteristics of census tract populations. Further, we 

investigated potential effect modification by two previously uninvestigated factors 

– income and race – and the widely proposed potential mediator of insufficient 

sleep, and our findings indicate their importance in explicating the relationship 

between environmental noise and mental ill-health. Finally, our results add to the 

collective understanding of the environmental noise and mental ill-health 

relationship among adults, particularly in North America.  

 

Conclusion  

 The current study observed that mental ill-health prevalence in Louisville, 

Kentucky was significantly higher, albeit with small estimates, in census tracts 

with louder winter and spring 5:00 PM to 9:00 AM total environmental noise, and 

associations were stronger among census tracts with low median income and 

lower prevalence of white population. We underscore sleep as a potentially 
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important factor of the relationship between environmental noise and mental ill-

health and display a need for further investigation of the potential mediation by 

sleep. Further, we propose that combined effects of socioeconomic status with 

noise exposure may explain inconsistency of findings among similar 

investigations and call for future analyses to consider these potentially modifying 

factors. To effectively understand the true relationship between environmental 

noise exposure and adult mental ill-health, longitudinal individual-level research 

is required. 
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Figure 3A.01: Directed acyclic graphs of the association between census-tract level 
environmental noise and census-tract level mental ill-health prevalence. The relationship 
between sleep and stress may be bidirectional. Therefore, DAG A shows represents sleep as 
dependent on stress levels, and DAG B represents stress as dependent on sleep.  
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Figure 3A.2: Census-tract level winter 16-hour (5:00 PM – 9:00 AM) environmental noise in Louisville, KY. 

Census Tract Winter 16-Hour (5:00 PM – 9:00 AM) 
Environmental Noise in Louisville, Kentucky 
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Figure 3A.3: Census-tract level spring 16-hour (5:00 PM – 9:00 AM) environmental noise in Louisville, KY. 

Census Tract Spring 16-Hour (5:00 PM – 9:00 AM) 
Environmental Noise in Louisville, Kentucky 
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Census Tract Mental Ill-Health Prevalence in Louisville, KY 

Figure 3A.4: Census tract mental ill-health prevalence in Louisville, KY. 
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Figure 3A.5: Effect modification of the association between winter environmental noise and mental ill-health 
prevalence by census tract median individual income. 
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Figure 3A.6: Effect modification may explain non-linearity of the association between winter environmental noise and mental ill-
health prevalence.  
 Graph A displays predictions and 95% confidence intervals of census-tract level mental ill-health prevalence from nighttime winter 
noise levels among census tracts with low and high median individual income. The plotted estimation lines intersect at 52.7 dB, 
which is roughly representative of the point at which winter noise levels begin to differ between low- (median=55.58 dB, IQR: 
53.35 dB – 58.51 dB) and high-income (median=53.21 dB, IQR: 52.32 dB – 54.28 dB) census tracts. Graph B illustrates how 
restricting data to winter noise levels representative of the distributions within low- and high-income census tracts (i.e., low-
income tracts restricted to winter noise levels above the intersection and high-income tracts restricted to winter noise levels below 
the intersection) results in an apparent non-linear association between winter noise and mental ill-health prevalence. For 
modification of the association of winter noise and mental ill-health prevalence by percentage of white population, and for 
modification of the association between spring noise and mental ill-health by median income, similar observations of non-linearity 
can be made when restricting data to represent noise distribution between categories. 
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Tabe 3A.1: Age-standardized characteristics* of census tracts in Louisville, KY by tertiles of winter and spring 16-hour (5:00 PM – 9:00 AM) 
environmental noise and by tertiles of mental ill-health prevalence (N=190).  

 Average Winter Noise  Average Spring Noise  Mental Ill-Health Prevalence  

 

Low 

(49.70 – 
53.18 dB) 

(n=64) 

Moderate 

(53.21 – 
55.27 dB) 

(n=63) 

High 

(55.28 – 
62.73 dB) 

(n=63) 

Low 

(50.90 – 
54.32 dB) 

(n=64) 

Moderate 

(54.35 –  
57.91 dB) 

(n=63) 

High 

(58.15 – 
73.92 dB) 

(n=63) 

Low  

(9.3 –   
13.8%) 

(n=65) 

Moderate 

(14.0 – 
18.2%)  

(n=62) 

High  

(18.40 – 
30.0%) 

(n=63) 

Mental Ill-Health 
Prevalence 

14.41 (1.79) 15.04 (2.58) 19.23 (2.66) 13.61 (1.80) 15.56 (2.36) 19.61 (2.31)    

Median Age, 
yearsa 

40.28 (5.34) 39.90 (5.63) 35.33 (5.70) 42.28 (5.23) 37.73 (4.48) 35.47 (6.01) 42.68 (5.43) 38.08 (3.73) 34.64 (5.55) 

Male 48.69 (1.88) 48.19 (2.50) 48.33 (3.81) 48.31 (1.87) 49.28 (2.10) 47.85 (3.89) 48.60 (1.96) 49.07 (2.23) 48.08 (3.91) 

Race          

White 
78.36  
(9.81) 

74.45 
(15.72) 

56.69 
(23.62) 

84.14    
(5.75) 

75.62   
(13.27) 

49.68  
(23.06) 

85.04    
(6.88) 

73.09   
(13.89) 

52.15  
(21.71) 

Black 
15.03  
(9.00) 

18.92 
(15.45) 

37.21 
(24.03) 

10.26    
(5.18) 

17.11   
(12.44) 

43.90  
(23.84) 

8.14       
(4.59) 

20.49    
(13.91) 

41.52  
(22.26) 

Other 1.30 (1.46) 0.88 (0.91) 0.77 (0.74) 0.61 (0.63) 1.29 (1.47) 0.97 (0.83) 1.08 (1.62) 1.23 (1.18) 0.98 (0.89) 

Not Currently 
Married 

49.51 (6.96) 56.08 (8.61) 71.54 (7.77) 47.06 (6.71) 57.50 (7.22) 72.16 (7.69) 47.23 (7.72) 57.50 (6.31) 72.17 (8.02) 

College-Educated 
33.57 

(11.60) 
39.14 

(17.52) 
20.86 

(12.20) 
40.79  

(14.90) 
33.57   

(15.04) 
18.17  

(10.56) 
53.49  

(10.14) 
25.53     
(8.01) 

12.22    
(6.26) 

Median Individual 
Income 

$36,726.06 
($6,348.09) 

$35,168.70 
($8,076.81) 

$23,733.48 
($6,127.53) 

$39,308.09 
($7,313.79) 

$33,263.10 
($6,119.82) 

$22,430.17 
($5,248.86) 

$43,130.14 
($5,898.07) 

$31,459.71 
($3,127.87) 

$20,167.89 
($3,217.87) 

Income Inequality 
(Gini Index) 

0.38 (0.04) 0.43 (0.05) 0.44 (0.04) 0.40 (0.04) 0.40 (0.04) 0.44 (0.05) 0.42 (0.04) 0.38 (0.04) 0.44 (0.04) 
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Tabe 3A.1: Age-standardized characteristics* of census tracts in Louisville, KY by tertiles of winter and spring 16-hour (5:00 PM – 9:00 AM) 
environmental noise and by tertiles of mental ill-health prevalence (N=190).  

 Average Winter Noise  Average Spring Noise  Mental Ill-Health Prevalence  

 

Low 

(49.70 – 
53.18 dB) 

(n=64) 

Moderate 

(53.21 – 
55.27 dB) 

(n=63) 

High 

(55.28 – 
62.73 dB) 

(n=63) 

Low 

(50.90 – 
54.32 dB) 

(n=64) 

Moderate 

(54.35 –  
57.91 dB) 

(n=63) 

High 

(58.15 – 
73.92 dB) 

(n=63) 

Low  

(9.3 –   
13.8%) 

(n=65) 

Moderate 

(14.0 – 
18.2%)  

(n=62) 

High  

(18.40 – 
30.0%) 

(n=63) 

Prevalence of 
Disability 

         

Any 12.28 (2.52) 12.89 (4.29) 18.80 (4.86) 12.19 (2.56) 13.37 (3.84) 18.70 (4.98) 10.32 (2.12) 13.56 (2.25) 20.63 4.85) 

Hearing 3.53 (1.00) 3.24 (1.12) 3.19 (1.23) 3.54 (0.98) 3.17 (1.08) 3.09 (1.26) 3.34 (0.81) 2.89 (0.99) 3.82 1.47) 

Visual 1.92 (0.72) 2.21 (1.23) 3.33 (1.36) 1.82 (0.71) 2.30 (1.05) 3.44 (1.43) 1.60 (0.65) 2.10 (0.77) 3.96 (1.47) 

Cognitive 4.61 (1.39) 5.26 (2.57) 9.61 (3.12) 4.60 (1.49) 5.43 (2.29) 9.45 (3.12) 3.82 (1.20) 5.73 (1.53) 10.16 3.24) 

Ambulatory 6.91 (1.73) 7.43 (3.21) 11.60 (3.90) 6.83 (1.85) 7.63 (2.94) 11.56 (3.94) 5.35 (1.57) 7.70 (1.74) 13.06 3.72) 

Self-care 2.58 (0.93) 2.55 (1.16) 4.09 (1.63) 2.45 (0.88) 2.85 (1.19) 3.86 (1.60) 2.07 (0.88) 2.92 (1.00) 4.24 (1.51) 

Independent 
Living 

5.85 (1.55) 5.63 (2.29) 9.38 (3.17) 5.81 (1.71) 6.02 (2.26) 9.17 (3.25) 4.46 (1.40) 6.55 (1.77) 10.23 (2.94) 

Prevalence of 
Physical Ill-Health  

12.18 (1.67) 13.02 (2.82) 17.35 (3.17) 11.56 (1.53) 13.29 (2.54) 17.90 (2.86) 10.23 (0.74) 13.47 (1.50) 19.21 (2.03) 

Prevalence of 
Chronic 
Conditions 

         

Arthritis 28.29 (2.17) 28.64 (3.07) 30.85 (3.72) 28.39 (2.28) 28.60 (2.91) 31.16 (3.75) 27.26 (2.48) 28.72 (2.78) 32.24 3.18) 

Asthma 10.08 (0.67) 10.47 (1.17) 12.32 (1.42) 9.77 (0.60) 10.53 (1.00) 12.60 (1.27) 9.27 (0.28) 10.66 (0.60) 12.97 1.00) 
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Tabe 3A.1: Age-standardized characteristics* of census tracts in Louisville, KY by tertiles of winter and spring 16-hour (5:00 PM – 9:00 AM) 
environmental noise and by tertiles of mental ill-health prevalence (N=190).  

