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INTERROGATING AUTISM FROM A MULTIDIMENSIONAL PERSPECTIVE: 

AN INTEGRATIVE FRAMEWORK

Mohamed T. Ali

April 3, 2023

Autism Spectrum Disorder (ASD) is a condition characterized by social and be-

havioral impairments, affecting a pproximately 1  i n  e very 4 4  c h ildren i n  t h e United 

States. Common symptoms include difficulties in communication, interpersonal inter-

actions, and behavior. While symptoms can manifest as early as infancy, obtaining 

an accurate diagnosis may require multiple visits to a pediatric specialist due to 

the subjective nature of the assessment, which may yield varying scores from differ-

ent specialists. Despite growing evidence of the role of differences i n  b r ain develop-

ment and/or environmental and/or genetic factors in autism development, the exact 

pathology of this disorder has yet to be fully elucidated by scientists. At present, 

the diagnosis of ASD typically involves a set of gold-standard diagnostic evaluations, 

such as the Autism Diagnostic Observation Schedule (ADOS), the Autism Diagnos-

tic Interview-Revised (ADI-R), and the more cost-effective S o cial R e sponsive Scale 

(SRS). Administering these diagnostic tests, which involve assessing communication 

and behavioral patterns, along with obtaining a clinical history, requires the exper-

tise of a team of qualified c  l inicians. T h is p r ocess i s  t ime-consuming, e ffortful, and 

involves a degree of subjectivity due to the reliance on clinical judgment. Aside 

from conventional observational assessments, recent developments in neuroimaging 

and machine learning offer a  f ast a nd o bjective a lternative f or d iagnosing ASD using 

brain imaging. This comprehensive work explores the use of different imaging modal-
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ities, namely structural MRI (sMRI) and resting-state functional MRI (rs-fMRI), to

investigate their potential for autism diagnosis. The proposed study aims to offer a

new approach and perspective in comprehending ASD as a multidimensional problem,

within a behavioral space that is defined by one of the available ASD diagnostic tools.

This dissertation introduces a thorough investigation of the utilization of feature en-

gineering tools to extract distinctive insights from various brain imaging modalities,

including the application of novel feature representations. Additionally, the use of

a machine learning framework to aid in the precise classification of individuals with

autism is also explored in detail. This extensive research, which draws upon large

publicly available datasets, sheds light on the influence of various decisions made

throughout the pipeline on diagnostic accuracy. Furthermore, it identifies brain re-

gions that may be impacted and contribute to an autism diagnosis. The attainment

of high global state-of-the-art cross-validated, and hold-out set accuracy validates the

advantages of feature representation and engineering in extracting valuable informa-

tion, as well as the potential benefits of employing neuroimaging for autism diagnosis.

Furthermore, a suggested diagnostic report has been put forth to assist physicians in

mapping diagnoses to underlying neuroimaging markers. This approach could enable

an earlier, automated, and more objective personalized diagnosis.
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The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) characterizes 
Autism Spectrum Disorders (ASD) as neurodevelopmental disorders that share com-
mon impairments in social communication and interactions, as well as restricted and 
repetitive behavioral patterns [1]. Moreover, ASD is identified as a heterogeneous 
neurodevelopmental disorder with a strong genetic basis and varied clinical presenta-
tions [2]. The severity of symptoms, language and cognitive abilities, and symptom 
patterns distinguish the three subtypes of ASD, including ASD, Asperger’s disorder, 
and pervasive developmental disorder–not otherwise specified [3].

According to the Centers for Disease Control and Prevention (CDC), a recent 
statistic reported in 2021 showed that 1 in 44 children in the United States were 
diagnosed with autism in 2018. This represents a significant increase of 127% from 
the numbers reported in 2016, 155% from the numbers in 2010, and 241% since 2000. 
Figure 1 depicts the rising trend of autism diagnosis in the US [4]. The financial 
burden of autism, including direct medical and non-medical expenses, amounted to 
265 billion dollars in 2015, and it is projected to increase to 461 billion by 2025 [4]. 
Identifying co-occurring conditions at the earliest possible stage could lead to better 
services and earlier interventions, which could benefit children with ASD. Addition-
ally, ASD imposes significant demands on the medical, social, and political aspects 
of any nation [5].

To explore various types of abnormalities associated with ASD, several mag-
netic resonance imaging (MRI) based modalities have been employed, including (i) 
structural MRI (sMRI) [6] to investigate anatomical features, (ii) functional MRI 
(fMRI) [7] to examine brain activity either during rest or task performance, and (iii) 
diffusion tensor imaging (DTI) to study brain connectivity [8, 9].

Autistic symptoms generally emerge within the first two years of life, with early 
signs detectable in infants as young as 12 months old. Despite this, the average age 
of ASD diagnosis is approximately five years [10, 11]. The current standard for ASD 
diagnosis relies on behavior observation tests conducted by clinicians, such as the 
Autism Diagnostic Observation Schedule (ADOS) [12], Autism Diagnostic Interview-
Revised (ADI-R) report [13], or Social Responsiveness Scale (SRS). However, these 
methods can be time-consuming, require specialized training, and can be subjective 
in their assessment [10].

1 Current Autism Diagnosis Techniques

The current gold standard for diagnosing ASD involves using a combination of the 
Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-
Revised (ADI-R) [14]. These methods involve interviewing the individual and scoring
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Figure 1. The graph displays a steady increase in the prevalence of autism among
children in the United States with respect to each surveillance year.

them based on various behavioral traits related to social reciprocity, communication,
and repetitive behavior [14, 15]. While considered the gold standard, the ADOS and
ADI-R require extensive training and are time-consuming, and can be subject to bias
based on the clinician’s experience, patient behavior, and parent knowledge [1,16–18].
Moreover, given the wide range of symptoms associated with ASD, it can be challeng-
ing to identify individuals who may have the disorder [17]. An alternative diagnostic
tool is the Social Responsiveness Scale (SRS), which is an objective, efficient, and
cost-effective method increasingly being used as a clinical screening without an in-
strument [19,20]. In the following subsections, we will briefly discuss each diagnostic
module.

ADOS

The Autism Diagnostic Observation Scale (ADOS) is a well-established diagnostic
instrument utilized to assess social, communicative, and imaginative deficiencies in
individuals with ASD [1]. It is a widely recognized tool that is primarily focused
on evaluating social and communication impairments, which are the most prominent
indicators of ASD. To cater to different age groups, the ADOS is available in five
different modules, each designed for specific age groups and tasks. To be diagnosed
with ASD, individuals suspected of having the disorder must undergo standardized
assessments of social interaction, play, and imaginative use of materials using the
appropriate module. However, the main limitation of this diagnostic tool is that the
individual administering and scoring the test must undergo special training to ensure
reliability and validity of the results.

2



ADI-R

The Autism Genetic Research Exchange has defined the Autism Diagnostic Interview-
Revised (ADI-R) as a parent interview, which includes ninety-three items that assess
the child’s behavior across three domains: social interactions, communication and lan-
guage, and repetitive behaviors. The ADI-R also includes items related to treatment
planning, such as self-injury and overactivity. The assessment is mainly dependent
on parents’ responses and scores are assigned for each of the three domains. A di-
agnosis of autism is made when a child meets or exceeds the specified cutoffs in all
three domains of communication, social interaction, and patterns of behavior, and
the disorder has manifested by 36 months of age.

SRS

The Social Receptivity Scale (SRS) is a diagnostic tool used to measure the severity of
social deficits and associated symptoms in individuals with ASD based on responses
from parents or teachers. The scale was specifically designed to be completed after a
quick training session and takes approximately 15-20 minutes to complete [19]. The
SRS employs a quantitative approach to measure the full range of autistic symptoms
that occur in nature using a 65-item rating scale. The initial rating obtained from
the SRS serves as an indication of the severity of the individual’s autistic symptoms.

Limitations of Current Techniques

Although no medical test exists for diagnosing autism, evaluators use a combination
of observations, feedback from parents, and tests designed to assess the child’s skills
and behaviors across various developmental domains. However, these methods are
subjective, time-consuming, and challenging, and their accuracy is limited to around
80%-85% [21]. Furthermore, clinicians may not always agree with the results due to
grading biases [22].

Clinicians and researchers have been using various metrics to measure the sever-
ity of autism, reflecting their ongoing efforts to find valid measures for capturing the
construct of ASD severity. Currently, the gold standard for diagnosing autism spec-
trum disorders is behavioral observational testing by a clinician, which is subjective,
time-consuming, and cannot detect autism before the child reaches at least two years
old [10,11].

The severity of autism is highly correlated with age, cognitive abilities, and lan-
guage abilities [23]. As such, many measures reflect the developmental characteristics
of children, rather than inherent autistic traits, casting doubt on their validity. There-
fore, there is a motivation to develop a quantitative, objective alternative based on
neuroimaging that can provide a less subjective evaluation, potentially leading to
faster and more reliable diagnoses for clinicians [17,18].

2 Objectives

The main objectives of this dissertation are:

3



• to present a promising machine learning (ML) framework for autism diagnosis,
which has been tested on publicly available datasets such as ABIDE-I and
ABIDE-II, and can be extended to other datasets.

• to develop a unified perspective for solving autism diagnosis using different
imaging modalities, namely, structural magnetic resonance imaging (sMRI) and
functional magnetic resonance imaging (fMRI).

• to introduce a different perspective to observe Autism Spectrum Disorder (ASD),
which considers the disorder’s heterogeneity.

• to introduce Neuroatlases that deconstruct ASD into behavioral components.

• to introduce a technique to map alterations in the brain cortex to corresponding
behavioral disorders, which is then mapped to the severity of ASD.

• to develop an ML framework that diagnoses ASD in two stages, mimicking the
clinical settings of diagnosing ASD.

In the next subsections, we will provide details about the main imaging modalities
and tools utilized in this dissertation.

3 Brain Imaging in Autism Diagnosis

MRI is considered to be the most powerful noninvasive clinical diagnostic tool, as it
provides the best comparison of soft tissue among all image modalities, making it
the most useful modality for imaging the brain [24]. It offers three main modalities:
sMRI, DTI, and fMRI. sMRI has been used to study the morphological brain changes
in ASD, including the shape and volume of different brain regions. DTI provides in-
formation on anatomical connections and has revealed disorganized micro-structural
WM integrity in individuals with ASD. On the other hand, fMRI is used to detect
dynamic physiological information from active brain regions by measuring the change
in Blood Oxygenation Level-Dependent (BOLD) signal in various brain states, such
as resting state or task-evoked states, which can reveal functional architecture abnor-
malities in the ASD population [25,26].

Structural MRI (sMRI)

sMRI is widely used in non-research medical settings, as it provides exquisite detail
of the brain, spinal cord, and vascular anatomy in all three planes [24]. The magnetic
resonance imaging (MRI) technique measures the relaxation time of tissue, which can
be divided into two categories, T1 and T2. The longitudinal relaxation time (T1)
determines how quickly excited protons return to equilibrium, while the transverse
relaxation time (T2) is the time constant that determines how quickly excited protons
reach equilibrium or fall out of phase with each other. T1-weighted and T2-weighted
MRI scans can be obtained by selecting the time to echo (TE) and the repetition
time (TR) accordingly. T1-weighted images use a short TE time and TR time,
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Figure 2. This image depicts a structural magnetic resonance imaging (sMRI) scan
of the head, exhibiting intricate anatomical features of the brain as seen in three
planes: sagittal, coronal, and axial.

while T2-weighted images are obtained using longer TE and TR. Each type of scan
weighs a different characteristic of the tissue (T1 / T2). sMRI is a specific type
of MRI that reveals anatomical information of each tissue type, distinguishing gray
matter (GM), white matter (WM), cerebrospinal fluid (CSF), and other structures.
The output features usually include shape and morphological and geometric features,
such as cortical thickness, surface area, volume, and curvature measures, which are
relevant for studying changes in brain structure associated with autism [24]. Figure 2
illustrates sMRI and its capabilities.

Functional MRI (fMRI)

Using functional imaging, it is possible to identify areas of the brain and the un-
derlying processes that enable a particular cognitive or behavioral function to be
performed. It is possible to make inferences about brain function and location based
on the type of signal being analyzed. There is still a long way to go before fMRI is
widely used in clinical practice.

fMRI is a technique that enables the study of brain activation patterns in re-
sponse to certain stimuli, as well as the identification of brain hemodynamic changes
that correspond to changes in mental activity [27]. By using functional imaging, re-
searchers can identify brain regions and underlying processes that enable a particular
cognitive or behavioral function to be performed. This method allows for inferences
to be made about brain function and location based on the type of signal being an-
alyzed. However, despite its potential, fMRI still has a long way to go before it is
widely used in clinical practice.

Functional MRI utilizes the Blood Oxygenation Level-Dependent (BOLD) signal,
which is based on the fact that the harder a specific area of the brain works while
performing a given task, the greater its metabolic demand [28]. As metabolic func-
tion increases, vessels in a particular brain region may dilate, resulting in a shift in
the gradient between highly oxygenated and highly deoxygenated hemoglobin in the
capillaries, leading to a detectable change in the MRI signal. In this way, we can in-
directly measure brain activity based on the physiological changes that occur within
the brain. This method allows researchers to match various neuronal activities with
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BOLD signals and invasively learn how the brain is functioning [29].

Diffusion Tensor Imaging (DTI)

DTI is a non-invasive imaging technique that enables the examination of the structure
of white matter tracts in vivo by measuring the diffusion of water molecules within
the brain. This provides a macroscopic view of the white matter structure within
the voxel being imaged. DTI requires the use of magnetic gradients in at least six
non-collinear directions, in addition to a base volume, for proper DTI construction.
Using this approach, a 3x3 diffusion tensor matrix can be calculated at each voxel,
with each element representing diffusion across one direction, such as xx or xy [30].

𝐷 =


𝐷𝑥,𝑥 𝐷𝑥,𝑦 𝐷𝑥,𝑧

𝐷𝑦,𝑥 𝐷𝑦,𝑦 𝐷𝑦,𝑧

𝐷𝑧,𝑥 𝐷𝑧,𝑦 𝐷𝑧,𝑧


To find the principal diffusion directions and strength, the 3 eigenvalues 𝜆1, 𝜆2

and 𝜆3 and their corresponding eigenvectors 𝑣1, 𝑣2 and 𝑣3 are calculated, where the
eigenvector corresponding to the largest eigenvalue is the principle diffusion direction
(i.e, diffusion in across the fiber), while the other two eigenvectors correspond to the
radial diffusion directions (i.e, diffusion perpendicular to the fiber) [31]. A special
case is an isotropic medium, where the diffusion ellipsoid takes the shape of a sphere
because 𝜆1 = 𝜆2 = 𝜆3. While in the case of an anisotropic medium, the diffusion is
represented as an ellipsoid as shown pointing in the 𝑣1 direction with 𝜆1. Figure 3
illustrates the resulting representation. In addition, another representation is DTI
tractography, where major tracts or bundles from a region of interest (ROI) can be
tracked, and 3D color-coded maps can be visualized, with each color representing a
different direction (x / y / z) of fiber crossing, see Figure 4.

DTI is a non-invasive technique that uses the diffusion of water molecules within
white matter (WM) tracts to visualize WM structures in vivo. This is accomplished
by applying magnetic gradients in at least 6 non-colinear directions, in addition to
a base volume, to construct a 3x3 diffusion tensor matrix at each voxel, with each
element representing diffusion across one direction. The most commonly used DTI
metrics are Mean Diffusivity (MD) and Fractional Anisotropy (FA). MD is related
to cellular density, while FA captures the directional changes of diffusion and repre-
sents the degree of alignment of WM tracts and cellular structure, ranging from 0
(random or isotropic) to 1 (unidirectional or anisotropic). Other parameters include
Axial Diffusivity (AD) and Radial Diffusivity (RD), which respectively measure the
diffusion in a direction parallel and perpendicular to WM tracts, and are related to
axon and myelin integrity [32–34].

WM tracts are composed of axons that transmit signals between different brain
regions. Dysmaturation of myelination in individuals with autism spectrum disorder
(ASD) has been associated with alterations in synaptogenesis and changes in axonal
fiber density, caliber, and homogeneity. These changes lead to impairments in the
microstructural organization and integrity of WM [26,35,36].
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Figure 3. The ellipsoid model is utilized to visually represent the diffusion tensor in
this graphic, which is determined by three eigenvectors that specify the orientation of
the ellipsoid in three dimensions and three eigenvalues that define the primary axes
values of the ellipsoid.

Figure 4. This image showcases tractography of the white matter tracts using
diffusion tensor imaging (DTI).

4 Computer Aided Diagnosis (CAD) using Machine Learning (ML)

Obtaining an early and accurate diagnosis is of utmost importance in mitigating the
worsening of a condition and enhancing prognostic outcomes [37–39]. Computer-
aided algorithms have been developed to aid clinicians in achieving early and pre-
cise diagnoses. A computer-aided diagnosis (CAD) generally involves three primary
stages: feature extraction, feature reduction, and classification. Feature extraction
is contingent on the type of medical data employed, with distinct feature extraction
approaches and data representations for each data modality. After appropriate data
representation and feature extraction, feature reduction and machine learning remain
areas that could benefit from further enhancements and algorithms. The following
section will introduce the fundamental concepts and types of both feature reduction
and machine learning stages.
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Dimensionality Reduction: importance and techniques

Effective reduction of high-dimensional feature space is a critical aspect of medical
computer-aided diagnosis (CAD) systems that rely on machine learning algorithms.
The ”curse of dimensionality,” as described by Bellman [40], refers to the exponential
increase in complexity resulting from the addition of new dimensions to the feature
space, which is common in MRI imaging research and medical data where the feature
space is extremely large, creating potential for over-fitting. To address this issue, sev-
eral techniques for feature reduction have been developed, including principal compo-
nent analysis (PCA), linear discriminant analysis (LDA), and autoencoders [41–43].
However, these methods do not always retain the semantic meaning of the original
feature space, making it challenging to identify clinical findings underlying classifica-
tion results. As a result, feature selection methods that preserve the original feature
space’s semantics have gained attention for more practical use by physicians to better
understand pathological abnormalities in autistic brains. Therefore, efficient feature
selection techniques, which typically incorporate filtering techniques, are introduced
in the following sections [41–43].

𝐹 =
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

Kernel F-score is a feature selection technique that involves using one-way
ANOVA F-test to compute a scoring function for each feature in the input 𝑋. The
computed scores are then used to select a subset of the features that are deemed most
significant for classification purposes. Specifically, the first 𝐾 features with the high-
est scores in 𝑋 are retained. The significance of a large score is attributed to the lack
of equality in the means of the 𝐾 groups, thereby providing ’distinctive’ information.
The F-score is calculated as the ratio of ”between group variance” to ”within group
variance”. Medical datasets with high dimensional feature spaces have been shown
to benefit from using F-score values as a feature selection method [44].

The Recursive feature elimination (RFE) is a technique used for feature
reduction that ranks features based on their importance and removes the least im-
portant ones in an iterative manner. The RFE method is designed to improve gener-
alization performance by removing less important features that have the least effect
on training errors. This method employs a classifier as a kernel, which assigns weights
to features or determines their importance, and recursively eliminates a small number
of features at each step. The performance of the RFE depends on the estimator used
for training at each step. Many kernels are used in literature, including the commonly
used supported vector machine (SVM).

The RFE-CV is another variant of the RFE method that uses cross-validation to
determine the performance of the estimator at each step. This variant helps to avoid
over-fitting and leads to better generalization performance, albeit with more training
time due to the need for k-fold cross-validation computations. Several studies in
the literature have shown the effectiveness of the RFE method for feature selection
in medical datasets, with SVM-based RFE being one of the most commonly used
variants [45,46].
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Machine learning (ML) techniques

ML involves the use of artificial learning mechanisms to replicate human thinking and
problem-solving processes. As an essential component of AI, it employs a large volume
of data points to enable machines to predict, categorize, and identify patterns. The
three primary types of ML are supervised, unsupervised, and reinforcement learning.
Supervised learning relies on labeled input-output pairs to classify data, where each
input corresponds to a ground truth output. A case in point is the supervised clas-
sification of diseases, where labeled subsets are used to train the model and labeled
testing subsets for evaluation. Unsupervised learning, in contrast, categorizes data
without the aid of labeled input-output pairs. Instead, it employs the patterns inher-
ent in the input data to efficiently categorize them. Reinforcement learning employs
positive/negative reward signals instead of labeled input-output pairs to teach ma-
chines. This type of ML is the most similar to human learning as it involves learning
by reinforcement.

Supervised learning, which is the central focus of this study, includes classification
as an example. A broad range of classifiers exists, such as SVM, RF, LR, ANN,
and others. In addition to traditional machine learning methods, deep learning has
gained considerable attention and demonstrated significant potential in many medical
applications. Among the most widely used deep learning architectures are CNNs,
which incorporate convolutional and fully connected layers to perform both feature
extraction and classification. CNNs have demonstrated superiority over traditional
algorithms in image recognition tasks. However, due to their complexity, CNNs are
computationally intensive and often challenging to interpret

In this dissertation, a range of machine learning algorithms were employed. Below,
we provide an overview of some of the classifiers used in this work:

• K-Nearest Neighbor (KNN):

The K-nearest neighbors (KNN) classifier is a machine learning algorithm that
assigns data points to one of K groups based on their proximity to the nearest
data points, as measured by a specified distance metric. The choice of the
parameter ’K’ and the distance metric are critical and need to be determined
before training. KNN is highly sensitive to the quality of the input data, and it
is essential to preprocess and normalize the data to achieve optimal performance

• Näıve Bayes:
Naive Bayes is a probabilistic classification algorithm that utilizes Bayes theo-
rem to determine the posterior likelihood and classify unstructured data based
on it. This approach assumes that the predictors are independent, which is not
always true in practice. Despite this simplification, Naive Bayes has shown high
accuracy and is particularly useful for text classification and spam filtering.

• Logistic Regression (LR):
LR is a popular classification algorithm that has been widely used for many
decades. Unlike traditional regression models, it uses a logistic function to
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model the relationship between input variables and the probability of belong-
ing to a specific class. LR is highly regarded in the medical field due to its
interpretability and ability to identify the contribution of individual predictors
to the classification outcome.

• Random Forest (RF):
Random forest is a popular ensemble learning method based on decision trees
that is often used for classification and regression tasks. It works by constructing
multiple decision trees on bootstrap samples of the data and then combining
their predictions through majority voting or averaging. Each tree in the forest
is built using a random subset of features, which helps to reduce variance and
prevent overfitting. Random forest has been shown to be a powerful classifier
in various applications, including medical diagnosis.

• Support Vector Machines (SVM):
The SVM is a popular classifier that is often used in high-dimensional spaces,
especially when the number of dimensions is greater than the number of samples.
Essentially, an SVM algorithm attempts to locate a hyperplane in the feature
space of N dimensions, which separates the data points in a clear manner. The
performance of the SVM depends significantly on the choice of the SVM kernel,
which is a crucial function of the SVM. The kernel function maps the original
data set into a higher-dimensional space, where the algorithm constructs a
hyperplane to divide the data set into classes based on its spatial distribution

• Passive Aggressive classifier:
The algorithm is named based on its two distinct mechanisms: 1) Passive:
the model remains unchanged if the prediction is accurate, meaning that the
example data is insufficient to alter the model. 2) Aggressive: the model is
modified if the prediction is inaccurate, allowing for adjustments to improve
the model.

• XGBoost:
The framework of extreme gradient boosting (XGBoost) is aimed at regularizing
gradient boosting and is an open-source library. By using gradient boosting,
which is an ensemble learning approach that combines the outputs from several
decision trees, XGBoost calculates a prediction score.

• Artificial Neural Networks (ANN):
ANNs are modeled after the human brain and are well-suited for processing
large and complex datasets. The basic units of ANNs are nodes, which function
similarly to neurons, and they are connected to multiple inputs to generate the
target output through multiple layers. Each node has the ability to approximate
any continuous function on its direct input. Initially, the weights for the nodes
are randomly assigned and then iteratively adjusted to optimize the output
for all data points. ANNs have demonstrated great success in a variety of
applications, such as computer vision, natural language processing, and speech
recognition.
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Performance Measures

Various metrics are utilized to evaluate the performance of ML components for autism
diagnosis. In the subsequent sections, we will provide a concise summary of these
metrics.

The performance of ML components is commonly evaluated using various metrics
to assess the accuracy of autism diagnosis. In order to define these metrics, we use
the following notations: TP represents true positive, TN represents true negative, FN
represents false negative, and FP represents false positive. The performance metrics
are described below:

• Specificity: 𝑇𝑁
𝐹𝑃+𝑇𝑁

• Sensitivity (recall): 𝑇𝑃
𝑇𝑃+𝐹𝑁

• Accuracy: 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

• F1-score: 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 = 2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁

• Balanced Accuracy Score: 1
2 (

𝑇𝑃
𝑃𝑜𝑠

+ 𝑇𝑁
𝑁𝑒𝑔

)

• Precision: 𝑇𝑃
𝑇𝑃+𝐹𝑃

• The area under the curve (AUC) of the receiver operating characteristics (ROC)
is a commonly used metric to evaluate the performance of binary classification
models. The AUC is a value between 0 and 1, where a higher value indicates
better performance. An AUC of 1 indicates perfect classification, while an AUC
of 0.5 indicates that the model is not performing better than random chance.

5 Dissertation Organization

In this thesis, six sections are comprised, and the following statements provide an
overview of the contents in each section.:

Chapter II: The present chapter provides an overview of recent publications that
have utilized statistical analysis and machine learning techniques to predict or identify
Autism Spectrum Disorder (ASD) based on MRI data. The chapter critically reviews
recent advancements towards understanding ASD using both structural MRI (sMRI)
and functional MRI (fMRI) imaging modalities. The literature review presented in
this chapter emphasizes the unique contribution of this dissertation to the existing
body of knowledge.

