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ABSTRACT

CROSS-VALIDATION FOR AUTOREGRESSIVE MODELS

Christina Han

August 3, 2022

There are no set rules for choosing the lag order for autoregressive (AR) time

series models. Currently, the most common methods employ AIC or BIC. However,

AIC has been proven to be inconsistent and BIC is ine�cient. Racine proposed an

estimator based on Shao's work which he hypothesized would also be consistent, but

left the proof as an open problem. We will show his claim does not follow immediately

from Shao. However, Shao o�ered another consistent method for cross validation

of linear models called APCV, and we will show that AR models satisfy Shao's

conditions. Thus, APCV is a consistent method for choosing lag order. Simulations

also show that APCV performs as well, and in some cases, performs better than AIC,

AICc, and BIC.
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CHAPTER 1

INTRODUCTION

Before getting into the formal math and de�nitions, we should keep in mind

the big picture:

Our goal is to �nd a good way to determine how far into the past we need to look in

order to predict the future.

In a modern world, forecasting is vital for everything from economic predic-

tions to DDoS detection. An essential part of creating good models is using good

model selection and evaluation techniques. Cross-validation (CV) is a standard pro-

cedure for model selection and evaluation with the bene�t of making use of the entire

data set. However, CV techniques are typically reserved for independent data where

shu�ing data will not impede the validity of the error measure. A natural extension

of CV would be to apply it to time series data. However, time series observations are

not independent, and keeping the temporal order of the data is important for model

building and evaluation. Recent literature has applied modi�ed cross-validation tech-

niques to time series data [4] [5] [8] [11] [12] [21] [22] [28].
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In particular, Racine uses a technique called hv-block cross-validation, a mod-

i�ed version of Shao's BICV (cross-validation based on balanced incomplete block

design) and Burman et al.'s h-block cross-validation, in which the data is kept in

temporal order and some data is removed around the test set in order to create

independence between the training and test data [22]. Racine leaves proving that

hv-block cross-validation is consistent as an open problem, but he conjectures that

it should follow immediately from Shao's work on cross-validation for linear model

selection. We will show that this is not true, as not being able to shu�e the data

means that we cannot achieve a balanced incomplete block design except in trivial

cases. However, Shao o�ers an alternative to BICV called APCV which does not

depend on the BIBD, and it is designed speci�cally for linear models. While his

proofs and examples are for deterministic predictors, he asserts that his results hold

almost surely for random variables. Thus, we will use Shao's work as a framework

to show that APCV is a consistent estimator for order selection in autoregressive

models.

Chapter 2 introduces basic concepts primarily for time series data, as well

as a few general concepts necessary to understand folowing chapters. Section 2.1

covers foundational de�nitions and notation, and in 2.2 we discuss and de�ne cur-

rent methods for determining the lag order of AR(p) models. We de�ne commonly

used penalized methods like Akaike information criterion (AIC) and Bayesian infor-

mation criterion (BIC), and an algorithm called false nearest neighbors (FNN) [17].

All methods have been used for order selection with time series data. We brie�y

discuss some cross-validation based methods, APCV and HVCV, but leave thorough
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discussion of these methods in the literature review.

Our literature review is contained in Chapter 3. We cover the most relevant

results from Shao [25], Burman et al [8], Racine [22], Cerqueira et al. [12], and Zeng

[28]. We use these papers to help guide our work and show that APCV is consistent

for choosing lag order in autoregressive models.

In 3.1.1 we cover Shao's results for three di�erent methods for model selection

[25]. The �rst is balanced incomplete cross-validation (BICV) which is based on his

version of balanced incomplete block design (BIBD). BIBD is the set of rules used for

choosing training and validation sets used in BICV. Shao's second method is Monte-

Carlo cross-validation (MCCV) which is less computationally expensive than BICV.

In MCCV we use a randomly selected subset of the training and validation sets for

model selection rather than all sets determined through BIBD. Shao's last method,

analytic approximate cross-validation (APCV) is the least computationally expensive

of the three methods, but tends to require a larger data set to be competitive with

BICV and MCCV. APCV is also limited to linear models, and expansion to other

models is left as an open problem.

Section 3.1.2 covers Burman, Nolan, and Chow's modi�ed leave-one-out cross-

validation method for dependent data called h-block cross-validation. This method

keeps the data in temporal order and removes h data points from training around

the test point. Leave-one-out cross-validation is inconsistent and since h-block cross-

validation is LOO when h = 0 it follows that it is also inconsistent.

In 3.1.3 we cover Racine's remedy for the inconsistency of h-block cross-

validation with his method hv-block cross-validation (HVCV). Like h-block cross-
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validation HVCV keeps the data in temporal order, and removes h observations

around the test set, but the test set size is larger than one observation. This fol-

lows the intution from Shao, that the validation set must be large in order to get

an accurate prediction error. However, we show that HVCV's consistency does not

follow immediately from Shao and we provide a simple explanation as to why HVCV

generally cannot satisfy Shao's BIBD.

Cerqueira et al.'s work is covered in 3.1.4. They survey various cross-validation

and out-of-sample methods for model evaluation. They determine that cross-validation

methods do not work as well as out-of-sample methods with real-world data. We do

note that their work focuses on model evaluation, whereas our work is in line with

Shao and Racine and we focus on order selection. The subtle di�erence between

model evaluation and order selection being that in order selection the goal is to �nd

the correct size of the model, and in model evaluation we have presumably already

determined the size of the model and are now gauging how the model performs on

unseen data.

Finally, in 3.1.5 Zeng provides more examples and insight as to why HVCV

does not follow from Shao, and provides a comprehensive list of papers that inherit

the mistake from Racine. Zeng also provides a python package with di�erent cross-

validation and out-of-sample methods for temporal data.

Our main result can be found in Chapter 4. Using Shao's work as the frame-

work, we show that APCV is a consistent method for choosing the lag order of an

autoregressive model. We explain all necessary assumptions and notation. For Shao's

results to hold for AR models we need to show that Shao's conditions are satis�ed; so

4



we adapt his conditions to the time series setting and prove them as lemmas. After

proving the three lemmas hold, Shao's results follow for autoregressive models.

Simulations and examples with real world data in R can be found in Chapter

5. In 5.1 we provide a comparison of AIC, AICc, BIC, HVCV, and APCV with

simulated data. We use the arima.sim function to create four di�erent simulated

data sets with 1000 observations for AR(2), AR(3), AR(4), and AR(5) models. Since

we have the ground truth, we can easily evaluate each method's output. For the real-

world example in 5.2, we follow Racine's example [22] and use G7 exchange rates

data sets for the following six countries: Canada (CAD), Germany (DEM), France

(FRF), Great Britain (GBP), Italy (ITL), and Japan (JPY) taken from [13]. We

compare the selected lag order for the following methods: AIC, AICc, BIC, HVCV,

and APCV. Then to evaluate each method we check the results against the PACF

plots since, unlike the simulated data, we do not know the ground truth. In both

the simulated and real-world examples we will see that APCV performs as well

as other methods, and frequently outperforms other methods for order selection in

autoregressive models.

The Appendix is reserved for two smaller results and detailed proofs for four

of Shao's results. These proofs provide information and context that is not readily

available, but is too dense to �t well elsewhere. We also use the appendix to write

out all of the details of Shao's proofs where it is relevant to our work.
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CHAPTER 2

DEFINITIONS

2.1 De�nitions

2.1.1 Linear regression models

A commonly used, and relatively versatile, model is the linear model of the

form

y = x′β + e

where y is a response variable, x is a p-dimensional input vector, β is a p-dimensional

vector of real valued parameters, and e is a random error with mean 0 and variance

σ2.

Typically, to estimate β we minimize the sum of squared error (SSE), which

gives the distance of the data points to the regression line.
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2.1.2 Consistency

For linear models, we want to estimate a parameter β ∈ R. A sequence of

estimators βn, n = 1, 2, ... of a parameter β is said to be consistent if it converges in

probability to the true value of β. That is, for all ε > 0

lim
n→∞

P (|βn − β| ≥ ε) = 0

or equivalently

lim
n→∞

P (|βn − β| < ε) = 1.

2.1.3 O, Op, and op

Suppose an and bn are real-valued sequences. Then an = O(bn) if there exists

a C ∈ [0,∞) such that |an| ≤ C|bn| for all n ∈ N.

Let Xn be a sequence of random vectors, then we say Xn is bounded in

probability or tight, written Xn = Op(an), if ∀ε > 0 there exist constants cε and nε

such that P (|Xn| ≤ cεan) ≥ 1−ε for all n ≥ nε. We say Xn = op(an) if for any ε > 0

there exists nε such that P (|Xn| ≤ εan) ≥ 1− ε for all n ≥ nε.

For �xed integers k and `, a natural extension of this de�nition for real-valued

sequences of k × ` matrices An and real-valued sequence bn is that An = O(bn) if

and only if there exists a C ∈ [0,∞) such that |[An]i,j| ≤ C|bn| for all n ∈ N where

[An]i,j is the element in the ith row and jth column of An.

7



2.1.4 Balanced incomplete block design (BIBD)

We will use Shao's simpli�ed version of BIBD which only has two conditions.

For BIBD to be satis�ed, let B be a collection of b subsets of {1, ..., n} that have

size nv. B is selected according to two conditions:

(a) for every i, 1 ≤ i ≤ n appears in the same number of subsets in B

(b) for every pair (i, j), 1 ≤ i < j ≤ n appears in the same number of subsets

in B

We will give an example of how the BIBD may be employed. Let n = 7 so the

observations in the data set are indexed {1, 2, 3, 4, 5, 6, 7}. We would like to create a

set of 7 subsets with nv = 3 that satis�es the conditions (a) and (b). Such a set B

would be

{{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}.

Upon investigation we can see that each number appears 3 times and appears with

distinct numbers only once. Thus, (a) and (b) are satis�ed and B is a BIBD.

2.1.5 k-fold cross-validation

Cross-validation is a procedure used for model selection and parameter tuning

which makes full use of the data by not reserving a portion of the data only for testing.

The most commonly used cross validation technique is k-fold cross validation, where

k is the number of times we will �fold� or split the data set. Meaning, if we have a

data set of size n and we are applying k-fold cross validation, we would randomly

split the data set into k validation sets with n/k observations in each set (give or

8



take a sample if n is not divisible by k). We run the algorithm k times, training the

data on the n−n/k samples not in the validation set, then test the generated model

with the reserved samples. In this way, we make full use of the given data since we

would have the option to not reserve a portion of the data only for testing. Using the

entire data set for model selection is advantageous for small data sets in particular.

For consistency, we will use Shao's notation and vocabulary when discussing

cross-validation. Let n be the number of observations in a data set, nv be the size of

the validation set, and nc = n− nv be the training set size.

For a simple illustration, consider 5-fold cross-validation where n = 100 and

nv = 20, so nc = 80. We would randomly select 20 observations �ve times without

replacement to create the validation sets. Then we reserve the �rst validation set,

run the algorithm with the remaining 80 data points, and test our model with the

validation set. We repeat this procedure 5 times, once for each validation set. Fig-

ure 2.1 illustrates the procedure, with each blue block being the 20 samples in the

validation set for that trial.

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

All 100 observations

Figure 2.1: Illustration of 5-fold cross validation
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2.1.6 Leave nv-out cross-validation

Shao [25] presents a version of cross-validation that he calls leave �nv-out

cross-validation�. It di�ers from k−fold cross-validation in a few ways: �rst, instead

of choosing k for the number of folds, we choose nv - the size of the training set.

Then based on the BIBD conditions from section 2.3, we split the data into b blocks.

This leads to the largest di�erence between k−fold and leave nv-out cross-validation;

in k-fold, the validation sets are disjoint, but in leave nv-out, there are overlapping

samples except in the case when nv = 1 which is equivalent to n-fold cross-validation

(LOO).

Only certain combinations of b, n and nv lead to a BIBD. We can use the

following to �nd if we can satisfy the BIBD conditions with �xed b, n and nv. Let

ki be the number of times the ith observation appears in B and ki,j be the number

of times the pair (i, j), i 6= j appear together in B. We claim that

ki =
nvb

n
(2.1)

and

ki,j =
k∗(nv − 1)

(n− 1)
=
nvb(nv − 1)

n(n− 1)
(2.2)

where k∗ is the number of times an observation appears in B. To see (2.1), note that

the total number of positions overall is
∑n

i=1 ki = nvb, and for (a) to be satis�ed,

k1 = k2 = · · · = kn, so (2.1) follows.

Based on condition (b), we know that the ith observation appears in k∗(nv −

1) pairs since it appears in k∗ subsets and can be paired with the nv − 1 other

observations in each subset. Then
∑n

i=1 k
∗(nv − 1) and by (b) it follows that ki,j =

10



ki,1 = · · · = ki,i−1 = ki,i+1 = · · · = ki,n and ki,i = 0. Therefore (2.2) holds for i 6= j.

In many cases the only option is to construct B such that |b| =
(
n
nv

)
, which

could be exceptionally computationally expensive. To reduce the expense, Shao

presents a solution he calls Monte Carlo cross-validation (MCCV(nv)) which ran-

domly selects a subset R ⊂ B to use for the trials. Note that this is still di�erent

from k−fold cross-validation since the test sets are still not guaranteed to be disjoint.

2.1.7 Time series data

A time series Y = {y1, y2, ..., yn} is a set of observations yt recorded at time

t. Formally, a time series is a realization of a stochastic process, where a stochastic

process is a family of random variables {yt, t ∈ T} de�ned on a probability space

(Ω,F , P ). They can be used for regression (forecasting) or classi�cation problems.

Time series can be univariate or multivariate and discrete or continuous. We are

focused on discrete univariate time series for regression problems.

A famous discrete time series data set is the �Lynx� data set that recorded

the annual Canadian Lynx trappings from 1821 to 1934, shown in Figure 2.2 [10].

We can see that the number of trapped lynx is dependent upon time.