 Average Winter Noise  Average Spring Noise  Mental Ill-Health Prevalence  

 

Low 

(49.70 – 
53.18 dB) 

(n=64) 

Moderate 

(53.21 – 
55.27 dB) 

(n=63) 

High 

(55.28 – 
62.73 dB) 

(n=63) 

Low 

(50.90 – 
54.32 dB) 

(n=64) 

Moderate 

(54.35 –  
57.91 dB) 

(n=63) 

High 

(58.15 – 
73.92 dB) 

(n=63) 

Low  

(9.3 –   
13.8%) 

(n=65) 

Moderate 

(14.0 – 
18.2%)  

(n=62) 

High  

(18.40 – 
30.0%) 

(n=63) 

Cancerb 7.35 (0.82) 7.21 (0.92) 6.39 (0.92) 7.68 (0.96) 7.10 (0.80) 6.23 (0.89) 7.80 (0.95) 6.98 (0.76) 6.22 (0.81) 

Coronary Heart 
Diseasec 

6.96 (0.91) 7.33 (1.30) 8.77 (1.55) 6.91 (0.95) 7.35 (1.21) 8.97 (1.52) 6.41 (0.82) 7.38 (1.06) 9.51 1.26) 

COPDd 8.39 (1.30) 8.76 (2.00) 11.52 (2.15) 8.00 (1.25) 9.10 (1.92) 11.75 (1.97) 6.91 (0.74) 9.24 (1.17) 12.87 1.47) 

Diabetes 10.76 (1.42) 11.78 (2.82) 15.76 (4.03) 10.31 (1.20) 11.50 (2.29) 16.68 (3.85) 9.50 (0.95) 11.75 (2.21) 17.26 (3.18) 

High Blood 
Pressure 

36.50 (2.47) 37.62 (4.72) 42.86 (6.25) 36.06 2.47) 37.14 (3.97) 44.19 (6.13) 34.87 (2.66) 37.72 (4.03) 44.71 (5.32) 

High Cholesterole 34.64 (1.73) 34.50 (2.13) 35.23 (2.56) 34.95 (1.87) 34.46 (2.09) 35.29 (2.57) 34.34 (2.10) 34.48 (2.05) 35.92 (2.40) 

Chronic Kidney 
Disease 

2.75 (0.31) 2.98 (0.55) 3.74 (0.79) 2.69 (0.30) 2.93 (0.46) 3.89 (0.77) 2.55 (0.25) 2.93 (0.45) 4.02 0.64) 

Obesity 30.47 (2.31) 31.72 (4.26) 38.11 (5.26) 29.28 (2.05) 31.76 (3.41) 39.46 (4.76) 27.61 (1.05) 32.34 (2.46) 40.56 (3.74) 

Stroke 2.99 (0.46) 3.33 (0.87) 4.62 (1.26) 2.87 (0.41) 3.28 (0.72) 4.86 (1.22) 2.60 (0.31) 3.34 (0.69) 5.06 (1.02) 

Health Behaviors          

Insufficient Sleepf 37.60 (2.13) 38.46 (3.62) 43.81 (4.12) 36.36 (2.05) 38.64 (2.85) 44.94 (3.68) 34.89 (1.27) 39.45 (1.96) 45.64 (2.90) 
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Tabe 3A.1: Age-standardized characteristics* of census tracts in Louisville, KY by tertiles of winter and spring 16-hour (5:00 PM – 9:00 AM) 
environmental noise and by tertiles of mental ill-health prevalence (N=190).  

 Average Winter Noise  Average Spring Noise  Mental Ill-Health Prevalence  

 

Low 

(49.70 – 
53.18 dB) 

(n=64) 

Moderate 

(53.21 – 
55.27 dB) 

(n=63) 

High 

(55.28 – 
62.73 dB) 

(n=63) 

Low 

(50.90 – 
54.32 dB) 

(n=64) 

Moderate 

(54.35 –  
57.91 dB) 

(n=63) 

High 

(58.15 – 
73.92 dB) 

(n=63) 

Low  

(9.3 –   
13.8%) 

(n=65) 

Moderate 

(14.0 – 
18.2%)  

(n=62) 

High  

(18.40 – 
30.0%) 

(n=63) 

Binge Drinking 18.83 (1.17) 18.08 (1.98) 16.36 (2.44) 18.86 (1.28) 18.50 (1.68) 15.79 (2.39) 19.14 (1.33) 18.60 (1.67) 15.45 (1.95) 

Current Smoking 21.38 (3.40) 21.96 (5.02) 29.53 (4.73) 19.79 (3.58) 23.15 (4.52) 30.22 (4.06) 16.78 (1.68) 24.05 (1.86) 32.70 (2.67) 

No Leisure-Time 
Physical Activity 

26.35 (3.45) 27.78 (5.89) 36.26 (6.10) 24.72 (3.22) 28.39 (5.03) 37.68 (5.47) 21.94 (1.69) 29.23 (3.06) 39.91 (3.63) 

*Values are mean (SD) and are standardized to the median age distribution of census tracts. 

aValue is not age adjusted 

bNot including skin cancers 

cIncludes angina 

dChronic obstructive pulmonary disease; includes emphysema and chronic bronchitis  

eAmong those who have been screened in the past 5 years coronary heart disease 

f<7 hours per night 
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Table 3A.2: Beta coefficients for a one-decibel increase in winter and 
spring 16-hour (5:00 PM – 9:00 AM) environmental noise on mental ill-
health prevalence in various models.  

Model 
Beta 

Coefficient 
95% Confidence 

Interval p-value 

Winter Noise 

Crude 0.84 0.68, 1.00 <0.001 

Model 1 0.58 0.43, 0.72 <0.001 

Model 2 0.51 0.38, 0.64 <0.001 

Model 3 0.43 0.34, 0.51 <0.001 

Model 4 0.29 0.20, 0.38 <0.001 

Model 5 0.26 0.16, 0.36 <0.001 

Model 6 0.10 0.03, 0.18 0.009 

Model 7 0.09 0.01, 0.16 0.021 

Spring Noise 

Crude 0.68 0.58, 0.78 <0.001 

Model 1 0.50 0.41, 0.60 <0.001 

Model 2 0.41 0.31, 0.51 <0.001 

Model 3 0.33 0.26, 0.39 <0.001 

Model 4 0.22 0.15, 0.29 <0.001 

Model 5 0.20 0.13, 0.27 <0.001 

Model 6 0.08 0.02, 0.13 0.005 

Model 7 0.07 0.02, 0.13 0.007 

The Crude model includes only noise.  
Model 1 includes the Crude model plus median age.  
Model 2 includes Model 1 plus population percentage of white race.  
Model 3 includes Model 2 plus population percentage of college education. 
Model 4 includes Model 3 plus median individual income.  
Model 5 includes Model 4 plus population percentage of unmarried.  
Model 6 includes Model 5 plus physical ill-health prevalence.  
Model 7 includes 6 plus income inequality.  
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Table 3A.3: Effect modification of the association of a one-decibel increase in winter or spring 
16-hour (5:00 PM – 9:00 AM) environmental noise and the mental ill-health prevalence using 
Model 7. 

Effect Modifier 

Beta 
Coefficient 
for Noise 

95% 
Confidence 

Interval 
Median Noise [IQR] 

(dB) 
Wald X2 
p-value 

Winter Noise 

Median Individual Income    <0.001 

≤ $31,747.00 (n=95) 0.14 0.07, 0.22 55.58 [53.35-58.51]  

> $31,747.00 (n=95) -0.15 -0.28, -0.02 53.21 [52.32-54.28]  

Population Percentage of 
College Education 

   0.615 

≤ 25.50% (n=95) 0.06 -0.03, 0.14 55.27 [53.18-57.73]  

> 25.50% (n=95) 0.09 -0.02, 0.19 53.61 [52.42-54.56]  

Population Percentage of 
White Race 

   0.003 

≤ 78.00% (n=95) 0.23 0.14, 0.32 55.10 [53.16-57.10]  

> 78.00% (n=95) 0.06 -0.04, 0.16 53.61 [52.35-54.76]  

Physical Ill-Health Prevalence    0.067 

≤ 13.00% (n=96) 0.07 -0.10, 0.23 53.31 [52.30-54.29]  

> 13.00% (n=94) 0.22 0.12, 0.33 55.55 [53.35-58.34]  

Insufficient Sleep Prevalence    <0.001 

≤ 38.60% (n=97) -0.13 -0.24, -0.02 53.29 [52.32-54.31]  

> 38.60% (n=93) 0.14 0.06, 0.21 55.53 [51.47-58.34]  

Spring Noise 

Median Individual Income    <0.001 

≤ $31,747.00 (n=95) 0.12 0.06, 0.17 60.02 [55.81-62.32]  

> $31,747.00 (n=95) -0.17 -0.28, -0.06 54.21 [53.05-55.07]  

Population Percentage of 
College Education 

   0.138 

≤ 25.50% (n=95) 0.03 -0.03, 0.09 58.33 [54.68-61.68]  

> 25.50% (n=95) 0.10 0.02, 0.18 54.57 [53.43-55.67]  

Population Percentage of 
White Race 

   0.406 

≤ 78.00% (n=95) 0.09 0.03, 0.16 58.29 [54.80-61.68]  

> 78.00% (n=95) 0.05 -0.03, 0.14 54.23 [53.24-55.76]  

Physical Ill-Health Prevalence    0.087 

≤ 13.00% (n=96) 0.06 -0.07, 0.18 54.16 [53.02-55.04]  

> 13.00% (n=94) 0.17 0.10, 0.24 59.59 [55.89-61.86]  

Insufficient Sleep Prevalence    <0.001 

≤ 38.60% (n=97) -0.14 -0.24, -0.03 54.23 [53.24-55.11]  

> 38.60% (n=93) 0.09 0.04, 0.14 60.02 [55.89-62.32]  

Model covariates include median age, population percentage of white race, population 
percentage of college education, median individual income, population percentage of 
unmarried, physical ill-health prevalence, income inequality, and noise*binary effect modifier. 
For analysis of effect modification by insufficient sleep prevalence, a binary insufficient sleep 
prevalence variable was included in the model along with an interaction term with noise.  
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Supplemental Table 3A.1: Pearson correlation coefficients between census-tract level prevalence of varying disabilities (N=190). 
 