Chapter III: In this chapter, a solution is presented for the understanding and di-
agnosis of ASD. The proposed solution consists of a framework that includes prepro-
cessing steps, feature extraction, feature selection, and ML training and optimization.
The main objective of this framework is to identify the brain regions that have the
strongest correlation with ASD and to utilize those regions for diagnosis. To evaluate
the proposed framework, it was applied to the ABIDE I dataset, which is a publicly
available dataset comprising 664 subjects after quality control.
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Chapter IV: In this chapter, a second and optimized solution for ASD diagnosis is
introduced, taking into account the heterogeneity of the disorder. Similar to the first
solution, this chapter proposes an ML framework that includes a preprocessing step,
feature extraction, feature selection, and training and optimization steps. However,
it adds a two-step classification process that considers the behavioral components of
the disorder. The first step divides the disorder into its behavioral components, and
the second step aggregates the classifications of each component to produce a final
diagnosis for each subject. The proposed framework is applied to ABIDE II, which
consists of 1038 subjects after quality control.
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Magnetic-Resonance Imaging (MRI) has made in-vivo brain studies possible. The 
first MRI study of autism was published in the late 1980s by Gaffney et al. [47] and 
Courchesne et al. [48], and since then, hundreds of studies have been conducted. 
Structural MRI (sMRI) examination is widely used to investigate brain morphology 
due to its high contrast sensitivity and spatial resolution, as well as its non-invasive 
nature, which is especially important for children and adolescents [49]. Different MRI 
modalities have been utilized to investigate the effect of ASD on the brain, including 
sMRI, fMRI, and/or DTI. sMRI has been used by studies that focus on the geometry 
of the cerebral cortex and brain morphology [50–52]. Two major types of structural 
imaging studies exist depending on the features used: geometric features, such as 
surface area, circumference, curvature, and thickness, which are 2D-surface features 
related to the brain cortex [53], and volumetric features, which refer to the volume of 
subcortical structures such as the hippocampus, putamen, thalamus, etc. [54]. On the 
other hand, functional MRI (fMRI) has been used by studies investigating alterations 
in brain activation between ASD and typically developed (TD) groups [7]. Functional 
imaging studies can be divided into two broad types: task-based fMRI and resting-
state fMRI. Task-based fMRI studies involve the study of functional activities and 
cognitive behaviors of the brain based on the induced stimulus by tasks [55]. On 
the other hand, DTI, which is the most recent submodality used in ASD studies, is 
concerned with the analysis of the structural connectivity of the brain white matter 
(WM) [56]. It characterizes the diffusion of water molecules in biological tissues and 
examines normative white matter (WM) development, as well as neurodevelopmental 
and neurodegenerative disorders [57, 58]. While early theories about autism were 
structurally based, sMRI remains widely used in current studies to investigate brain 
morphology due to its high contrast sensitivity and spatial resolution, as well as its 
safety for children and adolescents [49]. This is particularly relevant since the earliest 
theories about autism proposed that individuals with autism might have a larger brain 
volume than their typically developing peers, known as the big brain theory [59–61]. 
Another theory rooted in neuropathology, the minicolumnar pathology in autism, also 
has implications for large-scale anatomy [62]. Therefore, in this study, we focused on 
sMRI as the primary imaging modality for investigating the effects of ASD on brain 
morphology.

Following the pioneering work of Gaffney et al. [47] and Courchesne et al. [48], 
subsequent studies on autism and the brain have honed in on specific structures such 
as the cerebellum [63–65], amygdala [66–68], hippocampus [66, 69, 70], and corpus 
callosum [31,71,72] [73]. Structural MRI (sMRI) has enabled researchers to examine 
structural changes in the brains of individuals with ASD, utilizing analytical methods
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such as voxel-based morphometry (VBM) and surface-based morphometry (SBM)
[50]. VBM-based studies focus on tissue density and volume, while SBM studies
concentrate on the intrinsic topology of the cerebral cortex, which cannot be measured
directly with VBM [50,51].

The proposed study aims to investigate cortical morphology differences between
individuals with ASD and typically developed individuals, and therefore is classified
as an SBM study. Prior research suggests that multiple aspects of cerebral morphol-
ogy differ between ASD brains and TD brains, including cortical thickness, surface
area, and folding pattern. These features are associated with dendritic arboriza-
tion, the number of minicolumns, and intrinsic and extrinsic connectivity. Therefore,
examining the relationships between these features can provide insight into the mul-
tifactorial etiologies of ASD. Previous SBM studies have utilized cortical morphology
to identify statistical differences between TD and ASD brains, and some have used
machine learning algorithms to develop predictive models of ASD. [2, 17, 52,74–85].

The Autism Brain Imaging Data Exchange (ABIDE) has provided researchers
with access to large datasets, which has resulted in an increase in publications that
combine machine learning (ML) with various neuroimaging biomarkers. The objective
of these studies is to reduce subjectivity and establish a more objective data-driven
approach to identify, classify, and predict the prognosis of children with ASD [11].

The purpose of this chapter is to provide a comprehensive review of recent publica-
tions that use machine learning (ML) methods to predict or identify autism spectrum
disorder (ASD) based on MRI, with a particular focus on functional imaging (fMRI)
studies published in the last five years. Electronic databases, including PubMed and
Google Scholar, were manually searched until July 2022 using specific search terms.
The eligibility criteria included original research articles, published or accepted for
publication, and available online in English. The studies compared a group of ASD
individuals with a group of typically developed controls, and age- or sex-based studies
were included. Studies that compared ASD with other neuro-developmental, cogni-
tive, or psychiatric disorders such as Attention-Deficit Hyperactive Disorder (ADHD)
were excluded. The review focused on sMRI and fMRI studies that used ML algo-
rithms with neuroimaging data as a biomarker for differentiating ASD individuals
from typically developed controls. Other imaging modalities such as structural MRI,
MR spectroscopy, or positron emission tomography were excluded from the data ex-
traction process. Narrative, systematic reviews, meta-analyses, and case reports were
excluded from data extraction but used as reference searches.

1 Structural MRI (sMRI)

In 1943, Kanner’s seminal publication on ASD described the condition as character-
ized by cognitive and behavioral difficulties without any consistent cerebral dysmor-
phology, which has intrigued the scientific community ever since [86]. Understanding
abnormal brain structures or dysfunctions in individuals with ASD is crucial for the
development of effective diagnostic and treatment strategies. However, the behavioral
approach used to diagnose ASD makes it difficult to identify neurological biomarkers.
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Despite numerous studies, the etiology and pathogenesis of ASD remain unclear, and
it is recognized as a complex multifactorial disorder [87–90]. Therefore, there are
currently no specific drugs available to treat the core symptoms of ASD.

Statistical analysis

Levitt et al. [52] used a 3D mapping of cortical sulcal patterns to analyze brain struc-
ture differences between 21 ASD and 20 TD individuals aged between 7-13 years old.
The authors found significant differences in the position of the superior frontal sulci,
sylvian fissure, superior temporal sulcus, and inferior frontal sulcus in the autistic
group. They concluded that these findings suggest delayed maturation in brain re-
gions involved in memory, emotion processing, language, and eye gaze. Nordahl et
al. [74] utilized surface-based morphometry (SBM) to analyze cortical shapes in ASD
individuals aged between 7.5 to 18 years old. The authors found shape abnormalities
in different regions for low-function ASD, high-function ASD, and Asperger’s syn-
drome groups, which indicates altered early brain development trajectory in autism.
Nunes et al. [75] conducted a longitudinal study on TD and ASD populations within
the age range of 6-30 years old using ABIDE I and ABIDE II data sets. The au-
thors reported age-related changes in cortical thickness (CT) primarily in frontal and
temp-parietal areas, which differed between ASD and TD groups. The linear slope
of CT (curvature) was identified as the most reliable feature for localizing atypical
brain development in ASD. Khundrakpam et al. [2] analyzed the ABIDE I dataset
to determine age-specific differences in cortical thickness and their relationship with
ASD symptoms severity. The authors found increased cortical thickness in ASD, pri-
marily left-lateralized, from six years old onwards, with differences diminishing during
adulthood. These findings suggest a dynamic nature of morphological abnormalities
in ASD.

Recent research suggests that there are significant differences in the developmental
trajectory of the cortex in individuals with ASD compared to those without ASD.
Levitt et al. [52] used 3-dimensional (3D) mapping to study cortical sulcal patterns in
21 ASD and 20 TD individuals aged between 7 to 13 years old. They found significant
differences in the anterior and superior shifting of the superior frontal sulci bilaterally,
anterior shifting of the right sylvian fissure, the superior temporal sulcus, and the left
inferior frontal sulcus in the autistic group relative to the normal group. The authors
suggested that these findings indicate delayed maturation in brain regions involved in
diverse functions, consistent with delayed myelination patterns seen on MRI in ASD.
Nordahl et al. [74] utilized shape-based modeling to examine cortical abnormalities in
a range of ASD individuals aged between 7.5 and 18 years old. They divided the ASD
group into three subgroups based on function and found that all subgroups showed
shape abnormalities in specific regions of the cortex. The authors concluded that
these findings are consistent with the evidence of altered developmental trajectories in
multiple brain regions and identified several regions that may have abnormal patterns
of connectivity in individuals with ASD.

According to recent research, the developmental trajectory of the cortex in indi-
viduals with ASD differs significantly from that of typically developing (TD) individ-
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uals, with altered brain development localized in specific regions. Nunes et al. [75]
conducted a longitudinal study utilizing the ABIDE I and ABIDE II data sets and
found that there were no overall differences in cortical thickness (CT) between the
two groups across the entire age range of 6-30 years old. However, they did report dif-
ferences in age-related changes in CT located mainly in frontal and temporal-parietal
areas, with the curvature being the most reliable feature for localizing atypically
developed brain areas in ASD. Similarly, Khundrakpam et al. [2] studied the incon-
sistencies in cortical abnormalities in ASD using the ABIDE I dataset and included
560 subjects out of 1100 available subjects. They reported increased cortical thickness
in ASD, primarily left lateralized, from six years onwards, with differences decreas-
ing during adulthood. These findings highlight the dynamic nature of morphological
abnormalities in ASD and emphasize the importance of studying brain development
across ages to understand the altered regional trajectories compared to TD individ-
uals.

ML studies

Moradi et al. [91] aimed to predict the severity of ASD symptoms solely based on
cortical thickness, utilizing support vector regression (SVR) and Elastic Net penalized
linear regression. The authors used data from 156 individuals with ASD, between 8 to
40 years old, compiled from four sites in the Autism Brain Imaging Data Exchange
1 (ABIDE-1). They reported an average correlation of 0.51 and an average mean
absolute error of 1.36. Dekhil et al. [92] utilized features from both sMRI and fMRI
modalities, including morphological features from sMRI such as surface area, volume,
thickness, curvature, and folding index, and Person correlation coefficients between
time courses of different brain regions from fMRI. They used 185 subjects obtained
from National Database for Autism Research (NDAR) and reported 75% classification
accuracy using fMRI data only, 79% using sMRI data only, and 81% when fusing
both features together. Yassin et al. [85] performed multi-class classification among
TD, ASD, and schizophrenia subjects, and binary classification between each pair of
classes. They used CT, subcortical structures’ volumes, and surface area as features
for classification, and achieved accuracy of 69% for multi-class classification, 75% for
ASD vs. schizophrenia classification, 75.8% for ASD vs. TD classification, and 70.6%
for schizophrenia vs. TD classification. Ali et. al. [93] proposed a feature selection
algorithm to select the most relevant morphological features to ASD, utilizing ABIDE
I dataset and achieving accuracy of 82% using neural networks and 72% using support
vector machines. Gao et. al. [94] proposed a combination of convolutional neural
network (CNN) and individual structural covariance network to classify ASD, utilizing
subjects from ABIDE I dataset and achieving accuracy of 71.8
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The aim of this chapter is to present a comprehensive ML model to detect imaging 
markers for autism, and then utilize these imaging markers to train a set of linear and 
non-linear classifiers to distinguish between ASD and TD. The main motivations 
behind using solely morphological features which are extracted from the brain cor-tex, 
while neglecting the subcortical structures, are (i) segmentation of subcortical 
structures is more challenging and prone to error more than the cortex segmentation, 
and (ii) most of the significant findings in the literature are achieved by utilizing the 
SBM methods. The proposed model defines a global neuro-atlas annotating all the 
brain regions associated with ASD among all subjects of the data set, as well as, a local 
neuro-atlas for each site independently. Neuro-atlases are built via employing 
sophisticated a machine learning algorithm utilizing different classifiers, recursive fea-
ture elimination with cross-validation (RFECV) using four different classifiers (SVM 
with linear kernel (LSVM), RF, LR with 𝑙1-norm (Lg1), LR with 𝑙2-norm (Lg2)). 
Eventually, a training step via three linear and five non-linear classifiers. Further-
more, the proposed model utilizes features extracted only from the brain cortex such as 
curvature, CT, surface area, and volume. In this chapter, we try to avoid the lim-
itations existed in the aforementioned literature such as working on a small sample size 
[79, 85], or neglecting the heterogeneity of the ASD [7, 84]. Furthermore, as it was 
previously mentioned that age is a significant confounding variable on ASD, we 
adjusted our data to account for the effect of age on the extracted brain features. 
Consequently, in this chapter, we are utilizing the ABIDE I data set [95], which com-
prises 1112 subjects collected from different sites/hospitals in the US. In this chapter, 
we are answering the question of whether a site-based classification, i.e., local model, 
would improve the classification accuracy over a one ML model for the whole set. 
Moreover, we study if there would be any common features between the selected 
features from each site, and the selected feature from the global model. In order to 
answer the aforementioned questions, two implementations were carried out for the 
proposed model: (i) on each site of the ABIDE I dataset separately to find local the 
local neuro-atlas of each site, and (ii) on the whole dataset to find the global global 
neuro-atlas for the whole autism spectrum represented by the available subjects. The 
main contribution of the proposed work can be summarized as follows: (i) building a 
comprehensive ML pipeline to find morphological features and brain regions that are 
correlated with autism, (ii) finding the anomalous neuro-circuits caused by autism 
(e.g. neuro-atlases) , and (iii) investigating a global ML model that can be used to 
diagnose ASD subjects with different demographics and scanning parameters.
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1 Materials and Methods

A comprehensive ML pipeline is proposed in this chapter to select morphological fea-
tures and brain regions that relates to ASD. The ML pipeline starts with downloading
the sMRI volumes of ASD and TD subjects provided by ABIDE I dataset [96], then
the preprocessing of the sMRI volumes is performed by Freesurfer V.6.0 [97–100].
Preprocessing consists of three stages which are: (i) intensity normalization, (ii) skull
stripping, and (iii) brain segmentation. Each of the aforementioned stages comprises
a set of substages which are going to be briefly discussed in the following sections.
After preprocessing, features are extracted in the form of two numerical representa-
tion for each morphological feature for each brain region. A data matrix, and a target
vector are created and passed to feature selection algorithm to select the candidate
imaging markers. Reduced data matrix based on the candidate imaging markers,
and the target vector are then passed to the ML algorithms to select the best ML
model that can be used for classifying ASD and TD subjects. The whole pipeline
is automated with Python 3.7 [101]. We utilized 𝑝𝑎𝑛𝑑𝑎𝑠 as the data manipulation
package [102], 𝑛𝑢𝑚𝑝𝑦 and 𝑠𝑐𝑖𝑝𝑦 for numerical analysis and matrices operations [103],
𝑠𝑐𝑖𝑝𝑦 for performing statistical tests [104], 𝑛𝑖𝑏𝑎𝑏𝑒𝑙 for reading and writing Freesurfer
files [105]

Figure 5 demonstrates the general block diagram of the proposed model for each
of the global model, and the local model. For the global model, the proposed block
diagram is applied only one time over the whole dataset. On the other hand, for
the local model, the proposed block diagram is applied on each independent site.
Results of both the global model, and each site of the local models are analyzed and
compared to each other. Each site’s results using the local model answers the research
question about findings of local imaging markers. Similarly, the global model answers
the research question about finding global imaging markers for the all the subjects
included in the dataset. In the following sections, each of the main blocks in both
models is discussed in detail.

Dataset

ABIDE I is a famous publicly available dataset. Using ABIDE I achieves two-fold
advantages: (i) It facilitates replicating the results, since it is publicly available. (ii) It
comprises a large sample size, which adds more significance to the findings. ABIDE I
contains sMRI and resting-state fMRI data acquired on individuals with ASD and TD
individuals from 17 independent sites. ABIDE I includes 1112 subjects divided into
530 subjects with ASD, and 573 subjects with TD. The original studies included in
ABIDE received approval from each participating site’s Institutional Review Board
(IRB). All sites diagnosed autism using the Autism Diagnostic Interview-Revised
(ADI-R), or Autism Diagnostic Observation Schedule (ADOS). Moreover, each site
provided basic phenotypic data on each subject, including age, sex, and intelligence
Quotient (IQ). For more details about ABIDE, refer to [95].
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Figure 5. Overview of the proposed system starting from acquiring MRI volumes
up to the diagnosis.

Pre-processing

Preprocessing is a crucial requirement to eliminate the between-subjects variability
that may stem from data acquisition, different scanners, artifacts, or partial volume
effects. Moreover, brain MRI scans usually contain non-brain tissues as it is shown
in Figure 5. FreeSurfer performs multiple steps on each sMRI volume to extract the
morphological features. Those steps are intensity normalization, brain extraction and
skull stripping, brain segmentation and area labeling, tessellation of the gray-white
matter boundary, surface inflation and spherical atlas registration, and eventually
cortical surface parcellation to the Desikan-Killiany (DK) atlas. It is worth noting
that the main assumption behind the preprocessing is that as long as FreeSurfer
succeeds in extracting the morphological features of the cerebral cortex and parce-
late them to DK, then confounding variables relevant to the MRI scanner wont be
major concern. This assumption is based on the fact that FreeSurfer outputs the
morphological features in their physical unit e.g. mm, mm2, mm3.

Intensity normalization

Variations in both intensity and contrast across sMRI images, resulting in the cor-
ruption of the sMRI images, are typically due to magnetic susceptibility artifacts and
RF-field inhomogeneities. This corruption is undesirable for any segmentation proce-
dure which utilizes intensity information in order to classify voxel data into different
tissue types [106].

To correct the aforementioned corruption, the following procedure of 11 steps is
repeated with iterating oversteps from (viii)-(x). The procedures are: (i) Construct
a set of histograms from overlapping slices parallel to the x-y Cartesian plane in
the magnetic co-ordinate system, (ii) Smooth the resulting histograms using a fairly
broad Gaussian window, (iii) Use a peak-finding algorithm to determine the mean
white matter intensity, (iv) Discard the outliers from the array of the detected mean
white matter intensities, (v) fit a set of cubic splines to the resulting coefficients of the
valid slices, (vi) Use the splines to interpolate the coefficients for each point along the z
axis, (vii) Adjust each intensity value by the coefficient at its z coordinate, (viii) Find
all points in the volume that are at the center of a 5× 5× 5 neighborhood of intensity
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values that all lie within 10% of the white matter peak, (ix) Build a Voronoi diagram
and set all voxels unassigned in step (viii) to the correction value of the nearest control
point, (x) Perform a few iterations of “soap-bubble” smoothing, and (xi) Scale the
intensity at each voxel in the volume by the computed correction field [107]. The result
is shown in Figure 5, the visual transformation of the brightness level between the
preprocessing step and the normalization step is to reduce the variance of brightness
for the same tissue inter-subjects due to different data acquisition methods. For more
mathematical and implementation details, the reader is referred to [107,108]

Brain Extraction or Skull Stripping

Brain extraction of skull stripping is the process of automatically strip the skull (or
any non-brain tissue) from the intensity normalized image. In order to remove the
skull and any non-brain tissue, a tessellated ellipsoidal template is deformed into the
shape of the inner surface in the skull. Two kind of forces drive the deformation
process: (i) An MRI-based force, and (ii) A curvature reducing force.

The MRI-based force is designed to drive the template outward from the brain.
It is calculated based on nonlocal information obtained by sampling the MRI data
along the surface normal to each vertex of the template tessellation. The curvature
reducing force enforces a smoothness constraint on the deformed template, which can
be seen as encoding a priori knowledge about the smoothness of the inner surface of
the skull [107]. The result of this step is illustrated in Figure 5.

Brain Segmentation & Area labeling

The segmentation process is a two-step procedure: (i) A preliminary classification is
performed based solely on the intensity information, and (ii) This volume is exam-
ined and the regions that contain more than one tissue type are marked for further
processing [107]. After segmentation, a 3D surface reconstruction and brain parcel-
lation to an anatomical atlas is performed on the segmented volume. The 3D surface
reconstruction is performed via 2 steps: (i) tessellation of the gray-white matter
boundary as described in [109,110], and (ii) surface inflation and spherical atlas reg-
istration as described in [108, 111]. Brain parcellation to an anatomical atlas, which
is Desikan-Killiany (DK) atlas, is described in [112]. DK atlas parcellates the brain
into 68 cortical labels, 34 for each hemisphere. The results of the segmentation and
the DK atlas parcellation are shown in Figure 5. For more detailed information on
each of the aforementioned preprocessing steps, the reader is referred to the following
publication [96].

Feature extraction

There are two outputs of FreeSurfer which are (i) a set of volumes for each subject
describing each step of the pipeline (normalization, skull stripping and segmentation)
as shown in Figure 5, and (ii) surfaces parcellated to DK atlas and containing the
morphological features values at each point on a predefined mesh grid created on the
brain, as shown in Figure 20.
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Figure 6. Morphological features extracted from brain surfaces by freesurfer.

in this chapter, we utilized the following morphological features to represent the
brain of each subject: (i) surface area (𝑆𝑎), (ii) volume (𝑉), (iii) thickness (𝑇ℎ), and
(iv) curvature (𝑐) (see Figure 20). It is worth noting that 𝑇ℎ is calculated as the
closest distance from the gray/white matter boundary to the gray/CSF boundary at
each vertex on the tessellated surface [113], while 𝑐 is measured as the average of the
reciprocal of the principal radii [114]. For each of those features, we calculated the
median value (𝑀𝑉), inter-quartile range (𝐼𝑄𝑅), and MV ± IQR within each brain
region parcellated to the DK atlas. There are two reasons behind choosing MV− IQR
and MV + IQR to represent each morphological feature of each brain region: (i) the
distribution of morphological features’ values within each brain region is not necessary
Gaussian as it is shown in Figure 7, and (ii) to include lower and upper bound that
each morphological feature can possess within a specific brain region while excluding
the outliers. DK atlas parcellates the brain into 68 brain regions; 34 brain regions on
the left hemisphere, and 34 brain regions on the right hemisphere. Therefore, each
subject is represented by a vector of 68 brain regions ×4 features ×2 = 544 elements
of a feature vector.

ABIDE I comprises 17 different sites with total number of 1112 subjects after
performing quality control, and removing all subjects with bad brain segmentation,
at which the data were collected. Thus, the data are heterogeneous, and it is invalid
to assume blocking for all confounding variables while working on the whole dataset.
Therefore, we proposed two exclusion criteria: (i) exclusion criterion for subjects,
and (ii) exclusion criterion for sites. The exclusion criterion for subjects is simply
done by removing the subjects with missing feature values. The exclusion criterion
for sites depends on how balanced each site is. In other words, after applying sub-
jects’ excluding criterion, if we find a site where the ratio ASD:TD, or its reciprocal
TD:ASD, exceeds 0.6, we discard that site.There is a trade-off between removing all
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Figure 7. Distribution of the 𝑆𝑎 values within different brain regions.

the subjects of the unbalanced sites, or raise the unbalanced threshold. Empirically,
we found that 0.6 would be a reasonable ratio, given that we utilize balanced accuracy
score to evaluate the system performance, to assume balance and include as many
sites as possible in the study The rationale behind the site’s exclusion criterion is to
avoid including too many subjects of one class that have been collected with certain
criterion without having their corresponding subjects from the other class that pos-
sess the same collection criterion, i.e., trying to avoid introducing more heterogeneity
due to the subject’s exclusion criterion.

Table 1 shows the summary statistics of the data set after applying both exclusion

22



Site total
ASD TD

n age (min, max) n age (min, max)
Caltech 37 19 (17.5, 55.4) 18 (17, 56.2)
CMU 27 14 (19, 39) 13 (20, 40)
Leuven 63 29 (12.1, 32) 34 (12.2, 29)
MaxMun 51 23 (7, 58) 28 (7, 46)
OHSU 26 12 (8, 15.2) 14 (8.2, 11.9)
Olin 34 19 (11, 24) 15 (10, 23)
Pitt 56 29 (9.33, 35.2) 27 (9.4, 33.2)

Stanford 38 19 (7.5, 12.9) 19 (7.7, 12.4)
Trinity 47 22 (12, 23) 25 (12, 25.6)
UCLA 95 53 (8.36, 17.94) 42 (9.2, 17.7)
UM 134 61 (8.5, 18.6) 73 (8.2, 28.8)
Yale 56 28 (7, 17.7) 28 (7.6, 17.8)
Total 664 328 336

Table 1. ABIDE data phenotypical information summary after sites’ preprocessing

criteria, subject’s exclusion criteria and site exclusion criteria. Total number of five
sites have been discarded which are: KKI, SDSU, NYU, SBL, and USM, representing
a total of 305 subjects. Over the whole data set, there is no statistically significant
difference between ASD and TD group (𝑐ℎ𝑖 = −0.0271, 𝑝 = 0.869). Furthermore,
there is no statistically significant difference between the age of each group (𝑡 =

−0.5438, 𝑝 = 0.5867). However, there is a statistically significant difference between
the gender within each group; for TD group, chi-square test was conducted over the
gender distribution (𝜒2 = 84.188, 𝑝 < 0.001), and for ASD group, chi-square test was
conducted over the gender distribution (𝜒2 = 94.010, 𝑝 < 0.001). At the end of this
step, a data matrix is created as follows:

𝐷 =


𝑓1,1 𝑓1,2 · · · 𝑓1,544
𝑓2,1 𝑓2,2 · · · 𝑓2,544
...

...
. . .

...

𝑓664,1 𝑓664,2 · · · 𝑓664,544


, 𝑦 =



𝑦1
𝑦2
𝑦3
...

𝑦664


where 𝐷 is the data matrix with size 664 subjects ×544 features; each row represents
the feature vector of a specific subject. 𝑓𝑖, 𝑗 denoted the feature value 𝑗 of subject 𝑖,
and 𝑦𝑖 denoted the diagnosis of subject 𝑖. It is worth mentioning that 𝐷 is the data
matrix for the global model.

