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ABSTRACT

BAYESIAN METHODOLOGIES FOR CONSTRAINED SPACES

Siddhesh Kulkarni

August 10, 2022

Due to advances in technology, there is a presence of directional data in a wide variety

of fields. Often distributions to model directional data are defined on manifolds or

constrained spaces. Regular statistical methods applied to data defined on special

geometries can give misleading results, and this demands new statistical theory. This

dissertation addresses two such problems and develops Bayesian methodologies to

improve inference in these arenas. It consists of two projects: 1. A Bayesian Method-

ology for Estimation for Sparse Canonical Correlation, and 2. Bayesian Analysis of

Finite Mixture Model for Spherical Data.

In principle, it can be challenging to integrate data measured on the same

individuals occurring from different experiments and model it together to gain a

larger understanding of the problem. Canonical Correlation Analysis (CCA) provides

a useful tool for establishing relationships between such data sets. When dealing with

high dimensional data sets, Structured Sparse CCA (ScSCCA) is a rapidly developing

methodological area which seeks to represent the interrelations using sparse direction

vectors for CCA. There is less development in Bayesian methodology in this area.

We propose a novel Bayesian ScSCCA method with the use of a Bayesian infinite

factor model. Using a multiplicative half Cauchy prior process, we bring in sparsity

at the level of the projection matrix. Additionally, we promote further sparsity in

the covariance matrix by using graphical horseshoe prior or diagonal structure. We

compare the results for our proposed model with competing frequentist and Bayesian

vi



methods and apply the developed method to omics data arising from a breast cancer

study.

In the second project, we perform Bayesian Analysis for the von Mises Fisher

(vMF) distribution on the sphere which is a common and important distribution used

for directional data. In the first part of this project, we propose a new conjugate prior

for the mean vector and concentration parameter of the vMF distribution. Further

we prove its properties like finiteness, unimodality, and provide interpretations of

its hyperparameters. In the second part, we utilize a popular prior structure for

a mixture of vMF distributions. In this case, the posterior of the concentration

parameter consists of an intractable Bessel function of the first kind. We propose

a novel Data Augmentation Strategy (DAS) using a Negative Binomial Distribution

that removes this intractable Bessel function. Furthermore, we apply the developed

methodology to Diffusion Tensor Imaging (DTI) data for clustering to explore voxel

connectivity in human brain.
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CHAPTER 1

INTRODUCTION

1.1 Constrained Spaces

Advancement in technology have given rise to directional datasets where observations

are recorded as directions or angles relative to a system with fixed orientation [Wang

and Gelfand, 2013]. Some of such a data lie on circumference of unit circle (R2)

or on unit hypersphere Sp−1 = {y ∈ Rp : ∥y∥2 = 1}, where ∥y∥2 =
√
yTy. For

example, data on wind direction are observed as a direction in the plane R2. It can

be represented by an angle θ in the domain of [0, 2π) or [−π, π) measured from a

specified origin. Equivalently, this can be also represented as direction unit vector

y = (cos θ, sin θ)T with ∥y∥2 = 1. This is called as a circular data [Pewsey and

Garćıa-Portugués, 2021]. Another common instance of directional data is maximum

diffusivity directions of water molecules in Diffusion Tensor Imaging. The direction

vector describing the flow of water molecules is inherently spherical information. The

flow of water molecules is different in the different parts of human brain due to the

different properties of the brain tissues in each region which is very much helpful to

understand the brain connectivity. Directional data has wide presence in the field

of bioinformatics [Mardia et al., 2018], astronomy [Marinucci and Peccati, 2011],

medicine [Pardo et al., 2016], genetics [Dortet-Bernadet and Wicker, 2008], image

analysis [Esteves et al., 2018], text mining [Banerjee et al., 2005], machine learning

[Sra, 2018] and many others [Pewsey and Garćıa-Portugués, 2021]. Mardia and Jupp

[2000] and Ley and Verdebout [2017] provide a rich literature review of presence of

directional statistics in these areas.

The typical support of the distributions used to model directional data are

manifolds. Traditional statistical methods such as maximum likelihood estimation

1



and regression analysis rely heavily on vector operations defined on Euclidean space

Rp. Inherent to these methods is a notion of geometry that considers a distance

between the parameter estimate and true value. However, when working in a (non-

Euclidean) manifold, we need to take into account the geometry of the surface to

calculate the distances between two points in a way that corresponds to the appro-

priate geometry. If we measure a mean of sample points on the surface of a manifold

using traditional statistical tools, then it may give us a misleading result as the mean

might not even lie on the surface of manifold. Further, in least square estimation

problems, which is again based on concept of minimizing the error (“distance”) in

the estimation of parameter of interest in traditional statistics, the usual closed-form

solutions are not generally available for manifolds. This intractability raises many

challenges in model fitting and inference. Hence, new statistical theory needs to be

developed for the directional data [Ley and Verdebout, 2017].

This need to develop new theory has motivated us to address two problems in

directional statistics. In our first project we develop Bayesian methodology for sparse

Canonical Correlation Analysis (CCA). CCA involves maximizing the correlation

among linear summaries of features of datasets measured on same set of subjects.

As the linear summaries are constrained to have unit one, their parameter support

is a constrained manifold, a hyper-sphere. In our second project we provide and

investigate some properties of Bayesian analysis for the von Mises Fisher Distribution,

which is one of the prominent distribution in directional statistics. In particular, we

provide a new conjugate prior distribution, investigate the finite mixture model using

this distribution, and investigate different sampling strategies.

1.2 Probability Modeling of Spherical Data

In this section we will discuss some of the prominent probability distributions used

for modeling directional data.
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Suppose we have a random p dimensional unit vector y on the hypersphere

Sp−1 = {y ∈ Rp : ∥y∥2 = 1}. The Fisher-Bingham exponential family of distributions

to model this spherical data is given as

fy(y;µ, κ,A) ∝ exp
{
κyTµ+ yTAy

}
I(y ∈ Sp−1). (1.1)

Here A is symmetric p × p matrix, and µ ∈ Sp−1 is mean direction, while κ ≥ 0 is

concentration parameter. As y ∈ Sp−1, an assumption of tr(A) = 0 holds [Mardia,

1975, Mardia and Jupp, 2000]. A key property of this distribution is that it depends on

the random variable y through a quadratic form. This distribution is constructed as

a constrained multivariate normal distribution where the constraint is that y ∈ Sp−1.

Several important spherical distributions are derived from this family. When

κ = 0 in (1.1), we obtain the Bingham distribution [Bingham, 1964]. If the constrain

Aµ = 0 is considered, then we obtain a Kent distribution [Kent, 1982]. This con-

straint introduces elliptical contours [Pewsey and Garćıa-Portugués, 2021]. Overall as

new types of directional data are emerging, development of new probability distribu-

tions has become an active area of research. Different distributions over this domain

are listed in detail by Mardia and Jupp [2009] and Ley and Verdebout [2017]. When

A = 0 in (1.1) we get one of the simplest and popular distribution for directions data

is von Mises Fisher (vMF) distribution. This is a rotationally symmetric distribution.

In this distribution the probability density function is dependent on y through yTµ

which results in the circular contours when y ∈ S2 [Pewsey and Garćıa-Portugués,

2021]. The PDF of the distribution is

f(y | µ, κ) = κp/2−1

(2π)p/2Ip/2−1(κ)
exp (κµTy) I(y ∈ Sp−1), (1.2)

where κ ≥ 0,µ ∈ Sp−1, p ≥ 2 and Ip/2−1(·) denotes modified Bessel function of the

first kind with order p
2
− 1. The concentration parameter κ quantifies the amount

3



of spread in the distribution around mean µ. For κ = 0 the distribution is uniform

over the sphere. The distribution is unimodal and rotationally symmetric around the

direction µ. µTy is the cosine similarity between y and µ. Cosine similarity measures

angle between two vectors. Its range lies in [−1, 1]. If both angle are pointing in the

same direction then value will be near unity. This measure of similarity has found

immense importance in the field such as text mining, genomics, etc. In our study we

will consider data is multivariate over the sphere (p = 3). Many types of statistical

methods for spatial data rely on the vMF distribution, and in our project, we focus

particularly on clustering methods.

Clustering is one of the most popular tools for unsupervised machine learning.

In terms of probabilistic modeling, clustering is equivalent to fitting a mixture model

to the data. Consider spatial data yi (i = 1, 2, . . . , n) that we seek to cluster into

N distinct components. We let fj(y | ωj) denote a probability distribution with

parameter ωj for cluster j (j = 1, 2, · · · , N). The mixture density is given by

f(y | π,ω) =
N∑
j=1

πjfj(y | ωj),

and the full likelihood is

L(π,ω | Y ) =
n∏
i=1

N∑
j=1

πjfj(yi | ωj). (1.3)

This combination of sum and product is intractable. A standard technique to assist

in estimation from this mixture model is to introduce auxiliary categorical variables

Z = (Z1, . . . Zn)
T such that

P (Zi = j) = πj (j = 1, 2, . . . , N ; i = 1, 2, . . . , n).

The Zi’s are often referred to as the membership variables or cluster indicators. For
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example, the event {Zi = j} implies that the ith data point is assigned to jth cluster.

We can treat this model as a missing data problem, where the cluster membership Zi

is the missing latent data [Celeux et al., 2006].

In fields such as text mining and genomics analysis, involves high dimensional

directional data on the unit hypersphere [Banerjee et al., 2005]. As such data is

confined to a non-Euclidean space, the most common clustering algorithms which

rely on a mixture of multidimensional Gaussian distribution proves inappropriate for

modeling. Again, this highlights the need for clustering models based on directional

distributions. Dhillon and Modha [2001] is one of the first works which performed

clustering over a hypersphere [Sra, 2018]. More examples of such models are mixtures

of Kent distributions [Peel et al., 2001], Spherical Topical Model [Reisinger et al.,

2010], Dirichlet process vMFMM [Bangert et al., 2010], temporal vMF mixture model

[Gopal and Yang, 2014], among others. Clustering models are found in many different

areas, a prominent area of application is Neuroimaging [Lashkari et al., 2010, Cabeen

and Laidlaw, 2013, Ryali et al., 2013].

Apart from models on spherical data, several mixture models based on different

distributions are being proposed to accommodate variety of directional data. Some

example of them include mixture of wrapped normal distribution [Agiomyrgiannakis

and Stylianou, 2009], Bayesian projected normal mixture models [Wang and Gelfand,

2014, Rodŕıguez et al., 2020] and general projected mixture normals [Hernandez-

Stumpfhauser et al., 2017]. We will not elaborate more on this as it is beyond the

scope of our work.

For fitting of vMF mixture models, various approaches based on the E-M

algorithm have been considered [Dhillon and Sra, 2003, Banerjee et al., 2003, 2005].

There is comparatively less development in Bayesian methodology. Taghia et al. [2014]

provides a variational inference method to fit Bayesian mixture vMF, and Gopal and

Yang [2014] consider different variations of Bayesian vMF with graphical modeling
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approaches based on variational inference and collapsed Gibbs sampling [Pewsey and

Garćıa-Portugués, 2021]. In this dissertation we further consider the Bayesian vMF

mixture model. Further literature review and results could be found in Chapter ??.

1.3 Canonical Correlation Analysis

In this section we introduce Canonical Correlation Analysis and establish its relation

with directional data analysis.

As a powerful tool for data integration, Canonical Correlation Analysis (CCA)

has received widespread attention. Originally proposed by Hotelling [1936], it is one of

the most prominent techniques to integrate analysis between two or more data views.

This technique maximizes the Pearson correlation between a linear combination of

each data view to find components which are associated with each other. The key

of idea of CCA is to project the complicated high dimensional variables within each

view to low-dimensional latent spaces which are correlated across views. This enables

analysis of two or more differently dimensional data sets. CCA has been widely used

to analyze such multiview data sets in the areas of genomics [Witten and Tibshirani,

2009, Waaijenborg et al., 2008], computer vision [Lin et al., 2006, Zhang et al., 2013],

meteorology [Statheropoulos et al., 1998], biomedicine [Li et al., 2009, Zhang et al.,

2014], imaging analysis [Lin et al., 2014, Du et al., 2016], among others. Readers are

referred to Yang et al. [2019] and Zhuang et al. [2020] for a more extensive review of

the CCA literature.

Now, we formalize the mathematics of CCA. We will focus only on the 2-views

form of CCA. Let X(1) ∈ Rn×p(1) and X(2) ∈ Rn×p(2) be the full data matrices of the

two views. We denote scalar, vector and matrix parameters quantities by lowercase

roman, lowercase bold and uppercase bold letters, respectively. The sample size is

given by n, and p(m) represents the dimensionality of each view (m = 1, 2). Without

loss of generality, we assume that all features are centered in this subsection; that
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is, E[x
(m)
i. ] = 0 for i = 1, 2, . . . , n and m = 1, 2. The matrix Σ represents the joint

covaraince between the two views x
(1)
i. and x

(2)
i. and can be written in a block-wise

formulation

Σ =

Σ(11) Σ(12)

Σ(21) Σ(22)

 . (1.4)

Here, Σ(11) represents the covariance matrix for the view 1 data, Σ(22) the covariance

matrix for the view 2 data, and Σ(12) = Σ(21)T is the covariance between the two

views.

CCA aims to find the optimal vectors u ∈ Rp(1) and v ∈ Rp(2)so that the

Pearson correlation between the linear combination of X
(1)
i u and X

(2)
i v is maximized.

Here u and v act as linear summaries which form linear combinations of the features

for observation i, respectively. CCA optimization problem can be formulated as

arg max
u,v

{
utΣ(11)−1/2Σ(12)Σ(22)−1/2v√

utu
√
vtv

}
.

This constrained optimization problem can be reformulated as

ρ = max
u∗,v∗

{
u∗tΣ(11)−1/2Σ(12)Σ(22)−1/2v∗ : u∗ ∈ Sp(1)−1,v∗ ∈ Sp(2)−1

}
. (1.5)

Note that Sp−1 = {x ∈ Rp : ∥x∥2 = 1}, where ∥x∥2 =
√
xTx, is the compact manifold

of the set of p-dimensional vectors with norm 1. These u∗ and v∗ are called the first

canonical loadings and represent the directions in which the first canonical correlation

is maximized. The above equation transforms CCA model to a Quadratic Constrained

Quadratic Program (QCQP), and the canonical correlation is the maximal solution

of ρ [Sharma et al., 2012].

In this way, we can observe that the direction vectors reside in a support which

is a manifold, and, hence, the CCA problem is intimately related to the directional

statistics methodology. In the CCA, primary interest is often in estimating (ρ,u∗,v∗)
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triple, representing the first canonical correlation and direction vectors, but there

is sometimes interest in higher order canonical correlation terms that represent the

next most impactful areas of dependence between the two views. After finding the

(r− 1)th triple (ρr−1,u
∗(r−1),v∗(r−1)), the rth set of canonical correlation parameters

are found from

ρr = max
u∗,v∗

{
u∗tΣ(11)−1/2Σ(12)Σ(22)−1/2v∗ : u∗ ∈ Sp(1) ,v∗ ∈ Sp(2) , (1.6)

u∗tΣ(11)u∗(j) = 0,v∗tΣ(22)v∗(j) = 0, (j = 1, . . . , r − 1)
}
.

Optimization of (1.6) finds the vectors u∗ = u∗(r) and v∗ = v∗(r) that maximizes

the correlation while yielding linear combinations X
(1)
i u∗(r) and X

(2)
i v∗(r) that are

uncorrelated with the previous r − 1 combinations.

Researchers often have high dimensional data where the number of features

measured on each subject are frequently much greater than number of subjects itself

(p ≫ n). This results in inefficiency due to overfitting for traditional CCA based on

the empirical estimates of Σ in (1.4). Sparse Canonical Correlation Analysis (SCCA)

is a technique which addresses this problem by finding the meaningful features which

contribute to the calculation of the canonical correlation (CC) while discarding the

uninformative features. In frequentists approach, we have penalized methods which

bring in element wise sparsity on directional vectors such as Parkhomenko et al.

[2009], Witten and Tibshirani [2009], Waaijenborg et al. [2008], Suo et al. [2017].

Also there are methods which consider underlying structure in the data to bring in

sparsity which are termed as Structure Sparse Canonical Correlation Analysis. Some

of these methods are Chen et al. [2012], Lin et al. [2013, 2014], among many others.

Bayesian CCA has received attention due to advances in Bayesian factor modeling

[Wang, 2007, Klami and Kaski, 2007, Klami et al., 2013, Zhao et al., 2016]. However,

there is a lack of Bayesian methodology which takes into account the within view

8



sparse interelations. In our first project we propose a model which tries fills the gap

in this literature.
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CHAPTER 2

A BAYESIAN METHODOLOGY FOR ESTIMATION FOR SPARSE

CANONICAL CORRELATION

2.1 Introduction

Advances in technology have resulted in multiple feature sets measured on same sub-

jects which results in multiple data sets. They are also called a multiview datasets.

Analyses of these multiview data sets together can improve understanding of the ex-

periment as it facilitates further insight about a common set of subjects by borrowing

information from the different views. Understanding the relationships between such

multiview data is a challenging task as often this data is high dimensional. These

challenges make development of new statistical theory a necessity.

As a powerful tool for data integration, Canonical Correlation Analysis (CCA)

has received widespread attention. Originally proposed by Hotelling [1936], it is one of

the most prominent techniques to integrate analysis between two or more data views.

This technique maximizes the Pearson correlation between a linear combination of

each data view to find components which are associated with each other. The key

of idea of CCA is to project the complicated high dimensional variables within each

view to low-dimensional latent spaces which are correlated across views. This enables

analysis of two or more differently dimensional data sets. CCA has been widely used

to analyze such multiview data sets in the areas of genomics [Witten and Tibshirani,

2009, Waaijenborg et al., 2008], computer vision [Lin et al., 2006, Zhang et al., 2013],

meteorology [Statheropoulos et al., 1998], biomedicine [Li et al., 2009, Zhang et al.,

2014], imaging analysis [Lin et al., 2014, Du et al., 2016], among others. Readers are

referred to Yang et al. [2019] and Zhuang et al. [2020] for a more extensive review of
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the CCA literature.

Researchers often have high dimensional data where the number of features

measured on each subject are frequently much greater than number of subjects itself

(p ≫ n). This results in inefficiency of traditional CCA due to overfitting. Sparse

Canonical Correlation Analysis (SCCA) is a technique which addresses this problem

by finding the meaningful features which contribute to the calculation of the canonical

correlation (CC) while discarding the uninformative features.

In the frequentist approach to SCCA, there are two main strategies. First

is element-wise sparsity which generally employ different types of penalties such

as an l1-norm penalty, fused lasso or their combination on the canonical loadings

[Parkhomenko et al., 2009, Witten and Tibshirani, 2009, Waaijenborg et al., 2008,

Suo et al., 2017]. A second approach to sparse CCA is Structured Sparse CCA (Sc-

SCCA) where the structure of the interconnections between the views are taken into

account to apply penalties on the canonical loadings. For example, known biological

relationships between genes could determine such structure. Group lasso based Sc-

SCCA relies on prior knowledge regarding the structure/interconnection in the data

to define groups [Chen et al., 2012, Lin et al., 2013, 2014]. However, for a par-

ticular biological function or disease, we may not have complete information about

underlying relationships among genes, and this incomplete knowledge is difficult to

incorporate into analysis. This leads to the development of ScSCCA approaches that

involve using graph/network guided fused Lasso penalties [Chen et al., 2012, 2013,

Yan et al., 2014, Du et al., 2015, Chen and Liu, 2012]. When prior knowledge about

the structure is not available, these methods may use the sample correlation to esti-

mate a graph structure. These methods mainly depend on the sign of the pairwise

sample correlation to identify the underlying hidden pattern but may introduce bias

in CCA estimation from errors in structure estimation step [Du et al., 2016]. For more

elaborate review of frequentist methods, readers are referred to Yang et al. [2019].
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Bayesian development of CCA methodology has received attention in recent

years. In Klami and Kaski [2007] and Klami et al. [2013], Bayesian Interbattery

Factor Analysis (IBFA) models that prove useful for CCA estimation are introduced.

In the IBFA model [Tucker, 1958], dependence between views are explained by shared

latent factors, so CCA is naturally related to the IBFA framework. The IBFA model

decomposes the covariance for a particular view into a factor structure shared across

all views and the view-specific noise. The covariance of these noise/residuals terms

is typically considered as a diagonal matrix whose elements are sometimes referred

to as the specific variances [Johnson and Wichern, 2007]. In more realistic scenarios

this assumption of independent noise among the features of same view may not hold

and may prove inadequate to capture the interdependence among the features. This

motivates us to develop a new Bayesian methodology for modelling of CCA which will

explore these interdependences without restricting conditional independence given the

factors.

To that end, we propose a novel Bayesian method, which performs joint esti-

mation of canonical correlations as well as within view covariance estimation by using

sparsity-inducing priors. A key contribution in this article is the introduction of a

novel infinite Bayesian factor shrinkage model through which we gain shrinkage in the

projection matrices of the IBFA. This Multiplicative Half Cauchy Process provides

flexible and adaptive dimension reduction for the factor loading coefficients. We also

estimate the within view covariance for each set of observation using the recently

developed graphical horseshoe model by Li et al. [2019]. This is a fully Bayesian

model yielding striaghtforward uncertainty quantification through posterior analysis

of Markov chain Monte Carlo samples.

The article is organized as follows. In section 2.2 we review the mathematical

formulation of CCA. In section 2.3 we introduce our model and justify the choice

of priors. Section 2.4 proposes our Markov chain Monte Carlo (MCMC) posterior
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sampling algorithm and discusses issues related to estimation and inference. Section

2.5 consists of comparisons across competing estimation approaches in different sim-

ulation settings. In section 2.6 we analyze a set of breast cancer data to investigate

the relationship between copy number and gene expression. Section 2.7 summarizes

the project and discusses future directions.

2.2 Factor Model Formation of CCA

2.2.1 Canonical Correlation Analysis

In this section we formalize the mathematics of CCA and discuss a commonly used

factor model for CCA. We will focus only on the 2-view form of CCA, but the de-

veloped theory can be applied for a multiview set up as we discuss in section 2.7.

Let X(1) ∈ Rn×p(1) and X(2) ∈ Rn×p(2) be the full data matrices of the two views. We

denote scalar, vector and matrix parameters quantities by lowercase roman, lowercase

bold and uppercase bold letters, respectively. The sample size is given by n, and p(m)

represents the dimensionality of each view (m = 1, 2). Without loss of generality,

we assume that all features are centered in this subsection; that is, E[x
(m)
i. ] = 0 for

i = 1, 2, . . . , n and m = 1, 2. The matrix Σ represents the joint covaraince between

the two views x
(1)
i. and x

(2)
i. and can be written in a block-wise formulation

Σ =

Σ(11) Σ(12)

Σ(21) Σ(22)

 . (2.7)

Here, Σ(11) represents the covariance matrix for the view 1 data, Σ(22) the covariance

matrix for the view 2 data, and Σ(12) = Σ(21)T is the covariance between the two

views.

CCA aims to find the optimal vectors u ∈ Rp(1) and v ∈ Rp(2)so that the

Pearson correlation between the linear combination of X
(1)
i u and X

(2)
i v is maximized.
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Here u and v act as linear summaries which form linear combinations of the features

for each observation i, respectively. The CCA optimization problem can be formally

stated as

arg max
u,v

{
uTΣ(11)−1/2Σ(12)Σ(22)−1/2v√

utu
√
vtv

}
.

This constrained optimization problem can be reformulated as

ρ = max
u∗,v∗

{
u∗TΣ(11)−1/2Σ(12)Σ(22)−1/2v∗ : u∗ ∈ Sp(1) ,v∗ ∈ Sp(2)

}
. (2.8)

Note that Sp = {x ∈ Rp : ∥x∥2 = 1}, where ∥x∥2 =
√
xTx, is the compact manifold

of the set of p-dimensional vectors with norm 1. These u∗ and v∗ are called the first

canonical loadings and represent the directions in which the first canonical correlation

is maximized. Hence in this article, we will use the term canonical loadings and

direction vectors interchangebly. The above equation transforms CCA model to a

Quadratic Constrained Quadratic Program (QCQP), and the canonical correlation is

the maximal solution of ρ [Sharma et al., 2012].

