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ABSTRACT

THE ROLE OF MRI IN DIAGNOSING AUTISM: A MACHINE LEARNING

PERSPECTIVE

Yaser AbdelRahman ElNakieb

November 29, 2022

There is approximately 1 in every 44 children in the United States suffers from autism

spectrum disorder (ASD), a disorder characterized by social and behavioral impair-

ments. Communication difficulties, interpersonal difficulties, and behavioral difficul-

ties are the top common symptoms. Even though symptoms can begin as early as

infancy, it may take multiple visits to a pediatric specialist before an accurate diagno-

sis can be made. In addition, the diagnosis can be subjective, and different specialists

may give different scores. There is a growing body of research suggesting differences in

brain development and/or environmental and/or genetic factors contribute to autism

development, but scientists have yet to identify exactly the pathology of this disor-

der. ASD can currently be diagnosed by a set of diagnostic evaluations, regarded

as the gold standard, such as the Autism Diagnostic Observation Schedule (ADOS)

or the Autism Diagnostic Interview-Revised (ADI-R). A team of qualified clinicians

is needed for performing the behavioral and communication tests as well as clini-

cal history information, hence a considerable amount of time, effort, and subjective

judgment is involved in using these gold-standard diagnostic instruments. In ad-

dition to standard observational assessment, recent advancements in neuroimaging

and machine learning suggest a rapid and objective alternative, using brain imaging.

An investigation of the employment of different imaging modalities, namely Diffu-

sion Tensor Imaging (DTI), and resting state functional MRI (rs-fMRI) for autism
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diagnosis is presented in this comprehensive work. A detailed study of the implemen-

tation of feature engineering tools to find discriminant insights from different brain

imaging modalities, including the use of novel feature representations, and the use

of a machine learning framework to assist in the accurate classification of autistic

individuals is introduced in this dissertation. Based on three large publicly available

datasets, this extensive research highlights different decisions along the pipeline and

their impact on diagnostic accuracy. It also identifies potentially impacted brain re-

gions that contribute to an autism diagnosis. Achieving high global state-of-the-art

cross-validated accuracy confirms the benefits of feature representation and feature

engineering in extracting useful information, as well as the potential benefits of utiliz-

ing neuroimaging in the diagnosis of autism. This should enable an early, automated,

and more objective personalized diagnosis.
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CHAPTER I

INTRODUCTION

Autism spectrum disorder (ASD), famously known as just autism, is a pervasive neu-
rodevelopmental disorder manifested as three primary characteristics: functioning
difficulties with social interaction, communication barriers, and behavioral restric-
tions and repetitive patterns [1–4]. According to a recent statistic reported by the
Centers for Disease Control and Prevention (CDC) in 2021, 1 in 44 U.S. children were
diagnosed with autism in 2018. This is a 127% increase from the numbers in 2016, a
155% increase from the numbers in 2010, and a 241% increase since 2000. Figure 1
shows the increase in reported numbers in the US. The annual expenditure, includ-
ing direct medical and non-medical costs, of autism in 2015 was 265 billion dollars.
Those numbers are forecast to increase to 461 billion in 2025 [5]. Identification of
co-occurring conditions at the earliest possible stage could lead to better services and
earlier interventions that are beneficial to children with ASD.

Despite the lack of a comprehensive understanding of ASD causes, numerous hy-
potheses and theories have been proposed concerning the etiology of its underlying
mechanism. These hypotheses and theories suggest that genes and environmental
factors play a significant role in determining ASD’s severity [6]. Anatomical abnor-
malities of the brain [7], functioning of the brain during rest or while performing
different tasks [8], or abnormal connectivity of the white matter [9, 10] are hypothe-
sized to be responsible for ASD symptoms.

In order to study different types of abnormalities correlated with ASD, several
magnetic resonance imaging (MRI) based modalities have been used, such as: (i)
structural MRI (sMRI) for studying anatomical features, (ii) functional MRI (fMRI),
either at rest or while performing a task, for studying brain activities, and (iii) diffu-
sion tensor imaging (DTI) for studying brain connectivity.

Autistic symptoms usually begin to develop within the first two years of life.
Early ASD manifestations could be found in 12-month infants. However, the average
age for diagnosis is around five years [11], [12]. The current gold standard in ASD
diagnosis is based on behavior observational tests by clinicians such as the Autism
Diagnostic Observation Schedule (ADOS) [13], Autism Diagnostic Interview-Revised
(ADI-R) report [14], or Social Responsiveness Scale (SRS), but these approaches
usually requires time, training, and can be subjective.

1 Current Autism Diagnosis Techniques

A variety of tests are used by evaluators to determine if young children with possi-
ble symptoms of autism are on the autism spectrum, including checklists, observa-
tions, interactive tests, and interview questions. Currently approved diagnosis tech-
niques require significant clinical experience, assessing different aspects via a standard

1



Figure 1. Increase in prevalence in U.S. children diagnosed with autism per surveil-
lance year (horizontal axis).

testing/scoring system, such as the Autism Diagnostic Observation Scale (ADOS),
Autism Diagnostic Interview—Revised (ADI-R), Social Receptivity Scale (SRS), Cal-
ibrated Severity Scores (CSS), Childhood Autism Rating Scale (CARS), and many
others. We introduce the top three diagnostic tools, where the first two are considered
the ’gold standard’.

ADOS

The Autism Diagnostic Observation Scale (ADOS) is a standardized diagnostic tool
used to determine whether an individual with ASD exhibits social, imaginative, and
communication difficulties. As the most prominent indicator of ASD, it focuses on
social and communication deficits. Five different ADOS modules exist, depending on
the age of the patient, each focusing on a set of tasks specific to this age group. Each
module scores a different number of tasks, where individuals suspected of having ASD
should undergo standardized assessments of social interaction, play, and imaginative
use of materials. The main drawback is that the individual who administers and
scores the test must receive special training.

ADI-R

Autism Genetic Research Exchange describes the ADI-R as a parent interview that
involves ninety-three items, focusing on the behavior in three domains: social in-
teractions, communication and language, and repetitive behaviors. Additionally, the
measure includes other items of relevance to treatment planning, including self-injury
and overactivity. The report is basically dependent on the parents’ responses rather
than direct interactions, and scores are given to each of the three categories. When
a child meets or exceeds the specified cutoffs in all three content areas of communi-

2



cation, social interaction, and patterns of behavior, and the disorder has manifested
by 36 months of age, a diagnosis of autism is made.

SRS

The Social Receptivity Scale (SRS) measures the severity of social deficits and symp-
toms associated with ASD based on a respondent survey. It was designed specifically
for use by parents and teachers, after quick training, in 15–20 minutes. Using a quan-
titative approach, autistic symptoms are measured across the full range of severity
that occurs in nature, using a 65-item rating scale, giving an initial rating that works
as an indication.

Limitations of Current Techniques

Despite the fact that there is no medical test for autism, evaluators rely on ob-
servations, answers from parents, and tests designed to assess a child’s skills and
behaviors across several developmental domains. Those tests are subjective, can be
time-consuming and challenging, with limited accuracy around 80%-85% [15], and
clinicians may not always agree with the results of those tests because of some grad-
ing biases [16].

A variety of metrics is used to measure autism severity, illustrating the ongoing
efforts of clinicians and researchers to identify valid metrics for capturing the severity
construct for ASD. As of right now, the gold standard for diagnosing autism spectrum
disorders is to conduct a behavioral observational test by a clinician; however, this
testing is subjective, time-consuming, and only provides late detection (the child must
be at least two years old in order to submit a report).

The levels of autism severity are highly correlated with age, cognitive abilities,
and/or language abilities [17]. In light of these correlations, it appears that many
measures reflect the developmental characteristics of children, rather than inherent
autistic traits, questioning the validity of those measures.

Thus, this is our main motivation for developing a neuroimaging-based quanti-
tative objective alternative that can provide a least-subjective evaluation that may
help clinicians reach a faster, more reliable diagnosis.

2 Objectives

The main objectives of this dissertation are:

• Present promising ML framework of autism diagnosis, tested on different pub-
licly available datasets: ABIDE, ABIDE-II, and NDAR

• Develop a unified perspective for solving autism diagnosis using different imag-
ing modalities: DTI and fMRI

• Provides a comprehensive overview of different choices along the ML pipeline,
filling an important gap in knowledge for the next researchers
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• Develop an ML algorithm that preserves feature semantics and is reproducible
and scalable

In the next subsections, we will present the main imaging modalities and used tools
in the course of the dissertation.

3 Brain Imaging in Autism Diagnosis

A key advantage of MRI is that it offers the best comparison of soft tissue between all
image modalities. Therefore, MRI is considered to be the most powerful noninvasive
clinical diagnostic tool and the most useful modality for imaging the brain. MRI is
an essential non-invasive method in the detection of brain structure, White Matter
(WM) integrity, and functional activity [18]. sMRI has been used to describe the mor-
phological brain changes in ASD regarding the shape and volume of different brain
regions. DTI provides an assessment of anatomical connections and has shown disor-
ganized micro-structural WM integrity in the autistic population. fMRI relies on the
detection of dynamic physiological information from active brain regions. Measuring
the change of Blood Oxygenation Level-Dependent (BOLD) signal in various brain
states (resting state or task-evoked) can reveal functional architecture abnormalities
in the ASD population [19], [20]. The following subsections highlight the differences
between the three main MRI modalities.

Structural MRI (sMRI)

sMRI is the most commonly used MRI in any non-research medical setting. When
MRI is referenced without a specification, usually sMRI is the one meant. There
are several advantages to using MRI for the imaging of the brain, spinal cord, and
vascular anatomy; the most important of these is that it is capable of providing
exquisite detail of the brain, spinal cord, and vascular anatomy in all three planes,
see Figure 2. The relaxation time of tissue can be divided into two categories, T1
and T2. The longitudinal relaxation time (T1) determines the rate at which excited
protons return to equilibrium, while the transverse relaxation time (T2) is the time
constant that determines how quickly excited protons reach equilibrium or fall out of
phase with each other. Accordingly, depending on the selection of the time to echo
(TE) and the repetition time (TR), we have can get two types of MRI scans: T1-
weighted and T2-weighted MRI. A short TE time and TR time are used in order to
produce T1-weighted images, while T2-weighted images are obtained by using longer
TE and TR. Each type weighs a different characteristic of the tissue (T1 / T2). sMRI
reveals anatomical information of each tissue type, differentiating gray matter (GM),
WM, cerebrospinal fluid (CSF), and other structures. The output features are usually
shape and morphological and geometric features, such as cortical thickness, surface
area, volume, and curvature measures.
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Figure 2. An example of sMRI of the head, showing brain anatomical details in the
three planes: axial, sagittal, and coronal.

Functional MRI (fMRI)

fMRI is a technique for studying the activation of brain regions in response to certain
stressors as well as identifying brain hemodynamic changes corresponding to changes
in mental activity. Using functional imaging, it is possible to identify areas of the
brain and the underlying processes that enable a particular cognitive or behavioral
function to be performed. It is possible to make inferences about brain function and
location based on the type of signal being analyzed. There is still a long way to go
before fMRI is widely used in clinical practice.

Functional MRI uses a measure of BOLD signals based on the fact that the greater
the metabolic demand of a particular area of the brain while performing a given task,
the harder that area works. As metabolic function increases, vessels in a particular
brain region may dilate (expand), resulting in greater oxygenated blood flow and a
shift in the gradient between highly oxygenated and highly deoxygenated hemoglobin
in the capillaries. The scanner is capable of detecting regional changes in this signal
since different oxygen levels can be decoded via fMRI. In this way, we can indirectly
measure brain activity based on the physiological changes that occur within the brain.
This enables researchers to match various spotted neuronal activities with BOLD
signals, and invasively learn how the brain is functioning.

Diffusion Tensor Imaging (DTI)

DTI is a non-invasive in-vivo tool based on the measurement of the Brownian motion/
diffusion of water molecules within WM tracts, thus providing a macroscopic picture
of WM structure within the imaged voxel. Magnetic gradients in at least 6 non-
colinear directions, in addition to a base volume, are used as input for proper DTI
construction. As a result, a 3x3 diffusion tensor matrix can be calculated at each
voxel, with each element representing diffusion across one direction (xx/ xy/ ... etc.)

𝐷 =


𝐷𝑥,𝑥 𝐷𝑥,𝑦 𝐷𝑥,𝑧

𝐷𝑦,𝑥 𝐷𝑦,𝑦 𝐷𝑦,𝑧

𝐷𝑧,𝑥 𝐷𝑧,𝑦 𝐷𝑧,𝑧


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Figure 3. Graphical representation of diffusion tensor using the ellipsoid model
using three eigenvectors that define the orientation of the ellipsoid in 3D, and three
eigenvalues that define the principal axes values of the ellipsoid.

To find the principal diffusion directions and strength, the 3 eigenvalues 𝜆1, 𝜆2
and 𝜆3 and their corresponding eigenvectors 𝑣1, 𝑣2 and 𝑣3 are calculated, where the
eigenvector corresponding to the largest eigenvalue is the principle diffusion direction
(i.e, diffusion in across the fiber), while the other two eigenvectors correspond to the
radial diffusion directions (i.e, diffusion perpendicular to the fiber) [21]. A special
case is an isotropic medium, where the diffusion ellipsoid takes the shape of a sphere
because 𝜆1 = 𝜆2 = 𝜆3. While in the case of an anisotropic medium, the diffusion is
represented as an ellipsoid as shown pointing in the 𝑣1 direction with 𝜆1. Figure 3
illustrates the resulting representation. In addition, another representation is DTI
tractography, where major tracts or bundles from a region of interest (ROI) can be
tracked, and 3D color-coded maps can be visualized, with each color representing a
different direction (x / y / z) of fiber crossing, see Figure 4. The most important DTI
metrics are Mean Diffusivity (MD) and Fractional Anisotropy (FA). MD measures
the overall amount of diffusion and is related to cellular density. FA captures the
directional changes of diffusion and represents the degree of alignment of WM tracts
and cellular structure, ranging from 0 (random or isotropic) to 1 (unidirectional or
anisotropic). Other parameters include Axial Diffusivity (AD) and Radial Diffusivity
(RD). AD measures the diffusion in a direction parallel to WM tracts and represents
axon integrity, whereas RD is the perpendicular diffusion and is related to myelin
integrity [22], [23], [24].

WM tracts are composed of bundles of axons that carry the communication signals
between brain regions. Alteration in synaptogenesis was reported in the ASD popu-
lation caused by dysmaturation of myelination. Myelin alteration leads to changes in
axonal fiber density, caliber, and homogeneity with subsequent impairment of WM
microstructural organization and integrity [25], [26], [20].
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Figure 4. An example of DTI tractography of the WM tracts.

4 Computer Aided Diagnosis (CAD) using Machine Learning (ML)

Early and appropriate diagnosis is crucial to help limit the deterioration of the condi-
tion, and to improve prognostic outcomes [27], [28], [29]. Computer-aided algorithms
are introduced to help clinicians reach early better diagnoses. A CAD usually con-
sists of three major stages: feature extraction, feature reduction, and classification.
Feature extraction is closely related to the type of medical data uses, for each data
modality there exists different feature extraction methods, and different data repre-
sentations. After the appropriate data representation and feature extraction, which
is a crucial step, many improvements and algorithms still exist for feature reduction
and machine learning parts. The next subsection will introduce the basic notions and
types of both feature reduction and machine learning stages.

Dimensionality Reduction: importance and techniques

Due to the high dimensionality of the feature space in medical CAD systems, a
major component of any ML algorithm is the provision of the appropriate reduction
technique. Bellman [30] introduced the term ’curse of dimensionality to describe the
problem of exponential complexity resulting from the addition of new dimensions
to feature space, commonly defined as 𝑝 >> 𝑛 problem. MRI imaging research and
medical data are commonly affected by this phenomenon, with extremely huge feature
space, which may result in over-fitting. There are several ways to reduce the number
of features, such as principal component analysis (PCA), linear discriminant analysis
(LDA), or autoencoders [31–33]. Due to the fact that these methods do not preserve
the semantics of the original feature space, it is typically difficult to identify what
clinical findings underlie such classification results. This, in turn, makes them less
useful for actual use by physicians to provide them with more information or to better
understand the pathological abnormalities underlying each autistic brain, and thus
are less attractive and less practical.

Several methods are introduced for efficient feature selection, rather than fea-
ture reduction, and most of them incorporate filtering techniques. In the following
subsections, we will introduce some of the feature selections used in this dissertation.

Kernel F-score feature selection is a simple univariate filtering method, that
uses F-score, to select a subset of features. The scoring function is calculated using
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one-way ANOVA F-test, which returns an array of scores, one for each feature 𝑋 [:, 𝑖]
of the input 𝑋. Based on this FS algorithm, the first 𝐾 features with the highest
scores in 𝑋 are retained. The significance of a large score indicates that there is no
equality in the means of the 𝐾 groups, suggesting providing ’distinctive’ information.
F-score can be measured as the ratio between the ”between group variance” to the
”within group variance”.

𝐹 =
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

The use of F-score values for medical datasets with high dimensional feature space
was validated to be of beneficial use [34].

Signal to noise (s2n) ratio filtering is another simple filtering method to
select a subset of features [35]. S2n is a one-sided metric, that analyzes the difference
between the desired signal (such as class labels) and the background noise for a
particular feature. The concept of this ratio originated from electrical engineering,
however, in the field of machine learning, it has been also applied to medical data [36,
37]. This approach ranks each feature according to a ratio of the absolute difference
between the means of the two classes and their variances.

The metric is calculated as

𝑠2𝑛(𝑋𝑖, 𝑌 ) =
𝑎𝑏𝑠(𝜇(𝑦+) − 𝜇(𝑦−))
𝑣𝑎𝑟 (𝑦+) + 𝑣𝑎𝑟 (𝑦−)

(1)

where 𝑋𝑖 is the feature vector for each feature 𝑖 in input 𝑋, and 𝑌 is class label, 𝜇(𝑦+)
is the mean value for class 𝑦+ vectors, and 𝑣𝑎𝑟 (𝑦+) is the variance for this class.

Recursive feature elimination (RFE) is a popular feature reduction method
that is based on ranking the set of features based on their importance. There is
a distinction between ranking and selecting features; nevertheless, they are closely
related, and sometimes one is accomplished by the other. It is often the case that
the removal of lower-ranked features is followed by the ranking of features, such as
by information gain, in the recursive feature selection process. The RFE method is
designed to improve generalization performance by removing less important features
that will have the least effect on training errors [38]. This is done by employing a
classifier as a kernel, assigning weights to features (coefficients or feature importance
of the model), ranking the features, and recursively eliminating a small number of
features each step.

In the first step, the classifier is trained on the initial set of features (all) in order
to establish their importance. After the current set of features has been pruned,
the least important features are removed. Iteratively repeating this procedure on
the pruned set leads to the ultimate selection of the desired number of features, or
reaching the stopping number of features to keep. In the latter case, the number of
features to be selected can be determined, instead of preset, based on the change in
performance metric.

The performance of the RFE depends on the estimator (kernel) used for training
at each step. Many kernels are used in literature, including the most commonly used
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supported vector machine (SVM) [39]. Another common variant of the RFE is the
RFE with cross-validation (RFE-CV), where the performance at each step is deter-
mined based on the cross-validated metric (accuracy, ...etc.) on testing subsets, where
data splitting is done in a similar manner to k-fold cross validation. A major benefit
of RFE-CV is avoiding over-fitting, in the price of requiring k-folds computations,
which translates into more training time.

Machine learning (ML) techniques

ML is a field of knowledge that refers to the imitation of the way in which humans
think and solve problems using artificial learning mechanisms. ML is a basic part
of AI. During the process of ML, a large number of data points are presented to a
machine in order to aid it in making predictions, finding patterns, or categorizing the
data. There are three major types of ML: supervised, unsupervised, and reinforce-
ment learning. Supervised learning refers to data classification based on supervision
(i.e., through labeled input-output pairs; each pair contains an input associated with
its desired ground truth output). Classification of a disease, with labels for training
subset to train the model, and using labels of testing subset for evaluation, is an
example of supervised learning. On the other hand, unsupervised learning does not
depend on supervision (labeled input-output pairs) to perform data categorization.
Instead, the patterns of the input data are used to efficiently categorize the data.
The third type, reinforcement learning, gives a positive negative reward, instead of
knowing the ultimate/ true labels. Learning by reinforcement is the most similar
type of machine learning to how humans learn.

Classification, which is the focus of this work, is an example of supervised learn-
ing. The list of classifiers is so long, including SVM, random forests (RF), logistic
regression (LR), artificial neural networks (ANN), and many others. On top of ML,
deep learning has gained a lot of popularity and potential applications in several
medical applications. The most popular deep learning networks are convolutional
neural networks (CNNs). Unlike traditional neural networks, CNNs are composed of
many convolutional and fully connected layers that perform both feature extraction
and classification. CNNs outperform traditional algorithms when it comes to image
recognition, yet it is computationally expensive and is usually hard to interpret.

Throughout this dissertation, various machine learning algorithms are utilized,
and here we present the concepts of some of the used classifiers:

• K-Nearest Neighbor (KNN):
KNN is a classification algorithm where data points are assigned to one of
K groups based on their proximity to the nearest data points, in terms of
some distance metric, which offers an indication of how likely it is that they
will be assigned to that group. The parameter ‘K’ needs to be specified in
advance, as well as the distance metric. This classifier is highly impacted by
data preprocessing and normalization steps.

• Näıve Bayes:
As the name suggests, Naive Bayes utilizes the Bayes theorem as well as a
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posterior probability to determine the posterior likelihood, which is used to
classify the unstructured data. This approach makes the naive assumption that
the predictors are independent, which might not be the case.

• Logistic Regression (LR):
In practical terms, LR is a regression model utilizing the powers of regression
to do classification and has done so exceedingly well for several decades now,
staying among the most popular models for a long time to come. It is highly
utilized in medical applications since its ease of explainability, identifying the
quantitative contributions of individual predictors.

• Random Forest (RF):
Random forest is based on decision trees, applying an ensemble of multiple de-
cision trees. Using fewer features on each individual tree, the trees are then
built using bagging (i.e. combining multiple bootstrap datasets with replace-
ment, which are nothing more than sampling records with replacement). This
ensures a reduced variance, making it more generalizable to the new dataset.
The main disadvantage is its sensitivity to outlier data, which can degrade the
performance fast.

• Support Vector Machines (SVM):
SVM is an increasingly popular classifier that is suitable for spaces with a high
degree of dimensionality, particularly when the number of dimensions exceeds
the number of samples. An SVM algorithm seeks to find a hyperplane in the
N-dimensional feature space that distinguishes the data points in a distinct
manner. The characteristics of finding such a hyperplane is greatly dependent
on the choice of the SVM kernel, which is a special important function of the
SVM. As a result of the kernel conversion, the experimental data set is trans-
formed into a spatially higher dimensional space where the algorithm constructs
a hyperplane dividing the data set into classes based on its spatial distribution.

• Passive Aggressive classifier:
The algorithm is called as it involves two different mechanisms: 1) Passive:
the model should be left in place if the prediction turned out to be accurate.
Therefore, the data in the example are not sufficient to cause any changes to the
model. 2) Aggressive: make changes to the model if the prediction is inaccurate.
Hence, it may be possible to correct the model by making some changes.

• XGBoost:
Extreme gradient boosting (XGBoost) is an open-source library that provides a
framework for regularizing gradient boosting. A prediction score for XGBoost
is calculated using gradient boosting, which is an ensemble learning approach
that combines the outputs from several decision trees.

• Artificial Neural Networks (ANN):
ANN, so named because they are designed to simulate the human brain, are
suitable for large and complex datasets. The building blocks, nodes, similar
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to neurons, are mapped together as multiple layers to the multiple inputs, in
order to generate the target output. Each node can approximate any continuous
function on its direct input. A first (random) mapping is performed; then,
the related weights are iteratively self-adjusted to fine-tune to the appropriate
output for all data points. NN is widely successful in computer vision, natural
language processing, speech recognition, and many other applications.

Performance Measures

To measure the performance of ML components, different metrics are used to evaluate
autism diagnosis. In the following, we will provide a brief overview of these metrics.

Let TP indicate true positive, TN indicate true negative, FN denotes false neg-
ative, and FP denotes false positive. The following performance metrics are defined
as follows:

• Specificity: 𝑇𝑁
𝐹𝑃+𝑇𝑁

• Sensitivity (recall): 𝑇𝑃
𝑇𝑃+𝐹𝑁

• Accuracy: 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

• F1-score: 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 = 2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁

• Precision: 𝑇𝑃
𝑇𝑃+𝐹𝑃

• AUC is the area under the curve of the receiver operating characteristics (ROC).
AUC is between 0 and 1. The closer the AUC to 1, the better the performance.

5 Dissertation Organization

In this dissertation, six chapters are included. Below are some remarks that summa-
rize the contents of each chapter:

Chapter II: This chapter reviews recent publications which utilize ML methods to
help predict or identify ASD based on MRI data. The chapter reviews recent advance-
ments toward an understanding of ASD using DTI and fMRI imaging modalities. This
literature overview is helpful to stress the unique strengths of this dissertation work.

Chapter III: This chapter introduces an ML framework for autism diagnosis using
DTI. The chapter introduces a new feature representation inspired by functional MRI.
It also applies the proposed framework on NDAR, a publicly available dataset, to a
study of 263 subjects. The main advantage of this dataset is that some subjects also
have other imaging modalities and even genomics information.

Chapter IV: This chapter introduces an enhanced, more sophisticated version,
of an ML framework for autism diagnosis using DTI. Tested on a newer publicly
available dataset (ABIDE-II), it provides more detailed experiments, and the work
was able to achieve better classification accuracy.