If {yt, t ∈ T} is such that var(yt) < ∞ for all t ∈ T then the autocovariance

function for r, s ∈ T is given by

γy(r, s) = Cov(yr, ys) = E[(yr − E(yr))(ys − E(ys))].

A time series (with index set Z) is considered stationary if for all r, s, t ∈ Z

1. E|yt|2 <∞

11



Figure 2.2: Canadian Lynx Plot

2. E(yt) = m

3. γy(r, s) = γy(r + t, s+ t)

If {yt, t ∈ Z} is stationary, then we can write the autocovariance function as

γy(h) = Cov(yt+h, yt)∀t, h ∈ Z.

Then γy(·) is the autocovariance function of {yt}, and γX(h) is the value at lag h,

where lag is the time di�erence.

We can visualize the di�erence between a non-stationary and stationary time

series in Figure 2.3.
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Figure 2.3: Non-stationary time series vs a stationary time series

An ARMA(p, q) process is causal if there exists a sequence of constants {ψj}

such that
∑∞

j=0 |ψj| <∞, and

yt =
∞∑
j=0

ψjet−j

where et−j is white noise with mean 0 and variance σ2. Equivalently, we can de�ne

a causal process in terms of the characteristic equation,

ψ(z) = zp − ψ1z
p−1 − . . .− ψp.

Note that in [6], the AR model is written as

φ(B)yt = et,

where B is the backshift operator such that B(yt) = yt−1 and φ(z) = 1− β1z− . . .−

βpz
p. Then the condition that all roots of ψ lie inside the unit circle is equivalent to

13



the condition that all roots of φ lie outside of the unit circle since

φ

(
1

e

)
=
ep − β1ep−1 − . . .− βp

ep
=
ψ(e)

ep
.

So

ψ(e) 6= 0 when |e| ≥ 1 if and only if φ(e) 6= 0 when |e| ≤ 1.

Causality is a statement about the relationship between the processes {yt} and {et}.

We can also de�ne stationarity as when all of the roots of the characteristic equation

do not lie on the unit circle. Thus, causality implies stationarity.

The autocorrelation function of {yt} at lag h is de�ned as

ρy(h) = γy(h)/γy(0) = Corr(yt+h, yt).

As a naive method of determining the lag order for modeling time series we

can look at the autocorrelation plot, an example is shown in �gure 2.4.

Figure 2.4: Autocorrelation plot of the lynx data set
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The partial autocorrelation function of {yt} at lag 1, written α(1) is

α(1) = Corr(yt+1, yt),

and at lag h, written α(h) is

α(h) = Corr(yt+h − Pyt+k , yt − Pyt),

where Pyt+k is the linear combination of {yt+k, yt+k−2, ..., yt+1} that minimizes the

mean square error, E[yt+k−Pyt+k ]2. Like with the autocorrelation plot, we may also

use the partial autocorrelation plot to determine lag order. An example is given in

�gure 2.5.

Figure 2.5: Partial autocorrelation plot of the lynx data set
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2.1.8 Time series models

A stochastic process {yt, t ∈ Z} is an autoregressive (AR(p)) process if {yt}

is stationary and if ∀t

yt − β1yt−1 − · · · − βpyt−p = et

where et is white noise with mean 0 and variance σ2.

A moving average (MA(q)) model can be written

yt = et + θ1et−1 + · · ·+ θqet−q.

In both MA(q) and AR(p) models, we call the size of the model the lag order,

so if p = 2 then the AR(2) model is an autoregressive model of order 2:

yt − β1yt−1 − β2yt−2 = et.

Determining the lag order for common time series models like moving average

(MA), autoregressive (AR), autoregressive moving average (ARMA), and autoregres-

sive moving average with di�erencing (ARIMA) is generally estimated with penalized

methods like the Akaike information criterion (AIC), corrected Akaike information

criterion (AICc) which are both de�ned in Section 2.2.1, and Bayesian information

criterion (BIC) de�ned in Section 2.2.2.

Some modi�ed versions of cross-validation have been proposed for time series

data, but none have been proven to be consistent. Time series data is distinct from

most data we consider since observations are not independent, and therefore the

independence condition necessary for cross validation results to hold are violated.

However, AR models are a linear model which have convenient properties which can
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be used to justify the use of cross-validation for determining lag order, which we

address in 4.1. Currently, there is no de�nitive way to �nd the best p. The most

common methods for order selection are discussed in the following section 2.2.

2.2 Determinimg lag order for time series models

2.2.1 Akaike information criterion (AIC)

Most commonly, Akaike information criterion (AIC) and Bayesian information

criterion (BIC) are used to determine the size of the lag. Shibata [26] proposed using

AIC for lag order selection in 1976. He assumes that {yn} is a Gaussian time series

with mean zero such that

ym = β1ym−1 + β2ym−2 + · · ·+ βkym−p + em

where βi ∈ R such that

|yp| =

∣∣∣∣∣
p∑
i=1

βiy
p−1

∣∣∣∣∣ < 1

and {en} is a sequence of N(0, σ2) iid random variables. Let y1, ..., yn be a set of

n observations, p the order of the model, and K initial conditions. Then the MLE

estimates β̂i(p) of βi, i = 1, ..., p are de�ned by
R̂(1, 1) ... R̂(1, p)

...
...

R̂(p, 1) ... R̂(p, p)



â1(p)

...

âp(p)

 =


R̂(0, 1)

...

R̂(0, p)


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where

R̂(i, j) =
1

n

n∑
m=K+1

ym−iym−j.

The MSE

σ̂2
e(p) =

1

n

n∑
m=K+1

[ym − β̂1(p)ym−1 − · · · − β̂p(p)ym−p]2

is also the approximate MLE of σ2
e . Then β̂i(p) = 0 for all p < i ≤ K so β̂′(p) =

[β̂1(p), ..., β̂p(p), 0, ..., 0] is a K-dimensional vector and p = 0, 1, ..., K.

Let AIC be de�ned as a function of m where m = 0, 1, ..., K

AIC(m) = n ln(σ̂2
e(m)) + 2m

so the selected lag order p̂ is

p̂ = arg min
m

AIC(m).

It has been shown that AIC is asymptotically inconsistent [20]. Meaning, AIC

will sometimes pick the incorrect model, even with large datasets.

The corrected Akaike information criterion (AICc) [9] has an additional cor-

rection term which penalizes larger models. So the AICc is de�ned as

AICc(m) = n ln(σ̂2
e(m)) + 2m(m+ 1)/(n−m− 1)

so the selected lag is

p̂ = arg min
m

AICc(m).

2.2.2 Bayesian information criterion (BIC)

The Bayesian information criterion is calculated similarly to the AIC, but it

has a higher penalty on larger models. Then BIC is de�ned as a function of m where
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m = 0, 1, ..., K

BIC(m) = (n−K) ln(σ̂2
e(m)) + ln(n−K)m

so the selected lag order p̂ is

p̂ = arg min
m

BIC(m).

Hannan (1980) [15] showed that BIC is consistent.

2.2.3 False nearest neighbors (FNN)

Kennel, Brown, Abarbanel [17] proposed an algorithm called false nearest

neighbors to determine lag order. The false nearest neighbors algorithm examines the

behavior of data points which are neighbors as the embedding dimension increases. If

the embedding dimension is too low, many of the data points will be false neighbors,

but as the embedding dimension increases, the nearest neighbors are real. Essentially,

the algorithm considers the behavior of nearest neighbors as a function of dimension.

2.2.4 Analytic approximate cross-validation (APCV)

Shao [25] proposes an error measure for linear models (recall that the AR

model is a linear model) called analytic approximate cross-validation (APCV) which

is given by

Γ̂APCVα,n =
1

(n−K)
‖y −Xαβ̂α‖2 +

(n−K) + nc
nc((n−K)− 1)

∑
i

wiα(yi − x′iαβ̂α)2.
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It can be shown that this method is consistent for �xed and consistent almost

surely for random y. However, in simulations, for small data sets APCV tends to

select large models. This will be further discussed in section 3.1.1.

2.2.5 hv-block cross-validation (HVCV)

There have been two variations on cross-validation proposed for time series

data which preserve the temporal order of the data and remove dependent data.

The �rst was proposed by Burman, Nolan and Chow in �A cross-validatory method

for dependent data� called h-block cross-validation, which is a variant of LOO CV.

Later, Racine proposed hv-block cross-validation, which is h-block cross-validation

with test sets that are larger than one observation. It is given by

HV CV =
1

(n− 2v)nv

n−v∑
i=v

‖y(i:v) −X(i:v)β̂(−i:h,v)‖2

Where nv = 2v + 1. These techniques will be discussed in sections 3.1.2 and 3.1.3,

respectively.

2.2.6 AR model evaluation methods

There is some overlap in techniques for evaluating time series models as well

as determining the lag order for a time series model. Testing a time series model is

not as straightforward as it is for linear models with iid data. In this case, we have

to decide if preserving the temporal order of the data is important and if we want to

remove dependent data between training and testing sets.

Commonly, for time series data, we use out of sample methods (OOS), where
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the priority is preserving the temporal order of the data. OOS methods also never

use future data to predict the past. The simplest OOS method is holdout, where we

simply reserve the end of the data for testing and use the rest for training. Variants

on this include iterating the holdout process and removing dependent data. Unlike

cross-validation techniques, OOS methods typically do not make full use of the data.

A more in-depth discussion of these methods will be in section 3.1.4.
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CHAPTER 3

LITERATURE REVIEW

3.1 Literature Review

3.1.1 Model selection by cross-validation

Shao presents three di�erent error measures and proves that under certain con-

ditions all three are consistent and will choose the best linear model given enough

data. The three methods are the balanced incomplete cross-validation (BICV),

Monte-Carlo cross-validation (MCCV), and the analytic approximate cross-validation

(APCV). The conditions that must be satis�ed are

1. lim inf
n→∞

∆α,n > 0 for Mα in Category I

2. X ′X = O(n) and (X ′X)−1 = O
(
1
n

)
3. lim

n→∞
max
i≤n

wiα = 0∀α ∈ A

4. lim
n→∞

max
s∈B

∥∥∥∥ 1
nv

∑
i∈s

xix
′
i − 1

nc

∑
i∈sc

xix
′
i

∥∥∥∥ = 0 (not applicable for APCV)

5. nv
n
→ 1 and nc = n− nv →∞
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where A is all nonempty subsets of {1, 2, ..., p}, B is the collection of sets described

in 2.1.4, X = (x1,x2, ...,xn)′ is a n × dα design matrix, Mα is a model of size dα

where Xα is a submatrix of X using only columns indexed by α, wiα is the ith

diagonal element of the projection matrix Pα = Xα(X ′αXα)−1X ′α, n is the size of

the full data set, nv is the size of the validation set, nc is the size of the training set,

and ∆α,n = 1
n
β′X ′(In − Pα)Xβ. Shao splits possible models into two categories:

category I models which are too small and missing a non-zero component of β, and

category II models which may be too large, but the best model is a category II model.

The �rst condition guarantees that the method will not choose a model which

is too small. The second and third conditions set bounds on how fast the elements in

the projection matrix can grow and that the elements of the diagonal of the projection

matrix behave similarly. The fourth condition is speci�c to the BIBD, and it can

be dropped when considering consistency of APCV. Condition 5 sets the size of the

validation set to be large. Shao also only considers non-random x but states, without

proof, that in the case of random x, the results still hold almost surely.

The BICV method, which we discussed in section 2.1.6, selects a model by

minimizing

Γ̂BICVα,n =
1

nvb

∑
s∈B

‖ys − ŷα,sc‖2.

If it is too computationally expensive to use the BICV method, MCCV ran-

domly selects a subset R ⊂ B and selects a model by minimizing

Γ̂MCCV
α,n =

1

nvb

∑
s∈R

‖ys − ŷα,sc‖2
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where ŷα,sc = Xα,scβ̂α,sc is the prediction of ysc . Both methods work well

when the data are independent and generalize to non linear models. The third

method, APCV, selects a model by minimizing

Γ̂APCVα,n =
1

n
‖y −Xαβ̂α‖2 +

n+ nc
nc(n− 1)

∑
i

wiα(yi − x′iαβ̂α)2

and depends on the �special nature of linear models� [25]. In Shao's simulations

APCV does not perform as well as MCCV and BICV, indicating that it requires

more data to perform well. On small data sets APCV performs similarly to LOO.

3.1.2 h-block cross-validation

In �A Cross-Validatory Method for Dependent Data,� Burman, Nolan, and

Chow propose a modi�cation for leave-one-out cross validation for dependent data

called h-block cross validation [8]. For a data set with n samples, there would be

n test points, but unlike regular leave-one-out cross validation there are two blocks

of size h removed around the validation point for each trial so the training set size

is nc = n − 2h − 1. By removing the 2h data points, the test point is essentially

independent from the training data. Figure 3.1 illustrates the procedure for iteration

i. The h−block CV function is

HCV =
1

n

n∑
i=1

(yi − ŷi(−i:h))2 =
1

n

n∑
i=1

(yi −X ′iβ̂(−i:h))
2

where β̂(−i:h) = (X ′(−i:h)X(−i:h))
−1X ′(−i:h)y(−i:h) such thatX(−i:h) is the design matrix

with the ith observation removed and h observations removed around the ith obser-
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vation; y(−i:h) is y with the ith observation removed and h observations removed

around the ith observation; and ŷi(−i:h) is the prediction for yi.

The authors mention that it is ideal to have h
n
→ 0. However, this is only

reasonable for large n. So in the case of small sample sizes they set h as a �xed

ratio h
n
∈
(
0, 1

2

)
. Then to correct for the under use of the sample, the authors

propose a correction term and note that without it, the performance is equivalent

to regular leave-one-out cross validation. The paper focuses on �nding the optimal

h and correction factor. They also note that conditions for asymptotic optimality is

unsolved.

xi validation point

h removed h removedtraining training

n observations

Figure 3.1: Illustration of h-block cross validation

3.1.3 hv-block cross-validation

Racine [22] proposes hv-block cross validation, a modi�cation of the h-block

cross validation proposed in Burman's paper [22]. Recall that Burman et.al. require

a correction term since h
n
is not negligible, but Racine is only concerned with the

case where h
n
→ 0, so he ignores the correction term. Using Racine's notation, let
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Z = (y,X) be the matrix of n observations on the response and p predictors

Z =



y1 x′1

y1 x′2
...

