University of Louisville

ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2023

Clustering and analysis of g quadruplex sequences.

Aryan Neupane University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Bioinformatics Commons, Computational Biology Commons, and the Genomics Commons

Recommended Citation

Neupane, Aryan, "Clustering and analysis of g quadruplex sequences." (2023). *Electronic Theses and Dissertations*. Paper 4058. https://doi.org/10.18297/etd/4058

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

CLUSTERING AND ANALYSIS OF G QUADRUPLEX SEQUENCES

By

Aryan Neupane Btech, Kathmandu University, 2016

A Dissertation Submitted to the Faculty of the Graduate School of University of Louisville in Partial Fulfillment of the Requirements for the Degree of

> Doctor of Philosophy in Interdisciplinary Studies: Specialization in Bioinformatics

> > Graduate School University of Louisville Louisville, Kentucky

> > > May 2023

Copyright 2023 by Aryan Neupane

All rights reserved.

CLUSTERING AND ANALYSIS OF G QUADRUPLEX SEQUENCES

By

Aryan Neupane Biotechnology, Kathmandu University, 2016

A Dissertation Approved on

March 24, 2023

By the following Dissertation Committee

Dr Eric Rouchka, Dissertation Chair

Dr Riten Mitra

Dr Jeffrey Petruska

Dr Juw Won Park

DEDICATION

This dissertation is dedicated to the resilience of so many families that are torn apart and to those who struggle to find hope in the midst of despair.

This dissertation is dedicated to everyone who have left their home in search of learning.

This dissertation is dedicated to my parents Mr. Tilak Neupane and Mrs. Jamuna Chapagain Neupane for providing me everything.

ACKNOWLEDGMENTS

I would like to thank my professor, Eric Rouchka, DSc, for his guidance and patience. I would also like to thank, Dr. Juw Won Park, Dr Julia Chaliker and Dr Jae Hwang for their comments and assistance over the past five years. I would like to thank my dissertation committee members Dr Jeffrey Petruska and Dr Riten Mitra for their guidance over the years. I would like to thank my lab members over the years, Dr Ernur Saka, Dr Muhammed Sayed, Dr Kalpani De Silva, Muhammed Chabane, Tae Lim Kook, Swati Saha, Aachal Malhotra and Uddalok Jana.

I would also like to express my thanks to the special Muna Fuyal for your understanding and patience during those times when there was no light at the end of anything. You encouraged me and without you, I wouldn't dare dream this dream. Also, many thanks to the members of my family in Nepal, Dr. Amrit Neupane and all my friends here in US and Nepal for their support.

ABSTRACT CLUSTERING AND ANALYSIS OF G QUADRUPLEX SEQUENCES

Aryan Neupane

March 21, 2022

G quadruplex structures are secondary structures located throughout the genome of various organisms with involvement in regulatory functions in different transcription, translation, genome stability, epigenetic regulation as well as cell division. Even with the diverse acknowledgement of G4 structure in vivo, there are no current search tools for G quadruplexes based on already identified G quadruplexes and identified families across different genomes based on sequence diversity. Construction of families of G4 sequences and identifying their polymorphisms within disease and disorders will lead to a better understanding of their functional roles and will further research into the biophysical modeling of interactions with oligonucleotide treatments of disease. The first project aims to develop a framework for clustering G quadruplex (G4) sequences into families based on sequence, structure, and thermodynamic properties. No current search tools exist to filter G4s based on their properties, and the diversity of G4 sequences across the genome is not fully understood. To address this gap, we utilized a combination of clustering and annotation methods to identify 95 families of G4 sequences within the human genome. Profiles for each family were created using hidden Markov models, and their thermodynamic properties, functional annotations, and transcription factor binding motifs were analyzed.

The second project aims to investigate the effect of single nucleotide variations (SNVs) on G4 structures in disease contexts. Although the role of G4s in cancer and metabolic disorders are well-established, the effect of SNVs on G4s has not been extensively studied. Using the COSMIC and CLINVAR databases, we identified over 37,000 G4 SNVs and analyzed their effects on G4 secondary structures. We found that a significant proportion of SNVs result in G4 loss or gain, and we identified genes enriched for destabilizing SNVs in G4-forming regions. We also analyzed mutational patterns in the G4 structure and found a higher selective pressure on the coding region of the template strand. Our findings provide insights into the effects of SNVs on G4 structures and highlight potential targets for therapeutic intervention in diseases associated with G4 dysregulation.

TABLE OF CONTENTS

DEDICATION
ACKNOWLEDGMENTSiv
ABSTRACTv
LIST OF TABLESxii
LIST OF FIGURES
CHAPTER 1 INTRODUCTION
1.1 MOTIVATION
1.1.1 PART I: IDENTIFICATION OF FAMILIES OF G QUADRUPLEX SEQUENCES
1.1.1 PART II: IDENTIFICATION AND EFFECTS OF SNVS IN G QUADRUPLEX IN DISEASE
SAMPLES
1.2 DISSERTATION CONTRIBUTIONS
1.2.1 A FRAMEWORK FOR IDENTIFICATION OF G-QUADRUPLEX FAMILIES
1.2.2 IDENTIFICATION OF SNVS IN G-QUADRUPLEX SEQUENCES
1.3 DISSERTATION OUTLINE
CHAPTER 2 BACKGROUND AND LITERATURE REVIEW
2.1 INTRODUCTION TO NUCLEIC ACIDS
2.1.1 DNA AND RNA7
2.1.2 BASE PAIRS
2.1.3 BASE STACKING

2.1.4 DIFFERENT FORMS OF DNA (A-DNA, B-DNA, Z-DNA)	10
2.1.5 NON-CANONICAL STRUCTURES	11
2.2 G QUADRUPLEX SEQUENCES	13
2.2.1 PU27 FAMILY	17
2.3 COMPUTATIONAL METHODS ASSOCIATED WITH G-QUADRUPLEX	
2.3.1 TOOLS USED TO IDENTIFY G-QUADRUPLEX	
2.3.2 G QUADRUPLEX CONSERVATION	
2.3.3 G-QUADRUPLEX DATABASES	21
2.4 SINGLE NUCLEOTIDE VARIANTS	
2.5 VARIANT DATABASES	24
2.6 UNSUPERVISED LEARNING	
2.6.1 INTRODUCTION TO MACHINE LEARNING	26
2.6.2 CLUSTERING	27
2.6.3 SIMILARITY/ DISTANCE METRICS	
2.6.4 TYPES OF CLUSTERING	
2.6.5 PARTITION-BASED ALGORITHMS	
2.6.6 HIERARCHICAL CLUSTERING:	
2.6.7 CLUSTERING IN BIOINFORMATICS	
2.6.8 CLUSTERING IN DNA SEQUENCES	
2.6.9 MARKOV CHAINS	
2.7 HIDDEN MARKOV MODELS.	

2.7.1 DIFFERENCE BETWEEN MARKOV CHAIN AND HMM	
2.7.2 MULTIPLE SEQUENCE ALIGNMENT	
2.7.3 PROFILE HIDDEN MARKOV MODELS	
CHAPTER 3 STRUCTURAL AND FUNCTIONAL CLASSIFICATION OF G-QU	ADRUPLEX
FAMILIES WITHIN THE HUMAN GENOME	
3.1 SUMMARY	44
3.2 INTRODUCTION	45
3.2.1 ROLES OF G-QUADRUPLEXES	46
3.2.2 CHARACTERISTICS OF G4S	47
3.2.3 G4 FAMILIES	
3.2.4 DETECTION OF G4 FAMILIES	51
3.3 MATERIALS AND METHODS	51
3.3.1 DATASET PREPARATION	51
3.4 RESULTS	56
3.4.1 G QUADRUPLEX FAMILIES	57
3.4.2 CATEGORICAL ENRICHMENT OF SELECT FAMILIES	58
3.4.3 THERMODYNAMIC PROPERTIES OF SELECT FAMILIES	64
3.4.4 G4 IN ENHANCERS	72
3.5 DISCUSSION	73
CHAPTER 4 ANALYSIS OF NUCLEOTIDE VARIATIONS IN HUMAN G-QUADRUPLE?	G FORMING
REGIONS ASSOCIATED WITH DISEASE STATES	77
4.1 SUMMARY	77
4.2 INTRODUCTION	78
4.2.1 FUNCTIONAL ROLE OF G4 REGIONS	
4.2.2 MUTATIONS WITHIN G4 REGIONS	
4.2.3 STUDY MOTIVATION	

4.3 MATERIAL AND METHODS	
4.3.1 PUTATIVE AND VALIDATED G4 IDENTIFICATION	
4.3.2 SNP IDENTIFICATION	
4.3.3 IDENTIFICATION OF SNPS AFFECTING G4 FORMATION	
4.3.4 ENRICHMENT ANALYSIS	
4.4 RESULTS	
4.4.1 COSMIC SOMATIC MUTATIONS	
4.4.2 CLINVAR GERMLINE MUTATIONS	
4.4.3 CHANGE TO G4 STABILITY	
4.4.4 VARIANTS IN TRANSCRIPT REGIONS	
4.4.5 GENE COMPONENT VARIANTS	
4.4.6 ENRICHMENT ANALYSIS	
4.4.7 TRINUCLEOTIDE CONTEXT MUTATION IN G QUADRUPLEX SEQUENCE	
4.5 DISCUSSION	101
4.5.1 VARIANTS INVOLVED IN OXIDATION	101
4.5.2 ROLE OF LOCATION OF SNVS IN G4S	102
4.5.3 TERT G4 MUTATIONS	104
4.5.4 TRANSCRIPTION FACTOR BINDING	104
4.6 CONCLUSION	106
CHAPTER 5 G4-SAMUHA	109
5.1 METHODOLOGY	109
5.2 RESULTS AND DISCUSSION	110
5.3 CONCLUSION	114
CHAPTER 6 CONCLUSION AND FUTURE WORK	115
LIST OF APPENDIX TABLES	117
LIST OF APPENDIX FIGURES	133

APPENDIX	
REFERENCES	
CURRICULUM VITAE	

LIST OF TABLES

TABLE 2-1 DINUCLEOTIDE VALUES FOR HELICAL PARAMETERS FOR B-DNA 12
TABLE 2-2 A SUMMARY OF STRUCTURAL PARAMETERS FOR DUPLEX AND QUADRUPLEX
DNA12
TABLE 3-1 CLUSTER SUMMARY BASED ON DIFFERENT CLUSTERING TECHNIQUES
TABLE 3-2 Summary of count of G4 sequences identified using predictive models
PHMM ACROSS DIFFERENT CLUSTERS, GENES, AND CHROMOSOMES
TABLE 3-3 G4 SEQUENCES IDENTIFIED IN THE GENIC REGIONS ASSOCIATED WITH THE
PLEXIN AND SEMAPHORIN GENE FAMILIES WITH HIGH SIMILARITY TO G4 FAMILIES 17,
48 AND 79
TABLE 3-4. FAMILY PREDICTION FOR PREVIOUSLY IDENTIFIED PU27 FAMILY OF G4 $$
SEQUENCES74
TABLE 4-1 COUNT/PROPORTION OF EFFECT OF TYPE OF MUTATION ON STABILITY OF G4
(COSMIC DATABASE)108
TABLE 4-2 PROPORTION OF SNV BY ANNOTATION. 109

LIST OF FIGURES

FIGURE 2-1 STRUCTURE AND CHEMICAL COMPOSITION OF DNA AND RNA
FIGURE 2-2 STRUCTURE OF DNA NUCLEOTIDES IN DNA STRUCTURE
FIGURE 2-3 : COUNT OF PUBMED ARTICLES PUBLISHED WITH "G4 QUADRUPLEX" OR "G4"
IN TITLE OR ABSTRACT
FIGURE 2-4 FORMATION OF G QUADRUPLEX STRUCTURES
FIGURE 2-5 A DIVISION OF DIFFERENT CLUSTERING ALGORITHMS
FIGURE 2-6 PROFILE HMM UTILIZING A MULTIPLE SEQUENCE ALIGNMENT
FIGURE 3-1 (A) G-TETRAD STRUCTURE FORMING G QUADRUPLEXES (B) SEQUENCE OF G4
WITH MULTIPLE GUANINE TETRADS46
Figure 3-2 Process for identifying and characterizing G quadruplex families. 52 $$
FIGURE 3-3 THERMODYNAMIC PROPERTIES FOR FAMILY 461
FIGURE 3-4 THERMODYNAMIC PROPERTIES FOR FAMILY 3261
FIGURE 3-5 THERMODYNAMIC PROPERTIES FOR FAMILY 75
FIGURE 3-6 THERMODYNAMIC PROPERTIES FOR FAMILY 80
FIGURE $3-7$ Summary of enriched GO terms for select families as determined by
THE GOPROFILER AND SIMPLIFYENRICHMENT R PACKAGES
FIGURE 3-8 EXAMPLE SEQUENCES WITH MULTIPLE TETRADS
FIGURE 4-1 GUANINE TETRAD FORMED BY HOOGSTEEN BOND FORMATION79
Figure 4-2 Composition of SNVs in G4 regions from the COSMIC database86 $$
FIGURE 4-3 IDENTIFIED G4 VARIANTS RELATIVE TO FUNCTIONAL ANNOTATIONS
FIGURE 4-4 THERMODYNAMIC CHANGES ASSOCIATED WITH VARIANTS IN VARIOUS
GENOMIC FEATURES

Figure 4-5 Distribution of SNVs across the G4 regions on the non-template and
TEMPLATE STRAND91
FIGURE 5-1 SCREENSHOT OF MULTIPLE SEQUENCE ALIGNMENT OF FAMILY 1 IN THE TOOL.
USER CAN SEARCH FOR SPECIFIC FAMILIES BASED ON THE TRAINING MODEL
FIGURE 5-2 SCREENSHOT OF MULTIPLE SEQUENCE ALIGNMENT OF FAMILY 1 IN THE TOOL.
USER CAN SEARCH FOR SPECIFIC FAMILIES BASED ON THE TRAINING MODEL
FIGURE 5-3 SCREENSHOT USING AN EXAMPLE INPUT OF PUTATIVE G-QUADRUPLEX REPEAT
IN G4 SAMUHA
Figure 5-4 Screenshot showing results of putative G-quadruplex and log odds
SCORE FOR EACH SEQUENCE FOR A FAMILY IN G4 SAMUHA114
FIGURE 5-5 SCREENSHOT SHOWING RESULTS OF G4 SAMUHA FOR SPECIFIC FAMILIES
IDENTIFIED
FIGURE 5-6 ILLUSTRATION OF PG4 SEQEUENCES IN HUMAN GENOME (HG38) WITH LOG
ODDS SCORE AND CONFIDENCE(AKAIKE) SCORE114

CHAPTER 1 INTRODUCTION

G-quadruplexes are alternative nucleic acid structures of DNA or RNA with multiple stacked guanine bases held together by hydrogen bonds to form a structure that is stabilized by the presence of a cation (1, 2). G-quadruplexes can adopt a variety of conformations, and the specific arrangement and length of the guanine bases can affect the stability and function of the structure.

Identified across variety of biological roles including transcription regulation (3), DNA replication (4), telomere maintenance (5, 6). Despite extensive work through computational tools have been used to predict the formation of stable G quadruplex across different genomes, the full spectrum of diversity and role of G quadruplex in regulation is yet to be uncovered.

1.1 Motivation

Typically, prediction of G quadruplex sequence is carried out to address the question of if the query is a G quadruplex or not through a specific pattern, or the presence of specific G and C repeats from the primary sequence structure which allow for the prediction if a sequence.

Although many tools have been developed to carry out identification, the methods and results have some limitations. G quadruplex sequences carry a diverse arrangement of sequences despite majority of sequences being a guanine. These tools only identify

sequence with proximity to form a sequence but do not identify patterns through these sequences to identify similar sequences in different genomes.

The aim of this dissertation is to make significant contributions to the field of Gquadruplex biology through the development of computational methods for the identification of G-quadruplex forming sequences and their associated families. This study explores the role of single nucleotide variants in G-quadruplex regions in disease samples, using the COSMIC and CLINVAR databases as a resource. Furthermore, this dissertation presents a new tool for the prediction of G-quadruplex forming sequences and their classification into families.

In Part I of this dissertation, we address the need for a method to identify the patterns present in G-quadruplex forming sequences. We discuss the challenges associated with the analysis of these complex structures and propose a novel computational approach for the identification of G-quadruplex families.

In Part II, we highlight on the role of single nucleotide variants in G-quadruplex regions in disease samples. The purpose of the study is to identify disease specific region and genes based on the specificity of G quadruplex.

In Part III, we present a new tool for the prediction of G-quadruplex forming sequences in genomic data. This tool classifies G-quadruplex sequences into families, based on their sequence features, and provide a valuable resource for researchers studying the biology of G-quadruplexes.

1.1.1 Part I: Identification of families of G Quadruplex sequences

The overall goal of part I is to build specific families of G quadruplex sequences based on homologous sequence data, conservation patterns, functions, and expression patterns in model organisms. Analyzing the G4 patterns across human (Hg38) genome, we provide a rationale for identification of sequence characteristics and functional annotation of G quadruplex sequences.

These structures have been shown to play a role in various biological processes, including transcription regulation and DNA replication. In addition, G4 DNA has been implicated in several diseases, including cancer, and is therefore of significant interest for the development of novel therapeutic strategies. More recently, the potential role of G4 DNA in cancer has been the subject of much research, with studies suggesting that the formation of G4 DNA in oncogenes and tumor suppressor genes could potentially contribute to the development of cancer.

With more than hundred thousand pG4 identified in the human genome(7), majority of these sequences are of length 15-35bp, and formation of G4 DNA structures is influenced by several factors, including the sequence and length of the guanine-rich region, as well as the presence of cations such as potassium and sodium. The diversity of the sequence is aided by short linker nucleotide bases of length 1-10bp. The ability to selectively stabilize G4 DNA structures has been the subject of much research, as it could potentially be used to modulate their function in vivo. Identification of these patterns and clustering of G4 sequences can provide invaluable support needed to understand the molecular mechanisms and biological functions carried out by this structure across different genomes.

3

1.1.1 Part II: Identification and Effects of SNVs in G quadruplex in Disease samples

Despite efforts on experimental identification of structure on individual sequences, the diversity of G quadruplex sequences is still an enigma. Studies have linked point mutations within G quadruplex to destabilize the G4 structure. We analyze large diversity in G4 sequences, through the lens of single nucleotide variants identified experimentally in cancer and disease samples. Destabilization of G4s is likely to disrupt functional association with several proteins and other transcription factors causing instability in their functions. Previous studies have highlighted the changes in loops of G quadruplexes and stability led to a significant alteration in gene expression among individuals further fueling the structural role of G4s in regulation and binding of transcription factors. Relying on experimental data, we aim to provide insight into relating newly identified G quadruplexes or G quadruplexes for a certain purpose as aptamers. These G quadruplexes are being used for a molecular carrier for the delivery of various ligands at the target site. Experiments indicate various G quadruplexes show great binding strength and lower the ligand's cytotoxicity towards non-malignant cells. Disease based association of G quadruplex can help identify the target site for binding and therapeutic uses.

1.2 Dissertation Contributions

To achieve the aims, we developed the following framework.

1.2.1 A framework for identification of G-Quadruplex families

G4 sequences are used as a novel target for various molecules with the ability to modulate gene expression. Any sequence variation in the G4 disrupting G-tracts or change in the loop composition or length affect G4 formation, topology and subsequently their functional roles. We identified putative G quadruplex in the human genome and identify clusters of G4 utilizing existing DNA clustering tools. Because of the short and diverse nature of sequences, additional methods are required to filter redundant clusters. Based on the identified clusters we annotate the analyzed sequence characteristics including electrostatic potential, groove width, TF binding sites, presence in proximity of a gene and region specific to coding regions, among others. We develop clusters demonstrating a functional relationship between G quadruplex sequences having similar properties including sequence homology which was used to construct the Pu27 family.

1.2.2 Identification of SNVs in G-Quadruplex sequences

Point mutations within a G quadruplex can potentially destabilize the G4 structure. SNPs within or near G quadruplexes that have been associated with disease phenotypes has been studied. We aim the identification of SNPs across G4 regions will provide an insight into differences in folding properties based on sequence and external factors. Utilizing COSMIC and CLINVAR database for the identification of putative G4 regions, we investigate the biological, cellular, and molecular functions based on the folding energies of each G4 by different SNV to predict the role of G4 structural integrity in relation with diseases.

1.3 Dissertation Outline

The dissertation is organized as follows. Chapter 2 introduces G quadruplex and clustering techniques. Chapter 3 introduces the proposed method for identification of clusters of G quadruplexes. This chapter provides the analysis of annotated clusters as families and provide a prediction tool using hidden Markov models. Chapter 4 presents the description of identified single nucleotide variants in G quadruplex utilizing available

5

resources. Chapter 5 provides the description of tool "G4-samuha" based on the identified models of G quadruplex families. This tool allows to search for putative G quadruplex sequences based on similarity. Chapter 6 provides the conclusions and potential future work.

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

2.1 Introduction to Nucleic acids

Nucleic acids are complex organic molecules that play a crucial role in the biology of all living organisms. They are made up of long chains of nucleotides joined together by covalent bonds.

2.1.1 DNA and RNA

There are two main types of nucleic acids: DNA and RNA. DNA, or deoxyribonucleic acid, is the genetic material of living cells, and it carries the instructions needed for the cell to function and reproduce. RNA, or ribonucleic acid, plays a variety of important roles in the cell, including serving as a template for the synthesis of proteins. Each nucleotide contains a nitrogenous base with sugar molecule (ribose or deoxyribose) attached to a phosphate group as a backbone (Figure 2-1). Possible nitrogenous bases include pyrimidines cytosine, thymine (in DNA), uracil (in RNA) and purines, adenine and

guanine.

2.1.2 Base pairs

The Watson-Crick or canonical rule for base pairing in nucleic acids states that adenine (A) always pairs with thymine (T) or Uracil (U) in RNA and cytosine (C) pairs with guanine (G). This binding pattern allows for the stable, double stranded helical structure of DNA (9), and hairpin loops(10), stem-loop structures, pseudoknots (11), and more complex tertiary structures of RNA (12).

Figure 2-1 Structure and chemical composition of DNA and RNA (Image from:8) (CC-BY-4.0)

The double helix structure of DNA is stabilized through the Watson-Crick base pairing between the complementary nucleotides on each strand wound around each other. The two strands are held together by hydrogen bonds between the bases (

Figure 2-2).

2.1.3 Base stacking

Base stacking refers to the way in which the bases (nucleotides) in a molecule of DNA or

RNA are arranged on top of one another. The bases are relatively hydrophobic and since

Neupane, A.; Chariker, J.H.; Rouchka, E.C. Structural and Functional Classification of G-Quadruplex Families within the Human Genome. Genes 2023, 14, 645. <u>https://doi.org/10.3390/genes14030645</u>

they are flat structures, they stack on top of each other to maximize the hydrophobic surface causing the twist leading to a helical structure (9) Sequence or base pairing interaction in the secondary helix structure determines the stacking energy of a double stranded DNA. The energy required to melt the double strand DNA can be calculated using the sequence and base pair interactions..

Table 2-1 lists the stacking energies in a B DNA helix for all the dinucleotide combinations. It has been established that pyrimidine-purine dinucleotide has the least energy (requiring least energy to melt) and the GC dinucleotide require the highest energy to melt.

Another way to measure the stacking of bases is the propeller twist. When the two bases do not line up perfectly in a pair, the angles created by the planes of the two bases is measured as the propeller twist. Higher propeller twist generally indicates rigid helix structure (13).There are several different types of helical structures that have been identified in DNA molecules, including the A form, B form, and Z form.

Figure 2-2 Structure of DNA nucleotides in DNA structure Image from:(1) (CC-BY-4.0) 2.1.4 Different forms of DNA (A-DNA, B-DNA, Z-DNA)

A-DNA, discovered by Rosalind Franklin is a right-handed helix structure formed under dehydrating conditions (2). Smaller rise per turn causes A-DNA to be shorter than the predominant double helix B-DNA (14). The A form helix is a type of helical structure found in DNA molecules, characterized by a wide, rigid, flat shape, with a pitch (the distance between successive turns of the helix) of about 28° and a rise (the distance along the helix axis between successive base pairs) of 0.26 nanometers. The rigid wide shape due to the off-center stacking in A DNA makes them less flexible as compared to B DNA. The B form helix is another common type of DNA helical structure (15). The B helix has a slightly narrower and more compact shape, with a pitch of about 34° and a rise of 0.34 nanometers. The B form helix is thought to be the most common form of DNA found in cells and is thought to play a key role in the process of DNA replication. The Z form helix is a less common type of helical structure found in DNA molecules (16). It is characterized by irregular, zigzag, highly twisted, left-handed shape, with a pitch of about 45° and a rise of 0.45 nanometers and can be formed mostly in alternating purine-pyrimidine tracts.

2.1.5 Non-Canonical Structures

In addition to the Watson-Crick base pairing rules, there are also non-canonical or nonstandard base pairing interactions that can occur in nucleic acids. These non-canonical base pairs are not as common as the Watson-Crick base pairs, but they can still play important roles in the structure and function of nucleic acids.

Examples of non-canonical base pairs include 1) Hoogsteen base pairing (17), in which the edges of the base are involved in hydrogen bonding, instead of the usual Watson-Crick face-to-face binding, 2) Wobble base pairing (18–20), in which a single nucleotide base can pair with more than one type of complementary base. This can occur, for example, when a guanine (G) base pairs with either a cytosine (C) or a uracil (U) in RNA, 3) triplex-forming oligonucleotides (TFOs) (21), which can form stable, threestranded structures with DNA or RNA through non-canonical base pairing interactions, 4) Reverse Hoogsteen base pairing(22), in which the bases are flipped over 180° and the edges of the base are involved in hydrogen bonding, instead of the usual Watson-Crick face-to-face binding.

Non-canonical base pairing can play important roles in regulating gene expression and in the formation of specialized structures within nucleic acids, such as G-quadruplexes and i-motifs. We discuss G-quadruplex structure later in detail.

A summary of differentiation based on structural parameters for duplex and quadruplex DNA is presented in Table 2-2 A summary of structural parameters for duplex and Quadruplex DNA (23, 24).

11

Dinucleotide step	Stacking energy (kcal mol-1)	Twist angle (°)	Propeller twist (°)
AA	-5.37	35.6	-18.66
AC	-10.51	34.4	-13.1
AG	-6.78	27.9	-14
AT	-6.57	32.1	-15.01
CA	-6.57	34.5	-9.45
CC	-8.26	33.7	-8.11
CG	-9.61	29.8	-10.03
СТ	-6.78	27.9	-14
GA	-9.81	36.9	-13.48
GC	-14.59	40	-11.08
GG	-8.26	33.7	-8.11
GT	-10.51	34.4	-13.1
ТА	-3.82	36	-11.85
TC	-9.81	36.9	-13.48
TG	-6.57	34.5	-9.45
TT	-5.37	35.6	-18.66
Average	-7.92±2.57	35.7±8.0	-12.60±3.2

Table 2-1 Dinucleotide values for helical parameters for B-DNA

Table 2-2 A summary of structural parameters for duplex and Quadruplex DNA (23, 24)

				Quad-	
Structural type	B-DNA	A-DNA	Z-DNA	parallel	Quad-anti-parallel
Rise(A°)	3.4	2.9	3.7	3.13	3.3
Twist	36.7	32.7	-30	30	30
Groove width					
(A°)	11.7/5.7	2.7/11	8.5	10.2	12 8.9/12.2
Strand polarity	+-	+-	+-	++++	+-+-,+,++
Helix	RH	RH	LH	RH	RH
No. of bases per					
turn	10.5	11	12	12	12
Base pair tilt (°)	-6	20	7	NA	NA
Width(A°)	18	26	23	21–23	
C10-C10	10			16	16
Sugar pucker	C20	C30	C20/C30	C20	C20

Groove width: Backbone phosphate i and the ib3 phosphate on the opposing strand.

While helical structures are the most common type of nucleic acid structure, Gquadruplexes have been found to play important roles in various biological processes, such as gene regulation and telomere which is discussed further. Despite their potential importance, G-quadruplexes are less well understood than helical structures, and there is still much to be learned about the differences between these two types of structures and their roles in biology. Understanding the structure, stability, and function of both helical and G-quadruplex structures is therefore an important area of study in bioinformatics and molecular biology.

Figure 2-3 : Count of pubmed articles published with "G4 quadruplex" or "G4" and "miRNA" in title or abstract

2.2 G quadruplex sequences

G-quadruplexes are alternative nucleic acid structures that are formed by guaninerich sequences. In a G-quadruplex, four strands of DNA or RNA are held together by hydrogen bonds to form a structure that is stabilized by the presence of multiple guanine bases. G-quadruplexes can adopt a variety of conformations, and the specific arrangement of the guanine bases can affect the stability and function of the structure. The base pair angle and groove size in a G-quadruplex can also vary depending on the specific conformation of the molecule and environmental (25).

G-quadruplexes have four runs of at least two to three guanines separated by short stretches of other bases. These sequences can fold into a four-stranded structure with the guanine tetrads stacked on top of each other, held together by mixed loops of DNA that have the nucleobases on the inside and the sugar-phosphate backbone on the outside. The binding energy of G-quadruplexes is due to hydrogen bonding between the guanines, called Hoogsteen base pairing, which is stabilized by π - π interactions and charge interactions between the sixth position of oxygen (O6) and cations (such as K+ and Na+) between the stacks(26). G-quadruplexes can form different topologies based on various factors, including the size and orientation of the looping nucleotide bases and the direction of the sequence. pG4s have been found in the proximity of oncogenes that have a role in regulation. This implies that the location of PG4s do not occur randomly but have a functional role. G-quadruplex formation requires the destabilization of the B helix structure of DNA. A Transcription bubble is formed due to which regions of positive and negative supercoiling moves in either of the direction and G-quadruplex forming putative sequences change their confirmation (27, 28).

Based on the location of the formation of G-quadruplexes, the activity may differ. When present upstream of the TSS, the G4s may have a positive or negative effect based on the ability to interfere with RNA polymerase, Transcription factors and other binding proteins. If formed downstream of the TSS on the coding strand, transcription re-initiation may be aided by opening the confirmation of DNA or affinity to specific TFs may be increased but it may impede DNA polymerase movement which can cause transcriptional repression by the quadruplex in the template strand (29) (Figure 2-4). G-quadruplexes can adopt a number of different topologies, including diagonal and lateral structures, depending on factors such as the size and orientation of the looping nucleotide bases and the direction of the sequence (30). The sequence can be classified as parallel, anti-parallel, or a mixed "3+1" hybrid based on its orientation. The structural architecture of G-quadruplexes is highly diverse and can vary in terms of the number of strands, the number of loops, and the orientation of the strands. Parallel structures have strands that run in the same direction, while anti-parallel structures have strands that run in opposite directions. Hybrid structures, also known as "3+1" structures, have three parallel strands and one anti-parallel strand. (31). It is also worth noting that G-quadruplexes can adopt different conformations depending on the specific sequence and the presence of specific ions or ligands. The conformation of a G-quadruplex can influence its stability and function and may be an important factor in its ability to interact with other molecules or participate in various biological processes.

Figure 2-4 Formation of G Quadruplex Structures: Intramolecular and Intermolecular Interactions of G4 Motifs During Transcription. The presence of G4 motifs on either strand within the transcribed region can result in the co-transcriptional formation of G quadruplex structures that can physically interfere with RNA polymerase movement. Additionally, the synthesized RNA transcript can pair with the non-template DNA strand

to form a heteroduplex structure known as an RNA loop, which can then fold into an intermolecular DNA:RNA hybrid G quadruplex.

G-quadruplexes, or four-stranded secondary structures in nucleic acids with multiple repeats of guanine, were first identified in 1962 by Gellert et al. (32). These structures have now been found to play important roles in various biological processes, including gene expression regulation, through the involvement of various G-quadruplex binding proteins (33)(34). A number of techniques, such as circular dichroism, spectroscopy, nuclear magnetic resonance spectroscopy (35), x-ray diffraction (36) and fluorescence spectroscopy (37) have been used to study the folding and formation of G-quadruplexes in vitro. CD spectroscopy is useful to differentiate all parallel structures from anti parallel structures. However, these techniques do not provide a complete understanding of Gquadruplex formation and stability in vivo. Biffi et al. were able to visualize DNA Gquadruplex structures in the genomic DNA of mammalian cells through nuclear staining with a single chain phage display antibody, BG4 (38). More recently, advances in techniques such as Ribo-seq (39) and next-generation sequencing, as well as the identification of specific fluorescence probes, have allowed for the identification of Gquadruplexes in various sequences in vivo (40).

716,310 G4-forming sequences stabilized by G4 ligand pyridostatin (PDS) and 525,890 G4-forming sequences stabilized by K+ were identified in the human genome by combining polymerase stop assay with Illumina next-generation sequencing (G4-seq) (41). Prokaryotic(42) and eukaryotic(43) genomes have large number of putative G-quadruplexes located all over the genome in various locations. Many sequences have been identified near the Transcriptional start site (TSS) in their promoters implying regulatory

16

function of the formation of G4s in gene expression. Also, it is now known that about 43% of the genes contain at least a putative G-quadruplex within 1 kb upstream of the TSS (44). It has been found that oncogenes are more likely to contain G rich sequences whereas tumor suppressors have less amount of G rich sequences (45). Oncogenes with G-quadruplexes in their proximity could be affected by the destabilization of the sequences.

2.2.1 Pu27 family

The Pu27 family is a group of 17 putative G-quadruplex-forming DNA sequences that are homologous to the Pu27 genomic (Pu27ge) sequence associated with the promoter region of the human c-Myc gene. The c-Myc gene is regulated by a region known as the nuclease hypersensitive element (NHEIII1), which is located -115 bp upstream of the P1 promoter and has the ability to form i-motif structures. The complementary G-rich non-coding strand of this region is able to form a G-quadruplex structure. Members of the Pu27 family are able to bind specifically to the parent Pu27 target sequence and are found throughout the human genome on different chromosomes. It has been shown that each sequence of the Pu27 family is able to form a stable G-quadruplex structure and is able to bind in a sequence-specific manner to the NHEIII1 region of the c-MYC promoter, repressing the expression of the gene and inhibiting cell growth. G-quadruplex sequences have also been found in the mRNA of certain genes and may bind to these sequences to further stabilize them, acting as an "off switch" for transcription. In some cases, the expression of Gquadruplexes in the untranslated regions (UTR) of transcribed genes such as SOX2, NAV2, and SPTLC2 may be relative to their presence in different cell or tissue types. It has also been suggested that the c-MYC transcribed mRNA may regulate further transcription in a DNA-RNA "back-loop" mechanism by binding to the complementary NHEIII1 sequence

in the c-MYC promoter. Enrichment of certain transcription factors has also been observed at putative G-quadruplex locations (47)

c-MYC transcription is regulated by a region -115 bp upstream of the P1 promoter known as nuclease hypersensitive element (NHEIII1). The region is known to form i-motif structures and the complementary G rich noncoding strand forms the G quadruplex structure.

2.3 Computational methods associated with G-quadruplex

Computational methods for identifying and conserving G-quadruplexes are diverse and can be categorized into several groups. Sequence-based methods predict G-quadruplex formation based on sequence parameters solely, mostly analysing repeats of guanine interspersed by loop region with variable length and bases in between. Similarly, Structurebased methods predict G-quadruplex formation based on the hydrogen bond for Guanine bonding (base pairing) required fold the DNA sequence into a quadruplex structure. One example is the ViennaRNA Suite (RNAfold) (3) that uses RNA secondary structure prediction and analysis to predict G-quadruplex secondary structure and thermodynamic profile. Additionally, Hybrid methods combine the sequence and structure-based method with machine learning methods

2.3.1 Tools used to identify G-quadruplex

Several computational approaches for detecting putative G-quadruplex structures within sequence data have been constructed, including Quadparser (4), G4Hunter (5), G4HMM (6), QGRS mapper (7), G4P (8), Quadpredict (9) and QuadBase (10). Quadparser considers sequence-based approach with repeats of three G's with a loop length of 1 to 7 in between with various similar approaches being taken in other tools as well varying the number of guanine repeats and loop length. QGRS mapper takes a variable number of G and the loop length providing a G score as the likelihood score for the formation of G4s. These provide an overview of the possibility of a sequence being able to form a G quadruplex or not.

Various sequences identified by the tool is enriched in the human promoter regions. G4P Calculator evaluates the G4 DNA potential percentage which depends upon the runs of guanines in a sliding window. The final score is the percentage of the 'hit' in all the windows searched (8). G4Hunter is based on calculating the skewness of G and C by associating runs of G with positive score and presence of C penalized. A probability score to form G quadruplex is associated with the final score. For the prediction of G quadruplexes, G4Hunter is applicable for RNA or DNA sequences with no reference to its complementary strand. The nucleotides in the loop region are also not taken into any account.

Another tool, QuadBase offers the analysis of G quadruplexes across various species across prokaryotes and eukaryotes (10). Pqsfinder, based on flexible folding rule on G quadruplex is trained using 392 in vitro experimentally validation sequences (11). Another tool for identification of G4 RNA, G4RNA screener is based on combining different scores given by different tools, cGcC score, G4 Hunter and G4NN into a single tool (12). G4NN, a part of G4screener, uses a k-mer of 3 as input through a feed-forward single-layer neural network that learns from sequences available on G4RNA database (149 G4 and 179 non-G4). Diving into predicting and characterization of different types of G quadruplex is necessary as the pattern of working of these sequences in different genome seems to be different. Trinucleotide composition of nucleotides is used as input, but accurate training of G quadruplex model would require much more data and more layers to the network. The Quadron algorithm is based on a tree-based gradient boosting machines using more than 200 sequence and structure-based features trained from over 700,000 sequences in vitro G4-formation dataset which was obtained for the human genome using the G4-seq methodology, and specifically for DNA G4s in this case (13). Another R based tool, G4-iM Grinder is designed to identify and analyze G-quadruplex
sequences in DNA and RNA using a flexible folding rule to predict the formation of Gquadruplexes based on the presence of G-rich stretches and the potential for Hoogsteen base pairing (14). The tool also incorporates several qualification functions, including scoring systems like G4hunter, cGcC, and PQSfinder, which help limit the sequences after a search. These functions evaluate the likelihood of quadruplex formation and can be used to calculate a quantitative interest score for each sequence. G4-iM Grinder also includes functions for quantifying predefined patterns and localizing known-to-form and known-NOT-to-form quadruplex sequences. The resulting sequences can then be prioritized for in vitro evaluation based on their scores, frequency, or other filters. G4boost, another tool utilizes decision tree-based models utilizing sequence composition, structural identify G4 motifs and predict their secondary structure folding probability and thermodynamic stability (15)

2.3.2 G quadruplex conservation

Todd and Neidle used single linkage hierarchical agglomerative clustering to create clusters based on 87,697 intronic regions on the non-template strand of the human genome, based on the pattern G3-5 L1-7 G3-5 L1-7 G3-5 L1-7 G3-5 The families were based on sequence similarity (16). Based on the position on the genome, the G4 quadruplexes may be functionally distinct. Because only intronic regions were observed, it is now well known that G quadruplexes are present in the transcriptome. Developed to identify highly conserved G-quadruplex motifs in homologous nucleotide sequences, QGRS-conserve is a computational method aimed at reducing the likelihood of false-positives when predicting G-quadruplex formation. The tool evaluates not only location conservation but also the conservation of structural features of the G-quadruplex motif, such as loop lengths, number of tetrads, and the total length of the structure. The technique allows for the filtering of

motifs based on qualitative conservation and promotes accurate wide-scale analysis of Gquadruplexes within exomes, transcriptomes, and genomes. QGRS-Conserve also presents strategies for dealing with specific challenges relating to overlapping G-quadruplex motifs and the impact they have on conservation analysis.

A study investigated the conservation and evolution of G quadruplex (G4) structures across 37 genomes, from fungi to mammals (17). The study found that G4 structures have evolved with increasing complexity in genomes and species, and that the loop length of G4 motifs plays a critical role in their stability. The study also discovered that G4 structures are enriched in transcription factors, which may be involved in a variety of biological processes. The study confirmed the existence of G4 structures in cells through immunofluorescence staining and suggested that G4 structures may have a regulatory role in gene transcription. Finally, the study found an antagonistic relationship between G4 structures and DNA methylation, which may have emerged early in evolution and been maintained throughout subsequent evolutionary processes.

2.3.3 G-Quadruplex databases

Over the years, G-quadruplex identification has garnered pace and researchers have biologically and computationally identified thousands of G quadruplex forming sequences along with hundreds of G quadruplex structures. Quadbase enables researchers to query quadruplex sequences in the genomes of prokaryotes and eukaryotes (10). It contains multiple interfaces for searching the quadruplex patterns and analyze their conservation between orthologous genes across organisms. The Pattern Search interface have been used to search quadruplex sequences across 146 prokaryotes and four eukaryotes. The Orthologs Analysis interface is designed to find PG4 motifs that are conserved across organisms. The Pattern Finder interface is a tool that enables users to find quadruplex motifs in a given sequence of interest. Another database, Greglist database provides list of all human genes that have potential G-quadruplex motifs in their promoter regions (18). The database is curated using the Quadparser. The Nucleic acid G-quadruplex structure (G4) Interacting Proteins DataBase (G4IPDB) is an useful resource for researchers studying the interaction between proteins and Gquadruplex structures forming sequences (19). This database contains detailed information about over 200 proteins and their interaction with G-quadruplex forming sequences, including binding/dissociation constants, interacting residues in proteins, and related PDB entries. In addition, G4IPDB provides a web-based G-quadruplex predictor tool that predicts G-score for putative G-quadruplex forming sequences. This information could be beneficial for the development of therapeutics for diseases such as cancer and neurological disorders. The G4IPDB database is expected to assist researchers in developing structurebased drug design, virtual screening, molecular dynamic simulation, and docking studies for the development of therapeutics targeting nucleic acid-based diseases.

The G-quadruplex database, G4LDB, is a collection of reported G-quadruplex ligands that stabilize G quadruplex aimed ligand and drug discovery (20). G4LDB compiles a data set that covers various physical properties and 3D structures of G-quadruplex ligands, provides web-based tools for G-quadruplex ligand design, and facilitates the discovery of novel therapeutic and diagnostic agents targeting G-quadruplexes. The database currently contains over 800 G-quadruplex ligands with approximately 4000 activity records, The new version, G4LDB 2.2 includes over 3200 G4/iM ligands, 28,500 activity entries, and 79 G4-ligand docking models (21). The database also provides an online docking module. Studies on G-quadruplex ligands are at the forefront of drug discovery, and a comprehensive database such as G4LDB will benefit such studies.

2.4 Single Nucleotide Variants

Genetic variants are the differences in DNA sequences among individuals in a population. SNVs are alterations of a single nucleotide base at a specific position in the DNA sequence. These variations can occur in different forms, including single nucleotide variants (SNVs), indels, copy number variations (CNVs), and structural variations (SVs). SNVs can occur in both protein-coding and non-coding regions of the genome. In protein-coding regions, SNVs can lead to changes in the amino acid sequence of the resulting protein, potentially impacting protein structure, stability, and function. On the other hand, SNVs in non-coding regions can also have significant effects on gene expression (22, 23), transcription factor binding(24, 25), and splicing (26), leading to disease development.

Recent advances in next-generation sequencing technologies have enabled the identification of numerous SNVs in the human genome. However, not all SNVs are deleterious and can cause disease. To identify pathogenic SNVs from benign ones, researchers have developed various bioinformatics tools that can predict the functional effects of SNVs. These tools use different algorithms, machine learning techniques, and features, and each has its own strengths and limitations.

SNVs are the most common type of genetic variation, and they can be classified as synonymous or non-synonymous depending on their effect on the resulting protein. Synonymous SNVs do not change the amino acid sequence of the protein, and they are usually considered neutral. In contrast, non-synonymous SNVs alter the amino acid sequence of the protein, potentially leading to changes in its function, stability, or interactions with other molecules.indels, short for insertion-deletion mutations, are genetic variations that involve the insertion or deletion of one or more nucleotides in the DNA sequence. These variations can cause frame-shift mutations, where the reading frame of the gene is altered, potentially leading to the formation of a truncated and non-functional protein. Copy number variations (CNVs) are genetic variations that involve the gain or loss of entire segments of DNA, which can range from a few nucleotides to entire genes. These variations can affect gene dosage, potentially leading to changes in gene expression levels,

and they have been associated with a wide range of human diseases, including cancer and neurodevelopmental disorders (27).

Structural variations (SVs) are genetic variations that involve large-scale changes in the structure of chromosomes, such as inversions, translocations, and deletions. These variations can affect the spatial organization of the genome, potentially leading to changes in gene expression, chromatin accessibility, and higher-order chromatin structures (28).

The impact of genetic variants on biology is complex and multifaceted. Some variants may have no effect on protein function or may confer beneficial adaptations, while others can have deleterious effects, leading to the development of various diseases. For example, nonsynonymous SNVs in the BRCA1 and BRCA2 genes have been associated with an increased risk of breast and ovarian cancer (29). Deletion of phenylalanine (Δ F508) in the CFTR gene d can cause cystic fibrosis, a genetic disorder that affects the lungs (30). CNVs in the CYP2D6 gene can affect the metabolism of drugs, potentially leading to adverse drug reactions or therapeutic failure. Finally, SVs in the 22q11.2 region (31) have been associated with a wide range of developmental disorders, including DiGeorge syndrome and velocardiofacial syndrome.(32, 33)

2.5 Variant Databases

Variant databases are repositories of genetic variations that have been identified in individuals or populations. These variations can be single nucleotide polymorphisms (SNPs), insertions, deletions, or structural variations. Variant databases include both germline and somatic variations, and can be used for a variety of purposes, including identifying disease-causing mutations, understanding population genetics, and characterizing functional genetic elements.

Genome-wide association studies (GWAS) are one way in which variant databases are used. In a GWAS, genetic variations are compared between cases (individuals with a disease) and controls (individuals without the disease) to identify associations between specific genetic variants and the disease (34, 35). Variant databases are also used to annotate the functional effects of genetic variations, such as whether a variant occurs in a protein-coding region of the genome or in a noncoding region that regulates gene expression. These databases have become essential resources for the study of genetic variations and their implications in disease susceptibility and progression. With the increasing availability of high-throughput sequencing technologies and the development of bioinformatics tools, these databases have evolved into comprehensive repositories of genetic variation data. The use of variant databases has facilitated the discovery of new genetic associations and insights into disease pathogenesis, leading to the development of novel therapeutic strategies. As more data are generated and integrated into these databases, their utility is expected to continue to expand. Some examples of variant databases include COSMIC (36), CLINVAR (37), dbVAR (38), LOVD (39), HuVarBase (40), ncVarDB (41),1000 Genomes Project (42) among many others.

The study of somatic mutations in human cancer has been revolutionized by the availability of large-scale databases such as the Catalogue Of Somatic Mutations In Cancer (COSMIC). With almost 6 million coding mutations along with 19 million non-coding mutations across 1.4 million tumor samples, COSMIC provides a unique and detailed resource for exploring the impact of somatic mutations on cancer. These mutations, which can occur in any gene, can lead to a range of different outcomes, including changes in protein structure and function, alterations in gene expression, and the promotion of drug resistance.

COSMIC is a comprehensive and curated database, with data derived directly from scientific literature by expert manual curators, ensuring quality, accuracy, and descriptive data capture. In addition to coding mutations, COSMIC also covers all the genetic mechanisms by which somatic mutations promote cancer, including non-coding mutations, gene fusions, copy-number variants, and drug-resistance mutations. Similarly, ClinVar is a public open-access database created by the National Center for Biotechnology Information (NCBI) at the National Institutes of Health (NIH) that archives human genetic variants and their associations with human health and disease. ClinVar aggregates data from various sources, making it a centralized resource that aids users in interpreting variants. The database also includes a powerful search tool that allows users to search for variants based on their clinical significance, such as pathogenic, likely pathogenic, benign, likely benign, or uncertain significance. ClinVar provides detailed information about each variant, including its genomic location, inheritance pattern, and clinical significance. The database also includes information about the evidence used to support each variant's clinical significance, such as data from functional studies, family segregation studies, and population genetics studies.

2.6 Unsupervised learning

Machine learning algorithms are a set of algorithms that enable computers to learn from data and make predictions or decisions without being explicitly programmed. These algorithms can be broadly classified into two categories: Supervised and unsupervised learning.

2.6.1 Introduction to Machine learning

Supervised learning involves training a model on labeled data, where the correct output is provided for each input. The goal is to enable the model to predict on unseen data(48). Commonly used supervised algorithms include decision trees, K-Nearest Neighors, Naïve Bayes, Artificial Neural network, Logistic Regression and Support Vector machine (SVM) among others. Classification, regression, structured prediction (tree or a sequence), ranking are the common problems used for supervised learning(49, 50). Unsupervised learning, on the other hand, relies on the inherent structure of the data to identify patterns and make predictions. One common approach in unsupervised learning is clustering, which involves the grouping of data points into clusters based on their similarity. Semi supervised leaning and Reinforcement learning are other methods using the approaches in combined manner.

2.6.2 Clustering

Clustering is a widely used technique in the field of data mining and machine learning. It involves the grouping of data points into clusters, with each cluster representing a distinct group or pattern in the data (53, 54). This technique is often used to identify underlying patterns and structures in complex datasets and can be applied to a wide range of applications, including image (55) and text analysis (56), customer segmentation (57), and outlier detection (58). One common use of clustering is data reduction, where the goal is to find a compact representation of the data that retains the important characteristics of the original dataset. This can be useful for reducing the storage and computational requirements of a dataset and can also make it easier to visualize and understand the underlying patterns in the data. In addition to data reduction, clustering can also be used for other purposes, such as identifying natural data types, finding useful and suitable groupings of data, and detecting unusual or outlying data points. it can be used to identify closely related sequences, such as members of a gene family or a species clade. The specific goals and applications of clustering will depend on the specific problem at hand, and the choice of clustering algorithm may vary accordingly.

2.6.3 Similarity/ Distance Metrics

Clustering algorithms rely on the notion of similarity or distance between objects, which is typically measured using a variety of metrics, such as Manhattan distance, Euclidean distance, Minkowski distance, Cosine similarity, Pearson correlation, Jaccard similarity, and Dice coefficient (59). The most common approach is to compute the Euclidean distance between data points and their nearest cluster and assign the point to the cluster with the minimum distance.

2.6.4 Types of Clustering

Clustering algorithms can be divided into two main categories (60): partition based and hierarchical.

Figure 2-5 A division of different clustering algorithms (49).

2.6.5 Partition-based algorithms

Partition-based algorithms divide the data into a predefined number of clusters, using some measure of similarity (optimizing certain objective function). These algorithms can

be further divided into centroid-based and density-based algorithms, depending on the specific approach used to define and identify the clusters. K-means is one of the most common centroid based algorithms which minimizes the within group sums of squares as its optimal criteria for separating the clusters. Other examples include K-modes, PAM, CLARA, CLARANS and FCM. DBSCAN is a density-based algorithm based on differentiating the clusters based on statistical distribution of the density of each cluster with a threshold criterion (53).

2.6.6 Hierarchical clustering:

In hierarchical clustering, the algorithm starts with individual data points as clusters and iteratively combines them into larger and more inclusive clusters based on some measure of similarity. The final clusters are identified by cutting the branches of the resulting tree at a specific level. In divisive clustering, the algorithm starts with all the data points in a single cluster, and iteratively divides them into smaller and more distinct clusters based on the same measure of similarity (61).

There are many different methods for hierarchical clustering, Single linkage clustering combines clusters based on the similarity of only one element of each cluster with smallest distance, while complete linkage clustering uses the distance between the most dissimilar elements in two clusters to guide their combination. Average linkage clustering, also known as UPGMA or WPGMA, uses the average distance between the objects in two clusters to guide their combination. These two methods differ in the way the average distance is calculated. UPGMA uses a proportional averaging based on the number of elements in each cluster, while WPGMA is a simple averaging metric of elements at each step. Ward's method is an agglomerative clustering approach that seeks to minimize the

sum of squares within a cluster (62). This criterion is also used in K-means clustering and can be used to identify the initial number of clusters for further iterative clustering (63). Model-based algorithms which optimize the fit of the provided data and mathematical models are also used (64, 65). Mixture models hypothesize the data points provided are a mixture of probability distributions and algorithms such as MCLUST, EM, Self-Organizing Maps (SOMS)(66) are examples of such approaches to identify clusters and reducing noise.

2.6.7 Clustering in Bioinformatics

Clustering is a widely used technique in the field of bioinformatics, where it is used to group biological data into clusters based on their similarity. This technique is often applied to high-dimensional datasets, Some examples of clustering applications in bioinformatics and computational biology include gene function prediction, where the goal is to assign unknown genes to known functional categories based on their expression patterns; gene expression analysis (67), where the goal is to identify groups of genes with similar expression profiles across different conditions or treatments; and protein structure prediction, where the goal is to group protein sequences into clusters based on their structural similarity. It can also be used to identify conserved sequence motifs or regulatory regions within a set of sequences. Additionally, clustering can be used to visualize the relationships between sequences and to detect outliers or unusual sequences that may be of interest.

Evaluating the performance of clustering algorithms can be challenging, as there is no absolute "correct" way to group the data into clusters. One common approach is to use silhouette analysis, which measures the separation distance between the resulting clusters,

and provides a way to assess the quality and suitability of the clustering for a given application. Other metrics such as modularity (68), is used to select the clusters based on the intra or inter cluster distances. Overall, clustering is a powerful and versatile technique for uncovering hidden patterns and structures in complex datasets and has a wide range of applications in various fields.

2.6.8 Clustering in DNA sequences

Clustering of sequences in bioinformatics refers to grouping of biological sequences that are similar. The biological sequences include genomic, proteins, DNA, 16S ribosomal RNA, transcriptomic data. A common approach is to use a K-mer approach where kmers are taken as features for the clustering algorithm. Tools such as CD-HIT, UCLUST, DNACLUST, SpCLUST, MESHCLUST, VSEARCH (43), has been used for clustering operational taxonomic units (OTU) in microbiomics.

CD-HIT (Cluster Database at High Identity with Tolerance) is an open-source tool based on a greedy incremental heuristic algorithm of matched alignment columns and word counting avoiding the expensive memory cost of pairwise alignment. Sorted by length, the first sequence is regarded as the first cluster. Iteratively, based on the similarity threshold, additional clusters are generated as seed or added to the already defined clusters (69). UCLUST and DNACLUST are similar tools with greedy incremental heuristic algorithms but vary in the sorting (UCLUST) or the cluster representative approach (DNACLUST) to CD-HIT.

2.6.9 Markov Chains

A Markov chain, named after Andrey Markov, is a mathematical system that satisfies the Markov property, which states that, the probability of transitioning to a particular state at any given time is dependent only on the current state and time, and is independent of the sequence of events that preceded it. This property is known as the "memoryless" property of a Markov chain. It can be thought of as the probability of transitioning to any particular state is dependent solely on the current state and time elapsed. A Markov chain is a sequence of random variables X_1 , X_2 , X_3 , ... that satisfies the Markov property, which states that the probability of transitioning from one state to another depends only on the current state and time elapsed. This can be expressed mathematically as follows:

$$P(q_n = x \mid X_1 = q_1, X_2 = q_2, ..., X_{n-1} = q_{n-1}) = P(X_n = x \mid x_n = q_{n-1})$$

We can express the Markov chain

 $Q = q_1q_2 \dots q_s$ a set of s states $x = x_{11}x_{12} \dots x_{s1} \dots x_{ss}$ a transition probability matrix A, each x_{ij} is the probability of getting from state i to state j, such that $\sum_{j=1}^{n} x_{ij} = 1 \forall n$

In other words, for a first order Markov chain, the probability of transitioning to any particular state at time n+1 is dependent only on the current state at time n and is independent of the specific sequence of states that led to the current state. Markov chains have several important properties, including irreducibility (the ability to reach any state from any other state), aperiodicity (the system will return to a certain state with probability 1 after a certain amount of time), and positive recurrence (the system will visit any state an infinite number of times over time). There are various techniques for analyzing and solving Markov chains, including steady-state analysis and numerical methods. These techniques allow for the determination of long-term behavior of the system, including the probability of being in a particular state at a given time. One of the key advantages of using a Markov chain is that it allows for the prediction of future states based on current and past states. Used to model a wide range of systems, including chemical reactions, traffic flow, communication networks and in the field of genetics, linguistics, and computer science, they have been effective in modeling systems where the future behavior is influenced by the current state, but not by the specific sequence of events that led to that state.

2.7 Hidden Markov Models

A hidden Markov model (HMM) is a statistical model that is widely used in various fields, such as natural language processing, speech recognition, and bioinformatics. In essence, an HMM is a probabilistic model that captures the time-varying behavior of a sequence of observations. At each time step, the HMM generates an observation based on a hidden state, which is not directly observable to the user. The hidden states are connected by a set of transition probabilities, which determine the likelihood of transitioning from one state to another over time.

2.7.1 Difference between Markov chain and HMM

In a Markov chain, the state of the system is fully observable at each time step. In contrast, in a hidden Markov model, the state of the system is not directly observable, but can be inferred from the observations made at each time step. The hidden variables in an HMM are referred to as "hidden states," and the observations made at each time step are referred to as "emissions." The probability of transitioning from one hidden state to another and the probability of emitting a particular observation are determined by a set of parameters known as the "transition probabilities" and "emission probabilities," respectively. The key advantages of using a hidden Markov model are that it allows for the modeling of systems in which the state of the system is not directly observable but can be inferred from the

observations made at each time step. This allows for the observations of noisy and missing data possible through the hidden states. This makes HMMs particularly well suited for modeling complex systems with hidden or unobserved variables. HMM can be thought of as a generalization of a Markov chain, where the observations are generated by the hidden states rather than being directly observable. Additionally, HMMs are computationally efficient, making them suitable for applications with large datasets. In recent years, HMMs have been applied to a variety of problems, including speech recognition, machine translation, and protein structure prediction(70). Hidden Markov models (HMMs) are a powerful tool for modeling and analyzing complex systems, such as DNA sequences. HMMs are a type of statistical model that can capture the time-varying behavior of a sequence of observations, such as the sequence of nucleotides in a DNA molecule. In an HMM, the observed data is generated by a set of hidden states, which are not directly observable to the user. The hidden states are connected by a set of transition probabilities, which determine the likelihood of transitioning from one state to another over time.

2.7.2 Multiple Sequence Alignment

Multiple sequence alignment (MSA) is a method used to align multiple biological sequences, such as DNA, RNA, or protein, in order to compare their similarities and differences (71). MSA is a widely used tool in bioinformatics applied to including phylogenetic analysis, protein structure prediction, and functional annotation. In an MSA, the aim is to align the sequences in such a way that the regions of similarity are maximized, and the differences minimized (72). This is typically done by introducing gaps into the sequences in order to align them properly. There are several approaches to constructing MSAs. One common approach is to perform pairwise alignments and add

proteins to the alignment based on a guide tree, pairwise similarity scores, or Monte Carlo optimization. Another approach is to align all proteins to a pivot structure, which might be a consensus structure or a chosen representative structure. There are a number of tools available for multiple sequence alignment, including Clustal (44), MUSCLE, and MAFFT (73). These tools use different approaches and may be more or less suitable for different types of sequences or alignments depending on the degree of similarity and length of sequences. Clustal is a popular multiple sequence alignment tool that uses a progressive alignment algorithm to align sequences. It starts by aligning the most similar sequences and then gradually adds more sequences to the alignment based on their similarity to the already aligned sequences. MUSCLE (74) is another multiple sequence alignment tool that uses a heuristic approach to align sequences. It starts by aligning the most similar sequences and then iteratively refines the alignment by aligning the sequences in small groups and then combining the alignments. MAFFT (73) is a multiple sequence alignment tool that uses a combination of progressive and iterative approaches to align sequences. It first aligns the most similar sequences and then uses an iterative refinement process to improve the alignment.

Figure 2-6 Profile HMM utilizing a multiple sequence alignment (45) (CC-BY-SA-4.0)

2.7.3 Profile Hidden Markov Models

In the context of multiple sequence alignment, an HMM can be used to model the probability of observing a particular sequence of amino acids or nucleotides in a protein (75) or DNA sequence, given the underlying hidden states that represent the alignment of the sequences. Profile HMMs (76) and profiles (77, 78) are both used for multiple sequence alignment, but there are some differences between them. One major difference is that in a profile, the penalty for gaps or insertions is the same in every position of the alignment, regardless of the level of variability in that position. In contrast, in a profile HMM, the penalties for gaps or insertions are position-desspendent and are learned from the training data. This means that positions that are more variable may have a smaller penalty for gaps or insertions compared to more conserved areas.

Additionally, profile HMMs consist of a sequence of match states, which are analogous to positions in a multiple sequence alignment, and corresponding insert and delete states. Each insert and match state has a probability distribution over amino acids, which gives

the probability of a particular amino acid given that state. The parameters of the profile HMM model are the probabilities for transitions between states and the amino acid probability distributions, and these are optimized to give high probabilities to sequences belonging to the modeled family and low probabilities to other sequences.

The HMM architecture consists of a set of hidden states, which represent the different possible alignments of the sequences, and a set of observation symbols, which represent the different nucleotides symbols (ACGT, K=4) that can be observed in the sequences. The HMM is defined by a set of transition probabilities, which specify the probability of transitioning from one hidden state to another, and a set of emission probabilities, which specify the probability of observing a particular symbol given a particular hidden state. In a profile hidden Markov model (HMM) for multiple sequence alignment, the hidden states can represent the different possible alignments of the sequences at a particular position. One common way to represent these alignments is to use three types of hidden states: match states, delete states, and insert states. A match state represents a position where all the sequences are aligned, and a nucleotide is observed in each sequence. A delete state represents a position where one or more of the sequences has a gap, or "deletion," in the alignment. An insert state represents a position where one or more of the sequences has an extra nucleotide that is not present in the other sequences (79, 80).

Transition probabilities t_{ij} are defined for each state i moving to state j and self with the transition probabilities equalling 1 with sum of $\Sigma_j t_{ij}$ and emission probabilities $e_i(x)$, such that $e_i(x)$ over all K symbols in each state i is $\Sigma_x e_i(x) = 1$, to create an ensemble of multiple HMMs for multiple families of G quadruplex identified as discussed.

The hidden states can be represented mathematically as follows:

Match state: Mi = "match"

Delete state: Di = "delete"

Insert state: I*i* = "insert"

The observation symbols $O = [O_1, O_2, ..., O_1]$ represent the different amino acids or nucleotides that can be observed in the sequences.

The transition probabilities t_{ij} , can be denoted by $P(M_i|M_{i-1})$, which specifies the probability of transitioning from one hidden state to another. For example, the probability of transitioning from a match state to a delete state might be represented as P(Delete|Match). The emission probabilities P(Oj|Mi) specify the probability of observing a particular symbol O_i given a particular hidden state S_i . For example, the probability of observing the nucleotide "G" at a match state might be represented as P("G"|Match). We use the hidden Markov model based on the assumption to identify the common tetrads and diversity in the loop. From the multiple sequence alignment, we calculated the transition and emission probabilities for each group of sequences based on the different possible alignments of the sequences and the observation symbols. Using these probabilities, the probability of a particular alignment given the observed data using the forward algorithm can be estimated or the Viterbi algorithm can be used to find the most likely alignment given the observed data. These algorithms have been used for a variety of applications, including identifying conserved regions in the sequences, predicting the function of a protein and DNA based on its sequence, and identifying relationships between different sequences.

Basically, Hidden Markov model, with HMM, $\lambda = (A, B, \pi)$, observations $O = O_1O_2...O_1$ and state sequence $S = s_1s_2...s_t$ can be used for three types of problems which can be summarized as the evaluation problem, the decoding problem, and the learning problem.

2.7.3.1 (1) The Evaluation Problem

This problem refers to the task of estimating the probability of a particular sequence of observations given a particular HMM. This probability is known as the likelihood of the observations given the HMM and is used to evaluate the fit of the HMM to a given set of data.

Hidden states in model complicate the evaluation process. This is helpful in scoring a sequence. The problem is solved using the forward or the backward algorithm.

For each new query using all multiple identified groups as individual models, we choose the best model among the competing models.

Given a finite collection $(M_1, M_2, ..., M_L)$ of HMM's with the same output alphabet O, for any output sequence $O = (O_1, O_2, ..., O_L)$ of length L, find which model M_ℓ is most likely to have generated O. In this project, we use hidden Markov models and the forward algorithm to identify the DNA sequence family most similar to a given query sequence. This involves building multiple HMMs to represent different DNA sequence families, and then using the forward algorithm to identify the query sequence that is most similar to each of these families. The forward algorithm is a method for computing the probability of an observed sequence given a particular HMM. It works by iteratively updating the probability of being in each hidden state at each time step, based on the probabilities of being in the previous hidden states and the probability of emitting the observed sequence at each time step. There are several algorithms that can be used to solve the evaluation problem for HMMs, including the dynamic programming based forward algorithm and the backward algorithm. The forward algorithm estimates the probability of a particular sequence of observations given the HMM by iteratively updating the probabilities of the states as it moves forward through the sequence. The backward algorithm estimates the probability of a particular sequence of observations given the HMM by summing over all possible sequences of observations that could have been generated by iteratively updating the probabilities of the states of the states as it moves backward through the sequence. This could be useful for a variety of applications, such as identifying relationships between different DNA sequences or predicting the function of a particular DNA sequence based on its similarity to known sequences. The forward algorithm is discussed further below.

2.7.3.2 Forward Algorithm

To calculate the joint probability of observing the first t characters and being in state s at length l, we can write this as:

$$f_s(l) = P(\pi_l = s, x_1, ..., x_l)$$

With the exponential number of paths for length l, we utilize dynamic programming employing forward algorithm with the Markov property.

$$f_{s}(l) = \sum P(x_{1}, \dots, x_{l}, \pi_{l} = s, \pi_{l-1} = t) = \sum_{t} P(x_{1}, \dots, x_{l-1}, \pi_{l-1}, \pi_{l-1} = t) *$$

$$P(x_{l}, \pi_{l} | \pi_{l-1})$$

We write the above equation in terms of $f_t(l-1)$ and transition and emission probabilities,

$$f_k(l) = e_s x_l \sum_t P\left(f_t(l-1) * a_{ts}\right)$$

$$P(x_1,..,x_n) = \sum P(x_1,..,x_n,\pi_l = t) = \sum_t f_t(N)$$

Input:

 $\mathbf{x} = \mathbf{x}_1 \dots \mathbf{x}_N$

Initialization:

 $f_0(0) = 1$

 $f_s(0) = 0$, for all s>0

Iteration:

$$f_s(i) = e_s(x_i) \times \sum_j a_{js} f_j (i - 1)$$

Termination:

$$P(x,\pi^*) = \sum_{s} f_s(N)$$

2.7.3.3 The Decoding Problem

Given a model and a sequence of observations, the decoding problem determines the most likely state sequence in the model that produced the observations It is formally defined as follows: given an HMM M = (Q, O, π , A, B), for any observed output sequence O = (O₁, O₂,...,O_L) of length L, find a most likely sequence of states S = (s₁, s₂,...,s_m) that produces the output sequence O. This problem is also known as the "maximum a posteriori" (MAP) estimation problem, as it involves finding the hidden state sequence that maximizes the posterior probability of the hidden states given the observations.

The decoding problem is important in a variety of applications, including multiple sequence alignment, gene prediction, and protein structure prediction, where the goal is to identify the most likely alignment or structure given a set of observed sequences.

There are several algorithms that can be used to solve the decoding problem for HMMs, including the Viterbi algorithm and the posterior decoding algorithm. The Viterbi algorithm is a dynamic programming algorithm that finds the most likely hidden state

sequence by recursively computing the maximum likelihood of each hidden state at each position in the sequence, given the observations and the HMM. The posterior decoding algorithm finds the most likely hidden state sequence by computing the posterior probability of each hidden state at each position in the sequence, given the observations and the HMM. Currently, in this project we do not deal with the decoding problem. However, with identification of more structures, syn and anti-conformation of guanines in the model will prove helpful for additional classification.

2.7.3.4 The Learning Problem

In Hidden Markov Models (HMM), the learning problem involves estimating the model parameters from a set of observed sequences. transitions between states and the probability distributions over different emissions probabilities. The goal of the learning problem is to find the optimal values for these parameters that maximize the likelihood of the observed sequences. Given a model and a sequence of observations , how should the model parameters be adjusted in order to maximize Given a set ($O_1, O_2..., O_L$) of output sequences on the same output alphabet O, usually called a set of training data, given Q, find the optimal values for parameters π , A, and B for an HMM M that produces all the sequences in the training set, in the sense that the HMM M = (Q, O, π , A, B) is the most likely to have produced the sequences in the training set. The technique used here is called expectation maximization, or EM. It is an iterative method that starts with an initial triple π , A, B, and tries to improve it. Baum-Welch Algorithm, frequently known as the forward backward algorithm is used.

In a HMM, the parameters of the model include the probabilities for transitions between states and the probability distributions over different emissions (such as nucleotides or amino acid). As the number of parameters in the model increases, more information is needed to produce a useful model. To reduce the number of free parameters, the emission probabilities for the insert states can be set equal to or to some background frequency.

CHAPTER 3 STRUCTURAL AND FUNCTIONAL CLASSIFICATION OF G-QUADRUPLEX FAMILIES WITHIN THE HUMAN GENOME

3.1 SUMMARY

G quadruplexes are short secondary DNA structures located throughout genomic DNA and transcribed RNA. Although G4 structures have been shown to form in vivo, no current search tools are known to exist to examine these structures based on previously identified G quadruplexes, much less filter them based on similar sequence, structure, and thermodynamic properties. We present a framework for clustering G quadruplex sequences into families using the CD-HIT, MeShClust and DNACLUST methods along with a combination of Starcode and BLAST. Utilizing this framework to filter and annotate clusters, 95 families of G quadruplex sequences were identified within the human genome. Profiles for each family were created using hidden Markov models to allow for identification of additional family members and generate homology prob-ability scores. The thermodynamic folding energy properties, functional annotation of genes associated with the sequences, scores from different prediction algorithms and transcription factor binding motifs within a family were used to annotate and compare the diversity within and across clusters. The resulting set of G quadruplex families can be used to further understand how different regions of the genome are regulated by factors targeting specific structures common to members of a specific cluster.

Keywords: G-quadruplex; G4; clustering; hidden Markov models; DNA structures

3.2 INTRODUCTION

G-quadruplexes are stranded secondary structures of nucleic acids rich in guanine containing four runs of at least three guanines. These runs are separated by short loops, typically 2-7 nucleotides in length, which can potentially fold into an intramolecular Gquadruplex structure. The tetrad guanine structure is stacked on top of each other and held together by mixed loops of DNA forming Hoogsteen base pairing giving a fourstranded structure with nucleobases on the inside and a sugar phosphate backbone on the outside (Figure 3-1). Metal ions (typically K+ or Na+) sitting internally to the Hoogsteen bases stabilize the base pairing. Stacking occurs through the O6 atoms of guanines facing the center creating a tubular space able to function as an ion channel. The presence of a metal cation in this channel allows for interaction with the eight O6 atoms of the guanine quartet.

Figure 3-1 (a) G-tetrad structure forming G quadruplexes. Hydrogen bonds between the guanine from different tetrads form a planar ring. (b) Sequence of G4 with multiple guanine tetrads. Here, 4:1:1 and 5:2:1 refers to the result from Quadparser separated out as the number of tetrads: total G4 sequences: non-overlapping G4 sequences.

3.2.1 Roles of G-quadruplexes

Over the past three decades, guanine rich quadruplex sequences have been implicated as key structural regulators of gene expression, cellular differentiation and transcription factors and their cell line and tissue specificity (46). Similarly, elevated levels of G quadruplexes have been identified across cancer tissues including breast (47), stomach (48), liver (49), as well as neurodegenerative diseases (50). Computational analyses of G quadruplex patterns have identified the prevalence of G quadruplexes in oncogenic promoters, introns, splice sites, intergenic and telomeric ends. Initially the secondary structures were thought to act as a physical obstacle to RNA polymerase for transcription as identified through G4 specific antibodies (51, 52) and chemical probing (53, 54). Further evidence suggests the varied tissue specific functionality of these structures are affected by the cross talk of additional transcription factors (55), proteins and physiological conditions. Additionally, G4 structures have a role in genomic instability and are associated with higher rates of double strand breakage in nucleosome depleted regions of highly expressed cancer genes. High- and low-density bands of G4 across both chromosomal strands have been observed showcasing a role of G quadruplex in pairing of homologous chromosomes during meiosis (56). Further, recent evidence shows that G4 formation is highest during DNA replication at the S phase and lowest during G2 and M phase, consistent with phases of transcription, replication, and chromatin accessibility (57).

3.2.2 Characteristics of G4s

Sequence characteristics such as sequence length (58), base composition (59, 60) and loop length (61-65) are important parameters for defining the secondary structure and stability of G quadruplexes. Molecular dynamics show that telomeric G4 repeats (TTAGGG) in the presence of a K+ cation form a structure with three single nucleotide loops in a parallel fashion. Increasing the loop length by a single base causes the sequences to adopt a mixture of parallel and antiparallel folded structures (66). The conformation and stability of G quadruplexes has been used to study to effect of transcription factor binding and altered mRNA expression of several genes. Examples include nucleolin (67) and Ewing's Sarcoma proteins (68) which preferentially bind to

structures with longer loop length. Computationally, G4s are defined by the pattern $G_x N_1$. $_7G_xN_{1-7}G_xN_{1-7}G_x$ where $x \ge 3$ (length of guanine repeats). The guanine tracts are separated by loops of any base composition of length 1-7 bases. This pattern is the basis for regular expression-based tools such as Quadparser (4) and QGRS mapper (7). With experimental data, it is known that different intermolecular structure, long loops, and non-canonical structures with G tracts containing two guanines exist (69-72). Methods such as G4screener (73), PQSfinder (74) and G4Catchall (75) allows the search of G quadruplexes for variable quartet and larger loop sequences. G4Hunter (5) provides a score for guanine skewness which is based on predefined values, with a score based on the number of consecutive Gs. G4RNAscreener (73) uses a machine learning algorithm trained with experimental RNA sequences from the G4RNA database (76) and incorporates a threshold using metrics from tools such as G4Hunter (5), cG/cCscore, and G4 Neural Network score for G4 prediction. RNAfold (77) has an option to predict the thermodynamic parameters for G quadruplex formation. DSSR (78) and ElTetrado (79) use the tertiary structure of each G quadruplex for annotating and classifying different base pairs and tetrad structures. 3D-NuS (80) allows visualization of 3D DNA structures including duplex, triplex, and quadruplexes. 3D NuS visualizes the G quadruplex structure and its strand orientation, loops and G quartets based on the energy minimization of G4 structures using experimental data.

G4 structure was found to be evolutionarily conserved in seven yeast species (81). While G quadruplex regions are significantly enriched in regulatory regions of eukaryotes, short loops of G4 are conserved in different species. Protozoa and fungi have limited diversity

of G4 while an increase in diversity has been observed across invertebrates and vertebrates (82). However, the evolutionary mechanism for this structure or the relationship of these structures at an evolutionary scale is not known.

Sequencing read fragments utilizing a customized approach that introduces stabilizing and destabilizing conditions (K+, Li+, PDS) allows for high throughput sequencing of G4 locations (83, 84) with a method known as G4 seq. Versions of this method have been used to identify 1,420,841 G quadruplexes in 12 species. Using a similar method, 161 and 168 G4 sites were identified in the genomes of Pseudomonas (85) and Escherichia (86), respectively.

Over 100,000 G4 sequences have been mapped in vivo to the human genome. Several proteins such as FUS, TAF15, TARDBP, PCBP1 have been determined to be enriched at G4 loci using artificial G4 binding (87). SP2, a transcription factor (TF) encoded by a subfamily of the Sp/XKLF family, is a sequence specific TF that has a strong association with G quadruplex affinity. SP2 binds to the CCAAT motif independent of the zinc finger domain necessary for binding to GC rich motifs (88). It was shown in vitro that the SP1 TF was able to bind to a DNA sequence lacking the consensus motif and was able to form G quadruplex sequences (89). Luciferase expression studies show sequences of G4s in the KIT promoter mutated through site directed mutagenesis were able to create a modulation (on/off) system for KIT expression through SP1 binding (90). Additionally, G quadruplex structures can bind to G quadruplex sites in other promoter locations (91) mediating cis (92) and trans (93) acting regulation of transcriptional and translational

processes respectively, implying that G quadruplex sequence and structural diversity is a key factor for biological functions.

3.2.3 G4 families

Previously, a small family of G quadruplexes labelled Pu27 was identified based on sequence homology (91). The parent G quadruplex is a 27 nucleotide (nt) G4 formed in the nuclease hypersensitive element (NHE) region of the c-MYC promoter associated with different forms of cancer, and predominantly involved in the regulation of expression of c-MYC gene (94). c-MYC is an oncogene that regulates genes in cell cycle and molecular metabolism. Rezzoug et al identified seventeen potential G quadruplex forming sequences homologous to the Pu27 G4 which has been shown to selectively bind to the NHE region of c-MYC promoter (91). In addition, G4 regions regulating VEGF genes have been shown to have an additional G-tract to act as a spare tire for formation of G quadruplex sequence upon oxidative damage upon the guanine tracts (95). Similar sequences have been identified for c-MYC, KRAS (96), BCL2 (97), HIF-1a and RET genes. This highlights the presence of sequence specific G quadruplexes able to form, bind and regulate gene expression. Further, over the past decade numerous G quadruplex stabilizing and destabilizing ligands have been identified that recognize and interact selectively to these G4 sequences. Different classes of these heteroaromatic polycyclic, macrocyclic and aromatic compounds have been designed to target the diversity of G4 structure. The subtle differences in grooves, loop composition and loop length allow for structural variability in these sequences. DNA aptamers that can form G4 are used for binding nucleolin (98). More than 50 transcription factors with overlapping binding sites

to G4 region have been identified (46, 99). Folding, misfolding and unfolding of G4 structures have been implicated in different biological processes (100, 101).

3.2.4 Detection of G4 families

The prediction of G quadruplexes across genomes can be useful to identify the location of similarly structured G quadruplexes, which can in turn be used to develop profiles of independent families based on conservation of a variety of factors. We present a framework to predict G quadruplex sequences and identify similar sequences using trained profile hidden Markov models (HMMs) (102). We identify pG4 sequences across the human genome, cluster these sequences using sequence clustering tools, CD-hit (103), MeShClust (104) and DNACLUST (105) as well as starcode (106) and BLAST (107). These approaches utilize average weighted clustering to identify the quartet and loop patterns. We then further train HMM models using these clusters for creation of families. Despite the short length of G quadruplex sequences, position dependent insertion and deletion within loops offers insight into the loop characteristics.

3.3 Materials and Methods

3.3.1 Dataset preparation

Since there are no current families or experimental similarities of G4 structure, we start with putative G4s and apply sequence-based methods for clustering. Later, these clusters are used as initial seeds for identifying G quadruplexes in experimental datasets. Initially, we focused on the G4s identified from Quadparser (4) on the human GRCh38 genome. The following process is followed for all groups of sequences based on the number of GGG tetrads (Figure 3-2).

1. CD-hit, MeShClust, and DNAclust and a combination of Starcode and BLAST with hierarchical clustering are utilized for the initial clustering of G-quadruplex sequences.

2. Steps (3)-(7) are repeated separately for each clustering method.

Figure 3-2: Process for identifying and characterizing G quadruplex families. (a) Workflow diagram for identifying distinct G quadruplex families. (b) Process for identifying appropriate profile for a specific family. In this case, $S_1,...,S_n$ represents the list of sequences generated from HMM profile $P_1,...,P_n$ respectively. We compare the average log odds for input S_1 over profile $P_1 ... P_n$ and recursively measure for all the profiles. For each row, the diagonal element is compared with non-diagonal values(logodds) using a Wilcoxon rank sum test with null and alternate hypothesis, H_0 : $T_1 - T_2 = 0$, H_1 : $T_1 - T_2 > 0$. (c) Profile HMM derived from a selected G4 alignment. Match states are represented as rectangles with four residue emission probabilities indicated as black bars, insert states (I) as diamond, and delete states as circle. The start and end states are B (begin) and E (end) respectively. Delete states are silent states with no emission probabilities and weighed lines represent the transition probabilities between states.

3. A multiple sequence alignment (MSA) of each cluster of sequences is carried out in R using the DECIPHER package (108). The StaggerAlignment and AdjustAlignment functions are used to separate regions of alignment and gaps are shifted to improve the alignment.

4. Clusters with fewer than four sequences are filtered out. An MSA score for each cluster is calculated as the average number of gaps in each column of an alignment divided by the length using MStatX (109).

5. Each alignment is trained as a model profile HMM using HMMER 3.0 (110) and the aphid package (111) in R version 3.4.1 independently. The transition and emission probability matrices are estimated based on the plan7 PHMM model based on Durbin (102). An example of a profile HMM stating match, insert and delete state is shown in Figure 3-2b). There are seven outgoing transitions based on the match, insert and delete states, i.e. $I_n \rightarrow I_n$, $M_n \rightarrow I_n$, $M_n \rightarrow M_{n+1}$, $M_n \rightarrow D_{n+1}$; $D_n \rightarrow M_{n+1}$, $D_n \rightarrow D_{n+1}$; $I_n \rightarrow M_{n+1}$ where n represents each position of the alignment (except the final position). The observed counts of emissions and state transitions are converted into probabilities.

6. The sequences in each cluster are used as input for all the profiles and the logodds scores are generated using the forward algorithm. 7. A pairwise Wilcoxon rank sum test is carried out to compare each profile using the log-odds between the profile HMM through which the sequences were generated and all other profiles Figure 3-2c). If a profile is diverse (p value < 0.05) against all profiles compared, has a probability of 0.99 for the tested sequences, and has a gap score less than a threshold of 0.10, the profile is saved as a family. For the sequences that are nonsignificant (p value > 0.05) the sequences are input to the MSA and are merged and/or clustered using agglomerative clustering. Alignments with a gap score of 0.6 after merging are filtered. The process is iterated for a maximum of n=100 times.

8. The group of sequences obtained from all the methods is combined and checked for redundancy using a modification of step (7) utilizing a threshold score of log-odds 5 and Akaike weight of 0.7 for identifying the final families, which are additionally manually checked and filtered.

9. The alignment and profile HMM are manually verified resulting in 95 clusters referred to as families. Experimentally validated G quadruplexes were obtained from processed peaks mapped to hg19 from GEO, accession GSE63874 (83) using bedtools (112) and quadparser2 after conversion to human genome hg38 coordinates by liftover. The models are used as a trained classifier for identifying additional sequences. G4 sequences from experimental G4 seq was tested against the cluster HMMs. The likelihood that a query sequence fits the model of an individual family is calculated using the forward algorithm (113) and the normalized Akaike weights (114, 115) is calculated. The maximum Akaike weight of the query given a particular model is selected as the

nearest family of the query sequence. The families are manually verified and the variability of sequences in the families is further analyzed based on annotation of the G4, thermodynamic scores (folding energy), G4hunter scores and literature. The steps below highlight the method for the combination of Starcode and BLAST with hierarchical clustering.

a. Levenshtein distance is used to identify the nearest group of sequences which are then filtered based on the length of the sequence and the number of G tetrads. Starcode (106) utilizes a modified Needleman-Wunsch dynamic programming approach known as the poucet algorithm for determining the initial and nearest groups of sequences. Sequences below a fixed Levenshtein score are used to identify the groups and each group is filtered by length of the sequence and loop sequence content. Using specific Levenshtein distance as a constraint through this algorithm, one or two nucleotide mismatches can be identified in short DNA sequences.

b. The remaining sequences from step (1) that are not in any group are passed through BLAST for pairwise all vs all BLAST. -log(E value) is used as the similarity metric.

c. Hierarchical clustering is applied comparing the agglomerative, Ward, complete, and divisive methods of clustering. The number of clusters is calculated based on the sum of the within- cluster inertia. The optimal number of clusters is the maximum difference from two successive clusters between the groups, i.e. max (I_m/I_{m+1}) . The mode of the number of clusters was selected as the optimal cluster.
d. Pairwise alignment of sequences of individual clusters obtained from steps (a) and
(c) is carried out using the Pairwisealignment function in the Biostrings (116) package.
Hierarchical clustering of the sequences is performed based on the pairwise distance.
Consensus of Silhouette (117), Frey index, Macclain Index, Cindex, and Dunn index
were used for identifying the

Method	Number of sequences	No of clusters	No. of sequences in 2 largest clusters	HMM clusters (sequences)	HMM families, 1st iteration (sequences)	Final families selected (sequences)
Starcode +						
BLAST with hierarchical clustering	29,112	2,717	419, 323	95 (842)		
DNAclust	9,610 (4,664)	587	142, 126	31 (1,165)		
Cd-hit (kmer 8)	6,335	786	182, 115	30 (389)		
Meshclust	14,222	508	1,720, 1,410	72 (1,843)		
		Total			220(3.888)	95 (2.174)

Table 3-1 Cluster summary based on different clustering techniques.

optimal number of clusters. The metrics are calculated using the NbClust package (118) in R.

3.4 Results

In the preliminary step, a combination of Starcode and BLAST was used with hierarchical clustering to identify 2,717 clusters of G quadruplexes with 29,112 sequences. Using DNACLUST, 587 clusters with 4,664 sequences were identified. A total of 786 clusters with 6,335 sequences were identified with Cdhit with a k-mer of 8. MeShClust with an identity threshold of 90% and k-mer size of 9 was able to identify 508 clusters. Any clusters with fewer than four sequences were discarded. The two largest clusters had 1,720 and 1,410 sequences, respectively. The overall clustering summary is provided in Table 3-1.

The HMMs for the identified clusters were utilized to predict additional G quadruplex sequences. In addition, the MSA was used to detect transcription factor site motifs found within each family. The G4 families suffered from redundancy of motifs because of the high percentage of guanine bases. To identify unique motifs, a pipeline was created to merge and re-cluster the families. Overall, the Starcode and BLAST pipeline identified 95 clusters of G-quadruplex genomic DNA sequences. The MeShClust pipeline identified 72 clusters, while DNACLUST And CD-HIT identified 31 and 30, respectively. The final iteration of the clustering and merging sequences across profiles from the various clustering approaches resulted in 95 distinct families.

3.4.1 G quadruplex families

The resulting 95 families were created from 1,739 distinct individual G4s identified from 2,145 distinct regions of the hg38 human genome. Given the short sequence length and guanine composition, many of the G4 sequences are not unique. One of the largest families identified, Family 23 is comprised of 163 regions with 118 distinct G4s occurring over 122 genes (Appendix Table A 1). Similarly, Family 79 has 130 regions with 99 distinct G4s occurring over 128 genes distributed across all chromosomes (Appendix Table A 2). We identified multiple sequence repeats capable of forming multiple G4 structures with different conformation in Families 46, 62, 88, 89 and 90 based on the available guanines (Appendix Table A 3). Smaller families 2 and 3 have 7

and 6 distinct sequences occurring in proximity to 8 and 7 genes respectively (Appendix Table A 4 & Appendix Table A 5). A summary of the predicted of G4 sequence families is present in Table 3-2.

We analysed the clusters for their sequence characteristics, functional annotation, and structural features as presented below. We highlight some of the clusters that have strong biological significance with related biological and molecular processes, including Family 4 (Appendix Table A 10), Family 32 (Appendix Table A 11), Family 75 (Appendix Table A 12), and Family 80 (Appendix Table A 13).

3.4.2 Categorical enrichment of select families

Family 4 consists of nine sequences distributed over nine genes and seven chromosomes (Appendix Table A 6). Figure 3-3 illustrates the dot bracket notation of the consensus of the family along with thermodynamic characteristics. While this family is relatively small, the associated

				PREDICTED					
Family	nily G4s Chrs S		Distinct Associated 's Sequences Genes		Consensus using training sequences		Chrs	Distinct Sequences	Associated Genes
1	15	12	5	14	GGGGTGGGTGGGGAGGG	643	24	118	468
2	8	5	7	8	GGGARKGGSCTGGGACAGGG	25	13	25	29
3	10	6	6	7	GGGAGGGGGCTGCWGGGATGGGGG	270	22	257	219
4	9	7	8	9	-GGGCTGGG-GMGGGAAGGAGAGGG	106	22	106	95
5	8	6	7	7	GGGKKGGGGWGAATRGGGCAYGGG-	355	23	341	271
6	8	6	6	7	-GGGGKCTCAGGGGCTGGGCAGRGGG	213	23	200	183
7	7	7	7	7	-GGGC-CCSKGGGCDGSGRGGMRGGG	636	24	614	564
8	7	7	7	7	GGG-MCTTGGGGGGTKGGGASAAGGG-	376	23	369	311
9	10	9	8	10	-GGGSTGGGGAGGGTGGG	350	23	136	276
10	20	15	10	20	GGGGTGGGGGGGGGGGGGG	261	23	107	187
11	15	12	8	15	GGGRGKKKGGTGGGAGGG	164	23	84	132

Table 3-2 Summary of count of G4 sequences identified using predictive models pHMM across different clusters, genes, and chromosomes.