Chapter V: This chapter presents an ML framework based on resting-state fMRI
for the autism diagnosis. The chapter provides a comprehensive experimentation
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overview of different preprocessing strategies, the use of different atlases, and intro-
duces a new feature representation, and compares it with the conventional represen-
tation.

Chapter VI concludes the work and outlines the future work.
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CHAPTER II

AUTISM COMPUTER AIDED DIAGNOSIS: A SURVEY

The use of brain imaging, specifically magnetic resonance imaging (MRI), has proven
capable of assisting in the fast, objective, and early identification of autism spectrum
disorders. In recent years, Artificial Intelligence (AI) and Machine Learning (ML)
tools have made significant advancements in both the diagnosis and early detection
of autism spectrum disorder. The purpose of this chapter is to review the role of
machine learning (ML) in the diagnosis and detection of autism using the two MRI
modalities: Diffusion Tensor Imaging (DTI) and function magnetic resonance imaging
(fMRI), that will be used in this dissertation. The survey also provides an overview
of the major findings that correlate DTI and fMRI to autism phenotype. Based on
the findings in this chapter, it should be clear that computer-aided diagnosis (CAD)
is useful for early, subjective ASD detection and diagnosis. In the future, we expect
that AI solutions will be used in healthcare settings. This study should pave the road
towards such employment for ASD detection.

Although different MRI modalities have shown promise in distinguishing ASD
individuals from healthy controls (typically developed, TD), MRI studies seem in-
consistent and non-replicable [18]. The need for neuroimaging biomarkers remains
an ongoing clinical challenge. Several CAD systems have been widely applied to
integrate multimodal MRI with AI. ML is a subfield within AI. In neuroimaging,
ML is widely used in medical image analysis through extracting informative features
and constructing the best fitting algorithm to provide the desired output [12], [40].
The most frequently selected features for ASD include morphological features (shape,
volume, texture), and spatial relationship features. These features are computed to
study developmental brain abnormalities and can be applied to improve the diagnosis,
classify subtypes, and degree of severity of ASD [41], [42].

The availability of large datasets, including those from the Autism Brain Imag-
ing Data Exchange (ABIDE), led to an increase in publications combining ML with
different neuroimaging biomarkers. These studies aim to reduce subjectivity and to
establish a more objective data-driven method for identification, classification, and
prognosis of ASD children [12].
In this chapter, we aimed to review the publications predicting or identifying ASD
based on MRI using ML methods. DTI studies since 2011 will be presented. There is
a great increase in the number of publications based on functional imaging (fMRI).
Here, we will focus on recent fMRI studies in the last five years. Manual search is
done using electronic databases in PubMed and Google Scholar for articles and papers
published in English until July 2022, using search terms as follows: (autism or autism
spectrum disorders or ASD) and (diffusion tensor imaging or DTI) AND (functional
magnetic resonance imaging, fMRI, task-based fMRI, T-fMRI, resting state fMRI,
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rs-fMR, or BOLD) and (artificial intelligence, AI, machine learning, ML, deep learn-
ing, or DL) and (detection, diagnosis, or findings). The eligibility criteria included
original research articles, published, accepted for publication, or available online in
English. Age- or sex-based studies were included. Case reports, or review articles,
including narrative, systematic reviews, and meta-analyses, were excluded from data
extraction but were used as reference searches. Studies compared a group of ASD
individuals with a group of typically developed controls are included. Yet, studies
conducted on the comparison of ASD with other neuro-developmental, cognitive, or
psychiatric disorders such as Attention-Deficit Hyperactive Disorder (ADHD) were
excluded. Given that this review is designed to look at DTI and fMRI studies based
on ML findings, ML algorithms with neuroimaging data were used as a biomarker in
differentiating ASD individuals from typically developed controls. In addition, other
imaging modalities such as structural MRI, MR spectroscopy, or positron emission
tomography were excluded as well.

1 Diffusion Tensor Imaging (DTI)

DTI has drawn a lot of attention over the last two decades as it allows the analysis of
the structural connectivity of the brain white matter (WM) [43]. Although a lot of
information could be revealed from the axonal organization, conventional MRI tech-
niques were not capable of capturing this information due to limited resolution and
contrast. Fortunately, this has been achievable using DTI, which is characterized by
its diffusion anisotropy contrast that reveals information about axonal orientation.
DTI is based on the diffusion of water molecules, which is easier in the direction of the
axonal bundles compared to the perpendicular direction, making it feasible to deter-
mine axonal direction. In DTI, the diffusion of water molecules is measured along six
predetermined directions, from which the diffusion along any arbitrary direction can
be calculated. This is mathematically represented by a 3× 3 matrix, called the diffu-
sion tensor [44], usually interpreted graphically as an ellipsoid. Several features can
be extracted from the diffusion tensor, most importantly, fractional anisotropy (FA),
axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) [45]. Those
measured parameters provide information about WM micro-structure and connectiv-
ity [46]. Other features derived from those measurements, such as trace, skewness,
rotational invariance, and others, characterize different aspects of diffusivity in WM
tracts [47].

ASD findings using DTI

With the aim of analyzing WM connectivity, many studies were introduced to inves-
tigate different DTI metrics, such as FA, MD, AD, RD, skewness, etc. There have
been many studies that have demonstrated reduced FA and increased MD in widely
distributed brain regions of people with autism spectrum disorders.

Several studies [48–57] have examined WM in people with ASD using DTI, com-
paring their WM microstructure with that of TD individuals. Barnea-Goraly and
colleagues [48] found that certain WM areas had reduced FA in ASD, when taking
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into consideration IQ, age, and gender. The WM tracts they identified were located
in brain regions known to be associated with social cognition e.g., temporoparietal
junction, superior temporal sulcus, ventromedial prefrontal cortex, fusiform gyrus,
and anterior cingulate gyrus. While the aforementioned study [48] did not report
any ASD-related alterations in MD, the work of Alexander et al. [49] found signifi-
cant differences in MD as well as FA. Specifically, MD was increased in callosal WM,
while FA was reduced, for individuals with ASD as compared to TD subjects. Higher
MD and RD with reduced FA in autistic subjects was reported by [50]. Another
study [51] examining the frontal lobe WM reported lower FA values and a higher
diffusion coefficient in ASD.

The structural integrity of WM was examined using DTI [52], comparing ASD
and TD groups with correction for age and IQ, and also without. The individuals
with ASD were found to have significantly higher MD generally in cerebral and cere-
bellar WM, regardless of whether the correction was performed or not. The authors
also noted decreased FA in ASD within the superior and inferior longitudinal fasciculi
bilaterally, and in the left corona radiata; however, this decrease almost disappeared
after corrected for age and IQ. From this, they inferred that the kurtosis of fractional
anisotropy distribution is greater in ASD. Travers et al. [53] presented a comprehen-
sive review of 48 studies that were carried out from 2004 to 2012 for the purpose of
studying the WM integrity of ASD using DTI. The review found consistent results
among these studies in that ASD cases on average exhibited reduced WM integrity
compared to TD individuals, indicated by lower FA and increased MD across multiple
brain regions. The findings were more consistent in some regions with respect to oth-
ers, especially in the cingulum and corpus callosum. Vasa and colleagues [56] reviewed
some of the current structural and functional connectivity ASD data to examine the
“disrupted connectivity” theory. They identified many confounding factors in the
literature that could have affected the conclusions and highlighted the conflicting re-
sults. Kuno et al. [57] examined correlations between DTI parameters (FA, MD, AD,
R) and scores on the Autism-spectrum Quotient (AQ). They focused on WM tracts
that were known from previous studies to be altered in obsessive-compulsive disorder
(OCD) patients with autistic traits. Their results suggested that the variations in
WM features may be explained partially by autistic traits in OCD patients.

Many studies have shown reduced FA and increased MD in widespread WM tracts
and brain regions of the ASD population when compared to TD controls, denoting
reduced WM integrity. The most commonly involved tracts are long-range association
fibers that directly and indirectly connect the brain regions responsible for social
cognition and verbal communication. Those tracts include the superior longitudinal
fasciculus, occipitofrontal fasciculus, arcuate fasciculus, uncinate fasciculus, inferior
longitudinal fasciculus, and cingulum. [11, 58–60]. A study by Jung et al., 2019 [58]
revealed the correlation between impaired connectivity at the occipital cortex in ASD
boys with the core symptoms and clinical outcomes of ASD. A significant negative
correlation was found between tract length (left cingulum cingulate gyrus and right
uncinate fasciculus) and the total score of the Social Communication Questionnaire
(SCQ).

Valenti [61] presented a comprehensive review of several published articles that
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used DTI in the evaluation of Corpus Callosum (CC) integrity in ASD. They found
a significant difference in DTI and tractography findings between the ASD group
and healthy controls, indicating both micro and macrostructure alterations in CC. In
addition, those structural alterations are correlated with socio-communicative deficits.
Shukla et al. 2013 found increased RD and reduced FA in CC and Internal Capsule
(IC). Others have shown altered IC connectivity with the correlation of DTI changes
with the core ASD symptoms [62], [63], [64].

A study focused on language-related tracts (arcuate fasciculus) to differentiate
ASD patients from non-ASD individuals with a developmental language disorder has
found a significant reduction in FA of the arcuate fasciculus in ASD individuals [65].
Moreover, other studies reported age-related differences in the widespread WM mi-
crostructure of the ASD population when compared to healthy controls. For example,
in [66], [67] have found increased FA in autistic infants and toddlers, while indices
decreased in elder autistic children. This was attributed to better tract coherence
and alignment in infancy. Other studies have shown the opposite as there was a sig-
nificant positive correlation of FA with increasing age of autistic children, while MD
and RD measures showed a significant negative correlation with age [68], [69]. They
suggested that neurodevelopmental maturation of WM trajectories with increased
age is associated with changes in diffusivity parameters.

Apart from using DTI biomarkers alone, several imaging-based ML studies have
been applied to overcome the limitations found in DTI studies alone. DTI lacks a
full description of crossing WM trajectories. Despite the sensitivity of DTI metrics to
capture microstructural changes, DTI is less specific to other WM disorders affecting
myelination and axonal density [70]. In addition, there is still limited integration
between clinical and imaging biomarkers. The need for informative data relevant to
diagnosis and treatment decisions is challenging. Therefore, ML has been developed
to aid the identification and classification of ASD children using clinical, behavioral,
and imaging biomarkers [20].

DTI-based ML Classification

Several ML studies based on DTI metrics were performed by applying different fea-
tures obtained using different algorithms for image processing. For example, Ingal-
halikar et al. [71] study of 45 autistic subjects and 30 TDs, DTI-based features were
extracted like FA and MD metrics in each ROI to classify ASD patients and controls
by learning the pattern of the disease. Also, they correlated the degree of ASD with
a clinical score to each subject to aid in the diagnosis, using SVM for classification,
manifesting a diagnostic potential when the authors split ASD to language impaired
and non-language impaired groups, achieving an accuracy up to 80%. Li H et al. [72]
used brain connectivity network features obtained from DTI to identify faulty sub-
networks to distinguish ASD subjects from TD group. The detection was done by
SVM- recursive feature elimination (RFE) algorithm. Jin Y et al. [73] used features
extracted from ROI-based WM connectivity and DTI metrics, such as FA, MD, and
fiber length. A multi-kernel SVM was used for the discrimination of ASD 6-month
high-risk infants from low-risk infants.
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Zhang et al. [74] used whole brain fiber clustering analysis with multi-fiber trac-
tography, FA, and MD features. An SVM classifier was used to distinguish ASD from
TDs. Qin et al. [75] used graph theory to analyze the topology of the WM network
of ASD preschool children. Edges and nodes were defined as FA and 90 brain regions
respectively. They found disturbed topology of the structural networks of ASD sub-
jects as compared to TDs. Payabvash [70] used features extracted from edge density
imaging (EDI) as well as from conventional DTI metrics such as FA, MD, and RD.
Variable ML classifiers were used to discriminate ASD children from TDs. The best
accuracy was achieved with the EDI-based random forest model. Saad et al. [76] used
DTI-based connectivity features with graph theory to classify ASD and TDs. The
classification was performed by an SVM and a linear discriminant analysis (LDA).
The principal component analysis (PCA) approach was used to reduce noisy features.
Better accuracy was obtained with SVM and 2 PCA features.

In one study of 75 subjects, [71] showed a diagnostic predictive capability, with
80% accuracy, based on FA and MD. Another study that aimed to provide a classifi-
cation of autism, performed on 73 subjects used the shape of WM tracts to achieve an
accuracy up to 75% [77]. In [55], a sample of 38 infants from the Infant Brain Imaging
Study (IBIS) were used for the diagnosis of autism using spherical harmonics, where
WM connectivity integrity was analyzed.

Aside from classical analysis studies, plenty employed ML techniques for ASD
classification. The whole ABIDE-I fMRI dataset was tested with a refined deep
learning model that was introduced by Heinsfeld et al [33] that exceeded the previous
state-of-the-art performance, achieving 70% accuracy. Khosla [78] presented another
deep learning algorithm using a volumetric convolutional neural network that fits
non-linear predictive models on 3D resting state fMRI (rs-fMRI) input and recorded
a classification accuracy up to 73% on ABIDE-I rs-fMRI data.

Other hybrid studies combined DTI features with features extracted either from
fMRI or structural MRI (sMRI). For example, An et al. [79] used Region to region
fiber connectivity DTI features and ROI-based Functional connectivity (FC) features
from fMRI to validate connectivity patterns and then classify ASD subgroups using
multi-view expectation maximization formulation (mv-EM). In [80], authors pro-
posed a framework exploiting features from both sMRI and fMRI, applied on 185
subjects from the National Database for Autism Research (NDAR), achieving 81%
accuracy fusing both modalities. Deshpande et al. [81] used FA and FC values with
a Multi-variate autoregressive model (MVAR). They investigated the differences be-
tween brain regions that may underpin the theory of mind in young ASD patients
and TDs. The classification was done by an SVM classifier. Crimi A et al. [82]
used structural and functional connectivity features with a constrained multivariate
auto-regressive model (CMAR) that allows fusing the structural connectivity with
the information from the functional time series, to represent effective brain connec-
tivity. The classification between ASD subjects and TDs was performed by an SVM
classifier. D’Souza NS et al. [83] used phenotypic measures of rs-MRI connectivity
and DTI tractography features with multimodal graph convolutional network (M-
GCN) to extract predictive biomarkers from both ASD individuals and TDs. Irimia
et al. [84] used structural morphometric features cortical thickness, volume, area,
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and mean curvature as well as connectivity features to distinguish ASD individuals
from TDs. Moreover, they distinguished ASD males and females. The used classifier
was an SVM model. Eill et al. [85] combined the anatomical features (surface area,
mean curvature, cortical thickness, volume, and local gyrification index), DTI metrics
(FA, MD, RD, AD), and ROI-based FC matrices. They applied a conditional random
forest algorithm (CRF) to assess the role of each modality and explore the more infor-
mative one in diagnostic prediction. The use of combined variables achieved higher
accuracy (92.5%), and rs-fMRI connectivity variables provided better performance
than other anatomical modalities in the classification of ASD individuals from TDs.
Table 1 summarized the results of the discussed covered papers
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2 Functional MRI

ASD findings using fMRI

Functional neuroimaging is used to investigate the functional connectivity and activ-
ity of brain regions. Electroencephalography (EEG) has been used as a basic method
to record electrical activities of the brain from the scalp with a high temporal resolu-
tion (in milliseconds) [86]. fMRI detects brain activity by measuring the associated
variations in Blood Oxygenation Level-Dependent spontaneous signals (BOLD) in
response to various stimuli [87]. It is a four-dimensional technique (4D) that cap-
tures a three-dimensional brain volume (3D) repeatedly over a period of time. This
technique has a high spatial resolution (in millimeters) but a low temporal resolu-
tion [88]. This could be explained by the time limitations of fMRI that cannot record
the fast dynamics of brain activities and the slow response of the brain hemodynamic
system, thus requiring multiple scans over time. Moreover, fMRI is sensitive to mo-
tion artifacts [89]. fMRI-based techniques include two broad categories: event-related
or task-based (T-fMRI) and resting-state (rs-fMRI). Task-based (T-fMRI) measures
brain function after performing specific tasks, while (rs-fMRI) measures brain func-
tion in the absence of task demands.

Task-based (T-fMRI)

Task-based protocols employ paradigms that map the core behavioral symptoms of
ASD patients, namely, facial emotional recognition, response to social stimuli, and re-
ward behavior [11]. Other tasks include motor, visual processing, language, auditory,
and executive functions. Social communication skills are supported by a distributed
brain network within different brain regions collectively named ”social brain” [90].
Many T-fMRI studies have notably demonstrated atypical activity in social brain re-
gions among ASD individuals during social tasks (primarily hypoactivation). Social
communication deficits in ASD include variable manifestations like impaired recog-
nition of faces, making inferences about others’ intentions, and diminished social
responsiveness. In addition to reduced attention to social cues, human voices, and
biological motions [11,90,91].

A Study that examined the activity of social brain regions in response to the
visual perception of generic faces showed hypoactivation in the fusiform gyrus and
amygdala among ASD children. These regions are responsible for such tasks. How-
ever, similar activation was found in ASD patients as well as TD controls when the
faces were familiar [92]. Another study employed a task to distinguish between at-
tention to biological motions (eye gaze, walking, hand, or mouth movements) versus
mechanical motions (clock or wheel). This study revealed reduced activation of the
superior temporal sulcus and ventrolateral prefrontal cortex in ASD children than
in TD controls. The study clarified that ASD children are easily distracted by non-
facial stimuli and cannot fixate on faces to the same degree as normal children [93].
Investigating brain activity in response to cognition of facial expressions, such as sad
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facies (visual tasks), revealed increased activation in the amygdala, ventral prefrontal
cortex, and striatum in the adolescent ASD group compared to the control group [94].

Regarding the response to reward or positive feedback behavior, ASD children are
less responsive than normal children. Normally, reward activates the visual striatum
region and engages the frontostriatal network [11]. A study employed a social reward
task like a smiling face or a momentary reward task as gold coins. ASD boys showed
non-activated visual striatum, while it was activated in TD boys [95]. Moreover, a
study comparing the response of both ASD boys and girls, revealed more activation
in the lateral frontal cortex and insula of ASD girls, denoting that suppressed reward
center activation is a distinctive feature of ASD boys [96].

A meta-analysis of fMRI studies was proposed by Philip et al. [97]. They re-
viewed T-fMRI studies that investigated the functional brain response to auditory
and language-related tasks. They revealed reduced activation in clusters of brain
regions in ASD children, adolescents, and adults compared to TD controls. Those
regions are both superior temporal gyri, the right pyramids of the cerebellar vermis,
and the left middle cingulate gyrus. The superior temporal gyrus is activated with
receptive language, so reduced activation in response to spoken language denotes the
underlying verbal communication difficulties in ASD individuals. On the other hand,
relative over-activation in ASD adults more than in controls was found in the poste-
rior cingulate gyrus, the motor cortex, and the cerebellar declive. The exact cause of
increased activation in ASD groups was not clear; this may be suggested by the use
of atypical language processing strategies [97].

Resting-state (rs-fMRI)

The complexity and different varieties of fMRI tasks, in addition to the unique social
skills and intellectual condition of ASD children, can limit some task-based experi-
ments. Another point is the difficulty of tasks with potential language barriers that
preclude some children particularly infants from participation [11,98].

rs-fMRI is a promising alternative to T-fMRI. The technique is especially suitable
for infants and toddlers, and whenever task performance itself is in question. It helps
examine functional brain connectivity in absence of task performance. The total time
of the examination is about 5-6 minutes. The participants just lay in the MRI scanner
closing their eyes or fixing on a cross-hair [98].

Several rs-fMRI studies aim to explore large-scale resting brain networks (RBNs).
Those are organized brain regions that show cortical synchronization patterns with
coherent spontaneous fluctuations in neural activity during rest [99]. RBNs include
default mode network, dorsal and ventral attention network, salient network, visual
network, and sensorimotor networks [99].

It was found that the most common region with altered brain connectivity is the
default mode network (DMN). It gets activated during the resting state. Whereas, it
gets less activated on the engagement of cognitively-demanding tasks [100]. DMN is
a large-scale network composed mainly of the posterior cingulate gyrus, precuneus,
and medial prefrontal cortex. It has shown reduced connectivity in ASD patients
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compared with TD controls [101], [100], [102]. The dorsal attention network (DAN)
is located in the intraparietal sulcus and frontal eye field. This network is activated to
reorient the attention towards relevant stimuli. Sun et al. [99] have shown increased
functional connectivity in the superficial temporal gyrus and cerebellum indicating
the presence of circuit connections between DAN and cerebellum. The ventral at-
tention network (VAN) also has been studied by SUN [99]. They found increased
connectivity in the insula which is a critical region in VAN responsible for social
emotions. The salience network is another RSN that has been examined. It is com-
posed primarily of the dorsal anterior cingulate cortex and the anterior insula. It is
linked with the detection and filtering of salient stimuli [11]. Additionally, a study by
Wang et al. [103] has investigated the functional connectivity of sensory networks in
autistic children including auditory, visual, and sensorimotor networks. They found
increased functional connectivity in all networks in ASD children and was correlated
with the severity of social impairment of the children.

Disrupted Connectivity theories

Other several networks have been examined by rs-fMRI and have provided support to
the theory of ”brain hypoconnectivity” in ASD. Long-range reduced brain connectiv-
ity was found in the superior temporal region of autistic individuals when compared
with TD controls [104]. Uddin et al. [105] have observed a reduction in functional con-
nectivity in this network with 83% accuracy in differentiating autistic children from
TD controls. Based on a multivariate autoregressive model, an algorithm based on
a ML algorithm for analyzing functional connectivity in ASD subjects was used in a
previous study [106]. In that study, it was found that people with ASDs have reduced
functional connectivity, which supports the hypothesis that autism is characterized
by a deficit in functional connectivity or ’underconnectivity’.

In accordance with the underconnectivity theory [107], cognitive disorders mani-
fest themselves in reduced synchronized brain activity during integrative processing
tasks, such as the synthesis of a sentence from a set of words. There is evidence
in [106], and [108] for the hypothesis of underconnectivity. Similarly, there was lower
functional connectivity in the superior parietal and visuospatial regions of ASD when
compared to TD [109]. In another study by [110], there was reduced connectivity
between the temporal and frontal cortex, but no global abnormalities were found.
In [111], abnormalities were reported in functional networks, which were more evi-
dent in networks related to social information processing.

In addition, other studies have observed underconnectivity in latero-basal sub-
region of the amygdala, interhemispheric connectivity in sensorimotor and occipi-
tal cortices, and in connections between anterior and posterior cingulate gyrus and
precuneus [109]. Overconnectivity has been also observed in some studies, they
found increased connectivity in some areas as frontal, temporal, and occipital re-
gions ( [112], [113], [102]). Kleinhans and his colleagues [114] have observed areas
of overconnectivity within the amygdala (superficial and centro-medial subregions).
However, the latero-basal subregion showed underconnectivity, this region stands for
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the presentation and severity of ASD symptoms. The mixed pattern or the incon-
sistent over- and un-der-connectivity can be attributed to the small sample size used
in these studies, phenotypic heterogeneity among ASD individuals, or an adjustment
mechanism by the brain to by-pass the under-connected regions [11,98].

Nevertheless, brain networks associated with ASDs exhibit both under-connectivity
and over-connectivity [111,115]. Unlike previous studies, ASD has not only reported
results that indicated brain underconnectivity but also increased brain connectivity
in some areas when compared to healthy controls [115]. In the latter study, func-
tional connectivity patterns were analyzed, specifically interhemispheric connectivity
analysis, and it was found that ASD subjects had both under- and over-connectivity.
Furthermore, the presence of altered connectivity was verified in [116]. The subjects
with ASD displayed both under- and over-connectivity between different brain re-
gions. Furthermore, a study by [117] identified hyperconnectivity in severely socially
challenged autistic children.

fMRI based ML Classification

Recent progress in ML algorithms combined with fMRI techniques is established for
the diagnosis of ASD and has shown promising results. For example, Abraham et al.
[118] used features selected from ROI-based resting-state FC matrices to differentiate
ASD from TDs. They used an SVM classifier and found an increase in the predictive
power with the increase in participant numbers. Emerson et al. [119] used extracted
features from ROI-based resting state-FC matrices for the prediction of ASD in high-
risk 6-month infants, based on cor-related brain metrics with 24-month ASD-related
behaviors. They achieved 96.6% classification accuracy of ASD individuals at 24
months. The classification was performed by an SVM classifier. Guo et al. [120]
used ROI-based resting state-FC matrices with deep neural networks with feature
selection (DNN-FS) to select the most relevant features from FCs related to ASD
from the default mode to identify ASD individuals from TDs. Jahedi [121] obtained
ROI-based FC features as biomarkers to identify ASD patients from TDs. Combined
use of conditional random forest (CRF) and random forest classifiers achieved the
best prediction accuracy.

Kam et al. [122] used extracted features from seed-based FC matrices with Dis-
criminative restricted Boltzmann machines (DRBM) to identify dominant FCs to
differentiate ASD from TDs. An ensemble classifier was applied and obtained a
high accuracy with multiple clusters using hierarchical-level clustering of networks.
Sadeghi et al. [123] used features from ROI-based FC nodal matrices to extract lo-
cal and global parameters of brain networks to identify ASD from TDs. Multiple
classifiers were used but SVM showed superiority to other classifiers. Subbaraju et
al. [124] used extracted features from ROI-based resting state-FC matrices with spa-
tial feature-based detection method (SFM) to extract the most discriminative blood
oxygenation level-dependent (BOLD) signals. An SVM classifier was used in the clas-
sification of ASD individuals versus TDs. Tejwani et al. [125] used extracted features
from ROI-based enhancing FC variability across brain regions to distinguish between
ASD subjects and TDs. They used SVM, RF, Näıve Bayes, and multi-layer percep-
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tion algorithms for classification. Heinsfeld et al. [33] used extracted features from
ROI-based FC matrices with DNN algorithm. The proposed method achieved better
accuracy than SVM and RF classifiers in classifying ASD and control subjects. Bi et
al. [126] used ROI-based FC features to differentiate between autistic individuals and
TDs. They applied a random SVM cluster and achieved high classification accuracy.