Primary interest is often in this (ρ,u∗,v∗) triple, representing the first canon-

ical correlation and direction vectors, but there is sometimes interest in higher order

canonical correlation terms that represent the next most impactful areas of depen-

dence between the two views. After finding the (r − 1)th triple (ρr−1,u
∗
(r−1),v

∗
(r−1)),

the rth set of canonical correlation parameters are found from

ρr = max
u∗,v∗

{
u∗TΣ(11)−1/2Σ(12)Σ(22)−1/2v∗ : u∗ ∈ Sp(1) ,v∗ ∈ Sp(2) , (2.9)

u∗TΣ(11)u∗(j) = 0,v∗TΣ(22)v∗(j) = 0, (j = 1, . . . , r − 1)
}
.

Optimization of (2.9) finds the vectors u∗ = u∗(r) and v∗ = v∗(r) that maximizes

the correlation while yielding linear combinations X
(1)
i u∗(r) and X

(2)
i v∗(r) that are

uncorrelated with the previous r − 1 combinations.
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With an estimate of the joint covariance matrix, we obtain the estimated

canoncial correlations and direction vectors through a singular value decomposition

(SVD) of Σ; derivation and more details of which could be found in Yang et al.

[2019]. Briefly, under SVD the p(1) × p(2) matrix M = Σ(11)−1/2Σ(12)Σ(22)−1/2 from

the optimization problem (2.8) is decomposed as M = LPQT . P ∈ Rp(1)×p(2) is a

diagonal matrix of singular values, which after ordering turn out to be the canonical

correlations ρ1, ρ2, . . .. The matrices L and Q are the corresponding left and right

eigenvectors whose columns live in Sp(m)
(m = 1, 2), providing the corresponding

canonical loadings.

2.2.2 Latent Factor Model

Bach and Jordan [2005] proposed a latent factor model for two view CCA. Their

model is given as

zi. ∼ MVNd(0, I)

x
(1)
i. | A(1),µ(1), zi.,Φ

(1) ∼ MVNp(1)(µ
(1) +A(1)zi.,Φ

(1))

x
(2)
i. | A(2),µ(2), zi.,Φ

(2) ∼ MVNp(2)(µ
(2) +A(2)zi.,Φ

(2)). (2.10)

Here, d is the dimension of the latent variable zi which is less than the data dimensions

(min(p(1), p(2)) ≫ d). In this model A(1) and A(2) project the lower dimensional latent

space zi to the higher dimensional data spaces x
(1)
i. and x

(2)
i. , respectively. Here Φ(1)

and Φ(2) are within view covariance matrices representing variability beyond the

factor structure. Generally, these matrices are considered to be diagonal, and these

variances are referred to as the specific variance for each feature. For this study we

frequently allow these matrices to have non-zero off-diagonal elements, so borrowing

from the specific variance terminology, we will refer to the matrices Φ(1) and Φ(2) as

a “generalized specificity” for the view. Marginalizing out the latent zi. yields the
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joint covariance matrix

Σ =

A(1)A(1)T +Φ(1) A(1)TA(2)

A(2)TA(1) A(2)A(2)T +Φ(2)

 , (2.11)

with the obvious connections to the block structure of (2.7). When Φ(m) are diagonal,

the above matrix factorization substantially reduces the number of parameters to be

estimated in the covariance matrix from approximately (p(1)+p(2))2/2 to (p(1)+p(2))×

(d+1). Importantly, the covariance between two views are dependent on the product

of the two projection matrices, and so A(1)TA(2) will be the critical component to

CCA. To that end we can write (2.8) as

ρ = max
u∗∈Sp(1) ,v∗Sp(2)

{
u∗T (A(1)A(1)T +Φ(1))(−1/2)A(1)TA(2)(A(2)A(2)T +Φ(2))−1/2v∗} .

(2.12)

We can clearly see that the optimization problem and the estimands (ρ,u∗,v∗) are a

function of projection matrices A(m) and generalized specificity matrices Φ(m).

It is important to note that as with all factor model, this decomposition is not

identifiable without any further constraints. One can specify any semi-orthogonal ma-

trix O such that OOT = Id×d and obtain Ã(m) = A(m)O. Substituting Ã(m) in (2.11),

the overall Σ is unaffected, showing that these model parameters are unidentifiable.

Assuming some identifiablity conditions, such as A(m) as lower triangular matrices,

can solve the problem but induces order dependence in the features. Alternatively,

specialized structures can be imposed to assign some special role to a few features,

but such restrictions method are not generalizable and need domain specific expertise

to choose the structure [Carvalho et al., 2008, Zhao et al., 2016].

The unidentifiablity of the projection matrices does not impact CCA estimands

because the covariances Σ(11),Σ(12),Σ(22) are indentifiable, and the CCA estimands

are functions of these covariance matrices [Bhattacharya and Dunson, 2011, Geweke
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and Zhou, 1996]. Rather than imposing structural zeros in the lower-diagonal por-

tion of the project, sparsity inducing priors can further support model stability and

minimize issues related to non-identifiablity.

2.3 Factor Shrinkage Model for Canonical Correlation Estimation

2.3.1 Non-Diagonal Factor Shrinkage Model (NDFSM)

In this section we introduce our Non-Diagonal Factor Shrinking Model (NDFSM)

for CCA. An important motivation is that most competing CCA models assume

diagonal structure for within view specificity matrices Φ(1) and Φ(2). This diagonal

restriction may not be appropriate in some practical scenarios like genomics data

where Φ(1) and Φ(2) may require non-zero off-diagonal elements due to interactions

among the features. By using the IBFA framework, we reparameterize the joint

covariance matrix Σ using the projection and generalized specificity matrices that

can be naturally modeled through sparse and lower-dimension considerations.

Horseshoe priors [Carvalho et al., 2010] belongs to a wider class of global local

shrinkage priors that are characterized by a local shrinkage parameter for recovering

large signals and a global shrinkage parameter for adapting to overall sparsity. In

addition to their use in standard regression settings, they have also been used in

latent factor models [Sekula et al., 2021]. This class of global-local shrinkage priors

exhibit a set of common features including heavy tails for robustness and appreciable

mass near zero for sparsity, leading to shared optimality properties. This is the key

strength and advantage of the horseshoe prior, and hence, we will use it to motivate

our prior construction.

In our model we use a horseshoe-like prior on each element of the projection

matrices. Our prior for A(m) = {a(m)
jk } (j = 1, . . . , p(m), k = 1, . . . , d and m = 1, 2)
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has the following structure:

a
(m)
jk ∼ N(0, τ 2(m)η2kλ

2(m)
jk )

λ
(m)
jk ∼ C+(0, 1)

τ (m) ∼ C+(0, 1)

η2k =
k∏
j=1

η̃2j

η̃j ∼ C+(0,Λ), (j > 1); η̃1 = 1.

Each element a
(m)
jk of the projection matrixA(m) has variance term τ 2(m)η2kλ

2(m)
jk . Here,

η2k is a factor specific shrinkage parameter which controls sparsity of the each column

of projection matrix, behaving as a local parameter. τ 2(m) is a view-specific shrinkage

parameter which accounts for the overall variability of the view, and hence, acts as

a global shrinkage parameter for all p(m)d coefficients in that view. In addition to

this global-local structure, we also introduce the hyperlocal shrinkage parameter λ
(m)
jk

which account for element-wise variability in the projection matrix. The hyperlocal

parameters λ
(m)
jk and global parameters τ (m) follow a standard half-Cauchy prior. Here

C+(0,Λ) represents a random variable with density p(x) ∝ (1 + x2/Λ2)−1I(x > 0).

As mentioned previously, factor models are a common approach to modeling

dependence in high dimensional data and have been frequently used in Bayesian con-

texts [Archambeau and Bach, 2009, Carvalho et al., 2008, Bhattacharya and Dunson,

2011, Zhao et al., 2016]. The selection of the number of latent factors, d, is an impor-

tant consideration to any factor model. A common practice is to fit the model with

different d and then use a model selection criteria to obtain the top fitting model. It

is also possible to put a prior on d and obtain posterior samples through reversible

jump MCMC [Lopes and West, 2004, Miller and Harrison, 2018, Yang et al., 2018]

However, these algorithms tend to mix poorly when used outside of their original

context.
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An alternative approach of intentionally over-fitting the factorization model

is introduced by Bhattacharya and Dunson [2011] for Gaussian linear factor models.

In such an approach they allow the number of factors d to diverge to infinity while

using shrinkage priors that force unnecessary components to be adaptively removed

by concentrating mass around only meaningful components. As additional factors are

added to the model, they play a progressively less important role in explaining the

structure of the data, and therefore, the contribution of the parameters associated

with those factors should be stochastically decreasing [Legramanti et al., 2020]. In a

similar spirit to Bhattacharya and Dunson [2011]’s multiplicative gamma process, we

refer to our model structure as a multiplicative half Cauchy process. Since Λ < 1, the

factor-specific shrinkage variances η2ks are stochastically decreasing in k, and due to

the non-zero mass near zero from the half-Cauchy, ηk tend to be quite small for larger

k. Hence, some columns of A(m) will be shrunk approximately to zero, effectively

removing the factor from the model. Consequently, our multiplicative process is able

to borrow information across the two views through the projection matrices A(m) to

adaptively determine the number of factors that effectively play a role in the model.

While the model is an infinite multiplicative process when d → ∞, in practice one

chooses a relatively large d and investigates the behavior of η2d to ensure that it is

approximately zero. While our method can accommodate any Λ ∈ (0, 1), we generally

recommend the value of Λ = 0.5

As noted above, there have been previous attempts at latent factor models

for CCA analysis through the same IBFA framework. In particular, Wang [2007]

uses an automatic relevance determination (ARD) prior find structure and sparsity

in the projection matrices along with inverse Wishart priors on Φ(1) and Φ(2); Klami

and Kaski [2007] follow a similar strategy with non-diagnonal structures for Φ(m).

Similarly, Klami et al. [2013] uses a Inter-Battery Factor Analysis model with an

ARD prior to impose structure in the projection matrices. Importantly, this structure
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encourages a column k to be active in both projections (inducing correlation between

views) or in only one view (to induce correlation within the view independent of the

other view). As this ARD prior allows both within and across covariance, the authors

argue that diagonal Φ(m) are sufficient in their models. Zhao et al. [2016] consider

an IBF model with a three level regularization in terms of global, factor specific and

local shrinkage. The model uses normal scale mixture model and three parameter

beta distribution to provide sparsity. The authors also assume diagonal structures

for Φ(m) with inverse gamma priors on the diagonal elements.

Having specified our sparse prior process for the A(m) matrices, we turn to

the prior structure for the generalized specificity matrices Φ(m). It is important to

remember from (2.11) that Σ(m) = A(m)A(m)T + Φ(m), so this matrix represents

the covariance between features of the same view that is unexplained by the factor

structure. Unlike the previously mentioned methods, we assume that the structure

is arbitrary, and do not impose a diagonal structure that assumes the factors explain

the entire dependence. However, we do believe that this matrix is likely to be highly

sparse as the majority of the structure should be captured by the shared factors, so

a prior such as inverse Wishart would be ineffective in this case.

To that end, we apply the graphical horseshoe prior by Li et al. [2019] on the

inverse of the generalized specificity matrices Φ(m)−1 = Ω(m) for m = 1, 2 as follows:

ω
(m)
ii ∝ 1 (Flat Prior) i = 1, . . . , p(m)

ω
(m)
ij ∼ N(0, α

2(m)
ij β2) i < j

α
(m)
ij ∼ C+(0, 1) i < j

β ∼ C+(0, 1). (2.13)

The graphical horseshoe model puts horseshoe priors on the off-diagonal elements

of the precision matrix and an uninformative prior on the diagonal elements, all
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under the constraint that Ω(m) remain in the space of p(m) × p(m) positive definite

matrices. This also enforces a symmetry constraint ω
(m)
ij = ω

(m)
ji . Despite the flat

prior specification on ωii, the positive definiteness constraint on Ω(m) ensures that

the full prior is proper [Li et al., 2019]. For the individual ω
(m)
ij terms, local shrinkage

parameters α
(m)
ij preserve the magnitude of non-zero elements and shrink the zeros,

while β adapts to the sparsity of the entire matrix Ω(m) as the global shrinkage

parameter.

To complete model specification we require a prior on the mean vectors. We

assume the mean-zero Gaussian prior for the view-specific mean vectors µ(1) and µ(2)

with hyperparameter σ2 typically taken to be 100. That is, the priors are given as

µ(1) ∼ MVNp(1)(0, σ
2I)

µ(2) ∼ MVNp(2)(0, σ
2I). (2.14)

2.3.2 Diagonal Factor Shrinkage Model (DFSM)

As many CCA factor models use a diagonal structure for the generalized specificity

matrices, we also choose to construct the analogous version of our NDFSM that uses

a diagonal structure, called the Diagonal Factor Shrinking Model (DFSM).

In this version instead of using the GHS prior (2.13) on the inverse generalized

specificity matrices, we instead restrict them to be diagonal,Φ(m) = diag(ϕ
(m)
11 , . . . , ϕ

(m)

p(m)p(m)).

The element ϕ
(m)
jj , that is the specific variance for feature j in view m, is given a con-

jugate inverse gamma prior ϕ
(m)
jj ∼ IG(0.1, 0.1). The rest of the model structure is

the same as NDFSM model, introduced in the previous section.
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2.4 Posterior Sampling and Inference

2.4.1 MCMC Algorithm for NDFSM

We use an MCMC Gibbs sampling algorithm to draw posterior samples from our

model. All the distributions are obtained through conjugacy. The sampling algorithm

iterates between the following steps.

1. Mean Vectors: We will sample the full (p(1)+p(2))-dimensional mean vector µg =

(µT1 ,µ
T
2 )

T by marginalizing the factor scores zi. Let X
g be the n× (p(1) + p(2))

matrix of observations obtained by stacking two data view matrices and Σ be

the grand covariance matrix (2.11) based on the current values of A(m) and

Φ(m). Let X̄g be the (p(1) + p(2))-dimensional vector of column means. Then,

µg | Σ,Xg ∼ MVN(p(1)+p(2))(µ
∗,E−1)

E = nΣ−1 + σ−2I

µ∗ = E−1Σ−1X̄g.

2. Latent variable zi.: The latent variable zi. for i = 1, 2, . . . , n can be updated

through conjugacy as follows:

zi. | A(1),A(2),Φ(1),Φ(2) ∼ MVNd(µ
∗,E∗−1)

E∗ = Id×d +A(1)TΦ(1)−1A(1) +A(2)TΦ(2)−1A(2)

µ∗ = E∗−1(A(1)TΦ(1)−1x
(1)
i. +A(2)TΦ(2)−1x

(2)
i. ).

3. Projection matrices A(1) and A(2): To facilitate sampling from the posterior

of projection matrices, we use the data augmentation structure of Makalic and

Schmidt [2015] for sampling from a half Cauchy distribution.
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(a) A(1) and A(2): For m = 1, 2 and each row j = 1, . . . , p(m), we sample

a
(m)
j. | Φ(m),Z,X(m),µ(m) ∼ MVN(µ,E−1)

µ(m) = ϕ̃
−1(m)
j E−1ZT X̃

(m)
.j

E = ϕ̃
−1(m)
j ZTZ+∆−1

x̃
(m)
ij = x

(m)
ij − µ

(m)
j − [Φ

(m)
j,−j][Φ

(m)
−j−j]

−1(X
(m)
i,−j − µ

(m)
−j −A

(m)
−j. z

T
i. ).

ϕ̃
(m)
j = Φ

(m)
j,j −Φ

(m)
j,−j[Φ

(m)
−j−j]

−1Φ
(m)
−j,j.

Here, ∆ is the d × d diagonal matrix of the shrinkage parameters; for

k = 1, . . . , d, ∆kk = τ 2(m)η2kλ
2(m)
jk . The element x̃

(m)
ij from X̃.j is the data

residual for observation i after removing the effect of everything except

jth response variable in mth view. Here, ϕ̃
(m)
j is the variance of jth feature

conditionally on the other features. In the above we use the common

shorthand where ΦΦΦab represents the sub-blocks of the matrix ΦΦΦ given by

rows a and columns b; j indicates that only the jth row/column is included

and −j denotes that all rows/columns except for the jth are included.

(b) Hyperlocal Shrinkage parameters λ
2(m)
jk : For m = 1, 2; j = 1, . . . , p(m);

k = 1, . . . , d,

λ
2(m)
jk | C(m)

jk , a
(m)
jk , ηk ∼ IG

(
1,

a
2(m)
jk

2τ 2(m)η2k
+

1

C
(m)
jk

)
.

(c) View-Specific Shrinkage Parameter τ 2(m):

τ 2(m) | F (m),A(m), ηk ∼ IG

(
(p(m) × d) + 1

2
,

d∑
k=1

p(m)∑
j=1

a
2(m)
jk

2λ2jkη
2
k

+
1

F (m)

)
.
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(d) Column-wise Shrinkage Parameter η2k: For j = 2 to d,

η̃j
2 | A(m), η̃(−j), τ

(m) ∼ IG
((d− (j − 1))[p(1) + p(2)] + 1

2
,

2∑
m=1

d∑
k=j

p(m)∑
i=1

a
2(m)
ik

2λ
2(m)
ik τ 2(m)

∏k
k′=1
k′ ̸=j

η̃2k′
+

1

Ej

)
.

After updating η̃j we compute η2k =
∏k

j=1 η̃j
2.

(e) Data-augmentation parameters F (m), C
(m)
jk , E: Form = 1, 2, j = 1, 2, . . . p(m)

and k = 1, 2, . . . , d:

C
(m)
jk | λ(m)

jk ∼ IG
(
1, 1 +

1

λ
2(m)
jk

)
F (m) | τ (m) ∼ IG

(
1, 1 +

1

τ 2(m)

)
Ej | η ∼ IG

(
1,

1

Λ2
+

1

η̃j
2

)
.

4. View Specific Generalized Specificity MatricesΦ(1) andΦ(2): Under the NDFSM

with the GHS prior, we simply follow the sampling schemes described in Li et al.

[2019] based on the sample sum of square matrix given as

S(m) =
n∑
i=1

(x
(m)
i. − µ(m) +A(m)zi.)

T (x
(m)
i. − µ(m) +A(m)zi.).

2.4.2 MCMC Algorithm for DFSM

For the version of the model that uses the diagonal specificity matrix, we simply

replace step 4. of the above with the conjugate sampler. That is ϕ
(m)
jj ∼ IG(0.5n +

0.1, 0.1 + 0.5
∑n

i=1 x̃
2
ij) for each j = 1, . . . , p(m) and m = 1, 2. As in 4. of the previous

algorithm, the vector of residuals is determined by x̃i. = x
(m)
i. − µ(m) +A(m)zi..
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2.4.3 Point Estimation and Inference

We use the corresponding Gibbs sampling algorithm to obtain a large number of pos-

terior samples from our model. The main parameters required for CCA inference are

the projection matricesA(m) and the within view covariances Φ(m). These parameters

determine the overall covariance structures among and across the views through (2.11)

and determine the values of the canonical correlation ρ and the direction vectors u∗

and v∗ through (2.12). For each set of posterior samples of A(1),A(2),Φ(1),Φ(2), we

can obtain a sample of ρ,u∗,v∗, as well as any higher order correlations and directions.

To evaluate mixing and convergence, we inspect traceplots of the CCs, the log-

likelihood, and other model parameters to evaluate convergence and select a length

for burn-in. Autocorrelation among the MCMC samples increases uncertainty in

estimation of parameters, and the effective sample size measures this uncertainty

by providing the number of independent samples that would contain an equivalent

amount of information as the (correlated) samples from the given MCMC output.

Typically, we seek to run the MCMC long enough to obtain an effective sample size

of at least 1000 for the key parameters of interests.

To obtain CCA point estimates, we estimate the CCs by taking the sample

mean from the estimated ρl from the MCMC output (after burn-in and thinning).

Similarly, at each iteration we calculate the direction vectors based on orthonormal

vectors obtained from the SVD, as described in section 2.2. This type of decomposi-

tion is not unique as the vectors could be reflected across the origin. To ensure that

the canonical loadings are “pointing” in the same direction across MCMC samples,

we first take the mean absolute values across all iterations for each element of the

canonical loadings for both views and select the feature (from either view) with the

largest absolute loading. We will impose an identifiability constraint on this feature

to ensure that it maintains a positive sign in all iterations, so that all direction vec-

tors are pointing in the same direction based on this influential feature. That is,
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if the loading for the selected feature is negative in a given iteration, we swap the

signs of both u∗ and v∗ in that iteration to ensure that the correlation of X
(1)
i u∗ and

X
(2)
i v∗ remains the same; if the loading for the selected feature is positive, we make

no adjustment. After ensuring comparability across all iterations by imposing this

identifiability constraint, an estimated û∗ and v̂∗ are obtained by averaging across

iterations and dividing by the norm to ensure that they are unit 1.

An important step in CCA is determining which features significantly load

onto the direction vectors; that is, which elements of u∗ and v∗ are significantly

different from zero. To that end, we utilize a credible interval approach to determine

significance. Based on the identifiability-adjusted posterior samples of u∗ and v∗,

we obtain a credible interval for each element of each vector and investigate whether

or not it contains zero. Recall that this orthonormal direction vectors are complex

functions of the parameters A(m) and Φ(m) which come from heavy-tailed horseshoe

models. Consequently the posteriors for the elements of the direction vectors also tend

to have heavy tails. It has been shown in a variety of contexts that a 95% credible

interval under a heavy tail prior produce intervals that are overly wide and under-

powered for hypothesis testing [van der Pas et al., 2017, Li et al., 2019]. Following the

advice of Li et al. [2019] in the context of covariance selection in their GHS model,

we use a 50% credible interval to determine if a feature is significantly loaded onto

the direction vector. As we will show in the next section, this choice yields good

performance in our empirical studies.

A final key inference question is which model should be used, either the general

NDFSM that allows correlations between features of the same view through both the

latent factor structure and the generalized specificity or the more restrictive DFSM

that assumes independence of the features beyond the factors. As will be shown in the

next section, we find that in some cases (particularly those with p≫ n) the NDFSM

may overshrink the projection matrices A(m) relative to the shrinkage imposed on the
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specificity matrices Φ(m). A consequence of this behavior is that A(1)A(2)T will tend

to mainly contain zeros, and the canonical correlation ρ will be very low. Fortunately,

this is easy to diagnosis by investigating the estimate of ρ and can easily be corrected

by instead using the DFSM. DFSM avoids overshrinking A(m) by imposing maximal

shrinkage in Φ(m) through zeros in all off-diagonal elements.

To determine which model should be used in a given data set, we recommend

the following strategy. First run NDFSM model and check if the overshrinking may

be happening by considering P [ρ1 < 0.2] > 0.5, that is, if the event that the first CC

is less than 0.2 has probability greater than 0.5, then we suspect overshrinkage may

be happening, and instead the base inference of the DFSM output. Note that this

threshold of 0.2 is somewhat ad hoc, and other users may prefer a different criteria

for switching from the general NDFSM to the more constrained DFSM choice.

2.5 Simulations

2.5.1 Simulation Settings

To validate our proposed methodology across several situations and to compare it

with some competing methods, we perform 7 simulation experiments. For synthetic

data generation we use the latent model as specified in (2.10). We generated 7

different simulation set up with each containing 100 data sets with different settings

of projection matrices and within view covariances.

The projection matrix A(m) is generated by setting elements 1, 11, 21 in first

column of A(1) to 1, while elements 1, 11 in the first column of A(2) are set to 1

and -1, respectively; all other elements in this column are zero. This first column is

responsible for determining the first CC value. The elements in the other columns of

the projection matrices are non-zero with probability 0.05 and drawn from standard

normal. In some settings, we use an autoregressive structure for a non-diagonal
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choice of the generalized specificity Φ(1) and Φ(2) (autocorrelations of 0.4 and 0.2,

respectively) and in other settings we use an identity matrix. In all cases, we use

dimensions of p(1) = 100 and p(2) = 50 and consider n = 300 for a n > p setting and

n = 50 for a p > n setting. The mean vector is always zero. We consider the true

number of factors to be d = 1 so that there is only one non-zero canonical correlation,

and let d = 10 so that there are 10 non-zero canonical correlations. In the 7th

setting, we introduce a “scaling” parameter that we multiply all elements of projection

matrix by. The scale is chosen to reduce the contribution of Σ(12) = A(1)TA(2)

in the decomposition (2.11), reducing the magnitude of the canonical correlation.

