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ABSTRACT 

OPTIMAL SCHEDULING OF CONNECTED AND AUTONOMOUS VEHICLES AT 

A RESERVATION-BASED INTERSECTION 

Muting Ma 

July 23, 2022 

Reservation-based intersection control has been evaluated with better performance over 

traditional signal controls in terms of intersection safety, efficiency and emission. 

Controlling connected and autonomous vehicles (CAVs) at a reservation-based 

intersection in terms of improving intersection efficiency is performed via two factors: 

trajectory (speed profile) and arrival time of CAVs at the intersection. In an early stage of 

the reservation-based intersection control, an intersection controller at the intersection may 

fail to find a feasible solution for both the trajectory and arrival time for a CAV at a certain 

planning horizon. Leveraging deeper understanding of the control problem, reservation-

based intersection control methods are able to optimize both trajectory and arrival time 

simultaneously while overcome the infeasible condition. Furthermore, in order to achieve 

a real-time control at the reservation-based intersection, a scheduling problem of CAV 

crossing the intersection has been widely modeled to optimize the intersection efficiency. 

Efficient solution algorithms have been proposed to overcome the curse of dimensionality. 

However, a control methodology consisting of trajectory planning and arrival time 

scheduling that can overcomes the infeasible condition has not been explicitly explained 

and defined. Furthermore, an optimal control framework for a joint control of the trajectory
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planning and arrival time scheduling in terms of global intersection efficiency has not been 

theoretically established and numerically validated; and mechanisms of how to reduce the 

time complexity meanwhile solve the scheduling problem to an optimal solution are not 

fully understood and rigorously defined. 

In this dissertation, a control method that eliminates the infeasible problem at any planning 

horizon is first explicitly explained and defined based on a time-speed-independent 

trajectory planning and scheduling model. Secondly, this dissertation theoretically defines 

the optimal control framework via analyzing various control methods in terms of 

intersection capacity, throughput and delay. Furthermore, this dissertation theoretically 

analyzes the mechanism of the scheduling problem and designs an exact algorithm to 

further reduce the time complexity. Through theoretical analyses of properties of the 

scheduling problem, reasons that the time complexity can be reduced are fundamentally 

explained. 

The results first validate that the defined control framework can adapt to extremely high 

traffic demand scenario with feasible solutions at any planning horizon for all CAVs. 

Under extensive sensitivity analyses, the theoretical definition on the optimal control 

framework is validated in terms of maximizing the intersection efficiency. Moreover, 

numerical examples validate that a proposed scheduling algorithm finds an optimal 

solution with lower computation time and time complexity. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Following autonomous intersection management (AIM) concept or reservation-based 

intersection was proposed by Dresner and Stone (2004), multiple control policies were 

further developed including first-come-first-serve (FCFS), Auction (Schepperle and Böhm, 

2007, 2008), and Batch (Tachet et al., 2016) etc. to improve intersection efficiency 

comparing with the conventional signalized control. Most previous studies have 

investigated into several AIM control policies and evaluated that AIM is superior than 

signalized control in terms of safety, efficiency and emission (Li et al., 2013a; Lin et al., 

2017; Wu et al., 2019). 

Controlling connected and autonomous vehicles (CAVs) at a reservation-based 

intersection in terms of improving intersection efficiency is performed via two factors: 

trajectory (speed profile) and arrival time of CAVs at the intersection. Trajectory or 

acceleration of CAVs approaching to the intersection is modelled as a continuous function 

over time (Dresner and Stone, 2008; Lee and Park, 2012) or a piecewise function over time 

(Liu et al., 2022; Tajalli and Hajbabaie, 2021; Yang et al., 2021). Along the trajectory, 

arrival speed of CAVs at the intersection is determined as a fixed value independent of the 

arrival time (Li et al., 2019; Rios-Torres and Malikopoulos, 2016; Yu et al., 2019) or 

modelled as a variable depending on the arrival time of CAVs (Chalaki and Malikopoulos, 

2021; Malikopoulos et al., 2018; Zhao et al., 2021). The intersection efficiency, including 

capacity, throughput and delay, is optimized via these various control methods.
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Furthermore, specifically, scheduling of CAVs crossing a reservation-based intersection is 

of great importance for improving intersection efficiency and safety (Zhang et al., 2022). 

Regarding the scheduling problem, rule-based conflict solving techniques (Dresner and 

Stone, 2008; Tachet et al., 2016) have been replaced by optimization-based techniques. In 

terms of an objective, such as minimizing intersection delay, the scheduling problem is 

widely modeled via mixed integer linear programming (MILP) (Liu et al., 2022; Lu et al., 

2022; Ma and Li, 2020, 2021). However, it takes exponential growth time complexity for 

state-of-art solvers, such as Cplex or Gurobi, to find an optimal solution of the MILP model 

(Morrison et al., 2016; Xu et al., 2021). It is a challenge to develop an efficient algorithm 

in order to achieve a better tradeoff between the optimality and the time complexity. 

1.2 Research Gap 

In an early stage for an intersection control problem for CAVs, the vehicles follow the 

trajectory planned by an intersection controller and arrive at the intersection with a given 

arrival time and speed. However, when the traffic condition varies over time, i.e., a priority 

passing sequence to the intersection is shifted from one earlier coming vehicle to another 

later coming vehicle, or the traffic demand is increasing sharply from one approach, the 

vehicle may not follow the planned trajectory and arrive at the intersection with an expected 

time and speed (Au et al., 2012; Au and Stone, 2010). In addition, when the trajectory 

planning only consists of a few segments, it renders trajectory solutions to arriving with an 

expected time and speed infeasible if the traffic condition varies sharply. Vehicles that fail 

to follow the planned arrival time and speed each planning horizon are re-scheduled at next 

horizon. In other words, vehicles that is not assigned a feasible solution by an intersection 

central controller is re-planned by the controller at next horizon. However, once a vehicle’s 
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speed is compromised for trajectory solution feasibility, the optimality is eliminated for 

overall intersection efficiency since the arrival speed of following vehicles is also 

compromised. Moreover, conflicts between vehicles from conflicting approaches might 

happen within the intersection when vehicles cannot arrive at the intersection with the 

assigned arrival time and speed. This kind of problem with infeasible solutions is called 

fail-follow problem. 

Other than the fail-follow problem, an open question still exists in the following: by using 

which control method can the optimal intersection efficiency be achieved. Specifically, 

three challenges have not been understood and solved in terms of answering this question: 

(1) how trajectory control of CAVs affects the intersection efficiency? (2) how to control 

arrival speed of CAVs at the intersection in terms of the intersection efficiency, especially 

under (un)balanced or high traffic demand scenarios? (3) how to model arrival time and 

arrival speed of CAVs in a way that the intersection efficiency can reach a maximum? 

Especially for a scheduling problem of CAVs crossing the intersection, an efficient solution 

algorithm is critical for the central controller to implement real-time control. To date, at a 

general reservation-based intersection with two conflicting approaches, an approximation 

algorithm is able to take linear time complexity (Xu et al., 2019a) to find a near optimal 

solution, whereas an exact algorithm takes quadratic time complexity to find an optimal 

solution (Pei et al., 2019). However, the mechanisms of how to reduce the time complexity 

meanwhile solve the scheduling problem to an optimal solution are not fully understood 

yet. It is critical to theoretically explain the mechanisms in order to further reduce the time 

complexity at an intersection with two or more conflicting approaches. 
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Overall, this dissertation identifies three fundamental research gaps in the control and 

scheduling problem at a reservation-based intersection. 

1. A control methodology consisting of trajectory planning and arrival time 

scheduling that can overcomes the fail-follow problem has not been explicitly 

explained and defined; 

2. An optimal control framework for a joint control of the trajectory planning and 

arrival time scheduling in terms of global intersection efficiency has not been 

theoretically established and numerically validated; and 

3. The mechanisms of how to reduce the time complexity meanwhile solve the 

scheduling problem to an optimal solution are not fully understood and rigorously 

defined. 
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CHAPTER 2. RESEARCH OBJECTIVES AND CONTRIBUTIONS 

2.1 Objectives 

In order to fill the research gaps identified at Chapter 1, this dissertation aims to solve the 

following objectives. 

1. To overcome the fail-follow problem caused by an assigned arrival time and speed 

in a certain planning horizon, meanwhile explicitly explain and define a control 

method that eliminates the fail-follow problem at any planning horizon; 

2. To propose an optimal control framework for CAVs at a reservation-based 

intersection in terms of maximizing the intersection efficiency; and 

3. To theoretically analyze the mechanism of scheduling problem and design an exact 

algorithm to further reduce the time complexity. 

2.2 Contributions 

Specifically, the contributions of this dissertation are holistically summarized as follows. 

In terms of the first objective in the dissertation that will be introduced in Chapter 4, the 

contributions are as follows. 

1. Separated the formulation and optimization between arrival time, speed and 

trajectory planning by optimizing the trajectory without arrival time and speed 

predetermined at any planning horizon; 

2. Found the optimal solutions in terms of overall intersection efficiency by relaxing 

the constraint of speed at any time under varying traffic condition;
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3. Kept trajectory solutions feasible by formulating the variation of acceleration rate 

and breaking a whole trajectory into an enlarged set of segments; and 

4. Explicitly explained and defined a joint control method that overcomes the fail-

follow problem at any planning horizon. 

In terms of the second objective in the dissertation that will be introduced in Chapter 5, the 

contributions are as follows. 

5. I first define the trajectory control problem at a reservation-based intersection in a 

general form. Based on the definition, the relationship between arrival speed and 

arrival time of CAVs under the continuous or piecewise function is analytically 

investigated. Based on the discovered relationship, the intersection efficiency, 

including capacity and delay, is approximated by a greedy algorithm with arrival 

speed modelling independently of arrival time. Furthermore, the intersection 

efficiency is quantified via queue theory with considering arrival speed as a variable 

and analyzed under balanced and unbalanced traffic scenarios. 

6. I then theoretically define the optimal framework of controlling the trajectory, 

arrival speed and arrival time simultaneously in terms of maximizing the 

intersection efficiency. Based on the framework, an integrated control method is 

modelled via the MILP. In the MILP, arrival speed, as well as arrival time, is 

modelled as a variable in order to validate the findings of the defined framework. 

Moreover, both continuous and piecewise trajectory control methods are performed 

on the integrated MILP. 

7. Lastly, I test the modelling methods under extensive numerical simulations. The 

theoretical definition on the optimal control framework is validated through various 
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traffic scenarios, including high traffic demand scenarios with 1800 veh/h/ln. The 

optimal solution of the intersection efficiency is found under the optimal control 

framework with zero optimality gap. 

In terms of the third objective in the dissertation that will be introduced in Chapter 6, the 

contributions are as follows. 

8. The problem properties of the scheduling problem are first investigated in nature 

from the perspective of four critical decision variables. Any scheduling problem at 

a general reservation-based intersection can be modeled by these four variables in 

essence. An optimal substructure of the scheduling problem is then identified. 

Based on the optimal substructure, dynamic programming (DP) or branch & bound 

(B&B) algorithms can be utilized to solve such a problem. Further, it is proven that 

a conflict-order-based property is inherited in the problem. Based on the property, 

integer-infeasible solutions can be eliminated during solving the problem. 

9. Through relaxing the original problem to subproblems, Markov property is first 

identified, based on which an objective of the problem is designed to minimize the 

maximal arrival time of all CAVs at the intersection. While adding subproblems, 

two overlapping properties are theoretically analyzed. Based on the overlapping 

properties, one subproblem can be dominated by another such that why the time 

complexity of solving the problem can be reduced is fundamentally explained. 

10. To investigate more possibilities of reducing the time complexity, a platoon of 

CAVs is first defined. Based on platooning of CAVs, it is rigorously proven that 

number of subproblems can be further reduced. In addition, a total number of 
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subproblems/nodes of the original problem is analytically derived with and without 

the platooning. An optimal platooning property is subsequently identified. 

11. To solve such a problem, a MILP model is first formulated. A customized DP 

algorithm is further designed to incorporate all the identified properties. Based on 

the customized DP algorithm, an upper bound of the time complexity is first derived. 

Based on the optimal platooning property, a lower bound of the time complexity is 

then derived. The DP algorithm solves the problem to an optimal solution. The 

lower bound is reduced to linear time complexity from quadratic time complexity. 

12. A control framework for the scheduling problem with stochastic arrivals of CAVs 

from two conflicting approaches is first developed. Through numerical examples, 

the proposed DP algorithm is compared with a state-of-art DP algorithm in terms 

of computation time and solution. The proposed DP algorithm finds an optimal 

solution with lower computation time. Interesting findings prove that CAVs tend 

to dynamically batch as a platoon in the optimal solution. 

2.3 Organization of the Dissertation 

The remainder of the dissertation is organized as follows. Chapter 3 summarizes the state-

of-art literatures on the topic of the reservation-based intersection control. Chapter 4 

explicitly explains and defines a control method that eliminates the fail-follow problem at 

any planning horizon. Chapter 5 proposes an optimal control framework for CAVs at a 

reservation-based intersection in terms of maximizing the intersection efficiency. Chapter 

6 theoretically analyzes the mechanism of scheduling problem and designs an exact 

algorithm to further reduce the time complexity. Chapter 7 concludes the dissertation and 

introduces future research direction on this topic. 



9 

 

CHAPTER 3. LITERATURE REVIEW 

3.1 Reservation-based Intersection Control 

3.1.1 Reservation-based intersection formulation 

By leveraging the technology of vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), 

infrastructure-to-vehicle (I2V) and connected and autonomous vehicle (CAV), 

autonomous intersection management (AIM) is substituting the role of traditional traffic 

signal (Wuthishuwong and Traechtler, 2013). AIM was first proposed by Dresner and 

Stone (2004, 2005), where an intersection is divided  to a grid consisting of cells with n x 

n granularity and controlled by an intersection controller. The temporal and spatial 

resources of the intersection are therefore fully utilized by allowing conflicting vehicles 

arriving into the intersection simultaneously only if they are not colliding at certain cells 

and at periods of time they requested to occupy, whereas under traditional signal controller, 

vehicles cannot enter the intersection unless conflicting vehicles leave the intersection. 

AIM was further investigated to implement AIM communication protocols between agents 

of vehicles and intersections (Dresner and Stone, 2008). They also proposed ideas of 

allowing AIM to control human-driven vehicles and prioritizing emergency vehicles at no 

cost of civilian vehicles. The results indicated that their mechanism significantly 

outperforms traffic lights and stop signs. Similar results showing better efficiency and 

lower emission were also demonstrated by Fajardo et al. (2011) and Li et al. (2013a). 

However, according to the control policy of the AIM in earlier years, the reservation-based 

intersection control could overlook the requests of vehicles from minor roads if the traffic 
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demand from main and minor roads is unbalanced and cause the intersection to a gridlock 

(Au et al., 2011). 

Zhu and Ukkusuri (2015) proposed a conflict point-based reservation system based on 

dynamic traffic assignment, in which the vehicle was also formulated as a point so that 

conflicts are avoided only if conflicting vehicles are not occupying at certain points at same 

time. Levin and Rey (2017) proposed a mixed integer linear programming to optimize the 

travel time based on conflict point formulation of the intersection. Furthermore, Li et al. 

(2019) improved the conflict point formulation by considering the shape (length and width) 

of the vehicle into a conflict-time list and avoiding the conflicts within the intersection by 

solving the conflict-time list via heuristics. Besides, conflict cell-based formulation is also 

considered in general to separate conflicts between through, left-turn, right-turn vehicles 

and pedestrians (Bichiou and Rakha, 2018; Niels et al., 2020; Yu et al., 2019; Zhang et al., 

2016). 

3.1.2 Reservation-based intersection control strategies 

Reservation-based intersection was first proposed by Dresner and Stone (2004), dividing 

an intersection to a grid consisting of cells with 𝑛 × 𝑛 granularity and distributing temporal 

and spatial resources for intersection control. The system was further investigated 

systematically by Dresner and Stone (2008), Au et al. (2011), Au et al. (2012), Li et al. 

(2013a, 2013b), Li et al. (2015) and Levin and Boyles (2015). Tachet et al. (2016) proposed 

a dynamic batch heuristic and mainly focused on the properties of intersection capacity 

while utilizing the batch strategy. Other control policies, such as Auction (Schepperle and 

Böhm, 2007) and csPriorFCFS (Zhang et al., 2016), were also proposed based on the 

reservation-based control. Besides priority-based reservation-based strategies, Levin and 
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Rey (2017) started to introduce optimization strategies into the reservation-based 

intersection control in order to improve the intersection efficiency. Other optimization-

based strategies were also proposed based on the reservation-based system, such as Zhu 

and Ukkusuri (2015), Levin et al. (2016), Lin et al. (2017), Bichiou and Rakha (2018), Wu 

et al. (2019) and Ma and Li (2020). Taking pedestrians with the reservation-based system 

into account, Niels et al. (2020) integrated pedestrian control with the reservation-based 

control of vehicles and tested the integrated under different scenarios. Furthermore, Chen 

et al. (2020) utilized max pressure control to analyze the stability of the reservation-based 

system when pedestrians are involved. Wu et al. (2022a) also modelled the pedestrians 

with CAVs and optimized arrival time of both of them simultaneously. 

Building upon idea of the reservation-based system, multiple AIM protocols/policies were 

proposed successively to overcome the drawbacks existed in the original version of the 

AIM. Reservation-based system and first-come-first-serve (FCFS) policy were first 

proposed by Dresner and Stone (2004), where vehicles are served in a sequence ordered 

by their request time. Dresner and Stone (2008)further improved the policy by combining 

traffic light with FCFS to accommodate CAV and Human-driven vehicles (HDV) at the 

same time. Sharon and Stone (2017) further proposed a new protocol named hybrid 

autonomous intersection management (H-AIM) to improve intersection performance under 

mixed traffic conditions. Schepperle and Böhm (2007, 2008) proposed an auction 

mechanism to improve intersection efficiency meanwhile consider drivers’ valuation by 

processing bids from each driver. Tachet et al. (2016) proposed a new intersection 

management policy called BATCH of reservation in AIM, where vehicles are batched and 

processed together from any approaching lanes if the vehicles arrive within an interval, 
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which is defined as the delay between earliest arrival  time and actual/assigned arrival time 

of the first vehicle in the batch. Wu et al. (2012) presented an AIM strategy based on an 

ant colony system and discrete optimization algorithm to solve real-time control problems. 

Lin et al. (2017) proposed a vehicle-intersection coordination method that divides a 

network into three logical sections with optimizing vehicle trajectories in a buffer-

assignment mechanism. Wu et al. (2019) proposed a decentralized coordination learning 

of autonomous intersection management (DCL-AIM) with benefit of real time 

implementation. Overall, two main problems are needed to be investigated with the AIM: 

the one is how and when vehicles should arrive at the intersection, and the other is how to 

avoid conflicts between conflicting vehicles within the intersection. Regarding these two 

main problems, trajectory planning methods are proposed to solve the first, and cell- or 

point-based reservation formulation are proposed to solve the second. 

3.2 Trajectory Planning of CAVs at a Reservation-based Intersection 

3.2.1 Integrated trajectory planning with arrival time 

Since the reservation-based system was proposed Dresner and Stone (2004), the 

acceleration rate along a road to an intersection was formulated by a linear function over 

time. Dresner and Stone (2008) further integrated the continuous trajectory modelling with 

FCFS strategy to compare with signalized control method in terms of intersection 

efficiency. The linear trajectory modelling method was also utilized by Lee (2010), where 

an optimization problem rather than FCFS was formulated to minimize the overlapping 

trajectories of conflicting vehicles. Lee and Park (2012) fixed the acceleration rate in 

overall control from initial position to the end of a communication range. Lee et al. (2013) 

further extended their linear trajectory modeling method to multiple intersections on a 
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corridor and investigated the mobility, safety and energy improvements. However, Kamal 

et al. (2014) pointed out that the optimization problem (Lee and Park, 2012) may fail to 

find a feasible solution for some vehicles in an optimization cycle, thus a recovery mode 

was introduced for these vehicles, which eventually leads to a piecewise trajectory 

modeling method. Different from the recovery mode, Li et al. (2013a) introduced an 

advanced stop location strategy to maintain a high arrival speed at an intersection whenever 

reservations cannot be accepted. Overall, the linear trajectory modeling method may not 

find feasible or optimal solutions for CAVs in terms of intersection efficiency. 

As opposed to the linear trajectory modelling, He et al. (2015) derived a multi-stage 

optimization model and approximated trajectory solutions over sub-stages. Wu et al. (2015) 

also applied the multi-stage optimization on a signalized corridor. Wan et al. (2016) 

analytically derived solutions for piecewise trajectory functions based on Pontryagin's 

minimum principle (PMP). Fayazi and Vahidi (2018) also modelled trajectories of CAVs 

as a piecewise function over time, where arrival time of CAVs is first optimized, then 

trajectory is optimized based on the assigned arrival time. Different from heuristic 

piecewise trajectory modelling, Malikopoulos et al. (2018) analytically derived the optimal 

solutions of acceleration/deceleration rate based on PMP, where arrival speed of each CAV 

can be different. Zhou et al. (2019) also applied the PMP to analytically derive 18 kinds of 

acceleration/deceleration control sequences after introducing speed bounds on CAVs. 

Chalaki and Malikopoulos (2021) derived the piecewise trajectory solutions based on PMP 

and varied arrival speed of each CAV at merging area as long as its average speed inside 

the area keeps as same as a constant value. 
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Apart from using PMP to derive trajectory solutions, Barth et al. (2011) proposed an arrival 

time-based trajectory modelling method based on piecewise trigonometric-linear function. 

Altan et al. (2017) further tested the trajectory modeling method on a signalized corridor. 

Yang et al. (2019) also utilized this method by considering queue along a corridor. Yang 

et al. (2021) and Du et al. (2021) respectively used the trajectory modeling method in a 

mixed traffic environment. 

In addition, trajectory solutions are also found through numerical optimization based 

methods by discretizing simulation times. Mirheli et al. (2019) proposed a mixed-integer 

nonlinear programming (MINLP) method to minimize travel time and speed variation 

among CAVs. Niroumand et al. (2020) further solved the MINLP by receding horizon 

control in a mixed traffic environment. Tajalli and Hajbabaie (2021) further proposed a 

MINLP model with a multi-objective of maximizing travel distance and minimizing speed 

difference among CAVs. Yao and Li (2020) proposed a discrete-time decentralized 

trajectory control method at a single-lane segment for a mixed traffic environment. Mu et 

al. (2021) proposed an event-triggered rolling horizon based trajectory planning method to 

optimize the merging process in a mixed traffic environment based on MINLP. Xiong and 

Jiang (2021) proposed a piecewise trajectory optimization problem solved by dynamic 

programming in a mixed traffic environment. Zhao et al. (2021) modelled a bilevel 

scheduling and trajectory planning model and solved the model using a heuristic; Yang et 

al. (2016) also proposed a bilevel programming model and solved it using branch-and-

bound algorithm. Liu et al. (2022) proposed a discrete-time trajectory MILP optimization 

model using each signal cycle as a prediction horizon. 
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Note that all above methods model the trajectory control problem in an integrated way, 

where the arrival speed of CAVs is dependent on their assigned arrival time at an 

intersection or a merging point. 

3.2.2 Independent trajectory planning with arrival time 

As opposed to integrated trajectory modelling with arrival time, Liu et al. (2011) designed 

an independent model that finds trajectory solutions with a given arrival speed based on 

PMP. Rios-Torres and Malikopoulos (2016) applied the PMP on a merging point where 

arrival time of CAVs is assigned based on First-in-first-out and arrival speed of them is 

assigned with their initial speed. Feng et al. (2018) also found trajectory solutions with a 

given arrival speed based on PMP; Yu et al. (2018) further simplified the derivation of 

trajectory solutions to six scenarios based on an assigned arrival time; Yu et al. (2019) then 

applied the model on a reservation-based intersection. Wang et al. (2020) developed a 

framework on a network where planned arrival time of CAVs based on a heuristic and 

found trajectory solutions based on PMP. Dollar and Vahidi (2021) also utilized the 

Hamiltonian analysis combining with receding horizon control to derive trajectory 

solutions over long- and short-term planning horizons. 

Moreover, Zhou et al. (2017) and Ma et al. (2017) subsequently proposed and finalized a 

piecewise trajectory planning model to smooth a stream of CAVs based on shooting 

heuristic. Li et al. (2018) further simplified the trajectory model by confining each 

trajectory to consist of no more than five quadratic sections and improved the solutions to 

near-optimum. Soleimaniamiri et al. (2020) further improved an analytical algorithm by 

allowing different accelerations in a platoon of vehicles. Guo et al. (2019) then integrated 
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the shooting heuristic with dynamic programming to optimize the vehicle trajectory and 

arrival time simultaneously and applied the model to a mixed traffic environment. 

In addition to deriving trajectory solutions based on PMP or shooting/meta heuristic, Li et 

al. (2014) derived a trajectory planning model that contains at most four segments for each 

trajectory based on a heuristic. Stebbins et al. (2017) designed a speed advisory model that 

aims to minimize delay and applied it to accommodate a platoon of vehicles; Zhang et al. 

(2020) further applied and extended the model to a network of reservation-based 

intersections. Xu et al. (2018a) found solutions of arrival time and trajectory of CAVs 

simultaneously and solved the problem using an enumeration and pseudo-spectral method. 

Li et al. (2019) developed a temporal and spatial trajectory planning heuristic and assigned 

arrival time of CAVs by two heuristics. 

Furthermore, the trajectory solutions with assigned arrival time can also be found via 

optimization methods. Han et al. (2020) proposed a platoon control method and found 

trajectory solutions for the platoon by numerically solving a MINLP. Xu et al. (2020b) also 

designed a discrete-time exact trajectory model based on nonlinear programming and 

proved it as a convex optimization model. Yao et al. (2022) designed a hierarchical stage 

programming model that finds trajectory solutions and arrival time of CAVs 

simultaneously by a rolling horizon. It is remarkably noted that Ma and Li (2021) built a 

single-layer MILP model with both arrival time and arrival speed as variables, such that 

both of them can be optimized simultaneously and theoretical properties can be derived 

from the model; in addition, a rolling horizon was applied based on number of vehicles in 

each optimization cycle. 
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3.3 Arrival Sequence Scheduling of CAVs at a Reservation-based Intersection 

3.3.1 MILP modeling of a scheduling problem 

A scheduling problem of CAVs for crossing a reservation-based intersection aims to solve 

conflicts of crossing. Conflict solving techniques can stem from first-in-first-out strategy 

(Dresner and Stone, 2004, 2008; Li et al., 2015; Li et al., 2013a). However, such strategy 

cannot guarantee optimality of solutions of the scheduling problem in terms of overall 

travel time or average delay of the intersection. Zhu and Ukkusuri (2015) started to model 

the scheduling problem via linear programming, however, the mode is based on a lane level 

rather than from individual vehicle’s perspective. Levin and Rey (2017) then modeled the 

problem via MILP and solved the MILP using a rolling horizon as well as a fixed horizon 

method. Li and Zhou (2017) also modeled the problem as a MILP and solved it using 

branch-and-bound algorithm. Fayazi and Vahidi (2018) solved such MILP model using 

commercial solver Cplex and extended it into a mixed traffic environment. Yu et al. (2019) 

also modeled the problem as a MILP and investigated its performance under various traffic 

demands. Xu et al. (2020a) incorporated lane changes into the MILP model and solved it 

in a bilevel planning method. Zhang et al. (2020) solved such MILP using solver Gurobi 

in a nearly real time because of simplified constraints in the model. Ge et al. (2021) also 

proposed a lane-based MILP and solved it by clustering vehicle subgraphs in a directed 

graph. Ma and Li (2021) modeled the MILP from individual vehicle’s perspective and 

solved it using a rolling horizon method. Tajalli and Hajbabaie (2021) transformed a mixed 

integer nonlinear programming model to a MILP, then solved it by decomposing it into 

subproblems and tightened solution space by introducing a set of cliques. Yang et al. (2021) 

also modeled a MILP to optimize arrival times of CAVs at an intersection in a mixed traffic 
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environment and solved it at an approach level. Zhao et al. (2021) modeled a vehicle-based 

MILP in the upper level of a bilevel programming and solved it using a heuristic. Liu et al. 