Fredo et al. [127] used features extracted from ROI-based FC matrices to classify
ASD individuals and TDs. The detection was done by CRF. Li et al. [128] conducted
a 2-stage pipeline method, composed of DNN and prediction distribution analysis, to
investigate its accuracy in classifying two datasets of ASD and TD subjects. They
extracted features from ROI-based FC matrices from both resting-state and task-
fMRI. Bernas et al. [129] extracted temporal neurodynamic fMRI biomarkers for
ASD diagnosis with Wavelet coherence maps. The detection was done by an SVM
classifier. Bhaumik et al. [130] used features extracted from ROI-based FC matrices
for the prediction and diagnosis of ASD subjects versus TDs. The detection was done
by an SVM and partial least square regression (PLS) algorithms. Dekhil et al. [131]
used power spectral densities as extracted features to classify ASD individuals and
TDs. An SVM was used and achieved high di-agnostic accuracy and prediction
of clinical phenotypes. Xiao et al. [132] used the extracted time courses of each
subject with NN algorithms. The extracted features are inputted into a stacked
autoencoder (SAE) and then into a subsequent softmax classifier for the identification
of school-aged ASD children from TD school-aged children. Yang et al. [133] used
features extracted from ROI-based FC matrices to classify ASD and TD subjects.
The detection was performed by SVM, LR, and Ridge classifiers. They found that
accuracy is improved with combined classifiers. Wang et al. [134] used extracted
features from ROI-based FC matrices to classify ASD and TD subjects. In [135],
they used an SVM recursive feature model to achieve a high classification accuracy
of ASD and TD individuals on both global and across-sites datasets. They also used
extracted features from ROI-based FC matrices to identify ASD subjects and TDs.
An SVM-recursive feature model and a stacked sparse auto-encoder (SSAE) were
used to eliminate some meaningless features to enable the SSAE to extract insightful
features.

Aghdam et al. [136] used extracted features from Fast Fourier transformation with
the CNN method in order to classify ASD subjects and TDs. Huang et al. [137] used
extracted features from rs-fMRI multiple group-sparse networks. They used an SVM
classifier in distinguishing ASD individuals. Jun et al. [138] used extracted features
from rs-fMRI local functional characteristics based on the estimated likelihood of
ROI by Hidden Markov Models (HMMs) to identify meaningful information for ASD
detection. The detection was performed by an SVM classifier. Eslami et al. [139]
used extracted features from ROI-based FC matrices with ASD-DiagNet in order to
classify ASD and TD subjects and the proposed method achieved high classification
accuracy. Mostafa et al. [140] extracted features from ROI-based FC matrices and
then the eigenvalues of the Laplacian matrix of the brain network with a sequential
feature selection algorithm. Linear Discriminant Analysis (LDA) was used to classify
ASD and TD subjects. Song et al. [141] used extracted features from community
pattern analysis of FC to classify the ASD population and TDs, in addition to the
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prediction of the clinical class of ASD individuals. The detection was performed
by LDA. Spera et al. [142] used extracted features from ROI-based FC matrices to
classify ASD and TD subjects. They selected a homogenous cohort of young ASD
males to lessen the impact of confounding factors. The detection was used by linear
kernel SVM. Tang et al. [143] used extracted features from ROI-based FC from DMN
and whole brain with Joint symmetrical non-negative matrix factorization (JSNMF).

An SVM classifier was used to classify ASD and TD subjects. Yamagata et
al. [144] used extracted features from ROI-based FC matrices with a multivariate ML
approach. A Sparse Logistic Regression (SLR) classifier was used to classify pairs
of ASD patients and their unaffected siblings from pairs of TDs and their siblings
according to the endophenotype. Chaitra et al. [145] used extracted features from
ROI-based FC matrices to classify ASD patients and controls. They employed a
Recursive-Cluster-Elimination SVM algorithm. Fan et al. [146] used extracted fea-
tures from maps based on estimated likelihood values of ROI by HMM to identify
ASD individuals from TDs. The detection was performed by an SVM classifier. Liu
et al. [147] employed the elastic network method to extract features from ROI-based
FC matrices to distinguish ASD individuals from TDs. They obtained high classifi-
cation accuracy using SVM classifier in the automatic diagnosis of ASD than LASSO
and RR algorithms. Hu et al. [148] utilized extracted features from ROI-based FC
matrices with a fully connected neural network (FCNN) model in the classification of
ASD population versus TDs. Sherkatghanad et al. [149] used extracted features from
ROI-based FC matrices to classify ASD individuals and TDs using a CNN model.
CNN model is computationally less intensive as it uses fewer parameters than state-
of-the-art methods and can be used in prescreening of ASD patients. Thomas et
al. [150] used the temporal statistics of rs-fMRI data with 3D-CNN to classify ASD
individuals. The classification was also performed by an SVM model on the same
dataset. The best classification accuracy obtained by the SVM algorithm was 66%,
while 3D-CNN achieved 64%, denoting that 3D-CNN could not learn additional in-
formation in classifying ASD and TDs. Jiao et al. [151] utilized extracted features
from ROI-based FC matrices with the CapsNET method to classify ASD individuals
and TDs. Moreover, they stratified ASD subjects into groups based on distinct FC
measures. Liu et al. [152] used the extracted features from ROI-based FC matrices
with an elastic network method to classify ASD individuals versus TDs.

Liu et al. [153] utilized the extracted dynamic features from ROI-based FC ma-
trices with a multi-task feature selection method. A multi-kernel SVM classifier was
used to classify ASD individuals versus TDs. Zhang et al. [154] utilized the rs-fMRI
dataset of ASD subjects and TDs with fast entropy method which includes approx-
imate entropy (ApEn) and sample entropy (SampEn). The SVM classifier was used
to diagnose ASD. Ronicko et al. [155] used extracted features from ROI- based FC
matrices with partial and full correlation methods. Classification of ASD individuals
and TDs was built by different models namely, SVM, RF, Oblique RF, and CNN.
Khan et al. [156] analyzed the extracted features from ROI-based FC matrices with
a Teacher Student neural network-based feature selection method. Different classi-
fiers were used in classifying ASD and TD subjects such as SVM, RF, LR, Decision
trees, and linear discriminant classifiers. Reiter et al. [157] used extracted features
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from ROI-based FC matrices of ASD subjects and TDs. RF classifier was used to
investigate the effect of heterogeneity of ASD sample on classification accuracy. They
found that the most homogeneous samples achieved better RF classifier performance.
Devika & Oruganti [158] utilized extracted data from FC matrices to distinguish ASD
and TD subjects. The classification was performed by an SVM model. Ahammed
et al. [159] used the extracted features from ROI-based FC matrices with Bag of
features extraction (BoF) method. The SVM was used as a classifier for identify-
ing ASD and TD subjects. Ahammed et al. [160] used the extracted features from
ROI-based FC matrices. They applied a DarkASDNet method to classify ASD and
TD subjects. Graña & Silva [161] utilized the extracted features from ROI-based FC
matrices of ASD subjects and TDs using 9 different classifiers. They explored the
impact of choices during building up the ML pipelines on the predictive performance.
They found that the selection of some feature extraction methods can strengthen the
classifier performance, such as the classical principal component analysis (PCA) and
factor analysis (FA). Al-Hiyali et al. [162] used the temporal dynamic features from
default mode network regions (DMN) with several deep learning models for the diag-
nosis and classification of ASD. SVM and K-nearest neighbors (KNN) were used for
ASD classification and the KNN achieved the highest classification accuracy. Pomi-
nova et al. [163] utilized extracted features of FC matrices and full-size MRI series
with 3D convolutional autoencoders method. To classify ASD and TD subjects, the
SVM classifier was used. Yin et al. [164] used extracted features from ROI-based
FC matrices with graph theory and autoencoders to distinguish ASD subjects from
TDs. SVM, K-nearest neighbor (KNN), and DNN algorithms were used for classifi-
cation. Chu et al. [165] used extracted features from ROI-based FC network regions
with multi-scale graph convolutional network (GCN) to classify ASD patients and
TDs by learning the distinctive FC features. Yang et al. [166] used extracted fea-
tures from FC matrices to distinguish ASD individuals from TDs. they used different
classifiers as LR, KSVM, DNN, and supervised learning classifiers, among them, the
KSVM achieved the best classification accuracy. Table 2 summarized the results of
the discussed covered papers.
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3 Limitations of Current Approaches

After reviewing the key accomplishment in literature towards autism diagnosis, we
conclude a number of limitations that indicate the need for more work:

• Limited explainability: Many high-performing models completely relied on
black-box modules, such as CNN and DNN, which is less desirable in the medical
field. Clinicians do not trust these models because, while they are successful at
classifying, they often lack any clinical context, therefore, they are not trusted
for their judgments.

• CAD systems designed utilizing task-based fMRI are not suited to use for di-
agnosing children of early age, as they may introduce additional biases.

• There were many studies that included small clinical datasets, making it difficult
to replicate and improve upon those methodologies, with limited power of a
study.

• Not much work is present on the crucial feature representation, reduction, and
feature engineering techniques, despite their effect on any ML framework.

• Little effort is done comparing different preprocessing strategies and explaining
the reasons behind each choice. From a research point of view, it is more
important to provide a thorough study answering questions than just some
distinct results.

In this dissertation, we aim to land up with outlining some of these limitations
and developing a unified framework for autism diagnosis using ML that is explainable,
expandable, and scalable.
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CHAPTER III

USING DTI FOR AUTISM DIAGNOSIS: INTRODUCING A
NOVEL FEATURE REPRESENTATION

The aim of this chapter is to present our automated computer-aided diagnostic (CAD)
system for the accurate identification of autism based on the connectivity of the
white matter (WM) tracts. To achieve this goal, two levels of analysis are provided
for local and global scores using diffusion tensor imaging (DTI) data. While most
of the previous work relied on sMRI and/or fMRI, the focus of our work is using
DTI. A local analysis using Johns Hopkins WM areas’ atlas is exploited for DTI
atlas-based segmentation. Furthermore, WM integrity is examined by extracting the
most notable features representing WM connectivity from DTI. Interactions of WM
features between different areas in the brain, demonstrating correlations between WM
areas were used, and feature selection among those associations was made. Finally,
a LOSO classifier is employed to yield a final per-subject decision. The proposed
system was tested on a large dataset of 263 subjects from NDAR database with their
Autism Diagnostic Observation Schedule (ADOS) scores and diagnosis (141 typically
developed: 66 males, and 75 females, and 122 autistics: 66 males, and 56 females),
with ages ranging from 96 to 215 months, achieving an overall accuracy of 73%. In
addition to this achieved global accuracy, diagnostically-important brain areas were
identified, allowing for a better understanding of ASD-related brain abnormalities,
which is considered an essential step towards developing early personalized treatment
plans for children with autism. The work in this chapter was published partially in
© 2020 IEEE, from [167].

1 Introduction

Previous neurobiological studies investigated connections between ASD and under-
lying structure, trying to describe brain abnormalities associated with autism traits.
Since the emergence of MRI, plenty of studies appeared to investigate connections
between ASD and underlying brain features, either shape and volume features us-
ing structural MRI [7], or white matter (WM) diffusivity [49] anomalies using DTI,
while others performed correlations of ASD with either task based or resting state
functionality [48] using functional MRI (fMRI). In this work, we will introduce our
DTI-based algorithm for assessing ASD with the help of ABIDE-II dataset.

DTI is gaining rising popularity over the past couple of decades, especially for
brain-related disorders, as it provides a non-invasive way of characterizing the con-
nective tracts inside the brain between different areas. It quantifies the diffusion
patterns inside the white matter (WM). White matter mainly consists of axons of
neurons (nerve fibers), and with the human brain containing hundreds of billions
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of neurons, the structure of WM is truly complex. The WM represents the axonal
fibers carrying neural signals between various brain regions and between the brain
and spinal cord through the brainstem. The organization of such a complex network
contains a wealth of information, still, current resolution for conventional MRI tech-
nologies cannot capture such small details that are typically less than a micrometer
to only few micrometers. Yet, DTI provides diffusion measures that gives informa-
tion about the tractography of the brain. DTI’s most used parameters [45] include
fractional anisotropy (FA), mean diffusivity (MD), and sometimes also ”radial” and
”axial” diffusivities. These parameters actually describe the diffusion of water in-
side the brain, and since water diffusion is restricted outside of fiber tracts, this
translates into indirect information of micro-structure and connectivity of WM [46].
Additionally, some derived features are also used to characterize other diffusion mea-
sures in WM tracts, such as tensor trace, skewness, rotational invariance, and many
others [47]. Abounding previous literature noted WM abnormalities associated with
autism, often as differences in WM micro-architecture across some local brain areas.
For instance, differences in FA values were reported by Wolff et.al. [168] between ASD
and typically developed (TD) infants. In autism, numerous studies suggest abnormal
development of neural networks that manifest themselves as abnormalities of brain
shape, functionality, and/ or connectivity. As concluded from similar investigations
reviewed in chapter II, neither the under-connectivity nor the over-connectivity of
the brain hypothesis can successfully describe the deviations of the ASD population
alone [169]. Despite the numerous efforts to detect autism-related variations using
imaging, there is no robust, effective CAD system that is able to both diagnose autism
and place them within a severity spectrum. This is what originated the idea of using
DTI in order to develop an extensively automated diagnosis system that can help
clinicians identify subtypes of the disorder and develop personalized treatment plans
for individuals with autism. The rest of this chapter will be organized as follows: sec-
tion2 will describe all materials and methods used, section3 will provide the achieved
experimental results, while section4 will present the discussion of the results.

2 Materials and Methods

The primary objective of this chapter is to extract informative local white matter
features for each brain area that can be used to discriminate an autism diagnosis.
Fusing the results of those local associations would help obtain an accurate global
diagnostic decision per subject. The framework mainly consists of three stages: first,
a preprocessing step is carried out to reduce imaging artifacts and eliminate non-brain
tissues. The second stage is feature calculation, extraction, and selection, including
the use of an atlas-based segmentation technique to allocate features for each area.
The third stage is a classification step that is used for obtaining the final diagnosis,
as well as identifying specific brain areas that offer the best help to differentiate ASD
from neurotypical. Details of the proposed framework as well as experimental results
are discussed in the next sections.
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White Matter Connectivity Analysis:

For each subject, the white matter was studied using diffusion tensor imaging (DTI)
information. In DTI, a 3×3 diffusion tensor describes the diffusion of water within the
volume of tissue contained in each voxel. To find the principal diffusion directions,
the 3 eigenvalues 𝜆1, 𝜆2, and 𝜆3 and their corresponding eigenvectors 𝑣1, 𝑣2 and
𝑣3 are calculated, where the eigenvector corresponding to the largest eigenvalue is
the principle diffusion direction (i.e, diffusion across the fiber) while the other two
eigenvectors correspond to the radial diffusion directions (i.e, diffusion perpendicular
to the fiber) as illustrated in Figure 3 [21].

A special case is an isotropic medium, where the diffusion ellipsoid takes the shape
of a sphere where 𝜆1 = 𝜆2 = 𝜆3. In the case of an anisotropic medium, the diffusion
is represented as an ellipsoid as shown pointing in the 𝑣1 direction of 𝜆1. There are
six output features obtained from DTI that are the most commonly used anisotropy
measurements describing white matter connectivity:

1. Fractional Anisotropy (FA): The most widely used measurement of anisotropy,
a scalar value between 0 and 1 that determines the diffusion integrity. As FA
approaches 0, the diffusion is considered to be isotropic while higher values
mean that the diffusion tends to be in a uniform direction (i.e, the principal
eigenvector direction) [21,170].

2. Mean diffusivity (MD): Average diffusivity within a voxel, integrated over all
directions, independent of the direction. MD = 1

3 (𝜆1 + 𝜆2 + 𝜆3).

3. Axial diffusivity (AD): Diffusivity in the direction of the major axis of the
diffusion ellipsoid, AD = 𝜆1 .

4. , 5. Radial diffusivity in the direction of the minor axes of the diffusion ellipsoid:
𝜆2 𝑎𝑛𝑑 𝜆3 .

6. Skewness: a 3𝑟𝑑 order measurement characterizing the shape (oblate or pro-
late) of the diffusion tensor, which is not captured by FA or other lower order

measurements [47]. 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = (𝜆1−𝑀𝐷)3+(𝜆2−𝑀𝐷)3+(𝜆3−𝑀𝐷)3
3 .

In the work of this chapter, FSL toolbox https://fsl.fmrib.ox.ac.uk was used for
DTI computation. The eddy current correction [171] and brain extraction using BET
algorithm [172, 173] were applied prior to calculating the diffusion tensor. Fig. 5
shows an example of the tensor visualization.

The calculated features are then aggregated over the 48 local regions defined
by Johns Hopkins WM atlas parcellation [174] using DTI-TK software. The atlas-
based segmentation task is elaborated in the next subsection. Finally, the rest of the
proposed algorithm is implemented in Matlab.

Brain parcellation into local brain areas:

After calculating the above metrics at each voxel, it is useful to aggregate them by
region according to an appropriate brain parcellation. An atlas-based segmentation
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Figure 5. Example of extracted features from one subject DTI brain, (a) Axial
diffusivity 𝜆1 , (b) Radial diffusion 𝜆2, (c) Radial diffusion 𝜆3, (d) Mean Diffusivity
𝑀𝐷, (e) Fractional Anisotropy 𝐹𝐴, (f) Labeled WM areas of John Hopkins Atlas,
each color identifies here different WM area.

approach is adopted, where we treat the area’s segmentation problem as a registration
task. In this step, Johns Hopkins WM atlas [174] along with its labeled areas are
used. John Hopkins is an ICBM coordinate-based WM atlas that defines 48 brain
areas that were hand segmented from 81 different subjects. A registration from the
MNI atlas space to each subject’s space using DTI-TK software [175] is performed,
as it supports interoperability with FSL. After atlas-subject registration, an affine
transformation is applied to JHU atlas labels, providing WM areas masks for each
subject. Thus, we can get local features for each WM area that are used at the local
classification level. Fig. 6 shows the entire diagnosis pipeline. The main advantage
of this technique is that it is scalable, automated, and has high accuracy.

Feature selection:

The above-mentioned procedures provide 6 features (FA, MD, 𝜆1, 𝜆2, 𝜆3, and Skew-
ness) for each voxel, per each subject. All of those are raw values per voxel, some
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Figure 6. DTI experiment pipeline, where the brain is extracted, preprocessed,
features calculated, atlas-based segmentation performed, and selected features are
incorporated for final classifiers.

34



Figure 7. DTI feature extraction procedure

vectors are tens of thousand in length per area. To provide a compact representa-
tion, we calculate short summary statistics vectors (mean [𝜇], standard deviation [𝜎],
and skewness [𝐸 (𝑥 − 𝜇)3/𝜎3]) for each area. Then, we concatenate those summary
statistics resulting in a feature vector of length 18 per each area (6 feature types ×
3 summary statistic vector length). Instead of using those direct features, we derive
new ones capturing the implicit relationships between different brain areas’ values,
calculated as the correlation between the feature vectors of each two areas. We re-
duce this huge feature space(48 × 48 per subject), relative to the sample size (263
subjects), by extracting only the important discriminatory features, to build our di-
agnosis algorithm. For this purpose, we used a simple filtering method known as the
signal-to-noise ratio (s2n) filter [35]. In this method, we rank each feature based on a
score representing the ratio between the absolute difference of the means of the two
classes and their variance. Fig. 7 illustrates the adopted feature selection technique.
Then, we use only the highest-ranking features in the next steps.

ASD Diagnosis

Having pairwise correlated the DTI metrics of WM regions, each of the resulting
features, i.e. each region pair, was used separately to distinguish between ASD and
TD subjects on the global level. The contribution to the diagnostic accuracy of each
feature incorporated into the classifier is shown, highlighting those that were most rel-
evant to autism. A number of classifiers from diverse classifier algorithms were tested,
including Support Vector Machine, k-Nearest Neighbor (KNN), decision trees, neural
networks (NN), and deep NN with auto-encoders. Experiments found the best per-
formance in terms of cross-validated accuracy and processing time for Support Vector
Machine (SVM). Linear SVM classifiers were used on each classification level, taking
correlation features as inputs and producing a normalized score (0–1) indicating the
confidence that a subject is autistic given the WM areas for which information was
provided. Of course, not all areas are expected to contribute significantly to the de-
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cision between ASD and TD, so only the first 𝑛 features are used for classification,
where 𝑛 is determined empirically. Algorithm 1 shows the steps of the implemented
technique, and Fig. 6 shows the pipeline of the entire diagnostic framework.

Algorithm 1 DTI-based ASD diagnosis system

1: ∀ dwMRI subject’s data :
2: 1. run preprocessing modules:
3: i) Eddy Current Correction
4: ii) Apply brain mask generated by Brain Extraction Tool
5: 2. Feature Calculations:
6: i) Use FSL to calculate DTI Tensor, scale units, calculate 𝜆1,𝜆2,𝜆3, FA,

MD, SK volumes
7: ii) Register DTI MNI space IIT Human Brain Atlas to each subject using

DTI-TK
8: iii) Apply resulted transformation on the JHU atlas labels
9: iv) Use registered labels to extract features per each WM area
10: v) Calculate summary statistics (𝜇, 𝜎, 𝑆𝑘𝑤𝑛𝑠) for each area for each

feature, rank feature values across the different 48 brain areas, get feature vector.
11: vi) Calculate correlations between feature vectors of each two areas
12: vii) Use s2n filter to rank correlation-features
13: 3. Classification:
14: i) iterate on 𝑛 from 1 to 250.
15: ii) Feed first 𝑛 ranked ordered feature for all subjects to an SVM classifier
16: iii) Give a final diagnosis for each subject, whether TD or ASD
17: End.

3 Experimental Results

Data for this experiment were obtained from the National Database for Autism Re-
search (NDAR) [176]. De-identified diffusion MRI data were accessed, comprising
263 subjects (131 females and 132 males). Of these, 122 had a diagnosis of ASD,
confirmed with ADOS, while the other 141 individuals did not have any pervasive
developmental disorder. The subjects were between 8 and 18 years of age at the time
of MRI acquisition. Table 2 shows the summary age/sex proportions of the used
subjects.

To ensure system robustness, we used leave-one-subject-out (LOSO) cross valida-
tion at all runs. For each WM area, overall accuracy, sensitivity, and specificity were
calculated. Obtaining a subject’s global diagnostic decision is a two-step procedure.
First, features are ranked based on the s2n score, then iteratively first 𝑛 is fed to the
next step, with 𝑛 starting from 1 to 250. Selected features are concatenated, and
SVM classifiers are used to make a decision about whether ASD or TD based on
the concatenated feature vector, providing a single global decision per subject. The
optimal classifier achieved an overall diagnostic accuracy of 73%, 70% sensitivity, and
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Table 2. Age Summary Table of the 263 NDAR subjects used in this chapter,
showing sex counts (M: male, F: female), age at scan in years (when available).

ASD Group (n=122)
M = 66, F=56

TD Group (n=141)
M = 66, F = 75

count 122 102
mean 12.74 13
std 2.86 2.96
min 8 8.08
max 17.9 17.92

Table 3. Top ten pairs of white matter areas whose feature-vector correlations
provide separability with the highest rank according to s2n filter. Regions represented
in both hemispheres are annotated with L (left) or R (right) if only one hemisphere
is involved, or with B (bilateral) otherwise.

Rank Area 1 Area 2

1 Superior longitudinal fasciculus R Anterior corona radiata R

2 Body of corpus callosum Genu of corpus callosum
3 Superior longitudinal fasciculus R Sagittal stratum
4 Tapetum L Middle cerebellar peduncle
5 Splenium of corpus callosum Middle cerebellar peduncle
6 External capsule L Middle cerebellar peduncle
7 Cingulum L Corticospinal tract R
8 Stria terminalis R Superior corona radiata L

9–10 Superior longitudinal fasciculus L Posterior corona radiata B

76% specificity. This performance was achieved using 𝑛 = 79 correlations. The most
significant of these region pairs are listed in Table 3.

4 Chapter Discussion

The most important regional correlations for distinguishing ASD from control (Ta-
ble 3) are a diverse group, but they fall into five categories. First is the middle
cerebellar peduncle (mcp) as it correlates with the splenium of the corpus callosum,
the left external capsule (ec), and the left tapetum. The uncinate fasciculus is a fiber
pathway through the ec, which links the ventral frontal cortex, in particular Brod-
mann areas 11 and 47, with the temporal pole [177]. Commissural fibers of the left
temporal pole, and of the temporal lobe in general, pass through the left tapetum on
their way to or from the splenium. The mcp on the other hand carries signals from
the cerebral cortex and subcortical regions, via the pontine nuclei, into the cerebellar
cortex.

Next are correlations between the superior longitudinal fasciculus (SLF) on the
right hemisphere with ipsilateral sagittal striatum (SS) and anterior corona radiata
(CR), and between SLF in the left hemisphere with bilateral posterior CR. The SLF is
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a bidirectional pathway along the anterior-posterior direction through which different
lobes communicate with each other [178]. Thalamocortical fibers pass through the
SS and CR, where they intermingle with callosal axons [179]. In this category as
well as the first, we see in ASD a difference in the microstructure of cortico-cortical
pathways relative to pathways linking the cerebral cortex with outside regions.