12	17 9	17	17	GGGGC-CWGGG-TGGGA-AAGGG-	347	24	330	289
13	64 20	62	62	GG-RWGGGCYKGG-GGGCWGGG	143	22	125	125
14	52 20	50	51	-GGGRCGGGGCAGGGG-TG-GGG	163	24	153	140
15	13 9	13	13	GGGRRAWRGGGTGGGAGGG	151	22	116	121
16	8 7	8	8	GGGGATKDG-GGGAGGGAGGG	152	23	134	113
17	23 11	16	23	GGGAAGGGTCAGGG-CCAGGG	312	22	293	286
18	14 11	12	14	GGGTGGGTGGGGKMAGGG	439	23	242	345
19	8 8	8	8	GGGCCMMGGGCTGGGGCAGGG	59	19	59	63
20	8 6	7	8	GGGWDGGSMRGGGCMCAAGGG	421	23	414	343
21	7 6	7	7	GGGGC-AGGGGCAGGGDGTGAGGGG	130	23	120	101
22	8 6	8	8	-GGGCYAGGGT-TGGGWRAGGG	60	22	49	44
23	163 23	118	122	GGGTKGGKGRWG-GGRTGGGGG	794	24	555	603
24	35 19	34	35	GGGGGYRGGGSWGGGGWGGG	107	21	91	84
25	39 18	32	37	GGGRR-GGG-RTGGGGCCKGGGG	434	23	418	365
26	9 7	9	9	-GGGGBWGGGGKSAGGGWGGG	69	19	67	49
27	11 9	11	11	-GGG-GCTGGGRMCWGGGCWGGG	113	22	107	98
28	79 21	79	79	GGGGA-WGGGMARGGGY-RGGG	87	21	83	67
29	18 15	17	18	GGGSHWGGGGGGKGGGRGGG	108	21	103	98
30	12 6	12	12	GGGGKRKGGGKMWGGGKGGG	209	23	180	174
31	44 18	43	44	GGGGMRGGGGKKGGGGTGGG	107	23	94	88
32	90 23	85	88	GGGSTGGGGKKGGGGSWGGG	164	22	146	130
33	111 22	102	108	GGGCTGGGGCKGGGSCWGGG	210	22	184	160
34	96	8	9	GGGAATGGGGGGGTGGGGG-GGGG	101	22	98	70
35	25 16	25	25	-GGGCAGG-GGAGGGMYAGGGG	179	22	173	148
36	52 20	46	48	-GGGCCTKGGGGWGGGAGGG-	540	23	497	439
37	76	5	7	-GGGSCAGGGCCAGGGCCAGGG	137	22	125	124
38	7 7	7	7	GGGGYGGGGGR-CAGGGCCAGGG	207	23	200	199
39	12 8	11	12	GGGGAGRGTGGG-MAGGGTGGG	145	24	143	111
40	21 13	16	20	GGGYTGGGRA-TGGGTGGG	489	23	289	348
41	11 8	10	11	GGGM-CAGGGYKSSGGSSAGGG	100	22	99	88
42	17 13	17	17	GGGA-GGGAGGGRAACYYSRGG-	534	23	522	415
43	17 11	17	17	GGGGCCYGGGCCTGGGGAGGG	68	22	64	73
44	9 6	9	9	GGGC-YAGA-GGGTGGGYWGGG	151	22	141	125
45	28 12	28	28	-GGGSKK-KGGGCAGGGGCAGGGG-	207	23	196	151
46	8 7	8	8	-GG-GKTGGGGGGMWGGGRGGRGGG	83	21	77	61
47	21 13	17	20	GGGGTGGGAGGGATGGYGGGG-	134	21	118	101
48	21 13	21	21	-GG-GRTTGGGGGGT-GG-GG-RTGGGG	776	24	724	547
49	29 10	12	12	-GGGGGCAGGGCYGGG-GCTGGG	54	21	44	43
50	32 19	30	32	-GGGAGAGGGTTKGGKGRAGGG	271	23	252	221
51	12 7	9	10	-GGGGTGGGCAGGGMAGMYTGGG	141	24	136	118
52	9 8	9	9	GGGCCCCSGGGGCGGGGCGGG	265	24	264	309
53	56 19	54	50	GGGDGT-G-G-GSGG-AGGGAGGG	155	22	145	127
54	33 18	31	33	GGG-CTCR-GG-RMAGGG-CTGGG	214	24	206	196
55	21 16	21	21	-GGGYR-GGGGTGG-GGGGCRGGG	111	23	110	112
56	97	9	9	-GGGGTGGGGTKGGGG-GKRGAGGG	332	24	319	258
57	14 11	9	14	GGGSC-GGGGCGGGGGGGG	314	23	164	328
58	27 9	15	14	-GGGCTGGGKGRGGGGA-GCAGGG	155	23	132	110

59	44	16	44	44	GGG-SAGGGC-KGGGADRGGGG	265	23	247	226
60	8	7	8	8	-GGGGGTGGGGGRRWGGGSAGGG	124	21	115	98
61	10	1	9	8	GGGACTYRTGGGCTTTGGGCCAAGGG	106	21	105	106
62	10	4	8	6	GGGGAGACTGGGGAGGCCGGGGYRGAAGGGG	73	20	64	45
63	97	24	1	97	GGGAGGGAGGGAGGG	313	23	1	204
64	31	9	16	12	-GGGGTGKG-GGGGGGRMSGGGG	54	17	42	29
65	16	11	9	15	GGG-GARTGGGCYGGGATGGG-	97	21	86	72
66	58	21	49	53	-GGSTGGGCCYTGGGK-TGGGG	268	23	260	236
67	6	4	6	6	GGGGTGGG-CATGGGAG-GCAGGG-	214	23	200	171
68	13	1	12	12	-GGGGAGG-GGGGTGCCCTGGGTTGGG-	138	20	118	119
69	11	7	8	11	GGGCAW-GAGGG-A-G-GGKTGGG	129	22	119	99
70	19	11	14	16	GGGRGKTGGGTGGGGGGGGGGG	202	23	155	161
71	6	5	5	5	GGGGAAGGGACAGGGGMMRGGG	162	23	157	157
72	10	8	8	10	GGGSWG-CAGGGAGGGCTGGG-	206	22	188	158
73	12	10	11	12	GGGTG-GGGTGGGGK-KRGATGGG-	947	23	917	664
74	12	8	12	11	GGGTGGGGRCAAGGGTRGGG	142	22	129	119
75	18	10	13	16	-GG-GGTGGGA-GGGCMKGGG	343	23	180	265
76	6	4	6	6	GGGGTGGGTGGGG-RATGAGGGG	451	24	420	329
77	19	13	19	19	-GGRRWGGGGRAARGAGGGAGGG	296	23	290	223
78	10	9	10	10	GGGGAMT-TGGGGGKGGGG-GGG	329	24	321	268
79	130	22	99	128	-GGGMGGGG-CGGGGCGGGG	712	24	400	677
80	21	12	21	21	GGG-GCGGGSCSSGGGGGGMGGG-	406	23	389	418
81	13	10	13	13	GGGGRAGGG-T-GGGCTTTGGGG	347	23	329	270
82	38	20	13	34	GGGCAGGGCAGGG-CAGGG	391	24	211	284
83	10	5	8	10	GGGT-CTGGGTCTGGGTCWGGG-	116	23	111	102
84	6	4	5	5	-GGGGCCGGGGTGGGARGYGGG	66	21	64	62
85	12	8	12	10	-GGGKY-AGGGCCAGGGTGGGGG	53	21	50	42
86	8	3	4	5	GGGAGGGTCCWGGGGYTGGG	129	22	116	103
87	9	6	9	7	GGGSBCWGGGWS-AGGGAGGG	73	20	69	67
88	11	7	11	11	-GGGRGRCYTGGGTGGGGGGG-	120	22	107	103
89	11	9	6	11	-GGGGTGGGGGGGGGGGG	43	20	12	40
90	10	8	3	9	-GGGGTGGGGGGGGGGG	112	23	13	81
91	9	9	9	9	-GG-GGWGGGAGGGAARACKGGG-	75	21	70	70
92	13	7	11	13	GGGKT-GGGGAGGGGAWTWRGGG	451	23	428	367
93	9	8	7	9	GGGCCTGGGCYTGGGCYDGGG-	26	16	25	25
94	12	10	12	12	GGGAMAGGGGGSAGGGGCRGGG	86	20	86	80
95	8	7	8	8	GGGGACAGGGRCA-GGGVCAGGG	120	21	88	79

Figure 3-3 Thermodynamic properties for Family 4. (a) Centroid secondary structure with a minimum free energy of -9.64 kcal/mol using the consensus sequence of the family. (b) Dot-bracket notation showing the secondary structure. (c) Sequence logo representing the per base information content. (d) Electrostatic potential generated from all the sequences of the family using 10 flanking bases on either side of the identified G4. (e) Dot plot showing the substructures with the highest probabilities.

Figure 3-4Thermodynamic properties for Family 32. (a) Centroid secondary structure with a minimum free energy of -18.0 kcal/mol using the consensus sequence of the family. (b) Dot-bracket notation showing the secondary structure. (c) Sequence logo representing the per base information content. (d) Electrostatic potential generated from all the sequences of the family using 10 flanking bases on either side of the identified G4. (e) Dot plot showing the substructures with the highest probabilities.

genes are related, showing an enrichment of terms related to neural cells (e.g. glia guided migration, synapse assembly, dendritic spine development, and gliogenesis) (, Appendix Table A 10).

Family 32 contains 90 G4 sequences annotated with 85 genes (Appendix Table A 7) The thermodynamic properties are illustrated in Figure 3-4. The genes associated with Family 32 G4s are enriched for cellular organization (e.g. positive regulation of cell projection organization and positive regulation of cellular component organization), axonal development (e.g. neuron projection guidance, axon guidance), mitochondrial localization (e.g. regulation of protein targeting to mitochondrion and regulation of establishment of protein localization to mitochondrion) and size regulation (e.g., regulation of anatomical structure size and regulation of cell size) (Appendix Figure A 7, Appendix Table A 11).

Family 75 is represented by 18 G4 sequences distributed over 10 chromosomes and 16 genes (Appendix Table A 8). Enriched GO: BP terms are highly related to immune differentiation and adhesion (e.g. positive regulation of T cell differentiation, positive regulation of lymphocyte differentiation, positive regulation of leukocyte cell-cell adhesion) (Appendix Figure A 8, Appendix Table A 12).

Figure 3-5 Thermodynamic properties for Family 75. (a) Centroid secondary structure with a minimum free energy of -22.82 kcal/mol using the consensus sequence of the family. (b) Dot-bracket notation showing the secondary structure. (c) Sequence logo representing the per base information content. (d) Electrostatic potential generated from all the sequences of the family using 10 flanking bases on either side of the identified G4. (e) Dot plot showing the substructures with the highest probabilities.

Figure 3-6 Thermodynamic properties for Family 80. (a) Centroid secondary structure with a minimum free energy of -17.38 kcal/mol using the consensus sequence of the family. (b) Dot-bracket notation showing the secondary structure. (c) Sequence logo representing the per base information content. (d) Electrostatic potential generated from all the sequences of the family using 10 flanking bases on either side of the identified G4. (e) Dot plot showing the substructures with the highest probabilities.

For Family 80, we identified 21 sequences distributed over 12 chromosomes and 21 genes (Appendix Table A 9). Genes associated with this family appear to be localized to cellular components membranes. Enriched GO:CC categories for the genes include cytoplasmic side of membrane, plasma membrane, cytoplasmic side of plasma membrane, plasma membrane region, cell projection membrane, ficolin-1-rich granule membrane, side of membrane, cell periphery, ruffle membrane, secretory granule membrane, leading edge membrane, actin filament, extrinsic component of cytoplasmic side of plasma membrane, ruffle, membrane, intrinsic component of plasma membrane, intrinsic component of membrane, intrinsic component of endoplasmic reticulum membrane, plasma membrane protein complex, ficolin-1-rich granule, and tertiary granule (Appendix Table A 13, Appendix Table A 13). A summary of enriched GO terms as determined from GOprofiler and simplifyEnrichment for selected families is present in

Figure

Figure 3-7.

3.4.3 Thermodynamic properties of select families

The free energy of the thermodynamic ensemble for the consensus sequence of Family 1 was calculated to be -28.11 kcal/mol. The frequency of the MFE structure was 50.62% with an ensemble diversity of 0, suggesting a strict conformation of tetrads for formation of a G4 structure. The minimum free energy for the family was calculated to be -27.69 kcal/mol. This family consists of six training sequences that have a single length loop with T-T-A loops (represented by 1-1-1 loops). For Family 11, the free energy of the

thermodynamic ensemble was calculated to be -20.22 kcal/mol. The frequency of the MFE structure in the ensemble is 25.23% and the ensemble diversity is 0, suggesting once again a strict conformation of tetrads for G4 formation. Family 63 is identified with the sequence G3AG3AG3AG3 and is found across 24 chromosomes and 97 genes distributed among intronic, intergenic and promoter regions. The free energy of the thermodynamic ensemble for Family 63 was calculated to be -36.00 kcal/mol while the frequency of the MFE structure in the ensemble is 100% and the ensemble diversity is 0.00. Figures 3-3a, 3-4a, 3-5a and 3-6a represent the base pairing of each base in the G quadruplex sequence. Figures 3-3b, 3-4b, 3-5b and 3-6b highlight the centroid secondary structure in dot-bracket notation. A base pairing probability matrix is used to identify added information about the ensemble G4 secondary structure.

Figure 3-7 Summary of enriched GO terms for select families as determined by the GOProfiler and simplifyEnrichment R packages.

Applied initially to identify different secondary structures of RNA sequences, dynamic programming provides efficient computation of base pairing probabilities for secondary structure formation. The MFE secondary structure highlighting encoding positional entropy (Figures 3-3c, 3-4c, 3-5c and 3-6c) is calculated using the consensus sequence of the G4 cluster as predicted by RNAfold. DNA shape features such as the minor groove width and electrostatic potential (Figures 3-3d, 3-4d, 3-5d and 3-6d) depend upon the charge distribution of nucleotides in a DNA sequence and affect the folding into secondary structure and transcription factor binding in these locations (119). The difference in stacking energies causing the varying hydrogen bonding patterns can be predicted in each dinucleotide step and can be used to infer minor groove width (120). The guanine amino group repeats in G quadruplexes affect charge distributions in the minor and major groove of helical DNA leading to rotation of the tetrads. We use it to

annotate the different families of G quadruplex identified here. A dot plot of the structure with MFE is shown in Figures 3-3e, 3-4e, 3-5e, and 3-6e for each of the selected families.

When DNA is bent around in secondary structures such as helical or G quadruplex structures, the bend is separated based on dinucleotide sequences. Propeller twist is defined as the twist along the axis making two bases "non-coplanar" (121). Previous studies have provided evidence for the flexibility nature of the GG and GC dinucleotides with low propeller twist while AA shows the highest. The flexible nature of such a structure favors G quadruplex sequences. Low propeller twist is related with the ability for the nucleotides to slide on each other and stack in a stable manner. For each cluster, we calculated dinucleotide frequency normalized by individual length of G quadruplex, minimum free energy, minor groove width, propeller twist, helical twist, roll, and electrostatic potential with -10 and +10 region around the identified clusters of G quadruplex using DNAshapeR (122). These features address the shape, thermodynamic stability, and flexibility of rotation of the guanine amino groups, and transcription factor recognition site.

3.4 Classification of experimentally validated G4 sequences

Using the sequences from peaks mapped from a G4 seq experiment (GEO accession GSE63874), and identified using Quadparser2, we found all possible pG4 sequences with four tetrads and used it as query the model classifier. We classified 18,340 individual G4s identified from 22,226 distinct regions of the hg38 human genome into 95 families. Based on the clustering for experimental sequences, the major families represented are

67

Family 73 (917 unique G4s related to 664 genes), Family 2 (25 unique G4s, 29 genes), and Family 93 (26 unique G4s, 25 genes). Family 63 has a distinct G4 sequence G₃AG₃AG₃ that is repeated throughout the genome, occurring 313 times over 23 chromosomes and 204 genes.

3.5 G4 repeat and loop length characteristics

For genes with repeats of G4 sequences (i.e. more than four tetrads), multiple G4 sequences with a variable loop length are possible

Figure 3-8 Example sequences with multiple tetrads. (a) G-quadruplex sequence from chr19:43,479,561-43,479,598 overlapping the PHLDB3 gene with guanines labelled in red. (b) Three possible alternate G4 regions for the PHLDB3 region. (c) MFE structure for the PHLDB3 region. (d) G-quadruplex sequence from chr17:81,432,609-81,432,932 overlapping the BAHCC1 gene with guanines labelled in red. (e) MFE structure for the BAHCC1 gene.). We identify all possible linear combinations of G tetrads for such sequences and classify all combinations of the sequences into families. This provides a way to identify multiple conformations forming G quadruplexes. One example gene with a variable length sequence is BAHCC1, a chromatin regulator known to interact with transcriptional repressors to ensure gene silencing through recognition and bind to PRC2 complex mediated H3K27me3 through chromatin compaction and histone deacetylation (123, 124). Within a single G4 region, we identified repeats of 13 different sequences (length of G4 repeat: 314 bases), with each sequence being distinct enough to occur in a separate family. We also find 29 G4 sequences in NRD2, with most of the sequences occurring in Family 17, with one each also occurring in Family 7 and 10.

Figure 3-8 Example sequences with multiple tetrads. (a) G-quadruplex sequence from chr19:43,479,561-43,479,598 overlapping the PHLDB3 gene with guanines labelled in red. (b) Three possible alternate G4 regions for the PHLDB3 region. (c) MFE structure for the PHLDB3 region. (d) G-quadruplex sequence from chr17:81,432,609-81,432,932 overlapping the BAHCC1 gene with guanines labelled in red. (e) MFE structure for the BAHCC1 gene.

We identify similar repeats of five distinct sequences spanning an intronic region in PLOD1, which codes for lysyl hydroxylase and is involved in collagen synthesis. A 45 nucleotide G quadruplex sequence present in the promoter region of tyrosine hydroxylase (TH) can regulate transcription and has been linked with neurological and psychological disorders such as Parkinson's and schizophrenia (125, 126). We found two additional G quadruplex sequences in the opposite strand across promoter and intronic regions of TH which have matches to Family 14 and 37, respectively. Semaphorins are a group of membrane spanning proteins that bind to Plexin (PLXNA and PLXNB) receptors to regulate axon cue signaling, cytoskeletal development and cell adhesion (127, 128). The regulation and signaling of SEMA proteins with the plexin family has been a topic of study, and we identified 39 and 37 distinct G quadruplex forming sequences in the SEMA family and PLXN family respectively, with similar G4 loops present in both genes. The prediction identified multiple G4 sequences present in SEMA6C, SEMA6D, and PLXND1 with the highest match to Family 48 (Table 3-3). Similarly, SEMA4D, SEMA4B, and PLXNA4 shared sequences occurring in Family 17. These findings suggest that multiple regions can form G quadruplex in these genes, resulting in multiple conformations that might allow for differentiation for methylation in a pattern specific manner.

Table 3-3 G4 sequences identified in the genic regions associated with the plexin and semaphorin gene families with high similarity to G4 Families 17, 48 and 79.

Location	Sequence	Log	Akaike	Stran	Gene	Gene	Famil
		odds	weight	d	ID	symbol	у
chr15:90204178-90204199	GGGAGGGCACTAGGGCCCTGGG	8.987	0.617	+	10509	SEMA4B	17
chr3:126991053-	GGGCAGGGCAGGCAGGGAAGGG	10.584	0.892	+	5361	PLXNA1	17
126991092							
chr9:89440465-89440503	GGGTAGGGCTCAGGGGCCAGGG	14.015	0.996	-	10507	SEMA4D	17
chr1:151141755-	GGGATGGGGGGTTGGGGGGGGGGG	13.6	0.828	-	10500	SEMA6C	48
151141776							
chr15:47662210-47662233	GGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	11.857	0.994	+	80031	SEMA6D	48
	G						
chr3:129567938-	GGGTTGGGGTGGGGGGGGGGGG	12.652	0.772	-	23129	PLXND1	48
129567973							
chr3:129588350-	GGGTGTCGGGGGGGGGGGGGGGGGG	9.599	0.787	-	23129	PLXND1	48
129588372							
chr3:122983446-	GGGCGGGGACGGGGCGGGG	12.301	0.981	-	54437	SEMA5B	79
122983465							
chr3:129606851-	GGGCGGGGCCGGGGCGGGG	14.216	0.916	-	23129	PLXND1	79
129606910							
chr3:50276050-50276067	GGGAGGGTCGAGGGCGGG	6.415	0.677	+	7869	SEMA3B	79

The PDB structures 22AG, 2KF8, 5LQG, and 5YEY represent telomeric quadruplex DNA forming a range of conformations with antiparallel topology based on varying physiological conditions. These telomeric G4 sequences are determined to have the highest likelihood of matching Family 22. They have a similar loop size to structure 2KM3 (70), which has a variant of CTAGGG repeat instead of TTAGGG repeats. The 2KM3 structure forms a chair type G quadruplex in K+ solution and is most similar to Family 33. Based on the sequence characteristics, these differences in structure which are caused by a one or two bp change can affect the overall prediction of the glycosidic conformation. This in turn can be used to help understand the structure based on the local environmental and interacting conditions.

The 2LXQ G4 structure is found upstream of pilin expression locus in Neisseria gonorrhoeae, a human pathogen 5'-G₃TG₃TG₃TG₃ sequence is implicated in pilin antigenic variation (129). Known to form an all-parallel stranded topology, the sequence was predicted to have the highest likelihood score with Family 40. A highly conserved G4 sequence at NHE III₁ upstream of promoter 1 been studied and identified to silence transcription of c-MYC (94, 130-133) and other short loop G4 sequences that form a similar topology. TAG₃AG₃TAG₃AG₃T was predicted to belong to Family 52 as well as Family 1. Despite following the same 1:2:1 pattern as the 2LXQ structure, the presence of adenosine in place of thymidine as the linker loops is considered as a different family. Experimental evidence shows that G4s with short loop sequences favor a parallel topology while structures with longer loops tend to form hybrid or antiparallel structures (134). Sequences with thymine compared to adenine as a single length loop have been found to have higher melting point than a single A base (135). Given our clustering scheme, multiple sequences with short loops can show high log-odds for multiple families. In these cases, the Akaike weight can help guide the context and identify multiple families containing such sequences.

3.4.4 G4 in enhancers

Potential regulatory roles of G4 families were analyzed by looking at the overlap between G4s and enhancers. The overlapping enhancers were then used as input into the Gene-Enhancer link correlation (<u>http://compbio.mit.edu/epimap/</u>) to determine if any of the overlapping enhancers were correlated with gene expression, and if so, in what cell type. We then performed hierarchical clustering of the intersecting G4s based on the correlations. Two main groups of interest result.

In the first group, 102 G4 sequences are found in 158 genes, belonging to 57 distinct G4 families. GO:BP analysis of this group results in terms associated with immune system processes (e.g. T cell receptor signaling pathway, regulation of leukocyte proliferation, interleukin-10 production and regulation of cytokine production involved in immune response) or signaling cascades (e.g. positive regulation of ERK1 and ERK2 cascade, calcium ion transmembrane import into cytosol, and Fc receptor signaling pathway) (Appendix Figure A 10, Appendix Table A 14).

72

The second group had ubiquitous high correlation with all cell types in the dataset (Appendix Figure A 12). We identified 234 genes in this group with 107 distinct G4s belonging to 55 distinct families and found enrichment of terms relating to immune responses (e.g. defense response to virus, cytokine-mediated signaling pathway and regulation of defense response), regulated cell death (e.g. apoptotic signaling pathway, extrinsic apoptotic signaling pathway via death domain receptors, and positive regulation of programmed cell death), lipid biosynthesis (e.g. regulation of lipid biosynthetic process and response to fatty acid), and migration (e.g. positive regulation of protein localization and positive regulation of mononuclear cell migration) (Appendix Figure A 11, Appendix Table A 15).

Based on the enriched terms from two groups, it appears as though the G quadruplex functions across multiple pathways in different cell types. It is possible that tissue specific conditions control the actual G4 formation, leading to tissue specific functional regulation. The results of the enhancer-gene correlation related to the presence of G4 sequences in enhancer regions in group 1 are more likely to affect genes in thymus, T cell and lymphoblastoid cells.

3.5 Discussion

Our clustering methodology presented here has allowed for the construction of families of G quadruplexes based on sequence similarity, loop length and composition, and thermodynamic properties. Further analysis of these families uncovers that many of these families have functional enrichments, indicating they are potentially regulated by common mechanisms since they have structural similarities. Comparing our results to

73

the only previously studied family, Pu27, shows a high agreement, with 12 of the 18 Pu27 members belonging to Family 1 (Table 3-4).

					Akaik	
		Minimum C4 seguence	lengt h	Log	e	famil
Overan sequence	name	Minimum G4 sequence		odds	weigh t	у
		GGGGAGGGTGGGGAGGG	17	6.99	0.89	1
TGGGGAGGGTGGGGGGGGGGGGGAGG	Pu27-c-MYC	GGGTGGGGAGGGTGGGG	17	5.7	0.59	40
		GGGGAGGGTGGGGAAGG	17	4.95	0.45	1
TGGGAGGTGGGGAGGAGGGTTGGGAAGG	Pu1	GGGAGGTGGGGAGGAGGGTT GGG	23	7.42	0.53	48
TGGGAGGTGGGGGGGGGGGGGTTGGGAAGG	PLEKHG5	GGGAGGAGGGTTGGGAAGG	19	6.93	0.94	15
TGGGGAGGGTGGGGAGGCCGGG	Pu1-2- MYBPHL	GGGGAGGGTGGGGAGG	16	2.41	0.53	1
	D 2	GGGGAGGGTGGGGAGGG	17	6.99	0.89	1
TGGGGAGGGTGGGGAGGGTGGG	Pu3	GGGTGGGGGGGGGGGGGG	16	7.33	0.9	9
T0000 + 000T0000 + 0000000		GGGGAGGGTGGGGAGGG	17	6.99	0.89	1
IGGGGAGGGIGGGGGGGGGGGGGG	Pu3-SOX2	GGGAGGGTGGGGAGGG	16	5.62	0.74	1
		GGGGAGGGTGGGGAGGG	17	6.99	0.89	1
		GGGAGGGTGGGGAGGG	16	5.62	0.74	1
TGGGGAGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Pu5-GRM6	GGGGAGGGTGGTGAGGGTGG GG	22	7.53	0.26	76
		GGGTGGTGAGGGTGGGGAGG GGG	23	7.47	0.82	73
T0000 + 000T0000 + 000T0000 + 000	D C (DVI	GGGGAGGGTGGGGAGGG	17	6.99	0.89	1
TGGGGAGGGTGGGGGGGGGGGGGGGGGGGGGGGGG	Pu/-SDK1	GGGTGGGGAGGGTGGGG	17	5.7	0.59	40
GGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Pu9	GGGTGGGGGAGGGTGGGG	17	5.7	0.59	40
GGGGAGGGTGGGGAGGGGATGGAA	Pu9- 2BC022036	GGGTGGGGGAGGGGATGG	17	5.85	0.37	40
		GGGAGGGTGGGGAGGG	16	5.62	0.74	1
GGGAGGGTGGGGAGGGTGGGGAGGG	Pu10-1	GGGTGGGGAGGGTGGGG	17	5.7	0.59	40
		GGGGAGGGTGGGGAGGG	17	6.99	0.89	1
	D-10.2	GGGTGGGGAGGGTGGGG	17	5.7	0.59	40
GGG1GGGGAGGG1GGGGAAGG	Pu10-2	GGGGAGGGTGGGGAAGG	17	4.95	0.45	1
		GGGGAGGGTGGGGAGGG	17	6.99	0.89	1
0000400400004000100004000	PullinAv2	GGGAGGGTGGGGAGGG	16	5.62	0.74	1
GAGGGTGGGGGGGGGGGGGGGAGGAAGG	Pu14SPTLC2	GGGTGGGGGGGGGGGGG	15	3.19	0.63	9
TEEEEACECTEEECACECTEE	Du16	GGGGAGGGTGGGGAGGG	17	6.99	0.89	1
10000400010000000100	Pu16	GGGAGGGTGGGGAGGG	16	5.62	0.74	1
GAGGGTGGGGGGGGGGGGGG	Pu17	GGGTGGGGGAGGGTGGGG	17	5.7	0.59	40
GGGGAGGGTGGGGAGGGAGCTGGGGA	Pu20-CDH4	GGGGAGGGTGGGGAGGG	17	6.99	0.89	1

Table 3-4. Family prediction for previously identified Pu27 family of G4 sequences.

Multiple transcription factors can bind to the alternative motifs present in G quadruplex regions (99) in response to environmental conditions in response to stimuli. These conditions trigger the folding and unfolding of G4 structures. We identify Family 40 as an alternate conformation in these sequences as multiple tetrads allow the alternate guanine bonds for stable structure. Nucleoside diphosphate kinase (NM23-H2) (136, 137) has been previously identified to unfold Pu27 causing the increase of c-MYC transcription while nucleolin (138) has been identified to stabilize the G4 structure. The mechanism of TF binding and control of expression of the expression of c-MYC gene is poorly understood and is beyond the scope of prediction through this model. However, this process sheds light upon the collection of multiple conformation of structures in equilibrium which can alter the change in binding grooves for transcription factors and further downstream process. Failing to take the dynamic nature of Pu27 and other G quadruplex sequences in the genome into account could limit the effectiveness of any therapeutic compounds designed to target it.

Several G4 ligands are currently being considered for their therapeutic value. For instance, CX-5461 is utilized for treatment of BRCA1/2 deficient tumors through topoisomerase II inhibition (139, 140), Melanoma cell lines have been treated with G4 ligand RHPS4 that targets the MYC gene (141) among others. G4 ligands such as APTO-253 (142), TMPyP4 (143), telomestatin (144) have been tested for their effect on

leukemia. Despite showing promising results and inhibition of cell growth, telomerase shortening and senescence was observed with some of the G4 ligands in different leukemia cells (145). With the information of G4 formation and binding of specific ligands to multiple G4 structures, identification of G4 clusters can provide additional information about DNA damage occurring or novel binding motifs of specific G4 ligands.

G4 structures contribute to genomic instability and the proliferative nature of different cancers. The context and location of individual G4 can serve as a roadblock for many oncogenes, but the presence of G4 in the vicinity of a tumor suppressor gene can have the opposite effect. To understand the intended consequence of these targets for all the G4 ligands, it is important to characterize the thousands of G4 structure present in the genome and classify these structures based on their structure, function, or localization.

This study identifies related families of G quadruplex sequences within the human genome and presents them as clusters described by both an MSA and HMM. The approach described here can easily be applied to other model organisms where G4s are known to play regulatory roles. Many of these clusters were functionally annotated, allowing for a more complete understanding of these structures as well as identification of multiple targets for testing of G4 ligands. As more information on experimentally validated G4 regions becomes available, refinement of clustering methodologies will yield more informative G4 families.

76

CHAPTER 4 ANALYSIS OF NUCLEOTIDE VARIATIONS IN HUMAN G-QUADRUPLEX FORMING REGIONS ASSOCIATED WITH DISEASE STATES

4.1 SUMMARY

While the role of G4 G quadruplex structures has been identified in cancers and metabolic disorders, single nucleotide variations (SNVs) and their effect on G4s in disease contexts have not been extensively studied. The COSMIC and CLINVAR databases were used to detect SNVs present in G4s to identify sequence level changes and their effect on alteration of G4 secondary structure. 37,515 G4 SNVs in the COSMIC database and 2,115 in CLINVAR were identified. Of those, 7,236 COSMIC (19.3%) and 416 (18%) of the CLINVAR variants result in G4 loss, while 2,728 (COSMIC) and 112 (CLINVAR) SNVs gain a G4 structure. The gene ontology term "GnRH (Gonadotropinreleasing hormone) secretion" is enriched in 21 genes in this pathway that have a G4 destabilizing SNV. Analysis of mutational patterns in the G4 structure show a higher selective pressure (3-fold) in the coding region on the template strand compared to the non-template strand. At the same time, an equal proportion of SNVs were observed among intronic, promoter and enhancer regions across strands. Using GO and pathway enrichment, genes with SNVs for G4 forming propensity in the coding region are enriched for Regulation of Ras protein signal transduction and Src homology 3 (SH3) domain binding.

4.2 INTRODUCTION

G-quadruplexes are stranded secondary structures of nucleic acids rich in guanine. These nucleic acid sequences are characterized by four runs of at least three guanines separated by short loops, which can potentially fold into an intramolecular or intermolecular Gquadruplex structure (146). The tetrad structure of guanine is stacked on top of each other and held together by mixed loops of DNA giving a four-stranded structure that has nucleobases on the inside forming Hoogsteen base pairing and the sugar phosphate backbone on the outside (Figure 1). They are found in G-rich sequences of both DNA and RNA and are stabilized by metal cations such as potassium (K+) or sodium (Na+) (147). The binding energy is held through the H bonding between the guanines, stabilized by π - π interactions and charge interactions between the sixth position of oxygen (O6) and cations (K+, Na+) between the stacks. The structural architecture of a G-quadruplex is quite diverse and can form different topologies based on factors such as the chemical environment, loop length (134, 148), and localization in the sequence or structure molecularity (149). The stacking of the guanine tetrads is bound by the loops of nucleotide bases of variable sizes which determine the folding of the secondary structure.

Figure 4-1 Guanine tetrad formed by Hoogsteen bond formation

The structural architecture of a G-quadruplex is quite diverse and can form different topologies based on factors such as the chemical environment, loop length (83, 84), and localization in the sequence or structure molecularity (85). The stacking of the guanine tetrads is bound by the loops of nucleotide bases of variable sizes which determine the folding of the secondary structure.

4.2.1 Functional role of G4 regions

G4 sequences do not always form G4 structures, which can additionally be dependent upon physiological conditions and methylation patterns guided by chromatin structure for their formation (57). However, when they do, they can alter several functional roles. One such perturbed function is transcription which is affected by stalling the replication fork (150-152). In cells that do not have the normal DNA repair machinery, this causes down regulation of several genes and cell cycle arrest (153).

Additionally, G4, G4 stabilizing agents and double-stranded breaks (DSB) facilitate the homologous recombination repair pathway affecting genome instability. Based on the size of the G quadruplex, thermodynamically stable short loop structures within the G4 have been extensively studied to cause instability in replication dependent processes (64). Alteration of DNA polymerase function and helicases in sites of G4 formation has been well established and is used in identification of G quadruplexes in vivo (154, 155).

While some ligands have shown binding affinity towards G quadruplex structures for treatment of cancer specific cells and transcriptional alteration (156), binding of other ligands that stabilize G4 lead to multiple DNA damage (156), micronuclei formation, delayed replication fork progression (157), and telomeric defects (158-160).

4.2.2 Mutations within G4 regions

DNA lesions can be mutagenic or lethal, and when they are found in G quadruplex regions, they can alter the secondary structure by changing the guanine tract base pairing or altering the composition of the loop region. A single nucleotide mutation in the G4 present in the promoter region of c-MYC has been shown to change transcription in vivo (132). Mass spectroscopy studies using single nucleotide substitution in the central block of parallel G4 forming sequencing found a deleterious effect of G quadruplex stability and association rate (161). A trinucleotide CGG repeat expansion in the untranslated region of the FMR1 gene has been linked with ataxias and Fragile X Syndrome (162). A $T \rightarrow C$ SNP at the GC rich region of Apolipoprotein E (APOE) is known to vary G quadruplex structure and has been linked to onset of Alzheimer's Disease (163). It has been proposed that specific helicases promote genomic stability by actively resolving G4 structures which can be altered by the addition of G4 stabilization ligands presence of specific DSBs (153, 154, 164). Baral et al. identified several eQTL variants in potential G-quadruplex regions (165). Changes in loops of G quadruplexes and stability led to a significant alteration in gene expression among individuals further fueling the structural role of G4s in regulation and binding of transcription factors (164).

Selective mutation of the G rich region to disrupt the G4 structure has been found to alter transcription. The mutation further can hinder the recruitment of transcription factors that overlap the G rich region and function as recognition motifs or bind to the G quadruplex region. Siddiqui-Jain et al. demonstrated that a single $G \rightarrow A$ mutation destabilizes the folding of G4 in the Pu27 region of MYC which is otherwise repressed, resulting in a threefold increase in transcriptional activity of the gene in tumor cell lines (132). Studies

81

related to 8-oxoguanine in the G quadruplex established the presence of G-A and guanine abasic lesions in G quadruplex structures based on the position in the sequence which can destabilize the secondary structure leaving the unfolded sequence prone to cleavage, leading to further instability in the telomere region (166).

4.2.3 Study motivation

Given the roles that G4 regions and mutations within them play in transcriptional and translational control, we set out to identify the impacts of mutations in G-quadruplex regions and patterns associated with the variants. This was aided by looking at variants annotated in the COSMIC (167) and CLINVAR (168) databases, which represent mutations associated with cancers (COSMIC) or other clinical relevance (CLINVAR). We identified somatic and germline variations representing SNVs occurring within G quadruplex sequences. Because of their high stability and increased cellular uptake, G quadruplex sequences have interesting diagnostic and therapeutic functions. Understanding how known variants in the genome confer stability or disrupt the G quadruplex sequences will allow a better understanding of G4 structure and function.

4.3 MATERIAL AND METHODS

4.3.1 Putative and validated G4 identification

Quadparser version 2 (4) with the default parameters was used to identify 175,778 putative G quadruplex regions in the human genome hg38 assembly across both strands. Experimentally validated G4 regions were obtained from an experiment utilizing a method called G4 Seq (GEO accession GSE63874) previously performed by Chambers, et al. (83). The intersection between the putative and experimental G quadruplexes was found using BEDTOOLS (112).

82

4.3.2 SNP identification

Cancer-specific curated somatic mutations from the COSMIC database (167) were used for the analysis. COSMIC contains 22,996,215 distinct single nucleotide variants (SNVs) (19,721,019 non-coding variants (NCV) and 5,977,977 coding) from 1.4 million tumor samples. An additional 550,239 germline SNVs from other clinically relevant diseases and disorders were obtained from CLINVAR (168) version (clinvar_20200203.vcf.gz).

For both sets of data, a two-pass analysis was performed. In the first pass, overlaps between the SNVs and putative G quadruplex regions were found to determine potential loss of a G quadruplex structure due to mutations. In the second pass, mutations leading to a G in regions with flanking guanines that could result in the gain of a G quadruplex were detected. In each case, a variant call format (VCF) file describing the coding and non-coding mutations was obtained from COSMIC (167) and CLINVAR (168). Using the VCF, SNVs were filtered using bcftools (169), with insertion and deletion events (INDELs) removed.

4.3.3 Identification of SNPs affecting G4 formation

A window 30 bases upstream and 30 bases downstream of each variant was used to search for putative G quadruplex sequences. Prospective G4 regions were compared with the Vienna Package RNAfold v2.4.8 to determine changes in G quadruplex stability as a result of the variant (77). The values of Δ MFE (minimum free energy) and Δ ED (ensemble diversity) were used as the determining metrics. MFE calculates the stability of the sequence structure based on the binding propensities while centroid distance to ensemble provides the diversity of the sequence structure and alternate structures it can form. G4hunter was also used to compare the G4 scores and the formation of pG4 (5). Based on the location of a specific SNV inside a G4 region, the relative location of the mutation was calculated as the position of the SNV in the G4 divided by the total length of the sequence. In terms of multiple potential G4 regions, the whole region was used as a single sequence and the relative location of the mutation was calculated. Each SNV was converted into a 3-mer based on its context and changes in the k-mer resulting in a broken GGG quad structure were calculated. For each 3-mer, the number of changes was calculated using one base before and after the location of the variant, respectively. In addition, the SNV in the context of loop and guanine tetrads was analyzed based on the trinucleotide context. The R package annotatr was used for randomized background counts for each annotation (170).

4.3.4 Enrichment analysis

Based on the G4 identified, the hg38 coordinates of the G4 were used to find the enrichment of transcriptional factors using Remap (171) for Hep-G2, K562, HEK293 and HEK293T cell lines. Further, enrichment analysis of the genes with individual mutations were selected based on the number of SNV per gene, effect of SNVs on the G quadruplex, G4 per gene and samples as specified in the result. Functional annotation enrichment of genes was carried out using DAVID functional annotation (172) while the enrichment analysis of TFs involved was carried out using STRING database (173). In order to analyze the disruption of motifs by each SNV, the R package motifbreakR (174) was used.

4.4 RESULTS

4.4.1 COSMIC somatic mutations

Using the COSMIC database, 37,515 (0.16% of all COSMIC mutations) distinct single nucleotide somatic mutations were identified within 26,504 pG4 regions from 9,693 genes, 8,998 of which were determined to be protein coding according to ENSEMBL hg38 annotations. The remaining genes were identified as lncRNA (n=540) or miRNA (n=111). The most frequently observed mutation observed in the COSMIC filtered dataset was the transition event $G \rightarrow A$ (28%) followed by the transversion event $T \rightarrow G$ (18%) (Figures 2A and 2B). The variants were expected to be high in number for $G \rightarrow A$ and $G \rightarrow T$ (15%) mutations; however, we also identified the $T \rightarrow G$ transversion to be high in these regions compared with $A \rightarrow G$ transitions. Comparatively, higher $G/C \rightarrow A/T$ variants in intragenic CpG islands has been observed due to the spontaneous deamination to the cytosine hypermethylated CpGs within these regions (175, 176). However, the effect of these mutations is less studied across G4 regions. We found a lower transition:transversion ratio (p = 0.00001) occurring in the G4 region (1.02), compared to the overall mutations in COSMIC database (1.146) (Appendix Table B 1 & Appendix Table B 2).

Figure 4-2: Composition of SNVs in G4 regions from the COSMIC database. Shown is (A) proportion and (B) count of selected SNVs

Based on the G4Hunter (5) and RNAfold (77) results, we compared the number of SNV events that breaks the G4 structure and changes in the thermodynamic stability based on the minimum fold energy of each sequence. We found 7,236 (19.2% of variants in G4) of the SNVs within the G4Hunter identified G4s result in the loss of a G quadruplex, while 2,728 SNVs led to the gain of a new G quadruplex (Figure 3A, Appendix Table B 3).

4.4.2 CLINVAR germline mutations

Using the CLINVAR database, 5,026 SNVs were identified in pG4 regions out of which 2,155 intersected with experimental G4. Most of these G4 mutations occurring in exons (50%, n=2,559). The remaining variants are found in introns (24%, n=1,251), promoters (11%, n=554), and transcription termination regions (3.5%, n=179). Overall, 13.92% (700 variants) were associated with non-coding RNA, and 84% (n=4,265) SNVs occur in protein coding regions (Figures 3B-3D, Appendix Table B 4).

4.4.3 Change to G4 stability

RNAfold was used to differentiate the impact of the variant on the stacking. Variants were classified based on the change in stability and formation of available guanines for stacking by combining the sequence pattern analysis of G4Hunter with thermodynamic parameters from RNAfold (Figures 4A-4F). The majority of the SNVs (81%) did not

affect the GGG stacking in such a way that the formation of tetrads of guanines was not possible. Though complete breakage of structure does not occur, we found a decrease in the stability of the G quadruplex structure in 40% of these variants. This is due to the presence of additional guanines in the loop that aid the conformational diversity of G quadruplex which can act as extra base for stacking (Figure 4E). We found 10,435 SNVs across the combined COSMIC and CLINVAR mutations that increase the stability (lower the MFE relative to the reference sequence) while 12,061 SNVs brought no change to the MFE. An additional 15,019 variants destabilize the G4. Transversions were more likely to change the structure of the G quadruplex region without disrupting the G stacks and increasing the thermodynamic stability of the structure (17%) compared to transitions (10%). Additionally, transition mutations were found to destabilize the G4 structure at a higher rate (22%) compared to transversions (17%) (Table 4-1).

Figure 4-3 Identified G4 variants relative to functional annotations. Shown is (A) count of change in pG4 with G4Hunter score across both strands before and after mutation (0: absence of pG4; 1: presence of G4 in the forward strand; -1: presence of G4 in the reverse strand); (B) percentage of the type of mutation across annotations from the COSMIC database; (C) percentage of SNVs that occur in a G4 region across the template and non-template strand for functional annotation groups; and (D) count of variants in

functional annotations against randomized background count of variants in the human genome.

4.4.4 Variants in transcript regions

We find comparatively higher number of mutations in G4 forming exonic regions in 5'UTR, 3' UTR and CDS regions of protein coding genes when the G4 in formed in the strand opposite the transcribed gene (Figure 3C). The count of SNV around G4 forming regions in intron and promoter regions were proportionate with the transcript opposite or in same strand as the transcript. This shows selection pressure of variants around exon regions as compared to the non- coding regions. Previously, it has been hypothesized the formation of G4 in either strand within the transcribed region, along with nascent RNA would lead to formation of DNA:RNA hybrid R loops in the G quadruplex which results in physically halting the polymerase movement inhibiting further rounds of transcription (177). Additionally, G4 formed on the non-template strand could interfere with the reannealing of the DNA strands increasing the stability of the R loop hybrid.

Figure 4-4Thermodynamic changes associated with variants in various genomic features.
(A) Non-zero delta MFE of G4 across different annotation for destabilized and further stabilized effect by SNV. (B) Count of variants across different regions of the genome and in strand specific or alternative to the coding gene. (C) Proportion of effect on G4 based on the type of mutation. (D) Proportion of variants across different annotation. (E) Proportion of trinucleotide context based on the type of effect on the G4 sequence. (F) Histogram of variants by sample

4.4.5 Gene component variants

Comparing mutations in different functional groups, $G \rightarrow A$ mutations are elevated in

exons (35.18%) and decreased proportion in promoter region (26.87%). We find a lower

percentage of T \rightarrow G mutations in G4 regions occurring in exons (11.74%) compared to

intron, promoter (18%), enhancers (29.84%) and intergenic regions (18%). This pattern

of low $T \rightarrow G$ variants coincides with counts in the CDS region while the 5' UTR show

increased T \rightarrow G variants (16%). G \rightarrow A SNVs are found less in enhancers (19%) which are distant from the transcription site and deamination occurring in upstream of transcription site does not affect the G4 region but comparatively have the highest proportion of T \rightarrow G (29.84%) mutations (Table 4-2).

Previously, higher counts of C \rightarrow T over G \rightarrow A variants were identified in the nontemplate strand, which was hypothesized due to cytosine deamination in the nearby 2kb downstream of 5' end of genes due to higher exposure of single stranded DNA (178). However, we predict the implication of these variants occuring within G quadruplex regions and cause a conformational shift in its structure leading to alteration in expression and binding patterns across these regions. Additionally, 8-oxoguanine formation in G quadruplex binding Sp1 proteins is an important regulator for adipose tissue development and GC rich promoter region with transcription factor sites activating proportional to increasing 8 oxo-G abundance (179).

Figure 4-5. Distribution of SNVs across the G4 regions on the non-template and template strand. Shown are the results for (A) T→G variants; (B) A→G variants; (C)
G→T variants; and (D) G→A variants. (E) Distribution of SNVs in trinucleotide contexts relative to the opposite or same strand as the corresponding gene. (F) Significance of the top 20 transcription factors and their genome-wide binding sites.

4.4.6 Enrichment analysis

4.4.6.1 Gene Ontology.

Gene Ontology (GO) enrichment analysis was performed for biological processes (GO:BP) and cellular components (GO:CC). A total of 424 GO:BP categories were determined to be significant (FDR ≤ 0.05) overall (

Appendix Figure B 1;
Appendix Table B 5), while 425 significant GO:BP

enrichments were found for COSMIC alone (Appendix Figure B 2: Enriched GO:BP terms for G4 mutations.) and 48 were found for CLINVAR (Appendix Table B 6). When this was further broken down into mutations resulting in a loss of a G4, we found 205 significant GO:BP overall (

G	GO Description	Universe	COSMIC and CLINVAR	Adjusted P-value
0				
I				
D				
GO:0032502	developmental process	4584	1138	3.23E-24
GO:0048856	anatomical structure development	4152	1043	2.82E-23
GO:0007399	nervous system development	1648	488	1.15E-22
GO:0009653	anatomical structure morphogenesis	1871	539	2.18E-22
GO:0048731	system development	2976	784	9.30E-22
GO:0007275	multicellular organism development	3266	842	1.00E-20
GO:0032501	multicellular organismal process	5319	1270	1.40E-20
GO:0030154	cell differentiation	2860	742	3.10E-18
GO:0048699	generation of neurons	969	309	3.31E-18
GO:0048869	cellular developmental process	2879	745	5.24E-18
GO:0016043	cellular component organization	5370	1259	6.78E-17
GO:0022008	neurogenesis	1096	335	1.06E-16
GO:0030182	neuron differentiation	923	292	1.76E-16
GO:0071840	cellular component organization or biogenesis	5539	1277	2.38E-14
GO:0023051	regulation of signaling	2733	694	3.06E-14
GO:0010646	regulation of cell communication	2727	692	4.16E-14
GO:0048666	neuron development	729	236	4.22E-14
GO:0000904	cell morphogenesis involved in differentiation	495	175	7.97E-14
GO:0048468	cell development	1355	385	9.16E-14
GO:0048513	animal organ development	2176	567	3.84E-13
GO:0023052	signaling	5190	1196	9.50E-13
GO:0032989	cellular component morphogenesis	549	186	1.02E-12
GO:0007154	cell communication	5221	1200	2.02E-12
GO:0031175	neuron projection development	656	212	2.53E-12
GO:0048667	cell morphogenesis involved in neuron differentiation	381	140	3.85E-12
GO:0034330	cell junction organization	518	176	4 81E-12
GO:0000902	cell morphogenesis	718	226	6.91E-12
GO:0048812	neuron projection morphogenesis	441	155	9.70E-12
GO:0007010	cytoskeleton organization	1309	365	1 42E-11
GO:0009966	regulation of signal transduction	2464	621	1 59E-11
GO:0009887	animal organ morphogenesis	582	190	2.87E-11
GO:0007155	cell adhesion	1216	342	3 26E-11
GO:0120036	plasma membrane bounded cell projection organization	1144	325	3.84E-11
GO:0120039	plasma membrane bounded cell projection morphogenesis	455	157	3.85E-11
GO:0048858	cell projection morphogenesis	459	157	8.90E-11
GO:0030030	cell projection organization	1164	328	9 33E-11
GO:0032990	cell part morphogenesis	469	159	1 42E-10
GO:00320029	actin filament-based process	717	219	5.92E-10
GO:0061564	avon development	323	118	1.06E-09
GO:0007409	axonogenesis	298	111	1.00E 09
GO:0050808	synapse organization	275	104	2 31E-09
GO:0050793	regulation of developmental process	1810	465	4 44E-09
GO:0051128	regulation of cellular component organization	1929	490	6 77E-09
GO:0007165	signal transduction	4776	1078	4 27F-08
GO:0016477	cell migration	1210	325	7.79F_08
GO:0010477	cell motility	1362	359	8 30E-08
GO:0098609	cell-cell adhesion	743	217	8.39E-08

GO:0051716	cellular response to stimulus	5982	1316	9.92E-08
CO:0025556	intracellular signal transduction	2169	524	1 26E 07
00:0055550	intracential signal transduction	2108	554	1.20E-07
GO:0048583	regulation of response to stimulus	3327	777	1.74E-07
GO:0051239	regulation of multicellular organismal process	2117	522	$1.84E_{-}07$
00.0031237	regulation of multicentular organismar process	2117	522	1.042-07
GO:0099537	trans-synaptic signaling	501	157	2.02E-07
GO:0099536	synantic signaling	522	162	2 28E-07
GO.0077550	synaptic signamig	1000	102	2.125 07
GO:0009888	tissue development	1239	329	2.43E-07
GO:0098916	anterograde trans-synaptic signaling	495	155	2.81E-07
GO 000 7 0(0		105	100	2.01E.07
GO:0007268	chemical synaptic transmission	495	155	2.81E-07
GO:0065007	biological regulation	10721	2221	3.01E-07
CO:0072250		720	211	2 (0E 07
GO:0072359	circulatory system development	129	211	3.09E-07
GO:0065008	regulation of biological quality	2937	692	5.65E-07
CO:0050704	regulation of callular process	0522	1002	7 40E 07
00.0030794	regulation of centular process	9525	1995	7.40E-07
GO:0007267	cell-cell signaling	1269	333	7.84E-07
GO:0003008	system process	1358	351	1.64E-06
00.0003008	system process	1550	551	1.042-00
GO:0007417	central nervous system development	584	173	2.68E-06
GO:0009987	cellular process	14783	2936	4 03E-06
GO.00000000	l process	1075	2750	1.05E 00
GO:0040011	locomotion	10/5	285	5.65E-06
GO:0050789	regulation of biological process	10085	2089	8.77E-06
GO 1005114		200	100	1.02E.05
GO:1905114	cell surface receptor signaling pathway involved in cell-cell	388	123	1.03E-05
	signaling			
GO-0020024	actin autockalaton organization	637	192	1 15E 05
00:0030030	actin cytoskeleton organization	057	105	1.13E-05
GO:0050804	modulation of chemical synaptic transmission	252	88	1.18E-05
GO-0030049	actin filament-based movement	113	/0	1 44E-05
00.0000040		115	77	1.445.05
GO:0099177	regulation of trans-synaptic signaling	253	88	1.46E-05
GO:0006812	cation transport	886	240	1.55E-05
GO.0000012		600	210	1.552 05
GO:0030001	metal ion transport	6/8	192	1.58E-05
GO:0010975	regulation of neuron projection development	288	97	1.61E-05
CO:0060047	heart contraction	107	70	1 90E 05
GO:0000047	neart contraction	10/	/0	1.80E-03
GO:0006811	ion transport	1187	307	1.99E-05
GO:0048518	positive regulation of biological process	5204	1158	2.05E.05
00.0048518	positive regulation of biological process	5294	1156	2.05E-05
GO:0034329	cell junction assembly	341	110	2.35E-05
GO:0032879	regulation of localization	1615	400	2 54E-05
00.0032877		1015	400	2.541-05
GO:0044057	regulation of system process	392	122	3.78E-05
GO:0007411	axon guidance	169	64	4 59E-05
CO:0007485		1(0)	61	4.505.05
GO:0097485	neuron projection guidance	169	64	4.59E-05
GO:0051179	localization	4343	964	4.59E-05
GO:0048522	positive regulation of cellular process	4704	1036	5 30E 05
00.0048322	positive regulation of centular process	4704	1030	5.50E-05
GO:0007507	heart development	338	108	5.46E-05
GO:0006936	muscle contraction	260	88	6.00E-05
00.0000/30	industrie contraction	200	00	0.00E-05
GO:0055085	transmembrane transport	1060	276	6.09E-05
GO:0034220	ion transmembrane transport	816	221	6 22E-05
GO.003 1220		210	102	6.24E 05
GO:0042391	regulation of memorane potential	519	105	0.34E-05
GO:0048523	negative regulation of cellular process	3896	872	6.65E-05
CO:0002015	heart process	102	70	7 52E 05
00.0003013	neart process	195	70	7.53E-05
GO:0007166	cell surface receptor signaling pathway	2271	536	8.29E-05
GO-0003012	muscle system process	305	90	8 73E-05
00.0000012	musele system process	1.00	,,	0.751-05
GO:1902531	regulation of intracellular signal transduction	1429	356	9.28E-05
GO:0061061	muscle structure development	407	124	1.07E-04
CO.0040012	regulation of locometi-	040	225	1 46E 04
60:0040012	regulation of locomotion	642	223	1.40E-04
GO:0098655	cation transmembrane transport	656	182	1.81E-04
GO-00/96/6	anatomical structure formation involved in morphogenesis	751	203	2 65E 04
00.0048040	anatomical subcture formation involved in morphogenesis	/51	203	2.03E-04
GO:0048519	negative regulation of biological process	4381	964	2.73E-04
GO:0048729	tissue morphogenesis	348	108	2 78F-04
00.0040729	ussue morphogeneois	10	100	2.701-04
GO:0007416	synapse assembly	126	50	2.85E-04
GO:0022603	regulation of anatomical structure morphogenesis	700	191	3.10E-04
CO.0051060		257	07	2 105 04
GO:0051960	regulation of nervous system development	257	85	3.10E-04
GO:0030334	regulation of cell migration	767	206	3.51E-04
GO:0050005	neuromuscular process	73	34	3 51E 04
00.0030903	neuromusculai process	15	54	5.51E-04
GO:0031589	cell-substrate adhesion	290	93	3.99E-04
GO:0050896	response to stimulus	7117	1503	4 02E-04
00.0000000		1111	1000	4.075.04
GO:0031344	regulation of cell projection organization	467	136	4.3/E-04
GO:0003013	circulatory system process	443	130	5.12E-04
CO.0005015		2121	400	5 405 04
GO:0065009	regulation of molecular function	2121	498	5.42E-04
GO:0006810	transport	3620	807	5.65E-04
GO-0120025	regulation of plasme membrane hounded cell prejection	152	120	624E04
00:0120035	regulation of plasma memorane bounded cell projection	435	152	0.34E-04
	organization			
GO:0008015	blood circulation	363	110	7 795-04
00.000013		303	110	
GO:0030111	regulation of Wnt signaling pathway	274	88	7.79E-04
GO:0007420	brain development	384	115	8.24E-04
22.3007 120	erain de verophient	201		

GO-2000145 regulation of cell motility 818 215 1.04E-03 GO-2000205 actin-mediade cell contraction 86 77 1.15F-03 GO-2000105 regulation of standing signal transduction 238 78 1.44E-03 GO-2001057 mervous system process 755 200 1.46E-03 GO-2001051 ergulation of standing menu process 667 247 1.46E-03 GO-2001963 regulation of development 962 1.8 1.65E-03 GO-2001963 regulation of development 402 1.18 1.74E-03 GO-2001963 regulation of development 402 1.18 1.74E-03 GO-2001667 earboida-types cell migration 1.33 101 2.14E-03 GO-20016167 earboida-types cell migration 1.42 5.2 2.76E-03 GO-20016167 regulation of transport 1.237 2.24 2.06E-03 GO-20007435 supamele anginization 1.10 1.88 3.17E-03 GO-20007435 supamote anginization 1.10	GO:0051130	positive regulation of cellular component organization	844	221	9.67E-04
GO:0006996 organelle organization 3147 708 1.048-03 GO:0001256 regulation of small GTPase mediated signal transduction 238 78 1.44E-03 GO:0001234 establishment of localization 3775 834 1.55E-03 GO:0001234 establishment of localization 3775 834 1.55E-03 GO:0000022 introganic directopment process 967 2.54 1.64E-03 GO:00001027 nerowise signal process 967 2.84 1.64E-03 GO:00001027 nerowise signaling pathway 795 2.18 1.64E-03 GO:00001667 nerowise signaling pathway 795 2.08 2.14E-03 GO:0000166 regulation of theart contraction 142 52 2.75E-03 GO:0000541 regulation of theart contraction 142 52 2.75E-03 GO:0000557 regulation of theart contraction 142 52 2.75E-03 GO:0000567 regulation of theart contraction 142 52 2.75E-03 GO:0000567 regulation of theart cont	GO:2000145	regulation of cell motility	818	215	1.04E-03
GO.007032 actio-mediate ell contraction 86 37 11.58-03 GO.008176 mervous system pracess 75 200 1.464-03 GO.008174 estabilishment of localization 37.75 83.4 1.558-03 GO.0081040 pervise system pracess 67 147 1.578-03 GO.0081041 pervise system pracess 67 147 1.658-03 GO.0081042 regulation of syrapse assembly 58 2.8 1.664-03 GO.00081047 embodial-types cell migration 33.3 101 2.148-03 GO.00081047 ergulation of syrapse assembly 58 2.38 2.696-03 GO.00081047 ergulation of transport 13.27 2.34 2.696-03 GO.00081049 regulation of transport 12.2 2.76E-03 3.27E-03 GO.0008505 regulation of transport 6.23 1.63 3.22E-03 GO.00085060 inorganic ion transmembrane transport 6.21 1.63 3.22E-03 GO.00085060 inorganic ion transmembrane regulation of synapse assembly	GO:0006996	organelle organization	3147	708	1.04E-03
C0.0001056 regulation of small GTPase mediated signal transduction 238 78 1.44E-03 C0.0000877 nervous system process 755 200 1.46E-03 C0.0000871 establishment of localization 3775 8.34 1.55E-03 C0.000084 eatablishment of localization 3775 1.55 1.65E-03 C0.0001072 introganic calon transmembrane transport 572 1.55 1.65E-03 C0.0001072 megulation of developmental growth 600 59 2.14E-03 C0.00001067 mechaid-space alling inpart of the art contraction 1.42 52 2.76E-03 C0.0000106 regulation of transport 1.32 52 2.76E-03 C0.000550 regulation of transport 1.42 52 2.76E-03 C0.000560 1.52E-03 C0.000560 1.68 3.22E-03 C0.000560 1.68 3.22E-03 C0.000560 1.68 3.22E-03 C0.000560 1.62E-03 C0.000560 1.62E-03 C0.000560 1.62E-03 C0.00057 3.34E-03 C0.000577 3.34E-03 <t< td=""><td>GO:0070252</td><td>actin-mediated cell contraction</td><td>86</td><td>37</td><td>1.15E-03</td></t<>	GO:0070252	actin-mediated cell contraction	86	37	1.15E-03
GO.008077 nervous system process 725 200 1.44.0.3 GO.000121 establishment of localization 3775 834 1.55E-03 GO.000182 cardiac mascle contraction 111 44 1.57E-03 GO.000182 inorganic cardion transmembrane transport 572 1.58 1.65E-03 GO.0001822 tead development 402 1.11 1.74E-03 GO.0001963 regulation of development 403 1.11 1.74E-03 GO.000017167 enzyme-inked receptor protein signaling pubway 795 208 2.18E-03 GO.00001904 strained mascle contraction 142 52 2.76E-03 GO.00005353 regulation of transport 112 281 2.82E-03 GO.00005363 muticellular contrastion 112 284 3.22E-03 GO.0000555 regulation of cell differentiation 112 284 3.22E-03 GO.0000556 regulation of cell differentiation 112 4.3 3.28E-03 GO.0000557 regulation and cell differentiation	GO:0051056	regulation of small GTPase mediated signal transduction	238	78	1.44E-03
GO0012143 establishment of localization 37/75 8.44 1.55E-03 GO0000044 positive regulation of developmental process 967 247 1.64E-03 GO001866 inorganic cation transmembrane transport 572 158 1.65E-03 GO001866 regulation of synapse assembly 58 2.8 1.65E-03 GO0001667 remotivation of developmenti 402 118 1.74E-03 GO0001667 enzyme-linked receptor protein signaling pathway 795 2.08 2.57E-03 GO00006116 regulation of developmentia growth 142 52 2.26E-03 GO00006106 regulation of end differentiation 1.127 2.8 2.82E-03 GO00005107 regulation of end differentiation 1.127 2.8 2.82E-03 GO00005107 molticultar organismia signaling 128 48 3.22E-03 GO00005860 inorganic ion transmembrane transport 622 168 3.22E-03 GO000058105 regulation of end communication 1374 3.33 3.80E-03 GO000099	GO:0050877	nervous system process	755	200	1.46E-03
GO:0000448 Cardia muscle contraction 111 44 1.5/12-03 GO:0015104 positive regulation of sympa assembly 53 2.8 1.66E 0.3 GO:0005122 head development 403 118 1.74E 0.3 GO:0005105 regulation of sympa assembly 53 2.8 1.69E 0.3 GO:0005107 enzyme-linked receptor protein signaling nutway 77 2.05 2.05E 0.3 GO:0005107 enzyme-linked receptor protein signaling nutway 775 2.08 2.276E 0.3 GO:00051049 regulation of ransport 1.32 2.2 2.76E 0.3 GO:0005414 strated muscle contraction 1.42 52 2.76E 0.3 GO:0005435 supranolecular fiber organization 1.12 2.8 2.82E 0.3 GO:0005435 supranolecular fiber organization 1.33 3.3 3.26E 0.3 GO:0005466 inorganic contrassembrane transport 1.33 9.5 4.16E 0.3 GO:000547 positive regulation of signal ransduction 1.33 9.5 4.16E 0.3 GO:000566	GO:0051234	establishment of localization	3775	834	1.55E-03
CO0011094 pontive regulation of developmentar 967 247 1.641-03 CO0008662 inorganic cation transmembrane transport 572 158 1.651-03 CO00015063 regulation of synapse assembly 58 2.85 1.651-03 CO0001667 anneboilal-type cell migration 333 101 2.148-03 CO0001667 anneboilal-type cell migration 1.67 59 2.158-03 CO0001607 enzyme-linked receptor protein signaling pathway 793 208 2.2578-03 GO0000410 regulation of fractrontraction 1.67 50 2.458-03 GO0000515 regulation of feat offfferentiation 1.12 2.81 2.828-03 GO000585 regulation of feat offfferentiation 1.12 2.3 2.47E-03 GO0005860 inorganic in transmembrane transport 622 1.68 3.22E-0.3 GO0004519 regulation of eactors plasma membrane 1.25 3.07 4.32E-0.3 GO0009860 inorganic inorganic morganic assignal transduction 1.33 9.5 4.16E-0.3	GO:0060048	cardiac muscle contraction	111	44	1.5/E-03
CO-003862 inorganic clauton insistementation emispion 572 128 1.63E-0.3 CO-001563 regulation of synapse assembly 58 2.8 1.69E-0.3 CO-001667 aneholial-type clamigation 333 101 2.14E-0.3 CO-001667 aneholial-type clamigation 333 101 2.14E-0.3 CO-0001667 aneholial-type clamisgation 167 59 2.18E-0.3 CO-0001609 regulation of heart contraction 142 52 2.76E-0.3 CO-0005537 multicellular or clamisport 1120 281 2.82E-0.3 CO-0007435 supramolecular fiber organization 110 188 3.17E-0.3 CO-0008460 inorganic ton transmembrane transport 623 1.66 3.3 3.80E-0.3 CO-0008450 regulation of eniorganicania signaling 112 48 3.22E-0.3 3.3 3.80E-0.3 CO-0008460 inorganic ion transmembrane transport 62 1.66 3.3 3.80E-0.3 CO-0008460 regulation of sioganit transduction 1.33 3.80E-0	GO:0051094	positive regulation of developmental process	967	247	1.64E-03
CO:001905 regulation of synapse assembly 58 25 1.092-13 $CO:0001867$ anneboidal-type cell migration 333 101 2.14E-0.3 $CO:0001867$ anneboidal-type cell migration 333 101 2.14E-0.3 $CO:0001867$ enzyme-linked receptor protein signaling pathway 795 208 2.17E-0.3 $CO:00081049$ regulation of heat contraction 142 52 2.76E-0.3 $CO:0008473$ supramolecular fiber organization 710 188 3.17E-0.3 $CO:0009735$ regulation of cell differentiation 1129 281 2.82E-0.3 $CO:00097860$ inorganic ion transmembrate transport 622 106 3.22E-0.3 $CO:00097860$ inorganic ion transport 131 95 4.16E-0.3 $CO:0009876$ regulation of signal trasduction 1374 333 380E-0.3 $CO:00099860$ inorganic cation inport across plasm amembrane 112 43 5.31E-0.3 $CO:0009970$ regulation of signaling 1067 265 5.93E-0.3	GO:0098062	inorganic cation transmemorane transport	572	158	1.05E-03
COUMD0222 thesi diversignment 402 110 1.14E-03 COUMD1667 methodial-type cell migration 133 101 2.14E-03 COUMD1667 enzyme-hined recorpt protein signaling pathway 75 208 2.19E-03 COUMD8016 regulation of least contraction 164 53 2.57E-03 COUMD8016 regulation of lifterentation 112 52 2.76E-03 COUMD8016 regulation of cell differentation 112 52 2.76E-03 COUMD8017 multicellular cognitization 710 188 3.37E-03 COUMD8017 multicellular cognitization 710 188 3.37E-03 COUMD8017 multicellular cognitization 710 188 3.37E-03 COUMD8018 regulation of cellopensis 308 9.4 3.66E-03 COUMD8016 positive explantion for cellopensis 313 35 4.16E-03 COUMD8016 positive explantion of cellopensis 313 35 4.16E-03 COUMD8016 positive explantion of cellopensine 112<	GO:0051963	regulation of synapse assembly	58 402	28	1.09E-03
CO-004103 anteronary per chr ingrandin 2.3 101 2.148-03 CO-0041053 enzyme-linked receptor protein signaling pathway 795 208 2.198-03 CO-00405016 regulation of developmental growth 1327 324 2.068-03 CO-00405016 regulation of transport 1327 324 2.068-03 CO-00405315 regulation of cell differentiation 1122 2.178-03 2.028-03 CO-00405353 regulation of cell differentiation 1128 3.178-03 2.028-03 CO-004053637 multicellular organismal signuling 128 4.48 3.208-03 CO-00405363 regulation of neurornasmiter levels 143 5.21 4.416-03 CO-00405498 embryonic morphogenesis 308 94 3.668-03 CO-00405498 embryonic morphogenesis 308 94 3.661-03 CO-00405498 embryonic morphogenesis 308 94 3.661-03 CO-0040599 norganic cation innaport 124 3 5.318-03 CO-0009966 positive regulat	GO:0000322	amphoidel turne cell migration	402	110	1.74E-03 2.14E-02
CO-0009160:b 100 50 2.182-03 CO-0008016 regulation of heart contraction 164 58 2.57E-03 CO-0008016 regulation of an transport 1327 324 2.69E-03 CO-0008014 striated muscle contraction 142 52 2.76E-03 CO-0007435 supramolecular fibre organization 710 188 3.17E-03 CO-0008660 inorganic ion transmembrane transport 622 168 3.22E-03 CO-0008660 inorganic ion transmembrane transport 622 168 3.22E-03 CO-0008660 embryonic morphogenesis 308 94 3.66E-03 CO-0008616 calcium ion transport 313 3.50E-03 60:0009956 Co-00098767 positiv regulation of signal transduction 1125 307 4.32E-03 CO-00098765 inorganic ion import across plasma membrane 112 43 5.31E-03 CO-00099790 eenbryo development 505 140 5.37E-03 CO-00099790 eenbryo development 505 5.93E-03 <td>GO:0001007</td> <td>regulation of developmental growth</td> <td>333 167</td> <td>50</td> <td>2.14E-05 2.18E-03</td>	GO:0001007	regulation of developmental growth	333 167	50	2.14E-05 2.18E-03
CO-00001001 Cityline integl texpol potent signing pathway 154 2.50 2.27E-03 CO-000051049 regulation of bransport 1327 324 2.09E-03 CO-000051049 regulation of transport 1327 324 2.09E-03 CO-0005395 regulation of cell differentiation 1129 281 2.82E-03 CO-00053637 multicellular organismal signaling 128 448 3.20E-03 CO-0005600 inorganic ion transmembrane transport 622 168 3.22E-03 CO-0005806 inorganic ion transmembrane transport 131 95 4.16E-03 CO-000516 celalution of neurotransmitter levels 143 52 4.41E-03 CO-0009719 response to endogenous simulus 1076 2.68 4.62E-03 CO-0009967 positive regulation of signal transduction 125 307 4.31E-03 CO-0009796 inorganic cation import across plasma membrane 112 43 5.31E-03 CO-0009796 inorganic cation import across plasma membrane 112 43 5.31E-03 <tr< td=""><td>GO:0007167</td><td>enzyme_linked recentor protein signaling pathway</td><td>795</td><td>208</td><td>2.18E-03</td></tr<>	GO:0007167	enzyme_linked recentor protein signaling pathway	795	208	2.18E-03
GO:0051049 regulation of transport 1327 324 2.69E.03 GO:00501041 strined muscle contraction 142 52 2.76E.03 GO:005735 regulation of cell differentiation 1129 2.81 2.82E.03 GO:0015567 multicellular organication 710 188 3.17E.03 GO:0005105 regulation of cell differentiation 129 2.8 4.8 3.20E.03 GO:0001505 regulation of regulation of ell communication 1374 333 3.80E.03 GO:0009565 chemical synaptic transmistor.postsynaptic 51 2.5 4.16E.03 GO:0009570 positive regulation of signal transduction 1374 33 3.80E.03 GO:0009570 positive regulation of signal transduction 125 377 4.32E.03 GO:0009587 inorganic cion import across plasma membrane 112 43 5.31E.03 GO:00095987 inorganic cion import across plasma membrane 112 43 5.31E.03 GO:0009597 negarive regulation of signal transduction 155 54 5.578.0	GO:0008016	regulation of heart contraction	164	58	2.17E-03
GG:0000641 striated muscle contraction 142 52 2.76E-03 GO:0045955 regulation of cell differernation 1129 281 2.82E-03 GO:007455 supranolecular fiber organization 710 188 3.17E-03 GO:0078660 inorganic ion transmembra transport 622 166 3.22E-03 GO:0001505 regulation of reurotransmitter levels 143 52 3.47E-03 GO:0008788 embryonic morphogenesis 308 94 3.66E-03 GO:0009877 positive regulation of signal transduction 1255 307 4.32E-03 GO:0009867 inorganic ion import across plasma membrane 112 43 5.31E-03 GO:0009867 inorganic ion import across plasma membrane 112 43 5.31E-03 GO:00098742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 GO:00098742 cell-cell adhesion of signaling 1067 265 6.57E-03 GO:00023057 regulation of signaling 1067 265 6.57E-03 GO:0002305	GO:0051049	regulation of transport	1327	324	2.57E-03
GO:0045905 regulation of cell differentiation 1129 281 2.82E-03 GO:007435 supramolecular fiber organization 710 188 3.17E-103 GO:000567 multicellular organismal signaling 128 448 3.22E-03 GO:0005105 regulation of neuronansmiter transport 622 166 3.22E-03 GO:00048598 embryonic morphogenesis 308 94 3.66E-03 GO:0008816 calcium ion transport 313 95 4.16E-03 GO:0009976 positive regulation of signal transduction 1255 307 4.32E-03 GO:0009976 positive regulation of signal transduction 112 43 5.31E-03 GO:00099786 inorganic caton import across plasma membrane 112 43 5.31E-03 GO:00097872 cell-cell adhesion via plasma-membrane 112 43 5.31E-03 GO:0009719 transmembrane receptor protein tyrosine kinase signaling 114 644E-03 GO:00097169 transmembrane receptor protein tyrosine kinase signaling 167 26 5.7E-03	GO:0006941	striated muscle contraction	142	524	2.07E-03
GG:0097435 sppramolecular fiber organization 710 18 3.17E-03 GO:0035637 multicellular organismal signating 128 48 3.22E-03 GO:009860 inorganic ion transmembrane transport 622 168 3.22E-03 GO:001455 regulation of neurotransmitter levels 143 52 3.47E-03 GO:000457 positive regulation of cell communication 1374 333 3.80E-03 GO:0009967 positive regulation of signal transduction 1225 307 4.32E-03 GO:0009865 chemical synaptic transmission, postynaptic 51 2.5 4.41E-03 GO:0009976 pespoase to endogenous stimulus 1076 2.68 4.62E-03 GO:0009797 inorganic cation import across plasma membrane 112 43 5.31E-03 GO:0009797 eeplovelopment 505 1.40 5.37E-03 GO:0009796 embryoic velopment 105 65 5.93E-03 GO:00023057 negalation of signaling 1067 265 6.57E-03 GO:0001508 ac	GO:0045595	regulation of cell differentiation	1129	281	2.70E 03
GG:0035637 multicellular organismal signaling 128 48 3.20E-03 GO:0093660 inorganic ion transmembrane transport 622 168 3.22E-03 GO:00150 regulation of neuronansmiter levels 143 52 3.47E-03 GO:001617 positive regulation of cell communication 1374 333 3.80E-03 GO:0009565 chemical synaptic transmission, postsynaptic 51 25 4.41E-03 GO:0009570 positive regulation of signal transduction 112 43 5.31E-03 GO:0009570 enoryson te on dogenous simulus 1076 268 4.62E-03 GO:0009570 enoryson te ondogenous simulus 1076 265 5.31E-03 GO:0009700 enbryo development 505 140 5.37E-03 GO:00007169 transmembrane receptor protein tyrosine knase signaling 1067 265 5.93E-03 GO:0003057 negative regulation of signaling 1067 265 6.57E-03 GO:000305807 regulation of signaling 1067 26 5.7E-03 GO:000	GO:0097435	supramolecular fiber organization	710	188	3.17E-03
GO:0098660 inorganic ion transmembrane transport G22 168 3.22E-03 GO:0001505 regulation of neuroransmitter levels 143 52 3.47E-03 GO:0001647 positive regulation of cell communication 1374 333 3.80E-03 GO:000967 positive regulation of signal transduction 1255 307 4.32E-03 GO:0009967 positive regulation of signal transduction 1255 307 4.32E-03 GO:00099719 response to endogenous stimulus 1076 268 4.62E-03 GO:00099879 inorganic caiton import across plasma membrane 112 43 5.31E-03 GO:00098679 inorganic caiton import across plasma membrane 112 43 5.31E-03 GO:0009719 transmembrane receptor protein tyrosine kinase signaling 511 141 6.44E-03 GO:0009767 negative regulation of signaling 1067 265 6.57E-03 GO:0020375 negative regulation of signaling 117 44 7.045E-03 GO:0020307 regulation of signaling 100 8.48E-03 <td< td=""><td>GO:0035637</td><td>multicellular organismal signaling</td><td>128</td><td>48</td><td>3.20E-03</td></td<>	GO:0035637	multicellular organismal signaling	128	48	3.20E-03
GO.0001505 regulation of neurotransmitter levels 143 52 3.47E-03 GO.001657 positive regulation of cell communication 1374 333 3.80E-03 GO.001667 positive regulation of signal transduction 1374 333 3.80E-03 GO.0009565 chemical synaptic transmission, postsynaptic 51 25 4.41E-03 GO.0009576 positive regulation of across plasma membrane 112 43 5.31E-03 GO.0009576 inorganic cation import across plasma membrane 112 43 5.31E-03 GO.0009790 embryo development 505 140 5.37E-03 GO.0009790 embryo development 505 140 5.37E-03 GO.0009790 embryo development 505 140 5.37E-03 GO.00023057 negatiation of signaling 1067 265 6.57E-03 GO.00023057 negatiation of signaling 117 44 7.54E-03 GO.00023056 positive regulation of signaling 1380 332 7.60E-03 GO.000508007 regulatio	GO:0098660	inorganic ion transmembrane transport	622	168	3.22E-03
GO.0048509 rembryonic morphogenesis 308 94 3.66E-03 GO.0010647 positive regulation of cell communication 1374 333 3.80E-03 GO.0009816 calcium ion transport 313 95 4.16E-03 GO.0009967 positive regulation of signal transduction 1255 307 4.32E-03 GO.0009956 chemical synaptic transmission, postsynaptic 51 25 4.41E-03 GO.00098659 inorganic conit inport across plasma membrane 112 43 5.31E-03 GO.00098742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 GO.00097169 transmembrane receptor protein tyrosine kinase signaling 511 141 6.44E-03 molecules molecules 60 6.57E-03 6.57E-03 GO.00023057 neglution of Signaling 1067 265 6.57E-03 GO.00023058 action potential 117 44 7.045E-03 GO.00023057 neglution of synapse organization 124 46 7.05E-03 GO.00023058	GO:0001505	regulation of neurotransmitter levels	143	52	3.47E-03
GO:0010647 positive regulation of cell communication 1374 333 3.80E-03 GO:0000816 calcium ion transport 313 95 4.16E-03 GO:0009976 positive regulation of signal transduction 1255 307 4.32E-03 GO:0009976 positive regulation of signal transduction 1255 307 4.32E-03 GO:00099565 chemical synaptic transmission, postsynaptic 51 25 4.41E-03 GO:00099587 inorganic calon import across plasma membrane 112 43 5.31E-03 GO:0009790 embryo development 505 140 5.37E-03 GO:0007169 transmembrane receptor protein tyrosine kinase signaling 511 141 6.44E-03 GO:00023057 negative regulation of signal ranso 1167 265 6.57E-03 GO:00023057 negulation of signal ranso 124 46 7.05E-03 GO:00023056 positive regulation of signaling 1380 332 7.60E-03 GO:00198738 cell-cell signaling by wth 343 101 8.47E-03	GO:0048598	embryonic morphogenesis	308	94	3.66E-03
GO:0006816 calcium ion transport 313 95 4.16E-03 GO:0009967 positive regulation of signal transduction 1255 307 4.32E-03 GO:0009965 chemical synaptic transmission, postsynaptic 51 25 4.41E-03 GO:0009865 inorganic cation import across plasma membrane 112 43 5.31E-03 GO:0009872 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 GO:0009719 transmembrane receptor protein tyrosine kinase signaling 511 141 6.44E-03 GO:0007169 transmembrane receptor protein tyrosine kinase signaling 1067 265 6.57E-03 GO:0002707 negative regulation of signaling 1067 265 6.57E-03 GO:00023057 negative regulation of signaling 1380 332 7.60E-03 GO:00023056 positive regulation of signaling 1380 332 7.60E-03 GO:001508 action potential 117 44 7.52 8.38E-03 GO:001508 gendritial cell migration 261 8.38E-03 <	GO:0010647	positive regulation of cell communication	1374	333	3.80E-03
GO:000010 Distive regulation of signal ransduction 125 302 41.02-05 GO:0009976 chemical synaptic transmission, postsynaptic 51 25 4.41E-03 GO:0009976 response to endogenous stimulus 1076 268 4.62E-03 GO:0009750 inorganic cation import across plasma membrane 112 43 5.31E-03 GO:00098742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 GO:00098742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 GO:00098742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 GO:00023057 negulation of signaling 1067 265 6.57E-03 GO:0023057 negulation of signaling 1067 265 6.57E-03 GO:0023056 positive regulation of signaling 117 44 7.54E-03 GO:0023056 positive regulation of signaling 138 63 6.84E-03 GO:001508 action potential 117 44 7.54E-03 GO:	GO:0010047	calcium ion transport	313	95	4.16E-03
GO:000976 positive regulation of signal ratiation 12.25 5.07 4.324-03 GO:0009765 chemical synaptic transmission, postsynaptic 51 2.5 4.41E-03 GO:0009787 inorganic ion import across plasma membrane 112 4.3 5.31E-03 GO:00098659 inorganic cation import across plasma membrane 112 4.3 5.31E-03 GO:0009700 embryo development 505 140 5.37E-03 GO:0009770 embryo development 505 5.93E-03 molecules nolecules	GO:0000810	positive regulation of signal transduction	1255	307	4.10E-03
GO:009710 Cleander Synaptic Units Storin possy mapping 37 2.5 4.7412-03 GO:0009719 inorganic ion import across plasma membrane 112 43 5.31E-03 GO:0009780 embryo development 505 140 5.37E-03 GO:0098742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 GO:00023057 negative regulation of signaling 1067 265 6.57E-03 GO:0023057 negative regulation of signaling 1067 265 6.57E-03 GO:00050807 regulation of signaling 138 63 6.84E-03 GO:00050807 regulation of signaling 1380 332 7.60E-03 GO:00051962 positive regulation of signaling 1380 332 7.60E-03 GO:0010631 epithelial cell imgration 261 81 8.86E-03 GO:0010631 epithelial cell imgration 261 81 9.86E-03 GO:0010631 regulation of cell imgration 21 18 9.75E-03 GO:0010633 regulation of cell imgratio	GO:0009907	chemical synaptic transmission, postsynaptic	51	25	4.52E-05 4.41E-03
GO:0009115 Tresponse to engined as summas 1070 205 4.021-03 GO:0099887 inorganic conimport across plasma membrane 112 43 5.31E-03 GO:0099872 cell-cell adhesion via plasma-membrane 105 140 5.37E-03 GO:0009712 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 GO:0002057 negative regulation of signaling 1067 265 6.57E-03 GO:0023057 negative regulation of signaling 1067 265 6.57E-03 GO:0023056 positive regulation of signaling 1380 332 7.60E-03 GO:001508 activin potential 117 44 7.54E-03 GO:001508 positive regulation of signaling 1380 332 7.60E-03 GO:001962 positive regulation of signaling 1380 101 & 8.47E-03 GO:0019738 cell-cell signaling by wnt 343 101 & 8.47E-03 GO:001031 epithelial cell migration 261 81 8.06E-03 GO:0010335 regulation o	GO:0099303	response to endogenous stimulus	1076	25	4.41E-03
00:009267 introganic action import across plasma membrane 112 4.3 5.31E-03 00:00986742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 00:0098742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 00:0098742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 00:0023057 negative regulation of signaling 1067 265 6.57E-03 00:0023057 negative regulation of signaling 1380 332 7.60E-03 00:0023056 positive regulation of signaling 1380 332 7.60E-03 00:0023056 positive regulation of signaling 1380 332 7.60E-03 00:0023056 positive regulation of signaling 1380 332 7.60E-03 00:0019373 cell-cell signaling by wnt 343 101 8.47E-03 00:0010631 epithelial cell migration 261 81 8.86E-03 00:0016358 dendrite development 129 47 9.61E-03 00:00300	CO:0009719	inorgania ion import across plasma membrana	112	208	4.02E-03
GO:0009790 embryo development 505 140 5.37E-03 GO:0009742 cell-cell adhesion via plasma-membrane adhesion 195 65 5.93E-03 GO:0007169 transmembrane receptor protein tyrosine kinase signaling 511 141 6.44E-03 C0:0023057 negative regulation of signaling 1067 265 6.57E-03 GO:00030807 regulation of synapse organization 124 46 7.05E-03 GO:0023056 positive regulation of signaling 1380 332 7.60E-03 GO:0023056 positive regulation of signaling system development 147 52 8.38E-03 GO:001908 action potential 117 44 7.54E-03 GO:001978 cell-cell signaling by wnt 343 101 8.47E-03 GO:00198738 cell-cell signaling by wnt 261 81 8.86E-03 GO:0016358 dendrite development 155 54 9.18E-03 GO:0016358 regulation of synapse structure or activity 129 47 9.61E-03 GO:0016315 reg	CO:0099387	inorganic ton import across plasma memorale	112	43	5.31E-03
GO:0009742 cell-cell adhesion via plasma-membrane adhesion molecules Jos	GO:0098039	ambrue development	505	43	5.31E-03
GO:009742 Cell-Cell aduestion via piasma-ineniorine aduestion 195 63 3.55E-03 GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 511 141 6.44E-03 GO:0023057 negative regulation of signaling 1067 265 6.57E-03 GO:00050807 regulation of synapse organization 124 46 7.05E-03 GO:00023056 positive regulation of signaling 1380 332 7.60E-03 GO:001508 action potential 117 44 7.54E-03 GO:001962 positive regulation of revous system development 147 52 8.38E-03 GO:0019738 cell-cell signaling by wnt 343 101 8.47E-03 GO:001631 epithelial cell migration 261 81 8.86E-03 GO:0016358 dendrite development 155 54 9.18E-03 GO:0004303 regulation of scli planeto-based movement 32 18 9.75E-03 GO:0004008 regulation of cell junction assembly 144 51 9.86E-03 GO:0004008<	GO:0009790	coll coll adhesion via plasma membrana adhesion	105	140	5.57E-05
GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 511 141 6.44E-03 (5.7E-03) GO:0023057 negative regulation of signaling 1067 265 6.57E-03 GO:1003522 regulation of signaling 1107 44 7.05E-03 GO:00050807 regulation of signaling 1380 3322 7.60E-03 GO:0023056 positive regulation of signaling 1380 3322 7.60E-03 GO:001508 action potential 117 44 7.54E-03 GO:001505 positive regulation of signaling by wnt 343 101 8.47E-03 GO:001631 epithelial cell migration 261 81 8.86E-03 GO:00163269 regulation of synapse structure or activity 129 47 9.61E-03 GO:0001515 regulation of synapse structure or activity 129 47 9.61E-03 GO:0001638 dendrite development 32 18 9.75E-03 GO:0007612 learning 53 25 1.00E-02 GO:0007612 learning <td< td=""><td>00:0098742</td><td>molecules</td><td>195</td><td>03</td><td>5.95E-05</td></td<>	00:0098742	molecules	195	03	5.95E-05
pathway GO:0023057 negative regulation of signaling 1067 265 6.57E-03 GO:1903522 regulation of signaling 118 63 6.84E-03 GO:00050807 regulation of signaling 117 44 7.54E-03 GO:0023056 positive regulation of signaling 1380 332 7.60E-03 GO:0023056 positive regulation of nervous system development 147 52 8.38E-03 GO:001962 positive regulation of ion transport 458 128 9.01E-03 GO:0010631 epithelial cell migration 261 81 8.86E-03 GO:0010635 dendrite development 155 54 9.18E-03 GO:00105080 regulation of scin filament-based movement 32 18 9.75E-03 GO:0001515 regulation of cell junction assembly 144 51 9.86E-03 GO:0001621 elarning 53 25 1.00E-02 GO:0001648 negative regulation of cell communication 1060 262 1.06E-02 GO:0001648	GO:0007169	transmembrane receptor protein tyrosine kinase signaling	511	141	6.44E-03
GO:0023057 negative regulation of signaling 1067 265 6.57E-03 GO:1903522 regulation of blood circulation 188 63 6.84E-03 GO:00050807 regulation of synapse organization 124 46 7.05E-03 GO:00050807 positive regulation of signaling 1380 332 7.60E-03 GO:001592 positive regulation of nervous system development 147 52 8.38E-03 GO:00198738 cell-cell signaling by wnt 343 101 8.47E-03 GO:001631 epithelial cell migration 261 81 8.86E-03 GO:001638 dendrite development 155 54 9.18E-03 GO:001638 regulation of actin filament-based movement 32 18 9.75E-03 GO:01050803 regulation of growth 416 118 9.86E-03 GO:0007612 learning 53 25 1.00E-02 GO:0002607 cellular component assembly 2547 575 1.03E-02 GO:0002607 celluloar moscle cell communication 1060<		pathway			
GC:1903522 regulation of blood circulation 188 63 6.84E-03 GO:0050807 regulation of synapse organization 124 46 7.05E-03 GO:0001508 action potential 117 44 7.54E-03 GO:0001508 positive regulation of signaling 1380 332 7.60E-03 GO:0051962 positive regulation of synapse organization 241 81 8.84E-03 GO:0010631 epithelial cell migration 261 81 8.86E-03 GO:0010358 dendrite development 155 54 9.18E-03 GO:0010358 dendrite development 155 54 9.18E-03 GO:001038 regulation of cell junction assembly 144 51 9.80E-03 GO:00104008 regulation of growth 416 118 9.86E-03 GO:0001020 carning 53 25 1.00E-02 GO:0002607 cellular component assembly 2547 575 1.03E-02 GO:0010648 negative regulation of cell comnunication 1060 262	GO:0023057	negative regulation of signaling	1067	265	6.57E-03
GC:0050807 regulation of synapse organization 124 46 7.05E-03 GO:0001508 action potential 117 44 7.54E-03 GO:0023056 positive regulation of signaling 1380 332 7.60E-03 GO:0198738 cell-cell signaling by wnt 343 101 8.47E-03 GO:0016031 epithelial cell migration 261 81 8.86E-03 GO:0001638 dendrite development 155 54 9.18E-03 GO:0001631 regulation of synapse structure or activity 129 47 9.61E-03 GO:0001638 dendrite development 32 18 9.75E-03 GO:1903115 regulation of actin filament-based movement 32 18 9.80E-03 GO:0002607 cellular component assembly 144 51 9.80E-03 GO:0002607 cellular component assembly 2547 575 1.03E-02 GO:0001648 negative regulation of cell communication 1060 262 1.06E-02 GO:0001064 negative regulation of cell communication	GO:1903522	regulation of blood circulation	188	63	6.84E-03
GO:0001508action potential11744 $7.54E-03$ GO:0023056positive regulation of signaling1380332 $7.60E-03$ GO:0051962positive regulation of nervous system development147 52 $8.38E-03$ GO:00198738cell-cell signaling by wnt343101 $8.47E-03$ GO:00128736epithelial cell migration26181 $8.68E-03$ GO:0043269regulation of ion transport458128 $9.01E-03$ GO:0050803regulation of actin filament-based movement3218 $9.75E-03$ GO:109115regulation of actin filament-based movement3218 $9.75E-03$ GO:0040008regulation of growth416118 $9.80E-03$ GO:0040008regulation of growth416118 $9.86E-03$ GO:0002607cellular component assembly2547575 $1.00E-02$ GO:0010648negative regulation of cell communication1060262 $1.06E-02$ GO:0001620cardiac muscle cell action potential7331 $1.16E-02$ GO:000130cardiac muscle cell action potential7331 $1.16E-02$ GO:0009130epithelium migration26381 $1.19E-02$ GO:0009266sensory organ morphogenesis11944 $1.21E-02$ GO:0009267neurotransmitter secretion9136 $1.45E-02$ GO:0009268sensory organ morphogenesis11944 $1.21E-02$ GO:0009269neurotransmitter secretion91 <td>GO:0050807</td> <td>regulation of synapse organization</td> <td>124</td> <td>46</td> <td>7.05E-03</td>	GO:0050807	regulation of synapse organization	124	46	7.05E-03
GC:0023056 positive regulation of signaling 1380 332 7.60E-03 GO:0051962 positive regulation of nervous system development 147 52 8.38E-03 GO:019738 cell-cell signaling by wnt 343 101 8.47E-03 GO:0043269 regulation of ion transport 458 128 9.01E-03 GO:0050803 regulation of synapse structure or activity 129 47 9.61E-03 GO:01903115 regulation of actin filament-based movement 32 18 9.75E-03 GO:0007612 learning 53 25 1.00E-02 GO:000648 negulation of cell ommunication 1060 262 1.00E-02 GO:0007612 learning 53 25 1.00E-02 GO:0000648 negulation of cell communication 1060 262 1.06E-02 GO:0007042 response to chemical 2943 656 1.07E-02 GO:00071495 cellular component assembly 267 82 1.17E-02 GO:00071495 cellularing pathway 37	GO:0001508	action potential	117	44	7.54E-03
GO:0051962 GO:0051963positive regulation of nervous system development14752 $8.38E-03$ GO:0198738cell-cell signaling by wnt343101 $8.47E-03$ GO:0010631epithelial cell migration26181 $8.86E-03$ GO:0016358dendrite development458128 $9.01E-03$ GO:0050803regulation of synapse structure or activity12947 $9.61E-03$ GO:00315regulation of cell junction assembly14451 $9.80E-03$ GO:0040008regulation of cell junction assembly14451 $9.80E-03$ GO:0007612learning5325 $1.00E-02$ GO:0002607cellular component assembly2547575 $1.03E-02$ GO:004028negative regulation of cell communication1060262 $1.06E-02$ GO:004221response to chemical2943656 $1.07E-02$ GO:0090130tissue migration26381 $1.19E-02$ GO:0090132epithelium migration26381 $1.19E-02$ GO:0007269neurotransmitter secretion9136 $1.45E-02$ <	GO:0023056	positive regulation of signaling	1380	332	7.60E-03
GC:0198738cell-cell signaling by wnt 343 101 $8.47E-03$ GO:0010631epithelial cell migration26181 $8.86E-03$ GO:0043269regulation of ion transport4581289.01E-03GO:005803regulation of synapse structure or activity129479.61E-03GO:1903115regulation of actin filament-based movement32189.75E-03GO:1901888regulation of cell junction assembly144519.80E-03GO:0040008regulation of growth4161189.86E-03GO:0007612learning53251.00E-02GO:001648negative regulation of cell communication10602621.06E-02GO:0042207cellular component assembly25475751.03E-02GO:004221response to chemical29436561.07E-02GO:0071495cellular response to endogenous stimulus9742431.17E-02GO:0090130tissue migration263811.19E-02GO:0007269neurotransmiter secretion91361.45E-02GO:0007269neurotransmiter secretion91361.45E-02GO:0007269neurotransmiter secretion91361.45E-02GO:0007269neurotransmiter secretion91361.45E-02GO:0007269neurotransmiter secretion91361.45E-02GO:0007269neurotransmiter secretion91361.45E-02GO:0009803calcium ion import a	GO:0051962	positive regulation of nervous system development	147	52	8.38E-03
GO:0010631epithelial cell migration26181 $8.86E-03$ GO:0043269regulation of ion transport458128 $9.01E-03$ GO:0016358dendrite development15554 $9.18E-03$ GO:0050803regulation of synapse structure or activity12947 $9.61E-03$ GO:1903115regulation of actin filament-based movement3218 $9.75E-03$ GO:0040008regulation of growth416118 $9.86E-03$ GO:0007612learning5325 $1.00E-02$ GO:0010648negative regulation of cell communication1060262 $1.06E-02$ GO:000710calluar component assembly2547575 $1.03E-02$ GO:000762response to chemical2943656 $1.07E-02$ GO:0010648negative regulation of cell communication1060262 $1.06E-02$ GO:00071495cellular response to endogenous stimulus 974 243 $1.17E-02$ GO:0090130tissue migration26381 $1.19E-02$ GO:00048738cardiac muscle tissue development13849 $1.34E-02$ GO:0007269neurotransmitter secretion9136 $1.45E-02$ GO:0048703signal release from synapse9136 $1.45E-02$ GO:0048703calcium ion import across plasma membrane3619 $1.76E-02$ GO:0048703calcium ion import across plasma membrane3619 $1.76E-02$ GO:0048703calcium ion import across plasma membrane	GO:0198738	cell-cell signaling by wnt	343	101	8.47E-03
GO:0043269 regulation of ion transport 458 128 9.01E-03 GO:0016358 dendrite development 155 54 9.18E-03 GO:0050803 regulation of synapse structure or activity 129 47 9.61E-03 GO:190188 regulation of actin filament-based movement 32 18 9.75E-03 GO:1901888 regulation of growth 416 118 9.80E-03 GO:0007612 learning 53 25 1.00E-02 GO:0010648 negative regulation of cell communication 1060 262 1.06E-02 GO:00402207 cellular component assembly 2547 575 1.03E-02 GO:0010648 negative regulation of cell communication 1060 262 1.06E-02 GO:0042221 response to chemical 2943 656 1.07E-02 GO:0090130 tissue migration 267 82 1.17E-02 GO:0090132 epithelium migration 263 81 1.19E-02 GO:0090596 sensory organ morphogenesis 119 44	GO:0010631	epithelial cell migration	261	81	8.86E-03
GO:0016358dendrite development155549.18E-03GO:0050803regulation of synapse structure or activity129479.61E-03GO:1903115regulation of actin filament-based movement32189.75E-03GO:1901888regulation of growth144519.80E-03GO:0007612learning53251.00E-02GO:0002607cellular component assembly25475751.03E-02GO:004008negative regulation of cell communication10602621.06E-02GO:0042221response to chemical29436561.07E-02GO:0071495cellular response to chemical73311.16E-02GO:0090130tissue migration267821.17E-02GO:00090132epithelium migration263811.19E-02GO:0007269neurotransmitter secretion91361.45E-02GO:0009043signal release from synapse91361.45E-02GO:004007growth5151401.52E-02GO:0040738cardiac muscle tissue development339991.47E-02GO:004007growth5151401.52E-02GO:004007growth5151401.52E-02GO:004007growth5151401.52E-02GO:004007growth5151441.91E-02GO:004007growth5151441.91E-02GO:0040075whit signaling pathway339991.47E-	GO:0043269	regulation of ion transport	458	128	9.01E-03
GO:0050803regulation of synapse structure or activity129479.61E-03GO:1903115regulation of actin filament-based movement32189.75E-03GO:1901888regulation of cell junction assembly144519.80E-03GO:0040008regulation of growth4161189.86E-03GO:0022607cellular component assembly25475751.03E-02GO:0010648negative regulation of cell communication10602621.06E-02GO:0042221response to chemical29436561.07E-02GO:00071495cellular response to chemical73311.16E-02GO:0090130tissue migration267821.17E-02GO:0090596sensory organ morphogenesis119441.21E-02GO:0007269neurotransmitter secretion91361.45E-02GO:0007269neurotransmitter secretion91361.45E-02GO:0009643signal release from synapse91361.45E-02GO:0040007growth5151401.52E-02GO:0048589development273831.55E-02GO:0048589development arrows plasma membrane36191.76E-02GO:0099003vesicle-mediated transport in synapse121441.91E-02GO:0007517muscle tissue development1445422.13E-02GO:0007517muscle organ development179592.24E-02	GO:0016358	dendrite development	155	54	9.18E-03
GO:1903115regulation of actin filament-based movement 32 18 $9.75E.03$ GO:1901888regulation of cell junction assembly 144 51 $9.80E.03$ GO:0040008regulation of growth 416 118 $9.86E.03$ GO:0007612learning 53 25 $1.00E.02$ GO:0010648negative regulation of cell communication 1060 262 $1.06E.02$ GO:001648negative regulation of cell communication 1060 262 $1.06E.02$ GO:001645cellular response to chemical 2943 656 $1.07E.02$ GO:0090130cissue migration 267 82 $1.17E.02$ GO:0090132epithelium migration 263 81 $1.9E.02$ GO:0007269neurotransmitter secretion 91 36 $1.45E.02$ GO:0009643signal release from synapse 91 36 $1.45E.02$ GO:00040007growth 515 140 $1.52E.02$ GO:00098703calcium ion import across plasma membrane 36 19 $1.76E.02$ GO:0009803vesicle-mediated transport in synapse 121 44 $1.91E.02$ GO:00098703calcium ion import across plasma membrane 36 19 $1.$	GO:0050803	regulation of synapse structure or activity	129	47	9.61E-03
GO:1901888 regulation of cell junction assembly 144 51 9.80E-03 GO:0040008 regulation of growth 416 118 9.86E-03 GO:0007612 learning 53 25 1.00E-02 GO:0022607 cellular component assembly 2547 575 1.03E-02 GO:0042221 response to chemical 2943 656 1.07E-02 GO:0071495 cellular response to endogenous stimulus 974 243 1.17E-02 GO:0090130 tissue migration 267 82 1.17E-02 GO:00090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:009655 Wnt signaling pathway 339 99 1.47E-02 GO:0040007 growth 515 140 1.52E-02 GO:009643 signal release from synapse 91 36 1.45E-02 GO:0099643 signaling pathway 339 99 1.47E-02 GO:0048589 <td>GO:1903115</td> <td>regulation of actin filament-based movement</td> <td>32</td> <td>18</td> <td>9.75E-03</td>	GO:1903115	regulation of actin filament-based movement	32	18	9.75E-03
GO:0040008 regulation of growth 416 118 9.86E-03 GO:0007612 learning 53 25 1.00E-02 GO:0010648 negative regulation of cell communication 1060 262 1.06E-02 GO:0042221 response to chemical 2943 656 1.07E-02 GO:00986001 cardiac muscle cell action potential 73 31 1.16E-02 GO:0090130 tissue migration 267 82 1.17E-02 GO:0090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:00904007 growth 515 140 1.52E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0040007 growth 515 140 1.52E-02 GO:0099033 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02	GO:1901888	regulation of cell junction assembly	144	51	9.80E-03
GO:0007612 learning 53 25 1.00E-02 GO:0022607 cellular component assembly 2547 575 1.03E-02 GO:0010648 negative regulation of cell communication 1060 262 1.06E-02 GO:0042221 response to chemical 2943 656 1.07E-02 GO:0086001 cardiac muscle cell action potential 73 31 1.16E-02 GO:0090130 tissue migration 267 82 1.17E-02 GO:0090132 epithelium migration 263 81 1.19E-02 GO:0007269 sensory organ morphogenesis 119 44 1.21E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0048738 cardiac muscle tissue development 138 49 1.34E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0048589 developmental growth 515 140 1.52E-02 GO:009903 vesicle-mediated transport in synapse 121 44 1.91E-02	GO:0040008	regulation of growth	416	118	9.86E-03
GO:0022607 cellular component assembly 2547 575 1.03E-02 GO:0010648 negative regulation of cell communication 1060 262 1.06E-02 GO:0042221 response to chemical 2943 656 1.07E-02 GO:0071495 cellular response to endogenous stimulus 974 243 1.17E-02 GO:0090130 tissue migration 267 82 1.17E-02 GO:0090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0090596 neurotransmitter secretion 91 36 1.45E-02 GO:0090543 signal release from synapse 91 36 1.45E-02 GO:0040077 growth 515 140 1.52E-02 GO:0098703 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0099003 vesicle-mediated transport in synapse 121	GO:0007612	learning	53	25	1.00E-02
GO:0010648 negative regulation of cell communication 1060 262 1.06E-02 GO:0042221 response to chemical 2943 656 1.07E-02 GO:0086001 cardiac muscle cell action potential 73 31 1.16E-02 GO:0090130 tissue migration 267 82 1.17E-02 GO:0090132 epithelium migration 263 81 1.19E-02 GO:0090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0048738 caclium ion import across plasma membrane 36 1.9E-02 GO:0046007 growth 515 140 1.52E-02 GO:0098703 calcium ion import across plasma membrane 36 19 1.76E-02 GO:009903 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:009903 vesicle-mediated transport in synapse 121 44 1.91E	GO:0022607	cellular component assembly	2547	575	1.03E-02
GO:0042221 response to chemical 2943 656 1.07E-02 GO:0086001 cardiac muscle cell action potential 73 31 1.16E-02 GO:0071495 cellular response to endogenous stimulus 974 243 1.17E-02 GO:0090130 tissue migration 267 82 1.17E-02 GO:0090132 epithelium migration 263 81 1.9E-02 GO:009056 sensory organ morphogenesis 119 44 1.21E-02 GO:0097269 neurotransmitter secretion 91 36 1.45E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0048788 developmental growth 515 140 1.52E-02 GO:0048589 developmental growth 273 83 1.55E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-0	GO:0010648	negative regulation of cell communication	1060	262	1.06E-02
GO:0086001 cardiac muscle cell action potential 73 31 1.16E-02 GO:0071495 cellular response to endogenous stimulus 974 243 1.17E-02 GO:0090130 tissue migration 267 82 1.17E-02 GO:0090132 epithelium migration 263 81 1.19E-02 GO:0090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0048589 developmental growth 515 140 1.52E-02 GO:0098703 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0014706 striated muscle tissue development 1444<	GO:0042221	response to chemical	2943	656	1.07E-02
GO:0071495 cellular response to endogenous stimulus 974 243 1.17E-02 GO:0090130 tissue migration 267 82 1.17E-02 GO:0090132 epithelium migration 263 81 1.19E-02 GO:0090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0048589 developmental growth 515 140 1.52E-02 GO:0098703 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:007517 muscle organ development 179 59	GO:0086001	cardiac muscle cell action potential	73	31	1.16E-02
GO:0090130 tissue migration 267 82 1.17E-02 GO:0090132 epithelium migration 263 81 1.19E-02 GO:0090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0048738 cardiac muscle tissue development 138 49 1.34E-02 GO:0099643 signal release from synapse 91 36 1.45E-02 GO:0040007 growth 515 140 1.52E-02 GO:0048589 developmental growth 273 83 1.55E-02 GO:0099003 vesicle-mediated transport arcss plasma membrane 36 19 1.76E-02 GO:009003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0071495	cellular response to endogenous stimulus	974	243	1.17E-02
GO:0090132 epithelium migration 263 81 1.19E-02 GO:0090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0048738 cardiac muscle tissue development 138 49 1.34E-02 GO:0097269 neurotransmitter secretion 91 36 1.45E-02 GO:0099643 signal release from synapse 91 36 1.45E-02 GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0040007 growth 515 140 1.52E-02 GO:0048589 developmental growth 273 83 1.55E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0090130	tissue migration	267	82	1.17E-02
GO:0090596 sensory organ morphogenesis 119 44 1.21E-02 GO:0048738 cardiac muscle tissue development 138 49 1.34E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0099643 signal release from synapse 91 36 1.45E-02 GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0040007 growth 515 140 1.52E-02 GO:0048589 developmental growth 273 83 1.55E-02 GO:0099003 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0090132	epithelium migration	263	81	1.19E-02
GO:0048738 cardiac muscle tissue development 138 49 1.34E-02 GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0099643 signal release from synapse 91 36 1.45E-02 GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0040007 growth 515 140 1.52E-02 GO:0048589 developmental growth 273 83 1.55E-02 GO:0099003 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0090596	sensory organ morphogenesis	119	44	1.21E-02
GO:0007269 neurotransmitter secretion 91 36 1.45E-02 GO:0099643 signal release from synapse 91 36 1.45E-02 GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0040007 growth 515 140 1.52E-02 GO:0048589 developmental growth 273 83 1.55E-02 GO:0099003 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0048738	cardiac muscle tissue development	138	49	1.34E-02
GO:0099643 signal release from synapse 91 36 1.45E-02 GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0040007 growth 515 140 1.52E-02 GO:0048589 developmental growth 273 83 1.55E-02 GO:0098703 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0007269	neurotransmitter secretion	91	36	1.45E-02
GO:0016055 Wnt signaling pathway 339 99 1.47E-02 GO:0040007 growth 515 140 1.52E-02 GO:0048589 developmental growth 273 83 1.55E-02 GO:0098703 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0099643	signal release from synapse	91	36	1.45E-02
GO:0040007 growth 515 140 1.52E-02 GO:0048589 developmental growth 273 83 1.55E-02 GO:0098703 calcium ion import across plasma membrane 36 19 1.76E-02 GO:0099003 vesicle-mediated transport in synapse 121 44 1.91E-02 GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0016055	Wnt signaling pathway	339	99	1.47E-02
GO:0048589developmental growth273831.55E-02GO:0098703calcium ion import across plasma membrane36191.76E-02GO:0099003vesicle-mediated transport in synapse121441.91E-02GO:0014706striated muscle tissue development144502.13E-02GO:0016310phosphorylation14443422.13E-02GO:007517muscle organ development179592.24E-02	GO:0040007	growth	515	140	1.52E-02
GO:0098703calcium ion import across plasma membrane36191.76E-02GO:0099003vesicle-mediated transport in synapse121441.91E-02GO:0014706striated muscle tissue development144502.13E-02GO:0016310phosphorylation14443422.13E-02GO:007517muscle organ development179592.24E-02	GO:0048589	developmental growth	273	83	1.55E-02
GO:0099003vesicle-mediated transport in synapse121441.91E-02GO:0014706striated muscle tissue development144502.13E-02GO:0016310phosphorylation14443422.13E-02GO:007517muscle organ development179592.24E-02	GO:0098703	calcium ion import across plasma membrane	36	19	1.76E-02
GO:0014706 striated muscle tissue development 144 50 2.13E-02 GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0099003	vesicle-mediated transport in synapse	121	44	1.91E-02
GO:0016310 phosphorylation 1444 342 2.13E-02 GO:0007517 muscle organ development 179 59 2.24E-02	GO:0014706	striated muscle tissue development	144	50	2.13E-02
GO:0007517 muscle organ development 179 59 2.24E-02	GO:0016310	phosphorylation	1444	342	2.13E-02
	GO:0007517	muscle organ development	179	59	2.24E-02