(2022) modeled a MILP for optimizing arrival time and trajectory of CAVs simultaneously. 

Lu et al. (2022) modeled three MILPs to evaluate performances among different strategies 

under a fully CAV environment. 

It is shown above that solving conflicts between CAVs has been mainly modeled via MILP 

and the objective is to optimize the intersection efficiency. Regarding different modeling 

methods, such as based on individual lane- or vehicle-level, Ma and Li (2022a) pointed out 

necessary vehicle-based conditions in order to reach an optimality of the intersection 

efficiency. Under such optimal conditions, however, it takes exponential growth time 

complexity for commercial solvers to solve such a MILP model. Efficient solution 

algorithms are followingly proposed to overcome this problem. 

3.3.2 Solution algorithms 

In the reservation-based intersection scheduling problem, solution algorithms include 

approximation algorithms and exact algorithms: the former finds a near optimum solution 

and the latter finds an optimal solution to the problem. Regarding the approximation 

algorithms, Xu et al. (2018b) and Hu et al. (2021) both utilized a Depth-first search (DFS) 

to solve a depth-first spanning tree problem in a directed graph and found a near optimal 

solution. Ding et al. (2019) proposed a group-based heuristic to balance a trade-off between 

optimality and computation time. Li et al. (2019) proposed a Tabu search heuristic to find 

near-optimal solutions of the scheduling problem. Xu et al. (2019a) also proposed a 

heuristic algorithm that groups vehicles if time headways between any pair of leading and 

following vehicles in the group are less than a specific value. Xu et al. (2019b) applied a 
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Monte Carlo tree search (MCTS) method with two heuristic rules to find a near optimum 

solution. Xu et al. (2021) further compared four heuristics in terms of computation time 

and analyzed time complexity for these strategies. Tang et al. (2022) also applied the 

MCTS to solve the scheduling problem to a near optimal solution. 

Regarding the exact algorithms, Li and Wang (2006) initiated a modified brute-force tree 

search algorithm. Wu et al. (2009) started to apply dynamic programming (DP) to minimize 

the maximal arrival time of CAVs and analyzed the time complexity. Yan et al. (2011) 

developed a branch & bound (B&B) algorithm with heuristic lower and upper bounds to 

solve such a scheduling problem. Yang et al. (2016) also utilized the B&B algorithm based 

on first-in-first-out rule under depth-first search. Besa Vial et al. (2016) analyzed the time 

complexity of the scheduling problem by using dynamic programming algorithm for 

different types of reservation-based intersections. Pei et al. (2019) applied the DP and 

reduced the time complexity at a reservation-based intersection with two approaches; Pei 

et al. (2021) further extended the problem to an intersection with four approaches. Sun et 

al. (2020) utilized the DP and solved the scheduling problem in a mixed traffic environment. 

In summary, the time complexity of the above algorithms is illustrated in  

Table 1 that details the number of approaches at an intersection and upper and lower 

bounds of the time complexity. 

Table 1 Summary of time complexity of algorithms 

 

Algorithm 
No. of 

approaches 

Time complexity 

Optimal 
Upper bound 

Lower 

bound 

Wu et al. 

(2009) 

DP 4 𝒪(𝒱10𝑙𝑜𝑔𝒱) / Yes 

Besa Vial et 

al. (2016) 

DP 𝑘  𝒪(min⁡(𝒱′
2𝑘
, 𝒱′

𝑘
𝑙𝑜𝑔𝑇)) / Yes 
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Xu et al. 

(2018b) 

DFS 4 𝒪(𝒱2) / No 

Pei et al. 

(2019) 

DP 2 𝒪(𝒱2) / Yes 

Xu et al. 

(2019a) 

Heuristic 2 𝒪(𝓀! ∙ 𝒱) / No 

Pei et al. 

(2021) 

DP 4 𝒪(𝒱6) 𝒪(𝒱4) Yes 

This paper DP 2 𝒪(𝒱2) 𝒪(𝒱) Yes 

Note in an optimization: 𝒱 denotes number of CAVs, 𝒱′ denotes number of platoons of 

CAVs, 𝑘 denotes number of approaches, 𝑇 denotes an upper bound of an optimal solution 

and 𝓀 denotes number of groups. 

 

3.3.3 Platooning of CAVs 

Platoon-based intersection control can be traced back to Jiang et al. (2006), where platoons 

are identified and utilized to minimize intersection delay. Wu et al. (2013) then started to 

mathematically analyze the platoon-based control based on Petri Nets model and identified 

a method to increase throughput by platooning. Chen and Kang (2015) proposed a dynamic 

platooning and scheduling algorithm and analyzed the time complexity. Tachet et al. (2016) 

also proposed a dynamic platooning method and analyzed its performance via simulations 

and queue theory. Lioris et al. (2017) further identified that the platoons of CAVs can 

double intersection capacity via queuing theory. Liu et al. (2018) modeled a framework for 

platoons in a mixed traffic environment considering lane changing behaviors. An et al. 

(2021) further proposed an analytical model to investigate the effect of platoons on capacity 

in a mixed traffic environment. Chen and Mårtensson (2021) proposed a MILP to 

simultaneously schedule platoons and maintain integrity of platoons. Kumaravel et al. 

(2021) proposed a scheduling method for platoons via modeling a job-shop scheduling 

problem with forming cliques. Timmerman and Boon (2021) also proposed a method to 

schedule CAVs as platoons crossing the intersection and analyzed intersection delay under 

the algorithm by queue theory. Zhou and Zhu (2021) analyzed the effect of a maximum 
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size of a platoon on capacity and stability. Wu et al. (2022b) further modeled and analyzed 

the effect of the platoons on the intersection capacity in a mixed traffic environment. Zhou 

et al. (2022) proposed a virtual platooning coordination strategy and two heuristics to 

schedule the platoons crossing the intersection. 

It is concluded from above that platooning of CAVs is beneficial in maximizing the 

intersection capacity and minimizing the intersection delay. It is also promising and yet to 

be investigated to incorporate the platooning strategies into solution algorithms of the 

aforementioned MILP in order to reduce the time complexity. Especially, batching CAVs 

in a platoon during stochastic arrivals is significant for implementing solution algorithms 

in a scheduling problem. 

3.4 Summary 

In summary, the temporal and spatial resources of the intersection are fully utilized by 

allowing conflicting vehicles arriving into the intersection simultaneously only if they are 

not colliding at certain cells and at periods of time they requested to occupy, whereas under 

traditional signal controller, vehicles cannot enter the intersection unless conflicting 

vehicles leave the intersection. Therefore, the capacity as well as efficiency can be 

improved by discretizing the intersection into a set of cells temporally and spatially. 

A list of average vehicle delay under different traffic condition and control strategy of 

typical scenarios is provided in Table 2, where the delay ranges from 2.6 to 164 seconds 

per vehicle. Note here that if optimization strategy is used, turning movements are 

considered, or conflict point/cell-based formulation is utilized, intersection granularity is 

set, and how intersection demand is varied would highly impact the average vehicle delay. 
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Table 2 Average vehicle delay under different conditions of typical scenarios 

 Yu et al. 

(2019) 

Li et al. 

(2019) 

Yao et al. 

(2022) 

Tachet et 

al. (2016) 

Bashiri et 

al. (2018) 

Intersection demand 

(veh/h) 
4000 11520 4200 1800 2600 

Optimization Y Y Y N Y 

Turning movements Y Y Y N Y 

Conflict measurement Cell Point Cell Cell Cell 

Granularity (cells) 48 0 1 1 1 

CAV penetration rate (%) 100 100 100 100 100 

Average delay (s/veh) 35 4.1 164 2.6 20 

 

However, although the vehicle arrival time and trajectory can be jointly optimized to 

minimize the travel delay, the trajectory planning only can be realized when the arrival 

time and arrival speed are given to the CAVs. As noted, the arrival time and arrival speed 

would not be maintained when traffic condition varies (Au et al., 2012), thus the planned 

trajectory would fail to be followed and vehicles would collide with vehicles from 

conflicting approaches within the intersection. 

Under various traffic scenarios, the trajectory, especially the arrival speed, is modelled 

either in an integrated or independent way with the arrival time of CAVs. Under such 

modelling methods, the intersection efficiency is optimized to different levels of 

operational efficiency. Nonetheless, the optimal control method has not been defined yet 

in terms of finding the optimal intersection efficiency. 

In order to achieve the optimum of intersection performances, it is necessary to take every 

CAV into consideration in the modeling and scheduling problem at a reservation-based 

intersection. To solve such a scheduling problem, efficient solution algorithms are required 

to deal with the curse of dimensionality. In order to achieve a better tradeoff between the 

optimal solution and the computational demand, platooning strategies can be leveraged and 

are yet to be discussed. 
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CHAPTER 4. A TIME-INDEPENDENT TRAJECTORY OPTIMIZATION 

APPROACH 

4.1 Reservation-based Control Concept 

The reservation system was first proposed by Dresner and Stone (2004)and stemmed from 

an attempt that people make reservations before they arrive in a hotel. In this case, the 

people are the vehicles, and the hotel is an intersection manager (IM). Vehicles send a 

reservation request and the IM determines whether/when/how vehicles can cross the 

intersection without conflicts. Vehicles will go through following travelling instructions 

from IM if the request is approved, otherwise vehicles will receive a “counter-offer”. 

An intersection is divided to an n by n grid of tiles. Each tile can be occupied by one vehicle 

per simulation step. One of the motivations of reservation-based system is to utilize all 

intersection tile resources temporarily and spatially so as to improve the intersection 

efficiency. No double or more occupation requests on one tile by two or more vehicles 

simultaneously can be accepted. Figure 1 illustrates that a vehicle occupies certain tiles at 

a certain time instant under reservation-based system.
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Figure 1 Intersection cells occupied by one vehicle at a time instant 

4.2 Arrival Time-speed-independent Trajectory (TSIT) Planning Method 

In an AIM environment, the vehicles follow the trajectory planned by an intersection 

controller and arrive at the intersection with a given arrival time and speed (Fayazi and 

Vahidi, 2018; Feng et al., 2018; Malikopoulos et al., 2018; Soleimaniamiri et al., 2020; 

Yao et al., 2022). However, when the traffic condition varies over time, i.e., a priority 

passing sequence to the intersection is shifted from one earlier coming vehicle to another 

later coming vehicle, or the traffic demand is increasing sharply from one approach, the 

vehicle may not follow the planned trajectory and arrive at the intersection with an expected 

time and speed (Au et al., 2012; Au and Stone, 2010). To overcome this fail-follow problem, 

an arrival time-speed-independent trajectory (TSIT) optimization approach is proposed to 

adapt to varying condition without arrival time or speed predetermined. 

In the TSIT, the arrival time and speed at the intersection are not predetermined and 

optimized simultaneously with the trajectory along the road. Furthermore, the acceleration 

rate varies along the trajectory over each simulation time, 0.1 second. The formulation 

approach renders instant changes of arrival time and speed available if the traffic condition 
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is changing or the traffic demand is increasing sharply at certain periods of time, such that 

a vehicle will be assigned with a new arrival time and speed and be able to follow a new 

trajectory to the intersection. The variable arrival time and speed at the intersection are 

formulated in a mixed integer linear programming (MILP) approach, where they are only 

measured and updated by a possible maximum travel time of each vehicle in one 

optimization cycle, rather than fixed with predetermined numbers. Therefore, the objective 

of this formulation is to minimize the maximum travel time of each vehicle. Furthermore, 

the conflicts are avoided within the intersection by ensuring each cell within the 

intersection can only be occupied by one vehicle at any time instant. The formulation 

details are explained in the following section. 

Before introducing the formulation approach, some assumptions are considered throughout 

this section: 

1. Signal controller as well as the timing and phasing design is not considered in the 

reservation-based system; 

2. All vehicles are CAV and fully controlled by an intersection controller, i.e., 100% 

CAV penetration rate; 

3. No right or left turn movements are considered within the intersection; and 

4. No communication latency is considered between the vehicle and the infrastructure. 

4.3 TSIT Formulation 

4.3.1 Notation 

Decision variables and parameters applied hereafter are summarized in Table 3. 

Table 3 Decision variables and parameters 

Decision variables 

𝑧 Maximum value of travel time of all vehicles in each simulation round, s 
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𝑥𝑡,𝑝,𝑖 
Binary variable, vehicle 𝑖 from approach 𝑝 at time 𝑡 travel status within the 

intersection 

𝑙𝑥𝑡,𝑝,𝑖 Horizontal coordinate of vehicle 𝑖 from approach 𝑝 at time 𝑡 , ft 
𝑙𝑦𝑡,𝑝,𝑖 Vertical coordinate of vehicle 𝑖 from approach 𝑝 at time 𝑡 , ft 
𝑣𝑡,𝑝,𝑖 Speed of vehicle 𝑖 from approach 𝑝 at time 𝑡 , ft/s 

𝑎𝑡,𝑝,𝑖 Acceleration rate of vehicle 𝑖 from approach 𝑝 at time 𝑡 , ft/s2 

𝑖𝑡𝑓𝑡,𝑝,𝑖 
Binary variable, intermediate variable to quantify cell (𝑚, 𝑛) occupation status 

by front bumper of vehicle 𝑖 from approach 𝑝 at time 𝑡  

𝑖𝑡𝑟𝑡,𝑝,𝑖 
Binary variable, intermediate variable to quantify cell (𝑚, 𝑛) occupation status 

by rear bumper of vehicle 𝑖 from approach 𝑝 at time 𝑡  

𝑖𝑡𝑜𝑡,𝑝,𝑖 
Binary variable, intermediate variable to quantify cell (𝑚, 𝑛) occupation status 

by center of vehicle 𝑖 from approach 𝑝 at time 𝑡  

𝑐𝑡,𝑝,𝑖
𝑚,𝑛

 
Binary variable, cell (𝑚, 𝑛) occupation status by vehicle 𝑖 from approach 𝑝 at 

time 𝑡  
𝑐𝑡
𝑚,𝑛

 Binary variable, cell (𝑚, 𝑛) occupation status at time 𝑡  

𝑐𝑡
𝑚,𝑛,𝐺

 Binary variable, global cell (𝑚, 𝑛) occupation status at time 𝑡  
Sets 

𝑇 Maximum time range of time step 𝑡, second 

𝑃 Sets of approaches 𝑝 

𝐼 Sets of vehicles 𝑖 
𝐻 Sets of horizontal cells 𝑚 

𝑉 Sets of vertical cells 𝑛 

Parameters 

𝑙𝑥0,𝑝,𝑖 Initial horizontal coordinate of vehicle 𝑖 from approach 𝑝 at time 0, ft 

𝑙𝑦0,𝑝,𝑖 Initial vertical coordinate of vehicle 𝑖 from approach 𝑝 at time 0, ft 

𝑣0,𝑝,𝑖 Initial speed of vehicle 𝑖 from approach 𝑝 at time 0, ft/s 

ℓ𝑝,𝑖 Vehicle length of vehicle 𝑖 from approach 𝑝 ft 

ℎ Length of a square intersection, 40 ft 

𝑑 Length of an optimization range before boundaries of an intersection, 600 ft 

𝑠 Length of a square cell, 10 ft for BATCH, 20 ft for ZONE 

 

4.3.2 Objective function 

The objective of this problem to minimize the maximum travel time of all vehicles entering 

into an optimization cycle. The travel time is measured by the binary variable⁡𝑥𝑡,𝑝,𝑖, which 

equals 1 if the vehicle is not cleared by the intersection and 0 if the vehicle leaves the 

intersection. 
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min 𝑧 = 𝑚𝑎𝑥∑𝑥𝑡,𝑝,𝑖

𝑇

0

 (1) 

4.3.3 Traffic simulation constraints 

From very beginning, all vehicles with coordinates (⁡𝑙𝑥𝑡,𝑝,𝑖, 𝑙𝑦𝑡,𝑝,𝑖) will be programmed to 

enter the simulation from boundary of optimization range as defined in Eqn. (2) and (3); 

their initial speed is assigned with an initial speed as defined in Eqn. (4). The acceleration 

or deceleration rate, as a decision variable, keeps the same through all simulation time as 

defined in Eqn. (5); this constraint is used to compare with the other condition in Eqn. (6), 

where the acceleration rate varies all the simulation time if needed, in terms of travel time 

minimization. The optimal solutions of the acceleration rate along with the arrival 

time/speed are found via the MILP, which eliminates the requirements of a predetermined 

arrival time/speed, and then the solutions of the trajectory can adapt to varying traffic 

conditions by relaxing the constraints of acceleration rate along the trajectory. 

 𝑙𝑥𝑡,𝑝,𝑖 = 𝑙𝑥0,𝑝,𝑖⁡⁡⁡𝑡 = 0, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 (2) 

 𝑙𝑦𝑡,𝑝,𝑖 = 𝑙𝑦0,𝑝,𝑖⁡⁡⁡𝑡 = 0, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 (3) 

 𝑣𝑡,𝑝,𝑖 = 𝑣0,𝑝,𝑖⁡⁡⁡𝑡 = 0, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 (4) 

 𝑎𝑡,𝑝,𝑖 = 𝑎𝑡−1,𝑝,𝑖⁡⁡⁡𝑡 ≥ 1, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 (5) 

 |𝑎𝑡,𝑝,𝑖 − 𝑎𝑡−1,𝑝,𝑖| ≤ 3⁡⁡⁡𝑡 ≥ 1, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 (6) 

Vehicle trajectory coordinates and speed variations are optimized per 0.1 second as defined 

in Eqns. (7) to (9); Eqns. (10) and (11) constrain range of acceleration rate and speed with 
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unit ft/s2 and ft/s. Therefore, the speed of each vehicle can vary within the intersection area 

and is not a fixed number while vehicles travel through the intersection. 

 𝑙𝑥𝑡,𝑝,𝑖 = 𝑙𝑥𝑡−1,𝑝,𝑖 + 0.1𝑣𝑡−1,𝑝,𝑖 + 0.5𝑎𝑡−1,𝑝,𝑖 × 0.01⁡⁡⁡𝑡 ≥ 1, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (1,2) (7) 

 𝑙𝑦𝑡,𝑝,𝑖 = 𝑙𝑦𝑡−1,𝑝,𝑖 + 0.1𝑣𝑡−1,𝑝,𝑖 + 0.5𝑎𝑡−1,𝑝,𝑖 × 0.01⁡⁡⁡𝑡 ≥ 1, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (3,4) (8) 

 𝑣 = 𝑣𝑡−1,𝑝,𝑖 + 0.1𝑎𝑡−1,𝑝,𝑖⁡⁡⁡𝑡 ≥ 1, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 (9) 

 −15 ≤ 0.1𝑎𝑡,𝑝,𝑖 ≤ 10⁡⁡∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 (10) 

 0 ≤ 𝑣𝑡,𝑝,𝑖 ≤ 60⁡⁡∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 (11) 

Regarding the basic car following model, in this scenario, it is simplified for safety distance 

between front bumper of leading and following vehicles by using 18 feet, as defined in 

Eqns. (12) and (13). 

 𝑙𝑥𝑡,𝑝,𝑖 ≤ 𝑙𝑥𝑡,𝑝,𝑖
𝐿 − 18⁡⁡∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (1,2) (12) 

 𝑙𝑦𝑡,𝑝,𝑖 ≤ 𝑙𝑦𝑡,𝑝,𝑖
𝐿 − 18⁡⁡∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (3,4) (13) 

4.3.4 Travel time measurement constraints 

To measure travel time of vehicles in each simulation round before they leave the 

intersection, time represented by ⁡𝑥𝑡,𝑝,𝑖 equals 1 as long as those vehicles are not leaving 

out of the boundary of intersection, otherwise equals 0, as defined in Eqns. (14) and (15). 

 
{
𝑙𝑥𝑡,𝑝,𝑖 ≥ ℎ + 𝑑 + ℓ𝑝,𝑖 −𝑀𝑥𝑡,𝑝,𝑖⁡⁡⁡∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (1,2)

𝑙𝑥𝑡,𝑝,𝑖 ≤ ℎ + 𝑑 + ℓ𝑝,𝑖 +𝑀(1 − 𝑥𝑡,𝑝,𝑖)⁡⁡⁡∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (1,2)
 (14) 

 
{
𝑙𝑦𝑡,𝑝,𝑖 ≥ ℎ + 𝑑 + ℓ𝑝,𝑖 −𝑀𝑥𝑡,𝑝,𝑖⁡⁡⁡∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (3,4)

𝑙𝑦𝑡,𝑝,𝑖 ≤ ℎ + 𝑑 + ℓ𝑝,𝑖 +𝑀(1 − 𝑥𝑡,𝑝,𝑖)⁡⁡⁡∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (3,4)
 

(15) 
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4.3.5 Conflict avoidance constraints 

In this simplified scenario, the intersection is divided into 16 or 4 cells identified by 𝑚 and 

𝑛, each of which is a square with length 𝑠; 𝑖𝑡𝑓𝑡,𝑝,𝑖 , 𝑖𝑡𝑟𝑡,𝑝,𝑖  and 𝑖𝑡𝑜𝑡,𝑝,𝑖 are formulated as 

intermediate variables to measure values of 𝑐𝑡,𝑝,𝑖
𝑚,𝑛

; 𝑐𝑡,𝑝,𝑖
𝑚,𝑛

 equals 1 as long as any part of a 

vehicle 𝑖 from approach 𝑝 is occupying cell (𝑚, 𝑛), otherwise equals 0, as defined in Eqs. 

(16) and (17). 

 

{
 
 
 
 

 
 
 
 
𝑑 + 𝑠𝑛 ≤ 𝑙𝑥𝑡,𝑝,𝑖 +𝑀(1 − 𝑖𝑡𝑓𝑡,𝑝,𝑖)

𝑑 + 𝑠𝑛 ≥ 𝑙𝑥𝑡,𝑝,𝑖 +𝑀1 − 𝑖𝑡𝑓𝑡,𝑝,𝑖
𝑙𝑥𝑡,𝑝,𝑖 ≤ 𝑑 + 𝑠(𝑛 + 1) + ℓ𝑝,𝑖 +𝑀(1 − 𝑖𝑡𝑟𝑡,𝑝,𝑖)

𝑙𝑥𝑡,𝑝,𝑖 ≥ 𝑑 + 𝑠(𝑛 + 1) + ℓ𝑝,𝑖 −𝑀𝑖𝑡𝑟𝑡,𝑝,𝑖
𝑑 + 𝑠𝑚 ≤ 𝑙𝑦𝑡,𝑝,𝑖 +𝑀(1 − 𝑖𝑡𝑜𝑡,𝑝,𝑖)

𝑑 + 𝑠𝑚 ≥ 𝑙𝑦𝑡,𝑝,𝑖 −𝑀𝑖𝑡𝑜𝑡,𝑝,𝑖

0 ≤ 𝑖𝑡𝑓𝑡,𝑝,𝑖 + 𝑖𝑡𝑟𝑡,𝑝,𝑖 + 𝑖𝑡𝑜𝑡,𝑝,𝑖 − 3𝑐𝑡,𝑝,𝑖
𝑚,𝑛 ≤ 1

∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝐻, ∀𝑛 ∈ 𝑉, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (1,2)

 (16) 

 

{
 
 
 
 

 
 
 
 
𝑑 + 𝑠𝑚 ≤ 𝑙𝑦𝑡,𝑝,𝑖 +𝑀(1 − 𝑖𝑡𝑓𝑡,𝑝,𝑖)

𝑑 + 𝑠𝑚 ≥ 𝑙𝑦𝑡,𝑝,𝑖 +𝑀1 − 𝑖𝑡𝑓𝑡,𝑝,𝑖
𝑙𝑦𝑡,𝑝,𝑖 ≤ 𝑑 + 𝑠(𝑚 + 1) + ℓ𝑝,𝑖 +𝑀(1 − 𝑖𝑡𝑟𝑡,𝑝,𝑖)

𝑙𝑦𝑡,𝑝,𝑖 ≥ 𝑑 + 𝑠(𝑚 + 1) + ℓ𝑝,𝑖 −𝑀𝑖𝑡𝑟𝑡,𝑝,𝑖
𝑑 + 𝑠𝑛 ≤ 𝑙𝑥𝑡,𝑝,𝑖 +𝑀(1 − 𝑖𝑡𝑜𝑡,𝑝,𝑖)

𝑑 + 𝑠𝑛 ≥ 𝑙𝑥𝑡,𝑝,𝑖 −𝑀𝑖𝑡𝑜𝑡,𝑝,𝑖

0 ≤ 𝑖𝑡𝑓𝑡,𝑝,𝑖 + 𝑖𝑡𝑟𝑡,𝑝,𝑖 + 𝑖𝑡𝑜𝑡,𝑝,𝑖 − 3𝑐𝑡,𝑝,𝑖
𝑚,𝑛 ≤ 1

∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝐻, ∀𝑛 ∈ 𝑉, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ (3,4)

 

(17) 

Each cells’ occupation status 𝑐𝑡
𝑚,𝑛

 at time t is formatted as a 0-1 matrix, which is updated 

by vehicles’ trajectory coordinates, as defined in Eqn. (18). 

 

𝑐𝑡
𝑚,𝑛 =∑∑𝑐𝑡,𝑝,𝑖

𝑚,𝑛

𝐼

𝑖

𝑃

𝑝

≤ 1⁡⁡∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝐻, ∀𝑛 ∈ 𝑉, ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 (18) 
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Furthermore, 𝑐𝑡
𝑚,𝑛

 will be combined into a global matrix 𝑐𝑡
𝑚,𝑛,𝐺

 and any elements in the 

global matrix should not exceed 1. Such that, conflict avoidance between any vehicles at 

any time is accomplished in Eqn. (19). 

 𝑐𝑡
𝑚,𝑛 + 𝑐𝑡

𝑚,𝑛,𝐺 ≤ 1⁡⁡∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝐻, ∀𝑛 ∈ 𝑉 (19) 

4.4 Performance Evaluation 

4.4.1 Experimental design 

The intersection is divided into 4 x 4 cells or 2 x 2 cells for implementing different 

optimization strategy BATCH and ZONE, where the first strategy collects all the vehicles 

information from any lanes of any approaches once they enter into an optimization cycle, 

which is determined by the arrival rate, and processes them all as a batch; and the second 

strategy also processes all the vehicle together once they enter into an optimization cycle, 

but there is only one lane per approach, which is shown in Figure 2. Once vehicles are 

batched together, the intersection controller processes all the vehicles via a mixed integer 

linear programming approach to minimize the average intersection delay. 

An optimization cycle detects vehicles if they enter per 0.1 second. All vehicles detected 

will be included in an optimization iteration at their instant time step. The two lanes-four 

approaches intersection design is shown in Figure 2 (a), where the vehicles are processed 

within a batch. The one lane-four approaches intersection is shown in Figure 2(b), where 

vehicles are processed together once they enter into the detection zone of the optimization 

range. The difference between the BATCH (Fig. 2(a)) and the ZONE (Fig. 2(b)) is mainly 

about the intersection design, which is to test the optimization results under different 

intersection granularity and different formulation approach, i.e., with or without variable 

acceleration rate, in terms of travel delay. 
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(a) (b) 

Figure 2 Optimization strategies: (a) BATCH; (b) ZONE 

Once any vehicles enter those zones highlighted in blue as illustrated in Figure 2, an 

optimization iteration will be activated for those vehicles at that simulation step. From each 

approach, vehicles will only reserve tiles at front of them and cells reserved are highlighted 

in yellow. An intersection range (a red frame) is used to determine when vehicles enter and 

leave the intersection so as to measure travel time. Both scenarios have 600 feet 

communication range at upstream of boundary of intersection and 40 feet square 

intersection design. Only through movements are simulated in these two scenarios. 