Output from the left motor cortex passes through the corticospinal tract on the
opposite side. Communication between left motor and premotor areas meanwhile
makes use of pathways through the left cingulum. The middle segment of the cingu-
lum would be involved in particular; however, the atlas used in this chapter does not
parcellate the cingulum further, so we were only able to identify altered correlation
between the left cingulum as a whole and the right corticospinal tract. Still, this once
again suggests changes in a cortical area’s connectivity with elsewhere in the cortex
vis-à-vis regions outside the cortex.

The superior CR contains sensorimotor fibers of the posterior frontal/anterior
parietal cortex. The microstructure of this region by itself has been found to differ
between ASD and typically developing children [180]. The stria terminalis contains
efferent fibers from the amygdala, which terminate in several nuclei of the hypothala-
mus and regulate the stress response. We might hypothesize that the increased stress
response seen in ASD [181] is normal hypothalamic activation triggered by abnormal
sensory processing. While the differences in the superior CR found by Pryweller and
colleagues [180] were more pronounced in the left hemisphere, statistical testing did
not find this significant. Nor was there any significant distinction between superior
CR and other sensory processing pathways they investigated; all showed increased
apparent diffusivity in ASD. It is not clear why in this study the left superior CR,
relative to stria terminalis, particularly stood out.

Differences in the microstructure of the genu and body of the corpus callosum
relative to each other are harder to interpret, given that they are complementary
parts of the same structure, containing commissural fibers from distinct regions of
the cortex. It may be of significance that the sections of the corpus callosum develop
at different gestational ages. The axons forming the genu grow first, starting in the
twelfth or thirteenth week of gestation, followed by the body and splenium in anterior-
posterior order, and finally the rostrum [182]. Could this be a clue to pinpointing the
developmental stage at which the propensity for developing ASD originates?

There remain several challenges to address and potential enhancements to be
made with regard to this system. In particular, while the LOSO approach is an
efficient means to maximize the data available for machine learning and still obtain
reasonable estimates of classification accuracy, testing on an independent data set is
necessary to demonstrate the classifier’s ability to generalize. Also, analysis of clinical
and cognitive-behavioral data, beyond the diagnosis of ASD or non-ASD, is needed
to map the affected brain to specific ASD symptoms. The differences in regional
correlations we have found so far will be useful for constructing testable hypotheses
in that regard. Though many registration tools were tested on the bulk of the data
set, a WM area parcellation tailored to the individual (e.g., using tractography) could
lead to better feature extraction and hence improved performance.

The next step for our CAD implementation will be to incorporate different imaging
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modalities, such as structural or functional MRI. In this way, the CAD system will
be able to relate WM microstructure with brain shape (e.g., cortical folding), and
structural connectivity with functional connectivity. Expanding the feature space in
this way might enhance classification accuracy and provide a better understanding of
symptoms and personalized diagnosis.
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CHAPTER IV

THE ROLE OF DTI IN AUTISM DIAGNOSIS: A
COMPREHENSIVE APPROACH

This chapter provides a thorough study of implementing feature engineering tools to
find discriminant insights from brain imaging of WM connectivity and using a ML
framework for the accurate classification of autistic individuals. The work highlights
important findings of impacted brain areas that contribute to autism diagnosis and
presents promising accuracy results. We verified our proposed framework on a large
publicly available DTI dataset of 225 subjects from the Autism Brain Imaging Data
Exchange - II (ABIDE-II) initiative, achieving a high global balanced accuracy over
the five sites up to 99% with 5-fold cross-validation. The data used was slightly unbal-
anced, including 125 autistic subjects, and 100 typically developed (TD) ones. The
achieved balanced accuracy of the proposed technique is the highest in the literature,
which elucidates the importance of feature engineering steps involved in extracting
useful knowledge, and the promising potential of adopting neuroimaging for autism
diagnosis. The work in this chapter was published partially in [10].

1 Background

Up till now, most of the published work towards classification used ABIDEI, and
very few used newer ABIDEII data [78, 127, 183, 184]. One study used one site of
ABIDE-II only (San Diego State University cohort), and employed both fMRI and
DTI imaging modalities using connectome features, accomplishing an accuracy of
72% [82]. We emphasize that the need of using more than one modality implicates
added cost and visits’ scanning time. Another key contribution of this work is finding
a best-fit dimensionality reduction technique. Having a very large feature space (𝑝)
with limited sample space, subjects in our case (𝑛), is commonly known as the curse
of dimensionality [30], which causes increased complexity of the models that easily
results in overfitting, with less learning captured by the model. This phenomenon is
very common with MRI imaging and medical data where we have piles of data fields
for a few patients and sometimes is not handled correctly. While the standard way
to handle those data is by exploiting some sort of feature reduction algorithms, such
as linear discriminant analysis (LDA) [32], principal component analysis (PCA) [31],
or auto-encoders [33]. The common shortcoming is that they usually do not keep
the interpretation of the original feature in the new feature space, making it hard to
explain clinical connections for any classification decision, making it less attractive
for practical medical use. The feature reduction method needs to help clinicians make
an informative decision, and aid in understanding the pathological abnormalities of
the brain of autistic subjects. Our work investigates the recursive feature elimination
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(RFE) technique, which recursively eliminates the least contributing features to clas-
sification till ending with the best subset. We extensively carried out a plethora of
experiments to reach a near-optimal configuration that led to the best classification
validated on our dataset.

Despite the numerous studies of autism-related changes in white matter integrity,
the objective of this work is to implement a comprehensive ML-CAD system that,
besides its ability to classify ASD vs TD subjects, identifies brain areas correlated
with autism, and was validated on a big publicly available dataset, using DTI data.
The proposed algorithm employed a thorough feature selection using recursive fea-
ture elimination with cross-validation (RFE-CV) using four different kernels (SVM
with the linear kernel (LSVM), random forest (RF), logistic regression (LR): either
with 𝑙1-norm (LR1), or LR with 𝑙2-norm (LR2)), and performed hyper-parameter
optimization on eight different classification techniques. The best candidate config-
urations were validated using random splits of different k-folds cross-validation to
identify the global ML model alongside the global imaging bio-markers associated
with ASD. Our main motivation behind this work is to present a reliable system that
can help physicians better understand individuals with autism allowing earlier and
more personalized treatment plans. The rest of this chapter is organized as follows:
section 2 presents the details of the pipeline of the proposed algorithm, while the
experimental results are introduced in section 3 for ABIDE-II diffusion MRI data.
Finally, section 4 provides a discussion and conclusions of the chapter.

2 Materials and Methods

A visualization of the pipeline of the whole framework is presented in Fig. 8. It
starts with pre-processing of each subject’s input volumes, then DTI parameters
calculations, feature extraction, and mapping to a WM atlas to get local features,
then using two different feature representations to be used in feature selection and
classification steps. The following subsections provide details of those multi-stage
processes until reaching a final diagnosis.

Data used

The study in this chapter utilized DTI data from Autism Brain Imaging Data Ex-
change (ABIDE) II dataset. ABIDE-II is a recent publicly available dataset, that
aggregates MRI data (sMRI, fMRI, and DTI) for autism studies across different mul-
tiple sites. ABIDE-II contains data from around 19 sites, for more than 1000 subjects,
half of which are autistic individuals. Working on a publicly available dataset facil-
itates replicating results and increases the reliability of our findings. ABIDE-II is
considered a large dataset, which increases the power of our study. We selected
datasets that involved DTI data, which were 6 datasets: namely: Barrow Neurologi-
cal Institute (BNI), NYU Langone Medical Center 1 (NYU1), NYU Langone Medical
Center sample 2 (NYU2), San Diego State University (SDSU), Institut Pasteur and
Robert Debré Hospital (IP), and Trinity Centre for Health Sciences (TCD). IP DTI
data bvals (diffusion gradient strength per volume values) and bvecs (diffusion gradi-
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ent directions per volume values) were missing a value, so we excluded it, and used
the remaining five sites. Those five sites originally had 284 subjects with DTI imaging
data, and ended with 225 subjects of them after cleaning, on which we applied the
steps of our pipeline as we will elaborate on the next subsections.

Pre-processing

Input image preparation

After deciding which sites to work on, we downloaded its available data which came
organized as folders labeled by subject ID containing imaging data. We located
subjects that have DTI data, copying the image nii file along with its bvals and bvecs
to the working directory to be pre-processed.

Skull stripping

The goal of skull stripping step is to remove non-brain tissues (eg: skull, scalp, dura,
..) from the image volumes, extracting only the brain. This automated process was
implemented using the brain extraction tool (BET) algorithm [172] from FSL tools,
generating the binary masks and using default parameters with a fractional intensity
threshold of 0.25.

Eddy current correction

Eddy currents are induced currents due to gradient fields in the x, y, and z directions,
that result in visible image artifacts, that usually blur the boundaries between gray
and white matter. Diffusion-weighted imaging is usually affected by this phenomenon
and eddy current correction step is commonly implemented. For this purpose, we
used the eddy current correction tool available through FSL [171] to correct for both
common artifacts: adjust for induced currents, and also for subject movement during
the scan across sections.

Feature Calculation

After having the diffusion-weighted volumes cleaned of non-brain tissues and com-
mon artifacts, we run DTI calculations to get DTI diffusion tensor, its eigenvalues,
and other metrics. For each voxel, diffusion can be represented by a 3 by 3 tensor,
that describes the diffusion pattern at each point, in the 3D space. From this ten-
sor, more common metrics, namely eigenvalues, are used to represent the magnitude
of diffusion along 3 major perpendicular directions of its eigenvectors. The largest
eigenvalue, 𝜆1, along with its eigenvector 𝑣1 represent the magnitude and direction of
the primary direction of diffusion (along the fiber tract), while the other two represent
radial diffusion perpendicular to the main one [21]. Other derived metrics, such as
fractional anisotropy, mean diffusivity, skewness, and many other are commonly used
to represent other characteristics of the diffusion. Similar to the previous chapter, we
included the following six metrics to describe our white matter micro-architecture:

42



Table 4. Demographics Summary Table of the 225 subjects used in this chapter,
showing sex counts (M: male, F: female), age at scan in years, and full-scale IQ (FIQ).

ASD Group(n=125)
M=104, F=21

TD Group (n=100)
M=76, F=24

AGE FIQ AGE FIQ
count 125 119 100 74
mean 11.91763 102.02521 16.41717 111.90541
std 5.302605 18.251753 8.994877 15.341026
min 5.128 49 5.887 71
max 34.76 143 46.6 144

i) Fractional anisotropy (FA), ii) Mean diffusivity (MD), iii) Axial diffusivity 𝜆1, iv)
Radial diffusion 𝜆2 , v) Radial diffusion 𝜆3 , and vi) Tensor skewness 𝑇𝑆𝑘𝑒𝑤. For the
first five features, dtifit tool, part of FSL package, was used to calculate the diffusion
tensors along with eigen values, eigen vectors, FA, and MD. Tensor skewness (Tskew)
was calculated using Matlab 2021a, as it was not provided through the previous tool.
At this point, each subject is represented by six volumes, each comprising hundreds
of thousands of raw voxel values.

Data cleaning

In the previous parts of the pipeline, some subjects failed during volume sizes vali-
dation/ BET/ DTI calculations/ or regional feature extraction, either with an error
in the prepossessing or yielding a non-complete brain, identified by having more zero
values ”blanks” than it should. Excluding those subjects from further processing, we
ended up with 225 subjects that will be used for the rest of this chapter. Summary
of demographics for all subjects used in this study: age, full-scale IQ, and gender, are
provided in Table 4.

Atlas-based segmentation

Having each subject represented by its six-volumes per voxel features, now we need
to assign those features to local brain areas. For this purpose, the white matter atlas
ICBM-DTI-81 defined by Johns Hopkins University [174], is used. JHU ICBM-DTI-
81 WM atlas uses ICBM coordinates and defines 48 white matter areas. Those areas
were originally hand-segmented from an average diffusion MRI tensors of different 81
subjects. To locate local anatomical regions in each subject space, we implemented
an atlas-based segmentation approach, where we performed atlas registration for area
localization. Registration from the atlas space to subject’s space was performed in two
iterations, a rigid transformation then an affine transformation. The objective of the
rigid registration in the first iteration is just to find an initial alignment, not changing
size or shape, that will be used for next step. Then, an affine transformation is found
to improve upon the initial estimation providing a higher degree of freedom for a more
generic linear transformation that enables object’s size and shape to be adjusted.
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This two-step registration task was implemented using DTI-TK software [175], both
using normalized mutual information measures with 4𝑚𝑚 × 4𝑚𝑚 × 4𝑚𝑚 sampling
distance and 1% tolerance. DTI-TK also enables interoperability with FSL software
used in preprocessing. The found transformation was then applied to atlas labels,
hence providing WM areas masks at each subject space. Those masks were used to
define local features for those 48 areas. This segmentation technique provides a fast
automated solution, enabling easy application to new subjects or datasets, with less
error.

Feature representation

At this point, each subject is represented by six features per 48 areas. Each of those
features is a per-voxel raw feature, and their length, in tens of thousands, varies
between areas. The first step is to convert those raw features into a better represen-
tation with the goal of reducing the number while keeping the most important aspects
capturing underlying information. For this purpose, we replaced per-voxel features
of each area with three summary statistics of the underlying distribution, namely,
mean(𝜇), standard deviation (𝜎), and skewness (sk), where 𝜇 aims to capture central
tendency, 𝜎 capturing dispersion of values around this mean, and 𝑠𝑘 to measure of
the asymmetry of the data around this mean. At the end of this step, our feature
matrix 𝐹, for each subject 𝑖, can be represented as a 48 by 18 matrix as follows:

𝐹𝑖 =


𝜇𝐹𝐴1 𝜎𝐹𝐴1 𝑠𝑘𝐹𝐴1 · · · 𝑠𝑘𝑇𝑠𝑘𝑒𝑤1

𝜇𝐹𝐴2 𝜎𝐹𝐴2 𝑠𝑘𝐹𝐴2 · · · 𝑠𝑘𝑇𝑠𝑘𝑒𝑤2
...

...
...

. . .
...

𝜇𝐹𝐴48 𝜎𝐹𝐴48 𝑠𝑘𝐹𝐴48 · · · 𝑠𝑘𝑇𝑠𝑘𝑒𝑤48


where 𝐹𝑖 is the feature matrix for subject 𝑖 using the first feature representation
described above. Each element in this matrix is a summary statistic (baseline: 𝜇/ 𝜎
/ 𝑠𝑘) for one of the six features (subscript: FA/ MD/ ..Tskew) for an area from 1 to
48 (sub-subscript index).

Feature engineering

Instead of directly using per-area summary statistics features, we developed an en-
hanced representation that captures latent relative relationships between brain areas.
We calculated the Pearson correlation coefficient between each pair of brain areas
𝑙, 𝑚, and use this correlation matrix as our feature matrix. So, for each subject 𝑖,
𝜌𝑙,𝑚 = 𝑐𝑜𝑟𝑟 (𝐹𝑖 (𝑙, :), 𝐹𝑖 (𝑚, :)) Although this step increased the number of features per
subject slightly [from 48*18 = 864 to (48 * 47 / 2)=1128], it helped in boosting the
performance of the classification, as we will see in the results. This novel represen-
tation, using interactions, is considered a key contribution that helped in improving
the performance. The new second feature matrix 𝐹2 𝑖 for subject 𝑖 is now represented
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by:

𝐹2 𝑖 =


𝜌1,1 𝜌1,2 · · · 𝜌1,48
𝜌2,1 𝜌2,2 · · · 𝜌2,48
...

...
. . .

...

𝜌48,1 𝜌48,2 · · · 𝜌48,48


where each element in this matrix 𝜌𝑖, 𝑗 is a correlation between the summary statistics
vectors of the two areas 𝑖, 𝑗 . We highlight that only the upper triangle (𝑈) of this
new feature matrix (or lower 𝐿, because of symmetry), is used in subsequent steps,
as the rest is redundant because of symmetry. Serializing those 1128 features, we can
represent the final feature matrix, for all of 225 subjects, as 𝐹, with size 225 × 1128,
where each row is the concatenated calculated correlations for one subject. Fig. 8.b
illustrate those steps. In addition to the data matrix, we have another column vector
𝑦 denoting the labels of each subject, whether ASD (𝑦𝑖=1) or TD (𝑦𝑖=0).

𝑦 =
[
𝑦1, 𝑦2, 𝑦3, · · · , 𝑦225

]
Feature reduction: RFE-CV

The feature space (1128 correlations) is quite large relative to our sample size (225
subjects). As we discussed earlier, the number of features relative to number of sub-
jects needs to be reduced, keeping the most informative feature. While many feature
reduction techniques, such as linear discriminant analysis, principal component anal-
ysis, or autoencoders, can perform this task, they transform the feature space into
a new one that does not preserve the meanings of the original features. Building
classification systems based on those new ambiguous features would sophisticate the
ability to understand any clinical reasoning of classification results. Hence, making
it less beneficial and reasonable to physicians in generating an informative decision,
or understanding the underlying pathological abnormalities of an autistic brain. We
employed the recursive feature elimination (RFE) technique, where only a subset on
features is selected. RFE is a feature selection algorithm based on feature ranking
with recursive feature elimination. The principle behind RFE is fitting a classifica-
tion model, ranking the features by the model’s scoring, then eliminating the weakest
features recursively to find the optimal number of features to be selected. Cross-
validation is used with RFE (RFE-CV), where data is split into k-folds, the score
features based on different data subsets, then select the best scoring across the k-
folds. The target optimization scoring metric (whether accuracy, balanced accuracy,
f1, weighted f1, precision, recall, ...) can be specified, and we used here balanced
accuracy with k=10 folds for optimization. The algorithm then finds the optimal
𝑛 significant features to be selected that maximize the average classification perfor-
mance according to the target metric [185, 186]. To find the best architecture of
RFE-CV that best fits our problem, we tested four types of RFE-CV classifiers as
kernels, namely linear SVM (LSVM), Random Forest (RF), Logistic Regression (LR)
with 𝑙1-norm (LR1), and LR with 𝑙2-norm (LR2), on the two feature representation
we have (original summary statistics 𝐹𝑖 of 225×864 and correlations 𝐹2 𝑖 of 225×1128).
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Figure 8. a) Pipeline of the DTI-diagnosis algorithm, b) Usage of new derived
feature representation 𝐹 and feature selection before classification.
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Thus, we got estimates using four different models, each selecting features according
to its classifier independently, and providing average cross-validated scores for 10-
folds, then we evaluate the performance of eight models to select which model to use
for further processing.

Classification

After having 𝑛 selected features for each of 8 models, representing the top prominent
features for distinguishing autistic brains, we set up a system of machine learning
classifiers. We tested eight different classifier types, and performed hyper-parameter
optimization for each one to end up with the best parameters-classifier model, in
terms of accuracy. We included both linear and non-linear classifiers to test both
types of relationships between the two classes. The set of used classifiers are: 1)
Linear SVM (LSVM), 2) Logistic Regression (LR), 3) Passive Aggressive classifier
(PAGG), 4) SVM with Radial-basis kernel (RBF-SVM), 5) Gaussian Naive Bayes
(GNB), 6) Random Forest (RF), 7) XGboost (XGB), and 8) Neural Networks (NN).
1-3 are linear classifiers, while the rest are non-linear ones. 6-7 are ensemble-based
classifiers, and for NN we included both shallow and deep configurations in our hyper-
parameters search. For hyper-parameter optimization, after we selected only 𝑛 fea-
tures according to the previous RFE-CV step, we tested a set of different parameters
with different ranges for each classifier. For this purpose, the input data is split into
five folds, to determine the best performance according to the average across those
5-folds. So, for each classifier, using selected features only: i) split data into 5-folds,
use 4 for training and one for testing each time, and for each parameter configu-
ration, store the performance of the classifier for each fold. ii) balanced accuracy
scoring is used to decide on the best configuration. iii) the best-performing classifier
is selected, and the hyperparameters along with its maximum average cross-validated
score, and also standard deviation over folds, are highlighted. Table 5 show the set of
used hyper-parameters in the search associated with each classifier and their ranges.
Algorithm 2 illustrates a step-by-step guide of the fully implemented algorithm, and
Fig. 6 summarizes a graphical illustration of the pipeline of the entire system.

3 Results

As discussed in the data subsection, ABIDE-II dataset [187] was used for testing and
validation of the above-mentioned methodology. ABIDE-II [187] which provides hun-
dreds of subjects’ brain imaging data (structural MRI, functional MRI, and DTI) to
enhance the research in Autism Spectrum Disorder (ASD). DTI data used are only
from the five sites: (IP, NYU1, NYU2, TCD, and SDSU. Diffusion-weighted MRI
(dwMRI) scans for a total of 225 subjects are used: 125 ASDs and 100 TDs, with
age, ranges between 5.128 years and 46.6 years.
The four types of RFE-CV kernels (LSVM, LR1, LR2, and RF) were used to select
features from the two different representations (summary statistics 𝐹, and correlations
𝐹), and those features were used to train and test eight types of classifiers (LSVM,
LR, PAGG, RBFSVM, GNB, RF, XGB, and NN). The hyper-parameter optimization
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Table 5. Used hyper-parameters values in cross-validated Grid search. Names be-
tween parentheses are parameter names in the ML package.

Classifier Hyper-parameter Range/ Values

1) LSVM
Regularization (C) 0.1, 1, 5, 10
Loss Function (loss) L1, L2

Penalization strategy (penalty) squared hinge, hinge

2) LR
Penalization strategy (penalty) L1, L2 elastic

Regularization (C) 0.1, 1, 5, 10
solver algorithm (solver) newton-cg, lbfgs, liblinear, sag, saga

3) PassiveAgressive
Regularization (C) 0.1, 1, 5, 10

N idle iteration before stop (n iter no change) 1, 5, 10

4) Nonlinear-SVM

Regularization (C) 0.1, 1, 5, 10
kernel used (kernel) rbf, poly, sigmoid

polynomial kernel degree (degree) 2-6
Kernel coefficient (gamma) scale, auto

Independent term in kernel function (coef0) 0.0, 0.01, 0.1, 1, 5, 10, 50, 100
5) GNB default parameters priors=None, var smoothing=1e-09

6) RF

number of features to consider when looking for the best split (max features) auto, sqrt, log2
number of trees in the forest (n estimators) 50, 100, 200, 500, 1000

function to measure the quality of a split (criterion) gini, entropy
bootstrap samples when building trees (bootstrap) True, False

min # of samples required to split an internal node (min samples) 1, 2, 5, 10

7) XGB

Which booster to use (booster) gbtree, gblinear, dart
Learning rate (learning rate) 0.001, 0.01, 0.1, 0.3, 0.5, 1

Min loss reduction required to make a further partition on a leaf node (gamma) 0, 0.1, 0.5, 1, 1.5, 2, 5, 20, 50, 100
Min sum of instance weight needed in a child (min child weight) 0.1,0.5, 1, 5, 10

subsample ratio of columns when constructing each tree (colsample bytree) 0.6, 0.8, 1.0
L2 regularization term on weights (lambda) 0, 0.001, 0.5, 1, 10
L1 regularization term on weights (alpha) 0, 0.001, 0.5, 1, 10

8) NN

hidden layer sizes (hidden layer sizes) (150,100,50,), (100,50,25,), (100,)
Activation function (activation) tanh, relu, logistic

solver used for weight optimization (solver) lbfgs, sgd, adam
L2 regularization penalty (alpha) 0.0001,0.001,0.01, 0.05, 0.1, 0.5
initial learning rate (learning rate) constant, adaptive

Exponential decay rate for estimates of first moment vector in adam (beta 1) 0, 0.001, 0.01, 0.1, 0.3, 0.5, 0.9
Exponential decay rate for estimates of second moment vector in adam (beta 2) 0, 0.001, 0.01, 0.1, 0.3, 0.5, 0.9

step is carried out for each combination of [feature-RFECV kernel-classifier], using
grid search over the list of hyper-parameters on Table 5, with 5-fold cross-validation,
with the help of GridSearchCV scikit learn toolkit. The aim of this search to identify
the best RFE-CV kernel in terms of accuracy, to be used for the final classification/-
validation stage. Based on the results of those 64 sets of combinations, we identify
which setting best suits our data, then we investigate it with more validations, chang-
ing the splits and varying the number of folds.

Table 6 and Table 7 show the full details of this round of experiments, for both
feature representations: summary statistics 𝐹 and correlations 𝐹 respectively. We
notice in Table 7 that using correlations features, the non-linear kernel fails fast to
provide representative features, in comparison to the linear SVM kernel, while we
don not see this obvious degradation in the 𝐹 representation. Both LR1 and LR2
kernels almost failed to provide representative features in terms of accuracy results
(accuracy 60%), while RF kernel provide us with moderate results (mostly above
70%), LSVM was the one we are searching for, achieving accuracies up to 99% with 𝐹
features. More importantly, we highlight that using our novel feature representation
𝐹, we were able to achieve this boost in classification results (6̃%). To show which
types of features were more representative, we show the histogram of occurrence of
each type of summary statistics appearing in selected features from 𝐹 with LSVM
RFE-CV using in Fig. 9. The figure illustrates the efficacy of adding 𝑆𝐾 feature
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Table 6. 5-fold Accuracy Results ± standard deviations for each recursive feature
elimination (RFE) kernel, and each machine learning (ML) classifier, for the first
feature representation (summary statistics) 𝐹.

ML Classifier L1 LR-RFE L2 LR-RFE L-SVM RFE Rf RFE
L-SVM 0.873 ± 0.042 0.873 ± 0.042 0.932 ± 0.034 0.551 ± 0.058
Pagg 0.871 ± 0.014 0.871 ± 0.014 0.903 ± 0.043 0.572 ± 0.048
LR 0.870 ± 0.036 0.870 ± 0.036 0.910 ± 0.051 0.581 ± 0.056
XGB 0.861 ± 0.029 0.861 ± 0.029 0.904 ± 0.063 0.630 ± 0.08
GNB 0.695 ± 0.055 0.695 ± 0.055 0.664 ± 0.084 0.592 ± 0.043
SVC 0.880 ± 0.013 0.880 ± 0.013 0.926 ± 0.026 0.591 ± 0.026
RF 0.672 ± 0.037 0.672 ± 0.037 0.703 ± 0.021 0.612 ± 0.065
NN 0.885 ± 0.014 0.885 ± 0.014 0.915 ± 0.032 0.611 ± 0.067

Table 7. 5-fold Accuracy Results ± standard deviations for each recursive feature
elimination (RFE) kernel, and each machine learning (ML) classifier, for the second
feature representation (correlations) 𝐹.