...

yn x′n


so we denote the removed data as Z(−i:h) = (y(−i:h),X(−i:h)) and the remaining test

set as Z(i:h) = (y(i:h),X(i:h)). Then the hv−block CV function is de�ned as

HV CV =
1

(n− 2v)nv

n−v∑
i=v

‖y(i:v) −X(i:v)β̂(−i:h,v)‖2

Note that HCV is HVCV where nv = 1, and thus LOO and h-block CV are

special cases of hv-block CV. Racine states that HV−Block CV satis�es the BIBD,

and a proof similar to Shao's should follow proving that HVCV is consistent, but

leaving the proof as an open question. Ignoring removing dependent data, achieving

a BIBD and keeping the order of time series data is generally impossible except

in trivial cases (block size 1, n, or n − 1). Condition (ii) fails - every i, j pair

appear in the same number of blocks - since data points appear more often with

close neighbors than further data points. For example, let our data set have 6

observations, {1, 2, 3, 4, 5, 6} and we want our block size to be 2. Then, the only

acceptable sets are

{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}

but 1 never appears with 4. Similarly, if our block size is 3,

{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 1}, {6, 1, 2}

but 1 never appears with 4. We have a similar problem for block size 4.
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validationh removed h removedtraining training

n observations

Figure 3.2: Illustration of hv-block cross validation

3.1.4 Evaluating time series forecasting models

Cerqueira et al. [12] build on the Bergmeir & Benítez paper [5] claiming the

synthetic data results do not re�ect real world data, and they do not test enough out

of sample (OOS) methods of validation. The authors repeat the experiment with

real-world data and more OOS methods. The 11 performance estimation methods

are split into four cross-validation methods and seven OOS methods:

� k-fold cross-validation - described in 2.1.5

� blocked k-fold cross-validation - h-block cross validation described in 3.1.2

� modi�ed k-fold cross-validation - k-fold cross-validation with dependent sam-

ples removed

� hv-blocked cross-validation - described in 3.1.3

� holdout - reserve the end of the sample for testing, and use the rest for training

� repeated holdout - iterative holdout where a sample is selected from the set

which marks the end of the training data, then data past that point is for

testing; then repeat.
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� prequential blocks - split data into n blocks, use �rst block for training, second

for testing, then use the �rst block and second block for training and third for

testing, ..., use �rst through n−1th block for training and nth block for testing

� prequential sliding blocks - split data into n blocks, use �rst block for training,

second for testing, then second block for training and third for testing, ...,

n− 1th block for training and nth block for testing

� prequential blocks with a gap - prequential blocks but leave out a block of data

between training and testing

� prequential grow - use only one observation for testing in prequential blocks

� prequential sliding window - use only one observation for testing in prequential

sliding blocks

They only consider an AR model using a rule based regression algorithm called

Cubist, as well as LASSO and random forest. The authors use false nearest neighbors

to estimate the length of the lag p. This is taken from Kennel and Brown [17]. The

error estimators they use are predictive accuracy error (PAE), absolute predictive

accuracy error (APAE). With Lm be the true error, and ĝmi be the estimated loss for

model m so

PAE = ĝmi − Lm

and

APAE = |ĝmi − Lm|.
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A decision tree is provided to show which validation technique gives better

error estimation under given conditions. They come to the conclusion that for sy-

thetic stationary data CV preforms competitively, but in the case of non-stationary

real world data, validation techniques which preserve temporal order preform better

with repeated holdout performing well across all data sets. Methods and data sets

are here: https://github.com/vcerqueira/performance_estimation .

3.1.5 hv-block is not BIBD

As we noted in section 3.1.3, hv−block cross-validation does not satisfy the

balanced incomplete block design (BIBD) de�ned in Shao's paper �Linear model

selection by cross-validation.� In �hv-Block Cross Validation is not a BIBD: a Note on

the Paper by Je� Racine (2000),� Zheng gives multiple points and reasons as to why

hv-block is not BIBD, as well as compiles a list of 64 papers that reference Racine's

paper without noting the mistake [28]. Therefore, theoretical proof of Racine's claim

that hv-block CV is consistent is still an open question and does not follow from

Shao's proofs.

Additionally, Zheng has created a Python package for time series cross vali-

dation. It has four variations on cross-validation for time series data: gap leave p

out, gap k-fold, gap walk forward, and gap train test split. All four versions keep

the data in temporal order, and the user sets the size of the data to be removed

(gap) before and after the validation set. In gap leave p out, the validation sets

are contiguous; this di�ers from gap k-fold since in gap k-fold the validation sets are

disjoint. Gap walk forward is the same as a rolling window method, but it introduces
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a gap between the training and validation sets. Gap train test split is not actually a

cross-validation method and simply splits the data into test, gap, and training sets.
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CHAPTER 4

APCV FOR AR MODELS

4.1 APCV for AR time series models

We have already seen that an AR process cannot satisfy the BIBD condition

necessary for Shao's proposed BICV and MCCV. However, APCV does not depend

on the BIBD, only on least squares estimation for linear models. In the case of time

series, our yi are random and Shao assures that all of his statements hold if the

conditions in 3.1.1 hold almost surely for random xi. Thus, we need to show that

the AR(p) process satis�es the conditions necessary for APCV to be a consistent

estimator for the autoregressive time series model.

First we will de�ne our notation and outline assumptions. We consider n

observations, {y1, y2, ..., yn}, from an AR(p) process with iid errors et ∼ WN(0, σ2),

E(e4t ) <∞ and E(yt) = 0 ∀t ∈ Z, which make up the design matrix
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X =



yK · · · yK−p+1

yK+1 · · · yK−p+2

...
...

...

yn−1 · · · yn−p


and projection matrix

P = X(X ′X)−1X ′.

The AR(p) model is given by

yt = β1yt−1 + β2yt−2 + · · ·+ βpyt−p + et.

Using notation from [2], the above can be written in matrix form as

ỹt = ẽt − β̃ỹt−1

where

ỹt =



yt

yt−1
...

yt−p+1


, ẽt =



et

0

...

0


, β̃ =



β1 β2 β3 · · · βp−1 βp

−1 0 0 · · · 0 0

0 −1 0 · · · 0 0

0 0 −1 · · · 0 0

...
...

... · · · ...
...

0 0 0 · · · −1 0

0 0 0 · · · 0 −1


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E(ete
′
t) = Σ = σ2I, and that E(yty

′
t) = Γ where Γ is a positive de�nite matrix such

that it is the solution to the equation

Γ− β′Γβ = Σ. (4.1)

Finally, we also assume that the process is causal, de�ned as in 2.1.7.

From the assumption that E(yt) = 0∀t, et are iid white noise with mean 0

and variance σ2, E(e4t ) <∞, and yt is causal then it can be shown that

E(y4t ) <∞. (4.2)

Proof of (4.2) can be found in the appendix I.0.1. This is a necessary condition in

following proofs.

We will prove three lemmas, and state two �nal conditions aligned with [25]:

1. Lemma 1 lim inf
n→∞

∆α,n > 0 for Mα in Category I w.p.1

2. Lemma 2 X ′X = O(n) and (X ′X)−1 = O
(
1
n

)
w.p.1

3. Lemma 3 lim
n→∞

max
i≤n−K

wiα = 0∀α ∈ A w.p.1

4. nv
n
→ 1 and nc = (n−K)− nv →∞

5. Let h be the amount of removed data on either side of the testing set, then

h
n
→ 0

Theorem 1 Provided the above assumptions and conditions 4 and 5 are satis�ed,

the following statements from [25] hold for causal AR(p) processes.
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1. If Mα is in Category I, then there exists Rn ≥ 0 such that

Γ̂APCVα,n =
1

n−K
e′e+ ∆α,n + op(1) +Rn

2. If Mα is in Category II, then

Γ̂APCVα,n =
1

n−K
e′e+

1

nc
dασ

2 + op

(
1

nc

)

3. Consequently,

lim
n→∞

P (the selected model is optimal) = 1

In words, Theorem 1 guarantees that APCV is a consistent method for choosing lag

order in causal AR models. We will show that Lemmas 1, 2 and 3 hold almost surely

for AR models as de�ned above. Conditions 4 and 5 align with Shao's assumptions.

4.1.1 Proof of Lemma 1

First, we will show that Lemma 1 holds:

lim inf
n→∞

∆α,n > 0 for Mα in Category I (4.3)

where

∆α,n =
1

n−K
β′X ′(I(n−K) − Pα)Xβ and Pα = Xα(X ′αXα)−1X ′α. (4.4)

Category I models are misspeci�ed in that they are too small, i.e. βα is missing some

non-zero components of the true β. Shao gives the intuition as to why this is true
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by explaining that since Xα is a submatrix of X we can see that (4.6) will be true.

However, we will show this rigorously.

Proof :

Given (4.4),

∆α,n =
1

n−K
β′X ′(In−K − Pα)Xβ

=
1

n−K
β′X ′(In−K −Xα(X ′αXα)−1X ′α)Xβ

=
1

n−K
(β′X ′Xβ − β′X ′Xα(X ′αXα)−1X ′αXβ). (4.5)

So we need to show that

1

n−K
(β′X ′Xβ − β′X ′Xα(X ′αXα)−1X ′αXβ) > 0. (4.6)

Under the assumption that Mα is in Category I, we may de�neX a (n−K)×p

matrix; Xα̃ a (n−K)× (p−m) matrix; and Xα a (n−K)×m where 0 < m < p

such that

X =



yK · · · yK−p+1

yK+1 · · · yK−p+2

...
...

...

yn−1 · · · yn−p


,Xα =



yK · · · yK−m+1

yK+1 · · · yK−m+2

...
...

...

yn−1 · · · yn−p+m


,Xα̃ =



yK−m · · · yK−p+1

yK−m+1 · · · yK−p+2

...
...

...

yn−p+m−1 · · · yn−p


so that we may write

X =

[
Xα Xα̃

]
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Then

X ′X =

X ′α
X ′α̃

[Xα Xα̃

]

=

X ′αXα X ′αXα̃

X ′α̃Xα X ′α̃Xα̃


and

X ′Xα(X ′Xα(X ′αXα)−1X ′αX)X ′αX =

X ′α
X ′α̃

Xα(X ′αXα)−1X ′α

[
Xα Xα̃

]

=

X ′αXα X ′αXα̃

X ′α̃Xα X ′α̃Xα(X ′αXα)−1X ′αXα̃



Since Γ =

Γαα Γαα̃

Γα̃α Γα̃α̃

 is positive de�nite, where Γ is de�ned in (4.1),

β′Γ′Γβ > 0 for any nonzero β [1]. Letting β =

−Γ−1ααΓαα̃βα̃

βα̃

 yields

β′α̃Γα̃α̃βα̃ − β′α̃Γα̃αΓ
−1
ααΓαα̃β1 > 0. (4.7)

With the above decomposition, we need to show that

1

n
β′α̃(X ′α̃Xα̃ −X ′α̃Xα(X ′αXα)−1X ′αXα̃)βα̃ > 0 (4.8)

for any nonzero βα̃, which implies (4.3). Since

β′(X ′X −X ′Xα(X ′αXα)−1X ′αX)β =

[
β′α β′α̃

]0 0

0 X ′α̃Xα̃ −X ′α̃Xα(X ′αXα)−1X ′αXα̃


βα
βα̃


= β′α̃(X ′α̃Xα̃ −X ′α̃Xα(X ′αXα)−1X ′αXα̃)βα̃

36



for β =

βα
β1

, it follows that
∆α,n =

1

n−K
β′α̃(X ′α̃Xα̃ −X ′α̃Xα(X ′αXα)−1X ′αXα̃)βα̃. (4.9)

Using Lemma 2 from [1],

lim
n→∞

1

n
X ′X = Γ a.s.

so

lim
n→∞

1

n
X ′X = lim

n→∞

 1
n
X ′αXα

1
n
X ′αXα̃

1
n
X ′α̃Xα

1
n
X ′α̃Xα̃


=

Γαα Γαα̃

Γα̃α Γα̃α̃

 a.s.

Taking the limit of (4.9) results in

lim
n→∞

1

n−K
β′α̃(X ′α̃Xα̃ −X ′α̃Xα(X ′αXα)−1X ′αXα̃)βα̃ (4.10)

= lim
n→∞

1

n−K
β′α̃X

′
α̃Xα̃βα̃ − lim

n→∞

1

n−K
β′α̃X

′
α̃Xα(X ′αXα)−1X ′αXα̃βα̃

= β′α̃Γα̃α̃βα̃ − β′α̃Γα̃αΓ
−1
ααΓαα̃βα̃ > 0 (4.11)

which must be positive when βα̃ is nonzero by (4.7). Therefore, (4.8) holds.

2

4.1.2 Proof of Lemma 2

Next, we will show that Lemma 2 is true for AR models,

X ′KXK = O(n) almost surely (4.12)
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holds where

XK =



yK · · · y1

yK+1 · · · y2
...

...
...

yn−1 · · · yn−K


for the AR(K) model where K ≥ p for when p is the correct model size, such that

yt = β1yt−1 + β2yt−2 + . . .+ βpyt−K + et.

Proof :

When all of the roots of ϕ(e) lie inside the unit circle (causal), it is shown in

Theorem 3 of [18] that

λmax(X
′
KXK) = O(n) almost surely (4.13)

and

lim inf
n→∞

1

n
λmin(X ′KXK) > 0 almost surely (4.14)

where λmax(A) and λmin(A) are the largest and smallest eigenvalues of a matrix A,

respectively.

Recall �big O� notation from 2.1.3, de�ned as follows. Suppose an and bn are

real-valued sequences, and there exists a C ∈ [0,∞) such that |an| ≤ C|bn| for all

n ∈ N then an = O(bn).