For these two scenarios, the formulation of BATCH/ZONE with variable acceleration rate 

uses Eqn. (1) as objective function, Eqns. (2) through (4) and (6) through (19) as constraints; 

the formulation of BATCH/ZONE with constant acceleration rate uses the same objective 

function as defined by Eqn. (1) and applies Eqns. (2) through (5) and (7) through (19) as 

constraints. 

4.4.2 Intersection granularity 

As Fig. 2 shown above, two different intersection granularities are designed for each 

scenario. There are 16 cells in BATCH, 4 cells in ZONE strategy and same intersection 
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dimension for each. Therefore, the TSIT can be evaluated under different control strategy 

and different intersection granularity in terms of travel delay and computation time. 

4.4.3 Simulation environment 

As formulated in above section, one of key decision variables, acceleration rate, is 

investigated in terms of its effect on the performances of the TSIT. Parameter values of 

acceleration rate range and other variables are illustrated in Table 3. 

For these two scenarios, travel demands range from 300 to 1800 veh/hr/ln; each scenario 

under different demands and strategies is simulated 10 minutes including 5 minutes warm-

up session. Cplex was used to implement the simulation and optimization at an Intel Core 

i3-3220 CPU computer with 3.30 GHz processor and 8 GB RAM. 

To further evaluate the performance of the TSIT, a state-of-art rule-based approach, 

Dynamic Batch (Tachet et al., 2016) (DB), is performed under the same traffic demand 

with two different maximum batch number, 8 (DB8) and 20 (DB20). Correspondingly, the 

headway gap of vehicles at the same approach and different approach is computed by the 

intersection width, vehicle length and arrival speed. 

4.4.4 Solution approach 

The optimization is formulated by a MILP and can be solved easily through commercial 

optimization package, such as Cplex, to a globally optimal solution by enumerating all 

feasible solutions via their solution approaches, e.g., Branch & Cut, enhanced heuristic. In 

terms of each cell within the intersection, every vehicle will be assigned with a binary 

variable, 𝑐𝑡,𝑝,𝑖
𝑚,𝑛

, o or 1, so as to order the sequence of which vehicle will occupy the cell 

(𝑚, 𝑛) at time 𝑡, and if a vehicle (𝑝, 𝑖) occupies it, all other vehicles will correspond to this 

decision by being assigned a new 𝑐𝑡,𝑝,𝑖
𝑚,𝑛

 value until all vehicles are cleared by the current 
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optimization iteration, and then a travel time solution ∑ 𝑥𝑡,𝑝,𝑖
𝑇
0  can be obtained; however, 

this value may not be optimal, therefore, until all combinations of the 𝑐𝑡,𝑝,𝑖
𝑚,𝑛

 of each vehicle 

are searched, an optimal solution will be found via this enumeration process, during this 

process, in order to facilitate the computation, some branches will be cut once no any other 

better solutions under the trees can be found than the current incumbent. Furthermore, 

Cplex can utilize different search strategies among their libraries automatically over 

different situations to balance the optimality and computation time. The details of the 

solution approach used in this paper can be referred to Yang et al. (2016). 

4.5 Results 

4.5.1 Computation time comparison 

Totally, four scenarios were compared in terms of computation time consumed to lead to 

optimization convergence. The computation time for each scenario is an average of all 

optimization iterations with 0.1 second simulation step. These four scenarios are Zone 

strategy with constant acceleration rate (ZONE), Zone strategy with variable acceleration 

rate (ZONEV), BATCH strategy with constant acceleration rate (BATCH), and BATCH 

strategy with variable acceleration rate (BATCHV), respectively. The comparison result is 

illustrated in Fig. 3. 

All convergence gaps of different scenarios at first start with 100%. Before the branch-

and-bound algorithm starts, there exists a presolving process to enumerate feasible 

solutions in order to reduce the size of the problem in the optimization so that the 

formulation of the problem can be tightened. The computation time starts to kick in when 

the presolving processes begins. 
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Figure 3 Convergence computation time under different scenarios 

As shown in Fig. 3 above, ZONE costs least time and BATCHV costs the most. BATCHV 

costs more time than BATCH, either does ZONEV than ZONE. The computation time of 

BATCH and BATCHV is much more than that of ZONE and ZONEV. 

It is because that reservation-based system with small granularity is more efficient than 

large granularity regarding the convergence time. It is also because that computation time 

increases for scenarios under variable acceleration rate as decision variable. It is noted that 

all best bound gaps between upper bound and lower bound converges to 0%, indicating the 

optimality of the solution to the TSIT problem. 

4.5.2 Trajectory analysis 

In order to evaluate the simulation results of the formulation in this paper before comparing 

the travel efficiency of each optimization strategy, a trajectory diagram between distance 

from vehicle to intersection and simulation time is visualized for each scenario. Trajectory 
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diagrams of BATCH and BATCHV under 1200 veh/hr/ln travel demand are shown in Fig. 

4. 

As shown in Fig. 4, blue lines indicate accelerating, red segments/lines indicate 

decelerating and green segments indicate constant speed during their simulation time. Y-

axis indicates the distance from vehicles’ current position to downstream intersection 

boundary and X-axis indicates the simulation time. 

As of BATCH strategy shown in Fig. 4(a), first, no conflicts are identified along the 

trajectory or within the intersection, because any lines would intersect with others if the 

vehicles represented by the lines collide with the others; second, all vehicles besides three 

of them were accelerating, which indicates a consistently free flow condition; third, some 

of vehicles had lower acceleration rates to hold constraints of safety distance and conflict 

avoidance, showing as bigger gaps between certain lines in the Fig.4 (a); fourth, some 

vehicles were travelling as a platoon while holding constraints, showing as smaller gaps 

between certain lines. Overall, a consistently free flow condition without any conflicts 

indicates the effectiveness of the formulation with BATCH strategy regarding travel 

efficiency. 



36 

 

  

(a) (b) 

Figure 4 Trajectory diagrams of (a) BATCH and (b) BATCHV 

As of BATCHV strategy shown in Fig. 4(b), first, no conflicts happened; second, vehicles 

were always accelerating before upstream intersection boundary while decelerating around 

intersection range considering reasonable vehicle dynamics; third, longer red segments 

might indicate a potential conflict was eliminated or a maximum speed was happened to 

reach; fourth, shorter green segments indicate that the room for an acceleration rate is 

acceptable, considering all constraints; fifth, acceleration was taken at most of simulation 

time, indicating an efficient and safe traffic flow. Overall, this formulation outputs a stable 

simulation status even under high travel demand, i.e., the TSIT can accommodate all 

vehicles without explicit delay in the trajectory diagram. 

Trajectory diagrams of ZONE and ZONEV under 1200 veh/hr/ln travel demand are shown 

in Fig. 5. As ZONE strategy shown in Fig. 5(a), first, no conflicts happened during this 
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simulation range; second, all vehicles besides two of them were accelerating, which 

indicates a consistently free flow condition; third, some of vehicles had lower acceleration 

rates to hold constraints of safety distance and conflict avoidance, showing as bigger gaps 

between certain lines in the Fig.5 (a); fourth, some vehicles were travelling as a platoon 

while holding constraints, showing as smaller gaps between certain lines. Overall, a 

consistently free flow condition without any conflicts indicates the effectiveness of the 

formulation with ZONE strategy regarding travel efficiency. 

As of ZONEV strategy shown in Fig. 5(b), first, no conflicts happened; second, vehicles 

were always accelerating before upstream intersection boundary while decelerating around 

intersection range considering reasonable vehicle dynamics; third, longer red segments 

might indicate a potential conflict was eliminated or a maximum speed was happened to 

reach; fourth, shorter green segments indicate the room for an acceleration rate is 

acceptable. considering all constraints; fifth, acceleration was taken at most of simulation 

time, indicating an efficient and safe  traffic flow. Overall, this formulation outputs a stable 

simulation status even under high travel demand. 
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(a) (b) 

Figure 5 Trajectory diagrams of (a) ZONE and (b) ZONEV 

Furthermore, it is also indicated that a significant difference between Fig. 4(b) and Fig. 5(b) 

is that deceleration actions were taken more by ZONEV than by BATCHV, probably due 

to smaller granularity diminishing shift frequency of cell occupation status temporarily and 

spatially, whereas no significant variance between Figs. 4(a) and 5(a) was observed. 

4.5.3 Delay analysis 

The average intersection delay under different demands with 12 feet vehicle length fixed 

is compared between the BATCHV, ZONEV, BATCH, ZONE, DB8 and DB20. As shown 

in Figure 6, The BATCHV and ZONEV are insensitive to the varying traffic condition 

even if the traffic demand of the whole intersection reaches to 14400 veh/h, result of which, 

less than 2.3 s/veh, is better than all the performances listed in Table 1 in terms of the 

intersection delay. Meanwhile, the BATCH and ZONE perform worse than those with 

variable acceleration rate over each trajectory segment in terms of the intersection delay, 
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indicating the variable acceleration rate improve the solutions to the trajectory optimization 

problem under reservation-based control. The DB8 and DB20 performs better than the 

BATCH and ZONE under low traffic demand conditions, 300 and 600 veh/h/ln, with an 

average delay 3.3 s/veh. However, the performances of DB8 and DB20 deteriorate sharply 

from 900 veh/h/ln and reach to 140 and 160 s/veh delay respectively, indicating the rule-

based control policy cannot adapt to the high traffic demand condition but perform better 

at low traffic demand condition. Overall, the BATCHV and ZONEV compete against 

others under any traffic condition, whereas the BATCH and ZONE perform worse than the 

formers but keep the same performances under all traffic demand condition, in addition, 

the DB8 and DB20 performs better under low traffic demand condition than high traffic 

demand condition. The BATCHV performs the best and DB8 performs the worst 

throughout all traffic demands in terms of average intersection delay 

 

Figure 6 Average intersection delay under different traffic demand and different 

control strategies 
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4.5.4 Sensitivity analysis 

After evaluating the stability and efficiency of this simulation and formulation through 

trajectory diagrams, average intersection delay was compared from 300 to 1800 veh/hr/ln 

traffic demand for BATCH, BATCHV, ZONE, ZONEV, DB8 and DB20 under different 

vehicle length 10 to 18 feet with an interval of 2 feet.  

As shown in Fig. 7, the average intersection delay is annotated with different colors. First 

of all, the delay is worst in DB8 and the delay is best in BATCHV. In Fig.7 (a), the delay 

is highly related with the traffic demand under the DB8, similarly under DB 20 in Fig.7 

(b). Under DB8, the delay ranges from 3.3 to 169 s/veh while the traffic demand is 

increasing. Under DB20, the delay is a bit better than DB8, ranging from 3.3 to 151 s/veh. 

Each scenario is not too much sensitive to the vehicle length. However, as mentioned in 

Section 4.3, the vehicle length also effects the arrival speed and headway gap, and the 

sensitivity between the delay and vehicle length is therefore eliminated. 

As shown in Fig.7 (c) and (d), the BATCHV competes over the ZONEV under short 

vehicle length scenarios. For each scenario, the relationship between the delay and traffic 

demand is insignificant because the capacity for the intersection under TSIT formulation 

is not reached, and the intersection capacity of BATCHV is larger than 14400 veh/h in total, 

and that of ZONEV is larger than 7200 veh/h in total. The average delay of BATCHV 

ranges from 1.8 to 2.3 s/veh and that of ZONEV ranges from 2 to 2.3 s/veh under different 

scenarios of vehicle length. 

As shown in Fig.7 (e) and (f), the delay is worse than that under variable acceleration rate 

formulation. The delay of BATCH ranges from 6.5 to 7.5 s/veh and that of ZONE ranges 

from 7.2 to 7.5 s/veh under different scenarios of vehicle length. Both strategy is sensitive 
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to the variation of vehicle length but not to the traffic demand. However, since the delay is 

increasing from variable to constant acceleration rate formulation, the latter performs 

worse than the former even though the intersection capacity is not reached. 

Overall, the average intersection delay is highly effected by some parameters, including 

the length of optimization range, traffic demands, intersection width, vehicle length, arrival 

speed and vehicle dynamics. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 7 Sensitivity analyses under different traffic demands and different vehicle 

length of (a) DB8, (b) DB20, (c) BATCHV, (d) ZONEV, (e) BATCH and (f) ZONE
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CHAPTER 5. AN OPTIMAL CONTROL FRAMEWORK 

5.1 Notations 

Before introducing the optimal framework and modelling method, the sets, decision 

variables including control, state and binary variables, and parameters are defined in Table 

4. The units of each variable and parameter are also listed. 

Table 4 Notations of the optimal framework 

Sets 

𝑃 Approaches of the intersection 

𝐿 Lanes of each approach 

𝐼 Vehicles on each lane of each approach 

𝐶 Cells within the intersection 

𝑂 Number of cells ahead of vehicles 

Decision variables 

𝑎𝑡,𝑝,𝑙,𝑖 
Acceleration or deceleration rate at time 𝑡  of vehicle (batch) 𝑖  on lane 𝑙  of 

approach 𝑝, 𝑚/𝑠2  

𝑡𝑝,𝑙,𝑖
𝑖𝑛  

Entry time into the communication range of vehicle (batch) 𝑖  on lane 𝑙  of 

approach⁡𝑝, 𝑠 

𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡  

Upper bound of the end time instant of the optimization cycle of vehicle 

(batch) 𝑖 on lane 𝑙 of approach 𝑝, 𝑠 
𝑥𝑡,𝑝,𝑙,𝑖 Travel distance at time 𝑡 of vehicle (batch) 𝑖 on lane 𝑙 of approach 𝑝, 𝑚 

𝑣𝑡,𝑝,𝑙,𝑖 Travel speed at time 𝑡 of vehicle (batch) 𝑖 on lane 𝑙 of approach⁡𝑝, 𝑘𝑚/ℎ 

𝑏𝑡,𝑝,𝑙,𝑖,𝑐
1  

Binary variable to determine if the head of the vehicle (batch) has crossed the 

lower bound (front boundary) of cell 𝑐 at time 𝑡 

𝑏𝑡,𝑝,𝑙,𝑖,𝑐
2  

Binary variable to determine if the rear of the vehicle (batch) has crossed the 

upper bound (rear boundary) of cell 𝑐 at time 𝑡 

𝜑𝑡,𝑝,𝑙,𝑖,𝑐 
Binary variable to determine if the vehicle (batch) occupies the cell 𝑐 at time 

𝑡 

𝜑𝑡,𝑝,𝑙,𝑖,𝑐
𝑠  

Binary variable that keeps the occupation status at cell 𝑐 of vehicle (batch) 𝑖 
on lane 𝑙 of approach 𝑝 of any finished optimization cycles 

𝛿𝑡,𝑝,𝑙,𝑖 
Binary variable to determine if the vehicle (batch) is not cleared by the 

intersection at time 𝑡 
Parameters 

𝑋 Upper bound of travel distance, 𝑚 

𝑣𝑚𝑎𝑥 Upper bound of travel speed,⁡𝑘𝑚/ℎ 

𝑎𝑚𝑖𝑛 Lower bound of deceleration rate (negative value), 𝑚/𝑠2 
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𝑎𝑚𝑎𝑥 Upper bound of acceleration rate (positive value), 𝑚/𝑠2 

𝑛 Batch number 

ℓ Zone range, 𝑚 

𝑖𝑛𝑡𝑣 Optimization interval, 𝑠 

𝑑𝑝,𝑙,𝑖,𝑐
𝑈,𝑜

 
Position of the upper bound of 𝑜𝑡ℎ cell 𝑐 ahead of vehicle (batch) 𝑖on lane 𝑙 of 

approach 𝑝 

𝑑𝑝,𝑙,𝑖,𝑐
𝐿,𝑜

 
Position of the lower bound of 𝑜𝑡ℎ cell 𝑐 ahead of vehicle (batch) 𝑖on lane 𝑙 of 

approach 𝑝 

𝐷 Communication range, 𝑚 

𝑔 Length of a square cell, 𝑚 

𝑚 Infinite small positive value 

𝑀 Infinite big positive value 

𝑣𝑒ℎ𝐿 Length of a vehicle, 𝑚 

𝜗 Bounds of variation of acceleration or deceleration along with time, 𝑚/𝑠2 

𝑥0 
Initial position of vehicle (batch) 𝑖  on lane 𝑙  of approach 𝑝  entering the 

communication range, 𝑚 

𝑣0 
Initial speed of vehicle (batch) 𝑖  on lane 𝑙  of approach 𝑝  entering the 

communication range, 𝑘𝑚/ℎ 

𝑏𝑜𝑟 
Distance of a vehicle’s (batch’s) rear to be totally cleared by the intersection, 

𝑚 

 

5.2 Problem Description 

In a reservation-based intersection where all vehicles are CAVs, i.e., the penetration rate 

of CAVs is 100%, trajectory, arrival time and arrival speed of CAVs can be controlled by 

a central controller as shown in Figure 8.
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Figure 8 The reservation-based intersection control system 

The intersection efficiency depends on the control methods of trajectory, arrival time and 

arrival speed of CAVs. There are mainly four categories in terms of controlling CAVs to 

arrive at the intersection as shown in Figure 9. 

  

(a) (Ma and Li, 2021) 
(b) (Rios-Torres and Malikopoulos, 

2016) 
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(c) (Au and Stone, 2010) (d) (Lee et al., 2013) 

 

Figure 9 Various control methods at a reservation-based intersection 

The trajectory of CAVs can be planned based on a numerical solution of an optimization 

as in Figure 9 (a), or solved via a function over time based on control theory as in Figure 9 

(b), or planned by an analytical solution as in Figure 9 (c) or solved via a continuous 

function over time as in Figure 9 (d). As opposed to Figure 9 (d), first three methods model 

a trajectory as a piecewise function over time. Furthermore, arrival speeds of CAVs are 

modelled as a variable as in Figure 9 (a) and (d) and as a constant as in Figure 9 (b) and 

(c). The arrival speed can be modelled dependently or independently of arrival time of each 

CAV. However, when delay occurs, the arrival speed may be decreased if it is modelled as 

a variable, such as in Figure 9 (d) or Malikopoulos et al. (2018). The decrease of the arrival 

speed of CAVs then leads to the decrease of the intersection efficiency, such as throughput. 

The relationship between the arrival time and arrival speed is not investigated yet in terms 

of the intersection efficiency. 

Furthermore, the arrival time also depends on the planning methods of trajectory and 

arrival speed. If the arrival speed is increasing, the minimum of arrival time at the 

intersection then can be decreased (Xu et al., 2018a; Yu et al., 2019). In addition, it is 
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basically to optimize the passing order or arrival time for each CAV such that the 

intersection efficiency is optimized (Ma and Li, 2022b; Pei et al., 2019; Zhang et al., 2022). 

Therefore, how to model the arrival time and speed simultaneously such that the 

intersection efficiency reaches a maximum is also not analyzed yet. 

Overall, in order to define the optimal control framework, the relationship among trajectory, 

arrival speed and arrival time is investigated followingly in terms of optimizing the 

intersection efficiency. 

Before introducing the theoretical analysis and numerical modeling, some assumptions are 

given as follows in the context of the optimal control framework for the reservation-based 

intersection. 

1. Vehicle-to-everything communication latency is not considered; 

2. Vehicle-to-everything communication is reliable and protected from cyber-

physical attacks; 

3. Road surface condition is not considered; 

4. It is assumed the reservation-based intersection is undersaturated during theoretical 

proof; and 

5. Vehicle-to-pedestrian communication is not considered. 

5.3 Theoretical Definition on the Optimal Control Framework 

5.3.1 Analysis on the relationship among trajectory, arrival time and arrival speed 

A trajectory modelling problem is generalized as follows with constraints of arrival speed 

and arrival time of each CAV. 

Lemma 5.1 (Feasibility of a trajectory modeling problem). Given a trajectory modeling 

problem 𝑱(∙) with the following constraints, 𝑱(∙) is feasible. 
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{
 
 
 
 

 
 
 
 
𝑣(𝑡𝑝,𝑙,𝑖

𝑖𝑛 ) = 𝑣0

∫ 𝑣(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑝,𝑙,𝑖
𝑖𝑛

= 𝐷

𝑣0 +∫ 𝑎(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑝,𝑙,𝑖
𝑖𝑛

= 𝑣(𝑡𝑓) ≤ 𝑣𝑓

0 ≤ 𝑣(𝑡) ≤ 𝑣𝑚𝑎𝑥
𝑎𝑚𝑖𝑛 ≤ 𝑎(𝑡) ≤ 𝑎𝑚𝑎𝑥

 (20) 

Proof. It is feasible to find a solution of 𝑱(∙) in terms of the control variable 𝑎(𝑡) as long 

as the above constraints have been met, where 𝑎(𝑡) and 𝑣(𝑡) are acceleration rate and 

speed of a CAV at time instant 𝑡, and 𝑡𝑓 and 𝑣𝑓 are assigned arrival time and maximum 

arrival speed of a CAV at the intersection.   ∎ 

Proposition 5.1. Assume 𝑱(∙)  is feasible when 𝑎(𝑡) = 𝑓1(𝑡)  is a continuous function, 

𝑣(𝑡𝑓) = 𝑣0 + ∫ 𝑎(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑝,𝑙,𝑖
𝑖𝑛 . 

Proof. The proposition proves itself.   ∎ 

Remark 5.1. Based on Proposition 5.1, since 𝑎(𝑡), 𝑡𝑝,𝑙,𝑖
𝑖𝑛  and 𝑣0 are given, 𝑣(𝑡𝑓) depends 

on 𝑡𝑓 when 𝑎(𝑡) = 𝑓1(𝑡) is a continuous function. 

Example 5.1. Based on Proposition 5.1, since 𝐷 = 𝑣0∆𝑡 +
𝑎𝑐∆𝑡2

2
, where 𝑎(𝑡) = 𝑓1(𝑡) =

𝑎𝑐 , 𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑡𝑓] and ∆𝑡 = 𝑡𝑓 − 𝑡𝑝,𝑙,𝑖

𝑖𝑛 , then 𝑎𝑐 =
2(𝐷−𝑣0∆𝑡)

∆𝑡2
 and 𝑣(𝑡𝑓) = 𝑣0 +

2(𝐷−𝑣0∆𝑡)

∆𝑡2
𝑡𝑓 . 

It can be seen that 𝑣(𝑡𝑓) depends on 𝑡𝑓 when 𝑎(𝑡) = 𝑓1(𝑡) is a continuous function. 

Proposition 5.2. Assume 𝑱(∙) is feasible when 𝑎(𝑡) = 𝑓2(𝑡) is a piecewise function, 𝑡𝑓 ≥

𝑡𝑓,𝑚𝑖𝑛 = 𝑓3(𝑣𝑓). 

Proof. When 𝑎(𝑡) = 𝑓2(𝑡) is a piecewise function, 
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𝑡𝑓,𝑚𝑖𝑛 = 𝑓3(𝑣𝑓)

=

{
 
 

 
 

𝑣𝑖 − 𝑣𝑜
𝑎𝑚𝑎𝑥

−
𝑣𝑖 − 𝑣𝑓

𝑎𝑚𝑖𝑛
𝑖𝑓⁡
𝑣𝑚𝑎𝑥

2 − 𝑣0
2

2𝑎𝑚𝑎𝑥
−
𝑣𝑚𝑎𝑥

2 − 𝑣𝑓
2

2𝑎𝑚𝑖𝑛
> 𝐷

𝑣𝑚𝑎𝑥 − 𝑣𝑜
𝑎𝑚𝑎𝑥

−
𝑣𝑚𝑎𝑥 − 𝑣𝑓

𝑎𝑚𝑖𝑛
+
𝐷 −

𝑣𝑚𝑎𝑥
2 − 𝑣0

2

2𝑎𝑚𝑎𝑥
+
𝑣𝑚𝑎𝑥

2 − 𝑣𝑓
2

2𝑎𝑚𝑖𝑛
𝑣𝑚𝑎𝑥

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(21) 

where 𝑣𝑖 is an intermediate value that can be referred to Yu et al. (2018).  ∎ 

Remark 5.2. Based on Proposition 5.2, it can be seen that 𝑡𝑓 depends on 𝑣𝑓, and 𝑣(𝑡𝑓) is 

independent of 𝑡𝑓 when 𝑎(𝑡) = 𝑓2(𝑡) is a piecewise function. In such case, 𝑣(𝑡𝑓) = 𝑣𝑓. 

Example 5.2. Assume at a reservation-based intersection where 𝑱(∙) has the parameters as 

in Table 5, 𝑡𝑓,𝑚𝑖𝑛  can be calculated as in Figure 10, where 𝑡𝑓
′  denotes the minimum 

achievable arrival time of Example 1 if 𝑱(∙) is feasible. It can be seen from Figure 10 that 

regardless of the given arrival time of a CAV, the arrival speed keeps unchanged when 

𝑎(𝑡) = 𝑓2(𝑡)  is a piecewise function. However, 𝑣(𝑡𝑓)  decreases as 𝑡𝑓  increases when 

𝑎(𝑡) = 𝑓1(𝑡)  is a continuous function, in addition, if 𝑡𝑓 < 𝑡𝑓
′ , 𝑱(∙)  is infeasible under 

Example 5.1. 

      Table 5 Initial settings at a reservation-based intersection 

𝑫(𝒎) 𝒗𝟎(𝒌𝒎/𝒉) 𝒕𝒑,𝒍,𝒊
𝒊𝒏 (𝒔) 𝒂𝒎𝒂𝒙(𝒎/𝒔

𝟐) 𝒗𝒎𝒂𝒙(𝒌𝒎/𝒉) 𝒗𝒇(𝒌𝒎/𝒉) 

182.88 21.85 0 3.05 65.84 65.84 
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Figure 10 The relationship between arrival speed and arrival time 

5.3.2 Analysis on the reservation-based intersection efficiency 

As analyzed above, arrival speed can be either dependent or independent of arrival time 

based on continuous or piecewise trajectory modelling methods. Furthermore, in terms of 

the intersection efficiency, such as capacity or delay, scheduling of arrival times and 

controlling of arrival speeds of CAVs are essential factors. The intersection efficiency is 

respectively modelled by considering the scheduling and quantified based on queue theory 

via considering arrival speeds  as follows. 

Lemma 5.2. The optimal solution to the intersection efficiency can be approximated via 

greedy algorithm. 

Proof. To achieve the optimal intersection efficiency, such as capacity or delay, it is 

essentially to optimize passing orders of CAVs approaching to the intersection (Ma and Li, 

2022b; Zhang et al., 2022). In terms of optimizing the passing order, greedy algorithm can 

be used to approximate the optimal solution (Besa Vial et al., 2016).   ∎ 

Remark 5.3. First-come-first-serve (FCFS) strategy assigns passing orders of CAVs based 

on their arrival times at the beginning of a communication range. Under FCFS, the earlier 
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time a CAV arrives at, the earlier time the CAV crosses through the intersection. Therefore, 

FCFS is a greedy algorithm of approximating the optimal intersection efficiency. 

Proposition 5.3. The average service time 𝐸(𝑆)  of a CAV at a reservation-based 

intersection under FCFS strategy is 𝑦𝑑 − (𝑦𝑑 − 𝑦𝑠)∑ (𝑃𝑗)
2

𝑗∈𝐽 . 

Proof. The detailed proof process can be referred to Yu et al. (2018), where 𝑦𝑑 denotes the 

safety crossing gap between two vehicles from conflicting approaches, 𝑦𝑠 measures the 

saturation headway between two vehicles from a same approach, 𝐽  denotes a set of 

approaches, 𝑃𝑗 =
𝜆𝑗

∑ 𝜆𝑗′𝑗′∈𝐽

 denotes the probability of a CAV crossing the reservation-based 

intersection from approach 𝑗 ∈ 𝐽 , 𝜆𝑗  denotes an average arrival rate of CAVs from 

approach 𝑗, and 𝜆𝑗 > 0(𝑣𝑒ℎ/𝑠) conforms to Poisson distribution.   ∎ 

Remark 5.4. The 𝐸(𝑆) in Proposition 5.3 is derived based on an M/G/1 queue system 

(Ross, 2014), where the intersection capacity and delay can be further derived based on the 

average service time. 