We summarize the simulation settings, along with the resulting first two canonical

correlations ρ1 and ρ2 in Table 2.1.

Table 2.1: Simulation Settings

Setting p(1) = 100, p(2) = 50
1 n = 300 AR Dependence d = 1 ρ1 = 0.73, ρ2 = 0.00
2 n = 50 AR Dependence d = 1 ρ1 = 0.73, ρ2 = 0.00

3 n = 300 Φ(m) = Ip(m) d = 1 ρ1 = 0.70, ρ2 = 0.00

4 n = 50 Φ(m) = Ip(m) d = 1 ρ1 = 0.70, ρ2 = 0.00
5 n = 300 AR Dependence d = 10 ρ1 = 0.73, ρ2 = 0.60
6 n = 50 AR Dependence d = 10 ρ1 = 0.73, ρ2 = 0.60
7 n = 300 AR Dependence Scaling=0.59 d = 1 ρ1 = 0.49, ρ2 = 0.00

For every dataset, we will obtain estimates ρ̂1 and ρ̂2 of the first two canonical

correlations, as well as estimates of the direction vectors û∗ and v̂∗ for the first

canonical correlation. We measure the accuracy of estimation of canonical correlation

value as a root mean squared error (RMSE) between true value and estimated value

RMSE(ρ̂l, ρl) =

√√√√ 1

N

N∑
i=1

(ρ̂li − ρl)2.

Here ρl and ρ̂li is the l
th canonical correlation and its estimate in ith dataset, and N is

the total number of data sets. We also consider the average bias of the CC estimates
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by considering the average difference between estimate and the true value. As the

canonical loadings vectors are the unit space, we calculate the error of canonical

loading as a root mean error based on one minus the cosine similarity between of two

unit vectors. We refer to this as root mean cosine error (RMCE) and compute it as

RMCE(û∗,u∗) =

√√√√ 1

N

N∑
i=1

(1− (û∗T
i u)).

Here u∗ and û∗
i is the direction vector and its estimates in ith dataset. We obtain

RMCE(v̂∗,v∗) for the direction vector of the second view in an equivalent way.

2.5.2 Competing Methods

For each of the 100 data sets generated according to the seven generation settings,

we fit the data acorrding to the following methods. We compare our method with

three frequentist and two Bayesian methods, explained as below.

1. NDFSM, DFSM: For both versions of models, MCMC is ran for 15,000 iterations

with 5000 burn-in iterations in the low dimensional settings (n = 50). Samples

are thinned to store 2000 samples. In the higher dimensional settings (n = 300),

we ran the model for 300,000 iterations with the first 50,000 discarded as burn-

in iterations, and a thinned sample of 5000 samples are stored. Implementation

is done in R. The thinned samples on average give an effective sample size of

1000–1200 for both the first CC and the log-determinant of joint covariance

matrix Σ from (2.11).

2. NDFMS+DFSM: We compare the combined strategy of selecting NDFSM vs

DFSM relative to the fixed choice of each model. As noted in section 2.4.3,

we base inference on the NDFSM posterior samples unless these samples yields

P [ρ1 < 0.2] > 0.5. In this case we suspect the NDFSM results may be impacted
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by overshrinkage, and instead use the DFSM output for inference.

3. Bayesian Group Factor Analysis (GFA): The Bayesian Group Factor Model

by Klami et al. [2013] provides a Bayesian competitor to our approach that

comes from a similar motivation. This method uses a combination of spike-

and-slab and ARD priors for the projection matrices and a diagonal structure

for the Φ(m)s. It is encoded in the “GFA” package for R [Leppäaho et al., 2017].

We ran MCMC for 600,000 iterations with 60,000 as burn-in with 2000 samples

saved. This gives an effective sample size of approximately 1000 for the first CC.

We perform inference using these posterior samples using the same procedures

described in section 2.4.3.

4. Graphical Horseshoe (GHS): The GHS [Li et al., 2019] is directly applied to the

joint data matrixXg obtained by stacking both views, which has dimensions n×

(p(1)+p(2)). Hence, this approach directly estimates the overall grand covariance

Σ without considering any distinction between features of the different views.

Canonical correlations and direction vectors are calculated from the posterior

samples of the joint covariance matrix through (2.12) and other inference steps

follow as with the other Bayesian methods. We note that this choice of modeling

the overall Σ covariance is not a common approach to performing CCA, but as

the GHS imposes sparsity in Σ−1, it is conceivable that it can produce strong

CCA estimates through its own form of regularization. We ran MCMC ran for

60,000 iterations with 5000 burn-in iterations. The sample is thinned to get

2000 samples yielding with effective sample size of approximately 1000.

5. Regularized CCA (RCCA): RCCA [Vinod, 1976] extends the regular CCA

method for p ≫ n case by adding an ℓ2 type penalty on the covariance ma-

trix of each view. It is implemented as R package “CCA” by González et al.

[2008]. The regularization parameter was chosen using a leave-one out cross
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validation mechanism using the default choice from the estim.regul function.

6. Sparse CCA (SCCA): We consider two implementations of SCCA [Witten and

Tibshirani, 2009]. Firstly, a Lasso (ℓ1) penalty is put on the canonical loadings.

We refer to this model as SCCA (STD) in our table with “STD” denoting

that this is the standard implementation of SCCA. In the second method, a

fused Lasso penalty is put on the canonical loadings. This model is referred

to as SCCA (O) in the tables with “O” denoting ordered. Both methods are

encoded in “PMA” package. We use the CCA.optim function to obtain optimal

penalties for both the methods after which the CCA function is used to calculate

the direction vectors and CCs.

An additional Bayesian method that we do not consider in our set of competitor

methods is the Bayesian group factor Analysis with Structured Sparsity (BASS)

model proposed by Zhao et al. [2016]. This model has similar goals and a similar

modeling framework to the GFA model [Klami et al., 2013], but the authors provide

C++ codes (but not R) for their methodology. Hence, we do not utilize that method

for our simulation study, although based on the simulations the model constructions,

we would anticipate its performance to be similar to GFA.

2.5.3 Simulation Results: Estimation of Canonical Correlations

We begin by comparing the estimation accuracy for the canonical correlation coeffi-

cients across the different methods. Table 2.2 compares the performance for estima-

tion of 1st CC. We first note that our model NDFSM performs strongly across most

cases. It has the lowest error in cases 1 and 5, and its error is basically equivalent to

the best model in cases 3, 4, and 7. We note that in cases 3 and 4, the best perform-

ing DFSM model is the true data generating model since Φ(m) are taken to be the

identity matrix. In the high dimension cases with non-diagonal specificity (settings
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Table 2.2: Comparison Between RMSE of Different Methods for Estimation of 1st
and 2nd CC

Method Simulation Setting
1 2 3 4 5 6 7

RMSE for 1st CC Estimation
NDFSM 0.0222 0.2134 0.0220 0.0770 0.0222 0.2649 0.0475
DFSM 0.0288 0.0830 0.0218 0.0693 0.0297 0.0439 0.0972

NDFSM+DFSM 0.0222 0.1088 0.0220 0.0770 0.0222 0.0991 0.0475
GFA 0.0371 0.2922 0.0479 0.2169 0.0362 0.2283 0.1867
GHS 0.0339 0.0596 0.0464 0.1603 0.0334 0.0543 0.0435
RCCA 0.1082 0.1647 0.0868 0.1794 0.1057 0.1674 0.1203

SCCA (STD) 0.0495 0.1265 0.0499 0.1431 0.0552 0.1254 0.0897
SCCA (O) 0.1154 0.0659 0.1462 0.1178 0.1148 0.1006 0.0323

RMSE for 2nd CC Estimation
NDFSM 0.0194 0.1115 0.0864 0.2318 0.0317 0.2946 0.0391
DFSM 0.1851 0.3584 0.0481 0.2067 0.0617 0.0605 0.1855

NDFSM+DFSM 0.0194 0.1563 0.0864 0.2318 0.0317 0.2829 0.0391
GFA 0.2532 0.1023 0.0000 0.0002 0.0956 0.5063 0.2285
GHS 0.3614 0.5939 0.2435 0.4231 0.0348 0.0430 0.0435
RCCA 0.4291 0.8657 0.4298 0.8476 0.0842 0.2792 0.5162

SCCA (STD) 0.4446 0.6997 0.4420 0.7124 0.0486 0.1850 0.4229
SCCA(O) 0.1200 0.7570 0.0000 0.7055 0.4368 0.1686 0.3971
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2 and 6), NDFSM does not perform as well, although DFSM performs well in these

cases. The combined strategy substantially reduces the error rate in both of these

settings; we will further investigate this effect in section 2.5.4. We also note that the

GHS strategy has consistently strong performance in estimating the first CC across

all settings, and that the GFA model is consistently outperformed by our models.

Among the frequentist approaches, the SCCA methods do fairly well although typi-

cally worse than the Bayesian models, and the RCCA tends to be slightly worse than

SCCA.

Turning to estimation of the 2nd CC in the lower half of Table 2.2, we see that

GFA has strongest performance in settings 2–4 at correctly zeroing out the second

CC, although it performs worse in settings 1 and 7 that also have ρ2 = 0. NDFSM has

strong estimation of ρ2 performing among the best in five of the seven settings (not

4 and 6); in these two cases, most methods perform poorly and NDFSM is no worse

than the majority. In cases when NDFSM correctly captures ρ1, it also correctly

estimates ρ2. Conversely, GFA seems to perform better on ρ2 than ρ1, and despite

the strong performance for the first canonical correlation, GHS has fairly large RMSE

for the second. Similarly, the two SCCA have reasonable estimation for ρ1, but in

cases 1–4 with ρ2 = 0, they estimate a much larger CC.

In addition to the RMSE for ρl estimation, we also consider the average bias

across methods in Table 2.3. The results of bias analysis are generally consistent with

the MSE results. We see that our models are generally unbiased for ρ1, although there

is some evidence of bias for ρ2 (positive when ρ2 = 0 as in case 4 and negative if ρ2 ̸= 0

as in case 6). As mentioned above, SCCA is clearly failing to penalize the higher order

terms when ρ2 = 0, yielding large estimates of this CC for all STD implementations

and the ordered (O) cases when p > n.
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Table 2.3: Comparison Between Average Bias of Different Methods for Estimation of
1st and 2nd CC

Method Simulation Settings
1 2 3 4 5 6 7

Average Bias for 1st CC
NDFSM 0.0052 -0.1009 0.0033 0.0029 0.0054 -0.0281 -0.0060
DFSM -0.0178 -0.0379 0.0015 0.0026 -0.0189 -0.0029 -0.0593

NDFSM+DFSM 0.0052 -0.0482 0.0033 0.0029 0.0054 -0.0205 -0.0060
GFA -0.0619 -0.0517 -0.1245 0.0731 -0.0568 -0.3592 -0.2164
GHS -0.0069 -0.0259 -0.0195 -0.0933 -0.0067 0.0031 -0.0148
RCCA -0.1059 0.1525 -0.0844 0.1694 -0.1019 0.1556 0.0509

SCCA (STD) -0.0145 0.0043 -0.0089 0.0470 -0.0239 0.0268 0.0300
SCCA (O) -0.1030 0.0546 -0.1338 0.0712 -0.0996 0.0496 -0.0040

Average Bias for 2nd CC
NDFSM 0.0186 0.1045 0.0851 0.2225 -0.0038 -0.2305 0.0373
DFSM 0.1835 0.3463 0.0446 0.1936 -0.0483 -0.0246 0.1833

NDFSM+DFSM 0.0186 0.1370 0.0851 0.2225 -0.0038 -0.2241 0.0373
GFA 0.1318 0.0318 0.0000 0.0000 -0.1538 -0.2627 0.0201
GHS 0.3612 0.5931 0.2418 0.4141 -0.0047 0.0257 0.3564
RCCA 0.4288 0.8623 0.4296 0.8445 -0.0801 0.2692 0.5035

SCCA (STD) 0.4352 0.6833 0.4405 0.6909 0.0022 0.1038 0.4141
SCCA (O) 0.0525 0.7563 0.0000 0.6611 -0.3523 0.1425 0.3949

Table 2.4: Proportion (%) of Data Sets With Potential Overshrinkage

Setting 1 2 3 4 5 6 7
Proportion with P(ρ < 0.2) > 0.5 0 13 0 0 0 2 0
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2.5.4 Simulation Results: Diagonal and Non-diagonal Model Selection

In this section we investigate the performance and ther impact of our combined model

selection strategy. Recall that our combined strategy switches from the NDFSM

model results to the DFSM if there is evidence of overshrinkage based on the posterior

probability that ρ1 < 0.2. If this posterior probability exceeds 0.5, then we use the

diagonal model results. For the simulations studies, Table 2.4 shows proportion of

data sets when this criteria is met and the NDFSM+DFSM strategy bases inference

on the more restricted DFSM.

As noted previously, this only appears when we consider cases with more fea-

tures than observations, representing cases 2 and 6. When it does occur, it is fairly

rare, impacting only 13% of cases in setting 2 and 2% of cases in setting 6. When the

true generalized specificity matrices are diagonal (case 4), we also do not observe any

overshrinking cases. In Table 2.5 we will further investigate estimation error, strat-

ifying by these suspected overshrunk outputs compared to the remaining estimates

unaffected by overshrinking.

Table 2.5: RMSE Comparison by Overshrinking Criteria

Method Setting 2
Potentially Overshrunk Not Overshrunk

N N = 13 N = 87
NDFSM 0.5603 0.0758
DFSM 0.1682 0.0626
GFA 0.331 0.2464
GHS 0.0547 0.0596

Potentially Overshrunk Not Overshrunk
N N = 2 N = 98

NDFSM 0.5735 0.0776
DFSM 0.0093 0.0441
GFA 0.7360 0.5505
GHS 0.0746 0.0538

Viewing the NDFSM rows, there are clear differences in the RMSE between

those cases whether the estimates are flagged as overshrunk vs not. To help with com-
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parison we include the DFSM, GFA and GHS results also stratified by the NDFSM

overshrinking criteria. Clearly, for the unshrunk cases, NDFSM estimates the first

CC with similar accuracy to DFSM and GHS, although it is slightly worse (GFA is

consistently poor in these cases). Missestimation in NDFSM is clearly dominated by

the poor performance in these 13 and 2 datasets with overshrinking, and our combined

strategy will replace these poor estimates with the DFSM estimates that are much

more accurate. Consistent with the conclusions from the prior section, this analysis

shows that while DFSM may be the best choices for high-dimensional data, when

NDFSM combined with an overshrinkage correction produces competitive estimates

of the first CC.

2.5.5 Simulation Results: Estimation of First Direction Vector

Table 2.6: Comparison Between RMCE of Different Methods For Estimation of Di-
rection Vectors

Method Settings
1 2 3 4 5 6 7

RMCE for First Direction Vector of View 1
NDFSM 0.0721 0.3600 0.0966 0.3323 0.0782 0.3399 0.1244
DFSM 0.1953 0.3484 0.0218 0.2703 0.1976 0.4234 0.5263

NDFSM+DFSM 0.0721 0.3033 0.0966 0.2708 0.0782 0.4084 0.1244
GFA 0.4838 0.8467 0.4016 0.7790 0.5233 0.8650 0.8164
GHS 0.2742 0.4646 0.1600 0.4908 0.2869 0.4766 0.4979
RCCA 0.4386 0.8104 0.9983 0.7710 0.4636 0.8296 0.9947

SCCA (STD) 0.3289 0.7819 0.2888 0.8018 0.3552 0.8204 0.4943
SCCA (O) 0.2904 0.8523 0.6602 0.7752 0.5526 0.8283 0.5166

RMCE for First Direction Vector of View 2
NDFSM 0.1004 0.3323 0.0940 0.2389 0.1053 0.3699 0.1491
DFSM 0.1125 0.2846 0.1017 0.2529 0.1250 0.2781 0.2352

NDFSM+DFSM 0.1004 0.2893 0.0940 0.2389 0.1053 0.4170 0.1491
GFA 0.3596 0.7782 0.3247 0.5625 0.4153 0.7984 0.7261
GHS 0.1683 0.3872 0.1104 0.4274 0.2000 0.4092 0.3117
RCCA 0.3514 0.7586 0.3601 0.7142 0.3846 0.7825 0.6857

SCCA (STD) 0.2478 0.7326 0.3930 0.7423 0.4256 0.7900 0.4221
SCCA (O) 0.2797 0.8013 0.6290 0.7347 0.5501 0.7949 0.4213
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When we estimate canonical correlations, we also need to understand in which

data direction the correlation is maximized. This is particularly important as it

represents the contribution of each variable on the canonical correlation. The root

mean cosine error for the direction vectors in view 1 and view 2 associated with the

first canonical correlation are summarized in Table 2.6.

This table indicates that all versions of our models—DFSM, NDFSM, and the

combined approach—have better performance than the other models. Beyond the rel-

atively minor differences in the CC estimations, these more substantial improvements

in the direction estimation make our approach a better alternative when we need to

find out the important contributing factors to CC. That is, even in cases when the

methods miss-state the magnitude of the relationship between views, NDFSM and

DFSM tend to correctly find the combination and weights of features that determine

this relationship. GHS and SCCA, which are quite competitive for the estimation of

ρ1, lag behind in this criteria by showing higher values of direction vector RMCEs.

2.5.6 Simulation Results: Significant Variable Loadings

In conjunction with the previous exploration of the accuracy of the canonical loading

vectors û∗ and v̂∗, we also want to interrogate whether we are able to correctly detect

whether a variable is significantly loaded or not. Recall that for Bayesian variable

selection we consider a variable to be significantly associated with the CC direction

if the 50% credible interval for its factor loading excludes zero. In the penalized

methods, SCCA (O) and SCCA (STD), if the component in the estimated (sparse)

CC direction is non-zero then we say that the corresponding variable is significantly

contributing to the CC calculation.

To characterize the true effect of each variable, we divide the elements of

true data-generating direction vectors into 3 groups according to their contribution

to the calculation of CC and direction vectors. Features are considered relevant
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in both the latent and CCA structure, if they have non-zero value in the column

of the factor loading matrix A(m) producing the first canonical correlation. In our

data generating approach, there are 5 such features. As the direction vectors are

the complex function of Σ, it is difficult to understand the direct impact of the AR

structure of the generalized specificity on the estimands. We define features that are

relevant in the CCA structure if their true loading value is greater than 0.1 in absolute

value even as the latent factor z is not associated with the views; we pick 0.1 because

that means their square contribution would be greater than 0.01 (or 1%) of the total

direction vector. Recall that variables unrelated to the latent factor structure can be

loaded on the canonical correlation if they are highly associated through Φ(m) with

another variable with non-zero projection value. There are 9 such features in the

settings with an AR structure for Φ(m), and no such features in settings 3 and 4. If

the absolute factor loading is less than 0.1, then it is practically irrelevant, so it goes

in the third block of features unrelated to the CC. There are 136 elements in the AR

settings and 145 in the independence settings. The better performing methods are

those which have high selection rates in block 1 (and to a lesser extent, block 2) and

low selection rates in block 3. Due to the low effect sizes of the factor loading in block

2, we do expect lower variable selection rates than in block 1.

Table 2.7 summarizes the results. We can see that in block 1 our methods all

consistently recover the true features involved in the latent structure; DFSM case 6 is

the only one of our methods with less then 80% accuracy. While GFA also performs

well in block 1, GHS selects these most critical variables less than 50% of the time

across all methods. This is surprising given the accurate recovery of ρ1, although it

is consistent with the direction vector accuracy results. The penalized approaches

perform decently in low dimensional setting but do not perform up to the mark in

high dimensional setups.

In block 2, NDFSM continues to have almost perfect recovery in the lower-
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dimension (n = 300) settings, with a substantial drop off when n = 50. As would be

anticipated, DFSM does worse in this block as these are the features whose role is

governed by the non-diagonal specificity matrix. GFA has the best selection in this

block when n > p but worse than NDFSM when n < p; GHS has low selection rate

as in block 1. Here penalized methods are unable to identify features which are result

of AR correlations.

In block 3 we expect that selection rates should be low for all models, but GFA

shows a very high false positives rate in this case. Our FSM models seem to control

the rate of false discoveries, and consistent with their low power throughout, GHS

has low selection rates. Penalized methods performed the best in this block as they

did not pick any features which are not relevant to the CC structure.

Table 2.7: Percentage Accuracy of Significant Variable Loading

Methods 1 2 3 4 5 6 7
Features Relevant to Latent and CCA Structure

NDFSM 100.00 88.80 40.00 98.40 100.00 88.20 100.00
DFSM 100.00 97.80 100.00 98.40 100.00 56.40 96.20
GHS 41.80 39.80 40.20 34.20 41.40 35.60 47.60
GFA 100.00 99.80 100.00 100.00 100.00 73.00 98.00

SCCA (STD) 79.20 45.00 99.40 56.40 98.20 46.80 72.00
SCCA (O) 79.20 45.00 99.40 56.40 98.20 46.80 72.00

Features Relevant to CCA Structure
NDFSM 99.80 18.40 - - 100.00 28.40 100.00
DFSM 38.40 3.60 - - 33.20 2.00 39.60
GHS 14.63 2.13 - - 14.75 1.63 21.88
GFA 44.60 61.20 - - 39.20 66.20 81.40

SCCA (STD) 0.00 0.80 - - 0.00 0.20 0.20
SCCA (O) 0.00 0.75 - - 0.00 0.62 0.12

Non Relevant Features
NDFSM 6.17 1.55 3.30 10.72 6.37 4.07 6.59
DFSM 3.78 2.96 2.11 6.07 4.58 2.21 4.46
GHS 3.73 0.58 0.03 0.08 4.04 0.88 4.32
GFA 43.69 58.21 46.73 57.41 37.42 63.70 80.84

SCCA (STD) 0.00 0.66 0.00 0.45 0.00 0.60 0.19
SCCA (O) 0.00 0.01 0.00 0.00 0.00 0.01 0.00

In conclusion our models, NDFSM, DFSM and the combined strategy, perform
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similarly or slightly better than most of the competing models for the estimation of

first canonical correlation. However, our models truly show a substantial benefit when

considering the estimation of the direction vectors and the selection of the features

that are significantly loaded. NDFSM consistently performs well if n > p, and when

p > n, its occasional overshrinkage can be mitigated by using the combined strategy

that switches to inference under the diagonal Φ(m). DFSM surprisingly beats GFA

even though models are similar. GHS, even though it is not designed for CCA,

performs well in estimation of CCs but under-performs in estimation and variable

selection of the direction vectors.

2.6 Data Analysis

Advances in technology have enabled users to collect a vast amount of high quality

genetic data, and the integration and joint analysis of multiple types of “-omics” data

is an important part of modern biomedical research [Morris and Baladandayuthapani,

2017, Manzoni et al., 2018, Castleberry, 2019]. In particular, studies of multiple data

sources on a common set of samples has received widespread attention in genomics,

with many authors jointly considering gene expression and copy number variation

[Hyman et al., 2002, Pollack et al., 2002]. CCA is a common and effective tool for

such analysis.

Breast Cancer (BC) is one of the most widely diagnosed type of cancer. It is

the fifth greatest cause of cancer-related deaths with an estimated 2.26 million new

cases worldwide [Sung et al., 2021] and is a leading cause of cancer deaths among

women worldwide [Ferlay et al., 2020]. The incidence rate of BC varies within race

and ethnicity and is affected by several epidemiological risk factors such as demo-

graphics, reproductive history, family history, and lifestyle factors [Momenimovahed

and Salehiniya, 2019]. In addition to the epidemiological components, further inves-

tigation into the genetic factors of BC is an ongoing area of research.
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We apply our method to the breast cancer data described in Chin et al. [2006]

and available to download from https://tibshirani.su.domains/PMA/. There are

n = 89 samples/observation on which DNA and RNA data are available. For the

view 1 data, we consider the matrix of DNA copy numbers (DNA) for genes located

on the 1st chromosome, yielding p(1) = 136. The data source also contains genetic

expression levels (RNA) for 19, 672 genes, and we select p(2) = 250 genes for the

view 2 data by selecting the top 50 genes associated with chromosome 1 with the

greatest interquartile range. Also we select an additional 200 genes across the other

22 chromosome sites which have highest interquartile range, yielding p(2) = 250. We

standardize both data views. Among these 250 genes, the 50 genes which are located

on the first chromosome are anticipated to be most associated with the view 1 copy

number data, some of these are located on the same chromosome. As SCCA (O)

utilizes fused lasso that are dependent on the data ordering, we order the features

according to their chromosomal location for the copy numbers in view 1 and according

to their nucleotide position (within chromosome) for the RNA expressions in view 2.