For �xed integers k and `, a natural extension of this de�nition for real-valued

sequences of k × ` matrices An and real-valued sequence bn is that An = O(bn) if

38



and only if there exists a C ∈ [0,∞) such that |[An]i,j| ≤ C|bn| for all n ∈ N where

[An]i,j is the element in the ith row and jth column of An.

Now, we show that the �rst part of (4.12) holds: X ′KXK = O(n). By the

Courant-Fischer Theorem, the smallest eigenvalue of a matrix A is the minimum

value of u′Au for all u such that ‖u‖ = 1 and the largest eigenvalue is the maximum

value of u′Au. If 1j is the unit vector such that its jth component is 1, then

1′jX
′
KXK1j is the jth diagonal element ofX ′KXK , say [X ′KXK ]j,j. So, (4.13) implies

that there exists a constant Cj ∈ [0,∞) such that

|[X ′KXK ]j,j| = |1′jX ′KXK1j| ≤ λmax(X
′
KXK) ≤ Cjn almost surely

for all n ∈ N. Furthermore, by the Cauchy-Schwartz inequality, we have

|[X ′KXK ]i,j| = |1′iX ′KXK1j|

≤
√

1′iX
′
KXK1i

√
1′jX

′
KXK1j

≤
√
Cin
√
Cjn = Ci,jn almost surely (4.15)

where Ci,j =
√
CiCj. Since (4.15) holds for all i and j (including the case when

they are equal), this shows that X ′KXK = O(n) almost surely where the C in the

de�nition is C = maxj Cj.

Now, we show that the second part of (4.12) holds: (X ′KXK)−1 = O(n−1).

First, note that X ′KXK is invertible since by (4.14) and by the properties of the

limit inferior of a sequence (sn) that ∀ε > 0∃N ∈ N such that

lim inf
n→∞

sn − ε < sn, ∀n ≥ N
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So choose ε < lim infn→∞
1
n
λmin(X ′KXK), then

lim inf
n→∞

1

n
λmin(X ′KXK)− ε < 1

n
λmin(X ′KXK) a.s. ∀n ≥ N

which implies that for all n ≥ N

n

(
lim inf
n→∞

1

n
λmin(X ′KXK)− ε

)
< λmin(X ′KXK) a.s.

Thus, the smallest eigenvalue ofX ′KXK is positive, so all of the eigenvalues ofX ′KXK

is positive which means that X ′KXK is full rank. With the fact that rank(XK) =

rank(X ′KXK) it follows that X ′KXK is full rank and therefore invertible.

Now, we can use the singular value decomposition XK = UKDKV
′
K as de-

scribed in [16]. Let n? = n−K so thatXK is an n?×K matrix. In the �thin� version

of the SVD shown in Figure 4.1 from [16], UK is an n? × r matrix with orthogonal

columns, VK is a K× r matrix with orthogonal columns, and DK is a square matrix

of order r where r is the rank of XK .

XK

n? ×K
=

UK

n? × r

DK

r × r

V ′K

r ×K

Figure 4.1: Illustration of the thin SVD described in [16]

We have X ′KXK = VKD
2
KV

′
K so the diagonal elements of DK are the square

roots of the eigenvalues of X ′KXK . If XK is full rank when n is large, then r = K
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so that VK is a K ×K orthogonal matrix and (X ′KXK)−1 = (V ′K)−1(D2
K)−1V ′K =

VK(D2
K)−1V ′K . In this case, this shows that the eigenvalues of (X ′KXK)−1 are the

reciprocals of the eigenvalues of X ′KXK .

The SVD of XK can also be written as

XK =
r∑

k=1

dn,kun,kv
′
n,k

where un,k is the kth column of UK , vn,k is the kth column of VK , and dn,k is the

kth diagonal element of DK . Then, when X
′
KXK is full rank, we can write

X ′KXK = VK(D2
K)V ′K =

K∑
k=1

d2n,kvn,kv
′
n,k

and (X ′KXK)−1 = VK(D2
K)−1V ′K =

K∑
k=1

1

d2n,k
vn,kv

′
n,k.

Note that d2n,k is the kth eigenvalue of X ′KXK and 1
d2n,k

is the kth eigenvalue

of (X ′KXK)−1. Then we see that

|[(X ′KXK)−1]i,j| = |1′i(X ′KXK)−11j|

=

∣∣∣∣∣
K∑
k=1

1

d2n,k
1′ivn,kv

′
n,k1j

∣∣∣∣∣
≤ 1

λmin(X ′KXK)

K∑
k=1

1′ivn,kv
′
n,k1j

≤ 1

λmin(X ′KXK)

K∑
k=1

1 · 1

≤ K

λmin(X ′KXK)
. (4.16)

By (4.14), the smallest subsequential limit of n−1λmin(X ′KXK) is positive.
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A number L is a subsequential limit of a sequence {`n} if, for every ε > 0,

there exists some N and subsequence {ni} of integers greater than N such that

L−ε < `ni < L+ε for all ni. Fix ε > 0 and let Lmin denote the smallest subsequential

limit. Then we can show that there is some N such that `n > Lmin− ε for all n ≥ N .

(Let {mi} be the set of all indices such that `mi ≤ Lmin − ε. The set {mi} is

�nite; if it were not, then Lmin is not the smallest subsequential limit. So, then take

N = maxmi.)

So, there is some N such that n−1λmin(X ′KXK) ≥ C a.s. for n ≥ N where

C = lim inf
n→∞

1

n
λmin(X ′KXK) is positive. From (4.16), it then follows that

|[(X ′KXK)−1]i,j| ≤
K

Cn
almost surely

when n ≥ N . Hence, (X ′KXK)−1 = O(n−1) almost surely.

2

4.1.3 Proof of Lemma 3

Lemma 3 follows closely from Theorem 4 in [18]. In our case, we prove for the

largest Mα in Category II, which then implies the statement is true for any α ∈ A .

We will provide a sketch of the proof. Lai & Wei's theorem in [18] is as follows:

Theorem 2 Suppose that in the AR(p) model

yn = β1yn−1 + · · ·+ βpyn−p + en,

{en} is a martingale di�erence sequence with respect to an increasing sequence of

σ−�elds {Fn} such that lim inf
n→∞

E(e2n|Fn−1) > 0 a.s. holds. Assume that the roots ej
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of the characteristic polynomial ϕ(e) = ep−β1ep−1−· · ·−βp lie on or inside the unit

circle, i.e. |ej| ≤ 1 for j = 1, ..., p. Then

lim
n→∞

max
p≤j≤n

ỹj
′

(
n∑
i=p

ỹiỹi
′

)−1
ỹj = 0 a.s. (4.17)

Before the proof of the theorem, Lai and Wei [18] outline �ve lemmas with

proofs. The lemmas are as follows.

Lemma 4 Let {an} be a sequence of nonnegative numbers such that

n∑
i=1

ai = o(nδ)∀ δ > 0 (4.18)

and there exist C > 0 and γ > 0 such that

an+1 ≤ an + Cn−γ for all large N (4.19)

Then lim
n→∞

an = 0.

Lemma 5 Let g1, ..., gr, h1, ..., hs be real numbers and let p = r+s. De�ne the s×p,
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r × p, and p× p matricies M1,M2,M by

M1 =



1 g1 · · · gr 0 · · · 0

0 1 g1 · · · gr 0
...

... 0 · · · · · · · · · · · · ...

0 · · · 1 g1 · · · · · · gr


,

M2 =



1 h1 · · · hs 0 · · · 0

0 1 h1 · · · hs 0
...

... 0 · · · · · · · · · · · · ...

0 · · · 1 h1 · · · · · · hs


,

M =

M1

M2

 (4.20)

De�ne the polynomials

P1(z) = zr + g1z
r−1 + · · · gr, P2(z) = zs + h1z

s−1 + · · ·hs (4.21)

(i) If P1, P2 are relatively prime (over the real �eld), thenM is non-singluar.

(ii) Let ϕ = P1(z)P2(z) = zp− β1zp−1− · · · − βp. For a given sequence of real

numbers {m} and initial values y0, ..., y−p, de�ne yn = β1yn−1+· · · βpyn−p+εn, n ≥ 1.

Moreover, de�ne

un = yn + g1yn−1 + · · · gryn−r, vn = yn + h1yn−1 + · · ·hsyn−s. (4.22)

Then for n ≥ 1,

un + h1un−1 + · · ·hsun−s = mn = vn + g1vn−1 + · · · grvn−r. (4.23)
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Lemma 6 Let A be a p× p symmetric positive de�nite matrix.

(i) If A−1 = Ip + V +W where V , W are symmetric p × p matrices such

that V is nonnegative de�nite and ‖W ‖ < 1, then

‖A‖ ≤ 1/(1− ‖W ‖). (4.24)

(ii) If A is partitioned as

A =

P H

H ′ Q

 ,

where P , Q are respectively r × r and s × s matrices such that p = r + s, then for

u ∈ Rr, u
0


′

A−1

u
0

 ≤ u′P−1u(1 + ‖A−1‖tr(Q)). (4.25)

Lemma 7 Let Cn =
∑n

i=p ỹiỹi
′ = X ′n+1Xn+1. Let N = inf{n ≥ p : Cn in nonsingular}.

Then

(i) N <∞ a.s. and ‖C−1/2n ‖ = O(n−1/2) a.s.,

(ii) ỹn
′C−1n ỹn ≤ 1 for n ≥ N and

n∑
i=N

ỹi
′C−1i ỹi = O(log n) a.s., (4.26)

(iii) ‖C−1/2n

∑n
i=p ỹiei+1‖ = O((log n)1/2) a.s.
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Lemma 8 Assume that B is nonsingular, where

B =

 β1 · · · βp−1 βp

Ip−1 0

 .

De�ne Cn and N as in Lemma 7. Then

(i) ‖C1/2
n B′C−1n+1BC

1/2
n ‖ ≤ 1 +O(n−1/2(log n)1/2)a.s.

(ii) Let ρ > 1/α, where α > 2. Then

lim sup
n→∞

n1/2−ρ(ỹn+1
′
C−1n+1ỹn+1 − ỹn′C−1n ỹn) ≤ 0 a.s. (4.27)

Finally, we will include our own lemma which helps clarify the �rst part of

the proof for Theorem 4.

Lemma 9 Suppose the following conditions hold

(i) anj ≥ 0

(ii) lim
n→∞

anj = 0 for all �xed j

(iii) ajj ≥ anj for all �xed j

(iv) lim
n→∞

ann = 0

Then lim
n→∞

max
1≤j≤n

anj = 0.

Proof :

By (ii), we have

∀ε > 0 ∃Nε,j such that anj < ε∀n ≥ Nε,j, j = 1, ..., n
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and by (iii), we have

∀ε > 0∃Mε such that ann < ε∀n ≥Mε.

We want to show that

∀ε > 0 ∃Rε such that max
1≤j≤n

anj < ε∀n ≥ Rε (4.28)

i.e. anj < ε ∀n ≥ Rε and for all j. Fix ε > 0, and let n ≥ Mε, then by (iii) and (iv)

we have

anj ≤ ajj < ε∀j ≥Mε. (4.29)

So let Rε = max{Nε,1, ..., Nε,Mε−1,Mε}, then

anj < ε∀n > Rε for j = 1, ...,Mε − 1. (4.30)

Combining (4.29) and (4.30) we have (4.28).

2

Proof sketch of Theorem 2 (Lemma 3)

The proof of Theorem 2 can be broken down into four parts. The �rst part reduces

4.17 to

lim
j→∞

ỹj
′C−1n ỹj = 0 a.s. (4.31)

where Cn =
∑n

i=p ỹiỹi
′ as in Lemma 7. Letting anj = ỹj

′C−1n ỹj in Lemma 9, we can

see that we need to check the four conditions. Condition (i) is satis�ed since Cj is

nonnegative de�nite, so ỹj
′C−1n ỹj is nonnegative de�nite. Then (iii) is satis�ed since

C−1j −C−1n is non-negative de�nite by Corollary 1 in the appendix it follows that

ỹj
′C−1j ỹj ≥ ỹj

′C−1n ỹj for n ≥ j ≥ N.
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Next, Lemma 9 (ii) requires a little work to see. By Lemma 7 (i),

‖C−1/2n ‖ = O(n−1/2) a.s.

where ‖C−1/2n ‖ = sup
x6=0

√
x′Cnx
x′x

. This implies that ∃M > 0 such that

P

(√
nx′Cnx

x′x
≤M

)
= 1∀x 6= 0

=⇒ P
(√

nx′Cnx ≤M
√
x′x
)

= 1∀x

=⇒ P
(
nx′Cnx ≤M2x′x

)
= 1.

We want to show that P
(

lim
n→∞

ỹj
′C−1n ỹj = 0

)
= 1 for all �xed j, equivalently, ∀ε > 0,

P
(
ỹj
′C−1n ỹj > ε i.o.

)
= 0. (4.32)

Fix ε > 0. Then, by Markov's Inequality, for any random vector x

P (x′x > c) = P ((x′x)2 > c2) ≤ E[(x′x)2]

c2
.

With (4.2), E[|yj,i|4] <∞, where yj,i is the ith component of ỹj so

E[(ỹ′iỹi)
2] = E[(y2j,1 + · · ·+ y2j,p)

2] ≤
∑p

i=1E[|yj,i|4]
c2
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Now,

∞∑
i=1

P (ỹj
′C−1n ỹj > ε) ≤

∞∑
i=1

(
M2

n
ỹj
′ỹj > ε

)
=
∞∑
i=1

(
ỹj
′ỹj >

εn

M2

)
≤

∞∑
i=1

∑p
i=1E[|yj,i|4]

( εn
M2 )2

=
M4

∑p
i=1E[|yj,i|4]
ε2

∞∑
i=1

1

n2

<∞.

So by the First Borel-Cantelli Lemma we have (4.32).

Now all that remains to be shown is condition (iv), which is precisely (4.31).