The arrival speed is assumed as a constant and independent of the average service time in 

Proposition 5.3. However, 𝑦𝑑 depends on the arrival speed of each CAV. To analyze the 

effect of the arrival speed of CAVs on the intersection efficiency, the arrival speed is 

introduced as a variable and the average service time is redefined as follows. 

Corollary 5.1. The average service time (s) of a CAV is 

 𝐸(𝑆) =
𝐿 + 𝑙 + 𝜀

𝑣𝑓
− (
𝐿 + 𝑙 + 𝜀

𝑣𝑓
− 𝑦𝑠)∑ (𝑃𝑗)

2

𝑗∈𝐽
 (22) 

when 𝑣𝑓 is introduced as a variable under the M/G/1 queue system. 

Proof. Based on Proposition 5.3, 𝑦𝑑 is a variable when 𝑣𝑓 is introduced as a variable in 

𝑱(∙), and 𝑦𝑑 =
𝐿+𝑙+𝜀

𝑣𝑓
, where 𝐿 denote an intersection length, 𝑙 denotes an average CAV 
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length, and 𝜀 denotes a safety buffer length. The larger the 𝑣𝑓 of a CAV is, the shorter the 

𝑦𝑑 is.   ∎ 

Furthermore, the capacity 𝐶 of the reservation-based intersection can be followingly based 

on Corollary 5.1. 

Corollary 5.2. The intersection capacity (veh/h) is 

 𝐶 =
3600𝑣𝑓

𝐿 + 𝑙 + 𝜀 − (𝐿 + 𝑙 + 𝜀 − 𝑦𝑠𝑣𝑓)∑ (𝑃𝑗)2𝑗∈𝐽
 (23) 

when 𝑣𝑓 is introduced as a variable under the M/G/1 queue system. 

Proof. 

 

𝐶 =
3600

𝑦𝑑 − (𝑦𝑑 − 𝑦𝑠) ∑ (𝑃𝑗)2𝑗∈𝐽

=
3600

𝐿 + 𝑙 + 𝜀
𝑣𝑓

− (
𝐿 + 𝑙 + 𝜀
𝑣𝑓

− 𝑦𝑠)∑ (𝑃𝑗)2𝑗∈𝐽

=
3600𝑣𝑓

𝐿 + 𝑙 + 𝜀 − (𝐿 + 𝑙 + 𝜀 − 𝑦𝑠𝑣𝑓) ∑ (𝑃𝑗)2𝑗∈𝐽
 

(24) 

∎ 

Proposition 5.4. The intersection delay 𝐷 (s/veh) is 

 
𝜆𝐸[𝑆2]

2(1 − 𝜆𝐸[𝑆])
 (25) 

under the M/G/1 queue system. 

Proof. The average intersection delay is derived based on Pollaczek–Khinchine formula 

(Ross, 2014), where 𝜆 = ∑ 𝜆𝑗𝑗∈𝐽 , 𝐸[𝑆2] denotes the mean of the square of 𝑆, and 𝑆 denotes 

a service time of a CAV spending to cross the intersection.    ∎ 

Remark 5.5. 𝐸[𝑆2]  cannot be calculated directly if the service time of each CAV is 

different; however, based on Proposition 5.2, the arrival speed of every CAV can be given 
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independently of 𝑡𝑓 , i.e., 𝑣(𝑡𝑓)  of each CAV can be equal. Therefore, the average 

intersection delay can be further derived based on the arrival speed as follows. 

Corollary 5.3. The intersection delay 𝐷 (s/veh) is 

 𝐷 =
𝜆(𝐿 + 𝑙)2

2(𝑣𝑓
2 − 𝜆𝑣𝑓[𝐿 + 𝑙 + 𝜀 − (𝐿 + 𝑙 + 𝜀 − 𝑦𝑠𝑣𝑓) ∑ (𝑃𝑗)2𝑗∈𝐽 ])

 (26) 

when 𝑣𝑓 is introduced as a variable under the M/G/1 queue system. 

Proof. Since 𝑣(𝑡𝑓) = 𝑣𝑓  for each CAV in 𝑱(∙) based on Proposition 5.2, 𝐸[𝑆2] = 𝑆2 . 

Therefore, we have 

 

𝐷 =
𝜆𝐸[𝑆2]

2(1 − 𝜆𝐸[𝑆])
=

𝜆𝑆2

2(1 − 𝜆𝐸[𝑆])

=

𝜆 (
𝐿 + 𝑙
𝑣𝑓

)
2

2 (1 − 𝜆 [
𝐿 + 𝑙 + 𝜀
𝑣𝑓

− (
𝐿 + 𝑙 + 𝜀
𝑣𝑓

− 𝑦𝑠)∑ (𝑃𝑗)
2

𝑗∈𝐽 ])

=
𝜆(𝐿 + 𝑙)2

2(𝑣𝑓
2 − 𝜆𝑣𝑓[𝐿 + 𝑙 + 𝜀 − (𝐿 + 𝑙 + 𝜀 − 𝑦𝑠𝑣𝑓) ∑ (𝑃𝑗)2𝑗∈𝐽 ])

 

(27) 

where 𝑆 =
𝐿+𝑙

𝑣𝑓
.   ∎ 

𝑣𝑓 is given as the maximum allowable crossing speed at the intersection for each CAV in 

𝑱(∙). It is validated that the larger the 𝑣𝑓 is, the more efficient the intersection is based on 

Little’s Law (Au and Stone, 2010). However, when the arrival rates from different 

approaches are unbalanced, crossing gaps from major roads are created for accommodating 

vehicles from minor roads (Au et al., 2011; Tachet et al., 2016). Under such unbalanced 

traffic, whether arrival speeds of vehicles from minor roads should be larger or lower than 

vehicles from major roads is not investigated thoroughly in terms of optimizing the 
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intersection efficiency. Based on Corollary 5.2 & 5.3, an example is given followingly to 

analyze the effect of arrival speeds from different approaches on the intersection efficiency. 

Example 5.3. Without loss of generosity, a reservation-based intersection with two 

conflicting approaches is given, where 𝐿 + 𝑙 = 27.43⁡𝑚, 𝜀 = 9.14⁡𝑚, and 𝑦𝑠 = 1⁡𝑠 , in 

addition, 𝑣𝑓 = 65.84⁡km/h . The arrival rates of each approach and corresponding 

∑ (𝑃𝑗)
2

𝑗∈𝐽  are given in Table 6. The intersection capacity and average delay are given in 

Figure 11. Note that under each scenario listed in Table 6. 𝜆𝐸[𝑆] < 1  so that the 

intersection is under-saturated. 

            Table 6 Arrival rates of a unbalanced intersection 

𝝀𝒋𝟏 (veh/h) 1000 1000 1000 1000 1000 1000 

𝝀𝒋𝟐 (veh/h) 0 150 300 450 600 750 

∑ (𝑷𝒋)
𝟐

𝒋∈𝑱   1 0.77 0.64 0.57 0.53 0.51 

 

  
(a) (b) 

Figure 11 Capacity and delay analysis under a unbalanced intersection 

Remark 5.6. It can be seen from Figure 11 that under a unbalanced traffic scenario, e.g., 

∑ (𝑃𝑗)
2

𝑗∈𝐽 = 0.77 , the larger the arrival speed of both approaches is, the more the 

intersection capacity is, in addition, under such scenario, the average delay increases from 

0.59 s/veh to 1.51 s/veh while the arrival speed decreases from 65.82 km/h to 43.88 km/h, 
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i.e., the intersection efficiency has a positive relationship with the arrival speed from both 

approaches when 𝜆𝐸[𝑆] < 1. The same pattern is also found under a balanced traffic 

scenario when ∑ (𝑃𝑗)
2

𝑗∈𝐽 = 0.51. It can be concluded that the larger the arrival speed is for 

both approaches, the more efficient the intersection is under a balanced or unbalanced 

intersection. 

5.3.3 Discussion on the optimal framework 

To maximize the reservation-based intersection efficiency, it is analytically proven that the 

larger the arrival speed is, the more efficient the intersection is regardless of that arrival 

rates from conflicting approaches are balanced or unbalanced based on Corollary 5.2 & 

5.3. To achieve a maximum allowable arrival speed, trajectory of each CAV should be 

controlled in a piecewise manner based on Proposition 5.2, where the arrival speed is 

independent of the assigned arrival time. Overall, a theoretical definition on the optimal 

control framework is given as follows. 

Proposition 5.5. The optimal control framework for a reservation-based intersection in 

terms of intersection efficiency can be defined as: 

1. 𝑎(𝑡) = 𝑓(𝑡) is a piecewise function in 𝑱(∙). 

2. 𝑣(𝑡𝑓) = 𝑣𝑓 for each CAV in 𝑱(∙). 

3. 𝑣(𝑡𝑓) is modelled independently of 𝑡𝑓 in 𝑱(∙). 

Proof. Proposition 5.1 & 5.2 and Corollary 5.1 & 5.2 & 5.3 prove this as above.    ∎ 

5.4 Numerical Modelling on the Optimal Control Framework 

Based on the theoretical definition on the optimal control framework, the framework is 

modelled via an MILP as follows to further validate the optimality in terms of the 

intersection efficiency. Specifically, the optimality of the proposed framework is validated 
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by comparing different modelling methods of trajectory, arrival time and speed. The 

modelling methods consist of the continuous and piecewise trajectory control, based on 

which arrival speed can be either modelled dependently or independently of arrival time. 

Furthermore, the arrival speed is modelled as a variable rather than a constant such that 

whether 𝑣(𝑡𝑓) of each CAV should equal 𝑣𝑓 can be tested in terms of achieving the optimal 

intersection efficiency under various traffic scenarios. 

The numerical modelling is given as follows starting with basic environment constraints of 

the optimal control framework. Control variables include the acceleration/deceleration rate 

over time and the state variables include the travel distance and speed of a CAV over time. 

Besides, the travel distance is measured from the start of the communication range, denoted 

as 0, to the upper bound where a vehicle can travel, X, to the downstream of the intersection. 

The lower and upper bound of the control variable respectively defines the admissible 

deceleration rate 𝑎𝑚𝑖𝑛  and acceleration rate 𝑎𝑚𝑎𝑥 . Note here that 𝑡𝑝,𝑙,𝑖
𝑖𝑛  and 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡  

respectively indicates the entry time that a CAV enters the start of the communication range 

and the time instant that the vehicle leaves off of the downstream of the intersection for the 

vehicle 𝑖 from lane 𝑙 of approach⁡𝑝. Every CAV would have different 𝑡𝑝,𝑙,𝑖
𝑖𝑛  and 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡 . 

 

{
 
 

 
 
0 ≤ 𝑥𝑡,𝑝,𝑙,𝑖 ≤ 𝑋

0 ≤ 𝑣𝑡,𝑝,𝑙,𝑖 ≤ 𝑣𝑚𝑎𝑥
𝑎𝑚𝑖𝑛 ≤ 𝑎𝑡,𝑝,𝑙,𝑖 ≤ 𝑎𝑚𝑎𝑥

∀𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡], 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼

 (28) 

Within the numerical modelling, the simulation time is discretized over simulation time 𝑡 

and the total number of segments equals (𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡 − 𝑡𝑝,𝑙,𝑖

𝑖𝑛 )/𝑡 . The control variable, 

acceleration rate, is optimized over every segment such that 𝑎(𝑡) = 𝑓(𝑡) is a piecewise 

function in 𝑱(∙). In addition, the length of each segment is varied since the state and the 
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control variables are varied either. Specifically, the variation between the control variable 

between time 𝑡 and 𝑡 − 1 of each trajectory segment is constrained by a parameter 𝜗 in 

order to avoid sharp changes in the acceleration rate. 

 

{
 
 

 
 
𝑎𝑡,𝑝,𝑙,𝑖 − 𝑎𝑡−1,𝑝,𝑙,𝑖 ≤ 𝜗

𝑎𝑡,𝑝,𝑙,𝑖 − 𝑎𝑡−1,𝑝,𝑙,𝑖 ≥ −𝜗

∀𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 + 1, 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]

𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼

 (29) 

For validation purpose, 𝑎(𝑡) = 𝑓(𝑡) as a continuous function in 𝑱(∙) is also numerically 

modelled. The continuous trajectory modelling method is formulated in the following 

equation by making 𝑎𝑡,𝑝,𝑙,𝑖 equal its first acceleration rate until the CAV is cleared by the 

intersection. Note that 𝑎
𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑝,𝑙,𝑖

 would vary among different CAVs. 

 {
𝑎𝑡,𝑝,𝑙,𝑖 = 𝑎𝑡𝑝,𝑙,𝑖

𝑖𝑛 ,𝑝,𝑙,𝑖

∀𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡], 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼
 (30) 

To accommodate both continuous and piecewise trajectory modelling in the MILP, vehicle 

dynamic equations are linearized from ∫ 𝑣(𝑡)𝑑𝑡
𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡

𝑡𝑝,𝑙,𝑖
𝑖𝑛 = 𝑋 and updated over time recursively. 

The travel distance at time instant 𝑡 is updated from the position at instant 𝑡 − 1 based on 

vehicle dynamic equations as follows. 

 {
𝑥𝑡,𝑝,𝑙,𝑖 = 𝑥𝑡−1,𝑝,𝑙,𝑖 + 𝑖𝑛𝑡𝑣 × 𝑣𝑡−1,𝑝,𝑙,𝑖 + 0.5 × 𝑖𝑛𝑡𝑣

2 × 𝑎𝑡−1,𝑝,𝑙,𝑖

∀𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 + 1, 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡], 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼
 (31) 

Similarly, the speed is also linearly formulated with the acceleration rate via the recursive 

procedure. In addition, the planning method is recursive during [𝑡𝑝,𝑙,𝑖
𝑖𝑛 + 1, 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡] along each 

sub-segment, and the values of travel distance and speed at time 𝑡𝑝,𝑙,𝑖
𝑖𝑛  are initialized with 

given values as follows. 
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 {
𝑣𝑡,𝑝,𝑙,𝑖 = 𝑣𝑡−1,𝑝,𝑙,𝑖 + 𝑖𝑛𝑡𝑣 × 𝑎𝑡−1,𝑝,𝑙,𝑖

∀𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 + 1, 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡], 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼
 (32) 

 𝑥𝑡,𝑝,𝑙,𝑖 = 𝑥0⁡⁡⁡∀𝑡 = 𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼 (33) 

 𝑣𝑡,𝑝,𝑙,𝑖 = 𝑣0⁡⁡⁡∀𝑡 = 𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼 (3) 

As shown in Figure 8, only through movements are considered from each lane of each 

approach, therefore the conflict-free crossing and coordination are reduced from two-

dimension to one-dimension formulation. It is sufficient to only consider the through 

movements for validating the optimal control framework proposed in this paper. As 

indicated in the following equations, only one-dimension position of the head of each 

vehicle is needed, thus, the time complexity is simplified. Specifically, the front and rear 

boundary position of each cell within the intersection area are pre-measured and stored 

without consuming online computational resources, i.e., 𝑑𝑝,𝑙,𝑖,𝑐
𝑈,𝑜

 and 𝑑𝑝,𝑙,𝑖,𝑐
𝐿,𝑜

 are defined 

symmetrically same for each vehicle from any lanes or approaches. The variable 𝑐 ∈ 𝐶 is 

used to determine which specific cell within the intersection is ahead of a CAV and whether 

there are conflicts on certain cell 𝑐  occupying by vehicles from same or conflicting 

approaches, then the central controller identifies if conflicts occur at certain cells based on 

the information⁡𝑝, 𝑙, 𝑖 and⁡𝑐. 

 {
𝑑𝑝,𝑙,𝑖,𝑐
𝑈,𝑜 = 𝐷 + 𝑔 × 𝑜

∀𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑜 ∈ 𝑂
 (35) 

 
{
𝑑𝑝,𝑙,𝑖,𝑐
𝐿,𝑜 = 𝐷 + 𝑔 × (𝑜 − 1)

∀𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑜 ∈ 𝑂
 

(36) 

Since the 𝑑𝑝,𝑙,𝑖,𝑐
𝑈,𝑜

 and 𝑑𝑝,𝑙,𝑖,𝑐
𝐿,𝑜

 are defined for each vehicle from any lanes or approaches, once 

any parts of a vehicle occupy a cell at time 𝑡, no matter completely or only partially, 𝑏𝑡,𝑝,𝑙,𝑖,𝑐
1  

and 𝑏𝑡,𝑝,𝑙,𝑖,𝑐
2  both equal 1. The shape of the vehicle is measured only by 𝑣𝑒ℎ𝐿  in one-
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dimension coordinate system. The following equation indicates that a vehicle could occupy 

one or more cells at the same time. 

 

{
  
 

  
 
𝑥𝑡,𝑝,𝑙,𝑖 ≥ 𝑑𝑝,𝑙,𝑖

𝐿,𝑜 +𝑚 −𝑀 × (1 − 𝑏𝑡,𝑝,𝑙,𝑖,𝑐
1 )

𝑥𝑡,𝑝,𝑙,𝑖 ≤ 𝑑𝑝,𝑙,𝑖
𝐿,𝑜 +𝑀 × 𝑏𝑡,𝑝,𝑙,𝑖,𝑐

1

𝑑𝑝,𝑙,𝑖
𝑈,𝑜 ≥ 𝑥𝑡,𝑝,𝑙,𝑖 − 𝑣𝑒ℎ𝐿 + 𝑚 −𝑀 × (1 − 𝑏𝑡,𝑝,𝑙,𝑖,𝑐

2 )

𝑑𝑝,𝑙,𝑖
𝑈,𝑜 ≤ 𝑥𝑡,𝑝,𝑙,𝑖 − 𝑣𝑒ℎ𝐿 +𝑀 × 𝑏𝑡,𝑝,𝑙,𝑖,𝑐

2

∀𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡], 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑜 ∈ 𝑂

 (37) 

If 𝑏𝑡,𝑝,𝑙,𝑖,𝑐
1  and 𝑏𝑡,𝑝,𝑙,𝑖,𝑐

2  both equal 1 at the same time 𝑡 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 equals 1; otherwise 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 

equals 0. The if-else condition is linearized as follows. 

 {

𝑏𝑡,𝑝,𝑙,𝑖,𝑐
1 + 𝑏𝑡,𝑝,𝑙,𝑖,𝑐

2 − 2 × 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 ≤ 1

𝑏𝑡,𝑝,𝑙,𝑖,𝑐
1 + 𝑏𝑡,𝑝,𝑙,𝑖,𝑐

2 − 2 × 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 ≥ 0

∀𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡], 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶

 (38) 

In addition to identifying the value of 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 at time 𝑡 for vehicle (𝑝, 𝑙, 𝑖) at cell⁡𝑐, any 

pre-stored values of 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 denoted as 𝜑𝑡,𝑝,𝑙,𝑖,𝑐
𝑠  at time 𝑡 for other vehicles (𝑝′, 𝑙′, 𝑖′) at the 

same cell 𝑐  are used to identify if conflicts occur between vehicles in the current 

optimization cycle and vehicles in last optimization cycles. More specifically, 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 

ensures no conflicts occur in the current optimization cycle and 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 + 𝜑𝑡,𝑝,𝑙,𝑖,𝑐
𝑠  ensures 

no conflicts occur over all optimization cycles. It is noted that 𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡] rather than 

𝑡 ∈ [𝑡𝑝0,𝑙0,𝑖0
𝑖𝑛 , 𝑡

𝑝𝑓,𝑙𝑓,𝑖𝑓
𝑜𝑢𝑡 ] simplifies the time complexity of the computation, where (𝑝0, 𝑙0, 𝑖0) 

denotes the first vehicle entering in all cycles and (𝑝𝑓 , 𝑙𝑓 , 𝑖𝑓) denotes the last vehicle 

leaving in all cycles. 

 {
∑∑∑(

𝑖∈𝐼𝑙∈𝐿𝑝∈𝑃

𝜑𝑡,𝑝,𝑙,𝑖,𝑐 + 𝜑𝑡,𝑝,𝑙,𝑖,𝑐
𝑠 ) ≤ 1

∀𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡], 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶

 (39) 
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As indicated earlier, 𝑣(𝑡𝑓) is modelled independently of 𝑡𝑓 in 𝑱(∙) and is a variable, so is 

the 𝑡𝑓. Different from the 𝑡𝑓, the 𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡  is first estimated with a value as long as the vehicle 

can reach the downstream of the intersection, i.e., cross the intersection. In case the 𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡  is 

not enough for the vehicle to cross the intersection, 𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡  will be added by a buffer to re-

initialize the recursive update and find the solution of the optimization problem. The buffer 

is introduced in Algorithm 5.1. 

To further measure arrival and travel times of a CAV in an optimization cycle, an 

alternative method of measuring them is to add another decision variable 𝛿𝑡,𝑝,𝑙,𝑖  that 

measures the current position of a vehicle. The variable is an integer variable and 

accumulates as long as the vehicle has not crossed the intersection. 

 {

𝑏𝑜𝑟 ≥ 𝑥𝑡,𝑝,𝑙,𝑖 − 𝑣𝑒ℎ𝐿 + 𝑚 −𝑀 × (1 − 𝛿𝑡,𝑝,𝑙,𝑖)

𝑏𝑜𝑟 ≤ 𝑥𝑡,𝑝,𝑙,𝑖 − 𝑣𝑒ℎ𝐿 +𝑀 × 𝛿𝑡,𝑝,𝑙,𝑖

∀𝑡 ∈ [𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡], 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼

 (40) 

While accumulating the integer variable 𝛿𝑡,𝑝,𝑙,𝑖 , the total travel time is finalized once a 

vehicle crosses the intersection. Note here that maybe 𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡 ⁡− 𝑡𝑝,𝑙,𝑖

𝑖𝑛 ≥ ∑ 𝛿𝑡,𝑝,𝑙,𝑖𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]
. 

The smaller  𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡  is, the less the computational demand requires. The objective of the 

optimization problem is to minimize the maximum travel time of any vehicles in the current 

optimization cycle. 

 
𝑚𝑖𝑛𝑚𝑎𝑥 ∑ 𝛿𝑡,𝑝,𝑙,𝑖⁡⁡⁡∀𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼

𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]

 
(41) 

To validate the proposed optimal control framework, both piecewise and continuous 

trajectory modellings are formulated separately. The problem 𝑱1 of piecewise trajectory 
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modelling and problem 𝑱2 of continuous trajectory modelling are respectively shown as 

follows. 

 

𝑱1:⁡⁡𝑚𝑖𝑛𝑚𝑎𝑥⁡⁡ ∑ 𝛿𝑡,𝑝,𝑙,𝑖

𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]

𝑠. 𝑡. :⁡⁡(28), (29), (31) − (41)
∀𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼

 (42) 

 𝑱2:⁡⁡𝑚𝑖𝑛𝑚𝑎𝑥⁡⁡ ∑ 𝛿𝑡,𝑝,𝑙,𝑖

𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]

𝑠. 𝑡. :⁡⁡(28), (30), (31) − (41)
∀𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼

 

(43) 

Furthermore, the recursive trajectory optimization algorithm for numerically modelling the 

optimal control framework is illustrated in Algorithm 5.1. 

                   Algorithm 5.1. Recursive trajectory optimization algorithm 

 // Set up a total simulation time 𝑇 

1. Begin 

2. New 𝜑𝑡,𝑝,𝑙,𝑖,𝑐
𝑠  

3.    While  𝑡𝑝,𝑙,𝑖
𝑖𝑛 ≤ 𝑇 Do 

4. New Model with objective 𝐽1, ⁡𝐽2 

5. New Data with 𝑃, 𝐿, 𝐶, 𝑂, 𝑑𝑝,𝑙,𝑖,𝑐
𝑈,𝑜 ⁡𝑎𝑛𝑑⁡𝑑𝑝,𝑙,𝑖,𝑐

𝐿,𝑜
 

6. Let 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 = 𝜑𝑡,𝑝,𝑙,𝑖,𝑐
𝑠  

7. Generate Model 

8.       If Model is solved, Then 

9. Get solution ∑ 𝛿𝑡,𝑝,𝑙,𝑖𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]
 

10. If ∑ 𝛿𝑡,𝑝,𝑙,𝑖𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]
< 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡 − 𝑡𝑝,𝑙,𝑖
𝑖𝑛  Then 

11. Add 𝜑𝑡,𝑝,𝑙,𝑖,𝑐 to 𝜑𝑡,𝑝,𝑙,𝑖,𝑐
𝑠  

12. New stochastic 𝑡𝑝,𝑙,𝑖
𝑖𝑛  

13. Let 𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡 =⁡ 𝑡𝑝,𝑙,𝑖

𝑖𝑛 +⁡∑ 𝛿𝑡,𝑝,𝑙,𝑖𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]
+ 10 

14.          Else If Then 

15.              Let 𝑡𝑝,𝑙,𝑖
𝑜𝑢𝑡 =⁡ 𝑡𝑝,𝑙,𝑖

𝑖𝑛 +⁡∑ 𝛿𝑡,𝑝,𝑙,𝑖𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]
+ 10 

16.              Let 𝑡𝑝,𝑙,𝑖
𝑖𝑛 =⁡ 𝑡𝑝,𝑙,𝑖

𝑖𝑛  

17.          End If 

18.       Else If Then 

19.          Get Model conflicts 
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20.          Break 

21.       End If 

22.    End While 

23. End 

 

Note here that in Step 10 in Algorithm 5.1, when ∑ 𝛿𝑡,𝑝,𝑙,𝑖𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]
< 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡 − 𝑡𝑝,𝑙,𝑖
𝑖𝑛 , 

vehicle (𝑝, 𝑙, 𝑖) is totally cleared by the intersection boundary, and the optimal solution is 

∑ 𝛿𝑡,𝑝,𝑙,𝑖𝑡∈[𝑡𝑝,𝑙,𝑖
𝑖𝑛 ,𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡]
 for vehicle (𝑝, 𝑙, 𝑖); otherwise 𝑡𝑝,𝑙,𝑖

𝑜𝑢𝑡  will be updated in Step 15 and the 

trajectory will be re-optimized in the current cycle via Step 16, where 10 in Step 13 and 15 

means 1 second because 1 second is discretized to 10 simulation steps. Overall, the 

trajectory can be optimized recursively to get the optimal solutions with respect to any 

vehicles in the current optimization cycle. Therefore, the optimal control framework can 

be validated in terms of the intersection efficiency. 

5.5 Results and Discussions 

5.5.1 Numerical simulation 

The simulation platform for the numerical modelling operates on a desktop computer with 

an Intel i3-3220 CPU with 3.3 GHz and 8 GB memory. The platform is coded in the off-

the-shelf optimization package CPLEX Studio IDE 12.10.0. 

Two test scenarios BATCH and ZONE are respectively created in the simulation 

environment. The BATCH strategy is performed for a scenario where a group of vehicles 

with given numbers coming from each lane of an approach is optimized as a platoon of 

vehicle. The ZONE strategy is otherwise performed for a scenario where a group of 

vehicles inside a dynamic zone that is created for each approach is optimized together as a 

platoon of vehicle. Note here that BATCH processes the platoon per lane, whereas ZONE 

processes the platoon per approach. 



63 

 

Moreover, the batch number 𝑛 under BATCH can group six vehicles at most and two 

vehicles at least per lane, and the zone range ℓ under ZONE can extend from 11 to 33 

meters at each approach. Length of a vehicle is 3.66 meters and safety headway distance is 

1.8 meters. The two strategies are illustrated in Figure 12. Again, the BATCH strategy is 

applied per lane whereas the ZONE is applied per approach, i.e., at each optimization cycle, 

the batch strategy can process at most eight platoons from all approaches while the zone 

can process at most four groups of vehicles from all approaches. 