ML Classifier L1 LR-RFE L2 LR-RFE L-SVM RFE Rf RFE
L-SVM 0.613 ± 0.071 0.598 ± 0.039 0.999 ± 0.002 0.736 ± 0.083
Pagg 0.615 ± 0.095 0.555 ± 0.073 0.990 ± 0.02 0.709 ± 0.02
LR 0.617 ± 0.074 0.602 ± 0.037 0.995 ± 0.01 0.749 ± 0.063
XGB 0.623 ± 0.071 0.617 ± 0.029 0.985 ± 0.02 0.738 ± 0.03
GNB 0.603 ± 0.055 0.590 ± 0.037 0.723 ± 0.037 0.723 ± 0.049
SVC 0.633 ± 0.059 0.607 ± 0.042 0.999 ± 0.003 0.746 ± 0.036
RF 0.600 ± 0.062 0.606 ± 0.038 0.648 ± 0.017 0.685 ± 0.044
NN 0.639 ± 0.087 0.610 ± 0.035 0.999 ± 0.002 0.773 ± 0.044

which appeared as important as the common 𝐹𝐴 metric, and points out the choice
of skewness as a relevant summary statistic.

Following these results, we will only use LSVM RFE-CV kernel, with 𝐹 represen-
tation (correlations) for further investigations, as it shows better performance. We
will fix the hyper-parameters of the eight classifiers to the ones we previously found
on the first set of experiments (Table 8), and randomly re-split different settings of
k-fold cross-validation, with k = [2, 4, 5, 10], to test whether the achieved perfor-
mance highly dependent on the split and/or the subjects of the previous experiment,
and see the effect of changing the proportion of train/test on the results.

Table 9 show the final diagnostic accuracies of our proposed framework, using
our novel feature representation with the help of RFE-CV with LSVM kernel, and
Table 10 show the area under the curve for each of the classifiers across different
k-folds. Without a new optimization, using the same settings, and on new sets of
random splits, our innovative algorithm was still able to provide up to 99% accuracy,
which clearly manifests the strength of the presented algorithm.
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Table 8. Best chosen hyper-parameters (of the best kernel: LSVM) found to optimize
performance on the set of tested classifiers

Classifier Hyper-parameters
L-SVM {’penalty’: ’l2’, ’loss’: ’hinge’, ’C’: 1}
Pagg {’n iter no change’: 5, ’C’: 0.1}
LR {’solver’: ’newton-cg’, ’penalty’: ’none’, ’C’: 0.1}

XGB
{’reg lambda’: 0.001, ’reg alpha’: 0, ’min child weight’: 10,
’learning rate’: 1, ’gamma’: 0.1, ’colsample bytree’: 0.6, ’booster’: ’gblinear’}

GNB defaults
SVC {’kernel’: ’poly’, ’gamma’: ’scale’, ’degree’: 3, ’coef0’: 5, ’C’: 0.1}

RF
{’n estimators’: 50, ’min samples split’: 2, ’min samples leaf’: 0.1,
’max features’: ’sqrt’, ’criterion’: ’entropy’, ’bootstrap’: False}

NN
{’solver’: ’adam’, ’learning rate’: ’adaptive’, ’hidden layer sizes’: (100,),
’beta 2’: 0.5, ’beta 1’: 0.5, ’alpha’: 0.0001, ’activation’: ’logistic’}

Table 9. Mean Accuracy ± standard deviation across the k- folds, with k = 2, 4, 5,
10.

k=2 k=4 k=5 k=10
LSVM 0.92 ± 0.018 0.991 ± 0.015 0.999 ± 0.002 0.999 ± 0.002
pagg 0.893 ± 0.018 0.951 ± 0.037 0.96 ± 0.026 0.982 ± 0.03
LR 0.902 ± 0.0 0.964 ± 0.018 0.978 ± 0.02 0.991 ± 0.018
XGB 0.556 ± 0.011 0.604 ± 0.021 0.591 ± 0.041 0.609 ± 0.119
GNB 0.644 ± 0.025 0.618 ± 0.079 0.613 ± 0.08 0.684 ± 0.133
RBF-SVM 0.511 ± 0.038 0.529 ± 0.021 0.573 ± 0.022 0.582 ± 0.076
RF 0.609 ± 0.02 0.591 ± 0.04 0.591 ± 0.05 0.596 ± 0.054
NN 0.871 ± 0.004 0.969 ± 0.019 0.973 ± 0.026 0.964 ± 0.034

Table 10. Calculated Area Under the Curve for each classifier across the k-folds,
with k = 2, 4, 5, 10.

k=2 k=4 k=5 k=10
LSVM 0.919 0.991 0.999 0.999
pagg 0.891 0.948 0.959 0.982
LR 0.9 0.962 0.977 0.991
XGB 0.543 0.593 0.583 0.606
GNB 0.644 0.618 0.608 0.683
RBF-SVM 0.509 0.529 0.565 0.575
RF 0.571 0.549 0.548 0.552
NN 0.873 0.969 0.975 0.963
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(a) Feature type occurrences histogram (b) Summary Statistics occurrences his-
togram

Figure 9. Histogram of types of selected summary statistics features.

Table 11. Top 12 WM brain area pairs which feature correlations where highly
ranked through RFE-CV selection. L or R at the end for Left or Right hemispheres
respectively.

Retrolenticular Part Of Internal Capsule L & Fornix Cres/ Stria Terminalis

Anterior Limb Of Internal Capsule L & Uncinate Fasciculus R

Body Of Corpus Callosum & Tapetum L

Corticospinal Tract R & Posterior Corona Radiata R

Posterior Limb Of Internal Capsule R & Retrolenticular Part Of Internal Capsule R

External Capsule R & Tapetum L

Middle Cerebellar Peduncle & Inferior Cerebellar Peduncle R

Anterior Limb Of Internal Capsule R & Tapetum R

Middle Cerebellar Peduncle & Cingulum Cingulate Gyrus L

Anterior Limb Of Internal Capsule R & Fornix Cres /StriaTerminalis R

Inferior Cerebellar Peduncle R & Retrolenticular Part Of Internal Capsule R

Cingulum Hippocampus L & Superior Fronto-occipital Fasciculus R

Fig. 10 illustrate the importance of top selected features by our RFE-CV LSVM
kernel. The bars in blue on the left indicate high negative correlation importance
with our positive class (autism), while the ones in dark orange on the right indicate
a positive importance coefficient. The longer the bars, the higher the coefficient
indicating more importance for features of this brain-area pair. Table 11 list the
name of the top twelve feature pairs as ranked by our selection algorithm for easier
identification. We can see that most of those brain areas already appear in literature
as correlating with ASD phenotype. We already see some areas appear more than
once in the top 12 pairs, we will discuss the importance of the highlighted brain areas
in the following section, discussion.

51



Figure 10. Sorted coefficient of importance for top 50 selected features of area-pairs
correlations.

4 Chapter Discussion

The proposed technique adopted in this study introduced a novel feature represen-
tation applied on a large number of subjects, obtained from a publicly available
dataset. We performed extensive experimentation to validate the results introduces
in this chapter, as well as pave the path for developing new frameworks that may
benefit from our novel algorithm. In addition to the achieved promising results, in
terms of high cross-validated balanced accuracy, we introduced the notion of inter-
action between brain areas’ micro-connectivity and its viability of reaching a better
classification of autism. More importantly, we identified the brain-area pairs that
mostly contributed to reaching the final decision.
We highlight that those identified brain areas in Table 11 align with the corpus of
findings from previous literature studying autism impairments. The uncinate fas-
ciculus (uc) is a fiber pathway through the external capsule (ec), which links the
ventral frontal cortex, in particular Brodmann areas 11 and 47, with the temporal
pole, and differences in it was revealed in [177, 188]. On the other hand, the middle
cerebellar peduncle (mcp) carries signals from the cerebral cortex and subcortical
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regions, via the pontine nuclei, into the cerebellar cortex. The internal capsule (ic)
microstructure was found to undergo an atypical developmental trajectory in autistic
patients, manifested as increased connectivity from childhood to adulthood [62]. All
parts cited in this study of the ic are involved in autism [62–64,189,190], and DTI
changes have been correlated with autistic behaviors including inattention, self-injury,
repetitive behaviors, and social deficits. In general, all white matter tracts identi-
fied here (Table 11, Fig. 10) connect cortical (sensory motor cortex, frontal/occipi-
tal lobes, cingulate) and subcortical regions (thalamus, hippocampus, cerebellum),
thereby contributing to deficits (inattention, self-injury, repetitive behaviors, motor,
social, memory, emotional regulation, and sensory impairments) found in autistic in-
dividuals [62–64]. Shukla et. al [190] identified reduced FA and increased RD in ic
and corpus callosum (cc) in children with autism. They also spotted increased MD
in the anterior and posterior limbs of ic. Significant differences in the AD of the stria
terminalis (st) were reported by Yamagata et. al. [191] between ASD and TD individ-
uals. Reduced FA and increased RD of st were also reported in [188], and higher AD
of st in TD children was noted in [64]. Differences in middle, inferior, and superior
cerebellar peduncle [190, 192–194], and corpus callosum [64, 190, 192, 195] were also
reported on those previous studies.
The tapetum WM is part of the splenuim fibers around cc, providing connectivity
between the temporal lobe, and was found to play a role in different mental disor-
ders [196]. Reduced FA, increased RD, and decreased AD of the tapetum in ASD.
Abnormalities in the corticospinal tract, corona radiata, external capsule, cingulum
cingulate cyrus, cingulum hippocampus, and superior fronto-occipital fasciculus were
noted in previous studies [46,52,60,63,70,167,188,189,194,197,198]. We stress that
our findings are for brain regions’ interactions with others, following the idea of dis-
rupted connectivity introduced by Vasa et al, and work normally done in functional
MRI experiments. In [56], Vasa et al. reviewed some of the current structural
and functional connectivity ASD data to examine the “disrupted connectivity” the-
ory. They identified and highlighted many confounding factors in the literature that
could have affected this conclusion.
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Algorithm 2 Diffusion Tensor Autism Diagnosis Algorithm

1: ∀ subject’s data files: (NII+bval+bvec) :
2: 1. Check for errors, check bval and bvec files.
3: 2. run pre-processing modules:
4: i) Run skull stripping using brain extraction tool (BET).
5: ii) Run FSL’s eddy current correction tool.
6: iii) Register the DTI IIT Human Brain Atlas to each subject space using

DTI-TK tool, save transformations.
7: iv) Recheck for any generated errors or deformations.
8: 3. Feature Calculations:
9: i) Use FSL to calculate DTI Tensor, scale units, calculate RDs, AD, FA,

MD, Tskew volumes.
10: ii) Apply resulted transformation on the JHU atlas labels to generate

masks.
11: iv) Use registered masks to extract each feature for each WM region
12: v) Calculate summary statistics (𝜇, 𝜎, 𝑆𝑘) for each area for each feature

(𝜆1,𝜆2,𝜆3,FA,MD, Tskew), rank feature values across the different 48 brain areas,
get a concatenated feature vector (3*6). Create a feature matrix 𝐹 to be used as
a first variant of the input data matrix 𝑋.

13: vi) Calculate correlations between feature vectors of each two areas. To
create a feature matrix 𝐹2.

14: vii) From 𝐹2: remove redundant correlations (𝐿 and diagonal) and con-
catenate 𝑈 to create 𝐹 to be used as a second variant of the input data matrix
𝑋.

15: 4. RFECV Feature Selection: for each feature representation, and for each RFE-
CV kernel:

16: i) Split input data X, labels y into k folds. Each time use one fold as 𝑋𝑡𝑒𝑠𝑡 ,
𝑦𝑡𝑒𝑠𝑡 , rest as 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛.

17: ii) Train the classifier using each 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛.
18: iii) Get the balanced accuracy score of the trained classifier using 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 .
19: iv) Calculate the cross validated score and sort features based on importance.
20: v) Remove the least important features from 𝑋 matrices, and repeat the steps

from i) to v) until only one feature exist.
21: vi) Determine the 𝑛 features that provided the best cross validated score

along with its hyper-parameters to be used for each of the kernel.
22: 5. Classification:
23: ∀ classifier, for each configuration of hyper-parameters:
24: i) Split reduced 𝑋𝑠𝑒𝑙𝑒𝑐𝑡 , with 𝑛 selected features, into k folds, along with 𝑦.
25: ii) Calculate the cross validated score for each hyper-parameter’s configura-

tion.
26: iii) Determine best hyper-parameters configuration in terms of score, for each

classifier.
27: iii) Find best classifier/parameters, along with its used 𝑛 features.
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CHAPTER V

THE ROLE OF RS-FMRI IN AUTISM DIAGNOSIS: A
COMPREHENSIVE FRAMEWORK

Recent advancements in neuroimaging and machine learning suggest a rapid and ob-
jective alternative, using brain imaging. On top of the used imaging modalities, fMRI
is considered the most promising technology. A detailed study of the implementa-
tion of feature engineering tools to find discriminant insights from functional brain
imaging, using both a conventional feature representation and a novel dynamic con-
nectivity representation, and the use of a machine learning framework to assist in the
accurate classification of autistic individuals is presented in this chapter. Based on a
large publicly available dataset, this extensive research highlights different decisions
along the pipeline and their impact on diagnostic accuracy. It also identifies poten-
tially impacted brain regions that contribute to an autism diagnosis. A large publicly
available dataset of 884 subjects from the Autism Brain Imaging Data Exchange I
(ABIDE-I) initiative was used to validate our proposed framework, achieving a global
balanced accuracy of 98% with 5-fold cross-validation, and proving the potential of the
proposed feature representation. As a result of this comprehensive study, we achieve
state-of-the-art accuracy, confirming the benefits of feature representation and fea-
ture engineering in extracting useful information, as well as the potential benefits of
utilizing neuroimaging in the diagnosis of autism.

1 Background

In this chapter, we utilize fMRI to provide an understanding of assessing autism.
There are two major types of experiments used to analyze the fMRI modality in
order to study functional activation anomalies in the brain (i) resting state fMRI
(rs-fMRI) and (ii) task-based fMRI [199]. In task-based functional MRI, the sub-
ject performs a particular task, such as: (1) figures [109], (2) facial expressions [94],
(3) rewards [200], or (4) other specific tasks, then the brain activity is analyzed.
In resting fMRI, brain activity, in terms of blood-oxygen-level-dependent (BOLD)
signal is captured while the subject is at rest. Since connectivity patterns reveal
the resting state, they have proven to be beneficial in diagnosing mental disorders,
such as Alzheimer’s disease [201] and schizophrenia [202]. As an example, a high
degree of accuracy was achieved in diagnosing schizophrenia using the approaches
described in [202]. There is evidence that the functional connectivity between major
networks as well as the functional connectivity within individual networks is altered
in ASD, as demonstrated by numerous studies [81, 203]. Due to autism’s heteroge-
neous nature, brain connectivity can vary widely among individuals with the disorder,
making classification of the condition difficult. The design of less-sensitive functional
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connectivity feature that is less affected by age, sex, and designs of the resting-state
scan, and studying its correlation with autism is a hot research area [204], emerging
into two popular brain connectivity representations: the conventional, more popular,
static functional connectivity (FC), and the newer dynamic functional connectivity
(dFC) representations. Those functional connectivity metrics are believed to capture
different internal states of the brain while in rest [205]. The static FC is a matrix
obtained by calculating the Pearson cross-correlation coefficient of the BOLD signals
across pairs of pre-defined brain areas. Following statistical analysis and depending
on whether one examines local or global networks, there is evidence of both under-
and over-connectivity in autism in the majority of the literature [204]. As most of the
literature implies temporally stationary functional networks in resting state, dynamic,
or time-varying, changes to functional connectivity that occur during brain scanning
are not sufficiently considered by static FC. Newer studies suggest periodically chang-
ing spatial patterns of functional networks. To capture those dynamic connectivity
patterns, multiple computational strategies were used to find dFC that consider such
temporal fluctuations of functional connectivity [206]. dFC analyses allow identi-
fying not only common brain states but also transitions between them. The most
commonly used approach for dFC computation is sliding window techniques [207],
while other approaches include clustering methods, dynamic connectivity regression,
time-frequency analysis, wavelet transforms [208], dynamic connectivity detection,
and time series models [206,209]. As the characteristics of autism vary from individ-
ual to individual in terms of symptoms and severity, a more personalized approach
to predicting and analyzing the behavior and functional capabilities of each autistic
subject has become increasingly necessary. Consequently, we can create a treatment
plan that is tailored specifically to the needs of each autistic individual.

This work uses both a static FC matrix, as well as a novel dFC approach to inves-
tigate the role of rs-fMRI in the diagnosis of autism in a large cohort of 884 subjects,
testing different processing and machine learning pipelines. The main limitation of
the previous works is that each only gives a limited perspective on the bolts of an
efficient CAD system. This work presents a unified framework that addresses the
following:

• The impact of using different atlases, including the automated anatomical la-
beling (AAL) and Talairach and Tournoux (TT) atlases.

• The effect using different preprocessing strategies

• The effectiveness of using our novel dFC, in comparison to using conventional
static FC.

• The dimensionality reduction problem using two-stage feature selection, with
four types of kernels.

• The role of the classification strategy, investigating six different classifiers.

• The ability to highlight the importance of each of the previous choices on the
overall performance.
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Table 12. Demographics Summary Table of the 884 subjects used in this chapter,
showing sex counts (M: male, F: female), age at scan in years, and full-scale IQ (FIQ).

ASD Group (n=408)
M = 358, F=50

TD Group (n=476)
M = 388, F = 88

AGE FIQ AGE FIQ
count 408 379 476 442
mean 17.69 106.19 16.79 111.28
std 8.93 17.01 7.35 12.48
min 7 41 6.47 73
max 64 148 56.2 146

The remainder of this chapter is organized as follows: section 2 describes the entire
methodology of feature representation, pre-processing, and diagnostic classification.
We present the various results on the ABIDE-I rs-fMRI in section 3. Finally, the
discussion and conclusion are presented in section 4.

2 Materials and Methods

In this work, the Autism Brain Imaging Data Exchange I (ABIDE I) dataset is
used [210], which is a publicly available repository collected from 17 different sites,
with rs-fMRI, sMRI imaging modalities (http://fcon_1000.projects.nitrc.org/
indi/abide/abide_I.html). Table 12 provides the summary of the 884 subjects’
demographics: age in years, label, Full-scale IQ, and gender. The full demographics
as well as the scanning parameters of the functional MRI are available on the dataset
website. The parameters include the type of scanner, the scanning protocol, repetition
time (TR), echo time (TE), flipping angle, and experiment duration for resting state
fMRI.

Preprocessing

Functional MRI data were preprocessed according to the standard configurable pipeline
for the analysis of connectomes (C-PAC) [211]. Preprocessing pipeline includes per-
forming slice timing correction, motion realignment, skull stripping, and intensity nor-
malization in this order. 24 motion parameters are used as regressors to overcome the
subject’s motion-related confounding variables. Additionally, five more from white
matter and CSF mean levels are regressed to eliminate their effects. Then, one of four
different preprocessing strategies is applied for filtration and signal correction. The
main difference between those strategies is whether global signal correction (inclusion
of global mean signal in nuisance regression) was made and whether filtration (band-
pass filtering after global signal correction) was performed. Those four strategies are
denoted as: filt global, filt noglobal, nofilt global, and filt noglobal. Lastly, structural
MRI data, after skull stripping, segmentation, normalization, and registration to the
standard MNI-152 space, is used for registration of the corresponding fMRI volumes
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Figure 11. Illustration of the full steps of the adopted framework

to the same space after those preprocessing steps. For each of the four strategies, we
will have different outputs.

Different brain regions are identified on the registered data using a standard atlas
parcellation. Two atlases were used and investigated in this work: AAL atlas, defining
116 brain regions, and TT atlas, defining 97 different regions using Brodmann areas
labeling.

After preprocessing, each subject is now represented by an average BOLD signal
(time series, length varying by site based on total scanning time) for each brain
region, and we have eight datasets, one for each (strategy/ atlas). The next step is to
convert it to a more meaningful representation that captures functional connectivity
and is less dependent on the subject’s differences. Figure 11 illustrates the end-to-end
pipeline of our proposed classification algorithm.

Feature Representation

For the purpose of studying the coherence between different areas of the brain, two
different feature representations were used to examine functional connectivity. First,
the most famous and commonly used static FC matrix, where the correlation between
the full duration of the activation courses is used as a measure of functional connec-
tivity. The reason behind this selection is that it captures the intrinsic functional
network of the brain.

The static functional connectivity matrix 𝐹𝐶 is constructed as the Pearson cor-
relation coefficient (𝜌) between each pair of the (𝐴 = 116 | 97 ) areas in the atlas.
The effective output feature size is (𝐴 × (𝐴 − 1) ÷ 2), because of symmetry, resulting
in a total of 884 × 6670 for AAL, or 884 × 4656 for TT, feature matrices. Figure 12
illustrates the pipeline of this adopted feature representation.

The second feature representation introduced in this work is an enhanced version
of dynamic functional connectivity, 𝑑𝐹𝐶, where temporal dynamics are considered in
correlation calculation. The calculation starts with multiplying a shorter Gaussian
sliding window with width 𝑤 with each time signal, to calculate pair correlation,
with an overlapping step size 𝑠. Following the literature, [209], a Gaussian win-
dow of size 𝑤 = 21𝑇𝑅, 𝜎 = 3𝑇𝑅 and a step size of 𝑠 = 1 were used, where TR
is the fMRI repetition time, typically 1500 - 2000 ms depending on the scanning
site. Hence, for each pair of brain regions of length 𝐿, an 𝑀 correlations are cal-
culated, where 𝑀 = | | (𝐿 − 𝑤)/𝑠 | |. Following hypotheses of under-connectivity and
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Figure 12. Visual diagram of the calculations of the static functional connectivity
𝐹𝐶 representation

over-connectivity differences between functional activation of autistic and typically
developed brain, a quantification using both the percentage of strong correlations 𝑛𝑠𝑡
and the percentage of weak/no correlation 𝑛𝑤𝑘 are used to represent over- and under-
connectivity between each brain areas, where 𝑛𝑠𝑡 =

1
𝑀

∑
𝑀 𝟙 : 𝑖 𝑓 𝜌𝑖 𝑗 ≥ 0.8, and

𝑛𝑤𝑘 = 1
𝑀

∑
𝑀 𝟙 : 𝑖 𝑓 𝜌𝑖 𝑗 ≤ 0.25. This creates two metrics for each pair of regions

identifying the existence of under- and over-connectivities, yielding a double size 𝑑𝐹𝐶
feature matrices in comparison to the 𝐹𝐶. representation. Figure 13 illustrates the
pipeline of the second proposed feature representation in this chapter. At this step,
we have 16 different inputs, one for each (strategy/ atlas/ feature representation)
combination.

Feature Selection

Since the feature space, for both representations, is large, there is an urge for the
employment of a feature reduction technique to address the curse of dimensionality
problem. Since the employed feature reduction shall preserve the semantics of original
features, many famous techniques such as principal component analysis (PCA), factor
analysis (FA), or linear discriminant analysis (LDA) may not be suitable, as it creates
a newly transformed feature space that makes it hard to extrapolate the meaning of
any following clinical classification, or underlying functional abnormalities of autistic
individuals. Two cascaded feature selection stages are used: a simple univariate
selector followed by a more sophisticated recursive feature elimination (RFE) with
cross-validation (RFE-CV), to select the best subset of features.

The univariate selector is a fast way that aims to initially reduce the feature space
to make the second stage computationally efficient. It computes the ANOVA F-value
score for each feature to select the top proportion accordingly, using GenericUnivari-
ateSelect from Sklearn. Following it, a recursive feature elimination eliminates weak
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Figure 13. Visual diagram of the calculations of the dynamic functional connectivity
𝑑𝐹𝐶 representation

features until a specified number of features is reached by fitting a kernel classifier
and removing the weakest features. By eliminating dependencies and collinearities,
RFE attempts to achieve a better understanding of the model. Cross-validation aims
to score the strength of features on the test subset, other than the training folds
data used in training the kernel, to mitigate over-fitting. The step of the eliminated
features, scoring metric, kernel type, and the number of folds are all parameters of
choice. Here, a step size of 2 features (for faster elimination, yet small enough for
a good performance), k=5 folds (common 5-fold cross-validation), and balanced ac-
curacy was chosen. Four different classifiers were tested as FS kernel, namely linear
support vector machine (lsvm), logistic regression (lr), random forest (rf), and light
gradient boost machine (lgbm) [185,186], to investigate different feature-relationships.
The two-stage feature selection is applied to each dataset/feature representation to
find the best 𝑛 features that provided the best cross-validated score. Next, the per-
formance of the sixteen models was evaluated on a set of machine learning classifiers
to select which model to use for further processing. The code for the whole previous
steps, starting from data download, processing, and feature calculations, is publicly
available on [212].