The authors break down the proof of (4.31) into two cases based on whether or not

B is invertible. We will note that the only time B is singular is when βp = 0.

The �rst case examines if B is invertible and (4.31) follows from Lemmas 4,

7, and 8. From Lemma 8(ii) we have ỹ′n+1C
−1
n+1ỹn+1 ≤ ỹ′nC−1n ỹn + o(n−1/2+ρ) a.s. for

ρ < 1/2. By Lemma 7, we also have (4.26). Letting ai = ỹ′iC
−1
i ỹi, then by Lemma

4, we have lim
n→∞

ỹ′nC
−1
n ỹn = 0 a.s. which is (4.31).

The second case, where B is not invertible, i.e. 0 is a root of the characteristic

polynomial ϕ(e), so

ϕ(e) = er(es − β1es−1 − · · · − βs), βs 6= 0, βs+1 = · · · = βp = 0

where r is the multiplicity of the root 0. This case is then broken down into two sub

cases: when r < p and when r = p.
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In the case where r < p, we let g1 = · · · = gr = 0 and h1 = −β1, ...., hs = −βs

as in Lemma 5, so we have

M1 =



1 0 · · · 0 0 · · · 0

0 1 0 · · · 0 0
...

... 0 · · · · · · · · · · · · ...

0 · · · 1 0 · · · · · · 0


,

M2 =



1 −β1 · · · −βs 0 · · · 0

0 1 −β1 · · · −βs 0
...

... 0 · · · · · · · · · · · · ...

0 · · · 1 −β1 · · · · · · −βs


,

M =

M1

M2

 .
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So

MYn =



1 0 · · · 0 0 · · · 0

0 1 0 · · · 0 0
...

... 0 · · · · · · · · · · · · ...

0 · · · 1 0 · · · · · · 0

1 −β1 · · · −βs 0 · · · 0

0 1 −β1 · · · −βs 0
...

... 0 · · · · · · · · · · · · ...

0 · · · 1 −β1 · · · · · · −βs





yn

yn−1
...

yn−p+1



=



yn

yn−1
...

yn−s+1

yn − β1yn−1 − · · · − βsyn−s+1 = εn

εn−1
...

εn−r+1


=

Un

Vn


where Un = (yn · · · yn−s+1)

′ and Vn = (εn · · · yn−r+1)
′. It follows that
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Un =



yn

yn−1
...

yn−s+1





β1 β2 · · · βs

1 0 · · · 0

... · · · · · · ...

0 · · · 0 1


+



εn

0

...

0


.

Note that B1 =



β1 β2 · · · βs

1 0 · · · 0

... · · · · · · ...

0 · · · 0 1


is nonsingular, so

U ′n

(
n∑
i=p

UiU
′
i

)
Un → 0 a.s. (4.33)

Now de�ne An = MCnM
′ so we have

An = MCnM
′

= M

(
n∑
i=p

ỹiỹi
′

)
M ′

=
n∑
i=p

Mỹiỹi
′M ′

=
n∑
i=p

Mỹi(Mỹi)
′

=
n∑
i=p

Ui

Vi

(Ui Vi

)

=

∑n
i=pUiU

′
i

∑n
i=pUiV

′
i∑n

i=p ViU
′
i

∑n
i=p ViV

′
i

 . (4.34)
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Then

ỹ′nC
−1
n ỹn = ỹ′nM

′M−1C−1n M
′−1Mỹn

= (Mỹn)′A−1n (Mỹn)

=

(
U ′n V ′n

)Ãn,1,1 Ãn,1,2

Ãn,2,1 Ãn,2,2


Un

Vn


= U ′nÃn,1,1Un + V ′nÃn,1,2Un +U ′nÃn,2,1Vn + V ′nÃn,2,2Vn

=

(
U ′n 0

)
A−1

Un

0

+

(
0 V ′n

)
A−1

 0

Vn

+ 2

(
U ′n 0

)
A−1

 0

Vn


= auu + avv + 2auv. (4.35)

By Lemma 7(i), ‖C−1/2n ‖ = O(n−1/2) a.s. so ‖C−1n ‖ = O(n−1) a.s., and by Lemma 5,

we have that M is nonsingular so

‖A−1n ‖ = ‖(MCnM
′)−1‖ ≤ ‖M−1‖‖C−1n ‖‖(M ′)−1‖ = O(n−1) a.s. (4.36)

where if x is a p-dimensional vector and A is a p× p matrix ‖x‖ = x′x and ‖A‖ =

sup
‖x‖=1

‖Ax‖, i.e. the spectral norm.

By our assumptions, we have ei are iid random variables with mean 0 and

variance σ2, a stronger condition than originally used in [18]. So Vn = (en, ..., en−r+1)
′

and then

e2n + · · ·+ e2n−r+1 + e2n−r + · · ·+ e21
n

→ σ2a.s.

Then rewriting the above we can see that

e2n + · · ·+ e2n−r+1 + e2n−r + · · ·+ e21
n

=
e2n + · · ·+ e2n−r+1

n
+
e2n−r + · · ·+ ε21

n− r

(
n− r
n

)
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and

e2n−r + · · ·+ e21
n− r

(
n− r
n

)
→ σ2 a.s.

then deduce that

e2n + · · ·+ e2n−r+1

n
→ 0

as n→∞. Therefore, √
e2n + · · ·+ e2n−r+1 = ‖Vn‖ = o(n1/2). (4.37)

Note that o(an)o(bn) = o(anbn) and o(an)O(bn) = o(anbn) [24] so (4.36) and (4.37)

result in

0 ≤ avv =

(
0 V ′n

)
A−1

 0

Vn


≤
∥∥∥∥(0 V ′n

)∥∥∥∥ ‖A−1‖
∥∥∥∥∥∥∥
 0

Vn


∥∥∥∥∥∥∥

= ‖A−1n ‖‖Vn‖2

= O(n−1)o(n1/2)2 a.s.

= o(1) a.s.. (4.38)

Now, with An de�ned as in (4.34), and Un a 1× s dimensional vector, Lemma 6(ii)

gives us

auu =

(
U ′n 0

)
A−1

Un

0

 ≤ U ′n
(

n∑
i=p

UiU
′
i

)
Un

(
1 + ‖A−1n ‖tr

(
n∑
i=p

ViV
′
i

))
.
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Then with (4.33), (4.36), (4.37)

auu → 0 a.s. (4.39)

Finally, by the Cauchy-Schwartz inequality, we have

auv ≤
√
auuavv → 0 a.s.. (4.40)

Therefore, putting (4.35), (4.38), (4.39), and (4.40) together we see that

ỹn
′
C−1n ỹn = auu + avv + 2auv → 0 a.s.

so (4.31) follows.

Now, consider the case where B is singular and r = p. Then we have p zero

roots of ϕ(e), which means that ỹn = Vn = (en, ..., en−p+1), so

ỹn
′C−1n ỹn = ‖C−1n ‖‖Vn‖2 = o(1)

follows from (4.38) and (4.31) holds for the largest Mα.

Suppose Mα is in Category I. If α ⊂ α̃, then wjα ≤ wjα̃ for all j.

Choosing α̃ such that Mα̃ is in Category II, we have

lim
n→∞

max
j≤n?

wjα ≤ lim
n→∞

max
j≤n?

wjα̃ = 0 w.p.1

by Corollary 2 in the Appendix. Therefore (4.31) holds for any α ∈ A .
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CHAPTER 5

SIMULATIONS

We will present some simple experiments, the �rst with simulated data, and

the second with a real-world dataset.

5.1 Simulated data

We used the arima.sim function in R to create four AR models with lags 2,

3, 4, and 5 with n = 100 and 1000. We used the auto.arima function to determine

lag order which uses AIC, AICc, and BIC. To limit the auto.arima function to AR

models, we set the integrated and moving average parameters to 0 and the maximum

autoregressive parameter to be 7. Then we compared it with our APCV and HVCV

functions with options p = 1, 2, ..., 7.

Shao does not give any set rules for choosing the testing and training set size,

so we use δ as an extra parameter such that

nc = bnδc

and let δ = 0.75 as a default, which tends to do well in general.

The �rst table shows the results for true models size 2, 3, 4, and 5 with 100

observations, and we saw that all methods did not do well with a small sample size.

56



In following simulations, we set n = 1000 and repeated the experiment 1000 times.

Tables entries represent the proportion of times each method chooses p̂ = 1, 2, 3, 4, 5.

We saw that APCV was competitive with AIC, AICc, and BIC, whereas HVCV

tended to pick the largest models.

Selected Model Size (n = 100)

True Model AIC AICc BIC APCV HVCV

β = (0.4,−0.3)′ 2 2 2 7* 7

β = (0.4,−0.3, 0.3)′ 2 2 0** 3 6

β = (0.4,−0.3, 0.3, 0.3)′ 4 4 4 4 7

β = (0.4,−0.3, 0.3, 0.3, 0.2)′ 5*** 3*** 3 5 7

Table 5.1: Simulation: n = 100

* If K = 6 then p̂ = 2

** Indicates white noise

*** Non-zero mean speci�ed
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Selected Model Size (n = 1000, repeated 1000 times)

True Model p̂ AIC AICc BIC APCV HVCV

β =

 0.4

−0.3



1 0.000 0.000 0.000 0.000 0.000

2 0.738 0.740 0.975 0.948 0.026

3 0.189 0.190 0.025 0.045 0.037

4 0.051 0.049 0.000 0.006 0.051

5 0.015 0.015 0.000 0.001 0.084

6 0.006 0.005 0.000 0.000 0.164

7 0.001 0.001 0.000 0.000 0.638

Table 5.2: Simulation: true model size = 2, n = 1000

Selected Model Size (n = 1000, repeated 1000 times)

True Model p̂ AIC AICc BIC APCV HVCV

β =


0.4

−0.3

0.3



1 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000

3 0.773 0.777 0.971 0.938 0.037

4 0.175 0.172 0.029 0.051 0.053

5 0.042 0.041 0.000 0.008 0.071

6 0.007 0.007 0.000 0.003 0.174

7 0.003 0.003 0.000 0.000 0.665

Table 5.3: Simulation: true model size = 3, n = 1000
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Selected Model Size (n = 1000, repeated 1000 times)

True Model p̂ AIC AICc BIC APCV HVCV

β =



0.4

−0.3

0.3

0.3



1 0.000 0.000 0.001 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000

4 0.779 0.780 0.976 0.949 0.075

5 0.166 0.167 0.022 0.038 0.088

6 0.043 0.042 0.001 0.012 0.176

7 0.012 0.011 0.000 0.001 0.661

Table 5.4: Simulation: true model size = 4, n = 1000

Selected Model Size (n = 1000, repeated 1000 times)

True Model p̂ AIC AICc BIC APCV HVCV

β =



0.4

−0.3

0.3

0.3

0.2



1 0.186 0.186 0.424 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000

5 0.614 0.616 0.570 0.958 0.136

6 0.148 0.147 0.006 0.033 0.180

7 0.052 0.051 0.000 0.009 0.684

Table 5.5: Simulation: true model size = 5, n = 1000
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5.2 Real-world data

Racine used a G7 exchange rates dataset in [22] for Canada (CAD), Germany

(DEM), France (FRF), Great Britain (GBP), Italy (ITL), and Japan (JPY). For

this experiment we also used a G7 exchange rates dataset for the same countries

taken from [13], for the years 1995, 1996, 1997, and 1998. For each country we had

approximately 250 daily observations for a total of approximately 1000 observations

for each country. Plots of the data are shown in Figure 5.1. We also visualized the

PACF plots shown in Figure 5.2, we will use these plots as a naive reference for

determining lag order. We can see that using this method, we would hope that the

order selection method should choose p = 1. In [22], the HVCV method aligned with

the PACF plots and selected a AR(1) for each country.

We used a augmented Dickey�Fuller test (ADF) test in R to check for sta-

tionarity, which is relatively common for determining whether or not a time series is

stationary. The ADF test uses a p-value in order to determine stationarity with the

null hypothesis that the data is not stationary. Thus, we want a p-value less than

0.01. We saw that each dataset was not stationary, and used di�erencing once on

each dataset in order to achieve stationarity. In Table 5.6, we have the results of the

ADF test before and after di�erencing once.
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Figure 5.1: Plots of the G7 exchange rates data sets

Country p-value before p-value after

CAD 0.99 <0.01

DEM 0.52 <0.01

FRF 0.54 <0.01

GBP 0.66 <0.01

ITL 0.70 <0.01

JPY 0.68 <0.01
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Figure 5.2: Partial autocorrelation plots of the G7 exchange rates data sets

Table 5.6: ADF test p-values before and after di�erencing

Similar to 5.1, we used the auto.arima function in R, with a maximum p = 7,

d = 0, and q = 0, to determine the AR lag order selected by AIC, AICc, and BIC.

We will compare these results to HVCV and APCV function for time series. We

used the same parameters for APCV given in 5.1. We repeated the experiment 100

times, and each model selected the same lag order in every repetition. The selected

lag order by each method are shown in Table 5.7. In most cases, AIC, AICc, and
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BIC select a model of white noise. We can see that APCV is competitive with AIC,

AICc, BIC, and HVCV, and re�ects the inference we made from the PACF plots

and selects an AR(1) model for each country. We will also note that the results for

HVCV in [22] do not match our version of HVCV, and Racine's version selected an

AR(1) model for each country.

Selected Model Size (n ∼ 1000)

Country AIC AICc BIC APCV HVCV

CAD 0 0 0 1 7

DEM 0 0 0 1 3

FRF 1 1 0 1 4

GBP 0 0 0 1 7

ITL 1 1 1 1 7

JPY 0 0 0 1 7

Table 5.7: AR lag order for G7 data for selected countries
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CHAPTER 6

CONCLUSIONS

It is natural to use APCV for linear models, so the extension to AR(p) models

is logical. Using Shao's work as a framework, we showed that causal AR(p) models

satisfy the conditions almost surely necessary for APCV to be a consistent estimator

for order selection. Thus, we o�er an alternative to arbitrary penalized methods such

as AIC and BIC.