Any Hearing Visual Cognitive Ambulatory Self-care 
Independent 

Living 

Any 1       

Hearing 
R=0.49 
p<0.01 

1      

Visual 
R=0.75 
p<0.01 

R=0.38 
p<0.01 

1     

Cognitive 
R=0.90 
p<0.01 

R=0.33 
p<0.01 

R=0.67 
p<0.01 

1    

Ambulatory 
R=0.94 
p<0.01 

R=0.47 
p<0.01 

R=0.71 
p<0.01 

R=0.81 
p<0.01 

1   

Self-care 
R=0.69 
p<0.01 

R=0.42 
p<0.01 

R=0.55 
p<0.01 

R=0.63 
p<0.01 

R=0.74 
p<0.01 

1  

Independent 
Living 

R=0.84 
p<0.01 

R=0.46 
p<0.01 

R=0.62 
p<0.01 

R=0.78 
p<0.01 

R=0.83 
p<0.01 

R=0.77 
p<0.01 

1 
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Supplemental Table 3A.2: Pearson correlation coefficients between census-tract level physical ill-health prevalence and prevalence of varying 
chronic conditions (N=190). 

  
Physical 
Ill-Health Arthritis Asthma Cancer 

Chronic 
Heart 

Disease COPD Diabetes 

High 
Blood 

Pressure 
High 

Cholesterol 

Chronic 
Kidney 
Disease Obesity Stroke 

Physical Ill-
Health 

1            

Arthritis 
R=0.70 
p<0.01 

1           

Asthma 
R=0.94 
p<0.01 

R=0.52 
p <0.01 

1          

Cancer 
R=-0.33 
p<0.01 

R=0.42 
p<0.01 

R=-0.52 
p<0.01 

1         

Chronic 
Heart 

Disease 

R=0.85 
p<0.01 

R=0.93 
p<0.01 

R=0.67 
p<0.01 

R=0.18 
p<0.01 

1        

COPD 
R=0.98 
p<0.01 

R=0.77 
p<0.01 

R=0.86 
p<0.01 

R=-0.19 
p<0.01 

R=0.91 
p<0.01 

1       

Diabetes 
R=0.92 
p<0.01 

R=0.80 
p<0.01 

R=0.88 
p<0.01 

R=-0.14 
p=0.05 

R=0.87 
p<0.01 

R=0.86 
p<0.01 

1      

High Blood 
Pressure 

R=0.82 
p<0.01 

R=0.89 
p<0.01 

R=0.76 
p<0.01 

R=0.08 
p=0.26 

R=0.88 
p<0.01 

R=0.79 
p<0.01 

R=0.96 
p<0.01 

1     

High 
Cholesterol 

R=0.42 
p<0.01 

R=0.91 
p<0.01 

R=0.17 
p=0.02 

R=0.67 
p<0.01 

R=0.77 
p<0.01 

R=0.53 
p<0.01 

R=0.53 
p<0.01 

R=0.68 
p<0.01 

1    

Chronic 
Kidney 

Disease 

R=0.89 
p<0.01 

R=0.86 
p<0.01 

R=0.82 
p<0.01 

R=-0.02 
p=0.83 

R=0.93 
p<0.01 

R=0.87 
p<0.01 

R=0.98 
p<0.01 

R=0.96 
p<0.01 

R=0.60 
p<0.01 

1   

Obesity 
R=0.95 
p<0.01 

R=0.60 
p<0.01 

R=0.97 
p<0.01 

R=-0.46 
p<0.01 

R=0.72 
p <0.01 

R=0.86 
p<0.01 

R=0.93 
p<0.01 

R=0.83 
p <0.01 

R=0.27 
p<0.01 

R=0.87 
p<0.01 

1  

Stroke 
R=0.91 
p<0.01 

R=0.82 
p<0.01 

R=0.87 
p<0.01 

R=-0.10 
p=0.17 

R=0.90 
p<0.01 

R=0.88 
p<0.01 

R=0.99 
p<0.01 

R=0.96 
p<0.01 

R=0.55 
p<0.01 

R=0.99 
p<0.01 

R=0.91 
p<0.01 

1 
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Supplemental Table 3A.3: Average NDVI in Louisville, KY by tertiles of winter and spring 16-hour 
(5:00 PM – 9:00 AM) environmental noise in high-income census tracts. (N=95). 

 Average Winter Noise  Average Spring Noise  

 Low 

(49.70 – 
52.65 dB) 

(n=32) 

Moderate 

(52.66 – 
54.04 dB) 

(n=32) 

High 

(54.13 – 
60.32 dB) 

(n=31) 

Low 

(50.90 – 
53.55 dB) 

(n=32) 

Moderate 

(53.57 –  
54.79 dB) 

(n=32) 

High 

(54.80 – 
62.11 dB) 

(n=31) 

Greenness by 
season (NDVI) 

0.17 (0.02) 0.15 (0.02) 0.13 (0.03) 0.35 (0.03) 0.30 (0.02) 0.27 (0.03) 

Average NDVI for census tracts was calculated from Landsat8 images obtained from the United 
States Geological Survey. Winter NDVI was representative of January 6th, 2020, with a cloud 
coverage of 6.09%. Spring NDVI was representative of August 17th, 2020, with a cloud coverage 
of 1.05%. 

The Kruskal Wallis test was used to compare distributions of winter NDVI in tertiles of winter 
noise due to the non-normal distribution of winter NDVI.  

An ANOVA test was used to compare distributions of spring NDVI in tertiles of spring noise.  
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Introduction  

Depression is a complex psychiatric disease characterized by sad or 

anxious mood, lack of interest in pleasurable activities, feelings of hopelessness, 

and decreased energy, among others.178 Depression may be present in other 

mood disorders, such as bipolar disorder, seasonal affective disorder, and 

dysthymia.178 The World Health Organization (WHO) estimates that depressive 

disorders are the third leading global cause of years lived with disability,179 and 

9.7% of adults in the United States experienced a depressive disorder between 

2001 and 2003.180 Depressive disorders are multi-causal,181–184 with no single 

factor contributing to its development. However, environmental noise exposure 

contributes to sleep disturbance28,108–110,116,139,143–145 or stress response107–117 

that may influence the development of depression. 

Several studies reported significant associations between louder 

environmental noise and increased prevalence23,25,27 and incidence37 of 

depression. However, noise exposure estimates were generally defined as 

source-specific noise, such as aircraft nosie,23 road-traffic noise,23,27 rail-traffic 

noise,23 or some combination of the three,25,37 which may not be fully 

representative of the totality of environmental noise exposures. Additionally, 

noise exposures were mostly defined by full-day exposures at specific 

locations,23,25,27 which likely does not represent full-day noise exposures, which 

are based on the spatial-temporal movements of individuals.36,39 Other studies 

reported no associations between noise exposures and depression.26,31–33 The 

inconsistent findings throughout the literature may be partially due to 
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inconsistencies in defining depression, which include diagnosed depressive 

disorders,23,25 varying questionnaires that assess depression,25–27 emergency 

admissions for depression,37 and anti-depressant medication use.31–33 

Depression disparities exist amongst genders,185–187 and some have 

reported stronger associations between environmental noise and depression 

among women compared to men.27 Disparities of depression also exist by 

racial188,189 and income groups,190,191 but analysis of effect modification by race 

and income have yet to be examined in the association of environmental noise 

with depression. The association between environmental noise exposure and 

depression may differ by levels of sleep disturbance or stress, however only one 

study has reported on modification by sleep32 where no modification was 

observed, and stress has yet to be investigated. Further, studies on the 

association of environmental noise and depression among adults have been 

predominately conducted in Europe.23,25–27,31–33,37 Just one study, with the 

specific population of women and the hazard of post-partum depression, has 

been conducted in Montreal, Canada.192  

Louisville, Kentucky is a strong candidate for a US based study, given the 

presence of several environmental noise sources, such as an international and 

large cargo airport (SDF), five interstates, and several railways. Particularly, 

South Louisville neighborhoods are in close proximity to all three of these major 

noise polluters, and the noise produced in these neighborhoods may be 

contributing to depression among the South Louisville population. Therefore, the 

purpose of this study is to determine the association of depression and 



 

 
 127 

environmental noise during 5:00 PM to 9:00 AM, chosen to represent the times 

during which most adults would be at home,30,33,35 among adults in South 

Louisville, Kentucky and to examine whether the association differs by gender, 

race, income, sleep, and stress.  

 

Methods and Materials 

Study Population and Outcome Data  

Green Heart Louisville (GHL) and its health study – Health, Environment, 

and Action in Louisville (HEAL) – is a non-randomized clinical trial aimed to 

assess an intervention of added greenery and its effects on cardiovascular health 

in South Louisville communities. Baseline enrollment of participants occurred in 

the summers of 2018 and 2019. Eligibility criteria to participate in HEAL included 

being between 25 and 70 years of age, not being part of a vulnerable population 

(e.g., incarcerated, paroled, or pregnant individuals), and having no pre-existing 

cancers or blood disorders. At enrollment, all participants (N=735) completed an 

extensive questionnaire on health history and behaviors and a physical health 

exam that included assessment of blood pressure, height, weight, lung capacity, 

and collection of toenail, blood, and urine samples.  

Included in the questionnaire was the Patient Health Questionnaire 9 

(PHQ-9), which is a validated assessment for depression severity.193 Participants 

were asked a series of nine questions regarding depressive symptoms within the 

last two weeks, to which they responded with a 4-point Likert scale of “not at all” 

[0], “several days” [1], “more than half the days” [2], or “nearly every day” [3]. 
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Points are summed to range between 0 and 27, where scores of 0 – 4 represent 

none/minimal depression, 5 – 9 represents mild depression, 10 – 14 represents 

moderate depression, 15 – 19 represents moderately severe depression, and 20 

– 27 represents severe depression. Of the 735 HEAL participants, 11 had 

missing values for one of the nine PHQ-9 questions and were excluded from 

analysis, resulting in a final sample of 724 participants. For the current study, 

PHQ-9 scores were treated dichotomously, where scores of 5 or greater 

indicated the presence of depression (n=312) and those of 4 or lower indicated 

the absence of depression (n=412).193,194 Further, those who reported taking any 

medication used for treating depression were additionally considered as having 

depression (n=52), resulting in 364 individuals with depression, and 360 without 

depression. 