Machine Learning

In order to learn how to classify autistic brains, we set up a system of different machine
learning classifiers from the set of 𝑛 features selected for each of 16 data representa-
tions. We evaluated six different classifier types and optimized their hyperparameters
in order to establish the most accurate parameter classifier model. Those classifiers,
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including linear and non-linear ones, are: i) lsvm; ii) lr; iii) rf; iv) lgbm; v) neural
networks (nn); and vi) radial-basis function SVM (svm). The different types would
test different relations between the two feature classes, with the first two being linear
estimators. The cross-validated random search was used for hyper-parameter op-
timization for each of the six classifiers, with k=5 folds, optimizing for a balanced
accuracy score on each test fold to get the best parameters on the hyper-search space.
Accordingly, these steps were followed for each classifier, for each dataset using only
the selected features: Split data into k-folds, train four and test one each round, and
record the performance of the classifier for each round on the test subset for each pa-
rameter configuration. The classifier with the best performance is selected, together
with hyperparameters as well as its maximum average cross-validated score, as well
as the standard deviation over folds.

3 Results

Running the explained experimental pipeline on a cluster of 16 high-performance
computers, we were able to collect detailed results. In tables 18 to 33, 16 sub-tables
of cross-validated test scores are shown, one table for each feature representation/
atlas/ strategy, with mean ± standard deviation across folds for each best hyper-
parameters for each feature selection kernel (column) and machine learning classifier
(row). Here, we highlight what was the best choice for each stage, in addition to the
power of this choice, and the best accuracy achieved accordingly.

Significance of data representation

In order to test the significance of the configuration of choice, we logged all model
scores, for each of the five test fold, labeled for 1) feat: (two) FC or dFC, 2) atls:
(two) TT or AAL, 3) preprocessing strategy: (four) filt global, etc., 4) feature se-
lection kernel of the RFE-CV: (four), and 5) machine learning classifier (six). Thus,
the labeled table would contain up to 1920 results. Three-factor ANOVA with the
calculation of the sum of squares (SS) for the factors, was used to test the effect of
the major three factors pre-machine learning: feature representation, atlas, and pre-
processing. Full interactions were tested (Table 13), before removing non-significant
factors (Table 14), yet the sum of squares that each factor accounted for did not
change due to the nature of Type III sum of squares. In the following part, the effect
of each factor is discussed. It is important to note that all configurations (for fea-
ture selection, classifier, ...etc) were considered here, not only high-performing ones,
which would be seen as having lower mean accuracy. For each factor, we aim here
to study the effect of it comparatively not just quantify its performance, especially
as the experiments are paired: less-performing configurations would appear in both
groups.
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Table 13. Multifactorial (3-way) ANOVA results. Feat denotes feature representa-
tion, Atls denotes the used atlas, and Strat is one of the four preprocessing strategies.
sum sq, df, F, PR are standard result names of sum of squares, degree of freedom,
F score, and p value of this F score, for each factor.

sum sq df F PR(>F)

C(Feat, Sum) 0.941852 1.0 163.004715 7.364232e-36
C(Strat, Sum) 0.177957 3.0 10.266230 1.053597e-06
C(Atls, Sum) 0.149164 1.0 25.815521 4.129224e-07

C(Feat, Sum):C(Strat, Sum) 0.117433 3.0 6.774646 1.528091e-04
C(Feat, Sum):C(Atls, Sum) 0.013784 1.0 2.385576 1.226282e-01
C(Strat, Sum):C(Atls, Sum) 0.034962 3.0 2.016924 1.095533e-01

C(Feat, Sum):C(Strat, Sum):C(Atls, Sum) 0.084563 3.0 4.878417 2.210611e-03

Table 14. Multifactorial (3-way) ANOVA test results after removing insignificant
interactions

sum sq df F PR(>F)

C(Feat, Sum) 0.936316 1.0 160.682470 2.134089e-35
C(Filt, Sum) 0.179172 3.0 10.249322 1.078933e-06
C(Atls, Sum) 0.148105 1.0 25.416432 5.062110e-07

C(Feat, Sum):C(Filt, Sum) 0.117208 3.0 6.704737 1.686921e-04

Preprocessing pipeline:

The choice of the preprocessing strategy (whether to perform global signal correc-
tion, and whether to apply band-pass filtering) has a significant effect on the clas-
sification performance (𝑝 ≃ 10−06). From Table 14, with 𝐹 = 10, we can see that
the effect of this factor, although significant, is less important than the other factors.
While the difference between the overall mean accuracy for [filt noglobal, nofilt global,
nofilt noglobal] is less than 0.2%, the mean filt global accuracy is higher 2.5%. See
Table15 for the summarized results across strategy selection. Another important as-
pect when analyzing the full results listed in tables 18 to 33, is that although the
max performance was NOT accompanied with filt global strategy, the scores were
slightly higher across other models of the strategy.

Atlas use:

In the second level of importance comes the used atlas in brain parcellation (TT or
AAL), with 𝐹 = 25.5. The choice of the atlas also has a significant effect on the
classification performance (𝑝 ≃ 4 × 10−07) as we can see in from the ANOVA tables.
The mean average performance is 2% higher in favor for the 𝐴𝐴𝐿 atlas. This gives an
important indication that the more granular the atlas is (116 areas in comparison to
97 areas), the more informative the features we have (the mean BOLD signal), which
leads to better accuracy results. See Table 16 for the summarized results across atlas
use.
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Table 15. Average per- preprocessing strategy accuracy (per 480 results each cell)

Filt Strategy Average Score
filt global 0.774994

filt noglobal 0.750322
nofilt global 0.752618

nofilt noglobal 0.755514

Table 16. Average per-Atlas accuracy (per 960 results in each cell)

Atls Average Score
AAL 0.767138
TT 0.749713

Table 17. Average per-feature representation accuracy (per 960 results in each cell)

Feat Average Score
FC 0.736319
dFC 0.78093

Dynamic connectivity:

As clearly seen in Table 13 and Table 14, the proposed new feature representation has
the biggest effect on the target (accuracy score). This is demonstrated with a high
f value of 𝐹 ≃ 160 and a highly significant probability of 𝑝 ≃ 2 × 10−35. On average,
the dynamic functional connectivity representation we proposed scored an accuracy
5% higher than the conventional functional connectivity (Table 17). The results
represent a key finding of the body of the presented comprehensive experiments in
this work.

Model results

The following 16 tables, show the 5-fold cross-validated accuracy results for each
atlas/ feature representation combination. Tables 18, 19, 20, 21 shows the results of
different strategies for 𝑑𝐹𝐶 representation on AAL atlas, while Tables 22, 23, 24, 25
shows the results on TT atlas. Similarly, Tables 26, 27, 28, 29 shows the results
of different strategies for the conventional 𝐹𝐶 representation on AAL atlas, while
Tables 30, 31, 32, 33 shows the results TT atlas. Tables 34 and 35 give cross-sectional
summaries across ML and FS used. We can see a trend in performance, with (dFC/
AAL) is the best performing in general, then (dFC/ TT), (FC/ AAL), and (FC/ TT)
having the least scores.

In terms of average scores, as shown in the previous tables, lsvm kernel of the
feature selection was the best performing, and rf was the worst. Both lsvm and lr
classifiers performed the best on average, while rf and lgbm came at the end. The
top balanced accuracy achieved was 98% for lsvm feature selection, lsvm classifier,
nofilt global preprocessing, AAL atlas, and dFC feature representation. This model
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Table 18. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for filt global settings, AAL
atlas, and Dynamic connectivity (dFC).

lgbm rf lr lsvm
lr 0.82 ± 0.01 0.86 ± 0.02 0.90 ± 0.04 0.91 ± 0.02

lsvm 0.81 ± 0.02 0.84 ± 0.03 0.89 ± 0.03 0.91 ± 0.02
rf 0.77 ± 0.04 0.65 ± 0.02 0.65 ± 0.02 0.65 ± 0.02

svm 0.82 ± 0.01 0.84 ± 0.03 0.88 ± 0.03 0.91 ± 0.03
nn 0.82 ± 0.02 0.83 ± 0.04 0.86 ± 0.05 0.90 ± 0.02

lgbm 0.82 ± 0.02 0.67 ± 0.03 0.65 ± 0.03 0.66 ± 0.05

Table 19. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for filt noglobal strategy, AAL
atlas, and Dynamic connectivity (dFC).

lgbm rf lr lsvm
lr 0.81 ± 0.04 0.77 ± 0.03 0.83 ± 0.02 0.84 ± 0.02

lsvm 0.80 ± 0.04 0.76 ± 0.03 0.83 ± 0.03 0.85 ± 0.02
rf 0.79 ± 0.04 0.77 ± 0.02 0.83 ± 0.02 0.85 ± 0.02

svm 0.81 ± 0.04 0.77 ± 0.02 0.82 ± 0.04 0.83 ± 0.03
nn 0.74 ± 0.05 0.68 ± 0.02 0.68 ± 0.04 0.68 ± 0.04

lgbm NA: Failed 0.67 ± 0.03 0.68 ± 0.03 0.66 ± 0.05

Table 20. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for nofilt global strategy, AAL
atlas, and Dynamic connectivity (dFC).

lgbm rf lr lsvm
lr 0.82 ± 0.02 0.80 ± 0.01 0.83 ± 0.02 0.98 ± 0.01
lsvm 0.82 ± 0.02 0.80 ± 0.02 0.82 ± 0.02 0.99 ± 0.01
nn 0.83 ± 0.03 0.79 ± 0.06 0.80 ± 0.04 0.96 ± 0.02
svm 0.81 ± 0.01 0.79 ± 0.01 0.82 ± 0.03 0.99 ± 0.01
lgbm 0.78 ± 0.03 0.65 ± 0.03 0.64 ± 0.05 0.70 ± 0.02
rf NA: Failed 0.69 ± 0.04 0.67 ± 0.05 0.71 ± 0.02
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Table 21. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for nofilt noglobal strategy,
AAL atlas, and Dynamic connectivity (dFC).

lgbm rf lr lsvm
lsvm 0.78 ± 0.02 0.76 ± 0.04 0.87 ± 0.02 0.95 ± 0.03
lr 0.77 ± 0.01 0.75 ± 0.04 0.85 ± 0.04 0.91 ± 0.03
svm 0.80 ± 0.01 0.75 ± 0.03 0.87 ± 0.03 0.94 ± 0.02
nn 0.78 ± 0.02 0.76 ± 0.03 0.85 ± 0.02 0.88 ± 0.02
rf 0.71 ± 0.02 0.71 ± 0.06 0.67 ± 0.03 0.68 ± 0.04
lgbm 0.75 ± 0.05 0.74 ± 0.04 0.70 ± 0.05 0.71 ± 0.04

Table 22. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for filt global strategy, TT
atlas, and Dynamic connectivity (dFC).

lgbm rf lr lsvm
lr 0.83 ± 0.04 0.80 ± 0.02 0.87 ± 0.01 0.86 ± 0.01
lsvm 0.83 ± 0.03 0.80 ± 0.02 0.88 ± 0.01 0.86 ± 0.00
rf 0.83 ± 0.02 0.80 ± 0.02 0.86 ± 0.01 0.86 ± 0.01
svm 0.83 ± 0.04 0.80 ± 0.03 0.86 ± 0.02 0.81 ± 0.08
nn 0.69 ± 0.02 0.66 ± 0.04 0.65 ± 0.05 0.67 ± 0.04
lgbm 0.68 ± 0.03 0.66 ± 0.03 0.64 ± 0.03 0.65 ± 0.03

Table 23. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for filt noglobal strategy, TT
atlas, and Dynamic connectivity (dFC).

lgbm rf lr lsvm
lr 0.77 ± 0.03 0.75 ± 0.02 0.81 ± 0.03 0.89 ± 0.03
lsvm 0.77 ± 0.02 0.76 ± 0.01 0.79 ± 0.02 0.91 ± 0.02
svm 0.67 ± 0.02 0.67 ± 0.02 0.67 ± 0.02 0.68 ± 0.01
nn 0.68 ± 0.02 0.66 ± 0.03 0.64 ± 0.02 0.68 ± 0.02
lgbm NA: Failed 0.77 ± 0.03 0.81 ± 0.02 0.92 ± 0.02
rf NA: Failed 0.75 ± 0.02 0.79 ± 0.04 0.86 ± 0.06
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Table 24. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for nofilt global strategy, TT
atlas, and Dynamic connectivity (dFC).

lgbm rf lr lsvm
lr 0.80 ± 0.02 0.76 ± 0.02 0.82 ± 0.03 0.79 ± 0.04
lsvm 0.79 ± 0.02 0.76 ± 0.03 0.81 ± 0.04 0.78 ± 0.04
nn 0.79 ± 0.01 0.76 ± 0.02 0.81 ± 0.03 0.78 ± 0.03
svm 0.80 ± 0.03 0.72 ± 0.08 0.83 ± 0.04 0.80 ± 0.02
lgbm 0.72 ± 0.01 0.64 ± 0.03 0.68 ± 0.02 0.66 ± 0.03
rf 0.73 ± 0.04 0.63 ± 0.02 0.67 ± 0.02 0.64 ± 0.03

Table 25. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for nofilt noglobal strategy, TT
atlas, and Dynamic connectivity (dFC).

lgbm rf lr lsvm
lsvm 0.78 ± 0.04 0.70 ± 0.02 0.89 ± 0.02 0.96 ± 0.01
lr 0.77 ± 0.04 0.71 ± 0.03 0.89 ± 0.01 0.92 ± 0.02
svm 0.77 ± 0.04 0.71 ± 0.04 0.88 ± 0.03 0.96 ± 0.01
nn 0.78 ± 0.05 0.68 ± 0.04 0.74 ± 0.03 0.73 ± 0.02
rf 0.74 ± 0.02 0.67 ± 0.03 0.71 ± 0.04 0.68 ± 0.02
lgbm 0.79 ± 0.05 0.70 ± 0.05 0.90 ± 0.02 0.92 ± 0.02

Table 26. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for filt global strategy, AAL
atlas, and functional connectivity (FC).

lgbm rf lr lsvm
lr 0.74 ± 0.03 0.66 ± 0.04 0.77 ± 0.03 0.98 ± 0.01
lsvm 0.77 ± 0.03 0.70 ± 0.05 0.76 ± 0.02 0.93 ± 0.02
rf 0.77 ± 0.02 0.72 ± 0.03 0.78 ± 0.03 0.98 ± 0.01
svm 0.74 ± 0.01 0.68 ± 0.02 0.69 ± 0.01 0.71 ± 0.02
nn 0.74 ± 0.03 0.69 ± 0.04 0.77 ± 0.02 0.93 ± 0.02
lgbm 0.74 ± 0.03 0.68 ± 0.02 0.69 ± 0.02 0.75 ± 0.04
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Table 27. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for filt noglobal strategy, AAL
atlas, and functional connectivity (FC).

lgbm rf lr lsvm
lr 0.73 ± 0.04 0.70 ± 0.04 0.84 ± 0.04 0.73 ± 0.02
lsvm 0.74 ± 0.02 0.70 ± 0.04 0.83 ± 0.03 0.73 ± 0.02
svm 0.73 ± 0.02 0.70 ± 0.01 0.73 ± 0.02 0.69 ± 0.02
nn 0.74 ± 0.03 0.72 ± 0.04 0.83 ± 0.04 0.73 ± 0.03
lgbm 0.75 ± 0.02 0.71 ± 0.04 0.75 ± 0.04 0.68 ± 0.03
rf 0.73 ± 0.03 0.69 ± 0.03 0.84 ± 0.04 0.72 ± 0.03

Table 28. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for nofilt global strategy, AAL
atlas, and functional connectivity (FC).

lgbm rf lr lsvm
lr 0.76 ± 0.04 0.72 ± 0.03 0.71 ± 0.04 0.82 ± 0.03
lsvm 0.76 ± 0.03 0.72 ± 0.04 0.72 ± 0.03 0.80 ± 0.02
nn 0.75 ± 0.03 0.73 ± 0.01 0.73 ± 0.03 0.82 ± 0.03
svm 0.72 ± 0.01 0.69 ± 0.03 0.69 ± 0.02 0.68 ± 0.03
lgbm 0.75 ± 0.03 0.73 ± 0.05 0.72 ± 0.05 0.78 ± 0.04
rf 0.73 ± 0.03 0.69 ± 0.02 0.69 ± 0.04 0.70 ± 0.03

Table 29. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for nofilt noglobal strategy,
AAL atlas, and functional connectivity (FC).

lgbm rf lr lsvm
lsvm 0.70 ± 0.03 0.70 ± 0.03 0.83 ± 0.01 0.75 ± 0.04
lr 0.72 ± 0.03 0.70 ± 0.03 0.83 ± 0.01 0.75 ± 0.03
svm 0.72 ± 0.05 0.72 ± 0.03 0.81 ± 0.02 0.74 ± 0.04
nn 0.69 ± 0.02 0.68 ± 0.02 0.71 ± 0.03 0.67 ± 0.03
rf 0.72 ± 0.04 0.71 ± 0.06 0.82 ± 0.02 0.75 ± 0.04
lgbm 0.69 ± 0.04 0.69 ± 0.05 0.75 ± 0.04 0.72 ± 0.04
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Table 30. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for filt global strategy, TT
atlas, and functional connectivity (FC).

lgbm rf lr lsvm
lr 0.75 ± 0.03 0.71 ± 0.04 0.82 ± 0.01 0.81 ± 0.02
lsvm 0.74 ± 0.04 0.69 ± 0.02 0.81 ± 0.02 0.83 ± 0.02
rf 0.76 ± 0.03 0.71 ± 0.02 0.81 ± 0.02 0.84 ± 0.02
svm 0.73 ± 0.04 0.68 ± 0.04 0.72 ± 0.04 0.72 ± 0.03
nn 0.74 ± 0.03 0.70 ± 0.03 0.71 ± 0.02 0.71 ± 0.02
lgbm 0.75 ± 0.03 0.71 ± 0.03 0.81 ± 0.02 0.80 ± 0.04

Table 31. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for filt noglobal strategy, TT
atlas, and functional connectivity (FC).

lgbm rf lr lsvm
lr 0.72 ± 0.02 0.71 ± 0.02 0.75 ± 0.02 0.84 ± 0.03
lsvm 0.70 ± 0.03 0.68 ± 0.03 0.75 ± 0.03 0.89 ± 0.03
svm 0.70 ± 0.02 0.68 ± 0.01 0.68 ± 0.03 0.67 ± 0.03
nn 0.73 ± 0.02 0.70 ± 0.03 0.76 ± 0.01 0.88 ± 0.04
lgbm 0.70 ± 0.04 0.68 ± 0.05 0.69 ± 0.03 0.70 ± 0.02
rf 0.74 ± 0.03 0.70 ± 0.03 0.76 ± 0.04 0.78 ± 0.03

Table 32. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for nofilt global strategy, TT
atlas, and functional connectivity (FC).

lgbm rf lr lsvm
lr 0.71 ± 0.03 0.68 ± 0.02 0.75 ± 0.03 0.84 ± 0.03
lsvm 0.73 ± 0.03 0.69 ± 0.02 0.75 ± 0.03 0.79 ± 0.03
nn 0.73 ± 0.02 0.70 ± 0.01 0.77 ± 0.02 0.84 ± 0.03
svm 0.69 ± 0.04 0.67 ± 0.02 0.68 ± 0.01 0.68 ± 0.02
lgbm 0.72 ± 0.02 0.69 ± 0.03 0.70 ± 0.03 0.70 ± 0.02
rf 0.72 ± 0.03 0.69 ± 0.03 0.75 ± 0.02 0.79 ± 0.03
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Table 33. Average ± standard deviation across the 5 folds of each best model for
each feature-selection (column) / classifier (row) pair, for nofilt noglobal strategy, TT
atlas, and functional connectivity (FC).

lgbm rf lr lsvm
lsvm 0.71 ± 0.02 0.69 ± 0.03 0.77 ± 0.03 0.74 ± 0.02
lr 0.70 ± 0.02 0.67 ± 0.04 0.77 ± 0.02 0.76 ± 0.01
svm 0.71 ± 0.02 0.69 ± 0.03 0.76 ± 0.02 0.75 ± 0.02
nn 0.71 ± 0.02 0.68 ± 0.02 0.76 ± 0.03 0.70 ± 0.04
rf 0.68 ± 0.04 0.66 ± 0.04 0.68 ± 0.04 0.66 ± 0.03
lgbm NA: Failed 0.67 ± 0.04 0.69 ± 0.04 0.67 ± 0.04

Table 34. Average of average accuracies over all runs, for each ML classifier.

ML average
lsvm 0.79016
lr 0.7925

svm 0.7675
rf 0.71578
nn 0.75813

lgbm 0.72563

Table 35. Average of average accuracies over all runs, for each ML classifier.

FS average
lgbm 0.752594
rf 0.716458
lr 0.770625

lsvm 0.794271

configuration (preprocessing, feature representation, atlas, feature selection, classifier,
and found best parameters) is elected as the best classifier and is investigated more in
the following subsections. The original dFC input was 13340 features, from which the
lsvm-based feature selection elected 840 features, which are used in further processing.
The best model was cloned, and 5-fold cross-validation using a new random split was
made to ensure that the results were not specific to the previous k-fold run. Table 36
shows the resulted accuracy, sensitivity, specificity, and balanced accuracy ± standard
deviations.

Table 36. Cross-validated test results of the best configuration-model

Metric Accuracy Sensitivity Specificity Balanced Accuracy

5-fold value 0.988 ± 0.004 0.987 ± 0.008 0.989 ± 0.007 0.988 ± 0.004
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Table 37. Summary of first 10 selected features, as well as the top frequent brain
regions in this selected list, from S4

index First selected features Top frequent region names Frequency

1 Precentral L Rolandic Oper R wk Temporal Sup L 24

2 Precentral L Supp Motor Area L st Postcentral R 23

3 Precentral L Fusiform L wk Frontal Sup Medial R 22

4 Precentral L Parietal Inf L wk Precuneus R 22

5 Precentral L SupraMarginal R st SupraMarginal R 21

6 Precentral L Precuneus R wk Frontal Sup R 21

7 Precentral L Temporal Sup L wk Cingulum Ant R 21

8 Precentral L Temporal Pole Sup R wk Supp Motor Area L 21

9 Precentral L Cerebelum Crus2 R wk Angular R 21

10 Precentral R Frontal Inf Tri L wk Hippocampus R 21

Identified brain areas:

Appendix C provides the full list of the selected features that lead to the best model
performance. An especially interesting finding is that identifying the weak/ under-
connectivity between brain areas is far more important than the very strong correla-
tions, with a percentage of 𝑤𝑘 features = 81.9%, and strong correlations contributing
only to the rest 18.1% of the selected features. We highlight the first 10 used features,
as well as the top frequent brain regions in this selected list in Table 37, while the
full list is available in Appendix C.

4 Chapter Discussion

We found a striking overlap between the top brain regions associated with ASD in
this work with those identified in other fMRI studies. For example, in [213], left
sup temporal (Temporal Sup L) were found regions of great contribution to ASD
classification. Researchers in [214] also reported superior temporal cortex activation
in autistic patients. Several regions of the cingulum have been associated with so-
cial cognition and language [215], which is a common deficiency in autistic subjects.
Effective Connectivity of areas Postcentral L, Frontal Sup Medial R, Precuneus R,
SupraMarginal R, Supp Motor Area L, and Hippocampus R, were identified to play
important role in distinguishing between Individuals With autism and controls [216].
Regions Temporal Sup L, Postcentral R, Frontal Sup Medial R, Precuneus R, Cin-
gulum Ant R, and Hippocampus R were among ASD-related regions highlighted by
Chen. et. al [217]. Children with ASD also showed decreased functional connectivity
in the right angular gyrus [218], as part of the cognition network. The same overlap
with the selected brain regions can be seen with many other studies [97,219–221].

A comparison of the experimental results of some other existing classification
systems in the last five years can be found in Table 38. Our results are clearly above
most literature for ABIDE-I dataset, taking into consideration that some are only on
part of the dataset (not all sites). The added value of this work not only establishes
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a better accuracy on a large dataset but also shows comprehensive experimentation
of different blocks along the pipeline. Moreover, the ’average’ performance across
our novel dynamic connectivity feature 𝑑𝐹𝐶 across all configurations, including other
atlas and inferior strategies, is still above most literature (78.09% Accuracy, see
Table 17). This is a powerful indication of the potential of our proposed work.

Table 38. Results summary of some existing ASD classification methods using
ABIDE-I dataset.

Article Used Classifier Achieved accuracy

Abraham et al., 2017 [118] SVM 67.0%

Guo et al., 2017 [120]
Deep neural networks with feature

selection (DNN-FS)
86.4%

Kam et al., 2017 [122]
Discriminative restricted Boltzmann

machines (DRBM)
80.8%

Spera et al., 2019 [142] SVM 71.0%

Tang et al., 2019 [143] SVM 62.6%

Wang et al., 2020 [222] MLP and a voting strategy 74.5%

Rakić et al., 2020 [221] Ensemble of classifiers 85.0%

Subah et al., 2021 [223] DNN 87.0%

Al-Hiyali et al., 2021 [162] SVM, KNN 85.9%

Yin et al., 2021 [164] Autoencoders, CNN, DNN 79.2%

Chu et al., 2022 [165]
Multi-scale graph convolutional

network (GCN)
79.5%

Yang et al., 2022 [166] LR, SVM, DNN 69.4%

Several objectives were achieved through the framework presented. It can be used
to determine the factors that contribute to the development of ASD in addition to
providing an accurate diagnosis based on a publicly available dataset. As part of the
framework’s diagnosis, these spotted brain areas can be reported to the doctor early
in order to help him or her make an informed decision. An important aspect of the
work is gaining a better understanding of the abnormalities of the brain associated
with autism. Additionally, the comprehensive experiments carried out in this study
will allow future researchers to study the impact of different decisions in their ML
pipeline on the output, thus filling an important knowledge gap that will enable the
development of these CAD solutions to move forward more quickly. The system also
has the advantage of being easily scalable: if a greater number of subjects are prepro-
cessed, their features can be calculated independently, and if an additional imaging
mode over a subject is required, such as structural magnetic resonance imaging, then
it can be incorporated into the feature selection process.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This dissertation introduces a couple of novel, fully-automated CAD systems, that
can accurately detect ASD based on different magnetic resonance imaging modali-
ties: DTI and rs-fMRI. The introduced CAD systems consist mainly of four primary
stages: i) preprocessing, ii) feature calculation/ extraction, iii) feature engineering
(feature representation, feature selection, ...etc) iv) classification using ML. The work
tested different preprocessing strategies, different feature engineering methods, and
different classification frameworks. The proposed models and techniques developed
in this dissertation show promising overall results, as well as investigational results
on alternative approaches. Following, the main contributions of each module are
presented.