Using these data views, we apply the same set of methods as in the simulation

study. For our method we run MCMC for 100,000 iterations with 25,000 iterations

as burn-in iterations, and the sample is thinned to save 5000 samples. When we ran

the proposed NDFSM, we encountered the potential overshrinkage scenario discussed

previously. Based on the results from the NDFSM MCMC output, we have P (ρ1 <

0.2) = 0.7882. Hence, we follow the discussed strategy and consider inference based

on the MCMC output form the DFSM model. We note that these results do not

indicate overshirnkage as under this model we have P (ρ1 < 0.2) = 0. The 5000 stored

posterior samples provide an effective sample size of 1611 approximately independent

posterior samples for ρ. For GFA, we ran the MCMC for 600,000 iterations and

obtained a thinned sample of size 10,000 to obtain effective sample size of 4471.

The estimated first and second canonical correlations are shown in Table 2.8.
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Clearly, there are substantial differences in the results across the different methods.

GFA produces estimates for these two correlations that are almost unity. In fact,

it estimates 10 CCs that exceed 0.95, representing a much greater dependence than

is represented from the other methods. In contrast, the SCCA approaches have

substantially lower estimates between 0.5 and 0.6. GHS and our proposed method

yield similar estimates with ρ̂1 ≈ 0.92 and ρ̂2 ≈ 0.90.

Table 2.8: Canonical Correlation and Variable Selection Analysis for Breast Cancer
Data

Method NDFSM GHS GFA SCCA SCCA
+DFSM (O) (STD)

Estimate of First CC 0.9208 0.9362 0.9773 0.5407 0.6092
Estimate of Second CC 0.9026 0.9090 0.9736 0.5181 0.5902
Sig. Copy Number Loading 60 131 1 59 20
Sig. Gene Loadings 10 0 1 65 50
Sig. Gene Loadings 4 0 1 10 7
on chromosome 1
Weight (%) of view 2 direction 43.86 28.99 23.36 30.52 62.78
on chromosome 1

We also investigate the behavior of the estimated direction vectors and the

number of significant loadings found in this analysis in Table 2.8. As compared to

other Bayesian methods, NDFMS+DFSM combination identifies a greater number of

significant genes (view 2 components) than GHS and GFA; GHS does not identify

any significant genes, and GFA finds only one significant gene. In contrast to GHS

failing to find significant loadings in view 2, it selects 131 significant copy numbers

from view 1, representing 96% of the view 1 components as being selected as signifi-

cantly associated with the CC. This is clearly an unreasonable result. GFA selects a

single significant copy number with its single significant gene, which is clearly fewer

associations than one would expect from this context.

As we expect the 50 genes located on chromosome 1 to be the most active

features in determining the correlation to the chromosome 1 copy numbers, we in-
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vestigate the sum of the square weights (both significant and non-significant) in the

view 2 direction vector for the chromosome 1 genes. As the direction vector has norm

1, this sum can be viewed as a percentage weight. In Table 2.8 we can see that

among Bayesian methods, GHS and GFA assigns 29% and 23% respectively. While

our model selects 4 of the chromosome 1 genes as significant, it assigns 44% of the

direction vector to genes on the expected chromosome.

The frequentist method SCCA (O), which utilizes the chromosomal locations

and nucleotide positions in the data, selects 65 significant genes for the first CC direc-

tion and 10 of these genes are located on chromosome 1. That is, 15% of significant

genes are from chromosome 1 compared to 40% (4 of 10) from NDFSM+DFSM. The

direction vector under SCCA (O) also assigns a lower weight to the chromosome 1

genes than does NDFSM+DFSM (31% vs 44%). Using the standard implementation

of SCCA without the position information, 20 copy numbers are selected (fewer than

NDFSM+DFSM and SCCA (O)) and 50 genes are selected (between the two meth-

ods) as significantly associated with the first CC. While only 7 of these 50 genes are

located on chromosome 1, these genes have very large loadings and account for 63%

of the direction vector.

In this data, no method can be understood as the absolute truth. However,

under our proposed model the estimated canonical correlations are of a magnitude

that might be expected given the biological relationship between the copy numbers

and gene expression from a common chromosome. Further, our investigation of the

gene expression direction vector indicates the our model places a larger weight on the

chromosome 1 genes which are expected to play the largest role, when viewed as a

proportion of significant genes and as a proportion of the overall weight, than most

completing methods.
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2.7 Conclusions

We noted the lack of structured sparse CCA methodology from a Bayesian perspec-

tive. The rise of interconnected, high dimensional, sparse data, measured on a small

number of samples, demands the development of new statistical theory, and the ability

to construct flexible and sparse models make the Bayesian approach a valuable con-

tribution to this work. Our model is one of the few models which provides Bayesian

modeling of within view covariance matrix with sparse CCA. To the best of our knowl-

edge ours is the only model which tries to model a sparse structure for the generalized

specificity Φ(m) without restricting it to be diagonal.

To that end, we apply a graphical horseshoe prior to bring in sparsity in these

high dimensional covaraince matrices. As shown in the simulations, this often per-

forms better than GFA and DFSM which both assume diagonal matrices. However,

improved performance is not universal, and we do see cases where the NDFSM over-

shrinks the cross-covariance terms. The NDFSM+DFSM approach, which combines

the GHS and diagonal versions of our models with an ad hoc selection rule, proved to

be a competitive approach to our models. As this overshrinkage tends to only appear

when p > n, one might also make the initial decision to only consider the DFSM

choice when the sample size is low.

As the CCA problem is generally focused on the case where one is interested

in two views of the data, this approach can easily be extended to a multi-view setting

along the lines of Zhao et al. [2016]. The IBFA model in (2.10) is easily extended

by including additional m with the associated data view X(m) and the parameters

µ(m), A(m), and Φ(m). Canonical correlations and direction vectors can be estimated

for each pair (m,m′) of data views based on the common set of MCMC output as

discussed throughout the manuscript.

As part of our model specification, we have introduced a new flexible shrinkage
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prior in the form of a multiplicative half-Cauchy process. Along the lines of the

multiplicative shrinkage processes [Bhattacharya and Dunson, 2011, Schiavon et al.,

2021], this model flexibly imposes shrinkage on the projection matrix coefficients,

while increasingly reducing the roles of each subsequent factor. It would certainly

be of interest to further investigate the mathematical and theoretical features of this

prior process. However, this can be achieved by considering its role within the context

of a single view factor model instead of our IBFA. The additional layer of multiple

views and the non-diagonal residual variance complicates the derivations, relative

to the exploration in a standard factor model. We have run additional simulations

(not shown) comparing our multiplicative half-Cauchy process to the multiplicative

gamma process of Bhattacharya and Dunson [2011] and have found our approach to

perform comparably and in some cases better.

One of the main challenges of this model, and most Bayesian approaches to

CCA, is computational scalability. MCMC Gibbs sampling samples each parameter

of the model within each iteration and can be fairly slow in high dimensions. Due to

its nature as a completely Bayesian model which scans through all the parameters,

the model is computationally very intensive. Approximate Bayes algorithms such as

variational Bayes which seeks to find a posterior mode of the parameter distribution

has been used in some previous work such as Klami et al. [2013] and Zhao et al. [2016].

While this could be an approach to find a set of parameter estimates more quickly,

these estimation algorithms typically fail to appropriately account for uncertainty

quantification [Wang and Blei, 2019]. Additionally, the parameters of interest for

CCA (ρ,u∗,v∗) are complex functionals of the model parameters (A(m),Φ(m)), and

so the impact of the approximation to the posterior of (A(m),Φ(m)) relative to the

posterior of the CCA parameters may be unclear.
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CHAPTER 3

BAYESIAN ANALYSIS OF FINITE MIXTURE MODEL FOR

SPHERICAL DATA

3.1 Introduction

Advancements in technology have given rise to directional datasets where observations

are recorded as directions or angles relative to a system with fixed orientation [Wang

and Gelfand, 2013]. Some examples of such data lie on circumference of unit circle

(R2) or on the unit hypersphere Sp−1 = {y ∈ Rp : ∥y∥2 = 1}, where ∥y∥2 =
√
yTy.

For example, in Diffusion Tensor Imaging data consist of the maximum diffusivity

directions of water molecules. The direction of the flow of water differs across parts

of the human brain due to differences in the properties of the brain tissues. Hence,

this data provides an image of the structure of the brain leading to increasing un-

derstanding of brain connectivity. In this way directional data has wide presence

in the field of bioinformatics [Mardia et al., 2018], astronomy [Marinucci and Pec-

cati, 2011], medicine [Pardo et al., 2016], neurology [Kaufman et al., 2005], genetics

[Dortet-Bernadet and Wicker, 2008], image analysis [Esteves et al., 2018], text min-

ing [Banerjee et al., 2005], machine learning [Sra, 2018] and many others [Pewsey

and Garćıa-Portugués, 2021]. Mardia and Jupp [2000] and Ley and Verdebout [2017]

provide a rich literature review on the presence on the directional statistics in these

areas.

In this article, we will focus on one of the most popular and pivotal distribu-

tion in directional data, the von Mises Fisher (vMF) distribution. This distribution

sometimes has different names when applied to hyperspheres of different dimensions.

The vMF distribution for circular data is often known as the von Mises distribution,
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and in the case of spherical data, it may be called the Fisher distribution [Nunez-

Antonio and Gutiérrez-Pena, 2005]. The distribution contains two parameters: the

mean direction vector µ and the concentration κ. A detailed description of the dis-

tribution is given in the subsequent sections. In our study we will mainly consider

data that is multivariate over the sphere (p = 3).

Mardia and El-Atoum [1976b] proposed an approach for formal Bayesian infer-

ence for vMF distribution. They assumed a known κ and discussed inference for the

mean vector under the one sample and two sample problems. Guttorp and Lockhart

[1988] developed Bayesian methodology for considering both parameters as unknown.

Damien and Walker [1999] introduced an auxiliary variable approach in development

of Gibbs sampling. This algorithm provided an approach which tries to eliminate

restrictive assumptions on the prior distributions, which had been present in some

previous studies. Due to the high levels of autocorrelation among posterior sam-

ples, Nunez-Antonio and Gutiérrez-Pena [2005] argued that this auxiliary variable

approach is not efficient for relatively large values of concentration parameter. To

solve this problem the authors proposed an importance-resampling algorithm. In the

first part of this project, we propose a novel Bayesian joint prior on the parameters

µ and κ of vMF. We provide a theoretical justification and investigation of this new

distribution.

The problem of clustering data on hyper-sphere has received increased atten-

tion recently. As noted in Qin et al. [2016] and Figueiredo [2017], these methods can be

roughly divided by whether they utilize Euclidean or spherical geometry principles.

The Euclidean geometry based algorithms do not take into account the geometric

properties of the sample data and instead utilize Euclidean distance as a measure of

similarity [Qin et al., 2016]. One of the popular example of such a model is the K

means clustering algorithm [Hartigan and Wong, 1979]. K means is a similarity based

algorithm which does not require any assumption relating to an underlying probabil-
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ity model. Probabilistic mixture models fit the mixture of probability distribution to

the data. Here conditional probabilities of data points are used to assign the labels

to the data [He et al., 2010]. One of the popular models in this area is the Gaussian

Mixture Model [Bishop and Nasrabadi, 2006]. This and variants of this model are

not effective for data constrained to have norm one due to the methods’ tendency to

place non-trivial probability mass off the unit sphere domain [Gopal and Yang, 2014].

In contrast, spherical geometry based models use cosine similarity measures

to leverage the inherent directional geometry of the data. One of the most common

methods in this domain is spherical K means clustering, proposed by Dhillon and

Modha [2001], which utilizes cosine distances cluster data on hypersphere. Peel et al.

[2001] used mixture of Kent distributions to cluster data on rock mass. Banerjee et al.

[2005] developed the vMF Mixture Model (vMFMM). This assumes each cluster in

the mixture model follows a vMF distribution. Additional examples of spherical

clustering models are the Spherical Topical Model [Reisinger et al., 2010], Dirichlet

process vMFMM [Bangert et al., 2010], and temporal VMF mixture model [Gopal

and Yang, 2014].

In this article we address a Bayesian vMFMM. Both frequentist and Bayesian

clustering models need an efficient algorithm to estimate their parameters. In the

case of a frequentist mixture of vMF distributions, the most popular algorithms to

estimate parameters are variants of the EM algorithm [Figueiredo, 2017]. In the case

of Bayesian methods, different algorithms have been proposed such as variational

inference, reversible jump MCMC, collapsed Gibbs sampling, among many others

[Reisinger et al., 2010, Gopal and Yang, 2014, Qin et al., 2016]. These algorithms

require a numerical approximation to the intractable Bessel function in the vMF

distribution.

In the second part of our project we focus on developing an efficient sampling

scheme for the Bayesian-vMF mixture model and investigating its properties. We

48



propose a novel Data Augmentation (DA) algorithm which removes the intractability

from the sampling distribution of concentration parameter κ.

We organize the article as follows. In Section 3.2 we introduce the von Mises

Fisher distribution. After this mathematical background, in Section 3.3 we introduce

a novel conjugate prior and investigate properties of this distribution. Section 3.4

introduces Bayesian mixture of vMF distribution and inference under our conjugate

prior. In Section 3.5 we talk about a novel data augmentation technique based on an

alternative commonly used prior choice. We perform simulation analysis in Section

3.7 and data analysis in Section 3.8.

3.2 Von Mises Fisher Distribution

We consider random variable y with support on the p-dimensional hypersphere Sp−1,

where Sp−1 = {y ∈ Rp : ∥y∥2 = 1} and ∥y∥2 =
√
yTy. Then, y ∈ Sp−1 is said to

follow p-variate vMF distribution if its probability density function is given by

f(y | µ, κ) = κp/2−1

(2π)p/2Ip/2−1(κ)
exp (κµTy) I(y ∈ Sp−1), (3.15)

where κ ≥ 0,µ ∈ Sp−1, and p ≥ 2. Ip/2−1(·) denotes modified Bessel function of the

first kind with order p
2
−1. The parameter µ is the mode of the distribution. We note

that the mean E(y) does not lie on sphere as it has norm less than one (∥E(y)∥ < 1).

However, renormalization of E(y) does coincide with µ = (∥E(y)∥)−1E(y). Hence,

when we refer to µ as the mean of the vMF, we are referring to this parameter as

representing the mean direction of the random variable. The concentration parameter

κ quantifies how tightly the function is distributed around its mean direction µ. For

κ = 0 the distribution is uniform over the sphere. For κ > 0 the distribution is

unimodal and rotationally symmetric around the direction µ. µTy is the cosine

similarity between y and µ, and we note that the density depends on y only through
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this cosine similarity. The computationally difficult element of the distribution is

Bessel function of first order, which is given by

Iν(κ) :=
∞∑
k=0

(−1)κ

k! Γ(ν + k + 1)

(κ
2

)(ν+2k)

.

Here Γ(·) is the gamma function. The infinite, alternating series is a computationally

intractable function of κ, and it complicates the analysis whenever the concentration

parameter is treated as unknown.

3.3 A Novel Class of Conjugate Priors for VMF

A conjugate prior provides a remarkable advantage in Bayesian inference as it provides

a closed form representation of the posterior distribution. These attractive properties

have propelled the use conjugate priors in most applications of Bayesian statistics in

a wide variety of fields. One of the benefits to using the conjugate prior framework is

that there is a somewhat constructive approach to finding such a prior. For a generic

distribution from an exponential family f(x | θ) = h(x)eθx−δ(θ), a conjugate family

of distributions should have the form π(θ | µ, λ) = K(µ, λ)eθµ−λδ(θ), depending on

hyperparameters µ and λ. The resulting posterior under a random sample of size n

will be π(θ | µ+
∑n

i=1 xi, λ+ n) [Robert, 2007, Section 3.3.4].

There has been some prior work considering conjugate priors for the vMF

distribution [Mardia and El-Atoum, 1976a, Nunez-Antonio and Gutiérrez-Pena, 2005,

Bangert et al., 2010]. As noted by Hornik and Grün [2013], these choices have various

merits and demerits. As an alternative, Hornik and Grün [2013] construct a conjugate

prior based on a Theorem 1 of Diaconis and Ylvisaker [1979] and consider a set

of necessary and sufficient condition on the hyperparameters to make the proposed

conjugate family proper. However, the construction of their prior is in terms of the

natural parameterization θ∗ = κµ ∈ Rp, not the usual interpretable parameters
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(µ, κ). Consequently, their prior hyperparameters lack a natural interpretation [Pal

et al., 2020]. Further, Hornik and Grün [2013] only provides the properties of the the

proposed conjugate priors and does not provide an estimation approach or sampling

scheme to perform inference.

Considering these gaps in the literature, we propose a novel conjugate prior

for (µ, κ) parameterization. Further, we study its various properties and provide an

interpretation for its hyperparameters. We define the novel conjugate prior as follows.

Definition 1. The Conjugate von Mises Fisher (CvMF) distribution is the joint

conjugate prior on parameters µ and κ for vMF distribution and has density is pro-

portional to

g(µ, κ | ψψψ, λ) =

[
κν exp

(
κ µTψψψ

)
Iν(κ)

]λ
I(κ > 0,µ ∈ Sp−1),

as long as g(µ, κ | ψψψ, λ) is integrable with respect to the measure dµ dκ defined on

Sp−1 × R+. Here λ > 0 and ψψψ ∈ Rp.

In Section 3.3.2 we will show that the posterior based on this prior belongs

to the same distribution family, proving CvMF to be a conjugate prior. First, we

establish the finiteness conditions for the kernel by establishing conditions on ∥ψψψ∥

and λ.

Theorem 1. Consider the function

g(µ, κ | ψψψ, λ) =

[
κν exp

(
κ µTψψψ

)
Iν(κ)

]λ
I(κ > 0,µ ∈ Sp−1),

for ψψψ ∈ Rd, λ > 0. The following statements hold regarding the integrability of

g(µ, κ | ψψψ, λ) with respect to the measure dµ dκ.

1. If ∥ψψψ∥ < 1, then
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∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ <∞.

2. If ∥ψψψ∥ = 1, then

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ = ∞.

3. If ∥ψψψ∥ > 1, then

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ <∞,

if and only if ν > 0.5 and λ < 2ν−1
2ν+1

.

The proof of this Theorem can be found in Section C.

As we focus our attention on the case with p = 3 (ν = 0.5) for the hypersphere,

this theorem implies that we must consider ψψψ ∈ Rd such that ∥ψψψ∥ < 1 to ensure that

this distribution is proper. After establishing the finitness property of the kernel, we

further proceed to establish interpretations of the hyperparameters. We start with

establishing a property related to the modality of the conjugate prior. The following

theorem establishes conditions on unimodality of the distribution.

Theorem 2. Let κ > 0, µ ∈ Sp−1. Consider the distribution CvMF with probability

density function proportional to

g(µ, κ | ψψψ, λ) =

[
κν exp

(
κ µTψψψ

)
Iν(κ)

]λ
I(κ > 0,µ ∈ Sp−1),
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for ν = p
2
−1, ψψψ ∈ Rd. We assume that 0 < ∥ψψψ∥ < 1 and λ > 0 such that the density is

finite, then there exists an unique mode (µ̂, κ̂) located at µ̂ = ψψψ
∥ψψψ∥ and κ̂ = R−1

ν (∥ψψψ∥).

In the above, Rν(x) = Iν+1(x)
Iν(x)

is the ratio of Bessel functions, and R−1
ν (·) :

(0, 1) → R+ is its inverse function. Lemma 1 verifies the existance of this inverse

function, and the proof of the Theorem can be found in Section C. In particular,

we note that mode of κ is a function of ψψψ through ∥ψψψ∥. This implies that only the

parameter ψψψ determines the mode of this distribution, not the λ hyperparameter.

Having established the unimodality of the distribution, we now characterize

the concentration behaviour of the distribution through the concept of the level sets.

Let g(µ, κ | ψψψ, λ) be the unnormalized probability density kernel as given in Definition

1, and this density achieves its maximum at the unique (µ̂, κ̂) as per Theorem 2. Let

the level set of level l ∈ (0, 1) be given as

Sl =

{
(µ, κ) ∈ Sp−1 × R+ :

g(µ, κ | ψψψ, 1)
g(µ̂, κ̂ | ψψψ, 1)

> l

}
. (3.16)

This is a level set containing the mode (µ̂, κ̂) for all l. Note that in (3.16) we fix λ=1.

Let Pψψψ,λ(·) denotes the probability distribution corresponding to the kernel

g(µ, κ | ψψψ, λ). Assuming the conditions of Theorem 2 are met, the distribution Pψψψ,λ(·)

will have its mode at (µ̂, κ̂). To assess the properties of the distribution of mass in

Pψψψ,λ(·) around the mode, we provide Theorem 3 which characterizes the changes in

the probability distribution as λ changes.

Theorem 3. Let ψψψ ∈ Rp such that 0 < ∥ψψψ∥ < 1 and λ > 0 . Let Pψψψ,λ(·) denote the

probability measure corresponding to the kernel

g(µ, κ | ψψψ, λ) =

[
κν exp

(
κ µTψψψ

)
Iν(κ)

]λ
I(κ > 0,µ ∈ Sp−1),

for ν = p
2
− 1.
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1. If Sl denotes the lth level set for some l ∈ (0, 1), then Pψψψ,λ(Sl) is an increasing

function in λ > 0.

2. Let A be any set containing the mode (µ̂, κ̂), then

lim
λ→∞

Pψψψ,λ(A) = 1.

The proof of this Theorem can be found in Section C.

Importantly, Theorem 3 implies that the parameter λ controls the concentra-

tion of mass around the mode. As λ increases, more mass is concentrated around

mode.

From the above discussion we can see here that the conjugate distribution is

parameterized by two parameters. Just like the vMF distribution has two parameters

which for direction and spread, in our conjugate prior the parameter ψψψ controls the

mode of (µ, κ), while λ characterizes the probability concentration around the mode.

This justifies the following parameter names.

Definition 2. In the context of the probability distribution CvMF (·;ψψψ, λ), the pa-

rameters λ and ψψψ are labeled as the concentration parameter and modal parameter,

respectively.

Figure 3.1 displays a contour plot of κ for λ parameters from 5 to 55. with

ν = 0.5, µ = (1, 0, 0),ψψψ = (0.25, 0.25, 0.25). It can be observed that the modal point

of the distribution remains same while the spread changes according to the value of λ.

Further, it can be observed that as value of λ increases, the spread increases affirming

the results proved in Theorem 3.

3.3.1 Properties of Marginal Density of κ

In this section we will investigate the properties of marginal density of κ under the

CvMF distribution after marginalizing over the mean vector µ. This is useful to
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Figure 3.1: Contour Plot of π(µ, κ;ψψψ, λ) as a function of κ for different values of λ.
Other parameters are set at ν = 0.5, µ = (1, 0, 0),ψψψ = (0.25, 0.25, 0.25). The mode
of the distributions are located at the point κ̂ = 0.77.

derive efficient sampling scheme for the parameter κ which has intractable marginal

density. The marginal density of κ can be calculated (up to a normalizing constant)

from g(µ, κ |, λ) through

π(κ | ψψψ, λ) ∝
∫
Sp−1

g(µ, κ | ψψψ, λ)dµ =

∫
Sp−1

[
κν exp

(
κ µTψψψ

)
Iν(κ)

]λ
dµ

=
κνλ

[Iν(κ)]λ

[∫
Sp−1

exp
(
κµTψψψλ

)
dµ

]
=

κνλ

[Iν(κ)]λ

[∫
Sp−1

exp
(
∥κψψψλ∥µT µ̂

)
dµ

]
=

κνλ

[Iν(κ)]λ

[∫
Sp−1

exp
(
∥κψψψλ∥µT µ̂

)
dµ

]
=

(2π)p/2

∥ψψψλ∥ν
κνλ−ν

[Iν(κ)]λ
Iν(κλ ∥ψψψ∥)

∝ κνλ−ν

[Iν(κ)]λ
Iν(κλ ∥ψψψ∥), (3.17)
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where µ̂ = ψψψ
∥ψψψ∥ assuming 0 < ∥ψψψ∥ < 1.