GO:0034762	regulation of transmembrane transport	385	109	2.30E-02
GO:0006836	neurotransmitter transport	137	48	2.39E-02
GO:0044087	regulation of cellular component biogenesis	774	197	2.41E-02
GO:0086003	cardiac muscle cell contraction	62	27	2.50E-02
GO:0007611	learning or memory	115	42	2.61E-02
GO:0009968	negative regulation of signal transduction	1009	248	2.74E-02
GO:0090257	regulation of muscle system process	157	53	2.86E-02
GO:0035249	synaptic transmission, glutamatergic	66	28	3.09E-02
GO:0060560	developmental growth involved in morphogenesis	135	47	3.44E-02
GO:0002009	morphogenesis of an epithelium	275	82	3.61E-02
GO:0007264	small GTPase mediated signal transduction	389	109	3.61E-02
GO:0002027	regulation of heart rate	84	33	3.80E-02
GO:0043542	endothelial cell migration	194	62	3.82E-02
GO:0051668	localization within membrane	570	150	4.30E-02
GO:0086091	regulation of heart rate by cardiac conduction	41	20	4.31E-02
GO:0060828	regulation of canonical Wnt signaling pathway	211	66	4.44E-02
GO:0051965	positive regulation of synapse assembly	35	18	4.46E-02
GO:0048588	developmental cell growth	129	45	4.73E-02
GO:0099504	synaptic vesicle cycle	114	41	4.75E-02
GO:0042127	regulation of cell population proliferation	1218	291	4.82E-02
GO:0050890	cognition	156	52	4.83E-02
GO:0007158	neuron cell-cell adhesion	16	11	4.94E-02
), 75 for CO	SMIC (Appendix Table B 8) and 25 for	or CLINVA	AR (Appen	dix Table B 9).

Among the COSMIC enrichments were synapse organization, axonogenesis, neuron projection guidance, axon guidance, cell-substrate adhesion, neuromuscular process, regulation of neuron projection development, and xenobiotic glucuronidation. One example gene is the App transcript, which is involved in synapse formation and function in the developing brain. The App transcript is transported to neuronal dendrites, where the transmembrane APP protein plays an integral role in synapse formation and function. However, the translation of App is repressed by the binding of the Fragile X Mental Retardation protein (FMRP) to G-quadruplexes in the App coding region. This repression is thought to occur through direct interaction with the ribosomes, resulting in stalled ribosomal progression on the mRNA (180). Past studies have also shown that this repression can be relieved by synaptic activation of metabotropic glutamate receptors, specifically mGluR5 receptors. This results in the release of FMRP and an increase in APP translation (181).

The CLINVAR enrichments included a number of muscular-related processes, such as striated muscle contraction, neuromuscular process, actin-mediated cell contraction,

cardiac conduction, cardiac muscle cell action potential, cardiac muscle cell contraction, membrane depolarization, regulation of actin filament-based movement, muscle tissue morphogenesis, muscle organ morphogenesis, regulation of heart rate, regulation of action potential, cardiac muscle cell action potential involved in contraction, cell communication involved in cardiac conduction, regulation of striated muscle contraction, sensory perception of sound, regulation of heart rate by cardiac conduction, musculoskeletal movement, multicellular organismal movement, transmission of nerve impulse, cardiac muscle tissue morphogenesis, skeletal muscle contraction, and ventricular cardiac muscle cell action potential. Variants leading to a gain of a G4 result in 115 GO:BP enrichments overall (Appendix Table B 10), 22 for COSMIC (Error! Reference source not found.) and 2 for CLINVAR (Appendix Table B 11). Among the COSMIC enrichments from genes gaining G4 due to the variants are positive regulation of transcription by RNA polymerase II and actin cytoskeleton organization while the CLINVAR enrichments genes based on loss of G4 include system development, action potential, and cardiac muscle cell action potential. Loss of G4 using COSMIC resulting in similar enriched GO terms as did G4 loss in CLINVAR, included muscle contraction, muscle system process, cardiac muscle contraction, striated muscle contraction, heart contraction, heart process, cardiac muscle cell contraction, cardiac muscle cell action potential involved in contraction, actinmediated cell contraction, actin filament-based movement, cardiac muscle cell action potential, regulation of heart contraction, action potential, and multicellular organismal signaling.

Among the enriched categories detected were PDZ domain proteins (GIPC2, GRIDZIP, LIMK2, PDLIM7, PDZD7, WHRN, SIPA1L3, PRX, MYO1BA, MAGI2, and MAST)

96

with G4 in coding regions and variants affecting the RGG (arginine-glycine-glycine) domain or G quadruplex stability negatively. Proteins with RGG repeats have been known to bind to G4 structures. Variants in these regions affecting the G4 stability further could affect downstream binding.

GO:CC enrichments yield 128 significant categories overall (129 for COSMIC and 14 for CLINVAR) (Appendix Figure B 4; Appendix Figure B 5, Appendix Figure B 6, Appendix Table B 12). Among the enriched GO:CC categories detected in COSMIC are collagen containing extracellular matrix, and cell-cell contact zone indicating mutations in these genes affect the adhesion of cells to the extracellular matrix. Other enriched GO:CC terms in CLINVAR include I band, sarcolemma, and myofilament Z disc. Enriched GO:CC terms from loss of G4 using CLINVAR database include collagen trimer and PCSK9-LDLR complex.

4.4.6.2 KEGG metabolic pathways.

KEGG enrichment yielded 96 significant pathways overall as well as 91 COSMIC and 11 CLINVAR (Appendix Figure B 7, Appendix Figure B 8, Appendix Figure B 9). Those leading to a loss of G4 yielded 33 significant categories, including 12 and 5 for COSMIC and CLINVAR, respectively (Appendix Table B 17, Appendix Table B 18 & Appendix Table B 19). Among the enriched categories for genes with loss of G4 within CLINVAR are hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, adrenergic signaling in cardiomyocytes, and acute myeloid leukemia. KEGG enrichments for a gain of G4 resulted in 31, 3, and 0 for overall, COSMIC and CLINVAR respectively (Appendix Table B 20 & Appendix Table B 21). The enriched

terms from gain of G4 in CLINVAR variants are melanoma, phospholipase D signaling pathway and cocaine addiction.

4.4.6.3 INTERPRO protein domains.

INTERPRO enrichment yielded 23, 23, and 2 enrichments overall, for COSMIC and CLINVAR respectively. (Appendix Table B 22, Appendix Table B 23 & Appendix Table B 24). Included were Src homology-3 domain (n=69 FDR=3.73E-03) and Pleckstrin homology-like domain (PH) (n=147, FDR=1.30E-10). The binding affinity of PH domains with the exception for some binding phosphoiniositides with high affinity, majority have unique recognition domains and are known for functional plasticity (182, 183).

4.4.6.4 Transcription Factors.

We identified the enrichment of transcription factors (TFs) including NFKB1, ZFX, MBD3, ASX1, SUZ12, NCOR1, HMGN3, USF2, EGR1, GTF2F1, KDM4B, HNRNPH1, HNRNPL, NONO, TARDBP, NFATC3, KDM3A, and HOXA3 among others (Appendix Figure B 10, Appendix Figure B 11, Appendix Figure B 12; Appendix Table B 25). The majority (92%) of these had at least a G quadruplex in their gene structure working in a feed forward regulation of genes. We identified these variants break the motifs for transcription binding sites.

4.4.7 Trinucleotide context mutation in G quadruplex sequence

Based on the nucleotide context one base pair before and after the mutation, we identified 79% of the variants to be affecting the loop region and 23% of the SNV after the change leads to the formation of GGG in regions with G(A|C|T)G. We find 36% (n=6,810) of the transversion mutations are T→G, while 21% (n=4,070) of the transitions are A→G. This change becomes more prominent, T→G mutations occurring in context of GTG→GGG

occurs in 14% of the SNVs leading to formation of stable G tetrad while $GAG \rightarrow GGG$ occurs as 6% of the variants. Interestingly, the destabilization of GGG region occurs by $GGG \rightarrow GAG$ transition in 11% of SNVs (Figure 4-5e). Previously, it has been reported that the GGG exhibits context dependent specific mutational patterns that preserve the potential for G4 formation (184). We find $G \rightarrow A$ mutations to be approximately 29% of the total SNVs in the selected G quadruplex regions, with 26% (n=4,144; 11% of the total) of those variants occurring in a context of $GGG \rightarrow GAG$ with implications of alteration mechanism for G quadruplex sequences (). We observe these patterns throughout different noncoding annotations, except exonic regions and CDS regions. We identify an increased propensity to be able to form stable multiple conformations with de-stabilized structures for 25% of the sequences with the variants while 14% of the variants incurred no change to the stability of the structure (Appendix Table B 26). This approach of analyzing the probable base pairing alternatives for additional guanine Hoogsteen base pairing can help identify the effects of variants within the G4 structure and hence predict the structure change and functionality of G quadruplex in various molecular processes.

Based on the position of the mutation in the G quadruplex from the starting point and the length of the sequence, the normalized position for each variant in the G quadruplex was calculated. The relative location of a variant in a G4 is defined as the position of variant divided by the length of the G4. For single nucleotide variants mutating to G either from A or T, we find similar elevated patterns in the center of the G quadruplex. $T|A\rightarrow G$ mutations show conservation of guanine in the center region with the exception of the CDS and exon in both template and non-template strand across both COSMIC and CLINVAR databases (Figure 4-5, Supplemental Figures 13-16). These changes are stricter for SNVs

within the 5'UTR across the template and non-template strand in the CLINVAR database, where we observe mutations in the relative center of the G quadruplex for $T \rightarrow G$ variants as compared to the 5' UTR COSMIC mutations where we observe mutations across the two extreme loops compared to the center. A \rightarrow G mutations are observed in a higher proportion at the beginning of G quadruplex in CDS region which provides evidence for mutation pressure in the coding region preferentially protecting the coding sequence. G quadruplexes in UTRs have been reported to be under selection pressure and variants in G4 can account for instability in G4 and diseases (185).

4.5 DISCUSSION

4.5.1 Variants involved in oxidation

High occurrences of oxidized guanine in G quadruplex structures compared to duplex DNA has been previously established (186). The mutation has been suggested to occur around the external tetrads compared to the central tetrad due to radical trapping antioxidants that slow the efficiency of mutation (187). We identify an increase in counts at the middle stacking of the G quadruplex for $A|T\rightarrow G$, implying the functional impact of types of specific variants towards the conformation of the G quadruplex. The observed elevation in counts can be accounted for the presence of tetrads available for variants from guanine to A, C and T. G quadruplex with spare tires can also form alternate structures or exclusion of certain guanosines in case of lesions or substitution in one tetrad region. Base excision repair with APP1 and OGG1 at the promoter of VEGF has shown this mechanism for formation of G quadruplex and this suggests formation of G quadruplex for other genes through a similar mechanism (188, 189). Oxidative stress occurring due to the reactive oxygen species (ROS) affects the genome stability and promote mutagenesis, senescence,

and other age-related diseases (190). Mutations in GGG regions can destabilize the stacking of guanines, altering the ionization potential affecting the ability of the G region to be further oxidized. $G \rightarrow A$, T or C mutations can disrupt the stacking while mutations to G can further stabilize the G quadruplex or allow additional conformations for the stacking. We investigated the change of each type of SNV in each annotation to have the highest change. Based on absolute Δ MFE based on the change, we find pG4 in CDS region and CpG region are least prone to the variants while enhancers and Intergenic G4 are prone to higher stabilizing and destabilizing due to the variants (Figure 4-4A, Appendix Figure B 17). G quadruplexes in 3' UTR in the same strand of coding genes along with introns are prone to the variants and are highly stabilized or destabilized by the variants occurring in COSMIC.

We investigated which SNVs in each annotation had the highest change. The 3' UTR has a higher incidence of $T\rightarrow G$ versus $A\rightarrow G$ SNVs. This implies that $T\rightarrow G$ mutations are more likely to stabilize G quadruplexes found in the 3'UTR. Putative G4s in CDS and CpG regions are least prone to variants while enhancers and intergenic G4 are show higher changes in stabilization (both stabilizing and destabilizing) due to the SNVs (Appendix Figure B 17A, Supplemental Figure 17).

4.5.2 Role of location of SNVs in G4s

The relative position of $G \rightarrow T$ substitutions along G quadruplex sequences is shown in Figure 4-5A. The location of this mutation at the beginning of the G quadruplex can disrupt the structural formation; however, further elevated peaks at varying locations leading to additional guanines across the G4 may introduce additional tetrads in introns and exons (Figure 4-5 C and D).

The observation of an increased number of G quadruplex stacks resulting from $G \rightarrow T|A$ substitutions that break up longer runs of G's is consistent with studies that oxidation of the multiple G's occur at the start of the G quadruplex tetrads. Our results help establish that the location of mutations and the type of mutation in G rich regions alter the shape and stability of the G quadruplex structure. Previously it has been established that the most sensitive sites are located at the center tetrad (191). For mutations in CLINVAR, we observe a higher mutation rate at the start of G4. The $A \rightarrow G$ mutations associated with COSMIC variants show a considerable difference in their location relative to the G4 position (Figure 4-5). The escape of 8-oxoG from DNA repair during DNA replication can cause the misincorporation of adenine opposite 8-oxoG leading to the addition of T in place of G. For instance, a sequence with GTTAGGG with 8-oxoG at its fifth position, a misincorporation of the A occurs opposite G. Due to the presence of consistent Gs in the region, the true proportions of change in these regions can be hard to monitor over a range of replications. Methylation of cytosine leads to formation of 5-methyl cytosine which are residues for spontaneous transitions. Cytosine deamination might be the primary cause of $C \rightarrow T$ transition. Further, based on the context, a high proportion of $T \rightarrow G$ mutations lead to a GTG \rightarrow GGG structure, supporting the stability of the G quadruplex. It presents a question of whether $T \rightarrow G$ mutations confer additional stability of G4 in cancer cells. Past studies have highlighted the conditional impact of OG mutations in base pairing with A in mutagenic MutY homolog harboring increased $G \rightarrow T$ transversions in MUTYH leading to a higher incidence rate of colorectal cancer (192-194). Thymine glycol are non-mutagenic lesions which are highly mutagenic and in regions of DSBs, are cytotoxic. In vitro studies have shown it to block replicative and repair DNA polymerases (195). The OG, thymine

glycol and abasic sites formed are repaired by the excision repair pathway. The difference in repair of oxoG sites have been observed in NEIL glycolyases which have been known to remove guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) from G quadruplex structures in promoter region over parallel conformation (196). However, the glycolysases were not able to remove the oxoG structure from the telomeric G quadruplex or the same G quadruplex structure in antiparallel structures.

4.5.3 TERT G4 mutations

A study has highlighted that the entire 67 bp G quadruplex associated with the TERT promoter was found to be completely protected from DNase cleavage while the version containing $G \rightarrow T$ variants was found to be degraded into discrete segments (197, 198). Additionally, this region folds into a compact G4 structure without any hairpins in between the G quadruplex stacks. However, based on DMS footprinting studies, formation of hairpins has been predicted (199). Overall, we identified 52 possible SNVs in 39 base pair locations in this 67 bp G quadruplex. The SNV chr5:1,295,113 (G \rightarrow T) located in the TERT region is present around a G quadruplex in the non-template strand. The SNV was associated with more than twenty-two cancer types including central nervous system, liver, bladder, ovarian, breast, kidney lung, bone, pancreatic, among others. Many of these SNVs destabilize G quadruplexes. Further, with nine tetrads (GGG repeats present) multiple G4 can potentially be formed. With a SNV (G \rightarrow A), We find the G quadruplex stability with the variant to differ if alternate G4 tetrads are used for the stacking.

4.5.4 Transcription factor binding

Transcription factor proteins (TFs) known to bind G rich regions including SP1 (200), NF- κ B (201), CREB (202), and the methyl-CpG binding domain MBD of methyl-CpG binding

protein 2 (MeCP2) (203) had decreased association constants up to 10 fold for transcription factor sites with change of guanine to 8-oxoguanine in model duplex DNA with the donor acceptor pattern change on the imidazole ring in guanine compared to OG. The structure change for guanine for association with CREB was found have a role in epigenetic repression (202). This is supported with our results highlighting reversal of these sequences to a stabilized G4 by change through T \rightarrow G region in cancer cells. For instance, the variant chr10:122,143,482: G \rightarrow A significantly affects the binding sites of TFs NHLH1, FOXO3, TAL1, TP53, HES5, HES7, USF2, EGR3, ZNF740, and SP1 among others (Appendix Table B 25). We observe similar observations for an additional 424 SNVs which occur in at least five cancer types in the COSMIC database and disrupt the TF binding site with an average of 15.1 TF per variant (Appendix Table B 27).

Local network cluster (STRING) analysis of the enriched TFs yielded terms related to PRC1 complex (4/12 FDR 0.00049) and PcG protein complex (6/25, FDR 6.22e-06), PcG protein complex, and positive regulation of histone H3-K27 methylation (11/59 FDR 1.82 e-10). Polycomb repressive Complex (PRC1) engage in transcriptional control through chromatin modification with histone 2A through a protein ligase Ubiquitylation (204, 205). Although the mechanism of PRC1 is under active investigation, recent evidence suggests role of G tracts to selectively remove PCR2 complex from genes during gene activation (206). Polycomb complexes have been associated with repression to maintain cell identity but are associated with actively transcribed loci, and this evidence suggest direct role of G quadruplexes across cell types to regulate expression through structural variation. GO cellular component analysis for the TFs found enriched terms related to Brahma complex, (3/3 FDR 0.00079), Ino80 complex (5/15 FDR 5.35e-05) which are different complexes associated with chromatin remodelling.

Different repair mechanisms including BER, and mismatch repair are required for protecting non-canonical or mismatch base pairs due to polymerase error. Neurogenerative disorders occurring through expansion of CAG \rightarrow CTG repeats have been associated with MutS β , a heterodimer involved in mismatch repair. Though the involvement of G quadruplexes in gene transcription and telomere regulation has been studied and proven, the mechanism of base excision repair by DNA glycosylases in G quadruplex and other non-canonical structures is poorly understood. We identified G quadruplexes with SNVs in the genes of CHRNG, GRIN2C, CHAT, ADCY1, GABRG3, CACNG3, PPFIA3, LRTOMT, VAMP2, TSPOAP1, MAPK3, GABRR2, KCNJ6, PICK1, and STX1A, among others. These genes have been associated with several psychiatric disorders, schizophrenia, Bipolar Disorder, Tobacco Use Disorder, Parkinson's disease, and autism.

Previous research has shown the presence of G quadruplex sequences in various untranslated dendritic mRNAs suggesting the role of G quadruplexes as a neurite localization signal. Deletion of different putative G quadruplex sequence led to severe loss of signal in neurites. It has been hypothesized that the G quadruplex structure being sensitive to cationic, can function in correlation to the neuronal activity in localization and transport as activity dependent changes. Cationic sensitivity could influence the stability and structure and regulate the binding of trans-acting factors (207).

4.6 CONCLUSION

G quadruplexes are formed because of an intricate balance between the folding energy by a nick in the DNA, methylated guanines, and guanines available for stacking. The balance between the hypomethylated and hypermethylated G rich regions near promoters (despite cytosine deamination and cytosine methylation) results in the preserved regions of CpG islands are observed across mammalian genome (208). These previously identified regions as CpG islands can be the preserved G quadruplex regions. Further, methylated guanines CpG islands have been identified within the genes (209) and the methylation susceptibility constraints the G quadruplex formation. We hypothesize these methylation and oxidation patterns are one mechanism by which G quadruplexes can preserve their sequence conformation and the variants occurring in these regions alter the molecular functions downstream.

With the introduction of next generation techniques for identification of G quadruplexes, analysis of variants in these complex region and mechanism of formation of G-quadruplex in different cell types remains uncertain. Our study points out a subset of different genes and G quadruplexes sequences which are affected in cancer cells and consequences of secondary structure forming regions with a nucleotide level investigation. G quadruplex formed in genomic regions participate in gene regulatory pathways to alter gene expression and downstream pathways. Based on large accumulation of published studies, we identify the possible effects of these single nucleotide variants occurring on coding and non-coding regions on the stability of G quadruplexes.

Table 4-1 Count/Proportion of Effect of type of mutation on stability of G4 (COSMIC database)

Type of SNV	Effect of SNV on MFE	Freq	Percentage
Transition	Destabilized	8600	22.93
Transversion	Further stabilized	6603	17.60
Transition	no change	6552	17.46
Transversion	Destabilized	6419	17.11
Transversion	no change	5509	14.68
Transition	Further stabilized	3832	10.21

SNV	3'	5' UTR	CDS	CpG	Enhancer	EXO	Intergeni	INTRO	IncRNA	PROM
	UTR			Islands	S	Ν	c	Ν	GENCOD	OTERS
									Ε	
G→A	34.82	31.23	39.34	27.58	19.01	35.18	27.84	26.74	28.27	26.87
$G \rightarrow T$	18.3	14.82	15.84	12.01	12.08	16.6	17.15	14.56	14.89	13.64
T→G	12.67	16.48	8.59	16.78	29.84	11.74	18.38	19.91	18.15	18.95
$C \rightarrow T$	11.13	8.24	12.19	12.23	5.68	11.35	7.94	9.06	10.46	8.89
A→G	7.62	10.83	6.91	9.56	12.61	8	11.38	11.49	9.89	10.98
G→C	5.16	6.05	4.69	6.27	7.28	5.09	6.89	6.3	6.23	6.51
C→G	3.66	4.85	4.47	7.69	6.75	4.33	3.47	4.59	4.56	6.34
C→A	2.76	2.99	4.11	3.85	1.42	3.65	1.95	2.6	2.73	3.3
T→C	2.15	1.66	1.79	2	2.13	1.96	1.67	2.1	2.13	2.07
T→A	0.7	0.86	0.84	0.67	0.89	0.81	1.27	1	1.17	0.82
A→T	0.59	1.2	0.72	0.75	1.6	0.76	1.12	0.94	1	0.85
A→C	0.45	0.8	0.51	0.62	0.71	0.52	0.94	0.72	0.53	0.77

Table 4-2 Proportion of SNV by annotation.

CHAPTER 5 G4-SAMUHA

The identification of G quadruplex sequences in DNA is of great interest in bioinformatics and has become an important field of research. G quadruplexes are secondary structures formed by guanine-rich DNA sequences, which play important roles in various biological processes such as transcriptional regulation, replication, and telomere maintenance. Several tools have been developed to predict G quadruplex sequences from DNA sequences, but most of these tools are based on sequence patterns and lack specificity. In this chapter, we present a bioinformatics tool named "G-samuha" which is developed to identify putative G quadruplex sequences present in DNA sequences and compare against existing G quadruplex sequences to identify network of similar G4 sequences. This tool is developed using the R Shiny web browser and is based on Hidden Markov Model (HMM) profiles.

5.1 Methodology

G4-samuha is a user-friendly web-based tool that takes in input a DNA sequence or a G quadruplex sequence as a string or fasta file. The tool named "G4-samuha" is designed to identify putative G quadruplex sequences in DNA sequences using a combination of regular expression pattern and Hidden Markov Model (HMM) profiles. The tool takes an input DNA sequence or fasta file and searches it against a regular expression pattern to identify potential G quadruplex sequences. Then, each putative G quadruplex sequence is input into the tool, which uses HMM profiles, developed in an earlier chapter, to obtain log odds scores for each sequence against each profile. The HMM profiles are designed to identify the loop sequences and patterns that are present in G quadruplex structures. The tool then provides the nearest families of each input based on the loop sequence of the G quadruplex and pattern. The output is presented as a table that displays the predicted G

quadruplex sequences along with their loop sequences, patterns, and their corresponding HMM profiles. To develop the HMM profiles, a training set of G quadruplex sequences was used. The training set was obtained from multiple clustering tools (CD-HIT,DNACLUST, MESHCLUST, and a combination of Starcode and BLAST with hierarchical clustering), which were further trained based on the arrangement of Guanine tetrads and loops in each cluster. The sequences present in the database in experimentally annotated based on G4 identified from from GEO, accession GSE63874 (83).The sequences were aligned using DECIPHER package, and the loop sequences and patterns were extracted using custom scripts. The HMM profiles were then built using the aphid package in R.

5.2 Results and Discussion

The tool was also able to identify putative G quadruplex sequences similar to the training families in the input sequences. For G quadruplex sequences with short loops, the families of identified sequences could be redundant, and hence a confidence score comparing the sequence homology of the specific sequence against all families is provided which can support the uniqueness of each sequence to one or multiple families.

Based on the Hidden markov model generated using the multiple sequence alignment, users can upload fasta file or directly input DNA sequences to identify putative G quadruplex sequences based on sequence parsing of repeats of guanine interspersed by nucleotide loops. For all the potential G-quadruplex identified, the tool searches through all the model, and identifies the model with highest log odds score.

Figure 5-1 Screenshot of Multiple sequence alignment of Family 1 in the tool. User can search for specific families based on the training model

Figure 5-2 Screenshot of Multiple sequence alignment of Family 1 in the tool. User can search for specific families based on the training model

The HMM profiles used by G-samuhaare specific to G quadruplex loops and patterns, which increases the specificity of the tool. The use of HMM profiles also allow the tool to identify G quadruplexes with varying loop lengths and patterns. The tool is also user-friendly and can be used by researchers with limited bioinformatics experience.

Figure 5-3 Screenshot using an example input of putative G-quadruplex repeat in G4 Samuha

Put	ative G4	Sequen	ces															
			sequ	uence_posit	ion 🕴	sequence								sec	uence_length	•	ID	
1					1	GGGTGGGTGG	GAGGG								1	.5 .9	seq_1	
2					1	GGGTGGGAGG	GGATGGG								1	.6 9	seq_2	
3					1	GGGAGGGATG	GGACGCT	ACGGG							2	2 9	seq_3	
4					1	GGGATGGGAC	GCTACGG	GTGCGGCAG	GG						2	8 9	seq_4	
Showi	ng 1 to 4 of 4 er	ntries													Previo	ıs	1	Next
1 2	input_ID seq_1 seq_2	\$ so	ource 🔶 1 1	V1 GGGTGGGGT GGGTGGGGA	GGGAGG	GG GG	چ 0. 0.	selectedsofti .89746928699 .65738531330	max 2122 2645	newakw 0.65413535 0.61286818	33757962	best 1 42	t_model	 logo 7.362 5.873 	oddsbyakw 74267305106 1108288206	÷	famil Family Family	ly ∲ 1 47
3	seq_3		1	GGGAGGGA	IIGGGAU	GCTACGGG	0.	.98357461664	9129	0.98826455	464361	31		5.725	65922901893		Family	_42
onsensus		iures	G		5	9		6		10	G	G			15	15		Next

Figure 5-4 Screenshot showing results of putative G-quadruplex and log odds score for each sequence for a family in G4 Samuha

seq (group_id*	seqnames (start ()	end	width.y	strand	V1 0	V3	V5	loops (loops_n (loops_length	rowid	annotation 0	geneChr	geneStart	geneEnd	geneLength	geneStrand	geneld (transcriptId	distanceToTSS
GOGTTGGGTGGGGAGGG	Family_1	chr1	161740154	161740170	17		dr1	4:1:1	÷	A_T_TT	3	2,1,1	same.region_3402	Distal Intergenic	1	161749758	161757238	7481	1	11266	uc057mbr.1	-9588
GOGTOGOGTOGOGAGOG	Family_1	chr1	205386179	205386195	17		chr1	41:1	·	A_T_T	3	1.1.1	same.region_3964	Exon (uc001hch.1/284576, exon 4 of 4)	1	205373252	205387440	14189	1	284576	uc001hch.1	12927
GSSGTGSGTGSGSAGSG	Family_1	chr10	48457982	48457998	17		dhr10	41:1	÷	K,T,T	3		same.region_5102	Intron (uc001jgt.5/58504, intron 5 of 9)	10	48446036	48451627	5592	2	58504	uc057tdc.1	-6355
GEGCTEGETEGEGAEGE	Family_1	dr12	52868119	52868135	17	•	dhr12	4:1:1	+	CT_T_A	3	2,1,1	same.region_10187	Distal Intergenic	12	52844604	52849092	4489	2	196374	uc058oiw.2	-19027
GEGETGEGTGEGEAGEG	Family_1	chr12	63541515	63541531	17	•	chr12	4:1:1	+	T_T_A	3	цці	same.region_10472	Distal Intergenic	12	63560059	63569469	9411	2	283417	uc058qia.1	27938
GESCTOOSTOGGGAGGG	Family_1	chr15	33645878	33645894	17		chr15	4:1:1	÷	CT_T_A	3	2_1_1	same.region_13835	Intron (uc001zhi.4/6263, intron 28 of 103)	15	33820717	33821334	618	1	6263	uc059hfm.1	-174823
000000000000000000000000000000000000000	Family_1	chr2	109504910	109504926	17	•	dhr2	4:1:1	÷	CT_T_A	3	2,3,3	same.region_26519	Distal Intergenic	2	109542916	109613927	70942	2	151011	uc002tex.5	109001
GSSCTOSGTOGGGAGGG	Family_1	chr22	32964037	32964053	17	•	dv22	41:1	·	CT_T_A	3	2_1_1	same.region_31016	Intron (uc003amu:4/8224, intron 3 of 13)	22	32930995	32947579	16585	2	8224	uc062doi.1	-16458
GEEGTGEGTGEGGAEEG	Family_1	chr4	109249434	109249450	17	•	dr4	4:1:1	÷	T_T_A	3	1.1.1	same.region_35186	Intron (uc062yyd.1/84570, intron 3 of 36)	4	108810721	109302367	491647	2	84570	ud062yyd.1	52917
ODGTTOOGTGOGGADGG	Family_1	chr7	2121712	2121728	17		chr7	4:1:1	•	A,T,T	3	2_3_3	same.region_39524	Intron (uc064ayk.1/8379, intron 9 of 16)	7	1900406	2109601	129116	2	8379	uc064ays.1	-12111

Figure 5-5 Screenshot showing results of G4 Samuha for specific families identified. More than 50 fields relating to each families along with gene information, distance to Transcription Start Site (TSS) and thermodynamic profiles obtained from RNAfold for all training and predicted sequences is present

Figure 5-6 Illustration of pG4 sequences in human genome (hg38) with Log odds score and Confidence(Akaike) score The points above the abscissa represent the G4 sequences with families identified by the 95 families present in the model. The right side of the ordinate represent the unique sequences with the first quadrant highlighting the unique

sequences identified by the models provided through this method. The fourth quadrant represents the sequences unique but not identified by the models

5.3 Conclusion

In conclusion, we have developed a bioinformatics tool named "G-samuha" that can identify putative G quadruplex sequences present in DNA sequences. The tool is based on HMM profiles and is specific to G quadruplex loops and patterns. The tool is user-friendly and can be used by researchers with limited bioinformatics experience. The use of this tool will enable researchers to identify G quadruplex sequences in their DNA sequences, which can be used for further analysis and experimental validation.

CHAPTER 6 CONCLUSION AND FUTURE WORK

In conclusion, the project on G quadruplexes has successfully identified clusters of G quadruplexes with the aid of experimental evidence. This has led to the development of models of G quadruplexes, which have been incorporated into a R shiny tool called G-Samuha. This tool provides log odds scores for the nearest identified families along with annotations of existing families. Furthermore, an exciting avenue for future research involves the identification and analysis of G quadruplex structural variants and their impact on the structure. This research holds the potential to provide us with a deeper understanding of the regions of potential mutation across the G quadruplex region. In turn, such knowledge can inform the development of drugs and treatments that target G quadruplexes, which could have far-reaching implications for various fields. Structural evidence of binding with transcription factors and G-quadruplex complexes, such as minor groove width and electrostatic potential, can also be utilized to better understand the properties and functions of G quadruplexes. Moving forward, a promising avenue for further research is the application of the Viterbi algorithm to identify more G4 structures. This algorithm can be trained on structural parameters, such as minor groove width and electrostatic potential, to identify new G quadruplex structures with high accuracy. With continued advancements in our understanding of G quadruplexes, we can further explore their potential in various fields, including drug design and disease treatments. G quadruplexes are becoming increasingly recognized as important genomic and epigenetic elements, and their role in biological processes is being actively researched. The identification of G quadruplex structural variants and their impact on the structure has the potential to inform the development of drugs and treatments that target G quadruplexes, which could be used to treat a wide range

of diseases, including cancer and neurological disorders. Developing drugs that target G quadruplexes could potentially lead to the discovery of new therapies for cancer, as well as a range of other diseases. The unique properties of G quadruplexes make them ideal for building new nanostructures, which could be used in applications such as drug delivery and biosensors. My work on G quadruplex can support to improve the target of such drugs based on the identified families.

REFERENCES

- 1. Openstax, in "OpenStax Anatomy and Physiology". (2018).
- 2. R. E. Franklin, R. G. Gosling, Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 172, 156-157 (1953).
- 3. R. Lorenz et al., RNA Folding Algorithms with G-Quadruplexes. BSB 7409, 49-60 (2012).
- 4. J. L. Huppert, S. Balasubramanian, Prevalence of quadruplexes in the human genome. Nucleic acids research 33, 2908-2916 (2005).
- 5. A. Bedrat, L. Lacroix, J.-L. Mergny, Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic acids research 44, 1746-1759 (2016).
- 6. M. Yano, Y. Kato, Using hidden Markov models to investigate G-quadruplex motifs in genomic sequences. BMC Genomics 15, S15-S15 (2014).
- O. Kikin, L. D'Antonio, P. S. Bagga, QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Research 34, W676-W682 (2006).
- 8. J. Eddy, N. Maizels, Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Research 34, 3887-3896 (2006).
- 9. H. M. Wong, O. Stegle, S. Rodgers, J. L. Huppert, A toolbox for predicting gquadruplex formation and stability. Journal of nucleic acids 2010, 564946-564946 (2010).
- V. k. Yadav, J. K. Abraham, P. Mani, R. Kulshrestha, S. Chowdhury, QuadBase: Genome-wide database of G4 DNA - Occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Research 36, 381-385 (2008).
- 11. J. Hon, T. Martínek, J. Zendulka, M. Lexa, pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics (Oxford, England) 33, 3373-3379 (2017).
- 12. J.-M. Garant, J.-P. Perreault, M. S. Scott, Motif independent identification of potential RNA G-quadruplexes by G4RNA screener. Bioinformatics (Oxford, England) 33, 3532-3537 (2017).
- 13. A. B. Sahakyan et al., Machine learning model for sequence-driven DNA Gquadruplex formation. Scientific Reports 7, 1-11 (2017).
- 14. E. Belmonte-Reche, J. C. Morales, G4-iM Grinder: when size and frequency matter. G-Quadruplex, i-Motif and higher order structure search and analysis tool. NAR Genom Bioinform 2, lqz005 (2020).
- 15. H. B. Cagirici, H. Budak, T. Z. Sen, G4Boost: a machine learning-based tool for quadruplex identification and stability prediction. BMC Bioinformatics 23, 240 (2022).
- 16. A. K. Todd, S. Neidle, Mapping the sequences of potential guanine quadruplex motifs. Nucleic Acids Res 39, 4917-4927 (2011).

- 17. F. Wu et al., Genome-wide analysis of DNA G-quadruplex motifs across 37 species provides insights into G4 evolution. Communications Biology 4, 98-98 (2021).
- 18. R. Zhang, Y. Lin, C. T. Zhang, Greglist: a database listing potential G-quadruplex regulated genes. Nucleic Acids Res 36, D372-376 (2008).
- 19. S. K. Mishra, A. Tawani, A. Mishra, A. Kumar, G4IPDB: A database for Gquadruplex structure forming nucleic acid interacting proteins. Sci Rep 6, 38144 (2016).
- 20. Q. Li et al., G4LDB: a database for discovering and studying G-quadruplex ligands. Nucleic Acids Res 41, D1115-1123 (2013).
- 21. Y. H. Wang et al., G4LDB 2.2: a database for discovering and studying Gquadruplex and i-Motif ligands. Nucleic Acids Res 50, D150-D160 (2022).
- K. A. Gan, S. Carrasco Pro, J. A. Sewell, J. I. Fuxman Bass, Identification of Single Nucleotide Non-coding Driver Mutations in Cancer. Front Genet 9, 16 (2018).
- 23. F. Chen, Y. Zhang, C. J. Creighton, Systematic identification of non-coding somatic single nucleotide variants associated with altered transcription and DNA methylation in adult and pediatric cancers. NAR Cancer 3, zcab001 (2021).
- 24. S. Abramov et al., Landscape of allele-specific transcription factor binding in the human genome. Nat Commun 12, 2751 (2021).
- 25. J. Zhao, D. Li, J. Seo, A. S. Allen, R. Gordan, Quantifying the Impact of Noncoding Variants on Transcription Factor-DNA Binding. Res Comput Mol Biol 10229, 336-352 (2017).
- 26. A. Kahles et al., Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell 34, 211-224 e216 (2018).
- 27. M. Zarrei, J. R. MacDonald, D. Merico, S. W. Scherer, A copy number variation map of the human genome. Nat Rev Genet 16, 172-183 (2015).
- 28. H. J. Abel et al., Mapping and characterization of structural variation in 17,795 human genomes. Nature 583, 83-89 (2020).
- 29. G. Federici, S. Soddu, Variants of uncertain significance in the era of highthroughput genome sequencing: a lesson from breast and ovary cancers. J Exp Clin Cancer Res 39, 46 (2020).
- 30. N. Sharma, G. R. Cutting, The genetics and genomics of cystic fibrosis. J Cyst Fibros 19 Suppl 1, S5-S9 (2020).
- 31. C. Souchay, M. Padula, M. Schneider, M. Debbane, S. Eliez, Developmental trajectories and brain correlates of directed forgetting in 22q11.2 deletion syndrome. Brain Res 1773, 147683 (2021).
- 32. J. Cortes-Martin et al., Deletion Syndrome 22q11.2: A Systematic Review. Children (Basel) 9, (2022).
- 33. L. Verges et al., An exploratory study of predisposing genetic factors for DiGeorge/velocardiofacial syndrome. Sci Rep 7, 40031 (2017).
- 34. M. D. Gallagher, A. S. Chen-Plotkin, The Post-GWAS Era: From Association to Function. Am J Hum Genet 102, 717-730 (2018).
- 35. E. Cano-Gamez, G. Trynka, From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases. Front Genet 11, 424 (2020).

- 36. S. Bamford et al., The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British Journal of Cancer 91, 355-358 (2004).
- 37. M. J. Landrum et al., ClinVar: improving access to variant interpretations and supporting evidence. Nucleic acids research 46, D1062-D1067 (2018).
- 38. L. Phan et al., dbVar structural variant cluster set for data analysis and variant comparison. F1000Res 5, 673 (2016).
- 39. M. Pan et al., Novel LOVD databases for hereditary breast cancer and colorectal cancer genes in the Chinese population. Hum Mutat 32, 1335-1340 (2011).
- 40. K. Ganesan, A. Kulandaisamy, S. Binny Priya, M. M. Gromiha, HuVarBase: A human variant database with comprehensive information at gene and protein levels. PLoS One 14, e0210475 (2019).
- 41. H. Biggs, P. Parthasarathy, A. Gavryushkina, P. P. Gardner, ncVarDB: a manually curated database for pathogenic non-coding variants and benign controls. Database (Oxford) 2020, (2020).
- 42. L. Clarke et al., The 1000 Genomes Project: data management and community access. Nat Methods 9, 459-462 (2012).
- 43. T. Rognes, T. Flouri, B. Nichols, C. Quince, F. Mahe, VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
- 44. J. D. Thompson, D. G. Higgins, T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680 (1994).
- 45. E.-E. T. Online. (2020).
- 46. S. Lago et al., Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nature communications 12, 1-13 (2021).
- 47. R. Hänsel-Hertsch et al., Landscape of G-quadruplex DNA structural regions in breast cancer. Nature genetics 52, 878-883 (2020).
- 48. G. Biffi, D. Tannahill, J. Miller, W. J. Howat, S. Balasubramanian, Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PloS one 9, e102711 (2014).
- 49. G. Liu et al., RNA G-quadruplex regulates microRNA-26a biogenesis and function. Journal of Hepatology 73, 371-382 (2020).
- 50. E. Wang, R. Thombre, Y. Shah, R. Latanich, J. Wang, G-Quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Research 49, 4816-4830 (2021).
- 51. G. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian, Quantitative visualization of DNA G-quadruplex structures in human cells. Nature Chemistry 5, 182-186 (2013).
- 52. H. Fernando et al., Genome-wide analysis of a G-quadruplex-specific single-chain antibody that regulates gene expression. Nucleic Acids Research 37, 6716-6722 (2009).
- 53. F. Kouzine et al., in G-Quadruplex Nucleic Acids. (Springer, 2019), pp. 369-382.
- 54. B. Ruttkay-Nedecky et al., G-quadruplexes as sensing probes. Molecules 18, 14760-14779 (2013).

- 55. A. K. Todd, S. Neidle, The relationship of potential G-quadruplex sequences in cis-upstream regions of the human genome to SP1-binding elements. Nucleic acids research 36, 2700-2704 (2008).
- 56. J. H. Chariker, D. M. Miller, E. C. Rouchka, Computational analysis of Gquadruplex forming sequences across chromosomes reveals high density patterns near the terminal ends. PloS one 11, e0165101 (2016).
- 57. R. Hänsel-Hertsch et al., G-quadruplex structures mark human regulatory chromatin. Nature genetics 48, 1267-1272 (2016).
- 58. A. Risitano, K. R. Fox, Influence of loop size on the stability of intramolecular DNA quadruplexes. Nucleic Acids Research 32, 2598-2606 (2004).
- 59. G. Sattin et al., Conformation and stability of intramolecular telomeric Gquadruplexes: sequence effects in the loops. PLoS One 8, e84113 (2013).
- 60. R. Tippana, W. Xiao, S. Myong, G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic acids research 42, 8106-8114 (2014).
- 61. A. Guédin, A. De Cian, J. Gros, L. Lacroix, J.-L. Mergny, Sequence effects in single-base loops for quadruplexes. Biochimie 90, 686-696 (2008).
- 62. Y. Y. Li, D. N. Dubins, D. M. N. T. Le, K. Leung, R. B. Macgregor Jr, The role of loops and cation on the volume of unfolding of G-quadruplexes related to HTel. Biophysical Chemistry 231, 55-63 (2017).
- 63. Y. Y. Li, R. B. Macgregor Jr, A thermodynamic study of adenine and thymine substitutions in the loops of the oligodeoxyribonucleotide HTel. The Journal of Physical Chemistry B 120, 8830-8836 (2016).
- 64. A. Piazza et al., Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. The EMBO journal 34, 1718-1734 (2015).
- 65. P. A. Rachwal, T. Brown, K. R. Fox, Sequence effects of single base loops in intramolecular quadruplex DNA. FEBS letters 581, 1657-1660 (2007).
- 66. P. Hazel, J. Huppert, S. Balasubramanian, S. Neidle, Loop-Length-Dependent Folding of G-Quadruplexes. Journal of the American Chemical Society 126, 16405-16415 (2004).
- S. Lago, E. Tosoni, M. Nadai, M. Palumbo, S. N. Richter, The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochimica et Biophysica Acta (BBA)-General Subjects 1861, 1371-1381 (2017).
- 68. K. Takahama, C. Sugimoto, S. Arai, R. Kurokawa, T. Oyoshi, Loop lengths of Gquadruplex structures affect the G-quadruplex DNA binding selectivity of the RGG motif in Ewing's sarcoma. Biochemistry 50, 5369-5378 (2011).
- 69. F. Bolduc, J.-M. Garant, F. Allard, J.-P. Perreault, Irregular G-quadruplexes found in the untranslated regions of human mRNAs influence translation. Journal of Biological Chemistry 291, 21751-21760 (2016).
- 70. K. W. Lim et al., Sequence variant (CTAGGG) n in the human telomere favors a G-quadruplex structure containing a G· C· G· C tetrad. Nucleic acids research 37, 6239-6248 (2009).
- 71. K. W. Lim et al., Structure of the human telomere in K+ solution: a stable baskettype G-quadruplex with only two G-tetrad layers. Journal of the American Chemical Society 131, 4301-4309 (2009).

- 72. V. T. Mukundan, A. T. Phan, Bulges in G-quadruplexes: broadening the definition of G-quadruplex-forming sequences. Journal of the American Chemical Society 135, 5017-5028 (2013).
- 73. J.-M. Garant, J.-P. Perreault, M. S. Scott, Motif independent identification of potential RNA G-quadruplexes by G4RNA screener. Bioinformatics 33, 3532-3537 (2017).
- 74. J. Hon, T. Martínek, J. Zendulka, M. Lexa, pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics 33, 3373-3379 (2017).
- 75. O. Doluca, G4Catchall: A G-quadruplex prediction approach considering atypical features. Journal of Theoretical Biology 463, 92-98 (2019).
- 76. J.-M. Garant, M. J. Luce, M. S. Scott, J.-P. Perreault, G4RNA: an RNA Gquadruplex database. Database 2015, (2015).
- 77. A. R. Gruber, R. Lorenz, S. H. Bernhart, R. Neuböck, I. L. Hofacker, The vienna RNA websuite. Nucleic acids research 36, W70-W74 (2008).
- 78. X.-J. Lu, DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL. Nucleic Acids Research 48, e74-e74 (2020).
- 79. T. Zok, M. Popenda, M. Szachniuk, ElTetrado: a tool for identification and classification of tetrads and quadruplexes. BMC bioinformatics 21, 1-7 (2020).
- 80. L. P. P. Patro, A. Kumar, N. Kolimi, T. Rathinavelan, 3D-NuS: a web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures. Journal of molecular biology 429, 2438-2448 (2017).
- 81. J. A. Capra, K. Paeschke, M. Singh, V. A. Zakian, G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS computational biology 6, e1000861 (2010).
- 82. F. Wu et al., Genome-wide analysis of DNA G-quadruplex motifs across 37 species provides insights into G4 evolution. Communications biology 4, 1-11 (2021).
- 83. V. S. Chambers et al., High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nature biotechnology 33, 877-881 (2015).
- 84. G. Marsico et al., Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic acids research 47, 3862-3874 (2019).
- 85. T. Seviour et al., The biofilm matrix scaffold of Pseudomonas aeruginosa contains G-quadruplex extracellular DNA structures. npj Biofilms and Microbiomes 7, 1-12 (2021).
- 86. X. Shao et al., RNA G-Quadruplex Structures Mediate Gene Regulation in Bacteria. mBio 11, e02926-02919 (2020).
- 87. K.-w. Zheng et al., Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Research 48, 11706-11720 (2020).
- 88. S. Völkel et al., Zinc finger independent genome-wide binding of Sp2 potentiates recruitment of histone-fold protein Nf-y distinguishing it from Sp1 and Sp3. PLoS genetics 11, e1005102 (2015).
- 89. E.-A. Raiber, R. Kranaster, E. Lam, M. Nikan, S. Balasubramanian, A noncanonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic acids research 40, 1499-1508 (2012).

- 90. S. Da Ros et al., G-Quadruplex modulation of SP1 functional binding sites at the KIT proximal promoter. International journal of molecular sciences 22, 329 (2020).
- 91. F. Rezzoug, S. D. Thomas, E. C. Rouchka, D. M. Miller, Discovery of a family of genomic sequences which interact specifically with the c-MYC promoter to regulate c-MYC expression. PloS one 11, e0161588 (2016).
- 92. A. P. David et al., G-quadruplexes as novel cis-elements controlling transcription during embryonic development. Nucleic acids research 44, 4163-4173 (2016).
- 93. J.-D. Beaudoin, J.-P. Perreault, 5'-UTR G-quadruplex structures acting as translational repressors. Nucleic acids research 38, 7022-7036 (2010).
- 94. T. A. Brooks, L. H. Hurley, Targeting MYC expression through G-quadruplexes. Genes & cancer 1, 641-649 (2010).
- 95. A. M. Fleming, J. Zhou, S. S. Wallace, C. J. Burrows, A role for the fifth G-track in G-quadruplex forming oncogene promoter sequences during oxidative stress: Do these "spare tires" have an evolved function? ACS central science 1, 226-233 (2015).
- 96. S. Cogoi, L. E. Xodo, G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic acids research 34, 2536-2549 (2006).
- 97. P. Agrawal, C. Lin, R. I. Mathad, M. Carver, D. Yang, The major G-quadruplex formed in the human BCL-2 proximal promoter adopts a parallel structure with a 13-nt loop in K+ solution. Journal of the American Chemical Society 136, 1750-1753 (2014).
- 98. P. J. Bates, D. A. Laber, D. M. Miller, S. D. Thomas, J. O. Trent, Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Experimental and molecular pathology 86, 151-164 (2009).
- 99. J. Spiegel et al., G-quadruplexes are transcription factor binding hubs in human chromatin. Genome biology 22, 1-15 (2021).
- J. Jana, Y. M. Vianney, N. Schröder, K. Weisz, Guiding the folding of Gquadruplexes through loop residue interactions. Nucleic Acids Research 50, 7161-7175 (2022).
- 101. A. Marchand, V. Gabelica, Folding and misfolding pathways of G-quadruplex DNA. Nucleic acids research, gkw970 (2016).
- R. Durbin, S. R. Eddy, A. Krogh, G. Mitchison, Biological sequence analysis: probabilistic models of proteins and nucleic acids. (Cambridge university press, 1998).
- 103. W. Li, A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659 (2006).
- 104. B. T. James, B. B. Luczak, H. Z. Girgis, MeShClust: an intelligent tool for clustering DNA sequences. Nucleic acids research 46, e83-e83 (2018).
- 105. M. Ghodsi, B. Liu, M. Pop, DNACLUST: accurate and efficient clustering of phylogenetic marker genes. BMC bioinformatics 12, 1-11 (2011).
- 106. E. Zorita, P. Cusco, G. J. Filion, Starcode: sequence clustering based on all-pairs search. Bioinformatics 31, 1913-1919 (2015).
- 107. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool. Journal of molecular biology 215, 403-410 (1990).

- 108. E. S. Wright, DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment. BMC bioinformatics 16, 1-14 (2015).
- 109. G. Collet. (2017).
- 110. R. D. Finn, J. Clements, S. R. Eddy, HMMER web server: interactive sequence similarity searching. Nucleic acids research 39, W29-W37 (2011).
- 111. S. P. Wilkinson, aphid: an R package for analysis with profile hidden Markov models. Bioinformatics 35, 3829-3830 (2019).
- 112. A. R. Quinlan, I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842 (2010).
- 113. L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257-286 (1989).
- 114. J. B. Johnson, K. S. Omland, Model selection in ecology and evolution. Trends in ecology & evolution 19, 101-108 (2004).
- 115. E.-J. Wagenmakers, S. Farrell, AIC model selection using Akaike weights. Psychonomic bulletin & review 11, 192-196 (2004).
- 116. H. Pages et al., Package 'Biostrings'. Bioconductor, 18129 (2013).
- 117. P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics 20, 53-65 (1987).
- 118. M. Charrad, N. Ghazzali, V. Boiteau, A. Niknafs, NbClust: an R package for determining the relevant number of clusters in a data set. Journal of statistical software 61, 1-36 (2014).
- 119. B. Honig, A. Nicholls, Classical Electrostatics in Biology and Chemistry. Science 268, 1144-1149 (1995).
- 120. R. Rohs et al., The role of DNA shape in protein–DNA recognition. Nature 461, 1248-1253 (2009).
- 121. M. El Hassan, C. Calladine, Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. Journal of molecular biology 259, 95-103 (1996).
- 122. T.-P. Chiu et al., DNAshapeR: an R/Bioconductor package for DNA shape prediction and feature encoding. Bioinformatics 32, 1211-1213 (2016).
- 123. H. Fan et al., BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis. Nature genetics 52, 1384-1396 (2020).
- 124. Y. Guo, S. Zhao, G. G. Wang, Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3'Readout', and phase separation-based compaction. Trends in Genetics 37, 547-565 (2021).
- 125. K. Banerjee et al., Regulation of tyrosine hydroxylase transcription by hnRNP K and DNA secondary structure. Nature communications 5, 1-13 (2014).
- 126. M. M. Farhath et al., G-Quadruplex-enabling sequence within the human tyrosine hydroxylase promoter differentially regulates transcription. Biochemistry 54, 5533-5545 (2015).
- 127. B. J. Janssen et al., Structural basis of semaphorin–plexin signalling. Nature 467, 1118-1122 (2010).
- 128. H. Takamatsu, A. Kumanogoh, Diverse roles for semaphorin– plexin signaling in the immune system. Trends in immunology 33, 127-135 (2012).

- 129. V. Kuryavyi, L. A. Cahoon, H. S. Seifert, D. J. Patel, RecA-binding pilE G4 sequence essential for pilin antigenic variation forms monomeric and 5' end-stacked dimeric parallel G-quadruplexes. Structure 20, 2090-2102 (2012).
- 130. V. González, L. H. Hurley, The c-MYC NHE III1: function and regulation. Annual review of pharmacology and toxicology 50, 111-129 (2010).
- 131. L. H. Hurley, D. D. Von Hoff, A. Siddiqui-Jain, D. Yang, in Seminars in oncology. (Elsevier, 2006), vol. 33, pp. 498-512.
- A. Siddiqui-Jain, C. L. Grand, D. J. Bearss, L. H. Hurley, Direct evidence for a Gquadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences 99, 11593-11598 (2002).
- D. Yang, L. H. Hurley, Structure of the biologically relevant G-quadruplex in the c-MYC promoter. Nucleosides, Nucleotides, and Nucleic Acids 25, 951-968 (2006).
- 134. A. Y. Zhang, A. Bugaut, S. Balasubramanian, A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology. Biochemistry 50, 7251-7258 (2011).
- 135. J. Li et al., Effects of length and loop composition on structural diversity and similarity of (G3TG3NmG3TG3) G-quadruplexes. Molecules 25, 1779 (2020).
- 136. E. Postel, S. Berberich, S. Flint, C. Ferrone, Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261, 478-480 (1993).
- C. Shan et al., Chemical intervention of the NM23-H2 transcriptional programme on c-MYC via a novel small molecule. Nucleic acids research 43, 6677-6691 (2015).
- 138. V. González, L. H. Hurley, The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry 49, 9706-9714 (2010).
- 139. M. J. Bywater et al., Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer cell 22, 51-65 (2012).
- 140. H. Xu et al., CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nature communications 8, 1-18 (2017).
- 141. C. Leonetti et al., G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in preclinical models of solid tumors. Clinical Cancer Research 14, 7284-7291 (2008).
- 142. A. Local et al., APTO-253 Stabilizes G-quadruplex DNA, Inhibits MYC Expression, and Induces DNA Damage in Acute Myeloid Leukemia CellsAPTO-253 as a MYC Inhibitor and G4 Ligand for AML. Molecular cancer therapeutics 17, 1177-1186 (2018).
- 143. S. G. Zidanloo, A. Hosseinzadeh Colagar, H. Ayatollahi, J.-B. Raoof, Downregulation of the WT1 gene expression via TMPyP4 stabilization of promoter G-quadruplexes in leukemia cells. Tumor Biology 37, 9967-9977 (2016).
- 144. T. Tauchi et al., Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: involvement of ATM-dependent DNA damage response pathways. Oncogene 22, 5338-5347 (2003).

- 145. J. Liu et al., Inhibition of myc promoter and telomerase activity and induction of delayed apoptosis by SYUIQ-5, a novel G-quadruplex interactive agent in leukemia cells. Leukemia 21, 1300-1302 (2007).
- 146. D. Sen, W. Gilbert, Formation of parallel four-stranded complexes by guaninerich motifs in DNA and its implications for meiosis. nature 334, 364-366 (1988).
- 147. D. Sen, W. Gilbert, A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344, 410-414 (1990).
- 148. A. Bugaut, S. Balasubramanian, A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47, 689-697 (2008).
- 149. K. B. Sutyak, P. Y. Zavalij, M. L. Robinson, J. T. Davis, Controlling molecularity and stability of hydrogen bonded G-quadruplexes by modulating the structure's periphery. Chemical Communications 52, 11112-11115 (2016).
- 150. I. Cheung, M. Schertzer, A. Rose, P. M. Lansdorp, Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nature genetics 31, 405-409 (2002).
- 151. D. Dahan et al., Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures. Nucleic acids research 46, 11847-11857 (2018).
- 152. K. Paeschke, J. A. Capra, V. A. Zakian, DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145, 678-691 (2011).
- 153. R. Rodriguez et al., Small-molecule–induced DNA damage identifies alternative DNA structures in human genes. Nature chemical biology 8, 301-310 (2012).
- 154. T. B. London et al., FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. Journal of Biological Chemistry 283, 36132-36139 (2008).
- 155. C. Ribeyre et al., The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS genetics 5, e1000475 (2009).
- 156. A. De Magis et al., DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proceedings of the National Academy of Sciences 116, 816-825 (2019).
- 157. A. Madireddy et al., G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV. Nucleic acids research 44, 3675-3694 (2016).
- 158. J. Lee et al., Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. (2021).
- 159. Y. Mei et al., TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Scientific reports 11, 1-14 (2021).
- 160. J. Zimmer et al., Targeting BRCA1 and BRCA2 deficiencies with G-quadruplexinteracting compounds. Molecular cell 61, 449-460 (2016).
- 161. J. Gros et al., Guanines are a quartet's best friend: impact of base substitutions on the kinetics and stability of tetramolecular quadruplexes. Nucleic acids research 35, 3064-3075 (2007).

- M.-C. Didiot et al., The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic acids research 36, 4902-4912 (2008).
- 163. S. Chaudhary, M. Kaushik, S. Ahmed, R. Kukreti, S. Kukreti, Structural Switch from Hairpin to Duplex/Antiparallel G-Quadruplex at Single-Nucleotide Polymorphism (SNP) Site of Human Apolipoprotein E (APOE) Gene Coding Region. ACS omega 3, 3173-3182 (2018).
- 164. S. K. Bharti et al., Specialization among iron-sulfur cluster helicases to resolve Gquadruplex DNA structures that threaten genomic stability. Journal of Biological Chemistry 288, 28217-28229 (2013).
- 165. A. Baral et al., Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals. Nucleic acids research 40, 3800-3811 (2012).
- 166. A. A. Kuznetsova, O. S. Fedorova, N. A. Kuznetsov, Lesion recognition and cleavage of damage-containing quadruplexes and bulged structures by DNA glycosylases. Frontiers in Cell and Developmental Biology 8, 595687 (2020).
- 167. S. Bamford et al., The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British journal of cancer 91, 355-358 (2004).
- 168. M. J. Landrum et al., ClinVar: improving access to variant interpretations and supporting evidence. Nucleic acids research 46, D1062-D1067 (2018).
- 169. H. Li, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993 (2011).
- 170. R. G. Cavalcante, M. A. Sartor, Annotatr: genomic regions in context. Bioinformatics 33, 2381-2383 (2017).
- 171. F. Hammal, P. de Langen, A. Bergon, F. Lopez, B. Ballester, ReMap 2022: a database of Human, Mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Research 50, D316-D325 (2022).
- 172. D. W. Huang, B. T. Sherman, R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4, 44-57 (2009).
- 173. D. Szklarczyk et al., The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic acids research 49, D605-D612 (2021).
- 174. S. G. Coetzee, G. A. Coetzee, D. J. Hazelett, motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics 31, 3847-3849 (2015).
- 175. J. Sved, A. Bird, The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proceedings of the National Academy of Sciences 87, 4692-4696 (1990).
- 176. J. Youk, Y. An, S. Park, J.-K. Lee, Y. S. Ju, The genome-wide landscape of C: G> T: A polymorphism at the CpG contexts in the human population. BMC genomics 21, 1-11 (2020).
- 177. B. P. Belotserkovskii, J. H. Soo Shin, P. C. Hanawalt, Strong transcription blockage mediated by R-loop formation within a G-rich homopurine–

homopyrimidine sequence localized in the vicinity of the promoter. Nucleic acids research 45, 6589-6599 (2017).

- 178. P. Polak, P. F. Arndt, Transcription induces strand-specific mutations at the 5' end of human genes. Genome Research 18, 1216-1223 (2008).
- 179. J. W. Park et al., 8-OxoG in GC-rich Sp1 binding sites enhances gene transcription in adipose tissue of juvenile mice. Scientific reports 9, 1-12 (2019).
- J. W. Cave, D. E. Willis, G-quadruplex regulation of neural gene expression. The FEBS Journal 289, 3284-3303 (2022).
- 181. C. J. Westmark, J. S. Malter, FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS biology 5, e52 (2007).
- 182. J. Fürst et al., ICln159 Folds into a Pleckstrin Homology Domain-like Structure: INTERACTION WITH KINASES AND THE SPLICING FACTOR LSm4*[boxs]. Journal of Biological Chemistry 280, 31276-31282 (2005).
- 183. V. Gervais et al., TFIIH contains a PH domain involved in DNA nucleotide excision repair. Nature Structural & Molecular Biology 11, 616-622 (2004).
- 184. K. Das, M. Srivastava, S. C. Raghavan, GNG motifs can replace a GGG stretch during G-quadruplex formation in a context dependent manner. PLoS One 11, e0158794 (2016).
- 185. D. S. Lee, L. R. Ghanem, Y. Barash, Integrative analysis reveals RNA Gquadruplexes in UTRs are selectively constrained and enriched for functional associations. Nature communications 11, 1-12 (2020).
- 186. A. M. Fleming, C. J. Burrows, G-quadruplex folds of the human telomere sequence alter the site reactivity and reaction pathway of guanine oxidation compared to duplex DNA. Chemical research in toxicology 26, 593-607 (2013).
- 187. M. Pitié, C. Boldron, G. Pratviel, in Advances in inorganic chemistry. (Elsevier, 2006), vol. 58, pp. 77-130.
- 188. A. M. Fleming, J. Zhu, Y. Ding, C. J. Burrows, 8-Oxo-7, 8-dihydroguanine in the context of a gene promoter G-quadruplex is an on–off switch for transcription. ACS chemical biology 12, 2417-2426 (2017).
- 189. D. Sun et al., The proximal promoter region of the human vascular endothelial growth factor gene has a G-quadruplex structure that can be targeted by G-quadruplex–interactive agents. Molecular cancer therapeutics 7, 880-889 (2008).
- 190. I. Liguori et al., Oxidative stress, aging, and diseases. Clinical interventions in aging 13, 757 (2018).
- 191. S. Bielskutė, J. Plavec, P. Podbevšek, Impact of oxidative lesions on the human telomeric G-quadruplex. Journal of the American Chemical Society 141, 2594-2603 (2019).
- 192. D. M. Banda, N. N. Nuñez, M. A. Burnside, K. M. Bradshaw, S. S. David, Repair of 8-oxoG: A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine. Free Radical Biology and Medicine 107, 202-215 (2017).
- 193. B. van Loon, U. Hübscher, An 8-oxo-guanine repair pathway coordinated by MUTYH glycosylase and DNA polymerase λ. Proceedings of the National Academy of Sciences 106, 18201-18206 (2009).
- 194. A. Viel et al., A specific mutational signature associated with DNA 8-oxoguanine persistence in MUTYH-defective colorectal cancer. EBioMedicine 20, 39-49 (2017).
- 195. S. Bellon, N. Shikazono, S. Cunniffe, M. Lomax, P. O'Neill, Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic acids research 37, 4430-4440 (2009).
- 196. J. Zhou, A. M. Fleming, A. M. Averill, C. J. Burrows, S. S. Wallace, The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures. Nucleic acids research 43, 4039-4054 (2015).
- 197. M. Adrian, B. Heddi, A. T. Phan, NMR spectroscopy of G-quadruplexes. Methods 57, 11-24 (2012).
- 198. R. C. Monsen et al., The hTERT core promoter forms three parallel Gquadruplexes. Nucleic acids research 48, 5720-5734 (2020).
- 199. S. L. Palumbo, S. W. Ebbinghaus, L. H. Hurley, Formation of a unique end-toend stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. Journal of the American Chemical Society 131, 10878-10891 (2009).
- 200. O. Ramon et al., Effects of 8-oxo-7, 8-dihydro-2'-deoxyguanosine on the binding of the transcription factor Sp1 to its cognate target DNA sequence (GC box). Free radical research 31, 217-229 (1999).
- 201. M. K. Hailer-Morrison, J. M. Kotler, B. D. Martin, K. D. Sugden, Oxidized guanine lesions as modulators of gene transcription. Altered p50 binding affinity and repair shielding by 7, 8-dihydro-8-oxo-2 '-deoxyguanosine lesions in the NFκB promoter element. Biochemistry 42, 9761-9770 (2003).
- 202. S. P. Moore, K. J. Toomire, P. R. Strauss, DNA modifications repaired by base excision repair are epigenetic. DNA repair 12, 1152-1158 (2013).
- 203. V. Valinluck et al., Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic acids research 32, 4100-4108 (2004).
- 204. N. Reynolds, A. O'Shaughnessy, B. Hendrich, Transcriptional repressors: multifaceted regulators of gene expression. Development 140, 505-512 (2013).
- 205. M. Vidal, K. Starowicz, Polycomb complexes PRC1 and their function in hematopoiesis. Experimental Hematology 48, 12-31 (2017).
- 206. M. Beltran et al., G-tract RNA removes Polycomb repressive complex 2 from genes. Nature structural & molecular biology 26, 899-909 (2019).
- 207. M. Subramanian et al., G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO reports 12, 697-704 (2011).
- 208. R. S. Illingworth et al., Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS genetics 6, e1001134 (2010).
- 209. R. Illingworth et al., A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS biology 6, e22 (2008).

LIST OF APPENDIX TABLES

APPENDIX TABLE A 1 SUMMARY OF FAMILY 23
APPENDIX TABLE A 2 SUMMARY OF FAMILY 79 G4 SEQUENCES
APPENDIX TABLE A3 SEQUENCE REPEATS CAPABLE OF FORMING MULTIPLE G4
STRUCTURES144
APPENDIX TABLE A 4 SUMMARY OF FAMILY 2 G4 SEQUENCES
APPENDIX TABLE A 5 SUMMARY OF FAMILY 3 G4 SEQUENCES
APPENDIX TABLE A 6 SUMMARY OF FAMILY 4 G4 SEQUENCES158
APPENDIX TABLE A 7 SUMMARY OF FAMILY 32 G4 SEQUENCES
APPENDIX TABLE A 8 SUMMARY OF FAMILY 75 G4 SEQUENCES161
APPENDIX TABLE A 9 SUMMARY OF FAMILY 80 G4 SEQUENCES162
APPENDIX TABLE A 10 ENRICHED GO:BP CATEGORIES FOR FAMILY 4163
APPENDIX TABLE A 11 ENRICHED GO: BP CATEGORIES FOR FAMILY 32164
APPENDIX TABLE A 12 ENRICHED GO:BP CATEGORIES FOR FAMILY 75165
APPENDIX TABLE A 13 ENRICHED GO:BP CATEGORIES FOR FAMILY 80166
Appendix Table A 14 Enriched GO:BP categories for experimentally validated
G4s overlapping enhancers, group 1167
APPENDIX TABLE A 15 ENRICHED GO:BP CATEGORIES FOR EXPERIMENTALLY VALIDATED
G4s overlapping enhancers, group 2171

APPENDIX TABLE B 1 COUNT OF SNVS IN OVERALL COSMIC DATABASE
APPENDIX TABLE B 2 COUNTS OF SNVS IN G4 REGIONS FROM THE COSMIC DATABASE
Appendix Table B 3 . Changes in putative G4 from the COSMIC database across
BOTH STRANDS BEFORE AND AFTER MUTATION. (0: ABSENCE OF PG4; 1: PRESENCE OF
PG4 in Forward Strand; -1: presence of $PG4$ in reverse strand)191
APPENDIX TABLE B 4 COUNT AND PROPORTION OF VARIANTS IN EXPERIMENTALLY
VALIDATED G4 REGIONS FOR DIFFERENT FUNCTIONAL REGIONS
APPENDIX TABLE B 5 SIGNIFICANT GO: BP ENRICHMENTS FOR ALL COSMIC AND
CLINVAR G4 MUTATIONS193
APPENDIX TABLE B 6 SIGNIFICANT GO:BP ENRICHMENTS FOR ALL CLINVAR G4
MUTATIONS
APPENDIX TABLE B 7 SIGNIFICANT GO: BP ENRICHMENTS FOR COSMIC AND CLINVAR
G4 MUTATIONS LEADING TO THE LOSS OF A G4201
APPENDIX TABLE B 8 SIGNIFICANT GO: BP ENRICHMENTS FOR COSMIC G4 MUTATIONS
Leading to the loss of a G4
APPENDIX TABLE B 9 SIGNIFICANT GO: BP ENRICHMENTS FOR CLINVAR G4 MUTATIONS
LEADING TO THE LOSS OF A G4
APPENDIX TABLE B 10 SIGNIFICANT GO:BP ENRICHMENTS FOR COSMIC AND CLINVAR
G4 MUTATIONS LEADING TO THE GAIN OF A G4208
APPENDIX TABLE B 11 SIGNIFICANT GO:BP ENRICHMENTS FOR CLINVAR G4 MUTATIONS
LEADING TO THE GAIN OF A G4210
APPENDIX TABLE B 12 . SIGNIFICANT GO:CC ENRICHMENTS FOR COSMIC AND
CLINVAR G4 MUTATIONS
APPENDIX TABLE B 13 SIGNIFICANT GO:CC ENRICHMENTS FOR CLINVAR G4
MUTATIONS

APPENDIX TABLE B 14 SIGNIFICANT KEGG ENRICHMENTS FOR COSMIC AND CLINVAR
G4 MUTATIONS216
APPENDIX TABLE B 15 SIGNIFICANT KEGG ENRICHMENTS FOR COSMIC G4 MUTATIONS.
APPENDIX TABLE B 16 SIGNIFICANT KEGG ENRICHMENTS FOR CLINVAR G4 MUTATIONS
APPENDIX TABLE B 17 SIGNIFICANT KEGG ENRICHMENTS FOR COSMIC AND CLINVAR
G4 MUTATIONS LEADING TO A G4 LOSS
APPENDIX TABLE B 18 SIGNIFICANT KEGG ENRICHMENTS FOR COSMIC G4 MUTATIONS
LEADING TO A G4 LOSS
APPENDIX TABLE B 19 SIGNIFICANT KEGG ENRICHMENTS FOR CLINVAR G4 MUTATIONS
LEADING TO A G4 LOSS
APPENDIX TABLE B 20 SIGNIFICANT GO:CC ENRICHMENTS FOR COSMIC AND CLINVAR
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN. 223 APPENDIX TABLE B 21 SIGNIFICANT KEGG ENRICHMENTS FOR COSMIC G4 MUTATIONS 224 APPENDIX TABLE B 22 SIGNIFICANT INTERPRO ENRICHMENTS FOR COSMIC AND 224 APPENDIX TABLE B 22 SIGNIFICANT INTERPRO ENRICHMENTS FOR COSMIC AND 225 APPENDIX TABLE B 23 SIGNIFICANT INTERPRO ENRICHMENTS FOR COSMIC G4 225 APPENDIX TABLE B 24 SIGNIFICANT INTERPRO ENRICHMENTS FOR COSMIC G4 226 APPENDIX TABLE B 24 SIGNIFICANT INTERPRO ENRICHMENTS FOR CLINVAR G4 227 APPENDIX TABLE B 25 :TOP 50 SIGNIFICANT TRANSCRIPTION FACTOR ENRICHMENTS FOR 227
G4 MUTATIONS LEADING TO A G4 GAIN
G4 MUTATIONS LEADING TO A G4 GAIN

Appendix Table B 27 Effect of transition mutation $G \rightarrow A$ in chr10:122,143,482 on

POTENTIAL BINDING FOR MULTIPLE TRANSCRIPTION FACTORS. ALL EFFECTS ARE

STRONG	231	l

LIST OF APPENDIX FIGURES

APPENDIX FIGURE A 1 HELICAL TWIST ACROSS ALL FAMILIES
APPENDIX FIGURE A 2 MINOR GROOVE WIDTH ACROSS ALL FAMILIES
APPENDIX FIGURE A 3 PROPELLER TWIST ACROSS FAMILIES
APPENDIX FIGURE A 4 : ROLL ACROSS FAMILIES
APPENDIX FIGURE A 5: SEQUENCE LOGO OF FAMILIES
APPENDIX FIGURE A 6 TOP 25 GO: BP ENRICHMENTS FOR FAMILY 4232
APPENDIX FIGURE A 7 TOP 25 GO: BP ENRICHMENTS FOR FAMILY 32232
APPENDIX FIGURE A 8 TOP 25 GO: BP ENRICHMENTS FOR FAMILY 75233
APPENDIX FIGURE A 9 TOP 25 GO: BP ENRICHMENTS FOR FAMILY 80
APPENDIX FIGURE A 10 TOP 25 GO: BP ENRICHMENTS FOR EXPERIMENTALLY VALIDATED
G4s overlapping enhancers, group 1234
APPENDIX FIGURE A 11 SUPPLEMENTAL FIGURE 6. TOP 25 GO: BP ENRICHMENTS FOR
EXPERIMENTALLY VALIDATED G4S OVERLAPPING ENHANCERS, GROUP 2234
Appendix Figure A 12 Correlation of selected enhancers consisting of $pG4$
WITH GENE EXPRESSION IN MULTIPLE CELL TYPES UTILIZING THE EPIMAP
CORRELATION GROUP-LINK DATA
APPENDIX FIGURE B 1 TOP 25 ENRICHED GO:BP TERMS FOR COSMIC AND CLINVAR G4
MUTATIONS
APPENDIX FIGURE B 2: ENRICHED GO:BP TERMS FOR G4 MUTATIONS
APPENDIX FIGURE B 3: TOP 25 ENRICHED GO:BP TERMS FOR CLINVAR G4 MUTATIONS.
APPENDIX FIGURE B 4: TOP25 ENRICHED GO:CC TERMS FOR COSMIC AND CLINVAR G4
MUTATIONS

APPENDIX FIGURE B 5: TOP 25 ENRICHED GO: CC TERMS FOR COSMIC G4 MUTATIONS.239

APPENDIX FIGURE B 6: TOP 25 ENRICHED GO:CC TERMS FOR CLINVAR G4 MUTATIONS APPENDIX FIGURE B 7: TOP 25 ENRICHED KEGG TERMS FOR COSMIC AND CLINVAR APPENDIX FIGURE B 8: TOP 25 ENRICHED KEGG TERMS FOR COSMIC G4 MUTATIONS.242 APPENDIX FIGURE B 9: TOP 25 ENRICHED KEGG TERMS FOR CLINVAR G4 MUTATIONS. APPENDIX FIGURE B 10: TOP 20 ENRICHED TRANSCRIPTION FACTORS WITH OVERLAPPING CHIP-SEO PEAKS FOR COSMIC AND CLINVAR G4 SNVs IN THE HEK293 CELL LINE. APPENDIX FIGURE B 11: TOP 20 ENRICHED TRANSCRIPTION FACTORS WITH OVERLAPPING CHIP-SEQ PEAKS FOR COSMIC AND CLINVAR G4 SNVs IN THE K562 CELL LINE. APPENDIX FIGURE B 12: TOP 20 ENRICHED TRANSCRIPTION FACTORS WITH OVERLAPPING CHIP-SEQ PEAKS FOR COSMIC AND CLINVAR G4 SNVs IN THE HEP-G2 CELL LINE. APPENDIX FIGURE B 13: DISTRIBUTION OF $A \rightarrow G$ SNVs across the G4 region for DIFFERENT FEATURES ON (A) THE NON-TEMPLATE AND (B) TEMPLATE STRAND.245 APPENDIX FIGURE B 14: DISTRIBUTION OF $G \rightarrow T$ SNVs across the G4 region for DIFFERENT FEATURES ON (A) THE NON-TEMPLATE AND (B) TEMPLATE STRAND.246 APPENDIX FIGURE B 15: DISTRIBUTION OF $G \rightarrow A$ SNVs across the G4 region for DIFFERENT FEATURES ON (A) THE NON-TEMPLATE AND (B) TEMPLATE STRAND.247 APPENDIX FIGURE B 16: DISTRIBUTION OF $T \rightarrow G$ SNVs across the G4 region for DIFFERENT FEATURES ON (A) THE NON-TEMPLATE AND (B) TEMPLATE STRAND.247 APPENDIX FIGURE B 17: EFFECT OF EACH SNV ON Δ MFE of G4 on different ANNOTATIONS WITH PERCENTILE OF THE COUNTS SHOWN IN THE SECONDARY Y AXIS.

SHOWN IS (A) $T \rightarrow G$ SNVS; (B) $A \rightarrow G$ SNVS; (C) $G \rightarrow A$ SNVS; and (D) $G \rightarrow T$
SNVs248
APPENDIX FIGURE B 18: DISTRIBUTION OF SNVS ACROSS G-QUADRUPLEX REGIONS FOR
THE (A) FORWARD AND (B) REVERSE STRANDS FOR SNVS DETECTED IN THE
CLINVAR DATABASE
Appendix Figure B 19: G4 sequence along with variants along a TERT promoter

Appendix A Appendix Table A 1 Summary of Family 23.