For the local model, we created 12 data matrices (𝐷𝐿) such that 𝐷𝐿 = {𝑑𝑡 :
𝑑𝑡 ∈𝑀,544 & 1 ≤ 𝑡 ≤ 12} each corresponding to one of the sites; 𝑑𝑡 denotes the data
matrix corresponding to site 𝑡. Each 𝑑𝑡 has the size of 𝑀 × 544 such that 𝑀 denotes
the number of subjects within site t; sequentially, 𝑦𝑡 denotes the diagnosis vector
corresponding to site 𝑡, and 𝑦𝐿 denotes the set containing all the 𝑦𝑡 for all sites.
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𝑑𝑡 =


𝑓1,1 𝑓1,2 · · · 𝑓1,544
𝑓2,1 𝑓2,2 · · · 𝑓2,544
.
.
.

.

.

.
. . .

.

.

.

𝑓𝑀,1 𝑓𝑀,2 · · · 𝑓𝑀,544

 , 𝑦𝑡 =


𝑦1
𝑦2
𝑦3
.
.
.

𝑦𝑀

 , 𝐷𝐿 =


𝑑1
𝑑2
𝑑3
.
.
.

𝑑12

 , 𝑦𝐿 =


𝑦1
𝑦2
𝑦3
.
.
.

𝑦12


Feature Adjustment & Normalization

Since it has been mentioned in the literature that there is an effect of age on ASD
brain morphology [115], morphological features have been adjusted, for the effect
of both age and sex, in the proposed work. Adjusted metrics of regional 𝑉 and
𝑆𝑎 were calculated using cortical growth curves from Coupé et al. [116]. Denote
by 𝑉𝑠 (𝑎) the mean volume of cortical grey matter in individuals of sex 𝑠 and age
𝑎. Then each regional volume 𝑉𝑟 is replaced by its age-relative, adjusted metric
𝑉 ′
𝑟 = 𝑉𝑟/𝑉𝑠 (𝑎). Similarly, each regional surface area 𝑆𝑟 is converted to an adjusted

metric 𝑆′𝑟 = 𝑆𝑟/𝑉𝑠 (𝑎)2/3 [116].
The feature vector corresponding to every subject contains the MV − IQR and

MV + IQR of each morphological feature for every region. We consider MV − IQR
and MV + IQR to be the lower bound, and the upper bound of every morphological
feature for every brain region respectively. Morphological features don’t share the
same units of measurement; for instance, surface area is measured in mm2, while 𝑉
is measured in mm3. Consequently, we anticipate having different ranges of values,
which might adversely affect the performance of the classifiers [117].

in this chapter, we utilized minimum-maximum normalization between 0 to 1 as
it is one of the most common normalization methods used for biomedical data [118].
Consequently, each column in the data matrix 𝐷 is normalized between 0 to 1 using
the equation 4.

𝑓𝑖, 𝑗 =
𝑓𝑖, 𝑗 −min𝑖{ 𝑓𝑖, 𝑗 }

max𝑖{ 𝑓𝑖, 𝑗 } −min𝑖{ 𝑓𝑖, 𝑗 }
(1)

where 𝑓𝑖, 𝑗 and 𝑓𝑖, 𝑗 denote the normalized feature value 𝑗 and the original feature value
𝑗 corresponding to the subject 𝑖, and min ( 𝑓 𝑗 ) and max ( 𝑓 𝑗 ) correspond to minimum
and maximum values of the feature vector 𝑗 respectively. The output normalized
matrix is denoted by 𝐷𝑛 for the global model, and 𝑑𝑡𝑛 for the local model where
1 ≤ 𝑡 ≤ 12.

Building Neuro-Atlas

To implement a Computer-Aided Diagnosis System (CAD) for accurate diagnosis of
autism, we have to use a neuro-atlas tailored to the specific developmental patterns
of the brain in autism. Unfortunately, there is no general purpose brain atlas in the
literature that we can use in our CAD system; thus, developing an atlas for autistic
subjects that shows the areas and imaging markers that are associated with autism
is the main motivation behind this work. To achieve this goal, we used the modern
tools of machine learning (e.g., Recursive Feature Elimination via Cross Validation
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(RFECV)) to select the most significant features and their corresponding areas that
are correlated with autism spectrum disorder. Since, RFECV is one of supervised
feature selection algorithm, we have to split the data into 𝑘 − 𝑓 𝑜𝑙𝑑𝑠, 𝑘 = 10 in our
case (as shown on Figure 8, and for each fold (i) train a predetermined classifier
using the training set, (ii) evaluate the performance of the trained classifier on the
validation set, (iii) save the classifier’s score on the validation set, (iv) find the least
significant feature according to the trained classifier, (v) remove the least significant
feature from the model, (vi) repeat the whole processes until you end up with only
one feature. Again, repeat the whole process for each fold, calculate the average
performance of the 𝑘 − 𝑓 𝑜𝑙𝑑 cross-validation (CV) when: using all features to train
the classifier; using all features but one, and so forth, to the point of classification
on a single feature. Find the number of the features at which the classifier has the
maximum performance score, assuming it is 𝑁 𝑓 features. 𝑁 𝑓 is the optimum number
of features to be selected. Perform the whole algorithm again over all the subjects to
find the most 𝑁 𝑓 significant features. For further details regarding the algorithm and
its implementation, the reader is suggested to read Guyon et al. [119] and Pedregosa
et al. [120], respectively.

To build a neuro-atlas for autism, ABIDE I dataset and RFECV are utilized
to select those significant brain regions along with their morphological features. For
both the local model and the global model, RFECV is run with four different classifier
architectures, which are RF,least absolute shrinkage and selection operator (LASSO),
RIDGE regression (RIDGE), and SVM with linear kernel, resulting in four different
models. Those four models represent two major categories of features’ sets: (i) A
feature set that forms a feature space, where the subjects are non-linearly separable
as much as possible, and (ii) A feature set that forms a feature space, where the
subjects are linearly separable as much as possible. The first category corresponds to
the features’ set selected by RFECV+RF, and the second category corresponds to the
features’ sets selected by RFECV+LASSO, RFECV+RIDGE, RFECV+SVM. Each
of the RFECV models is performed with 10-fold CV; such that we iterate over all
the 544 features, removing one feature at a time, perform 10-fold CV on the current
sample, and calculate the average balanced accuracy score. The balanced accuracy
score was introduced in 2010 to solve the optimistic estimate occurs when a biased
classifier is tested on an imbalanced dataset [121]. The balanced accuracy score is
defined by equation 6:

𝑠𝑐𝑜𝑟𝑒 =
1

2
( 𝑇𝑃
𝑃𝑜𝑠

+ 𝑇𝑁

𝑁𝑒𝑔
) (2)

Where 𝑠𝑐𝑜𝑟𝑒 denotes the balanced accuracy score, 𝑇𝑃 denotes the true positive
classified by the model, 𝑃𝑜𝑠 denotes the total number of positive cases in the sample,
𝑇𝑁 denotes the true negatives classified by the model, and 𝑁𝑒𝑔 is the total number
of negative cases in the sample.

For the site-based model, RFECV is performed on each site separately. The
selected set of features is then extracted for each site to have a new data matrix with
number of columns less than or equal to the original number of columns. For the
global model, RFECV is performed only one time on the normalized data matrix
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Figure 8. The flowchart of The RFECV algorithm.

𝐷𝑛, and the selected set of features is calculated and then extracted from 𝐷𝑛. It is
worth noting that at this point we assume that the selected features from each site
are the imaging markers candidate for ASD subjects collected from that site i.e., local
imaging markers; while the selected features from 𝐷𝑛, in the global model, are the
global markers candidates that define the ASD subjects in the whole dataset. In case
of the global model, the input to the RFECV step is 𝐷𝑛 and the output is 𝑆𝑛 where
the size of 𝑆𝑛 is 664 × 𝑀 such that 𝑀 <= 554. In case of the site-based model, the
input to the RFECV step is 12 𝑑𝑛 (normalized data matrices of each site), and the
output is 𝑠𝑘𝑛 where the size of 𝑠𝑘𝑛 is 𝑁 × 𝑀 such that 𝑁 is the number of subjects
within site 𝑘, and 𝑀 <= 544.

Eventually, a global neuro-atlas is created using the whole data set, and a local
neuro-atlas is created for each site. We claim that the globla neuro-atlas, as well as,
the local neuro-atlases can be used as a guide for future analysis of ASD or ABIDE
I dataset.
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ML classifiers

Having the imaging markers candidates, they should be placed under test to see how
good they are at separating the two classes. A set of eight different ML classifiers
representing both linear and non-linear hypotheses is selected to test the local, and
the global imaging markers candidates. The utilized eight ML classifiers are split
into two main divisions: (i) Linear classifiers, (ii) Non-linear classifiers. The linear
classifiers set comprises LR, LSVM, and passive aggressive. The non-linear classifiers
set comprises RF, SVM with radial basis function (SVM-RBF), eXtra Gradient Boost
trees (xgboost), Gaussian Naive Bayes (GNB), and neural network (NN) shallow and
deep. To optimize the hyper-parameters of each classifier, Data matrix is reduced
accordingly to the results of RFECV algorithm. The data is split into 5-folds. For
each of the predefined classifiers, the hyperparameters and their ranges, where the
search will be conducted, are defined in 7, then a nested for-loop for each classifier
and for each hyperparameter value of that classifier, a 5-fold CV is performed, and
the results of each fold is saved. Eventually, the hyperparameters that corresponds
to the maximum CV average score is saved as the optimum parameters. The results
of the highest performed classifiers are saved with their hyperparameter values. The
performance metric for each classifier is set to the balanced accuracy score.

Personalized diagnosis

We propose a personalized map per subject to show the affected brain regions and
to gage the probability of a diagnostic difference when comparing autistic individuals
to control. We define a personalized map as a set of scores associated with a set
of features denoting the importance of a particular feature in diagnosing a subject
as TD or ASD. In a previous work [7], we created a personalized map for ABIDE I
dataset using both fMRI and sMRI features. However, in the proposed work, we are
introducing a personalized map for ABIDE I dataset using only sMRI morphological
features. The motivation behind creating the personalized map for only the sMRI
morphological features is the high performance of the proposed pipeline.

A personalized map is created for each local model. The personalized maps are
easily created with classifiers that either associate weights to the input features such
as linear classifiers, or place the input features in a tree schematic that denotes the
importance of each feature based on the level of the feature. However, since NN is
the used classifier for the local models, it is difficult to determine which input feature
contributes the most to the classification decision and which input feature contributes
the least.

Local interpretable model-agnostic explanations (LIME) [122] is a novel explana-
tion technique that explains the prediction of any classifier. The main idea behind
LIME is that it builds linear models around the predictions of an opaque model to
explain it. LIME is used to explain the classification decisions made by four different
local models We have used LIME to explain the decisions of four local models on
two random subjects within each of the four sites. Afterward, we visualize the scores
representing the contribution of each feature in the classification decision as shown
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in Figure 10.

2 Experimental Results

In this section, the results for each site are demonstrated in terms of (i) autism imag-
ing local markers (AILM) for each site, and (ii) the balanced accuracy score of the
trained ML when using the AILM. The balanced accuracy scores of the trained ML
models are meant to validate the AILM selected via one of the proposed feature se-
lection models (RFECV+lg1, RFECV+lg2, RFECV+svm, RFECV+rf). In order to
measure the significance of our findings, we compare the accuracy of the proposed
pipeline in classifying ASD to the results of Katuwal et. al [123] study. Katuwal et.
al. utilized ABIDE I dataset to provide a site-based diagnosis using RF, SVM, and
Gradient Boosting Machine (GBM) classifiers. In addition to the results of the local
model, we applied the proposed on the whole dataset to find, what we have called,
autism imaging global markers (AIGM). Similar to local model, AIGM are put to
test to study how discrimintive they are at classifying ASD. However, for the global
model we do not only compare the results with another study, but also, we compare
the results with the proposed model without performing feature selection i.e. using
544 features. Therefore, for the global model the two comparisons performed are (i)
compare the performance, utilizing balanced accuracy score, of the proposed model to
the performance of the same model while excluding the feature selection step, and (ii)
comparing to the results of Sabuncu et. al. [124]. Sabuncu et. al. performed univari-
ate and multivariate methods to classify ASD subjects within ABIDE I dataset. The
authors performed 5 fold cross validation and used SVM, Neighborhood approxima-
tion forest (NAF), which is a variant of random forest, and relevance voxel machine
(RVM) classifiers. Sabuncu et. al. has used different set of features as well, however,
the highest classification accuracy was achieved using the cortical thickness values
sampled onto the fsaverage5 template, provided by Freesurfer, and smoothed on the
surface with an approximate Gaussian kernel of a full-width-half-max (FWHM) of 5
mm.

Autism Local Neuro-Atlases: RFECV with the four classifiers is applied on
each independent site, and the set of features corresponding to the maximum balanced
accuracy score is selected. To compress the data visualization into four subplots
similar to the case of the global model, we visualize only the optimum number of
features selected by each RFECV model along with the highest achieved balanced
accuracy score. Figure 9 demonstrates the number of selected features corresponds to
the maximum balanced accuracy score achieved when utilizing each RFECV model
on every site of the dataset.

ML local models: almost perfect cross-validation results are achieved when
using the local-atlases selected by RFECV+lg2, as it showed the highest performance
in case of the global model, as well as in case of sites-based model, the highest
number of sites with balanced accuracy score above 0.65 is achieved with RFECV+lg2
algorithm. Results are compared with Katuwal et. al. [123] in table 2. The proposed
pipeline has achieved better accuracy as shown in Table 2. Although Katuwal et.
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Figure 9. Number of selected features vs. the maximum balanced accuracy score
achieved using these features when applying RFECV using the four core classifiers,
using the local model.

al. selected, for some sites, a smaller number of features, the proposed pipeline has
outperformed their method in terms of accuracy.

Personalized diagnosis: Figure 10 visualizes the results of applying LIME on
eight different subjects from four different sites. brain regions with gray color rep-
resents brain regions that are not selected as candidates of the local neuro-atlas for
that site. Brain regions with deep blue color contribute heavily toward classifying
the subject to be ASD and it gets milder as the color moves from blue towards green.
On the other hand, brain regions with deep red color contribute heavily toward clas-
sifying the subject to be TD and it gets milder as the color moves from the red color
to the green color. All the subjects shown in Figure 10 are correctly classified by
their corresponding local models. Figure 10 proposes that the local models classify
subjects based on the majority voting of the classifications per brain region. However,
we cannot assume that using each brain region solely for classification and aggregat-
ing their decisions would yield the same results. We assume that each of the local
neur-atlas creates a multidimensional space at which the highest possible accuracy
of classification of ASD is achieved, and it is hard to achieve the same accuracy by
utilizing each feature independently from the others.
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Table 2. Comparison between the proposed pipeline and previous results from
literature.

Site
Katuwal et. al [123] results Proposed pipeline

Number of selected features Accuracy (%) # of selected features Accuracy (%)
Caltech 5 97 217 100
CMU 1 94 18 100
Leuven - - 20 91.5 ± 5
MaxMun - - 151 97.5 ± 1
OHSU 12 77 3 100
Olin 1 86 60 100
Pitt - - 16 100

Stanford - - 7 100
Trinity - - 18 100
UCLA 2 64 55 82.2 ± 5
UM 3 72 59 97.2 ± 1
Yale 2 75 21 100

Figure 10. Personalized Diagnosis.

Autism Global Neuro-Atlas: The high accuracy obtained using the local
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model has encourage us to try to find a global model. To achieve this goal, we
performed the same feature selection criteria on the whole data set to determine the
autism global neuro-atlas.Figure 11 demonstrates the optimum number of the selected
features using each of the four RFECV models. The number of features selected on
each trial is represented on the horizontal axis. On the other hand, the average per-
formance of the 5 − 𝑓 𝑜𝑙𝑑𝑠, when RFECV utilized that specific number of features,
is represented on the vertical axis. The optimum number of features corresponding
to the maximum average balanced accuracy score is denoted by a vertical red line.
The features set containing that optimum number of features is then utilized to train
the ML models of the following step in the pipeline. The results demonstrated in
figure 11 are as follow. RFECV+lg1 selected only one feature, RFECV+lg2 selected
207 features, RFECV+rf selected 2 features, and RFECV+lSVM selected 11 fea-
tures. It is worth noting that all the selected features are already included in the
RFECV+lg2 set. The selected features’ set, representing the global neuro-atlas, is
found in supplementary materials 1.

Figure 11. Number of selected features vs. the balanced accuracy score when
applying RFECV with different classifiers. The red vertical line labels the number of
features corresponding to the maximum balanced accuracy score.

ML global model: the balanced accuracy scored is calculated for each of the
four selected features’ set utilizing all of the eight classifiers. Figure 12 demonstrates
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the mean and std. deviation over the 5-fold cross-validation when using the optimum
hyper-parameters of each classifier. The highest balanced accuracy score, marked
as red dot on the figure, is achieved when using the features (global neuro-atlas)
selected with lg2 classifier and utilizing NN (0.716 ± 0.024) The optimum hyper-
parameters used for NN are as follows: loss function is Cross-Entropy, solver for
weight optimization is stochastic gradient descent, learning rate is set to be adaptive,
l2 penalty (regularization term) is 0.0001, activation function is hyperbolic tangent
function (Tanh).

Table 3. The classification accuracy score of Sabuncu et. al. study, and the proposed
model with and without RFECV, along with the classifier used to achieve the score
for each model and the number of features included in each model.

Sabuncu et. al. results Proposed pipeline without RFECV Proposed pipeline
Accuracy 0.59 ± 0.02 0.597 ± 0.04 0.716 ± 0.02
Classifier RVM XGB NN

# of features 20484 544 207

Similarly, for the null hypothesis, the same hyper-parameters optimization has
been carried out for the eight classifiers, except that all the 544 were utilized without
performing any feature selection. Figure 13 demonstrates the balanced accuracy score
calculated for each of the optimized eight classifiers. The highest achieved score,
marked as a red dot on the figure, is achieved with XGB classifier (0.597 ± 0.04). A
summary of the global model results is shown in Table 3.

3 Chapter Discussion

In this section, we will discuss the global and local neuro-atlases. We will cover the
common findings between the proposed study and previous literature. in this chapter,
we focus on two aims: (i) Creating a discriminative model using a set of morphological
features extracted from sMRI volumes of the brain of ASD and TD subjects, and (ii)
defining global and local neuro-atlases that can be used to define ASD; consequently,
those atlases can be used to understand the underling neurophysiology of the disorder.
We define a discriminative model as a ML classifier which is trained using a set of
features that best discriminate ASD and TD in the current dataset. in this chapter,
we introduced two different models: (i) the global model which aims to classify ASD
and TD in a heterogeneous dataset, (ii) the site-based model/local model which aims
to classify ASD and TD in a less heterogeneous dataset based on demography.

Analysis of the relation between global and local models

RFECV algorithm is performed on the data matrix using four different classifiers:
Lg1, Lg2, SVM, and RF. Each model selects the set of features that maximizes the
classification’s balanced accuracy score via 10-fold CV process. Those sets of fea-
tures are considered as local neuro-atlases for ASD within each site. The algorithm
is performed only one time in case of the global model, while it is performed 12 times
on each site in case of the local model. The main motivation behind estimating a
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Figure 12. The highest testing balanced accuracy score ± standard deviation
achieved by each of the optimized classifiers with applying RFECV with the core
classifiers. The red dot labels the classifiers with the highest mean testing accuracy
over the 5-folds cross-validation.

global model is the promising results of the local model. The discriminative set of
features is determined at the ML step where a set of linear and non-linear classi-
fiers are trained on the selected features set. The set of features corresponding to
the maximum balanced accuracy score via 5-fold CV is said to be the discriminative
feature set (neuro-atlas) for either the global model, or for a specific site. In the
case of global model, RFECV+lg2 with 207 morphological features corresponding to
a balanced accuracy score of (0.715 ± 0.024) is set to be the model that has selected
the discriminative set of features. The 207 features can be found in supplementary
materials 1. Table 4 shows the RFECV model corresponding to the maximum clas-

33



Figure 13. The highest testing balanced accuracy score, plus or minus one standard
deviation, achieved by each of the optimized classifiers without applying any feature
selection algorithms. The red point labels the classifiers achieving the highest perfor-
mance.

Table 4. Summary statistics of the selected features using the local model

Site # of features # of mutual features with the global model
Caltech 217 74
CMU 18 5
Leuven 6 4
MaxMun 14 7
OHSU 79 32
Olin 60 26
Pitt 16 8

Stanford 7 1
Trinity 18 5
UCLA 7 2
UM 54 23
Yale 21 9

sification balanced accuracy score of a 5-fold CV process, along with the size of the
selected features’ set and the number of common features with the global model. It
is anticipated to have common features between the global model and local models
since the global model can be thought of as something ”similar” to the aggregation of
the local models. However, this raises the question about whether any of the mutual
features are repeated within multiple sites as well as the global model.

Across all the 544 features, the highest number of selections to be given for a
feature is five times i.e., a feature is selected by the global model and four different
local models. We selected the features that are nominated by the global model as well
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Table 5. The most frequent morphological features and brain regions to be selected
by RFECV+lg2 discriminative model

Morphological feature Hemisphere Brain region
Curvature Left Middle Temporal Gyrus
Volume Left Middle Temporal Gyrus
Volume Left Transverse Temporal Gyrus

Surface area Right Transverse Temporal Gyrus
Curvature Left Frontal Pole
Curvature Right Rostral Anterior Cingulate
Curvature Right Transverse Temporal Gyrus
Thickness Left Middle Temporal Gyrus
Thickness Left Rostral Middle Frontal Gyrus
Thickness Left Superior Temporal Gyrus
Volume Right Lateral Occipital Sulcus
Volume Right Posterior Cingulate Cortex

Surface area Left Superior Frontal Gyrus
Surface area Right Banks of Superior Temporal Sulcus
Surface area Right Pars Orbitalis
Surface area Right Pars Orbitalis

as at least three different local models in order to study them to be candidate imaging
markers. Table 5 demonstrates the morphological features, the hemisphere, and the
brain regions with the highest frequency of selection among sites in a decreasing order.

A total number of 16 features have met the aforementioned criteria. Among those
16 features, the distribution of the morphology is as follows: (i) surface with 5 oc-
currences, (ii) curvature with 4 occurrences, (iii) volume with 4 occurrences, and (iv)
thickness with 3 occurrences. There are eight brain regions from the left hemisphere,
and eight brain regions from the right hemisphere. The most frequent brain regions
among the 16 most common are: Middle Temporal Gyrus, and Transverse Tempo-
ral Gyrus. The unique selected brain regions are shown on brain template image in
Figure 14.

Detected ASD Neurocircuits

The development of a CAD system for the early diagnosis of autism must include
central features which correspond to the effect of the increasing neuropil within a
brain region. Through these experimental approaches, structural MRI parameters
related to the expanding neuropil are relevant to defining ASD neurocircuits. The
effect of the local diagnosis identifies ASD related brain regions which fit into the
Research Domain Criteria (RDoC) neural circuits and are similar circuits predictive
of ASD diagnosis at 24 months. Neurocircuits detected in the proposed work is shown
in Table 6

RDoC-defined language and social neural circuits are overly represented in the
morphological data. Middle Temporal Gyrus has been found to be associated with
autism volume of left Middle Temporal Gyrus [125,126], functional connectivity of left
and right Middle Temporal Gyrus [127, 128]. Transverse Temporal Gyrus has been
found to possess significant difference between ASD and TD in terms of magnetic
mismatch field evoked by voice stimuli in 3- to 5- year-old subjects [129]. Superior
Temporal Gyrus is found to be possess a greater gray matter volume in ASD subjects
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Table 6. The Brain Regions Linked to RDoC Neural Circuits, Behavioral/Cognitive
Domains of the ADOS, and ASD Structural Diagnosis

Component RDoC Neurocircuit ADOS Domain Anatomical Correspondence
Restricted Interest Reward Learning/Habit RRB Frontal Pole

Attention Ventral/Dorsal Attention Total
Rostral Middle Frontal Gyrus

Lateral Occipital Sulcus

Language Receptive/Expressive SA

Middle Temporal Gyrus
Transverse Temporal Gyrus

Pars Orbitalis
Superior Temporal Gyrus
Superior Temporal Sulcus

Social Affiliation & Attachment SA Frontal Pole

Social Self Aware SA
Superior Frontal Gyrus
Posterior cingulate gyrus

Social Understanding the Mental States of Others SA
Rostral ACC

Superior Temporal Sulcus

Executive Function
Working Memory SA

Superior Frontal Gyrus
Rostral Middle Frontal Gyrus

Performance Monitoring SA Rostral ACC

Figure 14. Visualization of the brain regions that are most commonly chosen by
the RFECV+LG2 method.

who show drive to assess or construct rule-based systems [130], a diminished func-
tional connectivity between cerebellum in ASD subjects of ABIDE I dataset [131],
other functional connectivity differences, occurred in superior temporal gyrus, be-
tween ASD and TD subjects in 3 age cohorts < 12, 12− 19, > 20 years old [132], more
different morphological alterations have been reported for superior temporal gyrus
in different studies [125, 133–135]. Banks of Superior Temporal Sulcus is found to
demonstrate less developmental trajectory of the surface area [136], and an increased
thickness of the right Banks of Superior Temporal Sulcus [137].

Reward learning, attentional, social, and executive function RDoC defined neural
circuits are also impacted and classify individuals as ASD or TD. Frontal pole has been
found to have a decreased thickness in the left hemisphere for the ASD subjects in the
age of (9.2 ± 2.1𝑦𝑒𝑎𝑟𝑠) [138]. Rostral Anterior Cingulate has found to demonstrate
abnormally increased activation on specific visual tasks in fMRI and reduced fraction
anisotropy in the white matter [139], cortical thickness alteration [83]. Rostral Middle
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Frontal Gyrus is found to be the most important feature for classification in a dataset
of children older than 6 years old [140], the volume of rostral middle frontal was found
to be the only statistically significant difference between ASD and TD group with the
age of 33 ± 9.1𝑦𝑒𝑎𝑟 − 𝑜𝑙𝑑 [141]. Lateral Occipital Sulcus is found to have a negative
slope of relationship between local gyrification index and age greater in ASD than
TD; moreover, a negative correlation between the local gyrification index and cortical
thickness if found to be less in magnitude in ASD than TD [142], A study focusing on
finding brain regions that can be targeted by noninvasive brain stimulation (NIBS),
for ASD treatment, has labeled Lateral Occipital Cortex as a potential target for
NIBS [143].