We note that as part of the derivation in (3.17), we find the conditional dis-

tribution of µ, given κ. The conditional distribution π(µ | κ, λ,ψψψ) is proportional

to

µ | κ, λ,ψψψ ∝ exp
{
µT (κλψψψ)

}
,

implying

µ | κ, λ,ψψψ ∼ vMF

(
ψψψ

∥ψψψ∥
, ∥κλψψψ∥

)
(3.18)

This clearly implies that our conjugate prior can be deconstructed as a product of a

well-known distribution π(µ | κ,ψψψ, λ) for the density of the mean vector conditionally

on the concentration and the marginal prior π(κ | ψψψ, λ) in (3.17) with unknown

properties.

To that end, the following Theorem 4 establishes various properties of this

marginal density of κ. In particular, we establish that π(κ | ψψψ, λ) is increasing under

certain parameter values. We further show unimodality of the marginal density under

the alternative parameter values. We also provide a theoretical guarantee that this

inflection point is certain to occur between 0 and the mode of density.

Theorem 4. Let π(κ | ψψψ, λ) denotes the marginal density for κ as given by (3.17).

Then,

1. π(κ | ψψψ, λ) is decreasing function of κ if λ||ψψψ||2 ≤ 1.

2. π(κ | ψψψ, λ) has unique modal point if λ||ψψψ||2 > 1.

3. The function π(κ | ψ, λ) has inflection point κin between 0 and the mode κ̂.

There will be no inflection point if λ∥ψψψ∥2 ≤ 1.

Readers are referred to C for proof of the theorem. This theorem provides

insight into the nature of the marginal distribution of the CvMF distribution.
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3.3.2 Posterior Properties of vMF Distribution Using New Conjugate Prior

Assuming a random sample of data from a vMF distribution, the posterior distribu-

tion can be easily calculated using this new conjugate prior. We let y1, . . . ,yn ∈ Sp−1

be an i.i.d. sample of data generated from the vMF distribution with mode µ ∈ Sp−1

and concentration κ > 0. For a Bayesian analysis of the data, we consider following

model

yi | µ, κ
i.i.d.∼ vMF (µ, κ) for i = 1, . . . , n

µ, κ | ψψψ, λ ∼ CvMF(ψψψ, λ),

where ψψψ ∈ Rd, λ > 0, such that ∥ψψψ∥ < 1. We use the notation Y = {yi}ni=1 to denote

all the observed data with Y = 1
n

∑n
i=1 yi, and we continue to let ν = p

2
− 1. The

data likelihood can be written as

L(µ, κ | Y ) =
n∏
i=1

κν exp
(
κ µTyi

)
(2π)p/2 Iν(κ)

.

Therefore, the joint posterior of (µ, κ) given the data is specified as

π(µ, κ | Y ,µ, λ,ψψψ) ∝
κν(n+λ) exp

{
µT (κ

∑n
i=1 yi + κλψψψ)

}
(2π)np/2 [Iν(κ)]

(n+λ)
. (3.19)

Here we can observe that the posterior has same form as the prior distribution given

in (1). This posterior distribution can be written as CvMF(ψψψ∗, λ∗) where ψψψ∗ =(
n

n+λ
Y + λ

n+λ
ψψψ

)
and λ∗ = n + λ. In particular, we can appeal to our Theorems

1 and 2 to note that the posterior will be proper as ∥ψψψ∗∥ < 1 always, following the

triangle inequality. Hence, the posterior modes exist, and Theorem 2 immediately

implies that µ̂ = ψψψ∗

∥ψψψ∗∥ and κ̂ = R−1
ν (∥ψψψ∗∥).

Note that ψψψ∗ is as a convex combination of prior modal parameter and the
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sample mean when we use CvMF prior, and λ∗ is a combination of the sample size

and prior sample size. We note that the posterior modal estimates µ̂ = ψψψ∗

∥ψψψ∗∥ and

κ̂ = R−1
ν (∥ψψψ∗∥) are not weighted averages of the data and hyperparameters.

3.4 Bayesian von Mises Fisher Mixture Model Using Conjugate Prior

3.4.1 Finite Mixture of vMF distributions

As discussed in the introduction, we wish to implement our methodology in the

context of a finite mixture model for directional data. To that end, we assume that the

data are made up of N (finite) clusters, where within each cluster data follow a unique

vMF distribution. Following the notations in Qin et al. [2016], we let fj(y | ωj) denote

a vMF distribution with parameters ωj = (µj, κj) for j = 1, 2, . . . , N . Banerjee et al.

[2005] proposed the standard von Mises Fisher Mixture Model (vMFMM) with density

is given by

f(y | π,ωj) =
N∑
j=1

πjfj(y | ωj),

where f(y | µj, κj) =
κ
p/2−1
j

(2π)p/2Ip/2−1(κj)
exp (κjµ

T
j y) I(y ∈ Sp−1). Here πj is the cluster

allocation probability for jth cluster. The full data likelihood is then given as

L({µj}Nj=1, {κj}Nj=1,π,Z | y) =
n∏
i=1

N∑
j=1

{
πj

κ
p/2−1
j

(2π)p/2Ip/2−1(κj)
exp (κjµ

T
j yi)

}
. (3.20)

This combination of sum and product is intractable, representing a common challenge

to fitting mixture models.

A standard technique to reformulate this mixture model is to introduce auxil-

iary categorical variables Z = (Z1, . . . Zn)
T such that

P (Zi = j) = πj, j = 1, 2, ..., N ; i = 1, 2, ..., n.
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The Zi’s are often referred to as the membership variables; for example, the event

{Zi = j} implies that the ith data point is assigned to jth cluster and follows the

vMF distribution determined by the parameters (µj, κj). The likelihood (3.20) of the

parameters {κj}Nj=1, {µj}Nj=1, π after introduction of this auxiliary variables can be

rewritten as

L({µj}Nj=1, {κj}Nj=1,π,Z | y) =
N∏
j=1

n∏
i=1

{
πj

κ
p/2−1
j

(2π)p/2Ip/2−1(κj)
exp (κjµ

T
j yi)

}I(Zi=j)

.

(3.21)

3.4.2 Bayesian Model Based on Conjugate Prior

In order to formulate the Bayesian model, we consider our proposed conjugate prior

for (µj, κj), while we assume a standard Dirichlet distribution for π. The full model

can be represented as the following hierarchy, which we refer to as the Bayesian

Conjugate von Mises Fisher Mixture Model.

yi | Zi = zi,µi, κi ∼ vMF(µzi , κzi) for i = 1, . . . n,

Zi | π ∼ Categorical(π) for i = 1, . . . n,

µj, κj | ψψψ, λ ∼ CvMF(ψψψ, λ)

π ∼ Dirichlet(η), (3.22)

where the hyperparameters ψψψ ∈ Rd, λ > 0, and η = (η1, . . . ηN)
T such that ηj > 0 for

j = 1, . . . N . We obtain the full posterior as

π({µj}Nj=1, {κj}Nj=1,π,Z | y)

∝
N∏
j=1

n∏
i=1

{
πj

κ
p/2−1
j

(2π)p/2Ip/2−1(κj)
exp (κjµ

T
j yi)

}I(Zi=j)

π(µj, κj) π(π).

(3.23)
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3.4.3 MCMC Algorithm for Conj-MH

Based on the above mentioned model, we propose an MCMC algorithm to draw

samples from this posterior. The sampling algorithm iterates between the following

steps.

1. Mixture Probability π: The vector of mixture probabilities π = (π1, . . . , πN) is

sampled from

π | Y ∼ Dirichlet(n1 + η, · · · , nN + η),

where nj =
∑n

i=1 I(Zi = j).

2. Cluster Membership Z: Cluster membership Zi can be sampled for i = 1, 2, . . . , n

as

P (Zi = j | π,yi, {µj}Nj=1, {κj}Nj=1) ∝
f(yi | µj, κj)πj∑N
j=1 f(yi | µj, κj)πj

.

3. Concentration parameter κ: For j = 1, 2, . . . , N , the sampling distribution is

π(κj | Z,Y ,ψψψ) ∝
κ
ν(nj+λ)−ν
j

[Iν(κj)]λ+nj
Iν

(
κj

∥∥∥∥∥λψψψ +
n∑
i=1

I(Zi = j)yi

∥∥∥∥∥
)
.

We use random walk Metropolis Hastings (MH) algorithm to sample from this

distribution.

4. Direction Vector µj: We sample mean vector for j = 1, 2, . . . , N as

µj | Z,y, κj ∼ vMF

(
∆∗

j

||∆j||∗
, ||∆j||∗

)
,

where ∆∗
j = κjλ ψψψ +

∑n
i=1 I(Zi = j)κjyi.

Note that in the κj step we utilize an MH step for this non-standard distribution. For

this reason we refer to the implementation of this model as Conj-MH. This Metropolis

Hastings algorithm is a flexible and popular strategy for obtaining posterior samples
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under non-standard distributions. One of the key steps is the selection of an appro-

priate proposal distribution for the candidate parameter value. However, this can be

challenging and typically requires user tuning. Further, MH sampling is often less

efficient than competing methods due in part to repeated samples across iterations.

We note that it is potentially possible to develop a more sophisticated sampling ap-

proach for this distribution. In particular, one could use the results from Theorem 4

to develop an Adaptive Rejection Sampling step for this step [Gilks and Wild, 1992].

3.5 An Alternative Prior Distribution with a Data Augmentation Al-

gorithm

3.5.1 Bayesian Data Augmented von Mises Fisher Mixture Model

In this section, we consider a Bayesian mixture model which assumes vMF and

Gamma priors for all the cluster specific parameters {µj}Nj=1 and {κj}Nj=1. This

model is similar to Gopal and Yang [2014] except that we use Gamma priors for κ

instead of the log-normal distribution they employ. The main goal is to derive a

data augmentation sampling scheme which will provide closed-form, known sampling

distributions without resorting to an MH algorithm. We call this model as Gam-DA.

The full model can be represented as the following hierarchy.

yi | Zi = zi,µi, κi ∼ vMF(µzi , κzi) for i = 1, . . . n,

Zi | π ∼ Categorical(π) for i = 1, . . . n,

µj ∼ vMF(θ, ζ) j = 1, 2, ..., N

κj ∼ Gamma(α, β) j = 1, 2, ..., N

π ∼ Dirichlet(η), (3.24)
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where the hyper parameters θ ∈ S2, ζ, α, β > 0 and η = (η1, . . . ηN)
T such that ηj > 0

for j = 1, . . . , N .

From the likelihood in (3.20) and the prior structure (3.24), we get that the

full posterior is proportional to

π({µj}Nj=1, {κj}Nj=1,π,Z | yi)

∝ π(π)
N∏
j=1

n∏
i=1

{
πj

κ
p/2−1
j

(2π)p/2Ip/2−1(κj)
exp (κjµ

T
j y)

}I(Zi=j)

π(µj) π(κj)

= π(π)
N∏
j=1

{
π
nj
j

κ
nj(p/2−1)
j

(Ip/2−1(κj))nj
exp

(
κjµ

T
j

n∑
i=1

I (Zi = j)yi

)}
π(µj) π(κj).

(3.25)

Sampling of Z,π,µ are uncomplicated and follow roughly the same sampling steps as

in the MCMC algorithm under the CvMF choice. However, the posterior distribution

of κj, which is proportional to

κ
nj(p/2−1)+α−1
j

(Ip/2−1(κj))nj
exp

(
κjµ

T
j

n∑
i=1

I (Zi = j)yi − βκj

)
, (3.26)

is not a standard distribution. To that end, we propose a data augmentation algorithm

to facilitate sampling of the concentration.

The data augmentation approach was first proposed by Tanner and Wong

[1987] to make simulation feasible and simple. The central idea of the DA algorithm

is to sample from an intractable density, say π(ω), by constructing a joint density

π(ω, V ) such that ∫
π(ω, V ) dV = π(ω),

and that the conditionals π(ω | V ) and π(V | ω) can be (easily) sampled from. In the

context of Bayesian analysis, π(ω) typically refers to posterior density or conditional

sampling density for a parameter of interest ω. Though the underlying idea behind
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DA is uncomplicated, it is often nontrivial and a matter of some art to construct an

appropriate choice for the distribution π(ω, V ). A commonly used strategy is to build

an appropriate conditional distribution π(V | ω) so that π(ω, V ) = π(V | ω) π(ω).

We call V the augmented random variable. In certain cases, novel distributions must

be created to provide a distribution π(V | ω) that befits the need of the specific

DA algorithm. In general the DA algorithm is an effective technique to address

the intractability of a distribution that may cause sampling difficulties. Readers are

referred to Hobert [2011] for detailed methodologies for finding appropriate augmen-

tation variables.

3.5.2 Negative Binomial Data Augmentation Algorithm

We recall from (3.2) that the Bessel function of first kind can be written as

Ip/2−1(κ) :=
∞∑
k=0

1

k! Γ(|p/2− 1|+ k + 1)

(κ
2

)(p/2−1+2k)

.

In the particular case of interest when data are spherical p = 3, the function can be

simplified to

I1/2(κ) =

√
2

πκ
sinh(κ),

where sinh(κ) = 1
2
eκ(1− e−κ) is the usual hyperbolic sine function. From (3.26), we

can see that the intractable Bessel function appears in the denominator of the sam-

pling distribution for κ. In terms of sinh, we can get the likelihood of the parameters

{κj}Nj=1, {µj}Nj=1, π as

L({µj}Nj=1, {κj}Nj=1,π,Z | Y ) =
N∏
j=1

n∏
i=1

{
πj

κj
4π sinh(κj)

exp (κjµ
T
j yi)

}I(Zi=j)

. (3.27)
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Now, we introduce an augmented variable such that the Bessel function will be part of

numerator of its distribution, and we will get rid of this computational complexity. We

introduce an augmentation variable for each cluster. Here we augment the likelihood

with latent variables V1, . . . , VN for each cluster where

Vj | κj, nj ∼ Negative-Binomial(nj, 1− e−2κj) for j = 1, . . . N.

Note that the probability mass function of the Vj distribution can be represented as

P (Vj = vj | κj, nj) =

(
vj + nj − 1

vj

)
e−2κjvj(1− e−2κj)nj

=

(
vj + nj − 1

vj

)
e−κj(2vj+nj)(eκj − e−κj)nj

= 2nj
(
vj + nj − 1

vj

)
e−κj(2vj+nj) (sinh(κj))

nj .

We can write the likelihood function for the augmentation variables as

L(V | N, κ) =
N∏
j=1

2nj
(
vj + nj − 1

vj

)
e−κj(2vj+nj) (sinh(κj))

nj .

Note that after augmentation of the latent variables the resulting posterior becomes

free from the sinh(·) function as the p.m.f. of V contains the (sinh(κj))
nj in the

numerator. The complete likelihood of the parameters {κj}Nj=1, {µj}Nj=1, π after the

introduction of this auxiliary variable is given by

L({µj}Nj=1, {κj}Nj=1, {πj}
N
j=1 , {vj}

N
j=1 ,Z | Y )

∝
N∏
j=1

[
2nj
(
vj + nj − 1

vj

)
e−κj(2vj+nj) (sinh(κj))

nj

n∏
i=1

{
πj

κj
4π sinh(κj)

exp (κjµj
Tyi)

}I(Zi=j)]

∝
N∏
j=1

[
2nj
(
vj + nj − 1

vj

)
e−κj(2vj+nj)π

nj
j κ

nj
j exp

{
κjµ

T
j

n∑
i=1

I (Zi = j)yi)

}]
.

64



3.5.3 MCMC Algorithm for Gam-DA

After introducing the data augmentation variables V1, . . . , Vn, we are able to provide

an MCMC sampling scheme that relies only sampling from known distributions. The

sampling algorithm iterates between the following steps.

1. Mean vector: We sample mean vector for j = 1, 2, . . . , N from

µj | Z,y, κj,∼ vMF

(
∆j

∥∆j∥
, ∥∆j∥

)
,

where ∆j = ζθ +
∑n

i=1 I(Zi = j)κjyi.

2. Augmented Variable: We sample Data Augmentation variable Vj for j = 1, . . . , N

from

Vj | κj, nj ∼ Negative-Binomial(nj, 1− e−2κj) for j = 1, . . . N.

3. Concentration parameter: We sample the concentration parameter κj for j =

1, 2, . . . , N . Using the data augmented posterior, the conditional sampling dis-

tribution will be

π(κj | Z,y,µj, vj) ∝ κ
nj+α−1
j exp

{
−κj

(
−µTj

n∑
i=1

I (Zi = j)yi + (2vj + nj) + β

)}
.

This is the typical kernel of a Gamma distribution, showing that the augmented

variable Vj has removed the intractability from κj posterior distribution. Hence,

this sampling distribution is

κj | Z,Y ,µj, vj ∼ Gamma(nj + α,−µTj
n∑
i=1

I (Zi = j)yi + (2vj + nj) + β).

4. Mixture Probability π: The vector of mixture probabilities π = (π1, . . . , πN) is
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sampled from

π | Y ∼ Dirichlet(n1 + η, · · · , nn + η),

where nj =
∑n

i=1 I(Zi = j).

5. Cluster Membership Z: We sample the cluster membership Zi for i = 1, 2, . . . , n

through

P (Zi = j | π,Y , {µj}Nj=1, {κj}Nj=1,V) ∝ f(yi | µj, κj)πj∑N
j=1 f(yi | µj, κj)πj

.

3.5.4 Bayesian Metropolis Hastings von Mises Fisher Mixture Model

To investigate the impact of the data augmentation choice, relative to a naive sampling

step for κj, we also implement a version of this model where update κj from (3.26)

using a random walk Metropolis Hastings step. We call this version of sampling model

as Gam-MH.

3.6 Point Estimation and Inference

We use the developed data augmentation sampling algorithm to obtain a large number

of posterior samples from each of our models/sampling schemes. The main param-

eters required for inference are the {µj}Nj=1, {κj}Nj=1, {πj}
N
j=1 ,Z. These parameters

determine the mean of the cluster, spread of the cluster, probability of allocation for

the cluster, and the cluster membership labels for each observation.

To evaluate mixing and convergence, we inspect traceplots of the log-likelihood

to evaluate global convergence of the algorithm and to select a length for burn-in.

Autocorrelation among the MCMC samples increases uncertainty in estimation of

parameters. The effective sample size provides the number of independent samples

that would contain an equivalent amount of information as the (correlated) samples
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from the given MCMC output. Typically, we seek to run the MCMC long enough to

obtain an effective sample size of at least 1000 for the key parameters of interests.

Label switching is a typical characteristic of Bayesian mixture model fitting.

The term label switching was coined by Redner and Walker [1984] to describe the

phenomenon of the invariance of likelihood under relabeling of mixture components.

In the Bayesian context this leads to symmetric and multi-modal posterior distribu-

tions which results in nonsensical parameter estimates when consider posterior mean

without further adjustment [Stephens, 2000]. There are several methods that have

been proposed to address this issue [Frühwirth-Schnatter, 2001, Stephens, 2000, Marin

et al., 2007, Sperrin et al., 2010, Papastamoulis, 2014]. Readers are referred to Jasra

et al. [2005] and Papastamoulis [2016] for a summary of some of these methods. In

our project we use the Kullback-Leibler (KL) based method proposed by Stephens

[2000]. In this algorithm, an initial estimate for the cluster-specific parameters is cho-

sen, and the cluster labels at each iteration are permuted to minimize the KL distance

between the samples of the given iteration and the overall estimates. This algorithm

iterates between updating the global estimates and recomputing the permutations at

each level. Readers are refereed to Stephens [2000] for further details.

After we obtain the relabeled MCMC posterior samples using the Stephens

algorithm, we obtain {κ̂j}Nj=1 point estimates by taking the sample mean for each

κj from the MCMC output (after burn-in and thinning). We obtain {µ̂j}Nj=1 point

estimates by taking sample average of estimated µj and then dividing it by the

norm to make ∥µ̂j∥ = 1. As part of the Stephens relabelling algorithm, we obtain

an estimated cluster membership for each observation which we take as our point

estimate for Z.

67



Table 3.1: Simulation Settings

Setting # 1 2 3 4 5 6
ϕ 30 45 60 30 45 60
κ 50 50 50 25 25 25

3.7 Simulations

3.7.1 Simulation Setting

In this section we compare the performance of our proposed methodology across

several situations and compare it with competing methods. In particular, we asses

how well the newly proposed algorithm recovers the parameters of the underlying

cluster distributions, as well as how well it recovers the true cluster memberships of

the generated data.

To perform our experiments we consider 6 different experiment settings, as

shown in Table 3.1. These settings differ in the concentration parameters, as well as

in the amount of separations among clusters. Each setting consists of 100 data sets.

Here ϕ denotes angle for separation of the clusters. Throughout, we assume a sample

size of n = 1000, and N = 5 clusters with an allocation probability of πj = 0.2. The

mean of the clusters are determined from

µ1 = (1, 0, 0)

µ2 = (cosϕ, sinϕ, 0)

µ3 = (cosϕ,− sinϕ, 0)

µ4 = (cosϕ, 0, sinϕ)

µ5 = (cosϕ, 0,− sinϕ).

The value of ϕ = 30◦, 45◦, 60◦ determines how far apart the clusters are separated.

Further varying κ = 25, 50 determines how closely the data within each cluster are

68



Figure 3.2: Plot of a representative sample data from each of the 6 simulation settings
.

concentrated. As κ becomes smaller, the spread of the data becomes larger, resulting

in overlap of clusters. This proves challenging to determine the cluster memberships of

the sample points. We generate the data using rvmf function in package Directional.

Figure 3.2 denotes a plot of one representative data sets from each simulation setting.

We can clearly see that first row corresponds to higher κj hence the data points are

more clustered near their cluster direction vectors than in the second row with the

lower κjs. As ϕ increases clusters are well separated from each other.

For each method we fit models with different values of N ranging from 2 to 8

and choose an appropriate model using a standard model selection criteria. For the

Bayesian mixture model we use the Deviance Information Criteria (DIC) [Gelman

et al., 2014] given by

D(ω) = −2 log(p(y | ω))

DIC = D(ω) + 0.5 var(D(ω)).
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Here D(ω) denotes the posterior expectation of the deviance D(ω) with respect to

the parameters ω . For frequentist methods, we use the Bayesian Information Criteria

(BIC) [Schwarz, 1978] for model selection according to

BIC = −2 log(L̂) + (4N − 1) log n.

As is standard, we choose the model with N producing the minimum BIC/DIC within

each estimation approach.

We calculate the accuracy of cluster membership by using the Rand Index [RI;

Rand, 1971] between the estimated cluster and the true data generating cluster. RI is

a measure of similarity between two clusterings and is computed as follows. We let the

agreement A be the number of pairs of observations that are both in the same cluster

in the data generation clustering and in the same cluster in the estimated clustering.

Similarly, we define disagreement D as the number of pairs of observations belonging

to different clusters in the data generation model and as well as in the estimated

clusters. Then, RI is defined by

RI =
A+D

n(n− 1)/2
,

which is clearly a ratio bounded between 0 and 1. The maximum value 1 indicates

the estimated clustering exactly matches the true clustering from data generation. As

the accuracy of the pairwise cluster memberships can be considered whether or not

methods recover the true number of clusters N , we calculate the RI for both the best

model obtained using DIC/BIC criteria and for the model fitted with true number of

clusters.

In order to evaluate the accuracy of the parameter recovery of all cluster dis-

tributions, we consider the results when the model is fit using the correct number of

clusters (N = 5). We calculate the Mean Total Cosine Error (MTCE) for estimation
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of the mean vectors as

MTCE({µ̂j}Nj=1, {µj}Nj=1) =
1

n∗

n∗∑
i=1

N∑
j=1

(1− (µ̂Tjiµj)
2).

Here n∗ is total number of datasets considered in each simulation setting, and µ̂ji

represents the point estimate for the jth cluster using the ith replicated dataset. We

measure the accuracy of estimation of the concentration parameters as a Mean Total

Squared Error (MTSE) between true values and estimated values through

MTSE({κ̂}Nj=1, {κ}Nj=1) =
1

n∗

n∗∑
i=1

N∑
j=1

(κ̂ji − κj)
2.

κ̂ji and κj are the estimated and true the concentration parameters for jth cluster

in ith datset. To best match the estimates of parameters with their true parameter

counterpart, we permute the order of point estimates and calculate these errors MTCE

and MTSE at each possible parameter. We assume the permutation of µ̂ which

minimizes MTCE to be the set of estimates with the correct labeling.