Sequence	Location	Experimental	Gene ID	Anntoation
		Evidence		
GGGTGGCGGGTGGGGGGGGGGG	chr10:123316717-123316737	absent	9184	Intergenic
GGGTGAGGGTGCGGGTGAGGG	chr10:124610344-124610364	present	64077	Promoter
GGGTGAGGGTGCGGGTGAGGG	chr10:124610377-124610397	present	64077	Promoter
GGGTGAGGGTGCGGGTGAGGG	chr10:124610509-124610529	present	64077	Promoter
GGGTGAGGGTGCGGGTGAGGG	chr10:124610542-124610562	present	64077	Promoter
GGGTGAGGGTGCGGGTGAGGG	chr10:124610647-124610667	present	64077	Promoter
GGGTGAGGGTGCGGGTGAGGG	chr10:124610752-124610772	absent	64077	Promoter
GGGTGAGGGTGCGGGTGAGGG	chr10:124610785-124610805	absent	64077	Promoter
GGGTGAGGGTGCGGGTGAGGG	chr10:124610956-124610976	absent	64077	Promoter
GGGTGAGGGTGAGGGTGAGGG	chr10:124610410-124610430	present	64077	Promoter
GGGTGAGGGTGAGGGTGAGGG	chr10:124610857-124610877	absent	64077	Promoter
GGGTGAGGGTGAGGGTGAGGG	chr10:124610890-124610910	absent	64077	Promoter
GGGTGGAGGGGTGGGGGGGGGG	chr10:132548209-132548229	present	3632	Intron
GGGTGGGGGGGGGGGGGAGAGGG	chr10:15725418-15725438	present	8516	Intergenic
GGGTGGGGGGGGGGGGGGGGGG	chr10:21717394-21717413	present	8028	Intron
GGGTGGGGGGGGGGGGGGGGGG	chr18:11976921-11976940	absent	3613	Promoter
GGGTTGGGGGGTAGGGTGGGGG	chr10:62544042-62544062	present	22891	Intron
GGGGTGTGGGGGCAGGGATGGGG	chr10:70678644-70678665	present	140766	Intron
GGGTGGGGGGCTGGGGAGAGGG	chr10:78293711-78293731	absent	414243	Intron
GGGTCGGGGGGGGGGGGGGGGG	chr11:101129211-101129230	present	101054525	Promoter
GGGTGGGAGTGGGATGAGGG	chr11:125159894-125159913	present	103695364	Promoter
GGGTTGGGGAGTGGGGTTGGG	chr11:43926065-43926085	present	100507300	Intron
GGGTTGGGGGGGGGGGGGGGG	chr11:44101102-44101121	present	2132	Promoter
GGGATGTGGGAAGGGATGGGG	chr11:69269215-69269235	present	26579	Intergenic
GGGGTGGGTGTGGGGGGGGGG	chr12:113876018-113876037	present	9904	Intron
GGGGTGGGTGTGGGGGGGGGG	chr16:46909101-46909120	present	84706	Intron
GGGATGGGGGGTCGGGTGGGG	chr12:131917175-131917194	present	8408	Promoter
GGGGTGGGGGGGGGGAGAGGG	chr12:2537890-2537909	present	775	Intron
GGGGTGAGGGTAGGGATGGGG	chr12:6640013-6640033	absent	84519	Promoter
GGGGTTGGGGAAGGGAGGGGG	chr13:112058816-112058836	present	6656	Intergenic
GGGGTGGGGAAGGGATTGGGG	chr13:53043320-53043340	absent	10562	Intron
GGGTGGGGGGGGGGGGGGGGGGG	chr14:100443444-100443464	present	79446	Intron
GGGTGGGGGGGGGGGCAAGGG	chr14:103532880-103532899	present	115708	Promoter
GGGGTGGGTGAAGGGATGGGGG	chr14:105596969-105596990	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105597009-105597030	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105597050-105597071	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105597091-105597112	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105597132-105597153	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105717880-105717901	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105717921-105717942	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105717962-105717983	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718002-105718023	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718043-105718064	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718084-105718105	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718125-105718146	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718125-105718146	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718166-105718187	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718206-105718227	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718247-105718268	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718288-105718309	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718329-105718350	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718370-105718391	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718411-105718432	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718452-105718473	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718493-105718514	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718534-105718555	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718575-105718596	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718616-105718637	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718657-105718678	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718698-105718719	absent	102465871	Intergenic

GGGGTGGGTGAAGGGATGGGGG	chr14:105718739-105718760	absent	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718780-105718801	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14.105718821-105718842	present	102465871	Intergenic
GGGGTGGGTGAAGGGATGGGGG	chr14:105718862 105718883	present	102465871	Intergenic
CCCCTCCCCCTCCCCCC	-h =14:10077660 10027680	present	102403871	Intergenie
00001000001000010000	cnr14:1903/660-1903/680	present	100508046	Intron
GGGGTGGGGGGTGGGGGGGGG	chr22:15760289-15760309	present	106146148	Intron
GGGTCAGGGGTGGGGTGGGG	chr14:50864482-50864501	present	145447	Intron
GGGTTGGGGGGGGGGGGGGGGG	chr14:65413539-65413558	present	2530	Promoter
GGGGTGGGGGGGGGGGGGGG	chr14.68908184-68908203	nresent	87	Intron
	abr14.72421211 72421221	abaant	0628	Dromotor
GOOTGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		absent	9028	Promoter
GGGTTGGGGGGGGGGGGGGGGGG	chr15:65356691-65356/11	present	9543	Promoter
GGGTGGGGCTGGGGTGTGGG	chr15:88391894-88391913	absent	26589	Intergenic
GGGTTTGGGGGTGGGGGTAGGG	chr15:89109459-89109479	absent	11057	Intron
GGGATTGGGGGGGGGGGGGGGG	chr16:27805003-27805023	present	23247	Intron
GGGGTGGGGGCCGGGATGGGG	chr16:51096031-51096051	present	6299	Intergenic
CCCTCCCCCTCCCCTCACCC	abr16:67172108 67172217	present	8006	Dromotor
		present	6990	
GGGAGGGGGGGGGGGGGGGGGGGGGG	chr16://09/46-//09/65	present	54715	3 UTR
GGGGTGGGGGGCAGGGTGGGG	chr16:79383220-79383239	present	51741	Intergenic
GGGTGGGGGGGGGGGGGGGGGGG	chr16:86705437-86705457	present	101928614	Intergenic
GGGAGTGGGGGGGGGGGGGGG	chr17:12982890-12982910	present	60528	Exon
GGGAGTGGGGGGGGGGGGGGG	chr9.76754262-76754282	nresent	50652	Intron
CCCTTACCCCTCCCCCCC	abr17,19127574 19127504	present	51169	Intron
GGGTTAGGGGTGGGGGGGGGG	cnr17:1812/5/4-1812/594	present	51108	Intron
GGGGTTGGGGGGGGGGGGGGGG	chr17:1880069-1880088	present	6117	Promoter
GGGCTGGGGGGGGGGAAGGG	chr17:50867047-50867066	present	400604	Promoter
GGGGTGGGGAGTGGGGTGGGG	chr17:65457424-65457444	present	105827617	Promoter
GGGGTGGGGGGAAGGGAGGGG	chr17:82020660-82020681	present	201254	Promoter
GGGTTGGGGGGAGGGATTGGG	chr18.24852934_24852953	absent	105372028	Intron
CCCCCTCCCCCTCCCCC	-h-19-26502944 26502964	absent	294252	Intern
666661666661666616666	chr18:26503844-26503864	present	284252	Intron
GGGGTTGGGGGGGGGGGGG	chr18:62610383-62610402	present	54877	Intergenic
GGGGTGGCGGGTGGGGTGGGG	chr18:77413747-77413767	present	2587	Intergenic
GGGTTGCGGGGGTAGGGGAGGG	chr19:35851196-35851216	absent	4868	Promoter
GGGGTGGGGGAAGGGAGGGG	chr19·408850-408869	present	126567	Promoter
CCCTCCCCCTCCACCCACCC	abr10:5117218 5117227	present	22020	Dromotor
CCTTCCCCCTCCCCC	-h-1,10(70092,10(70102	present	23030	FIOIDOLEI
	chr1:106/0083-106/0102	present	54897	Intron
GGGTGGGGGCTGGGAGTGAGGG	chr1:10/5343-10/5363	present	401934	Promoter
GGGTTGGGACTGGGGTGGGG	chr1:157198319-157198338	present	2117	Intergenic
GGGGTGGGGATGGGATGGGG	chr1:202304270-202304289	present	59352	Intron
GGGGTGGGGGAAGGGGGTGGGG	chr1:211260741-211260762	present	55758	Promoter
GGGTGGAGGGTGGGGGTGGGG	chr1:21865234 21865253	present	3330	Intron
CCTCCACCTCCCCTCCCC	-h =1.20071540 20071569	present	101020406	Inu on Internetic
GGGIGGAGGGIGGGGIGGGG	chr1:302/1549-302/1568	absent	101929406	Intergenic
GGGTGGGGGATGGGGAGTGAGGG	chr1:23911503-23911523	present	1269	Promoter
GGGGTGGGCGGTGGGGTGGGG	chr1:24584671-24584691	present	400746	Promoter
GGGTTGGGGGGTGGGGGGGG	chr1:36566733-36566754	present	1441	Intergenic
GGGTGGGGGTGGGGTGAGGG	chr1:36576371-36576390	present	1441	Intergenic
CCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	abr1:44506457 44506476	present	100947090	Introp
	1 1 520 45250 520 45250	present	100847089	nuon
GGGGIGGGGGAAGGGAGIGGGG	cnr1:5394/258-5394/2/9	present	115353	Promoter
GGGGGGGGAGTGGGGTGAGGG	chr1:87522994-87523013	absent	100505768	Intergenic
GGGGCTGGGGGGGGGGGGGGG	chr20:2820918-2820938	present	100288797	Promoter
GGGTTGCGGGGGTGGGGGGGG	chr20:29750401-29750422	absent	245929	Intergenic
GGGTTGCGGGGGGGGGGGGGGGG	chr20.30497208-30497229	absent	245929	Intergenic
CCCTTCCCCCACCCCCCCCC	abr20.22090915 22090924	procent	140722	Downstroom
		present	140732	Downstream
GGGGTGGAGGGTGGGGTGAGGG	chr20:34/05516-34/05537	present	58476	Promoter
GGGTGGGGATGGGGGGGGGGG	chr20:43934072-43934091	present	84969	Intron
GGGTTGGGGGGGGGGGGGGGGG	chr20:46247013-46247032	present	64405	Promoter
GGGTTGGGGGGTAGGGGGTGGG	chr21:32537338-32537358	present	59271	Intergenic
GGGTTGCGGGGGGGGGGGGGGG	chr22.11262057-11262076	absent	81061	Intergenic
CCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	abr22.11262657 11262676	procent	9214	Intergenie
000AC00001000010000		present	0214	Intergenic
66661666611666616666	chr22:19999303-19999322	present	421	Intron
GGGGAGGGGGGGGGGGGGGGGG	chr22:21451131-21451151	absent	23119	3' UTR
GGGTGGGGATGGGGTGAGGG	chr22:48336509-48336528	present	100422916	Intergenic
GGGTTGGGGGGGGGGGGGGG	chr2:10264610-10264629	present	3241	Intergenic
GGGTTGGGGGGTGGGATGGGG	chr2:134334522-134334541	absent	4249	Intron
GGGTGGGGATGAGGGTGAGGG	chr2.136030238 126020259	nresent	101028242	Intergenic
	cm2.150050258-150050258	present	101928243	Tutono di
GGG1GGGGA1GGGGAGAGGG	cnr2:186884280-186884299	present	151112	Intergenic
GGGGATGGGGGGGGGGGGGGGG	chr2:235026100-235026120	present	23677	Intron
GGGTTGGGGTTGGGGATGGGG	chr2:237474553-237474573	present	79083	Intergenic
GGGTGGGGGGGGGGGGGGGGGG	chr2:71452928-71452947	present	8291	Promoter
GGGTTGGGAGGTGGGGGAGGGG	chr2:80306685-80306706	absent	1496	Promoter
GGGTGTGGGGTGAGGGTGAGGG	chr3:105648950 105648970	absent	214	Intergenic
	-h-2.149(7702-149(7702)		214	Tatasa
GGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	cnr3:1486//03-1486//23	absent	152273	Intron

GGGGTAGGGGTAAGGGATGGGG	chr3:170871296-170871317	absent	200916	Promoter
GGGTCCGGGGTGGGGTGGGG	chr3:183908290-183908309	present	100616127	Intergenic
GGGTTGGGGGGAGGGATGGGG	chr3:186926653-186926672	present	6480	Promoter
GGGCTGGGGGTTGGGTGGGG	chr3:50367106-50367125	present	11068	Promoter
GGGTATTGGGGTGGGGTGGGG	chr3:73674103-73674123	present	23024	Intergenic
GGGTGGTGGGTGGGGGGGGG	chr3:9937507-9937526	present	78987	Promoter
GGGTGGGGTGGGGTGAGGGG	chr4:13540437-13540456	present	579	Promoter
GGGTTGGGGGGGGGGGGGGGG	chr4:1780111-1780130	absent	2261	Intergenic
GGGTTGGGGGGGGGGGGGGGG	chr9:99297662-99297681	present	100996569	Intergenic
GGGGTGGGGGGTAGGGAGGGG	chr4:185101976-185101995	present	291	Intron
GGGCTGGGGCTGGGGTGGGG	chr4:3820535-3820554	present	152	Intergenic
GGGTCGGGGGGGGGGGGGGGGG	chr4:94451863-94451883	absent	10611	Promoter
GGGGAGGGGGGGGGGGGGGGGG	chr5:140141772-140141791	present	101929719	Intergenic
GGGTTGGGGGGCAGGGTTGGGG	chr5:64122940-64122960	absent	285671	Intergenic
GGGGTGGGGGAAGGGAAGGG	chr6:35743073-35743092	present	221481	Intron
GGGTTGGGGGGTTGGGGGTGGGG	chr6:43679847-43679868	present	55168	Intron
GGGATGGGGGGGGGGGGGGGG	chr6:57178779-57178798	present	101927211	Promoter
GGGGTGGGGGGAGGGACGGGG	chr7:100472520-100472539	present	81628	Promoter
GGGCAGGGGGGGGGGGGGGGGG	chr7:128832311-128832330	absent	2318	Promoter
GGGTTGGGGAGAGGGATGGG	chr7:149751402-149751421	absent	84626	Intergenic
GGGTTGGGGGGAGTGGGAGGG	chr7:26621451-26621470	present	285941	Intergenic
GGGTTTGGGGAGGGAAGGGG	chr7:4482507-4482526	absent	221937	Intergenic
GGGTGGGGGGGGGGGGGGGGG	chr8:101761018-101761037	present	83988	Intron
GGGGTGGGGGGGGGGGGGGGG	chr8:113439774-113439793	present	114788	Promoter
GGGTTTGGGGTGGGGGGGGG	chr8:130519615-130519635	present	50807	Intergenic
GGGTGTGGGGGGGTTGGGGGGAGGG	chr8:142753544-142753565	absent	137797	Promoter
GGGCCGGGGGGGGGGGGGGGGG	chr8:25689097-25689116	absent	64641	Intergenic
GGGTTGGGGGCTTGGGGGAGGG	chr8:26653400-26653419	present	1808	Intron
GGGTTGGGGGGGGGGGGGGG	chr9:114098608-114098628	present	113220	Promoter
GGGTTGTGGGTGGGGATGGGG	chr9:116931301-116931321	present	22954	Intron
GGGATTGGGGATGGGGTGGGG	chr9:134806401-134806421	present	1289	Promoter
GGGGTTGGGGGGGGGGGGGGG	chr9:91299523-91299542	present	549	Intron
GGGTGGGCGCGGGGGTGAGGG	chr9:98745018-98745037	absent	203286	Intron
GGGTTAGGGGGGAGGGGTGGGG	chrX:120755247-120755267	present	643311	Intergenic

		Exper		
		iment	Con	Anno
Sequence	Location	al	e ID	tation
		Evide	e iD	tation
		nce		
GGGAGGGGAGG	chr1:11692947-	prese	374	Prom
GGAGGGG	11692964	nt	946	oter
GGGAGGGGAGG	chr1:32936592-	prese	127	3'
GGAGGGG	32936609	nt	544	UTR
GGGAGGGGAGG	chr10:12887513-	prese	836	Inter
GGAGGGG	12887530	nt	43	genic
GGGAGGGGAGG	chr11:47595913-	prese	114	Prom
GGAGGGG	47595930	nt	900	oter
GGGAGGGGAGG	chr13:99003017-	prese	233	Intro
GGAGGGG	99003034	nt	48	n
GGGAGGGGAGG	chr16:54930945-	prese	102	Prom
GGAGGGG	54930962	nt	65	oter
GGGAGGGGAGG	chr4:151016295-	prese	0.87	Prom
GGAGGGG	151016312	nt	907	oter
GGGCGGGGGCGCG	chr10:133262048	prese	101	Prom
GGCGGGG	-133262066	nt	101	oter
GGGCGGGGGCGCG	chr10:133262092	prese	101	Prom
GGCGGGG	-133262110	nt	101	oter
GGGGCGGGGAG	chr10:14604436-	ahaant	836	Prom
GGGCGGGG	14604454	absent	41	oter
GGGGCGGGGCGG	chr10:17348902-	abcont	338	Intro
GGCGGG	17348919	absent	596	n
GGGGCGGGGCGG	chr11:533399-	prese	326	Prom
GGCGGG	533416	nt	5	oter
GGGGCGGGGCGG	chr14:89701705-	abcont	111	Intro
GGCGGG	89701722	absent	2	n
GGGCGGGAGGG	chr10:3172964-	prese	105	Prom
GCGGGG	3172980	nt	31	oter
GGGGAGGGGCG	chr11:115164500	prese	237	Inter
GGGGGGG	-115164517	nt	05	genic
GGGGCGGGGGG	chr11:134401965	prese	270	Intro
GGGCGGG	-134401982	nt	87	n
GGGAGGGGCAG	chr11:2571906-	abcent	378	Intro
GGGCAGGG	2571924	absent	4	n
GGGAGGGGCAG	chr5:149676067-	prese	389	Inter
GGGCAGGG	149676085	nt	337	genic
GGGCGGGGCAGG	chr11:2902105-	prese	500	Prom
GGCGGG	2902122	nt	2	oter
GGGCGGGGAAG	chr11:2902676-	prese	500	Prom
GGTGGGG	2902693	nt	2	oter
GGGGGGGGGGGG	chr11:64342922-	prese	283	Prom
GCGGGG	64342938	nt	234	oter
GGGAGGGGCCGG	chr11:6473947-	prese	106	Prom
GGCGGGG	6473965	nt	12	oter
GGGCGGGGGGGGG	chr11:65558635-	abcent	405	Prom
GCGGGG	65558652	absent	4	oter
GGGCGGGGGGGGG	chr21:45555638-	prese	657	Inter
GCGGGG	45555655	nt	3	genic
GGGCGGGGGGGGG	chr9:124777075-	absent	169	Prom
GCGGGG	124777092	absent	611	oter
GGGAGGGGCGG	chr11:7020387-	prese	776	Prom
GGCGGG	7020403	nt	1	oter
GGGAGGGGCGG	chr16:371393-	prese	105	Prom
GGCGGG	371409	nt	73	oter
GGGAGGGGCGG	chr19:17747734-	prese	231	Prom
GGCGGG	17747750	nt	49	oter
GGGAGGGGCGG	chr19:44847716-	prese	581	Prom
GGCGGG	44847732	nt	9	oter
GGGAGGGGCGG	chr9.70258881-		100	Prom
60000000	70258897	absent	507	oter
00000	10230071		299	oter

Appendix Table A 2 Summary of Family 79 G4 sequences

GGGGCAGGGGCA	chr11:79081753-	prese	260	Intro
	/9081//1 obr12:111507150	nt	621	n Brom
GGCGGGG	-111597167	nt	1	oter
0000000	chr12:48350921-	III	121	Prom
GCGGG	48350937	absent	274	oter
GGGGCGGGGGGGG	chr14:105441449	prese	911	Prom
GGGGG	-105441465	nt	2	oter
GGGGCGGGGGGGG	chr5:70126581-	abcant	660	Inter
GGGGG	70126597	absent	6	genic
GGGGCGGGGGGGG	chr5:71126892-	absent	728	Inter
GGGGG	71126908	ubsent	340	genic
GGGGCGGGGGCGG	chr7:99770423-	prese	157	Intro
GGGGG	99770439	nt	6	n
GGGGCGGGGGGGG	chrX:132751250-	prese	100	Intro
GGGGG	132751266	nt	8/4	n
GGGCGGGGGGGGG	chr14.22871353_	prese	260	Prom
GGCGGG	22871370	nt	200	oter
000000	chr22:37519650-	III	20	Prom
GGCGGG	37519667	absent	75	oter
GGGGCGGGGGGGG	chr14:55052093-	prese	934	Prom
GCGCGGG	55052111	nt	87	oter
GGGCGGGGGGGG	chr14:99645483-	-1	844	Prom
GCGCGGG	99645501	absent	39	oter
GGGGCGGGGGCGG	chr1:3718211-	abcant	716	Intro
GGCGGGG	3718229	absent	1	n
GGGGCGGGGGGGG	chr15:101724648	prese	123	Prom
GGCGGGG	-101724666	nt	283	oter
GGGGCGGGGGCGG	chr17:62808389-	absent	162	Prom
GGCGGGGG	62808407		333	oter
GGGGCGGGGGCGG	chr2:19348311-	prese	100	Prom
GGCGGGG	19348329	nt	307	oter
			106	
GGGGCGGGGGCGG	chr22:15761338-	absent	146	Prom
GGCGGGG	15761356	absent	148	oter
GGGGCGGGGGCGG	chr22:42500547-	prese	940	Prom
GGCGGGG	42500565	nt	09	oter
GGGCGGGGAGG	chr15:39366098-	prese	400	Intro
GGGCGGG	39366115	nt	360	n
GGGAGGGGACG	chr15:69298887-	abcent	548	Prom
GGCGGGG	69298904	absent	52	oter
GGGTGAGGGGGC	chr15:88257743-	absent	491	Prom
GGGCGGG	88257761		6	oter
GGGAGGGTGAGG	chr15:92439783-	prese	812	Intro
GGAGGGG	92439801	nt	8	n
GGGCAGGGGAG	chr16:21511745-	prese	100	Inter
GGGCGGG	21511762	nt	017	genic
GGGCAGGGGAG	chr16.87860829-	prese	81/	Prom
DODDAUDUUU	87860846	nt	0	oter
GGGTGAGGGGCG	chr16:22008068-	prese	730	Prom
GGCGGG	22008085	nt	094	oter
GGGGAGGGGGC	chr16:66604580-	prese	123	Prom
GGGTCGGG	66604598	nt	920	oter
GGGCGGGGAGG	chr16:706088-	-1	146	Prom
GCGCGGG	706105	absent	330	oter
GGGCGGGGAGG	chr16:67530169-	prese	795	Prom
GCGCGGG	67530186	nt	67	oter
GGGAGCGGGAG	chr16:8847828-	prese	537	3'
GGGCGGGG	8847846	nt	3	UTR
GGGCGGGACGGG	chr16:88686619-	prese	333	Prom
	88686636	nt	929	oter
GCCCCC	CHT10:90915//-	prese	290	Prom
GGGGAGGGGGG	2021224 chr17:3635824	III	22 227	Drom
000000000 0000000000000000000000000000	3635841	nt	237	riulli oter
GGGGAGGGGGC	chr17:65055061-	prese	106	Prom
GGGGGGG	65055078	nt	72	oter

GGGGAGGGGCGC	chr17:43755320-	absent	509	Prom
GGGCGGG	43755338	absent	64	oter
GGGCGGGGGGG	chr17:518280-	prese	552	Prom
GCGGG	518295	nt	75	oter
GGGCGGGGACGG	chr17:64130213-	prese	208	Prom
GGCGGGG	64130231	nt	1	oter
GGGGCGGGGTGG	chr17:74380229-	prese	350	Inter
GGCGGG	74380246	nt	383	genic
GGGTGAGGGCGG	chr17:75740069-		369	Prom
CCCTCCC	75740087	absent	1	otor
	73740087		104	Ducus
GGGGAAGGGGG	chr1/:8106/3/4-	prese	104	Prom
CGGGGGGGG	8106/392	nt	58	oter
GGGCCGGGCGGG	chr17:81716621-	prese	146	Prom
GCGGG	81716637	nt	8	oter
GGGGGGGGCAGG	chr17:9825847-	prese	934	Prom
GGCGGGGG	9825865	nt	0	oter
GGGCAGGGGCAG	chr18:37517402-	prese	568	Intro
GGCGGGG	37517420	nt	53	n
000000000000000000000000000000000000000	chr19:1418556-	prese	265	Prom
600000000000000000000000000000000000000	1418573	nt	285	oter
GCCCCCCCCCCCC	abr10:1040959	ш	145	Drom
CCCCCC	1040874	absent	145	FIOIII
	1940874		5	oter
GGGCGGGGGCAGG	chr19:355/619-	absent	126	Prom
GCGGGG	3557636		321	oter
GGGAGGGTGAGG	chr19:45497095-	prese	625	Prom
GGCGGGG	45497113	nt	3	oter
GGGCGGGGAGG	chr1:180632001-	prese	921	Prom
GGCGGGG	180632018	nt	3	oter
GGGCGGGGGAGG	chr19:49388163-	prese	147	Prom
GGCGGGG	49388180	nt	872	oter
GGGGGGGGAAGG	chr19:49556137-	prese	510	Prom
606666	49556153	nt	70	oter
GE	chr10.52600611	prese	557	Brom
	52000028	prese	557	FIOIII
	52690628	nt	69 102	oter
GGGGGGGGGGGGG	chr19:6/6544-	absent	102	Prom
GCGGG	676560		72	oter
GGGGAGGGGGG	chr1:10856271-	prese	548	Inter
CGGGGGGG	10856289	nt	97	genic
GGGGAGGGGCG	chr1:110161522-	prese	388	Intro
GGGCAGGG	110161540	nt	662	n
GGGGCGGGGCGG	chr1:156677373-	prese	107	Prom
GGTGGG	156677390	nt	63	oter
000000000000000000000000000000000000000	chr3:141402686-	prese	253	Prom
GGTGGG	1/1/02703	nt	461	oter
CCCCCCCCCC	abr1.200825787	m	270	Drom
	200825802	prese	270	FIOIII
	209825805	nt	42	oter
GGGCGGGAAGG	chr1:2282/6035-	prese	840	Prom
GCGGGG	228276051	nt	33	oter
GGGCGGGGGAG	chr1:33182128-	absent	552	Prom
GGGCGGGG	33182146	absent	23	oter
CCCCTCCCCCC	abril: 10721905		140	Dow
	CIII 1:427 5 1825-	prese	149	nstrea
GCGGGG	42/31842	nt	461	m
			100	
GGGGAGGGCAG	chr21:40155906-	absent	616	Intro
GGCGTGGG	40155924	absent	1/8	n
CCCCCCCCCCCC	abr 21, 42075112		521	Duom
	42075120	prese	551	FIOIII
GGGGGGGG	42975130	nt	6	oter
GGGCGGGGGGGGG	chr22:2/554681-	prese	433	Inter
GGAGGGG	27554698	nt	0	genic
GGGGGGGGGGGG	chr22:33528130-	prese	921	Intro
GGCGGGG	33528147	nt	5	n
GGGGCGGGGGCGG	chr22:44891552-	prese	237	Intro
GGCAGGG	44891570	nt	79	n
GGGGAGGGCTGG	chr22:44916501-	prese	112	5'
GCTGGGG	44916519	nt	885	ati i
GGGAGGGGGCAG	chr2+11120280	nrece	285	Drom
GGCGGGGG	11120406	piese	205	r IUIII
	11130400 abr2,121005692	ill	504	Uter Tester
UUAUUUUAUUU	121005 500	prese	300	intro
GGCGGG	131005699	nt	49	n

GGGACGGGGCGG	chr2:197785363-	prese	660	Prom
000000	197785380	nt	37	oter
GGGGTGGGGCGG	chr2:231683502	prese	575	Inter
	221692520	prese	515	inter
	231083320	nt		genic
GGGGAGGGGGC	chr2:44778533-	prese	798	Inter
GGGGCGGG	44778551	nt	23	genic
GGGGAGGGCGG	chr3:127140774-	prese	285	Inter
GTGCTGGG	127140792	nt	311	genic
GGGAGGGGAGG	chr3:13018647	prese	002	Intro
GAGGGGG	12010664	prese	992	muo
GGCGGGG	13018664	nt	2	n
GGGAGGGGAGG	chr4:1766503-	abcent	104	Inter
GGCAGGG	1766520	absent	60	genic
GGGCGGGGGGGG	chr4:2418706-		577	Prom
CGGGG	2418722	absent	32	oter
	-1		52	Uter Textor
GOOGAGOOGCA	cili4:5//9401-	prese	152	inter
GGGCTGGG	3779419	nt		genic
GGGCGGGAAGG	chr4:41360750-	prese	229	Prom
GGCGGGG	41360767	nt	98	oter
GGGAGGGGCAG	chr4.6782547-		977	Prom
GGGCGGGG	6782565	absent	8	oter
	-1		105	Dura
GGGCGGGGAGG	cnr5:1/9/95444-	prese	405	Prom
GGGCGGGG	179795462	nt	6	oter
CCCCACCCCCA	-1-5-2011694		101	T
GGGGAGGGGCA	chr5:2011684-	prese	929	Inter
GGGCGGGG	2011702	nt	081	genic
CCCATCCCCACC	ab = 5.72200225	-	221	Inter
GOGATOGOGAGO	CIII 5: 72299555-	prese	231	muo
GGCGGGG	72299353	nt	07	n
GGGAGGGGAAG	chr6:34223494-	prese	315	Inter
GGGCGGGG	34223512	nt	9	genic
GGGGAGGGGAG	chr7·148884873-		214	Prom
Gerereeg	1/888/801	absent	6	oter
	-1-7-151520014		(00)	Duran
GGGGAGGGGGG	chr/:151520014-	prese	600	Prom
GGCGGGG	151520031	nt	9	oter
GGGCGGGGAGG	chr7:1669902-	prese	392	Inter
GCCGGGG	1669919	nt	617	genic
GGGCAGGGCGGG	chr7:2096544-	prese	837	Intro
CCCCC	2006560	prese	0	muo
	2090300	lit	9	11
GGGTAGGGGCGG	chr/:/5410/24-	absent	378	3
GGCGGGG	75410742	ubbent	108	UTR
GGGCGGGGAAG	chr7:7566848-	1	544	Prom
GGCGGGG	7566865	absent	68	oter
GGGCGGGGGGGGG	chr7.99375518-		100	Prom
	00275525	absent	100	TIOIII
GCCGGG	99375535		95	oter
GGGGAGGGGTCG	chr8.133453251-	prese	648	Dow
	122452269	prese	2	nstrea
000000	155455208	nt	Z	m
GGGAGCGGGGCG	chr8.26383646-	prese		Prom
CCCCCCC	26282664	prese	665	oton
0000000	20383004	III	100	oter
GGGAAGGGGCA	chr9·1046289-	prese	102	Prom
GGGCGGGG	10/6307	nt	800	oter
0000000	1040507	III	446	0.01
GGGGGGGGGGG	chr9:113012640-	prese	169	Prom
GCGGG	113012655	nt	834	oter
	abr0.124952507	III	401	Decen
	124855507-	absent	401	TIOIII
GGCCGGG	124853525		551	oter
GGGCGGGGGAGG	chr9:133557493-	prese	971	Intro
GCCGGG	133557509	nt	9	n
GGGGCGGGGTCG	chr9.5629030-	prese	575	Prom
GGGCGGG	56290/18	nt	80	oter
	abr0.01422055		170	Decen
	01400070	prese	4/0	From
GGCGGG	91423972	nt	3	oter
GGGGCGGGGCGCG	chrX:153411372-	prese	139	Inter
GGGCGGG	153411390	nt	735	genic
6666666666666	chrX 154546963-	prese	253	Prom
GCGAGGG	15/15/6081	prese	0	otor
	134340701	nt	7	0 lei
GGGCGGGCCGGG	chrX:155458643-	absent	826	Prom
GCGGGG	155458660	assent	3	oter
GGGGAGGGGCG	chrX:76427616-	prese	576	Prom
GGGCGGGG	76427634	nt	92	oter
			. =	

Location	Ge	Gene Symbol	Sequence
	ne		
	ID		
			GGGGATGGGGGGAAGGGTGGGCCTGGGGGATGGGGGGGGG
1 15 01 100 (00		DAU	
chr1/:81432609-	575	BAH	GGGCCCTGGGGGATGTGGGGGGGGGGGGGGGGGGGGGGG
81432922	97	CCI	TCTGGGGGCTCGGGGGGGGGGGGGGGGGGGGGGGGGGG
			GCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
			GGTGGGCCCGGGAGGGTGGGTCCAGGGCTGGGG
		CHR	
	113	NA4	GGGTGAGGGGTGTGGGGGGGGGGGGGGGGGGGGGGGGGG
chr20:63356114-	7¶1	¶	AGGCCAGGGCAGCAGCAGGGTGAGGGGTGTGAGGGAGGGCAGGGCGGGACAG
63356297	001	LOC	GGCCAGGGTGGGGCAGCAGGGTGAGGGGGTGGGGGGGGGG
03550277	305	1001	CAGGGTGGGGAGGG
	87	3058	
		7	
chr19:2361178-			GGGGCTGGGGTGGGAGGCTGGGGTGGGAGGTGGGGCTGGGGGGGG
2361341			GGAGGTGGGGCTGGGGTAGGGTGCAGGGTTGGGATGGGGTGGGGTGCTGGGATGGGT
2501541			TGGTGGGGTGCAGGGCTGGGATGGGTTGGTGGGGTGGGG
ab+20.62826170	140	707	GGGAGAGCGCGGGCAGGGCAGGGGAGAGGGCAGGGGCAGGGAGAGCGTGGGCAGG
62826216	685	ZD I P46	GCAGGGGCAGGGGAGAGCGTGGGCAGGGCAGGGGCAGGGAGAGGGCAGGGCAGGG
63836316	085	B 40	AGAGCGCGGGCAGGGCAGGGGCAGGGG
			GGGGCAGGGAAGGGGGTCCCTGGGGAGGGGGGGGGGGCCCTGGGGAGGGA
chr1:1115450-	549	Clor	TCCCTGGGGAGGGGAAGGGTTCCCGGGGGCAGGGAAGGGGGTCCCTGGGGAGGGGAG
1115668	91	f159	GGGGTCTCTGGGGGAGAGGGGGGCACCTGGGGAGGGGGGGG
			AGGGGGTCCCTGGGGAGGGGATGGGACGGGCGCCCGGGGGAAGAAAGGGGG
chr1:23568081-			GGGACCGCCGGGGGTTGGGGCCGCCGGGCGCGGGGGGGGG
23568175			AGGGCCAGGGTGGGGCCGCGGGGCGGGGGGGGGGGGGGG
1 1 0 (11 1 1 0	100	TTC	GGGGAGGGCTGGGAAGGGGGGGGGGGGGGGGGGGGGGGG
Cnf1:2041112-	287		GGGGCTGTGGGGAGGGTTGGGAAGGGGGGGTTGTGGGGAGGGTTGGGAAGGGGTGTGT
2041244	898	34	GGGGAGGGCTGGGAAGGGGG
chr10:101829586-	308	KCN	GGGATAGATGGGGCTGGGCGGGGGGGGGGGGGGGGGGGG
101829668	19	IP2	TTTGGGCGGGGCAAGGCTGGGGCTGGG
			GGGGCAAGGGTGGGAGGGGCCGGGCAGGACTGGGGCAAGGGTGGGAGGGGCCGGGC
			AGGACTGGGGCAAGGGTGGGAGGGGCCGGGCAGGACTGGGGCAAGGGTGGGAGGGG
chr10:132448692-	170	C10o	CCGGGCAGGACTGGGGCAAGGGTGGGAGGGGCCGGGCAGGGCTGGGGCAAGGGTGG
132449011	393	rf91	GAGGGGCCGGGCAGGACTGGGGCAAGGGTGGGAGGGGCCGGGCAGGACTGGGGCAA
			GGGTGGGAGGGCCGGGCCGGACTGGGGCAAGGGTGGGAGGGGCCAGGCAGG
			GGGCAAGGGTGGGAGGGGCCGGGCCGGACTGGGGCAAGGG
chr18:78667905-			GGGTGGCTAGGGGAGAGGTGGGAGGGTGGATGGGGGGGGG
78667977			GGGAGGGTGGATGGGGG
			GGGCAGGGGAGAGGGCAGGGGAGAGGGCAGGGGAGAGCGAGGGCAGGGGAG
chr20:63836346-			GGGGGCAGGGAGAGCGCGGGCAGAGCAGGGCAGGGAGAGCGCGGGCAGGGCAGGG
63836553			GAGCGGGCAGGGGCAGGGAGAGCGCGGGCAGGGGCAGGGGGG
			GGGCAGGGAGAGCGCGGGCAGGGCAGGGGCAGGGGCAGGGG

Appendix Table A3 Sequence repeats capable of forming multiple G4 structures.

 chr21:42100704-	897	UM	GGGGTTGGTGGGTAGGGAGGGTGAGGGCATGGGGTTGGTGGGGGGGG
42100958	66	1 UDL	GGGAGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr4:3730542- 3730742			GGTGGGGATTGGGGGGCACAGGGCGGGTGCCAGTGGGGGGCTGGGGGGCCAGGGCAGG GGCCAGTGGGGGGCTGGGGGGTGCAGGGCCAGGGGCCAGTGGGGGCCCCAGGGC GGGGGTGCCGGTGGGGGGCAGGGGGCGCAGGG
chr8:143498684- 143498908	231 44	ZC3 H3	GGGGGATGGGAACCGGGGGCAGAGGGGGTACAGGGCGGGGGGGG
chr0+137515055-	375	PNIP	G G GGGATGGGGGTGGGGCGCATGGGGGATTGGGGTAGGGGTGGAAGGGGTGGGGAGGA
137516116	775	LA7	GGGATTGGGGTGGGGAGGGGGATTTCGGGGAATGGGGGGGTTGGGGTAGGTA
chr10:744186- 744301		1- 164C 1.2	GGGCTGGGTGGGGGCCCTGGGCTGGGTGGGGACAGTGGGCTGGGTGGG
chr11:1234711- 1234787	727 897	MU C5B	GGGGAGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr15:80152528- 80152585 chr15:80152616	218 4 218	FAH	GGGCCTGGGACTCTCGGGTACCCGGGCCAGGGGAGGGGGGGG
80152668 chr16:2905425-	4	FAH	GGGGCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
2905477		FXY D1¶	GUALAGEUUAAGUGEUUGUEEEGTUGUEAGUGAGUAEEAGTUGUEGUGU
abr10:351/11265	534 8¶1 631	CTD - 2527	
35141367	75¶ 538 22	121.4 ¶LGI 4¶F XYD	CCAGGGAGAGGGGGGCTAGGGAGAGGCGGGGCCAGGGAGAGGCGGGG
chr19:41383630- 41383688	593 ¶64 164 9	7 BCK DHA ¶TM EM9	GGGTATGTTGGGTGGGGGGGGGGGGGCCAGGGGGAGGGTCTGGGGACTGAGGGGATGCCTG GG
chr2:218980736- 218980797	151 300	1 LIN C006 08	GGGATGGGGTGGGGTGAGGGTTGGGTGGAAGGGTGGGTG
 chr20:62498310- 62498366		~~	GGGATGGGTGGGTGTGGGGATGGGTGGGTGGGGGGGGGG

chr20:62498625- 62498714			GGGATGGGTGGGTGGGGGGGGGGGGGGGGGGGGGGGGG
chr22:38077913-			GGGGCTGGGCGGGCACAGGGCTCAGGGGCACAGGGCTGGGTGGG
chr22:47343631- 47343717 chr4:49566547- 49566621			GGGCAGGGATTGGCAGGGAGCGGGTAGGGCAGGGACTGGGTTGGGTAGGGTAGGGA TTGGGTAGGGCAGGGAGCGGGTAGGGCAGGG GGGGGCGGGGAGGGTTGGGGGGATTGGGGGGGGGG
chr5:1214849- 1214907	340 024	SLC 6A1 9	GGGGGCCTGGGTAGGGAGGGTGGGCCCTGGGTGTGAGGGGGGGG
chr5:176030647- 176030835	843 21	THO C3	GGGTGGGGGGTGTGTGGGGTGAGGGTGTGGGGGGGGGG
chr5:176030847- 176031041	843 21	THO C3	GGTGGGGGTGTGGGGTGGGGTGGGGTGGGGGGGGGGGG
chr7:150995720- 150996053	484 6	NOS 3	GGGGTAGGGGCAGAGGAGGAGGAGGGGGGGGGGGGGGGG
chr8:22733773- 22733858	157 310	PEB P4¶R P11- 459E 5.1	GGGGTGGGGATGGGGGGTTTGGGGAGGGTGGGGATGGGGGAATTGGGGAGGGTGGG GATGGGGGAATTGGGGAGGGTGGGGATGGG
chr1:214136289- 214136320			GGGGGTGGTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr10:117501567- 117501602	196 047	EM X2O S	GGGGGCAGGGCCAGGGCCTGGGCGGGCAGGCTGGG
chr10:132448613- 132448675	170 393	C10o rf91	GGGTTGGGACGAGTGGGAGGGGCCAAGCAGGGGCTGGGCAAGGGTGGGAGGGGCCG GGCAGGG
chr10:132605375- 132605400	363 2	INPP 5A	GGGGGATGGGGAAGGGACAGGGAGGG
chr10:133252389- 133252567	574 448 ¶10 192 767 1	MIR 202¶ MIR 202 HG	GGGATGGGGTACAGGGCAGGACGGGGTGCAGGGCAGGACGGGGTGCAGGGAGAGCT GGGGTGCAGGGAGGGATAGGGTGCAGGGCGGGCCGGGGTGCAGGGTGGGGCTGGGGT GCAGGGTGGGGCGGGGTGCAGGGCGGGCTGGGGTGCAGGGAGGG
chr10:42884606- 42884649	-		GGGGGCAGGGAGAGGGATGGGTTAGGGCTGGGTGGGGACCAGGG
chr11:1224526- 1224599	727 897	MU C5B	GGGGCGGGGGGGGGGGCTGTAGGGCCAGGGAGGGGCTGCCTGGGGGCTGGGGAGGGGC TGCTGGGGTGGGG

chr11:33700500- 33700555	100 131 378 ¶96 6	C110 rf91¶ CD5 9	GGGTGGTGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr12:108850623- 108850742	544 34	SSH 1	GGGGACTTCAGGGAGGGGAGATGGGAGAGGGGATTGGGGAGGGA
chr12:113358512- 113358546	196 463 ¶80 024	PLB D2¶ SLC 8P1	GGGCGGGGCCGAGGGCGGGGCCGGGCCTGGG
chr12:131894875- 131894930	840 8	ULK 1	GGGCCGGGGCGGGCGGGGCGGGGGGGGGGGGGGGGGGGG
chr15:73685123- 73685163	803 81	CD2 76	GGGGGTGGGGAGGGAATTGGGATGGGCAGTTTGGGCTTGGG
chr16:89828297- 89828329	845 01	SPIR E2	GGGGGACGGGTGAGGGGCAGGGCGGGGGCGCGGG
chr17:82709075- 82709123			GGGGGAGGGCATGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr18:77117772- 77118250 chr18:79617375- 79617447 chr18:80247568- 80247564	415 5 845 52	MBP PAR D6G	GGGATGGGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr19:43479561-	653	PHL	GGGCCTGGAGGTGGGGTGGGGTGGGGTGGGGCCTGGGG
43479598 chr19:45782822- 45782871	583 176 0¶1 762	DB3 DMP K¶D MW D	GGGGGCTAGGGGGTGAGGGCTGGGGGGTTGGGGGGGGGG
chr19:47480224- 47480277	111 33¶ 100 505 681	KPT N¶N APA -AS1	GGGGTAAGGGGTGGGGTTGAGGGCTAGAGGGCGGGGCCAGGGTGGGGGCTGAGGG
chr2:218980655- 218980727	151 300	LIN C006 08	GGGGTGGGGTGAGGGGCGGGGGGGAAGGGTGGGTGAGATGGGGAGGGTTGGGTGGG
chr2:2236336- 2236438_	230 40	MY T1L	GGGTTGGGTTGTACTGGGCTGGGTTGGGATGTACTGGGTTAGGTTGGGATGTACTGGG GTGGGTTGGGATGTACTGGGGTGGGTTGGGATGTACTGGGTTGGG

chr2:241896728- 241896872	101 927 289	AC1 3109 7.4¶ LIN C012 37	GGGGTGTGGGTGAAGGGGTGTGGGGTGTGGGGTGTGGGGTGTGGGGTGAAG GGGGTGTGGGTGTTGGGGTGTGGGGTGTGGGGGGGG
chr2:64876270-			GGGTGGGTGGGTTTGGAGGGAGGGGGGTTGGGAATAGGGGTGGGG
chr20:61950814-			GGGCTGGGGAAGGGGAGAGGGTGGGAGGGAGGGCCCAGGGCTGGGGGAGGGA
chr20:62497558-			G GGGGAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
62497620 chr20:62497759- 62497831			GATGGG GGGGTGGGTGGGTGTGGGGTGGGTGGGGGGGGG
chr20:62498375- 62498431			GGGGATGGGTGGGTGGGTGGGATGGGTGGGTGGGTGGGT
chr20:62498483- 62498530			GGGTGTTGGGGATGGGTGGGTGTGGGGTGGGGTGTGGGATGGG
chr20:62498556- 62498616 chr21:13368441-			GGGGTGGGTGGGTGTGGGGTGGGGTGGGGTGGGGTGGGGG
13368521 chr22:47342809- 47342880			TGGGTAGGGTGGGTGGGTTAGGG GGGTAGGACAGGGATTGGGTAGGACAGGGATTGGGTAGGGAGGG
	100		
chr3:195909590- 195909656	262 ¶10 188	AS1 ¶TN K2	GGGCGGGGAGGCGGGCGCGGGACTCGGGGGCGGCCGGGGGGGG
chr4:15937283-	998 2	FGF BD1	GGGGTTTGGGTGGGGTGGGGTGGGGGTGGGGGGGGGGGG
chr5:1028761- 1028825	854 09	NKD 2	GGGACAGGGCCAGAGGGATTGAGGGGGGGGGGGGGCCCTCGGGAGGGA
chr5:1448491- 1448526	653	SLC 6A3	GGGGGTAGGGGGCTTGGGGAGGGCAAGGGTGAGGGG
chr5:170278314- 170278414	393 7	LCP 2	GGGGGGCTGGGGAGGGGGGGGGGGGGGGGGGGGGGGGGG
chr6:163414542- 163414582	944 4¶1 005 268 20	QKI ¶CA HM	GGGGAGGGCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr7:100601135- 100601174	100 129 845 ¶51 18	PCO LCE - AS1 ¶PC OLC	GGGGGCTGGGAGGGACAGGGGCAGGGATGGGGTGGGGGGGG
	10	E	

chr7:1607861-			GGGCTGGGGCTGGGCAAGGGTTGGGCTGGGCAGGGGTTGGGCAGGG
1.0.102411.009	510	UDD	
chr8:102411698-	513	UBR	GGGGCCAGGGGCCCCGGGGTGGGCTGGGCTGGG
102411730	66	5	
chr8:105318225-	234	ZFP	GGGGGATGGGGCAGGGGGGGGGGGGGGGGGGGGGGGGGG
105318271	14	M2	
	100	HHL	
chr8:132076387-	86¶	A1¶	GGGGGTTTGGGGGTGGGGGATGGGAGGGGTGGGAAGCTTGGGGACAAGGGCGTGGT
132076451	729	OC9	GGGATGGGG
	330	0	
chr8:133653707-			
133653756			GGGTGGGGTCTGGGGTGGGGGGTGCGGGGCACAGGGAGAAGAAGGG
chr9:111803/61-			
111803404			GGGGGAAAGGGGTGGGTTGGGAGGGGTTGTAGGG
abr0.76756927	150		
CIII9:70750827-	138	PKU	GGGGGGGCAGGGCACGGGCAGGGTGGGGGG
/6/56858	4/1	NE2	
chr1:1202461-			GGGTGCTGGGCTCGGGGCTGGGTACTGGGCTCGGGGCTGGGTACTGGGCTCGGGGCT
1202565			GGGTACTGGGCTGGGGGCTGGGTACTGGGCTCGGGGCTGGGTACTGGG
chr1:165369760-			GGGGTGGGA GTTGGGGCA AGGGCA A GGGG
165369792			
chr1:180631413-	921	XPR	
180631438	3	1	GGGGTTGGGGGTGAGGGTTGGGAGGG
chr1:2175339-	559	PRK	
2175394	0	CZ	GGGGT1GGGGT1GGGATGGGGGT1GGGTAGATT1GGGGT1GGGATGGGGATGGGGG
	728	ZBT	
	116	BSB	
chr1:32490207-	110 ¶65	100D	
32490237	210		00001A000A0000CAAA00011000A1000
	512	188	
	1	A	
chr1:3454567-	272	ARH	GGGCGCTGGGCGGGCGGGGCTGCTCCGGGTCCGAGGGCCCGGGCGGG
3454635	37	GEF	GAGGGGCGGGG
5454055	51	16	
chr1:53501990-			GGGTTTGGGAGGGTGGGAGGGACAAGGGGCCTGGGGTGGGAGGGA
53502054			TGGAAGGGG
chr10:71548130-	640	CDH	
71548176	72	23	GGGGCAGCGGGAGGGCTGGGATTGGGGAGGGAGCCCAGGGGACAGGG
	102		
	466	MIR	
chr11:1256504-	725	6744	
1256551	123 (17)		GGGGCTCAGGGTGGGCGGGGGCTGGGGGGGGGGGGGGGG
1250551	1/2		
	789	CJD	
	/	DITID	
	576	PITP	
chr12:122986600-	05¶	NM2	GGGGCCCGGGAGGATGGGGCAGGGCAGGGGGGGGGGGGG
122986642	234	¶AB	
	57	CB9	
chr13:114156015-			GGGGAAGGGTGGGTGCGGGGGGGGGGGGGGGGGGGGGGG
114156095			CTGGGTTTGGAGGGGTGGGGTGGGG

chr13:114156176- 114156330			GGGTAGAGGGGTGGGTGCTGGGTGTGGGGGGGGGGGGGG	
chr13:18796421- 18796470			GGGAGGGTGGGGAGGGTTGGGGGGAATTGGGGGGGGGGG	
chr13:50411581- 50411619	103 01	DLE U1	GGGGCTGTGGGGCTGGGCCAGGGAAGCGGGAGGGAAGGG	
99988985- 99988988			GGGCAGGGATAGGGGTGGGGTTGGGGGGGGGGGGGGGGG	
		JAG		
	371	2¶RP		
chr14·105154412-	4¶1	11-		
105154445	024	44N	GGGGCTGGGGCCCAGGGTCTGGGGTGGGCACGGG	
100101110	654	21.4¶		
	58	MIR		
		6765		
chr15:80152687-	218	FAH	GEGECTECCGGEGECAAGEGEAGGGEGGGEGETEAGGGAGGG	
80152733	4	1 All		
chr16:1372485-	647	UNK	GGGGTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
1372516	18	L		
abr16,27805155	146	CSC	GGGCACTGGGATTGGGGGGGGGGGGGGGGGGGGGGGGGG	
27805281	140	11	GAGGGCTGTGGGCACTGGGATTGGGGGTGGGGGGGGGGG	
27803281	595	IL	GGTGGGGGGGGGG	
		CTD		
		-		
	280 2600	2600		
1 1 6 5700000 4	380	O9.1		
chr16:57802324-	1¶3	¶KIF	GGGGGGCCCGGGCGGGCTGGGTGCGAGCGGGGCGCTGGG	
57802362	882	C3¶		
	82	LOC		
		3882		
		82		
chr17:20518605-			GGGCCTGGCGGGACCCTGGGACCCAGGGCGGGGCTTGGGGTGGGCAGGCA	
20518666			TGGG	
chr17:41625606-	387	KRT	GGACCCAGGCCGGGCTTGGGGTGGTGGGCAGGGCAGGGTGGGGCTGTGGGGTGGG	
41625663	2	17	G	
11025005	2	17	GGGGGAGGGGTGCAGAGGGTGGGGGAGGGGGGGGGGGGG	
chr17:79495489-	146	RBF	GGGGCAGGGTACTGGGGCAGGGATGGGGATGGGGAGGGGGGGG	
79495646	713	OX3	AGAGGGTGGGGAGGTGGGGGAAAGGGTACTGGGGCAGGGATGGGGG	
chr18:48161154-	201	ZBT		
48161184	501	B7C	GGGGGCTGTGGGGGGGGGGGGGGCCTCCTGGG	
chr19:16904176-	271	CPA		
16904217	51	MD8	GGGCAGGGCCAGAGGGAGGGGCTCAGGGCTGGGTGGGGGGG	
chr10:3276183	606	CEL		
3276105-	80	E5	GGGGCGGGGCCTGGGGAGGGGATGGGGCTGCAGGGTGGGG	
5270222	111	15		
	334	KPT		
chr19:47480030-	55∥ 100	N¶N	GGGTGAGGTAGGGGAAGTGGGGGAAGGGATGAGGGTGGGGATTGGGGGG	
47480127	505	APA	GGGTGGGGTTGAGGGCTTCAGAGGGGCGGGGCTAGGGTGGGG	
	JUJ 601	-AS1		
	001			

chr19:56 56108	108248- 3430	126 208	ZNF 787	GGGCAGGGGCAGGGTGGAGGGAGCTGGGGAGCTCTGGGCAGGGGTTGGGTGGAGGG AGCCAGGGAGTGCTGGGCAGGGGCGGGGGGGGGG
chr2:118	875603-			GGGGACTGGGAAGGGGTGGGACAGGGCTGGGGTGTGGGGAGGG
chr2:21782 21782 chr2:2189 21899	5645 821675- 1731 992604- 2681	714 5 141 2	TNS 1 CRY BA2	GGGAAGGGGCAGTGGGTGGGGGGATGGGAATCCGGGCCTGGGACTGGGACGGGATGG G GGGGCAGGGGTAGGGGGCGGCAGGGTGGGAAAAGCTGGGCTCTGGGAGACCAGGGT GGGGCCAGGGAAAGGGATTGGG
chr2:2402	216936-	-	2.12	GGGTGAGGGGTGGGGTGGGGTGGGGGGGGGGGGGGGGGG
chr20:63 63356	356306- 3351	100 130 587 ¶11 37	LOC 1001 3058 7¶C HRN A4	GGGCAGCAGGGTGAGGGGTGTGGGGGGGGGGGGGGGGGG
chr21:45	999522-	129	COL	GGGGCTGGGTAGGGAGGGACCGGGCAGGGGTGGG
chr22:19 19760	760592- 0651	689 9	TBX 1	GGGCGGGCTGGGGGCCGGGGAGGGGGGGGGGGGGGGGGG
chr22:22 22558	558009- 3124	648 691 ¶23 532	2NC 03- 63E9 .3¶P RA	GGGTGGGGGAGGGGTGGGCATGGGGAAAGGGAGACAGGGTGGGGGGGG
chr22:38 38468	468717- 3749	110 15	ME KDE LR3 MA	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
1318	118	96	EA	GGGGGAAGCCGGGCACACGGGGCCAGGGAGGCGGGTGGGT
chr4:2756	56374- 472	791 55	TNI P2	GGGCGGGGCTGCGCGGGGAAGGGCGGGGGCGCGGGGGGGG
chr4:495	72959-			GGGGGGTGGGGAGGGTTGGGGGGGATTAAGGGGTGGGGAGGGTTGGGGG
chr5:12 1295	95088- 155	701 5	TER T	GGGGAGGGGCTGGGAGGGCCCGGAGGGGGCTGGGCCGGGGACCCGGGAGGGGTCGG GACGGGGCGGGG
chr5:22)4989- 021			GGGAAGTGGGGGTGGGGCTGGGGCTTGGGCGGG
2203	021	102 724 094	LOC 1027 2409	GGGGGAAGGGAAGGGGTCCCAGGGGGGGGGGGGGGGGGG
chr7:1010 10101	017720- 8062	¶14 045 3¶1 007	4¶M UC1 7¶M UC1	GGAAGGGAAGGGGTCCCAGGGGGAGGGAGGGAGGGAAGGGAAGGGAAGGGAGCCCAGGGGGAAGGGAGCCCAGGGGGAAGGGAAGGGAAGGGAAGGGAAGGGAAGGGAAGGGAAGGGAAGGGAGTCCCAGGGGGAGAAGGGAAGGGAGTCCCAGGGGGAGAAGGGAGTCCCGGGG GAAGAGGG GAAGAGGG

		DD1	
		1	
chr7:129978853-		1-	
129978883		300	666661666661666161666A666CA6666
		620.	
-1-7-140018702	060		
cnr/:149018/92-	960	PDI	
149018849	1	A4	66
chr/:26864641-	893	SKA	GGGCCGGGGGGGGGGAGATGGGTGGGAAGGGACACGAAGGGCCTGAGGGG
26864689	5	P2	
chr7:44224942-	016	CA	
44224975	816	MK2	GGGAGGGGC I GGGCAGGGC I GGGAAAGGGG I GGG
-1-7-74019025	746	В	
CHF7:74218035-	/40		GGGGGCTGGGGGTGGGCAGGGCCTGAGGGGAGAGGGG
/42180/1	2		
chr8:142348488-	203	1 SIN	
142348542	062	ARE	GGGGCAGCC1GGGGCGGGAGCGGGGGGCCAGGGGAGGG1GGGCA1GGGG1GCCGGG
chr8:142348556-	203	1 SN	
142348610	062	AKE	GGGGCAGCC16GGGCGGGAGCGGGGGCCAGGGGAGGG1GGGCA16GGG1GCCGGG
	000		
1 0 144465 (01	909	KIF	
cnr8:144465691-	90¶		
144405775	506		666666661616666666666666666666666666666
-h-0-2205(19)	20	KI	
22056220			GGGAGGGTCCGGGAAGGGTCCCTGGGTGGGGGAGGGGGGAAAGGGG
52956250		CNT	
chr9:39145609-	799	UNI	
39145636	37	2	000000100000001000010000
chr9.5840502		5	
5840539			GGGGGCCGGGGAGGGGCAGTGGGCATGGGTAGGGAGGG
chr9.93210282	652	WN	
93210324	68	K2	GGGGTGAGGGATGGGCAGGGTGGGCAGGGATGGGGGACTGGGG
chrX:107610224	08	K2	
107610250			GGGGGGCAGGGCAGGGAAGGGGAGGG
chrX:12711746-	975	FRM	
12711782	8	PD4	GGGGACTTGGGGCGGGGGGGGGGGGGGGGGGGGGGGGGG
chr1:11971187-	535	PLO	GGGGCAGGGGGATGGGGTGGGAGGGGGGGGGGGGGGGGG
11971260	1	DI	GCLAGGGGGGGGGGGGG
119/1200	227	DI	
chr1:38005556-	595	FHL	
38005593	111	3¶U	GGGCTGGGGGGCCGGGGGGGGGGCGGGGGGGGGGGGGGG
50005575	8	TP11	
chr10.131738939-	Ũ		
131738977			GGGGTGGGTGGGGAGGAGCATGGGGTGGGCAGGGTGGG
chr10:44647571-			
44647613			GGGTGAGGGGGATGGGTGGGGGATGGGCAGGGCAGGGCA
chr10:86347049-	289	GRI	
86347092	4	D1	GGGTGGGTGGGGCAGGGCAGGAGGGTGGGGCTGGGCAGTTAGGG

chr11:119695264-	581	NEC	GGGGACTGGTGGGGAGGGTGGGGACCTGGGAGGGGGGGGG
119695328	8	TIN1	TGGGCAGGG
chr11:63562804	540	HRA	
63562932	79	SLS	GGGAGGGATTAGCTGGGGAGGGAGGGTCCAGGGAAAGGG
03502752	12	2	
chr12:123034471-	576	PITP	GGGTCGTGGGGCAAGGGTGGGTCATGGGGTGAGGGTGGG
123034509	05	NM2	
chr12:47939348-	742	VDR	GGGTGGGGCTTGGGGGAGGTGGGTCCTGGGGGTGGGGATGGGG
47939389	1	TAD	
	689	BP2¶	
chr12:53499343-	5¶7	MAP	GGGGGGGTGGGGGGCAGGGATGGGTCTGGGTCCTGGGATCCGGGCGTGGAGGGAG
53499404	5∥/ 786	3K1	GTCGGG
	100	2	
chr14:23386616-	462	MY	GGGAGGCCTGGGAAGGGGTGGGGGGGGGGGGGGGGGGGG
23386678	4	H6	GAGAGGG
chr16:3957697-	115	ADC	CCC A TCCCCCCTCCCC A CCCCC A CCCCCT A CCCCCC
3957730	115	Y9	000410000100100000000000000000000000000
chr17:50604073-	891	CAC	
50604120	3	NA1	GGGGGTGGGGAGCAGGGTCAAGGGACAAGGGAGGGTCTGGGGTGGGGG
	100	G	
chr17:82698358-	109	RAB	GGGTGAGCGCGGGCGGAGGGCGTGCCGGGGTGCGGGGGCCGGGGGGGG
82698455	66	40B	
chr18:79395460-	477	NFA	
79395704	2	TC1	
			GGGGGCGAACGGGCCAGACGGG
chr18:79617457-			
79617512			GGGGGGGGGGGCCIGGGGGGGGGGGGGGGGGGGGGGGGG
chr19:6373235-	842	ALK	GGGGTTGTGGGGCCAGGGGGGCCGGGGCGCAGGGATGGGGCGGGGCCACGCTGGGGC
6373294	66	BH7	GGGG
chr19:9851039-			GGGGGTGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
9851068			000010/000010001000/0010/000
chr20:1225680-	642	RAD	GGGACCGGGGCAGGGGGGGGGGAAGGGCGGG
1225711	636	21L1	
chr21:40006234-			GGGCCTGGGGAGAGGGAGGGCCTGGGGAGAGGGAGGGACTGGG
40006276		DOE	
	232	POF UT2	
chr21:45287489-	75¶	U12 ¶ 0	GGGGCAGGGGCCAGGGGGATGGGATGGAGCGGGGTCAGGGGGCAGGGGTCAGGGGA
45287569	642	_п со С642	ATGGGATGGGGTCAGGGTTCTGGGG
	852	852	
		Z997	
	101	56.1¶	
chr22:43280423-	927	LOC	GGGTGAGGGGAAGGGACGGGGATGGGTGAGGGGAAGGGACGGGAGGATGGGTGAGG
43280510	44 /	1019	GGAAGGGACAGGGGGATGGGTGAGGGGAAGGG
	180 274	2744	
	214	7¶SC	

		UBE	
		1	
chr22:49037526- 49037614			GGGAGCGGGAGGGGCCAGGGGGGGGGGGGGGGGGGGGG
chr3:129606851-	231	PLX	GGGCGGCCAGGGGCAGGCGGGGGGCCGGGGGGGGGGGGG
129606910	29	ND1	AGGG
	891	HER	
chr4:88699286-	6¶2	C3¶	GGGCAGGGTGGGGAAGAAGAGGGTGGGGCTGCGTGGGTGG
88699364	668	NAP	TGGGGCTGGGTGGGTGGGGGG
	12	1L5	
chr5:524556-	655	SLC	GGGCTCCGGGGGAGGGTGGGCACCAGGGAGCGCGGGGGGGG
524624	0	9A3	CGGGCGTGCCGGG
chr6:34486149-	299	PAC	GGGGGTGAGGGTGGAGGGACAGGGGGCCTGGGAACCCAGGGAGAGGGAGG
34486233	93	SIN1	CCTAGGGGTGGGGTGAGGTGGGGTTTGGGG
chr6.11222239-	203	SLC	
44222239-	203	29A	GGGCTGGCGGGGATGTGGGGGGATGGGGGGGGGGGGGGG
44222200	0	1	
chr7:157138531-	969	UBE	GGGCCGGGATGGGGTGCAGGGCAGGGTGCGGGGGGGGGG
157138583	0	3C	
chr8.142348624-	203	TSN	
142348668	062	ARE	GGGGCGGGAGCGGGGGCCAGGGGAGGGTGGGCATGGGGTGCCGGG
1.2010000	002	1	
chr8:142464060-	575	ADG	GGGGGCAGGGAGGCGGGGCAAGGGTGGGATGGGAGAGGG
142464098		RB1	
chr8:26383526-	665	BNI	GGGCGGGGCGGGCGGGGCGGGGGGGGGGGGGGGGGGGGG
26383612		P3L	GGCCGCGGAGGGGACGTGGGCCGGGATGGGG
chr9:132589622-	567	BAR	GGGGGGCACTGGGCTGGGGGCGCCAGGGAGGGCCGGGCAGGG
132589662	51	HLI DD1	
chr9:136800509- 136800550	849 60¶ 556	1- 216L 13.1 9¶C CDC 183¶ RAB	GGGAAGGGCGGGGGTCAGGGGCTGGGATCTGGGAGGGGGGGG
130800330	84	L6¶ RP1 1- 216L 13.1 8	
chrX:120157742- 120157823	727 940	RHO XF2 B	GGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr1:2640997- 2641101	100 287 898	TTC 34	GGGGCAGGGAAGCGGGGTGTGGGGAGGGCAGGGAAGGGGGGGG
chr1:29727790- 29727836			GGGTGGGCTTGGGGAGGGGGGGGGGGGGGGGGGGGGGGG

chr14:103109168- 103109254	918 28	EXO C3L	GGGAGGGAGACACGGGGACAGGGTGGAGAGGGAGGGAGGG
chr14:103109565- 103109722	918 28	4 EXO C3L 4 RP1	GGGAGACCCAGGGACAGGGTGGAGAGGGAGGGAGGGAGGG
chr16:47887333- 47887374	101 927 132 ¶10 050 753 4	1- 523L 20.2¶ LIN C021 33 ¶LIN C021 92	GGGTCACAGGGTCAGGGAGGGGGGGGGGGGGGGGGGGGG
chr19:38390491- 38390536	399 473 ¶19 972 0	SPR ED3 ¶ GGN	GGGGCATGCGGGGAGGGTAGGGACCTGGGGAGGGGGGGGG
chr2:129877629-			GGGGAGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr21:43075944- 43076011	875	CBS	GGGGTGGGGAAGGGGTGGGGGGGGGGGGGGGCCCGGGCTGGGTGGG
chr22:44939685- 44939728	112 885	PHF 21B	GGGGATGGGTGGGAGCAGGGCTAGGGAGGGGGGGGAAGGGATAGGG
chr3:50204812- 50204840	109 91	SLC 38A 3	GGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr8:10852146- 10852235			GGGAGGGGAAGGGGAGGGCAGGGAAGAGAGGGTCAGCACGGGGAAGAGAGGGG AGCGCGGGGAAGGGAA
chr9:127809879-	235	FPG	GGGGCGGGATCTTGGGGAAGGGCGGGGGGGGGGGGGGGG
127809969	6	S	CCATGGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
chr9:135757071-	575	KCN	GGGGTATCAGCGGGGGGGGGATGGAGGGTGGGGGGGGGG
135757140	82	T1	GGTGGGGAAGAGGG
chrX:154065081-	420	ME	accetecetececetececece A Acce
154065110	4	CP2	
chr5:181098279- 181098403			GGGGGAAGGGACTGGAGGGGAGGGGAGGGGAGGGGACGGGTGGGGAGGGGGGGG
chr7:76282546- 76282601	222 183	SRR M3	GGGGGCTGGGGGGGGGGGGGGGGGTTCCCTGGGGGGGGG

Appendix Table A 4 Summary of Family 2 G4 sequences

Sequence	Location	Experimental	Gene ID	Anntation
		Evidence		
GGGGAGGGCCTGGGACAGGG	chr11:1648838-1648857	absent	387742	Intergenic
GGGAGGGCCTTGGGACAGGG	chr1:226482764-226482783	absent	375057	Intergenic
GGGAGGGGCCTGGGACAGGG	chr9:135803176-135803195	present	57582	Intergenic
GGGGGAATGGGCTGGGACAGGG	chr1:7715171-7715192	absent	23261	Intron
GGGAAGGGGGGCTGGGAAAGGG	chr17:74059333-74059353	absent	6169	Intron
GGGCTGGGCATGGGACAGGG	chr14:74084190-74084209	present	4329	Promoter
GGGGAGTGGGCTGGGACAGGG	chr1:120652107-120652127	absent	101954277	Intergenic
GGGGAGTGGGCTGGGACAGGG	chr1:149272171-149272191	absent	400818	Intergenic

Appendix Table A 5 Summary o	of Family 3 G4 sequences.
------------------------------	---------------------------

Sequence	Location	Experimental	Gene ID	Annotation
		Evidence		
GGGAGGGGGGCTGCAGGGAGCTGGG	chr19:41700278-41700301	ppresent	1087	Iintron
GGGAGGGGGGCTGCAGGGAGCTGGG	chr19:41700314-41700337	ppresent	1087	Iintron
GGGAGGGGGGCTGCAGGGAGCTGGG	chr19:41700350-41700373	ppresent	1087	Iintron
GGGAGGGGGGCTGCAGGGAGCTGGG	chr19:41700386-41700409	ppresent	1087	Iintron
GGGAGGGGGGCTGCAGGGATGGGGG	chr12:124531250-124531273	ppresent	9612	Ppromoter
GGGAGGGGGGCTGCAGGGATGGGGG	chr3:53193909-53193932	aabsent	5580	Iintergenic
GGGAGGGGCTGCAGGGATGGGGG	chr22:43426947-43426969	aabsent	758	Iintron
GGGAGGGGGGAGGCAGGGTTGGGG	chr1:206041760-206041782	aabsent	440712	Iintron
GGGAGGGTGCTCCTGGGATGGGG	chr17:1312485-1312507	ppresent	286753	Iintergenic
GGGAGGGGGCTTCTGGGGTGGGG	chr3:13852428-13852450	ppresent	7476	Iintron

Appendix Table A 6	Summary of Family 4 G4 sequences
--------------------	----------------------------------

Sequence	Location	Experimental	Gene ID	Annotation
		Evidence		
GGGCCTGGGAGGGAAGGAGAGGG	chr4:3513681-3513703	aabsent	4043	Intron
GGGCTAGGGTCGGGAGTAGAGGG	chr2:88972574-88972596	aabsent	100616399	Intron
GGGGCTGTGGAGGGAGGGAGAGGG	chr15:41893960-41893983	aabsent	51332	Promoter
GGGCTGGGGCGGGAAGGAGAGGG	chr1:121185193-121185215	aabsent	653464	Promoter
GGGCTGGGGCGGGAAGGAGAGGG	chr1:143972835-143972857	aabsent	554282	Promoter
GGGGCTGGGGCGGGAAGGAGAGGG	chr1:206203718-206203741	ppresent	729533	Promoter
GGGCAGGGCGAGGGATGGAGAGGG	chr17:39144386-39144409	aabsent	57125	Intron
GGGCATGGGCGGGGGTGGAGAGGG	chr3:143313988-143314010	aabsent	100885796	Intron
GGGGTGGGGAGGGAATGTGAGGG	chr10:70886991-70887013	aabsent	5092	Promoter

Appendix Table A 7 Summary of Family 32 G4 sequence	s.
---	----

Sequence	Location	Experimental Evidence	Gene ID	Annotation
GGGAAGGGGAAGGGACAGGG	chr1:1136393-1136412	present	254099	Promoter
GGGGTGGGGGGGGGGGGGGGGGGG	chr1:161197724-161197743	present	4720	Promoter
GGGCTGGGGTTGGGGCTGGG	chr1:201275493-201275512	present	5317	Intergenic
GGGCTGGGGCTGGGGCAGGG	chr1:229251426-229251445	absent	5867	3' UTR
GGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	chr1:3110907-3110926	present	63976	Intron
GGGCTGTGGGGCGGGGGCTAGGG	chr1:37735516-37735536	present	284656	Promoter
GGGCTGGGAGAGGGCCTGGG	chr1:54138165-54138184	absent	200008	Intron
GGGATGGGCATGGGGGAGGG	chr10:124644752-124644771	present	64077	Intron
GGGGTGGGGGGTGGGGTTGGG	chr10:12:0945693-130945712	present	100422867	Intergenic
GGGATGGGCTGGGGGGCTGGG	chr10:27715853-27715872	present	283078	Intron
GGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	chr10:69897023-69897042	present	1305	Intron
GGGATGGGGCATGGGGAGGG	chr10:79375641-79375660	present	10105	Intergenic
GGGCAGGGGGTGGGGCAGGG	chr11:404765-404784	present	11187	Promoter
GGGCAGGGGGGGGGGGGGGGGGGGG	chr11:64934344-64934363	absent	170589	Promoter
GGGGTGAGGGTGGGGGGGGGGGG	chr12:129184860-129184879	present	101927735	Intron
GGGGTGGGGGGATGGGGAGGG	chr12:51905879-51905898	present	94	Promoter
GGGGTGGGGGGGGGGGCAGGG	chr13:111296247-111296266	present	8874	Intron
GGGCAGGGCTGGGTGGAGGG	chr13:31009892-31009911	absent	122046	Intergenic
GGGCAGGGGTTGGGTGAGGG	chr14:24147068-24147087	present	5721	Promoter
GGGTTGGGGGGGGGGGGGGGGGGG	chr14:65413539-65413558	present	2530	Promoter
GGGTGTGGGGTGGGGCAGGG	chr14:95332851-95332870	present	101929080	Promoter
GGGGAGGGGTGGGGACCGGG	chr14.96219408-96219427	present	623	Intron
GGGATGGGGGAGGGGACAGGG	chr15:77583296-77583315	absent	84894	Intron
GGGCTGGGGAGGGGACAGGG	chr15:85258124-85258143	absent	11214	Intergenic
GGGGAGGGCTGGGACCAGGG	chr15:90884045-90884064	present	2242	Promoter
GGGCTGGGACAGGGCCAGGG	chr16:32301164-32301183	absent	729264	Intergenic
GGGCAGGGCTGGGTCCAGGG	chr16:32302937-32302956	absent	729264	Intergenic
GGGCTGGGACAGGGCCAGGG	chr16:32502957 52502950	absent	24150	Intergenic
GGGCAGGGCTGGGTCCAGGG	chr16:33509201-33509220	absent	24150	Intergenic
GGGGAGGGCATGGGGCAGGG	chr16:46623763-46623782	present	79801	Promoter
GGGTGGGGTTGGGGGGAGGG	chr16:54970795-54970814	present	10265	Intergenic
GGGCAGGGCTGGGAGAAGGG	chr17:10232070-10232089	absent	8522	Intergenic
GGGAAGGGGAGGGGTCTGGG	chr17:58116701-58116720	absent	140735	Intergenic
GGGCTGGGCCTGGGCCTGGG	chr17:61402103-61402122	absent	6909	Promoter
GGGCGGGGCTGGGTCCTGGG	chr17:76079074-76079093	present	353174	Promoter
GGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	chr17:77413847-77413866	present	10801	Intron
GGGCTGGGGGGGGGGGGGGGGGGG	chr17:82435883-82435902	present	284004	Promoter
GGGGTGGGGTGGGTGGAGGG	chr17:8743246-8743265	absent	146849	Promoter
GGGCAGGGGCCTGGGGAGGG	chr18:10168387-10168406	present	9218	Intergenic
GGGGGGGGGGGGGGGGGGGGGGGG	chr18:22548091-22548110	present	64693	Intergenic
GGGCCCAGGGTGGGGCAGGG	chr18:37415961-37415980	present	56853	Intron
GGGCCGGGGCTCTGGGCGGG	chr18:62596252-62596271	absent	54877	Intergenic
GGGGTGGGATGGGGGCTGGG	chr19:17101093-17101112	present	4650	Promoter
GGGCAGGTGGGTGGGCAGGG	chr19:42351769-42351788	absent	102465875	Promoter
GGGAGGGGCGAGGGCCAGGG	chr19:51421895-51421914	present	89790	Promoter
GGGTTGGGGGGGGGGGGGGGGG	chr2:10264610-10264629	present	3241	Intergenic
GGGAAGGGGGGGGGGGGAGAGGG	chr2:205734541-205734560	absent	8828	Intron
GGGCAGGGACATGGGGTGGG	chr2:233976450-233976469	present	79054	Promoter
GGGGTGAGGGTGGGGGGGGGGG	chr20:32612791-32612810	present	149950	Intergenic
GGGTTGGGGGGAGGGGGGGGGG	chr20:32980815-32980834	present	140732	Downstream
GGGGTGGGACAGTGGGAGGG	chr21:40286094-40286113	present	1826	Intron
GGGTGGGGCTAGGGCCAGGG	chr22:21613160-21613179	absent	150223	Intron
GGGGTGGGAGTGAGGGTGGG	chr3:11222231-11222250	present	3269	Promoter
GGGCTGGGGCTGGGCCAGGG	chr3:125190497-125190516	absent	84561	Promoter
GGGCTGGGGCAGGGGCCGGG	chr3:127823053-127823072	absent	11343	Promoter
GGGGAGGGCATGGGGCAGGG	chr3:129088461-129088480	absent	2815	3' UTR
GGGCTGGGGGGAGAGGGTGGG	chr3:129348117-129348136	present	339942	Intergenic
GGGGGGGGGGGGGGGGGGGGGGGGG	chr3:131466690-131466709	present	11222	Promoter
GGGAGGGGCTGGGGCCTGGG	chr3:13628839-13628858	absent	2199	Promoter
GGGCAGGGCTCGGGACAGGG	chr3:42732393-42732412	absent	100874114	Promoter
GGGTAGGGAAAGGGAAAGGG	chr3:45979832-45979851	absent	79443	Intron
GGGGTGGGGGTAGGGGGGGGGGG	chr3:49489904-49489923	present	1605	Promoter
GGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	chr3:49642027-49642046	present	8927	Promoter
GGGGTGGGTGCGGGGGCAGGG	chr4:102826891-102826910	present	7323	Promoter
GGGGTGGGGGGGGGGCTGGG	chr4:141929124-141929143	present	3600	Intergenic
		1		0

GGGCAGGGGAATTGGGTGGG	chr4:152304991-152305010	absent	55294	Intergenic
GGGCAGGGGTGGTGGGTGGG	chr5:113656482-113656501	absent	64848	Intergenic
GGGGTGGGGCTTGGGGAGGG	chr5:134151255-134151274	present	6932	3' UTR
GGGGTGTGGGGCGGGGCAGGG	chr5:151772043-151772062	present	10146	Promoter
GGGCTGGGGCTAGGGGCGGG	chr5:168410001-168410020	present	23286	Promoter
GGGCAGGGGCAGGGTGAGGG	chr6:157921891-157921910	absent	51429	Intron
GGGCTGGGGCAGGGGGGAGGG	chr6:166558569-166558588	absent	6196	Intron
GGGCAGGGGGGGGGGGGGGGGG	chr7:128832311-128832330	absent	2318	Promoter
GGGAGGGGCTGGGGGCTGGG	chr7:30915933-30915952	absent	358	Promoter
GGGAGGGGCCGGGAGCTGGG	chr7:74454399-74454418	absent	9569	Promoter
GGGGTGGGGGGGGGGGGGGGG	chr8:113439774-113439793	present	114788	Promoter
GGGCAGGGGTGGGGGGAGGG	chr8:127255311-127255330	present	100507056	Intergenic
GGGAGGGGTTGGGGGCTGGG	chr8:144496661-144496680	present	84988	Promoter
GGGCTGTGGGCGGGCCAGGG	chr8:144502891-144502910	absent	2875	Promoter
GGGGTGGGGGGAGGGGTTGGG	chr8:25517201-25517220	present	157313	Intergenic
GGGGTGGGAGTAGGGGAGGG	chr8:38451245-38451264	present	2260	Intron
GGGGTTGGGGTGGGGGAGGG	chr8:54466113-54466132	present	64321	Intergenic
GGGCTGGGGTTGGGGAGGGG	chr8:99974271-99974290	present	26166	Promoter
GGGATGGGCTTGGGCCTGGG	chr9:113536716-113536735	absent	5998	Promoter
GGGCAGAGGGTGGGGCAGGG	chr9:121763670-121763689	absent	153090	Promoter
GGGGTTGGGTGGGGGGCTGGG	chr9:124506593-124506612	present	2516	Promoter
GGGCAGGGGACGGGGGTGGG	chr9:27312142-27312161	absent	54586	Intergenic
GGGCTGGGGTCGGGGTGGGG	chr9:84670271-84670290	present	4915	Promoter
GGGATGGGGAGGGAACAGGG	chrX:18891734-18891753	present	100132163	Promoter
GGGCTGGGGCAGGGATAGGG	chrX:19081377-19081396	absent	10149	Promoter

Appendix Table A 8	Summary of Family	75 G4 sequences
--------------------	-------------------	-----------------

Sequence	Location	Experimental	Gene ID	Annotation
		Evidence		
GGGGGAGGGAGGGCCTGGG	chr11:19817544-19817562	present	89797	Intron
GGGGGTGGGAGGGGCAGGG	chr11:65967601-65967619	present	9092	Intron
GGGTGGAGGGAGGGCTGGG	chr12:130663161-130663179	absent	23504	Intron
GGGGGTGGGGGGGCCTGGG	chr12:56096956-56096974	present	2065	Promoter
GGGGGTGGGAGGGCAGGG	chr16:78000971-78000988	present	10143	Intergenic
GGGGTGGGAGGGGCATGGG	chr17:41888505-41888523	present	47	Intron
GGGGGTGGGAGGGCATGGG	chr19:52643765-52643783	present	55769	Intron
GGGGGTGGGAGGGCATGGG	chr19:52700738-52700756	present	55769	Downstream
GGGGGTGGGAGGGCATGGG	chr19:52762022-52762040	present	162966	Downstream
GGGGGTGGGAGGGCATGGG	chr19:52818986-52819004	present	7576	Promoter
GGGGGTGGGAGGGCATGGG	chr19:52855275-52855293	present	7576	Promoter
GGGGGTGGGAGGGCATGGG	chr19:52938557-52938575	present	388559	Intron
GGGGGTGGGAGGGCACGGG	chr19:53129043-53129061	present	55786	Promoter
GGGTGGTGGGAGGGATGGG	chr1:18332823-18332841	absent	84966	Intron
GGGGGTGGGAGGGCCTGGG	chr20:63293908-63293926	present	57642	Promoter
GGGGGTGGGTAGGGCCGGG	chr2:219060082-219060100	present	3549	Promoter
GGGGAGAGGGGGGGCCGGG	chr4:40244011-40244029	absent	399	3' UTR
GGGGGAGGGAGGGCTTGGG	chr8:124855332-124855350	present	157381	Intron

Sequence	Location	Experimental Evidence	Gene ID	Distance To TSS	annot
GGGGCGGGCTGGGGGCGGGG	chr11:67630369-67630388	present	254552	-439	Promoter
GGGTCGGGGCCGGGGGGAGGG	chr11:968778-968797	present	161	-16587	Intron
GGGGCGGGCCTCGGGGGCGGGG	chr14:93184925-93184946	present	64112	0	Promoter
GGGTGCGGGGGCCGGGGGGGGGGGGGG	chr17:39927095-39927117	absent	94103	112	Promoter
GGGGCTGGGGGGGGGGGGGGGG	chr17:79836273-79836293	present	8535	1588	Promoter
GGGGCGGGGCCGGGGGGGGGGG	chr19:18097748-18097767	present	23031	-26	Promoter
GGGGCGGGTCGTGGGCGGGG	chr19:2096722-2096741	present	126308	-49	Promoter
GGGGCTGGGTCGGGGGGGGGGG	chr19:55081615-55081635	present	54869	-57	Promoter
GGGGCGGGCCCAGGGGCGGG	chr1:16700286-16700305	present	100500876	19031	Intergenic
GGGGCGGGCCGGGGGGGAGGGG	chr1:185411921-185411941	present	100288079	-76882	Intergenic
GGGGCGGGCCGGGGGGGGGGG	chr20:5001518-5001537	present	9962	-19	Promoter
GGGGGCGGGCTCGGGGGCGGGG	chr21:5022922-5022943	present	23308	389	Promoter
GGGGCGGGGGCACGGGGGGAGGG	chr4:1011532-1011552	present	53834	-270	Promoter
GGGGCGGGACCGGGGAGAGGGG	chr6:11043967-11043988	present	100506409	207	Promoter
GGGGGGGGGTAGTGGGCGGGG	chr7:156169292-156169311	present	389602	206660	Intergenic
GGGGCGGGCCGTGGGCCGGG	chr7:158829641-158829660	absent	57488	-13	Promoter
GGGGCAGGCCGGGCGGGAGGGG	chr7:20798511-20798532	absent	221833	-11625	Intergenic
GGGGCGGGGGGCCGCGGGGGGGG	chr7:6374902-6374922	absent	5879	339	Promoter
GGGGCCGGGGCCGGGGCCGGG	chr8:22049068-22049088	absent	2039	-61	Promoter
GGGGCGGGCTCGGGGGCGGGG	chr8:66962618-66962638	present	100129654	-28	Promoter
GGGGCCGGGCCGAGGGGCGGG	chr9:132241390-132241410	present	84628	-31	Promoter

Appendix Table A 9 Summary of Family 80 G4 sequences

GO Term	GO Term Name	P Value	ADJ P Value
GO:0021815	modulation of microtubule cytoskeleton involved in cerebral cortex radial glia mided microtion	2.13E-05	2.13E-05
GO:0021816	extension of a leading process involved in cell motility in cerebral cortex radial glia guided migration	2.13E-05	2.13E-05
GO:0021814	cell motility involved in cerebral cortex radial glia guided migration	8.51E-05	8.51E-05
GO:0022030	telencephalon glial cell migration	0.000382	0.000382
GO:0021801	cerebral cortex radial glia-guided migration	0.000382	0.000382
GO:0021799	cerebral cortex radially oriented cell migration	0.000389	0.000389
GO:0031269	pseudopodium assembly	0.000552	0.000552
GO:0031268	pseudopodium organization	0.000557	0.000557
GO:0021795	cerebral cortex cell migration	0.00059	0.00059
GO:1904861	excitatory synapse assembly	0.00059	0.00059
GO:1904862	inhibitory synapse assembly	0.00059	0.00059
GO:0022029	telencephalon cell migration	0.000893	0.000893
GO:0021885	forebrain cell migration	0.000899	0.000899
GO:0008347	glial cell migration	0.000983	0.000983
GO:2001222	regulation of neuron migration	0.001145	0.001145
GO:0021987	cerebral cortex development	0.003356	0.003356
GO:0046847	filopodium assembly	0.004232	0.004232
GO:0060996	dendritic spine development	0.004705	0.004705
GO:0021543	pallium development	0.00474	0.00474
GO:0001764	neuron migration	0.007448	0.007448
GO:0021537	telencephalon development	0.009569	0.009569
GO:0007416	synapse assembly	0.0142	0.0142
GO:0030900	forebrain development	0.017572	0.017572
GO:0016358	dendrite development	0.017572	0.017572
GO:0042063	gliogenesis	0.017572	0.017572
GO:0030336	negative regulation of cell migration	0.031913	0.031913
GO:2000146	negative regulation of cell motility	0.034153	0.034153
GO:0050808	synapse organization	0.035988	0.035988
GO:0040013	negative regulation of locomotion	0.035988	0.035988
GO:0034329	cell junction assembly	0.046932	0.046932

Appendix Table A 10 Enriched GO:BP categories for Family 4	١.
--	----

GO ID	GO Name	P Value	ADJ
			P Value
GO:0031346	positive regulation of cell projection organization	0.017646	0.017646
GO:0035378	carbon dioxide transmembrane transport	0.017646	0.017646
GO:0032989	cellular component morphogenesis	0.023881	0.023881
GO:0048842	positive regulation of axon extension involved in axon guidance	0.023881	0.023881
GO:0048858	cell projection morphogenesis	0.023881	0.023881
GO:0003097	renal water transport	0.023881	0.023881
GO:0051130	positive regulation of cellular component organization	0.023881	0.023881
GO:0051239	regulation of multicellular organismal process	0.023881	0.023881
GO:0048846	axon extension involved in axon guidance	0.023881	0.023881
GO:0120039	plasma membrane bounded cell projection morphogenesis	0.023881	0.023881
GO:1902284	neuron projection extension involved in neuron projection guidance	0.023881	0.023881
GO:1903955	positive regulation of protein targeting to mitochondrion	0.023881	0.023881
GO:0032990	cell part morphogenesis	0.024503	0.024503
GO:1903749	positive regulation of establishment of protein localization to mitochondrion	0.025365	0.025365
GO:0097485	neuron projection guidance	0.029584	0.029584
GO:0007411	axon guidance	0.029584	0.029584
GO:1903214	regulation of protein targeting to mitochondrion	0.032099	0.032099
GO:0007167	enzyme-linked receptor protein signaling pathway	0.032099	0.032099
GO:0048518	positive regulation of biological process	0.032578	0.032578
GO:0051094	positive regulation of developmental process	0.033021	0.033021
GO:0050772	positive regulation of axonogenesis	0.03945	0.03945
GO:0048468	cell development	0.03945	0.03945
GO:1903747	regulation of establishment of protein localization to mitochondrion	0.03945	0.03945
GO:0007409	axonogenesis	0.03945	0.03945
GO:0022603	regulation of anatomical structure morphogenesis	0.039943	0.039943
GO:0048812	neuron projection morphogenesis	0.045216	0.045216
GO:0000902	cell morphogenesis	0.045216	0.045216
GO:0008361	regulation of cell size	0.045216	0.045216
GO:0051347	positive regulation of transferase activity	0.045887	0.045887
GO:0061564	axon development	0.045887	0.045887
GO:0090066	regulation of anatomical structure size	0.046587	0.046587
GO:0120035	regulation of plasma membrane bounded cell projection organization	0.046587	0.046587

Appendix Table A 11 Enriched GO: BP categories for Family 32.
GO ID	GO Name	P Value	ADJ
			P Value
GO:0045582	positive regulation of T cell differentiation	0.015898	0.015898
GO:0045621	positive regulation of lymphocyte differentiation	0.015898	0.015898
GO:1903708	positive regulation of hemopoiesis	0.016146	0.016146
GO:1902107	positive regulation of leukocyte differentiation	0.016146	0.016146
GO:0045580	regulation of T cell differentiation	0.016146	0.016146
GO:0045619	regulation of lymphocyte differentiation	0.019728	0.019728
GO:0050870	positive regulation of T cell activation	0.03222	0.03222
GO:0030217	T cell differentiation	0.03222	0.03222
GO:1903039	positive regulation of leukocyte cell-cell adhesion	0.03674	0.03674
GO:1902105	regulation of leukocyte differentiation	0.03674	0.03674
GO:0022409	positive regulation of cell-cell adhesion	0.047638	0.047638
GO:1903037	regulation of leukocyte cell-cell adhesion	0.04765	0.04765
GO:0030155	regulation of cell adhesion	0.04765	0.04765
GO:0030098	lymphocyte differentiation	0.04765	0.04765
GO:0050863	regulation of T cell activation	0.04765	0.04765
GO:1903706	regulation of hemopoiesis	0.049277	0.049277

Appendix Table A 12 Enriched GO:BP categories for Family 75.