Exposure Data – Spring 16-hour Noise 

 Detailed descriptions of noise data are documented elsewhere (see Aim 1 

manuscript). Briefly, noise data were collected at 15 sites in Louisville during 

April/May 2021. At each site, noise levels were recorded every 10 seconds for 24 

hours using a Class 1 noise meter (Type 2236, Brüel & Kjær, Naerum, 

Denmark), and the average noise was calculated for the 16-hour time-period 

between 5:00 PM and 9:00 AM, chosen to represent the presumed times that 

adults would likely be at their homes.24,30,33,35 The spring 2021 noise distribution 

in Louisville was estimated via land use regression (LUR) modeling, which 

included geographic characteristics of collection sites as covariates (e.g. 

normalized difference vegetation index, distance to airport flyovers, annual 
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average road traffic, length of streams). The resulting LUR model had 

satisfactory fit and prediction error, with an R2 of 0.57 and a leave-one-out cross-

validation (LOOCV) root mean square error (RMSE) of 5.92 decibels. Using 

ArcGIS 10.7.1, individual-level 16-hour noise exposure was extracted at the 

geocoded residential addresses of participants at enrollment.  

Covariate Data 

 Covariate data from the HEAL participants included age (in years), gender 

(male or female), race (white, black, or other), Hispanic ethnicity, household 

income (less than $20‚000, $20‚000-44‚999, $45‚000-64‚999, $65‚000 or more, 

and missing), education level (associate degree or lower or bachelor’s degree or 

higher), perception of general health (excellent or very good, good, fair or poor, 

and missing), number of chronic conditions, physical activity (none, low intensity 

at least once per week, moderate intensity 1-4 times per week, or moderate 

intensity at least 5 times per week or high intensity at least once per week, and 

missing), cigarette smoking status (never, ever – at least 100 cigarettes in 

lifetime, current, and missing), alcohol risk level based on the Alcohol Use 

Disorder Identification Test (AUDIT; no risk, low risk, risky to severe, and 

missing),195 marijuana use (never, current – less than a month ago, former – 

more than a month ago, and missing), and stress level in tertiles (and missing) of 

the Perceived Stress Scale (PSS).196,197 Additionally, census-tract level 

prevalence of insufficient sleep (≤7 hours per night) was obtained from CDC 

PLACES and assigned to the census tract of each participant’s residential 

address.  
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Statistical Analyses 

Age-adjusted characteristics of the 724 participants were calculated by 

exposures of <57.0, 57.0 – <60.0, 60.0 – <63.0, and ≥63.0 decibels of 16-hour 

noise levels and depression status. Multivariable logistic regression was utilized 

to estimate odds ratios (OR) and 95% confidence intervals (95% CI) of 

depression (yes/no) in relation to 16-hour noise exposure, assessed continuously 

and by categories of <57.0, 57.0 – <60.0, 60.0 – <63.0, and ≥63.0 decibels. 

Covariates that were considered confounders or associated with depression in 

descriptive analyses were entered into the model in groups to determine their 

effect on the strength of the association between noise and depression. Final 

models were assessed for goodness of fit by a Hosmer-Lemeshow p-value>0.05. 

Effect modification by gender, race, income, census-tract level prevalence of 

insufficient sleep, and perceived stress level was assessed using the fully 

adjusted models. For dichotomous effect modification variables, an interaction 

term with continuous noise was included in the model and significance was 

determined by the Wald X2 test. For categorical variables, dummy variables were 

created for each category and interaction terms with noise were created with 

each dummy variable, and significance was determined by the Likelihood Ratio 

Test. For analysis of effect modification by income and stress levels, those with 

missing income or stress data were removed from the sample, leaving sample 

sizes of 688 and 720, respectively.  

Additionally, we conducted a sensitivity analysis using the fully adjusted 

model with three other definitions of depression: PHQ-9 ≥5 only (n of depression 
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events=312), PHQ-9 ≥10198–200 (n of depression events=140), and PHQ-9 ≥10 or 

use of anti-depressant medication (n of depression events=232). Effect 

modification analysis was also assessed using the secondary depression 

outcomes. All statistical analyses were performed using SAS Software (version 

9.4). 

 

Results 

 Figure 3B.1 displays the distribution of noise exposure in Louisville and in 

the GHL study area. Noise in Louisville ranged between 47.73 and 80.16 

decibels, whereas noise within the GHL study area ranged between 53.13 and 

66.43 decibels. Figure 3B.2 displays the noise distribution in the GHL study area 

and the population density of HEAL participants. HEAL participants were more 

densely distributed in louder areas than in quieter areas. Overall, the mean (SD) 

16-hour environmental noise exposure of HEAL participants was 59.50 (2.75) 

decibels, with a minimum exposure of 54.40 decibels and a maximum of 66.16 

decibels.  

Table 3B.1 displays the age-adjusted characteristics of participants by 

<57.0, 57.0 – <60.0, 60.0 – <63.0, and ≥63.0 decibels of 16-hour noise and 

depression status. Relationships between noise levels and characteristics were 

not always consistent. Individuals with the loudest noise exposures were similar 

to those with the quietest noise exposures in terms of age and number of chronic 

conditions. However, compared to those with the quietest noise exposures, those 

exposed to the loudest noise were more likely to be depressed, males, black or 
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other race, and Hispanic; to have lower income, lower education, lower general 

health, less physical activity, risky to severe alcohol use, and never used 

marijuana; to reside in census tracts with low prevalence of insufficient sleepers 

and to experience higher stress levels; but less likely to be a current cigarette 

smoker. Those who had depression were similar in age and Hispanic ethnicity to 

those without depression. However, relative to those without depression, 

depressed individuals were more likely to be female, white race, a current 

smoker, and a current marijuana user; to have lower income, lower education, 

lower general health, more chronic conditions, less physical activity, and no 

alcohol use risk; to reside in census tracts with high prevalence of insufficient 

sleepers and to experience higher stress levels. 

 Logistic regression modeling results are shown in Table 3B.2. In the crude 

model, louder continuous noise by one decibel was associated with higher odds 

of depression by 3%, however this association was not statistically significant 

(OR=1.03, 95% CI: 0.98, 1.09). After adjustments for age, gender, race, 

education, income, self-perceived health, number of chronic conditions, cigarette 

smoking status, alcohol risk, marijuana use, physical activity, stress levels, and 

prevalence of insufficient sleep prevalence of residence census tract, louder 

continuous noise by one decibel was not associated with higher odds of 

depression (OR=1.05, 95% CI: 0.97, 1.14). The Hosmer-Lemeshow test p-value 

was 0.836, indicating that the model was of good fit. In the fully adjusted model 

(model 8) and compared to those exposed to <57.0 decibels, exposure to noise 

levels between 57.0 and <60.0 decibels was associated with 1.83-times higher 
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odds of depression; those exposed to 60.0 to <63.0 decibels did not have higher 

odds of depression; and those with noise exposures of ≥63 decibels had 2.15-

times higher odds of depression (OR for 57.0 – <60.0 dB=1.83, 95% CI: 1.06, 

3.18; OR for 60 – <63 dB=1.44, 95% CI: 0.79, 2.60; OR for ≥63 dB=2.15, 95% 

CI: 1.00, 4.64; pglobal=0.098). The categorical noise model was deemed to be of 

good fit, with a Hosmer-Lemeshow test p-value of 0.637.  

 Table 3B.3 displays the findings of effect modification. For all variables, no 

significant effect modification was observed (all X2 or LRT pinteraction>0.05). 

However, there is a suggestion of one-decibel louder noise being associated with 

10% higher odds of depression among those with lower stress levels (OR=1.10, 

95% CI: 1.00, 1.22), but not among those with higher stress levels (OR=0.99, 

95% CI: 0.90, 1.10). Also, one-decibel louder noise was associated with 12% 

higher odds of depression among those residing in census tracts with lower 

prevalence of insufficient sleepers (OR=1.12, 95% CI: 1.00, 1.25), but not among 

those residing in census tracts with higher prevalence of insufficient sleepers 

(OR=0.99, 95% CI: 0.91, 1.09).  

 Results of sensitivity analyses are shown in Supplemental Table 3B.1. 

Overall, sensitivity analyses resulted in null findings; louder noise had no 

association with odds of the additional depression outcomes. Similarly, effect 

modification analysis using the sensitivity depression outcomes reflected the 

findings of the main results (shown in Supplemental Table 3B.2). Interestingly, 

when using the most severe outcome of depression (PHQ-9 ≥10 or anti-

depressant use), louder noise is still suggested to be associated with higher odds 
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of depression by 12% among those with low levels of stress (OR=1.12, 95% CI: 

1.00, 1.26). Compared to the main depression outcome, all additional depression 

outcomes had fewer events and findings were more likely to be null.  

 

Discussion  

The current study found no association between one-decibel louder 16-

hour environmental noise and depression among adults in South Louisville, 

Kentucky; however, those with noise exposures of 57.0 – <60.0 decibels and 

those exposed to ≥63.0 decibels had higher odds of depression than those with 

the quietest noise exposures (i.e., <54 dB). Further, odds of depression from 

louder noise was not modified by gender, race, nor income, but there was 

suggestive modification by census-tract level prevalence of insufficient sleep and 

individual stress levels, with those in lower insufficient sleep prevalence census 

tracts and those with lower stress levels had higher odds of depression in relation 

to one-decibel louder noise. 

Our findings are similar to others who have found null relationships 

between louder environmental noise and depression.23,26,31–33 Particularly, 

Seidler et al. observed inverted-U-shaped associations of categorical aircraft 

noise and railway noise with depressive disorders.23 However, the Seidler et al. 

study may have lacked large-enough samples in the loudest noise groups, such 

that the ability to detect potential significance in associations was hindered. As 

such, future work should strive for larger samples, particularly in the loudest 

exposure groups, to compare results observed in the current study.  
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Further, we observed no significant effect modification of the association 

between environmental noise and depression by gender (X2 pinteraction=0.080), 

which is congruent with several others.23,26,27,33 Based on our previous findings 

(see Aim 3A manuscript), we assessed for effect modification by race and 

income, which have not yet been investigated, and did not detect significant 

modifications by race LRT pinteraction=0.805) and income (quartile LRT 

pinteraction=0.825; dichotomous X2 pinteraction=0.840). Our null findings may be a 

consequence of the limited spatial variability of the study area.  