In simulations and with real-world data, we have also shown that APCV is

a competitive estimator with standard methods. For larger models, we saw that

APCV outperformed AIC, AICc, BIC, and HVCV. However, we saw that APCV

requires a large dataset to work well with simulated or real-world data.

We limited this research to autoregressive models, so future work should ex-

pand to non-linear time series models and non-causal AR models that doe not satisfy

Shao's conditions that guarantee consistency. Additionally, we did not prove that

HVCV is not consistent, simply that such a proof does not follow from Shao, so proof

that HVCV is or is not consistient remains an open problem.
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APPENDIX I

Proofs

We present the following proofs:

� I.0.1 If E(yt) = 0∀t, et are iid white noise with mean 0 and variance σ2,

E(e4t ) <∞, and yt is causal then E[y4t ] <∞.

� I.0.2 If A is an n × K matrix with n ≥ K and B is an m × K matrix with

m ≥ K, then all eigenvalues of A(A′A+B′B)−1A′ are in the interval [0, 1]

� I.0.3
∑

iwiαr
2
iα = dασ

2 + op(1) from [25]

� I.0.4 n−1v ‖ys − ŷα,sc‖2 = n−1v ‖(Inv −Qα,s)
−1(ys −Xα,sβ̂α)‖2 from [25]

� I.0.5 BICV is consistent from [25]

� I.0.6 APCV is consistent from [25]
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I.0.1 Proof of (4.2)

Since {yt} is a causal process, we can write yt =
∑∞

j=0 ψjεt−j where
∑∞

j=0 |ψj| <

∞. Then

y4t =

(
∞∑
j=0

ψjεt−j

)4

=
∞∑
j1=0

∞∑
j2=0

∞∑
j3=0

∞∑
j4=0

ψj1ψj2ψj3ψj4εt−j1εt−j2εt−j3εt−j4

=
t∑

M1=−∞

t∑
M2=−∞

t∑
M3=−∞

t∑
M4=−∞

ψt−M1ψt−M2ψt−M3ψt−M4εM1εM2εM3εM4 .

So, we obtain

E[y4t ] =
t∑

M1=−∞

t∑
M2=−∞

t∑
M3=−∞

t∑
M4=−∞

ψt−M1ψt−M2ψt−M3ψt−M4E[εM1εM2εM3εM4 ]

=
t∑

M=−∞

ψ4
t−Mµ

′
4 + 3

t∑
M1=−∞

t∑
M2=−∞
M2 6=M1

ψ2
t−M1

ψ2
t−M2

σ4

=
t∑

M=−∞

ψ4
t−M(µ′4 − 3σ4) + 3

(
t∑

M=−∞

ψ2
t−M

)2

σ4

where µ′4 = E[ε4t ] and σ
2 = E[ε2t ] for all t.

Since
∑
|ψj| converges, then by the limit comparison test

∑
ψ2
j and

∑
ψ4
j converges,

and it follows that E[y4t ] <∞.

I.0.2 Singular value decomposition and generalized singular value decomposition

Theorem 3 (Singular Value Decomposition) [14]: If A is an n × K matrix with

n ≥ K, then there exists orthogonal matrices U and V such that A = UΣAV
′
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where ΣA is a diagonal n × K matrix with diagonal elements σ1 ≥ · · · ≥ σK ≥ 0.

Moreover, the eigenvalues of A′A are σ2
1, . . . , σ

2
K.

Theorem 4 (Generalized Singular Value Decomposition) [14]: If A is an n × K

matrix with n ≥ K and B is an m × K matrix with m ≥ K, then there exists an

orthogonal n×n matrix U , an orthogonal m×m matrix V , and an invertible K×K

matrix Z such that A = UΣAZ
−1 and B = ΣBZ

−1 where ΣA is a diagonal n×K

matrix with diagonal elements σA,1, . . . , σA,K and ΣB is a diagonal m × K matrix

with diagonal elements σB,1, . . . , σB,K.

Lemma 10 If A is an n×K matrix with n ≥ K and B is an m×K matrix with

m ≥ K, then all eigenvalues of A(A′A+B′B)−1A′ are in the interval [0, 1].

Proof :

By Theorem 2, there exists an orthogonal n × n matrix U , an orthogonal

m×m matrix V , an invertible K×K matrix Z, and diagonal n×K matrix ΣA with

diagonal elements σA,1, . . . , σA,K , and a diagonal m × K matrix ΣB with diagonal

elements σB,1, . . . , σB,K such that

A(A′A+B′B)−1A′ = UΣAZ
−1 ((Z−1)′Σ′AU ′UΣAZ

−1 + (Z−1)′Σ′BV
′V ΣBZ

−1)−1
(Z−1)′Σ′AU

′

= UΣAZ
−1 ((Z−1)′Σ′AΣAZ

−1 + (Z−1)′Σ′BΣBZ
−1)−1 (Z−1)′Σ′AU

′

= UΣAZ
−1 ((Z−1)′ (Σ′AΣA + Σ′BΣB)Z−1

)−1
(Z−1)′Σ′AU

′

= UΣAZ
−1Z (Σ′AΣA + Σ′BΣB)

−1
Z ′(Z ′)−1Σ′AU

′ (I.1)

= U
(
ΣA (Σ′AΣA + Σ′BΣB)

−1
Σ′A

)
U ′.
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Note that ΣA (Σ′AΣA + Σ′BΣB)−1 Σ′A is an n× n square diagonal matrix since it is

a product of diagonal matrices, and its diagonal elements are

σ2
A,j

σ2
A,j + σ2

B,j

(I.2)

for j = 1, . . . , K and n − K zeros. Since (I.1) is the singular value decomposition

of A(A′A +B′B)−1A′, Theorem 1 implies that (I.2) are its eigenvalues, and all of

these eigenvalues are in the interval [0, 1].

2

I.0.3 Proof that
∑

iwiαr
2
iα = dασ

2 + op(1)

Here we show that
∑

iwiαr
2
iα = dασ

2 + op(1); that is,
∑

iwiαr
2
iα

p→ dασ
2.

Where wiα is the ith diagonal element of the projection matrix Pα, so we may de�ne

diag(Pα) = Wα such that wiα is the ith diagonal element ofWα. Also let rα be the

n-dimensional vector with ith component ri = yi−xiαβ̂α, where xiα is the ith row of

Xα. So rα = y−Xαβ̂α = (In−Pα)y. First, we will show that E[
∑

iwiαr
2
iα]→ dασ

2

as n→∞, then that var[
∑

iwiαr
2
iα]→ 0 as n→∞, and the result will follow.

Now we compute

E

[∑
i

wiαr
2
iα

]
= E[r′αWαrα] = E[tr(r′αWαrα)]

= E[tr(Wαrαr
′
α)] = tr(E[Wαrαr

′
α]) = tr(WαE[rαr

′
α]).

Since E[rαr
′
α] = var[rα] = var[(In − Pα)y] = (In − Pα)(σ2In)(In − Pα)′ =

σ2(In − Pα), it follows that

E

[∑
i

wiαr
2
iα

]
= tr(Wασ

2(In−Pα)) = σ2tr(Wα−WαPα) = σ2(tr(Wα)−tr(WαPα)).
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The ith diagonal element of WαPα is wiαwiα = w2
iα so tr(WαPα) =

∑
iw

2
iα and we

have

E

[∑
i

wiαr
2
iα

]
= σ2

(∑
i

wiα −
∑
i

w2
iα

)
.

Since
∑

iwiα = tr(Wα) = tr(Pα) = tr(Xα(X ′αXα)−1X ′α) = tr((X ′αXα)−1X ′αXα) =

tr(Idα) = dα, it follows that

E

[∑
i

wiαr
2
iα

]
= σ2(dα −

∑
i

w2
iα).

Next we show that
∑n

i=1w
2
iα → 0. We have

lim
n→∞

n∑
i=1

w2
iα ≤ lim

n→∞
max
i
wiα

n∑
i=1

wiα = lim
n→∞

max
i
wiαdα = dα lim

n→∞
max
i
wiα

equals 0 by (3.4) in [25]. It follows that E[
∑

iwiαr
2
iα]→ σ2dα.

Now we will show that var[
∑

iwiαr
2
iα] → 0. We write it as weighted sum of

squared errors to use the fact that the errors are independent. Since rα = (In −

Pα)y = (In − Pα)(Xαβ + eα), it follows that

∑
i

wiαr
2
iα = r′αWαrα = (Xαβ + eα)′(In − Pα)Wα(In − Pα)(Xαβ + eα)

= β′X ′α(In − Pα)Wα(In − Pα)Xαβ + 2e′α(In − Pα)Wα(In − Pα)Xαβ +

e′α(In − Pα)Wα(In − Pα)eα

= e′α(In − Pα)Wα(In − Pα)eα

since (In − Pα)Xα = Xα − PαXα = O.

Let An,α = (In − Pα)Wα(In − Pα). Then

tr(A2
n,α) = tr((In − Pα)Wα(In − Pα)(In − Pα)Wα(In − Pα))
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= tr((In − Pα)Wα(In − Pα)Wα(In − Pα)) = tr(Wα(In − Pα)Wα(In − Pα)2)

= tr(Wα(In − Pα)Wα(In − Pα)) = tr(W 2
α −W 2

αPα −WαPαWα +WαPαWαPα)

= tr(W 2
α)− tr(W 2

αPα)− tr(WαPαWα) + tr(WαPαWαPα)

= tr(W 2
α)− tr(W 2

αPα)− tr(W 2
αPα) + tr((WαPα)2).

SinceWα is diagonal,W 2
α is also diagonal with diagonal elements w2

1α, . . . , w
2
nα and

we already showed that
∑

iw
2
iα → 0.

The ith diagonal element of W 2
αPα is w2

iαwiα = w3
iα so tr(WαPα) =

∑
iw

3
iα.

Then we have

lim
n→∞

n∑
i=1

w3
iα ≤ lim

n→∞
max
i
wiα

n∑
i=1

w2
iα = 0.

Finally, consider (WαPα)2. Let λn,1, . . . , λn,n denote the eigenvalues ofWαPα.

Then the eigenvalues of (WαPα)2 are λ2n,1, . . . , λ
2
n,n. Since tr(WαPα) =

∑n
i=1 λn,i →

0 and λn,i ≥ 0, we see that maxi λn,i → 0. Thus, for su�ciently large n, λn,i ∈ [0, 1]

for all i so that λ2n,i ≤ λn,i for all i. Thus tr((WαPα)2) =
∑n

i=1 λ
2
n,i ≤

∑n
i=1 λn,i =

tr(WαPα)→ 0.

So, we have

tr(A2
n,α)→ 0− 0− 0 + 0 = 0.

Letting aij denote the element in the ith row and jth column of An,α, we also have

tr(A2
n,α) =

∑
i

∑
j a

2
ij = ‖An,α‖2F (where ‖An,α‖F is the Frobenius norm). Clearly,

0 ≤
∑

i a
2
ii ≤ ‖An,α‖2F so

∑
i a

2
ii → 0.

Using the formula for the variance of a quadratic form in Theorem 1.6 of [23]
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with θ = 0, we have

var(e′α(In − Pα)Wα(In − Pα)eα) = var(e′αAn,αeα)

= (µ4 − 3(σ2)2)
∑
i

a2ii + 2(σ2)2tr(A2
n,α)→ 0.

So then

e′α(In − Pα)Wα(In − Pα)eα =
∑
i

wiαr
2
iα

p→ dασ
2

since E[
∑

iwiαr
2
iα]→ dασ

2 and var[
∑

iwiαr
2
iα]→ 0 as n→∞.

I.0.4 Proof of 3.1 from Shao

From Shao's paper, we have the average squared prediction error is

n−1v ‖ys − ŷα,sc‖2 = n−1v ‖(Inv −Qα,s)
−1(ys −Xα,sβ̂α)‖2 (I.3)

where the data set of size n is split into two parts, a subset s which is a validation

set of size nv and s
c which is a training set of size nc = n− nv used to �t the model

Mα. Furthermore, we de�ne

ŷα,sc = Xα,sβ̂α,sc = Xα,s(X
′
α,scXα,sc)

−1Xα,scysc

Qα,s = Xα,s(X
′
αXα)−1X ′α,s

β̂α = (X ′αXα)−1X ′αy (I.4)

Using the Woodbury matrix identity,

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1
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if we set

A = Inv

U = −Xα,s

C = (X ′αXα)−1

V = X ′α,s

then

(Inv −Qα,s)
−1 = Inv +Xα,s(X

′
αXα −X ′α,sXα,s)

−1X ′α,s (I.5)

With equations (I.4) and (I.5), this implies that the right hand side of (I.3) inside

the norm is

(Inv −Qα,s)
−1(ys −Xα,sβ̂α) (I.6)

= (Inv +Xα,s(X
′
αXα −X ′α,sXα,s)

−1X ′α,s)(ys −Xα,s(X
′
αXα)−1X ′αy)

= ys −Xα,s(X
′
αXα)−1X ′αy +Xα,s(X

′
αXα −X ′α,sXα,s)

−1X ′α,sys

−Xα,s(X
′
αXα −X ′α,sXα,s)

−1X ′α,sXα,s(X
′
αXα)−1X ′αy (I.7)

= ys −Xα,s(X
′
αXα)−1X ′αy +Xα,s(X

′
α,scXα,sc)

−1X ′α,sys

−Xα,s(X
′
α,scXα,sc)

−1X ′αy +Xα,s(X
′
αXα)−1X ′αy (I.8)

= ys +Xα,s(X
′
α,scXα,sc)

−1X ′α,sys −Xα,s(X
′
α,scXα,sc)

−1X ′αy

= ys −Xα,s(X
′
α,scXα,sc)

−1[X ′αy −X ′α,sys]

= ys −Xα,s(X
′
α,scXα,sc)

−1X ′α,scysc

= ys − ŷα,sc .
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Thus we have shown (I.3). To see how we get from (I.7) to (I.8) observe

−Xα,s(X
′
αXα −X ′α,sXα,s)

−1X ′α,sXα,s(X
′
αXα)−1X ′αy

= −Xα,s(X
′
α,scXα,sc)

−1(X ′αXα −X ′α,scXα,sc)(X
′
αXα)−1X ′αy

= [−Xα,s(X
′
α,scXα,sc)

−1X ′αXα +Xα,s(X
′
α,scXα,sc)

−1X ′α,scXα,sc ](X
′
αXα)−1X ′αy

= −Xα,s(X
′
α,scXα,sc)

−1(X ′αXα)(X ′αXα)−1X ′αy +Xα,s(X
′
αXα)−1X ′αy

= −Xα,s(X
′
α,scXα,sc)

−1X ′αy +Xα,s(X
′
αXα)−1X ′αy.