In addition to parameter and cluster recovery, we additionally assess the pre-

dictive accuracy of the model by considering the likelihood evaluated on a new dataset

from the same data generating model. For each of the n∗ = 100 simulated datasets,

we use the posterior estimates and consider the estimated data distribution to be

f(Y | π̂, {µ̂j}nj=1, {κ̂j}Nj=1) =
N∑
j=1

π̂jfj(Y | µ̂j, κ̂j),

by plugging in the parameter estimates of each parameter. We then evaluate the like-

lihood for a new dataset of the same size (n = 1000) using this estimated distribution.

We consider the loglikelihood version of this quantity, and report the average of this

predictive distribution criteria across the 100 simulated datasets. As this criteria will

behave similarly to a likelihood function, the best performing method can be taken
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to be the one with the highest value. This method of comparison is based on one

utilized in Gaskins [2019].

3.7.2 Competing Methods

For each of the 100 data sets generated according to the six generation settings, we

fit the data according to the following methods. We compare our methods with two

frequentist methods. All the implementation is done in R.

1. Bayesian Data Augmented von Mises Fisher Mixture Model (Gam-DA) and

Bayesian Metropolis Hastings von Mises Fisher Mixture Model (Gam-MH): We

ran MCMC for 5000 iterations with 1000 as burn-in iterations. Samples are

thinned to store 2000 samples. The thinned samples on average give an effective

sample size of 1000–1200 based on the log-likelihood of the model. Here we

choose hyperparameters α = 1, β = 1, θ = (1, 0, 0), ζ = 1.

2. Bayesian Conjugate von Mises Fisher Mixture Model (Conj-MH): We ran MCMC

for 5000 iterations with 1000 burn-in iteration. Samples are thinned to store

2000 samples. The thinned samples on average give an effective sample size of

1000–1200 based on log-likelihood of the model. We choose hyperparameters

ψ = (0.9797, 0, 0) and λ = 2.5 which yeilds the prior mode (1, 0, 0) and 25 and

prior sample size 2.5 according to Theorem 2.

3. Spherical K Means (SK Means): Dhillon and Modha [2001] proposed the spher-

ical K means algorithm in the context of text mining. This algorithm is based

on cosine similarity measure. The algorithm partitions the high dimensional

unit sphere using a collection of great hypercircles. We use skmeans function

available in R package SK Means to apply the algorithm on our data [Hornik

et al., 2012].
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4. Mixture of von Mises Fisher Distribution (MovMF): Banerjee et al. [2005] de-

veloped a frequentist mixture model of von Mises Fisher distributions. It uses

EM Algorithm to fit the model. This model is coded in package movMF [Hornik

and Grün, 2022] which we use for the analysis.

3.7.3 Simulation Results: Model Selection Accuracy

Table 3.2: Average Number of Estimated Clusters (N = 5 is true value)

Method Setting
1 2 3 4 5 6

Gam-DA 5.3 5.3 5.4 4.3 6.0 5.5
Conj-MH 6.8 6.2 6.2 7.2 6.3 5.8
Gam-MH 5.1 5.1 5.1 5.3 5.1 5.1
SK Means 5.0 5.0 5.0 4.9 5.0 5.0
MovMF 5.0 5.0 5.1 4.7 5.0 5.0

Table 3.2 shows average number of clusters estimated by each method in each

simulation settings. Recall that the true value is N = 5 in all cases. We observe

that the frequentist methods selects the true model fairly accurately. The Bayesian

estimates are somewhat less accurate but typically in the neighbourhood of the true

number of clusters. The exception is that Conj-MH consistently overestimates the

number of clusters in low concentration parameter setup (κj = 25). This is due to

an “elbow effect” in its DIC plot where the DIC rapidly decreases over N until the

true model (N = 5) but continues to show minor decreases for larger N . Table 3.3

summarizes the percentage of simulated datasets in which the true model is selected.

The frequentest methods show fairly high percentages by selecting the true model

almost 100% of time in the higher κ settings. Among the Bayesian models, MH

sampling of the alternative prior model performs better than the DA sampling of the

same model. The conjugate prior model typically performs worse than these choices

and has consistently poor performance in the κ = 25 settings.
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Table 3.3: Comparison Based on Percentage Cluster Selection

Method Setting
1 2 3 4 5 6

Gam-DA 73 71 67 21 82 91
Conj-MH 14 40 42 6 35 48
Gam-MH 93 92 93 74 90 91
SK Means 100 100 100 87 100 100
MovMF 100 100 96 79 100 97

3.7.4 Simulation Results: Cluster Estimation Accuracy

Table 3.4 shows cluster estimation accuracy using the average Rand Index across

datasets. We show the RIs computed both for the estimated number of clusters and

for the model fit to the true number of clusters. As expected, cluster estimation

accuracy is lower in the κj = 25 settings than in the more concentrated (κj = 50)

cases; similarly, cluster estimation is improved as ϕ increases and the cluster means

are located further apart. Unlike the model selection performance, the Bayesian

methods tend to show equivalent or slightly better RI values than the SK Means

and MovMF approaches. This suggests that in the cases when the Bayesian results

overestimate the number of clusters, these additional clusters typically only consist of

one or two observations. There is very little difference between the RI values among

the Bayesian methods.

3.7.5 Simulation Results: Mean Accuracy

We study the accuracy of the estimation of the cluster in Table 3.5. As noted previ-

ously, this is a total cosine error summed over all cluster mean estimates using those

results computed under the true number of clusters N = 5. Here we can see that all

the methods are doing well in total mean estimation, although in the most challenging

case (setting 4) where the data are more disperse and the clusters are more closely

located, Conj-MH performs the best of all competing methods.
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Table 3.4: Comparison Based on Rand Index

Method Selection Setting
1 2 3

Gam-DA Model Selected 0.9473 0.9880 0.9998
N = 5 0.9548 0.9959 0.9998

Conj-MH Model Selected 0.9506 0.9931 0.9978
N = 5 0.9548 0.9953 0.9997

Gam-MH Model Selected 0.9553 0.9956 0.9989
N = 5 0.9556 0.9960 0.9997

SK Means Model Selected 0.9565 0.9960 0.9997
N = 5 0.8851 0.9960 0.9201

MovMF Model Selected 0.9559 0.9960 0.9923
N = 5 0.9559 0.9960 0.9134

Method Selection Setting
4 5 6

Gam-DA Model Selected 0.8310 0.9625 0.9923
N = 5 0.8351 0.9625 0.9923

Conj-MH Model Selected 0.8679 0.9576 0.9891
N = 5 0.8718 0.9610 0.9914

Gam-MH Model Selected 0.8410 0.9614 0.9917
N = 5 0.8378 0.9621 0.9923

SK Means Model Selected 0.8747 0.9632 0.9925
N = 5 0.8443 0.8865 0.9016

MovMF Model Selected 0.8462 0.9622 0.9923
N = 5 0.7889 0.8368 0.8810

Table 3.5: Comparison of Different Methods Based on Total Mean Estimation Error

Method Setting
1 2 3 4 5 6

Gam-DA 0.0016 0.0011 0.0010 0.0826 0.0030 0.0022
Conj-MH 0.0014 0.0010 0.0010 0.0056 0.0028 0.0022
Gam-MH 0.0016 0.0011 0.0010 0.0158 0.0031 0.0022
SK Means 0.0015 0.0011 0.0010 0.0090 0.0029 0.0023
MovMF 0.0017 0.0011 0.0010 0.0144 0.0035 0.0023
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3.7.6 Simulation Results: Kappa Accuracy

Table 3.6: Comparison Based on Total κ Estimation Error

Method Setting
1 2 3 4 5 6

Gam-DA 1122.56 595.52 551.44 751.15 99.90 64.25
Conj-MH 611.75 366.83 611.03 1133.13 143.11 82.01
Gam-MH 400.42 152.46 139.78 1754.79 84.32 41.18
MovMF 166.83 79.20 73.06 358.07 34.88 21.43

Table 3.6 shows total squared error for κ estimation. We note that SK Means

does not produce an estimate of the concentration parameter, so we do not include

it in these comparisons. Here, the MovMF method tends to outperform the various

Bayesian algorithms. In particular, when the clusters are closed together (ϕ = 30◦ in

settings 1 and 4) estimation of the concentration parameters is very poor. Comparing

across Bayesian approaches, we see the data augmentation scheme typically performs

worse than corresponding MH sampler.

Table 3.7: Comparison Based on Total Kappa Bias Estimation

Method Setting
1 2 3 4 5 6

Gam-DA -13.66 -10.17 -9.75 -9.75 -3.41 -2.66
Conj-MH -6.28 -28.02 -44.24 15.97 -3.47 -11.13
Gam-MH 1.12 0.78 0.87 3.47 0.46 0.52
MovMF 4.87 3.21 2.89 10.86 2.23 1.79

To further understand this behavior, we consider the mean bias in Table 3.7;

these values are computed as 1
N n∗

∑n∗
i=1

∑N
j=1(κ̂ji − κj). While MovMF indicates

a mostly small bias (except in setting 4), some of the Bayesian methods display

a consistent bias. The data augmentation algorithm yields estimates that show a

substantial negative bias (toward too clusters that are too disperse), whereas the MH

implementation of this same prior structure are close to unbiased. We suspect that

the (true) value of κj used in these settings may be ill suited to our DA algorithm.
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Recall that our augmentation variables are Vj ∼ Negative-Binomial(nj, 1−e−2κj), but

as our true κj is 25 and 50, the corresponding success probabilities are approximately

one. Hence, Vjs are zero and show almost no variability across zeros. This may limit

our ability to distinguish among large values of κj. Conversely, the conjugate prior

has tendency to over-estimate κj, especially in the settings when the true κj = 25.

3.7.7 Simulation Results: Predictive Analysis

Table 3.8: Comparison Based on Predictive Likelihood Estimation

Method Selection Settings
1 2 3

Gam-DA Model Selected -468 -582 -619
N = 5 -428 -557 -564

Conj-MH Model Selected -1188 -2180 -3622
N = 5 -412 -570 -607

Gam-MH Model Selected -461 -703 -639
N = 5 -411 -566 -582

SK Means Model Selected -757 -1438 -1923
N = 5 -980 -1438 -2143

MovMF Model Selected -394 -531 -544
N = 5 -390 -526 -539

Method Selection Settings
4 5 6

Gam-DA Model Selected -818 -1108 -1208
N = 5 -812 -1130 -1208

Conj-MH Model Selected -1196 -2151 -1802
N = 5 -812 -1110 -1237

Gam-MH Model Selected -1050 -1188 -1326
N = 5 -883 -1108 -1233

SK Means Model Selected -885 -1496 -1955
N = 5 -1104 -1717 -2176

MovMF Model Selected -785 -1108 -1211
N = 5 -777 -1097 -1199

To measure differences in the predictive performance, we compute an estimate

of the mixture density by plugging in the estimated cluster probabilities and vMF

parameters from the output of the selected model and the N = 5 model. As shown in

Table 3.8. the Bayesian methods tend to perform better than the frequntist method
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SK Means but fall slightly behind of MovMF, as determined by a higher/less negative

predictive likelihood.

To conclude, our Bayesian approaches based on the new conjugate prior and

the MH and DA sampling schemes for the standard prior all perform well overall.

They produce an accurate clustering of the observations with equivalent or improved

Rand Index compared to the frequentist methods. The poorer recovery of N is mainly

associated with the inclusion of small clusters with few observations. All methods

performs similar in mean estimation with the conjugate prior approach performing

best in the most challenging settings. MovMF proved superior in κ estimation relative

to the Bayes estimators, which leads to somewhat better predictive densities than the

Bayesian competitors.

3.8 Diffusion Tensor Imaging Data Analysis

Diffusion Tensor Imaging is a non-invasive way of studying brain structural connectiv-

ity. It utilizes the diffusion of water molecules to generate images where the external

magentic field interacts with protons in water molecules. Statistically, the movement

of the water molecule is believed to follow a Brownian motion process. Water diffusion

in brain tissue depends on the multiple factors such as the environment, extracellular

structures, physical orientation of tissue, nerve fiber direction, etc. The flow of water

molecules in the brain structure is anisotropic, that is, it has directionality associated

with it. The diffusion of water is greater in the axis parallel to the orientation of

the nerve fiber, meaning that the studying the directions of diffusion can reveal the

anatomy of the brain. Tracking the orientation of water molecules enable us to study

the structure of the brain. This is called as “Tractography” [Silva, 2016].

To model the directional data of the water molecule, a tensor model is fitted

on each voxel of the brain image. At each voxel, the tensor matrix is of dimension

3 × 3, and we extract the principle eigenvector describing the direction along which
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maximum diffusion is taking place. [Johansen-Berg and Behrens, 2013]. These eigen-

vectors are in the sphere S2. Voxels in the brain may be considered as connected based

upon similarities in maximum diffusion direction. Consequently, it is of interest to

cluster voxels with similar diffusivity directions to potentially reveal voxels that are

interconnected [McGraw et al., 2006, Silva, 2016].

In this project we apply our developed methods to cluster the voxels in the

brain. The data is collected by Neuro Imaging Laboratory of Cognitive Affective

and Motoric Processes (NILCAMP) at the University of Louisville. Data was col-

lected as part of a larger project examining cognitive processes. One individual’s

data was selected randomly from the sample of 20 individuals. Scans were acquired

using a Siemens Tim Trio 3T scanner with a 12-channel head coil. Imaging param-

eters for structural MRI images using a magnetization-prepared rapid gradient echo

(MPRAGE) sequence were as follows: voxel size 1.0× 1.0× 1.0 mm3, repetition time

(TR) 2,500 ms, echo time (TE) 3.5 ms, flip angle (FA) 8o, 192 slices. Imaging param-

eters for DTI were as follows: 64 diffusion directions, voxel size 2.5× 2.5× 3.2 mm3,

TR 10,000 ms, TE 91 ms, b-value 1,000 s/mm2, 64 slices. We have a final image grid

of size 96× 96× 49.

Diffusion data analysis was carried out using tract-based spatial statistics

[Smith et al., 2006], a tool provided by FMRIB Software Library [Jenkinson et al.,

2012]. First, diffusion weighted images were corrected for eddy-current-induced dis-

tortions. Fractional anisotropy (FA) images were then created by fitting a tensor

model to the raw diffusion data using FSL’s Diffusion Toolbox (FDT), and subse-

quently brain-extracted using BET [Smith, 2002]. All subjects’ FA data were then

aligned into a common space using FMRIB’s nonlinear image registration tool [An-

dersson et al., 2007], which uses a b-spline representation of the registration warp

field [Rueckert et al., 1999]. Next, the mean FA image was created and thinned to

produce a mean FA skeleton, which represents the centers of all tracts common to

79



the group. Each subject’s aligned FA data was then projected onto this skeleton and

the resulting data fed into voxelwise cross-subject statistics.

After this primary data cleaning, we extracted the principal eigenvectors and

eigenvalues for the data of the selected individual. Initially, we have 451,584 principal

eigenvectors. Then we calculate the Generalized Fractional Anisotropy (GFA) values

based on eigenvalues. This is a scalar measure between 0 and 1, which describes

the degree of anisotropy in diffusion [Glenn et al., 2015]. We select our sample by

keeping only those voxels whose first eigenvector has a GFA value greater than 0.4.

This ensures that the eigenvector is a good summary of the behavior within the

retained voxels. While there is no consensus in the literature about the optimal GFA

threshold to use, Kunimatsu et al. [2004] suggest cutoffs in the range of 0.2 and 0.4.

Our threshold of 0.4 gives us a sample size of 736 eigenvectors depicting the directions

for maximum diffusivity from 736 voxels.

Now we apply all the methods under study on the given data. We fit the

models with N ranging from 1 to 11. For the Bayesian methods we ran MCMC to

500000 iterations with 100000 burn iterations. This ensures the ESS is more than

1000 for the log-likelihood under each value of N . We apply the DIC criteria and

choose the number of clusters; for SK Means and MovMF, we apply BIC to detect the

number of clusters. The label switching algorithm is applied to the MCMC output,

and estimates of the cluster-specific parameters are computed for all methods as

discussed in the simulation study.

The model selection statistics are shown in Table 3.9. Note that both Gam-

DA and Conj-MH selected the model with N = 3 clusters. In contrast, the MovMF

model selects the model with 6 clusters, matching the Conj-MH choice.

In Table 3.10 we show the Rand Index computed between each pair of methods

at the selected value of N . Clearly, the two methods Gam-DA and Conj-MH that

estimate 3 clusters yield a similar clustering with an RI of 0.7402. Similarly Gam-MH
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Table 3.9: BIC/DIC Values For Competing methods

N SK Means MovMF Gam-DA Conj-MH Gam-MH
1 13291.71 3574.70 3561.03 3561.06 3560.74
2 3381.77 3364.57 3332.22 3337.65 3332.45
3 3432.19 3345.33 3331.51 3308.45 3296.88
4 3436.97 3323.81 3372.90 3308.60 3254.05
5 3438.32 3339.22 3409.83 3326.00 3210.47
6 3432.63 3315.11 3390.86 3322.28 3209.73
7 3420.99 3331.29 3389.59 3320.75 3217.08
8 3408.61 3334.30 3372.34 3326.88 3224.95
9 3430.13 3353.09 3376.73 3325.31 3222.48
10 3444.11 3360.07 3377.71 3328.56 3212.68
11 3454.10 3375.77 3376.14 3328.97 3213.00

Table 3.10: Rand Index Comparison Among Different Methods

Method SK Means MovMF Gam-DA Conj-MH Gam-MH
SK Means - 0.5496 0.6155 0.6068 0.5381
MovMF 0.5496 - 0.7148 0.5921 0.7282
Gam-DA 0.6155 0.7148 - 0.7402 0.8414
Conj-MH 0.6068 0.5921 0.7402 - 0.7374
Gam-MH 0.5381 0.7282 0.8414 0.7374 -

81



and MovMF estimates same number of cluster their RI index 0.7282. Gam-DA and

Gam-MH have highest RI of 0.8414, indicating the most similar pairwise behaviour,

even as they have different values of N . In general, Bayesian methods tend to have

higher RIs among themselves than the RIs between Bayesian and frequentist methods.

Table 3.11: Parameter for Each Estimated Cluster by Methods

Method Direction Vector Concentration Mixture Probabilities
SK Means Cluster 1 0.9447 0.2546 0.2068 - 0.5082
SK Means Cluster 2 -0.8880 0.3900 0.2438 - 0.4918
MovMF Cluster 1 0.0421 0.9977 -0.0530 1.7603 0.3497
MovMF Cluster 2 -0.9409 -0.3374 0.0308 37.2946 0.0558
MovMF Cluster 3 -0.2044 0.1973 0.9588 2.2710 0.2501
MovMF Cluster 4 -0.9477 0.3173 0.0344 24.6689 0.1004
MovMF Cluster 5 0.9308 -0.3392 0.1362 12.0399 0.1087
MovMF Cluster 6 0.9454 0.3220 0.0508 25.2309 0.1353
Gam-DA Cluster 1 0.9867 0.1367 0.0877 7.9653 0.2487
Gam-DA Cluster 2 -0.1115 0.7914 0.6010 5.2717 0.3936
Gam-DA Cluster 3 -0.9820 0.1712 0.0794 5.9637 0.3576
Conj-MH Cluster 1 -0.5945 0.6671 0.4490 1.3483 0.7609
Conj-MH Cluster 2 0.9498 -0.2794 0.1406 16.0821 0.0846
Conj-MH Cluster 3 0.9427 0.3302 0.0483 18.0994 0.1545
Gam-MH Cluster 1 -0.9448 0.3267 0.0263 25.2858 0.0726
Gam-MH Cluster 2 0.9501 0.2938 0.1051 61.6790 0.2792
Gam-MH Cluster 3 -0.9457 -0.3234 0.0324 37.0420 0.0616
Gam-MH Cluster 4 0.9571 0.2632 0.1213 89.2448 0.2268
Gam-MH Cluster 5 0.0905 0.8353 0.5423 172.9198 0.1565
Gam-MH Cluster 6 0.9782 -0.1545 0.1384 63.1159 0.2033

Table 3.11 depicts the parameters of each clusters by methods. We can observe

even though MovMF and Gam-MH estimates same numbers of clusters, Gam-MH

estimates concentration parameters at higher range resulting in data concentrated

around mean of each cluster in dense manner . Mixing probabilities for both methods

are fairly same. Further we can see the difference between parameters of Gam-DA

and Conj-MH. Both methods estimates same number of clusters but Conj-MH assign

higher weight to cluster 1 through mixing probability of 0.7609. Also Concentration

parameter for that cluster is very low depicting that the data is widely spread. On the
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Figure 3.3: Brain data observations color-coded by estimated cluster.

other hand Gam-DA assigns fairly equal probabilities for two clusters. Concentration

parameters for them To get a visual perception, we also plot the data directions in

Figure in 3.3 on the sphere with color coding from the estimated clusters. Here SK

means, Gam-DA and Conj-MH shows clear separation of clusters. Conj-DA shows

some overlap of clusters. Also as the diagram is two dimensional we could only see 4

clusters here.

Figure 3.4 shows how the data at a certain region of the hypersphere are

clustered according to different methods. This is done by fixing the view. In SK

Means, the data is clearly divided in two clusters. MovMF shows some overlapping

clusters, while Gam-DA, Conj-MH, Gam-MH include most of the data into one cluster

while on edge we can observe two different clusters.

In terms of biological interpretations, our initial analysis shows that clusters

are situated in the same region named cerebellar peduncle. The cerebellar peduncle

are the brain structures connecting the cerebellum to the brain stem and cerebrum.

A further analysis is being carried out to interpret the biological significance of the
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Figure 3.4: Brain data observations color-coded by estimated cluster for a data at a
certain region.

clusters.

3.9 Conclusions

In the first half of this project, we have proposed a new conjugate prior for the mean

and concentration parameter of the von Mises Fisher distribution. We provided a

theoretical investigation of a number of key properties for this new prior distribu-

tion including posterior propriety and the unimodality of the distribution. We also

examine the spread of the distribution as it relates to the λ parameter. While the con-

ditional distribution of the mean vector follows a standard vMF, the marginal density

of the concentration parameter is not a standard distribution. We have investigated

certain properties, in particular we prove the existence of an inflection point where

the density changes from log-convex to log-concave. This is important as this implies

that we may be able to build an adaptive rejection sampling scheme to update the

concentration in the MCMC sampling, rather than the less efficient Metropolis step
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that we currently implement. We leave this investigate as future work.

In the second half of the project, we developed a novel data augmentation

model for Bayesian mixture vMF model. In this model, we augment the likelihood

with a variable for each cluster which removes the intractable Bessel function from

the posterior distribution. However, our empirical results showed that these estimates

were substantially less accurate and negatively biased, unlike the results from the

Metropolis sampling. This surprising result requires further investigation. We suspect

this may be related to the relatively large values of κj considered in the simulations

and the corresponding insensitivity of the Vj distribution to κj of this magnitude, but

this must be verified using a wider range of simulation settings.

There are a variety of model extensions that are potentially of interest. One

possibility would be to an infinite Bayesian Mixture model of VMF distributions.

Additionally, the use of the data augmentation algorithm or our novel conjugate

prior can further be developed and applied in the context of more complex models

such as directional regression, directional time series, etc. In fact, there are some

variations of the Bayesian mixture of vMFw in the literature that could benefit from

combination with our new algorithms and priors. Gopal and Yang [2014] introduced

the Bayesian Hierarchical vMFMM (H-vMFmix) which is designed for big data. The

Temporal vMFMM (T-vMFmix) is another directional mixture designed to model

clusters in data that evolve across time [Gopal and Yang, 2014]. Extending our

proposed methodologies for these methods could be an interesting methodology path.

In the era of fast computations, there is always important to know if the given

algorithm is fast enough to give us the trustworthy results. In other words the rate of

convergence is of utmost important and a vital property of any sampling algorithm.

This rate is typically desired to at least Geometrically fast. The standard method of

establishing the existence of a Central Limit Theorem is to prove that the underlying

Markov chain converges at a geometric rate [Roberts and Rosenthal, 1997]. Hence,
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it will be further interesting to study the convergence properties of our algorithm to

provide theoretical assurance and accuracy of the result estimation.
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CHAPTER 4

DISCUSSION

The lack of development for Bayesian methodologies in constrained spaces area mo-

tivated us to consider research problems in this area. In this dissertation, the first

chapter provides a definition of constrained spaces. It also introduce the vMF distri-

bution and the problem of CCA and provides a brief literature review.