GOID	GO Name	P Value	ADJ
			P Value
GO:0098562	cytoplasmic side of membrane	1.57E-02	1.57E-02
GO:0005886	plasma membrane	1.57E-02	1.57E-02
GO:0009898	cytoplasmic side of plasma membrane	1.57E-02	1.57E-02
GO:0098590	plasma membrane region	1.57E-02	1.57E-02
GO:0031253	cell projection membrane	1.81E-02	1.81E-02
GO:0101003	ficolin-1-rich granule membrane	1.86E-02	1.86E-02
GO:0098552	side of membrane	1.86E-02	1.86E-02
GO:0071944	cell periphery	1.86E-02	1.86E-02
GO:0032587	ruffle membrane	1.86E-02	1.86E-02
GO:0030667	secretory granule membrane	1.93E-02	1.93E-02
GO:0031256	leading edge membrane	3.64E-02	3.64E-02
GO:0005884	actin filament	3.64E-02	3.64E-02
GO:0031234	extrinsic component of cytoplasmic side of plasma	3.64E-02	3.64E-02
	membrane		
GO:0001726	ruffle	3.85E-02	3.85E-02
GO:0016020	membrane	3.85E-02	3.85E-02
GO:0019897	extrinsic component of plasma membrane	4.29E-02	4.29E-02
GO:0031224	intrinsic component of membrane	4.29E-02	4.29E-02
GO:0031227	intrinsic component of endoplasmic reticulum membrane	4.29E-02	4.29E-02
GO:0098797	plasma membrane protein complex	4.29E-02	4.29E-02
GO:0101002	ficolin-1-rich granule	4.29E-02	4.29E-02
GO:0070820	tertiary granule	4.29E-02	4.29E-02

Appendix Table A 13 Enriched GO:BP categories for Family 80

GO ID	GO Name	P Value	adjustedPValue
GO:0035556	intracellular signal transduction	2.28E-06	2.28E-06
GO:0010033	response to organic substance	2.36E-06	2.36E-06
GO:0007165	signal transduction	3.86E-06	3.86E-06
GO:1902531	regulation of intracellular signal transduction	3.86E-06	3.86E-06
GO:0009966	regulation of signal transduction	3.86E-06	3.86E-06
GO:0050896	response to stimulus	6.92E-06	6.92E-06
GO:0048584	positive regulation of response to stimulus	6.92E-06	6.92E-06
GO:0007166	cell surface receptor signaling pathway	2.89E-05	2.89E-05
GO:0007154	cell communication	2.89E-05	2.89E-05
GO:0010646	regulation of cell communication	6.71E-05	6.71E-05
GO:1902533	positive regulation of intracellular signal transduction	6.71E-05	6.71E-05
GO:0023051	regulation of signaling	6.71E-05	6.71E-05
GO:0023052	signaling	6.71E-05	6.71E-05
GO:0034097	response to cytokine	6.96E-05	6.96E-05
GO:0051716	cellular response to stimulus	7.39E-05	7.39E-05
GO:0009967	positive regulation of signal transduction	7.42E-05	7.42E-05
GO:0009615	response to virus	1.18E-04	1.18E-04
GO:0010647	positive regulation of cell communication	2.19E-04	2.19E-04
GO:0032101	regulation of response to external stimulus	2.29E-04	2.29E-04
GO:0023056	positive regulation of signaling	2.29E-04	2.29E-04
GO:0071310	cellular response to organic substance	2.35E-04	2.35E-04
GO:0019221	cytokine-mediated signaling pathway	2.36E-04	2.36E-04
GO:0042221	response to chemical	2.36E-04	2.36E-04
GO:0012501	programmed cell death	2.36E-04	2.36E-04
GO:0006915	apoptotic process	2.37E-04	2.37E-04
GO:0009605	response to external stimulus	2.38E-04	2.38E-04
GO:0044419	biological process involved in interspecies interaction between organisms	2.71E-04	2.71E-04
GO:0097190	apoptotic signaling pathway	3.78E-04	3.78E-04
GO:0070887	cellular response to chemical stimulus	3.98E-04	3.98E-04
GO:0051607	defense response to virus	3.98E-04	3.98E-04
GO:0140546	defense response to symbiont	3.98E-04	3.98E-04
GO:0007249	I-kappaB kinase/NF-kappaB signaling	3.98E-04	3.98E-04
CO 100 /E/E	positive regulation of apoptotic process involved in	600E 01	
GO:1904747	development positive regulation of apoptotic process involved in	6.93E-04	6.93E-04
GO:1902339	morphogenesis	6.93E-04	6.93E-04
GO:0009753	response to jasmonic acid	6.93E-04	6.93E-04
GO:00/1395	cellular response to jasmonic acid stimulus	6.93E-04	6.93E-04
GO:0031347	regulation of defense response	6.93E-04	6.93E-04
GO:00/1345	cellular response to cytokine stimulus	6.94E-04	6.94E-04
GO:0048518	positive regulation of biological process	1.03E-03	1.03E-03
GO:0051055	negative regulation of lipid biosynthetic process	1.30E-03	1.30E-03
GO:0008219	cell death	1.31E-03	1.31E-03
GO:0080134	regulation of response to stress	1.31E-03	1.31E-03
GO:00/0542	response to fatty acid	1.35E-03	1.35E-03
GO:1901798	positive regulation of signal transduction by p53 class mediator	1.35E-03	1.35E-03
GO:0016032	viral process	1.42E-03	1.42E-03
GO:0002376	immune system process	1.55E-03	1.55E-03
GO:0043122	regulation of I-kappaB kinase/NF-kappaB signaling	1.99E-03	1.99E-03
GO:0043207	response to external biotic stimulus	2.34E-03	2.34E-03
GO:0051707	response to other organism	2.34E-03	2.34E-03
GO:0038061	NIK/NF-kappaB signaling	2.34E-03	2.34E-03
GO:0043067	regulation of programmed cell death	3.17E-03	3.17E-03
GO:1903829	positive regulation of protein localization	3.17E-03	3.17E-03
GO:0008630	intrinsic apoptotic signaling pathway in response to DNA damage	3.50E-03	3.50E-03
GO:1901222	regulation of NIK/NF-kappaB signaling	3.50E-03	3.50E-03
GO:0045071	negative regulation of viral genome replication	3.50E-03	3.50E-03
GO:0033209	tumor necrosis factor-mediated signaling pathway	3.65E-03	3.65E-03
GO:0071398	cellular response to fatty acid	3.65E-03	3.65E-03
GO:1902337	regulation of apoptotic process involved in morphogenesis	3.68E-03	3.68E-03

Appendix Table A 14 Enriched GO:BP categories for experimentally validated G4s overlapping enhancers, group 1.

GO:0009607	response to biotic stimulus	3.68E-03	3.68E-03
GO:1904748	regulation of apoptotic process involved in development	3.68E-03	3.68E-03
GO:0045833	negative regulation of lipid metabolic process	3.70E-03	3.70E-03
GO:0016601	Rac protein signal transduction	4.14E-03	4.14E-03
GO:0072331	signal transduction by p53 class mediator	4 42E-03	4 42E-03
GO:0042981	regulation of apontotic process	4 42E-03	4 42E-03
GO:0006952	defense response	4.42E 03	4.42E 03
GO:0000932	nositive regulation of callular process	4.49E-03	4.49E-03
60:0048322	positive regulation of centular process	4.34E-03	4.34E-03
GO:00/16//	positive regulation of mononuclear cell migration	4./3E-03	4.73E-03
GO:0050789	regulation of biological process	5.14E-03	5.14E-03
GO:0048525	negative regulation of viral process	5.14E-03	5.14E-03
GO:0032502	developmental process	5.42E-03	5.42E-03
GO:0050793	regulation of developmental process	5.89E-03	5.89E-03
GO:0008625	extrinsic apoptotic signaling pathway via death domain	6.34E-03	6.34E-03
GO:1902644	tertiary alcohol metabolic process	6 59E-03	6 59E-03
GO:0030647	aminoglycoside antibiotic metabolic process	6.61E.03	6.61E.03
CO:0070282	DNA systeming deamination	0.01E-03	0.01E-03
GO:0070383	DNA cytosine deamination	0.01E-03	0.01E-03
GO:0044597	daunorubicin metabolic process	6.61E-03	6.61E-03
GO:0097193	intrinsic apoptotic signaling pathway	6.61E-03	6.61E-03
GO:0060561	apoptotic process involved in morphogenesis	6.61E-03	6.61E-03
GO:0070278	extracellular matrix constituent secretion	6.61E-03	6.61E-03
GO:0032103	positive regulation of response to external stimulus	6.71E-03	6.71E-03
GO:0071356	cellular response to tumor necrosis factor	7.37E-03	7.37E-03
GO:0043065	positive regulation of apontotic process	7 88E-03	7 88E-03
GO:0046890	regulation of lipid biosynthetic process	7.88E-03	7.88E-03
CO:0021227	regulation of inplu biosynthetic process	9.12E.02	7.00E-03 9.12E-02
GO:0031327	negative regulation of cellular biosynthetic process	8.12E-03	8.12E-03
GO:0030638	polyketide metabolic process	8.23E-03	8.23E-03
GO:0010648	negative regulation of cell communication	8.23E-03	8.23E-03
GO:0044598	doxorubicin metabolic process	8.23E-03	8.23E-03
GO:0016554	cytidine to uridine editing	8.23E-03	8.23E-03
GO:0006950	response to stress	8.23E-03	8.23E-03
GO:0032880	regulation of protein localization	8.23E-03	8.23E-03
GO:0048856	anatomical structure development	8 36E-03	8 36E-03
GO:0097191	anatomical structure development	8.50E-05 8.54E-03	8.50E-03
GO:003/131	extiniste apoptote signating patiway	0.54E-05	0.54E-05
GO:0044249	cellular biosynthetic process	8.55E-03	8.55E-03
GO:0023057	negative regulation of signaling	8.55E-03	8.55E-03
GO:0006954	inflammatory response	9.07E-03	9.07E-03
GO:0009890	negative regulation of biosynthetic process	9.62E-03	9.62E-03
GO:0043068	positive regulation of programmed cell death	9.62E-03	9.62E-03
GO:0002831	regulation of response to biotic stimulus	9.90E-03	9.90E-03
GO:0048523	negative regulation of cellular process	1.02E-02	1.02E-02
GO:0009893	positive regulation of metabolic process	1.02E-02	1.02E-02
GO:0030865	cortical extoskeleton organization	1.02E 02	1.02E 02
GO:0030803		1.05E-02	1.03E-02
GO:0002682	regulation of immune system process	1.0/E-02	1.0/E-02
GO:0010941	regulation of cell death	1.09E-02	1.09E-02
GO:1901576	organic substance biosynthetic process	1.09E-02	1.09E-02
GO:0051896	regulation of protein kinase B signaling	1.09E-02	1.09E-02
GO:0034612	response to tumor necrosis factor	1.09E-02	1.09E-02
GO:0032102	negative regulation of response to external stimulus	1.12E-02	1.12E-02
GO:0002468	dendritic cell antigen processing and presentation	1.24E-02	1.24E-02
GO:0019216	regulation of lipid metabolic process	1 31E-02	1 31E-02
GO:0048585	negative regulation of response to stimulus	1.31E 02	1.31E 02
GO:0045892	negative regulation of DNA templated transcription	1.31E-02 1.36E-02	1.31E-02 1.36E 02
00.0043892	antigen processing and presentation of and according	1.30E-02	1.50E-02
GO:0002484	nentide antigen via MHC class I via FR nathway	1.39E-02	1.39E-02
	antigen processing and presentation of endogenous		
GO:0002486	peptide antigen via MHC class I via ER pathway, TAP-	1.39E-02	1.39E-02
	independent		
GO:0071798	response to prostaglandin D	1.39E-02	1.39E-02
GO:1902679	negative regulation of RNA biosynthetic process	1.39E-02	1.39E-02
GO:1903507	negative regulation of nucleic acid-templated	1.39E-02	1.39E-02
60.0048860	cellular developmental process	1 30E 02	1 305 02
CO.0071700	contrat developmental process	1.370-02	1.37E-02
GO:00/1/99	central response to prostagiandin D stimulus	1.39E-02	1.39E-02
GO:0045006	DNA deamination	1.40E-02	1.40E-02
GO:2000010	positive regulation of protein localization to cell surface	1.40E-02	1.40E-02
GO:1900025	negative regulation of substrate adhesion-dependent cell	1.40E-02	1.40E-02
CO:0042449	spreading	1 40E 02	1 40E 02
00:0042448	progesterone metadonic process	1.40E-02	1.40E-02

GO1032379 regulation of viral genome replication 1.41E-02 1.41E-02 GO1005069 regulation of viral genome replication 1.42E-02 1.42E-02 GO100707 reports to xyger-constining compound 1.43E-02 1.47E-02 GO100707 reports to xyger-constining compound 1.43E-02 1.47E-02 GO1007372 positive regulation of protein catabolic process 1.47E-02 1.47E-02 GO100779 viral genome replication 1.48E-02 1.48E-02 1.48E-02 GO1000797 regulation of protein catabolic process 1.56E-02 1.56E-02 1.56E-02 GO10007972 regulation of viral process 1.56E-02 1.56E-02 1.56E-02 GO10002667 positive regulation of biological negatorin 1.56E-02 1.56E-02 1.56E-02 GO10015150 negative regulation of biological negatorin 1.57E-02 1.57E-02 1.57E-02 GO10015154 eoil differentiation 1.57E-02 1.57E-02 1.57E-02 GO1003154 eoil differentiation 1.57E-02 1.57E-02 1.57E-02 GO10031541 positive	GO:00107	71 negative re	gulation of cell morphogenesis involved in	1.40E-02	1.40E-02																																																																																																																																										
G.O.00028 biosynthetic process 1.41E-02 1.41E-02 G.O.00008 biosynthetic process 1.41E-02 1.41E-02 G.O.000068 biosynthetic process 1.47E-02 1.43E-02 G.O.0000649 containing compound 1.43E-02 1.43E-02 G.O.0000649 containing compound 1.43E-02 1.47E-02 G.O.00014314 regulation of circulia clock process 1.48E-02 1.48E-02 G.O.00014732 positive regulation of protein catabolic process 1.48E-02 1.48E-02 G.O.0005797 regulation of vial process 1.56E-02 1.56E-02 G.O.0005797 regulation of leakcyte migration 1.61E-02 1.66E-02 G.O.00031349 positive regulation of leakcyte migration 1.66E-02 1.66E-02 G.O.00031349 positive regulation of single stranded Viral RNA 1.87E-02 1.87E-02 G.O.0004566 activitie stranded Viral RNA 1.87E-02 1.87E-02 G.O.0004666 activities mostalization 1.97E-02 1.97E-02 G.O.0004666 activities mostanitation 1.97E-02 1.97E-02 <td>GO 00220</td> <td>differentiat</td> <td></td> <td>1 415 00</td> <td></td>	GO 00220	differentiat		1 415 00																																																																																																																																											
GO.000008 trops/metic process 1.411-02 1.411-02 GO.1901700 response to oxygen-containing compound 1.431-02 1.431-02 GO.1001700 response to oxygen-containing compound 1.431-02 1.431-02 GO.000027 C21-steroid hormome metabolic process 1.431-02 1.431-02 GO.0001711 regulation of cell filling 1.431-02 1.431-02 GO.0001701 regulation of viral process 1.431-02 1.431-02 GO.0001702 regulation of viral process 1.561-02 1.561-02 GO.0002677 prositive regulation of biological process 1.7661-02 1.661-02 GO.0002677 prositive regulation of viral process 1.7661-02 1.661-02 GO.00026787 prositive regulation of viral process 1.7661-02 1.7661-02 GO.0004584 red orbefila cell migration 1.781-02 1.781-02 1.781-02 GO.0004584 red orbefila cell migration 1.781-02 1.871-02 1.871-02 GO.0004584 red orbefila cell migration 1.871-02 1.871-02 1.871-02 GO.0004584 </td <td>GO:00328</td> <td>regulation</td> <td>of localization</td> <td>1.41E-02</td> <td>1.41E-02</td>	GO:00328	regulation	of localization	1.41E-02	1.41E-02																																																																																																																																										
G010043069 regulation of viral genome repletation 1.43E-02 1.43E-02 G010008207 C21-steroid hormone metabolic process 1.47E-02 1.47E-02 G010001649 entrainment of circulatin clock 1.47E-02 1.47E-02 G010001649 entrainment of circulatin clock 1.47E-02 1.47E-02 G010016752 positive regulation of protein catabolic process 1.48E-02 1.48E-02 G010016772 progenetization 1.48E-02 1.48E-02 G010016707 viral genome replication 1.48E-02 1.66E-02 G010005077 regulation of viral process 1.56E-02 1.56E-02 G010005077 positive regulation of leukocyte migration 1.6EE-02 1.66E-02 G010001541 engative number of biological process 1.76E-02 1.76E-02 G010001542 engative signaling 1.87E-02 1.87E-02 G010001542 engative signaling 1.87E-02 1.87E-02 G010001543 end differentiation 1.76E-02 1.87E-02 G010001544 end differentiation 1.87E-02 1.87E-02	GO:00090	biosynthet	ic process	1.41E-02	1.41E-02																																																																																																																																										
GO:1901700 response to oxygen-containing compound 1.47E-02 1.47E-02 GO:00009649 entrainment of circadian clock 1.47E-02 1.47E-02 GO:000014572 positive regulation of protein catabolic process 1.48E-02 1.48E-02 GO:00014572 positive regulation of protein catabolic process 1.48E-02 1.48E-02 GO:00146673 regulation of viar process 1.48E-02 1.48E-02 GO:00146674 regulation of viar process 1.48E-02 1.48E-02 GO:0002687 regulation of viar process 1.76E-02 1.66E-02 GO:0002871 regulation of biological process 1.76E-02 1.76E-02 GO:000145819 negative regulation of biological process 1.76E-02 1.76E-02 GO:00014684 regulation of biological process 1.76E-02 1.76E-02 GO:00014694 prositive regulation of single stranded viral RNA 1.87E-02 1.87E-02 GO:00030364 reglication via double stranded DNA intermediate 1.87E-02 1.87E-02 GO:00030364 reglication via double stranded DNA intermediate 1.87E-02 1.98E-02 <t< td=""><td>GO:00450</td><td>59 regulation</td><td>of viral genome replication</td><td>1.42E-02</td><td>1.42E-02</td></t<>	GO:00450	59 regulation	of viral genome replication	1.42E-02	1.42E-02																																																																																																																																										
GO.0000207 C21-steroid hormone metabolic process 1.47E-02 1.47E-02 GO.0003134 regulation of cell killing 1.47E-02 1.47E-02 GO.004669 pinythocyte activation 1.48E-02 1.48E-02 GO.0045772 positive regulation of protein catabolic process 1.48E-02 1.48E-02 GO.00050792 regulation of viral process 1.56E-02 1.56E-02 GO.00050792 regulation of viral process 1.56E-02 1.66E-02 1.66E-02 GO.0004871 positive regulation of leakocyte migration 1.66E-02 1.66E-02 1.66E-02 GO.00048519 negative regulation of defense response 1.76E-02 1.76E-02 1.76E-02 GO.000448519 negative regulation of single stranded viral RNA 1.87E-02 1.87E-02 GO.0004549 registrice regulation of single stranded viral RNA 1.87E-02 1.98E-02 GO.0004549 registrice regulation of protein localization to cell periphery 1.98E-02 1.98E-02 GO.0004549 registrice regulation of protein localization to cell periphery 1.98E-02 1.98E-02 GO.0005123 regulation of def	GO:19017	00 response to	o oxygen-containing compound	1.43E-02	1.43E-02																																																																																																																																										
GO.0000649 entrainment of circadian clock 1.47E-02 1.47E-02 GO.0001311 regulation of cell killing 1.47E-02 1.47E-02 GO.000145732 positive regulation of protein catabolic process 1.48E-02 1.48E-02 GO.00010079 regulation of vial process 1.56E-02 1.56E-02 GO.0005077 positive regulation of leakocyte migration 1.61E-02 1.66E-02 GO.0000507 positive regulation of biological process 1.76E-02 1.76E-02 GO.000058 viral ife cycle 1.76E-02 1.76E-02 1.76E-02 GO.0003154 cell differentiation 1.78E-02 1.76E-02 1.76E-02 GO.0004054 prositive regulation of single stranded Viral RNA 1.87E-02 1.87E-02 GO.0003154 cell differentiation 1.87E-02 1.87E-02 1.87E-02 GO.0003164 response to prostaglandin 1.87E-02 1.87E-02 1.87E-02 GO.0003163 regulation of RNA metabolic process 1.98E-02 1.99E-02 1.99E-02 GO.0003163 regulation of reloskolatis posynabicity boxynabici process 1.99E-	GO:00082	07 C21-steroi	d hormone metabolic process	1.47E-02	1.47E-02																																																																																																																																										
GO:0031341 regulation of cell killing 1.47E-02 1.47E-02 GO:0046649 Jymphocyte activation 1.48E-02 1.48E-02 GO:0050792 regulation of viral process 1.56E-02 1.56E-02 GO:00050792 regulation of viral process 1.56E-02 1.56E-02 GO:0002687 positive regulation of leukocyte migration 1.66E-02 1.66E-02 GO:0002842 endothelial cell migration 1.66E-02 1.76E-02 1.76E-02 GO:0001354 endi differentiation 1.78E-02 1.76E-02 1.76E-02 GO:0001354 endi differentiation 1.78E-02 1.78E-02 1.76E-02 GO:0001364 endi differentiation 1.87E-02 1.87E-02 1.87E-02 GO:00014694 response to prostaglandin 1.87E-02 1.98E-02 GO:0003036 actin cytoskeleton organization 1.99E-02	GO:00096	49 entrainmer	nt of circadian clock	1.47E-02	1.47E-02																																																																																																																																										
GO.0045732 positive regulation of protein catabolic process 1.48E-02 1.48E-02 GO.0019079 viral genome replication 1.48E-02 1.48E-02 GO.0005079 regulation of viral genome replication 1.56E-02 1.56E-02 GO.0005079 regulation of leukocyte migration 1.61E-02 1.61E-02 GO.000507 biological regulation of biological process 1.76E-02 1.76E-02 GO.0005184 viral file cycle 1.76E-02 1.76E-02 1.76E-02 GO.0005184 viral file cycle 1.78E-02 1.78E-02 1.78E-02 1.78E-02 GO.001549 regulation of single stranded viral RNA 1.87E-02 1.87E-02 1.87E-02 GO.001696 viral kir viral wiran or opamization 1.94E-02 1.99E-02 1.99E-02 GO.0001540 response to prostaglandin 1.97E-02 1.99E-02 1.99E-02 GO.0001775 regulation of Ripoten hinase B viraning 1.99E-02 1.99E-02 1.99E-02 GO.0001775 regulation of Protein localization to cell periphery 1.99E-02 1.99E-02 1.99E-02 GO.00	GO:00313	41 regulation	of cell killing	1.47E-02	1.47E-02																																																																																																																																										
GO:0046649 İymphocyte activation 1.48E-02 1.48E-02 1.48E-02 GO:0050792 regulation of viral process 1.56E-02 1.56E-02 GO:000507 biological regulation 1.59E-02 1.56E-02 GO:000507 biological regulation 1.66E-02 1.66E-02 GO:0005342 endothelial cell ingration 1.66E-02 1.66E-02 GO:001543 enditive regulation of defose response 1.76E-02 1.76E-02 GO:00154 cell differentiation 1.78E-02 1.76E-02 GO:00154 cell differentiation 1.78E-02 1.87E-02 GO:0014694 response to prostaglandin 1.87E-02 1.87E-02 GO:0014694 response to prostaglandin 1.87E-02 1.99E-02 GO:0014694 response to prostaglandin 1.99E-02 1.99E-02 GO:0014694 response to prostaglandin 1.99E-02 1.99E-02 GO:0003153 negative regulation of XNA treabablic process 1.99E-02 1.99E-02 GO:000178 cell activation 1.99E-02 2.09E-02 2.06C-02	GO:00457	32 positive re	gulation of protein catabolic process	1.48E-02	1.48E-02																																																																																																																																										
GO.0019079 viral genome replication 1.49E-02 1.49E-02 1.56E-02 GO.0005007 biological regulation 1.59E-02 1.56E-02 GO.0005007 biological regulation 1.61E-02 1.61E-02 GO.00043542 endothelial cell migration 1.61E-02 1.67E-02 GO.0001349 positive regulation of biological process 1.76E-02 1.76E-02 GO.0003154 cell differentiation 1.78E-02 1.76E-02 GO.00043549 pegative regulation of single stranded viral RNA 1.87E-02 1.87E-02 GO.00044644 cell differentiation 1.48E-02 1.95E-02 1.95E-02 GO.0001775 pegative regulation of protein localization to cell periphery 1.99E-02 1.99E-02 GO.0001777 positive regulation of protein localization to cell periphery 1.99E-02 1.99E-02 GO.0001775 cell activation 1.99E-02 1.99E-02 1.99E-02 GO.0001762 aregulation of protein localization to cell periphery 1.99E-02 1.99E-02 GO.0001777 positive regulation of postein localization to cell beath 2.10E-02 <t< td=""><td>GO:00466</td><td>19 lymphocyt</td><td>e activation</td><td>1.48E-02</td><td>1.48E-02</td></t<>	GO:00466	19 lymphocyt	e activation	1.48E-02	1.48E-02																																																																																																																																										
GO.0050792 regulation of viral process 1.56E-02 1.56E-02 GO.0002087 positive regulation of leakocyte migration 1.61E-02 1.66E-02 GO.0002887 positive regulation of biological process 1.76E-02 1.76E-02 GO.00038142 endothelial cell migration 1.66E-02 1.76E-02 1.76E-02 GO.0019058 viral life cycle 1.78E-02 1.776E-02 1.76E-02 GO.0019058 viral life cycle 1.78E-02 1.78E-02 1.82E-02 GO.0014391 protein kinase B signaling 1.82E-02 1.82E-02 1.82E-02 GO.001494 replectation via obubb stranded DNA intermediate 1.78E-02 1.87E-02 1.97E-02 GO.001494 response to prostaglandin 1.97E-02 1.99E-02	GO:00190	79 viral genor	ne replication	1.49E-02	1.49E-02																																																																																																																																										
GO.00065007 biological regulation 159E-02 1.6E-02 GO.00043542 endothelial cell migration 1.6E-02 1.66E-02 1.66E-02 GO.0013542 endothelial cell migration 1.66E-02 1.66E-02 1.66E-02 GO.001304 positive regulation of biological process 1.76E-02 1.76E-02 1.76E-02 GO.0013054 etil differentiation 1.78E-02 1.78E-02 1.78E-02 GO.0043491 protein kinase B signaling 1.82E-02 1.82E-02 1.82E-02 GO.0043694 resplexitation of single stranded viral RNA 1.87E-02 1.87E-02 1.87E-02 GO.0030036 actin cytoskeleton organization 1.94E-02 1.98E-02 1.99E-02 GO.0031253 negative regulation of RNA metabolic process 1.99E-02 1.99E-02 1.99E-02 GO.0031266 activation of defense response to virus 1.99E-02 1.99E-02 GO.0003126 regulation of cellular biosynthetic process 2.09E-02 2.09E-02 GO.000332 regulation of plasmeton denaise 2.00E-02 2.00E-02 GO.000	GO:00507	92 regulation	of viral process	1.56E-02	1.56E-02																																																																																																																																										
GO 0002887 positive regulation of leukocyte migration 1.61E.02 1.61E.02 GO 00048519 negative regulation of biological process 1.76E.02 1.76E.02 GO 0018519 positive regulation of biological process 1.76E.02 1.76E.02 GO 001805 viral life cycle 1.76E.02 1.76E.02 GO 0019058 viral life cycle 1.78E.02 1.82E.02 GO 0004860 negative regulation of single stranded viral RNA 1.87E.02 1.87E.02 GO 000366 negative regulation of single stranded viral RNA 1.87E.02 1.97E.02 GO 000366 negative regulation of averbacket organization 1.99E.02 1.99E.02 GO 000366 negative regulation of Portein Locatization to cell peripter 1.99E.02 1.99E.02 GO 00001775 cell activation 1.99E.02 2.09E.02 2.09E.02 GO 00001732 negative regulation of Arcein Locatization to cell peripter 1.99E.02 2.09E.02 GO 00001732 negative regulation of catracellular matrix constituent 2.00E.02 2.00E.02 GO 0001702 negative regulation of macromolecule metabolic process 2.00E.	GO:00650)7 biological	regulation	1 59E-02	1 59E-02																																																																																																																																										
GO.002454 positive regulation of indication (1000 per ingration) 1.01120.2 1.01120.2 GO.004354 endothelia cell ingration 1.06120.2 1.766.02 1.766.02 GO.0019058 viral life cycle 1.766.02 1.766.02 1.766.02 GO.0019058 viral life cycle 1.786.02 1.786.02 1.786.02 GO.0003469 regative regulation of single stranded viral RNA 1.87E-02 1.87E-02 1.87E-02 GO.0003469 regitive regulation of single stranded Viral RNA 1.87E-02 1.87E-02 1.97E-02 GO.00034664 response to prostinglandin 1.94E-02 1.97E-02 1.99E-02	GO:00036	27 positive re	gulation of laukocyte migration	1.57E 02	1.61E 02																																																																																																																																										
GO.0043542 endoutenia Chi mgration 1.00E-02 1.70E-02 GO.0013449 positive regulation of biological process 1.76E-02 1.76E-02 GO.001349 positive regulation of biological process 1.76E-02 1.76E-02 GO.0013491 protein kinase Bigniling 1.82E-02 1.82E-02 GO.0030154 cell differentiation 1.78E-02 1.87E-02 GO.0045869 regative regulation of single stranded viral RNA 1.87E-02 1.87E-02 GO.00306 actin cytoskeleton organization 1.94E-02 1.95E-02 1.95E-02 GO.000306 actin cytoskeleton organization 1.99E-02 1.99E-02 1.99E-02 GO.0001775 cell activation f.99E-02 1.99E-02 1.99E-02 GO.0001788 regulation of defense response to virus 1.99E-02 2.09E-02 2.08E-02 GO.0001788 regulation of moresolitik process 2.09E-02 2.08E-02 2.08E-02 GO.0001788 regulation of stractal Wain mation 2.08E-02 2.08E-02 2.08E-02 GO.0001707 negative regulation of stractalWain mation <td< td=""><td>GO.00020</td><td>12 positive reg</td><td></td><td>1.01E-02</td><td>1.01E-02</td></td<>	GO.00020	12 positive reg		1.01E-02	1.01E-02																																																																																																																																										
GO:00048319 negative regulation of biologua process 1.76E-02 1.76E-02 GO:0019058 viral life cycle 1.76E-02 1.76E-02 GO:0019058 viral life cycle 1.76E-02 1.78E-02 GO:0019058 viral life cycle 1.78E-02 1.87E-02 GO:0043869 negative regulation of single stranded viral RNA 1.87E-02 1.87E-02 GO:0045869 replication of andle stranded Viral RNA 1.87E-02 1.87E-02 GO:004644 response to prostaglandin 1.94E-02 1.99E-02 1.99E-02 GO:001775 cell activation Grosses 1.99E-02 1.99E-02 1.99E-02 GO:0001775 cell activation cell activation 2.08E-02 2.09E-02 2.09E-02 GO:0001604 negative regulation of carbon proses 2.00E-02 2.00E-02 2.00E-02 GO:0001604 negative regulation of carbon process 2.00E-02 2.00E-02 2.00E-02 GO:0001604 negative regulation of carbon process 2.00E-02 2.10E-02 2.10E-02 GO:00016044 positive regulation of macromolecule m	GO.00433	+2 endothena		1.00E-02	1.00E-02																																																																																																																																										
GO:001049 positive regulation of defense response 1.76E-02 1.76E-02 GO:001054 cell differentiation 1.78E-02 1.78E-02 GO:0030154 cell differentiation 1.78E-02 1.82E-02 GO:0043801 protein kinase B signaling 1.82E-02 1.82E-02 GO:0043664 response to prostaglandin 1.87E-02 1.87E-02 GO:0031664 response to prostaglandin 1.87E-02 1.95E-02 GO:003036 actin cytosk/eton organization 1.94E-02 1.94E-02 GO:0001775 cell activation 1.99E-02 1.99E-02 GO:0001775 cell activation 1.99E-02 2.08E-02 GO:0001788 regulation of defense response to virus 1.99E-02 2.08E-02 GO:0019882 antigen processing and presentation 2.08E-02 2.08E-02 GO:00017072 negative regulation of macromolecule metabolic process 2.10E-02 2.10E-02 GO:00010641 pegative regulation of accarde would haliar matrix constituent 2.10E-02 2.10E-02 GO:00010641 pegative regulatino an of macromolecule metabolic process	GO:00485	negative re	guiation of biological process	1.76E-02	1.76E-02																																																																																																																																										
GO:0019058 viral life cycle 1.76E-02 1.78E-02 GO:003154 cell differentiation 1.78E-02 1.82E-02 GO:0043491 protein kinase B signaling 1.82E-02 1.82E-02 GO:0034696 negative regulation of single stranded DNA intermediate 1.87E-02 1.87E-02 GO:0034664 response to prostiglandin 1.97E-02 1.99E-02 1.99E-02 GO:0001253 negative regulation of protein localization to cell periphery 1.99E-02 1.99E-02 GO:0001755 cell activation 1.99E-02 1.99E-02 1.99E-02 GO:0001756 cell activation 1.99E-02 1.99E-02 2.08E-02 GO:0001768 regulation of defense response to virus 1.99E-02 2.08E-02 2.08E-02 GO:0001326 regulation of vascular wound healing 2.10E-02 2.10E-02 2.10E-02 GO:0001332 secretion megative regulation of extracellular matrix constituent 2.10E-02 2.10E-02 GO:00010604 positive regulation of macromolecule metabolic process 2.10E-02 2.10E-02 GO:00010604 positive regulat	GO:00313	19 positive re	gulation of defense response	1.76E-02	1.76E-02																																																																																																																																										
GO:0030154 cell differentiation 1.78E-02 1.78E-02 GO:0043491 protein kinase B signaling 1.82E-02 1.82E-02 GO:0045869 regative regulation of single stranded Viral RNA 1.87E-02 1.87E-02 GO:003660 response to prostaglandin 1.87E-02 1.87E-02 GO:0030066 actin cytoskeleton organization 1.94E-02 1.99E-02 1.99E-02 GO:00175 cell activation p.94E-02 1.99E-02 1.99E-02 1.99E-02 GO:00175 cell activation p.94E-02 1.99E-02 1.99E-02 1.99E-02 GO:001882 artigen processing and presentation 2.08E-02 2.09E-02 2.09E-02 GO:0001882 artigen processing and presentation 2.08E-02 2.09E-02 2.00E-02 GO:0001042 positive regulation of phospholipid biosynthetic process 2.10E-02 2.10E-02 2.10E-02 GO:0001064 positive regulation of cell death 2.16E-02 2.10E-02 2.10E-02 GO:0001064 positive regulation of cell death 2.16E-02 2.46E-02 2.42E-02	GO:00190	58 viral life cy	cle	1.76E-02	1.76E-02																																																																																																																																										
GO:0043491 protein kinase B signaling 1.82E-02 1.82E-02 GO:0045869 replication via double stranded DNA intermediate 1.87E-02 1.87E-02 GO:003036 actin cytoskeleton organization 1.94E-02 1.94E-02 1.94E-02 GO:0031253 negative regulation of RNA metabolic process 1.95E-02 1.99E-02 1.99E-02 GO:001775 cell activation 1.09E-02 1.99E-02 1.99E-02 GO:0001775 cell activation 2.08E-02 2.08E-02 2.09E-02 GO:0001882 antigen processing and presentation 2.08E-02 2.00E-02 2.00E-02 GO:0001326 regulation of vascular wound healing 2.10E-02 2.10E-02 2.10E-02 GO:001064 positive regulation of nearcomolecule metabolic process 2.10E-02 2.10E-02 2.10E-02 GO:0001064 positive regulation of call death 2.10E-02 2.10E-02 2.10E-02 GO:0001064 positive regulation of nearcomolecule metabolic process 2.10E-02 2.10E-02 GO:0001064 positive regulation of nearcomolecule metabolic proces 2.10E-02 2.10E-02 <td>GO:00301</td> <td>54 cell differe</td> <td>ntiation</td> <td>1.78E-02</td> <td>1.78E-02</td>	GO:00301	54 cell differe	ntiation	1.78E-02	1.78E-02																																																																																																																																										
GO.0045869 negative regulation of single stranded viral RNA 1.87E-02 1.87E-02 GO.0034694 response to prostaglandin 1.87E-02 1.87E-02 GO.003066 actin cytoskelotan organization 1.94E-02 1.94E-02 GO.003066 actin cytoskelotan organization 1.94E-02 1.99E-02 1.99E-02 GO.0051253 negative regulation of RNA metabolic process 1.99E-02 1.99E-02 1.99E-02 GO.0050688 regulation of foretin localization to cell periphery 1.99E-02 1.99E-02 1.99E-02 GO.0001882 antigen processing and presentation 2.08E-02 2.09E-02 2.09E-02 GO.0001082 negative regulation of phospholipid biosynthetic process 2.10E-02 2.10E-02 2.10E-02 GO.00010614 positive regulation of call death 2.10E-02 2.10E-02 2.10E-02 GO.0001064 positive regulation of cell death 2.42E-02 2.42E-02 2.42E-02 GO.0001077 regulation of on acromolecule metabolic process 2.46E-02 2.46E-02 2.46E-02 GO.0001064 positive regulation of nitrogen compound metabolic <t< td=""><td>GO:00434</td><td>91 protein kin</td><td>ase B signaling</td><td>1.82E-02</td><td>1.82E-02</td></t<>	GO:00434	91 protein kin	ase B signaling	1.82E-02	1.82E-02																																																																																																																																										
GO:001-G04 replication via double stranded DNA intermediate 1.87E-02 1.87E-02 GO:0030036 actin cytoskeleton organization 1.94E-02 1.94E-02 GO:0030036 actin cytoskeleton organization 1.94E-02 1.99E-02 GO:0030036 actin cytoskeleton organization 1.99E-02 1.99E-02 GO:00100377 cell activation 1.99E-02 1.99E-02 GO:0010882 antigen processing and presentation 2.08E-02 2.08E-02 GO:0010882 antigen processing and presentation 2.08E-02 2.09E-02 GO:0010832 anegative regulation of vascular wound healing 2.10E-02 2.10E-02 GO:0010604 negative regulation of reacromolecule metabolic process 2.10E-02 2.10E-02 GO:0010604 positive regulation of cell death 2.16E-02 2.10E-02 GO:00060341 regulation of 2.84M2K cascade 2.42E-02 2.42E-02 GO:00060341 regulation of process 2.46E-02 2.46E-02 GO:0006055 immune response 2.46E-02 2.46E-02 2.46E-02 GO:00051701 biological process	GO:00458	negative re	gulation of single stranded viral RNA	1 87E 02	1 87E 02																																																																																																																																										
GO:0034694 response to prostaglandin 1.87E-02 1.87E-02 GO:0030036 actin cytoskeleton organization 1.94E-02 1.94E-02 GO:01904377 positive regulation of protein localization to cell periphery 1.99E-02 1.99E-02 GO:0051253 negative regulation of protein localization to cell periphery 1.99E-02 1.99E-02 GO:0001775 cell activation 2.08E-02 2.08E-02 2.08E-02 GO:0001882 antigen processing and presentation 2.08E-02 2.00E-02 2.10E-02 GO:00019882 antigen processing and presentation 2.10E-02 2.10E-02 2.10E-02 GO:00010604 negative regulation of extracellular matrix constituent 2.10E-02 2.10E-02 2.10E-02 GO:0010604 positive regulation of macromolecule metabolic process 2.10E-02 2.10E-02 2.10E-02 GO:00010604 positive regulation of nitrogen compound metabolic process 2.10E-02 2.10E-02 GO:00010604 positive regulation of ritrogen compound metabolic 2.02E-02 2.46E-02 GO:00016137 glycoside metabolic process 2.46E-02 2.46E-02	00.00438	replication	via double stranded DNA intermediate	1.0/E-02	1.0/E-02																																																																																																																																										
$ \begin{array}{c} GO:0030036 \\ GO:0051253 \\ negative regulation of RNA metabolic process \\ 1.95E-02 \\ 1.99E-02 \\ 1.99E-0$	GO:00346	94 response to	prostaglandin	1.87E-02	1.87E-02																																																																																																																																										
GO:0051253 negative regulation of RNA metabolic process 1.99E-02 1.99E-02 GO:1904377 positive regulation of protein localization to cell periphry 1.99E-02 1.99E-02 GO:00510588 regulation of defense response to virus 1.99E-02 2.08E-02 2.08E-02 GO:001775 cell activation 2.08E-02 2.08E-02 2.08E-02 2.08E-02 GO:001326 regulation of cellular biosynthetic process 2.00E-02 2.10E-02 2.10E-02 GO:00010604 negative regulation of extracellular matrix constituent 2.10E-02 2.10E-02 GO:0010604 positive regulation of restracellular matrix constituent 2.10E-02 2.10E-02 GO:0010604 positive regulation of restracellular matrix constituent 2.10E-02 2.10E-02 GO:0010604 positive regulation of restracellular matrix constituent 2.10E-02 2.10E-02 GO:0010604 positive regulation of restracellular matrix constituent 2.10E-02 2.10E-02 GO:0007144 regulation of cellular localization 2.16E-02 2.46E-02 2.46E-02 GO:00051173 glycoside metabolic process 2.46E-02	GO:00300	36 actin cytos	keleton organization	1.94E-02	1.94E-02																																																																																																																																										
GO:1904377positive regulation of protein localization to cell periphery $1.99E-02$ $1.99E-02$ GO:0001775cell activation $1.99F-02$ $1.99F-02$ GO:000588regulation of defense response to virus $1.99F-02$ $2.09E-02$ GO:0019882antigen processing and presentation $2.08E-02$ $2.09E-02$ GO:0031326regulation of cellular biosynthetic process $2.09E-02$ $2.00E-02$ GO:003132negative regulation of phospholipid biosynthetic process $2.10E-02$ $2.10E-02$ GO:00010604positive regulation of cettracellular matrix constituent $2.10E-02$ $2.10E-02$ GO:0010942positive regulation of cellular biosynthetic process $2.10E-02$ $2.10E-02$ GO:0010944regulation of cellular localization $2.42E-02$ $2.42E-02$ GO:00060341regulation of cellular localization $2.42E-02$ $2.42E-02$ GO:0005055immume response $2.46E-02$ $2.46E-02$ GO:00050691regulation of introgen compound metabolic $2.59E-02$ $2.59E-02$ GO:00050691regulation of protein kinase B signaling $2.60E-02$ $2.59E-02$ GO:00050691regulation of protein kinase B signaling $2.60E-02$ $2.59E-02$ GO:0005089regulation of cell differentiation $2.59E-02$ $2.59E-02$ GO:00051897positive regulation of macromolecule biosynthetic $2.59E-02$ $2.59E-02$ GO:00051897positive regulation of ing protein kinase B signaling $2.60E-02$ $2.60E-02$ GO:00051897positive regulatino of intra f	GO:00512	53 negative re	gulation of RNA metabolic process	1.95E-02	1.95E-02																																																																																																																																										
G0:0001775 cell activation	GO:19043	77 positive re	gulation of protein localization to cell peripher	v 199E-02	1.99E-02																																																																																																																																										
$ \begin{array}{c} G0:0001715 \\ G0:0005088 \\ regulation of defense response to virus \\ 1.99E-02 \\ I.99E-02 \\ G0:0019882 \\ antigen processing and presentation \\ 2.08E-02 \\ 2.09E-02 \\ I.00E-02 \\ I.00E$	GO:00017	75 cell activat	ion	1 00E 02	1.00E 02																																																																																																																																										
GO:0000688 regulation of defines response to Vitus 1.99E-02 2.08E-02 2.09E-02 2.09E-02 2.09E-02 2.09E-02 2.09E-02 2.09E-02 2.00E-02	GO.00017	29 regulation	ion of defense response to virus	1.99E-02	1.99E-02																																																																																																																																										
GO:0019882antigen processing and presentation2.08E-022.08E-022.08E-02GO:0051326regulation of cellular biosynthetic process2.00E-022.10E-022.10E-02GO:00071072negative regulation of pospholipid biosynthetic process2.10E-022.10E-022.10E-02GO:0003332negative regulation of extracellular matrix constituent2.10E-022.10E-022.10E-02GO:0010604positive regulation of cell death2.10E-022.10E-022.10E-02GO:0010604positive regulation of cell death2.16E-022.16E-022.16E-02GO:1900744regulation of cellular localization2.42E-022.42E-022.42E-02GO:00060341regulation of netrogen compound metabolic2.46E-022.46E-022.46E-02GO:0006055immune response2.46E-022.46E-022.46E-02GO:00051173positive regulation of nitrogen compound metabolic2.46E-022.58E-022.58E-02GO:00050691regulation of defense response to virus by host2.58E-022.58E-022.59E-02GO:00009889regulation of biosynthetic process2.59E-022.59E-022.59E-02GO:001578negative regulation of signal transduction2.60E-022.60E-022.60E-02GO:000589regulation of cell differentiation2.60E-022.60E-022.60E-02GO:0005958regulation of signal transduction2.60E-022.60E-022.60E-02GO:0004595regulation of viral life cycle2.62E-022.70E-02GO:0004595re	GO:00306	so regulation	of defense response to virus	1.99E-02	1.99E-02																																																																																																																																										
GO:0001220 regulation of cellular biosynnetic process 2.09E-02 2.09E-02 2.09E-02 GO:00071072 negative regulation of xascular wound healing 2.10E-02 2.10E-02 2.10E-02 GO:0003332 negative regulation of extracellular matrix constituent 2.10E-02 2.10E-02 2.10E-02 GO:00010604 positive regulation of cell death 2.16E-02 2.16E-02 2.16E-02 GO:0000942 positive regulation of cell death 2.16E-02 2.42E-02 2.42E-02 GO:0006341 regulation of cellular localization 2.42E-02 2.42E-02 2.46E-02 GO:0006955 immune response 2.46E-02 2.46E-02 2.46E-02 GO:00051173 process 2.59E-02 2.59E-02 2.59E-02 GO:000029 actin filament-based process 2.59E-02 2.59E-02 2.59E-02 GO:0001058 regulation of signal transduction 2.60E-02 2.60E-02 2.60E-02 GO:00051897 positive regulation of nacromolecule biosynthetic 2.59E-02 2.59E-02 2.59E-02 2.59E-02 2.60E-02 2.60E-02 2.60E-02	GO:00198	anugen pro	cessing and presentation	2.08E-02	2.08E-02																																																																																																																																										
G0:0001041negative regulation of vascular wound heating2.10E-022.10E-02G0:0003332negative regulation of hospholipid biosynthetic process2.10E-022.10E-02G0:0010604positive regulation of nacromolecule metabolic process2.10E-022.10E-02G0:0010942positive regulation of cell death2.42E-022.42E-02G0:0007044regulation of p38MAPK cascade2.42E-022.42E-02G0:0006955immune response2.46E-022.46E-02G0:0006956process2.46E-022.46E-02G0:0006957immune response2.46E-022.46E-02G0:0006958regulation of defense response to virus by host2.58E-022.58E-02G0:00050691regulation of defense response to virus by host2.58E-022.59E-02G0:0003029actin filament-based process2.59E-022.59E-022.59E-02G0:0010558negative regulation of signal transduction2.60E-022.60E-022.60E-02G0:0010558negative regulation of signal transduction2.61E-022.60E-022.60E-02G0:0010558negative regulation of signal transduction2.60E-022.60E-022.60E-02G0:0010558regulation of cell differentiation2.70E-022.70E-022.70E-02G0:001655regulation of or signal transduction2.70E-022.70E-022.70E-02G0:0003155regulation of approtic cell2.70E-022.70E-022.70E-02G0:0004559regulation of approtic cell2.70E-022.70E-022.70E-02 <td>GO:00313</td> <td>26 regulation</td> <td>of cellular biosynthetic process</td> <td>2.09E-02</td> <td>2.09E-02</td>	GO:00313	26 regulation	of cellular biosynthetic process	2.09E-02	2.09E-02																																																																																																																																										
$ \begin{array}{c cccc} GO:0071072 & negative regulation of phospholipid biosynthetic process 2.10E-02 & 2.10E-02 \\ GO:0003332 & secretion & 2.10E-02 & 2.10E-02 \\ GO:0010604 & positive regulation of macromolecule metabolic process & 2.10E-02 & 2.10E-02 \\ GO:0010942 & positive regulation of cell death & 2.16E-02 & 2.16E-02 \\ GO:00060341 & regulation of cell death & 2.16E-02 & 2.42E-02 \\ GO:00060341 & regulation of cell death & 2.42E-02 & 2.42E-02 \\ GO:00060355 & immune response & 2.46E-02 & 2.46E-02 \\ GO:0005955 & immune response & 2.46E-02 & 2.46E-02 \\ GO:0050691 & regulation of nitrogen compound metabolic \\ GO:0050691 & regulation of derive response to virus by host & 2.58E-02 & 2.59E-02 \\ GO:00050691 & regulation of derive regulation of serverse to virus by host & 2.58E-02 & 2.59E-02 \\ GO:00050691 & regulation of process & 2.59E-02 & 2.59E-02 \\ GO:00051701 & biological process involved in interaction with host & 2.58E-02 & 2.59E-02 \\ GO:00050691 & regulation of derive regulation of macromolecule biosynthetic \\ process & 2.59E-02 & 2.59E-02 & 2.59E-02 \\ GO:00051897 & positive regulation of protein kinase B signaling & 2.60E-02 & 2.60E-02 \\ GO:00051897 & positive regulation of resting timese B signaling & 2.60E-02 & 2.60E-02 \\ GO:00030155 & regulation of resting transduction & 2.70E-02 & 2.60E-02 \\ GO:00030155 & regulation of cell adhesion & 2.70E-02 & 2.70E-02 \\ GO:00030155 & regulation of cell adhesion & 2.70E-02 & 2.70E-02 \\ GO:0030356 & macromolecule localization & 2.70E-02 & 2.70E-02 \\ GO:0030366 & macromolecule localization & 2.70E-02 & 2.70E-02 \\ GO:0030393 & response to lipid & 2.70E-02 & 2.70E-02 & 2.70E-02 \\ GO:0033993 & response to lipid & 2.70E-02 & 2.70E-02 & 2.70E-02 \\ GO:002684 & positive regulation of I-KappaB kinase/NF-kappaB \\ argenting recessing and presentation of endogenous & 2.70E-02 & 2.70E-02 \\ GO:002684 & positive regulation of I-kappaB kinase/NF-kappaB \\ co:00033993 & response to lipid & 2.70E-02 & 2.70E-02 & 2.70E-02 \\ GO:0002684 & positive regulation of I-kappaB kinase/NF-kappaB \\ signaling & 0$	GO:00610	14 negative re	gulation of vascular wound healing	2.10E-02	2.10E-02																																																																																																																																										
GO:0003332negative regulation of extracellular matrix constituent secretion2.10E-022.10E-022.10E-02GO:0010604positive regulation of macromolecule metabolic process2.10E-022.10E-022.10E-02GO:0010942positive regulation of cell death2.16E-022.42E-022.42E-02GO:00060311regulation of p38MAPK cascade2.42E-022.42E-022.42E-02GO:0006955immune response2.46E-022.46E-022.46E-02GO:0051173positive regulation of nitrogen compound metabolic process2.46E-022.51E-02GO:0051701biological process involved in interaction with host2.51E-022.58E-02GO:0050691regulation of bergense to virus by host2.58E-022.59E-02GO:00030029actin filament-based process2.59E-022.59E-02GO:0010558negative regulation of protein kinase B signaling2.60E-022.60E-02GO:00105897positive regulation of protein kinase B signaling2.60E-022.60E-02GO:0030155regulation of viral life cycle2.62E-022.70E-02GO:0030155regulation of viral life cycle2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0030364positive regulation of impune system process2.70E-022.70E-02GO:0004565regulation of leukocyte migration2.70E-022.70E-02GO:0002685regulation of l-kappaB	GO:00710	negative re	egulation of phospholipid biosynthetic process	2.10E-02	2.10E-02																																																																																																																																										
GOUCOUDE GOUCOUP42secretionLIGE 02LIGE 02LIGE 02GOUCOUP42positive regulation of macromolecule metabolic processLIGE 02LIGE 02LIGE 02GOUCOUP44regulation of cell deathLIGE 02LIGE 02LIGE 02GOUCOUP44regulation of cell adathLIGE 02LIGE 02LIGE 02GOUCOUP44regulation of cell larl localizationLIGE 02LIGE 02LIGE 02GOUCOUP45glycoside metabolic processLIGE 02LIGE 02LIGE 02GOUCOUP45positive regulation of nitrogen compound metabolicLIGE 02LIGE 02LIGE 02GOUCOUP45processnimune response to virus by hostLIGE 02LIGE 02LIGE 02GOUCOUP46regulation of defense response to virus by hostLIGE 02LIGE 02LIGE 02GOUCOUP46regulation of biosynthetic processLIGE 02LIGE 02LIGE 02GOUCOUP46regulation of protein kinase B signalingLIGE 02LIGE 02LIGE 02GOUCOUP46regulation of signal transductionLIGE 02LIGE 02LIGE 02GOUCOUP46regulation of cell adhesionLIGE 02LIGE 02LIGE 02GOUC	GO:00033	negative re	gulation of extracellular matrix constituent	2.10E-02	2.10E-02																																																																																																																																										
GO:0010604positive regulation of macromolecule metabolic process2.10E-022.10E-02GO:0010942positive regulation of cell death2.16E-022.16E-02GO:0060341regulation of p38MAPK cascade2.42E-022.42E-02GO:0016137glycoside metabolic process2.46E-022.46E-02GO:0016137positive regulation of nitrogen compound metabolic2.46E-022.46E-02GO:0051173positive regulation of nitrogen compound metabolic2.46E-022.46E-02GO:0051701biological process involved in interaction with host2.51E-022.51E-02GO:0050691regulation of defense response to virus by host2.58E-022.58E-02GO:00009889regulation of macromolecule biosynthetic2.59E-022.59E-02GO:0010558negative regulation of macromolecule biosynthetic2.59E-022.59E-02GO:0010558negative regulation of signal transduction2.60E-022.60E-02GO:0030157regulation of signal transduction2.60E-022.60E-02GO:0030155regulation of viral life cycle2.62E-022.70E-02GO:0030355regulation of cell adhesion2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of	00.00000	secretion		20102 02	21102 02																																																																																																																																										
$ \begin{array}{ccccc} GO:0010942 & positive regulation of cell death & 2.16E-02 & 2.16E-02 \\ GO:0060341 & regulation of p38MAPK cascade & 2.42E-02 & 2.42E-02 \\ GO:0060351 & regulation of cellular localization & 2.42E-02 & 2.42E-02 \\ GO:00060955 & immune response & 2.46E-02 & 2.46E-02 \\ GO:0051173 & positive regulation of nitrogen compound metabolic \\ process & 2.46E-02 & 2.46E-02 \\ GO:0051071 & biological process involved in interaction with host & 2.51E-02 & 2.51E-02 \\ GO:0050691 & regulation of defense response to virus by host & 2.58E-02 & 2.58E-02 \\ GO:00000898 & regulation of macromolecule biosynthetic \\ process & 2.59E-02 & 2.59E-02 & 2.59E-02 \\ GO:0005189 & regulation of macromolecule biosynthetic \\ process & 2.59E-02 & 2.59E-02 & 2.59E-02 \\ GO:0010558 & process \\ GO:0010559 & regulation of signal transduction & 2.60E-02 & 2.60E-02 \\ GO:0051897 & positive regulation of signal transduction & 2.60E-02 & 2.60E-02 \\ GO:000988 & negative regulation of signal transduction & 2.61E-02 & 2.61E-02 \\ GO:0000968 & negative regulation of signal transduction & 2.70E-02 & 2.70E-02 \\ GO:0001055 & regulation of eldehesion & 2.70E-02 & 2.70E-02 \\ GO:00030155 & regulation of signal transduction & 2.70E-02 & 2.70E-02 \\ GO:0001655 & base conversion or substitution editing & 2.70E-02 & 2.70E-02 \\ GO:00030366 & macromolecule localization & 2.70E-02 & 2.70E-02 \\ GO:00030366 & macromolecule localization & 2.70E-02 & 2.70E-02 \\ GO:00030366 & macromolecule localization & 2.70E-02 & 2.70E-02 \\ GO:00030366 & macromolecule localization & 2.70E-02 & 2.70E-02 \\ GO:0002685 & regulation of remute system process & 2.70E-02 & 2.70E-02 \\ GO:0002684 & positive regulation of remate system process & 2.70E-02 & 2.70E-02 \\ GO:0002684 & positive regulation of 1-kappaB kinase/NF-kappaB \\ cO:0002684 & positive regulation of 1-kappaB kinase/NF-kappaB \\ cO:0002684 & positive regulation of 1-kappaB kinase/NF-kappaB \\ cO:0002697 & regulation of relukar process & 2.70E-02 & 2.70E-02 \\ GO:0005794 & regulation of 1-kappaB kinase/NF-kappaB \\ cO:0005794 & regulation $	GO:00106	04 positive re	gulation of macromolecule metabolic process	2.10E-02	2.10E-02																																																																																																																																										
GO:1900744 regulation of p38MAPK cascade 2.42E-02 2.42E-02 GO:0060341 regulation of cellular localization 2.42E-02 2.42E-02 GO:0006955 immune response 2.46E-02 2.46E-02 GO:0051173 positive regulation of nitrogen compound metabolic 2.46E-02 2.46E-02 GO:0051701 biological process involved in interaction with host 2.51E-02 2.51E-02 GO:00050691 regulation of defense response to virus by host 2.58E-02 2.59E-02 GO:00009889 regulation of macromolecule biosynthetic 2.59E-02 2.59E-02 GO:0010558 negative regulation of protein kinase B signaling 2.60E-02 2.60E-02 GO:0009968 negative regulation of protein kinase B signaling 2.60E-02 2.60E-02 GO:00090968 negative regulation of signal transduction 2.61E-02 2.62E-02 GO:003155 regulation of cell adhesion 2.70E-02 2.70E-02 GO:0045652 engulation of signal transduction 2.70E-02 2.70E-02 GO:0043652 engulfment of apoptotic cell 2.70E-02 2.70E-02 GO:0	GO:00109	42 positive re	gulation of cell death	2.16E-02	2.16E-02																																																																																																																																										
GO:0060311regulation of cellular localization2.42E-022.42E-02GO:0016137glycoside metabolic process2.46E-022.46E-02GO:0005955immune response2.46E-022.46E-02GO:0051173positive regulation of nitrogen compound metabolic2.46E-022.46E-02GO:0051701biological process involved in interaction with host2.51E-022.51E-02GO:00050691regulation of defense response to virus by host2.58E-022.59E-02GO:0009889regulation of macromolecule biosynthetic2.59E-022.59E-02GO:0010558negative regulation of protein kinase B signaling2.60E-022.60E-02GO:001597positive regulation of protein kinase B signaling2.60E-022.60E-02GO:0009889regulation of orignal transduction2.61E-022.60E-02GO:0001558process2.59E-022.59E-02GO:000568negative regulation of signal transduction2.60E-022.60E-02GO:0003005regulation of viral life cycle2.62E-022.60E-02GO:0030155regulation of cell differentiation2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0002685regulation of insume system process2.70E-022.70E-02GO:0002685regulation of indigen system process2.70E-022.70E-02GO:0002684positive regulation of indigen system process2.70E-022.70E-02GO:0002685regulation of inpune system process2.70E-022.70E-02	GO:19007	14 regulation	of p38MAPK cascade	2.42E-02	2.42E-02																																																																																																																																										
GO:0016137glycoside metabolic process2.46E-022.46E-02GO:0006955immune response2.46E-022.46E-02GO:0051173positive regulation of nitrogen compound metabolic process2.46E-022.46E-02GO:0051701biological process involved in interaction with host2.51E-022.51E-02GO:0050691regulation of defense response to virus by host2.58E-022.59E-02GO:00009889regulation of biosynthetic process2.59E-022.59E-02GO:0010558negative regulation of macromolecule biosynthetic process2.59E-022.59E-02GO:0010558negative regulation of protein kinase B signaling2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:0009968negative regulation of signal transduction2.61E-022.62E-02GO:0030155regulation of viral life cycle2.62E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0043655negative regulation of simptotic interaction2.70E-022.70E-02GO:003036macromolecule localization2.70E-022.70E-022.70E-02GO:0002685regulation of ilmigen brighting2.70E-022.70E-022.70E-02GO:0002684positive regulation of indepenous peptide antigen2.70E-022.70E-022.70E-02GO:0002684positive regulation of I-kapaB kinase/NF-kapaB2.70E-022.70E-022.70E-02GO:0002794regulation of cellular process2.70E-02	GO:00603	ti regulation	of cellular localization	2.42E-02	2.42E-02																																																																																																																																										
GO:0006955immune response2.46E-022.46E-022.46E-02GO:0051173positive regulation of nitrogen compound metabolic process2.46E-022.46E-02GO:0051701biological process involved in interaction with host2.51E-022.51E-02GO:0050691regulation of defense response to virus by host2.58E-022.58E-02GO:0030029actin filament-based process2.59E-022.59E-02GO:0009889regulation of biosynthetic process2.59E-022.59E-02GO:0010558negative regulation of protein kinase B signaling2.60E-022.60E-02GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009889negative regulation of signal transduction2.61E-022.61E-02GO:0045595regulation of cell differentiation2.70E-022.70E-02GO:0045595regulation of cell differentiation2.70E-022.70E-02GO:0045595regulation of cell differentiation2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002684positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:00043123signaling2.70E-022.70E-022.70E-02GO:00050794regulation of single stranded viral RNA replication via double stranded of single stranded viral RNA replication via <br< td=""><td>GO:00161</td><td>37 glycoside 1</td><td>netabolic process</td><td>2.46E-02</td><td>2.46E-02</td></br<>	GO:00161	37 glycoside 1	netabolic process	2.46E-02	2.46E-02																																																																																																																																										
GO:0051173positive regulation of nitrogen compound metabolic process2.46E-022.46E-02GO:0051701biological process involved in interaction with host2.51E-022.51E-02GO:0050691regulation of defense response to virus by host2.58E-022.58E-02GO:0009899regulation of biosynthetic process2.59E-022.59E-02GO:0010558negative regulation of macromolecule biosynthetic process2.59E-022.59E-02GO:0010558negative regulation of protein kinase B signaling2.60E-022.60E-02GO:0009899regulation of cell differentiation2.61E-022.60E-02GO:00051897positive regulation of signal transduction2.61E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.62E-02GO:0009968negative regulation of signal transduction2.70E-022.70E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002684positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0002684positive regulation of 1-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0002684positive regulation of cellular process2.70E-022.70E-02GO:000719response to inpid2.70E-02	GO:00069	55 immune re	sponse	2.46E-02	2.46E-02																																																																																																																																										
GO:0051173For each of the formation of the format	GO 00511	positive re	gulation of nitrogen compound metabolic	a ((T) 0a																																																																																																																																											
GO:0051701biological process involved in interaction with host2.51E-022.51E-02GO:0050691regulation of defense response to virus by host2.58E-022.58E-02GO:00029actin filament-based process2.59E-022.59E-02GO:0009889regulation of biosynthetic process2.59E-022.59E-02GO:0010558negative regulation of macromolecule biosynthetic process2.59E-022.59E-02GO:001558negative regulation of protein kinase B signaling2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:0030155regulation of viral life cycle2.62E-022.62E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:001553base conversion or substitution editing2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:002684positive regulation of immune system process2.70E-022.70E-02GO:002483netgen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-022.70E-02GO:005794regulation of cellular process2.70E-022.70E-022.70E-02GO:0045091double stranded DNA intermediate2.70E-022.70E-022.70E-02GO:0045091cellular response to inpolysaccharide2.70E-022.70E-022.70E-02GO:0045091cellular response to inpolysaccharide	GO:00511	73 process	5	2.46E-02	2.46E-02																																																																																																																																										
GO:0051061regulation of defense response to virus by host2.58E-022.58E-02GO:0050691regulation of defense response to virus by host2.58E-022.59E-02GO:0009889regulation of biosynthetic process2.59E-022.59E-02GO:0010558process2.59E-022.59E-02GO:0051897positive regulation of protein kinase B signaling2.60E-022.60E-02GO:0045595regulation of signal transduction2.61E-022.60E-02GO:003155regulation of viral life cycle2.62E-022.62E-02GO:0045622engulfment of apoptotic cell2.70E-022.70E-02GO:0016553biological process involved in symbiotic interaction2.70E-022.70E-02GO:0016553biological process involved in symbiotic interaction2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of immune system process2.70E-022.70E-02GO:0002684positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0005794regulation of cellular process2.70E-022.70E-022.70E-02GO:0005794regulation of single stranded viral RNA replication vira2.70E-022.70E-02GO:0045091double stranded DNA intermediate2.70E-022.70E-02GO:0045091cellular response to inpoplysaccharide2.73E-022.70E-02	GO:00517)1 biological	process involved in interaction with host	2 51E-02	2 51E-02																																																																																																																																										
GO:0003002actin filament-based process2.59E-022.59E-02GO:0030029actin filament-based process2.59E-022.59E-02GO:0010558negative regulation of macromolecule biosynthetic process2.59E-022.59E-02GO:0015897positive regulation of protein kinase B signaling2.60E-022.60E-02GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0030155regulation of viral life cycle2.62E-022.62E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:002684positive regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0043123signaling2.70E-022.70E-022.70E-02GO:0045091regulation of cellular process2.70E-022.70E-022.70E-02GO:002684positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-022.70E-02GO:0043123signaling2.70E-022.70E-022.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-022.70E-02GO:0045091double stranded DNA intermediate2.70E-022.70E-022.70E-02GO:0045091culation of single stranded viral RNA replication via double stranded DNA intermediate2.73E-022.70E-02	GO:00517	1 regulation	of defense response to virus by host	2.51E 02	2.51E 02 2.58E 02																																																																																																																																										
GO:000029addit infantent-based process2.59E-022.59E-02GO:0009889regulation of biosynthetic process2.59E-022.59E-02GO:0010558negative regulation of macromolecule biosynthetic process2.59E-022.59E-02GO:001558process2.60E-022.60E-02GO:0095897positive regulation of cell differentiation2.60E-022.60E-02GO:009968negative regulation of signal transduction2.61E-022.62E-02GO:0030155regulation of viral life cycle2.62E-022.62E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553biological process involved in symbiotic interaction2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002684positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-022.70E-02GO:0045091double stranded viral RNA replication via double stranded viral RNA replication via double stranded viral RNA replication via 	GO:00300	20 actin filom	ant based process	2.58E-02	2.50E-02																																																																																																																																										
GO:0009889regulation of biosynthetic process2.39E-022.39E-02GO:0010558negative regulation of macromolecule biosynthetic process2.59E-022.59E-02GO:0051897positive regulation of protein kinase B signaling2.60E-022.60E-02GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.62E-02GO:0030155regulation of viral life cycle2.62E-022.62E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0002685regulation of immune system process2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-022.70E-02	CO.00000	29 actil Illalli	of his synthetic process	2.59E-02	2.59E-02																																																																																																																																										
GO:0010558negative regulation of macromolecule biosynthetic process2.59E-022.59E-02GO:0051897positive regulation of protein kinase B signaling councempositive regulation of cell differentiation2.60E-022.60E-02GO:0045595regulation of signal transduction2.61E-022.61E-022.62E-02GO:003900regulation of viral life cycle2.62E-022.62E-022.62E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483peptide antigen2.70E-022.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-022.70E-02GO:0045091double stranded DNA intermediate2.70E-022.70E-022.70E-02GO:0045091cellular response to lippoplysaccharide2.70E-022.70E-02 <tr <td="">2.70E-02<td< td=""><td>GO:00098</td><td>sy regulation</td><td></td><td>2.39E-02</td><td>2.39E-02</td></td<></tr> <tr><td>processGO:0051897positive regulation of protein kinase B signaling2.60E-022.60E-02GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0045091regulation of single stranded Viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lippolysaccharide2.73E-022.70E-02</td><td>GO:00105</td><td>58 negative re</td><td>gulation of macromolecule biosynthetic</td><td>2.59E-02</td><td>2.59E-02</td></tr> <tr><td>GO:0051897positive regulation of protein knase B signaling2.60E-022.60E-02GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.62E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002684positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0009719response to endogenous signaling2.70E-022.70E-022.70E-02GO:0045091regulation of single stranded Viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipoj0ysaccharide2.70E-022.70E-022.70E-02</td><td>GO 00510</td><td>process</td><td></td><td>2 (05 02</td><td>2 (05 02</td></tr> <tr><td>GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:004552engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-02GO:0045091response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-022.70E-02</td><td>GO:00518</td><td>positive reg</td><td>gulation of protein kinase B signaling</td><td>2.60E-02</td><td>2.60E-02</td></tr> <tr><td>GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of 1-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:000719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.70E-022.70E-02</td><td>GO:00455</td><td>95 regulation</td><td>of cell differentiation</td><td>2.60E-02</td><td>2.60E-02</td></tr> <tr><td>GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.70E-02</td><td>GO:00099</td><td>58 negative re</td><td>gulation of signal transduction</td><td>2.61E-02</td><td>2.61E-02</td></tr> <tr><td>GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0030306macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-02GO:00045091response to endogenous stimulus2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02</td><td>GO:19039</td><td>00 regulation</td><td>of viral life cycle</td><td>2.62E-02</td><td>2.62E-02</td></tr> <tr><td>GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0005794regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0045091cellular response to lipopolysaccharide2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02</td><td>GO:00301</td><td>55 regulation</td><td>of cell adhesion</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0009719regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02</td><td>GO:00444</td><td>03 biological</td><td>process involved in symbiotic interaction</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:00045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02</td><td>GO:00436</td><td>52 engulfmen</td><td>t of apoptotic cell</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:000719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-022.73E-02</td><td>GO:00165</td><td>53 base conve</td><td>ersion or substitution editing</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02</td><td>GO:00330</td><td>36 macromole</td><td>ecule localization</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02</td><td>GO:00026</td><td>35 regulation</td><td>of leukocyte migration</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:00021011positive regulation of infinitie system process2.102 C12.102 C1GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-022.73E-02</td><td>GO:00026</td><td>R4 positive re-</td><td>gulation of immune system process</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0002483and gen processing and process anu</td><td>00100020</td><td>antigen pro</td><td>pressing and presentation of endogenous</td><td>21/02/02</td><td>20.02.02</td></tr> <tr><td>GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02</td><td>GO:00024</td><td>33 nentide ant</td><td>igen</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:000000000000000000000000000000000000</td><td>GO:00339</td><td>Peptide and P3 response to</td><td>linid</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0043123result of the result of</td><td>66.00000</td><td>positive re-</td><td>gulation of I-kappaB kinase/NF-kappaB</td><td>2.702.02</td><td>2 505 02</td></tr> <tr><td>GO:0050794 GO:0009719regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02</td><td>GO:00431</td><td>23 signaling</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02</td><td>GO:00507</td><td>94 regulation</td><td>of cellular process</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02</td><td>GO:00097</td><td>19 response to</td><td>endogenous stimulus</td><td>2.70E-02</td><td>2.70E-02</td></tr> <tr><td>GO:0045091double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02</td><td>00.00177</td><td>regulation</td><td>of single stranded viral RNA replication via</td><td>0.505.00</td><td>0.500 00</td></tr> <tr><td>GO:0071222 cellular response to lipopolysaccharide 2.73E-02 2.73E-02</td><td>GO:00450</td><td>double stra</td><td>nded DNA intermediate</td><td>2./0E-02</td><td>2.70E-02</td></tr> <tr><td></td><td>GO:00712</td><td>22 cellular res</td><td>ponse to lipopolysaccharide</td><td>2.73E-02</td><td>2.73E-02</td></tr>	GO:00098	sy regulation		2.39E-02	2.39E-02	processGO:0051897positive regulation of protein kinase B signaling2.60E-022.60E-02GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0045091regulation of single stranded Viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lippolysaccharide2.73E-022.70E-02	GO:00105	58 negative re	gulation of macromolecule biosynthetic	2.59E-02	2.59E-02	GO:0051897positive regulation of protein knase B signaling2.60E-022.60E-02GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.62E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002684positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0009719response to endogenous signaling2.70E-022.70E-022.70E-02GO:0045091regulation of single stranded Viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipoj0ysaccharide2.70E-022.70E-022.70E-02	GO 00510	process		2 (05 02	2 (05 02	GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:004552engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-02GO:0045091response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-022.70E-02	GO:00518	positive reg	gulation of protein kinase B signaling	2.60E-02	2.60E-02	GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of 1-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:000719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.70E-022.70E-02	GO:00455	95 regulation	of cell differentiation	2.60E-02	2.60E-02	GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.70E-02	GO:00099	58 negative re	gulation of signal transduction	2.61E-02	2.61E-02	GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0030306macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-02GO:00045091response to endogenous stimulus2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02	GO:19039	00 regulation	of viral life cycle	2.62E-02	2.62E-02	GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0005794regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0045091cellular response to lipopolysaccharide2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02	GO:00301	55 regulation	of cell adhesion	2.70E-02	2.70E-02	GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0009719regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02	GO:00444	03 biological	process involved in symbiotic interaction	2.70E-02	2.70E-02	GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:00045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00436	52 engulfmen	t of apoptotic cell	2.70E-02	2.70E-02	GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:000719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-022.73E-02	GO:00165	53 base conve	ersion or substitution editing	2.70E-02	2.70E-02	GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00330	36 macromole	ecule localization	2.70E-02	2.70E-02	GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00026	35 regulation	of leukocyte migration	2.70E-02	2.70E-02	GO:00021011positive regulation of infinitie system process2.102 C12.102 C1GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-022.73E-02	GO:00026	R4 positive re-	gulation of immune system process	2.70E-02	2.70E-02	GO:0002483and gen processing and process anu	00100020	antigen pro	pressing and presentation of endogenous	21/02/02	20.02.02	GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00024	33 nentide ant	igen	2.70E-02	2.70E-02	GO:000000000000000000000000000000000000	GO:00339	Peptide and P3 response to	linid	2.70E-02	2.70E-02	GO:0043123result of the result of	66.00000	positive re-	gulation of I-kappaB kinase/NF-kappaB	2.702.02	2 505 02	GO:0050794 GO:0009719regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00431	23 signaling	· · · · · · · · · · · · · · · · · · ·	2.70E-02	2.70E-02	GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00507	94 regulation	of cellular process	2.70E-02	2.70E-02	GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00097	19 response to	endogenous stimulus	2.70E-02	2.70E-02	GO:0045091double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	00.00177	regulation	of single stranded viral RNA replication via	0.505.00	0.500 00	GO:0071222 cellular response to lipopolysaccharide 2.73E-02 2.73E-02	GO:00450	double stra	nded DNA intermediate	2./0E-02	2.70E-02		GO:00712	22 cellular res	ponse to lipopolysaccharide	2.73E-02	2.73E-02
GO:00098	sy regulation		2.39E-02	2.39E-02																																																																																																																																											
processGO:0051897positive regulation of protein kinase B signaling2.60E-022.60E-02GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0045091regulation of single stranded Viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lippolysaccharide2.73E-022.70E-02	GO:00105	58 negative re	gulation of macromolecule biosynthetic	2.59E-02	2.59E-02																																																																																																																																										
GO:0051897positive regulation of protein knase B signaling2.60E-022.60E-02GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.62E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002684positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB2.70E-022.70E-02GO:0009719response to endogenous signaling2.70E-022.70E-022.70E-02GO:0045091regulation of single stranded Viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipoj0ysaccharide2.70E-022.70E-022.70E-02	GO 00510	process		2 (05 02	2 (05 02																																																																																																																																										
GO:0045595regulation of cell differentiation2.60E-022.60E-02GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:004552engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-02GO:0045091response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-022.70E-02	GO:00518	positive reg	gulation of protein kinase B signaling	2.60E-02	2.60E-02																																																																																																																																										
GO:0009968negative regulation of signal transduction2.61E-022.61E-02GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of 1-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:000719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.70E-022.70E-02	GO:00455	95 regulation	of cell differentiation	2.60E-02	2.60E-02																																																																																																																																										
GO:1903900regulation of viral life cycle2.62E-022.62E-02GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:004403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.70E-02	GO:00099	58 negative re	gulation of signal transduction	2.61E-02	2.61E-02																																																																																																																																										
GO:0030155regulation of cell adhesion2.70E-022.70E-02GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0030306macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:00050794regulation of cellular process2.70E-022.70E-02GO:00045091response to endogenous stimulus2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02	GO:19039	00 regulation	of viral life cycle	2.62E-02	2.62E-02																																																																																																																																										
GO:0044403biological process involved in symbiotic interaction2.70E-022.70E-02GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0005794regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0045091cellular response to lipopolysaccharide2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02	GO:00301	55 regulation	of cell adhesion	2.70E-02	2.70E-02																																																																																																																																										
GO:0043652engulfment of apoptotic cell2.70E-022.70E-02GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0009719regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.70E-022.70E-02	GO:00444	03 biological	process involved in symbiotic interaction	2.70E-02	2.70E-02																																																																																																																																										
GO:0016553base conversion or substitution editing2.70E-022.70E-02GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:00045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00436	52 engulfmen	t of apoptotic cell	2.70E-02	2.70E-02																																																																																																																																										
GO:0033036macromolecule localization2.70E-022.70E-02GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:000719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-022.73E-02	GO:00165	53 base conve	ersion or substitution editing	2.70E-02	2.70E-02																																																																																																																																										
GO:0002685regulation of leukocyte migration2.70E-022.70E-02GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00330	36 macromole	ecule localization	2.70E-02	2.70E-02																																																																																																																																										
GO:0002684positive regulation of immune system process2.70E-022.70E-02GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00026	35 regulation	of leukocyte migration	2.70E-02	2.70E-02																																																																																																																																										
GO:00021011positive regulation of infinitie system process2.102 C12.102 C1GO:0002483antigen processing and presentation of endogenous peptide antigen2.70E-022.70E-02GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-022.73E-02	GO:00026	R4 positive re-	gulation of immune system process	2.70E-02	2.70E-02																																																																																																																																										
GO:0002483and gen processing and process anu	00100020	antigen pro	pressing and presentation of endogenous	21/02/02	20.02.02																																																																																																																																										
GO:0033993response to lipid2.70E-022.70E-02GO:0043123positive regulation of I-kappaB kinase/NF-kappaB signaling2.70E-022.70E-02GO:0050794regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00024	33 nentide ant	igen	2.70E-02	2.70E-02																																																																																																																																										
GO:000000000000000000000000000000000000	GO:00339	Peptide and P3 response to	linid	2.70E-02	2.70E-02																																																																																																																																										
GO:0043123result of the result of	66.00000	positive re-	gulation of I-kappaB kinase/NF-kappaB	2.702.02	2 505 02																																																																																																																																										
GO:0050794 GO:0009719regulation of cellular process2.70E-022.70E-02GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00431	23 signaling	· · · · · · · · · · · · · · · · · · ·	2.70E-02	2.70E-02																																																																																																																																										
GO:0009719response to endogenous stimulus2.70E-022.70E-02GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00507	94 regulation	of cellular process	2.70E-02	2.70E-02																																																																																																																																										
GO:0045091regulation of single stranded viral RNA replication via double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	GO:00097	19 response to	endogenous stimulus	2.70E-02	2.70E-02																																																																																																																																										
GO:0045091double stranded DNA intermediate2.70E-022.70E-02GO:0071222cellular response to lipopolysaccharide2.73E-022.73E-02	00.00177	regulation	of single stranded viral RNA replication via	0.505.00	0.500 00																																																																																																																																										
GO:0071222 cellular response to lipopolysaccharide 2.73E-02 2.73E-02	GO:00450	double stra	nded DNA intermediate	2./0E-02	2.70E-02																																																																																																																																										
	GO:00712	22 cellular res	ponse to lipopolysaccharide	2.73E-02	2.73E-02																																																																																																																																										

GO:0019222	regulation of metabolic process	2.73E-02	2.73E-02
GO:0043277	apoptotic cell clearance	2.73E-02	2.73E-02
GO:0051247	positive regulation of protein metabolic process	2.73E-02	2.73E-02
GO:0008610	lipid biosynthetic process	2.73E-02	2.73E-02
GO:0071675	regulation of mononuclear cell migration	2.81E-02	2.81E-02
GO:0051093	negative regulation of developmental process	2.81E-02	2.81E-02
GO:1903726	negative regulation of phospholipid metabolic process	2.81E-02	2.81E-02
GO:1904238	pericyte cell differentiation	2.81E-02	2.81E-02
GO:0001910	regulation of leukocyte mediated cytotoxicity	2.86E-02	2.86E-02
GO:0019218	regulation of steroid metabolic process	2.86E-02	2.86E-02
00.001/210	negative regulation of nucleobase-containing compound	2.001 02	2.001 02
GO:0045934	metabolic process	2.86E-02	2.86E-02
	single stranded viral PNA replication via double stranded		
GO:0039692	DNA intermediate	2.86E-02	2.86E-02
GO:0021224	nagative regulation of callular matchelia process	2 02E 02	2 02E 02
GO:0031324 GO:0002607	regulation of immune effector process	2.92E-02 2.07E-02	2.92E-02 2.07E-02
CO:0002097	regulation of minimule effector process	3.07E-02	3.07E-02
GO:0051224	positive regulation of proteorysis	3.07E-02	3.07E-02
GO:0051234	establishment of localization	3.18E-02	3.18E-02
GO:0019748	secondary metabolic process	3.31E-02	3.31E-02
GO:2000059	negative regulation of ubiquitin-dependent protein	3.31E-02	3.31E-02
	catabolic process		0.045.00
GO:2000630	positive regulation of miRNA metabolic process	3.31E-02	3.31E-02
GO:0002819	regulation of adaptive immune response	3.31E-02	3.31E-02
GO:0045321	leukocyte activation	3.32E-02	3.32E-02
GO:1904375	regulation of protein localization to cell periphery	3.35E-02	3.35E-02
GO:0071496	cellular response to external stimulus	3.39E-02	3.39E-02
GO:0045444	fat cell differentiation	3.39E-02	3.39E-02
GO:1905475	regulation of protein localization to membrane	3.48E-02	3.48E-02
GO:0071219	cellular response to molecule of bacterial origin	3.48E-02	3.48E-02
GO:1902742	apoptotic process involved in development	3.52E-02	3.52E-02
GO:1901701	cellular response to oxygen-containing compound	3.52E-02	3.52E-02
GO:0098542	defense response to other organism	3.52E-02	3.52E-02
GO:2001141	regulation of RNA biosynthetic process	3.54E-02	3.54E-02
GO:0030178	negative regulation of Wnt signaling pathway	3.54E-02	3.54E-02
GO:0048260	positive regulation of receptor-mediated endocytosis	3.69E-02	3.69E-02
GO:1905897	regulation of response to endoplasmic reticulum stress	3.74E-02	3.74E-02
GO:0006629	lipid metabolic process	3.78E-02	3.78E-02
GO:0031328	positive regulation of cellular biosynthetic process	3.88E-02	3.88E-02
GO:0038066	p38MAPK cascade	3.89E-02	3.89E-02
GO:0045807	positive regulation of endocytosis	3.89E-02	3.89E-02
GO:0051179	localization	3.89E-02	3.89E-02
GO:0048513	animal organ development	3.97E-02	3.97E-02
GO:0062014	negative regulation of small molecule metabolic process	4.07E-02	4.07E-02
GO:0009059	macromolecule biosynthetic process	4.08E-02	4.08E-02
GO:0097435	supramolecular fiber organization	4.15E-02	4.15E-02
GO:0001667	ameboidal-type cell migration	4.15E-02	4.15E-02
GO:0001892	embryonic placenta development	4.30E-02	4.30E-02
GO:0022604	regulation of cell morphogenesis	4.36E-02	4.36E-02
GO:0030199	collagen fibril organization	4.38E-02	4.38E-02
GO:0001912	positive regulation of leukocyte mediated cytotoxicity	4.38E-02	4.38E-02
GO:0030162	regulation of proteolysis	4.38E-02	4.38E-02
GO:0050729	positive regulation of inflammatory response	4.47E-02	4.47E-02
GO:0051785	positive regulation of nuclear division	4 64E-02	4 64E-02
GO:0009891	positive regulation of biosynthetic process	4 64E-02	4 64E-02
0010007071	negative regulation of DNA-binding transcription factor	11012 02	
GO:0043433	activity	4.68E-02	4.68E-02
GO:0031652	positive regulation of heat generation	4.68E-02	4.68E-02
GO:0019883	antigen processing and presentation of endogenous	4.68E-02	4.68E-02
GO·0010876	lipid localization	4.73E-02	4.73E-02
GO:0007586	digestion	4.74E-02	4.74E-02
GO:0016477	cell migration	4 74E-02	4 74F-02
GO:00104//	regulation of DNA-hinding transcription factor activity	4 85E-02	4.85F-02
GO:0051070	regulation of protein metabolic process	4 85E-02	4.85E-02
GO:0091240	negative regulation of canonical Wrt signaling nathway	4 85E-02	4.85F-02
CO.1002504	regulation of public acid templated transmitter	4.04E.02	4.04E.02
00:1903206	regulation of nucleic acid-templated transcription	4.94E-02	4.94E-02

GO ID	GO Name	P Value	ADI P Value
GO:0002376	immune system process	4 15E-23	4 15E-23
GO:0002370 GO:0006955	immune response	5 99E-23	5 99E-23
GO:0002682	regulation of immune system process	2.97E-21	2.97E-21
GO:0002684	positive regulation of immune system process	7.09E-18	7.09E-18
GO:0050776	regulation of immune response	1.08E-15	1.09E-15
GO:0002764	immune response regulating signaling pathway	8 25E 15	8 25E 15
CO:0050778	number response-regulating signaling pathway	0.25E-15 1 77E 12	0.25E-15 1 77E 12
GO:0030778 GO:0002420	immune response activating call surface recentor signaling	1.//E-13 1.92E-12	1.//E-13 1.92E-12
00.0002429	ninnune response-activating cen surface receptor signating	1.03E-13	1.05E-15
CO:0002757	immuna response estivating signal transduction	1 92E 12	1 92E 12
CO:0002757	immune response-activating signal transduction	1.03E-13 9.77E-12	1.03E-13 9.77E-12
GO:0002768	immune response-regulating cell surface receptor signaling	8.//E-15	8.//E-15
GO 0002252	pathway	1 205 12	1 205 12
GO:0002255	activation of immune response	1.39E-12	1.39E-12
GO:0046649	lymphocyte activation	1./JE-11	1./5E-11 4.22E-11
GO:0045321	leukocyte activation	4.23E-11	4.23E-11
GO:0048584	positive regulation of response to stimulus	6.13E-11	6.13E-11
GO:000/165	signal transduction	6.13E-11	6.13E-11
GO:0002252	immune effector process	5.25E-10	5.25E-10
GO:0001819	positive regulation of cytokine production	1.28E-09	1.28E-09
GO:0001775	cell activation	1.28E-09	1.28E-09
GO:0002250	adaptive immune response	1.30E-09	1.30E-09
GO:0006952	defense response	3.61E-09	3.61E-09
GO:0050851	antigen receptor-mediated signaling pathway	4.06E-09	4.06E-09
GO:0023052	signaling	4.37E-09	4.37E-09
GO:0007154	cell communication	5.81E-09	5.81E-09
GO:0002697	regulation of immune effector process	6.28E-09	6.28E-09
GO:0050852	T cell receptor signaling pathway	9.32E-09	9.32E-09
GO:0007166	cell surface receptor signaling pathway	9.32E-09	9.32E-09
GO:0001817	regulation of cytokine production	9.32E-09	9.32E-09
GO:0001816	cytokine production	1.03E-08	1.03E-08
GO:0002700	regulation of production of molecular mediator of immune	2.40E-08	2.40E-08
	response		
GO:0048583	regulation of response to stimulus	2.48E-08	2.48E-08
GO:0042110	T cell activation	2.73E-08	2.73E-08
GO:0032103	positive regulation of response to external stimulus	7.15E-08	7.15E-08
GO:0050896	response to stimulus	1.27E-07	1.27E-07
GO:0002440	production of molecular mediator of immune response	2.12E-07	2.12E-07
GO:0051716	cellular response to stimulus	2.31E-07	2.31E-07
GO:0002702	positive regulation of production of molecular mediator of	2.55E-07	2.55E-07
	immune response		
GO:0002699	positive regulation of immune effector process	3.32E-07	3.32E-07
GO:1903131	mononuclear cell differentiation	4.15E-07	4.15E-07
GO:0032101	regulation of response to external stimulus	4.74E-07	4.74E-07
GO:0030098	lymphocyte differentiation	4.95E-07	4.95E-07
GO:0031347	regulation of defense response	7.94E-07	7.94E-07
GO:0046631	alpha-beta T cell activation	1.63E-06	1.63E-06
GO:0002521	leukocyte differentiation	1.65E-06	1.65E-06
GO:0070663	regulation of leukocyte proliferation	2.73E-06	2.73E-06
GO:0006954	inflammatory response	2.82E-06	2.82E-06
GO:0031663	lipopolysaccharide-mediated signaling pathway	3.23E-06	3.23E-06
GO:0046629	gamma-delta T cell activation	3.28E-06	3 28E-06
GO:0031349	positive regulation of defense response	3.75E-06	3 75E-06
GO:0010628	positive regulation of gene expression	4.15E-06	4.15E-06
GO:1903037	regulation of leukocyte cell-cell adhesion	4.15E-06	4.15E-06
GO:00/3207	response to external biotic stimulus	4.13E-00 4.62E-06	4.62E-06
GO:0051707	response to other organism	4.62E-06	4.62E-06
GO:0051240	positive regulation of multicellular organismal process	4.02E-00 4.87E-06	4.02E-00 4.87E-06
GO:0091240	defense response to other organism	5.73E-06	5.73E-06
CO:0020242	regulation of response to biotic stimulus	5.75E-00	5.75E-00 5.76E 06
GO:0002031 GO:0050670	regulation of lumphocyte proliferation	5.70E-00	5.70E-00 5.76E-06
GO:00300/0 GO:0010221	avaluation of tymphocyte promeration	5.70E-00	5.70E-00 5.76E-06
GO:0019221 GO:0022044	cytokine-inculated signaling pathway	5.70E-00 6.29E-06	5.70E-00 6.28E-06
GO:0052944 GO:1002020	regulation of mononuclear cell promeration	0.30E-00 7 12E 06	0.30E-00 7 12E 06
GO:1903039	regulation of autoking production involved in inverse	7.12E-00 7.49E-04	7.12E-00 7.49E-06
00:0002/18	regulation of cytokine production involved in immune response	1.40E-00	/.40E-00

Appendix Table A 15 Enriched GO:BP categories for experimentally validated G4s overlapping enhancers, group 2

GO:0002367	cytokine production involved in immune response	7.48E-06	7.48E-06
GO:0009607	response to biotic stimulus	7.59E-06	7.59E-06
GO:0032755	positive regulation of interleukin-6 production	8.88E-06	8.88E-06
GO:0032735	positive regulation of interleukin-12 production	1.12E-05	1.12E-05
GO:0045785	positive regulation of cell adhesion	1.26E-05	1.26E-05
GO:0007159	leukocyte cell-cell adhesion	1.40E-05	1.40E-05
GO:0000165	MAPK cascade	1.41E-05	1.41E-05
GO:0032675	regulation of interleukin-6 production	1.41E-05	1.41E-05
GO:0032637	interleukin-8 production	1.41E-05	1.41E-05
GO:0032635	interleukin-6 production	1.41E-05	1.41E-05
GO:0032677	lessles este avaliferation	1.41E-05	1.41E-05
GO:0070001 CO:0051240	reculation of lumphosite activation	1.08E-05	1.08E-05
GO:0001249 GO:0002822	positive regulation of response to biotic stimulus	1.91E-05	1.91E-05
GO:0002833	positive regulation of interloukin 8 production	2.16E-05	2.16E-05
GO:0032737 GO:0044419	biological process involved in interspecies interaction between	2.52E-05 2.79E-05	2.52E-05 2.79E-05
00.0044417	organisms	2.771-05	2.771-05
GO:0046651	lymphocyte proliferation	3 25E-05	3 25E-05
GO:0097530	granulocyte migration	3.40E-05	3.40E-05
GO:0022409	positive regulation of cell-cell adhesion	3.49E-05	3.49E-05
GO:0002221	pattern recognition receptor signaling pathway	3.55E-05	3.55E-05
GO:0032943	mononuclear cell proliferation	3.56E-05	3.56E-05
GO:0070371	ERK1 and ERK2 cascade	3.65E-05	3.65E-05
GO:0050900	leukocyte migration	4.13E-05	4.13E-05
GO:0071345	cellular response to cytokine stimulus	4.32E-05	4.32E-05
GO:0070374	positive regulation of ERK1 and ERK2 cascade	4.36E-05	4.36E-05
GO:0002520	immune system development	4.94E-05	4.94E-05
GO:0030097	hemopoiesis	5.42E-05	5.42E-05
GO:0009605	response to external stimulus	6.53E-05	6.53E-05
GO:0043410	positive regulation of MAPK cascade	6.53E-05	6.53E-05
GO:0002443	leukocyte mediated immunity	6.61E-05	6.61E-05
GO:0035556	intracellular signal transduction	6.61E-05	6.61E-05
GO:0050865	regulation of cell activation	6.67E-05	6.67E-05
GO:0048534	hematopoietic or lymphoid organ development	7.00E-05	7.00E-05
GO:1990266	neutrophil migration	7.20E-05	7.20E-05
GO:0022407	regulation of cell-cell adhesion	7.20E-05	7.20E-05
GO:0002220	innate immune response activating cell surface receptor	7.20E-05	7.20E-05
00 0022 (15	signaling pathway	7755 05	7.755.05
GO:0032615	interleukin-12 production	7.75E-05	7.75E-05
GO:0052655	regulation of Interleukin-12 production	7.75E-05	7.75E-05
GO:00000758	inpute immune response activating signal transduction	8.20E-05	8.20E-05
GO:0002758 GO:0032760	positive regulation of tumor pacrosis factor production	8.30E-03 8.70E-05	8.50E-05 8.70E-05
GO:0002694	regulation of leukocyte activation	9.15E-05	9.15E-05
GO:0002094 GO:0050870	positive regulation of T cell activation	9.63E-05	9.63E-05
GO:0050370 GO:0070372	regulation of ERK1 and ERK2 cascade	0.000101363	0.000101363
GO:0002720	positive regulation of cytokine production involved in immune	0.000114437	0.000114437
0010002720	response	01000111107	01000111107
GO:1903557	positive regulation of tumor necrosis factor superfamily	0.000116819	0.000116819
	cytokine production		
GO:0050764	regulation of phagocytosis	0.000125399	0.000125399
GO:0070665	positive regulation of leukocyte proliferation	0.000139526	0.000139526
GO:0043408	regulation of MAPK cascade	0.000161131	0.000161131
GO:0034097	response to cytokine	0.000169097	0.000169097
GO:0002460	adaptive immune response based on somatic recombination of	0.000175603	0.000175603
	immune receptors built from immunoglobulin superfamily		
	domains		
GO:0009966	regulation of signal transduction	0.000177725	0.000177725
GO:0002683	negative regulation of immune system process	0.000178272	0.000178272
GO:0032680	regulation of tumor necrosis factor production	0.000187589	0.000187589
GO:0032640	tumor necrosis factor production	0.000187589	0.000187589
GO:0007249	I-kappaB kinase/NF-kappaB signaling	0.000187589	0.000187589
GO:0042129	regulation of T cell proliferation	0.000195896	0.000195896
GO:1902531	regulation of intracellular signal transduction	0.000201588	0.000201588
GO:0050867	positive regulation of cell activation	0.000201588	0.000201588
GO:0050766	positive regulation of phagocytosis	0.000203772	0.000203772
GO:0002703	regulation of leukocyte mediated immunity	0.000203772	0.000203772
GO:0030155	regulation of cell adhesion	0.00020608	0.00020608
GO:0001818	negative regulation of cytokine production	0.000225163	0.000225163
GO:0051251	positive regulation of lymphocyte activation	0.000225163	0.000225163