Similarly, the social function associated circuits involving the Posterior Cingulate
Cortex are found to possess irregularly distributed neurons, and there is an increased
density of neuron in the underlying white matter in the same region [144]; further-
more, in an fMRI study, ASD group showed weaker connectivity between the posterior
cingulate cortex and superior frontal gyrus, stronger connectivity between posterior
cingulate cortex and both the right temporal lobe and right Para hippocampal gyrus,
and poorer social functioning in the ASD group was correlated with weaker connectiv-
ity between the posterior cingulate cortex and the superior frontal gyrus [145]. Banks
of Superior Temporal Sulcus is found to demonstrate less developmental trajectory
of the surface area [136], and an increased thickness of the right Banks of Superior
Temporal Sulcus [137].

The proposed pipeline is anticipated to achieve better results than those in the
literature because of the way that the morphological feature values are aggregated is
less prone to outliers, RFECV implementation with more than one classifier to cover
as many assumptions on the relationship between the features and the target as
possible while selecting the features, performing hyper-parameter optimization using
grid search on eight classifiers to achieve the optimum results given the selected set of
features. All the codes utilized in the proposed pipeline implementation are available
upon request.
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This chapter provides a novel approach to understand and diagnose ASD. In this 
chapter we consider ASD as a multidimensional disorder such that each dimension 
represents a behavioral domain. We measure the severity of every subject across each 
behavioral domain, and by aggregating the severity scores, we assign a global diag-
nosis for each subject. This approach allows us to understand ASD by dissembling 
it into different behavioral domains which would allow physicians to design personal-
ized treatments to each subject based on the severity of his/her behavioral disorder. 
Moreover, we utilize interpretable model, LIME, in order to map the decision made 
by each classifier to the corticial features which contributed the most to that decision 
which would help in building behavioral neuroatlases to deeply understand how ASD 
alters the brain cortex.

1 Background

In this chapter, we are classifying ASD by identifying subjects in a multi-dimensional 
behavioral space. A multi-dimensional behavioral space is defined by an array of SRS 
behavioral score for each subject. Thus, we identify location of each subject on the 
spectrum via identifying his severity within each behavioral module. Furthermore, 
we identify the cortical regions which are most correlated with the severity of each 
behavioral category. To the best of our knowledge, we are the first team to 
classify ASD subjects based on their predict behavioral severity scores, and 
annotate the most correlated brain region with each behavioral category. 
However, the closest study, we could, find to our work is the study conducted by 
Moradi et al. [91] who predicted symptoms severity score of individuals with ASD 
based solely on cortical thickness. In the following section we will cover Moradi et 
al. study as well as the most recent studies that classify ASD using machine learning 
and structure MRI (sMRI).

In this chapter, we propose a novel personalized comprehensive ML model to 
classify ASD via two classification phase. First phase, we classify the severity of 
each behavioral category as they are defined in the SRS module (Communication, 
Mannerism, Cognition, Motivation, Awareness, Total). The severity levels are defined 
as follow: (i) TD, (ii) mild, (iii) moderate, and (iv) sever, such that mild, moderate, 
and sever are all considered to be ASD. Second phase, we combine the predicted 
severity scores for each behavioral category to get a final classification for each subject.
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First phase, we search for the neuroimaging markers that define every severity level
(TD, mild, moderate, and sever) of each behavioral category. Those neuroimaging
markers are used for training a machine learning model to classify subjects based
on their severity level (TD, mild, moderate, or sever) of each behavioral category.
The first phase is repeated 51 times while shuffling the training-validation set. The
cortical regions with statistically significant classification accuracy are selected for
each behavioral module to build the corresponding behavioral neuroatlas. At the end
of the second phase, we propose a CAD report, illustrated on 2 randomly selected
case studies from the testing set, which maps the results of phase one with the most
contributing cortical features, and maps the final diagnosis of phase two with the
behavioral report. By this CAD report, we attempt to provide physicians with a
comprehensive clinical report explaining the rationale behind the suggested diagnosis.
The main motivations behind using solely morphological features which are extracted
from the brain cortex, while neglecting the subcortical structures, are (i) segmentation
of subcortical structures is more challenging and prone to error more than the cortex
segmentation, and (ii) most of the significant findings in the literature are achieved by
utilizing the surface based morphometry (SBM) methods [2, 17, 52, 74, 75, 79–83, 85].
The main motivations behind utilizing the SRS instead of other gold standards are:
(i) It is cost-efficient and less time consuming than other gold standards, and (ii) The
dataset we are utilizing in this study has less missing data for SRS than the gold
standard (TD subjects don’t have any ADOS score in ABIDE II dataset). In this
study, we avoided the limitations existed in the aforementioned literature such as (i)
working on a small sample size [79,85], we utilized ABIDE II dataset which comprises
487 individuals with ASD and 557 TD [146], (ii) neglecting the heterogeneity nature
of ASD [7, 85, 92–94], we split ASD into its behavioral components as described by
SRS, and within each behavioral component, we classify subjects according to their
severity, and (iii) neglecting age as a confounding variable affecting the morphological
features of the cortex [7,79,85,92–94], we adjusted volume and surface area features
according to cortical growth curves as described by Coupé et al. [116]. To the best
of our knowledge, we are the first team to build a multi-level classification system to
classify ASD in terms of its behavioral components.

We hypothesize that the optimum classification results of autism can be achieved
by splitting ASD into behavioral components, predict each behavioral component, and
aggregate the behavioral predication into a final classification. The main contri-
butions of the proposed work can be summarized as follows: (i) modeling
ASD as a multidimensional disorder such that each behavioral component
is an independent dimension, and the severity of ASD is the magnitude
of ASD in that dimension, (ii) building a comprehensive ML pipeline to
find morphological features and brain regions that are correlated with dif-
ferent severity levels of each behavioral category of the SRS, (iii) finding
the anomalous neuro-circuits caused by different severity levels of autism
(e.g. neuro-atlases), and (iv) proposing an explanatory CAD report which
maps extracted cortical features to the behavioral classification to the final
diagnosis.
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2 Materials and Methods

A novel comprehensive ML framework (Fig. 15), comprises two classification phases,
is proposed in this study. First phase is to select morphological features and find the
anomalous neuro-circuits associated with every behavior defined in SRS. Moreover,
the first phase contains a ML module that utilizes the selected morphological features
to classify subjects to different severity levels within each behavioral group. Second
phase aggregates/stacks the models that are trained in the first phase to provide a
final classification to every subject in the training and testing dataset. In order to
build the neuroatlases associated with each behavioral category, we repeat the first
phase 51 times, while shuffling training-validation dataset, to find cortical regions
which discrimination power of statistical significance 𝑝 < 0.01. The framework starts
with downloading the sMRI volumes of ASD and TD subjects provided by ABIDE II
dataset [146], then the preprocessing of the sMRI volumes is performed by Freesurfer
v6.0 [97–100]. Preprocessing consists of three stages which are: (i) intensity normal-
ization, (ii) skull stripping, and (iii) brain segmentation. Each of the aforementioned
stages comprises a set of substages which are going to be briefly discussed in the fol-
lowing sections. After preprocessing, the first classification phase begins with subjects
being categorized according to behavioral modules of SRS, then within each module
subjects are labeled according to their standard SRS score either to be TD, mild,
moderate, or sever. For each subject, features are extracted and summarized in the
form of eight numerical representations for each morphological feature for each brain
region. For each behavioral module, a data matrix, and a target vector are created
and passed to feature selection algorithm to select the candidate imaging markers.
Dimensional reduced data matrices, based on the candidate imaging markers and the
target vector, are then passed to the ML algorithms to select the best ML model that
can be used for classifying ASD and TD subjects.

Figure 15 demonstrates the general block diagram of the proposed framework
comprising three parts: the two classification phases post data preprocessing and
feature extraction. The first part comprises data preprocessing, feature extraction,
and categorizing subjects based on behavioral modules of SRS, we name subjects
within each behavioral category as behavioral group. The second part is the beginning
of the first classification phase (see Fig. 15, and Fig. 19), where each behavioral group
is split according to their normalized severity scores into TD, mild, moderate, and
sever such that 𝑇𝐷 ≤ 59, 60 ≤ 𝑀𝑖𝑙𝑑 ≤ 65, 66 ≤ 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 ≤ 75, and 𝑆𝑒𝑣𝑒𝑟 ≥ 76.
The third part is the beginning of the the second phase of classification (see Fig. 15,
and Fig. 24), where the selected features of phase one for each behavioral group
is selected from that group feature space creating a thinner matrix to be utilized
in training of six different classifiers and perform a randomized grid search hyper
parameter optimization to achieve the highest possible classification accuracy within
each group. Each of the aforementioned phases will be described in detail in the
following sections.
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Figure 15. Overview of the proposed system starting from acquiring MRI volumes
up to the diagnosis.

Figure 16. (Top) boxplot of subjects’ age distribution on the vertical axis versus
sites’ names on the horizontal axis for each phenotype. (Bottom) number of ASD
and TD subjects on the vertical axis versus sites’ names on the horizontal.

Data

ABIDE II is the dataset utilized in this study. It is the second iteration of the Autism
Brain Imaging Data Exchange (ABIDE), which aims to enhance the scope of brain
connectomics research in ASD. It is worth noting that the first iteration of ABIDE
was ABIDE I which was released in 2012 with 1112 subjects who were acquired from
different clinical sites [146]. ABIDE II dataset comprises 521 individuals with ASD
and 593 TD subjects. After preprocessing and quality control, we ended up with
including 496 individuals with ASD and 542 TD subjects from total of 17 sites. The
following figure 16 describes the summary statistics of the included cohort in this
study.

-
All included subjects are then grouped into behavioral groups according to the

SRS. Figure 17 demonstrates the missing values of each behavioral module provided
by ABIDE II dataset such that each bar represents the number of missing values for
that given behavioral test. The shortest six bars belong to the SRS tests. Figure 17
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Figure 17. Bar plot demonstrating the number of missing values for each behavioral
module included in the ABIDE II dataset

is the main motive behind selecting SRS to be the behavioral ground truth for this
study since it possess the least number of missing values.

After grouping the subjects into behavioral groups, each group is considered as
an independent dataset to be utilized in solving a multi-class classification problem
between TD, and the severity of ASD. Figure 18 demonstrates the counts of TD and
different severity levels of ASD within each behavioral category. As it is obvious, the
data is imbalanced especially in the case of mild vs TD. In later sections, we will
discuss how we proposed a way to achieve an unbiased model.

In the following section, we will briefly cover the preprocessing pipeline applied
on the sMRI volumes of each subject to extract the cortical morphological features.

Pre-processing

Preprocessing is a crucial requirement to eliminate the between-subjects variability
that may stem from data acquisition, different scanners, artifacts, or partial volume
effects. Moreover, brain MRI scans usually contain non-brain tissues as it is shown in
Figure ??; Preprocessing section. FreeSurfer performs multiple steps on each sMRI
volume to extract the morphological features. Those steps are intensity normal-
ization, brain extraction and skull stripping, brain segmentation and area labeling,
tessellation of the gray-white matter boundary, surface inflation and spherical atlas
registration, and eventually cortical surface parcellation to the Desikan-Killiany (DK)
atlas. The preprocessing is identical of that we performed in the last chapter III:1:
Pre-processing

42



Figure 18. Bar plot demonstrating the counts of TD vs ASD severity group stacked
on each others for each behavioral category

Phase I

In this section, we will discuss the first phase of the proposed framework. As shown
in Fig. 19, the input to phase I is a matrix containing the values of the morphological
features extracted using FreeSurfer for each subject along with a target matrix con-
taining the severity score of each SRS test. The output of phase I, as shown in figure
19, is an optimized trained classifier and a set of selected features for each behavioral
group. In the following sections, we will discuss each step of phase I in detail.

Feature Extraction

There are two outputs of FreeSurfer which are (i) a set of volumes for each subject
describing each step of the pipeline (normalization, skull stripping and segmentation)
as shown in Figure 15; preprocessing, and (ii) surfaces parcellated to DK atlas and
containing the morphological features values at each point on a predefined mesh grid
created on the brain.

In this study, we utilized the following morphological features to represent the
brain of each subject: (i) surface area, (ii) volume, (iii) thickness, and (iv) curva-
ture (see Figure 20). It is worth noting that thickness is calculated as the closest
distance from the gray/white matter boundary to the gray/CSF boundary at each
vertex on the tessellated surface [113], while curvature is measured as the average of
the reciprocal of the principal radii [114]. For each of those features, we calculated
the 20th, 40th, 60th, 80th percentiles within each brain region parcellated to the DK
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Figure 19. The pipeline of the proposed Phase 1 method of Classification.

Figure 20. Morphological features extracted from brain surfaces by freesurfer.

atlas. The main motives behind choosing those four percentiles to represent each
morphological feature of each brain region instead of mean and standard deviation,
which is already provided by FreeSurfer are (i) to exclude outlier and preprocessing
errors within each brain regions, (ii) and to have more samples representing the dis-
tribution of the morphological values within each brain regions. DK atlas parcellates
the brain into 68 brain regions; 34 brain regions on the left hemisphere, and 34 brain
regions on the right hemisphere. Therefore, each subject is represented by a vector
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of 68 brain regions ×4 features ×4 = 1088 elements of a feature vector.
For each of the behavioral group, we subdivide the ASD subjects according to

their severity into mild, moderate, and sever. The main point behind this dividing
ASD within each behavioral group is to address the magnitude of the disorder.

For each of the behavioral groups, a data matrix is created (𝐷𝐿) such that
𝐷𝐿 = {𝑑𝑡 : 𝑑𝑡 ∈𝑀,1088 & 1 ≤ 𝑡 ≤ 6} each corresponding to one of the sites; 𝑑𝑡 denotes
the data matrix corresponding to behavioral group 𝑡 and t = {communication, man-
nerism, motivation, cognition, awareness, total}. Total is an SRS behavioral module
denoting the overall score of a subject. Each 𝑑𝑡 has the size of 𝑀 × 1088, such that
𝑀 denotes the number of subjects within site t; sequentially, 𝑦𝑡 denotes the diagnosis
vector corresponding to site 𝑡, and 𝑦𝐿 denotes the set containing all the 𝑦𝑡 for all sites.
Equation 3 shows the shape and the symbolic representation for the data matrix and
the target vector of each behavioral group.

𝑑𝑡 =


𝑓1,1 𝑓1,2 · · · 𝑓1,1088
𝑓2,1 𝑓2,2 · · · 𝑓2,1088
.
.
.

.

.

.
. . .

.

.

.

𝑓𝑀,1 𝑓𝑀,2 · · · 𝑓𝑀,1088

 , 𝑦𝑡 =


𝑦1
𝑦2
𝑦3
.
.
.

𝑦𝑀

 , 𝐷𝐿 =


𝑑1
𝑑2
𝑑3
.
.
.

𝑑6

 , 𝑦𝐿 =


𝑦1
𝑦2
𝑦3
.
.
.

𝑦6

 (3)

Feature Adjustment & Normalization

The feature vector corresponding to every subject contains the 20th, 40th, 60th, and
80th percentile of each morphological feature for every region. Morphological features
don’t share the same units of measurement; for instance, surface area is measured in
mm2, while volume is measured in mm3. Consequently, we anticipate having different
ranges of values, which might adversely affect the performance of the classifiers [117].

In this study, we utilized minimum-maximum normalization between 0 to 1 as it
is one of the most common normalization methods used for biomedical data [118].
Consequently, each column in the data matrix 𝐷 is normalized between 0 to 1 using
the equation 4.

𝑓𝑖, 𝑗 =
𝑓𝑖, 𝑗 −min𝑖{ 𝑓𝑖, 𝑗 }

max𝑖{ 𝑓𝑖, 𝑗 } −min𝑖{ 𝑓𝑖, 𝑗 }
(4)

Where 𝑓𝑖, 𝑗 and 𝑓𝑖, 𝑗 denote the normalized feature value 𝑗 and the original feature
value 𝑗 corresponding to the subject 𝑖, and min ( 𝑓 𝑗 ) and max ( 𝑓 𝑗 ) correspond to
minimum and maximum values of the feature vector 𝑗 respectively. The output
normalized matrix is denoted by 𝑑𝑡𝑛 for the behavioral groups where 1 ≤ 𝑡 ≤ 6.

Feature selection

To implement a Computer-Aided Diagnosis System (CAD) for accurate diagnosis of
autism, we have to use a neuro-atlas tailored to the specific developmental patterns
of the brain in autism. Unfortunately, as far as our knowledge, ASD literature does
not contain any ASD specific neuro-atlas, or even a behavior-specific neuro-atlas that
can be utilized in training ML classifiers and build a CAD system. Therefore, in
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this study, we take the first steps toward building behavioral based neuro-atlases
that can be used to classify subjects into different ASD behavioral groups. In other
words, we are proposing a neuro-atlas that can be used to objectively predict the
severity score of a given subject if that subject was assigned to one of the SRS tests.
To achieve this goal, we utilize recursive feature elimination with cross-validation
(RFECV) method to select the set of brain morphological features which maximizes
the balanced accuracy score of classifying ASD within each behavioral group. Since,
RFECV is one of supervised feature selection algorithm, we split the every behavioral
group into 𝑘-folds, 𝑘 = 5 in our case, and for each fold (i) train a predetermined
classifier using the training set, (ii) evaluate the performance of the trained classifier
on the validation set, (iii) save the classifier’s score on the validation set, (iv) find
the least significant feature according to the trained classifier, (v) remove the least
significant feature from the model, (vi) repeat the whole processes until you end up
with only one feature. Again, repeat the whole process for each fold, calculate the
average performance of the k-fold cross-validation (CV) when: using all features to
train the classifier; using all features but one, and so forth, to the point of classification
on a single feature. Find the number of the features at which the classifier has the
maximum performance score, assuming it is 𝑁 𝑓 features. 𝑁 𝑓 is the optimum number
of features to be selected. Perform the whole algorithm again over all the subjects
to find the most 𝑁 𝑓 significant features. The algorithm is summarized in Fig. 21.
For further details regarding the algorithm and its implementation, the reader is
suggested to read Guyon et al. [119] and Pedregosa et al. [120], respectively.

For each of the behavioral groups, RFECV is implemented using four different
classifiers building up total of four models to find the set of features that maximizes
the balanced accuracy score of classifying subjects into TD vs mild ASD, TD vs
moderate ASD, and TD vs sever ASD. Therefore, for every behavioral group, there
are 12 selected set of features. Those 12 sets of features are divided into 4 sets of
features act as neuro-atlas candidates to describe and differentiate between TD and
each severity level of ASD (mild, moderate, and sever). Each of the selected set
of brain morphological features maximizes the balanced accuracy score according to
the underlying hypothesis of the utilized RFECV model. Each of the four selected
models, to integrate with RFECV, posses one of the following underlying hypotheses:
(i) models that assume that subjects are non-linearly separable and thus select a set
of feature that constructs a feature space where the subjects are separated via non-
linear kernel, and (ii) models that assume that subjects are linearly separable and
thus search for a set of features that constructs a feature space where the subjects
are linearly separable in . RFECV+RF, RFECV+Light Gradient Boosting Machines
(LGBM) implements the first group of models with the underlying assumption that
the classification accuracy can be maximized with a non-linear kernel in the selected
feature space. On the other hand, RFECV+logistic regression (lr), RFECV+linear
SVM (lsvm) implements the second group of models with the underlying that the
classification accuracy can be maximized with a linear kernel in the selected feature
space. Figure 22 illustrates the processes of feature selection using each of the afore-
mentioned classifiers resulting into four different sets, each set comprises six sets of
selected features for each behavioral category. Each of the RFECV models is exe-
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Figure 21. Flowchart illustrating RFECV algorithm for any classifier.

cuted with 5-fold CV; such that we iterate over all the 1088 features, removing one
feature at a time, perform 5-fold CV on the current sample, and calculate the average
balanced accuracy score.

This step outputs four sets of features for each severity level within each of the
behavioral group with total number of 4 RFECV models × 3 severity levels × 6
behavioral groups = 72 sets of features. Those 72 sets of features are used to re-
duce the dimension of each of the data matrices of each behavioral group from 1088
columns/features to 𝑠𝑘𝑛𝑚, where the size of 𝑠𝑘𝑛𝑚 is 𝑛×𝑚 such that 𝑛 is the number of
subjects within behavioral group 𝑘, and 𝑚 ≤ 1088. Consequently, we define a neuro-
atlas for a specific behavioral group as the brain regions included with a selected set
of morphological features which achieves the maximum value of the average of the
balanced accuracy score and f1-score, as defined in [147], in the following ML step.
More details are provided in the ML section. It is worth noting that f1-score is only
utilized at the ML step as a confirmation step of the ML models since all of the 30
selected set of features are chosen using solely the balanced accuracy score.

Scoring metrics

The first metric that we utilized in this study is the balanced accuracy score that was
introduced in 2010 to solve the optimistic estimate occurs when a biased classifier
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Figure 22. The steps of Recursive Feature Elimination CV and Building Neuro-
Atlas

is tested on an imbalanced dataset [121]. The balanced accuracy score is defined by
equation 6:

𝑏𝑎𝑐𝑐 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦

2
(5)

Where 𝑠𝑐𝑜𝑟𝑒 denotes the balanced accuracy score, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 is calculated as
𝑇𝑃

𝑇𝑃+𝐹𝑁 such that 𝑇𝑃 denotes true positives, 𝐹𝑁 denotes false negatives, and 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦

is calculated as 𝑇𝑁
𝑇𝑁+𝐹𝑃 such that 𝑇𝑁 denotes true negative, and 𝐹𝑃 denotes false pos-

itives.
The second metric that we utilized in this study is F-measure (F1), which is widely

used in the context of classification of imbalanced datasets [148,149]. It was originally
introduced to evaluate the ranking of documents retrieved based on a query [150].
It is interpreted as the harmonic mean of the two degrees of freedom of a confusion
matrix.

𝐹1 = 2 × ( 𝑃𝑅

𝑃 + 𝑅 ) (6)

where 𝑃 denotes precision which is calculated as 𝑇𝑃
𝑇𝑃+𝐹𝑃 , and 𝑅 denotes recall which

is calculated as 𝑇𝑃
𝑇𝑃+𝐹𝑁 .

ML classifiers

For every 𝑠𝑘𝑛 for every behavioral group 𝑘, a ML model is initialized to be trained to
classify TD vs mild ASD, TD vs moderate ASD, and TD vs sever ASD. In this study,
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Table 7. hyperparameters range of each classifier

Classifier hyperparameters var name values

Linear SVM
Regularization parameter C 0.1, 1, 5, 10

Norm used in the penalization penalty ”l1”l2”
Loss function loss hinge ßquared inge”

Ridge Classifier
Regularization parameter 𝛼 0.1, 0.2, 0.3, ..., 5

Normalization normalize (True, False)

Logistic Regression
Norm used in the penalization penalty ”l1 ”l2 ëlasticnet”

Regularization parameter C 0.1, 1, 5, 10
Algorithm to use in optimization problem solver newton-cg ”lbfgs ”liblinear ßag ßaga”

Light Gradient Boosting Machines

l1 regularization 𝑟𝑒𝑔 𝑎𝑙 𝑝ℎ𝑎 0, 0.1, 0.2, ..., 5
l2 regularization 𝑟𝑒𝑔 𝑙𝑎𝑚𝑏𝑑𝑎 0, 0.1, 0.2, ..., 5.

Number of estimators 𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 100, 150, 200, ... 5000.
learning rate 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 0.01,0.02, 0.03, ..., 1.