  
(a) (b) 

Figure 12 Various test scenarios for optimal control framework 

 

Table 7 Values of formulation parameters 

Parameter Value Parameter Value 

𝑷 4 𝐷 183 

𝑳 2 𝑔 3 

𝑪 16 𝑣𝑒ℎ𝐿 5.5 

𝑶 4 𝜗 0.9 

𝑿 305 𝑥0 0 

𝒗𝒎𝒂𝒙 66 𝑣0 22 

𝒂𝒎𝒂𝒙 3 𝑏𝑜𝑟 200 

𝒂𝒎𝒊𝒏 -3 𝑖𝑛𝑡𝑣 0.1 
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As indicated in Table 7, the values of 𝑃, 𝐿, 𝐶 and 𝑂 define the size of the sets and other 

values only define parameters themselves. In addition, in the sensitivity analysis, the batch 

number 𝑛 ranges from 2 to 6 with an interval 1, and the zone range ℓ extends from 11 to 

33 meters with an interval 5.5 meters. For comparative analyses and simplified notations 

in the following sections, let BATCH-V4 denotes piecewise trajectory modelling with 

batch number 4, BATCH-C6 denotes continuous trajectory modelling with batch number 

6, ZONE-V5 denotes piecewise trajectory modelling with zone range 27 meters, and 

ZONE-C2 denotes continuous trajectory modelling with zone range 11 meters. For each 

scenario, it runs 10 minutes on CPLEX multiple times with random seeds. The arrival times 

of each vehicle in the scenarios are stochastically generated. 

5.5.2 Trajectory modelling analysis 

The trajectory modelling methods under various traffic scenarios are shown as follows. 

Note that only the trajectory under 1800 veh/h/ln is shown for a worst-case/highest-demand 

analysis. Therefore, the overall intersection demand is up to 14400 veh/h. The trajectories 

of piecewise trajectory modelling with BATCH strategy are shown in Figure 13, where 

trajectories from conflicting approaches 1 and 4 are illustrated respectively by arrows. 
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Figure 13 The trajectories of piecewise trajectory modelling with BATCH strategy 

To have a closer view on the trajectories, trajectories generated between time 440 to 460 

seconds and travel distance 274 to 366 meters are amplified for approach 4. From that, the 

trajectory becomes loose to dense, indicating an increasing trend in speed. It is also shown 

that all the trajectories have the same and smooth pattern without queue propagation or 

oscillation, indicating piecewise trajectory modelling under BATCH strategy can 

efficiently coordinate all the vehicles until they cross the intersection. 

The trajectories of continuous trajectory modelling with BATCH strategy are shown in 

Figure 14. From Figure 14, no conflicts are identified either. However, some vehicles 

cannot reach the maximal design speed when arriving at the intersection. 
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Figure 14 The trajectories of continuous trajectory modelling with BATCH strategy 

The trajectories of piecewise trajectory modelling with ZONE strategy are shown in Figure 

15. Similarly, no conflicts are identified in the ZONE strategy. But during time 440 to 460 

seconds and between travel distance 274 to 366 meters, the trajectories become dense to 

loose, indicating a decreasing trend in speed. Similarly, as in Figure 13, a smooth trajectory 

pattern is again identified for piecewise trajectory modelling with ZONE strategy. In this 

case, the zone range is set to 33 meters, which can process at most six vehicles per lane per 

approach. 



67 

 

 

Figure 15 The trajectories of piecewise trajectory modelling with ZONE strategy 

The trajectories of continuous trajectory modelling with ZONE strategy are shown in 

Figure 16. Similarly as Figure 14, some vehicle cannot reach the maximal design speed 

when arriving at the intersection. 

 

Figure 16 The trajectories of continuous trajectory modelling with ZONE strategy 
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Overall, under various traffic scenarios, 𝑣(𝑡𝑓) = 𝑣𝑓 for each CAV when 𝑣(𝑡𝑓) is modelled 

independently of 𝑡𝑓  in 𝑱(∙) , i.e., 𝑎(𝑡) = 𝑓(𝑡)  is a piecewise function in 𝑱(∙) ; whereas 

𝑣(𝑡𝑓) < 𝑣𝑓  for each CAV when 𝑎(𝑡) = 𝑓(𝑡)  is a continuous function in 𝑱(∙) . It is 

concluded from the numerical simulations that the variable 𝑣(𝑡𝑓) of each CAV should 

equal 𝑣𝑓 so that the optimal intersection efficiency can be achieved, i.e., Corollary 5.3 is 

validated. 

5.5.3 Sensitivity analysis for intersection delay 

The sensitivity analysis for intersection delay under different traffic demands and different 

batch numbers is shown in Figure 17 for evaluating the performance of piecewise 

trajectory modelling over continuous modelling. 

  
(a) (b) 

Figure 17 Average intersection delay (s/veh) under BATCH strategy and different 

demands: (a) piecewise modelling; and (b) continuous modelling 

As shown in Figure 17, the average intersection delay of continuous trajectory modelling 

is higher than that of piecewise trajectory modelling under all levels of demands and batch 

numbers, indicating the higher efficiency of piecewise trajectory modelling for intersection 

coordination based on Proposition 5.1 & 5.2 and Corollary 5.3. In addition, the average 

intersection delay is increasing while the batch number is increasing under all levels of 
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demands, which is because the average service time is increasing based on Corollary 5.1 

& 5.3. Besides, no significant variation of average intersection delay between different 

traffic demands is identified for both continuous and piecewise trajectory modelling, which 

is because the intersection demand is lower than the capacity. Overall, the average delay 

of piecewise trajectory modelling is substantially lower than that of continuous modelling. 

The sensitivity analysis for intersection delay under different traffic demands and different 

zone ranges is shown in Figure 18 for evaluating the performance of piecewise trajectory 

modelling over continuous modelling. 

  

(a) (b) 

Figure 18 Average intersection delay (s/veh) under ZONE strategy and different 

demands: (a) piecewise modelling; and (b) continuous modelling 

As shown in Figure 18, the average intersection delay of continuous modelling is higher 

than that of piecewise trajectory modelling under all levels of demands and batch numbers, 

indicating the higher efficiency of piecewise trajectory modelling for intersection 

coordination.  

Similarly, the average intersection delay is increasing while the zone range is increasing 

under all levels of demands. Besides, no significant variation of average intersection delay 

between different traffic demands is identified for both continuous and piecewise trajectory 
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modelling. However, the average delay under ZONE strategy is slightly higher than that 

under BATCH strategy in terms of all levels of demands. This is probably because vehicles 

grouped by ZONE require to occupy at least two cells versus at least one cell required by 

vehicles grouped by BATCH at each simulation step, such that BATCH has more and 

better solutions based on available intersection resources, i.e., cells within the intersection. 

This is also reflected from Figure 13 to Figure 16 where BATCH has larger average travel 

speed than ZONE. Overall, the average delay of piecewise trajectory modelling is again 

substantially lower than that of the continuous modelling under the ZONE strategy. 

5.5.4 Sensitivity analysis for intersection throughput 

The average intersection approach throughput for each control scenario is shown in Figure 

19 for evaluating the performance of piecewise trajectory modelling over continuous 

modelling under all levels of demands. As shown in Figure 19, the average intersection 

approach throughput of piecewise trajectory modelling is higher than that of continuous 

modelling under all traffic demands and all batch numbers/zone ranges scenarios. The 

numbers in the bottom indicate the mean of the average intersection approach throughput 

of piecewise and continuous modelling. For Figure 19 (a) or (b), the upper surface with 

positive numbers indicates the difference with the mean value of piecewise modelling, and 

the lower surface with negative numbers indicates the difference of continuous modelling. 
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(a) (b) 

Figure 19 Difference with average approach throughput (veh/h) for piecewise 

(upper surface) and continuous (lower surface) modelling under: (a) BATCH 

strategy; and (b) ZONE strategy 

As indicated earlier, as shown in Figure 14 and Figure 16, the arrival speed of some 

vehicles under continuous modelling cannot reach the maximal design speed, and the 

average service time of the intersection under continuous modelling is larger than 

piecewise modelling based on Corollary 5.1. Furthermore, the capacity of the intersection 

under continuous modelling is lower than piecewise modelling based on Corollary 5.2. 

Therefore, the throughput under continuous modelling is lower than that under piecewise 

modelling across all test scenarios. 
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CHAPTER 6. AN OPTIMAL SCHEDULING MECHANISM 

6.1 Problem Description 

6.1.1 Problem definition 

In a reservation-based intersection, passing orders of each CAV coming from different 

approaches can be scheduled by a central controller. The central controller assigns arrival 

time at the intersection to each CAV within a certain communication range in order to 

achieve a global optimal solution in terms of the intersection efficiency, e.g., overall travel 

time or average delay. The reservation-based intersection that is investigated in this paper 

is shown in Figure 20. 

 

Figure 20 Scheduling of CAVs crossing a reservation-based intersection
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This kind of scheduling problem is always modelled by a mixed integer linear 

programming (MILP) approach due to binary decisions of resolving each conflict between 

conflicting CAVs within the intersection area. Because of the branching strategy utilized 

by state-of-art solvers, such as Cplex or Gurobi, it takes exponential growth time to solve 

such problem with respect to the number of conflicts between conflicting CAVs at worst 

case. 

Overall, the objective of this problem is to find the global optimal solution in terms of 

minimizing the maximal arrival time of all CAVs at the intersection, in the meantime, to 

develop a customized algorithm that can reduce the time complexity of the scheduling 

problem. 

In the context of the scheduling problem, some assumptions are made for theoretical 

derivation and numerical modeling as follows. 

1. A platoon of CAVs is more efficient than an orderly mix of conflicting CAVs 

crossing the intersection in terms of intersection throughput or delay; 

2. A platoon of CAVs is consisted of at least 2 CAVs; 

3. An initial speed for all CAVs from entering the communication range is same; and 

4. No lane-changing and overtaking are allowed along the communication range. 

6.1.2 Decision variables 

Under the reservation-based control, four decision variables should be defined regarding 

the scheduling problem. The definitions of the decision variables are used to derive 

important properties. 

Definition 6.1. Decision variable, crossing time, 𝜶, is used to measure a length of time 

that a CAV requires to cross the intersection. 
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The crossing time that a CAV requires to cross a cell is illustrated in Figure 21. Based on 

the Definition 6.1, an assumption of the cell within the intersection is given as follows. 

 

 

Figure 21 Illustration of decision variables in a space-time diagram 

Assumption 6.1. Any one cell within the reservation-based intersection is a square with a 

fixed size. 

Based on the Assumption 6.1, it is given that the crossing time for each CAV is same as 

long as an arrival speed of CAVs is same and the speed is fixed during crossing. The arrival 

speed will be discussed later. Furthermore, second decision variable related to the cell is 

defined as follows. 

Definition 6.2. Decision variable, safety buffer, 𝒃, is used to measure a minimum safety 

time gap for one of two conflicting CAVs arriving at the intersection after the other crossed 

the intersection. 

The safety buffer is illustrated in Figure 21. Additionally, third decision variable related 

to the vehicle is defined as follows. 
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Definition 6.3. Decision variable, saturation headway, 𝒔 , is used to measure the 

minimum headway that can be achieved between a leading and following vehicle from a 

same lane. 

Assumption 6.2. The saturation headway is same for all pairs of leading and following 

vehicles from any lane of any approach. 

Definition 6.4. Decision variable, crossing gap, 𝒄 ≔ 𝜶 − 𝒔, is used to measure a time 

difference between the crossing time and the saturation headway. 

Note that the crossing gap may be larger than, equal to, or less than zero. The crossing gap 

is illustrated in Figure 21. 

Assumption 6.3. 𝜶 > 𝒄 > −𝒃. 

Remark 6.1. The Assumption 6.3 is a weak assumption in that a platoon of CAVs is more 

efficient than an orderly mix of conflicting CAVs crossing the intersection in terms of 

intersection throughput or delay (Lioris et al., 2017; Tachet et al., 2016; Yu et al., 2019; 

Zhou and Zhu, 2021). 

6.1.3 Notations 

All the sets, variables and parameters that will be used to model the scheduling problem 

and derive the problem properties are listed below. Note here that specific functions, 

denoted as symbols in Table 8, are detailed as well. 

Table 8 Sets, variables, parameters and symbols 

Sets  

𝔸  All vehicles from all approaches 

𝑳  Levels of the tree of a scheduling problem, 𝐿 = {𝑙|𝑙 ∈ ℤ0+} 
𝒁𝒍  Nodes at level 𝑙, 𝑍𝑙 = {𝑖|𝑖 ∈ ℤ

+} 
ℝ  All nodes of a tree, ℝ = {𝑟𝑙,𝑖|⁡𝑖 ∈ 𝑍𝑙 , 𝑙 ∈ 𝐿} 
𝑷  Sets of approaches, 𝑃 = {𝑝} 

𝑸𝒑  
Sets of vehicles from approach 𝑝 at a current optimization cycle, 𝑄𝑝 =

{𝑞} 
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𝑸̅𝒑  
Sets of vehicles from approach 𝑝′ at a current optimization cycle, 𝑄̅𝑝 =

{𝑞′|𝑝 ≠ 𝑝′} 
ℚ  A platoon of vehicles from an approach 

ℂ  Sets of all conflict pairs 

ℂ𝒓𝒍,𝒊  A first conflict pair at node 𝑟𝑙,𝑖, ℂ𝑟𝑙,𝑖 ∈ ℂ 

𝕆𝒓𝒍,𝒊  Sets of vehicles that have been ordered at node 𝑟𝑙,𝑖 

Variables  

𝒕𝒒  Assigned arrival time at intersection of vehicle 𝑞 

𝒕𝒒
𝒓𝒍,𝒊  

Assigned arrival time at intersection of current vehicle 𝑞 ordered at node 

𝑟𝑙,𝑖 

𝑻  
Minimum of maximal arrival time of all vehicles at a current optimization 

cycle 

𝑻𝒓𝒍,𝒊  Minimum of maximal arrival time of all unordered vehicles at node 𝑟𝑙,𝑖 

𝜹𝒓𝒍,𝒊  
Binary variable for determining a passing order of a conflict pair ℂ𝑟𝑙,𝑖 at 

node 𝑟𝑙,𝑖 

Parameters  

𝒕𝒒
𝒎  Minimum arrival time at intersection of vehicle 𝑞 in terms of itself 

𝒕𝒐  
Arrival time at the intersection of a last passing vehicle 𝑜  at last 

optimization cycle 

𝒕𝒒
𝒎,𝒄

  
Updated minimum arrival time at intersection of vehicle 𝑞  after 

considering 𝑡𝑜 at a current optimization cycle 

𝝉  

A difference of assigned arrival time between a first vehicle and a last 

vehicle from a same approach in a partially ordered set of an optimal 

solution under a given node 

Symbols  

≺  
Relation between two vehicles, where 𝑞 ≺ 𝜑  denotes vehicle 𝜑 

immediately follows vehicle 𝑞 from a same approach 

⊂  
Relation between a child node and a parent node, where 𝑟𝑙+1,𝑖 ⊂ 𝑟𝑙,𝑖 

denotes node 𝑟𝑙+1,𝑖 is a child of node 𝑟𝑙,𝑖 

⊥  
Relation between a vehicle and a node, where 𝑞 ⊥ 𝑟𝑙,𝑖 denotes the vehicle 

𝑞 is the current vehicle ordered at node 𝑟𝑙,𝑖 

<>  
Counting vehicles in order from a same approach, where 〈𝑞, 𝜑〉 denotes 

the number of vehicles from 𝑞 to 𝜑 in order including 𝜑 but not 𝑞 

 

6.2 Problem Properties 

6.2.1 Optimal substructure 

If the original MILP is regarded as a root node 𝑟0,1 of a tree of nodes ℝ, solving the MILP 

is then regarded as adding child nodes {𝑟𝑙,𝑖|𝑙 ∈ 𝐿, 𝑖 ∈ 𝑍𝑙} of each level 𝑙 to ℝ, then 
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 ℝ ≔ {𝑟0,1, 𝑟1,1, 𝑟1,2, … , 𝑟max⁡(𝐿),𝑍max⁡(𝐿)} = {𝑟𝑙,𝑖|⁡𝑖 ∈ 𝑍𝑙 , 𝑙 ∈ 𝐿} (44) 

Each child 𝑟𝑙,𝑖 denotes a subproblem of the root node 𝑟0,1 with a binary variable 𝛿𝑟𝑙,𝑖 fixed 

as 0 or 1. 

 𝛿𝑟𝑙,𝑖 ≔ {
1 𝑖𝑓⁡𝑞 ⊥ 𝑟𝑙,𝑖
0 𝑖𝑓⁡𝑞′ ⊥ 𝑟𝑙,𝑖

 (45) 

where 𝑟𝑙,𝑖 ⊂ 𝑟𝑙−1,𝑖  and without loss of generality (w.l.o.g.) ℂ𝑟
𝑙−1,𝑖

= {𝑞, 𝑞′|𝑞 ∈ 𝑄𝑝, 𝑞
′ ∈

𝑄̅𝑝}. While 𝑟𝑙,𝑖 is adding to ℝ from upper levels to lower levels, passing orders of a subset 

of all approaching vehicles are fixed subsequently at node 𝑟𝑙,𝑖. When passing orders of all 

vehicles are fixed at nodes {𝑟max⁡(𝐿),𝑖|𝑖 ∈ 𝑍max⁡(𝐿)} , the global optimal solution of the 

original MILP can be found from a subset of ℝ, then this kind of problem has an optimal 

substructure (Cormen et al., 2009). Techniques of solving such problem with the optimal 

substructure include Dynamic Programming (DP) and Brand & Bound/Cut (B&B/C) 

algorithms. 

Dealing with a general scheduling problem as defined in Section 6.1.1, state-of-art solvers, 

such as Cplex, take exponential-growth time while the problem size, i.e., number of 

vehicles and binary variables, is increasing (Xu et al., 2021). The reason of that is due to a 

hybrid strong and pseudo-cost branching strategy for the binary variables utilized by 

commercial solvers (Morrison et al., 2016). Specifically, the branching strategies in general 

neglect vehicle orders in a single lane. However, by considering the vehicle or conflict 

orders of the scheduling problem, the time complexity of finding a global optimal solution 

can be thereby reduced, which is introduced in the following section. 
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6.2.2 Conflict order 

Before giving the definition of the conflict order, we first denote 𝑞(𝕊)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ as the vehicle order 

of vehicle 𝑞 in a given set 𝕊, and 1 ≤ 𝑞(𝕊)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ ≤ |𝕊|, where |∙| denotes the number of vehicles 

in a given set. 

Definition 6.5. ℂ𝑟𝑙,𝑖 ≔ {{𝑞, 𝑞′}|𝑞 ∈ {𝔸 − 𝕆𝑟𝑙,𝑖}⋂𝑄𝑝, 𝑞
′ ∈ {𝔸 − 𝕆𝑟𝑙,𝑖}⋂𝑄̅𝑝} , where 

𝑞({𝔸 − 𝕆𝑟𝑙,𝑖}⋂𝑄𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 1 and 𝑞′({𝔸 − 𝕆𝑟𝑙,𝑖}⋂𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 1. 

Remark 6.2. It is defined as above that a first conflict pair of a node 𝑟𝑙,𝑖 consists of the first 

vehicle that has not been ordered at the node from each approach in conflict. ℂ𝑟𝑙,𝑖 is also 

determined by the conflict order of vehicles based on a first-in-first-out (FIFO) rule for 

each approach. 

Since the first conflict pair of each node searches vehicles based on FIFO, the reason that 

the time complexity of the scheduling problem based on searching the conflict order can 

be reduced is given as follows. Before explaining the reason, we first define a situation 

where a solution of the scheduling problem at a node is infeasible as follows. 

 {

𝕥 ∩ 𝕥′ ≠ ∅

∀𝕥 ⊆ {[𝑡𝑞
𝑟𝑙,𝑖 , 𝑡𝑞

𝑟𝑙,𝑖 + 𝛼 + 𝑏]|𝑡1 ≤ 𝑡𝑞
𝑟𝑙,𝑖 ≤ 𝑡2}

∀𝕥′ ⊆ {[𝑡
𝑞′

𝑟
𝑙,𝑖′ , 𝑡

𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏] |𝑡1

′ ≤ 𝑡
𝑞′

𝑟
𝑙,𝑖′ ≤ 𝑡2

′ }

 (46) 

Where {𝑟𝑙,𝑖, 𝑟𝑙,𝑖′} ⊂ 𝑟𝑙−1,𝑖 , ℂ𝑟𝑙−1,𝑖
= {𝑞, 𝑞′|𝑞 ∈ 𝑄𝑝, 𝑞

′ ∈ 𝑄̅𝑝} and 𝑡1 , 𝑡2 , 𝑡1
′  and 𝑡2

′  are any 

four non-negative constants. Then if the solution at a node 𝑟𝑙−1,𝑖 is infeasible, 𝕥 ∩ 𝕥′ ≠ ∅. 

Proposition 6.1. Solutions of nodes {𝑟𝑙,𝑖|𝑙 ∈ 𝐿, 𝑖 ∈ 𝑍𝑙} are all feasible based on the conflict 

order ruled by FIFO. 

Proof. We prove this by contradiction. For any node with a conflict pair and solution 

subsets of its conflicting vehicles as shown in Eq. (46), 𝑡2 ≤ +∞ and 𝑡2
′ ≤ +∞ because of 
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the FIFO rule on each approach. Then w.l.o.g. we assume 𝑡1
′ > 𝑡𝑞

𝑟𝑙,𝑖 + 𝛼 + 𝑏, where 𝑡1 ≤

𝑡𝑞
𝑟𝑙,𝑖 ≤ 𝑡2, i.e., 𝑡1

′ > 𝑡2 + 𝛼 + 𝑏, therefore 𝕥 ∩ 𝕥′ = ∅ and solutions of nodes {𝑟𝑙,𝑖|𝑙 ∈ 𝐿, 𝑖 ∈

𝑍𝑙} are all feasible. ∎ 

Remark 6.3. As opposed to wasting computation time in process of branching to nodes 

with infeasible solutions solved by state-of-art solvers, the time complexity and 

computation time of the scheduling problem can be reduced based on Proposition 6.1 in 

which optimal solutions are found in a tightened subset of nodes that are all feasible. 

6.2.3 Overlapping subproblems 

In the process of branching from the root node of a tree, when a node is comparable with 

another node in terms of an objective function of a problem, then it is defined that the 

optimization problem has overlapping subproblems (Cormen et al., 2009). If any two nodes 

are comparable, one of them can be dominated by another, i.e., one node of them can be 

discarded in the process of branching, so can be child nodes of the node, thus the overall 

time complexity can be reduced. 

An overlapping property is first introduced followingly and can be leveraged by the 

dynamic programming algorithm. Moreover, an extension of the overlapping property is 

later introduced, which further expedites the branching process and reduces the time 

complexity. The definition of the objective function of the scheduling problem is first 

introduced as follows. 

Definition 6.6. 𝑇𝑟𝑙,𝑖 ≔ 𝑚𝑖𝑛𝑚𝑎𝑥{𝑡𝑞|𝑞 ∈ 𝔸 − 𝕆𝑟𝑙,𝑖 ≠ ∅} = {𝑡𝑞
𝑟𝑙,𝑖|𝔸 − 𝕆𝑟𝑙,𝑖 = ∅}. 

Definition 6.7. 𝑇 ≔ 𝑚𝑖𝑛𝑚𝑎𝑥{𝑡𝑞|𝑞 ∈ 𝔸} = 𝑚𝑖𝑛{𝑇𝑟𝑙,𝑖|𝑖 ∈ 𝑍𝑙 , 𝑙 ∈ 𝐿}. 
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Remark 6.4. As indicated in Definition 6.6, 𝑇𝑟𝑙,𝑖 can be classified by two scenarios: one is 

when 𝔸 −𝕆𝑟𝑙,𝑖 ≠ ∅ and the other is when 𝔸 −𝕆𝑟𝑙,𝑖 = ∅. To find 𝑇, constraints of the 

scheduling model are to be satisfied. 

Lemma 6.1. Given a scheduling problem the optimal passing order of all vehicles is 

deterministic in terms of minimizing the maximal arrival time. 

Proof. The lemma proves itself. ∎ 

Proposition 6.2. Markov Property holds when searching the optimal solution from 

subproblems of the scheduling problem. 

Proof. A problem or a decision process has Markov Property if the following equation 

holds (Howard, 1960). 

 𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛, ⋯ , 𝑋0 = 𝑥0) = 𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛) (47) 

Eq. (47) implies that future states do not depend on past states but only the present state. 

In the scheduling problem, 𝑋𝑛 can be generally denoted as a state where 𝑞 ⊥ 𝑟𝑙,𝑖. If 𝑋𝑛 =

𝑥𝑛, then the vehicle 𝑞 is assigned an arrival time 𝑡𝑞
𝑟
𝑙,𝑖 at the state 𝑋𝑛, i.e., 𝑥𝑛 = 𝑡𝑞

𝑟
𝑙,𝑖. 𝑋𝑛+1 

denotes the future state based on the state 𝑋𝑛 , and 𝑥𝑛+1 = 𝑡𝜑
𝑟𝑙+1,𝑖 , where the vehicle 𝜑 

immediately follows the vehicle 𝑞 crossing the intersection and 𝑟𝑙+1,𝑖 ⊂ 𝑟𝑙,𝑖. W.l.o.g., we 

denote 𝑥𝑛+1 = 𝑓(𝑥𝑛)  in the scheduling problem, where 𝑓(∙)  denotes a state transition 

function, and  

 𝑡𝜑
𝑟𝑙+1,𝑖 = 𝑓 (𝑡𝑞

𝑟
𝑙,𝑖) ≔ max⁡ {𝑡𝑞

𝑟
𝑙,𝑖 + ℱ(𝑞, 𝜑), 𝑡𝜑

𝑚} (48) 

where w.l.o.g. 𝑡𝜑
𝑚 = 𝑡𝜑

𝑚,𝑐
 in this case, 𝑡𝜑

𝑚,𝑐
 is defined in Eq. (69) and ℱ(∙) is denoted as 

follows as a state decision function. 
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 ℱ(𝑞, 𝜑) ≔ {
𝛼 + 𝑏 𝑖𝑓⁡𝜑 ∈ 𝑄̅𝑝, 𝑞 ∈ 𝑄𝑝

𝛼 − 𝑐 𝑖𝑓⁡{𝜑, 𝑞} ∈ 𝑄𝑝⁡𝑜𝑟⁡𝑄̅𝑝
 (49) 

It is shown as in Eq. (48) and (49) that 𝑡𝜑
𝑟𝑙+1,𝑖 depends on the only one variable 𝑡𝑞

𝑟
𝑙,𝑖, in other 

words, the approach of the vehicle 𝑞 . Therefore, the Markov Property holds until the 

𝑚𝑎𝑥{𝑡𝑞|𝑞 ∈ 𝔸} is minimized. ∎ 

Note that in Eq. (48) 𝑡𝜑
𝑟𝑙+1,𝑖 ≥ 𝑓 (𝑡𝑞

𝑟
𝑙,𝑖) is valid as long as 𝑡𝜑

𝑟𝑙+1,𝑖 ≥ 𝑡𝜑
𝑚. The variant of Eq. 

(48) is used and only used in some of the following proof processes. Before introducing 

the overlapping properties, a prerequisite for the properties is given as follows, where 𝑟𝑙,𝑖 

and 𝑟𝑙,𝑖′ represent different nodes with different ID 𝑖 and 𝑖′ at a same level 𝑙. 