GO:0051209	release of sequestered calcium ion into cytosol	0.000225163	0.000225163
GO:0050727	regulation of inflammatory response	0.000225163	0.000225163
GO:1903555	regulation of tumor necrosis factor superfamily cytokine	0.000225163	0.000225163
	production		
GO:0002639	positive regulation of immunoglobulin production	0.000225163	0.000225163
GO:0071706	tumor necrosis factor superfamily cytokine production	0.000225163	0.000225163
GO:0051283	negative regulation of sequestering of calcium ion	0.000233805	0.000233805
GO:0051282	regulation of sequestering of calcium ion	0.000248588	0.000248588
GO:0051235	maintenance of location	0.000289196	0.000289196
GO:0051651	maintenance of location in cell	0.000203015	0.000203015
CO:0051001	sequestering of colour in cen	0.000293013	0.000293013
GO.0031208	T and the matter of the matter	0.00029740	0.00029740
GO:0042098		0.000326578	0.000326578
GO:0045059	positive trymic 1 cell selection	0.000326578	0.000326578
GO:0002675	positive regulation of acute inflammatory response	0.000330722	0.000330722
GO:0043122	regulation of I-kappaB kinase/NF-kappaB signaling	0.000347721	0.000347721
GO:0097529	myeloid leukocyte migration	0.000414075	0.000414075
GO:0002224	toll-like receptor signaling pathway	0.000415086	0.000415086
GO:0050671	positive regulation of lymphocyte proliferation	0.000415086	0.000415086
GO:0032602	chemokine production	0.000416113	0.000416113
GO:0032642	regulation of chemokine production	0.000416113	0.000416113
GO:0032946	positive regulation of mononuclear cell proliferation	0.000432255	0.000432255
GO:0097553	calcium ion transmembrane import into cytosol	0.000435396	0.000435396
GO:0048518	positive regulation of biological process	0.000435396	0.000435396
GO:0030217	T cell differentiation	0.000462365	0.000462365
GO:0043405	regulation of MAP kinase activity	0.000495183	0.000495183
GO:0050794	regulation of cellular process	0.000499699	0.000499699
GO:0002637	regulation of immunoglobulin production	0.00051273	0.00051273
GO:0002696	positive regulation of leukocyte activation	0.000546307	0.000546307
GO:0002090	response to bacterium	0.000588485	0.000588485
GO:0002017	interleukin 10 production	0.000500405	0.000588485
CO:0032653	regulation of interlaukin 10 production	0.000014909	0.000014909
CO:0010646	regulation of all communication	0.000014909	0.000014909
GO:0010040		0.000614909	0.000614909
GO:0043368	positive 1 cell selection	0.000617145	0.000617145
GO:0031664	regulation of lipopolysaccharide-mediated signaling pathway	0.000617145	0.000617145
GO:0023051	regulation of signaling	0.000633952	0.000633952
GO:0042102	positive regulation of T cell proliferation	0.000640656	0.000640656
GO:0050729	positive regulation of inflammatory response	0.000648482	0.000648482
GO:0032663	regulation of interleukin-2 production	0.000648482	0.000648482
GO:0070383	DNA cytosine deamination	0.000648482	0.000648482
GO:0032623	interleukin-2 production	0.000648482	0.000648482
GO:0071310	cellular response to organic substance	0.00072903	0.00072903
GO:0038093	Fc receptor signaling pathway	0.000782428	0.000782428
GO:0002449	lymphocyte mediated immunity	0.000790591	0.000790591
GO:0006909	phagocytosis	0.000838027	0.000838027
GO:0045061	thymic T cell selection	0.00088504	0.00088504
GO:0016554	cytidine to uridine editing	0.00088504	0.00088504
GO:0071216	cellular response to biotic stimulus	0.000891177	0.000891177
GO:0045089	positive regulation of innate immune response	0.000898357	0.000898357
GO:0002879	positive regulation of acute inflammatory response to non-	0.000907555	0.000907555
	antigenic stimulus		
GO:0002426	immunoglobulin production in mucosal tissue	0.000907555	0.000907555
GO:2000557	regulation of immunoglobulin production in mucosal tissue	0.000907555	0.000907555
GO:00/5087	innate immune response	0.000907555	0.000907555
GO:2000558	ninate initiale response	0.000007555	0.000007555
00.2000550	tissue	0.000707555	0.000707555
CO:0002525	agute inflommatory response to non antigenia stimulus	0.00007555	0.00007555
GO.0002323	acute inflaminatory response to non-antigenic stinutus	0.000907555	0.000907555
GO:0033993		0.000907555	0.000907555
GO:0002877	regulation of acute inflammatory response to non-antigenic	0.000907555	0.000907555
GO:0071674	mononuclear cell migration	0.001081991	0.001081991
GO:0009615	response to virus	0.001001001	0.001001001
GO.0009013	response to virus	0.001111009	0.001111009
GO:0032722	positive regulation of chemokine production	0.00112/30	0.00112/30
GO:0002085	legunation of leukocyte inigration	0.0012019/4	0.0012019/4
GU:0140546	defense response to symptont	0.001215436	0.001215436
GU:0051607	defense response to virus	0.001215436	0.001215436
GO:00/1396	cellular response to lipid	0.001236267	0.001236267
GO:0006950	response to stress	0.001259325	0.001259325
GO:0038094	Fc-gamma receptor signaling pathway	0.001262965	0.001262965
GO:0030593	neutrophil chemotaxis	0.001262965	0.001262965
GO:0045058	T cell selection	0.001262965	0.001262965

GO:0032609	interferon-gamma production	0.001262965	0.001262965
GO:0032649	regulation of interferon-gamma production	0.001262965	0.001262965
GO:0002218	activation of innate immune response	0.001366144	0.001366144
GO:0002532	production of molecular mediator involved in inflammatory	0.001366144	0.001366144
66.0002332	response	0.001500111	0.001500111
CO:0090124	response	0.001406024	0.001406024
60.0080134	regulation of response to stress	0.001400954	0.001406934
GO:0045123	cellular extravasation	0.00146/829	0.00146/829
GO:0071222	cellular response to lipopolysaccharide	0.001546387	0.001546387
GO:1902533	positive regulation of intracellular signal transduction	0.001547171	0.001547171
GO:0071677	positive regulation of mononuclear cell migration	0.001551313	0.001551313
GO:0032733	positive regulation of interleukin-10 production	0.001551313	0.001551313
GO:0002526	acute inflammatory response	0.001551313	0.001551313
GO:0002520	calcium ion transmembrane transport	0.001501515	0.001501515
GO:00/0588	DNA description	0.001002101	0.001002101
GO:0045006	DNA deamination	0.001/248/2	0.001/248/2
GO:0002673	regulation of acute inflammatory response	0.001728104	0.001728104
GO:0051239	regulation of multicellular organismal process	0.001746288	0.001746288
GO:0050789	regulation of biological process	0.001862778	0.001862778
GO:0002819	regulation of adaptive immune response	0.002010754	0.002010754
GO:0002705	nositive regulation of leukocyte mediated immunity	0.002074331	0.002074331
GO:0071219	callular response to molecule of bacterial origin	0.002170104	0.002170104
GO:0000007	ecitian response to molecule of bacterial origin	0.002170104	0.002170104
GO:0009967	positive regulation of signal transduction	0.002226784	0.002226784
GO:0002238	response to molecule of fungal origin	0.00225885	0.00225885
GO:0072676	lymphocyte migration	0.00225885	0.00225885
GO:0030183	B cell differentiation	0.00225885	0.00225885
GO:0071226	cellular response to molecule of fungal origin	0.00225885	0.00225885
GO:0002237	response to molecule of bacterial origin	0.002327333	0.002327333
GO:0045869	negative regulation of single stranded viral RNA replication via	0.002533743	0.002533743
00.0043807	double stranded DNA intermediate	0.002333743	0.002333743
00.0015000	double stranded DNA intermediate	0.000500540	0.000500540
GO:0045088	regulation of innate immune response	0.002533743	0.002533743
GO:0002385	mucosal immune response	0.002533743	0.002533743
GO:0033077	T cell differentiation in thymus	0.002533743	0.002533743
GO:0045859	regulation of protein kinase activity	0.002698387	0.002698387
GO:0006816	calcium ion transport	0.002720968	0.002720968
GO:0031295	T cell costimulation	0.002775759	0.002775759
CO:0002266	leukoauta activation involved in immuna response	0.002773735	0.002775755
GO.0002300		0.002047833	0.002047833
GO:0002251	organ or tissue specific immune response	0.003046143	0.003046143
GO:00/1621	granulocyte chemotaxis	0.003053229	0.003053229
GO:0002377	immunoglobulin production	0.003062258	0.003062258
GO:0010033	response to organic substance	0.003271259	0.003271259
GO:0002263	cell activation involved in immune response	0.003282432	0.003282432
GO:0031294	lymphocyte costimulation	0.00328994	0.00328994
GO:0007252	I-kappaB phosphorylation	0.00353432	0.00353432
GO:0008609	cell cell adhesion	0.003796477	0.003706477
CO:005003	cell-cell adhesion	0.003790477	0.003790477
60:0060326	cell chemotaxis	0.003910682	0.003910682
GO:0002437	inflammatory response to antigenic stimulus	0.003910682	0.003910682
GO:0043549	regulation of kinase activity	0.003974909	0.003974909
GO:0016553	base conversion or substitution editing	0.004051782	0.004051782
GO:0045091	regulation of single stranded viral RNA replication via double	0.004051782	0.004051782
	stranded DNA intermediate		
GO:0007186	G protein-coupled receptor signaling pathway	0.004051782	0.004051782
GO:0002710	negative regulation of T cell mediated immunity	0.00/051782	0.00/051792
GO:0022/10	negative regulation of 1 centineutated minimumty	0.004051782	0.004051782
00.0033030	positive regulation of cen adhesion mediated by integrin	0.004031/82	0.004031782
GO:00/1398	cellular response to fatty acid	0.004051782	0.004051782
GO:0001954	positive regulation of cell-matrix adhesion	0.004142522	0.004142522
GO:0002534	cytokine production involved in inflammatory response	0.004490953	0.004490953
GO:1900015	regulation of cytokine production involved in inflammatory	0.004490953	0.004490953
	response		
60:0039692	single stranded viral RNA replication via double stranded DNA	0.004640311	0.004640311
00.0037072	intermediate	0.004040511	0.004040511
60.0002608		0.004640211	0.004640211
GO:0002698	negative regulation of immune effector process	0.004640311	0.004640311
GO:0050853	B cell receptor signaling pathway	0.004640311	0.004640311
GO:0002719	negative regulation of cytokine production involved in immune	0.004640311	0.004640311
	response		
GO:1901222	regulation of NIK/NF-kappaB signaling	0.00486036	0.00486036
GO:0014065	phosphatidylinositol 3-kinase signaling	0.005022521	0.005022521
GO:0032651	regulation of interlaukin-1 beta production	0.005085136	0.005022021
CO:0022031	interlevitin 1 hate and vation	0.005005130	0.005005130
00:0052011	interieukin-i beta production	0.005065150	0.005050136
GO:0019722	calcium-mediated signaling	0.005258622	0.005258622
GO:0006935	chemotaxis	0.005390484	0.005390484
GO:0042330	taxis	0.005390484	0.005390484

GO:0070887	cellular response to chemical stimulus	0.005911985	0.005911985
GO:0030888	regulation of B cell proliferation	0.005958639	0.005958639
GO:0002706	regulation of lymphocyte mediated immunity	0.006008889	0.006008889
GO:0045577	regulation of B cell differentiation	0.00601741	0.00601741
GO:2000523	regulation of T cell costimulation	0.006154972	0.006154972
GO:0032496	response to linopolysaccharide	0.006/35286	0.006/35286
GO:0010811	response to hpopolysaccharide	0.000435280	0.000435280
GO:0010811	positive regulation of cell-substrate adhesion	0.006455286	0.006435286
GO:0010647	positive regulation of cell communication	0.006465847	0.006465847
GO:0032703	negative regulation of interleukin-2 production	0.006743232	0.006743232
GO:0002891	positive regulation of immunoglobulin mediated immune	0.006743232	0.006743232
	response		
GO:0002714	positive regulation of B cell mediated immunity	0.006743232	0.006743232
GO:0023056	positive regulation of signaling	0.006761765	0.006761765
GO:0050777	negative regulation of immune response	0.006800008	0.006800008
GO:0048525	negative regulation of viral process	0.006050106	0.006050106
CO:1002160	regulation of colour ion transmembrane transmert	0.000939190	0.000939190
GO:0050854	regulation of calcium for transmetriorate transport	0.007021788	0.007021766
GO:0050854	regulation of antigen receptor-mediated signaling pathway	0.007120548	0.007120548
GO:0032102	negative regulation of response to external stimulus	0.007488582	0.007488582
GO:0006801	superoxide metabolic process	0.007609318	0.007609318
GO:0051924	regulation of calcium ion transport	0.007691448	0.007691448
GO:0014066	regulation of phosphatidylinositol 3-kinase signaling	0.00792478	0.00792478
GO:0032652	regulation of interleukin-1 production	0.008265842	0.008265842
GO:0032612	interleukin-1 production	0.008265842	0.008265842
GO:0061099	negative regulation of protein tyrosine kinase activity	0.008378341	0.008378341
GO:0050790	regulation of catalytic activity	0.008378341	0.008464202
GO:0000790		0.008464202	0.008464202
GO:0002692	negative regulation of cellular extravasation	0.008464202	0.008464202
GO:1903721	positive regulation of I-kappaB phosphorylation	0.008464202	0.008464202
GO:0033634	positive regulation of cell-cell adhesion mediated by integrin	0.008464202	0.008464202
GO:0065007	biological regulation	0.008720037	0.008720037
GO:0016064	immunoglobulin mediated immune response	0.008720037	0.008720037
GO:0002832	negative regulation of response to biotic stimulus	0.008851095	0.008851095
GO:0045071	negative regulation of viral genome replication	0.008978332	0.008978332
GO:0002701	negative regulation of production of molecular mediator of	0.009166584	0.009166584
66.0002701	immuna response	0.007100504	0.007100504
CO:0010724	D coll mediated immunity	0.000047060	0.000047060
00.0019724		0.009947009	0.009947009
GO:0038096	Fc-gamma receptor signaling pathway involved in	0.010123844	0.010123844
	phagocytosis		
GO:0032743	positive regulation of interleukin-2 production	0.010123844	0.010123844
GO:0050672	negative regulation of lymphocyte proliferation	0.010123844	0.010123844
GO:0002433	immune response-regulating cell surface receptor signaling	0.010123844	0.010123844
	pathway involved in phagocytosis		
GO:0032945	negative regulation of mononuclear cell proliferation	0.010661701	0.010661701
GO:0072678	T cell migration	0.010661701	0.010661701
GO:0072676	positive regulation of linonolysaccharide-mediated signaling	0.010859184	0.010859184
00.0031000	positive regulation of hpopolysaccharide-mediated signaling	0.010039104	0.010039104
60 0025701		0.010050104	0.010050104
GO:0035701	hematopoietic stem cell migration	0.010859184	0.010859184
GO:0002752	cell surface pattern recognition receptor signaling pathway	0.010859184	0.010859184
GO:0045619	regulation of lymphocyte differentiation	0.010859184	0.010859184
GO:0002732	positive regulation of dendritic cell cytokine production	0.010859184	0.010859184
GO:2000272	negative regulation of signaling receptor activity	0.010859184	0.010859184
GO:0010529	negative regulation of transposition	0.010859184	0.010859184
GO:0010528	regulation of transposition	0.010859184	0.010859184
GO:0070542	response to fatty acid	0.010859184	0.010859184
GO:1903719	regulation of L-kappaB phosphorylation	0.010859184	0.010859184
GO:0020505	legitation of 1-kappab phosphorylation	0.010659164	0.010659164
GO:0030595	leukocyte chemotaxis	0.010859184	0.010859184
GO:0008284	positive regulation of cell population proliferation	0.010859184	0.010859184
GO:0071675	regulation of mononuclear cell migration	0.011265926	0.011265926
GO:0038061	NIK/NF-kappaB signaling	0.011265926	0.011265926
GO:0042113	B cell activation	0.011265926	0.011265926
GO:0039694	viral RNA genome replication	0.011832838	0.011832838
GO:0050901	leukocyte tethering or rolling	0.011832838	0.011832838
GO:0048015	phosphatidylinositol-mediated signaling	0.012112633	0.012112633
GO:0043254	regulation of protein-containing complex assembly	0.012577554	0.012577554
GO:00/2017	inositol linid-mediated signaling	0.012863661	0.012863661
CO.2000407	mositive receivation of T coll reference	0.012003001	0.012003001
GO:2000406	positive regulation of 1 cell migration	0.012911804	0.012911804
GO:0080111	DNA demethylation	0.012911804	0.012911804
GO:0070664	negative regulation of leukocyte proliferation	0.013451563	0.013451563
GO:0042221	response to chemical	0.013977709	0.013977709
GO:0007204	positive regulation of cytosolic calcium ion concentration	0.013977709	0.013977709
GO:0051279	regulation of release of sequestered calcium ion into cytosol	0.013993161	0.013993161
	· · · · · · · · · · · · · · · · · · ·		

GO:0150077	regulation of neuroinflammatory response	0.013993161	0.013993161
GO:0032196	transposition	0.013993161	0.013993161
GO:0032689	negative regulation of interferon-gamma production	0.013993161	0.013993161
GO:0016477	cell migration	0.014137848	0.014137848
GO:0072507	divalent inorganic cation homeostasis	0.014505758	0.014505758
GO:0030890	positive regulation of B cell proliferation	0.015166606	0.015166606
GO:0043507	positive regulation of JUN kinase activity	0.015166606	0.015166606
GO:0061097	regulation of protein tyrosine kinase activity	0.015435761	0.015435761
GO:1902105	regulation of leukocyte differentiation	0.015477851	0.015477851
GO:0050864	regulation of B cell activation	0.015762353	0.015762353
GO:0071356	cellular response to tumor pecrosis factor	0.015762353	0.015762353
CO:0051228	regulation of transferrage activity	0.015702555	0.015702555
GO:0031338	regulation of transferase activity	0.010045575	0.010045575
GO:0045730	respiratory burst	0.016189681	0.016189681
GO:0002431	Fc receptor mediated stimulatory signaling pathway	0.016189681	0.016189681
GO:0042554	superoxide anion generation	0.016189681	0.016189681
GO:0050850	positive regulation of calcium-mediated signaling	0.016189681	0.016189681
GO:0006812	cation transport	0.016473414	0.016473414
GO:0002725	negative regulation of T cell cytokine production	0.016473414	0.016473414
GO:0002371	dendritic cell cytokine production	0.016473414	0.016473414
GO:0001771	immunological synapse formation	0.016473414	0.016473414
GO:0002730	regulation of dendritic cell cytokine production	0.016473414	0.016473414
GO:2001187	positive regulation of CD8-positive, alpha-beta T cell	0.016473414	0.016473414
	activation		
GO:0002274	myeloid leukocyte activation	0.01667619	0.01667619
GO:0002274	nycloid feukocyte activation	0.01007019	0.017021812
GO:0006874	positive regulation of hydroiase activity	0.017031812	0.017031812
GO:0006874		0.017190275	0.017190273
GO:0035510	DNA dealkylation	0.01/1902/3	0.01/1902/3
GO:0071900	regulation of protein serine/threonine kinase activity	0.018455118	0.018455118
GO:0032715	negative regulation of interleukin-6 production	0.018634454	0.018634454
GO:0046632	alpha-beta T cell differentiation	0.01969355	0.01969355
GO:0002687	positive regulation of leukocyte migration	0.01969355	0.01969355
GO:1905155	positive regulation of membrane invagination	0.01969355	0.01969355
GO:0050856	regulation of T cell receptor signaling pathway	0.01969355	0.01969355
GO:0034142	toll-like receptor 4 signaling pathway	0.01969355	0.01969355
GO:0033632	regulation of cell-cell adhesion mediated by integrin	0.01969355	0.01969355
GO:0060100	positive regulation of phagocytosis engulfment	0.01969355	0.01969355
GO:1902622	regulation of neutronhil migration	0.01969355	0.01969355
GO:2000403	positive regulation of lymphocyte migration	0.01969355	0.01969355
GO:0002381	immunoalehulin production involved in immunoalehulin	0.01060255	0.01060355
00.0002381	minunogrobum production involved in minunogrobum- mediated immune response	0.01909355	0.01909355
GO:0031348	negative regulation of defense response	0.020163552	0.020163552
GO:1903706	regulation of hemonoiesis	0.020163552	0.020163552
GO:1003700	negative regulation of adaptive immune response based on	0.020105552	0.020105552
00.0002823	acmatic resultion of adaptive minute response based on	0.021179088	0.021179088
GO 0010100	immunogiobulin supertamily domains	0.00100000	0.00100000
GO:0010469	regulation of signaling receptor activity	0.02188832	0.02188832
GO:0055074	calcium ion homeostasis	0.02188832	0.02188832
GO:0034612	response to tumor necrosis factor	0.022143164	0.022143164
GO:0048870	cell motility	0.022143164	0.022143164
GO:0030101	natural killer cell activation	0.022143164	0.022143164
GO:0002889	regulation of immunoglobulin mediated immune response	0.022536238	0.022536238
GO:0042100	B cell proliferation	0.023000802	0.023000802
GO:0034154	toll-like receptor 7 signaling pathway	0.023073529	0.023073529
GO:0042116	macrophage activation	0.023979626	0.023979626
GO:0002712	regulation of B cell mediated immunity	0.023995791	0.023995791
GO:0002707	negative regulation of lymphocyte mediated immunity	0.023995791	0.023995791
GO:0050871	positive regulation of B cell activation	0.024457447	0.024457447
GO:0050871	positive regulation of D cell activation	0.024437447	0.024437447
GO:2000404	regulation of 1 cell inigration	0.023703011	0.023703011
GO:0002822	regulation of adaptive immune response based on somatic	0.020016257	0.020016257
	recombination of immune receptors built from immunoglobulin		
	supertamily domains		
GO:0018108	peptidyl-tyrosine phosphorylation	0.026467035	0.026467035
GO:0034695	response to prostaglandin E	0.026639653	0.026639653
GO:0060099	regulation of phagocytosis, engulfment	0.026639653	0.026639653
GO:0071346	cellular response to interferon-gamma	0.026639653	0.026639653
GO:1905153	regulation of membrane invagination	0.026639653	0.026639653
GO:0001867	complement activation, lectin pathway	0.026639653	0.026639653
GO:0001779	natural killer cell differentiation	0.026639653	0.026639653
GQ:0043277	apoptotic cell clearance	0.026973093	0.026973093
GO:0018212	nentidyl-tyrosine modification	0 027081775	0.027081775
00.0010212	popudyr-tyrosnic mounication	0.02/001//3	0.02/001//3

GO:0002665 negative regulation of leukocyte activation 0.022788725 0.022788725 GO:0007155 cell adhesion 0.0228779444 0.0229786465 0.0229286467 0.022928647 0.022928647 0.022928647 0.022928647 0.022928647 0.022928647 0.0229563665 0.0229563665 0.0229563665 0.0229563665 0.02	GO:0043269	regulation of ion transport	0.0274162	0.0274162
GC:0007155 cell adhesion 0.0282794444 0.028295365 0.02955365 0.02955365 0.02955365 0.02955365 0.02955365 0.02955365 0.02955365 0.02955365 <td< td=""><td>GO:0002695</td><td>negative regulation of leukocyte activation</td><td>0.027885725</td><td>0.027885725</td></td<>	GO:0002695	negative regulation of leukocyte activation	0.027885725	0.027885725
GO:0046634 regulation of alpha-beta T cell activation 0.028279444 0.02827947 0.02927867 0.02927867 0.02927867 0.02927867 0.02927867 0.02927867 0.02927867 0.02925867 0.02956365 <td< td=""><td>GO:0007155</td><td>cell adhesion</td><td>0.028279444</td><td>0.028279444</td></td<>	GO:0007155	cell adhesion	0.028279444	0.028279444
GO:0009620 response to fmg/ns 0.028279444 0.028278467 0.02928667 0.02928667 0.02928676 0.02928667 0.02928667 0.02928667 0.02928667 0.02928667 0.029286665 0.029286665 0.029286665 0.029865665	GO:0046634	regulation of alpha-beta T cell activation	0.028279444	0.028279444
GO 000230 negative regulation of adaptive immunor exponse 0.03279444 0.023279444 GO 0004500 regulation of viral genome replication 0.032379444 0.023279444 GO 0004120 negative regulation of trait genome replication 0.032379444 0.023279444 GO 0004120 negative regulation of trait genome replication 0.0228784641 0.0238784641 GO 0004231 positive regulation of trait genome 0.029228647 0.0292528647 GO 0002321 positive regulation of protein localization to cell surface 0.029553665 0.029553665 GO 0002328 positive regulation of protein localization to cell surface 0.029563665 0.029563665 GO 000238 macrofpage activation involved in immune response 0.029563665 0.029563665 GO 000278 pactive regulation of neuroinflammatory response 0.029563665 0.029563665 GO 000178 pativary megatian neuroinflammatory response 0.029563665 0.029563665 GO 000178 precess negative regulation of neuroinflammatory 0.029563665 0.029563665 GO 000178 predication introving macrophysic mediated immunity 0.029563665 0.02956366	GQ:0009620	response to fungus	0.028279444	0.028279444
GO0033623 regative regulation of angly on registration 0.032379444 0.032950365 0.032951365	GO:0002020	nogative regulation of adaptive immune response	0.020270444	0.020270444
GO003562 regulation of vial genome replication 0.028279444 0.028279444 GO0045124 negative regulation of 1-kappaB kinase/NF-kappaB signaling 0.028279444 0.028279444 GO0045121 second-messenger-molitated signaling 0.028279444 0.028279444 GO001921 second-messenger-molitated signaling 0.0287374649 0.028278477 GO001921 positive regulation of viral life cycle 0.0295286477 0.0292286477 GO00221 positive regulation of reactive oxygen species biosynthetic 0.029563665 0.029553665 GO-0002281 macrophage activitation involved in immume response 0.029563665 0.029553665 GO-000281 positive regulation of lipopolysaccharide-mediated signaling 0.029563665 0.029563665 GO-000281 macrophage activitation presponse 0.029563665 0.029563665 0.029563665 GO-0002760 positive regulation of lipopolysaccharide-mediated signaling 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029	00.0002820	negative regulation of adaptive infinute response	0.026279444	0.028279444
GO.0045069 regulation of viral genome repication 0.028279444 0.028279444 GO.0019932 second-messenger-mediated signaling 0.028279444 0.028279444 GO.0019932 positive regulation of viral file cycle 0.029228647 0.029228647 GO.0002821 positive regulation of protein localization to cell surface 0.029263665 0.029563665 GO.0002821 positive regulation of protein localization to cell surface 0.029563665 0.029563665 GO.0002281 macrophage activation involved in immune response 0.029563665 0.029563665 GO.0002281 macrophage activation involved in immune response 0.029563665 0.029563665 GO.0002708 positive regulation of hipophysaccharide- mediated signaling 0.029563665 0.029563665 GO.0002708 positive regulation of hipophysaccharide- mediated immunity 0.029821865 0.029563665 GO.0002708 positive regulation of patient income mediated immunity 0.029821865 0.029523665 GO.0002708 positive regulation of patient necegnition neceptor signaling 0.023921865 0.029523665 GO.0002708 positive regulation of patien trecognition neceptor signaling 0	GO:0033628	regulation of cell adhesion mediated by integrin	0.028279444	0.028279444
GO:0043124 negative regulation of 1-kappaB kinase/NF-kappB signaling 0.0287/9444 0.0287/9444 GO:0003281 positive regulation of adaptive immune response 0.029228647 0.029228647 GO:0002821 positive regulation of protein localization to cell surface 0.02963665 0.029563655 GO:000281 positive regulation of protein localization to cell surface 0.029563655 0.029563655 GO:0002281 positive regulation of protein localization to cell surface 0.029563655 0.029563655 GO:0002281 acute inflammatory response to antigenic stimulus 0.029563655 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.03390178 0.03390178 0.03390178 0.03390178 0.03390178 0.03390178 0.03390178 0.03390178 0.03390178 <td< td=""><td>GO:0045069</td><td>regulation of viral genome replication</td><td>0.0282/9444</td><td>0.028279444</td></td<>	GO:0045069	regulation of viral genome replication	0.0282/9444	0.028279444
GO:0019932 second-messenger-mediated signaling 0.028784641 0.028784671 GO:0002821 positive regulation of adaptive immune response 0.029228647 0.029228647 GO:0001141 regulation of reactive corgen species biosynthetic 0.029523656 0.029553665 GO:0012281 positive regulation of protein localization to cell surface 0.029563665 0.029563665 GO:0002281 macrophage activation involved in immune response 0.029563665 0.029563665 GO:0002281 macrophage activation involved in immune response 0.029563665 0.029563665 GO:0001766 positive regulation of Ipopolysaccharde- mediated signaling 0.029563665 0.029563665 GO:0001765 positive regulation of Ipopolysaccharde- mediated immunity 0.029821865 0.029821865 GO:0002708 positive regulation of pattern recognition receptor signaling 0.029821865 0.03900223 GO:0001790 regulation of pattern recognition receptor signaling 0.032901349 0.033901734 GO:0001703 regulation of Teell chemotatias 0.033901734 0.033390178 GO:0001703 regulation of Teell chemotatis 0.033901734 0.03390174	GO:0043124	negative regulation of I-kappaB kinase/NF-kappaB signaling	0.028279444	0.028279444
GO: 1903900 regulation of viral life cycle 0.029052059 0.029052059 GO:00031341 regulation of cell killing 0.029228647 0.029228647 GO:00010 positive regulation of protein localization to cell surface 0.029563665 0.02955665 GO:0002281 macrophage activation involved in immune response 0.029563665 0.02955665 GO:0002281 macrophage activation involved in immune response 0.029563665 0.02955665 GO:0001708 positive regulation of heuroinflammatory response 0.029563665 0.029563665 GO:0001708 positive regulation of lipopolysaccharide-mediated signaling 0.029563665 0.029563665 GO:0001708 positive regulation of lymphocyte mediated immunity 0.029851865 0.029851865 GO:0001709 regulation of DNA-binding transcription factor activity 0.031051343 0.030090223 GO:0001902 regulation of protein hesphorylation 0.03289144 0.0323901349 GO:0002708 positive regulation of granulocyte macrophage colony- 0.033390178 0.033390178 GO:0001302 regulation of protein hesphorylation 0.03390174 0.033390178 <t< td=""><td>GO:0019932</td><td>second-messenger-mediated signaling</td><td>0.028784641</td><td>0.028784641</td></t<>	GO:0019932	second-messenger-mediated signaling	0.028784641	0.028784641
GO.0002821 positive regulation of adaptive immune response 0.029228447 0.029228447 GO.200010 positive regulation of protein localization to cell surface 0.029563665 0.029563665 GO.0002281 macrophage activation involved in immune response 0.029563665 0.029563665 GO.0002281 macrophage activation involved in immune response 0.029563665 0.029563665 GO.0002481 acute inflammatory response to antigenic stimulus 0.029563665 0.029563665 GO.0002708 positive regulation of pupphcyts mediated immunity 0.029563665 0.029563665 GO.0002708 positive regulation of pymphcyte mediated immunity 0.029563665 0.029563665 GO.0002708 positive regulation of pymphcyte mediated immunity 0.029821865 0.029821865 GO.0002709 regulation of DNA-hinding transcription factor activity 0.031056313 0.030090223 GO.0002703 celluhar divident inorganic cation homeostasis 0.032901349 0.032901349 GO.0002703 regulation of TCHIN kinase activity 0.033396178 0.033396178 GO.001820 positive regulation of Texel hytosine phosphoylation 0.033396178 0.0333	GO:1903900	regulation of viral life cycle	0.029052059	0.029052059
GO (003) 1341 "regulation of cell killing" 0.02925(3665 0.02925(3665 GO (0002281) macrophage activation involved in immune response 0.0295(3665 0.0295(3665 GO (0002281) macrophage activation involved in immune response 0.0295(3665 0.0295(3665 GO (00150078) positive regulation of neuroinflammatory response 0.0295(3665 0.0295(3665 GO (00150078) positive regulation of lipopolysacharide-mediated signaling 0.0295(3665 0.0295(3665 GO (0001756) negative regulation of lipopolysacharide-mediated signaling 0.0295(3665 0.0298(3665 GO (0001766) regulation of JVmA-binding transcription factor activity 0.0298(3665 0.0298(3665 GO (0001790) regulation of potein phosphorylation 0.0328(2444 0.0328(238) GO (0001932) regulation of pattern recognition receptor signaling 0.0329(3149) 0.0329(3149) GO (0005730) regulation of Jr cell horsphorylation 0.03329(178) 0.03329(178) 0.03329(178) GO (0005730) regulation of Jr cell horsphorylation 0.03329(178) 0.03329(178) 0.03329(178) GO (0005730) regulation of Jr cell horsphorylatio	GO:0002821	positive regulation of adaptive immune response	0.029228647	0.029228647
GO-2000010 positive regulation of protein localization to cell surface 0.029563665 0.029563665 GO-1903428 positive regulation of reactive oxygen species biosynthetic 0.029563665 0.0295821865 0.029821865	GO:0031341	regulation of cell killing	0.029228647	0.029228647
GO.:0003128 positive regulation of practive oxygen species hissynthetic 0.022953365 0.022953365 GO.:0002281 macrophage activation involved in immune response 0.0229533665 0.029563665 GO.0002138 positive regulation of neuroinflammatory response 0.0229563665 0.029563665 GO.0002165 positive regulation of neuroinflammatory response 0.0229563665 0.029563665 GO.0001756 positive regulation of lympolyse mediated ignaling 0.0229563665 0.029563665 GO.0001756 positive regulation of lympolyse mediated immunity 0.0229821865 0.029821865 GO.0002708 positive regulation of pathocyte mediated immunity 0.0329013465 0.0239821865 GO.0002728 relluar divalent inorganic cation homeostasis 0.03390156343 0.0301056343 GO.000238 regulation of pathocyte mediated immunity 0.032901349 0.032901349 GO.0002370 regulation of pathocyte mediated immunity 0.032901349 0.032901349 GO.0002372 regulation of pathocyte mediated immunity 0.032901349 0.032901349 GO.0002372 regulation of Teclic hemotaxis 0.033390178 0.033390178	GO:200010	positive regulation of protein localization to cell surface	0.029563665	0.029563665
GO.1900:42.8 positive regulation of reactive oxygen species mosymente: 0.029563665 0.029563665 GO.0002231 acarceptage activation involved in immune response 0.029563665 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.032901349 0.032801344 0.03280234 0.032001349 0.032801344 0.03282144 0.03282144 0.03282144 0.032901349 0.032901349 0.032901349 0.032901349 0.032901349 0.032901349 0.032901349 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.0333961	CO:1002428	positive regulation of protein localization to cell surface	0.029505005	0.029505005
GO:0002281 macrobage activation involved in immune response 0.029563665 0.029563665 GO:0002438 acute inflammatory response to antigenic stimulus 0.029563665 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.032901349 0.03300156343 0.0300156343 0.0300156343 0.0300156343 0.0300156343 0.030156343 0.0330285144 0.0328823444 0.0328901349 0.032901349 0.032901349 0.032901349 0.032901349 0.032901349 0.033073105 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396	60:1903428	positive regulation of reactive oxygen species biosynthetic	0.029303003	0.029303003
GO:000243 macrophage activation involved in immune response 0.029563665 0.029563665 GO:0002438 acute inflammatory response 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029563665 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.029821865 0.0328921444 0.0328921444 0.0328921444 0.0328921444 0.0328921444 0.0328921444 0.0328921444 0.0328921444 0.0328921444 0.0328921444 0.0328921444 0.0328921444 0.032892144 0.032901349 0.032901349 0.032901349 0.032901349 0.032901349 0.032901349 0.033290178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 <t< td=""><td>GO 0002201</td><td>process</td><td>0.000560665</td><td>0.000540445</td></t<>	GO 0002201	process	0.000560665	0.000540445
GO:0002438 acute inflammatory response to antigenic stimulus 0.029563665 0.029563665 GO:0150078 positive regulation of fupopolysaccharide-mediated signaling 0.029563665 0.029563665 GO:005078 positive regulation of propolysaccharide-mediated signaling 0.029563665 0.029563665 GO:000278 positive regulation of propolyse mediated immunity 0.029863665 0.029863665 GO:0002456 T cell mediated immunity 0.029821865 0.029821865 GO:00072503 cellular divalent inorganic cation homeostasis 0.0300223 0.030185434 GO:0062208 positive regulation of pattern recognition receptor signaling 0.032801449 0.032801449 GO:0005720 regulation of potidyl-tyrosine phosphorylation 0.03390178 0.03390178 GO:0005725 regulation of furonidor from diverto motoxis 0.03390178 0.03390178 GO:0002233 neutrophil activation involved in immune response 0.03390178 0.03390178 GO:0002704 negative regulation of Potidyl-tyrosine phosphorylation 0.034557327 0.033496178 GO:0001720 negative regulation of fueloxyte macrophage colony- 0.03396178 0.03396178<	GO:0002281	macrophage activation involved in immune response	0.029563665	0.029563665
GO:0150078 positive regulation of lipopolysaccharide-mediated signaling 0.029563665 0.029563665 GO:0061756 leukocyte adhesion to vascular endothelial cell 0.029563665 0.029563665 GO:0001708 positive regulation of Jipophocyte mediated immunity 0.029851865 0.029821865 GO:0001708 regulation of DNA-binding transcription factor activity 0.03105434 0.03000223 GO:0001292 regulation of protein phosphorylation 0.032851444 0.032802146 GO:0001292 regulation of protein phosphorylation 0.03280149 0.032801149 GO:0001292 regulation of JUN kinase activity 0.032901349 0.033073105 0.033073105 GO:0001270 regulation of factor production 0.033396178 </td <td>GO:0002438</td> <td>acute inflammatory response to antigenic stimulus</td> <td>0.029563665</td> <td>0.029563665</td>	GO:0002438	acute inflammatory response to antigenic stimulus	0.029563665	0.029563665
GO:0031665 negative regulation of tipopolysaccharide-mediated signaling 0.029563665 0.029563665 GO:0061756 leukocyte adhesion to vascular endothelial cell 0.029563665 0.029821865 GO:0002456 T cell mediated immunity 0.029821865 0.029821865 GO:0002456 T cell mediated immunity 0.029821865 0.029821865 GO:00017503 cellular divalent inorganic catin ohmeostasis 0.030900223 0.030900223 GO:0001932 regulation of potteri procegnition receptor signaling 0.032901349 0.032201349 GO:0045306 regulation of JUN kinase activity 0.032901349 0.033396178 0.033396178 GO:0045306 regulation of JUN kinase activity 0.033396178 0.033396178 0.033396178 GO:0002283 neurophil activation involved in immune response 0.033396178 0.033396178 GO:00051403 stress-activated MAPK cascade 0.033496178 0.03345737 GO:00050732 negative regulation of petidyl-tyrosine phosphorylation 0.03445812 0.03445812 GO:0002140 negative regulation of henotoxis 0.033396178 0.033396178 GO:00051403 <td>GO:0150078</td> <td>positive regulation of neuroinflammatory response</td> <td>0.029563665</td> <td>0.029563665</td>	GO:0150078	positive regulation of neuroinflammatory response	0.029563665	0.029563665
GO:0061756 leakocyte adhesion to vascular endothelial cell 0.029563665 0.029851865 GO:0002708 positive regulation of lymphocyte mediated immunity 0.029821865 0.029821865 GO:0002706 T cell mediated immunity 0.029821865 0.029821865 GO:0002703 cellular divalet inorganic catito homeostasis 0.030900223 0.030900223 GO:0007203 cellular divalet inorganic catito homeostasis 0.032901344 0.0328021444 GO:0005208 positive regulation of pattern recognition receptor signaling 0.032901349 0.032901349 GO:0045306 regulation of JUN kinase activity 0.032901349 0.033396178 0.033396178 GO:0005275 positive regulation of granulocyte macrophage colony- 0.033396178 0.033396178 0.033396178 GO:0002283 neurophil activated MAPK cascade 0.03357327 0.03357327 0.03357327 GO:00050732 negative regulation of Purpidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO:0005072 negative regulation of petidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO:00051403 stres-activated proteidyl-tyrosine phosphorylation <td>GO:0031665</td> <td>negative regulation of lipopolysaccharide-mediated signaling nathway</td> <td>0.029563665</td> <td>0.029563665</td>	GO:0031665	negative regulation of lipopolysaccharide-mediated signaling nathway	0.029563665	0.029563665
GO:0002708 poistive regulation of lymphocyte mediated immunity 0.022821865 0.022821865 GO:0002456 T cell mediated immunity 0.022821865 0.023821865 GO:001703 cellular divalent inorganic cation homeostasis 0.030900223 0.030900223 GO:001932 regulation of Drotein phosphorylation 0.032852444 0.032852444 GO:001932 regulation of pottorie phosphorylation 0.033073105 0.033073105 GO:001920 positive regulation of pattern recognition receptor signaling 0.033073105 0.033073105 GO:001920 positive regulation of T cell chemotaxis 0.033396178 0.033396178 GO:0002283 neutrophil activation involved in immune response 0.033396178 0.033357327 GO:0002704 negative regulation of T cell chemotaxis 0.034455812 0.034455812 GO:0002704 negative regulation of Patk/+ryrosine phosphorylation 0.034455812 0.034455812 GO:0002704 negative regulation of T cell chemotaxis 0.03367084 0.03637084 GO:0002704 negative regulation of T cell proliferation 0.036370845 0.03637084 GO:000198 stress	GO:0061756	leukocyte adhesion to vascular endothelial cell	0 029563665	0.029563665
GO:0002785 positive regulation of ympiocyte mediated immunity 0.029821865 0.029821865 GO:0002456 T cell mediated immunity 0.039821865 0.039821865 0.030156343 0.030156343 0.030156343 0.030156343 0.030156343 0.030156343 0.0302802140 0.032852444 0.032852444 0.032852444 0.032852444 0.032852444 0.032852444 0.032852444 0.032852444 0.032852444 0.032852444 0.032852444 0.032852444 0.0328521485 GO:0062208 positive regulation of peptidy1-tyrosine phosphorylation 0.033396178 0.03357377 0.03357377 0.03357377 0.03357377 0.03357377 0.03357377 0.03357378 0.03637268 0.03637268 0.0363728784<	GO:0001750	neukocyte adhesion to vascular endothenar cen	0.029505005	0.029303003
G0:0002456 1 cell mediated immunity 0.029821865 0.029821865 G0:0051090 regulation of DNA-binding transcription factor activity 0.030156343 0.03000223 0.030900223 G0:001932 regulation of protein phosphorylation 0.032852444 0.032852444 0.03285244 G0:001932 regulation of pattern recognition receptor signaling 0.032901349 0.032901349 0.032901349 G0:0050730 regulation of petidyl-tyrosine phosphorylation 0.033073105 0.033396178 0.033396178 G0:0010820 positive regulation of T cell chemotaxis 0.033396178 0.033396178 0.033396178 G0:0002283 neutrophil activation involved in immune response 0.033396178 0.0333557327 G0:0002704 negative regulation of Petidyl-tyrosine phosphorylation 0.034455812 0.034455812 G0:000512 positive regulation of APA kinase activity 0.034455812 0.034455812 G0:0007204 negative regulation of Tacle horphorylation 0.03457826 0.03637084 G0:0001204 positive regulation of APA kinase activity 0.03445812 0.03637084 G0:0001206 positive regulation	60:0002708		0.029821803	0.029821803
G0:0051090 regulation of DNA-binding transcription factor activity 0.030900223 0.030900223 G0:001932 regulation of protein phosphorylation 0.032801344 0.032802144 G0:0062208 positive regulation of JUN kinase activity 0.032901349 0.032901349 G0:001932 regulation of peptidyl-tyrosine phosphorylation 0.03390178 0.03390178 G0:0010820 positive regulation of real chemotaxis 0.03396178 0.033396178 G0:0002228 positive regulation of real chemotaxis 0.033396178 0.033396178 G0:0002283 neutrophil activation involved in immune response 0.033396178 0.033396178 G0:0002704 negative regulation of neutocyte macrophage colony- 0.033357327 0.03357372 G0:00051403 stress-activated MAPK cascade 0.03357327 0.03357377 G0:0005732 negative regulation of APM kinase activity 0.034455812 0.034455812 G0:00041306 positive regulation of Cell proliferation 0.036370684 0.036370684 G0:00041306 positive regulation of Cell proliferation 0.036378784 0.036378784 G0:0031169 tregulation of	GO:0002456	T cell mediated immunity	0.029821865	0.029821865
G0:0072503 cellular divalent inorganic cation homeostasis 0.030900223 0.030900223 G0:0001932 regulation of protein phosphorylation 0.03282444 0.032825444 G0:00050730 regulation of JUN kinase activity 0.032901349 0.032901349 G0:00050730 regulation of peptid/1-yrosine phosphorylation 0.033073105 0.033396178 G0:000522 positive regulation of granulocyte macrophage colony- 0.033396178 0.033396178 G0:00052283 neutrophil activation involved in immune response 0.033557327 0.033557327 G0:00051403 stress-activated MAPK cascade 0.0354455812 0.034455812 0.034455812 G0:0005009 regulation of peptid/1-tyrosine phosphorylation 0.03345737 0.036370684 0.036370684 0.036370684 G0:0005009 regulation of nolecular function 0.036370684 0.036381229 0.036381229 0.036381229 0.036381229 0.036381229 0.036381229 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.03707573	GO:0051090	regulation of DNA-binding transcription factor activity	0.030156343	0.030156343
G0:0001932 regulation of protein phosphorylation 0.032852444 0.032852444 G0:0062208 positive regulation of pattern recognition receptor signaling 0.032901349 0.032901349 G0:00050730 regulation of JUN kinase activity 0.032901349 0.03307105 0.033073105 G0:00050730 regulation of T cell chemotaxis 0.033396178 0.0333957327 0.033557327 0.033557327 0.033557327 0.033557327 0.033557327 0.033557327 0.033557327 0.03354458512 0.034455812 0.0344455812 0.0344455812 0.0344455812 0.0344455812 0.0344455812 0.0344455812 0.034458812 0.035637884 0.036370684 0.036370684 0.036370684 0.036370684 0.036370684 0.0363707532 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 <td>GO:0072503</td> <td>cellular divalent inorganic cation homeostasis</td> <td>0.030900223</td> <td>0.030900223</td>	GO:0072503	cellular divalent inorganic cation homeostasis	0.030900223	0.030900223
GO:0062208 positive regulation of pattern recognition receptor signaling 0.032901349 0.032901349 GO:0043506 regulation of JUN kinase activity 0.032901349 0.032901349 0.032901349 GO:0050730 regulation of JUN kinase activity 0.033073105 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.033396178 0.0334557327 0.034455812 0.034455812 0.034455812 0.034455812 0.034455812 0.034455812 0.034455812 0.034455812 0.036370684 0.036370684 0.036370684 0.036370684 0.036370684 0.036370684 0.03637129 0.036381229 0.036381229 0.036381229 0.036381229 0.036371252 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.0370757	GO:0001932	regulation of protein phosphorylation	0.032852444	0.032852444
GO:0043506 regulation of JUN kinase activity 0.032901349 0.032901349 GO:0050730 regulation of peptidyl-tyrosine phosphorylation 0.033073105 0.033073105 GO:0010820 positive regulation of granulocyte macrophage colony- 0.033396178 0.033396178 GO:0002283 neutrophil activation involved in immune response 0.033396178 0.033396178 GO:0002704 negative regulation of peptidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO:0002704 negative regulation of Peptidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO:0002704 negative regulation of Teckocyte mediated immunity 0.034455812 0.034455812 GO:0002704 negative regulation of Teckocyte mediated immunity 0.034455812 0.034455812 GO:00043406 positive regulation of Tecll proliferation 0.036370684 0.036387844 GO:0004108 stress-activated protein kinase signaling cacade 0.03637884 0.036631881 GO:00034664 response to oxygen-containing compound 0.036631881 0.037075732 0.037075732 GO:0004116 positive regulation of Tecell proliforecell cell adhesion 0.037075732 <td>GO:0062208</td> <td>positive regulation of pattern recognition receptor signaling</td> <td>0.032901349</td> <td>0.032901349</td>	GO:0062208	positive regulation of pattern recognition receptor signaling	0.032901349	0.032901349
GO:0003506 regulation of JUN kinase activity 0.032971349 0.033073105 GO:000730 regulation of T cell chemotaxis 0.033396178 0.033396178 GO:0002283 positive regulation of T cell chemotaxis 0.033396178 0.033396178 GO:0002283 neutrophil activation involved in immune response 0.033557327 0.033557327 GO:00021403 stress-activated MAPK cascade 0.033557327 0.033455812 0.034455812 GO:00051403 stress-activated MAPK cascade 0.033567327 0.0335443875 0.035443875 GO:0005406 regulation of peptidyl-tyrosine phosphorylation 0.036381229 0.036381229 0.036381229 GO:0005109 regulation of T cell proliferation 0.036381229 0.03638129 0.036381881 GO:0004130 negative regulation of Activating compound 0.03637884 0.037075732 0.037075732 0.037075732 GO:00034694 response to prostaglandin 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732	GO 0012507	patnway	0.022001240	0.00001040
GO:0050730 regulation of peptidyl-tyrosine phosphorylation 0.033073105 0.03309718 GO:001820 positive regulation of granulocyte macrophage colony- 0.033396178 0.033396178 GO:0002283 neutrophil activation involved in immune response 0.033396178 0.033396178 GO:0002183 neutrophil activation involved in immune response 0.033396178 0.033396178 GO:0002704 negative regulation of petidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO:0002704 negative regulation of molecular function 0.035670684 0.036370684 GO:0004306 positive regulation of Toell proliferation 0.036370684 0.036370844 GO:00042130 negative regulation of Toell proliferation 0.03637884 0.03637884 GO:00031098 stress-activated protein kinase signaling cascade 0.03631881 0.03637075732 GO:00034116 positive regulation of T cell proliferation 0.037075732 0.037075732 GO:0002141 locimotion GO:37075732 0.037075732 0.037075732 GO:0003661 regulation of T cell chemotaxis 0.037075732 0.037075732 GO:0003	GO:0043506	regulation of JUN kinase activity	0.032901349	0.032901349
GO:0010820 positive regulation of T cell chemotaxis 0.033396178 0.033396178 GO:002283 neutrophil activation involved in immune response 0.033396178 0.033396178 GO:0002104 neutrophil activation involved in immune response 0.033357327 GO:0002104 GO:0002704 negative regulation of petidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO:00050732 negative regulation of petidyl-tyrosine phosphorylation 0.036381229 0.036381229 GO:00043406 positive regulation of MAP kinase activity 0.036381229 0.036381229 GO:001108 stress-activated protein kinase signaling cascade 0.03638184 0.03638184 GO:003409 regulation of T cell proliferation 0.03638184 0.03638184 GO:0034094 response to oxygen-containing compound 0.037075732 0.037075732 GO:0034694 response to oxygen-containing pathway 0.037075732 0.037075732 0.037075732 GO:003461 regulation of T cell chemotaxis 0.037075732 0.037075732 0.037075732 0.037075732 0.037075732 GO:003461 regulation of pattern recognition receptor signaling pa	GO:0050730	regulation of peptidyl-tyrosine phosphorylation	0.033073105	0.033073105
GO:0032725 positive regulation of granulocyte macrophage colony- stimulating factor production 0.033396178 0.033396178 GO:0002283 neutrophil activation involved in immune response 0.0333957327 0.0333575327 GO:0002704 negative regulation of petidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO:0002704 negative regulation of Meukoyte maciny and the petidyl-tyrosine phosphorylation 0.036341587 0.03334455812 GO:0005009 regulation of Mark kinase activity 0.036387084 0.0363870684 GO:00042130 negative regulation of T cell proliferation 0.03638181 0.036687884 GO:0031098 stress-activated protein kinase signaling cascade 0.037075732 0.037075732 GO:0031098 stress-activated protein kinase signaling campound 0.036681881 0.036681881 GO:0034694 response to prostaglandin 0.037075732 0.037075732 0.037075732 GO:0034116 positive regulation of theorotypic cell-cell adhesion 0.037075732 0.037075732 0.037075732 GO:0036115 cell-cel adhesion mediated by integrin 0.037075732 0.037075732 0.037075732 0.037075732 0.03707573	GO:0010820	positive regulation of T cell chemotaxis	0.033396178	0.033396178
GO.0002283 neutrophil activation involved in immune response 0.033396178 0.033396178 GO.0002704 negative regulation of peptidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO.0002704 negative regulation of peptidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO.0003704 negative regulation of peptidyl-tyrosine phosphorylation 0.036470684 0.036370684 GO.00042130 negative regulation of T cell proliferation 0.036387864 0.036387884 GO:0031098 stress-activated protein kinase signaling cascade 0.036387884 0.036631881 GO:0034694 response to prostaglandin 0.037075732 0.037075732 0.037075732 GO:0034694 response to prostaglandin 0.037075732 0.037075732 0.037075732 GO:0034116 positive regulation of thetrotypic cell-cell adhesion 0.037075732 0.037075732 GO:0036311 tol-like receptor 2 signaling pathway 0.037075732 0.037075732 GO:0032647 regulation of pattern recognition receptor signaling pathway 0.037075732 0.037075732 GO:0032645 regulation of granulocyte macrophage colony-stimulating factor production<	GO:0032725	positive regulation of granulocyte macrophage colony- stimulating factor production	0.033396178	0.033396178
GO:00021403 arters-activated MAPK cascade 0.033557327 0.033557327 GO:0002704 negative regulation of leukocyte mediated immunity 0.034455812 0.034455812 GO:00051403 stress-activated MAPK cascade 0.033557327 0.033557327 GO:000572 negative regulation of MAP kinase activity 0.034455812 0.034455812 GO:0043406 positive regulation of T Cell proliferation 0.036370684 0.036387289 GO:0042130 negative regulation of T cell proliferation 0.036387884 0.036387884 GO:0031098 stress-activated protein kinase signaling cascade 0.037075732 0.037075732 GO:0034694 response to prostaglandin 0.037075732 0.037075732 0.037075732 GO:0034116 positive regulation of heterotypic cell-cell adhesion 0.037075732 0.037075732 0.037075732 GO:0034134 tull-like receptor 2 signaling pathway 0.037075732 0.037075732 0.037075732 GO:0032645 regulation of patern recognition receptor signaling pathway 0.038791444 0.038791444 GO:0005207 regulation of granulocyte macrophage colony-stimulating 0.041185212	GO:0002283	neutrophil activation involved in immune response	0.033306178	0.033306178
GO:0001701 Intersectivated 0.003337321 0.003337321 GO:0001703 negative regulation of peptidyl-tyrosine phosphorylation 0.034455812 0.034455812 GO:00500732 negative regulation of Peptidyl-tyrosine phosphorylation 0.035443875 0.035443875 GO:0065009 regulation of MOR kinase activity 0.036370684 0.036370684 GO:0042130 negative regulation of T cell proliferation 0.036381229 0.03638184 GO:0031098 stress-activated protein kinase signaling cascade 0.036631881 0.036631881 GO:0034694 response to prostaglandin 0.037075732 0.037075732 0.037075732 GO:003116 positive regulation of T cell chemotaxis 0.037075732 0.037075732 0.037075732 GO:003611 cell-cell adhesion mediated by integrin 0.037075732 0.037075732 0.037075732 GO:0040011 locomotion 0.037075732 0.037075732 0.037075732 0.037075732 GO:0042207 regulation of granulocyte macrophage colony-stimulating 0.041185212 0.041185212 GO:0002205 lymphocyte activation involved in immune response 0.039305427	CO:0051402	atraca activated MADE accede	0.0333390178	0.033590178
GO:0002/04 negative regulation of leukocyte mediated immunity 0.034455812 0.034455812 GO:0050732 negative regulation of peptid/1-tyrosine phosphorylation 0.034455812 0.034455812 GO:005009 regulation of molecular function 0.036370684 0.03638129 GO:0042130 negative regulation of T cell proliferation 0.03638129 0.03638129 GO:0031098 stress-activated protein kinase signaling cascade 0.036631881 0.036631881 GO:0034694 response to oxygen-containing compound 0.037075732 0.037075732 GO:0034116 positive regulation of heterotypic cell-cell adhesion 0.037075732 0.037075732 GO:0034114 toll-like receptor 2 signaling pathway 0.037075732 0.037075732 0.037075732 GO:003631 cell-cell adhesion mediated by integrin 0.037075732 0.037075732 0.037075732 GO:002207 regulation of pattern recognition receptor signaling pathway 0.038791444 0.038305427 0.03305427 GO:0032645 regulation of NF-kappaB transcription factor activity 0.041185212 0.041185212 GO:0061154 endothelial tube morphogenesis 0.0	GO:0051403	stress-activated MAPK cascade	0.033557527	0.033557527
GO:0050732negative regulation of peptidyl-tyrosine phosphorylation0.0344558120.035443875GO:0043406positive regulation of MAP kinase activity0.0354438750.035443875GO:0042130negative regulation of T cell proliferation0.0363818290.036387884GO:0031098stress-activated protein kinase signaling cascade0.0363878840.036387884GO:0034694response to prostaglandin0.0370757320.037075732GO:0034694response to prostaglandin0.0370757320.037075732GO:0034116positive regulation of T cell chemotaxis0.0370757320.037075732GO:0034134toll-like receptor 2 signaling pathway0.0370757320.037075732GO:003631cell-cell adhesion mediated by integrin0.0370757320.037075732GO:0040011locomotion0.0370757320.037075732GO:0032645regulation of pattern recognition receptor signaling pathway0.0387914440.038791444GO:00622077regulation of graturn recognition receptor signaling pathway0.0387915210.041185212GO:0032645regulation of moleculer macrophage colony-stimulating0.0411852120.041185212GO:0051092positive regulation of NF-kappaB transcription factor activity0.0411852120.041185212GO:0032604granulocyte macrophage colony-stimulating factor production0.0411852120.041185212GO:0032604granulocyte macrophage colony-stimulating factor activity0.0411852120.041185212GO:00035766negative regulation of T cell anergy0.04227481 <td>GO:0002704</td> <td>negative regulation of leukocyte mediated immunity</td> <td>0.034455812</td> <td>0.034455812</td>	GO:0002704	negative regulation of leukocyte mediated immunity	0.034455812	0.034455812
GO:0043406 positive regulation of MAP kinase activity 0.035443875 0.0355443875 GO:0065009 regulation of molecular function 0.036370684 0.036370684 GO:0021098 stress-activated protein kinase signaling cascade 0.036387884 0.036631881 GO:0031098 stress-activated protein kinase signaling compound 0.036631881 0.036631881 GO:0034694 response to prostaglandin 0.037075732 0.037075732 GO:0034116 positive regulation of heterotypic cell-cell adhesion 0.037075732 0.037075732 GO:0034134 toll-like receptor 2 signaling pathway 0.037075732 0.037075732 GO:003631 cell-cell adhesion mediated by integrin 0.037075732 0.037075732 GO:004011 locomotion 0.037075732 0.037075732 0.037075732 GO:002285 lymphocyte activation involved in immune response 0.038905427 0.039305427 GO:002264 granulocyte macrophage colony-stimulating factor production 0.041185212 0.041185212 GO:002264 granulocyte macrophage colony-stimulating factor production 0.041185212 0.041185212 GO:002264	GO:0050732	negative regulation of peptidyl-tyrosine phosphorylation	0.034455812	0.034455812
GO:0065009 regulation of molecular function 0.036370684 0.036370684 GO:0042130 negative regulation of T cell proliferation 0.036381229 0.036381229 GO:0031098 stress-activated protein kinase signaling cascade 0.036387884 0.036387884 GO:0034694 response to prostaglandin 0.037075732 0.037075732 GO:0034116 positive regulation of T cell chemotaxis 0.037075732 0.037075732 GO:0034134 toll-like receptor 2 signaling pathway 0.037075732 0.037075732 GO:0040011 locomotion 0.037075732 0.037075732 GO:002285 lymphocyte activation involved in immune response 0.039305427 0.039305427 GO:002285 lymphocyte activation involved in immune response 0.041185212 0.041185212 GO:0051154 endothelial tube morphogenesis 0.041185212 0.041185212 GO:00932644 granulocyte macrophage colony-stimulating factor production 0.041185212 0.041185212 GO:0051092 positive regulation of T cell anerayo 0.041185212 0.041185212 0.041185212 GO:0003159 motorphogenesis of an endothel	GO:0043406	positive regulation of MAP kinase activity	0.035443875	0.035443875
GO:0042130 negative regulation of T cell proliferation 0.036381229 0.036381229 GO:0031098 stress-activated protein kinase signaling cascade 0.036587884 0.036631881 GO:1001701 cellular response to oxygen-containing compound 0.036631881 0.036631881 GO:0034694 response to prostaglandin 0.037075732 0.037075732 GO:0034116 positive regulation of heterotypic cell-cell adhesion 0.037075732 0.037075732 GO:0034134 toll-like receptor 2 signaling pathway 0.037075732 0.037075732 GO:0033631 cell-cell adhesion mediated by integrin 0.037075732 0.037075732 GO:0040011 locomotion 0.037075732 0.037075732 GO:0002285 lymphocyte activation involved in immune response 0.038791444 0.038791444 GO:0032604 granulocyte macrophage colony-stimulating 0.041185212 0.041185212 GO:0032604 granulocyte macrophage colony-stimulating factor production 0.041185212 0.041185212 GO:0002285 cation transmembrane transport 0.041185212 0.041185212 0.041185212 GO:00023604 granut	GO:0065009	regulation of molecular function	0.036370684	0.036370684
$ \begin{array}{ccccc} GO:0031098 & stress-activated protein kinase signaling cascade & 0.036387884 & 0.036387884 \\ GO:1901701 & cellular response to oxygen-containing compound & 0.036631881 & 0.036631881 \\ GO:0034694 & response to prostaglandin & 0.037075732 & 0.037075732 \\ GO:0034116 & positive regulation of heterotypic cell-cell adhesion & 0.037075732 & 0.037075732 \\ GO:0034114 & toll-like receptor 2 signaling pathway & 0.037075732 & 0.037075732 \\ GO:0036361 & cell-cell adhesion mediated by integrin & 0.037075732 & 0.037075732 \\ GO:0033631 & cell-cell adhesion mediated by integrin & 0.037075732 & 0.037075732 \\ GO:0040011 & locomotion & 0.037075732 & 0.037075732 \\ GO:0062207 & regulation of pattern recognition receptor signaling pathway & 0.038791444 \\ GO:0002285 & lymphocyte activation involved in immune response & 0.039305427 & 0.03905427 \\ GO:0032645 & regulation of pattern recognition receptor signaling 0.041185212 & 0.041185212 \\ GO:0032645 & regulation of pattern acrophage colony-stimulating & 0.041185212 & 0.041185212 \\ GO:0032604 & granulocyte macrophage colony-stimulating & 0.041185212 & 0.041185212 \\ GO:003109 & positive regulation of NF-kappaB transcription factor activity & 0.041185212 & 0.041185212 \\ GO:0003159 & and panyloid-beta clearance & 0.041185212 & 0.041185212 \\ GO:0003159 & morphogenesis of an endothelium & 0.041185212 & 0.041185212 \\ GO:0003159 & morphogenesis of an endothelium & 0.041185212 & 0.041185212 \\ GO:0003159 & morphogenesis of an endothelium & 0.041185212 & 0.041185212 \\ GO:0003159 & morphogenesis of an endothelium & 0.04227481 & 0.04227481 \\ GO:0002669 & positive regulation of cell activation & 0.04227481 & 0.04227481 \\ GO:0002669 & positive regulation of cell activation & 0.04227481 & 0.04227481 \\ GO:0002669 & positive regulation of blood microparticle formation & 0.04227481 & 0.04227481 \\ GO:0002669 & positive regulation of cell activation & 0.04227481 & 0.04227481 \\ GO:0002669 & positive regulation of interleukin-33 production & 0.04227481 & 0.04227481 \\ GO:00035782 & mature natural $	GO:0042130	negative regulation of T cell proliferation	0.036381229	0.036381229
	GO·0031098	stress-activated protein kinase signaling cascade	0.036387884	0.036387884
	GO:1901701	cellular response to oxygen-containing compound	0.036631881	0.036631881
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GO:0034604	response to prostaglandin	0.027075722	0.030031001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00.0034094		0.037075732	0.037075732
G0:0010819regulation of 1 cell chemotaxis 0.037075732 0.037075732 G0:0033631cell-cell adhesion mediated by integrin 0.037075732 0.037075732 G0:0040011locomotion 0.037075732 0.037075732 G0:0062207regulation of pattern recognition receptor signaling pathway 0.038791444 0.038791444 G0:002285lymphocyte activation involved in immune response 0.03905427 0.03905427 G0:0032645regulation of granulocyte macrophage colony-stimulating 0.041185212 0.041185212 G0:0032604granulocyte macrophage colony-stimulating factor production 0.041185212 0.041185212 G0:0032604granulocyte macrophage colony-stimulating factor production 0.041185212 0.041185212 G0:0051092positive regulation of NF-kappaB transcription factor activity 0.041185212 0.041185212 G0:0051092positive regulation of cell activation 0.04227481 0.04227481 G0:0003159morphogenesis of an endothelium 0.04227481 0.04227481 G0:0002669positive regulation of T cell anergy 0.04227481 0.04227481 G0:00035746granzyme A production 0.04227481 0.04227481 G0:0002659positive regulation of blood microparticle formation 0.04227481 0.04227481 G0:0002669positive regulation of blood microparticle formation 0.04227481 0.04227481 G0:00072682eosinophil extravasation 0.04227481 0.04227481 G0:0075782regulation of interleukin-33 production $0.$	GO:0034116	positive regulation of heterotypic cell-cell adhesion	0.03/0/5/32	0.03/0/5/32
G0:0034134toll-like receptor 2 signaling pathway 0.037075732 0.037075732 G0:0033631cell-cell adhesion mediated by integrin 0.037075732 0.037075732 G0:0040011locomotion 0.037075732 0.037075732 G0:0062207regulation of pattern recognition receptor signaling pathway 0.038791444 0.038791444 G0:002285lymphocyte activation involved in immune response 0.039305427 0.039305427 G0:0032645regulation of granulocyte macrophage colony-stimulating 0.041185212 0.041185212 G0:0061154endothelial tube morphogenesis 0.041185212 0.041185212 G0:0051092positive regulation of NF-kappaB transcription factor activity 0.041185212 0.041185212 G0:0098655cation transmembrane transport 0.041185212 0.041185212 G0:0003159morphogenesis of an endothelium 0.041185212 0.041185212 G0:00035746granzyme A production 0.04227481 0.04227481 G0:0002369positive regulation of T cell anergy 0.04227481 0.04227481 G0:0002357natural killer cell differentiation involved in immune response 0.04227481 0.04227481 G0:0002358negative regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 G0:0045584negative regulation of interleukin-33 production 0.04227481 0.04227481 G0:0045584negative regulation of interleukin-33 production 0.04227481 0.04227481 G0:0072682eosinophil extravasation 0.04227481 <	GO:0010819	regulation of T cell chemotaxis	0.03/0/5/32	0.03/0/5/32
GO:0033631 cell-cell adhesion mediated by integrin 0.037075732 0.037075732 GO:0040011 locomotion 0.037075732 0.037075732 0.037075732 GO:0062207 regulation of pattern recognition receptor signaling pathway 0.038791444 0.038791444 GO:0002285 lymphocyte activation involved in immune response 0.039305427 0.033905427 GO:0061154 endothelial tube morphogenesis 0.041185212 0.041185212 GO:0032604 granulocyte macrophage colony-stimulating factor production 0.041185212 0.041185212 GO:0051092 positive regulation of NF-kappaB transcription factor activity 0.041185212 0.041185212 GO:0098655 cation transmembrane transport 0.041185212 0.041185212 GO:0050866 negative regulation of cell activation 0.041185212 0.041185212 GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 GO:000234 positive regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 GO:000235 natural killer cell differentiation 0.04227481 0.04227481	GO:0034134	toll-like receptor 2 signaling pathway	0.037075732	0.037075732
$ \begin{array}{cccccc} GO:0040011 & locomotion & 0.037075732 & 0.037075732 \\ GO:0062207 & regulation of pattern recognition receptor signaling pathway & 0.038791444 & 0.038791444 \\ GO:0002285 & lymphocyte activation involved in immune response & 0.03905427 & 0.03905427 \\ GO:0032645 & regulation of granulocyte macrophage colony-stimulating & 0.041185212 & 0.041185212 \\ GO:0061154 & endothelial tube morphogenesis & 0.041185212 & 0.041185212 \\ GO:0051092 & positive regulation of NF-kappaB transcription factor activity & 0.041185212 & 0.041185212 \\ GO:0098655 & cation transmembrane transport & 0.041185212 & 0.041185212 \\ GO:0003159 & morphogenesis of an endothelium & 0.041185212 & 0.041185212 \\ GO:00035746 & granzyme A production & 0.041185212 & 0.041185212 \\ GO:0002669 & positive regulation of Cell activation & 0.041185212 & 0.041185212 \\ GO:0002669 & positive regulation of Cell anergy & 0.04227481 & 0.04227481 \\ GO:0002325 & natural killer cell differentiation involved in immune response & 0.04227481 & 0.04227481 \\ GO:0002325 & natural killer cell differentiation & 0.04227481 & 0.04227481 \\ GO:0002325 & natural killer cell differentiation & 0.04227481 & 0.04227481 \\ GO:0002325 & natural killer cell differentiation & 0.04227481 & 0.04227481 \\ GO:000335784 & negative regulation of blood microparticle formation & 0.04227481 & 0.04227481 \\ GO:0005782 & eosinophil extravasation & 0.04227481 & 0.04227481 \\ GO:0072682 & eosinophil extravasation & 0.04227481 & 0.04227481 \\ GO:0072682 & eosinophil extravasation & 0.04227481 & 0.04227481 \\ GO:00035782 & mature natural killer cell chemotaxis & 0.04227481 & 0.04227481 \\ GO:00035784 & lymphoid lineage cell migration & 0.04227481 & 0.04227481 \\ GO:0072682 & eosinophil extravasation & 0.04227481 & 0.04227481 \\ GO:0072682 & eosinophil extravasation & 0.04227481 & 0.04227481 \\ GO:0072682 & eosinophil extravasation & 0.04227481 & 0.04227481 \\ GO:0072682 & eosinophil extravasation & 0.04227481 & 0.04227481 \\ GO:0072682 & eosinophil extravasation & 0.04227481 & 0.04227481 \\ GO:0072682 & eosin$	GO:0033631	cell-cell adhesion mediated by integrin	0.037075732	0.037075732
GO:0062207regulation of pattern recognition receptor signaling pathway0.0387914440.038791444GO:0002285lymphocyte activation involved in immune response0.0393054270.039305427GO:0032645regulation of granulocyte macrophage colony-stimulating factor production0.0411852120.041185212GO:0061154endothelial tube morphogenesis0.0411852120.0411852120.041185212GO:0032604granulocyte macrophage colony-stimulating factor production0.0411852120.041185212GO:0051092positive regulation of NF-kappaB transcription factor activity0.0411852120.041185212GO:0098655cation transmembrane transport0.0411852120.041185212GO:00050866negative regulation of cell activation0.0411852120.041185212GO:0002669positive regulation of T cell anergy0.042274810.04227481GO:0002325natural killer cell differentiation involved in immune response0.042274810.04227481GO:0045584negative regulation of cytotoxic T cell differentiation0.042274810.04227481GO:0072682eosinophil extravasation0.042274810.04227481GO:0072682eosinophil extravasation0.042274810.04227481GO:0035782mature natural killer cell chemotaxis0.042274810.04227481GO:0035746grazyme A production0.042274810.04227481GO:000334positive regulation of tototoxic T cell differentiation0.042274810.04227481GO:007584negative regulation of interleukin-33 production	GO:0040011	locomotion	0.037075732	0.037075732
GO:0002285Jymphocyte activation involved in immune response0.0393054270.039305427GO:0032645regulation of granulocyte macrophage colony-stimulating factor production0.0411852120.041185212GO:003154endothelial tube morphogenesis0.0411852120.0411852120.041185212GO:0032604granulocyte macrophage colony-stimulating factor production0.0411852120.041185212GO:0051092positive regulation of NF-kappaB transcription factor activity0.0411852120.041185212GO:0098655cation transmembrane transport0.0411852120.041185212GO:0003159morphogenesis of an endothelium0.0411852120.041185212GO:0005866negative regulation of Cell activation0.042274810.04227481GO:0002669positive regulation of T cell anergy0.042274810.04227481GO:0002325natural killer cell differentiation involved in immune response0.042274810.04227481GO:0045584negative regulation of cytotoxic T cell differentiation0.042274810.04227481GO:0072682eosinophil extravasation0.042274810.04227481GO:0035782mature natural killer cell chemotaxis0.042274810.04227481GO:00324positive regulation of cytotoxic T cell differentiation0.042274810.04227481GO:0045584negative regulation of cytotoxic T cell differentiation0.042274810.04227481GO:0035782mature natural killer cell chemotaxis0.042274810.04227481GO:0035782mature natural killer cell chemotaxis	GO:0062207	regulation of pattern recognition receptor signaling pathway	0.038791444	0.038791444
GO:0032645regulation of granulocyte macrophage colony-stimulating factor production0.0411852120.041185212GO:0032604granulocyte macrophage colony-stimulating factor production0.0411852120.041185212GO:0051092positive regulation of NF-kappaB transcription factor activity0.0411852120.041185212GO:0008655cation transmembrane transport0.0411852120.041185212GO:0003159morphogenesis of an endothelium0.0411852120.041185212GO:00050866negative regulation of cell activation0.0411852120.041185212GO:0002669positive regulation of T cell anergy0.042274810.04227481GO:000334positive regulation of blood microparticle formation0.042274810.04227481GO:0045844negative regulation of trale anisy production0.042274810.04227481GO:0045784negative regulation of plood microparticle formation0.042274810.04227481GO:005786negative regulation of blood microparticle formation0.042274810.04227481GO:000334positive regulation of interleukin-33 production0.042274810.04227481GO:0072682eosinophil extravasation0.042274810.04227481GO:0035782mature natural killer cell chemotaxis0.042274810.04227481GO:0003574granzyme A production0.042274810.04227481GO:0072682eosinophil extravasation0.042274810.04227481GO:0075784negative regulation of interleukin-33 production0.042274810.04227481GO:007578	GO:0002285	lymphocyte activation involved in immune response	0.039305427	0.039305427
GO:0061154endothelial tube morphogenesis0.0411852120.041185212GO:0032604granulocyte macrophage colony-stimulating factor production0.0411852120.041185212GO:0051092positive regulation of NF-kappaB transcription factor activity0.0411852120.041185212GO:1900221regulation of amyloid-beta clearance0.0411852120.041185212GO:0098655cation transmembrane transport0.0411852120.041185212GO:0003159morphogenesis of an endothelium0.0411852120.041185212GO:0050866negative regulation of cell activation0.042274810.04227481GO:0002669positive regulation of T cell anergy0.042274810.04227481GO:0002325natural killer cell differentiation involved in immune response0.042274810.04227481GO:0045584negative regulation of cytotoxic T cell differentiation0.042274810.04227481GO:0072682eosinophil extravasation0.042274810.04227481GO:0072682eosinophil extravasation0.042274810.04227481GO:000332regulation of blood microparticle formation0.042274810.04227481GO:0072682eosinophil extravasation0.042274810.04227481GO:000332regulation of blood microparticle formation0.042274810.04227481GO:00035784lymphoid lineage cell migration0.042274810.04227481GO:0072682eosinophil extravasation0.042274810.04227481GO:000332regulation of blood microparticle formation0.042274810.	GO:0032645	regulation of granulocyte macrophage colony-stimulating	0.041185212	0.041185212
GO:0001154 endothelial tube morphogenesis 0.041185212 0.041185212 GO:0032604 granulocyte macrophage colony-stimulating factor production 0.041185212 0.04227481 0.04227481 0.04227481 0.04227481 0.04227481 0.04227481 0.04227481 0.04227481 0.04227481 0.04227481 0.0422	00 00 (117)	ractor production	0.041105515	0.04110-212
GO:0032604 granulocyte macrophage colony-stimulating factor production 0.041185212 0.041185212 GO:0051092 positive regulation of NF-kappaB transcription factor activity 0.041185212 0.041185212 0.041185212 GO:1900221 regulation of amyloid-beta clearance 0.041185212 0.041185212 0.041185212 0.041185212 GO:0098655 cation transmembrane transport 0.041185212 0.041185212 0.041185212 GO:0003159 morphogenesis of an endothelium 0.041185212 0.041185212 0.041185212 GO:00050866 negative regulation of cell activation 0.041185212 0.041185212 0.041185212 GO:0002669 positive regulation of T cell anergy 0.04227481 0.04227481 0.04227481 GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 0.04227481 GO:0045584 negative regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis <	GO:0061154	endothelial tube morphogenesis	0.041185212	0.041185212
GO:0051092 positive regulation of NF-kappaB transcription factor activity 0.041185212 0.041185212 GO:1900221 regulation of amyloid-beta clearance 0.041185212 0.041185212 0.041185212 GO:0098655 cation transmembrane transport 0.041185212 0.041185212 0.041185212 GO:0003159 morphogenesis of an endothelium 0.041185212 0.041185212 0.041185212 GO:0050866 negative regulation of cell activation 0.04217481 0.04227481 0.04227481 GO:0002669 positive regulation of T cell anergy 0.04227481 0.04227481 0.04227481 GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 GO:0002334 positive regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 GO:0150129 positive regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:00035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.0	GO:0032604	granulocyte macrophage colony-stimulating factor production	0.041185212	0.041185212
GO:1900221 regulation of amyloid-beta clearance 0.041185212 0.041185212 GO:0098655 cation transmembrane transport 0.041185212 0.041185212 0.041185212 GO:0003159 morphogenesis of an endothelium 0.041185212 0.041185212 0.041185212 GO:0050866 negative regulation of cell activation 0.04227481 0.04227481 0.04227481 GO:0002669 positive regulation of T cell anergy 0.04227481 0.04227481 0.04227481 GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 GO:000334 positive regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 GO:0150129 positive regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:00035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:00035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481 <td>GO:0051092</td> <td>positive regulation of NF-kappaB transcription factor activity</td> <td>0.041185212</td> <td>0.041185212</td>	GO:0051092	positive regulation of NF-kappaB transcription factor activity	0.041185212	0.041185212
GO:0098655 cation transmembrane transport 0.041185212 0.041185212 GO:0003159 morphogenesis of an endothelium 0.041185212 0.041185212 GO:0050866 negative regulation of cell activation 0.041185212 0.041185212 GO:0035746 granzyme A production 0.04227481 0.04227481 GO:0002669 positive regulation of T cell anergy 0.04227481 0.04227481 GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 GO:000334 positive regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 GO:0045584 negative regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.042274	GO:1900221	regulation of amyloid-beta clearance	0.041185212	0.041185212
GO:0003159 morphogenesis of an endothelium 0.041185212 0.041185212 GO:0003159 morphogenesis of an endothelium 0.041185212 0.041185212 GO:0050866 negative regulation of cell activation 0.041185212 0.041185212 GO:00035746 granzyme A production 0.04227481 0.04227481 GO:0002669 positive regulation of T cell anergy 0.04227481 0.04227481 GO:000334 positive regulation of blood microparticle formation 0.04227481 0.04227481 GO:0045584 negative regulation of cytotxic T cell differentiation 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 0.04227481 GO:0035782 matura killer cell chemotaxis 0.04227481 0.04227481 0.04227481 GO:0035782 regulation of blood microparticle formation 0.04227481 0.04227481 GO:00035782 regulation of blood microparticle formation 0.04227481 0.04227481 GO:00035784 lymphoid lineage cell migration 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration <	GO·0098655	cation transmembrane transport	0.041185212	0.041185212
GO:00050866 negative regulation of cell activation 0.041185212 0.041185212 GO:0050866 negative regulation of cell activation 0.0427481 0.04227481 GO:0002669 positive regulation of T cell anergy 0.04227481 0.04227481 GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 GO:0002334 positive regulation of tobod microparticle formation 0.04227481 0.04227481 GO:0045584 negative regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:000335782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:2000332 regulation of interleukin-33 production 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:20097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:0003159	morphogenesis of an endothelium	0.041185212	0.041185212
GO:0003600 Inegative regulation of cell activation 0.041183212 0.041183212 GO:0035746 granzyme A production 0.04227481 0.04227481 0.04227481 GO:0002669 positive regulation of T cell anergy 0.04227481 0.04227481 0.04227481 GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 0.04227481 GO:000334 positive regulation of blood microparticle formation 0.04227481 0.04227481 0.04227481 GO:0045584 negative regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:00035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:20097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:0005155	negative regulation of cell activation	0.041185212	0.041185212
GO:0055740 grazyme A production 0.04227481 0.04227481 GO:0002669 positive regulation of T cell anergy 0.04227481 0.04227481 GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 GO:000334 positive regulation of blood microparticle formation 0.04227481 0.04227481 GO:0045584 negative regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 GO:0150129 positive regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	00.0030800		0.041103212	0.041163212
GO:0002669 positive regulation of T cell anergy 0.04227481 0.04227481 GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 GO:2000334 positive regulation of blood microparticle formation 0.04227481 0.04227481 GO:0045584 negative regulation of cytotxic T cell differentiation 0.04227481 0.04227481 GO:00550129 positive regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:0035746	granzyme A production	0.0422/481	0.0422/481
GO:0002325 natural killer cell differentiation involved in immune response 0.04227481 0.04227481 GO:2000334 positive regulation of blood microparticle formation 0.04227481 0.04227481 GO:0045584 negative regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 GO:0150129 positive regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:0002669	positive regulation of T cell anergy	0.04227481	0.04227481
GO:2000334 positive regulation of blood microparticle formation 0.04227481 0.04227481 GO:0045584 negative regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 GO:0150129 positive regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:0002325	natural killer cell differentiation involved in immune response	0.04227481	0.04227481
GO:0045584 negative regulation of cytotoxic T cell differentiation 0.04227481 0.04227481 GO:0150129 positive regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:2000334	positive regulation of blood microparticle formation	0.04227481	0.04227481
GO:0150129 positive regulation of interleukin-33 production 0.04227481 0.04227481 GO:0072682 eosinophil extravasation 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:0045584	negative regulation of cytotoxic T cell differentiation	0.04227481	0.04227481
GO:0072682 eosimphil extravasation 0.04227481 0.04227481 GO:0072682 eosimphil extravasation 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:0150129	positive regulation of interleukin-33 production	0.04227481	0.04227481
GO:0072602 cosmoplin extravasation 0.04227481 0.04227481 GO:0035782 mature natural killer cell chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:0130122	accinophil avtravasation	0.04227401	0.04227401
GO:003702 Inature natural kiner cen chemotaxis 0.04227481 0.04227481 GO:2000332 regulation of blood microparticle formation 0.04227481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	CO:0072082	matura natural killar aall aharrataria	0.04227401	0.04227401
GO:2000352 regulation of blood microparticle formation 0.0422/481 0.04227481 GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:0035782	mature natural kiner cell chemotaxis	0.0422/481	0.04227481
GO:0097534 lymphoid lineage cell migration 0.04227481 0.04227481	GO:2000332	regulation of blood microparticle formation	0.0422/481	0.04227481
	GO:0097534	lymphoid lineage cell migration	0.04227481	0.04227481

GO:0032826	regulation of natural killer cell differentiation involved in immune response	0.04227481	0.04227481
GO:0002442	serotonin secretion involved in inflammatory response	0.04227481	0.04227481
GO:0097535	lymphoid lineage cell migration into thymus	0.04227481	0.04227481
GO:0042325	regulation of phosphorylation	0.04227481	0.04227481
GO:0090721	primary adaptive immune response involving T cells and B cells	0.04227481	0.04227481
GO:2000526	positive regulation of glycoprotein biosynthetic process	0.04227481	0.04227481
60.0000720		0.04007491	0.04007491
GO:0090720 CO:0002554	primary adaptive immune response	0.04227481	0.04227481
GO:0002334	servicini secretion by platetet	0.04227481	0.04227481
GO:2000515	positive regulation of granzyme A production	0.04227481	0.04227481
GO:2000517	regulation of granzyme A production	0.04227481	0.04227481
GO:2000517	regulation of 1-neiper 1 cell activation	0.04227481	0.04227481
GO:0042545	protein N-linked glycosylation via arginine	0.04227481	0.04227481
GO:0038125	nositive receptor TLKT.TLK2 signaling pathway	0.04227481	0.04227481
GO:0002913	positive regulation of lymphocyte anergy	0.04227481	0.04227481
GO:2000420	negative regulation of eosinophil extravasation	0.04227481	0.04227481
GO:2000419	regulation of eosinophil extravasation	0.04227481	0.04227481
GO:0002439	chronic inflammatory response to antigenic stimulus	0.04227481	0.04227481
GO:2000518	negative regulation of T-helper T cell activation	0.04227481	0.04227481
GO:0014895	smooth muscle hypertrophy	0.04227481	0.04227481
GO:00/2564	blood microparticle formation	0.0422/481	0.0422/481
GO:0048298	positive regulation of isotype switching to IgA isotypes	0.0422/481	0.0422/481
GO:0002351	serotonin production involved in inflammatory response	0.0422/481	0.0422/481
GO:0150127	regulation of interleukin-33 production	0.0422/481	0.0422/481
GO:0072639	interleukin-33 production	0.04227481	0.04227481
GO:0061048	negative regulation of branching involved in lung morphogenesis	0.04227481	0.04227481
GO:1901700	response to oxygen-containing compound	0.04227481	0.04227481
GO:0010604	positive regulation of macromolecule metabolic process	0.042332873	0.042332873
GO:1900017	positive regulation of cytokine production involved in inflammatory response	0.042404035	0.042404035
GO:0033623	regulation of integrin activation	0.042404035	0.042404035
GO:0034162	toll-like receptor 9 signaling pathway	0.042404035	0.042404035
GO:0046635	positive regulation of alpha-beta T cell activation	0.042404035	0.042404035
GO:0032753	positive regulation of interleukin-4 production	0.042404035	0.042404035
GO:0050792	regulation of viral process	0.042597594	0.042597594
GO:0001952	regulation of cell-matrix adhesion	0.044537257	0.044537257
GO:2001185	regulation of CD8-positive, alpha-beta T cell activation	0.046537297	0.046537297
GO:2000379	positive regulation of reactive oxygen species metabolic process	0.046537297	0.046537297
GO:0150076	neuroinflammatory response	0.046537297	0.046537297
GO:1900225	regulation of NLRP3 inflammasome complex assembly	0.046537297	0.046537297
GO:0046641	positive regulation of alpha-beta T cell proliferation	0.046537297	0.046537297
GO:0043652	engulfment of apoptotic cell	0.046537297	0.046537297
GO:0030050	vesicle transport along actin filament	0.046537297	0.046537297
GO:0034341	response to interferon-gamma	0.046932004	0.046932004
GO:0030001	metal ion transport	0.04704543	0.04704543
GO:0051336	regulation of hydrolase activity	0.047943669	0.047943669
GO:1903038	negative regulation of leukocyte cell-cell adhesion	0.048216447	0.048216447
GO:0031343	positive regulation of cell killing	0.048216447	0.048216447
GO:1904062	regulation of cation transmembrane transport	0.048851314	0.048851314
GO:0042127	regulation of cell population proliferation	0.04917162	0.04917162

Appendix

Figure A 1 Helical Twist across all Families

179

Appendix Figure A 2 Minor Groove width across all families

Appendix Figure A 3 Propeller twist across families

183

Appendix Figure A 4 : Roll across families

Appendix Figure A 5: Sequence logo of families

Appendix B
Appendix Table B 1 Count of SNVs in overall COSMIC database

		ТО			
		Α	С	G	Т
	Α	0	94,513	2,006,240	1,121,852
Z	С	1,965,512	0	990,818	3,788,310
ō	G	3,788,966	989,193	0	2,017,502
FR	Т	1,124,289	2,007,011	951,101	0

		ТО			
		Α	С	G	Т
	Α	0	601	7,191	768
Z	С	2,529	0	2,937	8,094
õ	G	21,349	4,450	0	10,791
E	Т	742	1,608	8,861	0

Appendix Table B 2 Counts of SNVs in G4 regions from the COSMIC database

G4 with	G4 with	count	%	G4hunter score	Sd	G4hunter score	Sd
reference allele	alternate allele			(reference)	(reference)	(alternate)	(alternate)
-1	-1	13,793	36.77	-1.222	0.387	-1.219	0.4
-1	0	3,581	9.55	-1.026	0.351	-0.901	0.345
-1	1	6	0.02	0.175	0.37	0.279	0.36
0	-1	1,354	3.61	-1.082	0.356	-1.196	0.359
0	1	1,374	3.66	1.085	0.368	1.201	0.371
1	0	3,655	9.74	0.993	0.359	0.871	0.355
1	1	13,753	36.66	1.222	0.376	1.219	0.391

Appendix Table B 3 . Changes in putative G4 from the COSMIC database across both strands before and after mutation. (0: absence of pG4; 1: presence of pG4 in forward strand; -1: presence of pG4 in reverse strand)

	COSMIC		CLINV	AR
Annotation	Count	Frequency	Count	Frequency
CDS	7,569	10.02	2,281	45.38
5' UTR	1,514	2		
3' UTR	3,669	4.86	179	3.56
EXON	13,034	17.26	3,014	59.97
INTRON	26,014	34.44	1,251	24.89
PROMOTER	9,248	12.24	554	11.02
ENHANCER	563	0.75		
CpG ISLAND	5,356	7.09		
GENCODE IncRNA	3,121	4.13	700	13.92
INTERGENIC	5,441	7.2	761	15.14

Appendix Table B 4 Count and proportion of variants in experimentally validated G4 regions for different functional regions.

Appendix Table B 5 Significant GO:BP enrichments for all COSMIC and CLINVAR G4 mutations.