Okokon et al. reported no significant effect modification by sleep 

disturbance on the association between road-traffic noise and anti-depressant 

use.32 However, we observed a suggestive association between environmental 

noise and depression among those residing in census tracts with lower 

prevalence of insufficient sleepers (OR=1.12, 95% CI: 1.00, 1.25), as well as 

among those with lower stress levels (OR=1.10, 95% CI: 1.00, 1.22). These 

findings indicate that environmental noise exposure may be most harmful for 

depression among individuals who do not experience sleep problems or stressful 

daily lives; high-stress201,202 or sleep-disturbed168,203,204 individuals are more 

prone to depression than low-stress or non-sleep-disturbed individuals, such that 

the additional stressor and disturbance of environmental noise may be negligible 

to likelihood of depression. However, higher powered analyses are needed to 

determine the true modifications by sleep and/or stress, and longitudinal studies 

are required to determine the widely-proposed28,107–117,139,143–145 mediation by 

these two factors.  
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Limitations and Strengths 

 There are a few limitations of the current study, as well as strengths. First, 

the noise model used to estimate noise exposure was built using data from 15 

collection sites, which may have produced measurement error of the noise 

exposure and the null observed associations, as well as the suggestive effect 

modification findings, may be due to chance. However, the noise estimate data 

had acceptable levels of inter-rater reliability (intra-class correlation 

coefficient=0.857, n=2 sites, 4 samples; see Aim 1 manuscript) and the noise 

model resulted in acceptable levels of prediction error (leave-one-out cross-

validation root-mean square error=5.92 dB; see Aim 1 manuscript). Further, the 

HEAL cohort study may not be fully representative of the Louisville area, as the 

study area is located near the international airport, a major noise source, and 

contains little spatial variability (mean noise=59.50 dB, SD=2.75 dB) relative to all 

of Louisville (census tract mean noise=56.91 dB, SD=4.26 dB); as such, 

variability in individual environmental noise exposures may be too low to detect a 

true association. Lack of variability in exposures increases the standard errors of 

parameter estimates and widens the confidence intervals of effect estimates; 

larger sample sizes or greater variability in the exposure are needed to obtain 

higher precision in estimating associations. Moreover, individual noise exposure 

is dependent on the spatial-temporal movements of individuals,36,39 which were 

not accounted for in the current study. The use of GPS data from study 

participants, potentially collected through smart phone data, would aid in 

reducing exposure measurement error and potentially increase exposure 
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variability, thereby increasing the confidence in effect estimates.205,206 

Additionally, the HEAL study lacked detailed data on income, which may have 

contributed to the non-linear associations observed in categorical model. Finally, 

the current study was a cross-sectional analysis that lacked temporality between 

noise exposure (collected in 2021) and participant data (collected in 2018 or 

2019), and causation should not be inferred from effect estimates. To better 

explicate potential causative effects of noise exposure on depression, future work 

should seek to achieve longitudinal analyses with exposure-outcome temporality. 

 Despite the limitations, there are strengths of the current study. The GHL 

study area includes demographically diverse neighborhoods, and data contained 

variation in socioeconomic and demographic characteristics. HEAL surveys were 

reviewed for completion and/or administered by interviewers, which minimized 

the amount of missing data. Further, data from HEAL participants were robust, 

and models were adjusted for many important demographics and behavioral 

confounders that have not been widely adjusted for in past literature,23,25–27,31 

such as smoking status, alcohol intake, and physical activity. Although data on 

participants’ sleep were not available, we were able to include residential census-

tract level insufficient sleep prevalence through data linkage to CDC PLACES. 

Additionally, we defined the presence of depression with PHQ-9 scores and anti-

depressant medication use, that captured participants who would not have been 

exhibiting depressive symptoms at enrollment due to effective medication. We 

addressed misclassification of the outcome through additional depression 

definitions for more severe depression used in sensitivity analyses. Finally, the 
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current study adds to the overall understanding of the association between total 

environmental noise with depression by contributing analysis of a US-based 

population. 

 

Conclusion  

 The current study observed a suggestive association between louder total 

environmental noise and odds of depression among adults in South Louisville, 

Kentucky, particularly those exposed to ≥63 decibels of total environmental 

noise. Additionally, there was suggestive effect modification by census-tract-level 

prevalence of insufficient sleep and by individual-level stress, in which those in 

lower insufficient sleep prevalence tracts and those with lower stress levels had 

higher odds of depression from louder environmental noise. Further studies with 

increased power, exposure variability, and longitudinal follow-up are needed to 

determine the true association between environmental noise and incidence of 

depression.
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Figure 3B.1: 16-hour (5:00 PM – 9:00 AM) environmental noise in the Green 
Heart Louisville study area.  
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Figure 3B.2: 16-hour (5:00 PM – 9:00 AM) environmental noise and population density of participants in the Green 
Heart Louisville study area.  
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Table 3B.1: Age-adjusted descriptive characteristics by spring 16-hour noise (5:00 PM – 9:00 AM) exposure levels and depression (N=724). 

 
Spring 16-hour (5:00 PM – 9:00 AM) Noise 

Depression (PHQ-9 ≥ 5 or             
anti-depressant medication use) 

< 57.0 dB 

(n=160) 

57.0 – < 60.0 dB 

(n=231) 

60.0 – < 63.0 dB 

(n=256) 

≥ 63.0 dB 

(n=77) 

No 

(n=360) 

Yes 

(n=364) 

Depression, %(n) 49.04 (78) 50.73 (117) 47.70 (122) 57.29 (44)   

Age* 49.52 (12.67) 50.16 (12.90) 49.20 (12.32) 48.68 (12.96) 49.39 (13.11) 49.64 (12.16) 

Male, %(n) 35.73 (57) 45.09 (104) 36.61 (94) 47.14 (36) 47.51 (171) 30.42 (111) 

Race, %(n)       

White 72.89 (117) 86.93 (201) 79.48 (203) 63.54 (49) 76.43 (275) 78.43 (285) 

Black 22.65 (36) 10.17 (23) 15.08 (39) 28.91 (22) 19.41 (70) 15.90 (58) 

Other 4.45 (7) 2.90 (7) 5.44 (14) 7.55 (6) 4.15 (15) 5.68 (21) 

Non-Hispanic, %(n) 97.27 (156) 98.72 (227) 96.47 (247) 93.12 (71) 96.59 (347) 96.22 (349) 

Household Income, %(n)       

Less than $20‚000 22.41 (36) 20.15 (47) 18.00 (46) 38.28 (29) 17.11 (62) 29.08 (106) 

$20‚000-44‚999 36.06 (58) 23.28 (54) 28.51 (73) 21.09 (16) 25.69 (92) 31.43 (114) 

$45‚000-64‚999 19.25 (31) 19.41 (45) 23.94 (61) 19.27 (15) 25.91 (93) 17.07 (62) 

$65‚000 or more 13.94 (22) 30.90 (71) 25.99 (67) 14.06 (11) 26.27 (95) 18.50 (67) 

Missing 8.33 (13) 6.26 (14) 3.56 (9) 7.29 (6) 5.02 (18) 3.91 (14) 

Education Level, %(n)       

Less than High school degree 10.20 (16) 8.43 (19) 6.41 (16) 16.15 (12) 7.80 (28) 10.94 (40) 

High school graduate or GED 26.53 (42) 23.94 (55) 19.58 (50) 26.30 (20) 23.06 (83) 21.28 (77) 

Some college‚ 2-yr degree‚ or 
certificate 

47.75 (76) 30.59 (71) 36.86 (94) 38.02 (29) 37.11 (134) 42.43 (154) 

Bachelors degree 10.78 (17) 16.90 (39) 20.88 (53) 11.46 (9) 16.14 (58) 14.34 (52) 
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Table 3B.1: Age-adjusted descriptive characteristics by spring 16-hour noise (5:00 PM – 9:00 AM) exposure levels and depression (N=724). 

 
Spring 16-hour (5:00 PM – 9:00 AM) Noise 

Depression (PHQ-9 ≥ 5 or             
anti-depressant medication use) 

< 57.0 dB 

(n=160) 

57.0 – < 60.0 dB 

(n=231) 

60.0 – < 63.0 dB 

(n=256) 

≥ 63.0 dB 

(n=77) 

No 

(n=360) 

Yes 

(n=364) 

Graduate degree 4.45 (7) 19.68 (45) 16.05 (41) 8.07 (6) 15.71 (57) 10.11 (37) 

Missing 0.29 (0) 0.46 (1) 0.22 (1) 0.00 (0) 0.18 (1) 0.90 (3) 

General Healtha, %(n)       

Excellent or very good 36.73 (59) 40.41 (93) 34.99 (90) 35.94 (28) 48.04 (173) 23.03 (84) 

Good 40.71 (65) 42.23 (98) 46.76 (120) 33.59 (26) 44.31 (160) 44.12 (161) 

Fair or poor 22.56 (36) 16.67 (39) 18.25 (47) 30.47 (23) 7.38 (27) 32.85 (120) 

Missing 0.00 (0) 0.70 (2) 0.00 (0) 0.00 (0) 0.27 (1) 0.00 (0) 

Number of Chronic Conditionsb 1.57 (1.07) 1.20 (1.06) 1.27 (1.21) 1.40 (0.78) 0.96 (1.08) 1.64 (1.38) 

Physical Activityc, %(n)       

None 42.91 (69) 39.29 (91) 35.89 (92) 39.32 (30) 29.57 (106) 49.51 (180) 

Low intensity at least once per 
week 

23.66 (38) 22.78 (53) 22.17 (57) 32.55 (25) 27.73 (100) 21.07 (77) 

Moderate intensity 1-4 times 
per week 

18.63 (30) 21.62 (50) 25.56 (65) 17.71 (14) 23.81 (86) 17.94 (65) 

Moderate intensity at least 5 
times per week or High 
intensity at least once per 
week 

13.36 (21) 15.97 (37) 14.58 (37) 8.85 (7) 17.31 (62) 10.32 (38) 

Missing 1.44 (2) 0.35 (1) 1.80 (5) 1.56 (1) 1.58 (6) 1.16 (4) 

Smoking Status, %(n)       

Never 36.78 (59) 45.82 (106) 51.91 (133) 37.76 (29) 55.82 (201) 37.65 (137) 

Ever 16.91 (27) 22.93 (53) 15.44 (40) 25.52 (20) 17.92 (65) 21.02 (77) 
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Table 3B.1: Age-adjusted descriptive characteristics by spring 16-hour noise (5:00 PM – 9:00 AM) exposure levels and depression (N=724). 