Corollary 6.1. If 𝕆𝑟𝑙,𝑖 = 𝕆𝑟𝑙,𝑖′
 and 𝑡𝑞

𝑟𝑙,𝑖 = 𝑡
𝑞̌

𝑟
𝑙,𝑖′ , where 𝑞 = 𝑞̌ and 𝑖 ≠ 𝑖′, then 𝑇𝑟𝑙,𝑖 = 𝑇𝑟𝑙,𝑖′

. 

Proof. Since 𝕆𝑟𝑙,𝑖 = 𝕆𝑟𝑙,𝑖′
, 𝔸 −𝕆𝑟𝑙,𝑖 = 𝔸 −𝕆𝑟𝑙,𝑖′

. In addition, since 𝑞 = 𝑞̌ , {𝑞, 𝔸 −

𝕆𝑟𝑙,𝑖} = {𝑞̌, 𝔸 − 𝕆𝑟𝑙,𝑖′
}, where 𝑞 ⊥ 𝑟𝑙,𝑖  and 𝑞̌ ⊥ 𝑟𝑙,𝑖′ . If 𝔸 −𝕆𝑟𝑙,𝑖 = 𝔸 −𝕆𝑟𝑙,𝑖′

= ∅, then 

𝑡𝑞
𝑟𝑙,𝑖 = 𝑇𝑟𝑙,𝑖 = 𝑡𝑞̌

𝑟
𝑙,𝑖′ = 𝑇𝑟

𝑙,𝑖′
; otherwise, based on Lemma 6.1, {𝑞, 𝔸 − 𝕆𝑟𝑙,𝑖}  and {𝑞̌, 𝔸 −

𝕆𝑟
𝑙,𝑖′
}  are a same scheduling problem and have the same optimal passing order 

{𝑞, 𝑞𝑛|1 ≤ 𝑛 ≤ 𝑁} in the problem, where 𝑁 = |𝔸 − 𝕆𝑟𝑙,𝑖| ≥ 1 and {𝑞, 𝑞𝑛|1 ≤ 𝑛 ≤ 𝑁} =

{𝑞, 𝔸 − 𝕆𝑟𝑙,𝑖} = {𝑞̌, 𝔸 − 𝕆𝑟𝑙,𝑖′
}. Therefore, it can be concluded that 𝑇𝑟𝑙,𝑖 = 𝑇𝑟𝑙,𝑖′

 based on 

Proposition 6.2 because 

 

𝑇𝑟𝑙,𝑖 = 𝑇𝑟𝑙,𝑖′
= 𝑚𝑖𝑛𝑚𝑎𝑥{𝑞𝑛|1 ≤ 𝑛 ≤ 𝑁} = 𝑚𝑖𝑛𝑚𝑎𝑥{𝑡𝑞1 , 𝑡𝑞2 , … , 𝑡𝑞𝑁}

= 𝑡𝑞𝑁 

(50) 

where 
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 𝑡𝑞𝑛 = {
max⁡{𝑡𝑞𝑛−1 + ℱ(𝑞𝑛−1, 𝑞𝑛), 𝑡𝑞𝑛

𝑚 } 𝑖𝑓⁡𝑛 ≥ 2

max⁡{⁡𝑡𝑞
𝑟𝑙,𝑖 + ℱ(𝑞, 𝑞𝑛), 𝑡𝑞𝑛

𝑚 } 𝑖𝑓⁡𝑛 = 1
 (51) 

∎ 

Remark 6.5. Corollary 6.1 implies that the precondition where two nodes with different 

ID at a same level are overlapping or comparable. Markov Property in Proposition 6.2 

also indicates that if and only if 𝑡𝑞
𝑟
𝑙,𝑖 is minimized, 𝑡𝜑

𝑟𝑙+1,𝑖 is minimized, where 𝑟𝑙+1,𝑖 ⊂ 𝑟𝑙,𝑖; 

in addition,  𝑇 = 𝑚𝑖𝑛{𝑡𝑞
𝑟max⁡(𝐿),𝑖|𝑞 ⊥ 𝑟max⁡(𝐿),𝑖, 𝑖 ∈ 𝑍max(𝐿)}. 

Therefore, we can have the overlapping/dominance property proven as follows. 

Theorem 6.1. If and only if 𝕆𝑟𝑙,𝑖 = 𝕆𝑟𝑙,𝑖′
 and 𝑡𝑞

𝑟𝑙,𝑖 ≥ 𝑡
𝑞̌

𝑟
𝑙,𝑖′ , where 𝑞 = 𝑞̌ and 𝑖 ≠ 𝑖′, node 

𝑟𝑙,𝑖 can be dominated by node 𝑟𝑙,𝑖′. 

Proof. Since 𝑡𝑞
𝑟𝑙,𝑖 ≥ 𝑡

𝑞̌

𝑟
𝑙,𝑖′ , we have 𝑇𝑟𝑙,𝑖 ≥ 𝑇𝑟𝑙,𝑖′

 based on Corollary 6.1 because 

 {
𝑇𝑟𝑙,𝑖 = 𝑚𝑖𝑛𝑚𝑎𝑥{𝑞𝑛|1 ≤ 𝑛 ≤ 𝑁} = 𝑚𝑖𝑛𝑚𝑎𝑥{𝑡𝑞1 , 𝑡𝑞2 , … , 𝑡𝑞𝑁} = 𝑡𝑞𝑁

𝑇𝑟
𝑙,𝑖′
= 𝑚𝑖𝑛𝑚𝑎𝑥{𝑞𝑛|1 ≤ 𝑛 ≤ 𝑁} = 𝑚𝑖𝑛𝑚𝑎𝑥{𝑡𝑞1

′ , 𝑡𝑞2
′ , … , 𝑡𝑞𝑁

′ } = 𝑡𝑞𝑁
′  (52) 

where if 𝑛 ≥ 2 

 

𝑡𝑞𝑛 = max{𝑡𝑞𝑛−1 + ℱ(𝑞𝑛−1, 𝑞𝑛), 𝑡𝑞𝑛
𝑚 } ≥ 𝑡𝑞𝑛

′

= max{𝑡𝑞𝑛−1 + ℱ(𝑞𝑛−1, 𝑞𝑛), 𝑡𝑞𝑛
𝑚 } 

(53) 

and if 𝑛 = 1 

 𝑡𝑞𝑛 = max{𝑡𝑞
𝑟𝑙,𝑖 + ℱ(𝑞, 𝑞𝑛), 𝑡𝑞𝑛

𝑚 } ≥ 𝑡𝑞𝑛
′ = max⁡ {𝑡

𝑞̌

𝑟
𝑙,𝑖′ + ℱ(𝑞̌, 𝑞𝑛), 𝑡𝑞𝑛

𝑚 } (54) 

where {𝑞, 𝑞𝑛|1 ≤ 𝑛 ≤ 𝑁} = {𝑞, 𝔸 − 𝕆𝑟𝑙,𝑖} = {𝑞̌, 𝔸 − 𝕆𝑟𝑙,𝑖′
}  and 𝑁 = |𝔸 − 𝕆𝑟𝑙,𝑖| ≥ 1 . In 

addition, if 𝔸 − 𝕆𝑟𝑙,𝑖 = 𝔸 −𝕆𝑟𝑙,𝑖′
= ∅ , then 𝑡𝑞

𝑟𝑙,𝑖 = 𝑇𝑟𝑙,𝑖 ≥ 𝑇𝑟𝑙,𝑖′
= 𝑡

𝑞̌

𝑟
𝑙,𝑖′ . Therefore, it is 
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concluded that node 𝑟𝑙,𝑖 can be dominated/discarded by node 𝑟𝑙,𝑖′ based on Proposition 6.2 

and Definition 6.7 because 𝑡𝑞
𝑟𝑙,𝑖 ≥ 𝑡

𝑞̌

𝑟
𝑙,𝑖′  and 𝑇𝑟𝑙,𝑖 ≥ 𝑇𝑟𝑙,𝑖′

. ∎ 

Based on Theorem 6.1, an extension of the dominance property can be derived to further 

expedite the branching process. Before giving the property, a fundamental rule for 

comparing any two nodes is given as follows. 

Lemma 6.2. Given any two nodes 𝑟𝑙,𝑖 and 𝑟𝑙,𝑖′ , where 𝑖 ≠ 𝑖′, if any one solution under node 

𝑟𝑙,𝑖′ is less than or equal to 𝑇𝑟𝑙,𝑖, node 𝑟𝑙,𝑖 can be dominated by node 𝑟𝑙,𝑖′. 

Proof. It is easy to prove that if we have one solution under node 𝑟𝑙,𝑖′ denoted as Υ𝑟
𝑙,𝑖′

, then 

𝑇𝑟
𝑙,𝑖′
≤ Υ𝑟

𝑙,𝑖′
≤ 𝑇𝑟𝑙,𝑖. Based on Definition 6.7, node 𝑟𝑙,𝑖 can be dominated/discarded by node 

𝑟𝑙,𝑖′. ∎ 

Theorem 6.2. If and only if 𝕆𝑟𝑙,𝑖\𝑞 = 𝕆𝑟𝑙,𝑖′
\𝑞′ and 𝑡𝑞

𝑟𝑙,𝑖 − 𝑡
𝑞′

𝑟
𝑙,𝑖′ ≥ 𝑏 + 𝑐, where 𝑞 ∈ 𝑄𝑝, 

𝑞′ ∈ 𝑄̅𝑝 and 𝑖 ≠ 𝑖′, node 𝑟𝑙,𝑖 can be dominated by node 𝑟𝑙,𝑖′ . 

Proof. It can be determined that the optimal passing order under node 𝑟𝑙,𝑖 has a form as 

 {𝑞, … , 𝑞𝑛⏟    
|𝓆|≥1

, 𝑞′⏞      
𝕢

, 𝜑, …⏞

𝔸−𝕢−𝕆𝑟𝑙,𝑖\𝑞

} (55) 

where 𝔸 − 𝕢 − 𝕆𝑟𝑙,𝑖\𝑞 ≠ ∅, 𝓆 = {𝑞,… , 𝑞𝑛} ⊆ 𝑄𝑝  and |𝓆| ≥ 1, i.e., when |𝓆| = 𝑛 = 1, 

𝑞 = 𝑞𝑛. Since 𝕆𝑟𝑙,𝑖\𝑞 = 𝕆𝑟𝑙,𝑖′
\𝑞′, Eq. (55) is valid because 𝑞′ has not been ordered under 

𝑟𝑙,𝑖 at a same level 𝑙 with node 𝑟𝑙,𝑖′. We further denote 𝜏 = 𝑡𝑞𝑛 − 𝑡𝑞
𝑟𝑙,𝑖 and 𝜏 ≥ 0 based on 

Eq. (55). Then it can be given that a passing order under node 𝑟𝑙,𝑖′ has a form as 
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 {𝑞′, 𝑞, … , 𝑞𝑛⏟    
|𝓆|≥1

⏞      
𝕢′

, 𝜑̌, …⏞

𝔸−𝕢′−𝕆𝑟
𝑙,𝑖′
\𝑞′

} (56) 

where 𝔸 − 𝕢′ −𝕆𝑟
𝑙,𝑖′
\𝑞′ ≠ ∅. We let 𝜑̌ = 𝜑 and it is valid because 𝔸 − 𝕢 − 𝕆𝑟𝑙,𝑖\𝑞 =

𝔸 − 𝕢′ −𝕆𝑟
𝑙,𝑖′
\𝑞′, however, only the approach of 𝜑 is unknown. We further denote 𝜏′ =

𝑡𝑞𝑛
′ − 𝑡𝑞

𝑟𝑙+1,𝑗
 in Eq. (56), where 𝑟𝑙+1,𝑗 ⊂ 𝑟𝑙,𝑖′; we let 𝜏′ = 𝜏 and it is valid because we can 

have (in some cases 𝜏′ < 𝜏 but it does not impact the proof and conclusion) 

 {
𝑡𝑞𝑛
′ = 𝑡𝑞𝑛 𝑖𝑓⁡𝑡𝑞

𝑚 ≥ 𝑡
𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏

𝑡𝑞𝑛
′ > 𝑡𝑞𝑛 𝑖𝑓⁡𝑡𝑞

𝑚 < 𝑡
𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏

⁡⁡⁡⁡∀𝑞𝑛 ∈ 𝓆 (57) 

i.e. 

 𝜏 = 𝑡𝑞𝑛 − 𝑡𝑞
𝑟𝑙,𝑖 = 𝑡𝑞𝑛

′ − 𝑡𝑞
𝑟𝑙+1,𝑗 = 𝑡𝑞𝑛 + 𝜀 − (𝑡𝑞

𝑟𝑙,𝑖 + 𝜀)⁡⁡⁡⁡∀𝑞𝑛 ∈ 𝓆 (58) 

where 𝜀 = 𝑡𝑞
𝑟𝑙+1,𝑗 − 𝑡𝑞

𝑟𝑙,𝑖 ≥ 0 and in this case we let 𝑡𝑞𝑛
𝑚 = 𝑡𝑞𝑛

𝑚,𝑐
, ∀𝑞𝑛 ∈ 𝓆 . Furthermore, 

since 𝕢 ∪ 𝕆𝑟𝑙,𝑖\𝑞 = 𝕢
′ ∪ 𝕆𝑟

𝑙,𝑖′
\𝑞′ ≠ 𝔸 , if we know 𝑡𝜑

𝑟𝑙+|𝓆|+1,𝑔 ≥ 𝑡
𝜑̌

𝑟
𝑙+|𝓆|+1,𝑔′

, where 

𝑟𝑙+|𝓆|+1,𝑔 ⊂ 𝑟𝑙,𝑖 , 𝑟𝑙+|𝓆|+1,𝑔′ ⊂ 𝑟𝑙,𝑖′ , ∀𝑔 ∈ 𝑍𝑙+|𝓆|+1 , ∀𝑔′ ∈ 𝑍𝑙+|𝓆|+1  and 𝑔 ≠ 𝑔′ , we can 

have node 𝑟𝑙,𝑖 dominated by node 𝑟𝑙,𝑖′ based on Theorem 6.1 and Lemma 6.2. To validate 

if 𝑡𝜑
𝑟𝑙+|𝓆|+1,𝑔 ≥ 𝑡

𝜑̌

𝑟
𝑙+|𝓆|+1,𝑔′

, if {𝜑, 𝑞} ∈ 𝑄𝑝 we have as follows given the situations in Eq. (57) 

 {
𝑡𝜑
𝑟𝑙+|𝓆|+1,𝑔 = 𝑡

𝜑̌

𝑟
𝑙+|𝓆|+1,𝑔′ 𝑖𝑓⁡𝑡𝜑

𝑚 ≥ 𝑡𝑞
𝑟𝑙,𝑖 + 𝜏 + 2𝛼 + 2𝑏

𝑡𝜑
𝑟𝑙+|𝓆|+1,𝑔 > 𝑡

𝜑̌

𝑟
𝑙+|𝓆|+1,𝑔′ 𝑖𝑓⁡𝑡𝜑

𝑚 < 𝑡𝑞
𝑟𝑙,𝑖 + 𝜏 + 2𝛼 + 2𝑏

 (59) 

where 

 𝑡𝜑
𝑟𝑙+|𝓆|+1,𝑔 = 𝑚𝑎𝑥{𝑡𝑞

𝑟𝑙,𝑖 + 𝜏 + 2𝛼 + 2𝑏, 𝑡𝜑
𝑚} > 𝑡

𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏 + 𝜏 + 𝑠 (60) 

and 
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 𝑡
𝜑̌

𝑟
𝑙+|𝓆|+1,𝑔′ = 𝑚𝑎𝑥 {𝑡

𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏 + 𝜏 + 𝑠, 𝑡𝜑

𝑚} (61) 

where we let 𝑡𝜑
𝑚 = 𝑡𝜑

𝑚,𝑐
 in this case and followings. Note that Eq. (60) is valid because 𝑐 >

−𝑏 and 𝑡𝑞
𝑟𝑙,𝑖 − 𝑡

𝑞′

𝑟
𝑙,𝑖′ ≥ 𝑏 + 𝑐. If {𝜑, 𝑞′} ∈ 𝑄̅𝑝 we have 

 {
𝑡𝜑
𝑟𝑙+|𝓆|+1,𝑔 = 𝑡

𝜑̌

𝑟
𝑙+|𝓆|+1,𝑔′ 𝑖𝑓⁡𝑡𝜑

𝑚 ≥ 𝑡𝑞
𝑟𝑙,𝑖 + 𝜏 + 2𝛼 + 𝑏 − 𝑐

𝑡𝜑
𝑟𝑙+|𝓆|+1,𝑔 ≥ 𝑡

𝜑̌

𝑟
𝑙+|𝓆|+1,𝑔′ 𝑖𝑓⁡𝑡𝜑

𝑚 < 𝑡𝑞
𝑟𝑙,𝑖 + 𝜏 + 2𝛼 + 𝑏 − 𝑐

 (60) 

where 

 𝑡𝜑
𝑟𝑙+|𝓆|+1,𝑔 = 𝑚𝑎𝑥{𝑡𝑞

𝑟𝑙,𝑖 + 𝜏 + 2𝛼 + 𝑏 − 𝑐, 𝑡𝜑
𝑚} ≥ 𝑡

𝑞′

𝑟
𝑙,𝑖′ + 2𝛼 + 2𝑏 + 𝜏 (63) 

and 

 𝑡
𝜑̌

𝑟
𝑙+|𝓆|+1,𝑔′ = 𝑚𝑎𝑥 {𝑡

𝑞′

𝑟
𝑙,𝑖′ + 2𝛼 + 2𝑏 + 𝜏, 𝑡𝜑

𝑚} (64) 

Note that Eq. (63) is valid because 𝑡𝑞
𝑟𝑙,𝑖 − 𝑡

𝑞′

𝑟
𝑙,𝑖′ ≥ 𝑏 + 𝑐. Therefore, we have 𝑡𝜑

𝑟𝑙+|𝓆|+1,𝑔 ≥

𝑡
𝜑̌

𝑟
𝑙+|𝓆|+1,𝑔′

no matter which approach vehicle 𝜑 belongs to, then node 𝑟𝑙,𝑖 can be dominated 

by node 𝑟𝑙,𝑖′. 

In case the optimal passing order under node 𝑟𝑙,𝑖 has a form 𝕢 ∪ 𝕆𝑟𝑙,𝑖\𝑞 = 𝔸 and |𝓆| ≥ 1, 

then 𝕢 ∪ 𝕆𝑟𝑙,𝑖\𝑞 = 𝕢
′ ∪ 𝕆𝑟

𝑙,𝑖′
\𝑞′ = 𝔸 . We have 𝑇𝑟𝑙,𝑖 = 𝑇𝑟max⁡(𝐿),𝑢 = 𝑡𝑞′

𝑟max⁡(𝐿),𝑢
 based on 

Definition 6.6, where 𝑟max⁡(𝐿),𝑢 ⊂ 𝑟𝑙,𝑖 and 𝑡
𝑞′
𝑟max⁡(𝐿),𝑢 = 𝑡𝑞

𝑟𝑙,𝑖 + 𝜏 + 𝛼 + 𝑏. As shown in Eq. 

(56) we can have (only) one passing order under node 𝑟𝑙,𝑖′  and let 𝜏′ = 𝜏, then 𝑇𝑟
𝑙,𝑖′
=

𝑇𝑟
max⁡(𝐿),𝑢′

≤ 𝑡𝑞𝑛
𝑟
max⁡(𝐿),𝑢′

, where 𝑟max⁡(𝐿),𝑢′ ⊂ 𝑟𝑙,𝑖′ , 𝑞 = 𝑞𝑛 when |𝓆| = 1, and 𝑡𝑞𝑛
𝑟
max⁡(𝐿),𝑢′ =

𝑚𝑎𝑥 {𝑡
𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏, 𝑡𝑞

𝑚} + 𝜏. Therefore, we have 𝑇𝑟𝑙,𝑖 > 𝑇𝑟𝑙,𝑖′
 because 
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 {
𝑡𝑞
𝑚 + 𝜏 + 𝛼 + 𝑏 > 𝑡𝑞

𝑚 + 𝜏 𝑖𝑓⁡𝑡𝑞
𝑚 ≥ 𝑡

𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏

𝑡𝑞
𝑟𝑙,𝑖 + 𝜏 + 𝛼 + 𝑏 > 𝑡

𝑞′

𝑟
𝑙,𝑖′ + 𝜏 + 𝛼 + 𝑏 𝑖𝑓⁡𝑡𝑞

𝑚 < 𝑡
𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏

 (65) 

such that node 𝑟𝑙,𝑖 can be dominated by node 𝑟𝑙,𝑖′ based on Definition 6.7 and Lemma 6.2. 

Note that 𝑇𝑟
𝑙,𝑖′
< 𝑚𝑎𝑥 {𝑡

𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏, 𝑡𝑞

𝑚} + 𝜏 when 𝜏′ = 𝑡𝑞𝑛
′ − 𝑡𝑞

𝑟𝑙+1,𝑗 < 𝜏 in the optimal 

solution of node 𝑟𝑙,𝑖′ and when 𝑡𝑞
𝑚 < 𝑡

𝑞′

𝑟
𝑙,𝑖′ + 𝛼 + 𝑏 and |𝓆| > 1. 

The proof is completed. ∎ 

Remark 6.6. W.l.o.g., any two nodes are comparable as long as Theorem 6.1or Theorem 

6.2 is met, then one of them can be dominated. 

6.2.4 Optimal platooning 

In this section, a property that defines when a platoon of vehicles can be dynamically 

batched in the optimal solution of the scheduling problem is first derived based on 

Theorem 6.2. Based on the property, an optimal platooning property is further derived in 

order to reduce the time complexity of the scheduling problem. Moreover, regarding 

measuring the time complexity of the proposed algorithm, the total number of nodes in ℝ 

is analytically given with and without considering the optimal platooning property. 

Before introducing the properties, a platoon of vehicles in the scheduling problem is 

defined as follows. If vehicles {𝑞, … , 𝑞𝑛} = ℚ are a platoon, then 

 𝑡𝑞𝑛
𝑚,𝑐 − 𝑡𝑞

𝑟𝑙,𝑖 ≤ 〈𝑞, 𝑞𝑛〉(𝛼 − 𝑐) (66) 

where {𝑞, … , 𝑞𝑛} ⊆ 𝑄𝑝 , 𝑙 ≤ max(𝐿) − 1 , 𝑖 ∈ 𝑍𝑙 , 〈𝑞, 𝑞𝑛〉 ≥ 1  and 𝑡𝑞𝑛
𝑚,𝑐

 and 𝑡𝑞
𝑟𝑙,𝑖  are 

respectively defined in Eq. (69) and (48). Followingly, we give how vehicles can be 

dynamically batched in the optimal solution under a node 𝑟𝑙,𝑖. 
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Proposition 6.3. If {𝑞, … , 𝑞𝑛} = ℚ, {𝑞, … , 𝑞𝑛} must be batched as a platoon in 𝑇𝑟𝑙,𝑖, where 

𝑞 ⊥ 𝑟𝑙,𝑖. 

Proof. If ℂ𝑟
𝑙−1,𝑖

= {𝑞, 𝑞′}, then ℂ𝑟𝑙,𝑖 = {𝑞
′, 𝑞1} based on Definition 6.5, where 𝑞 ≺ 𝑞1 , 

𝑞1 ∈ ℚ , 𝑟𝑙,𝑖 ⊂ 𝑟𝑙−1,𝑖  and 𝑙 − 1 ≥ 0 . We have 𝑡
𝑞′
𝑟𝑙+1,𝑗 = 𝑚𝑎𝑥 {𝑡𝑞

𝑟𝑙,𝑖 + 𝛼 + 𝑏, 𝑡
𝑞′
𝑚,𝑐}  and 

𝑡𝑞1
𝑟
𝑙+1,𝑗′ = 𝑡𝑞

𝑟𝑙,𝑖 + 𝛼 − 𝑐 ≥ 𝑡𝑞1
𝑚,𝑐

, where 𝑟𝑙+1,𝑗 ⊂ 𝑟𝑙,𝑖 , 𝑟𝑙+1,𝑗′ ⊂ 𝑟𝑙,𝑖  and 𝑗 ≠ 𝑗′ . Because 

𝑡
𝑞′
𝑟𝑙+1,𝑗 ≥ 𝑡𝑞1

𝑟
𝑙+1,𝑗′ + 𝑏 + 𝑐, node 𝑟𝑙+1,𝑗 can be dominated by node 𝑟𝑙+1,𝑗′  based on Theorem 

6.2. For conflict pairs 

 {ℂ𝑟
𝑙′,𝑖′
} = {{𝑞′, 𝑞𝑛}|∀𝑞𝑛 ∈ ℚ\𝑞, 𝑙

′ = 𝑞𝑛(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 1 + 𝑞′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 1, 𝑖′ ∈ 𝑍𝑙′} (67) 

Theorem 6.2 always holds true such that there is only one route from level 𝑙 = 𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ +

𝑞′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 1 to level 𝑙′ = 𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 〈𝑞, 𝑞𝑛〉 + 𝑞′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 1 under node 𝑟𝑙,𝑖. In addition to Eq. 

(66), for node {𝑟𝑙,𝑖|𝑞 ⊥ 𝑟𝑙,𝑖, ℂ𝑟𝑙,𝑖 = ∅, 𝑙 = 𝑞(𝑄𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + |𝑄̅𝑝|, 𝑖 ∈ 𝑍𝑙} , {𝑞, … , 𝑞𝑛} = ℚ  is still 

batched as a platoon under node 𝑟𝑙,𝑖 by definition Eq. (66). Therefore, {𝑞, … , 𝑞𝑛} is batched 

as a platoon in 𝑇𝑟𝑙,𝑖. ∎ 

Remark 6.7. Proposition 6.3 indicates a way to dynamically batch a platoon during 

searching the optimal solution of the scheduling problem because 𝑡𝑞
𝑟𝑙,𝑖 is a variable in Eq. 

(66). However, the 𝑇𝑟𝑙,𝑖, where the ℚ is batched, is not strictly equal to 𝑇, i.e., the ℚ may 

be not batched as a platoon in 𝑇. 

We then followingly give a rigorous proof when a ℚ must be a platoon in the optimal 

solution 𝑇. A new definition of the ℚ, denoted as ℚ′, is first given as follows 

 𝑡𝑞𝑛
𝑚,𝑐 − 𝑡𝑞

𝑚,𝑐 = 〈𝑞, 𝑞𝑛〉(𝛼 − 𝑐) (68) 
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where {𝑞, … , 𝑞𝑛} = ℚ
′ ⊆ 𝑄𝑝 and 〈𝑞, 𝑞𝑛〉 ≥ 1. Further, 𝑡𝑞𝑛

𝑚,𝑐
 is defined as follows, where 

∀𝑞𝑛 ∈ 𝔸. 

 

𝑡𝑞𝑛
𝑚,𝑐

= max {
(𝑡𝑞𝑛
𝑚 , 𝑡𝑜 + 𝛼 + 𝑏 + (𝑞𝑛(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 1)(𝛼 − 𝑐)) 𝑖𝑓⁡𝑜 ∈ 𝑄̅𝑝, 𝑞𝑛 ∈ 𝑄𝑝

(𝑡𝑞𝑛
𝑚 , 𝑡𝑜 + 𝑞𝑛(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝛼 − 𝑐)) 𝑖𝑓⁡{𝑜, 𝑞𝑛} ∈ 𝑄𝑝

 

(69) 

Note that 𝑡𝑞𝑛
𝑚,𝑐 ≥ 𝑡𝑞𝑛

𝑚  because of 𝑡𝑜. 

Proposition 6.4. If {𝑞, … , 𝑞𝑛} = ℚ
′, {𝑞, … , 𝑞𝑛} must be batched as a platoon in 𝑇. 