GO JD GO-Bescription Universe Internal CLUNAN CLUNAN AdjustedP-value CLUNAN G0-0004855 600-0004853 natomical structure development process 4584 2441 1.021-44 G0-0004855 developmental process 4584 2464 1.022-46 G0-0004775 multicellular organism development 3266 1938 2.46E-41 G0-0009053 anatomical structure morphogenesis 1871 1181 1.16E-38 G0-0009052 cellular developmental process 2860 1706 5.88E-37 G0-00030154 cellular developmental process 2879 1715 1.44E-36 G0-00020208 neuron differentiation 923 636 7.71E-33 G0-00020301 neuron differentiation 1355 877 4.66E-32 G0-00020302 neuron differentiation 135 877 4.66E-32 G0-00020303 multicellular component morphogenesis 5119 2448 54E-33 G0-00020303 numphogenesis 549 407 3.74E-32 G0-000203030 cellular componet morphogenesis<				COSMIC																																																																																											
CLUNVAR CLUNVAR C0-0007390 antomical structure development 1614 1087 3.01E-48 C0-00023502 development process 4584 2644 1.02E-46 C0-00023503 antomical structure morphogenesis 1871 1.181 1.168-38 C0-0009653 antomical structure morphogenesis 718 52.0 4.077-3.37 C0-0009022 cell differentiation 28.60 7.718 52.0 4.078-3.37 C0-0009021 cell differentiation 9.23 63.6 7.718-33 60.0002.008 cell differentiation 9.23 63.6 7.718-33 60.0002.008 cell divelopment 7.66 7.718-32 2.00002.008 cell ovelopment 7.66 7.716-32 2.00002.008 cell ovelopment 7.66 7.716-32 2.00002.008 cell ovelopment 7.66 7.716-32 2.00002.008 2.00002.008 2.00002.008 2.018-32 2.000003.00 2.018-32 2.00002.008 2.018-32 2.000003.00 2.018-32 2.000003.00 2.018-32 2.000003.00 2.018-32 2.000000.0	GO ID	GO Description	Universe	and	AdjustedP-value																																																																																										
		-		CLINVAR	-																																																																																										
	GO:0007399	nervous system development	1648	1087	3.01E-48																																																																																										
GC0023292 developmental process 4584 2644 1 022-46 GC00007775 multicellular organism development 3266 1938 2-46E-41 GC00008775 multicellular organism development 3266 1938 2-46E-41 GC00008609 generation of neurons 969 670 1.07E-37 GC0000814 cell dirferentiation 2860 1706 5.88E-37 GC0000814 cellular direvelopmental process 2879 1715 1.04E-36 GC0000818 cellular congenismin process 5319 2948 8.54E-33 GC0008185 cellular component morphogenesis 549 407 3.74E-32 GC0003030 cell projection morphogenesis 459 352 1.36E-32 GC00030309 cellular component morphogenesis 459 374 4.92E-32 GC0012039 neuron projection development 705 58 348 9.12E-32 GC00120309 palsama methrane bounded cell projection 1144 764 1.22E-32 GC00120309 cell morphogenesis <td>GO:0048856</td> <td>anatomical structure development</td> <td>4152</td> <td>2427</td> <td>6.54E-48</td>	GO:0048856	anatomical structure development	4152	2427	6.54E-48																																																																																										
CO.004731system development297617901.561-2 $CO.0007025$ anatonical structure morphogenesis187111811.1678-37 $CO.0008002$ cell morphogenesis17185204.0778-37 $CO.0008002$ cell differentiation286017065.5887-37 $CO.00081860$ cell differentiation286017065.5887-37 $CO.00081860$ neurogenesis1067.366.5987-35 $CO.00081860$ neurogenesis10558774.695-33 $CO.0023201$ neurogenesis531929488.545-33 $CO.0038260$ neurogenesis4593521.365-32 $CO.0038666$ neurogenesis5494073.74E-32 $CO.0038666$ neurogenesis5494073.74E-32 $CO.0030300cell projection ongolagenesis5494073.74E-32CO.00303000cell projection organization11647667.19E-32CO.0013030plasma membrane bounded cell projection11447541.22E-31CO.0013030plasma membrane bounded cell projection11447541.22E-31CO.0013030plasma membrane bounded cell projection11447541.22E-31CO.0013030plasma membrane bounded cell projection11447541.32E-32CO.0013030plasma membrane bounded cell projection11447541.32E-31CO.00130300cell unorphogenesis4143371.53E-30CO.0023040regulation of cel$	GO:0032502	developmental process	4584	2644	1.02E-46																																																																																										
CO.0007275 multicellular organism development 3266 1938 2.467-4 CO.0008669 generation of neurons 969 670 1.16E-38 CO.0008669 generation of neurons 969 670 1.16E-38 CO.0008869 cell morphogenesis 1718 520 4.07E-37 CO.0008860 cellular developmental process 2860 1706 5.88E-37 CO.00088468 cellular development 236 636 7.71E-35 CO.00088468 cellular component morphogenesis 4519 352 1.36E-32 CO.0003030 cell projection morphogenesis 459 352 1.36E-32 CO.0003030 cellular component morphogenesis 459 352 1.36E-32 CO.0003030 cellular component morphogenesis 459 352 8.10E-31 CO.0003030 cellular component morphogenesis 469 355 8.10E-31 CO.0003175 neuron projection development 753 8.10E-31 1.01E-38 CO.0003175 neuron projection morphogenesis 409	GO:0048731	system development	2976	1790	1.56E-42																																																																																										
CO0009853 anatomical structure morphogenesis 1871 1181 1.167-83 $CO0000902$ cell morphogenesis 718 520 4.078-37 $CO0000802$ cell differentiation 2860 1706 5.888-57 $CO000030182$ neurogenesis 1096 736 6.498-53 $CO00030182$ neurogenesis 1096 736 6.498-53 $CO00030182$ neurogenesis 519 2948 8.44E-33 $CO00048636$ cell development 729 516 2.16E-32 $CO0048666$ neuron development 729 516 2.16E-32 $CO0048666$ neuron development 729 516 2.16E-32 $CO0048667$ neuron development 729 516 2.16E-32 $CO0120369$ cellular component morphogenesis 4407 3.74E-33 $CO0120360$ organization 1164 766 747 1.91E-32 $CO0120361$ regulation of signaling 2733 1601 2.28E-38 $CO00032061$ regulation of signaling 2733 1601 2.8E-28	GO:0007275	multicellular organism development	3266	1938	2.46E-41																																																																																										
COO038699 generation of neurons 969 670 1078-37 COO03054 cell morphogenesis 718 520 4.07E-37 COO030154 cell differentiation 2860 1706 5.88E-37 GOO030154 cell differentiation 923 636 7.71E-33 GOO02200 neurogenesis 1096 736 6.89E-33 GOO030182 cell ory-clopment 1355 877 4.69E-33 GOO032201 multicellular organismal process 5319 2948 8.54E-33 GOO048866 neuron development 729 516 2.16E-32 GOO030300 cellular component morphogenesis 549 407 3.74E-32 GOO010303 plasma membrane bounded cell projection 1164 766 719 9.0E-32 GOO022090 ellular comphogenesis 449 355 8.10E-31 60:000317 GO:0023290 eell apri morphogenesis 441 337 1.53E-30 60:000346 regulation of cellular component organization 1277 1596 <t< td=""><td>GO:0009653</td><td>anatomical structure morphogenesis</td><td>1871</td><td>1181</td><td>1.16E-38</td></t<>	GO:0009653	anatomical structure morphogenesis	1871	1181	1.16E-38																																																																																										
CO-0000002 cell differentiation 280 407E-37 CO-00031182 cell differentiation 2860 1706 5 88E-37 CO-0003182 neurogenesis 1006 7 36 6 39E-35 CO-0003182 neurogenesis 1006 7 36 6 39E-35 CO-0032200 neurogenesis 1006 7 36 6 39E-33 CO-0048466 cell development 135 8 77 4 69E-32 CO-0048666 neuron development 729 5 16 2.16E-32 CO-0032289 cell projection morphogenesis 549 407 3.74E-32 CO-0120036 plasma membrane bounded cell projection 1144 764 1.22E-32 CO-0120036 plasma membrane bounded cell projection 1144 74 1.22E-31 CO-003290 cell art morphogenesis 469 355 8.10E-31 CO-0032061 regulation of signaling 2733 1001 2.22E-38 CO-00048812 neuron projection morphogenesis 411 337 1.53E-37 CO-00048	GO:0048699	generation of neurons	969	670	1.07E-37																																																																																										
$ \begin{array}{c} GO 0030 154 \\ GO 0042800 \\ cellular developmental process 2769 1715 \\ I 0.04L-36 \\ GO 0022008 \\ neurogenesis 1096 776 \\ GO 0022008 \\ neuron differentiation 223 \\ GO 001210 \\ neuron differentiation 223 \\ GO 0012201 \\ multicelular organismal process 310 \\ SO 0048466 \\ neuron development 1355 \\ ST 7 \\ 4.69E-33 \\ GO 0012201 \\ multicelular organismal process 310 \\ SO 0048466 \\ neuron development 129 \\ SI 00048466 \\ neuron development 129 \\ GO 001200 \\ cellular component morphogenesis 549 \\ SI 00003100 \\ cellular component morphogenesis 549 \\ SI 00003100 \\ cellular component morphogenesis 549 \\ GO 0003100 \\ cellular component morphogenesis 549 \\ SI 00003100 \\ cellular component morphogenesis 549 \\ SI 00003100 \\ cellular component morphogenesis 549 \\ SI 00003110 \\ neuron projection development 656 \\ SI 00003110 \\ neuron projection development 656 \\ SI 00003110 \\ neuron projection development 656 \\ SI 00003110 \\ neuron projection morphogenesis \\ SI 00003120 \\ regulation of signaling 733 \\ SI 0010 \\ SI 00003120 \\ cell norphogenesis involved in differentiation \\ SI 00003120 \\ regulation of cellular component organization \\ SI 00003120 \\ regulation of cellular component organization \\ SI 00003120 \\ regulation of cellular component organization \\ SI 0000312 \\ regulation of cellular component organization \\ SI 0000312 \\ regulation of cellular component organization \\ SI 0000312 \\ regulation of cellular component organization \\ SI 0000312 \\ regulation of developmental process \\ SI 00000312 \\ regulation of developmental process \\ SI 00000312 \\ regulation of developmental process \\ SI 00000312 \\ regulation of developmental process \\ SI 0000073 \\ regulation of developmental process \\ SI 00000713 \\ regulation of multicellular organismal process \\ SI 00000312 \\ regulation of multicellular corganization \\ SI 0000312 \\ regulation of multicellular corganization \\ SI 0000312 \\ regulation of multicellular corganismal process \\ SI 00000715 \\ regulation of multicellular corganization \\ SI 00000715 \\ regulation of cellular corgan$	GO:0000902	cell morphogenesis	718	520	4 07E-37																																																																																										
$ \begin{array}{c} GO 0048869 \\ GO 0048869 \\ cellular developmental process 2879 1715 1.04E.36 \\ GO 0022008 \\ neurogenesis 023 636 7.71E.35 \\ GO 0048468 \\ cell development 233 636 7.71E.35 \\ GO 0048468 \\ cell development 729 516 2.16E.32 \\ GO 0048858 \\ cell projection morphogenesis 459 352 1.36E.32 \\ GO 0048858 \\ cell projection organization 1164 766 7.19E.32 \\ GO 0048858 \\ cell projection organization 1164 766 7.19E.32 \\ GO 0032399 \\ cellular component morphogenesis 549 407 3.74E.32 \\ GO 0030309 \\ cell projection organization 1164 766 7.19E.32 \\ GO 0012003 \\ cell projection organization 1164 766 7.19E.32 \\ GO 0012039 \\ plssma membrane bounded cell projection 455 348 9.12E.32 \\ GO 0012003 \\ organization morphogenesis 469 355 8.10E.31 \\ co 00032081 \\ cell part morphogenesis 409 355 8.10E.31 \\ co 00023081 \\ cell part morphogenesis 409 355 8.10E.31 \\ co 00023081 \\ cell part morphogenesis 409 355 8.10E.31 \\ co 00023081 \\ regulation of scillation 495 367 1.01E.28 \\ co 0001646 \\ regulation of cell communication 1929 1170 3.23E.27 \\ co 0005126 \\ regulation of cell communication 1929 1170 3.23E.27 \\ co 0005126 \\ regulation of cell communication 1929 1170 3.23E.27 \\ co 0005126 \\ regulation of cell arcomponent organization 1929 1170 3.24E.27 \\ co 0005126 \\ regulation of cell component organization 1929 1170 3.24E.27 \\ co 0005126 \\ regulation of cell component organization 1929 1170 3.24E.27 \\ co 0005126 \\ regulation of cell component organization 1929 1170 3.24E.27 \\ co 0005126 \\ regulation of cell process 11810 1101 5.46E.26 \\ co 00007197 \\ regulation of cell process 11810 1101 5.46E.26 \\ co 00007197 \\ regulation of development 1 process 1117 1248 3.72E.22 \\ co 00005126 \\ signaling 03 5190 2837 8.54E.25 \\ co 00005126 \\ regulation of development 2176 1277 1.06E.21 \\ co 00005556 \\ intracellular component organization 637 435 1.52E.21 \\ co 0003556 \\ intracellular signal transduction 2168 1267 1.65E.20 \\ co 0005134 \\ regulation of cell projection organization 637 435 1.52E.21 \\ co 0003556 \\ intracellular signal transduction 2168 1267 $	GO:0030154	cell differentiation	2860	1706	5 88F-37																																																																																										
GOO022000 Between the component morphogenesis 1006 1006 73.00 73.00 1006 1006 73.00 1006 1006 1006 73.00 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006 1006	GO:0030154 GO:0048869	cellular developmental process	2879	1715	1.04F-36																																																																																										
GO 000018 neuron differentiation 23 636 7.71E.35 GO 0048468 cell development 1355 877 4.69E.33 GO 0042501 multicellular organismal process 5319 2948 8.54E.33 GO 0042858 cell projection morphogenesis 459 512 1.36E.32 GO 0012000 cell projection organization 1164 766 7.19E.32 GO 0012003 plasma membrane boundel cell projection 455 348 9.12E.32 GO 0012036 reganization 1144 754 1.22E.31 GO 0012036 reganization 1144 754 1.22E.31 GO 0012036 reganization 1144 754 1.22E.31 GO 0012046 regulation of signaling 2733 1601 2.28E.32 GO 0001046 regulation of signaling 2733 1601 2.28E.23 GO 0005797 regulation of cell lar component organization 1929 1170 3.23E.27 GO 00051128 regulation of cell lar component organization 1929 1.15E.26<	GO:0070009	neurogenesis	1096	736	6.89E-35																																																																																										
GO:0040412 introduction 215 607 4.090-33 GO:0045466 cell development 5359 2948 8.54E-33 GO:0045666 neuron development 729 516 2.16E-32 GO:0030000 cell projection morphogenesis 549 407 3.74E-32 GO:0030000 cell projection organization 1164 766 7.19E-32 GO:0030000 cell projection organization 455 348 9.12E-32 GO:0031000 plasma membrane bounded cell projection 656 471 9.40E-32 GO:0032090 cell part morphogenesis 469 355 8.10E-31 GO:0032001 regulation of signaling 2733 1601 2.82E-28 GO:0012031 regulation of cell communication 2727 1596 7.06E-28 GO:0003020 regulation of cellar component organization 1929 1170 3.23E-27 GO:00051128 regulation of cellar component organization 1233 256 5.08E-27 GO:0005128 regulation of development 323	GO:0022000 GO:0030182	neuron differentiation	923	636	7.71E-35																																																																																										
GO:0023200 multicellular organismal process 5319 2948 8.424.23 GO:0048858 cell projection mophogenesis 459 352 1.36E.32 GO:0032099 cellular component morphogenesis 549 407 3.74E.32 GO:0030309 cell projection organization 1164 766 7.19E.32 GO:0032090 cell projection organization 1164 766 7.19E.32 GO:0032090 cell part morphogenesis 469 355 8.10E.31 GO:0023290 cell part morphogenesis 441 337 1.53E.30 GO:0003090 regulation of cellular component organization 122 156 7.06E-28 GO:00120036 regulation of cellular component organization 1273 1601 2.8E-28 GO:001201646 regulation of cellular component organization 127 1596 7.06E-28 GO:0005164 axon development 323 256 5.08E-27 GO:00050793 regulation of cellular component organization 129 1170 3.33E-27 GO:0007409 <t< td=""><td>GO:0030102 GO:0048468</td><td>cell development</td><td>1355</td><td>877</td><td>4 69F-33</td></t<>	GO:0030102 GO:0048468	cell development	1355	877	4 69F-33																																																																																										
$ \begin{array}{c} 00001888 \\ 000018866 \\ neuron development \\ 000018866 \\ neuron development \\ 000018866 \\ neuron development \\ 000018866 \\ 00012003 \\ 00010000 \\ 00000000$	GO:0040400	multicellular organismal process	5319	29/8	8.54E-33																																																																																										
$ \begin{array}{c} 00.0048660 \\ 00.0048660 \\ 00.0014005 \\ 00.0014005 \\ 00.0014005 \\ 00.0014005 \\ 00.0014005 \\ 00.0012039 \\ 00.001203 \\ 00.0$	GO:0032301 GO:0048858	cell projection morphogenesis	459	352	1 36E 32																																																																																										
	GO:0048656	neuron development	720	516	1.50E-52 2.16E-32																																																																																										
$ \begin{array}{c} \text{CO}.0030200 \\ \text{cell projection organization} \\ \text{morphogenesis} \\ morphogene$	CO:0022080	cellular component morphogenesis	540	407	2.10E-52 2.74E-22																																																																																										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GO:0032989	cell projection organization	1164	407	5.74E-52 7 10E 22																																																																																										
GO:0120039 morphogenesisplasma membrane bounded cell projection organization4553489.12E-32GO:0120036 Organizationplasma membrane bounded cell projection organization11447541.22E-31GO:0032990 Ocell part morphogenesis4693558.10E-31GO:00048812 OC0002904cell part morphogenesis4413371.53E-30GO:0002904 Coll pregulation of signaling273316012.82E-28GO:001646 GO:00021064regulation of cell communication272715967.06E-28GO:00161564 GO:005173axon development3232565.08E-27GO:0061564 GO:0050793axon development3812916.02E-26GO:0007409 GO:0007409 axonogenesiscell morphogenesis involved in neuron differentiation3812916.02E-26GO:0007154 GO:0007154cell communication537029121.84E-25GO:0007154 GO:00035556intracellular organization537029121.84E-22GO:0007064 GO:00035556axongenesis21171.2483.72E-22GO:00070164 GO:0007154cell adhesion216812671.65E-20GO:0007010 GO:00035556intracellular signal transduction216812671.65E-20GO:0007010 GO:0007010cytoskeleton organization216812671.65E-21GO:0007010 GO:0007010cytoskeleton organization13097992.62E-18GO:0007010cytoskeleton organization1309799	00.0030030	plasma membrana bounded call projection	1104	700	1.19E-32																																																																																										
GO:0031175 neuron projection development organization 656 471 9.40E-32 GO:0120036 plasma membrane bounded cell projection organization 1144 754 1.22E-31 GO:0032990 cell part morphogenesis 469 355 8.10E-31 GO:0000904 cell morphogenesis involved in differentiation 495 367 1.01E-28 GO:0012051 regulation of cell communication 2727 1596 7.06E-28 GO:00100646 regulation of cellular component organization 1929 1170 3.23E-27 GO:00050793 regulation of development 323 256 5.08E-27 GO:00040667 actin filament-based process 1810 1101 5.46E-26 GO:0007030 regulation of developmental process 1810 1101 5.46E-26 GO:0007154 cell communication 381 291 6.02E-26 GO:0007154 cell communication 5370 2912 1.84E-22 GO:0007154 cell communication 5370 2912 1.84E-22 GO:0007154 c	GO:0120039	morphogenesis	455	348	9.12E-32																																																																																										
GO:0120036 plasma membrane bounded cell projection 1144 754 1.22E-31 GO:0032990 cell part morphogenesis 469 355 8.10E-31 GO:0048812 neuron projection morphogenesis 441 337 1.53E-30 GO:000203051 regulation of signaling 2733 1601 2.82E-28 GO:000203051 regulation of cell communication 1229 1170 3.23E-27 GO:00051128 regulation of cell communication 2727 1596 7.06E-28 GO:00050793 actin filament-based process 717 495 1.15E-26 GO:00050793 regulation of developmental process 1810 1101 5.46E-26 GO:00050793 regulation of developmental process 1810 1101 5.46E-26 GO:0007040 axon development 381 291 6.02E-26 GO:0007040 axon development 5190 2837 8.54E-25 GO:0007154 cell communication 5212 2844 1.92E-23 GO:00051239 regulation of maganization 637	GO:0031175	neuron projection development	656	471	9.40E-32																																																																																										
GO:0032990 cell part morphogenesis 469 355 8.10E-31 GO:0048812 neuron projection morphogenesis involved in differentiation 441 337 1.53E-30 GO:0023051 regulation of signaling 2733 1601 2.82E-28 GO:001646 regulation of cell communication 2727 1996 7.06E-28 GO:005154 regulation of cellular component organization 1929 1170 3.23E-27 GO:0050793 regulation of development 323 256 5.08E-27 GO:0007409 axon developmental process 1810 1101 5.46E-26 GO:0007093 regulation of developmental process 1810 1101 5.46E-26 GO:000709 axonogenesis 298 237 3.00E-25 GO:0007154 cell communication 5221 2844 1.92E-23 GO:0002052 signaling 5170 2912 1.84E-25 GO:0016043 cellular component organization 637 435 1.52E-21 GO:0020519 regulation of multicellular organismal process <td>GO:0120036</td> <td>plasma membrane bounded cell projection organization</td> <td>1144</td> <td>754</td> <td>1.22E-31</td>	GO:0120036	plasma membrane bounded cell projection organization	1144	754	1.22E-31																																																																																										
GO:0048812 neuron projection morphogenesis 441 337 1.53E-30 GO:0000904 cell morphogenesis involved in differentiation 495 367 1.01E-28 GO:0010646 regulation of cell communication 2727 1596 7.06E-28 GO:0010541 axon development 323 256 5.08E-27 GO:0005029 actin filament-based process 717 495 1.15E-26 GO:000709 regulation of developmental process 1810 1101 5.46E-26 GO:0048667 cell morphogenesis involved in neuron 381 291 6.02E-26 GO:0007154 cell communication 5221 2844 1.92E-23 GO:0007154 cell communication 5370 2912 1.84E-22 GO:0007154 cell communication 2176 1277 1.06E-21 GO:0007154 cell communication 2176 1277 1.06E-21 GO:001643 cell component organization 637 435 1.52E-21 GO:002005129 regulation of signal transduction 2168	GO:0032990	cell part morphogenesis	469	355	8.10E-31																																																																																										
GO:0000904 cell morphogenesis involved in differentiation 495 367 1.01E-28 GO:0010646 regulation of cell communication 2727 1596 7.06E-28 GO:0010646 regulation of cellular component organization 1929 1170 3.23E-27 GO:00050128 regulation of development 323 256 5.08E-27 GO:00050793 regulation of developmental process 1810 1101 5.46E-26 GO:0007409 axon development 381 291 6.02E-26 GO:0007154 cell communication 5190 2837 8.54E-25 GO:0007154 cell communication 5370 2912 1.84E-22 GO:0007154 celluar component organization 637 435 1.52E-21 GO:0003029 regulation of multicellular organismal process 2117 1248 3.72E-22 GO:0007154 celluar component organization 637 435 1.52E-21 GO:0003036 actin cytoskeleton organization 2168 1267 1.63E-20 GO:0007155 cell adhesion 1216 754 1.02E-19 GO:0007010 <td>GO:0048812</td> <td>neuron projection morphogenesis</td> <td>441</td> <td>337</td> <td>1.53E-30</td>	GO:0048812	neuron projection morphogenesis	441	337	1.53E-30																																																																																										
G0:0023051 regulation of signaling 2733 1601 2.82E-28 G0:0010646 regulation of cell communication 1929 1170 3.23E-27 G0:0051128 regulation of cell lar component organization 1929 1170 3.23E-27 G0:0050793 regulation of developmental process 1810 1101 5.46E-26 G0:0007093 regulation of developmental process 1810 1101 5.46E-26 G0:0007093 axonogenesis 298 237 3.00E-25 G0:00070409 axonogenesis 298 237 3.00E-25 G0:0007140 cell communication 521 2844 1.92E-23 G0:0016043 cellular component organization 5370 2912 1.84E-22 G0:00051239 regulation of aignal transduction 2168 1267 1.06E-21 G0:0003036 actin cytoskeleton organization 637 435 1.52E-20 G0:0007010 cytoskeleton organization 1216 754 1.02E-19 G0:0007010 cytoskeleton organization 1309 799 2.62E-18 G0:0007010 regulation of	GO:0000904	cell morphogenesis involved in differentiation	495	367	1.01E-28																																																																																										
G0:0010646regulation of cell communication272715967.06E-28G0:0051128regulation of cellular component organization19291170 $3.23E-27$ G0:0001564axon development323256 $5.08E-27$ G0:00050793regulation of developmental process18101101 $5.46E-26$ G0:00050793cell morphogenesis involved in neuron381291 $6.02E-26$ G0:0007409axonogenesis298237 $3.00E-25$ G0:0007154cell communication51902837 $8.54E-25$ G0:0001643cellular component organization53702912 $1.84E-22$ G0:001643cellular component organization53702912 $1.84E-22$ G0:0030036actin cytoskeleton organization21761277 $1.06E-21$ G0:0030355intral cytoskeleton organization21681267 $1.65E-20$ G0:0007155cell adhesion21681267 $1.65E-20$ G0:0007155cell adhesion1216754 $1.02E-19$ G0:0007155cell adhesion252195 $8.78E-18$ G0:0007010cytoskeleton organization467326 $7.18E-18$ G0:0007184regulation of cell projection organization453317 $1.42E-17$ G0:000716cellular signal transduction252195 $8.78E-18$ G0:000717regulation of cellular process47042544 $2.87E-17$ G0:00071840cellular component organization518333 $8.$	GO:0023051	regulation of signaling	2733	1601	2.82E-28																																																																																										
GO:0051128regulation of cellular component organization19291170 $3.23E-27$ GO:0061564axon development 323 256 $5.08E-27$ GO:0050793regulation of developmental process 717 495 $1.15E-26$ GO:0007409axonogenesis involved in neuron 381 291 $6.02E-26$ GO:0007409axonogenesis 298 237 $3.00E-25$ GO:0007409axonogenesis 298 237 $3.00E-25$ GO:0007140cell communication 5221 2844 $1.92E-23$ GO:0016043cellular component organization 5370 2912 $1.84E-22$ GO:003036actin cytoskeleton organization 637 435 $1.52E-21$ GO:003036actin cytoskeleton organization 637 435 $1.52E-21$ GO:003036actin cytoskeleton organization 2168 1267 $1.65E-20$ GO:0007155cell adhesion 1216 754 $1.02E-19$ GO:0007155cell adhesion 1309 799 $2.62E-18$ GO:00171840cellulor organization 467 326 $7.18E-18$ GO:002050804modulation of chemical synaptic transmission 252 195 $8.78E-17$ GO:002050804modulation of cellular process 4704 2544 $2.87E-17$ GO:002050804modulation of cellular process 539 995 $1.99E-17$ GO:002050804modulation of cellular process 4704 2544 $2.87E-17$ GO:0020525synaptic	GO:0010646	regulation of cell communication	2727	1596	7.06E-28																																																																																										
GO:0061564 GO:005029 actin filament-based process323 regulation of developmental process323 regulation of developmental process323 regulation of developmental process321 regulation of developmental process11015.46E-26 s.02E-26GO:0048667 GO:007409 aconogenesiscell morphogenesis involved in neuron differentiation381291 regulation of developmental s.98 regulation of evelopment organization381 regulation of evelopment regarization2837 regulation of multicellular organismal process2117 regulation of multicellular organismal process1.65E-20 regulation of multicellular organismal processGO:0007154 regulation of ginal transduction2168 regulation regulation organization2168 regulation regulation1.65E-20 regulation of signal transductionGO:0007155 regulation of cell projection organization1309 regulation of cell projection organization2167 regulation of regulation of regulation or biogenesis regulation of cellular process5339 regulation regulation regulation regulation regulation regulation or biogenesis regulation of cellular process539 regulation regulation regulatio	GO:0051128	regulation of cellular component organization	1929	1170	3.23E-27																																																																																										
GO:0030029actin filament-based process717495 $1.15E-26$ GO:0050793regulation of developmental process18101101 $5.46E-26$ GO:0048667cell morphogenesis involved in neuron differentiation381291 $6.02E-26$ GO:0007409axonogenesis298237 $3.00E-25$ GO:0023052signaling51902837 $8.54E-25$ GO:0007154cell communication5221 2844 $1.92E-23$ GO:0007154cellular component organization53702912 $1.84E-22$ GO:0007123regulation of multicellular organismal process2117 1.248 $3.72E-22$ GO:003036actin cytoskeleton organization637 435 $1.52E-21$ GO:003036actin cytoskeleton organization2168 1267 $1.65E-20$ GO:0007155cell adhesion1216 754 $1.02E-19$ GO:0007100cytoskeleton organization 467 326 $7.18E-18$ GO:00071144regulation of cell projection organization 453 317 $1.42E-17$ GO:00071144cellular component organization or biogenesis 5539 2962 $1.45E-17$ GO:0009917regulation of cellular process 4704 2544 $2.87E-17$ GO:00099177regulation of cellular process 4704 2544 $2.87E-17$ GO:00099177regulation of cellular process 4704 2544 $2.87E-17$ GO:00099177regulation of cellular process 3896 2135 $6.91E-17$	GO:0061564	axon development	323	256	5.08E-27																																																																																										
GO:0050793regulation of developmental process18101101 $5.46E-26$ GO:0048667cell morphogenesis involved in neuron differentiation 381 291 $6.02E-26$ GO:0007409axonogenesis298237 $3.00E-25$ GO:0023052signaling51902837 $8.54E-25$ GO:0007154cell communication52212844 $1.92E-23$ GO:0016043cellular component organization53702912 $1.84E-22$ GO:0016043cellular component organization637435 $1.52E-21$ GO:003056attin cytoskeleton organization637435 $1.52E-21$ GO:0030556intracellular signal transduction21681267 $1.65E-20$ GO:0007105cell adhesion1216754 $1.02E-19$ GO:0007010cytoskeleton organization467326 $7.18E-18$ GO:0007010cytoskeleton organization1309799 $2.62E-18$ GO:0007010cytoskeleton organization453 317 $1.42E-17$ GO:000715regulation of ell projection organization453 317 $1.42E-17$ GO:00120035projection organization or biogenesis55392962 $1.45E-17$ GO:0009177regulation of cellular process47042544 $2.87E-17$ GO:0009177regulation of cellular process389621356.91E-17GO:000333negative regulation of cellular process389621356.91E-17GO:000333negative regulation of cellul	GO:0030029	actin filament-based process	717	495	1.15E-26																																																																																										
GO:0048667 differentiationcell morphogenesis involved in neuron differentiation 381 291 $6.02E-26$ GO:0007409 axonogenesisaxonogenesis 298 237 $3.00E-25$ GO:0007154 colloadcell communication 5221 2844 $1.92E-23$ GO:0016043 collular component organization 5370 2912 $1.84E-22$ GO:0015239 colo048513 animal organ development 2176 1277 $1.06E-21$ GO:003036 colo0556 do:0007155cell damesing process 2117 1248 $3.72E-22$ GO:0007016 CO:0003036 actin cytoskeleton organization 637 435 $1.52E-21$ GO:0007155 Co:0009966 regulation of signal transduction 2168 1267 $1.65E-20$ GO:0007155 Co:0031344 regulation of cell projection organization 1309 799 $2.62E-18$ GO:0012035 projection organization 1309 799 $2.62E-18$ GO:00120035 projection organization 453 317 $1.42E-17$ GO:0009917 CO:0009917 regulation of cellular process 5539 2962 $1.45E-17$ GO:0009936 CO:004852 negative regulation of cellular process 3896 2135 $6.91E-17$ GO:0009936 CO:0048523 regulation of neuron projection development 288 215 $1.91E-16$ GO:0004853 GO:0048523 regulation of cellular process 3896 2135 $6.91E-17$ GO:0048533 GO:0048533 regulation of neuron projection development 284 215 $1.91E-16$ GO:0	GO:0050793	regulation of developmental process	1810	1101	5.46E-26																																																																																										
Go:0007409 Go:0007409Autore initiationGO:0023052signaling519028378.54E-25GO:0007154cell communication522128441.92E-23GO:0016043cellular component organization53729121.84E-22GO:0051239regulation of multicellular organismal process211712483.72E-22GO:0030036actin cytoskeleton organization6374351.52E-21GO:0007155cell adhesion216812671.65E-20GO:0009566regulation of signal transduction246414162.43E-19GO:0007155cell adhesion13097992.62E-18GO:0050804modulation of cell projection organization4673267.18E-18GO:0050804modulation of chemical synaptic transmission2521958.78E-18GO:00120035projection organization4533171.42E-17GO:0099167regulation of cellular process470425442.87E-17GO:0099177regulation of cellular process470425442.87E-17GO:0048522positive regulation of cellular process389621356.91E-17GO:003433cell junction organization5183538.99E-17GO:0048523negative regulation of cellular process7004562.19E-16GO:0048524regulation of cellular process7004562.19E-16GO:0048555regulation of anatomical structure morphogenesis700456 <td>GO:0048667</td> <td>cell morphogenesis involved in neuron</td> <td>381</td> <td>291</td> <td>6.02E-26</td>	GO:0048667	cell morphogenesis involved in neuron	381	291	6.02E-26																																																																																										
GO:0023052signaling519028378.54E-25GO:0007154cell communication522128441.92E-23GO:0016043cellular component organization537029121.84E-22GO:0051239regulation of multicellular organismal process21171.2483.72E-22GO:0030036actin cytoskeleton organization6374351.52E-21GO:0035556intracellular signal transduction216812671.65E-20GO:0007155cell adhesion12167541.02E-19GO:0007010cytoskeleton organization13097992.62E-18GO:0007010cytoskeleton organization13097992.62E-18GO:0007010cytoskeleton organization13097992.62E-18GO:0007010cytoskeleton organization2521958.78E-18GO:00120035regulation of cell projection organization2531951.99E-17GO:0071840cellular component organization2531951.99E-17GO:0099177regulation of cellular process470425442.87E-17GO:0099536synaptic signaling5223565.07E-17GO:0009555regulation of cellular process389621356.91E-17GO:0009536synaptic signaling5223565.07E-17GO:0009536synaptic signaling5223565.07E-17GO:0009557regulation of cellular process389621356.91E-17GO:0010975regulati	GO:0007409	axonogenesis	298	237	3.00E-25																																																																																										
GO:0007154cell communication52212844 $1.92E-23$ GO:0016043cellular component organization53702912 $1.84E-22$ GO:0051239regulation of multicellular organismal process2117 1248 $3.72E-22$ GO:003036actin cytoskeleton organization637435 $1.52E-21$ GO:003036actin cytoskeleton organization637435 $1.52E-21$ GO:0007155cell adhesion2168 1267 $1.65E-20$ GO:0007010cytoskeleton organization2464 1416 $2.43E-19$ GO:0007010cytoskeleton organization1309799 $2.62E-18$ GO:0035804modulation of cell projection organization467326 $7.18E-18$ GO:0050804modulation of chemical synaptic transmission252195 $8.78E-18$ GO:0071840cellular component organization453317 $1.42E-17$ GO:0099177regulation of galait process55392962 $1.45E-17$ GO:0048522positive regulation of cellular process47042544 $2.87E-17$ GO:0048523negative regulation of cellular process38962135 $6.91E-17$ GO:002603regulation of neuron projection development288215 $1.91E-16$ GO:002603regulation of cellular process38962135 $6.91E-17$ GO:002603regulation of cellular process38962135 $6.91E-17$ GO:002603regulation of neuron projection development288215 $1.91E-$	GO:0023052	signaling	5190	2837	8.54E-25																																																																																										
G0:0016043 cellular component organization 5370 2912 1.84E-22 G0:0016043 cellular component organismal process 2117 1248 3.72E-22 G0:0030036 atin cytoskeleton organization 637 435 1.52E-21 G0:0030556 intracellular signal transduction 2168 1267 1.65E-20 G0:0030556 intracellular signal transduction 2168 1267 1.65E-20 G0:0007155 cell adhesion 1216 754 1.02E-19 G0:0031344 regulation of signal transduction 2464 1416 2.43E-19 G0:0031344 regulation of cell projection organization 467 326 7.18E-18 G0:0120035 regulation of plasma membrane bounded cell 453 317 1.42E-17 G0:0071840 cellular component organization or biogenesis 5539 2962 1.45E-17 G0:0099177 regulation of cellular process 4704 2544 2.87E-17 G0:009936 synaptic signaling 522 356 5.07E-17 G0:009936 synaptic signaling 523 195 1.99E-17 <t< td=""><td>GO:0007154</td><td>cell communication</td><td>5221</td><td>2844</td><td>1 92E-23</td></t<>	GO:0007154	cell communication	5221	2844	1 92E-23																																																																																										
G0:001013regulation of multicellular organismal process211712483.72E-22G0:003036actin cytoskeleton organization6374351.52E-21G0:003556intracellular signal transduction216812671.65E-20G0:0007155cell adhesion12167541.02E-19G0:000966regulation of signal transduction246414162.43E-19G0:0007010cytoskeleton organization13097992.62E-18G0:0007010cytoskeleton organization13097992.62E-18G0:00131344regulation of chemical synaptic transmission2521958.78E-18G0:0120035regulation of plasma membrane bounded cell4533171.42E-17G0:0017140cellular component organization or biogenesis553929621.45E-17G0:009177regulation of cellular process470425442.87E-17G0:0048522positive regulation of cellular process389621356.91E-17G0:0048523negative regulation of cellular process389621356.91E-17G0:0010975regulation of nantorical structure morphogenesis7004562.19E-16G0:0012003regulation of cellular process98962.1356.91E-17G0:0048523negative regulation of neuron projection development2882151.91E-16G0:0010975regulation of cellular process7004562.19E-16G0:0007417central nervous system development584389	GO:0016043	cellular component organization	5370	2912	1 84F-22																																																																																										
G0:001203 G0:001203regulation of numeric organization217612171.06E-21G0:003036 G0:003036 actin cytoskeleton organization6374351.52E-21G0:0035556 G0:0007155 Cell adhesion12167541.02E-19G0:0007155 G0:0009966 regulation of signal transduction246414162.43E-19G0:0007010 Cytoskeleton organization13097992.62E-18G0:00031344 G0:0003084regulation of cell projection organization4673267.18E-18G0:00120035 projection organization4533171.42E-17G0:0071840 Colluar component organization or biogenesis553929621.45E-17G0:0048522 G0:0048522 positive regulation of cellular process470425442.87E-17G0:0048523 G0:0048523 regulation of cellular process389621356.91E-17G0:0012075 G0:00048523 regulation of cellular process389621356.91E-17G0:0012075 G0:0048523 regulation of cellular process389621356.91E-17G0:0012075 G0:0048523 regulation of cellular process389621356.91E-17G0:0012075 G0:00045595 regulation of cell differentiation5183538.99E-17G0:0007417 Central nervous system development2843894.80E-16G0:0007417 	GO:0051239	regulation of multicellular organismal process	2117	1248	3 72E-22																																																																																										
GO:0030036attinut organizationE17014771607GO:0030036attin cytoskeleton organization637435 $1.52E-21$ GO:0007155cell adhesion21681267 $1.65E-20$ GO:0009966regulation of signal transduction24641416 $2.43E-19$ GO:000710cytoskeleton organization1309799 $2.62E-18$ GO:00050804modulation of cell projection organization467326 $7.18E-18$ GO:0120035regulation of plasma membrane bounded cell453 317 $1.42E-17$ GO:0071840cellular component organization or biogenesis55392962 $1.45E-17$ GO:0099576synaptic signaling253195 $1.99E-17$ GO:0099536synaptic signaling522356 $5.07E-17$ GO:0048523negative regulation of cellular process38962135 $6.91E-17$ GO:00120035regulation of cellular process38962135 $6.91E-17$ GO:0048523negative regulation of cellular process38962135 $6.91E-17$ GO:00120037regulation of anatomical structure morphogenesis700 456 $2.19E-16$ GO:00120036regulation of cellular process3896 2135 $6.91E-17$ GO:0048523negative regulation of cellular process 3896 2135 $6.91E-17$ GO:001975regulation of anatomical structure morphogenesis 700 456 $2.19E-16$ GO:0007417central nervous system development 584 389	GO:0031233	animal organ development	2176	1277	1.06E-21																																																																																										
GO:00035556intracellular signal transduction216812671.65E-20GO:0035556intracellular signal transduction216812671.65E-20GO:0007155cell adhesion12167541.02E-19GO:0007010cytoskeleton organization246414162.43E-19GO:00031344regulation of cell projection organization4673267.18E-18GO:0050804modulation of chemical synaptic transmission2521958.78E-18GO:0120035regulation of plasma membrane bounded cell4533171.42E-17GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0007417central nervous system development5843894.80E-16GO:0007417central nervous system development5843894.80E-16GO:0007574regulation of cellular process52348866.17E-16GO:000754regulation of cellular process5242.8778	GO:0030036	actin cytoskeleton organization	637	435	1 52E-21																																																																																										
GO:0007155cell adhesion12167541.02E-19GO:0007010cytoskeleton organization13097992.62E-18GO:00031344regulation of cell projection organization13097992.62E-18GO:0050804modulation of chemical synaptic transmission2521958.78E-18GO:0120035regulation of plasma membrane bounded cell projection organization4533171.42E-17GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0048522positive regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of cellular process7004562.19E-16GO:0022603regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0007417central nervous system development5843894.80E-16GO:0007417central nervous system development5843894.80E-16GO:000837regulation of biological process529428278.88E-16GO:000837positive regulation of biological process529428278.88E-16	GO:0035556	intracellular signal transduction	2168	1267	1.65E-20																																																																																										
GO:0001100Certratinistication121013471.002113GO:0009966regulation of signal transduction246414162.43E-19GO:0007010cytoskeleton organization13097992.62E-18GO:00031344regulation of cell projection organization4673267.18E-18GO:00050804modulation of chemical synaptic transmission2521958.78E-18GO:0120035regulation of plasma membrane bounded cell projection organization4533171.42E-17GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0007417central nervous system development5843894.80E-16GO:0007417central nervous system development5843894.80E-16GO:0007417central nervous system development5843894.80E-16GO:0007417central nervous system development5843894.80E-16GO:00048518positive regulation	GO:0007155	cell adhesion	1216	754	1.02E-19																																																																																										
GO:000700regulation of signific function24.64141024.62E15GO:0007010cytoskeleton organization13097992.62E-18GO:0031344regulation of cell projection organization4673267.18E-18GO:0050804modulation of chemical synaptic transmission2521958.78E-18GO:0120035regulation of plasma membrane bounded cell projection organization4533171.42E-17GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:002603regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:005794regulation of cellular process52248866.17E-16GO:0048518positive regulation of biological process5223238861.7E-16GO:0007417central nervous system development5843894.80E-16GO:0007637regulation of cellular process52348866.17E-16GO:0007648positive regulation of biological process529428278.88E-16GO:0048518 </td <td>GO:0007155</td> <td>regulation of signal transduction</td> <td>2464</td> <td>1416</td> <td>2 43F-19</td>	GO:0007155	regulation of signal transduction	2464	1416	2 43F-19																																																																																										
GO:00013144regulation of cell projection organization150717972.021 13GO:0031344regulation of cell projection organization4673267.18E-18GO:0050804modulation of chemical synaptic transmission2521958.78E-18GO:0120035regulation of plasma membrane bounded cell projection organization4533171.42E-17GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:00120035cell junction organization5183538.99E-17GO:001975regulation of neuron projection development2882151.91E-16GO:0022603regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:005794regulation of cellular process952348866.17E-16GO:0048518positive regulation of cellular process529428278.88E-16GO:0048518positive regulation of cellular process529428278.88E-16	GO:0007010	cytoskeleton organization	1309	799	2.43E 19 2.62E-18																																																																																										
GO:0051344Regulation of cell projection organization4073267.105 10GO:0050804modulation of chemical synaptic transmission2521958.78E-18GO:0120035regulation of plasma membrane bounded cell projection organization4533171.42E-17GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process52248866.17E-16GO:0048518positive regulation of collular process5223562.71E-16GO:0045595regulation of cellular process5243894.80E-16GO:0050794regulation of cellular process52348866.17E-16GO:0048518positive regulation of biological process52428278.88E-16GO:0048518positive regulation of biological process529428278.88E-16 <tr <td<="" td=""><td>GO:0007010 GO:0031344</td><td>regulation of cell projection organization</td><td>467</td><td>326</td><td>7 18F-18</td></tr> <tr><td>GO:0120035regulation of plasma membrane bounded cell projection organization4533171.42E-17GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:002603regulation of anatomical structure morphogenesis7004562.19E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0048518positive regulation of biological process5013401.25E-15</td><td>GO:0050804</td><td>modulation of chemical synaptic transmission</td><td>252</td><td>195</td><td>8.78E-18</td></tr> <tr><td>GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0099536synaptic signaling5223565.07E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0048518positive regulation of biological process5013401.25E-15</td><td>GO:0120035</td><td>regulation of plasma membrane bounded cell</td><td>453</td><td>317</td><td>1.42E-17</td></tr> <tr><td>GO:0099177regulation of trans-synaptic signaling$253$$195$$1.99E-17$GO:0099177regulation of trans-synaptic signaling$253$$195$$1.99E-17$GO:0048522positive regulation of cellular process$4704$$2544$$2.87E-17$GO:0048523negative regulation of cellular process$3896$$2135$$6.91E-17$GO:0048523negative regulation of cellular process$3896$$2135$$6.91E-17$GO:0034330cell junction organization$518$$353$$8.99E-17$GO:0010975regulation of neuron projection development$288$$215$$1.91E-16$GO:0022603regulation of cell differentiation$1129$$693$$2.71E-16$GO:0007417central nervous system development$584$$389$$4.80E-16$GO:0050794regulation of biological process$9523$$4886$$6.17E-16$GO:0048518positive regulation of biological process$5294$$2827$$8.88E-16$GO:0048518positive regulation of biological process$501$$240$$1.25E-15$</td><td>GO:0071840</td><td>cellular component organization or biogenesis</td><td>5539</td><td>2962</td><td>1.45E-17</td></tr> <tr><td>GO:00048522positive regulation of cellular process470425442.87E-17GO:0048523positive regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of biological process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0049537trane strugging5013401.25E-15</td><td>GO:0099177</td><td>regulation of trans-synaptic signaling</td><td>253</td><td>195</td><td>199E-17</td></tr> <tr><td>GO:0049522positive regulation of cellular process470425442.07E-17GO:0099536synaptic signaling5223565.07E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523cell junction organization5183538.99E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of cell differentiation11296932.71E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0049537trans expansio signaling5013401.25E-15</td><td>GO:00/9522</td><td>nositive regulation of cellular process</td><td>4704</td><td>2544</td><td>2 87E-17</td></tr> <tr><td>GO:0073530Symplet signaling5225305301GO:0048523negative regulation of cellular process389621356.91E-17GO:0034330cell junction organization5183538.99E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:009537trans symplet signaling5013401.25E-15</td><td>GO:0040522 GO:0099536</td><td>synaptic signaling</td><td>522</td><td>356</td><td>5.07E-17</td></tr> <tr><td>GO:0040225negative regulation of central process367021350.31E-17GO:0034330cell junction organization5183538.99E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5013401.25E-15</td><td>GO.0079550</td><td>negative regulation of cellular process</td><td>3896</td><td>2135</td><td>6.91E-17</td></tr> <tr><td>GO:001975regulation of gamzation5165556.39E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5013401.25E-15</td><td>GO:003/330</td><td>cell junction organization</td><td>518</td><td>353</td><td>8.99E-17</td></tr> <tr><td>GO:0010713regulation of neuron projection development2882131.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5013401.25E-15</td><td>GO:0034330 GO:0010075</td><td>regulation of neuron projection development</td><td>288</td><td>215</td><td>1.01E 16</td></tr> <tr><td>GO:0022003regulation of anatomical structure morphogenesis7004502.19E-10GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans-synaptic signaling5012401.25E-15</td><td>GO:00109/3</td><td>regulation of anatomical structure morphogenesis</td><td>200 700</td><td>21J 456</td><td>1.71E-10 2.10E-16</td></tr> <tr><td>GO:007417regulation of cell uniferination11290952./1E-10GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5012401.25E-15</td><td>GO:0022003 GO:0045505</td><td>regulation of cell differentiation</td><td>1120</td><td>400</td><td>2.17E-10 2.71E-16</td></tr> <tr><td>GO:000717central nervous system development5645694.00E-10GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5012401.25E-15</td><td>GO:0043393 GO:0007417</td><td>central nervous system development</td><td>584</td><td>380</td><td>2.71E-10 4.80E-16</td></tr> <tr><td>GO:0048518positive regulation of biological process592.548800.1/E-10GO:0048518trans.straptic signaling50128278.88E-16GO:0099537trans.straptic signaling5012401.25E-15</td><td>GO:0007417</td><td>regulation of cellular process</td><td>0572</td><td>1886</td><td>00E-10 6 17E 16</td></tr> <tr><td>GO(000537) trans supartic signaling $GO(00537)$ trans supartic signaling $SO(1-20057)$</td><td>GO:0030794</td><td>nositive regulation of biological process</td><td>5201</td><td>4000 2827</td><td>8.88E-16</td></tr> <tr><td>NULL SAUSSION AND AND AND AND AND AND AND AND AND AN</td><td>GO:0099537</td><td>trans-synantic signaling</td><td>501</td><td>340</td><td>1 25E-15</td></tr>	GO:0007010 GO:0031344	regulation of cell projection organization	467	326	7 18F-18	GO:0120035regulation of plasma membrane bounded cell projection organization4533171.42E-17GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:002603regulation of anatomical structure morphogenesis7004562.19E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0048518positive regulation of biological process5013401.25E-15	GO:0050804	modulation of chemical synaptic transmission	252	195	8.78E-18	GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0099536synaptic signaling5223565.07E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0048518positive regulation of biological process5013401.25E-15	GO:0120035	regulation of plasma membrane bounded cell	453	317	1.42E-17	GO:0099177regulation of trans-synaptic signaling 253 195 $1.99E-17$ GO:0099177regulation of trans-synaptic signaling 253 195 $1.99E-17$ GO:0048522positive regulation of cellular process 4704 2544 $2.87E-17$ GO:0048523negative regulation of cellular process 3896 2135 $6.91E-17$ GO:0048523negative regulation of cellular process 3896 2135 $6.91E-17$ GO:0034330cell junction organization 518 353 $8.99E-17$ GO:0010975regulation of neuron projection development 288 215 $1.91E-16$ GO:0022603regulation of cell differentiation 1129 693 $2.71E-16$ GO:0007417central nervous system development 584 389 $4.80E-16$ GO:0050794regulation of biological process 9523 4886 $6.17E-16$ GO:0048518positive regulation of biological process 5294 2827 $8.88E-16$ GO:0048518positive regulation of biological process 501 240 $1.25E-15$	GO:0071840	cellular component organization or biogenesis	5539	2962	1.45E-17	GO:00048522positive regulation of cellular process470425442.87E-17GO:0048523positive regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of biological process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0049537trane strugging5013401.25E-15	GO:0099177	regulation of trans-synaptic signaling	253	195	199E-17	GO:0049522positive regulation of cellular process470425442.07E-17GO:0099536synaptic signaling5223565.07E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523cell junction organization5183538.99E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of cell differentiation11296932.71E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0049537trans expansio signaling5013401.25E-15	GO:00/9522	nositive regulation of cellular process	4704	2544	2 87E-17	GO:0073530Symplet signaling5225305301GO:0048523negative regulation of cellular process389621356.91E-17GO:0034330cell junction organization5183538.99E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:009537trans symplet signaling5013401.25E-15	GO:0040522 GO:0099536	synaptic signaling	522	356	5.07E-17	GO:0040225negative regulation of central process367021350.31E-17GO:0034330cell junction organization5183538.99E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5013401.25E-15	GO.0079550	negative regulation of cellular process	3896	2135	6.91E-17	GO:001975regulation of gamzation5165556.39E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5013401.25E-15	GO:003/330	cell junction organization	518	353	8.99E-17	GO:0010713regulation of neuron projection development2882131.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5013401.25E-15	GO:0034330 GO:0010075	regulation of neuron projection development	288	215	1.01E 16	GO:0022003regulation of anatomical structure morphogenesis7004502.19E-10GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans-synaptic signaling5012401.25E-15	GO:00109/3	regulation of anatomical structure morphogenesis	200 700	21J 456	1.71E-10 2.10E-16	GO:007417regulation of cell uniferination11290952./1E-10GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5012401.25E-15	GO:0022003 GO:0045505	regulation of cell differentiation	1120	400	2.17E-10 2.71E-16	GO:000717central nervous system development5645694.00E-10GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5012401.25E-15	GO:0043393 GO:0007417	central nervous system development	584	380	2.71E-10 4.80E-16	GO:0048518positive regulation of biological process592.548800.1/E-10GO:0048518trans.straptic signaling50128278.88E-16GO:0099537trans.straptic signaling5012401.25E-15	GO:0007417	regulation of cellular process	0572	1886	00E-10 6 17E 16	GO(000537) trans supartic signaling $GO(00537)$ trans supartic signaling $SO(1-20057)$	GO:0030794	nositive regulation of biological process	5201	4000 2827	8.88E-16	NULL SAUSSION AND AND AND AND AND AND AND AND AND AN	GO:0099537	trans-synantic signaling	501	340	1 25E-15
GO:0007010 GO:0031344	regulation of cell projection organization	467	326	7 18F-18																																																																																											
GO:0120035regulation of plasma membrane bounded cell projection organization4533171.42E-17GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:002603regulation of anatomical structure morphogenesis7004562.19E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0048518positive regulation of biological process5013401.25E-15	GO:0050804	modulation of chemical synaptic transmission	252	195	8.78E-18																																																																																										
GO:0071840cellular component organization or biogenesis553929621.45E-17GO:0099177regulation of trans-synaptic signaling2531951.99E-17GO:0048522positive regulation of cellular process470425442.87E-17GO:0099536synaptic signaling5223565.07E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0048518positive regulation of biological process5013401.25E-15	GO:0120035	regulation of plasma membrane bounded cell	453	317	1.42E-17																																																																																										
GO:0099177regulation of trans-synaptic signaling 253 195 $1.99E-17$ GO:0099177regulation of trans-synaptic signaling 253 195 $1.99E-17$ GO:0048522positive regulation of cellular process 4704 2544 $2.87E-17$ GO:0048523negative regulation of cellular process 3896 2135 $6.91E-17$ GO:0048523negative regulation of cellular process 3896 2135 $6.91E-17$ GO:0034330cell junction organization 518 353 $8.99E-17$ GO:0010975regulation of neuron projection development 288 215 $1.91E-16$ GO:0022603regulation of cell differentiation 1129 693 $2.71E-16$ GO:0007417central nervous system development 584 389 $4.80E-16$ GO:0050794regulation of biological process 9523 4886 $6.17E-16$ GO:0048518positive regulation of biological process 5294 2827 $8.88E-16$ GO:0048518positive regulation of biological process 501 240 $1.25E-15$	GO:0071840	cellular component organization or biogenesis	5539	2962	1.45E-17																																																																																										
GO:00048522positive regulation of cellular process470425442.87E-17GO:0048523positive regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of biological process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0049537trane strugging5013401.25E-15	GO:0099177	regulation of trans-synaptic signaling	253	195	199E-17																																																																																										
GO:0049522positive regulation of cellular process470425442.07E-17GO:0099536synaptic signaling5223565.07E-17GO:0048523negative regulation of cellular process389621356.91E-17GO:0048523cell junction organization5183538.99E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of cell differentiation11296932.71E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0049537trans expansio signaling5013401.25E-15	GO:00/9522	nositive regulation of cellular process	4704	2544	2 87E-17																																																																																										
GO:0073530Symplet signaling5225305301GO:0048523negative regulation of cellular process389621356.91E-17GO:0034330cell junction organization5183538.99E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:0007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:009537trans symplet signaling5013401.25E-15	GO:0040522 GO:0099536	synaptic signaling	522	356	5.07E-17																																																																																										
GO:0040225negative regulation of central process367021350.31E-17GO:0034330cell junction organization5183538.99E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5013401.25E-15	GO.0079550	negative regulation of cellular process	3896	2135	6.91E-17																																																																																										
GO:001975regulation of gamzation5165556.39E-17GO:0010975regulation of neuron projection development2882151.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5013401.25E-15	GO:003/330	cell junction organization	518	353	8.99E-17																																																																																										
GO:0010713regulation of neuron projection development2882131.91E-16GO:0022603regulation of anatomical structure morphogenesis7004562.19E-16GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5013401.25E-15	GO:0034330 GO:0010075	regulation of neuron projection development	288	215	1.01E 16																																																																																										
GO:0022003regulation of anatomical structure morphogenesis7004502.19E-10GO:0045595regulation of cell differentiation11296932.71E-16GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans-synaptic signaling5012401.25E-15	GO:00109/3	regulation of anatomical structure morphogenesis	200 700	21J 456	1.71E-10 2.10E-16																																																																																										
GO:007417regulation of cell uniferination11290952./1E-10GO:007417central nervous system development5843894.80E-16GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5012401.25E-15	GO:0022003 GO:0045505	regulation of cell differentiation	1120	400	2.17E-10 2.71E-16																																																																																										
GO:000717central nervous system development5645694.00E-10GO:0050794regulation of cellular process952348866.17E-16GO:0048518positive regulation of biological process529428278.88E-16GO:0099537trans synaptic signaling5012401.25E-15	GO:0043393 GO:0007417	central nervous system development	584	380	2.71E-10 4.80E-16																																																																																										
GO:0048518positive regulation of biological process592.548800.1/E-10GO:0048518trans.straptic signaling50128278.88E-16GO:0099537trans.straptic signaling5012401.25E-15	GO:0007417	regulation of cellular process	0572	1886	00E-10 6 17E 16																																																																																										
GO(000537) trans supartic signaling $GO(00537)$ trans supartic signaling $SO(1-20057)$	GO:0030794	nositive regulation of biological process	5201	4000 2827	8.88E-16																																																																																										
NULL SAUSSION AND AND AND AND AND AND AND AND AND AN	GO:0099537	trans-synantic signaling	501	340	1 25E-15																																																																																										

C0	0000016	antono anodo tuono, avinantio gianglino	405	226	1 02E 15
60	0098910	anterograde trans-synaptic signaling	495	550	1.95E-15
GO	:0007268	chemical synaptic transmission	495	336	1.93E-15
CO	0007165	signal transduction	1776	2566	2 20E 15
60	000/105	signal transduction	4770	2300	2.30E-13
GO	:0009987	cellular process	14783	7306	2.42E-15
CO	0049592	regulation of response to stimulus	2227	1925	2 42E 15
00	.0046363	regulation of response to sumulus	3321	1035	3.42E-13
GO	:0097485	neuron projection guidance	169	137	5.04E-15
CO	0007411	avon guidance	160	127	5 0/E 15
60	0007411	axon guidance	109	157	3.04E-13
GO	:0065007	biological regulation	10721	5447	5.19E-15
CO	0040510		4201	2265	C COE 15
GO	0048519	negative regulation of biological process	4381	2305	0.00E-15
GO	0065008	regulation of biological quality	2937	1634	6 88E-15
00	0022070		1615	047	7.505.15
GO	:0032879	regulation of localization	1615	947	/.50E-15
GO	0051716	cellular response to stimulus	5982	3159	9 70E-15
00	0050700		10005	5132	1.01E 14
GO	:0050789	regulation of biological process	10085	5143	1.21E-14
GO	0007267	cell-cell signaling	1269	761	1 63E-14
00	.0007207		1207	701	1.05E 14
GO	0051094	positive regulation of developmental process	967	595	6.68E-14
GO	0051179	localization	4343	2335	1 81F-13
00	.0051175	iocalization	4040	2333	1.01E 15
GO	:0050770	regulation of axonogenesis	100	88	2.65E-13
GO	0051049	regulation of transport	1327	786	3 15E-13
00	.00510+7	regulation of transport	1327	700	5.151 15
GO	0:0048870	cell motility	1362	804	4.26E-13
GO	0.0007167	enzyme-linked recentor protein signaling pathway	795	497	5 75E-13
00	.000/10/	enzyme miked receptor protein signaming patrway	175	+)/	5.751 15
GO	0009887	animal organ morphogenesis	582	378	7.07E-13
GO	0050808	synanse organization	275	108	3 52E-12
00	.0050000	synapse organization	215	170	5.521-12
GO	0:0051960	regulation of nervous system development	257	187	3.93E-12
CO	0016477	coll migration	1210	717	7 OOE 12
60	0010477	cen migration	1210	/1/	7.09E-12
GO	:0009888	tissue development	1239	732	8.83E-12
CO	0002012	musale system process	205	215	804E 12
00	.0003012	muscle system process	305	215	0.94E-12
GO	:0055085	transmembrane transport	1060	635	1.60E-11
		······································			
GO	0051130	positive regulation of cellular component	844	518	1 69E-11
00	.0051150	organization	044	516	1.091-11
	000 (010	organization	2 (2 0	1054	1.005.11
GO	:0006810	transport	3620	1956	1.92E-11
GO	0065009	regulation of molecular function	2121	1192	2.01E-11
00	0040011		1075	(11	4 205 11
GO	:0040011	locomotion	10/5	641	4.38E-11
GO	0098660	inorganic ion transmembrane transport	622	394	5 04E-11
00	.00/0000		010	331	5.01E 11
GO	:0042391	regulation of membrane potential	319	221	7.21E-11
GO	0.0051234	establishment of localization	3775	2029	7 97E-11
00	.0031234		5115	202)	7.77E 11
GO	:0007/015	actin filament organization	395	265	8.57E-11
		positive regulation of transcription by RNA			
GO	:0045944	positive regulation of transcription by RIVR	952	573	1.11E-10
		polymerase II			
GO	0007420	brain development	381	258	1 44E 10
00	.0007420	brain development	564	256	1.441-10
GO	0098655	cation transmembrane transport	656	411	1.57E-10
GO	0023057	negative regulation of signaling	1067	634	$1.61E_{-}10$
00	.0023037	negative regulation of signaling	1007	0.54	1.01L-10
GO	0061061	muscle structure development	407	271	1.72E-10
		transmembrane recentor protein tyrosine kingse			
GO	0007169	uansmemorale receptor protein tyrosile kilase	511	330	1.77E-10
00		signaling pathway	011	000	111/12/10
CO	0024220	ion transmombrana transnort	916	409	2.25E 10
00	.0034220	ion transmentorate transport	810	490	2.2512-10
GO	0:0016310	phosphorylation	1444	833	2.28E-10
CO	1002521	regulation of intracellular signal transduction	1420	825	2 20E 10
00	.1902551	regulation of intracentital signal transduction	1429	625	2.39E-10
GO	:0007264	small GTPase mediated signal transduction	389	260	2.86E-10
GO	0010648	negative regulation of cell communication	1060	629	2 80F 10
00	.0010048	negative regulation of cell communication	1000	029	2.69E-10
GO	0:0050767	regulation of neurogenesis	208	153	3.26E-10
60	0060322	head development	402	267	4.05E 10
00	.0000322		-102	207	4.051-10
GO	:0040012	regulation of locomotion	842	511	4.05E-10
60	0006036	muscle contraction	260	18/	4 70F 10
00	.0000930	inuscie contraction	200	104	4./9E-10
GO	:0022604	regulation of cell morphogenesis	240	172	4.91E-10
CO	0008667	inorgania action transmomhrana transport	570	262	6 09E 10
00	.0098002	norganic cation transmemorate transport	512	302	0.961-10
GO	0:0097435	supramolecular fiber organization	710	438	7.39E-10
GO	0006811	ion transport	1187	604	0 42E 10
00	.0000811	ion transport	1107	094	9.42E-10
GO	:0030001	metal ion transport	678	420	9.61E-10
CO	0048167	regulation of synantic plasticity	122	98	1.02E.00
00		regulation of synaptic plasticity	144	70	1.020-09
GO	:2000026	regulation of multicellular organismal development	981	584	1.04E-09
CO	00/15507	positive regulation of call differentiation	624	300	1 13E 00
60	.00+3377	positive regulation of cell unrefentiation	024	390	1.13E-09
GO	:2000145	regulation of cell motility	818	496	1.14E-09
CO	0030334	regulation of call migration	767	168	1 35E 00
60	.0030334	regulation of cen inigration	/0/	+00	1.33E-09
GO	:0048585	negative regulation of response to stimulus	1287	745	2.06E-09
CO	0072350	circulatory system development	720	116	271E 00
00	.0012339	circulatory system development	127	-++0	2./10-09
	1002500	positive regulation of nucleic acid-templated	1007	740	2 445 00
GO	:1903508	transprintion	1297	/49	5.44E-09
		uanscription			
GO	:0045893	positive regulation of DNA-templated transcription	1297	749	3.44E-09
	-	nositive regulation of nitrogen compound matchalic			
GO	:0051173	positive regulation of introgen compound metabolic	2565	1404	3.55E-09
		process	2000		5.551 07