 
Spring 16-hour (5:00 PM – 9:00 AM) Noise 

Depression (PHQ-9 ≥ 5 or             
anti-depressant medication use) 

< 57.0 dB 

(n=160) 

57.0 – < 60.0 dB 

(n=231) 

60.0 – < 63.0 dB 

(n=256) 

≥ 63.0 dB 

(n=77) 

No 

(n=360) 

Yes 

(n=364) 

Current 41.57 (67) 28.46 (66) 29.88 (76) 35.68 (27) 22.76 (82) 39.33 (143) 

Missing 4.74 (8) 2.78 (6) 2.77 (7) 1.04 (1) 3.49 (13) 2.00 (7) 

Alcohol Risk Leveld, %(n)       

No risk 35.30 (56) 32.44 (75) 34.67 (89) 41.15 (32) 33.50 (121) 36.21 (132) 

Low risk 46.65 (75) 39.13 (90) 34.70 (89) 36.46 (28) 40.05 (144) 36.15 (132) 

Risky to Severe 14.08 (23) 25.64 (59) 26.35 (67) 21.35 (16) 22.95 (83) 23.16 (84) 

Missing 3.98 (6) 2.78 (6) 4.28 (11) 1.04 (1) 3.49 (13) 4.48 (16) 

Marijuana Use, %(n)       

Never 57.57 (92) 53.52 (124) 64.25 (164) 65.63 (51) 66.19 (238) 55.45 (202) 

Currently 17.67 (28) 20.53 (47) 17.93 (46) 19.01 (15) 14.40 (52) 20.91 (76) 

Former 17.24 (28) 20.88 (48) 14.90 (38) 10.68 (8) 15.08 (54) 18.09 (66) 

Missing 7.52 (12) 5.07 (12) 2.92 (7) 4.69 (4) 4.33 (16) 5.56 (20) 

Insufficient Sleep Prevalence of 
Residence Census Tract, %(n) 

      

Low: 40.1% – 42.7% 93.52 (127) 93.19 (190) 96.07 (209) 98.79 (68) 37.60 (135) 26.26 (96) 

Moderate: 42.8% –43.5% 1.83 (2) 3.01 (6) 1.65 (4) 0.00 (0) 35.05 (126) 39.56 (144) 

High: 43.6% – 49.1% 2.66 (4) 3.28 (7) 1.78 (4) 0.00 (0) 27.34 (98) 34.18 (124) 

Stress Levele, %(n)       

Tertile 1: PSS ≤ 11 36.35 (58) 41.03 (95) 38.08 (97) 35.94 (28) 57.44 (207) 15.52 (56) 
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Table 3B.1: Age-adjusted descriptive characteristics by spring 16-hour noise (5:00 PM – 9:00 AM) exposure levels and depression (N=724). 

 
Spring 16-hour (5:00 PM – 9:00 AM) Noise 

Depression (PHQ-9 ≥ 5 or             
anti-depressant medication use) 

< 57.0 dB 

(n=160) 

57.0 – < 60.0 dB 

(n=231) 

60.0 – < 63.0 dB 

(n=256) 

≥ 63.0 dB 

(n=77) 

No 

(n=360) 

Yes 

(n=364) 

Tertile 2: PSS 12-18 31.47 (50) 29.74 (69) 34.41 (88) 30.47 (23) 33.81 (122) 34.45 (125) 

Tertile 3: PSS ≥ 19 31.32 (50) 29.23 (68) 26.53 (68) 33.59 (26) 8.24 (30) 49.58 (180) 

Missing 0.86 (1) 0.00 (0) 0.97 (2) 0.00 (0) 0.51 (2) 0.45 (2) 

Values are means(SD) or medians(IQR) for continuous variables; %(n) for categorical variables, and are standardized to the age distribution of the 
study population. 

*Value is not age adjusted 

aSelf-reported perception 
bIncludes cardiovascular disease, chronic obstructive pulmonary disease, chronic kidney failure, type 2 diabetes, HIV/AIDS, chronic inflammatory 
or autoimmune disease, and hyperlipidemia. 
cMore than 10 minutes each time 

dAlcohol Use Disorders Identification Test (AUDIT) risk levels 

eTertiles based on Perceived Stress Scale (PSS) scores 
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Table 3B.2: Odds ratios for depression (PHQ-9 ≥ 5 or anti-depressant medication use) by a one-decibel increase and by categories of noise in 
various models N=724, Events: 364. 

 Continuous Categorical 

Model OR (95% CI) 

OR (95% CI) for 

< 57.0 dB 

OR (95% CI) for 

57.0 – < 60.0 dB 

OR (95% CI) for 

60.0 – < 63.0 dB 

OR (95% CI) for 

≥ 63.0 dB pglobal 

Events/n  76/160 118/231 125/256 45/77  

Crude 1.03 (0.98, 1.09) REF 1.15 (0.77, 1.73) 1.05 (0.71, 1.57) 1.55 (0.90, 2.69) 0.418 

Model 1 1.03 (0.98, 1.09) REF 1.18 (0.78, 1.78) 1.02 (0.68, 1.53) 0.70 (0.97, 2.99) 0.224 

Model 2 1.04 (0.98, 1.10) REF 1.29 (0.85, 1.96) 1.12 (0.74, 1.69) 1.78 (1.01, 3.14) 0.200 

Model 3 1.04 (0.98, 1.10) REF 1.34 (0.87, 2.06) 1.15 (0.76, 1.74) 1.73 (0.97, 3.09) 0.242 

Model 4 1.04 (0.98, 1.10) REF 1.49 (0.94, 2.37) 1.16 (0.74, 1.82) 1.89 (1.01, 3.52) 0.126 

Model 5 1.04 (0.98, 1.11) REF 1.64 (1.02, 2.63) 1.27 (0.80, 2.00) 2.01 (1.07, 3.77) 0.077 

Model 6 1.05 (0.98, 1.12) REF 1.67 (1.02, 2.71) 1.34 (0.83, 2.15) 2.09 (1.09, 4.00) 0.082 

Model 7 1.05 (0.97, 1.12) REF 1.73 (1.01, 2.97) 1.31 (0.77, 2.22) 2.19 (1.05, 4.55) 0.094 

Model 8 1.05 (0.97, 1.14) REF 1.83 (1.06, 3.18) 1.44 (0.79, 2.60) 2.15 (1.00, 4.64) 0.098 

The Crude model includes only noise.  
Model 1 includes the Crude model plus age, gender (male/female), and race (white/black/other). 
Model 2 includes Model 1 plus education (associate degree or lower, bachelor’s degree or higher; and missing). 
Model 3 includes Model 2 plus income (<$20K, $20K – $44.9K, $45K – $64.9K, ≥$65K; and missing) 
Model 4 includes Model 3 plus self-perceived health (fair or poor, good, excellent or good; and missing).  
Model 5 includes Model 4 plus number of chronic conditions. 
Model 6 includes Model 5 plus cigarette smoking status (never, ever, current; and missing), alcohol risk (no risk, low risk, risky to severe; and 
missing), marijuana use (never, current, former; and missing), physical activity (none, low intensity at least once per week, moderate intensity 1-
4 times per week, moderate intensity at least 5 times per week, high intensity at least once per week; and missing). 
Model 7 includes Model 6 plus stress levels (tertile 1: PSS ≤11, tertile 2: PSS 12-18, tertile 3: PSS ≥19; and missing).  
Model 8 includes Model 7 plus prevalence of insufficient sleep prevalence of residence census tract (low, moderate, or high). 
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Table 3B.3: Effect modification of the association between noise and odds of depression using 
Model 8,* N=724. 

Effect Modifier Events/n OR (95% CI) pinteraction 

Gender   0.080 
Male 112/283 1.00 (0.91, 1.10)  

Female 252/441 0.88 (0.71, 1.09)  
Race   0.805 

White  285/562 1.07 (0.97, 1.17)  
Black  58/125 1.03 (0.89, 1.19)  
Other  21/37 0.97 (0.70, 1.35)  

Incomea   0.825 
≤ $20K  107/168 1.12 (0.97, 1.29)  

$20K- $44.9K  116/205 1.05 (0.92, 1.19)  
$45K – $64.9K  65/157 1.03 (0.88, 1.20)  

≥ $65K  60/158 1.11 (0.93, 1.32)  
   0.840 

≤ $44.9K  223/373 1.08 (0.98, 1.19)  
≥ $45K 125/315 1.06 (0.94, 1.20)  

Prevalence of Insufficient Sleep   0.100 
40.1% - 42.8%  139/327 1.12 (1.00, 1.25)  
43.2% - 49.1%  225/397 0.99 (0.91, 1.09)  

Perceived Stress Levelb   0.136 
PSS ≤ 14 97/367 1.10 (1.00, 1.22)  
PSS > 14 265/353 0.99 (0.90, 1.10)  

*Model covariates include age, gender (male/female), race (black/other/white), education 
(associate degree or lower, bachelor’s degree or higher; and missing), income (<$20K, $20K – 
$44.9K, $45K – $64.9K, ≥$65K; and missing), self-perceived health (fair or poor, good, 
excellent or good; and missing), number of chronic conditions, cigarette smoking status (never, 
ever, current; and missing), alcohol risk (no risk, low risk, risky to severe; and missing), 
marijuana use (never, current, former; and missing), physical activity (none, low intensity at 
least once per week, moderate intensity 1-4 times per week, moderate intensity at least 5 times 
per week, high intensity at least once per week; and missing), stress levels (tertile 1: PSS ≤11, 
tertile 2: PSS 12-18, tertile 3: PSS ≥19; and missing), and prevalence of insufficient sleep 
prevalence of residence census tract (low, moderate, or high). 
aN=688, those with missing data for income were excluded.  
bN=720, those with missing data for PSS were excluded. 
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Supplemental Table 3B.1: Odds ratios for varying depression outcomes by a one-decibel increase and by categories of noise using Model 8,* 
N=724. 