Maximum depth for each tree 𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ 1, 2, 3, ..., 10
Number of leaves 𝑛𝑢𝑚 𝑙𝑒𝑎𝑣𝑒𝑠 3, 4, 5, 6, ..., 32

Random Forest

Number of trees in the forest n stimators 50, 100, 200, 500, 1000
Function to measure the quality of a split criterion giniëntropy”

Number of features to consider when looking for best split max eatures sqrt”log2All features
Minimum number of samples required to split an internal node min amples plit 1, 2, 5, 10

Whether to use bootstrap samples while building the tree or use the whole training set bootstrap True, False

Non-linear SVM

kernel used kernel poly”rbfßigmoid”
Regularization parameter C 0,0.1,1,5, 10

Degree (when kernel is polynomial) degree 2,3,4,5,6
Kernel coefficient gamma scaleäuto”

Independent term in kernel function coef0 0.0,0.01,0.1,0.5,1,5,10,50,100

Algorithm 1 ML-train with hyperparameters optimization

Feature data matrix and target vector trained classifier object (c) Let X be the
data matrix comprises 𝑀 rows, and 𝑁 𝑓 selected columns from RFECV; let y be the
target vector of length 𝑀 such that 𝑦 ∈ {0, 1}𝑀 Split X, y into k folds. i.e 𝑋 𝑓 =

{𝑋1, 𝑋2, . . . , 𝑋𝑘 } & 𝑦 𝑓 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 } where 𝑋𝑖 ∈ R⌊𝑀/𝑘⌋×𝑁 𝑓 and 𝑦𝑖 ∈ {0, 1}⌊𝑀/𝑘⌋

Let 𝐶 be the set of the 𝑅 classifiers utilized in the study such that 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑅}
For each 𝑐𝑖 ∈ 𝐶, let 𝐻𝑖 be the tuple of associated hyperparameters as defined in table7
For each 𝐻𝑖 let 𝑣𝑖, 𝑗 denote the range of allowable values of element 𝑗 𝑐𝑖 ∈ 𝐶 HP set𝑖 ∈
{H𝑖 ×v𝑖} (𝑋𝑖, 𝑦𝑖) ∈ (X 𝑓 , 𝑦 𝑓 ) Set the hyperparameters of classifier 𝑐𝑖 to the values
in 𝐻𝑃 𝑠𝑒𝑡𝑖 Train classifier 𝑐𝑖 using (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) Calculate the balanced accuracy
score of 𝑐𝑖 using 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 Save the trained classifier 𝑐𝑖 and it is corresponding
balanced accuracy score Save the calculated average balanced accuracy score of
all the iterations along with the corresponding 𝐻𝑃 𝑠𝑒𝑡𝑖 Save the maximum of all
average balanced accuracy scores and the corresponding 𝐻𝑃 𝑠𝑒𝑡𝑖, along with classifier
𝑐𝑖 𝑐𝑖 ∈ 𝐶 return the maximum score and the corresponding 𝐻𝑃 𝑠𝑒𝑡𝑖

we decided to perform one vs one classification for multiple classes and to classify each
of the ASD behavioral severity vs TD. The rationale behind this decision is that we
are interested to see how the morphology of TD brain differs from the morphology of
ASD with different severity scores without over analyzing the discrepancies within the
ASD itself. Throughout this study we are focusing on our primary objective which is
building ML based neuro-atlases for the ASD. ML classifiers, with linear hypothesis
and non linear hypothesis, are selected to classify subjects within every behavioral
group. The training process is repeated three times for classifying subjects into TD
and each of the severity levels, similar to the experiment design of feature selection.
The utilized six ML classifiers are split into two main divisions: (i) Linear classifiers,
(ii) Non-linear classifiers. The linear classifiers set comprises LR, LSVM, and Ridge
classifier. The non-linear classifiers set comprises RF, SVM with radial basis function
(SVM-RBF), and LGBM. The reduced data matrix 𝑠𝑘𝑛 of each behavioral group 𝑘 is
fed to every classifier for training. Figure 23 illustrates how the ouput of the feature
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Figure 23. ML Model

selection step is given as the input to each of the aforementioned classifiers to build
total of 144 classification model, 24 models for each behavioral group (4 RFECV and
6 classifiers). Every classifier is optimized using randomized grid search over 5-folds
cv. For each classifier, the hyperparameters and their ranges are defined in Table 7.
The random sampling of the hyper parameter space is repeated 500 times for each
classifier. The hyper parameters of each classifier corresponding to the maximum
average cross validation balanced accuracy score is selected as the output of this
stage. The detailed algorithm is shown in algorithm 1.

There is an extra step is added to the end of the ML pipeline in order to make sure
that the selected ML model is not overfitted. Each of the optimized ML classifiers is
re-initialized with the optimum hyper-paramters’s values, retrained using only 80%
of the data and tested on the 20% leftout set. The testing balanced accuracy, and
F1 score are calculated for each of the retrained classifiers to compare against the
cross-validation score.

Top performing models, to passed to phase II of the framework, are selected
based on their performance on the 20% testing set in terms of the average value of
the balanced accuracy score, and F1 score. Once a ML classifier is selected for a given
severity level within a given behavioral group, we perform backtracking to find the
selected morphological features used for training that ML classifier.
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Phase I optimization / Building Neuroatlases

The complexity of phase I makes it vulnerable to false positive findings because
of one or more potential hidden confounding variables that might exist among a
group of subjects in the dataset. In general, a complex experiment, especially in
biomarker studies, posses many statistical caveats [151]. Moreover, phase I comprises
two stochastic processes that would change the final results for different initial con-
ditions. The two stochastic processes are: (i) Shuffling subjects for cross-validation,
and (ii) the hyperparameters optimizations via random search. Although we sampled
the hyper parameter space of every ML classifier 500 times, there is no guarantee that
the resultant model is optimum, at least for the data in hand.

We executed Phase I 51 times with different random seeds for each of the two
stochastic processes. The rationale behind repeating phase I is to be more confident
with both the selected morphological feaatures, and the optimized model. We claim
that a robust discriminative morphological features, which can be generalized out-
side ABIDE II dataset, should be consistently selected by RFECV across different
samples of training-validation sets. Consequently, that robust discriminative set of
morphological features should yield the highest possible accuracy scores when utilized
with a hyperparameters optimized ML classifier.

Moreover, we were intrigued by the question of whether the set of morphological
features, that corresponds to the maximum classification accuracy for each behavioral
group, are selected due to chance, or they actually reflect some sort of underlying
neuro-physiology that defines ASD. Therefore, we calculated the probability of finding
each of the selected morphological features for 𝑛 number of times out of the 51 trials
using binomial distribution as going to be explained in the following section.

Eventually, the set of the morphological features corresponding to the maximum
classification accuracy score for each behavioral group, and the optimized ML classi-
fiers corresponds to every behavioral group are passed to phase II of the framework
to be used to predict the final classification of subjects. Phase II is explained in detail
in the following section.

Neuro-atlas statistical significance

Testing the significance, of each of the selected features within each neuro-atlas, was a
challenging task, especially given the way we designed the framework. The framework
is primarily designed to build a CAD system and annotate the features that maximize
the classification accuracy of that CAD system. However, studying the significance of
the findings is as important as the classification accuracy, if it is not more important.
Therefore, we set the null hypothesis, and then analytically calculated the probability
of including a specific feature in a specific neuro-atlas under the given null hypothesis.

The null hypothesis is that RFECV algorithms randomly select 𝑚 features of each
behavioral group data matrix. Thus, over the 51 repetitions, what is the probability
of observing the neuro-atlas features under the assumption of null hypothesis? To
answer this question, we thought of RFECV the opposite way of how it works. We
though of the process as RFECV selects a feature, instead of eliminating a feature, up
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to 𝑚 features. Therefore, for every repetition, the probability of randomly selecting
any feature out of the 1088, through 𝑚 samplings without replacement, is 𝑚/1088
such that 𝑚 is the number that RFECV selected for this behavioral group for this
severity level for this repetition out of the 51 repetitions. Let feature 𝑓𝑖 such that
1 ≤≤ 1088 gets selected 𝑟 times out of the 51 repetitions, then the probability that
𝑓𝑖 is randomly selected 𝑟 times is defined as

𝑃( 𝑓𝑖; 51, 𝑟) =
(
51

𝑟

)
( 𝑚

1088
)r(1 − 𝑚

1088
)51-r (7)

Equation 7 is the well-known binomial distribution equation [152]. Although equa-
tion 7 is too close to what we are looking for, it is not exactly the correct representation
of our experiment. As we described the stochastic part of phase I in the last section,
we can not ensure that for the same behavioral group, for the same severity level, the
same 𝑚 will be selected for every repetition. Therefore, a generalization of equation 7
is required to be applied on our case. We can reformulate our question to be: What is
the probability of including feature 𝑓𝑖 𝑟 times in the selected features set in total of 51
experiments given that the probability of selecting 𝑓𝑖 varies across experiments? After
introducing the variability of the probability of success of each feature based on the
experiment, we can no longer calculate the probability 𝑃( 𝑓𝑖; 51, 𝑟) using

(51
𝑟

)
. There-

fore, we implemented a function that counts all the ways such that 𝑓𝑖 can be observed
𝑟 times giving the probability of selecting 𝑓𝑖 at every experiment. The function can
be found at [153] in directory 𝑛𝑜𝑡𝑒𝑏𝑜𝑜𝑘𝑠/𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑂 𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠.𝑝𝑦.
The statistical significance of the selected feature is performed on the neuro-atlas
of every behavioral group, and on the aggregated neuro-atlases to inspect the most
common features among all of ASD related behavioral disorders.

Although the significance would be calculated exactly using the previous tech-
nique, the number of combinations we need to considers grows exponentially, and
becomes impossible to track. For instance, the number of combinations required to
be considered to calculate the significance of selecting one feature 10 times out of the
51 experiments is

(51
10

)
= 12777711870. Therefore, for every features, we assigned the

highest selection probability that a features possessed across the 51 experiments as
the 𝑝 defined in the binomial distribution. Afterwards, we used the binomial distri-
bution equation 7. This crude assumption might result in type II error which would
lead to ignoring significant brain regions. Nevertheless, in this work, we attempted to
be as conservative as possible while building the neuroatlases. Consequently, those
brain regions, which are found to be significant, can be thought of the ”core” brain
regions that are directly associated with the disorder. A brain region is said to be
significantly associated to ASD within a severity group of a behavioral group if and
only if at least one of the morphological features of that features is utilized in one of
the selected ML models of the 51 experiments, and have a p-value ¡ 0.001.

Eventually, since phase I is a supervised process, we wanted to study the rela-
tionship between the top performing models across all experiments testing and the
behavioral groups, as well as, the relationship between the top performing models and
the severity groups. We define the top performing models as the top 50th percentile

52



Figure 24. The pipeline of the proposed Phase 2 method of Classification

models with average cross validation balanced accuracy score, testing balanced accu-
racy score, and testing f1-score. The rationale behind studying the aforementioned
relationships is to provide a complementary information to the statistical significance
of every neuro-atlas. Substantially, with every neuro-atlas, we provide the informa-
tion of how consistent and accurate a machine learning model would be if it is trained
using a given neuro-atlas.

Phase II

The framework is designed to mimic the behavioral interview conducted between a
physician and subject. More or less, we designed phase I to produce an output that
looks a bit similar to the behavioral reports with all the scores associated with different
behavioral traits, similar to the behavioral reports that can be downloaded via [154].
Consequently, we think of phase II as the aggregation of those behavioral scores to
provide a final diagnosis. Therefore, the performance of phase II is totally dependant
on the output of phase I. It is worth noting that the classification problem of phase II
has totally different labels (target vector) that the classification problem of phase I.
Although, they might seem dependent somehow, since the final diagnosis of subject
is actually dependent on that subject’s behavior scores, in terms of classification
problems, the final diagnosis target vector has never been included in phase I.
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Similar to phase I, phase II comprises the ML classifiers discussed in section 2.3.5
(Fig. 24). Nevertheless, those classifiers learn to classify a subject into ASD or TD
instead of severity levels as it is the case of phase I. Moreover, the input of phase II
is no longer cortical morphological features. Instead, it is a matrix of probabilities
𝑋 of size 𝑁 × 18. Each row of 𝑋 denotes a subject, and each column of 𝑋 denotes a
probability that this subject posses a specific severity level of a specific behavior trait.
For instance, the first three columns of matrix 𝑋 at row 𝑖 denote the probability of
subject 𝑖 to be TD or mild ASD (0 means certainly TD, and 1 means certainly mild
ASD), TD or moderate ASD, and TD or sever ASD with respect to communication
module of SRS respectively. Similarly for the following three columns except that
they denote the probabilities for mannerism module of SRS, and so on.

𝑋 =


𝑝𝑝1,1 𝑝𝑝1,2 · · · 𝑝𝑝1,18
𝑝𝑝2,1 𝑝𝑝2,2 · · · 𝑝𝑝2,18

.

.

.
.
.
.

. . .
.
.
.

𝑝𝑝𝑀,1 𝑝𝑝𝑀,2 · · · 𝑝𝑝𝑀,18

 , 𝑦 =


𝑦1
𝑦2
𝑦3
.
.
.

𝑦𝑀

 , (8)

Equation 8 shows the input feature matrix 𝑋 and the target vector 𝑦 given to the
classifiers in phase II. The target vector 𝑦 is the final diagnosis provided by ABIDE
II for every subject.

The training process of phase II classifiers is similar to the training process took
place for every behavioral group. A set of six different ML classifiers representing both
linear and non-linear hypotheses is selected to test the behavioral imaging markers
candidates. The utilized six ML classifiers are split into two main divisions: (i) Lin-
ear classifiers, and (ii) Non-linear classifiers. The linear classifiers set comprises LR
with l1 and l2 regularization. The non-linear classifiers set comprises RF, SVM-RBF,
LGBM, nn, and ExtraGradient Boost Trees (xgboost) [155]. To optimize the hyper-
parameters of each classifier, the data is split into 5-folds. Four folds of data are
utilized for training each classifier with a randomly sampled hyper parameters, and
the performance is evaluated using the 5th fold. the classifier with the highest bal-
anced accuracy score, Bagging the classifier of the highest performance, and stacking
all the aforementioned trained classifiers to find the model that would be used as the
final classification layer. Those three models are then evaluated on a 20% hold-out
set to evaluate the generalizability of the framework.

Eventually, we randomly select one ASD subject, and one TD subject from the
hold-out 20% dataset, as our case studies. We utilize the top performing classifiers of
phase one to classify the severity of the behavior trait of each subject, then feeding the
output probability matrix to phase two classifier in order to provide us with the final
diagnosis of each subject. To add more interpretability to the results, we utilize local
interpretable model-agnostic explanations (LIME) [122] which is a novel explanation
technique that explains the prediction of any classifier. The main idea behind LIME
is that it builds linear models around the predictions of an opaque model to explain
it.
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3 Results

In this section, we will cover the output of phase I and phase II of the framework.
We focus on justifying the results of neuro-atlases since this is the core of the entire
framework, as well as, we are hoping that those neuro-atlases would help more scien-
tists to understand ASD etiology. Moreover, we will focus on two case studies of the
hold-out set to demonstrate the process of the entire framework in a production-like
environment.

Phase I

In this section, we will demonstrate the morphological features selected for each
behavioral neuro-atlas within each severity group. Also, we will provide the summary
statistics of the top performing experiments, and the morphological features, brain
regions, and hemispheres selection frequency. Eventually, we will demonstrate the
results of the selected models for each behavioral group within each severity group.
Those selected models are going to build the input of Phase II as described in the
previous Phase II section.

Neuro-atlases

In this section, we will go through the results which lead us to build multiple neuro
atlases for each behavioral disorder. First, features are selected via the aforemen-
tioned RFECV algorithms. Figures 25 and 26 demonstrate the results of each of the
RFECV algorithms to select the subset of features which the maximum classification
accuracy between sever-cognition ASD and TD. A vertical line indicates the size of
features’ set corresponding to the maximum classification balanced accuracy.

The following figures demonstrate the neuro-atlas which defines each severity-
behavioral group, as well as the aggregated atlases that defines the brain region
which associate with each severity level across all behavioral groups, and each be-
havioral group across all severity levels. We chose to demonstrate only the statis-
tically significant behavioral neuroatlases over all severity scores, while adding to
the supplementary materials the severity neuro-atlases, and behavioral per severity
neuro-atlases.

Figure 27 demonstrate the color code of each brain region defined by DK atlas.
The color codes are the standard color codes defined by Freesurfer.

Figure 28 demonstrates the brain regions which posses a statistical significant
𝑝 < 0.001 contribution to the classification between ASD subjects with mild aware-
ness score, and TD subjects. The left hemisphere brain regions shown in figure
28 are bankssts, caudalanteriorcingulate, caudalmiddlefrontal, entorhinal, fusiform,
inferiortemporal, insula, isthmuscingulate, lateraloccipital, lateralorbitofrontal, lin-
gual, medialorbitofrontal, middletemporal, parahippocampal, parsopercularis, pars-
triangularis, pericalcarine, postcentral, precentral, precuneus, rostralanteriorcingu-
late, supramarginal, temporalpole, transversetemporal. While the right hemisphere
brain regions are caudalanteriorcingulate, caudalmiddlefrontal, cuneus, entorhinal,
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Figure 25. Balanced accuracy versus the number of selected features using each of
RFECV classifiers. (a) lsvm, (b) lgbm.

fusiform, inferiorparietal, inferiortemporal, insula, isthmuscingulate, lateraloccipi-
tal, lateralorbitofrontal, lingual, medialorbitofrontal, middletemporal, paracentral,
parahippocampal, parsopercularis, parsorbitalis, parstriangularis, postcentral, pos-
teriorcingulate, precuneus, rostralanteriorcingulate, superiorfrontal, superiorparietal,
superiortemporal, supramarginal, temporalpole, transversetemporal.

Figure 29 demonstrates the brain regions which posses a statistical significant
𝑝 < 0.001 contribution to the classification between ASD subjects with mild cogni-
tion score, and TD subjects. The left hemisphere brain regions shown in figure
29 are bankssts, caudalanteriorcingulate, caudalmiddlefrontal, cuneus, entorhinal,
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Figure 26. Balanced accuracy versus the number of selected features using each of
RFECV classifiers. (c) rf, and (d) lr.

frontalpole, fusiform, insula, isthmuscingulate, lateraloccipital, lateralorbitofrontal,
middletemporal, parahippocampal, parsopercularis, parstriangularis, pericalcarine,
postcentral, posteriorcingulate, precentral, precuneus, rostralmiddlefrontal, superior-
parietal, superiortemporal, supramarginal, temporalpole, transversetemporal. While
the right hemisphere brain regions are bankssts, caudalanteriorcingulate, cau-
dalmiddlefrontal, cuneus, entorhinal, frontalpole, fusiform, inferiorparietal, inferi-
ortemporal, lateralorbitofrontal, lingual, medialorbitofrontal, paracentral, parahip-
pocampal, parsopercularis, parstriangularis, postcentral, posteriorcingulate, precen-
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Figure 27. The color-coded brain areas.

tral, precuneus, rostralanteriorcingulate, superiorfrontal, superiorparietal, superiortem-
poral, supramarginal, temporalpole, transversetemporal.

Figure 30 demonstrates the brain regions which posses a statistical significant
𝑝 < 0.001 contribution to the classification between ASD subjects with mild com-
munication score, and TD subjects. The left hemisphere brain regions shown
in figure 30 are bankssts, caudalanteriorcingulate, caudalmiddlefrontal, entorhinal,
fusiform, inferiortemporal, insula, isthmuscingulate, lateralorbitofrontal, lingual, me-
dialorbitofrontal, paracentral, parahippocampal, parstriangularis, pericalcarine, pos-
teriorcingulate, rostralanteriorcingulate, rostralmiddlefrontal, superiorfrontal, superi-
ortemporal, supramarginal, transversetemporal. While the right hemisphere brain
regions are bankssts, caudalanteriorcingulate, cuneus, frontalpole, fusiform, inferi-
orte mporal, insula, lateraloccipital, lateralorbitofrontal, lingual, medialorbitofrontal,
parsopercularis, parsorbitalis, parstriangularis, postcentral, posteriorcingulate, pre-
cuneus, rostralmiddlefrontal, superiortemporal, temporalpole, transversetemporal.
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Figure 28. The results for Mild/TD group: Awareness Report. (a, e) lateral view,
(b, f) anterior view, (c, g) medial view, (d, h) posterior view.

Figure 29. The results for Mild/TD group: Cognition Report. (a, e) lateral view,
(b, f) anterior view, (c, g) medial view, (d, h) posterior view.

Figure 31 demonstrates the brain regions which posses a statistical significant
𝑝 < 0.001 contribution to the classification between ASD subjects with mild manner-
ism score, and TD subjects. The left hemisphere brain regions shown in figure
31 are bankssts, caudalanteriorcingulate, caudalmiddlefrontal, cuneus, frontalpole,
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Figure 30. The results for Mild/TD group: Communication Report. (a, e) lateral
view, (b, f) anterior view, (c, g) medial view, (d, h) posterior view.

inferiorparietal, insula, lateraloccipital, lateralorbitofrontal, lingual, middletempo-
ral, paracentral, parsorbitalis, parstriangularis, pericalcarine, posteriorcingulate, pre-
cuneus, rostralanteriorcingulate, superiorfrontal, superiorparietal, superiortemporal,
supramarginal, temporalpole, transversetemporal. While the right hemisphere
brain regions are bankssts, entorhinal, frontalpole, inferiorparietal, inferiortempo-
ral, isthmuscingulate, lateralorbitofrontal, lingual, medialorbitofrontal, middletempo-
ral, posteriorcingulate, precentral, superiorfrontal, superiortemporal, supramarginal,
temporalpole, transversetemporal.

Figure 32 demonstrates the brain regions which posses a statistical significant
𝑝 < 0.001 contribution to the classification between ASD subjects with mild mo-
tivation score, and TD subjects. The left hemisphere brain regions shown in
figure 32 are caudalmiddlefrontal, cuneus, entorhinal, fusiform, inferiorparietal, in-
feriortemporal, isthmuscingulate, lateralorbitofrontal, lingual, medialorbitofrontal,
middletemporal, paracentral, parahippocampal, parsopercularis, parsorbitalis, per-
icalcarine, postcentral, posteriorcingulate, precuneus, rostralanteriorcingulate, ros-
tralmiddlefrontal, superiorfrontal, superiortemporal, transversetemporal. While the
right hemisphere brain regions are bankssts, caudalanteriorcingulate, caudalmid-
dlefrontal, cuneus, frontalpole, inferiorparietal, inferiortemporal, insula, lingual, me-
dialorbitofrontal, middletemporal, paracentral, parsopercularis, parsorbitalis, parstri-
angularis, pericalcarine, postcentral, posteriorcingulate, precentral, precuneus, ros-
tralanteriorcingulate, superiorfrontal, superiorparietal, supramarginal, temporalpole,
transversetemporal.

Figure 33 demonstrates the brain regions which posses a statistical significant 𝑝 <
0.001 contribution to the classification between ASD subjects with moderate aware-
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Figure 31. The results for Mild/TD group: Mannerism Report. (a, e) lateral view,
(b, f) anterior view, (c, g) medial view, (d, h) posterior view.

Figure 32. The results for Mild/TD group: Motivation Report. (a, e) lateral view,
(b, f) anterior view, (c, g) medial view, (d, h) posterior view.

ness score, and TD subjects. The left hemisphere brain regions shown in figure 33
are bankssts, caudalmiddlefrontal, cuneus, frontalpole, fusiform, inferiorparietal, in-
feriortemporal, insula, isthmuscingulate, lateraloccipital, lateralorbitofrontal, lingual,
medialorbitofrontal, middletemporal, paracentral, parsorbitalis, parstriangularis, per-
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Figure 33. The results for Moderate group: Awareness Report. (a, e) lateral view,
(b, f) anterior view, (c, g) medial view, (d, h) posterior view.

icalcarine, postcentral, posteriorcingulate, precentral, rostralanteriorcingulate, ros-
tralmiddlefrontal, superiorfrontal, superiorparietal, superiortemporal, supramarginal,
temporalpole, transversetemporal. While the right hemisphere brain regions
are bankssts, caudalmiddlefrontal, cuneus, entorhinal, frontalpole, fusiform, inferior-
parietal, inferiortemporal, insula, lateraloccipital, lateralorbitofrontal, lingual, medi-
alorbitofrontal, middletemporal, paracentral, parsopercularis, parsorbitalis, parstri-
angularis, pericalcarine, postcentral, posteriorcingulate, precentral, precuneus, ros-
tralanteriorcingulate, rostralmiddlefrontal, superiorparietal, superiortemporal, supra-
marginal, temporalpole, transversetemporal.

Figure 34 demonstrates the brain regions which posses a statistical significant
𝑝 < 0.001 contribution to the classification between ASD subjects with moderate
cognition score, and TD subjects. The left hemisphere brain regions shown
in figure 34 are caudalanteriorcingulate, caudalmiddlefrontal, frontalpole, fusiform,
inferiorparietal, inferiortemporal, insula, isthmuscingulate, lateraloccipital, lateralor-
bitofrontal, lingual, medialorbitofrontal, paracentral, parahippocampal, parsorbitalis,
parstriangularis, posteriorcingulate, precuneus, rostralmiddlefrontal, superiorfrontal,
temporalpole, transversetemporal. While the right hemisphere brain regions
are caudalmiddlefrontal, cuneus, entorhinal, fusiform, inferiorparietal, inferiortempo-
ral, insula, isthmuscingulate, lateraloccipital, lateralorbitofrontal, lingual, medialor-
bitofrontal, paracentral, parahippocampal, parsopercularis, parstriangularis, perical-
carine, posteriorcingulate, precuneus, rostralanteriorcingulate, rostralmiddlefrontal,
superiorfrontal, superiorparietal, superiortemporal, supramarginal, transversetempo-
ral.

Figure 35 demonstrates the brain regions which posses a statistical significant
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Figure 34. The results for Moderate group: Cognition Report. (a, e) lateral view,
(b, f) anterior view, (c, g) medial view, (d, h) posterior view.

𝑝 < 0.001 contribution to the classification between ASD subjects with moderate
communication score, and TD subjects. The left hemisphere brain regions shown
in figure 35 are caudalanteriorcingulate, caudalmiddlefrontal, frontalpole, fusiform,
inferiorparietal, inferiortemporal, insula, isthmuscingulate, lateraloccipital, lateralor-
bitofrontal, lingual, medialorbitofrontal, paracentral, parahippocampal, parsorbitalis,
parstriangularis, posteriorcingulate, precuneus, rostralmiddlefrontal, superiorfrontal,
temporalpole, transversetemporal. While the right hemisphere brain regions
are caudalmiddlefrontal, cuneus, entorhinal, fusiform, inferiorparietal, inferiortempo-
ral, insula, isthmuscingulate, lateraloccipital, lateralorbitofrontal, lingual, medialor-
bitofrontal, paracentral, parahippocampal, parsopercularis, parstriangularis, perical-
carine, posteriorcingulate, precuneus, rostralanteriorcingulate, rostralmiddlefrontal,
superiorfrontal, superiorparietal, superiortemporal, supramarginal, transversetempo-
ral.

Figure 36 demonstrates the brain regions which posses a statistical significant 𝑝 <
0.001 contribution to the classification between ASD subjects with moderate man-
nerism score, and TD subjects. The left hemisphere brain regions shown in fig-
ure 36 are bankssts, caudalanteriorcingulate, caudalmiddlefrontal, cuneus, entorhinal,
frontalpole, fusiform, inferiorparietal, inferiortemporal, insula, isthmuscingulate, lat-
eraloccipital, lateralorbitofrontal, lingual, medialorbitofrontal, middletemporal, para-
central, parahippocampal, parsopercularis, parsorbitalis, postcentral, posteriorcingu-
late, precentral, precuneus, rostralanteriorcingulate, rostralmiddlefrontal, superior-
frontal, superiorparietal, superiortemporal, supramarginal, temporalpole, transver-
setemporal. While the right hemisphere brain regions are bankssts, caudalante-
riorcingulate, caudalmiddlefrontal, cuneus, entorhinal, frontalpole, fusiform, inferior-
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Figure 35. The results for Moderate group: Communication Report. (a, e) lateral
view, (b, f) anterior view, (c, g) medial view, (d, h) posterior view.

parietal, inferiortemporal, insula, isthmuscingulate, lateralorbitofrontal, lingual, me-
dialorbitofrontal, paracentral, parahippocampal, parsopercularis, parsorbitalis, pars-
triangularis, pericalcarine, postcentral, posteriorcingulate, precuneus, rostralanteri-
orcingulate, rostralmiddlefrontal, superiorfrontal, superiorparietal, superiortemporal,
supramarginal, temporalpole, transversetemporal.