Furthermore, we note that for Ms of size nv × n obtained from In using the rows

indexed by s and Msc of size nc × n obtained from In using the rows indexed by sc

we have

Xα,s = MsXα

Xα,sc = MscXα

M′
scMsc = In −M′

sMs

X ′αXα = X ′αInXα

X ′α,scXα,sc = X ′α(M′
scMsc)Xα

X ′α,sXα,s = X ′α(M′
sMs)Xα

X ′αXα −X ′α,sXα,s = X ′αXα −X ′α(M′
sMs)Xα

= X ′α(In −M′
sMs)Xα

= X ′α(M′
scMsc)Xα

= X ′α,scXα,sc

=⇒ X ′αy −X ′α,sys = X ′α,scysc
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I.0.5 Proof of Theorem 1 from Shao

Suppose that the following conditions hold, where X is the largest design

matrix,

1. lim inf
n→∞

∆α,n > 0 for Mα in Category I

2. X ′X = O(n) and (X ′X)−1 = O
(
1
n

)
3. lim

n→∞
max
i≤n

wiα = 0∀α ∈ A

4. lim
n→∞

max
s∈B

∥∥∥ 1
nv

∑
i∈s xix

′
i − 1

nc

∑
i∈sc xixi

∥∥∥ = 0

Suppose also that nv is selected so that

nv/n→ 1 and nc = n− nv →∞ (I.9)

Then we have the following conclusions:

(a) If Mα is in Category I, then there exists Rn ≥ 0 such that

Γ̂BICVα,n = n−1e′e + ∆α,n + op(1) +Rn. (I.10)

(b) If Mα is in Category II, then

Γ̂BICVα,n = n−1e′e + n−1c dασ
2 + op(n

−1
c ). (I.11)

(c) Consequently,

lim
n→∞

P (the selected model is M∗) = 1. (I.12)
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First we show (I.10):

By de�nition,

Γ̂BICVα,n =
1

nvb

∑
s∈B

‖ys − ŷα,sc‖2

=
1

nvb

∑
s∈B

‖(Inv −Qα,s)
−1(ys −Xα,sβ̂α)‖2

≥ 1

nvb

∑
s∈B

‖ys −Xα,sβ̂α‖2. (I.13)

Since Qα,s has the form A(A′A+B′B)−1A′, all of its eigenvalues are in the interval

[0, 1]. If λ is an eigenvalue of Qα,s, then 1− λ is an eigenvalue of Inv −Qα,s so all of

the eigenvalues of Inv −Qα,s, and consequently (Inv −Qα,s)
2 are in [0, 1]. So

‖Inv −Qα,s‖ = sup
‖x‖6=0

‖(Inv −Qα,s)x‖
‖x‖

≤ 1

and thus, for all x

‖(I −Qα,s)x‖ ≤ ‖x‖.

Letting x = (I −Qα,s)
−1(ys −Xα,sβ̂α) we obtain (I.13).

For each s ∈ B

‖ys −Xα,sβ̂α‖2 = (ys −Xα,sβ̂α)′(ys −Xα,sβ̂α)

= y′sys − y′sXα,sβ̂α − (Xα,sβ̂α)′ys + (Xα,sβ̂α)′(Xα,sβ̂α)
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Looking at y′sys. ∑
s∈B

y′sys =
∑
s∈B

[y2s1 + y2s2 + · · ·+ y2snv ]

=
nvb

n
[y21 + · · ·+ y2n]

=
nvb

n
y′y

where nvb
n

is the number of times each observation appears in B. Similarly,∑
s∈B

y′sXα,sβ̂α =
nvb

n
y′Xαβ̂α

∑
s∈B

(Xα,sβ̂α)ys =
nvb

n
(Xαβ̂α)y

∑
s∈B

Xα,s(Xα,sβ̂α)′(Xα,sβ̂α) =
nvb

n
(Xαβ̂α)′(Xαβ̂α).

The above implies that

1

nvb

∑
s∈B

‖ys −Xα,sβ̂α‖2 =

(
1

nvb

)(
nvb

n

)
[y′y − y′Xαβ̂α − (Xαβ̂α)′y + (Xαβ̂α)′(Xαβ̂α)]

=
1

n
‖y −Xαβ̂α‖2.

So then

Γ̂BICVα,n =
1

nvb

∑
s∈B

‖ys − ŷα,sc‖2

=
1

n
‖y −Xαβ̂α‖2 +Rn

=
1

n
e′e+ ∆α,n +

[
− 1

n
e′Pαe+

2

n
e′(In − Pα)Xβ

]
+Rn.

Since E[e′(In − Pα)Xβ] = 0 and var(e′(In − Pα)Xβ) = E[(e′(In − Pα)Xβ)2] =

σ2β′X ′(In − Pα)Xβ it follows that

2

n
e′(In − Pα)Xβ = op(1).
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Also, since E[e′Pαe] = dασ
2, then for every ε > 0, we have

P

(∣∣∣∣ 1ne′Pαe− 0

∣∣∣∣ > ε

)
= P (e′Pαe > nε) ≤ E[e′Pαe]

nε
→ 0

as n→∞. So, 1
n
e′Pαe→p 0 (that is, 1

n
e′Pαe = oP (1)).

So, it follows that

Γ̂BICVα,n =
1

n
e′e+ ∆α,n + [oP (1) + oP (1)] +Rn

=
1

n
e′e+ ∆α,n +Rn + oP (1).

Where we let

Rn = Γ̂BICVα,n − 1

n
‖y −Xαβ̂α‖2.

Thus we have shown (I.10)

Now we will show (I.11) and (I.12). By condition (4), for s ∈ B

1

n
X ′αXα −

1

nv
X ′α,sXα,s =

1

n
(X ′α,sXα,s +X ′α,scXα,sc)−

1

nv
X ′α,sXα,s

=
1

n
X ′α,scXα,sc −

(
1

n
− 1

nv

)
X ′α,sXα,s

=
nc
ncn

X ′α,scXα,sc +

(
ncnv − ncn
ncnnv

)
X ′α,sXα,s

=
nc
ncn

X ′α,scXα,sc +

(
nc(−nc)
ncnnv

)
X ′α,sXα,s

=
nc
n

[
1

nc
X ′α,scXα,sc +

1

nv
X ′α,sXα,s

]
= o

(nc
n

)
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With (2) we have that

(X ′α,sXα,s)
−1 − n

nv
(X ′αXα)−1 (I.14)

=

(
Idα −

n

nv
(X ′αXα)−1(X ′α,sXα,s)

)
(X ′α,sXα,s)

−1

=

(
(X ′αXα)−1(X ′αXα)− n

nv
(X ′αXα)−1(X ′α,sXα,s)

)
(X ′α,sXα,s)

−1

= n(X ′αXα)−1
(

1

n
X ′αXα −

1

nv
(X ′α,sXα,s)

)
(X ′α,sXα,s)

−1

= nO

(
1

n

)
o
(nc
n

)
(X ′α,sXα,s)

−1

= o
(nc
n

)
(X ′α,sXα,s)

−1

Therefore

Pα,s = Xα,s(X
′
α,sXα,s)

−1X ′α,s (I.15)

= Xα,s

(
n

nv
(X ′α,sXα,s)

−1 + o
(nc
n

)
(X ′α,sXα,s)

−1
)
X ′α,s

=
n

nv
Xα,s(X

′
αXα)−1Xα,s + o

(nc
n

)
Xα,s(X

′
α,sXα,s)

−1X ′α,s

=
n

nv
Qα,s + o

(nc
n

)
Pα,s (I.16)

By condition (I.9) we have nv
n
→ 1 and nc = n− nv →∞ then

Qα,s =
nv
n

(
Pα,s + o

(nc
n

)
Pα,s

)
=
nv
n
Pα,s + o

(nc
n

) nv
n
Pα,s

=
[nv
n

+ o
(nc
n

) nv
n

]
Pα,s

=
[nv
n

+ o
(nc
n

)]
Pα,s (I.17)
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Note that Pα,s is symmetric and idempotent

cn
nvb

∑
s∈B

‖Pα,srα,s‖2 =
cn
nvb

∑
s∈B

(Pα,srα,)
′(Pα,srα,s)

=
cn
nvb

∑
s∈B

r′α,sP
′
α,sPα,srα,s

=
cn
nvb

∑
s∈B

r′α,sPα,srα,s

=
cn
nvb

∑
s∈B

r′α,s

[nv
n

+ o
(nc
n

)]−1
Qα,srα,s

=
[nv
n

+ o
(nc
n

)]−1 cn
nvb

∑
s∈B

r′α,sQα,srα,s

=
[nv
n

+ o
(nc
n

)]−1 cn
nvb

(nvb)

(
1

n
− nv − 1

n(n− 1)

)∑
i

wiαr
2
iα

=
[
1 + o

(nc
n

)] n+ nc
nc(n− 1)

∑
i

wiαr
2
iα (I.18)

where

cn = nv(n+ nc)n
−2
c (I.19)

To see how we arrived at the coe�cients for (I.18)

[nv
n

+ o
(nc
n

)]−1 cn
nvb

cn
nvb

(nvb)

(
1

n
− nv − 1

n(n− 1)

)
=
[nv
n

+ o
(nc
n

)] nv(n+ nc)

n2
c

(
1

n
− nv − 1

n(n− 1)

)
=
[nv
n

+ o
(nc
n

)] nv(n+ nc)

n2
c

(
nc − 1

n(n− 1)

)
=
[
1 + o

(nc
n

)] n+ nc
nc(n− 1)

.
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De�ne

Uα,s = (Inv −Qα,s)(Inv − cnPα,s)(Inv −Qα,s)

Aα =
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1Uα,s(Inv −Qα,s)

−1rα,s

Bα =
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1(Inv −Uα,s)(Inv −Qα,s)

−1rα,s

Then by (I.3),

Γ̂BICVα,n =
1

nvb

∑
s∈B

‖ys − ŷα,sc‖2

=
1

nvb

∑
s∈B

‖(Inv −Qα,s)
−1(ys −Xα,sβ̂α)‖2

=
1

nvb

∑
s∈B

[(Inv −Qα,s)
−1(ys −Xα,sβ̂α)]′[(Inv −Qα,s)

−1(ys −Xα,sβ̂α)]

=
1

nvb

∑
s∈B

(ys −Xα,sβ̂α)′(Inv −Qα,s)
−1(Inv −Qα,s)

−1(ys −Xα,sβ̂α)

=
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1(Inv −Qα,s)

−1rα,s

=
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1Inv(Inv −Qα,s)

−1rα,s

=
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1(Uα,s + (Inv −Uα,s))(Inv −Qα,s)

−1rα,s

= Aα +Bα (I.20)
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From the balance property of B and (I.18),

Aα =
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1Uα,s(Inv −Qα,s)

−1rα,s

=
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1(Inv −Qα,s)(Inv − cnPα,s)(Inv −Qα,s)(Inv −Qα,s)

−1rα,s

=
1

nvb

∑
s∈B

r′α,s(Inv + cnPα,s)rα,s

=
1

nvb

∑
s∈B

r′α,srα,s + cnr
′
α,sPα,srα,s

=
1

nvb

∑
s∈B

‖rα,s‖2 +
cn
nvb

∑
s∈B

‖Pα,srα,s‖2

=
1

nvb

∑
s∈B

‖yα,s −Xα,sβ̂α‖2 +
cn
nvb

∑
s∈B

‖Pα,srα,s‖2

=
1

nvb

∑
s∈B

‖yα,s −Xα,sβ̂α‖2 +
[
1 + o

(nc
n

)] n+ nc
nc(n− 1)

∑
i

wiαr
2
iα (I.21)

Assume that Mα is in Category II. Then by (I.21) and the fact that
∑

iwiαr
2
iα =

dασ
2 + op(1) we have

Aα =
1

n
e′(I − Pα)e+

[
1 = o

(nc
n

)] n+ nc
nc(n− 1)

[dασ
2 + op(1)]

=
1

n
e′e+

dασ
2

nc
+ op

(
1

nc

)
Now we need to show that Bα = op(n

−1
c ). From (I.17)

(Inv −Qα,s)Pα,s(Inv −Qα,s) =
(
Inv −

[nv
n

+ o
(nc
n

)]
Pα,s

)
Pα,s(Inv −Qα,s)

=
(
Pα,s −

[nv
n

+ o
(nc
n

)]
Pα,s

)
(Inv −Qα,s)

=
(

1−
[nv
n

+ o
(nc
n

)])
(Inv −Qα,s)

=
[nc
n

+ o
(nc
n

)]2
Pα,s
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which implies that(
n

nc

)2

(Inv −Qα,s)Pα,s(Inv −Qα,s) =

(
n

nc

)2 [nc
n

+ o
(nc
n

)]2
Pα,s

= [1 + o(1)]2Pα,s

≥ 1

2
Pα,s

for s ∈ B when n is su�ciently large. Then

(Inv −Qα,s)
−1Pα,s(Inv −Qα,s)

−1 ≤ 2

(
n

nc

)2

Pα,s (I.22)

Also by (I.17),

Uα,s = (Inv −Qα,s)(Inv + cnPα,s)(Inv −Qα,s)