 Continuous Categorical 

Outcome OR (95% CI) 

OR (95% CI) for 

< 57.0 dB 

OR (95% CI) for 

57.0 – < 60.0 dB 

OR (95% CI) for 

60.0 – < 63.0 dB 

OR (95% CI) for 

≥ 63.0 dB pglobal 

PHQ-9 ≥ 5 1.04 (0.96, 1.13) REF 1.54 (0.86, 2.77) 1.35 (0.72, 2.52) 1.86 (0.85, 4.10) 0.362 

Events/n 312/724 67/160 97/231 108/256 40/77  

PHQ-9 ≥ 10 1.04 (0.95, 1.15) REF 1.32 (0.63, 2.78) 1.95 (0.87, 4.34) 1.24 (0.78, 3.22) 0.411 

Events/n 140/724 30/160 44/231 50/256 16/77  

PHQ-9 ≥ 10 or anti-
depressant medication 

use 
1.04 (0.96, 1.12) REF 1.66 (0.94, 2.90) 1.46 (0.80, 2.68) 1.51 (0.72, 3.21) 0.352 

Events/n 232/724 48/160 80/231 79/256 25/77  

Models include age, gender (male/female), race (white/black/other), education (associate degree or lower, bachelor’s degree or higher; and 
missing), income (<$20K, $20K – $44.9K, $45K – $64.9K, ≥$65K; and missing), self-perceived health (fair or poor, good, excellent or good; and 
missing), number of chronic conditions, cigarette smoking status (never, ever, current; and missing), alcohol risk (no risk, low risk, risky to 
severe; and missing), marijuana use (never, current, former; and missing), physical activity (none, low intensity at least once per week, 
moderate intensity 1-4 times per week, moderate intensity at least 5 times per week, high intensity at least once per week; and missing), stress 
levels (tertile 1: PSS ≤11, tertile 2: PSS 12-18, tertile 3: PSS ≥19; and missing), and prevalence of insufficient sleep prevalence of residence 
census tract (low, moderate, or high). 
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Supplemental Table 3B.2: Effect modification of the association of noise and odds of depression using Model 8* and various depression 
outcomes, N=724. 

 PHQ-9 ≥ 5, 
Events: 312 

PHQ-9 ≥ 10, 
Events:140 

PHQ-9 ≥ 10 or anti-depressant 
medication use, Events: 232 

Effect Modifier n Events OR (95% CI) pinteraction Events OR (95% CI) pinteraction Events OR (95% CI) pinteraction 

Gender    0.229   0.397   0.323 

Male  283 97 1.01 (0.92, 1.11)  44 1.07 (0.96, 1.20)  70 1.01 (0.92, 1.11)  

Female  441 215 0.92 (0.74, 1.14)  96 1.17 (0.89, 1.53)  162 0.94 (0.76, 1.16)  

Race    0.717   0.575   0.468 

White  562 239 1.06 (0.97, 1.17)  110 1.05 (0.94, 1.18)  191 1.04 (0.95, 1.14)  

Black  125 52 1.01 (0.87, 1.17)  19 1.08 (0.88, 1.32)  27 1.06 (0.91, 1.25)  

Other  37 21 0.95 (0.68, 1.33)  11 0.88 (0.62, 1.24)  14 0.86 (0.63, 1.18)  

Incomea    0.729   0.790   0.983 

≤ $20K  168 96 1.10 (0.95, 1.28)  52 1.04 (0.89, 1.21)  72 1.03 (0.90, 1.18)  

$20K- $44.9K  205 106 1.06 (0.93, 1.22)  49 1.10 (0.95, 1.28)  70 1.06 (0.93, 1.20)  

$45K – $64.9K  157 52 0.98 (0.84, 1.15)  18 0.96 (0.77, 1.21)  39 1.02 (0.87, 1.20)  

≥ $65K  158 44 1.08 (0.89, 1.31)  12 1.06 (0.86, 1.47)  39 1.06 (0.88, 1.28)  

    0.448   0.481   0.908 
≤ $44.9K  373 202 1.08 (0.98, 1.19)  101 1.07 (0.95, 1.20)  142 1.05 (0.95, 1.15)  

≥ $45K 315 96 1.02 (0.90, 1.15)  30 0.99 (0.82, 1.19)  78 1.04 (0.92, 1.17)  

Prevalence of Insufficient 
Sleep 

   0.070   0.361   0.419 

40.1% - 42.8% 327 112 1.14 (1.01, 1.28)  46 0.98 (0.84, 1.15)  91 0.99 (0.88, 1.10)  

43.2% - 49.1%  397 200 0.99 (0.90, 1.09)  94 1.07 (0.96, 1.20)  141 1.05 (0.96, 1.14)  

Perceived Stress Levelb    0.946   NA   0.079 

PSS ≤ 14 367 63 1.04 (0.93, 1.16)  7 NA  56 1.12 (1.00, 1.26)  

PSS > 14 353 247 1.03 (0.94, 1.14)  131 NA  174 0.99 (0.90, 1.08)  

*Model covariates include age, gender (male/female), race (black/other/white), education (associate degree or lower, bachelor’s degree or higher; and missing), 
income (<$20K, $20K – $44.9K, $45K – $64.9K, ≥$65K; and missing), self-perceived health (fair or poor, good, excellent or good; and missing), number of 
chronic conditions, cigarette smoking status (never, ever, current; and missing), alcohol risk (no risk, low risk, risky to severe; and missing), marijuana use 
(never, current, former; and missing), physical activity (none, low intensity at least once per week, moderate intensity 1-4 times per week, moderate intensity at 
least 5 times per week, high intensity at least once per week; and missing), stress levels (tertile 1: PSS ≤11, tertile 2: PSS 12-18, tertile 3: PSS ≥19; and 
missing), and prevalence of insufficient sleep prevalence of residence census tract (low, moderate, or high). 
aN=688, those with missing data for income were excluded.  
bN=720, those with missing data for PSS were excluded. 
NA: Model resulted in non-convergence due to small number of observations in stratified analysis. 
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DISCUSSION 

 

 

The current dissertation aimed to determine the association of 

environmental noise with multiple psychological outcomes in Louisville, 

Kentucky. Specifically, this study estimated total environmental noise throughout 

Louisville during two seasons and four specific time-periods (Aim 1), and 

assessed the association of environmental noise with standardized testing 

scores of elementary schools (Aim 2) and with mental ill-health and depression 

among adults (Aim 3). The key findings are discussed below.  

AIM 1: Develop and validate multiple noise models of Louisville 

using land-use regression (LUR) methodology. 

Before understanding how environmental noise is associated with health 

outcomes, it is important to understand the spatial distribution of environmental 

noise, itself. We collected noise data at 15 sites throughout Louisville and utilized 

LUR methodology to estimate seasonal environmental noise distributions during 

multiple time periods. Given the small sample of which to build LUR models 

upon, we adapted conventionally-practiced LUR methodologies that rely heavily 

on statistical testing44,56,57,59,60,63 to include prior-proposed manual modifications 

of predictor variables,57 as well as further expansions of modifications to include 
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a priori knowledge of noise mechanics. Consistent predictors of noise across 

both seasons and all time periods were the distance to the 60-decibel Noise 

Exposure Map (NEM) contours and greenness (Normalized Difference 

Vegetation Index; NDVI). Other important predictors were traffic volume and 

length of streams, as both were retained in several models, although with varying 

strengths of association. Overall, environmental noise was loudest in downtown, 

West, and South ends of Louisville, with the spring season being louder than the 

winter season. 

AIM 2: Determine the association of spring school (7-hour) and at-

home (17-hour) noise estimates on standardized testing scores at 

the school-level. 

Prior work has identified associations between environmental noise 

exposure and standardized testing scores of primary and elementary school-

children.19–22,102 However, total environmental noise exposure is rarely 

assessed,19,102 and the potential varying effects of school versus at-home noise 

is not yet understood. We estimated the individual associations of school noise 

(7-hour) and at-home noise (17-hour) with standardized testing scores for several 

subjects, and we observed no association between neither 7-hour nor 17-hour 

environmental noise with Math, Reading, or combined Math or Reading 

standardized testing scores. However, our findings suggest that certain 

socioeconomic and demographic characteristics of student populations, such as 

race distribution and participation in free and reduced lunch, as well as economic 
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characteristics of the surrounding school neighborhood, can modify the strength 

of association between louder noise and lower testing scores.  

AIM 3: Determine the association of winter and spring 16-hour (5:00 

PM – 9:00 AM) noise estimates on adult mental ill-health parameters. 

SUBAIM 3A: Examine the association of seasonal 

environmental noise estimates with census-tract level prevalence of 

adult mental ill-health using the CDC PLACES Study.  

The association between varying source-specific environmental noise 

exposures and varying definitions of mental ill-health have been widely studied, 

albeit with inconsistent findings,23–37,138,139 and without investigation of 

seasonality of associations and potential effect modification by socioeconomic 

factors. We examined the associations of winter and spring 5:00 PM to 9:00 AM 

environmental noise with the census-tract level prevalence of mental ill-health 

prevalence among adults. After adjusting for several important confounders, we 

observed similar associations between seasons, in that louder environmental 

noise was associated with higher prevalence of mental ill-health. However, the 

associations of seasonal environmental noise with mental ill-health prevalence 

were modified by census-tract level socioeconomic and health behavioral 

characteristics, with the strongest associations among census tracts with lower 

median individual income, lower population percentages of white race, and 

higher prevalence of insufficient sleepers. It is important to note that respondents 

of the Behavioral Risk Factor Surveillance Survey (BRFSS), the data source 

used to derive prevalence estimates of mental ill-health used in Aim 3A, are most 
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likely to be those who experience fewer life stressors, such as those who are 

white or who have higher incomes. 

SUBAIM 3B: Determine the association of spring 

environmental noise on depression status in participants from the 

Green Heart Louisville cohort. 

Environmental noise in association with depression among adults has 

been commonly observed;23,25,27,37 however, source-specific or 24-hour estimates 

of noise are utilized, and analysis of modification by socioeconomic and 

behavioral factors are not investigated. We examined the association of 16-hour 

(5:00 PM to 9:00 AM) total environmental noise with odds of depression among 

adults in South Louisville, Kentucky. We observed no association between one-

decibel louder 16-hour environmental noise and odds of depression but did 

observe that those with noise exposures of 57.0 – <60.0 decibels and those 

exposed to ≥63.0 decibels had higher odds of depression than those with <57.0 

decibels of noise exposure. Our findings also suggest modification by stress and 

sleep, as those with lower stress levels and those in lower insufficient sleep 

prevalence census tracts had higher odds of depression in relation to one-decibel 

louder noise. 