Proof. Since 𝑡𝑞
𝑚,𝑐 ≤ 𝑡𝑞

𝑟𝑙,𝑖  and 𝑡𝑞𝑛
𝑚,𝑐 − 𝑡𝑞

𝑟𝑙,𝑖 ≤ 𝑡𝑞𝑛
𝑚,𝑐 − 𝑡𝑞

𝑚,𝑐 = 〈𝑞, 𝑞𝑛〉(𝛼 − 𝑐) = 𝑡𝑞𝑛
𝑟𝑙+〈𝑞,𝑞𝑛〉,𝑗 −

𝑡𝑞
𝑟𝑙,𝑖 , where 1 ≤ 𝑙 ≤ max(𝐿) − 1, 𝑖 ∈ 𝑍𝑙  and 〈𝑞, 𝑞𝑛〉 ≥ 1, {𝑞, … , 𝑞𝑛} = ℚ

′ is batched as a 

platoon in {𝑇𝑟𝑙,𝑖|1 ≤ 𝑙 ≤ max(𝐿) − 1, 𝑖 ∈ 𝑍𝑙} based on Proposition 6.3 and Theorem 6.2. 

Since 𝑇 = 𝑚𝑖𝑛{𝑇𝑟𝑙,𝑖|𝑖 ∈ 𝑍𝑙 , 𝑙 ∈ 𝐿} , {𝑞, … , 𝑞𝑛}  is batched as a platoon in 𝑇 ; whereas 

vehicles are not ordered at level 𝑙 = 0 and are all ordered at level 𝑙 = max(𝐿), besides, 

 

𝑇 = 𝑇𝑟0,1 = 𝑚𝑖𝑛{𝑡𝜑
𝑟max⁡(𝐿),𝑖|𝜑 ⊥ 𝑟max⁡(𝐿),𝑖, 𝑖 ∈ 𝑍max(𝐿)}

= 𝑚𝑖𝑛{𝑇𝑟𝑙,𝑖|1 ≤ 𝑙 ≤ max(𝐿) − 1, 𝑖 ∈ 𝑍𝑙} 

(70) 

Therefore, the proof is complete. ∎ 

Based on Proposition 6.4, the optimal platooning property can be extended to more 

complex scenarios, where one or more ℚ′  occur at both 𝑄𝑝 and 𝑄̅𝑝, such that the time 

complexity can be further reduced. Before measuring the time complexity, the total number 

of nodes in ℝ is first given without considering Proposition 6.4. 

Theorem 6.3. Based on Theorem 6.1, 
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 |ℝ| = 2|𝑄𝑝||𝑄̅𝑝| + |𝑄𝑝| + |𝑄̅𝑝| + 1 (71) 

 

Proof. W.l.o.g., if |𝑄𝑝| > |𝑄̅𝑝|, then 

 

|𝑍𝑙|

=

{
 
 
 
 

 
 
 
 
1 𝑖𝑓⁡𝑙 = 0

∑ [2(𝑙 − 1) + 2]
|𝑄̅𝑝|

𝑙=1
𝑖𝑓⁡1 ≤ 𝑙 ≤ |𝑄̅𝑝|

∑ (2|𝑄̅𝑝| + 1)
|𝑄𝑝|

𝑙=|𝑄̅𝑝|+1
𝑖𝑓⁡|𝑄̅𝑝| + 1 ≤ 𝑙 ≤ |𝑄𝑝|

∑ 2(|𝑄̅𝑝| + |𝑄𝑝| − 𝑙 + 1)
|𝑄̅𝑝|+|𝑄𝑝|

𝑙=|𝑄𝑝|+1
𝑖𝑓⁡|𝑄𝑝| + 1 ≤ 𝑙 ≤ |𝑄̅𝑝| + |𝑄𝑝|

 

(72) 

The detailed derivation of Eq. (72) can be referred to Pei et al. (2019). Therefore, |ℝ| =

2|𝑄𝑝||𝑄̅𝑝| + |𝑄𝑝| + |𝑄̅𝑝| + 1 by summing |𝑍𝑙| at each level 𝑙 ∈ 𝐿. Furthermore, Eq. (71) 

still holds true when |𝑄𝑝| = |𝑄̅𝑝| because number of terms |𝑄𝑝| + 1 − |𝑄̅𝑝| − 1 = 0 for 

the third row in Eq. (72). ∎ 

From Theorem 6.3, we can further obtain the number of nodes in ℝ with considering the 

optimal platooning property. 

Theorem 6.4. Based on Proposition 6.4 and Theorem 6.1, 

 

|ℝ| = 2|𝑄𝑝||𝑄̅𝑝| + |𝑄𝑝| + |𝑄̅𝑝| + 1 − ∑ (|ℚ𝑛
′ | − 1)|𝑄̅𝑝|

𝑛∈ℕ,ℚ𝑛
′ ⊆𝑄𝑝

− ∑ (|ℚ𝑚
′ | − 1)|𝑄𝑝|

𝑚∈𝕄,ℚ𝑚
′ ⊆𝑄̅𝑝

 

(73) 

where ℚ𝑛
′  denotes 𝑛-th platoon of platoons ℕ from 𝑄𝑝 and ℚ𝑚

′  denotes 𝑚-th platoon of 

platoons 𝕄 from 𝑄̅𝑝. 
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Proof. Based on Proposition 6.3, conflict pairs for ℚ𝑛
′  on which Proposition 6.4 can be 

applied are 

 

{ℂ𝑟𝑙,𝑖}𝑛

= {{𝑞′, 𝑞𝑛}|∀𝑞
′ ∈ 𝑄̅𝑝, ∀𝑞𝑛 ∈ ℚ𝑛

′ \𝑞, 𝑙 = 𝑞𝑛(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 1 + 𝑞′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 1, 𝑖 ∈ 𝑍𝑙} 

(74) 

where ℚ𝑛
′ = {𝑞,… , 𝑞𝑛}  is defined in Eq. (68). As shown in Eq. (74), |{ℂ𝑟𝑙,𝑖}𝑛

| =

(|ℚ𝑛
′ | − 1)|𝑄̅𝑝| , i.e., |{ℂ𝑟𝑙,𝑖}𝑛

|  nodes for ℚ𝑛
′  can be dominated/discarded based on 

Theorem 6.2. Eq. (74) can also be applied on other platoons of platoons ℕ from 𝑄𝑝 , 

therefore, we have 

 
|{ℂ𝑟𝑙,𝑖}| = ∑ |{ℂ𝑟𝑙,𝑖}𝑛

|

𝑛∈ℕ

= ∑ (|ℚ𝑛
′ | − 1)|𝑄̅𝑝|

𝑛∈ℕ,ℚ𝑛
′ ⊆𝑄𝑝

 
(75) 

Note that ℚ𝜂
′ ∪ ℚ𝜂′

′ ≠ ℚ′, where ∀{𝜂, 𝜂′} ∈ ℕ or 𝕄 and 𝜂 ≠ 𝜂′. Similarly, we can obtain 

that ∑ |{ℂ𝑟𝑙,𝑖}𝑚
|𝑚∈𝕄 = ∑ (|ℚ𝑚

′ | − 1)|𝑄𝑝|𝑚∈𝕄,ℚ𝑚
′ ⊆𝑄̅𝑝

 for ℚ𝑚
′ ⊆ 𝑄̅𝑝  and 𝑚 ∈ 𝕄 . Since 

Proposition 6.4 is applied upon Theorem 6.1, ∑ (|ℚ𝑛
′ | − 1)|𝑄̅𝑝|𝑛∈ℕ,ℚ𝑛

′ ⊆𝑄𝑝
+

∑ (|ℚ𝑚
′ | − 1)|𝑄𝑝|𝑚∈𝕄,ℚ𝑚

′ ⊆𝑄̅𝑝
 nodes can be further reduced from Theorem 6.3. ∎ 

Remark 6.8. Since Theorem 6.2 can be applied on any conflict pairs within ℝ, |ℝ| can be 

further reduced from Eq. (73) if Theorem 6.2 can be applied on conflict pairs other than 

those conflict pairs on which Proposition 6.4 can be applied. The availability of Theorem 

6.2 depends on real (simulation) data. 

It can be easily seen that Eq. (73) is a monotonically decreasing function with respect to 

the number of vehicles in platoons since |𝑄𝑝| and |𝑄̅𝑝| are constants at each optimization 
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cycle. Therefore, we can obtain the lower bound of the number of nodes in ℝ based on 

Theorem 6.4. 

Corollary 6.2. The lower bound of |ℝ|, |ℝ|𝐿𝐵, is 

 |ℝ|𝐿𝐵 = 2|𝑄𝑝| + 2|𝑄̅𝑝| + 1 (76) 

Proof. Since Eq. (73) is a monotonically decreasing function, besides, max
𝑛∈ℕ,ℚ𝑛

′ ⊆𝑄𝑝
∑|ℚ𝑛

′ | =

|𝑄𝑝| and max
𝑚∈𝕄,ℚ𝑚

′ ⊆𝑄̅𝑝
∑|ℚ𝑚

′ | = |𝑄̅𝑝|, we then obtain the |ℝ|𝐿𝐵 as follows 

 

|ℝ|𝐿𝐵 = 2|𝑄𝑝||𝑄̅𝑝| + |𝑄𝑝| + |𝑄̅𝑝| + 1 − (|𝑄𝑝| − 1)|𝑄̅𝑝|

− (|𝑄̅𝑝| − 1)|𝑄𝑝| = 2|𝑄𝑝| + 2|𝑄̅𝑝| + 1 

(77) 

∎ 

Remark 6.9. Corollary 6.2 indicates a lower bound of |ℝ| when only Proposition 6.4 is 

applied; as illustrated in Remark 6.8, there is only one conflict pair on which Theorem 

6.2 does not apply. However, if in the conflict pair, ℂ𝑟0,1 = {𝑞, 𝑞
′|𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 1, 𝑞′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 1}, 

w.l.o.g., 𝑡𝑞
𝑟1,𝑖 − 𝑡

𝑞′

𝑟
1,𝑖′ ≥ 𝑏 + 𝑐 , then the lower bound of |ℝ|  can be further reduced as 

|ℝ|𝐿𝐵 = |𝑄𝑝| + |𝑄̅𝑝| + 1 because any child nodes under node 𝑟1,𝑖 are discarded based on 

Theorem 6.2, where 𝑖 ≠ 𝑖′. 

6.2.5 Summary 

Based on the above subsections that define the properties of the scheduling problem, the 

upper bound of |ℝ| is strictly proven and given in Eq. (71), which is significantly reduced 

than nodes that commercial solvers find using a general branch-and-bound algorithm (Xu 

et al., 2021). Furthermore, the lower bound of |ℝ| is rigorously given in Eq. (76) based on 

Theorem 6.2 and Proposition 6.4. Since |ℝ| directly determines the time complexity and 

computation time of the scheduling problem (Pei et al., 2019), the time complexity analysis 
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is given in the next section along with the algorithm proposed in this paper. It is also 

remarkably noted that the time complexity of an algorithm is often used to measure a worst 

case scenario, however, the computation time can be greatly decreased if the platooning 

strategy is leveraged given that platooning is a promising strategy and quite observed at an 

intersection (Lioris et al., 2017). 

6.3 Algorithm Design and Analysis 

In this section, a MILP model is first proposed to formulate the scheduling problem 

proposed in the above section. The MILP conforms to the identified problem properties 

and can be solved via the proposed algorithm. Further, the proposed algorithm that utilizes 

the problem properties is given in detail. Finally, analyses of time complexity as well as 

computation time of the algorithm are specified. 

6.3.1 Model formulation 

A general reservation-based intersection where the scheduling problem occurs is shown in 

Figure 20. As indicated earlier, the objective of the scheduling problem 𝓟 is to minimize 

the maximum arrival time of all CAVs at the intersection, which is illustrated in Eq. (78). 

The details of the MILP model are explained as follows. 

 𝓟 = minmax
∀𝑞∈𝔸

𝑡𝑞 (78) 

 𝑡𝑞 ≥ 𝑡𝑞
𝑚,𝑐 ≥ 𝑡𝑞

𝑚⁡⁡⁡∀𝑞 ∈ 𝔸  (79) 

 𝑡𝑞 ≥ 𝑡𝑞̌ + 𝑠⁡⁡⁡∀𝑞 ∈ 𝔸, 𝑞̌ ≺ 𝑞  (80) 

 𝑠 ≥ 𝑠𝑡 +
𝑠𝑑

𝓋𝑞
⁡⁡⁡∀𝑞 ∈ 𝔸  (81) 

 𝓋𝑞 ≡ 𝓋𝑚𝑎𝑥 ⁡⁡⁡∀𝑞 ∈ 𝔸  (82) 

 𝑡𝑞 +Μ(1 − 𝛿𝑞,𝑞′) ≥ 𝑡𝑞′ + 𝛼 + 𝑏⁡⁡⁡∀ {{𝑞, 𝑞
′}|𝑞 ∈ 𝑄𝑝, 𝑞

′ ∈ 𝑄̅𝑝} ∈ ℂ  (83) 
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 𝑡𝑞′ +Μ𝛿𝑞,𝑞′ ≥ 𝑡𝑞 + 𝛼 + 𝑏⁡⁡⁡∀ {{𝑞, 𝑞
′}|𝑞 ∈ 𝑄𝑝, 𝑞

′ ∈ 𝑄̅𝑝} ∈ ℂ  (84) 

As shown in Eq. (79), the assigned arrival time 𝑡𝑞 of a CAV is larger than or equal to 𝑡𝑞
𝑚,𝑐

, 

which is given in Eq. (69). Further, 𝑡𝑞
𝑚,𝑐

 may be more than or equal to 𝑡𝑞
𝑚 given 𝑡𝑜 at last 

optimization cycle, where 𝑡𝑞
𝑚 is subject to the communication range and speed constraints. 

The details of the derivation of 𝑡𝑞
𝑚  can be referred to Yu et al. (2018) and Ma and Li 

(2022a). Further, the difference of arrival time of any pair of a leading and a following 

vehicle from a same approach should be bounded by the saturation headway, 𝑠, as shown 

in Eq. (80). The saturation headway, 𝑠, is also bounded by a safety time headway (Newell, 

2002), which is shown in Eq. (81), where it is a sum of a static time headway, 𝑠𝑡, and a 

dynamic time headway, 
𝑠𝑑

𝓋𝑞
. 𝑠𝑡 and 𝑠𝑑 are two given constants. Note that in order to achieve 

a higher intersection efficiency (Ma and Li, 2022a), the arrival speed of CAVs at the 

intersection 𝓋𝑞 ≡ 𝓋𝑚𝑎𝑥, where 𝓋𝑚𝑎𝑥 is the maximum allowable speed. As shown in Eq. 

(83) and (84), the difference of arrival times between any conflict pair is bounded by 𝛼 +

𝑏, i.e., if vehicle 𝑞 enters the intersection before 𝑞′, 𝛿𝑞,𝑞′ = 0, otherwise 𝛿𝑞,𝑞′ = 1, where 

𝛿𝑞,𝑞′ is a binary variable and Μ is a positive and sufficiently large number. Note that |ℂ| =

|𝑄𝑝||𝑄̅𝑝|, i.e., there is at most |𝑄𝑝||𝑄̅𝑝| binary variables for the scheduling problem, and 

the number of the binary variables determines the time complexity, as does |ℝ|. 

6.3.2 Dynamic programming algorithm 

The proposed MILP model 𝓟  can be solved to global optimal solutions via dynamic 

programming (Chen et al., 2019; Pei et al., 2019), branch & bound (Chen and Li, 2021; Li 

and Zhou, 2017) or branch & cut (Cordeau, 2006). Dynamic programming algorithm that 

leverages the identified problem properties in addition to Theorem 6.1 and Theorem 6.2 
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is utilized in this paper. Specifically, compared to B&B/C algorithms, the lower bound 

derivation during branching process of branch & bound algorithm is replaced by a state 

transition function based on Proposition 6.2; further, the upper bound derivation by the 

branch & bound algorithm is converged at level max⁡(𝐿) of ℝ based on Definition 6.6. 

The details of the dynamic programming that incorporates the properties of conflict order, 

overlapping subproblems and optimal platooning are expanded as follows. 

Before introducing the customized DP, all sets and variables that are utilized by the DP are 

defined as follows. 

 𝕏𝑄𝑝
0 = {𝑥𝑞

0|𝑞 ∈ 𝑄𝑝, 𝑞 ≺ 𝜑, 1 ≤ 𝑞(𝑄𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ≤ |𝑄𝑝|}  (85) 

 𝕋𝑄𝑝
𝑚 = {𝑡𝑞

𝑚|𝑞 ∈ 𝑄𝑝, 𝑞 ≺ 𝜑, 1 ≤ 𝑞(𝑄𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ≤ |𝑄𝑝|}  (86) 

 𝔻𝑄𝑝 = {𝒹𝑞|1 ≤ 𝒹𝑞 ≤ |𝑄𝑝|, 𝑞 ∈ 𝑄𝑝, 𝑞 ≺ 𝜑, 𝒹𝜑 = 𝒹𝑞 + 1}  (87) 

 𝕏𝑄̅𝑝
0 = {𝑥𝑞′

0 |𝑞′ ∈ 𝑄̅𝑝, 𝑞
′ ≺ 𝜑′, 1 ≤ 𝑞′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ≤ |𝑄̅𝑝|}  (88) 

 𝕋𝑄̅𝑝
𝑚 = {𝑡𝑞′

𝑚|𝑞′ ∈ 𝑄̅𝑝, 𝑞
′ ≺ 𝜑′, 1 ≤ 𝑞′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ≤ |𝑄̅𝑝|}  (89) 

 𝔻𝑄̅𝑝 = {𝒹𝑞′||𝑄𝑝| + 1 ≤ 𝒹𝑞′ ≤ |𝑄𝑝| + |𝑄̅𝑝|, 𝑞
′ ∈ 𝑄̅𝑝, 𝑞

′ ≺ 𝜑′, 𝒹𝜑′ = 𝒹𝑞′ + 1}  (90) 

 

ℝ =

{𝕣𝜉 ≔ {𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
𝜉 , 𝑞′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉 , 𝛿𝜉} |1 ≤ 𝜉 ≤ |ℝ|, 𝛿𝜉 = 1⁡𝑖𝑓⁡𝑞 ⊥ 𝑟𝑙,𝑖̅, 𝛿𝜉 = 0⁡𝑖𝑓⁡𝑞
′ ⊥ 𝑟𝑙,𝑖̅}  

(91) 

 

ℝ = {𝕣𝜉′ ≔ {𝜑(𝑄𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉′
, 𝜑′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝜉′
, 𝛿𝜉′}| 1 ≤ 𝜉

′ ≤ |ℝ|, 𝛿𝜉′ = 1⁡𝑖𝑓⁡𝜑 ⊥ 𝑟𝑙+1,𝑖, 𝛿𝜉′ =

0⁡𝑖𝑓⁡𝜑′ ⊥ 𝑟𝑙+1,𝑖, 𝑟𝑙+1,𝑖 ⊂ 𝑟𝑙,𝑖̅}  

(92) 

 𝔻 = {𝕕𝜉′ ⊆ 𝔻𝑄̅𝑝 ∪𝔻𝑄𝑝|1 ≤ 𝜉
′ ≤ |𝔻| = |ℝ|}  (93) 

 𝔻′ = {𝕕𝜉
′ ⊆ 𝔻𝑄̅𝑝 ∪ 𝔻𝑄𝑝|1 ≤ 𝜉 ≤ |𝔻

′| = |ℝ|}  (94) 
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 ℝ̃
𝑞 = ℝ̃𝑞

′
= 𝔻𝑞 = 𝔻𝑞

′
= [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

]

(|𝑄𝑝|+1)(|𝑄̅𝑝|+1)

  (95) 

 𝕋
𝑞 = 𝕋𝑞

′
= [

−999 999 ⋯ 999
999 999 ⋯ 999
⋮ ⋮ ⋱ ⋮
999 999 ⋯ 999

]

(|𝑄𝑝|+1)(|𝑄̅𝑝|+1)

  (96) 

Eq. (85)-(87) defines initial entry location at the communication range, minimum arrival 

time at the intersection and unique IDs for 𝑞 ∈ 𝑄𝑝 ; whereas Eq. (88)-(90) is defined 

correspondingly for 𝑞′ ∈ 𝑄̅𝑝. Eq. (91) denotes parent nodes at level 𝑙 ∈ 𝐿 and an indicator 

of which approach a CAV is currently coming/ordered at each parent node; whereas Eq. 

(92) denotes child nodes of the parent nodes correspondingly. Eq. (95) and (94) 

respectively denotes a partially/currently ordered set of CAVs of parent nodes and child 

nodes. In Eq. (95) and (96), respectively for 𝑞 ⊥ 𝑟𝑙,𝑖 or 𝑞′ ⊥ 𝑟𝑙,𝑖, where 𝑞 ∈ 𝑄𝑝 and 𝑞′ ∈ 𝑄̅𝑝, 

ℝ̃𝑞 and ℝ̃𝑞
′
 denotes an indicator to utilize Theorem 6.1, 𝔻𝑞 and 𝔻𝑞

′
 denotes a sequence 

of each partially ordered set in child node lists and 𝕋𝑞 and 𝕋𝑞
′
 denotes 𝑡𝑞

𝑟𝑙,𝑖 of each child 

node 𝑟𝑙,𝑖, ∀𝑖 ∈ 𝑍𝑙, ∀𝑙 ∈ 𝐿, ∀𝑞 ∈ 𝔸. Note that in Eq. (95) and (96) the number of elements 

is (|𝑄𝑝| + 1)(|𝑄̅𝑝| + 1) in total, where ℝ̃𝑥,𝑦
𝑞 ∈ ℝ̃𝑞 , ℝ̃𝑥,𝑦

𝑞′ ∈ ℝ̃𝑞
′
, 𝔻𝑥,𝑦

𝑞 ∈ 𝔻𝑞 , 𝔻𝑥,𝑦
𝑞′ ∈ 𝔻𝑞

′
, 

𝕋𝑥,𝑦
𝑞 ∈ 𝕋𝑞 and 𝕋𝑥,𝑦

𝑞′ ∈ 𝕋𝑞
′
, and numbering of all elements starts from zero, i.e., min(𝑥) =

min(𝑦) = 0, where (0,0) denotes the root node 𝑟0,1. In addition, numbering of row denotes 

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and column denotes 𝑞′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, i.e., max(𝑥) = |𝑄𝑝| and max(𝑦) = |𝑄̅𝑝|. Followingly, 

the DP is designed to solve the model 𝓟 in Algorithm 6.1, Algorithm 6.2 and Algorithm 

6.3. 
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Before measuring the time complexity of the DP algorithm, there are three main procedures 

to find the 𝑇 and the optimal passing order, which are get 𝑡𝑞
𝑟𝑙,𝑖 for each child node, add a 

child node to ℝ and add a partially/currently ordered set to 𝔻; i.e., for each parent node in 

ℝ, it costs at worst three unit/constant computation times to find one child node in the DP 

algorithm. Note here that a breadth-first search (BFS) method is utilized in the DP. 
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      Algorithm 6.1. The customized dynamic programming algorithm 

1 //Initiate 

2 𝔻 = {∅}; 𝔻′ = {∅}; ℝ = {𝕣1 = {0,0, ∅}}; ℝ = {∅} 

3 𝑡𝑞
𝑚,𝑐 ← 𝑡𝑞

𝑚 given 𝑡𝑜, ∀𝑞 ∈ 𝔸 based on Eq. (69) 

4 𝑡𝑞
𝑚 ← 𝑡𝑞

𝑚,𝑐
, ∀𝑞 ∈ 𝔸 

5 //Start branching 

6 while |𝕕1
′ | < |𝑄𝑝| + |𝑄̅𝑝| 

7        for 𝕣𝜉 ∈ ℝ 

8               if 𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝜉 = |𝑄𝑝| 

9                      get 𝑡
𝜑′
𝑟𝑙+1,𝑖

 given 𝑡𝜑′
𝑚 , 𝕋

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞
, 𝕋

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞′
 and 𝛿𝜉 based on Eq. (48) 

10                      add a child node to ℝ and add a partially passing order to 𝔻 based on Algorithm 6.2 

11               end 

12               if 𝑞′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉 = |𝑄̅𝑝| 

13                      get 𝑡𝜑
𝑟𝑙+1,𝑖

 given 𝑡𝜑
𝑚, 𝕋

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞
, 𝕋

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞′
 and 𝛿𝜉 based on Eq. (48) 

14                      add a child node to ℝ and add a partially passing order to 𝔻 based on Algorithm 6.3 

15               end 

16               if 𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝜉 < |𝑄𝑝|⁡&⁡𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉
< |𝑄̅𝑝| 

17                      get 𝑡
𝜑′

𝑟
𝑙+1,𝑖′

 given 𝑡𝜑′
𝑚 , 𝕋

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞
, 𝕋

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞′
 and 𝛿𝜉 based on Eq. (48) 

18                      get 𝑡𝜑
𝑟𝑙+1,𝑖

 given 𝑡𝜑
𝑚, 𝕋

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞
, 𝕋

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞′
 and 𝛿𝜉 based on Eq. (48) 

19                      if 𝑡𝜑
𝑟𝑙+1,𝑖 − 𝑡

𝜑′

𝑟
𝑙+1,𝑖′ ≥ 𝒃 + 𝒄 

20                             add a child node to ℝ and add a partially passing order to 𝔻 based on Algorithm 6.2 

21                      else if 𝑡𝜑
𝑟𝑙+1,𝑖 − 𝑡

𝜑′

𝑟
𝑙+1,𝑖′ ≤ −𝒃 − 𝒄 

22                             add a child node to ℝ and add a partially passing order to 𝔻 based on Algorithm 6.3 

23                      else 

24                             add a child node to ℝ and add a partially passing order to 𝔻 based on Algorithm 6.2 

25                             add a child node to ℝ and add a partially passing order to 𝔻 based on Algorithm 6.3 

26                      end 

27               end 

28        end 

29        ℝ ← ℝ 

30        𝔻′ ← 𝔻 

31        𝔻 = {∅} 

32        ℝ = {∅} 

33 end 

34 //Output 

35 𝕋𝑞 , 𝕋𝑞
′
 and 𝔻′ 
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       Algorithm 6.2. Add a child node to ℝ and add a partially passing order to 𝔻 if 𝝋′ ⊥ 𝒓𝒍+𝟏,𝒊 

1 //Add a child node to ℝ and add a partially passing order to 𝔻 if 𝝋′ ⊥ 𝒓𝒍+𝟏,𝒊 

2 if 𝑡
𝜑′
𝑟𝑙+1,𝑖 < 𝕋

𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝜑

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞′
 

3        𝕋
𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉,𝜑
′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉

𝑞′
← 𝑡

𝜑′
𝑟𝑙+1,𝑖

  

4        if ℝ̃
𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉,𝜑
′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉

𝑞′
= 0 

5               ℝ ← {𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝜉 , 𝜑

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝜉 , 0}  

6               𝔻 ← {𝕕𝜉
′ , 𝒹𝜑′}  

7               𝔻
𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉,𝜑
′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉

𝑞′
← |𝔻|  

8               ℝ̃
𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉,𝜑
′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉

𝑞′
← 1  

9        else 

10 
              𝕕

𝔻
𝑞(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝜉,𝜑
′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉

𝑞′ ← {𝕕𝜉
′ , 𝒹𝜑′}  

11        end 

12 end 

 

       Algorithm 6.3. Add a child node to ℝ and add a partially passing order to 𝔻 if 𝝋 ⊥ 𝒓𝒍+𝟏,𝒊 

1 //Add a child node to ℝ and add a partially passing order to 𝔻 if 𝝋 ⊥ 𝒓𝒍+𝟏,𝒊 

2 if 𝑡𝜑
𝑟𝑙+1,𝑖 < 𝕋

𝜑(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞
 

3        𝕋
𝜑(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉,𝑞
′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞
← 𝑡𝜑

𝑟𝑙+1,𝑖
  

4        if ℝ̃
𝜑(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉,𝑞
′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞
= 0 

5               ℝ ← {𝜑(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝜉 , 𝑞

′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉 , 1}  

6               𝔻 ← {𝕕𝜉
′ , 𝒹𝜑}  

7               𝔻
𝜑(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉,𝑞
′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞
← |𝔻|  

8               ℝ̃
𝜑(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉,𝑞
′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜉

𝑞
← 1  

9        else 

10 
              𝕕𝔻

𝜑(𝑄𝑝)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝜉,𝑞
′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝜉

𝑞 ← {𝕕𝜉
′ , 𝒹𝜑}  

11        end 

12 end 

 

6.3.3 Time complexity analysis 

To measure the time complexity of the DP algorithm, specifically, the state transition 

function is realized based on Proposition 6.2 as shown in Algorithm 6.1 lines (9,13,17,18), 
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an overlapping subproblem property is realized based on Theorem 6.1 as shown in line (2) 

of Algorithm 6.2 and Algorithm 6.3, and last, the other overlapping subproblem property 

is realized based on Theorem 6.2 as shown in lines (19,21) in Algorithm 6.1. Recall that 

in Theorem 6.3, there are two cases in the branching process where a parent node can only 

find one child node, as shown in lines (8,12) in Algorithm 6.1 and can find two child nodes, 

as shown in line (16) in Algorithm 6.1. As indicated earlier, for each branching it costs at 

worst three unit computation times. Therefore, how many times of branching occur in the 

branching process is first given as follows. 