=
(
Inv −

[nv
n

+ o
(nc
n

)]
Pα,s

)
(Inv + cnPα,s)

(
Inv −

[nv
n

+ o
(nc
n

)]
Pα,s

)
=
((

Inv −
nv
n
Pα,s

)
− o

(nc
n

)
Pα,s

)
(Inv + cnPα,s)

((
Inv −

nv
n
Pα,s

)
− o

(nc
n

)
Pα,s

)
=
[(

Inv −
nv
n
Pα,s

)
(Inv + cnPα,s)− o

(nc
n

)
Pα,s(Inv + cnPα,s)

]
(I.23)((

Inv −
nv
n
Pα,s

)
− o

(nc
n

)
Pα,s

)
=
(
Inv −

nv
n
Pα,s

)
(Inv + cnPα,s)

(
Inv −

nv
n
Pα,s

)
(I.24)

− o
(nc
n

)
Pα,s(Inv + cnPα,s)

(
Inv +

nv
n
Pα,s

)
(I.25)

−
(
Inv −

nv
n
Pα,s

)
(Inv + cnPα,s)o

(nc
n

)
Pα,s (I.26)

+ o
(nc
n

)
Pα,s(Inv + cnPα,s)o

(nc
n

)
Pα,s (I.27)
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For (I.24),

(I.24) =
[(

Inv −
nv
n
Pα,s

)
+
(
Inv −

nv
n
Pα,s

)
cnPα,s

] (
Inv −

nv
n
Pα,s

)
=
[(

Inv −
nv
n
Pα,s

)
+
(
cnPα,s − cn

nv
n
Pα,s

)](
Inv −

nv
n
Pα,s

)
=
(
Inv −

nv
n
Pα,s

)2
+
(
cnPα,s − cn

nv
n
Pα,s

)(
Inv −

nv
n
Pα,s

)
(I.28)

Looking at the latter part of (I.28),

(
cnPα,s − cn

nv
n
Pα,s

)(
Inv −

nv
n
Pα,s

)
= cnPα,s − cn

nv
n
Pα,s − cn

nv
n
Pα,s + cn

(nv
n

)2
Pα,s

= cn

(
1− 2

nv
n

+
(nv
n

)2)
Pα,s

= cn

(
1− nv

n

)2
Pα,s

For (I.26),

(I.26) = −o
(nc
n

) [
(Pα,s − cnPα,s)

(
Inv −

nv
n
Pα,s

)
+
(
Inv −

nv
n
Pα,s

)
(Pα,s − cnPα,s)

]
= o

(nc
n

) [
2Pα,s − 2

nv
n
Pα,s − 2cnPα,s + 2cn

nv
n
Pα,s

]
= 2o

(nc
n

) [
1− nv

n
− cn + cn

nv
n

]
Pα,s

= 2o
(nc
n

)(
1− nv

n

)
(1− cn)Pα,s

For (I.27),

(I.27) =
[
o
(nc
n

)]2
(Pα,s + cnPα,s)Pα,s

=
[
o
(nc
n

)]2
(1 + cn)Pα,s
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which implies that

Uα,s = (I.24) + (I.26) + (I.27)

=
(
Inv −

nv
n
Pα,s

)2
+ cn

(
1− nv

n

)2
Pα,s

+ 2o
(nc
n

)(
1− nv

n

)
(1− cn)Pα,s

+
[
o
(nc
n

)]2
(1 + cn)Pα,s

=
(
Inv −

nv
n
Pα,s

)2
+ cn

(
1− nv

n

)2
Pα,s +

[
o
(nc
n

)]2
(1 + cn)Pα,s

= Inv − 2
nv
n
Pα,s +

(nv
n

)2
Pα,s + cn

(
1− nv

n

)2
Pα,s +

[
o
(nc
n

)]2
(1 + cn)Pα,s

= Inv +

(
−nv
n

(
2− nv

n

)
+ cn

(
1− nv

n

)2)
Pα,s +

[
o
(nc
n

)]2
(1 + cn)Pα,s

= Inv +
[
o
(nc
n

)]2
(1 + cn)Pα,s

since cn
(
1− nv

n

)2
= nv

n

(
2− nv

n

)
.

Then, by (I.22),

(Inv −Qα,s)
−1(Inv −Uα,s)(Inv −Qα,s)

−1

= (Inv −Qα,s)
−1
(

Inv − Inv −
[
o
(nc
n

)]2
(1 + cn)Pα,s

)
(Inv −Qα,s)

−1

=
[
o
(nc
n

)]2
(1 + cn)(Inv −Qα,s)

−1Pα,s(Inv −Qα,s)
−1

≤
[
o
(nc
n

)]2
(1 + cn)2

(
n2

nc

)
Pα,s

= 2o(1)(1 + cn)Pα,s

≤ o(1)(1 + cn)Pα,s
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so

Bα =
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1(Inv −Uα,s)(Inv −Qα,s)

−1rα,s

≤ o(1)(1 + cn)

(
1

nvb

∑
s∈B

r′α,sPα,srα,s

)

= o(1)(1 + cn)

(
1

nvb

∑
s∈B

‖Pα,srα,s‖2
)

(I.29)

because from the proof of (3.5) and (3.6) in [25] cn
nvb

∑
s∈B ‖Pα,srα,s‖2 = Op

(
1
nc

)
.

Thus we have shown (I.11) and (I.12) follows.

I.0.6 Proof that APCV is consistent from Shao

Here we show that APCV can be derived from BICV. For readability, de�ne

the following:

1

nv
‖ys − ˆyα,sc‖2 =

1

nv
‖(Inv −Qα,s)

−1(ys − xα,sβ̂α)‖2

Uα,s = (Inv −Qα,s)(Inv + cnPα,s)(Inv −Qα,s)

Qα,s =
[nn
n

+ o
(nc
n

)]
Pα,s

cn = nv(n+ nc)n
−2
c

Recall that

Γ̂BICVα,n = Aα +Bα
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where

Aα =
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1Uα,s(Inv −Qα,s)

−1rα,s

Bα =
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1(Inv −Uα,s)(Inv −Qα,s)

−1rα,s

Through some calculations we can show that Aα → ˆΓAPCVα,n

Aα =
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1Uα,s(Inv −Qα,s)

−1rα,s

=
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1(Inv −Qα,s)(Inv + cnPα,s)(Inv −Qα,s)(Inv −Qα,s)

−1rα,s

=
1

nvb

∑
s∈B

r′α,s(Inv + cnPα,s)rα,s

=
1

nvb

∑
s∈B

r′α,srα,s + cnr
′
α,sPα,srα,s

=
1

nvb

∑
s∈B

‖yα,s −Xα,sβ̂α‖2 +
cn
nvb

∑
s∈B

‖Pα,srα,s‖2

=
1

n
‖y −Xαβ̂α‖2 +

[
1 + o

(nc
n

)] n+ nc
nc(n− 1)

∑
i

wiα(yi − x′iαβ̂α)2

=
1

n
‖y −Xαβ̂α‖2 +

[
1 + o

(nc
n

)] n+ nc
nc(n− 1)

∑
i

wiα(yi − x′iαβ̂α)2

=
1

n
‖y −Xαβ̂α‖2 +

n+ nc
nc(n− 1)

∑
i

wiα(yi − x′iαβ̂α)2

= Γ̂APCVα,n
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Similarly, we can show that Bα → 0

Bα =
1

nvb

∑
s∈B

r′α,s(Inv −Qα,s)
−1(Inv −Uα,s)(Inv −Qα,s)

−1rα,s

≤ o(1)(1 + cn)

(
1

nvb

∑
s∈B

r′α,sPα,srα,s

)

= o(1)(1 + cn)

(
1

nvb

∑
s∈B

‖Pα,srα,s‖2
)

= op

(
1

nc

)
.

Since it can be shown that

Uα,s = Inv

[
o
(nc
n

)]2
(1 + cn)Pα,s.

We will show that if M is in Category II, and conditions 1, 2, 3, and I.9 are met

then

Γ̂BICVα,n =
1

n
e′(In − Pα)e+

n+ nc
nc(n− 1)

(dασ
2 + op(1))

The APCV selects a model by minimizing

Γ̂APCVα,n =
1

n
‖y −Xαβ̂α‖2 +

n+ nc
nc(n− 1)

∑
i

wiα(yi − x′iαβ̂α)2

Looking at the �rst term,

‖y −Xαβ̂α‖2 = (y −Xαβ̂α)′(y −Xαβ̂α)

= (y′ − β̂′αX ′α)(y −Xαβ̂α)

= y′y − β̂′αX ′αy − y′Xαβ̂α + β̂′αX
′
αXαβ̂α.

91



Through straightforward computation, we �nd

y′y = βXαX
′
αβ + e′X ′αβ + β′Xαe+ e′e

β̂′αX
′
αy = y′Pαy

y′Xαβ̂α = y′Pαy

β̂′αX
′
αXαβ̂α = y′Pαy

then since Mα is in Category II

‖y −Xαβ̂α‖2 = (βαXαX
′
αβα + e′X ′αβα + β′αXαe+ e′e)− y′Pαy

= (βαXαX
′
αβα + e′X ′αβα + β′αXαe+ e′e)

− (β̂αXαPαX
′
αβ̂α + e′P ′αX

′
αβ̂α + β̂′αXαPαe+ e′Pαe)

= (βαXαX
′
αβα + e′X ′αβα + β′αXαe+ e′e)

− (βαXαPαX
′
αβα + e′P ′αX

′
αβα + β′αXαPαe+ e′Pαe)

= βαXα(In − Pα)X ′αβα + e′(In − Pα)X ′αβα

+ β′αXα(In − Pα)e+ e′(In − Pα)e

= e′(In − Pα)e

=⇒ 1

n
‖y −Xαβ̂α‖2 =

1

n
e′(In − Pα)e
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since Xα(In − Pα) = (In − Pα)X ′α = 0. Now we will look at the second term in

Γ̂APCVα,n ,

∑
i

wiα(yi − x′iαβ̂α)2 =
∑
i

wiαr
2
iα

= dασ
2 + op(1)

=⇒ n+ nc
nc(n− 1)

∑
i

wiα(yi − x′iαβ̂α)2 =
n+ nc
nc(n− 1)

(dασ
2 + op(1)).

Therefore

Γ̂APCVα,n =
1

n
e′(In − Pα)e+

n+ nc
nc(n− 1)

(dασ
2 + op(1)).

I.0.7 Properties of the hat matrix

Theorem 5 If An is a full rank matrix and An+1 is a matrix formed by appending

an extra row x′ to An, then (A′nAn)−1 − (A′n+1An+1)
−1 is nonnegative de�nite.

Proof :

Here An+1 =

 An

x′

. Then A′n+1An+1 = A′nAn + xx′ and, using the

Woodbury matrix identity, it follows that

(A′n+1An+1)
−1 = (A′nAn)−1 − (A′nAn)−1xx′(A′nAn)−1/(1 + x′(A′nAn)−1x).

For any nonzero vector u with dimension equal to the order of A′nAn,

u′((A′nAn)−1 − (A′n+1An+1)
−1)u = u′(A′nAn)−1xx′(A′nAn)−1u/(1 + x′(A′nAn)−1x)

= (u′(A′nAn)−1x)2/(1 + x′(A′nAn)−1x)
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is nonnegative since x′(A′nAn)−1x > 0 because (A′nAn)−1 is full rank and thus

positive de�nite.

2

Corollary 1 If An is a full rank matrix and An+r is a matrix formed by appending

r extra rows to An, then (A′nAn)−1 − (A′n+rAn+r)
−1 is nonnegative de�nite.

Theorem 6 Suppose that Ad is an n × d full rank matrix, x is an n-dimensional

column vector which is linearly independent of the columns of Ad, and Ad+1 is a

matrix formed by appending the column x to Ad. Let h
(j)
i be the ith diagonal element

of Hj = Aj(A
′
jAj)

−1A′j. Then h
(d+1)
i ≥ h

(d)
i for i = 1, . . . , n.

Proof :

Here Ad+1 =

[
Ad, x

]
. Then

A′d+1Ad+1 =

 A′dAd A′dx

x′Ad x′x


and

(A′d+1Ad+1)
−1 =

1

b

 b(A′dAd)
−1 + (A′dAd)

−1A′dxx
′Ad(A

′
dAd)

−1 −(A′dAd)
−1A′dx

−x′Ad(A
′
dAd)

−1 1


where b = x′x− x′Hdx. Then

(A′d+1Ad+1)
−1A′d+1 =

1

b

 b(A′dAd)
−1A′d + (A′dAd)

−1A′dxx
′Hd − (A′dAd)

−1A′dxx
′

−x′Hd + x′


and

Hd+1 = Hd +
1

b
(Hdxx

′Hd −Hdxx
′ − xx′Hd + xx′) .
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Then the ith diagonal element of Hd+1 is

1′iHd+11i = 1′iHd1i +
1

b
(1′iHdxx

′Hd1i − 1′iHdxx
′1i − 1′ixx

′Hd1i + 1′ixx
′1i)

= 1′iHd1i +
1

b
(1′iHdxx

′Hd1i − 1′iHdxx
′1i − 1′ixx

′Hd1i + 1′ixx
′1i)

= 1′iHd1ei + (1′ix− 1′iHdx)2/b

= 1′iHd1i +
(1′i(I −Hd)x)2

x′(In −Hd)x
.

Since In−Hd is positive de�nite (it is an idempotent matrix with rank n−d),

x′(In −Hd)x > 0 and thus h
(d+1)
i ≥ h

(d)
i .

2

Corollary 2 Suppose thatAd is an n×d full rank matrix, x1, . . . ,xc are n-dimensional

column vectors such that x1, . . . ,xc and the columns of Ad are linearly independent,

and Ad+c is a matrix formed by appending the column vectors to Ad. Let h
(j)
i be the

ith diagonal element of Hj = Aj(A
′
jAj)

−1A′j. Then h
(d+c)
i ≥ h

(d)
i for i = 1, . . . , n.
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