 

Implications for Future Work 

 The current work has several strengths and limitations that have been 

discussed in the prior manuscripts. Here, we will focus on general limitations of 

the current body of literature as a whole that have not been mentioned prior. We 
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believe that consideration of these limitations in future works will strengthen the 

understanding of environmental noise exposure as it relates to psychological 

health outcomes. 

 With most environmental exposures, a paradigm exists in which adverse 

health outcomes are results of the exposure making entry into the human body 

and making some physical alteration to a structure or function, and many of 

these biological mechanisms are well-known, such as radon and lung cancer or 

particulate matter and cardiovascular/respiratory health. This paradigm applies to 

noise exposure in relation to hearing loss and tinnitus, where sound vibrations 

physically alter the structure and function of the auditory system. However, in 

relation to non-auditory adverse health outcomes, noise is distinguishable from 

other environmental exposures in that this paradigm is not applicable. As such, 

subjective sensitivity to noise perceived and interpreted by individuals – like 

annoyance,32,108,139,142,145,207–222 sleep-disturbance,28,108–112,116,139,140,143–

145,167,209,210,223,224 or chronic stress response107–117,207–209,225–230 – is likely integral 

in possible biological pathways through which environmental noise exposure is 

related to psychological outcomes. 

The subjectivity of these potential mediators contributes to the convoluted 

nature of studying the relationship between environmental noise and 

psychological outcomes. Exposure measurement error becomes a particular 

concern; whether an individual finds a certain loudness or source of noise to be 

“annoying” or “disturbing” would greatly influence findings. For instance, some 

may find chirping crickets to be soothing, while others may be kept awake by 
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them. Future work should consider these subjective differences of “good” versus 

“bad” noise sources to further specify noise exposure definitions. 

In future studies of noise exposure and psychological outcomes, it is 

imperative that longitudinal analysis occur. Little of the current literature is 

longitudinal in nature,14,26,29,35 which contributes to the lack of evidence 

supporting a causal relationship between environmental noise and psychological 

health outcomes. To be the most beneficial, longitudinal analyses should include 

the above considerations, as well as specific mental health diagnoses and 

cognitive functions. Further, noise exposures should account for spatial-temporal 

movements of individuals, which could be achieved using GPS data from smart 

phones. Alternatively, recent work has investigated the use of a smartphone app,  

developed by the National Institute for Occupational Safety and Health (NIOSH), 

to monitor noise exposure levels with success.231 With some improvements, the 

same features could be implemented in cohort studies, which would 

automatically account for spatial-temporal movements of individuals with relative 

ease and affordability.  

 

Broader Conclusions 

In Aim 2, we observed that louder environmental noise was more strongly 

associated with lower standardized testing scores for some subjects among 

schools with more children from families with higher income. These findings 

suggest that noise exposure is least harmful for non-white and lower-income 

students, who may experience louder at-home noise than white or higher-income 
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students, whether by social-cultural differences – such as multi-generational 

living arrangements or having higher household composition – or by simply living 

in neighborhoods with louder environmental noise. If children from louder homes 

have become accustomed to loud environmental noise, then children with quieter 

homes, like higher-income or white students, may be more negatively affected by 

louder school noise. Alternatively, lower-income or non-white children may have 

extenuating stressors, such as experiences of discrimination and contributing to 

up-keep of the household, that may hinder academic success such that further 

hinderances from noise exposure are negligible.  

It is not unknown that impoverished and people of color are particularly at 

risk of mental ill-health due to societal stressors that increase allostatic load. 

These populations are often caught in a cycle of environmental health disparities, 

where their socioeconomic status determines their residential options and 

neighborhood characteristics, thereby determining their environmental exposures 

and their health outcomes, which contributes to the maintenance of lesser quality 

social determinants of health. Aim 3A of this dissertation highlights that the 

association between environmental noise and census-tract level prevalence of 

mental ill-health was modified by race and income, with stronger associations 

among lower-income census tracts and less white-populated census tracts. 

Although this is an important finding on its own, it is also important to recognize 

that these areas in Louisville are also the areas with the loudest noise 

distributions. We cannot ignore the presence of structural and systemic racism 

and classism in Louisville, which segregates our most vulnerable communities 
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and contributes to the proliferation of environmental health disparities. The Aim 

3B population is essentially a microcosm of the average Louisville community. As 

identified in Aim 3A, areas in Louisville that were most negatively impacted by 

environmental noise were those that had median individual incomes of 

$31,747.00 or less, white populations of 78% or less, and sleep insufficiency 

prevalence of 38.6% or higher; the Aim 3B population comparatively had a 

median household income of $45,000.00 or less, 77.6% of participants were 

white, and all participants lived in census tracts with sleep insufficiency 

prevalence of 40.1% or higher. In this population, we observed that louder 

environmental noise was more strongly associated with odds of depression 

among those with low stress levels and among those living in census tracts of 

low insufficient sleep prevalence, suggesting that noise is more harmful for low-

stress and non-sleep-deprived adults. These particular individuals may have low-

enough allostatic loads that any additional increase in, what is already loud, 

noise exposure is detrimental for their mental health. The mental health of 

individuals with larger allostatic loads in these louder-exposed populations is 

seemingly unaffected by any additional loudness.  

 

Public Health Significance 

The findings from these aims suggest effect modification by factors related 

to stress (i.e. income, race, and stress), but in opposite directions; at the 

ecological level (Aim 3A), environmental noise was most strongly associated with 

mental ill-health in areas with larger non-white and lower-income populations, 
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while at the individual-level (Aim 3B), noise was most strongly associated with 

higher odds of depression among individuals with lower stress levels. It is 

possible that the findings in Aim 3A are being driven by the individuals living 

within these louder, less-white, lower income areas, such as those who are white 

or who have higher incomes, since the source of mental health data for Aim 3A 

are obtained from the BRFSS respondents. This theory is supported by the 

findings of Aim 2, where the testing scores of schools with more high-income 

children were most negatively impacted by louder environmental noise. This is 

not to say that high-income/white/low-stress individuals are the individuals that 

public health interventions and policies should focus on, but rather to emphasize 

that structural and systemic racism and classism is good for no one. Whether 

louder environmental noise is only harmful for the most advantaged individuals 

among the most disadvantaged populations is irrelevant; if, as much of the 

evidence suggests, environmental noise is harmful for multiple facets of health, it 

is enough that Louisville’s loudest communities are majority non-white and lower 

income to justify public health significance. Especially since any environmental 

noise mitigation would be implemented at the neighborhood level.  

 Of note, elementary school children who attend schools within these areas 

are subject to the loudest exposures of environmental noise during school hours. 

Several studies have observed that louder noise contributes to impairments of 

various cognitive skills, such as reading comprehension,13,15,16,101,227 

memory,17,101 and attention.227 It is particularly concerning that Kentucky has no 

regulatory guidelines on noise mitigation for school buildings. Under Kentucky 
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Revised Statutes (KRS) 156.160 and 162.060, the State Board for Elementary 

and Secondary Education are delegated to regulate the construction and 

planning of all state school buildings. As such, the Kentucky Administrative 

Regulations (KAR) Title 702, Chapter 4, Regulation 170 developed a planning 

guide for facility programming and construction criteria of school buildings. The 

guide is outdated by nearly three decades (effective March 1995) and provides 

little guidance on limiting environmental noise exposures of schools, with the only 

mention of noise being that classrooms and instructional units should be located 

such that they are “shielded from noise-producing activities or functions.”232 It is 

well overdue for Kentucky law-makers and/or Kentucky executive agencies to 

update facilities planning to include evidence-based interventions for noise 

exposure, which could be as simple as upgrading window units to double-glazed 

windows that effectively reduce noise233 or replacing current insulation to noise-

mitigating insulation.234  

 Along these lines, the Louisville Regional Airport Authority (LRAA), in 

partnership with the Federal Aviation Administration (FAA), has provided funding 

for noise-blocking home improvements – including windows, doors, and 

ventilation systems – for eligible homes surrounding the Louisville International 

Airport (SDF); to be eligible, a home must be located within the 65-decibel Noise 

Exposure Map contour of SDF. Although this project, called the Quieter Homes 

Project, is an admirable initiative and should be celebrated, not all those exposed 

to harmful levels of aircraft noise will be eligible, considering that the World 

Health Organization (WHO) recommends that aircraft noise to be below a 24-
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hour average of 45 decibels and below a nightly average of 40 decibels.3 

However, legislative action could fill in the gaps unreached by this project.  

One potential legislative solution could focus on one of the largest and 

loudest sources of environmental noise in Louisville: the United Parcel Service 

(UPS). In 2021, the UPS world port, located at SDF, operated an average of 387 

in- and out-bound flights daily,68 most of which are arriving or departing during 

the night hours; a total of 260 UPS flights were operated from 10:00 PM on 

August 10, 2021 to 7:00 AM on August 11, 2021.46 In 2008, UPS became the first 

airline in the United States to meet the Stage III noise standards for aircrafts and 

the only airline to meet the Stage IV noise standards set by the International Civil 

Aviation Organization of the United Nations.235 However, UPS reported in 2020 

that policymakers and government officials still expected “innovative solutions 

to…noise…pollution” from the company.236 Despite making considerable 

donations to the Louisville area – with over $500,000 donated in 2020 to non-

profits in Kentucky and surrounding states for COVID-19 relief237 and $5 billion to 

University of Louisville athletics in 2019238 – the company has yet to provide any 

direct funding for noise-mitigation efforts to Louisville residents that are the most 

exposed to the company’s noise pollution. Regulations aimed at limiting the 

allowed number of nighttime flights and calls of action for UPS to make donations 

to noise-mitigation efforts with each nighttime flyover could accomplish 

implementation of interventions in the loudest Louisville neighborhoods.  

In the age of striving to achieve health equity, it must not be forgotten that 

environmental equity is inherent to attaining health equity. Although it is important 
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to focus on individual fish in the river, it is equally as important to move upstream 

and determine what parts of the river itself are contributing to harming the fish. 

Regarding noise pollution, there are yet to be enacted policies aimed at limiting 

exposures. Such action could contribute to breaking the cycle of environmental 

health disparities in Louisville, and our river depends on it.  
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