Figure 37 demonstrates the brain regions which posses a statistical significant
𝑝 < 0.001 contribution to the classification between ASD subjects with moderate
motivation score, and TD subjects. The left hemisphere brain regions shown
in figure 37 are bankssts, caudalanteriorcingulate, caudalmiddlefrontal, cuneus, en-
torhinal, frontalpole, fusiform, inferiorparietal, inferiortemporal, insula, isthmuscin-
gulate, lateraloccipital, lateralorbitofrontal, lingual, medialorbitofrontal, middletem-
poral, paracentral, parahippocampal, parsopercularis, parsorbitalis, parstriangularis,
pericalcarine, postcentral, posteriorcingulate, rostralanteriorcingulate, rostralmiddle-
frontal, superiorfrontal, superiorparietal, superiortemporal, supramarginal, tempo-
ralpole, transversetemporal. While the right hemisphere brain regions are banks
sts, caudalanteriorcingulate, caudalmiddlefrontal, cuneus, entorhinal, frontalpole, in-
feriorparietal, inferiortemporal, insula, isthmuscingulate, lateraloccipital, lateralor-
bitofrontal, lingual, medialorbitofrontal, middletemporal, paracentral, parsopercu-
laris, parsorbitalis, parstriangularis, pericalcarine, postcentral, posteriorcingulate,
precuneus, rostralanteriorcingulate, rostralmiddlefrontal, superiorfrontal, superiortem-
poral, supramarginal, temporalpole, transversetemporal.

Figure 38 demonstrates the brain regions which posses a statistical significant
𝑝 < 0.001 contribution to the classification between ASD subjects with sever aware-
ness score, and TD subjects. The left hemisphere brain regions shown in fig-
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Figure 36. The results for Moderate group: Mannerism Report. (a, e) lateral view,
(b, f) anterior view, (c, g) medial view, (d, h) posterior view.

Figure 37. The results for Moderate group: Motivation Report. (a, e) lateral view,
(b, f) anterior view, (c, g) medial view, (d, h) posterior view.

ure 38 are bankssts, caudalanteriorcingulate, caudalmiddlefrontal, cuneus, entorhinal,
frontalpole, fusiform, inferiorparietal, insula, isthmuscingulate, lateraloccipital, lat-
eralorbitofrontal, lingual, medialorbitofrontal, middletemporal, paracentral, parahip-
pocampal, parsopercularis, parsorbitalis, parstriangularis, pericalcarine, postcentral,
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Figure 38. The results for Severe group: Awareness Report. (a, e) lateral view, (b,
f) anterior view, (c, g) medial view, (d, h) posterior view.

posteriorcingulate, precentral, precuneus, rostralanteriorcingulate, rostralmiddlefront
al, superiorfrontal, superiorparietal, superiortemporal, supramarginal, temporalpole,
transversetemporal. While the right hemisphere brain regions are bankssts, cau-
dalanteriorcingulate, caudalmiddlefrontal, cuneus, entorhinal, frontalpole, fusiform,
inferiorparietal, inferiortemporal, insula, isthmuscingulate, lateralorbitofrontal, me-
dialorbitofrontal, paracentral, parsopercularis, parsorbitalis, parstriangularis, perical-
carine, postcentral, posteriorcingulate, precentral, precuneus, rostralmiddlefrontal,
superiorfrontal, superiortemporal, supramarginal, temporalpole, transversetemporal.

Figure 39 demonstrates the brain regions which posses a statistical significant
𝑝 < 0.001 contribution to the classification between ASD subjects with sever cog-
nition score, and TD subjects. The left hemisphere brain regions shown in
figure 39 are cuneus, frontalpole, fusiform, inferiorparietal, inferiortemporal, insula,
isthmuscingulate, lateraloccipital, lateralorbitofrontal, lingual, medialorbitofrontal,
middletemporal, parahippocampal, parsopercularis, parsorbitalis, parstriangularis,
postcentral, posteriorcingulate, precentral, precuneus, rostralanteriorcingulate, su-
periortemporal, supramarginal, temporalpole, transversetemporal. While the right
hemisphere brain regions are bankssts, caudalanteriorcingulate, caudalmiddle-
frontal, cuneus, entorhinal, frontalpole, fusiform, inferiortemporal, insula, isthmus-
cingulate, lateralor bitofrontal, lingual, middletemporal, parahippocampal, parsoper-
cularis, parsorbitalis, parstriangularis, pericalcarine, posteriorcingulate, precentral,
precuneus, rostralanteriorcingulate, rostralmiddlefrontal, superiorfrontal, superior-
parietal, superiortemporal, supramarginal, temporalpole, transversetemporal.

Figure 40 demonstrates the brain regions which posses a statistical significant 𝑝 <
0.001 contribution to the classification between ASD subjects with sever communica-
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Figure 39. The results for Severe group: Cognition Report. (a, e) lateral view, (b,
f) anterior view, (c, g) medial view, (d, h) posterior view.

tion score, and TD subjects. The left hemisphere brain regions shown in figure
40 are caudalanteriorcingulate, caudalmiddlefrontal, cuneus, entorhinal, frontalpole,
inferiorparietal, insula, isthmuscingulate, lateraloccipital, lateralorbitofrontal, lin-
gual, middletemporal, paracentral, parahippocampal, parsorbitalis, parstriangularis,
postcentral, posteriorcingulate, precentral, superiorparietal, superiortemporal, supra-
marginal, temporalpole, transversetemporal. While the right hemisphere brain
regions are caudalanteriorcingulate, caudalmiddlefrontal, cuneus, fusiform, inferior-
pari etal, inferiortemporal, insula, isthmuscingulate, lateraloccipital, lateralorbitofron
tal, lingual, medialorbitofrontal, middletemporal, paracentral, parahippocampal, par-
sopercularis, parstriangularis, pericalcarine, postcentral, precentral, precuneus, ros-
tralmiddlefrontal, superiorfrontal, superiorparie tal, superiortemporal, supramarginal,
temporalpole, transversetemporal.

Figure 41 demonstrates the brain regions which posses a statistical significant 𝑝 <
0.001 contribution to the classification between ASD subjects with sever mannerism
score, and TD subjects. The left hemisphere brain regions shown in figure 41 are
bankssts, caudalanteriorcingulate, caudalmiddlefrontal, cuneus, frontalpole, fusiform,
inferiorparietal, insula, isthmuscingulate, lateraloccipital, lateralorbitofrontal, lin-
gual, medialorbitofrontal, paracentral, parsopercularis, parsorbitalis, parstriangularis,
pericalcarine, postcentral, posteriorcingulate, precentral, rostralanteriorcingulate, su-
periorfrontal, superiorparietal, superiortemporal, supramarginal, temporalpole, trans-
versetemporal. While the right hemisphere brain regions are caudalmiddle-
frontal, cuneus, entorhinal, frontalpole, inferiortemporal, insula, isthmuscingulate,
lateraloccipital, lateralorbitofrontal, lingual, medialorbitofrontal, middletemporal, pa
racentral, parahippocampal, parsopercularis, parstriangularis, pericalcarine, postcen-
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Figure 40. The results for Severe group: Communication Report. (a, e) lateral
view, (b, f) anterior view, (c, g) medial view, (d, h) posterior view.

Figure 41. The results for Severe group: Mannerism Report. (a, e) lateral view, (b,
f) anterior view, (c, g) medial view, (d, h) posterior view.

tral, posteriorcingulate, precentral, precuneus, rostralanteriorcingulate, rostralmid-
dlefrontal, superiorfrontal, superiorparietal, superiortemporal, supramarginal, trans-
versetemporal.

Figure 42 demonstrates the brain regions which posses a statistical significant
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Figure 42. The results for Severe group: Motivation Report. (a, e) lateral view, (b,
f) anterior view, (c, g) medial view, (d, h) posterior view.

𝑝 < 0.001 contribution to the classification between ASD subjects with sever moti-
vation score, and TD subjects. The left hemisphere brain regions shown in fig-
ure 42 are caudalanteriorcingulate, caudalmiddlefrontal, entorhinal, frontalpole, infe-
riorparietal, isthmuscingulate, lateralorbitofrontal, medialorbitofrontal, paracentral,
parsorbitalis, parstriangularis, postcentral, posteriorcingulate, precentral, precuneus,
rostralanteriorcingulate, rostralmiddlefrontal, superiortemporal, transversetemporal.
While the right hemisphere brain regions are cuneus, entorhinal, frontalpole,
fusiform, inferiorparietal, inferiortemporal, insula, isthmuscingulate, lateraloccipi-
tal, lateralorbitofrontal, middletemporal, parahippocampal, parsopercularis, parsor-
bitalis, parstriangularis, postcentral, precentral, precuneus, superiorfrontal, superior-
parietal, superiortemporal, temporalpole, transversetemporal.

Figure 43 demonstrates the most frequent brain regions over all severity levels
for the communication behavior report. This set of features are selected from the
from the aforementioned neuroatlases. This neuro-atlas is thought of as the neuro-
characterization of the communication attribute in the SRS report. The left hemi-
sphere brain regions shown in figure 43 are caudalmiddlefrontal, entorhinal, insula,
isthmuscingulate, lateralorbitofrontal, lingual, paracentral, parahippocampal, poste-
riorcingulate, superiortemporal, transversetemporal. While the right hemisphere
brain regions are fusiform, inferiortemporal, insula, lingual, medialorbitofrontal,
parsopercularis, parstriangularis, precuneus, rostralmiddlefrontal, superiortemporal,
temporalpole, transversetemporal.

Figure 44 demonstrates the most frequent brain regions over all severity lev-
els for the cognition behavior report. This set of features are selected from the
from the aforementioned neuroatlases. This neuro-atlas is thought of as the neuro-
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Figure 43. The results for most frequent brain region over all Severe group for the
communication behavioral Report. (a, e) lateral view, (b, f) anterior view, (c, g)
medial view, (d, h) posterior view.

characterization of the cognition attribute in the SRS report. The left hemisphere
brain regions shown in figure 44 are frontalpole, fusiform, insula, isthmuscingulate,
lateraloccipital, lateralorbitofrontal, parahippocampal, parstriangularis, posteriorcin-
gulate, precuneus, temporalpole, transversetemporal. While the right hemisphere
brain regions are caudalmiddlefrontal, cuneus, entorhinal, fusiform, inferiortempo-
ral, lateralorbitofrontal, lingual, parahippocampal, parsopercularis, parstriangularis,
posteriorcingulate, precuneus, rostralanteriorcingulate, superiorfrontal, superiorpari-
etal, superiortemporal, supramarginal, transversetemporal.

Figure 45 demonstrates the most frequent brain regions over all severity lev-
els for the mannerism behavior report. This set of features are selected from the
from the aforementioned neuroatlases. This neuro-atlas is thought of as the neuro-
characterization of the mannerism attribute in the SRS report. The left hemi-
sphere brain regions shown in figure 45 are bankssts, caudalanteriorcingulate,
caudalmiddlefrontal, cuneus, frontalpole, inferiorparietal, insula, lateraloccipital, lat-
eralorbitofrontal, lingual, paracentral, parsorbitalis, posteriorcingulate, rostralanteri-
orcingulate, superiorfrontal, superiorparietal, superiortemporal, supramarginal, tem-
poralpole, transversetemporal. While the right hemisphere brain regions are en-
torhinal, frontalpole, inferiortemporal, isthmuscingulate, lateralorbitofrontal, lingual,
medialorbitofrontal, posteriorcingulate, superiorfrontal, superiortemporal, supramar
ginal, transversetemporal.

Figure 46 demonstrates the most frequent brain regions over all severity lev-
els for the awareness behavior report. This set of features are selected from the
from the aforementioned neuroatlases. This neuro-atlas is thought of as the neuro-
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Figure 44. The results for most frequent brain region over all Severe group for the
cognition behavioral Report. (a, e) lateral view, (b, f) anterior view, (c, g) medial
view, (d, h) posterior view.

Figure 45. The results for most frequent brain region over all Severe group for the
mannerism behavioral Report. (a, e) lateral view, (b, f) anterior view, (c, g) medial
view, (d, h) posterior view.

characterization of the awareness attribute in the SRS report. The left hemisphere
brain regions shown in figure 46 are bankssts, caudalmiddlefrontal, fusiform, insula,

71



Figure 46. The results for most frequent brain region over all Severe group for the
awareness behavioral Report. (a, e) lateral view, (b, f) anterior view, (c, g) medial
view, (d, h) posterior view.

isthmuscingulate, lateraloccipital, lateralorbitofrontal, lingual, medialorbitofrontal,
middletemporal, parstriangularis, pericalcarine, postcentral, precentral, rostralante-
riorcingulate, supramarginal, temporalpole, transversetemporal. While the right
hemisphere brain regions are caudalmiddlefrontal, cuneus, entorhinal, fusiform,
inferiorparietal, inferiortemporal, insula, lateralorbitofrontal, medialorbitofrontal, par
acentral, parsopercularis, parsorbitalis, parstriangularis, postcentral, posteriorcingu-
late, precuneus, superiortemporal, supramarginal, temporalpole, transversetemporal.

Figure 47 demonstrates the most frequent brain regions over all severity lev-
els for the motivation behavior report. This set of features are selected from the
from the aforementioned neuroatlases. This neuro-atlas is thought of as the neuro-
characterization of the motivation attribute in the SRS report. The left hemi-
sphere brain regions shown in figure 46 are caudalmiddlefrontal, entorhinal, infe-
riorparietal, isthmuscingulate, lateralorbitofrontal, medialorbitofrontal, paracentral,
parsorbitalis, postcentral, posteriorcingulate, rostralanteriorcingulate, rostralmiddle-
frontal, superiortemporal, transversetemporal. While the right hemisphere brain
regions are cuneus, frontalpole, inferiorparietal, inferiortemporal, insula, middletem-
poral, parsopercularis, parsorbitalis, parstriangularis, postcentral, precuneus, superi-
orfrontal, temporalpole, transversetemporal.

ML classifiers

The results introduced in this section are for the experiments that yielded the max-
imum classification performance between TD, and each of the severity-behavioral
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Figure 47. The results for most frequent brain region over all Severe group for the
motivation behavioral Report. (a, e) lateral view, (b, f) anterior view, (c, g) medial
view, (d, h) posterior view.

groups. Unlike the previous section, the models are solely based on their perfor-
mance on the hold-out set without performing any statistical analysis. The selected
features, which are used as the input, for each of the selected ML models are not
introduced in this section. Since it is difficult to assume the generalizability of any
single experiment, we did not weigh the input features to those models as much as
the neuro-atlases which are selected based on statistical significance across all the 55
experiments.

Each of those models outputs a probability that a given subject belongs to a
severity-behavioral group. Table 8 shows the classification accuracy of each of the
selected ML models.

Table 9 shows the summary statistics of each severity group over all behavioral
groups. The summary statistics are provided for the number of input features for
each ML model, hold-out set balanced accuracy, and hold-out set F1-score.

Table 10 shows the summary statistics of each behavioral group over all severity
groups. The summary statistics are provided for the number of input features for
each ML model, hold-out set balanced accuracy, and hold-out set F1-score.

Phase II

In this section, we will demonstrate the the final output of the proposed framework.
Phase II provides the final diagnosis/classification of each subject given the results
of Phase I. Table 11 demonstrates the cross-validation results of training the six
classifiers LR (l1-norm, l2-norm), xgboost, lgbm, NN, SVM, and RF using 80% of

73



Table 8. Phase I classification results

Severity Behavior RFECV Classifier # features Bacc F1

Mild

Awareness lsvm svm 183 0.98 0.92
Communication lsvm svm 70 0.99 0.99

Cognition lsvm lsvm 96 0.99 0.95
Motivation lsvm svm 101 0.97 0.85
Mannerism lsvm lsvm 137 0.99 0.99

Total lsvm lsvm 130 0.99 0.99

Moderate

Awareness lsvm lsvm 240 0.92 0.8
Communication lsvm lsvm 132 0.96 0.88

Cognition lsvm lr 191 0.98 0.94
Motivation lsvm lsvm 212 0.96 0.91
Mannerism lsvm svm 184 0.98 0.94

Total lsvm lsvm 167 0.97 0.91

Sever

Awareness lsvm lr 154 0.93 0.82
Communication lsvm svm 241 0.91 0.84

Cognition lsvm lsvm 254 0.95 0.90
Motivation lsvm lsvm 166 0.96 0.91
Mannerism lsvm lsvm 172 0.95 0.91

Total lsvm lsvm 213 0.92 0.86

Table 9. Severity Classification Summary Statistics

Severity
# Features
(𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑)

Bacc
(𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑)

F1
(𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑)

Mild 119.5±39.4 0.99±0.01 0.95±0.05
Moderate 187.6±31.1 0.96±0.02 0.90±0.05

Sever 200±42 0.94±0.02 0.87±0.03

Table 10. Behavior Classification Summary Statistics

Behavior
# Features
(𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑)

Bacc
(𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑)

F1
(𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑)

Awareness 192.3±41.7 0.95±0.03 0.85±0.06
Communication 147.6±86.6 0.96±0.04 0.91±0.07

Cognition 180.33±79.5 0.97±0.01 0.93±0.03
Motivation 159.6±55.7 0.97±0.003 0.89±0.03
Mannerism 164.33±24 0.98±0.02 0.95±0.04

Total 170±41.5 0.96±0.04 0.93±0.06
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Table 11. 5-fold cross validation results

Classifier mean std
LR 0.91 0.03

xgboost 0.86 0.03
SVM 0.94 0.03
NN 0.91 0.03
lgbm 0.91 0.04
RF 0.66 0.13

Table 12. Confusion matrix of the Bagging Classifier on the 20% hold-out data.

Predicted
ASD TD

Truth
ASD 54 4
TD 1 86

Table 13. Confusion matrix of the Stacking Classifier on the 20% hold-out data.

Predicted
ASD TD

Truth
ASD 53 5
TD 1 86

the dataset. It is worth mentioning that the input of each classifier is the probability
matrix which is the output from phase I classification as shown in equation 8.

Trained SVM is then used to predict the final diagnosis of the hold-out set given
their probability matrices. Tables 12, 13, 14 demonstrate the confusion matrix the
bagging classifier built-up with SVM, initialized with the optimized hyperparameters
as selected by the randomized grid-search cross-validation results, the stacking clas-
sifier built-up with all of six classifiers used in phase II, each is initialized with its
optimized hyperparameters in the same way as SVM, and eventually SVM classifier.
Each of those three classifiers is trained on the 80% dataset, and tested on the 20%
hold-out set.

Table 14. Confusion matrix of the optimized hyperparameters SVM Classifier on
the 20% hold-out data.

Predicted
ASD TD

Truth
ASD 54 4
TD 1 86
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Case Studies

In this section, we simulate a clinical environment by randomly selecting one TD
subject, and one ASD out of the 20% hold-out set. The two selected subjects are
processed by the proposed framework to output both the behavioral report and the
final classification. We illustrate the output in the form of a proposed diagnosis
report.

Case I

Case I is a TD subject from 𝐺𝑈 1 site with id 28830. Based on the SRS T scores of
that subject, the case is diagnosed to be TD. Figure 48 demonstrates the proposed
diagnostic report. Figure 48: A demonstrates the behavioral diagnosis such that each
value on the horizontal axis represents a behavioral category of the SRS report, the
dotted blue vertical lines separate the three severity groups starting from mild to
severe, from left to right. The orange lower region denotes the region at which a
subject would be classified as TD, it the probability crosses over to the blue region,
then that subject is classified as ASD for that specific behavioral trait at that specific
severity. Furthermore, we investigate the highest probability for each behavioral
trait across the severities to understand on what basis the classifier assigned that
high probability. The lower part of fig 48 demonstrates the cortical morphological
features which influenced the classifier decision. The contribution/weight of each
morphological feature is denoted by its length.

Figure 48: B demonstrates the final diagnosis of the subject based on the results
of the behavioral report in fig 48. In the same way, the behavioral results are linked
to the underlying cortical morphological features, the final diagnosis is linked to the
underlying behavioral results via LIME.

Case II

Case II is an ASD subject from 𝑂𝐻𝑆𝑈1 site with id 28952. Based on the SRS T scores
of that subject, the case is diagnosed to be severe ASD. Figure 49 demonstrates the
proposed diagnostic report. Figure 49: A demonstrates the behavioral diagnosis such
that each value on the horizontal axis represents a behavioral category of the SRS
report, the dotted blue vertical lines separate the three severity groups starting from
mild to severe, from left to right. The orange lower region denotes the region at which
a subject would be classified as TD, it the probability crosses over to the blue region,
then that subject is classified as ASD for that specific behavioral trait at that specific
severity. Furthermore, we investigate the highest probability for each behavioral trait
across the severity levels to understand on what basis the classifier assigned that
high probability. The lower part of fig 49 demonstrates the cortical morphological
features which influenced the classifier decision. The contribution/weight of each
morphological feature is denoted by its length.

Figure 49: B demonstrates the final diagnosis of the subject based on the results
of the behavioral report in fig 49. In the same way, the behavioral results are linked
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Figure 48. Proposed diagnostic report. (A) Behavioral Report (B) Final Diagnosis

to the underlying cortical morphological features, the final diagnosis is linked to the
underlying behavioral results via LIME.
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Figure 49. Proposed diagnostic report. (A) Behavioral Report (B) Final Diagnosis
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4 Chapter Discussion

In the proposed study, we focus on three aims: (i) Build an ML pipeline that mimics
the clinical diagnosing process of ASD, (ii) Define behavioral neurocircuits that affect
alteration in the subject’s behavior according to SRS module, (iii) Build a diagnostic
report to connect the final diagnosis with the behavioral severity classification to the
alteration in morphological features. In the following subsection, we will discuss the
findings of each of the aforementioned three aims, and how this work takes a leap
toward an objective psychological disorders’ diagnosis.

Phase I Classification

As we previously explained, Phase I is meant to serve two tasks: (i) Find the morpho-
logical cortical features that may affect the behavior of a subject, and (ii) Train an
ML model to classify the severity of a subject’s behavior based on the selected mor-
phological cortical features. RFECV with four kernels (LR, RF, LGBM, and LSVM)
are employed to find the subset of cortical morphological features that maximize the
balanced accuracy score of classifying the severity of ASD according to every SRS
behavioral module. Each of the RFECV four kernels is initialized with the default
parameters as specified in scikit-learn package, therefore, we are not expecting to
achieve the highest possible classification accuracy while searching for the subset of
morphological features, however, we are looking for the subset of morphological fea-
tures that will correspond to the maximum classification accuracy given the utilized
kernel. Thus, the maximum accuracy observed in figure 25 is far below those in ta-
ble 10. This is due to the fact that the ML models utilized at the end of Phase I
classification are optimized using a random search grid.

By the end of Phase I, we have an optimized ML model trained on a selected
subset of features that results in the highest classification accuracy between TD and
a severity-behavioral ASD group. Although this subset of morphological features can
be thought of as the atlas/neuro-circuit, which affects this behavior trait, we still do
not have any statistical significance to support our findings. Therefore, we decided
to create the Phase I optimization step at which we repeated Phase I 51 times while
randomly sampling the training-validation dataset every time in order to confirm
the findings on different subsets of data. The statistically significant morphological
cortical features, which demonstrated significance at 𝛼 = 0.001, are considered to be
the neuro-atlas that defines the behavioral group at a given severity level for ASD.
We aggregated the behavioral group findings over different severity levels to get a
cortical atlas that defines the behavioral spectrum of ASD, as shown in figures from
43 to 47.

Phase I classification defines and classifies ASD as a behavioral spectrum. In the
proposed study, that behavioral spectrum is defined in terms of SRS module, however,
it can be defined in terms of any other ASD diagnostic reports such as ADI-R, or
ADOS. Phase I classification is a standalone CAD system that places a subject into
the ASD spectrum. ASD spectrum is thought of as a multidimensional space in which
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each dimension represents a severity of a given behavioral trait, and the diagnosis of
a subject depends on the location of that subject within that space.

The numerical results of phase I are summarized in table 8, table 9, and table 9.
Table 8 demonstrates the results of the top performing severity-behavior models which
are used to predict the probability of a subject to be within that severity-behavior
group vs TD. The cortical morphological features utilized by each group as well as
the hyper parameters set selected for each classifier can be found in supplementary
material 1. Table 9 demonstrates the mean, and the standard deviation of the number
of features, the balanced accuracy score, and F1-score of classifying each severity
against TD over all behaviors. We assumed that the easiest to classify would be
sever vs TD, since it is the one, we assumed, with highest contrast. However, phase
I required more number features to successfully classify sever ASD vs TD with mean
bacc of 94%. Moreover, mild ASD vs TD is the easiest to classify utilizing only
120 features on average, across all behavior groups, with bacc of 99%. We claim
that the rationale behind this counter-intuitive result is the fact that a sever ASD
subject would has more cortical morphological alteration, which will lead the feature
selection step to select more features that discriminate between TD and sever ASD.
With more number of features, a ML model requires more number of subjects to
be able to achieve higher cross-validation results. From a different perspective, we
hypothesize that sever ASD is merely a label for a heterogeneous ASD traits on the
spectrum. Therefore, a clinical solution would be to further study sever ASD and
split it into further simpler traits which are more homogenous and can be described
with less number of cortical features. Table 10 demonstrates the mean, and the
standard deviation of the number of features, the balanced accuracy score, and F1-
score of classifying each ASD behavioral group against TD over all severity. Table
10 demonstrates that mannerism has the highest classification accuracy on average
followed by cognition, and motivation, followed by communication, and total, and
eventually awareness. Again we observe similar results to those in table 9, the more
the number of features selected to classify behavioral ASD group and TD, the less
the mean classification accuracy.