Theorem 6.5. Based on Theorem 6.3, 

 |ℝ⃗⃡ | = 4|𝑄𝑝||𝑄̅𝑝|  (97) 

where |ℝ⃗⃡ | denotes the total times of branching in the branching process. 

Proof. W.l.o.g., if |𝑄𝑝| > |𝑄̅𝑝|, then 

 

|ℝ⃗⃡ 𝑙| =

{
 
 
 
 
 

 
 
 
 
 
2 𝑖𝑓⁡𝑙 = 0

∑ [4(𝑙 − 1) + 4]
|𝑄̅𝑝|

𝑙=1 𝑖𝑓⁡1 ≤ 𝑙 < |𝑄̅𝑝|

4|𝑄̅𝑝| − 1 𝑖𝑓⁡𝑙 = |𝑄̅𝑝|

∑ 4|𝑄̅𝑝|
|𝑄𝑝|−1

𝑙=|𝑄̅𝑝|+1
𝑖𝑓⁡|𝑄̅𝑝| + 1 ≤ 𝑙 < |𝑄𝑝|

4|𝑄̅𝑝| − 1 𝑖𝑓⁡𝑙 = |𝑄𝑝|

∑ 4(|𝑄̅𝑝| + |𝑄𝑝| − 𝑙)
|𝑄̅𝑝|+|𝑄𝑝|−1

𝑙=|𝑄𝑝|+1
𝑖𝑓⁡|𝑄𝑝| + 1 ≤ 𝑙 < |𝑄𝑝| + |𝑄̅𝑝|

0 𝑖𝑓⁡𝑙 = |𝑄𝑝| + |𝑄̅𝑝|

  

(98) 

The detailed derivation of Eq. (98) can be referred to Pei et al. (2019). Therefore, |ℝ⃗⃡ | =

4|𝑄𝑝||𝑄̅𝑝| by summing |ℝ⃗⃡ 𝑙| at each level 𝑙 ∈ 𝐿. Furthermore, Eq. (97) still holds true when 

|𝑄𝑝| = |𝑄̅𝑝| because number of terms |𝑄𝑝| − 1 + 1 − |𝑄̅𝑝| − 1 = −1 for the fourth row in 

Eq. (98) and the sum of times of branching from third row to fifth row is 4|𝑄̅𝑝| − 2.∎ 
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Given Theorem 6.5, we then can obtain the time complexity of the DP algorithm at worst 

case scenario as follows. 

Corollary 6.3. The time complexity of the DP algorithm is 𝒪(|𝑄𝑝|
2
). 

Proof. W.l.o.g., we let |𝑄𝑝| = |𝑄̅𝑝|, then the total computation times at worst case scenario 

is 3|ℝ⃗⃡ | = 12|𝑄𝑝|
2
 and the time complexity is 𝒪(|𝑄𝑝|

2
). ∎ 

Leveraging the optimal platooning property based on Proposition 6.4 and Theorem 6.4, 

the number of (parent) nodes at each level 𝑙 ∈ 𝐿 can be greatly reduced, in other words, the 

total times of branching can be greatly reduced, so can the time complexity and 

computation time. Before analyzing the time complexity and computation time based on 

the optimal platooning property, we first derive the reduced total times of branching |ℝ⃗⃡ |
′
 

in the branching process. 

Theorem 6.6. Based on Proposition 6.4 and Theorem 6.4, 

 

|ℝ⃗⃡ |
′
= 4|𝑄𝑝||𝑄̅𝑝| − ∑ [2(|ℚ𝑛

′ | − 1)(|𝑄̅𝑝| − 1) + |ℚ𝑛
′ | − 1]

𝑛∈ℕ,ℚ𝑛
′ ⊆𝑄𝑝

− ∑ [2(|ℚ𝑚
′ | − 1)(|𝑄𝑝| − 1) + |ℚ𝑚

′ | − 1]

𝑚∈𝕄,ℚ𝑚
′ ⊆𝑄̅𝑝

 

(99) 

Proof. Recall that in Eq. (74) ∀𝑞′ ∈ 𝑄̅𝑝 should be further specified in terms of |ℝ⃗⃡ |
′
, i.e., 

 

{ℂ𝑟𝑙,𝑖}𝑛

= {{𝑞′, 𝑞𝑛}⋃{𝜑
′, 𝑞𝑛}|∀𝑞

′ ∈ 𝑄̅𝑝\𝜑
′, 𝜑′(𝑄̅𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = |𝑄̅𝑝|, ∀𝑞𝑛 ∈ ℚ𝑛

′ \𝑞} 

(100) 

where for the conflict pairs 

 {ℂ𝑟𝑙,𝑖}𝑛
= {{𝜑′, 𝑞𝑛}|∀𝑞𝑛 ∈ ℚ𝑛

′ \𝑞, 𝑙 = 𝑞𝑛(𝑄𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 1 + |𝑄̅𝑝| − 1, 𝑖 ∈ 𝑍𝑙} (101) 
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nodes {𝑟𝑙,𝑖}𝑛 = {𝑟𝑙,𝑖|𝜑
′ ⊥ 𝑟𝑙,𝑖, 𝑙 = 𝑞𝑛(𝑄𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 1 + |𝑄̅𝑝|, 𝑖 ∈ 𝑍𝑙}  are dominated/discarded 

based on Theorem 6.2. As indicated in line (12) in Algorithm 6.1, only one child node 

was supposed to be found, however, for nodes {𝑟𝑙,𝑖}𝑛 = {𝑟𝑙,𝑖 |∀𝑞
′ ∈ 𝑄̅𝑝\𝜑

′, 𝑞′ ⊥ 𝑟𝑙,𝑖, 𝑙 =

𝑞𝑛(𝑄𝑝)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 1 + 𝑞′(𝑄̅𝑝)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑖 ∈ 𝑍𝑙} , there were two child nodes supposed to be found as 

indicated line (16) in Algorithm 6.1. Therefore, for the conflict pairs in Eq. (100) there are 

2(|ℚ𝑛
′ | − 1)(|𝑄̅𝑝| − 1) + |ℚ𝑛

′ | − 1 times of branching in total reduced for the platoon ℚ𝑛
′ ; 

then for all the platoons ℕ  from 𝑄𝑝 , ∑ [2(|ℚ𝑛
′ | − 1)(|𝑄̅𝑝| − 1) + |ℚ𝑛

′ | − 1]𝑛∈ℕ,ℚ𝑛
′ ⊆𝑄𝑝

 

times of branching can be reduced. Similarly, ∑ [2(|ℚ𝑚
′ | − 1)(|𝑄𝑝| − 1) +𝑚∈𝕄,ℚ𝑚

′ ⊆𝑄̅𝑝

|ℚ𝑚
′ | − 1] times of branching can be reduced for all the platoons 𝕄 from 𝑄̅𝑝. Based on 

Theorem 6.5, |ℝ⃗⃡ |
′
 is derived in Eq. (99). 

The proof is complete. ∎ 

Remark 6.10. Based on Theorem 6.6, 3|ℝ⃗⃡ | > 3|ℝ⃗⃡ |
′
, which indicates that the computation 

time of the DP algorithm based on the optimal platooning is reduced. However, since the 

platoons ℕ and 𝕄 are dynamically batched at each optimization cycle, the upper bound of 

the time complexity at worst case scenario, if no platoons are batched, is still 𝒪(|𝑄𝑝|
2
). 

Recall Corollary 6.2 that the lower bound of the time complexity can be achieved when 

∑ |ℚ𝑛
′ |𝑛∈ℕ,ℚ𝑛

′ ⊆𝑄𝑝
= |𝑄𝑝| and ∑ |ℚ𝑚

′ |𝑚∈𝕄,ℚ𝑚
′ ⊆𝑄̅𝑝

= |𝑄̅𝑝|. 

Corollary 6.4. The lower bound of the time complexity of the DP algorithm is 𝒪(|𝑄𝑝|). 

Proof. Based on Corollary 6.2, 
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|ℝ⃗⃡ |
𝐿𝐵

′
≤ 4|𝑄𝑝||𝑄̅𝑝| − [2(|𝑄𝑝| − 1)(|𝑄̅𝑝| − 1) + |𝑄𝑝| − 1]

− [2(|𝑄̅𝑝| − 1)(|𝑄𝑝| − 1) + |𝑄̅𝑝| − 1]

= 3|𝑄𝑝| + 3|𝑄̅𝑝| − 2 

(102) 

W.l.o.g., we let |𝑄𝑝| = |𝑄̅𝑝|, then the total computation times 3|ℝ⃗⃡ |
𝐿𝐵

′
≤ 18|𝑄𝑝| − 6 and 

the lower bound of the time complexity is 𝒪(|𝑄𝑝|). ∎ 

6.3.4 Summary 

Based on the rigorous derivations at above sections, the time complexity and computation 

time of the DP algorithm are compared for scenarios with and without the optimal 

platooning property. It is found that the lower bound of the time complexity is achieved in 

Corollary 6.4, which is reduced to linear time complexity from quadratic time complexity 

of Corollary 6.3. This significant reduction only needs two additional lines of codes as 

shown in lines (19,21) in Algorithm 6.1 as compared to the state-of-art DP algorithm (Pei 

et al., 2019) without them. It is remarkably noted that this reduction holds true because of 

Theorem 6.2 and Proposition 6.4 and can be achieved when platoons are batched along 

the communication range at each optimization cycle. Also note that even though the lower 

bound of the time complexity cannot be achieved, the computation time can be reduced 

based on Theorem 6.6 as long as at least one platoon of vehicles are batched, where the 

number of vehicles in the platoon is at least 2. 

6.4 Numerical Evaluation 

6.4.1 Control framework 

A reservation-based intersection control framework that schedules arrival times of CAVs 

at the intersection consists of two procedures. As shown in Figure 20, the communication 

range consists of a request zone and an optimization range. The purpose of the request zone 
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is to reserve all requests from CAVs whose arrival conforms to a (Poisson) distribution at 

each optimization cycle. By collecting the arrival information of CAVs, Eq. (85) and (88) 

are used to formulate their initial arrival position at the request zone for each approach. 

After a given optimization interval or once any CAV arrives a downstream boundary of 

the request zone, whichever is earlier, an optimization cycle is initiated for all the CAVs at 

the request zone. This optimization strategy is performed as a rolling horizon strategy. 

Once an optimization cycle is initiated and finished, all the CAVs move into the 

optimization range as scheduled by a central controller. The 𝑡𝑜 is collected from a last CAV 

that arrives the intersection. Then the 𝑡𝑜 is used for next optimization cycle as indicated in 

Eq. (69). 

Note that once CAVs are collected for an optimization cycle, their minimal and maximal 

arrival time at the intersection can be obtained, depending on their initial speed and position. 

For simplicity and focusing on theoretical analyses of the scheduling problem and 

algorithm, it is assumed that the maximal arrival time for all CAVs is +∞. Furthermore, 

we assume the initial speed for all CAVs is same; this is a relatively strong assumption, 

however, we leave the relaxation of the assumption to our future research. Therefore, the 

minimal arrival time only depends on the initial position of CAVs. Since the arrival speed 

of CAVs at the intersection is given as the maximal allowable speed as indicated in Eq. 

(82), the arrival time of CAVs is subject to their minimal arrival time and their leading 

vehicle as indicated in Eq. (79) and (80). Overall, detailed derivations of the minimal and 

maximal arrival time of CAVs can be referred to (Feng et al., 2018; Ma and Li, 2022a; Yu 

et al., 2018). 
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6.4.2 Numerical examples 

To validate the time complexity and computation time conclusions of Theorem 6.6 and 

Corollary 6.4, some numerical examples are formulated as follows. In the meantime, the 

state-of-art DP algorithm based on Theorem 6.5 and Corollary 6.3 is compared with the 

expedited DP algorithm proposed in this paper based on Theorem 6.2 and Proposition 6.4 

in terms of the time complexity and computation time. Specifically, note again that the 

comparison only depends on the lines (19,21) in Algorithm 6.1. 

Before giving the numerical comparisons, CAVs are initiated based on Eq. (86) and (89). 

As indicated in Section 6.4.1, Eq. (86) and (89) can be numerically derived with constraints 

of Eq. (85) and (88). For simplicity, we directly initialize Eq. (86) and (89) as follows. 

 𝕋𝑄𝑝
𝑚 = {10,10.5,14} (103) 

 𝕋𝑄̅𝑝
𝑚 = {11,13.5,14}  (104) 

Remark 6.11. Note that the decision variables 𝜶, 𝒃 and 𝒄 are not subject to any other 

constraints than the arrival speed 𝓋𝑞, ∀𝑞 ∈ 𝔸 and the intersection length as mentioned by 

Assumption 6.1. Especially for 𝒃  and 𝒄 , any values hold true as long as the weak 

Assumption 6.3 is met. 

In the examples, we define that 𝛼 = 2, 𝑏 = 1 and 𝑐 = 1.5. Simply, the unit of the decision 

variables is second (s). W.l.o.g., we let 𝑡𝑜 = −∞ such that 𝑡𝑞
𝑚,𝑐 = 𝑡𝑞

𝑚, ∀𝑞 ∈ 𝔸. Therefore, 

it can be seen that 𝔻𝑄𝑝 = {{1,2,3}|{𝑞1, 𝑞2} = ℚ𝑄𝑝
′ }  based on Eq. (103) and 𝔻𝑄̅𝑝 =

{{4,5,6}|{𝑞2
′ , 𝑞3

′ } = ℚ𝑄̅𝑝
′ } based on Eq. (104). Then we first calculate the computation time 

and the optimal solution based on the state-of-art DP algorithm. 
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As shown in Figure 22, the optimal passing order is found via those green nodes based on 

the state-of-art DP algorithm, where 𝕕2
′ = {1,2,4,5,6,3}  and 𝑇 = 17.5  based on 

Algorithm 6.1 without executing lines (19,21). As indicated in Eq. (103) and (104), 

{𝑞1, 𝑞2} = ℚ𝑄𝑝
′  and {𝑞2

′ , 𝑞3
′ } = ℚ𝑄̅𝑝

′ , however, interestingly, {𝑞1
′ , 𝑞2

′ , 𝑞3
′ }  dynamically 

batches as a platoon in the optimal solution, which objectively verifies Proposition 6.3. 

Furthermore, ℚ𝑄𝑝
′  and ℚ𝑄̅𝑝

′  are also in the optimal solution based on Proposition 6.4. 

Overall, the computation time is 108 unit times at worst based on Theorem 6.5. 

 

Figure 22 An optimal solution of state-of-art DP algorithm 

We then calculate the computation time and the optimal passing order based on the 

expedited DP algorithm proposed in this paper. In this case, lines (19,21) in Algorithm 6.1 

are executed. It can be seen in Figure 23 (a) that the 𝕕2
′  and 𝑇 are same as state-of-art DP 

algorithm, however, the computation time at worst is reduced to 78 unit times based on 

Theorem 6.6, where those red nodes are discarded while branching. 
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(a) (b) 

Figure 23 Optimal solutions of expedited DP algorithm based on optimal platooning 

Moreover, a special data initialized at a certain optimization cycle as mentioned in Remark 

6.9 is given as follows. 

 𝕋𝑄𝑝
𝑚 = {10,10.5,11} (105) 

 𝕋𝑄̅𝑝
𝑚 = {12.5,13.5,14}  (106) 

W.l.o.g., again, we let 𝑡𝑞
𝑚,𝑐 = 𝑡𝑞

𝑚 , ∀𝑞 ∈ 𝔸. In this case, 𝕕1
′ = {1,2,3,4,5,6} and 𝑇 = 15 

based on Algorithm 6.1 with lines (19,21) executed. As shown in Figure 23 (b), the 

computation time at worst is 27 unit times based on Theorem 6.2, whereas the computation 

time at worst is still 108 unit times based on Theorem 6.1, where lines (19,21) in 

Algorithm 6.1 are not executed. In this case, the computation time can be reduced by 75%. 

6.4.3 Summary 

From the above numerical calculations, the computation time of algorithms can be directly 

obtained whether platoons are identified at initializations of each optimization cycle. As 

mentioned in Remark 6.8, the computation time partially depends on the data initialization; 

as shown in Eq. (105) and (106), the computation time can be greatly reduced. Moreover, 

the computation time directly depends on the algorithm being executed. Overall, one upper 
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bound of the time complexity at worst case can be obtained when the Proposition 6.4 is 

not considered, whereas one lower bound can be obtained when the Proposition 6.4 is 

utilized. Furthermore, the Proposition 6.4 can be achieved only when the Theorem 6.2 is 

implemented in the algorithm. Lastly, it can be concluded that platoons contribute to less 

computation time in the expedited DP algorithm. 

Finally, note that the decision variables 𝛼, 𝑏 and 𝑐 only impact on the 𝑇 rather than the 𝔻′. 

The time complexity and computation time of the expedited DP algorithm are not affected 

by the values of the decision variables. 
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CHAPTER 7. CONCLUSIONS 

7.1 Trajectory Planning at a Reservation-based Intersection 

Under the TSIT, the performances of it with/without variable acceleration rate are 

evaluated in comparison with the Dynamic Batch in terms of average intersection delay. In 

addition, the performances are also evaluated in terms of computation time between 

BATCHV, ZONEV, BATCH and ZONE. The trajectory is also analyzed by the pattern of 

the variation of the acceleration rate among different vehicles under different control 

strategies. The results are found and summarized as follows: 

1. The ZONE performs the best and the BATCHV performs the worst in terms of the 

computation time, and all the proposed methods under TSIT are not compared with 

the Dynamic Batch in terms of the computation time since the latter is a rule-based 

control strategy, which is fast in nature; 

2. The TSIT with variable acceleration rate (BATCHV and ZONEV) is better than 

that (BATCH and ZONE) without it in terms of the average intersection delay; and 

3. The sensitivity analyses show that the TSIT with/without variable acceleration rate 

is insensitive to the varying traffic condition in terms of the average intersection 

delay but sensitive to the vehicle length, whereas the Dynamic Batch is sensitive to 

the varying traffic condition, and the Dynamic Batch performs better under low 

traffic demand condition and with large threshold of batched vehicles. 

Correspondingly, the findings of the results are reflected as follows:
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1. The TSIT with variable acceleration rate results in better average intersection delay 

but increases the computational complexity such that the computation time is 

increased, since that requires more time to search more feasible solutions and find 

the optimal solution; 

2. The TSIT can adapt to varying traffic condition even with extremely high traffic 

demand because the arrival time and speed, as well as the planned trajectory, can 

vary over the traffic condition, whereas the Dynamic Batch cannot because the 

arrival time and speed are predetermined ahead of entering the intersection; and 

3. The capacity of the intersection with the assumptions and the parameter settings in 

this paper is over 14400 veh/h under the TSIT control, such that the TSIT is 

insensitive to the traffic demand in terms of the average intersection delay. 

7.2 Optimal Control Framework for a Reservation-based Intersection 

Based on the numerical simulations, it is proved that piecewise trajectory modelling 

performs better than continuous modelling in terms of improving intersection efficiency. 

The evaluations are performed through the trajectory, intersection delay and intersection 

throughput comparison between piecewise and continuous trajectory modelling, and the 

results are found as follows: 

1. The traffic demand is lower than the intersection capacity under both trajectory 

modeling methods even when the traffic demand is as high as 1,800 veh/h/ln; 

2. The average intersection delay of piecewise modelling is significantly lower than 

that of continuous trajectory modelling under all test scenarios; 

3. The average intersection throughput of piecewise modelling is higher than that of 

the continuous trajectory modelling under all test scenarios; 
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4. The overall performances of all evaluations under BATCH strategy are slightly 

better than those under ZONE strategy; and 

5. The average intersection delay is increasing, and the average intersection 

throughput is increasing while the batch number or zone range is increasing. 

The findings from the above results are reflected and discussed as follows: 

1. The piecewise trajectory modelling finds better solutions than continuous trajectory 

modelling regarding intersection delay and throughput, because the average service 

time under piecewise trajectory modelling is less than that under continuous 

trajectory modelling based on Corollary 5.1, such that the 

capacity/throughput/delay of the intersection under piecewise modelling is better 

than that under continuous trajectory modelling based on Corollary 5.2 & 5.3; 

2. Proposition 5.5 is proved through trajectory, delay and throughput analyses and 

that 𝑣(𝑡𝑓) = 𝑣𝑓 for each CAV in 𝑱(∙) is also proved via modelling the 𝑣(𝑡𝑓) as a 

variable in the numerical modelling and simulations; and 

3. While the batch number or zone range is increasing under piecewise or continuous 

trajectory modelling, the average service time is increasing based on Corollary 5.1 

such that the average delay is also increasing based on Corollary 5.3, and the 

average throughput is increasing because the demand is always lower than the 

capacity. 

7.3 Optimal Scheduling of CAVs at a Reservation-based Intersection 

An expedited DP algorithm is proposed to reduce time complexity and computation time 

of a scheduling problem of CAVs at a reservation-based intersection. To achieve the less 

time complexity and computation time, a deeper property of identifying overlapping 
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subproblems in the branching process of the algorithm is rigorously analyzed. Based on 

the deeper property of the scheduling problem, a property of batching CAVs in an optimal 

solution of the problem is further identified. 

Numerically, it is found that platoons of CAVs can significantly reduce the time 

complexity and computation time, in addition, the platoons are batched in the optimal 

solution. Interestingly, CAVs that are not identified in a platoon at an initialization of an 

optimization cycle can be batched with other platoons in the optimal solution. This finding 

reveals that the proposed algorithm can dynamically batches CAVs in the optimal solution 

of the problem, however, the dynamical batch depends on data initialization of each 

optimization cycle. 

Theoretically, based on identified properties of the scheduling problem, a lower bound of 

the proposed algorithm is achieved. The lower bound reduces the time complexity from 

quadratic to linear time growth of the problem size. In addition, the computation time of 

the algorithm can be directly determined based on a specific detailing of procedures of the 

branching process of the algorithm. Each unit computation time depends on processing 

speed of a computer. 

7.4 Discussion 

Throughout this dissertation, some research areas, within or out of the dissertation scope, 

should be further discussed in order to clarify the dissertation research goals and proposed 

further research directions. 

First, safety concerns or conflicts between vehicles that are from same approach or 

different approach are inherently integrated in the reservation-based control models. Such 

conflict constraints as Eqns. (16), (17), (37), (80), (83) and (84) ensure safely crossing and 
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following from the perspective of modeling. Because of these integer constraints, the at-

worst upper bound of the time complexity of the reservation-based control and scheduling 

problem is an exponential function of the problem size. In other words, the aim of reducing 

time complexity arises from avoiding conflicts between vehicles. Overall, this dissertation 

is evaluated from multiple criteria, including ensuring safety, optimizing intersection 

efficiency, and reducing time complexity. 

Second, during simulation and test of the modeling framework in this dissertation, some 

issues arise in terms of computation time and memory management, especially for Section 

5.5.1. Due to coding platform in Section 5.5.1, Cplex, the memory cannot be maintained 

or released in Cplex’s interface such that memory leaks during the simulation. This issue 

also prevents a real-time evaluation and implementation of the modeling method. After 

identifying this problem, the coding platform is transferred to C++ in order to efficiently 

manage the memory. Furthermore, in Section 6.4, the real-time implementation is 

improved by updating the solution algorithm and testing on a prototype intersection. 

Section 6.4 proves and validates the efficacy of the modeling method and associated 

solution algorithm at a prototype intersection. Therefore, this contribution paves the way 

for the real-time control at a realistic intersection on the field. 

Furthermore, vehicle-to-everything communication protocols, latency, and reliability are 

out of scope of this dissertation. Such research areas are emerging and required to be 

investigated such that the reservation-based control can be implemented in the real world 

(Feng et al., 2022). Especially, vehicle-to-pedestrian communication and appearance of 

pedestrians or bikes in the vicinity of the reservation-based intersection are out of research 

scope of this dissertation. However, pedestrians or bikes can be easily integrated with 
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existing modeling framework of the reservation-based intersection (Wu et al., 2022a). In 

addition, road surface condition during raining or other adverse weather conditions is not 

within the dissertation research area, but the controllable acceleration rate under such 

conditions can be compromised from the perspective of perception-reaction time of human 

drivers (El-Shawarby et al., 2013). 

7.5 Future Research Direction 

In the optimal control framework for the reservation-based intersection, the result partially 

shows that the BATCH strategy has better performances than the ZONE strategy, which 

leads to an open question of investigating the relationship between the intersection capacity 

and the configuration of cells within the intersection. In light of this result, the capacity is 

believed to increase as the number of cells within the intersection increases. Furthermore, 

the demand is still lower than the intersection capacity even when the demand is up to 

14,400 veh/h at the reservation-based intersection. In future research, it is interesting to 

investigate theoretically and numerically the effect of the number/configuration of cells on 

the capacity of the reservation-based intersection. 

Furthermore, there are still limitations in designing the optimal scheduling algorithms for 

the reservation-based intersection. During each optimization cycle, solutions of CAVs at 

last cycle are fixed in terms of next cycle. This control strategy may compromise the 

optimal solution in terms of all CAVs overall in a time interval. However, the computation 

time would increase if CAVs in last cycle are included in next cycle when those CAVs are 

not cleared by the intersection yet. Further, the proposed algorithm only applies to a special 

reservation-based intersection, where only one cell is configured. In order to achieve a 

wider application on a general reservation-based intersection, which allows all types of 
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movements in different lanes from an approach and is configured by more cells, the 

algorithm needs to accommodate accordingly. Since this type of algorithm that can 

accommodate such scenarios has been tested (Pei et al., 2021), the future research could 

incorporate problem properties identified into their algorithm and update the algorithm 

accordingly for more complex scenarios. In addition, once the strong assumption, same 

initial speeds for all CAVs, is lifted, more realistic scenarios can be further investigated to 

test the performance of the scheduling algorithm in the control environment. 

Moreover, although the reservation-based intersection control has been tested and 

validated in a real intersection (Fayazi et al., 2019; Quinlan et al., 2010), it is still 

implemented through a vehicle-in-the-loop (VIL) method, which requires few CAV in a 

testbed. More complicated scenarios with more CAVs at a realistic intersection should be 

further investigated in terms of testing the reservation-based intersection control when a 

market penetration rate of CAVs rapidly increases. Such test and evaluation require lower 

communication latency and cyber-physical security among other real world variables in 

order to achieve real-time implementation of the reservation-based control and associated 

control algorithms proposed in this dissertation. In the meantime, pedestrians and other 

road users are critical factors that need to be included in the modeling and testing process. 

Safety concerns involving pedestrians in the interaction with CAVs are significant and 

require specific attentions from researchers and transportation agencies. 
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