The second chapter develops a novel infinite Bayesian factor model which is

then utilized for the development of Bayesian Sparse Canonical Correlation Analysis.

We demonstrated that our model performs superior to some competing frequentist

and Bayesian models in the estimation of the key CCA parameters of interest, the

first two canonical correlations and the first direction vectors. We applied this model

on a genomics dataset arising from a breast cancer study.

The third chapter investigates some theoretical results relating to Bayesian

analysis of the von Mises Fisher distribution and its mixture model. In this chapter

we developed a novel prior for the distribution, provided a strategy for interpretation

of its hyperparameters, and proved different properties of the distribution. In the

second half of this project we provide a data augmentation algorithm which removed

the intractability from the posterior distribution of concentration parameter. We im-

plemented the developed methodologies for finite mixture models. We compared our

developed models with some competing methods as well as assessed the accuracy of

estimation of parameters through simulation studies. We later applied this model on

diffusion tensor imaging data to understand the brain structure through the clustering

of the voxels.

For the CCA project, future directions for research include further refining

the algorithms used to improve scalability for analysis of the very high dimensional
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data. An additional avenue for extension is to generalize this methodology for three

or more views. This project also introduced a novel multiplicative prior process based

on half-Cauchy distribution. Establishing theoretical properties of this process is a

challenging task, and one considered for future work.

For the vMF project, a possible future direction could be development of novel

conjugate prior as well as data augmentation algorithm for more complex extensions

such as directional regression, time series, etc. Furthermore, it would be interesting

to develop these models in the context of infinite mixture model. A theoretical study

of the convergence of MCMC can be conducted, and we have already taken first

steps in proving geometric erogodicity of the discussed data augmentation algorithm.

Penalized clustering on hyper-sphere could be an interesting direction in which this

work can be extended.

To conclude, this dissertation work opens up new avenues for theoretical study

in Bayesian methodologies for constrained spaces.
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Carlos E Rodŕıguez, Gabriel Núñez-Antonio, and Gabriel Escarela. A bayesian mix-

ture model for clustering circular data. Computational Statistics & Data Analysis,

143:106842, 2020.

Daniel Rueckert, Luke I Sonoda, Carmel Hayes, Derek LG Hill, Martin O Leach, and

David J Hawkes. Nonrigid registration using free-form deformations: application

to breast mr images. IEEE transactions on medical imaging, 18(8):712–721, 1999.

Srikanth Ryali, Tianwen Chen, Kaustubh Supekar, and Vinod Menon. A parcella-

tion scheme based on von mises-fisher distributions and markov random fields for

segmenting brain regions using resting-state fmri. Neuroimage, 65:83–96, 2013.

Lorenzo Schiavon, Antonio Canale, and David B Dunson. Generalized infinite factor-

ization models. arXiv preprint arXiv:2103.10333, 2021.

Gideon Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6

(2):461 – 464, 1978. doi: 10.1214/aos/1176344136.

100



Michael Sekula, Jeremy Gaskins, and Susmita Datta. Single-cell differential network

analysis with sparse Bayesian factor models. Frontiers in Genetics, 12:810816–

810816, 2021.

Abhishek Sharma, Abhishek Kumar, Hal Daume, and David W Jacobs. Generalized

multiview analysis: A discriminative latent space. In 2012 IEEE Conference on

Computer Vision and Pattern Recognition, pages 2160–2167. IEEE, 2012.

Adelino R Silva. Probabilistic tractography using particle filtering and clustered

directional data. In Advances in Neurotechnology, Electronics and Informatics,

pages 47–62. Springer, 2016.

Stephen M Smith. Fast robust automated brain extraction. Human Brain Mapping,

17(3):143–155, 2002.

Stephen M. Smith, Mark Jenkinson, Heidi Johansen-Berg, Daniel Rueckert,

Thomas E. Nichols, Clare E. Mackay, Kate E. Watkins, Olga Ciccarelli, M. Za-

heer Cader, Paul M. Matthews, and Timothy E.J. Behrens. Tract-based spatial

statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4):

1487–1505, 2006.

Matthew Sperrin, Thomas Jaki, and Ernst Wit. Probabilistic relabelling strategies for

the label switching problem in Bayesian mixture models. Statistics and Computing,

20(3):357–366, 2010.

Suvrit Sra. Directional statistics in machine learning: a brief review. Applied Direc-

tional Statistics: Modern Methods and Case Studies, 225:6, 2018.

M Statheropoulos, N Vassiliadis, and A Pappa. Principal component and canonical

correlation analysis for examining air pollution and meteorological data. Atmo-

spheric Environment, 32(6):1087–1095, 1998.

101



Matthew Stephens. Dealing with label switching in mixture models. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 62(4):795–809, 2000.

Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle So-

erjomataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020:

Globocan estimates of incidence and mortality worldwide for 36 cancers in 185

countries. CA: A Cancer Journal For Clinicians, 71(3):209–249, 2021.

Xiaotong Suo, Victor Minden, Bradley Nelson, Robert Tibshirani, and Michael Saun-

ders. Sparse canonical correlation analysis. arXiv preprint arXiv:1705.10865, 2017.

Jalil Taghia, Zhanyu Ma, and Arne Leijon. Bayesian estimation of the von-mises

fisher mixture model with variational inference. IEEE Transactions On Pattern

Analysis and Machine Intelligence, 36(9):1701–1715, 2014.

Martin A Tanner and Wing Hung Wong. The calculation of posterior distributions

by data augmentation. Journal of the American Statistical Association, 82(398):

528–540, 1987.

Ledyard R Tucker. An inter-battery method of factor analysis. Psychometrika, 23

(2):111–136, 1958.
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APPENDIX

This section includes the theoretical results and proofs for Chapter 3.

A Some Results for Bessel Function of First Kind Iν(·)

In this section we state and recall some crucial properties of the Bessel function of the

first kind Iν(·) and the ratio of the Bessel function of the first kind. We will utilize

the further results to develop required theory. We recall following results from Yang

et al. [2020].

For ν = 0, bounds for Iν(·) are given such that

√
sinh(x)

x
[cosh(qx)]

1
q ≤ I0(x) ≤

√
sinh(x)

x
[cosh(px)]

1
p , (28)

for p ≥ 2
3
and q ≤ log(2)

log(π)
. Further, we state the important recurrence relation for the

differentiation of Iν(·) [Goldstein and Thaler, 1959]:

∂

∂x
Iν(x) =

1

2
[Iν−1(x) + Iν+1(x)]

∂

∂x
Iν(x) =

ν

x
Iν(x) + Iν+1(x)

∂

∂x
Iν(x) = −ν

x
Iν(x) + Iν−1(x). (29)

We also state an useful approximation for large arguments [Abramowitz and Stegun,

1965]

Iν(x) ≈
ex√
2πx

. (30)
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Similarly for small arguments,

Iν(x) ≈
xν

2νΓ(ν + 1)
(31)

B Lemmas and Their Proofs

The following Lemmas are stated and proved to assess the properties of ratio of the

Bessel functions. Later some theorems are build upon these Lemmas.

Lemma 1. x 7−→ Iν+1(x)
Iν(x)

is increasing function.

Proof. 1 This result is proven in Jones [1968].

Lemma 2. Iν+1(κ)
Iν(κ)

> Iν+2(κ)
Iν+1(κ)

for all κ > 0 , ν > 0. The result is equivalent to [Iν+1(κ)]
2

> Iν+2(κ) Iν(κ).

Proof. 2 This result is called log concavity of ratio of Bessel function. Theorem 3 of

Nanthanasub et al. [2019] proves this result.

Lemma 3. Let b, κ be positive real numbers and n be a positive integer. If Iν(·)

denotes the modified Bessel function of the first kind of order ν ≥ 0, then the function

h(b) := 1
b
Iν+1(bκ)
Iν(bκ)

is a decreasing function.

Proof. 3 From the definition of the function h(b), it follows that

∂

∂b
log(h(b)) = −1

b
+ κ

I ′ν+1(bκ)

Iν+1(bκ)
− κ

I ′ν(bκ)

Iν(bκ)

(⋆)
= −1

b
+ κ

{
I ′ν+1(bκ)ν + 2

}
Iν+1(bκ)

− κ
{I ′ν(bκ)ν + 1}

Iν(bκ)

= κ

{
Iν+2(bκ)

Iν+1(bκ)
− Iν+1(bκ)

Iν(bκ)

}
< 0, (32)

where the equality in (⋆) is due to the recurrence relation of the derivative of the

Modified Bessel function of the first kind [Abramowitz and Stegun, 1965]. The in-
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equality in (32) follows from the log concavity of ratio of modified Bessel function of

the first kind [Nanthanasub et al., 2019, Theorem 3] along with the fact that κ > 0.

The statement of the lemma is immediate from (32).

Lemma 4. Let a, κ be positive real numbers and n be a positive integer and ν ≥

0. Consider the function g(a) := a Iν+1(anκ)
Iν(anκ)

where Iν(·) denotes the modified Bessel

functions of the first kind. Then,

1. the function a 7→ g(a) is an increasing function for all a > 0.

2. If na2 ≤ 1, then, g(a) ≤ Iν+1(κ)
Iν(κ)

for all κ > 0.

Proof. 1. According to the definition of the function g(a), it follows that,

∂

∂a
log(g(a)) =

1

a
+ nκ

{
I ′ν+1(anκ)

Iν+1(anκ)
− I ′ν(anκ)

Iν(anκ)

}
=

1

a
+ nκ

{
I ′′ν+1(anκ)ν

Iν+1(anκ)
− I ′′ν (anκ)ν − 1

Iν(anκ)

}
= nκ

{
Iν(anκ)

Iν+1(anκ)
− Iν−1(anκ)

Iν(anκ)

}
> 0, (33)

where the last inequility follows as I2ν (x) > Iν−1(x)Iν+1(x) for all ν ≥ 0 and

x > 0 [Nanthanasub et al., 2019, Theorem 3]. Therefore, the function a 7→ g(a)

is an increasing frunction for a > 0.

2. Based on the assumption na2 ≤ 1 in the statement of the lemma, we have

a ≤ 1√
n
. As the function a 7→ g(a) is increasing (from part(a) of Lemma 4), it

appears that

g(a) ≤ g

(
1√
n

)
=

1√
n

Iν+1(
√
nκ)

Iν(
√
nκ)

. (34)

Additionally, from Lemma 3 the function h(b) = 1
b
Iν+1(bκ)
Iν(bκ)

is a decreasing func-
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tion for all ν ≥ 0 and κ > 0. Therefore, for all n > 1,

1√
n

Iν+1(
√
nκ)

Iν(
√
nκ)

= h(
√
n) < h(1) =

Iν+1(κ)

Iν(κ)
. (35)

The claim g(a) ≤ Iν+1(κ)
Iν(κ)

then follows from (34) and (35).

Lemma 5. Let κ, a be positive real numbers. Let Iν(·) denote the modified Bessel

function of the first kind, then the function h1(a) := a Iν+2(aκ)
Iν+1(aκ)

−a Iν+1(aκ)
Iν(aκ)

is a decreasing

function for all κ > 0.

Proof. Using the notation Rν(x) =
Iν+1(x)
Iν(x)

, we obtain from the part (b) of Lemma 4,

that

∂h1(a)

∂a
=

1

x

∂

∂a
[ax {Rν+1(ax)−Rν(ax)}] < 0. (36)

Therefore, the function a 7→ h1(a) is a decreasing function.

Lemma 6. Let a be a positive real number. Consider the function

ga(κ) :=
Iν+1(κ)Iν(aκ)

Iν(κ)Iν+1(aκ)
,

for κ > 0. The function ga(·) has the following properties:

1. The function κ 7→ ga(κ) is an increasing function when a > 1.

2. If a > 1, then 1
a
≤ ga(κ) ≤ 1.

3. Let n be a positive integer. If n < a2 ≤ n2 , then there exists a unique positive

number κ⋆ such that ga(κ
⋆) = a

n
.

Proof. 1. If we denote

h1(a) := a
Iν+2(aκ)

Iν+1(aκ)
− a

Iν+1(aκ)

Iν(aκ)
,
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then from the definition of ga(κ), we obtain that

∂

∂κ
log (ga(κ)} =

I ′ν+1(κ)

Iν+1(κ)
+ a

I ′ν(aκ)

Iν(aκ)
− I ′ν(κ)

Iν(κ)
− a

I ′ν+1(aκ)

Iν+1(aκ)

=
I ′ν+1(κ)ν + 2

Iν+1(κ)
− I ′ν(κ)ν + 1

Iν(κ)

+a

{
I ′ν(aκ)ν + 1

Iν(aκ)
−
I ′ν+1(aκ)ν + 2

Iν+1(aκ)

}
=

{
Iν+2(κ)

Iν+1(κ)
− Iν+1(κ)

Iν(κ)

}
− a

{
Iν+2(aκ)

Iν+1(aκ)
− Iν+1(aκ)

Iν(aκ)

}
= h1(1)− h1(a)

> 0,

where the last inequality follows from the assumption that a > 1 and the fact

that the function a 7→ h1(a) is decreasing (see Lemma 5).

2. If we assume a > 1, then from part (a) we get that the function κ 7→ ga(κ) is

an increasing function. Therefore,

ga(κ) ≤ lim
κ→∞

ga(κ) = lim
κ→∞

Iν+1(κ)Iν(aκ)

Iν(κ)Iν+1(aκ)
.

Applying the asymptotic approximation limx→∞
√
2πx e−xIα(x) = 1 for α ≥ 0

[Abramowitz and Stegun, 1965], it follows from (37) that

ga(κ) ≤ lim
κ→∞

√
2πκe−κIν+1(κ)√
2πκe−κIν(κ)

√
2πaκe−aκIν+1(aκ)√
2πaκe−aκIν(aκ)

= 1. (37)

In Lemma 3, we have established that the function h(b) = 1
b
Iν+1(bκ)
Iν(bκ)

is decreasing

for κ > 0 and b > 0. Therefore, 1
a
Iν+1(aκ)
Iν(aκ)

= h(a) < h(1) = Iν+1(κ)
Iν(κ)

when a > 1.

Consequently, when a > 1,

1

a
<
Iν+1(κ)Iν(aκ)

Iν(κ)Iν+1(aκ)
. (38)
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It follows from (37) and (38) that 1
a
< ga(κ) ≤ 1.

3. From part (a) and part (b) it appears that the function ga : R+ 7→ ( 1
a
, 1)

is monotone, one-to-one function when a > 1. Therefore, the corresponding

inverse function g−1
a : ( 1

a
, 1) 7→ R+ exists and is one-to-one. According to the

assumption n < a2 < n2, it follows that a
n
∈ ( 1

a
, 1). As a result, there is a

unique point κ⋆ ∈ R+ such that ga(κ
⋆) = a

n
.

Lemma 7. h∗(κ) =
Iν(κ)
κν

is a log convex function, i.e.,

Iν(ακ1 + (1− α)κ2)

(ακ1 + (1− α)κ2)ν
≤
{
Iν(κ1)

κν1

}α{
Iν(κ2)

κν2

}(1−α)

for any κ1 > 0, κ2 > 0 and 0 < α < 1.

Proof. From the definition of h∗(κ), we obtain that log(h∗(κ)) = log Iν(κ)− ν log(κ).

Therefore,

∂

∂κ
(log(h∗(κ)) =

[
I ′ν+1(κ)

Iν(κ)
− ν

κ

]
=

[
Iν+1(κ)

Iν(κ)
+
ν

κ
− ν

κ

]
.

We also have

∂2

∂2κ
(log(h∗(κ)) =

∂

∂κ

[
Iν+1(κ)

Iν(κ)

]
= R′

ν(κ) > 0.

We will utilize this result to prove a lemma about log convexity of g as below.

Lemma 8. g(κ | λ, ζ) =
[
κν exp (κ ζ)

Iν(κ)

]λ
is a log convex function. Furthermore,

g(κ | λ, ζ)
g(ακ̂+ (1− α)κ | λ, ζ)

≤ g(κ | λ, ζ)
[g(κ̂ | λ, ζ)]α[g(κ̂ | λ, ζ)]1−α

≤
[
g(κ | λ, ζ)
g(κ̂ | λ, ζ)

]α

for all κ ̸= κ̂, α any constant in (0, 1), and κ̂ is the unique mode of g(κ | λ, ζ).
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Proof.

g(ακ̂+ (1− α)κ) =

[
(ακ̂+ (1− α)κ)ν exp {(ακ̂+ (1− α)κ)ζ}

Iν(κ)

]λ
=

[
exp(ακ̂ζ) exp((1− α)κζ)

h∗(ακ̂+ (1− α)κ)

]λ
(∗)
≥

[
exp(ακ̂ζ) exp((1− α)κζ)

[h∗(κ̂)]α[h∗(κ̂)]1−α

]λ
=

[
exp(κ̂ζ)

h∗(κ̂)

]λα [
exp(κζ)

h∗(κ̂)

]λ(1−α)
= [g(κ̂ | λ, ζ)]α[g(κ | λ, ζ)]1−α,

where the inequality at (*) follows from Lemma 7. As g(κ | λ, ζ) > 0, we get

g(κ | λ, ζ)
g(ακ̂+ (1− α)κ | λ, ζ)

≤ g(κ | λ, ζ)
[g(κ̂ | λ, ζ)]α[g(κ̂ | λ, ζ)]1−α

≤
[
g(κ | λ, ζ)
g(κ̂ | λ, ζ)

]α
,

for all κ ̸= κ̂, as required.

Lemma 9. Let

g(κ | ζ, λ) =
[
κν exp (κ ζ)

Iν(κ)

]λ
I(κ > 0),

be a probability density kernel with κ > 0, λ > 0, and ζ ∈ (0, 1). Further, we let

f(κ | λ, ζ) = g(κ | λ, ζ)/Kλ,ζ, where Kλ,ζ =
∫∞
0
g(κ | λ, ζ)dκ. Then,

1. For any λ > 0 and ζ ∈ (0, 1), there is an unique maximum κ̂ such that g(κ̂ |

λ, ζ) > g(κ | λ, ζ) for κ ̸= κ̂, κ > 0. Further, κ̂ is a function of ζ and does not

depend on λ as long as λ > 0.

2. For all ζ ∈ (0, 1),

lim
λ→∞

∫ ∞

κ̂+ϵ

f(κ | λ, ζ) dκ = 0.

3. For all ζ ∈ (0, 1),

lim
λ→∞

∫ κ̂−ϵ

0

f(κ | λ, ζ) dκ = 0.
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Proof.

1. We have

g(κ | ζ, λ) =
[
κν exp (κ ζ)

Iν(κ)

]λ
,

where ζ ∈ (0, 1) and κ > 0. Note that log(g(κ | ζ, λ)) = λ[ν log(κ) + κζ −

log(Iν(κ))]. Therefore,

∂

∂κ
log(g(κ | ζ, λ)) = λ

[
ν

κ
+ ζ −

I ′ν+1(κ)

Iν(κ)

]
= λ

[
ν

κ
+ ζ − ν

κ
− Iν+1(κ)

Iν(κ)

]
= λ(ζ −Rν(κ)), (39)

and ∂2

∂κ2
log(g(κ | ζ, λ)) = −λR′

ν(κ) where Rν(κ) =
Iν+1(κ)
Iν(κ)

. From Lemma 1 we

know that κ 7→ Rν(κ) is a strictly increasing function from R+ to (0, 1) because

lim
κ→0

Rν(κ) = lim
κ→0

Iν+1(κ)

Iν(κ)
= 0 and lim

κ→∞
Rν(κ) = lim

κ→∞

Iν+1(κ)

Iν(κ)
= 1.

As a result, R−1
ν (·) : (0, 1) → R+ is well defined and one-to-one. Therefore,

κ̂ = R−1
ν (ζ) is the unique solution for ∂

∂κ
log(g(κ | ζ, λ)) = 0. It is implied from

Lemma 1 that R′
ν(κ) > 0 for all κ. Therefore, − ∂2

∂κ2
log(g(κ | ζ, λ))|κ̂=R−1

ν (∥ψψψ∥) <

0. All together we conclude that the distribution has unique mode at κ̂ =

R−1
ν (ζ).

We can also conclude that κ̂ is a function of ζ as it does not depend on λ as

long as λ > 0. Therefore, g(κ̂ | λ, ζ) > g(κ | λ, ζ) for κ ̸= κ̂, κ > 0.
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2.

∫ ∞

κ̂+ϵ

f(κ | λ, ζ) dκ =

∫ ∞

κ̂+ϵ

[
f(κ | 1, ζ)

f(ακ̂+ (1− α)κ | 1, ζ)

]λ
f(ακ̂+ (1− α)κ | 1, ζ) dκ

≤
∫ ∞

κ̂+ϵ

[
g(κ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ
f(ακ̂+ (1− α)κ | 1, ζ) dκ

≤
∫ ∞

κ̂+ϵ

[
g(κ̂∗ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ
f(ακ̂+ (1− α)κ | 1, ζ) dκ.

The inequalities follow by Lemma 7 for arbitrary α in (0, 1) and κ̂∗ = argmax
κ̂>κ+ϵ

g(κ |

1, ζ). Note that,

lim
κ→∞

g(κ | 1, ζ) = 0 ∃ κ̂∗ ≥ κ̂+ ϵ

g(κ̂∗ | 1, ζ) ≥ g(κ | 1, ζ) for all κ ≥ κ̂+ ϵ

∫ ∞

κ̂+ϵ

f(κ | λ, ζ) dκ <

[
g(κ̂∗ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ ∫ ∞

κ̂+ϵ

f(ακ̂+ (1− α)κ | 1, ζ) dκ

=

[
g(κ̂∗ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ ∫ ∞

κ̂+(1−α)ϵ
f(y | 1, ζ) dy

(1− α)
.

<

[
g(κ̂∗ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ
.

where we have y = ακ̂+ (1− α)κ, Finally,

lim
λ→∞

∫
κ>κ̂+ϵ

f(κ | λ, ζ) dκ < lim
λ→∞

[
g(κ̂∗ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ
= 0 as κ̂∗ ̸= κ̂.

3. We prove part (c), similarly as above. Following Lemma 7, for arbitrary α in
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(0, 1), we can write

∫ κ̂−ϵ

0

f(κ | λ, ζ) dκ ≤
∫ κ̂−ϵ

0

[
f(κ | 1, ζ)

f(ακ̂+ (1− α)κ | 1, ζ)

]λ
f(ακ̂+ (1− α)κ | λ, ζ) dκ

=

∫ κ̂−ϵ

0

[
g(κ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ
f(ακ̂+ (1− α)κ | λ, ζ) dκ

≤
∫ κ̂−ϵ

0

[
g(κ̂∗ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ
f(ακ̂+ (1− α)κ | λ, ζ) dκ,

where κ̂∗ = argmax
0≤κ≤κ̂−ϵ

g(κ | 1, ζ). Note that limκ→0 g(κ | 1, ζ) = 0, which implies

that 0 < κ̂∗ ≤ κ̂− ϵ. As a result,

∫ κ̂−ϵ

0

f(κ | λ, ζ) dκ ≤
[
g(κ̂∗ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ ∫ κ̂−(1−α)ϵ

0

f(ακ̂+ (1− α)κ | λ, ζ) dκ

≤
[
g(κ̂∗ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ ∫ ∞

0

f(y | 1, ζ) dy

(1− α)

≤
[
g(κ̂∗ | 1, ζ)
g(κ̂ | λ, ζ)

]αλ
F (κ̂− (1− α)ϵ),

where we use the substitution y = ακ̂+ (1− α)κ. Here, F (·) is the cumulative

distribution function of f(· | 1, ζ. Finally,

lim
λ→∞

∫ κ̂−ϵ

0

f(κ | λ, ζ) dκ ≤ lim
λ→∞

[
g(κ̂∗ | 1, ζ)
g(κ̂ | 1, ζ)

]αλ
= 0,

as the κ̂ is the unique mode and κ̂∗ ̸= κ̂.
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C Proofs of Theorems

Proof of Theorem 1

Proof. 1. From Definition 1 it follows that

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ)dµ dκ =

∫
R+

∫
Sp−1

[
κν exp

(
κ µTψψψ

)
Iν(κ)

]λ
dµ dκ

=

∫
R+

κνλ

[Iν(κ)]λ

[∫
Sp−1

exp
(
κµTψψψλ

)
dµ

]
dκ

=

∫
R+

κνλ

[Iν(κ)]λ

[∫
Sp−1

exp
(
∥κψψψλ∥µT µ̂

)
dµ

]
dκ

=

∫
R+

κνλ(2π)p/2

[Iν(κ)]λ
Iν(∥κψψψλ∥)
∥κψψψλ∥ν

dκ

=
(2π)p/2

∥ψψψλ∥ν
∫
R+

κνλ−ν

[Iν(κ)]λ
Iν(κλ ∥ψψψ∥) dκ, (40)

where µ̂ = ψψψ
∥ψψψ∥ . Let M > 0 be any positive number. Then it follows from (40)

that

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ =
(2π)p/2

∥ψψψλ∥ν

[∫ ∞

M

κνλ−ν

[Iν(κ)]λ
Iν(∥κψψψλ∥)

+

∫ M

0

κνλ−ν

[Iν(κ)]λ
Iν(∥κψψψλ∥)

]
dκ.