Although Phase I classification is considered to be a standalone CAD system, it
is a novel approach that requires some sort of validation. The validation that we
propose in this paper is via proposing a second phase of classification that yield a
final diagnosis that confirms the feasibility of Phase I to mimic the behavioral report
in the process of clinically diagnosing ASD.

Phase II Classification

Phase II classification is designed to mimic the final diagnosis of a physician, based
on the behavioral report scores, as well as a validation of Phase I results. Phase I
outputs every subject as a point in a multidimensional severity-behavior space. Given
the location of each subject in that space, which we are calling ”the spectrum”, phase
II predict whether the overall diagnosis of that subject is ASD or TD. Similar to
phase I, the decision is interpreted in terms of the input data, which is the behavior
report results. Therefore, the final decision is understood in terms of the behavioral-
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severity report, i.e the spectrum, and the behavioral report is interpreted in terms
of the cortical morphological features, which eventually can be mapped to neuro-
physiological alterations. Unlike phase I, phase II does not require a normalization,
or a feature selection step. Since the output of phase I is a vector of probabilities
for each subjects, so all the values are guaranteed to be between 0 and 1. Moreover,
there is no need to select features out of 18 features space, as we do not suspect any
cure of dimensionality issues at that scale.

Numerical results of phase II are summarized in table 11, table 12, table 13,
and table 14. Table 11 demonstrates the cross-validation results of utilizing multiple
hyperparameters-optimized classifiers on the output of Phase I to assign a final classi-
fication of each subject whether to be ASD or TD. The results demonstrate that SVM
achieves the highest classification accuracy with 94% on average. A further analysis
is carried out by utilizing a bagging classifier using the hyperparameters-optimized
SVM, stacking classifier using all the hyperparameters-optimized classifier (SVM, LR,
xgboost, NN, lgbm, RF), and only the hyperparameters-optimized SVM. The three
newly created set of classifiers are tested on a hold-out set to test the generalizability
of the model, and based on the confusion matrices of tables 12, 13, and 14, we found
that just utilizing the optimized SVM is sufficient to achieve the best possible results.

By the end of Phase II, we achieve a functioning CAD system that mimics a 2-
step clinical process which comprises: (i) Assigning behavioral scores for a subject,
(ii) Give a final diagnosis to a subject based on his behavioral scores. And to top it
all off, we propose a clinical report that can be provided by the proposed model to
assist physicians in diagnosing a subject, and understanding the underlying rationale
behind a subject’s classification.

Case Studies

We propose case studies of two randomly selected subjects out of the hold-out test
set in order to demonstrate the proposed clinical report associated with the proposed
model. The proposed clinical report can be found for the two case studies in figure 48
and figure 49 which are a TD subject and ASD subject respectively. The proposed
clinical encapsulate most of the information coming out of phase I and phase II. The
first part of the report, which is labeled as (A), illustrates what we call ”the spectrum”
at which each subject is defined by his/her probability of being with a given severity
at a behavioral category vs being TD. A fine illustration of why we call the first
part of the report ”the spectrum” is shown in figure 49:A. Subject 𝑂𝐻𝑆𝑈 1 28952’s
behavioral report scores are within the moderate range according to his/her SRS
results; this can be easily visualized from the distributions of the bars in figure 49:A
where the highest bars are located in the moderate zone with an overlap with the mild
zone. Each of these high probability bars are then mapped to the cortical features
using LIME.
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Significant Brain Regions

In this section, we cover the significance of the detected brain regions, in phase I, ac-
cording to the literature to be associated with specific behavioral disorders. For each
behavioral trait, we demonstrate how the associated brain regions are also nominated
in the literature as relevant to that behavior.

The left bank of the superior temporal sulcus (STS) is a brain region that is
thought to be involved in social cognition and the perception of social and emotional
information. The STS might also play a role in helping us understand other people’s
intentions and emotions, as well as recognize and interpret facial expressions and
other nonverbal cues that are used in social interactions, which would be classified as
”mannerisms.” The STS is also involved in the ability to perceive, understand, and
be conscious of one’s surroundings and experiences, and this is its association with
”awareness”. The STS is also involved in the perception of speech and language and
may play a role in helping us to understand the meanings of words and sentences.
[156–158].

The caudal anterior cingulate cortex (cACC) is a brain region in the medial frontal
lobe. It is thought to be involved in various functions anatomically and functionally
related to frontal executive functions, parietal sensorimotor systems, and limbic in-
tentional or emotional processes, including the regulation of emotional and behavioral
responses, attention and cognitive control, and pain perception, which is all related to
”awareness.” It is also believed to play a role in integrating information from different
sources, such as sensory, motor, and affective inputs [159].

The left caudal middle frontal region of the brain, also known as Broca’s area, is
associated with literacy and language processing, which includes the ability to un-
derstand and produce written language, as well as the planning and coordination of
movements required for writing. This ability to understand and produce written lan-
guage is associated with awareness, communication, and mannerism in several ways:
Awareness: Literacy allows individuals to access and process written information,
allowing them to understand the world around them and be aware of their surround-
ings. Communication: Literacy enables individuals to understand and use written
language to communicate with others, to read and comprehend written texts, and
to express themselves through writing. Mannerism: The planning and coordination
of movements required for writing is a form of mannerism, which is the control and
execution of movements, gestures, and facial expressions used to communicate [160].

The right caudal middle frontal region is associated with attention and problem-
solving, specifically numerical and spatial processing. It is often referred to as the
”number sense” region because it involves our ability to understand and manipulate
numerical concepts. This ability to understand and manipulate numerical concepts is
closely related to cognitive processes such as attention, problem-solving, and decision-
making. It allows individuals to perform mathematical operations, understand and
manipulate numbers, and perform spatial reasoning tasks. This ability to perform
mathematical operations and spatial reasoning are essential for daily life, such as
navigation, budgeting, and understanding scientific concepts. In terms of awareness,
this region also plays a role in attentional processes, which enables individuals to
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selectively attend to specific information in the environment and filter out irrelevant
information. It also helps decision-making by allowing individuals to make informed
decisions based on numerical and spatial information [160].

The cuneus is a brain region located in the posterior (back) part of the cerebral
cortex. It is part of the occipital lobe, which is involved in processing visual informa-
tion. The left cuneus is involved in the processing of visual information from the right
visual field, as well as in various higher-level visual processes such as color perception
and visual attention. It may also play a role in the integration of visual information
with other sensory modalities, such as touch and sound. Studies have shown no direct
association with mannerism, however, it is possible that color perception could play a
role in the interpretation of certain types of mannerisms. For example, changes in skin
color (e.g. blushing) can be used as an indicator of embarrassment or anxiety, and
thus, color perception could be involved in recognizing this type of mannerism [161].
The right cuneus is also involved in the processing of visual information, specifically
from the left visual field. Like the left cuneus, it is involved in higher-level visual
processes such as color perception and visual attention, and may also play a role in
the integration of visual information with other sensory modalities. In general, the
cuneus is thought to play a role in the interpretation of visual stimuli, particularly
those that are complex or abstract in nature [161].

The left entorhinal region of the brain is involved in spatial memory and naviga-
tion. It is a part of the medial temporal lobe, which is a region of the brain that is
important for learning and memory (spatial and semantics). The entorhinal region is
specifically involved in spatial memory, which is the ability to remember the layout of
a space and to navigate through it. This region is also involved in the consolidation of
memories from short-term to long-term storage, and it plays a role in the processing
of sensory information from the environment. . It is not directly associated with
communication, but it can play a role in communication in certain contexts [162].
While the left entorhinal region is specifically associated with spatial memory, the
right entorhinal region is more involved in memory for events and experiences. The
right entorhinal brain region is associated with awareness, cognition, and mannerism
in several ways: Awareness: The right entorhinal cortex (ERC) plays a crucial role in
spatial awareness, allowing individuals to navigate and orient themselves within their
environment. Damage to the ERC can result in spatial disorientation and difficulty
navigating familiar environments. Cognition: The ERC is also involved in cognitive
processes such as memory, attention, and decision-making. Damage to the ERC can
result in memory impairment and difficulty with attentional tasks. Mannerism: The
ERC is also involved in the regulation of habits and automatic behaviors. Damage to
the ERC can result in the loss of control over habitual behaviors, leading to changes
in mannerism. This can manifest in a variety of ways, such as repetitive movements
or compulsions. Overall, the right entorhinal brain region plays a critical role in a
wide range of cognitive and behavioral processes, and damage to this region can have
significant impacts on an individual’s ability to navigate, remember, make decisions,
and control their behavior [162].

The left fusiform region of the brain is involved in the recognition of words and
letters. It is a part of the fusiform gyrus, which is a region of the brain located in
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the temporal lobe and is important for visual processing. The left fusiform region is
specifically involved in the recognition of familiar words and letters, and it is thought
to play a role in the ”how” pathway of the ventral visual stream, which is responsible
for the identification of the shapes and forms of objects. The left fusiform region is
also involved in object and face recognition, but it is more specifically associated with
the recognition of words and letters. The left fusiform brain region is associated with
awareness and cognition in several ways: Awareness: The left fusiform gyrus (FFG)
is involved in facial recognition and the processing of facial expressions. Damage to
the left FFG can result in difficulty recognizing and interpreting facial expressions,
which can impact social interactions and communication. Cognition: The left FFG
is also involved in language processing and reading. Damage to the left FFG can
result in difficulty with reading and language comprehension. Additionally, the left
fusiform gyrus is also associated with object recognition, meaning that it plays a role
in recognizing familiar objects and objects that are similar to each other. Damage to
the left FFG can result in difficulty in recognizing objects [163]. The right fusiform
region is also involved in object and face recognition, but it is more specifically as-
sociated with the recognition of familiar objects and faces. It is thought to play a
role in the ”what” pathway of the ventral visual stream, which is responsible for the
recognition of objects and their features. The right fusiform brain region is associ-
ated with awareness, cognition, and communication in several ways: Awareness: The
right fusiform gyrus (FFG) plays a role in spatial awareness and perception, allow-
ing individuals to perceive and understand the spatial relationships between objects
in their environment. Damage to the right FFG can result in difficulty with spa-
tial perception and navigation. Cognition: The right FFG is also involved in the
recognition of objects and patterns, particularly those that are non-verbal such as
shapes, colors, and textures. Damage to the right FFG can result in difficulty rec-
ognizing and interpreting non-verbal information. Communication: The right FFG
is also involved in the perception of non-verbal cues such as facial expressions, body
language, and tone of voice. Damage to the right FFG can result in difficulty inter-
preting and understanding non-verbal cues, which can impact social interactions and
communication [163].

The right inferior temporal region is involved in visual object recognition and
the processing of visual information, but it is more specifically associated with the
recognition of faces and facial expressions, unlike the left inferior temporal region is
specifically involved in the recognition of familiar objects and is thought to play a
role in the ”what” pathway of the ventral visual stream, which is responsible for the
recognition of objects and their features. The right inferiortemporal brain region is
associated with awareness, cognition, communication, and mannerism in several ways:
Awareness: The right inferiortemporal cortex (ITC) plays a role in visual perception
and the recognition of objects and scenes. Damage to the right ITC can result in
difficulty recognizing and perceiving objects and scenes. Cognition: The right ITC
is also involved in the processing of visual information and the formation of visual
memories. Damage to the right ITC can result in difficulty forming and retrieving
visual memories. Communication: The right ITC is also involved in the interpretation
of non-verbal cues such as facial expressions and body language, which are critical for
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effective communication. Damage to the right ITC can result in difficulty interpreting
and understanding non-verbal cues. Mannerism: The right ITC is also involved in
the regulation of habits and automatic behaviors. Damage to the right ITC can result
in the loss of control over habitual behaviors, leading to changes in mannerism. This
can manifest in a variety of ways, such as repetitive movements or compulsions [164].

The left inferior parietal brain region plays a critical role in a wide range of cog-
nitive and behavioral processes, including motor control, perception, attention, and
language, and damage to this region can have significant impacts on an individual’s
ability to coordinate and control their movements, perceive and understand their en-
vironment, pay attention and communicate effectively, leading to changes in manner-
ism [165]. The right inferior parietal lobe is also involved in the processing of sensory
information, particularly information related to spatial awareness and the perception
of one’s own body in space. In addition, the right inferior parietal lobe is thought to
play a role in mathematical and spatial reasoning, and in the manipulation of mental
representations of objects and their spatial relationships. Some research suggests that
the right inferior parietal lobe may be more involved in the processing of visuospatial
information than the left inferior parietal lobe. It is associated with Awareness in
several ways: The right inferior parietal lobule (IPL) is involved in spatial awareness
and perception, allowing individuals to navigate and orient themselves within their
environment. It also plays a crucial role in mathematical and spatial reasoning, al-
lowing individuals to understand and manipulate mathematical concepts and spatial
relationships. Damage to the right IPL can result in spatial disorientation and diffi-
culty navigating familiar environments, as well as difficulty with mathematical tasks
such as solving equations or understanding geometric concepts [165].

The Left insula is associated with negative emotions and interoception, the ability
to perceive internal bodily sensations. It’s thought to play a role in cognitive pro-
cesses such as attention, decision-making, and memory. It’s involved in the processing
of emotions and social cues in language, and may be important for understanding the
emotions of others. The Left insula also plays a role in the regulation of bodily
movements and postures which may be important for social interactions and com-
munication [166]. The right insula is thought to play a role in various cognitive and
emotional processes, specifically in the following behavioral domains: Awareness: The
right insula is thought to play a role in exteroception, which is the ability to perceive
external stimuli such as touch and temperature. It also thought to be involved in
the sense of body ownership and self-awareness, Communication: The right insula is
thought to be involved in the processing of nonverbal cues, such as facial expressions
and body language, which may be important for social interactions and communica-
tion. Additionally, the right insula is thought to play a role in the perception of music
and prosody, which are important elements of communication in speech. Motivation:
The right insula is thought to be involved in regulating motivation, particularly with
regards to reward processing, and decision-making. Studies have found that the right
insula is activated when individuals are presented with pleasurable stimuli, such as
food or monetary rewards, and that it may play a role in the experience of pleasure
and desire. Positive emotions: Research suggests that the right insula may be more
closely associated with positive emotions such as happiness and pleasure [166].
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The left isthmuscingulate cortex, also known as the anterior cingulate cortex
(ACC), is thought to play a role in various cognitive and emotional processes, in-
cluding awareness, communication, cognition, and motivation. Awareness: The ACC
is involved in attention and awareness, particularly in conflict and error detection.
Communication: The ACC is involved in processing social and emotional information,
such as facial expressions, and may play a role in empathy and theory of mind. Cog-
nition: The ACC is involved in cognitive control and decision-making, particularly
in goal-directed behavior and conflict resolution. Motivation: The ACC is involved
in regulating motivation and emotion, particularly in pleasure and desire. Memory:
The ACC is involved in encoding and retrieval of memories and formation of new
memories. Pain processing: The ACC is involved in processing and regulating pain
perception [167]. Studies have found that the right ACC is activated when individuals
engage in repetitive behaviors, such as tic disorders or obsessive-compulsive disorder
(OCD), and it is thought that this activation may be related to the regulation of
these behaviors [167].

The left lateral occipital (LO) region is a key area in the brain that is involved in
visual processing and object recognition, including the recognition of the shape and
form of objects. This region is thought to play a role in awareness, mannerisms, and
cognition by helping us to quickly and efficiently recognize objects in our environment
and understand their shape and form [168].

The left lateral orbitofrontal cortex (lOFC) is a brain region that is involved
in several aspects of behavior and cognition, including awareness, communication,
mannerism, cognition, and motivation. In particular, the lOFC has been found to
play a role in processing information about punishers and non-rewards, which can
affect our awareness, communication, mannerisms, cognition, and motivation [169].
the right lateral orbitofrontal cortex (OFC) could be associated with: Awareness: As
the OFC is involved in conscious perception and attention, allowing us to be aware
of our surroundings. Mannerisms: As the OFC is involved in regulating behavior,
including mannerisms and social behavior. Cognition: As the OFC is involved in a
variety of cognitive processes, including decision making, emotional regulation, and
reinforcement learning. These processes are important for overall cognitive function
and behavior [169].

The lingual brain region is a part of the occipital lobe, which is located at the back
of the brain and is involved in visual processing. The lingual brain region is located
near the back of the occipital lobe and is thought to play a role in the processing
of visual information, including the recognition of faces and other objects. Some
research suggests that the lingual brain region may be involved in the encoding and
retrieval of memories related to visual information, particularly the recognition of
faces. It may also be involved in the generation of visual images during dreaming, as
well as in various other aspects of visual perception and processing [170]. It is not
clear whether the left and right lingual brain regions have any specific functions that
are distinct from each other. However, it is likely that the two brain regions work
together to perform various functions related to visual processing and recognition.
More research is needed to fully understand the specific functions of the lingual brain
region and its role in the development and maintenance of mental health conditions
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such as depression [170].
The medial orbitofrontal cortex is a brain region in the frontal lobe that is thought

to be involved in various functions, including emotion regulation and decision-making.
And this is closely tied to awareness and motivation. Emotion regulation: Emotion
regulation is controlling or modifying our emotional responses to events to align them
with our goals and values. Emotion regulation is closely tied to awareness because
it requires us to be aware of our emotional states and understand the emotional sig-
nificance of events. When we can regulate our emotions effectively, we can better
respond to events in a way that is consistent with our goals and values, which con-
tributes to our overall awareness and understanding of the world around us. Decision-
making: Decision-making is the process of choosing between alternative courses of
action, closely tied to awareness and motivation. When making decisions, we must
be aware of each option’s potential outcomes and our own goals and values, and we
must be motivated to choose an option that will bring us closer to our goals. The
decision-making process requires us to be aware of the options available to us, weigh
the potential outcomes of each option, and make a choice that is aligned with our
goals and values [169]. It is not clear whether the left and right medial orbitofrontal
cortex (mOFC) brain regions have any specific functions that are distinct from each
other. However, the right mOFC might be less involved in regulating positive emo-
tions than the left mOFC and plays a more significant role in regulating negative
emotions. Overall, emotion regulation and decision-making are closely tied to aware-
ness, communication, and mannerism, as effective decision-making can also improve
communication by allowing individuals to respond to social cues and make choices
that are consistent with their goals and values. Regarding mannerism, The right
mOFC is thought to play a role in mannerism, which refers to how we express our
emotions and attitudes through nonverbal cues, such as facial expressions, posture,
and gestures [169].

The left MTG is associated with awareness through its role in language processing
(particularly with respect to semantics (the meanings of words and phrases)), mem-
ory, and attention. By helping us to understand the meaning of words, recall verbal
information, and attend to language-related information, the left MTG contributes
to our overall understanding of the world and our ability to navigate it effectively.
By processing language and other verbal information, the left MTG also plays a crit-
ical role in our ability to communicate effectively and to interact with others in a
meaningful way [171]. The right middle temporal brain region is also thought to be
involved in language processing, particularly with respect to the sounds and rhythms
of language (phonology and prosody). This brain region is often active when people
are listening to or producing language, and it is thought to play a role in helping
us to recognize and produce the sounds and rhythms of language. It is also thought
to be involved in memory and attention, and may play a role in helping us to pay
attention to and remember important information which could be how it’s associated
with motivation. Additionally, the right middle temporal brain region is thought to
be involved in spatial processing and may play a role in helping us to navigate and
orient ourselves in the environment [171].

The left paracentral lobule (PCL) is a brain region that is involved in the con-
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trol of movement and associated with communication, mannerism, and motivation
through its role in the control of movement. By helping us to execute movements
with precision and accuracy, regulate posture and mannerisms, and regulate the drive
to move and take action, the left PCL contributes to our ability to communicate ef-
fectively, to interact with others in a mannerly and appropriate way. It’s not clear
how it could be associated with motivation but it could be through the regulation
of motivational processes, particularly in the regulation of the drive to move and to
take action. This region is involved in our ability to initiate and sustain movement,
which is essential for effective communication and interpersonal interactions, as well
as for pursuing goals and ambitions [172]. The right PCL is associated with aware-
ness through its role in the control of movement and in the regulation of attention
to sensory inputs related to movement and bodily sensations. By helping us to exe-
cute movements with precision and accuracy, maintain awareness of the position and
movements of our body, and attend to and process sensory information related to our
own movements and sensations, the right PCL contributes to our ability to be aware
of our own actions and movements, to regulate our behavior effectively, and to be
self-aware [172].

The left parahippocampal is associated with cognition and communication through
its involvement in learning, memory, and spatial navigation. By contributing to our
ability to encode and recall information, orient ourselves in space, and navigate ef-
fectively, the left PHG helps us to process and respond to environmental cues, to
communicate effectively, and to engage in meaningful interactions with the world
around us. The right parahippocampal is thought to have the same functionality as
the left parahippocampal, it’s not clear why it might not be associated with commu-
nication. [173].

The right parsopercularis (PO) is associated with awareness, communication, cog-
nition, and motivation through its involvement in language processing, speech produc-
tion, and cognitive control. By contributing to our ability to understand language,
articulate words and sentences effectively, regulate our behavior, and process and
respond to environmental cues, the right PO helps us to communicate effectively,
acquire new knowledge and skills, and engage in meaningful interactions with the
world around us [174].

The left parstriangularis is associated with awareness and cognition, especially
through its role in semantic processing of language. By contributing to our ability
to understand the meaning of words and sentences, this region helps us to process
and respond to environmental cues, to engage in meaningful interactions with the
world around us, and to build a coherent understanding of the world around us
[175]. The right parstriangularis is the same as the left with regards to awarness and
cognition. It’s not clear whether there’s a difference between the right and the left
regions, however, this study may suggest that there’s some slight structural differences
between them. Overall, it could be also assoicated with communication through its
involvement in the processing of linguistic information, which is crucial for effective
communication. By contributing to our ability to understand the meaning of words
and sentences, the right PT helps us to engage in meaningful interactions with others,
and to convey and receive information effectively. And it’s not clear whether it’s
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directly releated to motivation but it could be indirectly associated with it through
its involvement in language processing and semantic processing, which are essential
for effective communication, and this in turn might be related to motivation in certain
situations. For example, when someone is motivated to engage in a conversation with
others, they might activate their right PT as they process the linguistic information
they are receiving and produce responses that are semantically appropriate [175].

The left pericalcarine brain region is important for visual processing and aware-
ness, especially in the identification of objects and shapes, and is part of the neural
network responsible for processing visual information and forming a complete repre-
sentation of the world around us [176].

The left postcentral brain region is important for processing various somatic sensa-
tions and is part of the neural network responsible for processing sensory information
and forming a complete representation of the body and its surroundings. This region
plays a role in our awareness and helps us respond appropriately to various sensory
stimuli in our environment. The direct association between the left postcentral brain
region and motivation is not well understood. However, motivation can be influ-
enced by various factors, including sensory processing and awareness. For example,
if an individual is motivated to engage in a particular activity or task, they may pay
greater attention to the sensory information related to that task, and their primary
somatosensory cortex, including the left postcentral brain region, may be more ac-
tive. The right postcentral is s thought to have the same functionality as the left
postcentral [177].

The left precentral brain region is associated with awareness through its role in
the control of voluntary movements and the processing of sensory information related
to movement. By allowing individuals to be aware of their own movements and to
adjust them accordingly, the left precentral brain region plays an important role in
overall body awareness and movement control [178]. The right precuneus brain region
is associated with various cognitive processes including self-awareness, memory, and
spatial orientation. Some studies suggest that the right precuneus may play a role
in processing self-relevant information and in monitoring one’s own thoughts and
actions. It is also involved in tasks related to attention and consciousness, and in
integrating information from different parts of the brain to create a sense of self
and promote self-awareness. There is limited research on the exact role of the right
precuneus in motivation, but it may play a role in regulating motivation and drive by
integrating information from various brain regions to generate goal-directed behavior
[178].

The left posterior cingulate cortex (PCC) is thought to play a role in various
cognitive, executive, emotional, and linguistic functions. Its involvement in commu-
nication and mannerism is supported by evidence of its role in language processing
and semantic processing. Its association with cognition is due to its role in attention,
working memory, and executive control processes, as well as its involvement in self-
referential thinking and self-awareness. Its involvement in motivation is less clear,
but some studies suggest that it may play a role in the regulation of motivation and
goal-directed behavior. The right posterior cingulate cortex is thought to have the
same functionality as the left posterior cingulate cortex [179].
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The left rostral anterior cingulate cortex (rACC) has been linked to various aspects
of emotional processing and regulation, attention, and decision-making. For example,
research has shown that the left rACC is involved in the regulation of negative emo-
tions such as fear. This brain region has also been found to be involved in attentional
processes, including the allocation of attention to emotionally significant stimuli.
In addition, the left rACC has been implicated in decision-making, particularly in
making decisions that involve emotional or reward-related factors. These findings
suggest that the left rACC plays a role in a variety of functions related to awareness,
mannerism, and motivation, including emotional regulation, attention, and decision-
making [180]. The right rACC has been shown to play a role in cognition, specifically
through its involvement in emotional processing, attention regulation, and decision-
making. This region has been implicated in processing negative emotions such as fear,
as well as attention allocation and resolving conflict between competing responses.
Additionally, the rACC has been shown to play a role in integrating information from
various sources to support goal-directed behavior and decision-making [180].

The left supramarginal brain region might be associated with awareness and man-
nerism, especially through the processing of pitch in musical sounds and speech, lan-
guage perception, and the processing of emotional information. This region is thought
to play a role in the integration of sensory and linguistic information, as well as in
the processing of emotional and musical stimuli [181]. The right supramarginal brain
region is thought to have the same functionality as left supramarginal brain region.
Additionaly, the right supramarginal brain region has been associated with various
aspects of cognition, including attention, language processing, and perception [181].