1 Summary of contributions

DTI-based ASD Diagnosis

In summary, the proposed diagnosis frameworks accomplish many objectives:

• Both imaging modalities used can be acquired at an early stage (for early chil-
dren), and in one session, with no need for length repetitive exams, that best
align with later stages.

• The presented algorithms provide automated quantitative measures of autism
assessment, with no human bias as alternative techniques.

• The models provide high state-of-the-art balanced accuracies on a public dataset,
with moderately large sample sizes (263 subjects for DTI, 884 for fMRI), which
is in the upper range of those similar studies reported in the literature.

• Besides accomplishing a high diagnostic accuracy, it preserves interpretability:
it has identified pairs of white matter areas that exhibit relative differences
in ASD, as opposed to considering microstructural changes within contiguous
WM regions, not only providing an ASD/TD diagnosis but also what areas
contribute to such classification.
Those spotted brain areas can be early reported with the framework diagnosis
to the physician, who can now make a better-informed judgment. Providing for
another way of looking at ASD as a disorder of brain connectivity, which should
in turn lead to a better understanding of an autistic individual’s behavior and
the predictability of disorder development for those at risk. We believe that
this is an important aspect that would lead to a better understanding of brain
abnormalities associated with autism.

72



• We introduce a new feature representation, inspired by fMRI studies, that en-
hances the diagnostic accuracy of the classification. The new feature represen-
tation makes use of various WM information (FA, MD, AD, ...), and focuses
more on the relational information, not the absolute one as in most previous
studies. We were able to show the promise of this representation.

• The feature selection approach used in our system is also scalable: adding more
subjects that can be preprocessed and feature calculated independently, and
fusion of an extra modality, such as structural MRI features or resting-state
functional MRI for the same subject, or even non-image data, can be easily
integrated separately or jointly.

fMRI based ASD Diagnosis

As a result of the framework presented, a number of objectives were achieved.

• In addition to providing an accurate state-of-the-art diagnosis of ASD based on
a public dataset, it can also be used for identifying the factors that contribute
to such a diagnosis.

• In conjunction with the framework’s diagnosis, these spotted brain areas can be
reported to the physician early on, so that he or she may make a more informed
decision in the future. Having a better understanding of the brain abnormalities
associated with autism is one of the key aspects of this work.

• Moreover, the comprehensive experiments made in this work pave the way for
the next researchers to understand the effect of different choices in their ML
pipeline on the output, filling an important gap in knowledge that would help
to speed the development of such CAD solutions.

• A further advantage of the system is that it easily scales up: more subjects can
be preprocessed and their features calculated independently, and the addition of
an additional mode of imaging over the same subject, such as structural MRI,
can be incorporated into the feature selection stages.

2 Future Avenues

On the other hand, we stress that robust results were obtained and validated using
only one publicly available dataset. Adding different datasets to the same model
should guarantee the generalizability of our proposed frameworks, which can be an
intriguing avenue for future research.

In conjunction with using one imaging modality, incorporating other modalities,
with different aspects (shape, functionality, connectivity) to the classification frame-
work is believed to provide more accurate and specific results, progressing towards
an integrated system for autism assessment providing better interpretation and un-
derstanding of the underlying personalized diagnosis.
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Moreover, more sophisticated medical interpretation is needed not only to map
those affected brain areas to TD vs ASD, but also to correlate findings to different
severity of ASD. In order to better understand and assess autism spectrum disorders,
one way we believe in is combining behavior reports with the results of this study.

With new interpretable deep learning algorithms presented to the research com-
munity, a specially interesting future direction is to try to employ such new AI frame-
works, in collaboration with its inventors, to ASD imaging dataset. It will require
extra computation capabilities, but the venues it would open could be promising.

In addition, we used heterogeneous data in terms of age, to make use of the
largest-possible number of subjects for efficient learning. We were able to deploy
more sophisticated models on fMRI dataset, but not the same for DTI. We believe
age can be an important factor affecting the heterogeneity in findings, and that
segmenting the age population, focusing only on one age group for each model, would
filter out the prominent effect for each age group and boost both the generalizability
and accuracy of the algorithm.

Another important stratification is among different severity groups, while we pro-
vided a one-for-all solution across the whole spectrum, a careful dissecting of the
autism spectrum (with ADOS or similar scores) may provide a better-tailored in-
terpretability and understanding of the different traits of the autism phenotypes,
allowing more distinction per scored module.

It is anticipated that further development of MRI imaging-based AI approaches
will enhance subjectivity in the clinical information available for ASD diagnosis in
the future, enabling more accurate and expedient diagnoses to be made, enhancing
our understanding of the underlying diagnoses of autism and moving us towards an
automated system for an autism assessment.
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APPENDIX A: COMMONLY USED ABBREVIATIONS

𝜌 - Pearson correlation coefficient
AAL - automated anatomical labeling atlas
ABIDE - Autism Brain Imaging Data Exchange
ADHD - Attention deficit hyperactivity disorder
ADI-R - Autism Diagnostic Interview-Revised
ADOS - Autism Diagnostic Observation Schedule
ANOVA - Analysis of variance
ASD - Autism spectrum disorder
AUC - Area Under Curve
BOLD - blood-oxygen-level-dependent signal
CAD - Computer-Aided Diagnosis
CNN - Convolutional Neural Networks
CSF - Cerebrospinal fluid
dFC - dynamic functional connectivity
DTI - Diffusion Tensor Imaging
dwMRI | DWI - Diffusion-weighted MRI
F1 Score - Harmonic Precision-Recall Mean
FA - Fractional Anisotropy
FC - functional connectivity matrix
fMRI - Functional MRI
FS - Feature Selection
GAN - Generative Adversarial Network
GM - gray matter
GMM - Gaussian mixture model
HMMs - Hidden Markov Models
IQ - intelligence quotient
JHU - Johns Hopkins University white matter atlas
LDA - linear discriminant analysis
lr - logistic regression
lsvm - linear support vector machine
ML - Machine Learning
MLE - Maximum Likelihood Estimation
MRI - Magnetic resonance imaging
MSE - mean standard error
NDAR - National Database of Autism Research
NMR nuclear magnetic resonance
nn - neural networks
NPV - Negative Predictive Value
PCA - principal component analysis
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PPV - Positive predictive value
ReLU - Rectified Linear Unit
rf - random forest
RFE - recursive feature elimination
RFE-CV - RFE with cross-validation
rs-fMRI - Resting-State functional MRI
SD - standard deviation
SGD - Stochastic Gradient Descent
sMRI - Structural MRI
SRS - Social Responsiveness Scale
TE - echo time
T-fMRI - Task-based functional MRI
TR - repetition time
TT - Talaraich and Tournoux atlas
WM - white matter
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APPENDIX B: FMRI BEST MODEL SELECTED FEATURES

The following table lists all the selected features used in the best-performing model
(AAl atlas, dFC feature representation, linear SVM), for reference.

Table 1. Full List of Selected dFC features

0 Precentral L Rolandic Oper R wk
1 Precentral L Supp Motor Area L st
2 Precentral L Fusiform L wk
3 Precentral L Parietal Inf L wk
4 Precentral L SupraMarginal R st
5 Precentral L Precuneus R wk
6 Precentral L Temporal Sup L wk
7 Precentral L Temporal Pole Sup R wk
8 Precentral L Cerebelum Crus2 R wk
9 Precentral R Frontal Inf Tri L wk
10 Precentral R Frontal Inf Orb R wk
11 Precentral R Frontal Sup Medial L wk
12 Precentral R Insula R st
13 Precentral R Cingulum Ant R wk
14 Precentral R Cingulum Post R wk
15 Precentral R Calcarine R wk
16 Precentral R Fusiform R wk
17 Precentral R Caudate L st
18 Precentral R Pallidum L wk
19 Precentral R Temporal Pole Sup L st
20 Precentral R Temporal Pole Mid R wk
21 Precentral R Cerebelum 8 L wk
22 Precentral R Vermis 1 2 wk
23 Frontal Sup L Frontal Mid L st
24 Frontal Sup L Frontal Inf Tri L wk
25 Frontal Sup L Frontal Inf Orb L wk
26 Frontal Sup L Supp Motor Area L st
27 Frontal Sup L Frontal Sup Medial L wk
28 Frontal Sup L Frontal Med Orb L wk
29 Frontal Sup L Frontal Med Orb L st
30 Frontal Sup L Frontal Med Orb R st
31 Frontal Sup L Rectus R wk
32 Frontal Sup L Insula R wk
33 Frontal Sup L ParaHippocampal R wk
34 Frontal Sup L Cuneus L wk
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Full List of Selected dFC features (continued)

index feat name
35 Frontal Sup L Lingual R st
36 Frontal Sup L Occipital Sup R st
37 Frontal Sup L Temporal Mid R wk
38 Frontal Sup L Temporal Pole Mid L wk
39 Frontal Sup L Vermis 4 5 st
40 Frontal Sup R Frontal Mid R st
41 Frontal Sup R Frontal Mid Orb R st
42 Frontal Sup R Frontal Inf Oper R st
43 Frontal Sup R Frontal Inf Tri R wk
44 Frontal Sup R Frontal Inf Orb R st
45 Frontal Sup R Rolandic Oper L wk
46 Frontal Sup R Frontal Sup Medial R st
47 Frontal Sup R Frontal Med Orb L wk
48 Frontal Sup R Rectus R wk
49 Frontal Sup R Rectus R st
50 Frontal Sup R Insula R st
51 Frontal Sup R ParaHippocampal L wk
52 Frontal Sup R Cuneus L wk
53 Frontal Sup R Fusiform R st
54 Frontal Sup R Angular L wk
55 Frontal Sup R Angular R st
56 Frontal Sup R Putamen L wk
57 Frontal Sup R Temporal Pole Sup L st
58 Frontal Sup R Temporal Mid R st
59 Frontal Sup R Cerebelum Crus2 L wk
60 Frontal Sup R Cerebelum Crus2 L st
61 Frontal Sup Orb L Frontal Mid Orb L wk
62 Frontal Sup Orb L Supp Motor Area L wk
63 Frontal Sup Orb L Frontal Sup Medial R wk
64 Frontal Sup Orb L Frontal Sup Medial R st
65 Frontal Sup Orb L Cingulum Mid R wk
66 Frontal Sup Orb L ParaHippocampal R wk
67 Frontal Sup Orb L Occipital Mid L wk
68 Frontal Sup Orb L Occipital Mid L st
69 Frontal Sup Orb L Temporal Mid L wk
70 Frontal Sup Orb L Cerebelum 6 R wk
71 Frontal Sup Orb L Vermis 6 wk
72 Frontal Sup Orb R Frontal Inf Orb L wk
73 Frontal Sup Orb R Olfactory R wk
74 Frontal Sup Orb R Rectus L wk
75 Frontal Sup Orb R Rectus R wk
76 Frontal Sup Orb R Insula R wk
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Full List of Selected dFC features (continued)

index feat name
77 Frontal Sup Orb R Calcarine R wk
78 Frontal Sup Orb R Parietal Inf R wk
79 Frontal Sup Orb R Temporal Pole Sup R wk
80 Frontal Sup Orb R Cerebelum Crus2 L wk
81 Frontal Sup Orb R Cerebelum 8 R wk
82 Frontal Mid L Frontal Inf Oper R wk
83 Frontal Mid L Rolandic Oper L wk
84 Frontal Mid L Supp Motor Area L st
85 Frontal Mid L Frontal Sup Medial R wk
86 Frontal Mid L Cingulum Ant R wk
87 Frontal Mid L Amygdala R wk
88 Frontal Mid L Occipital Sup L st
89 Frontal Mid L Occipital Mid R wk
90 Frontal Mid L Occipital Inf L wk
91 Frontal Mid L Parietal Inf R wk
92 Frontal Mid L Precuneus L wk
93 Frontal Mid L Precuneus L st
94 Frontal Mid L Heschl L wk
95 Frontal Mid L Heschl R wk
96 Frontal Mid L Temporal Inf R wk
97 Frontal Mid R Frontal Inf Oper R wk
98 Frontal Mid R Frontal Inf Tri L wk
99 Frontal Mid R Frontal Inf Orb R st
100 Frontal Mid R Frontal Sup Medial L st
101 Frontal Mid R Frontal Sup Medial R wk
102 Frontal Mid R Frontal Sup Medial R st
103 Frontal Mid R Hippocampus L wk
104 Frontal Mid R Amygdala R wk
105 Frontal Mid R Fusiform L wk
106 Frontal Mid R Paracentral Lobule R st
107 Frontal Mid R Thalamus R wk
108 Frontal Mid R Cerebelum 6 R wk
109 Frontal Mid R Cerebelum 8 L wk
110 Frontal Mid R Vermis 6 wk
111 Frontal Mid Orb L Frontal Inf Orb L wk
112 Frontal Mid Orb L Supp Motor Area L wk
113 Frontal Mid Orb L Frontal Sup Medial L wk
114 Frontal Mid Orb L Hippocampus L wk
115 Frontal Mid Orb L Cuneus R st
116 Frontal Mid Orb L Postcentral L wk
117 Frontal Mid Orb L Parietal Inf L wk
118 Frontal Mid Orb L SupraMarginal L wk
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Full List of Selected dFC features (continued)

index feat name
119 Frontal Mid Orb L Temporal Pole Mid R wk
120 Frontal Mid Orb L Vermis 10 wk
121 Frontal Mid Orb R Supp Motor Area L wk
122 Frontal Mid Orb R Frontal Sup Medial L wk
123 Frontal Mid Orb R Frontal Sup Medial R st
124 Frontal Mid Orb R Cingulum Post L wk
125 Frontal Mid Orb R ParaHippocampal L wk
126 Frontal Mid Orb R ParaHippocampal R wk
127 Frontal Mid Orb R Occipital Inf R wk
128 Frontal Mid Orb R Fusiform L wk
129 Frontal Mid Orb R Heschl R wk
130 Frontal Mid Orb R Temporal Mid L st
131 Frontal Mid Orb R Vermis 3 wk
132 Frontal Mid Orb R Vermis 6 wk
133 Frontal Inf Oper L Supp Motor Area L st
134 Frontal Inf Oper L Amygdala L wk
135 Frontal Inf Oper L Occipital Mid R wk
136 Frontal Inf Oper L Parietal Sup L wk
137 Frontal Inf Oper L Thalamus L wk
138 Frontal Inf Oper L Heschl L wk
139 Frontal Inf Oper L Temporal Sup R st
140 Frontal Inf Oper L Temporal Pole Sup L wk
141 Frontal Inf Oper L Cerebelum 4 5 L wk
142 Frontal Inf Oper R Frontal Inf Tri L wk
143 Frontal Inf Oper R Frontal Inf Orb R wk
144 Frontal Inf Oper R Supp Motor Area R wk
145 Frontal Inf Oper R Cingulum Mid R wk
146 Frontal Inf Oper R Hippocampus R wk
147 Frontal Inf Oper R Occipital Inf L st
148 Frontal Inf Oper R Fusiform R st
149 Frontal Inf Oper R Angular R wk
150 Frontal Inf Oper R Pallidum L wk
151 Frontal Inf Oper R Pallidum R wk
152 Frontal Inf Oper R Temporal Sup L st
153 Frontal Inf Oper R Temporal Inf L wk
154 Frontal Inf Oper R Cerebelum 3 L wk
155 Frontal Inf Oper R Vermis 6 wk
156 Frontal Inf Tri L Supp Motor Area L wk
157 Frontal Inf Tri L Frontal Med Orb R wk
158 Frontal Inf Tri L Cingulum Ant R wk
159 Frontal Inf Tri L Cingulum Ant R st
160 Frontal Inf Tri L Cuneus R wk
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Full List of Selected dFC features (continued)

index feat name
161 Frontal Inf Tri L Occipital Sup R wk
162 Frontal Inf Tri L Parietal Inf R wk
163 Frontal Inf Tri L Heschl L wk
164 Frontal Inf Tri L Temporal Sup L st
165 Frontal Inf Tri L Cerebelum Crus1 R wk
166 Frontal Inf Tri L Cerebelum 3 L wk
167 Frontal Inf Tri L Cerebelum 4 5 R wk
168 Frontal Inf Tri L Vermis 1 2 wk
169 Frontal Inf Tri R Frontal Med Orb R wk
170 Frontal Inf Tri R ParaHippocampal R wk
171 Frontal Inf Tri R Occipital Inf L st
172 Frontal Inf Tri R Postcentral R wk
173 Frontal Inf Tri R SupraMarginal R wk
174 Frontal Inf Tri R Precuneus R wk
175 Frontal Inf Tri R Caudate L wk
176 Frontal Inf Tri R Heschl R wk
177 Frontal Inf Tri R Temporal Pole Mid L wk
178 Frontal Inf Tri R Cerebelum Crus2 R wk
179 Frontal Inf Tri R Cerebelum 4 5 L st
180 Frontal Inf Tri R Vermis 4 5 wk
181 Frontal Inf Orb L Insula L wk
182 Frontal Inf Orb L Amygdala R wk
183 Frontal Inf Orb L Cuneus L wk
184 Frontal Inf Orb L Cuneus R wk
185 Frontal Inf Orb L Lingual R wk
186 Frontal Inf Orb L Occipital Inf L wk
187 Frontal Inf Orb L Angular R wk
188 Frontal Inf Orb L Caudate L wk
189 Frontal Inf Orb L Heschl L wk
190 Frontal Inf Orb L Heschl R wk
191 Frontal Inf Orb L Temporal Mid L wk
192 Frontal Inf Orb L Cerebelum Crus1 L wk
193 Frontal Inf Orb L Cerebelum 4 5 R wk
194 Frontal Inf Orb L Vermis 1 2 wk
195 Frontal Inf Orb L Vermis 6 wk
196 Frontal Inf Orb R Supp Motor Area R wk
197 Frontal Inf Orb R Rectus R wk
198 Frontal Inf Orb R Cingulum Ant R wk
199 Frontal Inf Orb R Fusiform L wk
200 Frontal Inf Orb R Parietal Inf L wk
201 Frontal Inf Orb R SupraMarginal L wk
202 Frontal Inf Orb R Thalamus R wk
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Full List of Selected dFC features (continued)

index feat name
203 Frontal Inf Orb R Temporal Inf L wk
204 Frontal Inf Orb R Temporal Inf R wk
205 Frontal Inf Orb R Cerebelum 3 R wk
206 Frontal Inf Orb R Cerebelum 9 R wk
207 Frontal Inf Orb R Vermis 8 wk
208 Rolandic Oper L Rolandic Oper R st
209 Rolandic Oper L Olfactory L wk
210 Rolandic Oper L Frontal Sup Medial L wk
211 Rolandic Oper L Frontal Med Orb R wk
212 Rolandic Oper L Hippocampus L wk
213 Rolandic Oper L SupraMarginal R wk
214 Rolandic Oper L Heschl R wk
215 Rolandic Oper L Temporal Sup R wk
216 Rolandic Oper L Temporal Mid R wk
217 Rolandic Oper L Cerebelum Crus2 L wk
218 Rolandic Oper L Cerebelum 4 5 L st
219 Rolandic Oper L Cerebelum 4 5 R wk
220 Rolandic Oper L Cerebelum 9 R st
221 Rolandic Oper L Vermis 1 2 wk
222 Rolandic Oper L Vermis 7 wk
223 Rolandic Oper R Olfactory L st
224 Rolandic Oper R Frontal Med Orb L wk
225 Rolandic Oper R Insula L wk
226 Rolandic Oper R Calcarine L wk
227 Rolandic Oper R SupraMarginal R wk
228 Rolandic Oper R Heschl L wk
229 Rolandic Oper R Heschl L st
230 Rolandic Oper R Temporal Sup L wk
231 Rolandic Oper R Temporal Sup L st
232 Rolandic Oper R Temporal Pole Sup R wk
233 Rolandic Oper R Temporal Inf L wk
234 Rolandic Oper R Cerebelum 4 5 R wk
235 Supp Motor Area L Cingulum Ant L wk
236 Supp Motor Area L Cingulum Mid R wk
237 Supp Motor Area L Hippocampus R wk
238 Supp Motor Area L Lingual L wk
239 Supp Motor Area L Occipital Sup R wk
240 Supp Motor Area L SupraMarginal R wk
241 Supp Motor Area L Angular R st
242 Supp Motor Area L Putamen L wk
243 Supp Motor Area L Temporal Pole Sup L wk
244 Supp Motor Area L Temporal Pole Sup R wk
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Full List of Selected dFC features (continued)

index feat name
245 Supp Motor Area L Temporal Mid L wk
246 Supp Motor Area L Cerebelum 8 L wk
247 Supp Motor Area L Cerebelum 9 L wk
248 Supp Motor Area R Olfactory L wk
249 Supp Motor Area R Rectus R wk
250 Supp Motor Area R Cingulum Mid L wk
251 Supp Motor Area R Cingulum Post R st
252 Supp Motor Area R Hippocampus L wk
253 Supp Motor Area R ParaHippocampal R wk
254 Supp Motor Area R Occipital Inf R st
255 Supp Motor Area R Parietal Sup L wk
256 Supp Motor Area R Angular L st
257 Supp Motor Area R Temporal Inf L wk
258 Supp Motor Area R Cerebelum 4 5 L wk
259 Supp Motor Area R Vermis 4 5 wk
260 Supp Motor Area R Vermis 9 wk
261 Olfactory L Olfactory R wk
262 Olfactory L Olfactory R st
263 Olfactory L Frontal Sup Medial R wk
264 Olfactory L Rectus L st
265 Olfactory L Insula R wk
266 Olfactory L Cingulum Mid L wk
267 Olfactory L Hippocampus R wk
268 Olfactory L Postcentral R wk
269 Olfactory L Heschl L wk
270 Olfactory L Heschl R wk
271 Olfactory L Temporal Sup R wk
272 Olfactory L Temporal Pole Mid R wk
273 Olfactory L Cerebelum 3 L wk
274 Olfactory L Cerebelum 4 5 R wk
275 Olfactory L Vermis 4 5 wk
276 Olfactory R Cingulum Mid L wk
277 Olfactory R ParaHippocampal R wk
278 Olfactory R Cuneus R st
279 Olfactory R Occipital Inf R wk
280 Olfactory R SupraMarginal R st
281 Olfactory R Pallidum L wk
282 Olfactory R Temporal Mid L wk
283 Olfactory R Temporal Mid R wk
284 Olfactory R Temporal Inf R wk
285 Olfactory R Temporal Inf R st
286 Frontal Sup Medial L Rectus R wk
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Full List of Selected dFC features (continued)

index feat name
287 Frontal Sup Medial L ParaHippocampal L wk
288 Frontal Sup Medial L Fusiform L st
289 Frontal Sup Medial L Fusiform R wk
290 Frontal Sup Medial L Heschl L wk
291 Frontal Sup Medial L Temporal Pole Sup R wk
292 Frontal Sup Medial L Temporal Pole Sup R st
293 Frontal Sup Medial L Temporal Pole Mid R wk
294 Frontal Sup Medial L Cerebelum Crus1 R wk
295 Frontal Sup Medial L Cerebelum Crus2 L st
296 Frontal Sup Medial L Vermis 1 2 wk
297 Frontal Sup Medial R Rectus R wk
298 Frontal Sup Medial R Cingulum Ant R wk
299 Frontal Sup Medial R Lingual L wk
300 Frontal Sup Medial R Postcentral R wk
301 Frontal Sup Medial R SupraMarginal L wk
302 Frontal Sup Medial R SupraMarginal R wk
303 Frontal Sup Medial R Precuneus R wk
304 Frontal Sup Medial R Heschl L wk
305 Frontal Sup Medial R Temporal Sup R wk
306 Frontal Sup Medial R Temporal Mid R st
307 Frontal Sup Medial R Cerebelum Crus1 R wk
308 Frontal Sup Medial R Cerebelum Crus2 R st
309 Frontal Sup Medial R Cerebelum 3 R wk
310 Frontal Sup Medial R Vermis 6 wk
311 Frontal Med Orb L Cingulum Post R wk
312 Frontal Med Orb L ParaHippocampal R wk
313 Frontal Med Orb L Amygdala L wk
314 Frontal Med Orb L Lingual R st
315 Frontal Med Orb L Occipital Sup L wk
316 Frontal Med Orb L Parietal Sup L wk
317 Frontal Med Orb L Parietal Sup L st
318 Frontal Med Orb L Heschl R wk
319 Frontal Med Orb L Temporal Sup L wk
320 Frontal Med Orb L Temporal Pole Mid R wk
321 Frontal Med Orb L Cerebelum 3 R wk
322 Frontal Med Orb L Vermis 10 wk
323 Frontal Med Orb R Cingulum Post L wk
324 Frontal Med Orb R Hippocampus R wk
325 Frontal Med Orb R Amygdala R wk
326 Frontal Med Orb R Postcentral R wk
327 Frontal Med Orb R Parietal Sup R wk
328 Frontal Med Orb R Parietal Inf R wk
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Full List of Selected dFC features (continued)