(41)

In order to bound the above integrals, consider Luke [1972, Eq.6.25]

κν

2νΓ(ν + 1)
< Iν(κ) <

(1 + exp (−2κ))

2

κνeκ

2νΓ(ν + 1)
<

κνeκ

2νΓ(ν + 1)
. (42)

On the other hand we have from Pal et al. [2020, Lemma 9] that forM > 0 and

ν > 1
2
,

Iν(κ) ≥
exp(κ)√

(κ)
G(M), (43)
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where G(M) =
√
M exp(−M)Iν(M). Using (43), we obtain that

(2π)p/2

∥ψψψλ∥ν
∫ ∞

M

κνλ−ν

[Iν(κ)]λ
Iν(∥κψψψλ∥) dκ

≤ (2π)p/2

∥ψψψλ∥ν
∫ ∞

M

[ √
κ

exp(κ)G(M)

]λ
Iν(∥κψψψλ∥)κνλ−ν dκ

(†)
<

(2π)p/2(λ ∥ψψψ∥)ν

∥ψψψλ∥ν 2νG(M)ν

∫ ∞

M

κλ/2+ν(λ−1)+ν exp(−λκ+ λκ ∥ψψψ∥) dκ

=
(2π)p/2(λ ∥ψψψ∥)ν

∥ψψψλ∥ν 2νG(M)ν

∫ ∞

M

κλ/2+ν(λ−1)+ν exp(−λκ(1− ∥ψψψ∥)) dκ, (44)

where inequality in (†) follows from (42). The above integral is finite if ∥ψψψ∥ <

1, since λ/2 + ν(λ− 1) + ν > 0. On other hand, consider that

(2π)p/2

∥ψψψλ∥ν
∫ M

0

κνλ−ν

[Iν(κ)]λ
Iν(∥κψψψλ∥) dκ

(††)
≤ (2π)p/2

∥ψψψλ∥ν
∫ M

0

κνλ+νλ−ν+ν

(2νΓ(ν + 1))λ
exp(κ ∥ψψψλ∥)
2νΓ(ν + 1)

dκ

=
(2π)p/2

∥ψψψλ∥ν 2νλ+1Γ(ν + 1)νλ+1

∫ M

0

κνλ+νλ−ν+ν exp(κ ∥ψψψλ∥) dκ, (45)

where (††) follows from (42). Altogether from (41), (44) and (45) we conclude

that
∫
R+

∫
Sp−1 g(µ, κ | ψψψ, λ) dµ dκ <∞ when ∥ψψψ∥ < 1.

2. From (41),

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ

>
(2π)p/2

∥ψψψλ∥ν
∫ ∞

M

κνλ−ν

[Iν(κ)]λ
Iν(∥κψψψλ∥) dκ

>
(2π)p/22νλ

∥ψψψλ∥ν
∫ ∞

M

κ−νλκνλ−λexp(−κλ)Iν(∥κψψψλ∥) dκ,

where the last inequality follows from (42). Additionally, using (43) we obtain
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that

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ

†
≥ (2π)p/22νλ

∥ψψψλ∥ν
∫ ∞

M

κ−λexp(−κλ)exp(∥κψ
ψψλ∥)G(M)√
κ ∥ψψψ∥λ

dκ

=
(2π)p/22νλG(M)

∥ψψψλ∥ν
√

∥ψψψ∥λ

∫ ∞

M

κ−λ−
1
2 exp(κλ(∥ψψψ∥ − 1)) dκ,

= ∞,

because ∥ψψψ∥ = 1.

3. From Definition (41) we have

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ =
(2π)p/2

λν

∫ ∞

0

κνλ−ν

[Iν(κ)]λ
Iν(κλ) dκ. (46)

We obtain from (30) that

Iν(κ)
eκ√
2πκ

→ 1,

for all ν ≥ 0 as κ → ∞. Therefore for any given small ϵ ∈ (0, 1), there is Mϵ

such that,

(1− ϵ)
eκ√
2πκ

< Iν(κ) < (1 + ϵ)
eκ√
2πκ

for all κ > Mϵ.

Similarly,

(1− ϵ)
eλκ√
2πλκ

< Iν(λκ) < (1 + ϵ)
eλκ√
2πλκ

for all κ > Mϵ/λ.

As a result, if κ > M∗ = max {Mϵ/λ,Mϵ} then,

(1− ϵ)
eκ√
2πκ

< Iν(κ) < (1 + ϵ)
eκ√
2πκ

,

(1− ϵ)
eλκ√
2πλκ

< Iν(λκ) < (1 + ϵ)
eλκ√
2πλκ

(47)
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On other hand know, from (31) we have that Iν(κ)
κν

2νΓ(ν+1)

→ 1 as κ→ 0. Therefore,

for any 0 < ϵ1 < 1, there exists Mϵ1 such that.

(1− ϵ1)
κν

2νΓ(ν + 1)
< Iν(κ) < (1 + ϵ1)

κν

2νΓ(ν + 1)
for all κ < M

(1− ϵ1)
κλν

(2νΓ(ν + 1))λ
< Iν(λκ) < (1 + ϵ1)

κλν

(2νΓ(ν + 1))λ
for all κ < M/λ.

As a result for all 0 < κ < m∗ = min {Mϵ1/λ,Mϵ1},

(1− ϵ1)
κν

2νΓ(ν + 1)
< Iν(κ) < (1 + ϵ1)

κν

2νΓ(ν + 1)

(1− ϵ1)
(λκ)ν

(2νΓ(ν + 1))λ
< Iν(λκ) < (1 + ϵ1)

(λκ)ν

(2νΓ(ν + 1))λ
.

Using these bounds we further calculate,

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ

=
(2π)p/2

λν

[∫ m∗

0

κν(λ−1)

[Iν(κ)]λ
Iν(λκ) dκ+

∫ M∗

m∗

κν(λ−1)

[Iν(κ)]λ
Iν(λκ) dκ+

∫ ∞

M∗

κν(λ−1)

[Iν(κ)]λ
Iν(λκ) dκ

]

=
(2π)p/2

λν

[∫ m∗

0

κν(λ−1)

[Iν(κ)]λ
Iν(λκ) dκ+

∫ ∞

M∗

κν(λ−1)

[Iν(κ)]λ
Iν(λκ) dκ+G(m∗,M∗)

]
. (48)

Here, G(m∗,M∗) =
∫M∗

m∗
κν(λ−1)

[Iν(κ)]λ
Iν(λκ) dκ. Now, substituting inequalities (47)
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and (48) in the above equation, we get

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ

<
(2π)p/2

λν

[∫ m∗

0

κν(λ−1) (λκ)
λ(1 + ϵ1)(2

νΓ(ν + 1))λ

2νΓ(ν + 1)κλν(1 + ϵ1)λ
dκ

+

∫ ∞

M∗
κν(λ−1) (1 + ϵ)eλκ(

√
2πλκ)λ√

2πλκeλκ(1 + ϵ)λ
dκ+G(m∗,M∗)

]
.

<
(2π)p/2

λν

[
2(λ−1)ν(Γν + 1)λ−1(1 + ϵ1)

(1 + ϵ1)λ
m∗

+

∫ ∞

M∗

(1 + ϵ)

(1− ϵ)λ
(2π)(λ−1)/2κ((λ−1)(ν+0.5)) dκ+G(m∗,M∗)

]
.

If λ < 2ν−1
2ν+1

and ν > 1/2, then (λ − 1)(ν + 0.5) + 1 < 0, the above integral is

finite. Conversely, if λ ≥ 2ν−1
2ν+1

then from (47), (48) and (48) it follows that

∫
R+

∫
Sp−1

g(µ, κ | ψψψ, λ) dµ dκ

>
(2π)p/2

λν

[∫ m∗

0

κν(λ−1) (λκ)
λ (1− ϵ1) (2

νΓ(ν + 1))λ

2νΓ(ν + 1) κλν(1 + ϵ1)λ
dκ

+

∫ ∞

M∗
κν(λ−1) (1− ϵ) eλκ(

√
2πκ)λ√

2π λ κ eλκ(1 + ϵ)λ
dκ+G(m∗,M∗)

]
.

=
(2π)p/2

λν

[
2(λ−1)ν(Γ(ν + 1))λ−1(1− ϵ1)

(1 + ϵ1)λ
m∗

+

∫ ∞

M∗

(1− ϵ)

(1 + ϵ)λ
(2π)(λ−1)/2κ((λ−1)(ν+0.5))+1dκ

+G(m∗,M∗)

]
= ∞.
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Proof of Theorem 2

Proof. We start by considering the fact that

µTψψψ ≤
√

∥µ∥2 ∥ψψψ∥2 = ∥ψψψ∥ , (49)

since µ ∈ Sp−1 and ∥µ∥ = 1. The equality is achieved in (49) at

µ̂ =
ψψψ

∥ψψψ∥
.

Therefore irrespective of value of κ > 0,

g(µ, κ | ψψψ, λ) <
[
κν exp (κ ∥ψψψ∥)

Iν(κ)

]λ
= g(µ̂, κ | ψψψ, λ). (50)

For ψψψ ∈ Rd, λ > 0, such that ∥ψψψ∥ < 1. Note that

log(g(µ̂, κ | ψψψ, λ)) = λ[ν log(κ) + κ ∥ψψψ∥ − log(Iν(κ))].

Therefore,

∂

∂κ
log(g(µ̂, κ | ψψψ, λ)) = λ

[
ν

κ
+ ∥ψψψ∥ − I ′ν(κ)

Iν(κ)

]
= λ

[
ν

κ
+ ∥ψψψ∥ − ν

κ
− Iν+1(κ)

Iν(κ)

]
= λ(∥ψψψ∥ −Rν(κ)), (51)

and ∂2

∂κ2
log(g(µ̂, κ | ψψψ, λ)) = −λR′

ν(κ) where Rν(κ) = Iν+1(κ)
Iν(κ)

. From Lemma 1 we

know that κ 7→ Rν(κ) is strictly increasing function from R+ to (0, 1) because

lim
κ→0

Rν(κ) = lim
κ→0

Iν+1(κ)

Iν(κ)
= 0 and lim

κ→∞
Rν(κ) = lim

κ→∞

Iν+1(κ)

Iν(κ)
= 1.
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As a result, R−1
ν (·) : (0, 1) → R+ is well defined and one-to-one. Therefore

κ̂ = R−1
ν (∥ψψψ∥) is the unique solution for ∂

∂κ
log(g(µ̂, κ | ψψψ, λ)) = 0. It is implied from

Lemma 1 that R′
ν(κ) > 0 for all κ. Therefore,

− ∂2

∂κ2
log(g(µ̂, κ | ψψψ, λ))|κ̂=R−1

ν (∥ψψψ∥) < 0.

In total, we conclude that the distribution has unique mode at µ̂ = ψψψ
∥ψψψ∥ and κ̂ =

R−1
ν (∥ψψψ∥).

Proof of Theorem 3

Proof. 1. From the definition of the function, we observe that

g(µ, κ | ψψψ, λ) = [g(µ, κ | ψψψ, 1)]λ.

From Theorem 2, we know that g(µ, κ | ψψψ, λ) has a unique mode at µ̂ =

ψψψ
∥ψψψ∥ and κ̂ = R−1

ν (∥ψψψ∥). Irrespective of the value of λ > 0, let Sl be the lth

level set of g(µ, κ | ψψψ, 1) as defined in (3.16) for some l ∈ (0, 1). Note that

g(µ, κ | ψψψ, 1) > g(µ∗, κ∗ | ψψψ, 1) for (µ, κ) ∈ Sl and (µ∗, κ∗) ∈ Scl , where S
c
l

denotes complimentary set of Sl. Consequently, the function λ 7→ rλ(µ∗, κ∗) is

an increasing function in λ > 0, for any (µ∗, κ∗) ∈ Scl , where

rλ(µ∗, κ∗) =

∫∫
Sl

[
g(µ, κ | ψψψ, 1)
g(µ∗, κ∗ | ψψψ, 1)

]λ
dµ dκ. (52)
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Now consider the fact that

Pψψψ,λ(S
c
l )

Pψψψ,λ(Sl)
=

∫∫
Scl

[g(µ∗, κ∗ | ψ, 1)]λ dµ∗ dκ∗∫∫
Sl

[g(µ, κ | ψψψ, 1)]λ dµdκ

=

∫∫
Scl

1∫∫
Sl

g(µ,κ|ψ,1)
g(µ∗,κ∗|ψ,λ)dµ dκ

dµ∗ dκ∗

=

∫∫
Scl

1

rλ(µ∗, κ∗)
dµ∗ dκ∗.

Therefore, it follows that
Pψψψ,λ(S

c
l )

Pψψψ,λ(Sl)
is a decreasing function of λ > 0 as 1

rλ(µ∗,κ∗)

is decreasing for all (µ∗, κ∗) ∈ Scl .

2. Let A be an open set such that (µ̂, κ̂) ∈ A. Therefore there exists an open ball,

Bϵ(µ̂, κ̂) = {d((µ, κ), (µ̂, κ̂)) < ϵ} such that Bϵ(µ̂, κ̂) ⊂ A. We are considering

the following norm for space Sp−1 × R+ ,

d((µ, κ), (µ̂, κ̂)) =
√
(κ− κ̂)2 + (µ− µ̂)T (µ− µ̂).

Now consider that

Bϵ(µ̂, κ̂)
c ⫅̸

{
(µ, κ) : |κ− κ̂| > ϵ

2

}
∪
{
(µ, κ) : ∥µ− µ̂∥ > ϵ

2

}
.

As a result

P ((µ, κ) ∈ Bϵ(µ̂, κ̂)
c) ≤ P

(
|κ− κ̂| > ϵ

2

)
+ P

(
∥µ− µ̂∥ > ϵ

2

)
. (53)
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Note that

Pψψψ,λ

(
|κ− κ̂| > ϵ

2

)
=

∫
|κ−κ̂|> ϵ

2

∫
Sp−1

g(µ, κ | ψ, λ)
Kψψψ,λ

dµ dκ

=

∫
|κ−κ̂|> ϵ

2

∫
Sp−1

[
κν exp

(
κ µTψψψ

)
Iν(κ)

]λ
1

Kψψψ,λ

dµ dκ

≤
∫
|κ−κ̂|> ϵ

2

∫
Sp−1

[
κν exp (κ ∥ψψψ∥)

Iν(κ)

]λ
1

Kψψψ,λ

dµ dκ.

The inequality follows from (49). As the dµ is the normalized Haar measure on

Sp−1, Lemma 8 gives

lim
λ→∞

Pψψψ,λ(|κ− κ̂| > ϵ

2
) ≤ lim

λ→∞

∫
|κ−κ̂|> ϵ

2

[
κν exp (κ ∥ψψψ∥)

Iν(κ)

]λ
dκ = 0. (54)

On the other hand, if ∥µ− µ̂∥ > ϵ
2
then µT µ̂ < (1− ϵ2

8
). From µ̂ = ψψψ

∥ψψψ∥ ,

Pψψψ,λ(∥µ− µ̂∥ > ϵ

2
) =

∫
R+

∫
∥µ−µ̂∥> ϵ

2

[
κν exp

(
κ µTψψψ

)
Iν(κ)

]λ
1

K∥ψψψ∥,λ
dµ dκ

=

∫
R+

∫
∥µ−µ̂∥> ϵ

2

[
κν exp

(
κ ∥ψψψ∥µT µ̂

)
Iν(κ)

]λ
1

K∥ψψψ∥,λ
dµ dκ

<

∫
R+

∫
∥µ−µ̂∥> ϵ

2

κν exp
(
κ ∥ψψψ∥ (1− ϵ2

8
)
)

Iν(κ)

λ 1

K∥ψψψ∥,λ
dµ dκ

=

∫
R+

κν exp
(
κ ∥ψψψ∥ (1− ϵ2

8
)
)

Iν(κ)

λ 1

K∥ψψψ∥,λ
dκ.

Hence from (55) it follows that

Pψψψ,λ(∥µ− µ̂∥ > ϵ

2
) <

∫
R+

{
1

K∥ψψψ∥,λ

[
κν exp (κ ∥ψψψ∥)

Iν(κ)

]λ}
exp(−λϵ

2

8
∥ψψψ∥κ) dκ.
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As ∫
1

K∥ψψψ∥,λ

[
κν exp (κ ∥ψψψ∥)

Iν(κ)

]λ
= 1,

and ϵ > 0, ∥ψψψ∥ > 0, and κ > 0, using dominated convergence theorem we

obtain that

lim
λ→∞

Pψψψ,λ(∥µ− µ̂∥ > ϵ

2
) = 0. (55)

Therefore, it follows from (53), (54) and (55) that

lim
λ→∞

Pψψψ,λ(A) ≥ lim
λ→∞

Pψψψ,λ(Bϵ(µ̂, κ̂))

= 1− lim
λ→∞

Pψψψ,λ(Bϵ(µ̂, κ̂)
c)

= 1.

Proof of Theorem 4

Proof. 1. We have from (3.17)

log(π(κ | ψψψ, λ)) = 1 + log(Iν(λκ ∥ψψψ∥))− λ log(Iν(κ)) + (λ− 1)ν log(κ).

Therefore,

∂log(π(κ | ψψψ, λ))
∂κ

= λ ∥ψψψ∥ I
′
ν(λκ ∥ψψψ∥)
Iν(λκ ∥ψψψ∥)

− λ
I ′ν(κ)

Iν(κ)
+

(λ− 1)ν

κ

∗
=

ν

κ
+ λ ∥ψψψ∥ Iν+1(λ ∥ψψψ∥κ)

Iν(λ ∥ψψψ∥κ)
− λ

ν

κ
− λ

Iν+1(κ)

Iν(κ)
+

(λ− 1)ν

κ

= λ ∥ψψψ∥ Iν+1(λ ∥ψψψ∥κ)
Iν(λ ∥ψψψ∥κ)

− λ
Iν+1(κ)

Iν(κ)
,
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where (∗) follows from the recursion relation in (29). By Lemma 4,

∂

∂κ
log π(κ | ψψψ, λ) = λ ∥ψψψ∥ Iν+1(λκ ∥ψψψ∥)

Iν(λκ ∥ψψψ∥)
− λ

Iν+1(κ)

Iν(κ)
< λ

Iν+1(κ)

Iν(κ)
− λ

Iν+1(κ)

Iν(κ)
.

This term will be negative only if λ||ψψψ||2 < 1. Hence δ
δκ

log π(κ | ψψψ, λ) < 0 if

λ||ψψψ||2 < 1.

2. We will prove this theorem based on Lemma 6. We have from (3.17)

log(π(κ | ψψψ, λ)) = 1 + log(Iν(λκ ∥ψψψ∥))− λ log(Iν(κ)) + (λ− 1)ν log(κ).

∂log(π(κ | ψψψ, λ))
∂κ

= λ ∥ψψψ∥ I
′
ν(λκ ∥ψψψ∥)
Iν(λκ ∥ψψψ∥)

− λ
I ′ν(κ)

Iν(κ)
+

(λ− 1)ν

κ

∗
=

ν

κ
+ λ ∥ψψψ∥ Iν+1(λ ∥ψψψ∥κ)

Iν(λ ∥ψψψ∥κ)
− λ

ν

κ
− λ

Iν+1(κ)

Iν(κ)
+

(λ− 1)ν

κ

= λ ∥ψψψ∥ Iν+1(λ ∥ψψψ∥κ)
Iν(λ ∥ψψψ∥κ)

− λ
Iν+1(κ)

Iν(κ)
,

where (∗) follows from the recursion relation in (29). Equating above equation

to 0 to calculate mode we get

∥ψψψ∥ Iν+1(∥ψψψ∥κ)
Iν(∥ψψψ∥κ)

=
Iν+1(κ)

Iν(κ)

=⇒ gλ∥ψψψ∥(κ) =
Iν+1(κ)Iν(∥ψψψ∥κ)
Iν(κ)Iν+1(λ ∥ψψψ∥κ)

= ∥ψψψ∥ . (56)

By Lemma 6 we can see that (56) is increasing function of κ when λ ∥ψψψ∥2 ≥

1. Further by Lemma 6, limκ→∞ gλ∥ψψψ∥(κ) = 1 and 1
λ∥ψψψ∥ ≤ gλ∥ψψψ∥(κ) ≤ 1. By

the same Lemma we can prove that gλ∥ψψψ∥(κ) = λ∥ψψψ∥
λ

has the unique solution

if 1
λ∥ψψψ∥ ≤ λ∥ψψψ∥

λ
≤ 1. Also we have proved in Theorem 4 (a) that π(κ | ψψψ, λ) is

decreasing function of κ if λ||ψψψ||2 < 1. This proves that π(κ | ψψψ, λ) has unique

modal point.
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3.

log(π(κ | ψψψ, λ)) = 1 + log(Iν(λκ ∥ψψψ∥))− λ log(Iν(κ)) + (n− 1)ν log(κ).

∂log(π(κ | ψψψ, λ))
∂κ

= λ ∥ψψψ∥ Iν+1(λ ∥ψψψ∥κ)
Iν(λ ∥ψψψ∥κ)

− λ
Iν+1(κ)

Iν(κ)

= λ ∥ψψψ∥Rν(λ ∥ψψψ∥κ)− λRν(κ)

where Rν(κ) = Iν+1(κ)
Iν(κ)

. Now, we derive the inflection point as the solution of

equation:

∂2log(π(κ | ψψψ, λ))
∂κ2

= λ2 ∥ψψψ∥2 R′
ν(λ ∥ψψψ∥κ)− λ R′

ν(κ).

If κin be the inflection point then it will satisfy ∂2log(π(κ|λ,ψψψ))
∂κ2

|κin = 0. This gives

us

R′
ν(λ ∥ψψψ∥κin)
R′
ν(κin)

=
1

λ ∥ψψψ∥2
=

λ

λ2 ∥ψψψ∥2
. (57)

Let a = λ ∥ψψψ∥, then by Lemma 6 part (a), we know that, ga(κin) =
Iν+1(κin)Iν(λ ∥ψψψ∥κ)
Iν(κ)Iν+1(λ∥ψψψ∥κ) =

Rν(κ)
Rν(λ∥ψψψ∥κ) is an increasing function of κ for λ ∥ψψψ∥ > 1. In other words we can

say that

∂log(ga(κ))

∂κ
> 0,

∂log[Rν(κ)]

∂κ
− ∂log[Rν(λ ∥ψψψ∥κ)]

∂κ
> 0,

R′
ν(κ)

Rν(κ)
> n ∥ψψψ∥ R

′
ν(n ∥ψψψ∥κ)

Rν(n ∥ψψψ∥κ)
,

Rν(λ ∥ψψψ∥κ)
Rν(κ)

> λ ∥ψψψ∥ R
′
ν(λ ∥ψψψ∥κ)
R′
ν(κ)

.

126



For κin we get

1

ga(κin)
> λ ∥ψψψ∥ R

′
ν(λ ∥ψψψ∥κin)
R′
ν(κin)

,

1

ga(κin)

∗
>

1

∥ψψψ∥
. (58)

The last inequality follows from (57). When κ̂ is a mode, then by Lemma 6 part

(c) we have ga(κ̂) =
λ∥ψψψ∥
λ

. If κin > κ̂, due to increasing nature of the function

in κ, we have ga(κin) > ga(κ̂), i.e., ga(κin) > λ ∥ψψψ∥ /λ or 1
ga(κin)

< 1
∥ψψψ∥ . But

this contradicts the (58). Hence if only we have 0 < κin < κ̂ then (58) will be

satisfied.
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