The left temporal pole is a brain region located in the temporal lobe of the cere-
bral cortex. It is involved in a number of functions, including language, perception,
and emotion. With respect to awareness, it is believed to play a role in processing
information about the meaning of objects, including both semantic and emotional
information. It is also thought to be involved in language processing and percep-
tion. With regards to mannerisms, the left temporal pole is involved in regulating
emotional expression and social behavior. It is thought to play a role in processing
information about the emotional content of social cues and experiences. In terms
of cognition, the left temporal pole is believed to play a role in various cognitive
processes, including memory and attention. It is thought to be involved in encoding
and retrieval of memories, as well as the allocation of attention to important stimuli.
Additionally, it is thought to play a role in the processing of semantic information
and the formation of concepts [182]. The right temporal pole is a complex region
of the brain that integrates information from multiple domains to support various
aspects of cognition, including awareness, communication, and motivation. In terms
of awareness, the RTP is involved in semantic processing and integrating information
from multiple sensory modalities to form a coherent perception of the environment.
With regards to communication, the RTP is involved in language processing, partic-
ularly in the processing of object meaning and semantic memory. It also contributes
to the interpretation of nonverbal cues in social interaction. In terms of motiva-
tion, the RTP is involved in the processing of emotional and affective information,
including the regulation of emotions and the formation of emotional memories. It
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also plays a role in the processing of reward-related information, which can influence
motivation [182].

The left transverse temporal (LTT) region, also known as the primary auditory
cortex or Brodmann area 41, aka left Heschl’s gyrus, is associated with the processing
of auditory information. In terms of awareness, the LTT is involved in the perception
and interpretation of auditory stimuli, including speech and music, and contributes to
the conscious experience of sound. With regards to mannerisms, the LTT plays a role
in the processing of musical rhythm and melody, which are important components of
musical performance and appreciation. In terms of cognition, the LTT is involved in
the integration of auditory information with other sensory modalities, such as vision,
to form a cohesive perceptual representation of the environment. Regarding commu-
nication, the LTT is involved in the processing of speech sounds, including the ability
to discriminate between different speech sounds, which is crucial for understanding
spoken language. In terms of motivation, the LTT is involved in the processing of
emotional and affective information conveyed through auditory stimuli, including the
regulation of emotions and the formation of emotional memories. The right transverse
temporal is thought to have the same functionality as LTT [183].

The left superior frontal (LSF) region, also known as the dorsal lateral prefrontal
cortex (DLPFC), is associated with higher cognitive functions, including working
memory (WM). In terms of mannerisms, the LSF region is involved in the regulation
and control of behavior, including the ability to perform complex tasks and exhibit
refined motor skills. This region is involved in the process of generating voluntary
movement, which is important for the expression of mannerisms [184]. The right
superior frontal (RSF) is thought to have the same functionality as the LSF. And in
terms of motivation, the RSF region is involved in the processing of reward-related
information and the regulation of goal-directed behavior. This region helps to guide
behavior towards rewarding outcomes and plays a role in the formation of habits and
patterns of behavior [184].

In terms of mannerisms, the left superior parietal (LSP) region is involved in the
control of fine motor movements, including the precise movements of the hands and
fingers. This region is also involved in the generation of voluntary movement, which is
important for the expression of mannerisms. Furthermore, the LSP region is involved
in the processing of information about the size, shape, and texture of objects, as
well as the formation of object representations in working memory. This region plays
a key role in the perception of objects in the environment, including the ability to
manipulate objects, such as when holding or reaching for objects [185]. The right
superior parietal (RSP) is thought to have the same functionality as the LSP region,
and these are all high cognitive processes. Moreover, the RSP region is involved in
attention and spatial processing, including the ability to attend to and manipulate
multiple objects in space. This region plays a key role in the perception of objects in
the environment, including the ability to manipulate objects, such as when holding
or reaching for objects [185].

The left superior temporal (LST) region is associated with various aspects of audi-
tory processing, including short-term memory and speech comprehension. This region
is involved in the processing of speech sounds, including the ability to distinguish be-
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tween different speech sounds and to understand speech in noisy environments. In
terms of communication, the LST region is critical for the comprehension of spoken
language and the integration of linguistic information with other sensory inputs, such
as facial expressions and body language. This region is also involved in the process-
ing of prosody, including the rhythm, stress, and intonation patterns of speech, which
provide important cues for the interpretation of meaning in spoken language. In terms
of mannerisms, the LST region is involved in the processing of auditory information,
including the perception of speech sounds and prosody. This region is also involved
in the regulation of voluntary movement, which is important for the expression of
mannerisms. Regarding motivation, the LST region is involved in the processing of
auditory information and the regulation of behavior in response to auditory stimuli.
And this is how it could be involved in the processing of reward-related information,
contributing to the regulation of goal-directed behavior and motivation [186]. The
right superior temporal (RST) is thought to share the same functionality with the
LST region. And regarding cognition, the RST region is involved in the processing of
auditory information and the integration of this information with other sensory in-
puts, including visual and somatosensory information, to form a cohesive perceptual
representation of the environment. This region is also involved in the processing of
musical information and the perception of musical patterns and structures. In terms
of awareness, the RST region is involved in the processing of auditory information and
the regulation of behavior in response to auditory stimuli. This region is also involved
in the processing of attention-related information, contributing to the regulation of
attentional focus and awareness of the environment [186].

The left frontal pole (LFP) region is associated with various aspects of higher
cognitive function, including consciousness, communication, memory, and attention.
In terms of mannerisms, the LFP region is involved in the regulation of voluntary
movement, which is important for the expression of mannerisms. The LFP is also
involved in the processing of sensory information and the regulation of behavior in
response to this information, contributing to the expression of mannerisms. Regarding
cognition, the LFP region is involved in various aspects of higher cognitive function,
including working memory, executive function, and attentional control. The LFP is
also involved in the processing of linguistic information and the regulation of language-
related behavior, including speech production and comprehension [187]. The right
frontal pole (RFP) is thought to share the same functionality with the LFP region,
and its association with motivation is less clear, however, it could aslo be through
procession of information that regulate a goal-directed behavior [187].

The left rostral middle frontal cortex (LMF) is associated with several aspects
of motivation and behavior regulation, including emotion regulation and working
memory. In terms of emotion regulation, the LMF is involved in the appraisal of
emotional information, the regulation of emotional responses, and the regulation of
attentional focus in response to emotionally-relevant information. This region is also
involved in the generation of cognitive strategies that help to regulate emotions, such
as reappraisal, distraction, and suppression. In terms of working memory, the LMF
is involved in the temporary storage and manipulation of information, which is es-
sential for the performance of various cognitive tasks. The LMF is also involved in
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the regulation of attentional focus and the allocation of resources to working mem-
ory, which are important for the maintenance of task-relevant information in working
memory [188]. The right rostal middle frontal cortex (RMF) is thought o share the
same functionality with the LMF region. And regulating those emotions and generat-
ing those cognitive strategies can be important in social communication. Overall, the
RMF region plays a critical role in the neural network involved in communication,
contributing to the regulation of emotional responses, the allocation of attentional
resources to support language processing, and the maintenance of task-relevant in-
formation in working memory [188].

5 Conclusion

In this study, we present a pioneering method for the diagnosis of autism and other
psychological disorders through the replication of the clinical diagnosis process us-
ing artificial intelligence. Our proposed framework consists of two crucial stages in
diagnosing/classification a subject with Autism Spectrum Disorder (ASD). Firstly,
we obtain morphological features from the MRI scans of each subject and identify
the most salient features that accurately differentiate ASD within various behavioral
domains. Secondly, we categorize each subject as having severe, moderate, mild,
or typical development (TD) based on the behavioral domains of the SRS. Finally,
we make an overall classification of each subject as either ASD or TD based on the
subject’s behavioral categorization. It is also important to note that the current di-
agnostic process for ASD relies heavily on reports based on patient interviews and
physician-based scores, which can be time-consuming and susceptible to human error.
The ability of our AI-based model to detect functional differences in brain regions
using MRI scans alone can not only speed up the diagnostic process but also increase
its accuracy, leading to improved outcomes for individuals with ASD.

The proposed framework also provides clarification and interpretation of the clas-
sifier’s decisions at every step. During the training of the classifiers, we constructed
neuroatlases to gain insight into the correlation between brain region morphology
and various behavioral traits of each subject. The regions of the brain defined in
each behavioral neuroatlas were chosen based on a combination of machine learn-
ing classification efficiency and statistical significance. Finally, interpretable methods
were employed to demonstrate, for new subjects, the mechanisms and reasons behind
their classification/diagnosis. This interpretability phase has been included to assist
physicians in comprehending the fundamental causes of ASD and to enable them to
offer presonalized medical treatment for each subject.

Our AI-based model’s ability to accurately differentiate between the functionali-
ties of specific brain regions, such as the left and right caudal middle frontal regions,
in the classification of behavioral severity of Autism Spectrum Disorder is a significant
advancement in the field. The model has found that the left caudal middle frontal
region is linked to mannerism, awareness, and communication behavioral domains,
while the right caudal middle frontal region is primarily associated with awareness
and cognition, making it more associated with analytical processes rather than so-
cial processes. This is particularly noteworthy because previous research has also
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documented a remarkable difference between the left and right caudal middle frontal
regions. At the same time, most studies show little to no difference between other
left and right brain regions. This shows that our AI model has the ability to accu-
rately identify specific contralateral regional differences or similarities, adding to the
validity of the model’s findings.

It is important to note that all behavioral domains are complex and multifaceted
processes, and many different brain regions are thought to be involved in different
aspects of it. It is also important to note that the field of neuroscience is always
evolving and the understanding of the function of different brain regions is still under
research.
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This dissertation presents a novel approach to understand and diagnose ASD using 
AI by mimicking the clinical setup. The proposed approach depends on building 
a sophisticated AI to framework that allows to accurately diagnose ASD while al-
lowing backtracking to the underlying neuro abnormalities. The core of the pro-
posed AI framework primarily consist of four key stages: i) preprocessing, ii) feature 
calculation/extraction, iii) feature engineering (including feature representation and 
selection, among others), and iv) machine learning-based classification. The devel-
oped models and approaches within this dissertation demonstrate promising overall 
outcomes, as well as insights into alternative methods. Subsequently, the primary 
contributions of each module are detailed.

1 Summary of contributions

Homogeneous approach

A ML pipeline is designed and implemented to identify morphological imaging mark-
ers of ASD. The proposed pipeline includes data preprocessing, feature extraction, 
feature normalization and age adjustment, feature selection via four different RFECV 
models, and classification using hyperparameters optimization of linear and non-linear 
machine learning models. The most discriminative set of features is formed using 
RFECV+lg2 model. The resultant features’ set of RFECV+lg2 is used to train a set 
of linear, and non-linear classifiers. The highest balanced accuracy score is achieved 
by NN for both the global model and the local model with average balanced accu-
racy score of 71.6% ± 2% and 97% ± 2% respectively. The most common features 
among the global model and each site of the local model are then analyzed to create 
ASD neurocircuits. The two main steps that helped in achieving the high results 
are: (i) feature selection step via RFECV, and (ii) Hyperparameter optimization of 
the classifiers. The overall structural mapping of cognition and behaviors to distinct 
neuroanatomical and functional linked neural circuits is more likely to not only diag-
nosed but map a cluster of ASD individuals whose behaviors and characteristics are 
more similar than different. The proposed pipeline is anticipated to achieve better 
results than those in the literature because of the way that the morphological feature 
values are aggregated is less prone to outliers. RFECV implementation with more 
than one classifier will also cover as many assumptions on the relationship between 
the features and the target as possible while selecting the features while perform-
ing hyper-parameter optimization using grid search on eight classifiers to achieve the 
optimum results given the selected set of features. Neuroimaging is an attractive
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non-invasive technology to facilitate the definition of relationship between genes, en-
vironment, and behaviors in ASD. While this study’s numbers, design, mitigation of
age/sex, pre-processing, etc. lend credence to these results, the truth is that use of
sMRI and fMRI data is still a challenge since large datasets from typically developed
children from infancy through 8 years of age are still lacking. The current sample
size does identify brain regions implicated infants who are at high risk for ASD sug-
gesting that this approach is scalable for use in larger more heterogeneous groups of
ASD populations. The higher accuracy of ASD classification in this study also rein-
forces this hypothesis. Ultimately, the proposed system should provide a complete
map explaining what linked brain regions are affected, to what extent impairments
are more severe, and thereby could be very useful to a treating physician/provider
from a clinical point of view. We hypothesize the difference in the balanced accuracy
score of the global model and the local model is due to the high heterogeneity of the
disorder. This hypothesis is based on the number of common features among the
sites of the local model, as well as the number of features being selected for both
the global and local model. Consequently, for the future work, we are planning to
do the following: (i) incorporate the ABIDE II dataset along with ABIDE I, and (ii)
partition subjects based on behavioral traits in order to subdivide ASD into more
types of ”homogeneous ASD” where subjects share more traits. Eventually, we pro-
posed a personalized diagnosis method at which we describe the phenotype of each
subject in terms of the local imaging markers values. The outcome of this step is a
personalized model that describe the affected brain regions which made the classifier
decide a specific subject to be ASD. We hypothesize that the affected brain region,
giving their feature values, might be correlated with a brain physiological anomaly
that might be causing a specific autistic behavior. Thus, by recognizing those affected
brain regions, a personalized treatment can be assigned for each subject to help with
autistic traits moderation

Heterogeneous approach

In this study, we present a pioneering method for the diagnosis of autism and other
psychological disorders through the replication of the clinical diagnosis process us-
ing artificial intelligence. Our proposed framework consists of two crucial stages in
diagnosing/classification a subject with Autism Spectrum Disorder (ASD). Firstly,
we obtain morphological features from the MRI scans of each subject and identify
the most salient features that accurately differentiate ASD within various behavioral
domains. Secondly, we categorize each subject as having severe, moderate, mild,
or typical development (TD) based on the behavioral domains of the SRS. Finally,
we make an overall classification of each subject as either ASD or TD based on the
subject’s behavioral categorization. It is also important to note that the current di-
agnostic process for ASD relies heavily on reports based on patient interviews and
physician-based scores, which can be time-consuming and susceptible to human error.
The ability of our AI-based model to detect functional differences in brain regions
using MRI scans alone can not only speed up the diagnostic process but also increase
its accuracy, leading to improved outcomes for individuals with ASD.
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The proposed framework also provides clarification and interpretation of the clas-
sifier’s decisions at every step. During the training of the classifiers, we constructed
neuroatlases to gain insight into the correlation between brain region morphology
and various behavioral traits of each subject. The regions of the brain defined in
each behavioral neuroatlas were chosen based on a combination of machine learn-
ing classification efficiency and statistical significance. Finally, interpretable methods
were employed to demonstrate, for new subjects, the mechanisms and reasons behind
their classification/diagnosis. This interpretability phase has been included to assist
physicians in comprehending the fundamental causes of ASD and to enable them to
offer presonalized medical treatment for each subject.

Our AI-based model’s ability to accurately differentiate between the functionali-
ties of specific brain regions, such as the left and right caudal middle frontal regions,
in the classification of behavioral severity of Autism Spectrum Disorder is a significant
advancement in the field. The model has found that the left caudal middle frontal
region is linked to mannerism, awareness, and communication behavioral domains,
while the right caudal middle frontal region is primarily associated with awareness
and cognition, making it more associated with analytical processes rather than so-
cial processes. This is particularly noteworthy because previous research has also
documented a remarkable difference between the left and right caudal middle frontal
regions. At the same time, most studies show little to no difference between other
left and right brain regions. This shows that our AI model has the ability to accu-
rately identify specific contralateral regional differences or similarities, adding to the
validity of the model’s findings.

It is important to note that all behavioral domains are complex and multifaceted
processes, and many different brain regions are thought to be involved in different
aspects of it. It is also important to note that the field of neuroscience is always
evolving and the understanding of the function of different brain regions is still under
research.
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[167] F. Å. Nielsen, D. Balslev, and L. K. Hansen, “Mining the posterior cingulate:
segregation between memory and pain components,” Neuroimage 27, 520–532
(2005).

[168] K. Grill-Spector, Z. Kourtzi, and N. Kanwisher, “The lateral occipital complex
and its role in object recognition,” Vision research 41, 1409–1422 (2001).

[169] E. T. Rolls, W. Cheng, and J. Feng, “The orbitofrontal cortex: reward, emotion
and depression,” Brain Communications 2, fcaa196 (2020).

[170] S. A. Kozlovskiy, M. M. Pyasik, A. V. Korotkova, A. V. Vartanov, J. M. Gloz-
man, and A. A. Kiselnikov, “Activation of left lingual gyrus related to working
memory for schematic faces,” International Journal of Psychophysiology 2, 241
(2014).

[171] A. D. Friederici, “White-matter pathways for speech and language processing,”
Handbook of clinical neurology 129, 177–186 (2015).

[172] J. C. Tamraz, Y. G. Comair, and J. Tamraz, Atlas of regional anatomy of the
brain using MRI (Springer, 2004).

112



[173] V. D. Bohbot, J. J. Allen, A. Dagher, S. O. Dumoulin, A. C. Evans, M. Petrides,
M. Kalina, K. Stepankova, and L. Nadel, “Role of the parahippocampal cortex
in memory for the configuration but not the identity of objects: converging
evidence from patients with selective thermal lesions and fmri,” Frontiers in
human neuroscience 9, 431 (2015).

[174] F. Binkofski and G. Buccino, “Motor functions of the broca’s region,” Brain
and language 89, 362–369 (2004).

[175] A. L. Foundas, C. M. Leonard, R. L. Gilmore, E. B. Fennell, and K. M. Heilman,
“Pars triangularis asymmetry and language dominance.” Proceedings of the
National Academy of Sciences 93, 719–722 (1996).

[176] E. M. Coppen, J. v. d. Grond, A. Hafkemeijer, J. J. Barkey Wolf, and R. A.
Roos, “Structural and functional changes of the visual cortex in early hunting-
ton’s disease,” Human brain mapping 39, 4776–4786 (2018).

[177] J. DiGuiseppi and P. Tadi, “Neuroanatomy, postcentral gyrus,” in “StatPearls
[Internet],” (StatPearls Publishing, 2021).

[178] A. E. Cavanna and M. R. Trimble, “The precuneus: a review of its functional
anatomy and behavioural correlates,” Brain 129, 564–583 (2006).

[179] R. Leech, R. Braga, and D. J. Sharp, “Echoes of the brain within the posterior
cingulate cortex,” Journal of Neuroscience 32, 215–222 (2012).

[180] S. Bissière, N. Plachta, D. Hoyer, K. H. McAllister, H.-R. Olpe, A. A. Grace,
and J. F. Cryan, “The rostral anterior cingulate cortex modulates the effi-
ciency of amygdala-dependent fear learning,” Biological psychiatry 63, 821–831
(2008).

[181] N. K. Schaal, B. Pollok, and M. J. Banissy, “Hemispheric differences between
left and right supramarginal gyrus for pitch and rhythm memory,” Scientific
Reports 7, 1–6 (2017).

[182] K. Tsapkini, C. E. Frangakis, and A. E. Hillis, “The function of the left anterior
temporal pole: evidence from acute stroke and infarct volume,” Brain 134,
3094–3105 (2011).

[183] L. Fernández, C. Velásquez, J. A. G. Porrero, E. M. de Lucas, and J. Martino,
“Heschl’s gyrus fiber intersection area: a new insight on the connectivity of the
auditory-language hub,” Neurosurgical Focus 48, E7 (2020).

[184] F. d. Boisgueheneuc, R. Levy, E. Volle, M. Seassau, H. Duffau, S. Kinkingnehun,
Y. Samson, S. Zhang, and B. Dubois, “Functions of the left superior frontal
gyrus in humans: a lesion study,” Brain 129, 3315–3328 (2006).

[185] P. Johns, Clinical neuroscience (Elsevier Health Sciences, 2014).

113



[186] A. P. Leff, T. M. Schofield, J. T. Crinion, M. L. Seghier, A. Grogan, D. W.
Green, and C. J. Price, “The left superior temporal gyrus is a shared substrate
for auditory short-term memory and speech comprehension: evidence from 210
patients with stroke,” Brain 132, 3401–3410 (2009).

[187] F. A. Mansouri, M. J. Buckley, M. Mahboubi, and K. Tanaka, “Behavioral con-
sequences of selective damage to frontal pole and posterior cingulate cortices,”
Proceedings of the National Academy of Sciences 112, E3940–E3949 (2015).

[188] L. J. Michalski, “Rostral middle frontal gyrus thickness is associated with per-
ceived stress and depressive symptomatology,” (2016).

114



APPENDIX A: PERMISSIONS

• Article Title: The Role of Structure MRI in Diagnosing Autism
Journal: Diagnostics
Volume: 21
Pages: 165
Year: 2022
Publisher: MDPI
Copyright: No special permission is required to reuse all or part of article pub-
lished by MDPI, including figures and tables. For articles published under an
open access Creative Common CC BY license, any part of the article may be
reused without permission provided that the original article is clearly cited.
MDPI does not hold the copyright or the right to re-license the published ma-
terial. The original copyright holder (usually the original publisher or authors),
whether or not this material can be re-used.

115



CURRICULUM VITAE

Mohamed T. Ali

Personal Information

E-mail: bioeng.m.tarek@gmail.com
LinkedIn: https://www.linkedin.com/in/mohamed-ali-9a35a656/
GoogleScholar: https://scholar.google.com/citations?user=LXdEtBQAAAAJ&hl=
en

Education

Ph.D., BioEngineering, University of Louisville, Louisville, KY, May 2023

MSc., Systems & Biomedical Engineering, Cairo University, Giza, Egypt, August
2017

B.Sc., Systems & Biomedical Engineering, Cairo University, Giza, Egypt, May 2013

Professional and Work Experience

Graduate Research Assistant in the University of Louisville, Jan2018-present (Part-
Time)

Research Development Software Engineer Intern, Cognex Corporation LLC, Natick,
MA, May2022–Aug2022 (full-Time)

Data Science Scholar in The Data Incubator, April2021-May2021

Research and Development Engineer in DilenyTech, March2016-Dec2017 (Full-Time)

Graduate Research Assistant at Cairo University, March2015-March2016 (Full-Time)

116

bioeng.m.tarek@gmail.com
https://www.linkedin.com/in/mohamed-ali-9a35a656/
https://scholar.google.com/citations?user=LXdEtBQAAAAJ&hl=en
https://scholar.google.com/citations?user=LXdEtBQAAAAJ&hl=en


Honors and Awards

• Best Graduate Student Peer-Reviewed Journal Paper from the School of Inter-
disciplinary and Graduate Studies, University of Louisville, 2022.

• Best Doctoral Journal Article Award from the School of Interdisciplinary and
Graduate Studies, University of Louisville, 2021.

• Third place Doctoral Engineering Student Award at Research Louisville 2021.

• Student Champion 2020-2021.

• Dissertation Completion Award, 2023

• Exemplary Research Scholarship Award, 2023

Publications and Presentations

1. ”Using resting state functional mri to build a personalized autism diagnosis
system.”, Co-author, Plos one 13, no10 (2018): e0206351.

2. ”A personalized autism diagnosis CAD system using a fusion of structural MRI
and resting-state functional MRI data”, Co-author, Frontiers in psychiatry 10
(2019): 392.

3. ”The Role of Structure MRI in Diagnosing Autism.”, First author, Diagnostics
12.1 (2022): 165.

4. ”The Role of Diffusion Tensor MR Imaging (DTI) of the Brain in Diagnosing
Autism Spectrum Disorder: Promising Results.”, co-author, Sensors 2021, 21,
8171. https://doi.org/10.3390/s21248171.

5. ”Extract image markers of autism using hierarchical feature selection technique.”,
Book Chapter, Neural Engineering Techniques for Autism Spectrum Disorder.
Academic Press, 2021. 333-343.

6. ”Autism Classification Using SMRI: A Recursive Features Selection Based on
Sampling from Multi-Level High Dimensional Spaces.”, Co-author, 2021 IEEE
18th International Symposium on Biomedical Imaging (ISBI).

7. ”A Personalized Autism Diagnosis CAD System Using a Fusion of Structural
MRI and Resting-State Functional MRI Data.”, Co-author, Frontiers in psychi-
atry 10 (2021): 392.

8. ”Computer Aided Autism Diagnosis Using Diffusion Tensor Imaging.”, First
author, IEEE Access 8 (2020), doi: 10.1109/ACCESS.2020.3032066.

9. ”A Comprehensive Framework for Differentiating Autism Spectrum Disorder
from Neurotypicals by Fusing Structural MRI and Resting State Functional
MRI.”, Co-author, Seminars in Pediatric Neurology, 2020.

117



10. ”Autism Spectrum Disorder Diagnosis framework using Diffusion Tensor Imag-
ing.”, co-author, 2019 IEEE International Conference on Imaging Systems and
Techniques (IST).

11. ”Towards Accurate Personalized Autism Diagnosis Using different Imaging Modal-
ities: sMRI, fMRI, and DTI.”, Co-author, IEEE International Symposium on
Signal Processing and Information Technology (ISSPIT 2018).

12. ”Towards Personalized Autism Diagnosis: Promising Results.”, Co-author, IEEE
Conference on Computer Vision and Pattern Recognition, (ICPR 2018).

13. Ten abstracts accepted, INSAR2022, four at INSAR2020, BMES2021, BMES2020,
BMES2019, BMES2018, and NRSC 2016.

118


	Interrogating autism from a multidimensional perspective: an integrative framework.
	Recommended Citation

	Title Page
	Approval Page
	Dedication
	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	I INTRODUCTION
	1 Current Autism Diagnosis Techniques
	2 Objectives
	3 Brain Imaging in Autism Diagnosis
	4 Computer Aided Diagnosis (CAD) using Machine Learning (ML)
	5 Dissertation Organization

	II AUTISM COMPUTER AIDED DIAGNOSIS: A SURVEY
	1 Structural MRI (sMRI)

	III DIAGNOSING AUTISM SPECTRUM DISORDER AS A HOMOGENEOUS DISORDER: STRUCTURAL MRI APPROACH
	1 Materials and Methods
	2 Experimental Results
	3 Chapter Discussion

	IV DIAGNOSING AUTISM SPECTURM DISORDER AS A HETEROGENEOUS DISORDER: STRUCTURAL MRI APPROACH
	1 Background
	2 Materials and Methods
	3 Results
	4 Chapter Discussion
	5 Conclusion

	V CONCLUSIONS AND FUTURE WORK 
	1 Summary of contributions

	REFERENCES
	APPENDIX A: PERMISSIONS
	CURRICULUM VITAE