index feat name
329 Frontal Med Orb R Precuneus R st
330 Frontal Med Orb R Paracentral Lobule R wk
331 Frontal Med Orb R Temporal Sup L wk
332 Frontal Med Orb R Temporal Pole Mid R wk
333 Frontal Med Orb R Cerebelum 9 L wk
334 Rectus L Cingulum Post L wk
335 Rectus L Calcarine L wk
336 Rectus L Occipital Sup R st
337 Rectus L Parietal Inf R wk
338 Rectus L Angular R wk
339 Rectus L Temporal Pole Mid R wk
340 Rectus L Temporal Inf L wk
341 Rectus R Hippocampus L wk
342 Rectus R Occipital Mid R wk
343 Rectus R Parietal Inf R wk
344 Rectus R SupraMarginal L wk
345 Rectus R SupraMarginal R wk
346 Rectus R Cerebelum 6 L wk
347 Rectus R Vermis 4 5 wk
348 Rectus R Vermis 10 wk
349 Insula L Cingulum Ant L wk
350 Insula L Cingulum Post R wk
351 Insula L ParaHippocampal L wk
352 Insula L Cuneus L wk
353 Insula L Lingual L wk
354 Insula L Postcentral R wk
355 Insula L SupraMarginal L wk
356 Insula L SupraMarginal R wk
357 Insula L SupraMarginal R st
358 Insula L Precuneus R wk
359 Insula L Precuneus R st
360 Insula L Paracentral Lobule L wk
361 Insula L Pallidum R wk
362 Insula L Temporal Sup R wk
363 Insula L Temporal Pole Mid L wk
364 Insula L Cerebelum 4 5 R wk
365 Insula R Cingulum Post L st
366 Insula R Occipital Sup R wk
367 Insula R Occipital Inf R wk
368 Insula R Postcentral L wk
369 Insula R Angular L wk
370 Insula R Precuneus L st
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Full List of Selected dFC features (continued)

index feat name
371 Insula R Caudate L wk
372 Insula R Temporal Mid L wk
373 Insula R Temporal Inf L st
374 Insula R Cerebelum 6 L wk
375 Insula R Cerebelum 6 R wk
376 Insula R Vermis 3 wk
377 Insula R Vermis 7 wk
378 Insula R Vermis 8 wk
379 Cingulum Ant L Cingulum Ant R st
380 Cingulum Ant L Cingulum Mid R wk
381 Cingulum Ant L Lingual L wk
382 Cingulum Ant L Occipital Inf L wk
383 Cingulum Ant L Occipital Inf L st
384 Cingulum Ant L Occipital Inf R wk
385 Cingulum Ant L Thalamus L wk
386 Cingulum Ant L Temporal Sup L wk
387 Cingulum Ant L Temporal Inf L st
388 Cingulum Ant L Cerebelum 4 5 L wk
389 Cingulum Ant L Vermis 4 5 wk
390 Cingulum Ant R Cingulum Mid R st
391 Cingulum Ant R Calcarine R wk
392 Cingulum Ant R Cuneus L wk
393 Cingulum Ant R Fusiform R wk
394 Cingulum Ant R SupraMarginal L wk
395 Cingulum Ant R Thalamus R wk
396 Cingulum Ant R Temporal Mid R wk
397 Cingulum Ant R Cerebelum Crus2 R wk
398 Cingulum Ant R Cerebelum 3 R wk
399 Cingulum Ant R Cerebelum 4 5 L wk
400 Cingulum Ant R Cerebelum 6 R wk
401 Cingulum Ant R Vermis 3 wk
402 Cingulum Ant R Vermis 6 wk
403 Cingulum Ant R Vermis 8 wk
404 Cingulum Mid L Hippocampus R wk
405 Cingulum Mid L Cuneus R wk
406 Cingulum Mid L Occipital Sup L wk
407 Cingulum Mid L Occipital Mid R wk
408 Cingulum Mid L Fusiform R wk
409 Cingulum Mid L Parietal Inf R wk
410 Cingulum Mid L Pallidum R wk
411 Cingulum Mid L Heschl L wk
412 Cingulum Mid L Temporal Sup L wk
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Full List of Selected dFC features (continued)

index feat name
413 Cingulum Mid L Cerebelum 3 R wk
414 Cingulum Mid R Cingulum Post R wk
415 Cingulum Mid R Hippocampus L wk
416 Cingulum Mid R ParaHippocampal L wk
417 Cingulum Mid R Occipital Inf R wk
418 Cingulum Mid R Postcentral L wk
419 Cingulum Mid R Precuneus L wk
420 Cingulum Mid R Putamen L wk
421 Cingulum Mid R Cerebelum 10 L st
422 Cingulum Mid R Vermis 6 wk
423 Cingulum Mid R Vermis 10 wk
424 Cingulum Post L ParaHippocampal L wk
425 Cingulum Post L Amygdala L wk
426 Cingulum Post L Calcarine L wk
427 Cingulum Post L Lingual R wk
428 Cingulum Post L Occipital Sup L wk
429 Cingulum Post L SupraMarginal R wk
430 Cingulum Post L Angular R wk
431 Cingulum Post L Paracentral Lobule L wk
432 Cingulum Post L Temporal Sup L wk
433 Cingulum Post L Temporal Pole Sup R wk
434 Cingulum Post L Cerebelum 10 R wk
435 Cingulum Post L Vermis 3 wk
436 Cingulum Post R Postcentral L st
437 Cingulum Post R Parietal Sup L wk
438 Cingulum Post R SupraMarginal R wk
439 Cingulum Post R Thalamus R wk
440 Cingulum Post R Cerebelum 3 L wk
441 Cingulum Post R Cerebelum 3 R st
442 Cingulum Post R Cerebelum 9 L wk
443 Cingulum Post R Vermis 3 wk
444 Cingulum Post R Vermis 4 5 wk
445 Hippocampus L Hippocampus R st
446 Hippocampus L Fusiform L wk
447 Hippocampus L Postcentral R wk
448 Hippocampus L SupraMarginal L wk
449 Hippocampus L Angular R wk
450 Hippocampus L Thalamus R wk
451 Hippocampus L Heschl L wk
452 Hippocampus L Temporal Pole Mid L wk
453 Hippocampus L Cerebelum Crus1 R wk
454 Hippocampus L Cerebelum 3 L wk
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Full List of Selected dFC features (continued)

index feat name
455 Hippocampus L Cerebelum 4 5 L st
456 Hippocampus L Cerebelum 6 R wk
457 Hippocampus L Cerebelum 8 R wk
458 Hippocampus R Cuneus L wk
459 Hippocampus R Fusiform L st
460 Hippocampus R SupraMarginal R wk
461 Hippocampus R Angular L wk
462 Hippocampus R Angular R wk
463 Hippocampus R Paracentral Lobule R wk
464 Hippocampus R Temporal Sup R wk
465 Hippocampus R Temporal Pole Sup L st
466 Hippocampus R Temporal Pole Sup R wk
467 Hippocampus R Temporal Mid L wk
468 Hippocampus R Temporal Pole Mid R wk
469 Hippocampus R Cerebelum 4 5 L wk
470 Hippocampus R Cerebelum 7b R st
471 Hippocampus R Cerebelum 8 R wk
472 Hippocampus R Cerebelum 9 L wk
473 ParaHippocampal L Lingual R wk
474 ParaHippocampal L Occipital Mid L wk
475 ParaHippocampal L Parietal Sup R wk
476 ParaHippocampal L Angular R wk
477 ParaHippocampal L Precuneus R wk
478 ParaHippocampal L Paracentral Lobule L wk
479 ParaHippocampal L Paracentral Lobule R wk
480 ParaHippocampal L Putamen L wk
481 ParaHippocampal L Temporal Sup L wk
482 ParaHippocampal L Temporal Pole Sup R wk
483 ParaHippocampal L Temporal Pole Mid L wk
484 ParaHippocampal L Temporal Inf L wk
485 ParaHippocampal L Cerebelum 4 5 L wk
486 ParaHippocampal L Vermis 6 wk
487 ParaHippocampal R Amygdala R wk
488 ParaHippocampal R Amygdala R st
489 ParaHippocampal R Cuneus R wk
490 ParaHippocampal R Occipital Mid L wk
491 ParaHippocampal R Temporal Pole Sup R wk
492 ParaHippocampal R Cerebelum Crus1 L wk
493 ParaHippocampal R Cerebelum 3 L wk
494 ParaHippocampal R Cerebelum 4 5 R wk
495 ParaHippocampal R Cerebelum 6 R wk
496 ParaHippocampal R Vermis 6 wk

108



Full List of Selected dFC features (continued)

index feat name
497 Amygdala L Occipital Sup L st
498 Amygdala L Fusiform L wk
499 Amygdala L Parietal Inf L wk
500 Amygdala L Temporal Mid R wk
501 Amygdala L Cerebelum Crus2 R wk
502 Amygdala L Vermis 3 wk
503 Amygdala R SupraMarginal R wk
504 Amygdala R Caudate L wk
505 Amygdala R Putamen R wk
506 Amygdala R Cerebelum Crus1 L wk
507 Amygdala R Cerebelum Crus1 R wk
508 Amygdala R Cerebelum Crus2 R wk
509 Amygdala R Cerebelum 3 L st
510 Amygdala R Vermis 9 wk
511 Calcarine L Cuneus L st
512 Calcarine L Occipital Sup R st
513 Calcarine L Occipital Mid R st
514 Calcarine L Parietal Sup R st
515 Calcarine L Caudate R wk
516 Calcarine L Pallidum L wk
517 Calcarine L Vermis 7 wk
518 Calcarine L Vermis 8 wk
519 Calcarine R Cuneus L wk
520 Calcarine R Cuneus R wk
521 Calcarine R Cuneus R st
522 Calcarine R Occipital Sup R wk
523 Calcarine R Occipital Mid R wk
524 Calcarine R Postcentral L wk
525 Calcarine R Parietal Inf R wk
526 Calcarine R Thalamus L wk
527 Calcarine R Cerebelum Crus2 L wk
528 Calcarine R Vermis 3 wk
529 Cuneus L Lingual R wk
530 Cuneus L Occipital Mid R wk
531 Cuneus L Postcentral L wk
532 Cuneus L Precuneus R wk
533 Cuneus L Paracentral Lobule L wk
534 Cuneus L Pallidum R wk
535 Cuneus L Temporal Pole Sup L wk
536 Cuneus L Temporal Mid R wk
537 Cuneus L Temporal Inf R st
538 Cuneus L Cerebelum 4 5 R wk
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Full List of Selected dFC features (continued)

index feat name
539 Cuneus L Vermis 1 2 wk
540 Cuneus R Occipital Sup R wk
541 Cuneus R Postcentral L wk
542 Cuneus R Postcentral R wk
543 Cuneus R Caudate R wk
544 Cuneus R Putamen L wk
545 Cuneus R Temporal Pole Sup L wk
546 Cuneus R Temporal Mid R wk
547 Cuneus R Cerebelum 6 R st
548 Cuneus R Cerebelum 8 L wk
549 Cuneus R Cerebelum 9 L wk
550 Cuneus R Cerebelum 10 R wk
551 Lingual L Postcentral L st
552 Lingual L Heschl L wk
553 Lingual L Vermis 7 wk
554 Lingual R Thalamus R wk
555 Lingual R Vermis 3 st
556 Occipital Sup L Paracentral Lobule L wk
557 Occipital Sup L Temporal Mid R wk
558 Occipital Sup L Cerebelum 8 L wk
559 Occipital Sup L Cerebelum 9 R wk
560 Occipital Sup L Vermis 3 wk
561 Occipital Sup R Postcentral R wk
562 Occipital Sup R Pallidum L wk
563 Occipital Sup R Pallidum R wk
564 Occipital Sup R Temporal Pole Sup L wk
565 Occipital Sup R Temporal Pole Sup R wk
566 Occipital Sup R Temporal Inf R wk
567 Occipital Sup R Vermis 7 wk
568 Occipital Mid L Occipital Mid R st
569 Occipital Mid L Parietal Inf R st
570 Occipital Mid L Precuneus L wk
571 Occipital Mid L Caudate R wk
572 Occipital Mid L Temporal Pole Mid L wk
573 Occipital Mid L Cerebelum 4 5 L wk
574 Occipital Mid L Vermis 10 wk
575 Occipital Mid R Occipital Inf R wk
576 Occipital Mid R Fusiform L wk
577 Occipital Mid R Postcentral R wk
578 Occipital Mid R Precuneus L wk
579 Occipital Mid R Temporal Sup L wk
580 Occipital Mid R Temporal Mid R wk
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Full List of Selected dFC features (continued)

index feat name
581 Occipital Mid R Temporal Inf R st
582 Occipital Mid R Cerebelum 6 L wk
583 Occipital Mid R Vermis 6 wk
584 Occipital Inf L Postcentral L wk
585 Occipital Inf L Postcentral L st
586 Occipital Inf L Postcentral R wk
587 Occipital Inf L Precuneus L st
588 Occipital Inf L Precuneus R st
589 Occipital Inf L Pallidum L wk
590 Occipital Inf L Temporal Pole Sup R wk
591 Occipital Inf L Temporal Pole Sup R st
592 Occipital Inf L Cerebelum Crus2 L wk
593 Occipital Inf L Cerebelum 3 R wk
594 Occipital Inf L Cerebelum 4 5 L st
595 Occipital Inf L Cerebelum 9 R wk
596 Occipital Inf R Precuneus R wk
597 Occipital Inf R Thalamus L wk
598 Occipital Inf R Thalamus R wk
599 Occipital Inf R Cerebelum 9 L wk
600 Occipital Inf R Vermis 3 wk
601 Occipital Inf R Vermis 6 wk
602 Fusiform L Parietal Sup R wk
603 Fusiform L Precuneus L st
604 Fusiform L Temporal Pole Mid R wk
605 Fusiform L Temporal Inf L st
606 Fusiform L Cerebelum 3 R st
607 Fusiform L Cerebelum 8 R wk
608 Fusiform L Vermis 10 wk
609 Fusiform R SupraMarginal R wk
610 Fusiform R Precuneus L wk
611 Fusiform R Precuneus R wk
612 Fusiform R Temporal Mid L wk
613 Fusiform R Temporal Pole Mid R wk
614 Fusiform R Cerebelum 6 L wk
615 Postcentral L Postcentral R st
616 Postcentral L Parietal Sup R wk
617 Postcentral L Angular R st
618 Postcentral L Paracentral Lobule R wk
619 Postcentral L Thalamus R wk
620 Postcentral L Heschl R wk
621 Postcentral L Temporal Inf R st
622 Postcentral L Cerebelum Crus1 L wk
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Full List of Selected dFC features (continued)

index feat name
623 Postcentral L Cerebelum 4 5 R st
624 Postcentral L Vermis 4 5 wk
625 Postcentral R Parietal Sup L wk
626 Postcentral R Angular L wk
627 Postcentral R Angular R wk
628 Postcentral R Paracentral Lobule L st
629 Postcentral R Putamen L wk
630 Postcentral R Temporal Sup L st
631 Postcentral R Temporal Sup R wk
632 Postcentral R Temporal Mid R wk
633 Postcentral R Temporal Pole Mid L wk
634 Postcentral R Cerebelum Crus1 L wk
635 Postcentral R Cerebelum Crus2 L st
636 Postcentral R Cerebelum 3 R st
637 Parietal Sup L Angular R st
638 Parietal Sup L Temporal Mid L wk
639 Parietal Sup L Temporal Pole Mid L wk
640 Parietal Sup L Temporal Inf L wk
641 Parietal Sup L Cerebelum 6 R wk
642 Parietal Sup L Cerebelum 8 R wk
643 Parietal Sup L Vermis 7 wk
644 Parietal Sup L Vermis 9 wk
645 Parietal Sup R SupraMarginal L wk
646 Parietal Sup R SupraMarginal L st
647 Parietal Sup R Pallidum R wk
648 Parietal Sup R Cerebelum 4 5 L wk
649 Parietal Sup R Vermis 6 wk
650 Parietal Inf L Parietal Inf R wk
651 Parietal Inf L Precuneus R wk
652 Parietal Inf L Heschl L wk
653 Parietal Inf L Temporal Sup L wk
654 Parietal Inf L Temporal Pole Mid L wk
655 Parietal Inf R Angular L wk
656 Parietal Inf R Heschl L wk
657 Parietal Inf R Heschl R wk
658 Parietal Inf R Temporal Sup L wk
659 Parietal Inf R Temporal Sup R wk
660 Parietal Inf R Cerebelum Crus1 L wk
661 Parietal Inf R Cerebelum Crus1 R wk
662 Parietal Inf R Cerebelum Crus2 L st
663 Parietal Inf R Cerebelum 4 5 L wk
664 Parietal Inf R Cerebelum 6 R wk
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Full List of Selected dFC features (continued)

index feat name
665 SupraMarginal L Angular L wk
666 SupraMarginal L Precuneus R wk
667 SupraMarginal L Pallidum L wk
668 SupraMarginal L Heschl R wk
669 SupraMarginal L Heschl R st
670 SupraMarginal L Temporal Mid R wk
671 SupraMarginal L Temporal Pole Mid L st
672 SupraMarginal L Temporal Pole Mid R wk
673 SupraMarginal R Putamen L st
674 SupraMarginal R Pallidum L wk
675 SupraMarginal R Pallidum L st
676 SupraMarginal R Temporal Sup L wk
677 SupraMarginal R Temporal Sup L st
678 SupraMarginal R Cerebelum Crus1 R wk
679 Angular L Precuneus R st
680 Angular L Caudate L wk
681 Angular L Putamen L wk
682 Angular L Temporal Pole Sup L wk
683 Angular L Temporal Mid L wk
684 Angular L Cerebelum 3 L wk
685 Angular L Cerebelum 6 L wk
686 Angular L Vermis 4 5 wk
687 Angular R Precuneus L wk
688 Angular R Precuneus R st
689 Angular R Heschl R wk
690 Angular R Temporal Pole Mid L wk
691 Angular R Temporal Pole Mid L st
692 Angular R Temporal Inf R wk
693 Angular R Cerebelum Crus1 R wk
694 Angular R Cerebelum 3 R wk
695 Angular R Vermis 3 wk
696 Precuneus L Thalamus L wk
697 Precuneus L Heschl R wk
698 Precuneus L Temporal Pole Mid L wk
699 Precuneus L Cerebelum 3 R wk
700 Precuneus L Vermis 1 2 wk
701 Precuneus L Vermis 4 5 wk
702 Precuneus R Putamen L wk
703 Precuneus R Pallidum L st
704 Precuneus R Temporal Mid R wk
705 Precuneus R Temporal Pole Mid L wk
706 Precuneus R Cerebelum 4 5 L st
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Full List of Selected dFC features (continued)

index feat name
707 Precuneus R Vermis 4 5 wk
708 Precuneus R Vermis 4 5 st
709 Paracentral Lobule L Paracentral Lobule R wk
710 Paracentral Lobule L Paracentral Lobule R st
711 Paracentral Lobule L Temporal Pole Sup L wk
712 Paracentral Lobule L Cerebelum Crus2 R wk
713 Paracentral Lobule L Cerebelum 8 L wk
714 Paracentral Lobule L Cerebelum 10 R wk
715 Paracentral Lobule L Vermis 4 5 wk
716 Paracentral Lobule R Cerebelum 10 R wk
717 Paracentral Lobule R Cerebelum 10 R st
718 Paracentral Lobule R Vermis 4 5 wk
719 Caudate L Pallidum L wk
720 Caudate L Thalamus R wk
721 Caudate L Heschl L wk
722 Caudate L Cerebelum 9 R wk
723 Caudate L Vermis 9 wk
724 Caudate R Pallidum L wk
725 Caudate R Temporal Inf R wk
726 Caudate R Cerebelum 6 R wk
727 Caudate R Cerebelum 9 L wk
728 Putamen L Pallidum R wk
729 Putamen L Temporal Inf L wk
730 Putamen L Cerebelum Crus1 R wk
731 Putamen L Cerebelum 6 R wk
732 Putamen L Vermis 4 5 wk
733 Putamen L Vermis 10 wk
734 Putamen R Cerebelum Crus1 L wk
735 Putamen R Cerebelum 7b L wk
736 Pallidum L Heschl R wk
737 Pallidum L Temporal Inf R wk
738 Pallidum L Cerebelum 9 R wk
739 Pallidum L Vermis 1 2 wk
740 Pallidum L Vermis 8 wk
741 Pallidum R Thalamus L wk
742 Pallidum R Temporal Mid L wk
743 Pallidum R Cerebelum 4 5 L wk
744 Pallidum R Cerebelum 6 L wk
745 Pallidum R Cerebelum 9 R wk
746 Thalamus L Thalamus R wk
747 Thalamus L Thalamus R st
748 Thalamus L Temporal Mid R wk
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Full List of Selected dFC features (continued)

index feat name
749 Thalamus L Cerebelum 3 R wk
750 Thalamus L Cerebelum 6 R wk
751 Thalamus L Vermis 7 wk
752 Thalamus R Temporal Inf L wk
753 Thalamus R Cerebelum Crus1 R wk
754 Thalamus R Cerebelum 6 L wk
755 Thalamus R Vermis 1 2 st
756 Thalamus R Vermis 6 wk
757 Heschl L Cerebelum 8 L wk
758 Heschl R Temporal Pole Mid L wk
759 Heschl R Cerebelum Crus2 L wk
760 Heschl R Cerebelum 3 R wk
761 Heschl R Vermis 7 wk
762 Heschl R Vermis 10 wk
763 Temporal Sup L Temporal Sup R st
764 Temporal Sup L Cerebelum Crus1 L wk
765 Temporal Sup L Cerebelum Crus1 R wk
766 Temporal Sup L Cerebelum Crus2 R wk
767 Temporal Sup L Cerebelum 8 L wk
768 Temporal Sup L Vermis 4 5 wk
769 Temporal Sup L Vermis 10 wk
770 Temporal Sup R Cerebelum 4 5 R wk
771 Temporal Sup R Vermis 3 wk
772 Temporal Sup R Vermis 9 wk
773 Temporal Sup R Vermis 10 wk
774 Temporal Pole Sup L Cerebelum Crus2 L wk
775 Temporal Pole Sup L Cerebelum 4 5 R wk
776 Temporal Pole Sup R Cerebelum 3 R wk
777 Temporal Pole Sup R Cerebelum 4 5 L wk
778 Temporal Mid L Temporal Pole Mid R wk
779 Temporal Mid L Cerebelum Crus1 L wk
780 Temporal Mid L Cerebelum 6 L wk
781 Temporal Mid L Cerebelum 6 R wk
782 Temporal Mid L Cerebelum 8 L wk
783 Temporal Mid L Vermis 4 5 wk
784 Temporal Mid L Vermis 7 wk
785 Temporal Mid R Cerebelum Crus1 L wk
786 Temporal Mid R Cerebelum 9 L wk
787 Temporal Pole Mid L Temporal Inf L wk
788 Temporal Pole Mid R Cerebelum 9 L wk
789 Temporal Pole Mid R Vermis 3 wk
790 Temporal Inf L Cerebelum Crus1 R wk
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Full List of Selected dFC features (continued)

index feat name
791 Temporal Inf L Cerebelum 7b L st
792 Temporal Inf L Vermis 7 wk
793 Temporal Inf R Cerebelum 7b R wk
794 Temporal Inf R Cerebelum 8 R wk
795 Temporal Inf R Vermis 3 wk
796 Cerebelum Crus1 L Cerebelum Crus1 R wk
797 Cerebelum Crus1 L Cerebelum Crus1 R st
798 Cerebelum Crus1 L Cerebelum 4 5 R st
799 Cerebelum Crus1 L Cerebelum 8 L st
800 Cerebelum Crus1 L Cerebelum 8 R st
801 Cerebelum Crus1 L Vermis 4 5 st
802 Cerebelum Crus1 R Cerebelum Crus2 L wk
803 Cerebelum Crus1 R Vermis 9 wk
804 Cerebelum Crus2 L Cerebelum 6 R wk
805 Cerebelum Crus2 L Cerebelum 9 R wk
806 Cerebelum Crus2 L Vermis 4 5 wk
807 Cerebelum 3 L Cerebelum 4 5 R st
808 Cerebelum 3 L Vermis 3 wk
809 Cerebelum 3 R Cerebelum 6 R wk
810 Cerebelum 3 R Cerebelum 8 R wk
811 Cerebelum 3 R Cerebelum 10 L st
812 Cerebelum 3 R Vermis 4 5 wk
813 Cerebelum 4 5 L Cerebelum 8 R wk
814 Cerebelum 4 5 L Cerebelum 9 R wk
815 Cerebelum 4 5 L Vermis 10 wk
816 Cerebelum 6 L Cerebelum 9 R wk
817 Cerebelum 6 L Vermis 1 2 wk
818 Cerebelum 6 R Cerebelum 8 L wk
819 Cerebelum 6 R Cerebelum 9 L wk
820 Cerebelum 6 R Vermis 6 st
821 Cerebelum 6 R Vermis 7 wk
822 Cerebelum 7b L Cerebelum 8 R st
823 Cerebelum 8 L Cerebelum 10 R st
824 Cerebelum 8 L Vermis 6 wk
825 Cerebelum 8 L Vermis 9 wk
826 Cerebelum 8 L Vermis 10 wk
827 Cerebelum 8 R Cerebelum 10 L wk
828 Cerebelum 8 R Cerebelum 10 R wk
829 Cerebelum 8 R Vermis 7 wk
830 Cerebelum 8 R Vermis 8 st
831 Cerebelum 8 R Vermis 9 st
832 Cerebelum 9 L Vermis 4 5 wk
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Full List of Selected dFC features (continued)

index feat name
833 Cerebelum 9 L Vermis 9 st
834 Cerebelum 9 L Vermis 10 wk
835 Cerebelum 9 R Vermis 9 wk
836 Cerebelum 10 L Cerebelum 10 R st
837 Cerebelum 10 R Vermis 10 wk
838 Vermis 1 2 Vermis 3 st
839 Vermis 7 Vermis 9 wk
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