GO.001992 positive regulation of elervous system development 147 113 3.39E-09 GO.001996 positive regulation of elervous system 109 95 4.65E-09 GO.001996 regulation of elervous system based process 130 122 6.5E-09 GO.002906 regulation of elervous based process 130 750 8.22E-09 GO.001912 positive regulation of ellutina metabolic process 132 146 7.67E-09 GO.004068 protein hosphorylation area 74 467 1.61E-08 GO.004087 regulation of ellutina metabolic process 322 256 1.94E-08 GO.004087 regulation of ellutina rentabolic process 322 256 1.94E-08 GO.004087 regulation of ellutina rentabolic proces 252 1.94E-08 6.0060253 GO.004087 regulation of ellutina rentabolic proces 226 1.77 3.24E-08 GO.006050 developmental coll growth 1.29 2.56 1.77 3.24E-08 GO.006054 regulation of salot morphogenesis 1.33 <	CO:00510C2	and the second state of a second se	147	112	2.025.00
GO.0031346 positive regulation of cell projection organization 247 174 3.98E.09 GO.000968 negative regulation of signal transduction 1009 955 6.51E.49 GO.000168 protein phosphorylation 1248 732 6.97E.49 GO.0013135 positive regulation of caltin finamethase transport 1248 732 6.97E.49 GO.0013135 positive regulation of cellular metabolic process 2522 1378 1.21E.06 GO.0040477 regulation of cellular component biogenesis 335 104 2.36E.08 GO.0040578 regulation of cellular component size 256 1.94E-08 GO.004558 GO.0040571 regulation of cellular component size 236 1.77 3.24E-08 GO.0051056 regulation of cellular component size 236 1.66 4.61E-08 GO.0051056 regulation of cellular component size 236 1.66 4.61E-08 GO.0051056 regulation of cellular component size 238 1.66 4.61E-08 GO.0051056 regulation of cellular component size 238 <td< td=""><td>GO:0051962</td><td>positive regulation of nervous system development</td><td>14/</td><td>115</td><td>3.93E-09</td></td<>	GO:0051962	positive regulation of nervous system development	14/	115	3.93E-09
GO.0000812 cution transport b S86 530 4.338-18-09 GO.0003270 regulation of actin filament-based process 330 2.22 6.531E-09 GO.0005270 regulation of actin filament-based process 330 2.22 6.532E-09 GO.0005135 positive regulation of RNA biosyntheit process 1303 750 8.722 6.7272-09 GO.0004135 positive regulation of SNA biosyntheit process 332 2.25 1.94E-08 GO.0044057 regulation of cellular methologenesis 331 1.04 2.36E-08 GO.0044057 regulation of cellular component size 2.36 1.71 2.34E-08 GO.0044057 regulation of cellular component size 2.36 1.71 2.34E-08 GO.004057 regulation of cellular component size 2.36 1.71 2.34E-08 GO.004057 2.34E-07	GO:0031346	positive regulation of cell projection organization	247	174	3.98E-09
CO 00000-2 cumm tangent arrow arrow c. 51E 2-0 CO 0000648 reportein plosphorylation 1268 722 6.57E 2-0 CO 0000649 potesim in or transmembrane transport 185 136 7.77E 2-0 CO 0001649 positive regulation of cellular metabolic process 1303 750 8.22E-09 CO 0004077 regulation of cellular metabolic process 792 256 1.94E-08 GO 0004087 regulation of cellular component biogenesis 774 467 1.61E-08 GO 0004087 regulation of cellular component size 256 1.94E-08 GO 0004588 developmental cell growth 129 100 3.06E-08 GO 00051056 regulation of cell development 315 211 4.14E-08 GO 00051056 regulation of cell development 238 166 4.61E-08 GO 00051057 inorganic cation import across plasma membrane 112 88 1.00E-07 GO 00051067 inorganic cation import across plasma membrane 113 815 1.76E-07 GO 000524	CO:0006812	action transport	996	520	4 28E 00
GO.0009968 negative regulation of signal transduction 1009 595 6.5.1E.49 GO.0006468 protein phosphorylation 1268 732 6.57E.49 GO.001720 proslitive regulation of callular methodic process 1303 730 8.22E.49 GO.0014087 regulation of callular methodic process 252 1378 1.21E.40 GO.0044087 regulation of callular component biogenesis 734 467 1.61E.408 GO.0044087 regulation of callular component size 256 177 3.24E.648 GO.0043838 regulation of callular component size 256 177 3.24E.648 GO.0005054 regulation of callular component size 256 177 3.24E.648 GO.0005165 transduction 743 448 5.00E-648 GO.0005165 inorganic cation import across plasma membrane 112 88 1.40E-477 GO.0005987 inorganic cation import across plasma membrane 112 88 1.40E-477 GO.0005987 positive regulation of mulceublar organismal 1137 655 1.76E	00.0000812	cation transport	000	550	4.38E-09
GO.20032970 regulation of actin filament-based process 330 222 6.527E-09 GO.20071805 potasism ion transmembrane transport 185 136 7.57E-09 GO.20031235 positive regulation of RNA biosynthetic process 1303 750 8.22E-09 GO.20041057 regulation of cellular component biogenesis 774 467 1.61E-08 GO.200404057 regulation of cellular component size 256 177 3.24E-08 GO.20040588 developmental growth involved in morphogenesis 135 104 2.34E-08 GO.20040584 regulation of cellular component size 256 177 3.24E-08 GO.20040584 regulation of small GTBs emediated signal 238 166 4.61E-08 GO.20040584 regulation of SNA metabolic process 1333 220 1.22E-07 GO.200498609 cell-substrate adhesion 743 448 5.00E-08 GO.200498609 cell-substrate adhesion 743 448 5.00E-08 GO.200498609 cell-substrate adhesion 238 1.02E-07 GO.2004993	GO:0009968	negative regulation of signal transduction	1009	595	6.51E-09
GO 0006469 protein plosphorylation 1000000000000000000000000000000000000	GO:0032970	regulation of actin filament-based process	330	222	6 52E-09
C0.000648 protein phosphorylation 1268 (32) Co. 77E-09 C0.001902680 positive regulation of calliar methodic process 1303 750 8:22E-09 C0.0014037 regulation of calliar methodic process 1333 750 8:22E-09 C0.0044037 regulation of calliar component size 256 177 3:24E-08 C0.0040588 developmental cell growth 256 177 3:24E-08 C0.0005251 regulation of cellular component size 256 177 3:24E-08 C0.0005251 regulation of cellular component size 256 177 3:24E-08 C0.0005054 regulation of cellular component size 256 177 3:24E-08 C0.0005054 regulation of source propent size 256 177 3:24E-08 C0.0005054 regulation of source propent size 233 106 4:61E-08 C0.0005057 inorganic cation import across plasma membrane 112 88 1:40E-07 C0.0005079 positive regulation of RNA metabolic process 137 155 1:76E-07 C0.0005079 positive regulation of nacromolecule metabolic 2889 </td <td>00.0032770</td> <td>regulation of actin manent based process</td> <td>550</td> <td>222</td> <td>0.52E 05</td>	00.0032770	regulation of actin manent based process	550	222	0.52E 05
GO:0071805 potasism ion transmembrane transport 185 136 7.74 67.74.09 GO:0001325 positive regulation of XNA biosyntheir process 2522 137.8 1.211-0.8 GO:0004067 regulation of cellular component hiogenesis 734 64.7 1.61E-0.8 GO:0004057 regulation of cellular component size 256 17.7 3.24E-0.8 GO:0000284 regulation of cellular component size 256 17.7 3.24E-0.8 GO:0000284 regulation of small GTPs mediated signal 238 166 4.61E-0.8 GO:00090204 cell-substrate adhesion 7.43 448 5.00E-0.8 GO:0009020 cell-substrate adhesion 7.43 448 5.00E-0.8 GO:0009020 cell-substrate adhesion 7.43 448 5.00E-0.8 GO:00091389 cell-substrate adhesion 7.43 448 5.00E-0.8 GO:0009277 adhesion 7.43 448 5.00E-0.8 GO:0009277 adhesion 7.43 448 5.00E-0.7 GO:00009277 anot	GO:0006468	protein phosphorylation	1268	732	6.97E-09
CO.1902680 positive regulation of RNA biosynthetic process 1303 750 88.22E.09 $CO.0044087$ regulation of cellular metholic process 722 256 1.94E.08 $CO.0044087$ regulation of system process 92 256 1.94E.08 $CO.004087$ regulation of system process 129 100 3.06E.08 $CO.0043284$ regulation of cell devolopment 129 100 3.06E.08 $CO.0043284$ regulation of cell devolopment 315 211 4.14E.08 $CO.00051056$ regulation of cell devolopment 315 211 4.14E.08 $CO.0005809$ cell-cell adhesion 743 448 5.00E.08 $CO.0005809$ cell-cell adhesion 743 448 5.00E.08 $CO.0005879$ inorganic cation inport across plasma membrane 112 88 1.04E.047 $CO.0005799$ positive regulation of multicellular organismal 1137 655 1.76E.047 $CO.0005769$ positive regulation of neurogenesis 119 92 2.53E.047 CO	GO:0071805	potassium ion transmembrane transport	185	136	7.67E-09
GO 001302 positive regulation of RNA notapinititic process 1532 133 8.222-93 GO 0014087 regulation of system process 774 467 1.612-08 GO 0044087 regulation of system process 132 136 2.256-08 GO 0044087 regulation of system process 133 104 2.256-08 GO 004506 developmental clig growth 122 100 3.06E-08 GO 004507 regulation of cell development 315 211 4.14E-08 GO 0005165 regulation of cell development 315 201 4.14E-08 GO 0005186 cell-cell adhesion 7.3 4.48 5.00E-08 GO 0005187 cell-cell adhesion 7.3 4.88 5.00E-08 GO 0005187 inorganic cation import across plasma membrane 112 88 1.40E-07 GO 0005124 positive regulation of Macholic process 1433 810 1.57E-07 GO 0005124 positive regulation of macholic process 1437 65 1.76E-07 GO 0005124 positive regulation of	CO:1002680	resitive regulation of DNA biographatic process	1202	750	8 22E 00
GO:0031325 positive regulation of cellular metabolic process 2522 1378 1.21E-08 GO:0044057 regulation of system process 392 256 1.54E-08 GO:00404057 regulation of system process 392 256 1.77 3.24E-08 GO:0060235 regulation of cell dromoponent size 256 1.77 3.24E-08 GO:0060234 regulation of cell dromoponent size 236 1.66 4.61E-08 GO:0098609 cell-substrat adhesion 743 448 5.00E-08 GO:0099860 cell-substrat adhesion 200 196 6.49E-08 GO:0099867 inorganic ion import across plasm amembrane 112 88 1.40E-07 GO:009987 positive regulation of NAN metabolic process 3177 1700 1.57E-07 GO:0005079 positive regulation of multicellator organismal 1137 655 1.76E-07 GO:0005079 positive regulation of macromolecule metabolic 2889 1533 2.57E-07 GO:00010604 process 2354 128 2.46E-07 60:00031	GO:1902680	positive regulation of KNA biosynthetic process	1303	/50	8.22E-09
GO:0044087 regulation of cellular component bigenesis 774 467 1.01E-08 GO:0040657 regulation of system process 392 2.56 1.94E-08 GO:004588 developmental cell growth 135 104 3.06E-08 GO:004588 developmental cell growth 135 2.11 4.14E-08 GO:0051056 regulation of cell development 238 166 4.61E-08 GO:00051057 regulation of small GTPase mediated signal 238 1.466 4.61E-08 GO:00051056 regulation of across plasma membrane 112 88 1.40E-07 GO:0005679 eell-cell adhesion 333 220 1.72E-07 GO:0005679 inorganic cation import across plasma membrane 112 88 1.40E-07 GO:00051254 positive regulation of matroble process 3177 1700 1.57E-07 GO:00050769 positive regulation of macromolecule metabolic 2889 1553 2.25FE-07 GO:0001604 positive regulation of macromolecule metabolic 2689 1553 2.25FE-07	GO:0031325	positive regulation of cellular metabolic process	2522	1378	1.21E-08
CO 0044403 regulation of system process 7/4 407 1011_0 CO 0044035 regulation of system process 135 104 2.36E.08 CO 0044586 developmental cell provub 135 104 2.36E.08 CO 00425255 regulation of cellular component size 256 177 3.24E.08 CO 0044586 developmental cell provub 155 2.11 4.14E.08 CO 004556 regulation of simul CTPase mediated signal 238 166 4.01E.08 CO 004031590 cell-cell rubortos plasma membrane 112 88 1.40E.07 CO 00499587 inorgonic ion improros plasma membrane 112 88 1.40E.07 CO 00499587 inorgonic ion improros plasma membrane 112 88 1.40E.07 CO 00499587 inorgonic on thetabolic process 1337 1655 1.76E.07 CO 00499587 inorgonic on thetabolic process 2889 1533 2.57E.07 GO 0049124 positive regulation of macholic process 1858 1028 2.90E.07 GO 00405493	CO:0011087	reculation of callular common and his connects	774	167	1 61E 09
GO.00404057 regulation of system process 392 256 1.94E-08 GO.0048588 developmental growth 129 100 3.06E-08 GO.0006235 regulation of cell drevelopment 315 211 4.14E-08 GO.00051056 regulation of small GTPase mediated signal 238 166 4.61E-08 GO.0008600 cell-cell adhesion 743 448 5.00E-08 GO.00098600 cell-substrat adhesion 290 196 6.49E-08 GO.0009867 inorganic cation import across plasm membrane 112 88 1.40E-07 GO.0009867 inorganic cation import across plasm membrane 112 88 1.40E-07 GO.0009867 positive regulation of NAN metabolic process 3177 1700 1.57E-07 GO.00051240 positive regulation of neurogenesis 119 92 2.53E-07 GO.00010604 positive regulation of neurogenesis 119 92 2.54E-07 GO.0001324 positive regulation of maclcoultar function 1305 742 2.64E-07 GO.0001604	60:0044087	regulation of centular component biogenesis	//4	407	1.01E-08
GO.000560 developmental cill growth 135 104 2.36E-08 GO.0005235 regulation of cell lay component size 256 177 3.24E-08 GO.0005235 regulation of cell lay component size 256 177 3.24E-08 GO.0005105 regulation of small GTPase mediated signal 238 166 4.61E-08 GO.0001667 ameboidal-type cell migration 333 220 1.12E-07 GO.000569 cell-cell adhesion 333 230 1.22E-07 GO.0005697 inorganic cation import across plasma membrane 112 88 1.40E-07 GO.0005769 positive regulation of metabolic process 1177 100 1.57E-07 GO.0051240 positive regulation of macromolecule metabolic 2889 1553 2.57E-07 GO.0040697 positive regulation of nucleobace-containing 120 2.53E-07 GO.0040693 positive regulation of nucleobace-containing 120 2.53E-07 GO.0040693 positive regulation of nucleobace-containing 120 905 3.26E-07 GO.0040627	GO:0044057	regulation of system process	392	256	1.94E-08
COMMASS Laboration of cell days and the second monopologues in the second monopologue in the second mono	GO:0060560	developmental growth involved in morphogenesis	135	104	2 36E 08
GO:004588 developmental cell growth 129 100 3.06E-08 GO:0050254 regulation of cell development 315 211 4.14E-08 GO:0050254 regulation of small GTPase mediated signal 238 166 4.61E-08 GO:00501056 regulation of small GTPase mediated signal 238 166 4.61E-08 GO:00508609 cell-substrate adhesion 243 448 5.00E-08 GO:00509567 inorganic cation import across plasma membrane 112 88 1.40E-07 GO:00050859 inorganic cation import across plasma membrane 112 88 1.40E-07 GO:0005089 positive regulation of materobic process 3177 1700 1.57E-07 GO:00051240 positive regulation of macromolecule metabolic 1137 655 1.76E-07 GO:0001604 positive regulation of molecular function 1305 742 2.64E-07 GO:0001604 positive regulation of molecular function 1305 742 2.64E-07 GO:0006027 regulation of cellular metabolic process 1254 1281 3	00.0000500	developmental growth involved in morphogenesis	155	104	2.30E-08
GO:002353 regulation of cell development 315 211 4.14E.08 GO:0051056 regulation of small GTPase mediated signal 238 166 4.61E-08 GO:0051056 regulation of small GTPase mediated signal 238 166 4.61E-08 GO:0001057 ameboidal-type cell migration 230 196 6.49E.08 GO:0001667 ameboidal-type cell migration 233 220 1.12E.07 GO:000995857 inorganic cation import across plasma membrane 112 88 1.40E-07 GO:0005240 positive regulation of NA metabolic process 3137 1700 1.57E.07 GO:0005769 positive regulation of multicellular organismal 1137 655 1.76E-07 GO:0004009 process 2889 1553 2.57E-07 GO:0004009 positive regulation of molecular function 1305 742 2.64E-07 GO:0004009 positive regulation of nucleobase-containing 1206 2.97E-07 GO:0004007 regulation of vacleobase-containing 1206 2.97E-07 GO:0004593 <t< td=""><td>GO:0048588</td><td>developmental cell growth</td><td>129</td><td>100</td><td>3.06E-08</td></t<>	GO:0048588	developmental cell growth	129	100	3.06E-08
GO:0060284 regulation of cell development 315 211 4.14E-08 GO:0051056 regulation of small GTPase mediated signal 238 166 4.61E-08 GO:0008609 cell-cell adhssion 743 448 5.00E-08 GO:0001567 cell-substrate adhesion 233 126 6.45E-08 GO:0001667 ameboida-type cell migration 333 220 1.12E-07 GO:0005787 inorganic cation import across plasma membrane 112 88 1.40E-07 GO:0005729 positive regulation of metabolic process 1333 810 1.66E-07 GO:00050769 positive regulation of macromolecule metabolic 2889 1553 2.57E-07 GO:00050769 positive regulation of macleobarc-containing 1305 742 2.64E-07 GO:00050769 positive regulation of macleobarc-containing 1620 925 2.57E-07 GO:00050769 positive regulation of macleobarc-containing 177 2.66 2.97E-07 GO:00046027 regulation of rosclear-containing 1305 742 2.64E-07	GO:0032535	regulation of cellular component size	256	177	3 24F-08
GO:00610254 regulation of cell development 315 211 4.14E-08 GO:0051056 regulation of small GTPase mediated signal transduction 238 166 4.61E-08 GO:0051056 regulation of small GTPase mediated signal transduction 230 1.12E.07 GO:000567 metodoid-type cell-unigration 333 220 1.12E.07 GO:0005869 iorganic catoin inport across plasma membrane 112 88 1.40E.07 GO:0005869 iorganic catoin inport across plasma membrane 1137 655 1.76E-07 GO:00051240 positive regulation of multicellular organismal process 119 92 2.33E-07 GO:00050769 positive regulation of neurogenesis 119 92 2.33E-07 GO:00060407 process 288 1028 2.90E-07 GO:0006077 regulation of naceromolecule metabolic process 1385 1028 2.32E-07 GO:0006073 positive regulation of nacleobase-containing 1620 905 3.26E-07 GO:000677 regulation of sucleobase-containing 1620 905 3.26E-0	60.0032353	regulation of central component size	250	1//	5.24E 00
GO:0051036 regulation of small GTPase mediated signal transduction 238 166 4.61E-08 GO:009509 cell-cell adhesion 743 448 5.00E-08 GO:0001589 cell-substrate adhesion 290 196 6.49E-08 GO:0001587 inorganic cation import across plasm membrane 112 88 1.40E-07 GO:00051254 positive regulation of mutabolic process 3177 1700 1.57E-07 GO:00051254 positive regulation of mutabolic process 1137 655 1.76E-07 GO:00050769 positive regulation of mutacompensis 119 92 2.55E-07 GO:0004409 positive regulation of cellular metabolic process 1858 1028 2.90E-07 GO:0004409 positive regulation of cellular metabolic process 147 2.66E-077 0.700046027 regulation of vaciclo-mediated transport 148 2.00E-07 GO:0004409 positive regulation of nucleobase-containing 1305 742 2.64E-07 GO:00045935 plosphorus metabolic process 1354 1218 3.36E-07 GO:0003572	GO:0060284	regulation of cell development	315	211	4.14E-08
GO:0051056 transduction 238 166 4.01E-08 GO:0005800 cell-substrate adhesion 743 448 5.00E 08 GO:0001587 iorganic contino tractorss plasma membrane 112 88 1.40E-07 GO:000587 iorganic cation import across plasma membrane 112 88 1.40E-07 GO:00051244 positive regulation of metabolic process 1333 810 1.66E-07 GO:00051240 positive regulation of multicellular organismal 1137 655 1.76E-07 GO:0001604 process 2889 1553 2.57E-07 GO:00040093 positive regulation of meurogenesis 119 92 2.53E-07 GO:0005124 positive regulation of neurogenesis 1858 1028 2.90E-07 GO:0006027 regulation of resclear-mediated transport 417 266 2.97E-07 GO:00051641 cellular tocalization 122 84 3.06E-07 GO:0006277 regulation of reguess 2354 1281 3.36E-07 GO:00061627 regulation of acrosspl		regulation of small GTPase mediated signal			
GO:0098609 cell-cell adhesion 743 448 5.00E-08 GO:0031589 cell-substrate adhesion 290 196 6.49E-08 GO:00067 amebiodid-type cell migration 293 3220 1.12E-07 GO:00095857 inorganic catoin import across plasma membrane 112 88 1.40E-07 GO:0005124 positive regulation of reatobic process 3177 1700 1.65E-07 GO:0005124 positive regulation of neurogenesis 1137 655 1.76E-07 GO:00050769 positive regulation of macronolecule metabolic 2889 1553 2.57E-07 GO:00050759 positive regulation of molecular function 1305 742 2.64E-07 GO:000460427 regulation of cellular metabolic process 1888 1028 2.90E-07 GO:00045027 regulation of rosciel-mediated transport 417 266 2.64E-07 GO:0004573 poloshorus metabolic process 1620 905 3.26E-07 GO:0004573 poloshorus metabolic process 1620 905 3.26E-07	GO:0051056	transduction	238	166	4.61E-08
GO:0098609 cell-cell adhesion 743 448 5.00E-08 GO:0001587 inorganic consing across plasma membrane 112 88 1.40E-07 GO:0009857 inorganic cation import across plasma membrane 112 88 1.40E-07 GO:009857 inorganic cation import across plasma membrane 112 88 1.40E-07 GO:0051254 positive regulation of multicellular organismal 1137 655 1.76E-07 GO:0051264 positive regulation of neurogenesis 119 92 2.53E-07 GO:0010604 positive regulation of macromolecule metabolic 2889 1553 2.57E-07 GO:0001064 positive regulation of calcular metabolic process 1305 742 2.46E-07 GO:00040409 positive regulation of calcular metabolic process 1858 1028 2.90E-07 GO:00040573 positive regulation of nucleobase-containing 1620 905 3.26E-07 GO:00045325 compound metabolic process 2354 1281 3.36E-07 GO:00045325 positive regulation of nucleobase-containing 172		transduction			
GO:0011589 cell-substrate adhesion 290 196 6.49E-08 GO:0001667 amebiodal-proce cell migration 333 220 1.12E-07 GO:0098857 inorganic caiton import across plasma membrane 112 88 1.40E-07 GO:009893 positive regulation of metabolic process 1333 810 1.66E-07 GO:0051254 positive regulation of multicellular organismal 1137 655 1.76E-07 GO:00050769 positive regulation of macromolecule metabolic 2889 1553 2.57E-07 GO:00010604 positive regulation of cellular metabolic process 1858 1028 2.90E-07 GO:00050769 positive regulation of cellular metabolic process 1858 1028 2.90E-07 GO:00060627 regulation of vesicle-mediated transport 417 266 2.97E-07 GO:00051641 cellular tocalization 1015 588 1281 3.36E-07 GO:0003725 solumi non transmembrane transport 129 98 3.06E-07 GO:0003725 solumi non transmembrane transport 129 9	GO:0098609	cell-cell adhesion	743	448	5.00E-08
G0:001399 Cell-substitute auteston 2-90 1-90 0-991-08 G0:0001667 ameboidal-type cell migration 333 220 1.12E-07 G0:009893 norganic cation import across plasma membrane 112 88 1.40E-07 G0:009893 positive regulation of metabolic process 3137 1700 1.57E-07 G0:0051240 positive regulation of RNA metabolic process 1137 655 1.76E-07 G0:0050769 positive regulation of metrogenesis 119 92 2.53E-07 G0:004093 positive regulation of molecular function 2889 1553 2.57E-07 G0:004093 positive regulation of cellular metabolic process 1805 742 2.64E-07 G0:0040627 regulation of vesicle-mediated transport 417 266 2.97E-07 G0:000633 phosphorus metabolic process 2354 1281 3.36E-07 G0:0006737 phosphorus metabolic process 2354 1281 3.36E-07 G0:0006737 phosphorus metabolic process 2354 1281 4.40E-07	CO:0021580	call substrate adhesion	200	106	6 10E 08
GO:0001667 ameboidal-type cell migration 333 2.20 1.12E-07 GO:0009865 inorganic cation import across plasma membrane 112 88 1.40E-07 GO:000989 positive regulation of metabolic process 3177 1700 1.57E-07 GO:0051254 positive regulation of multicellular organismal 1137 655 1.76E-07 GO:0050769 process 1137 655 1.76E-07 GO:001064 positive regulation of meurogenesis 119 92 2.53E-07 GO:001064 positive regulation of molecular function 1305 742 2.64E-07 GO:0010627 regulation of vecicle-mediated transport 417 266 2.97E-07 GO:0005077 regulation of vecicle-base-containing 1620 905 3.26E-07 GO:0005125 compound metabolic process 2354 1281 3.36E-07 GO:00051261 phosphorus metabolic process 2354 1281 3.36E-07 GO:000527 spolation or transport 129 98 3.60E-07 GO:00053725	00:0031389	cen-substrate adhesion	290	190	0.49E-08
GO:009587 inorganic citon import across plasma membrane 112 88 1.40E-07 GO:0005869 inorganic cation import across plasma membrane 112 88 1.40E-07 GO:0051254 positive regulation of RNA metabolic process 3177 1700 1.57E-07 GO:0051240 positive regulation of multicellular organismal 1137 655 1.76E-07 GO:0010604 process 119 92 2.53E-07 GO:0010604 process 2889 1553 2.57E-07 GO:00404093 positive regulation of melcoular function 1305 742 2.64E-07 GO:00406027 regulation of cellular metabolic process 1858 1028 2.90E-07 GO:0045935 conspound metabolic process 2354 1281 3.36E-07 GO:0045935 positive regulation of nucleobase-containing 1620 905 3.26E-07 GO:0045935 positive mode regulation of nucleobase-containing 129 98 3.60E-07 GO:00305161 cellular localization 2021 1467 3.45E-07 <t< td=""><td>GO:0001667</td><td>ameboidal-type cell migration</td><td>333</td><td>220</td><td>1.12E-07</td></t<>	GO:0001667	ameboidal-type cell migration	333	220	1.12E-07
G0:009365 introgram cation import across plasma membrane 112 as 1.40E-07 G0:0009865 inorganic cation import across plasma membrane 112 88 1.40E-07 G0:0005865 inorganic cation import across plasma membrane 112 88 1.40E-07 G0:0051240 process 1137 655 1.76E-07 G0:0050769 positive regulation of neurogenesis 119 92 2.53E-07 G0:001604 process 1305 742 2.64E-07 G0:001604 process 1858 1028 2.90E-07 G0:001607 regulation of nucleobas-containing 1620 905 3.26E-07 G0:0005075 positive regulation of nucleobas-containing 1620 905 3.26E-07 G0:00051641 cellular localization 2721 1467 3.45E-07 G0:000303134 regulation of crassplanization 1015 588 5.17E-07 G0:00030314 regulation of crassplanization 1015 588 5.17E-07 G0:000051641 cellular localization	GO:0000587	inorganic ion import across plasma membrane	112	88	1 40E 07
GO:009869 noirganic cation import across plasma membrane 112 88 1.406-07 GO:0051254 positive regulation of RNA metabolic process 3177 1700 1.57E-07 GO:0051254 positive regulation of multicellular organismal 1137 655 1.76E-07 GO:0050769 positive regulation of macromolecule metabolic 2889 1553 2.57E-07 GO:0010604 positive regulation of colcular function 1305 742 2.64E-07 GO:0005077 regulation of vecicle-mediated transport 417 266 2.97E-07 GO:00060737 positive regulation of colcular metabolic process 2354 1281 3.36E-07 GO:0006793 phosphorus metabolic process 2354 1281 3.36E-07 GO:0005714 colnar localization 1717 98 3.00E-07 GO:0005714 postistur in transmembrane transport 129 98 3.00E-07 GO:00033013 regusation of veclopmental growth 167 121 5.36E-07 GO:00033013 regusation of veclopmental growth 167 122 5	00.0099387	morganic ion import across prasma memorane	112	00	1.4012-07
GO:0008983 positive regulation of metabolic process 3177 1700 1.57E-07 GO:005124 positive regulation of RNA metabolic process 1433 810 1.66E-07 GO:0050769 positive regulation of neurogenesis 119 92 2.53E-07 GO:0010604 process 2889 1553 2.57E-07 GO:0040032 positive regulation of cellular metabolic process 1858 1028 2.90E-07 GO:00406027 regulation of nucleobase-containing 1620 905 3.26E-07 GO:0045935 compound metabolic process 2354 1281 3.36E-07 GO:00051641 cellular localization 2721 1467 3.45E-07 GO:0005179 phosphorus metabolic process 2354 1281 3.36E-07 GO:00051641 cellular localization 2721 1467 3.45E-07 GO:00051641 celluar localization 129 98 3.60E-07 GO:00303043 regulation of aveneoparization 1015 588 5.17E-07 GO:00303043 regulation of celluar m	GO:0098659	inorganic cation import across plasma membrane	112	88	1.40E-07
G0:00051254 positive regulation of RNA metabolic process 1413 1105 1.66E-07 G0:0051240 process 1137 655 1.76E-07 G0:0050769 positive regulation of metrogenesis 119 92 2.53E-07 G0:0010604 positive regulation of macromolecule metabolic 2889 1553 2.57E-07 G0:00404093 positive regulation of molecular function 1305 742 2.64E-07 G0:0006027 regulation of cellular metabolic process 1858 1028 2.90E-07 G0:0006027 regulation of cellular metabolic process 2354 1281 3.36E-07 G0:0006793 phosphorus metabolic process 2354 1281 3.36E-07 G0:0006793 posphorus metabolic process 2354 1281 3.36E-07 G0:0006813 regulation of arganization 1112 1467 3.45E-07 G0:0006813 regulation of arganet craganization 1015 588 5.17E-07 G0:0006795 phosphate-containing compound metabolic process 2361 170 5.65E-07	GO:0009893	positive regulation of metabolic process	3177	1700	1 57E-07
GO:0051254 positive regulation of MXA metabolic process 1433 810 1.66E-07 GO:0050769 positive regulation of matricellular organismal process 1137 655 1.76E-07 GO:0010604 positive regulation of matcromolecule metabolic process 119 92 2.53E-07 GO:0010604 positive regulation of collular function 1305 742 2.64E-07 GO:0005077 regulation of visicle-mediated transport 417 266 2.97E-07 GO:0006027 regulation of visicle-mediated transport 417 266 2.97E-07 GO:0006027 regulation of visicle-mediated transport 417 266 2.97E-07 GO:0006793 phosphorus metabolic process 2354 1281 3.36E-07 GO:0005725 solim ion transport 129 98 3.60E-07 GO:0006813 potasium ion transport 120 141 4.40E-07 GO:0006813 regulation of developmental growth 167 121 5.36E-07 GO:0006796 phosphate-containing compound metabolic process 2336 1270 5.6	60.0007073	positive regulation of metabolic process	5177	1700	1.572.07
GO:0051240 positive regulation of multicellular organismal process 1137 655 1.76E-07 GO:0050769 positive regulation of neurogenesis 119 92 2.53E-07 GO:0010604 process 2889 1553 2.57E-07 GO:0010604 process 1858 102 2.06E-07 GO:00404093 positive regulation of molecular function 1305 7.42 2.64E-07 GO:0045035 compound metabolic process 1858 102 905 3.26E-07 GO:0045735 positive regulation of nucleobase-containing 1620 905 3.26E-07 GO:0005735 positium transmembrane transport 129 98 3.60E-07 GO:003043 regulation of organelle organization 1015 588 5.17E-07 GO:00303043 regulation of organelle organization 1015 588 5.17E-07 GO:0006813 potsphate-containing compound metabolic process 2336 1270 5.65E-07 GO:0006076 phosphate-containing compound metabolic process 2336 1270 5.65E-07	GO:0051254	positive regulation of RNA metabolic process	1433	810	1.66E-07
$ \begin{array}{ccccc} GO:0051240 & process & 1137 & 655 & 1.76E-07 \\ GO:0050769 & positive regulation of neurogenesis & 119 & 92 & 2.53E-07 \\ GO:0010604 & positive regulation of macromolecule metabolic & 2889 & 1553 & 2.57E-07 \\ GO:0010604 & positive regulation of molecular function & 1305 & 742 & 2.64E-07 \\ GO:0031324 & negative regulation of cellular metabolic process & 1858 & 1028 & 2.90E-07 \\ GO:0045035 & positive regulation of nucleobase-containing & 1620 & 905 & 3.26E-07 \\ GO:000577 & regulation of vecicle-mediated transport & 117 & 266 & 2.97E-07 \\ GO:00051641 & cellular collectores & 2354 & 1281 & 3.36E-07 \\ GO:0005174 & compound metabolic process & 2354 & 1281 & 3.36E-07 \\ GO:0005175 & solum ion transmembrane transport & 129 & 98 & 3.06E-07 \\ GO:0005313 & potassium ion transport & 200 & 141 & 4.40E-07 \\ GO:0005313 & potassium ion transport & 200 & 141 & 4.40E-07 \\ GO:0030343 & regulation of evelopmental growth & 167 & 121 & 5.36E-07 \\ GO:00048038 & neuron projection extension & 112 & 87 & 5.18E-07 \\ GO:00048038 & regulation of developmental growth & 167 & 121 & 5.36E-07 \\ GO:00042221 & response to chemical & 117 & 90 & 6.38E-07 \\ GO:0030256 & regulation of signaling & 1380 & 778 & 9.95E-07 \\ GO:0032056 & regulation of signaling & 1380 & 778 & 9.95E-07 \\ GO:0032056 & regulation of signaling & 1380 & 778 & 9.95E-07 \\ GO:0032056 & regulation of actin cytoskeleton organization & 296 & 196 & 9.18E-07 \\ GO:0032056 & regulation of actin cytoskeleton organization & 296 & 196 & 9.18E-07 \\ GO:0032056 & regulation of actin cytoskeleton organization & 296 & 196 & 9.18E-07 \\ GO:0032056 & regulation of actin cytoskeleton organization & 296 & 196 & 9.18E-07 \\ GO:0032056 & regulation of actin cytoskeleton organization & 296 & 196 & 9.18E-07 \\ GO:0032056 & regulation of actin cytoskeleton organization & 3134 & 774 & 1.07E-06 \\ GO:0005114 & cell signaling cell communication & 1374 & 774 & 1.07E-06 \\ GO:0005137 & regulation of cell communication & 1374 & 774 & 1.07E-06 \\ GO:00061387 & regulation of cell communication & 1374 & 774 $		positive regulation of multicellular organismal			
GO:0050769 positive regulation of neurogenesis 119 92 2.53E-07 GO:0010604 positive regulation of macromolecule metabolic process 2889 1553 2.57E-07 GO:0031324 negative regulation of cellular metabolic process 1858 1028 2.90E-07 GO:0046027 regulation of vesicle-mediated transport 417 266 2.97E-07 GO:0045935 compound metabolic process 2354 1281 3.36E-07 GO:0006737 phosphorus metabolic process 2354 1281 3.36E-07 GO:0005751 sodium ion transport 200 141 4.40E-07 GO:0006813 potasium ion transport 200 141 4.40E-07 GO:0006813 potasium ion transport 201 141 4.40E-07 GO:0006813 potasium ion transport 201 141 4.30E-07 GO:0006803 regulation of actellop metal growth 167 121 5.36E-07 GO:00042221 response to chemical 117 90 6.38E-07 GO:00042305 positive regulatio	GO:0051240	positive regulation of mandeenatar organismar	1137	655	1.76E-07
GO:0050769 positive regulation of neurogenesis 119 92 2.53E-07 GO:0010604 positive regulation of macromolecule metabolic process 2889 1553 2.57E-07 GO:004093 positive regulation of cellular metabolic process 1858 1028 2.90E-07 GO:0050627 regulation of vesicle-mediated transport 417 266 2.97E-07 GO:0050627 regulation of neurogeness 1620 905 3.26E-07 GO:0050793 phosphorus metabolic process 2354 1281 3.36E-07 GO:0051641 cellular localization 2721 1467 3.45E-07 GO:0051631 poasisum ion transport 200 141 4.40E-07 GO:0006133 regulation of developmental growth 167 121 5.36E-07 GO:000638 regulation of developmental growth 167 121 5.36E-07 GO:0006796 phosphate-containing compound metabolic process 2336 1577 5.88E-07 GO:0001508 action potential growth 167 121 5.36E-07		process			
GO:0010604 positive regulation of macromolecule metabolic 2889 1553 2.57E-07 GO:0044093 positive regulation of molecular function 1305 742 2.64E-07 GO:0044093 positive regulation of cellular metabolic process 1858 1028 2.90E-07 GO:0045935 positive regulation of sciele-mediated transport 417 266 2.97E-07 GO:0006793 phosphorus metabolic process 2354 1281 3.36E-07 GO:00051641 cellular localization 2721 1467 3.45E-07 GO:0006813 potassium ion transport 200 141 4.40E-07 GO:0006796 phosphate-metabolic process 2336 1270 5.65E-07 GO:0006796 phosphate-containing compound metabolic process 2336 1270 5.65E-07 GO:0006796 phosphate-containing compound metabolic process 2366 1270 5.65E-07 GO:00048638 regulation of signaling 117 90 6.38E-07 GO:00043292 regulation of signaling 1380 778 7.95E-07 <tr< td=""><td>GO:0050769</td><td>positive regulation of neurogenesis</td><td>119</td><td>92</td><td>2.53E-07</td></tr<>	GO:0050769	positive regulation of neurogenesis	119	92	2.53E-07
GO.0010604 positive regulation of macroinoleculer function 2889 1553 2.57E-07 GO.0044093 positive regulation of molecular function 1305 742 2.64E-07 GO.001324 negative regulation of cellular metabolic process 1858 1028 2.90E-07 GO.0045935 compound metabolic process 1620 905 3.26E-07 GO.000573 phosphorus metabolic process 2354 1281 3.36E-07 GO.00051641 cellular localization 21721 1467 3.45E-07 GO.00051641 cellular localization 2172 1467 3.45E-07 GO.0005312 potasium ion transmenbrane transport 129 98 3.60E-07 GO.0006813 potasium ion transmentorane transport 200 141 4.40E-07 GO.0004638 regulation of developmental growth 167 121 5.36E-07 GO.0004639 phosphote-containing compound metabolic process 2336 1270 5.6E-07 GO.0004221 response to chemical 117 90 6.38E-07 GO.00042		resitive regulation of meansmalegule metabolic			
GO:0044093 process Los 0	GO·0010604	positive regulation of macromolecule metabolic	2889	1553	2 57E-07
GO:0044093 positive regulation of molecular function 1305 742 2.64E-07 GO:0060627 regulation of vesicle-mediated transport 117 266 2.97E-07 GO:0060627 regulation of vesicle-mediated transport 117 266 2.97E-07 GO:006793 phosphorus metabolic process 2354 1281 3.36E-07 GO:0051641 cellular localization 2721 1467 3.45E-07 GO:000513725 sodium ion transmembrane transport 229 98 3.60E-07 GO:0005705 potassium ion transport 200 141 4.40E-07 GO:0005706 phosphate-containing compound metabolic process 2356 1270 5.65E-07 GO:00048638 regulation of developmental growth 167 121 5.36E-07 GO:004221 response to chemical 2943 1577 5.88E-07 GO:0042305 positive regulation of signaling 1380 778 7.95E-07 GO:0023056 positive regulation of signaling 1380 782 6.88E-07 GO:0032395	00.0010004	process	2007	1555	2.5712 07
GO:004132 positive regulation of cellular metabolic process 1358 1028 2.39E-07 GO:0060627 regulation of vesicle-mediated transport 417 266 2.97E-07 GO:0045935 positive regulation of nucleobase-containing compound metabolic process 1620 905 3.26E-07 GO:00051641 cellular localization 2721 1467 3.45E-07 GO:0005813 potassium ion transmembrane transport 129 98 3.60E-07 GO:0006813 potassium ion transmembrane transport 200 141 4.40E-07 GO:0006813 potassium ion transmembrane transport 200 141 4.40E-07 GO:0006813 potassium ion transmembrane transport 112 87 5.18E-07 GO:0004838 regulation of developmental growth 167 121 5.36E-07 GO:0004833 petalation edvelopmental growth 1167 121 5.36E-07 GO:0004594 polsitve regulation of scinaling 1380 778 7.95E-07 GO:00032056 regulation of actin cytoskeleton organization 216 9.38E-07	GO:0044093	nositive regulation of molecular function	1305	742	2.64E.07
GO:0031324 negative regulation of cellular metabolic process 1858 1028 2.90E-07 GO:0006627 regulation of nucleobase-containing compound metabolic process 1620 905 3.26E-07 GO:0006733 phosphorus metabolic process 2354 1281 3.36E-07 GO:0005735 sodium ion transmembrane transport 129 98 3.60E-07 GO:00033043 regulation of organelle organization 1015 588 5.17E-07 GO:00033043 regulation of organelle organization 1015 588 5.17E-07 GO:00048638 regulation of developmental growth 167 121 5.36E-07 GO:0004221 response to chemical 20943 1577 5.68E-07 GO:0004221 response to chemical 1117 90 6.38E-07 GO:00032056 positive regulation of signaling 1380 778 7.95E-07 GO:00032056 regulation of actin cytoskeleton organization 61 53 9.20E-07 GO:0003015 heart process 1380 778 7.95E-07 GO:0	00.0044093	positive regulation of molecular function	1305	142	2.041-07
GO:0060627 regulation of vesicle-mediated transport 417 266 2.97E-07 GO:0045935 compound metabolic process 1620 905 3.26E-07 GO:0005793 phosphorus metabolic process 2354 1281 3.36E-07 GO:00051641 cellular localization 2721 1467 3.45E-07 GO:0005125 sodium ion transmembrane transport 129 98 3.60E-07 GO:00053043 regulation of organelle organization 1015 588 5.17E-07 GO:0006796 phosphate-containing compound metabolic process 2336 1270 5.68E-07 GO:00048638 regulation of developmental growth 167 121 5.36E-07 GO:00043221 response to chemical 2943 1577 5.88E-07 GO:00032056 positive regulation of signaling 1380 778 7.95E-07 GO:00323956 regulation of axin cytoskeleton organization 296 196 9.18E-07 GO:0032056 positive regulating and extension 61 53 9.20E-07 GO:0030516	GO:0031324	negative regulation of cellular metabolic process	1858	1028	2.90E-07
GO:00045935 positive regulation of nucleobase-containing compound metabolic process 1620 905 3.26E-07 GO:0006793 phosphorus metabolic process 2354 1281 3.36E-07 GO:00051641 cellular localization 2721 1467 3.45E-07 GO:0005813 potassium ion transmembrane transport 129 98 3.60E-07 GO:0003813 regulation of organelle organization 1015 588 5.17E-07 GO:0004803 regulation of organelle organization 112 87 5.18E-07 GO:00042221 response to chemical gowth 167 121 5.65E-07 GO:0003043 ecell junction assembly 341 222 6.89E-07 GO:00042221 response to chemical 117 90 6.38E-07 GO:0003056 positive regulation of scingaling 1380 778 7.95E-07 GO:0003056 regulation of actin cytoskeleton organization 61 53 9.20E-07 GO:00030516 regulation of actin cytoskeleton organization 61 53 9.20E-07 <	GO:0060627	regulation of vesicle-mediated transport	417	266	2.97E-07
GO:0045935 positive regulation of nucleobase-containing 1620 905 3.26E-07 GO:0006793 phosphorus metabolic process 2354 1281 3.36E-07 GO:00051641 cellular localization 2721 1467 3.45E-07 GO:0005125 sodium ion transport 200 141 4.40E-07 GO:0006813 potassium ion transport 200 141 4.40E-07 GO:00073043 regulation of organelle organization 1015 588 5.17E-07 GO:0006796 phosphate-containing compound metabolic process 2336 1270 5.65E-07 GO:00042221 response to chemical 2943 1577 5.88E-07 GO:0003526 positive regulation of signaling 1380 778 7.95E-07 GO:00032956 regulation of axion extension 61 53 9.20E-07 GO:00030516 regulation of axion extension 61 53 9.20E-07 GO:00030516 regulation of axion extension 61 53 9.20E-07 GO:00030516 regulation of cell communicat	00.000027			200	
GO:004953 compound metabolic process 1235 1281 3.36E-07 GO:0006793 phosphorus metabolic process 2354 1281 3.36E-07 GO:00051641 cellular localization 2721 1467 3.45E-07 GO:0006813 potassium ion transport 290 141 4.40E-07 GO:0006813 potassium ion transport 200 141 4.40E-07 GO:0048638 regulation of developmental growth 167 121 5.36E-07 GO:0048638 regulation of developmental growth 167 121 5.36E-07 GO:0048638 regulation of developmental growth 117 90 6.38E-07 GO:004221 response to chemical 2943 1577 5.88E-07 GO:0033256 regulation of signaling 1138 778 7.95E-07 GO:0032056 positive regulation of axtension 61 53 9.20E-07 GO:0030516 regulation of axtension 61 53 9.20E-07 GO:00303516 regulatin of axtenetreceptor signaling pathway involved in antatomical str	GO:0045935	positive regulation of nucleobase-containing	1620	005	3 26E 07
$ \begin{array}{cccccc} GO:0006793 & phosphorus metabolic process & 2354 & 1281 & 3.36E-07 \\ GO:0051641 & cellular localization & 2721 & 1467 & 3.45E-07 \\ GO:0035725 & sodium ion transport & 129 & 98 & 3.60E-07 \\ GO:0033043 & regulation of organelle organization & 1015 & 588 & 5.17E-07 \\ GO:0033043 & regulation of organelle organization & 1015 & 588 & 5.17E-07 \\ GO:0048638 & regulation of developmental growth & 167 & 121 & 5.36E-07 \\ GO:0006796 & phosphate-containing compound metabolic process & 2336 & 1270 & 5.65E-07 \\ GO:0001508 & action potential & 117 & 90 & 6.38E-07 \\ GO:0001508 & action potential & 117 & 90 & 6.38E-07 \\ GO:00032356 & regulation of assembly & 341 & 222 & 6.89E-07 \\ GO:0032356 & regulation of assembly & 341 & 222 & 6.89E-07 \\ GO:0032056 & regulation of signaling & 1380 & 778 & 7.95E-07 \\ GO:0030516 & cell surface receptor signaling pathway involved in \\ cell-cell signaling & 1388 & 248 & 9.30E-07 \\ GO:0003051 & regulation of axon extension & 61 & 53 & 9.20E-07 \\ GO:0003051 & heart process & 193 & 136 & 9.57E-07 \\ GO:0003051 & heart process & 193 & 136 & 9.57E-07 \\ GO:0006464 & morphogenesis & 751 & 446 & 1.03E-06 \\ GO:0016049 & cell growth & 358 & 231 & 1.03E-06 \\ GO:001647 & positive regulation of cell communication & 13147 & 1677 & 1.11E-06 \\ GO:0006396 & organelle organization & 3147 & 1677 & 1.11E-06 \\ GO:0005103 & heart process & 619 & 374 & 1.58E-06 \\ GO:0005103 & heart process & 619 & 374 & 1.58E-06 \\ GO:0005103 & negative regulation of developmental process & 619 & 374 & 1.58E-06 \\ GO:0005103 & negative regulation of developmental process & 443 & 277 & 2.44E-06 \\ GO:0007507 & heart development & 278 & 184 & 3.20E-06 \\ GO:00071495 & cellular response to endogenous stimulus & 974 & 562 & 2.94E-06 \\ GO:00071495 & cellular response to endogenous stimulus & 974 & 562 & 2.94E-06 \\ GO:00071495 & cellular response to endogenous stimulus & 974 & 562 & 2.94E-06 \\ GO:0007265 & Ras protein signal fransduction & 278 & 184 & 3.20E-06 \\ GO:00071495 & cellular response to endogenous stimulus & 974 & 562 & 2.9$	00.0043933	compound metabolic process	1020	905	3.2012-07
GO:0006795 phiosphorus metabolic process 234 1261 3.50E-07 GO:00051641 cellular localization 2721 1467 3.45E-07 GO:0005813 potassium ion transport 200 141 4.40E-07 GO:00033043 regulation of organelle organization 1015 588 5.17E-07 GO:00048638 negulation of exelopmental growth 167 121 5.36E-07 GO:0004221 response to chemical 2943 1577 5.88E-07 GO:0004222 response to chemical 2943 1577 5.88E-07 GO:00033056 positive regulation of signaling 1380 778 7.95E-07 GO:00032056 positive regulation of signaling pathway involved in 296 196 9.18E-07 GO:0003015 heat process 193 136 9.20E-07 GO:0003015 heat process 751 446 1.03E-06 GO:0003015 heat process 751 446 1.03E-06 GO:001647 positive regulation of cell communication 1374 774	CO.0006702	nhoonhoma matahalia nnoasaa	2254	1201	2 26E 07
$ \begin{array}{ccccccc} GO:0051641 & cellular localization & 2721 & 1467 & 3.45E-07 \\ GO:0035725 & sodium ion transport & 129 & 98 & 3.60E-07 \\ GO:0006813 & potassium ion transport & 200 & 141 & 4.40E-07 \\ GO:0033043 & regulation of organelle organization & 1015 & 588 & 5.17E-07 \\ GO:0048638 & neuron projection extension & 112 & 87 & 5.18E-07 \\ GO:0048638 & regulation of developmental growth & 167 & 121 & 5.36E-07 \\ GO:0006796 & phosphate-containing compound metabolic process & 2336 & 1270 & 5.65E-07 \\ GO:00042221 & response to chemical & 2943 & 1577 & 5.88E-07 \\ GO:0001508 & action potential & 117 & 90 & 6.38E-07 \\ GO:00023056 & positive regulation of signaling & 1380 & 778 & 7.95E-07 \\ GO:0032452 & cell junction assembly & 341 & 222 & 6.89E-07 \\ GO:0032056 & regulation of asignaling & 1380 & 778 & 7.95E-07 \\ GO:0032056 & regulation of asignaling pathway involved in \\ cell-cell signaling & 1388 & 248 & 9.30E-07 \\ GO:00030161 & regulation of axon extension & 61 & 53 & 9.20E-07 \\ GO:00030151 & neutroproximation involved in \\ morphogenesis & 751 & 446 & 1.03E-06 \\ GO:0016049 & cell growth & 358 & 231 & 1.03E-06 \\ GO:0016049 & cell growth & 67 & 57 & 1.13E-06 \\ GO:0006187 & regulation of cell communication & 1374 & 774 & 1.07E-06 \\ GO:0005193 & negative regulation of cell growth & 67 & 57 & 1.13E-06 \\ GO:0007507 & heart of cell growth & 67 & 57 & 1.13E-06 \\ GO:0007507 & heart of cell growth & 773 & 182 & 1.68E-06 \\ GO:0007149 & cell growth & 273 & 182 & 1.68E-06 \\ GO:0007149 & cell urgrowth & 273 & 182 & 1.68E-06 \\ GO:0007149 & cell urgrowth & 273 & 182 & 1.68E-06 \\ GO:0007149 & cell urgrowth & 273 & 182 & 1.68E-06 \\ GO:0007149 & cell urgrowth & 273 & 182 & 1.68E-06 \\ GO:0007149 & cell urgrowth & 273 & 182 & 1.68E-06 \\ GO:0007149 & cell urgrowth & 273 & 182 & 1.68E-06 \\ GO:0007149 & celluar brooces & 443 & 277 & 2.44E-06 \\ GO:0007149 & celluar brooces & 443 & 277 & 2.44E-06 \\ GO:0007149 & celluar brooces & 443 & 277 & 2.44E-06 \\ GO:0007149 & regulation of celloopmental process & 443 & 277 & 2.44E-06 \\ GO:0007149 & regulatio$	60:0006793	phosphorus metabolic process	2554	1201	3.30E-07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GO:0051641	cellular localization	2721	1467	3.45E-07
GO:000312 Solumi for transport 127 98 3.001-07 GO:0006813 potassium ion transport 200 141 4.40E-07 GO:0003012 regulation of organelle organization 1015 588 5.17E-07 GO:00048638 regulation of developmental growth 167 121 5.36E-07 GO:00048638 regulation of developmental growth 167 121 5.36E-07 GO:0004221 response to chemical 2943 1577 5.88E-07 GO:0001508 action potential 117 90 6.38E-07 GO:0023056 positive regulation of signaling 1380 778 7.95E-07 GO:0032956 regulation of actin cytoskeleton organization 296 196 9.18E-07 GO:0030516 regulation of axon extension 61 53 9.20E-07 GO:0003015 heart process 193 136 9.57E-07 GO:0003016 heart process 193 136 9.57E-07 GO:00048646 anatomical structure formation involved in morphogenesis 751	GO:0035725	sodium ion transmembrane transport	120	08	3 60F 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00.0033723	socium fon transmemorane transport	12)	70	3.00L-07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GO:0006813	potassium ion transport	200	141	4.40E-07
GO:1990138neuron projection extension112875.18E-07GO:0048638regulation of developmental growth1671215.36E-07GO:004796phosphate-containing compound metabolic process233612705.65E-07GO:0042221response to chemical294315775.88E-07GO:0001508action potential117906.38E-07GO:0023056positive regulation of signaling13807787.95E-07GO:0032056regulation of actin cytoskeleton organization2961969.18E-07GO:0032056regulation of actin cytoskeleton organization2961969.18E-07GO:0030516regulation of actin cytoskeleton organization2961969.18E-07GO:003015heart process1931369.57E-07GO:0003015heart process1931369.57E-07GO:0016049cell growth3582311.03E-06GO:0006996organelle organization314716771.11E-06GO:0006996organelle organization314716771.13E-06GO:0006997negative regulation of cell growth67571.13E-06GO:0007507heart development3382191.67E-06GO:00071495cell apple process4432772.44E-06GO:00072127regulation of cell population proliferation12186902.85E-06GO:0007255Ras protein signal transduction2781843.20E-06GO:000	GO:0033043	regulation of organelle organization	1015	588	5 17E-07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60.0000040	regulation of organization	1015	500	5.10E 07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GO:1990138	neuron projection extension	112	8/	5.18E-07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GO:0048638	regulation of developmental growth	167	121	5.36E-07
G0:0004221prospirate-containing compound inclusione process235012.003.53E-07G0:0014221response to chemical294315775.88E-07G0:0034329cell junction assembly3412226.89E-07G0:0032056positive regulation of signaling13807787.95E-07G0:0032956regulation of axon extension61539.20E-07G0:1905114cell surface receptor signaling pathway involved in cell-cell signaling3882489.30E-07G0:0003015heart process1931369.57E-07G0:0048646anatomical structure formation involved in morphogenesis7514461.03E-06G0:0016647positive regulation of cell communication13747741.07E-06G0:00051096organelle organization314716771.11E-06G0:00051097heart process6193741.58E-06G0:00051098organelle organization314716771.13E-06G0:00051097heart development3382191.67E-06G0:0007507heart development3382191.67E-06G0:00071495cellupont of cell population proliferation12186902.85E-06G0:00071495cellular response to endogenous stimulus9745622.94E-06G0:00071495cellular response to endogenous stimulus9745622.94E-06G0:00071497response to endogenous stimulus10766153.74E-06G0:00071497re	CO:0006706	nhoonhoto containing compound matchalia nacesa	2226	1270	5 650 07
GO:0042221response to chemical 2943 1577 $5.88E-07$ GO:0001508action potential11790 $6.38E-07$ GO:0034329cell junction assembly341222 $6.89E-07$ GO:0032056positive regulation of signaling1380778 $7.95E-07$ GO:0030516regulation of actin cytoskeleton organization296196 $9.18E-07$ GO:0030516regulation of axon extension6153 $9.20E-07$ GO:1905114cell signaling388248 $9.30E-07$ GO:0003015heart process193136 $9.57E-07$ GO:0048646anatomical structure formation involved in morphogenesis751446 $1.03E-06$ GO:0016049cell growth358231 $1.03E-06$ GO:00061387regulation of cell communication1374774 $1.07E-06$ GO:0007507heart development338219 $1.67E-06$ GO:000319negative regulation of developmental process619374 $1.58E-06$ GO:0004589development338219 $1.67E-06$ GO:00042127regulation of cell population proliferation1218690 $2.85E-06$ GO:00071495cellular response to endogenous stimulus974562 $2.94E-06$ GO:0007147heart contraction187131 $3.55E-06$ GO:0007149regulation of canonical Wrt signaling pathway211145 $3.96E-06$ GO:0007149regulation of canonical Wrt signaling pathway <t< td=""><td>GO:0006796</td><td>phosphate-containing compound metabolic process</td><td>2330</td><td>1270</td><td>5.65E-07</td></t<>	GO:0006796	phosphate-containing compound metabolic process	2330	1270	5.65E-07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GO:0042221	response to chemical	2943	1577	5.88E-07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GO:0001508	action notential	117	00	6 38E 07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00.0001508	action potential	11/	90	0.381-07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GO:0034329	cell junction assembly	341	222	6.89E-07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GO:0023056	positive regulation of signaling	1380	778	7.95E-07
$ \begin{array}{ccccc} GO:0030516 & \mbox{regulation of actin cytoskeleton organization} & 296 & 196 & 9.18E-07 \\ GO:0030516 & \mbox{regulation of axon extension} & 61 & 53 & 9.20E-07 \\ GO:1905114 & \mbox{cell signaling} & 388 & 248 & 9.30E-07 \\ GO:0003015 & \mbox{heart process} & 193 & 136 & 9.57E-07 \\ GO:0048646 & \mbox{anomical structure formation involved in} & 751 & 446 & 1.03E-06 \\ GO:0016049 & \mbox{cell growth} & 358 & 231 & 1.03E-06 \\ GO:0016047 & \mbox{positive regulation of cell communication} & 1374 & 774 & 1.07E-06 \\ GO:0006996 & \mbox{organelle organization} & 3147 & 1677 & 1.11E-06 \\ GO:00051093 & \mbox{negative regulation of developmental process} & 619 & 374 & 1.58E-06 \\ GO:0007507 & \mbox{heart development} & 338 & 219 & 1.67E-06 \\ GO:00048589 & \mbox{development} & 338 & 219 & 1.67E-06 \\ GO:00071495 & \mbox{ciculatory system process} & 443 & 277 & 2.44E-06 \\ GO:00071495 & \mbox{cellular response to endogenous stimulus} & 974 & 562 & 2.94E-06 \\ GO:0007265 & \mbox{Ras protein signal transduction} & 187 & 131 & 3.55E-06 \\ GO:0007971 & \mbox{heart contraction} & 187 & 131 & 3.55E-06 \\ GO:00070971 & \mbox{regulation of canonical Wrt signaling pathway} & 211 & 145 & 3.96E-06 \\ GO:0007071 & \mbox{regulation of canonical Wrt signaling pathway} & 211 & 145 & 3.96E-06 \\ GO:00060047 & \mbox{heart contraction} & 187 & 131 & 3.55E-06 \\ GO:00051493 & \mbox{regulation of cellular bisynthetic process} & 282 & 212 & 4.16E-06 \\ GO:00051493 & \mbox{regulation of canonical Wrt signaling pathway} & 211 & 145 & 3.96E-06 \\ GO:0090066 & \mbox{regulation of cellular bisynthetic process} & 1292 & 727 & 4.83E-06 \\ GO:0031327 & \mbox{negative regulation of cellular bisynthetic process} & 1292 & 727 & 4.83E-06 \\ \end{array}$	60.0025050		1500	100	0.105.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GO:0032956	regulation of actin cytoskeleton organization	296	196	9.18E-07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GO:0030516	regulation of axon extension	61	53	9.20E-07
GO:1905114Cell surface receptor signaling pathway involved in cell-cell signaling 388 248 $9.30E-07$ GO:0003015heart process193136 $9.57E-07$ anatomical structure formation involved in morphogenesis 751 446 $1.03E-06$ GO:0016049cell growth 358 231 $1.03E-06$ GO:0010647positive regulation of cell communication 1374 774 $1.07E-06$ GO:0006996organelle organization 3147 1677 $1.11E-06$ GO:00051093negative regulation of developmental process 619 374 $1.58E-06$ GO:0007507heart development 338 219 $1.67E-06$ GO:00048589developmental growth 273 182 $1.68E-06$ GO:00042127regulation of cell population proliferation 1218 690 $2.85E-06$ GO:0007265Ras protein signal transduction 278 184 $3.20E-06$ GO:0006047heart contraction 187 131 $3.55E-06$ GO:00060828regulation of canonical Wnt signaling pathway 211 145 $3.96E-06$ GO:00051493regulation of canonical Wnt signaling pathway 211 145 $3.96E-06$ GO:00501327negative regulation of cellular biosynthetic process 12	0010020210		01	00	, <u>1202</u> 0,
GOLDOD 11 cell-cell signaling DOD PLOD PLOD GO:0003015 heart process 193 136 9.57E-07 GO:0048646 morphogenesis 751 446 1.03E-06 GO:0016049 cell growth 358 231 1.03E-06 GO:0016049 cell growth 358 231 1.07E-06 GO:0006996 organelle organization 3147 1677 1.11E-06 GO:00051093 negative regulation of extent of cell growth 67 57 1.13E-06 GO:0007507 heart development 338 219 1.67E-06 GO:0007507 heart development 338 219 1.67E-06 GO:00048589 developmental growth 273 182 1.68E-06 GO:00071495 cellular response to endogenous stimulus 974 562 2.94E-06 GO:0006047 heart contraction 187 131 3.55E-06 GO:0006047 heart contraction 187 131 3.55E-06 GO:0006047 heart	GO·1905114	cen surface receptor signaling pathway involved in	388	248	9 30E-07
GO:0003015 heart process 193 136 9.57E-07 GO:0048646 anatomical structure formation involved in morphogenesis 751 446 1.03E-06 GO:0016049 cell growth 358 231 1.03E-06 GO:0016049 cell growth 358 231 1.03E-06 GO:0016047 positive regulation of cell communication 1374 774 1.07E-06 GO:006996 organelle organization 3147 1677 1.11E-06 GO:0051093 negative regulation of developmental process 619 374 1.58E-06 GO:0007507 heart development 338 219 1.67E-06 GO:0048589 developmental growth 273 182 1.68E-06 GO:0042127 regulation of cell population proliferation 1218 690 2.85E-06 GO:0007265 Ras protein signal transduction 278 184 3.20E-06 GO:00071495 cellular response to endogenous stimulus 1076 615 3.74E-06 GO:0000719 response to endogenous stimulus	0011700111	cell-cell signaling	200	2.0	1002 01
$ \begin{array}{c} \text{GO:0005015} & \text{interf process} & $	GO:0003015	heart process	193	136	9 57E-07
GO:0048646anatomical structure formation involved in morphogenesis 751 446 $1.03E-06$ GO:0016049cell growth 358 231 $1.03E-06$ GO:0010647positive regulation of cell communication 1374 774 $1.07E-06$ GO:0006996organelle organization 3147 1677 $1.11E-06$ GO:0051093negative regulation of extent of cell growth 67 57 $1.13E-06$ GO:0007507heart development 338 219 $1.67E-06$ GO:0003013circulatory system process 443 277 $2.44E-06$ GO:0042127regulation of cell population proliferation 1218 690 $2.85E-06$ GO:00071495cellular response to endogenous stimulus 974 562 $2.94E-06$ GO:000719response to endogenous stimulus 1076 615 $3.74E-06$ GO:000719regulation of canonical Wnt signaling pathway 211 145 $3.96E-06$ GO:00051493regulation of cytoskeleton organization 450 280 $4.00E-06$ GO:00071495regulation of cellular biosynthetic process 1292 727 $4.83E-06$	00.0005015	neur process	175	150	9.57E 07
GO:0048040 morphogenesis 731 440 1.03E-00 GO:0016049 cell growth 358 231 1.03E-06 GO:0010647 positive regulation of cell communication 1374 774 1.07E-06 GO:0006996 organelle organization 3147 1677 1.11E-06 GO:001087 regulation of extent of cell growth 67 57 1.13E-06 GO:0051093 negative regulation of developmental process 619 374 1.58E-06 GO:0007507 heart development 338 219 1.67E-06 GO:0003013 circulatory system process 443 277 2.44E-06 GO:00071495 cellular response to endogenous stimulus 974 562 2.94E-06 GO:0007265 Ras protein signal transduction 187 131 3.55E-06 GO:00060047 heart contraction 187 131 3.55E-06 GO:0007149 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 GO:0000719 response to endogenous stimulus 1076 </td <td>CO:0048646</td> <td>anatomical structure formation involved in</td> <td>751</td> <td>116</td> <td>1.02E.06</td>	CO:0048646	anatomical structure formation involved in	751	116	1.02E.06
GO:0016049cell growth 358 231 $1.03E-06$ GO:0010647positive regulation of cell communication 1374 774 $1.07E-06$ GO:0006996organelle organization 3147 1677 $1.11E-06$ GO:0061387regulation of extent of cell growth 67 57 $1.13E-06$ GO:0051093negative regulation of developmental process 619 374 $1.58E-06$ GO:0007507heart development 338 219 $1.67E-06$ GO:0003013circulatory system process 443 277 $2.44E-06$ GO:00071495cellular response to endogenous stimulus 974 562 $2.94E-06$ GO:0007265Ras protein signal transduction 278 184 $3.20E-06$ GO:000719response to endogenous stimulus 1076 615 $3.74E-06$ GO:000719response to endogenous stimulus 1076 615 $3.74E-06$ GO:00051493regulation of cytoskeleton organization 450 280 $4.00E-06$ GO:0051493regulation of coll arturcure size 328 212 $4.16E-06$ GO:0031327negative regulation of cellular biosynthetic process 1292 727 $4.83E-06$	00.0048040	morphogenesis	/51	440	1.05E-00
GO:0010049Cell growth 358 251 $1.03E-06$ GO:0010647positive regulation of cell communication 1374 774 $1.07E-06$ GO:0006996organelle organization 3147 1677 $1.11E-06$ GO:001387regulation of extent of cell growth 67 57 $1.13E-06$ GO:0051093negative regulation of developmental process 619 374 $1.58E-06$ GO:0007507heart development 338 219 $1.67E-06$ GO:0003013circulatory system process 443 277 $2.44E-06$ GO:00071495cellular response to endogenous stimulus 974 562 $2.94E-06$ GO:0007265Ras protein signal transduction 187 131 $3.55E-06$ GO:000719regulation of canonical Wnt signaling pathway 211 145 $3.96E-06$ GO:00051493regulation of cytoskeleton organization 450 280 $4.00E-06$ GO:00051327negative regulation of cellular biosynthetic process 1292 727 $4.83E-06$	CO:001(040		250	021	1.02E.06
GO:0010647positive regulation of cell communication 1374 774 $1.07E-06$ GO:0006996organelle organization 3147 1677 $1.11E-06$ GO:0061387regulation of extent of cell growth 67 57 $1.13E-06$ GO:0051093negative regulation of developmental process 619 374 $1.58E-06$ GO:0007507heart development 338 219 $1.67E-06$ GO:0003013circulatory system process 443 277 $2.44E-06$ GO:0048589developmentory system process 443 277 $2.44E-06$ GO:0042127regulation of cell population proliferation 1218 690 $2.85E-06$ GO:0007265Ras protein signal transduction 278 184 $3.20E-06$ GO:0000719response to endogenous stimulus 974 562 $2.94E-06$ GO:0000719response to endogenous stimulus 1076 615 $3.74E-06$ GO:00051493regulation of canonical Wnt signaling pathway 211 145 $3.96E-06$ GO:0051349regulation of cytoskeleton organization 450 280 $4.00E-06$ GO:0090066regulation of anatomical structure size 328 212 $4.16E-06$ GO:0031327negative regulation of cellular biosynthetic process 1292 727 $4.83E-06$	GO:0016049	cell growth	338	231	1.03E-06
G0:0006996 organelle organization 3147 1677 1.11E-06 G0:0061387 regulation of extent of cell growth 67 57 1.13E-06 G0:0051093 negative regulation of developmental process 619 374 1.58E-06 G0:0007507 heart development 338 219 1.67E-06 G0:0003013 circulatory system process 443 277 2.44E-06 G0:0042127 regulation of cell population proliferation 1218 690 2.85E-06 G0:0007265 Ras protein signal transduction 278 184 3.20E-06 G0:0007265 Ras protein signal transduction 187 131 3.55E-06 G0:000719 response to endogenous stimulus 1076 615 3.74E-06 G0:000719 response to endogenous stimulus 1076 615 3.74E-06 G0:00060828 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 G0:0090066 regulation of canonical structure size 328 212 4.16E-06 G0:0031327 neg	GO:0010647	positive regulation of cell communication	1374	774	1.07E-06
GO:0000990organization 3147 1077 $1.112-00$ GO:0061387regulation of extent of cell growth 67 57 $1.13E-06$ GO:0051093negative regulation of developmental process 619 374 $1.58E-06$ GO:0007507heart development 338 219 $1.67E-06$ GO:0048589developmental growth 273 182 $1.68E-06$ GO:003013circulatory system process 443 277 $2.44E-06$ GO:0042127regulation of cell population proliferation 1218 690 $2.85E-06$ GO:00071495cellular response to endogenous stimulus 974 562 $2.94E-06$ GO:0007265Ras protein signal transduction 278 184 $3.20E-06$ GO:000719response to endogenous stimulus 1076 615 $3.74E-06$ GO:000719response to endogenous stimulus 1076 615 $3.74E-06$ GO:00051493regulation of canonical Wnt signaling pathway 211 145 $3.96E-06$ GO:005066regulation of catomical structure size 328 212 $4.16E-06$ GO:0031327negative regulation of cellular biosynthetic process 1292 727 $4.83E-06$	GO:0006006	organelle organization	3147	1677	1.11E.06
GO:0061387 regulation of extent of cell growth 67 57 1.13E-06 GO:0051093 negative regulation of developmental process 619 374 1.58E-06 GO:0007507 heart development 338 219 1.67E-06 GO:0007507 heart development 338 219 1.67E-06 GO:0003013 circulatory system process 443 277 2.44E-06 GO:007042127 regulation of cell population proliferation 1218 690 2.85E-06 GO:00071495 cellular response to endogenous stimulus 974 562 2.94E-06 GO:0007265 Ras protein signal transduction 278 184 3.20E-06 GO:0000719 response to endogenous stimulus 1076 615 3.74E-06 GO:0000719 response to endogenous stimulus 1076 615 3.74E-06 GO:0000719 response to endogenous stimulus 1076 615 3.74E-06 GO:00051493 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 GO:00090066 r	00.0000990	organene organization	5147	1077	1.11E-00
GO:0051093 negative regulation of developmental process 619 374 1.58E-06 GO:0007507 heart development 338 219 1.67E-06 GO:0048589 developmental growth 273 182 1.68E-06 GO:003013 circulatory system process 443 277 2.44E-06 GO:0042127 regulation of cell population proliferation 1218 690 2.85E-06 GO:0007265 Ras protein signal transduction 278 184 3.20E-06 GO:0007265 Ras protein signal transduction 187 131 3.55E-06 GO:000719 response to endogenous stimulus 1076 615 3.74E-06 GO:000719 response to endogenous stimulus 1076 615 3.74E-06 GO:00060828 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 GO:00051493 regulation of anatomical structure size 328 212 4.16E-06 GO:0031327 negative regulation of cellular biosynthetic process 1292 727 4.83E-06	GO:0061387	regulation of extent of cell growth	67	57	1.13E-06
GO:00071053Insgatter regulation of development 314 $1.501-06$ GO:0007507heart development 338 219 $1.67E-06$ GO:00048589developmental growth 273 182 $1.68E-06$ GO:0003013circulatory system process 443 277 $2.44E-06$ GO:0042127regulation of cell population proliferation 1218 690 $2.85E-06$ GO:0071495cellular response to endogenous stimulus 974 562 $2.94E-06$ GO:0007265Ras protein signal transduction 278 184 $3.20E-06$ GO:0060047heart contraction 187 131 $3.55E-06$ GO:0060048regulation of canonical Wnt signaling pathway 211 145 $3.96E-06$ GO:0051493regulation of cytoskeleton organization 450 280 $4.00E-06$ GO:0090066regulation of anatomical structure size 328 212 $4.16E-06$ GO:0031327negative regulation of cellular biosynthetic process 1292 727 $4.83E-06$	GO:0051093	negative regulation of developmental process	610	374	1 58E-06
G0:000/507 heart development 338 219 1.67E-06 G0:00048589 developmental growth 273 182 1.68E-06 G0:0003013 circulatory system process 443 277 2.44E-06 G0:0048287 regulation of cell population proliferation 1218 690 2.85E-06 G0:0071495 cellular response to endogenous stimulus 974 562 2.94E-06 G0:0007265 Ras protein signal transduction 278 184 3.20E-06 G0:0007165 Ras protein signal transduction 187 131 3.55E-06 G0:000719 response to endogenous stimulus 1076 615 3.74E-06 G0:0009719 response to endogenous stimulus 1076 615 3.74E-06 G0:00051493 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 G0:0090066 regulation of anatomical structure size 328 212 4.16E-06 G0:0031327 negative regulation of cellular biosynthetic process 1292 727 4.83E-06	00.0051075	negative regulation of developmental process	017	3/4	1.582-00
GO:0048589 developmental growth 273 182 1.68E-06 GO:0003013 circulatory system process 443 277 2.44E-06 GO:0042127 regulation of cell population proliferation 1218 690 2.85E-06 GO:0071495 cellular response to endogenous stimulus 974 562 2.94E-06 GO:0007265 Ras protein signal transduction 278 184 3.20E-06 GO:000719 response to endogenous stimulus 1076 615 3.74E-06 GO:000719 response to endogenous stimulus 1076 615 3.74E-06 GO:00060828 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 GO:00051493 regulation of cytoskeleton organization 450 280 4.00E-06 GO:0090066 regulation of anatomical structure size 328 212 4.16E-06 GO:0031327 negative regulation of cellular biosynthetic process 1292 727 4.83E-06	GO:000/507	heart development	338	219	1.6/E-06
GO:0003013 circulatory system process 443 277 2.44E-06 GO:0042127 regulation of cell population proliferation 1218 690 2.85E-06 GO:0071495 cellular response to endogenous stimulus 974 562 2.94E-06 GO:0007265 Ras protein signal transduction 278 184 3.20E-06 GO:0007169 regulation of canonical transduction 278 131 3.55E-06 GO:0009719 response to endogenous stimulus 1076 615 3.74E-06 GO:0009719 response to endogenous stimulus 1076 615 3.74E-06 GO:00051493 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 GO:0090066 regulation of anatomical structure size 328 212 4.16E-06 GO:0031327 negative regulation of cellular biosynthetic process 1292 727 4.83E-06	GO:0048589	developmental growth	273	182	1.68E-06
G0:0003013 circulatory system process 443 277 2.44E-06 G0:0042127 regulation of cell population proliferation 1218 690 2.85E-06 G0:0071495 cellular response to endogenous stimulus 974 562 2.94E-06 G0:0007265 Ras protein signal transduction 278 184 3.20E-06 G0:0007047 heart contraction 187 131 3.55E-06 G0:000719 response to endogenous stimulus 1076 615 3.74E-06 G0:000719 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 G0:0051493 regulation of cytoskeleton organization 450 280 4.00E-06 G0:0090066 regulation of anatomical structure size 328 212 4.16E-06 G0:0031327 negative regulation of cellular biosynthetic process 1292 727 4.83E-06	CO 0002012		442	077	
GO:0042127regulation of cell population proliferation12186902.85E-06GO:0071495cellular response to endogenous stimulus9745622.94E-06GO:0007265Ras protein signal transduction2781843.20E-06GO:0060047heart contraction1871313.55E-06GO:0009719response to endogenous stimulus10766153.74E-06GO:0060828regulation of canonical Wnt signaling pathway2111453.96E-06GO:0051493regulation of cytoskeleton organization4502804.00E-06GO:0090066regulation of anatomical structure size3282124.16E-06GO:0031327negative regulation of cellular biosynthetic process12927274.83E-06	GO:0003013	circulatory system process	443	211	2.44E-06
GO:0071495 cellular response to endogenous stimulus 974 562 2.94E-06 GO:007265 Ras protein signal transduction 278 184 3.20E-06 GO:0007265 Ras protein signal transduction 187 131 3.55E-06 GO:0009719 response to endogenous stimulus 1076 615 3.74E-06 GO:00060828 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 GO:0051493 regulation of cytoskeleton organization 450 280 4.00E-06 GO:0090066 regulation of cellular biosynthetic process 1292 727 4.83E-06	GO:0042127	regulation of cell population proliferation	1218	690	2.85E-06
GO:0071493Centual response to endogenous stimulus9745622.94E-06GO:0007265Ras protein signal transduction2781843.20E-06GO:0060047heart contraction1871313.55E-06GO:0009719response to endogenous stimulus10766153.74E-06GO:0060828regulation of canonical Wrt signaling pathway2111453.96E-06GO:0051493regulation of cytoskeleton organization4502804.00E-06GO:0090066regulation of anatomical structure size3282124.16E-06GO:0031327negative regulation of cellular biosynthetic process12927274.83E-06	CO:0071405	allular reasonase to and a sensus stimular	074	560	204E 00
GO:0007265 Ras protein signal transduction 278 184 3.20E-06 GO:0060047 heart contraction 187 131 3.55E-06 GO:0009719 response to endogenous stimulus 1076 615 3.74E-06 GO:0060828 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 GO:0051493 regulation of cytoskeleton organization 450 280 4.00E-06 GO:0090066 regulation of cellular biosynthetic process 1292 727 4.83E-06	00:00/1495	central response to endogenous stimulus	9/4	302	2.94E-00
GO:0060047 heart contraction 187 131 3.55E-06 GO:0009719 response to endogenous stimulus 1076 615 3.74E-06 GO:0060828 regulation of canonical Wnt signaling pathway 211 145 3.96E-06 GO:0051493 regulation of cytoskeleton organization 450 280 4.00E-06 GO:0090066 regulation of anatomical structure size 328 212 4.16E-06 GO:0031327 negative regulation of cellular biosynthetic process 1292 727 4.83E-06	GO:0007265	Ras protein signal transduction	278	184	3.20E-06
GO:0000717Interf contraction1871315.53E-06GO:0009719response to endogenous stimulus10766153.74E-06GO:0060828regulation of canonical Wrt signaling pathway2111453.96E-06GO:0051493regulation of cytoskeleton organization4502804.00E-06GO:0090066regulation of anatomical structure size3282124.16E-06GO:0031327negative regulation of cellular biosynthetic process12927274.83E-06	GO:0060047	heart contraction	187	131	3 55E 06
GO:0009719response to endogenous stimulus10766153.74E-06GO:0060828regulation of canonical Wnt signaling pathway2111453.96E-06GO:0051493regulation of cytoskeleton organization4502804.00E-06GO:0090066regulation of anatomical structure size3282124.16E-06GO:0031327negative regulation of cellular biosynthetic process12927274.83E-06	00.000047	neart contraction	107	151	5.55E-00
GO:0060828regulation of canonical Wnt signaling pathway2111453.96E-06GO:0051493regulation of cytoskeleton organization4502804.00E-06GO:0090066regulation of anatomical structure size3282124.16E-06GO:0031327negative regulation of cellular biosynthetic process12927274.83E-06	GO:0009719	response to endogenous stimulus	1076	615	3.74E-06
GO:000020regulation of cationical with signaling pathway21114.55.90E-00GO:0051493regulation of cytoskeleton organization4502804.00E-06GO:0090066regulation of anatomical structure size3282124.16E-06GO:0031327negative regulation of cellular biosynthetic process12927274.83E-06	60.0060828	regulation of canonical Writ signaling nathway	211	145	3.96E-06
GO:0051493regulation of cytoskeleton organization4502804.00E-06GO:0090066regulation of anatomical structure size3282124.16E-06GO:0031327negative regulation of cellular biosynthetic process12927274.83E-06	00.0000020	regulation of canonical with signaling pathway	450	140	J.70E-00
GO:0090066regulation of anatomical structure size3282124.16E-06GO:0031327negative regulation of cellular biosynthetic process12927274.83E-06	GO:0051493	regulation of cytoskeleton organization	450	280	4.00E-06
GO:0031327negative regulation of cellular biosynthetic process12927274.83E-06	GO:0090066	regulation of anatomical structure size	328	212	4.16E-06
60:0051327 negative regulation of cellular biosynthetic process 1292 727 4.83E-06	CO.0021227		1202	212	4.000 00
	GO:0031327	negative regulation of cellular biosynthetic process	1292	121	4.83E-06

CO.0045902	negative regulation of DNA templated transprintion	1051	601	5 220 06
GO:0045892	negative regulation of DNA-templated transcription	1051	601	5.22E-06
GO:0003008	system process	1358	761	5.26E-06
CO:0006914	- 1' '	100	110	5 (4E 0)
GO:0006814	socium ion transport	100	118	5.04E-06
~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	positive regulation of macromolecule biosynthetic			
GO:0010557	1 8	1492	830	5.80E-06
	process			
GO:0009891	positive regulation of biosynthetic process	1593	882	5.89E-06
CO:0086001	andica muscle cell estion notential	72	60	6 04E 06
GO:0086001	cardiac muscle cell action potential	13	00	0.04E-00
	negative regulation of nitrogen compound metabolic			
GO:0051172	negative regulation of marogen compound metabolic	1927	1053	6.26E-06
	process			
	negative regulation of nucleic acid-templated			
GO:1903507		1056	603	6.56E-06
0011702201	transcription	1000	000	012 012 000
GO:000800	negative regulation of biosynthetic process	1315	738	6.62E.06
00.0009890	negative regulation of biosynthetic process	1315	150	0.021-00
GO:1902679	negative regulation of RNA biosynthetic process	1057	603	7.97E-06
CO.0008657	immont into coll	216	147	9 46E 06
GO:0098037	import into cen	210	147	8.40E-00
GO:0048675	axon extension	81	65	8.67E-06
CO:0050772	······	47	40	0.25E.06
GO:0050772	positive regulation of axonogenesis	47	42	9.25E-06
GO:0060537	muscle tissue development	218	148	9.60E-06
66.0050007		104	00	9.00E 00
GO:0050807	regulation of synapse organization	124	92	9.86E-06
GO:0008283	cell population proliferation	1383	772	9.86E-06
00.0008285	cen population promeration	1505	112	9.80L-00
GO:0001558	regulation of cell growth	320	206	1.11E-05
GO:0031328	positive regulation of cellular biosynthetic process	1568	867	1 13E 05
00.0031328	positive regulation of centular biosynthetic process	1508	807	1.13E-03
GO:0009790	embryo development	505	308	1.26E-05
CO:0007166	coll surface recontancianaling nother	2271	1005	1 29E 05
GO:000/166	cell surface receptor signaling pathway	2271	1225	1.38E-05
GO:0035637	multicellular organismal signaling	128	94	1.60E-05
CO 0010(21		261	170	1.60E.05
GO:0010631	epithelial cell migration	261	172	1.68E-05
GO:0060070	canonical Wnt signaling nathway	254	168	1 68E-05
60.0000010	eanomear whit signaming painway	201	100	1.002 05
GO:0010632	regulation of epithelial cell migration	204	139	1.92E-05
GO:0045596	negative regulation of call differentiation	130	271	2 07E 05
00.0045590	negative regulation of cen unrefentiation	439	2/1	2.0712-03
GO:0050896	response to stimulus	7117	3620	2.09E-05
CO-0020111	monulation of Wat signaling nother	274	170	2 22E 05
60:0050111	regulation of whit signaling pathway	274	1/9	2.22E-03
	negative regulation of macromolecule biosynthetic			
GO:0010558		1251	701	2.32E-05
	process			
GO·0098739	import across plasma membrane	172	120	2 36E-05
G0.0070757		1/2	120	2.302 03
GO:0034762	regulation of transmembrane transport	385	241	2.39E-05
GO:0040007	growth	515	312	2.61E-05
00.0040007	growin	515	512	2.012 05
GO:0071310	cellular response to organic substance	1734	949	2.81E-05
GO:0050803	regulation of synapse structure or activity	129	94	3.02E-05
00.0050005	regulation of synapse structure of activity	129	74	5.02E 05
GO:0000165	MAPK cascade	599	357	3.11E-05
CO:0014706	striated musels tissue development	144	102	2 10E 05
60:0014706	strated muscle ussue development	144	105	5.19E-05
GO:0035295	tube development	616	366	3.29E-05
CO.0000122	anithalizza mianation	262	170	2 75 0 05
00.0090132	epithenum migration	203	172	5.75E-05
GO:0050806	positive regulation of synaptic transmission	89	69	3.90E-05
CO 000000		0410	1005	1.0000.05
GO:0009892	negative regulation of metabolic process	2418	1295	4.08E-05
GO:0010033	response to organic substance	2106	1137	4.17E-05
60.0010000		100	105	1.625.05
GO:0046777	protein autophosphorylation	199	135	4.63E-05
GO:0048738	cardiac muscle tissue development	138	99	4 67E-05
0010010720		100		1.672.05
GO:0001505	regulation of neurotransmitter levels	143	102	4.68E-05
GO:0061337	cardiac conduction	01	70	5 39E-05
00.0001337	cardiac conduction)1	10	5.571-05
GO:0016358	dendrite development	155	109	5.39E-05
GO:0090257	regulation of muscle system process	157	110	6 38E-05
00.0070257	regulation of musere system process	157	110	0.5012 05
GO:0034765	regulation of ion transmembrane transport	325	206	6.51E-05
GO:0051253	negative regulation of RNA metabolic process	1157	649	6 64F-05
00.0051255	negative regulation of Kivi metabolic process	1157	04)	0.0412 05
GO:0006941	striated muscle contraction	142	101	6.81E-05
GO:0008361	regulation of cell size	110	87	7 72E 05
00.0008301	regulation of cell size	119	07	7.72E-05
GO:0030155	regulation of cell adhesion	614	363	7.77E-05
CO:0025220	tuba mombo ganasis	547	277	7 00E 05
00.0033239	tube morphogenesis	547	327	7.90E-03
GO:0090130	tissue migration	267	173	8.81E-05
00.002(011		0004	1501	0.04E.05
GO:0036211	protein modification process	2994	1581	9.04E-05
GO:0099003	vesicle-mediated transport in synapse	121	88	9.62E-05
CO:0050005	nounomuscular are soos	72	50	1 075 04
GO:0050905	neuromuscular process	13	38	1.0/E-04
GO:0030048	actin filament-based movement	113	83	1.10E-04
00.0010	1 11 1/00	0.42	150	1.1.00.01
GO:0042692	muscle cell differentiation	243	159	1.16E-04
GO:0022607	cellular component assembly	2547	1355	1 30F-04
30.0022007	contain component assentory	2341	1555	1.501-04
GO:0030900	torebrain development	155	108	1.31E-04
GO:0060079	regulation of postevnantic membrane potential	61	50	1 38E 04
00.000078	regulation of posisynaptic memorale potential	01	50	1.501-04
GO:0007517	muscle organ development	179	122	1.38E-04
CO:0000077	nositive regulation of size -1 torus - to -ti-	1255	607	1 575 04
GO:0009967	positive regulation of signal transduction	1255	09/	1.5/E-04
GO:0048639	positive regulation of developmental growth	83	64	1.74E-04
CO:0049700	tiona mombo con soio	249	217	1.020.04
00:0048/29	ussue morphogenesis	340	217	1.0012-04
	F8		217	1100 1 01
GO:0070887	cellular response to chemical stimulus	2288	1223	1.83E-04

GO:0035249synaptic transmission, glutamatergic6653GO:0099504synaptic vesicle cycle11483GO:0040008regulation of growth416254GO:0051129negative regulation of cellular component organization566335GO:0021537telencephalon development10175GO:0040008regulation of action potential4841GO:0045934negative regulation of nucleobase-containing compound metabolic process1273705GO:0051241negative regulation of multicellular organismal process5143GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.05E-04 2.07E-04 2.14E-04 2.15E-04 2.15E-04 2.21E-04 2.32E-04 2.34E-04 2.34E-04 2.34E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0099504synaptic vesicle cycle11483GO:0099504synaptic vesicle cycle11483GO:0040008regulation of growth416254GO:0051129negative regulation of cellular component organization566335GO:0021537telencephalon development10175GO:0098900regulation of action potential4841GO:0045934negative regulation of nucleobase-containing compound metabolic process1273705GO:0051241negative regulation of multicellular organismal process5143GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.07E-04 2.14E-04 2.15E-04 2.15E-04 2.21E-04 2.32E-04 2.34E-04 2.34E-04 2.34E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0040008regulation of growth416254GO:0040008regulation of cellular component organization566335GO:0051129organization566335GO:0021537telencephalon development10175GO:0098900regulation of action potential4841GO:0045934negative regulation of nucleobase-containing compound metabolic process1273705GO:0099565chemical synaptic transmission, postsynaptic5143GO:0051241process755435GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.14E-04 2.15E-04 2.19E-04 2.21E-04 2.32E-04 2.32E-04 2.34E-04 2.34E-04 2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0040003regulation of grown410254GO:0051129negative regulation of cellular component organization566335GO:0021537telencephalon development10175GO:0098900regulation of action potential4841GO:0045934negative regulation of nucleobase-containing compound metabolic process1273705GO:009565chemical synaptic transmission, postsynaptic5143GO:0051241negative regulation of cell development177120gO:0110720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.14E-04 2.15E-04 2.19E-04 2.32E-04 2.32E-04 2.34E-04 2.34E-04 2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0051129negative regulation of centular component566335organizationorganization10175GO:0021537telencephalon development10175GO:0098900regulation of action potential4841GO:0045934negative regulation of nucleobase-containing compound metabolic process1273705GO:0099565chemical synaptic transmission, postsynaptic5143GO:0051241negative regulation of multicellular organismal process755435GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.15E-04 2.19E-04 2.21E-04 2.32E-04 2.34E-04 2.53E-04 2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
OrganizationGO:0021537telencephalon development10175GO:0098900regulation of action potential4841GO:0045934negative regulation of nucleobase-containing compound metabolic process1273705GO:0099565chemical synaptic transmission, postsynaptic5143GO:0051241negative regulation of multicellular organismal process755435GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.19E-04 2.21E-04 2.32E-04 2.34E-04 2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0021537telencephalon development10175GO:0098900regulation of action potential4841GO:0045934negative regulation of nucleobase-containing compound metabolic process1273705GO:0099565chemical synaptic transmission, postsynaptic5143GO:0051241negative regulation of cell development177120GO:0110720positive regulation of intracellular signal transduction627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.19E-04 2.21E-04 2.32E-04 2.34E-04 2.34E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0098900regulation of action potential4841GO:0045934negative regulation of nucleobase-containing compound metabolic process1273705GO:0099565chemical synaptic transmission, postsynaptic5143GO:0051241negative regulation of multicellular organismal process755435GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.21E-04 2.32E-04 2.34E-04 2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0045934negative regulation of nucleobase-containing compound metabolic process1273705GO:0099565chemical synaptic transmission, postsynaptic5143GO:0051241negative regulation of multicellular organismal process755435GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.32E-04 2.34E-04 2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.37E-04 3.83E-04 4.13E-04 4.24E-04
GO:0043934compound metabolic process1273705GO:0099565chemical synaptic transmission, postsynaptic5143GO:0051241negative regulation of multicellular organismal process755435GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.32E-04 2.34E-04 2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.37E-04 3.83E-04 4.13E-04 4.24E-04
GO:0099565chemical synaptic transmission, postsynaptic5143GO:0051241negative regulation of multicellular organismal process755435GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.34E-04 2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0051241negative regulation of multicellular organismal process755435GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0051241Inegative regulation of mancential organisma755435processpositive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.53E-04 2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0010720positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0010/20positive regulation of cell development177120GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2.71E-04 2.74E-04 3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0140352export from cell627367GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	2:74E-04 3:33E-04 3:37E-04 3:49E-04 3:83E-04 4:13E-04 4:24E-04
GO:1902532negative regulation of intracellular signal transduction436264GO:0032409regulation of transporter activity244158	3.33E-04 3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0032409regulation of transporter activity244158	3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0032409 regulation of transporter activity 244 158	3.37E-04 3.49E-04 3.83E-04 4.13E-04 4.24E-04
	3.49E-04 3.83E-04 4.13E-04 4.24E-04
negative regulation of macromolecule metabolic	3.49E-04 3.83E-04 4.13E-04 4.24E-04
GO:0010605 2244 1198	3.83E-04 4.13E-04 4.24E-04
GO:0008016 regulation of heart contraction 164 112	4.13E-04 4.24E-04
GO:1904062 regulation of cation transmembrane transport 291 184	4.24E-04
CO-0070727 collular more and one allocation 1990 1012	4.24E-04
GO:00/0727 centual macromolecule localization 1860 1015	1.245 0.4
GO:0010594 regulation of endothelial cell migration 154 106	4.36E-04
GO:0043542 endothelial cell migration 194 129	5.00E-04
GO:0048598 embryonic morphogenesis 308 193	5.37E-04
GO:0008104 protein localization 1874 1009	5.38E-04
GO:0044089 positive regulation of cellular component biogenesis 416 252	5.87E-04
GO:0050790 regulation of catalytic activity 1498 817	6.20E-04
GO 0198738 cell-cell signaling by writ 343 212	6 32E-04
GO-0040017 positive regulation of locomotion 472 282	6.67E 04
CO(0040017) positive regulation of rocontrol 472 262	6.07E-04
GO:0060048 cardiac muscle contraction 111 80	6./IE-04
GO:0008154 actin polymerization or depolymerization 155 106	7.08E-04
GO:1903522 regulation of blood circulation 188 125	7.51E-04
GO:0030335 positive regulation of cell migration 443 266	7.90E-04
GO:0051247 positive regulation of protein metabolic process 1264 696	8.30E-04
GO:0021953 central nervous system neuron differentiation 74 57	8.76E-04
GO:0030100 regulation of endocytosis 159 108	9.23E-04
GC-0016055 Whisignaling pathway 339 209	9 76E-04
CO:0006836 naurotransmitter transport 137 05	1.04E.03
CO(001610) variate mediated transport 137 737	1.04E-03
$\begin{array}{c} \text{GO:0010192} \text{vestice-inequality function} \\ $	1.03E-03
GO:2000147 positive regulation of cell motility 463 276	1.13E-03
GO:0010243 response to organonitrogen compound 613 356	1.16E-03
GO:0007163 establishment or maintenance of cell polarity 177 118	1.25E-03
GO:0030178 negative regulation of Wnt signaling pathway 146 100	1.30E-03
GO:0099173 postsynapse organization 99 72	1.41E-03
GO:0006937 regulation of muscle contraction 119 84	1.42E-03
GO:0007229 integrin-mediated signaling nathway 104 75	1 44E-03
GO:0070252 actin-mediated cell contraction 86 64	1.50E-03
GO:0008360 regulation of cell shape 116 82	1.30E 03
CO-0008015 blood disputation 222 221	1.72E-03
GO:0008015 blood circulation 365 221	1.74E-03
GO:0060429 epithelium development 689 395	1.79E-03
GO:0043087 regulation of GTPase activity 301 187	1.79E-03
GO:0032412 regulation of ion transmembrane transporter activity 222 143	1.84E-03
GO:0018193 peptidyl-amino acid modification 1035 575	1.97E-03
GO:0055001 muscle cell development 118 83	2.04E-03
GO:0070848 response to growth factor 516 303	2.08E-03
GO:0043085 positive regulation of catalytic activity 960 536	2 08E-03
GO:0031623 recentor internalization 08 71	2.00E 03
CO(051025) receive acquisition of transport 700 405	2.091-03
do:0051050 positive regulation of transport	2.13E-05
GO:0010977 negative regulation of neuron projection 85 63 development	2.27E-03
GO:0031345 negative regulation of cell projection organization 125 87	2.31E-03
GO:1901699 cellular response to nitrogen compound 468 277	2.40E-03
GO:0086065 cell communication involved in cardiac conduction 58 46	2.49E-03
GO:0031532 actin cutockalaton morror and and conduction 105 75	2.19E 03
CO-051146 attited muscle of differentiation 100 13	2.50E-05
CO-0051140 strated muscle cen dinerentiation 1/0 113	2.30E-03
CO:0051049 establishment of localization in cell 1698 913	2.08E-03
GU:0046903 secretion 638 367	2.72E-03
GO:0046578 regulation of Ras protein signal transduction 139 95	2.74E-03

GO:0071417 cellular response to organonitrogen compound 413 247 2.92 GO:0048813 dendrite morphogenesis 97 70 3.06 GO:0060291 long-term synaptic potentiation 49 40 3.09 GO:0050771 negative regulation of axonogenesis 43 36 3.22 GO:0022898 regulation of transmembrane transporter activity 229 146 3.28 GO:0051174 regulation of phosphory metabolic process 1126 620 3.43 GO:0042325 regulation of phosphorylation 1004 557 3.54 GO:0040013 negative regulation of locomotion 278 173 3.69 GO:00716 synapse assembly 126 87 3.77 GO:007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of phosphate metabolic process 1125 619 3.93	2E-03 6E
GO:0048813 dendrite morphogenesis 97 70 3.06 GO:0060291 long-term synaptic potentiation 49 40 3.09 GO:0071526 semaphorin-plexin signaling pathway 40 34 3.13 GO:0050771 negative regulation of axonogenesis 43 36 3.22 GO:0022898 regulation of transmembrane transporter activity 229 146 3.28 GO:0051174 regulation of phosphory metabolic process 1126 620 3.43 GO:0042325 regulation of phosphorylation 1004 557 3.54 GO:00498001 regulation of cardiac muscle cell action potential 30 27 3.62 GO:007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	iE-03 iE-03 iE-03 iE-03 iE-03 iE-03 iE-03 iE-03 iE-03 iE-03 iE-03 iE-03
GO:0060291 long-term synaptic potentiation 49 40 3.09 GO:0071526 semaphorin-plexin signaling pathway 40 34 3.13 GO:0050771 negative regulation of axonogenesis 43 36 3.22 GO:0022898 regulation of transmembrane transporter activity 229 146 3.28 GO:0032940 secretion by cell 571 331 3.39 GO:0042325 regulation of phosphorus metabolic process 1126 620 3.43 GO:0042325 regulation of cardiac muscle cell action potential 30 27 3.62 GO:0040013 negative regulation of locomotion 278 173 3.69 GO:0007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	DE-03 BE-03 BE-03 BE-03 DE-03 BE-03 BE-03 BE-03 BE-03 BE-03 BE-03
GO:0071526 semaphorin-plexin signaling pathway 40 34 3.13 GO:0050771 negative regulation of axonogenesis 43 36 3.22 GO:0022898 regulation of transmembrane transporter activity 229 146 3.28 GO:0032940 secretion by cell 571 331 3.39 GO:0051174 regulation of phosphorus metabolic process 1126 620 3.43 GO:0042325 regulation of phosphorylation 1004 557 3.54 GO:0098901 regulation of cardiac muscle cell action potential 30 27 3.62 GO:0007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	8E-03 8E-03 8E-03 9E-03 8E-03 8E-03 8E-03 8E-03 8E-03
GO:0050771 negative regulation of axonogenesis 43 36 3.22 GO:0022898 regulation of transmembrane transporter activity 229 146 3.28 GO:0032940 secretion by cell 571 331 3.39 GO:0051174 regulation of phosphorus metabolic process 1126 620 3.43 GO:0042325 regulation of phosphorylation 1004 557 3.54 GO:00498901 regulation of cardiac muscle cell action potential 30 27 3.62 GO:0040013 negative regulation of locomotion 278 173 3.69 GO:0017416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	2E-03 3E-03 9E-03 5E-03 5E-03 5E-03 5E-03
GO:0022898 regulation of transmembrane transporter activity 229 146 3.28 GO:0032940 secretion by cell 571 331 3.39 GO:0051174 regulation of phosphorus metabolic process 1126 620 3.43 GO:0042325 regulation of phosphorylation 1004 557 3.54 GO:0042013 negative regulation of locomotion 278 173 3.69 GO:007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	BE-03 DE-03 DE-03 DE-03 DE-03 DE-03 DE-03
GO:0032940 secretion by cell 571 331 3.39 GO:0051174 regulation of phosphorus metabolic process 1126 620 3.43 GO:0042325 regulation of phosphorylation 1004 557 3.54 GO:0042325 regulation of cardiac muscle cell action potential 30 27 3.62 GO:0040013 negative regulation of locomotion 278 173 3.69 GO:007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	DE-03 E-03 E-03 E-03
GO:0051174 regulation of phosphorus metabolic process 1126 620 3.43 GO:0042325 regulation of phosphorylation 1004 557 3.54 GO:0098901 regulation of cardiac muscle cell action potential 30 27 3.62 GO:0040013 negative regulation of locomotion 278 173 3.69 GO:0007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	E-03 E-03 E-03
GO:0042325 regulation of phosphorylation 1004 557 3.54 GO:0098901 regulation of cardiac muscle cell action potential 30 27 3.62 GO:0040013 negative regulation of locomotion 278 173 3.69 GO:0007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	E-03 E-03
GO:0098901 regulation of cardiac muscle cell action potential 30 27 3.62 GO:0040013 negative regulation of locomotion 278 173 3.69 GO:0007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	E-03
GO:0040013 negative regulation of locomotion 278 173 3.69 GO:0007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	E 02
GO:0007416 synapse assembly 126 87 3.77 GO:0019220 regulation of phosphate metabolic process 1125 619 3.93 GO:0043408 regulation of MAPK cascade 534 311 3.94	·E-U3
GO:0019220regulation of phosphate metabolic process11256193.93GO:0043408regulation of MAPK cascade5343113.94	'E-03
GO:0043408 regulation of MAPK cascade 534 311 3.94	E-03
	E-03
GO:0045229 external encapsulating structure organization 237 150 4.35	E-03
GO:0051966 regulation of synaptic transmission, glutamatergic 51 41 4.76	E-03
GO:0006898 receptor-mediated endocytosis 214 137 4.77	'E-03
GO:0086003 cardiac muscle cell contraction 62 48 5.00	E-03
GO:0098703 calcium ion import across plasma membrane 36 31 5.04	E-03
cardiac muscle cell action potential involved in	
GO:0086002 contraction 48 39 5.09	E-03
GO:0033036 macromolecule localization 2245 1186 5.15	E-03
GO:0001944 vasculature development 492 288 5.17	'E-03
GO:0050890 cognition 156 104 5.19	E-03
GO:0030198 extracellular matrix organization 234 148 5.31	E-03
GO:0060079 excitatory postsynaptic potential 45 37 5.32	E-03
GO:1901888 regulation of cell junction assembly 144 97 5.54	E-03
GO:0050678 regulation of epithelial cell proliferation 236 149 5.67	E-03
GO:1902903 regulation of supramolecular fiber organization 311 190 6.64	E-03
GO:0043062 extracellular structure organization 235 148 7.38	E-03
GO:0002009 morphogenesis of an epithelium 275 170 7.74	E-03
GO:0042592 homeostatic process 1249 680 7.85	E-03
GO:0043412 macromolecule modification 3198 1659 8.65	E-03
GO:0086091 regulation of heart rate by cardiac conduction 41 34 9.11	E-03
GO:0110053 regulation of actin filament organization 216 137 9.48	E-03
GO:0031400 negative regulation of protein modification process 409 242 1.05	E-02
GO:0001568 blood vessel development 469 274 1.06	E-02
negative regulation of canonical Wnt signaling	E 02
GO:0090090 pathway 118 81 1.13	E-02
GO:0048592 eye morphogenesis 81 59 1.14	E-02
GO:0051246 regulation of protein metabolic process 2072 1095 1.17	E-02
GO:0007423 sensory organ development 271 167 1.19	E-02
GO:2001257 regulation of cation channel activity 153 101 1.31	E-02
GO:0070588 calcium ion transmembrane transport 235 147 1.31	E-02
GO:0007611 learning or memory 115 79 1.37	E-02
GO:0048863 stem cell differentiation 155 102 1.44	E-02
GO:0031401 positive regulation of protein modification process 814 454 1.44	E-02
GO:0060341 regulation of cellular localization 766 429 1.48	E-02
GO:0021954 central nervous system neuron development 40 33 1.51	E-02
GO:0071363 cellular response to growth factor stimulus 499 289 1.51	E-02
GO:1901379 regulation of potassium ion transmembrane transport 70 52 1.53	E-02
GO:0030041 actin filament polymerization 129 87 1.53	E-02
GO:0048514 blood vessel morphogenesis 439 257 1.60	E-02
GO:0050773 regulation of dendrite development 62 47 1.62	E-02
GO:0009792 embryo development ending in birth or egg hatching 198 126 1.68	E-02
GO:0051961 negative regulation of nervous system development 85 61 1.69	E-02
GO:0090596 sensory organ morphogenesis 119 81 1.79	E-02
GO:0001501 skeletal system development 289 176 1.82	E-02
GO:0120031 plasma membrane bounded cell projection assembly 483 280 1.85	E-02
GO:0006816 calcium ion transport 313 189 1.85	E-02
GO:0010634 positive regulation of epithelial cell migration 133 89 1.92	E-02
GO:0031098 stress-activated protein kinase signaling cascade 202 128 1.93	E-02
GO:0009628 response to abjotic stimulus 712 400 197	E-02
GO:1990573 potassium ion import across plasma membrane 48 38 1 99	E-02
GO:0150104 transport across blood-brain barrier 87 62 2.03	E-02
GO:0010232 vascular transport 87 62 2.03	E-02
GO:0007160 cell-matrix adhesion 195 124 2.04	E-02
GO:0032880 regulation of protein localization 672 379 2.06	E-02
GO:0043254 regulation of protein-containing complex assembly 332 199 2.11	E 02

GO:0051258	protein polymerization	233	145	2.14E-02
GO:0000122	negative regulation of transcription by RNA	751	420	2 14E-02
00.0000122	polymerase II	751	420	2.141-02
GO:0007612	learning	53	41	2.48E-02
GO:0045664	regulation of neuron differentiation	96	67	2.77E-02
GO:0010959	regulation of metal ion transport	298	180	2.80E-02
GO:0030010	establishment of cell polarity	108	74	2.86E-02
GO:0007269	neurotransmitter secretion	91	64	2.87E-02
GO:0099643	signal release from synapse	91	64	2.87E-02
GO:0051963	regulation of synapse assembly	58	44	2.89E-02
GO:0016079	synaptic vesicle exocytosis	58	44	2.89E-02
GO:0150063	visual system development	207	130	3.03E-02
GO:0051403	stress-activated MAPK cascade	198	125	3.03E-02
GO:0061572	actin filament bundle organization	136	90	3.22E-02
GO:0048762	mesenchymal cell differentiation	191	121	3.23E-02
GO:0007215	glutamate receptor signaling pathway	44	35	3.51E-02
GO:0086009	membrane repolarization	44	35	3.51E-02
GO:0048880	sensory system development	213	133	3.64E-02
CO.0022070	regulation of establishment or maintenance of cell	26	22	2 (55 02
00:0032878	polarity	20	25	5.03E-02
GO:0001654	eye development	204	128	3.68E-02
GO:0048640	negative regulation of developmental growth	60	45	3.78E-02
GO:0030031	cell projection assembly	498	286	3.80E-02
GO:0043549	regulation of kinase activity	599	339	3.81E-02
GO:0050881	musculoskeletal movement	41	33	3.82E-02
GO:0050879	multicellular organismal movement	41	33	3.82E-02
GO:1990778	protein localization to cell periphery	279	169	3.89E-02
GO:0051017	actin filament bundle assembly	133	88	3.94E-02
GO:0086005	ventricular cardiac muscle cell action potential	29	25	4.10E-02
GO:0050919	negative chemotaxis	35	29	4.26E-02
GO:0030517	negative regulation of axon extension	32	27	4.29E-02
GO:0048878	chemical homeostasis	769	427	4.30E-02
GO:0042327	positive regulation of phosphorylation	663	372	4.31E-02
GO:0050768	negative regulation of neurogenesis	80	57	4.32E-02
GO:0031323	regulation of cellular metabolic process	4966	2520	4.38E-02
GO:0043009	chordate embryonic development	183	116	4.45E-02
GO:0010721	negative regulation of cell development	109	74	4.53E-02
GO:0045785	positive regulation of cell adhesion	369	217	4.75E-02
GO:0006887	exocytosis	267	162	4.91E-02
GO:0045216	cell-cell junction organization	169	108	4.96E-02
GO:0001764	neuron migration	87	61	4.98E-02

				Adjusted
GO ID	GO Description	Universe	CLINVAR	P-value
GO:0006941	striated muscle contraction	142	32	1.1E-11
GO:0060048	cardiac muscle contraction	111	27	2.1E-10
GO:0050905	neuromuscular process	73	22	4.5E-10
GO:0035637	multicellular organismal signaling	128	28	1.1E-09
GO:0001508	action potential	117	26	5.2E-09
GO:0030048	actin filament-based movement	113	25	1.5E-08
GO:0070252	actin-mediated cell contraction	86	20	7.0E-07
GO:0061337	cardiac conduction	91	20	1.9E-06
GO:0086001	cardiac muscle cell action potential	73	18	2.0E-06
GO:0006937	regulation of muscle contraction	119	22	7.3E-06
GO:0086003	cardiac muscle cell contraction	62	15	5.8E-05
GO:0051899	membrane depolarization	64	15	8.9E-05
GO:1903115	regulation of actin filament-based movement	32	11	9.0E-05
GO:0060415	muscle tissue morphogenesis	47	13	9.1E-05
GO:0048644	muscle organ morphogenesis	47	13	9.1E-05
GO:0002027	regulation of heart rate	84	17	1.1E-04
GO:0098900	regulation of action potential	48	13	1.2E-04
GO:0086002	cardiac muscle cell action potential involved in contraction	48	13	1.2E-04
GO:0050954	sensory perception of mechanical stimulus	106	18	5.7E-04
GO:0086065	cell communication involved in cardiac conduction	58	13	1.0E-03
GO:0006942	regulation of striated muscle contraction	78	15	1.1E-03
GO:0007605	sensory perception of sound	100	17	1.1E-03
GO:0086091	regulation of heart rate by cardiac conduction	41	11	1.2E-03
GO:0050881	musculoskeletal movement	41	11	1.2E-03
GO:0050879	multicellular organismal movement	41	11	1.2E-03
GO:0019226	transmission of nerve impulse	42	11	1.5E-03
GO:0055008	cardiac muscle tissue morphogenesis	42	11	1.5E-03
GO:0048738	cardiac muscle tissue development	138	20	1.5E-03
GO:0055001	muscle cell development	118	18	2.5E-03
GO:0003009	skeletal muscle contraction	36	10	2.5E-03
GO:0014706	striated muscle tissue development	144	20	2.8E-03
GO:0086005	ventricular cardiac muscle cell action potential	29	9	3.1E-03
GO:0050885	neuromuscular process controlling balance	16	7	3.4E-03
GO:0098901	regulation of cardiac muscle cell action potential	30	9	4.2E-03
GO:0003229	ventricular cardiac muscle tissue development	39	10	5.3E-03
GO:0048592	eye morphogenesis	81	14	8.1E-03
GO:0055010	ventricular cardiac muscle tissue morphogenesis	33	9	9.3E-03
GO:0055117	regulation of cardiac muscle contraction	61	12	9.8E-03
GO:0086019	cell-cell signaling involved in cardiac conduction	34	9	1.2E-02
GO:0008306	associative learning	19	7	1.2E-02
GO:0086010	membrane depolarization during action potential	35	9	1.5E-02
GO:0050953	sensory perception of light stimulus	138	18	1.9E-02
GO:0086004	regulation of cardiac muscle cell contraction	28	8	2.0E-02
GO:0043589	skin morphogenesis	5	4	2.6E-02
GO:0002028	regulation of sodium ion transport	68	12	2.7E-02
GO:0048661	positive regulation of smooth muscle cell proliferation	49	10	3.6E-02
GO:0048483	autonomic nervous system development	31	8	4.1E-02
GO:0060348	bone development	108	15	4.5E-02

Appendix Table B 6 Significant GO:BP enrichments for all CLINVAR G4 mutations.
GO ID	GO Description	Universe	COSMIC and CLINVAR	Adjusted P-value
GO:0032502	developmental process	4584	1138	3.23E-24
GO:0048856	anatomical structure development	4152	1043	2.82E-23
GO:0007399	nervous system development	1648	488	1.15E-22
GO:0009653	anatomical structure morphogenesis	1871	539	2.18E-22
GO:0048731	system development	2976	784	9.30E-22
GO:0007275	multicellular organism development	3266	842	1.00E-20
GO:0032501	multicellular organismal process	5319	1270	1.40E-20
GO:0030154	cell differentiation	2860	742	3.10E-18
GO:0048699	generation of neurons	969	309	3.31E-18
GO:0048869	cellular developmental process	2879	/45	5.24E-18
GO:0016043	cellular component organization	5370	1259	6./8E-1/
GO:0022008	neuron differentiation	022	202	1.00E-10 1.76E-16
GO:0030182	cellular component organization or biogenesis	5530	1277	2 38E-14
GO:0071040	regulation of signaling	2733	694	2.56E-14
GO:0020001	regulation of cell communication	2733	692	4 16E-14
GO:0048666	neuron development	729	236	4.22E-14
GO:0000904	cell morphogenesis involved in differentiation	495	175	7.97E-14
GO:0048468	cell development	1355	385	9.16E-14
GO:0048513	animal organ development	2176	567	3.84E-13
GO:0023052	signaling	5190	1196	9.50E-13
GO:0032989	cellular component morphogenesis	549	186	1.02E-12
GO:0007154	cell communication	5221	1200	2.02E-12
GO:0031175	neuron projection development	656	212	2.53E-12
GO:0048667	cell morphogenesis involved in neuron differentiation	381	140	3.85E-12
GO:0034330	cell junction organization	518	176	4.81E-12
GO:0000902	cell morphogenesis	718	226	6.91E-12
GO:0048812	neuron projection morphogenesis	441	155	9.70E-12
GO:0007010	cytoskeleton organization	1309	365	1.42E-11
GO:0009966	regulation of signal transduction	2464	621	1.59E-11
GO:0009887	animal organ morphogenesis	582	190	2.8/E-11
GO:000/155 GO:0120026	cell addresion	1210	342	3.20E-11 2.94E-11
GO:0120030	plasma membrane bounded cell projection organization	1144	157	3.04E-11 3.85E 11
GO:0020059	cell projection morphogenesis	459	157	8 90F-11
GO:0030030	cell projection organization	1164	328	9.33E-11
GO:0032990	cell part morphogenesis	469	159	1.42E-10
GO:0030029	actin filament-based process	717	219	5.92E-10
GO:0061564	axon development	323	118	1.06E-09
GO:0007409	axonogenesis	298	111	1.25E-09
GO:0050808	synapse organization	275	104	2.31E-09
GO:0050793	regulation of developmental process	1810	465	4.44E-09
GO:0051128	regulation of cellular component organization	1929	490	6.77E-09
GO:0007165	signal transduction	4776	1078	4.27E-08
GO:0016477	cell migration	1210	325	7.79E-08
GO:0048870	cell motility	1362	359	8.30E-08
GO:0098609	cell-cell adhesion	743	217	8.39E-08
GO:0051716	cellular response to stimulus	5982	1316	9.92E-08
GO:0035556	intracellular signal transduction	2108	554 777	1.20E-07
GO:0048385 GO:0051230	regulation of multicellular organismal process	5527 2117	522	1.74E-07
GO:0091239	trans_synaptic signaling	501	157	2.02E-07
GO:0099536	synaptic signaling	522	162	2.02E-07 2.28E-07
GO:0009888	tissue development	1239	329	2.20E 07 2.43E-07
GO:0098916	anterograde trans-synaptic signaling	495	155	2.81E-07
GO:0007268	chemical synaptic transmission	495	155	2.81E-07
GO:0065007	biological regulation	10721	2221	3.01E-07
GO:0072359	circulatory system development	729	211	3.69E-07
GO:0065008	regulation of biological quality	2937	692	5.65E-07
GO:0050794	regulation of cellular process	9523	1993	7.40E-07
GO:0007267	cell-cell signaling	1269	333	7.84E-07
GO:0003008	system process	1358	351	1.64E-06
GO:0007417	central nervous system development	584	173	2.68E-06
GO:0009987	cellular process	14783	2936	4.03E-06

Appendix Table B 7 Significant GO:BP enrichments for COSMIC and CLINVAR G4 mutations leading to the loss of a G4.

GO:0040011	locomotion	1075	285	5.65E-06
GO:0050789	regulation of biological process	10085	2089	8.77E-06
GO:1905114	cell surface receptor signaling pathway involved in cell-cell	388	123	1.03E-05
GO:0030036	actin cytoskeleton organization	637	183	1 15E-05
GO:0050804	modulation of chemical synantic transmission	252	88	1.13E 05
30.0030048	actin filament based movement	113	49	1.10E-05
30.0030048	regulation of trans, synaptic signaling	253	49	1.44E-05
20.0099177	action transport	255	240	1.40E-05
GO:0000812	cation transport	600	240	1.53E-05
30:0030001	metalion transport	0/0	192	1.36E-05
GO:0010975	regulation of neuron projection development	288	97	1.01E-05
GO:0060047	neart contraction	18/	70	1.80E-05
GO:0006811	ion transport	1187	307	1.99E-05
GO:0048518	positive regulation of biological process	5294	1158	2.05E-05
GO:0034329	cell junction assembly	341	110	2.35E-05
GO:0032879	regulation of localization	1615	400	2.54E-05
GO:0044057	regulation of system process	392	122	3.78E-05
GO:0007411	axon guidance	169	64	4.59E-05
GO:0097485	neuron projection guidance	169	64	4.59E-05
GO:0051179	localization	4343	964	4.59E-05
GO:0048522	positive regulation of cellular process	4704	1036	5.30E-05
GO:0007507	heart development	338	108	5.46E-05
GO:0006936	muscle contraction	260	88	6.00E-05
GO:0055085	transmembrane transport	1060	276	6.09E-05
GO:0034220	ion transmembrane transport	816	221	6.22E-05
GO:0042391	regulation of membrane potential	319	103	6.34E-05
GO:0048523	negative regulation of cellular process	3896	872	6.65E-05
GO:0003015	heart process	193	70	7.53E-05
GO:0007166	cell surface receptor signaling pathway	2271	536	8.29E-05
GO:0003012	muscle system process	305	99	8.73E-05
GO:1902531	regulation of intracellular signal transduction	1429	356	9.28E-05
GO:0061061	muscle structure development	407	124	1.07E-04
GO:0040012	regulation of locomotion	842	225	1.46E-04
GO:0098655	cation transmembrane transport	656	182	1.81E-04
GO:0048646	anatomical structure formation involved in morphogenesis	751	203	2.65E-04
GO:0048519	negative regulation of biological process	4381	964	2.73E-04
GO:0048729	tissue morphogenesis	348	108	2.78E-04
GO:0007416	synapse assembly	126	50	2.85E-04
GO:0022603	regulation of anatomical structure morphogenesis	700	191	3.10E-04
GO:0051960	regulation of nervous system development	257	85	3 10E-04
GO:0030334	regulation of cell migration	767	206	3.51E-04
GO:0050905	neuromuscular process	73	34	3.51E-04
GO:0031589	cell-substrate adhesion	290	93	3.99E-04
GO:0051505	response to stimulus	7117	1503	4.02E-04
GO:0031344	regulation of cell projection organization	/11/	136	4.37E 04
CO:0002012	airculatory system process	407	120	4.37E-04
GO:0003013	regulation of molecular function	2121	130	5.12E-04
GO:0005009		2121	498	5.42E-04
GO:0000810	transport	5020	007 122	5.03E-04
60:0120055	organization	455	152	0.34E-04
GO:0008015	blood circulation	363	110	7.79E-04
GO:0030111	regulation of Wnt signaling pathway	274	88	7.79E-04
GO:0007420	brain development	384	115	8.24E-04
GO:0051130	positive regulation of cellular component organization	844	221	9.67E-04
GO:2000145	regulation of cell motility	818	215	1.04E-03
GO:0006996	organelle organization	3147	708	1.04E-03
GO:0070252	actin-mediated cell contraction	86	37	1.15E-03
GO:0051056	regulation of small GTPase mediated signal transduction	238	78	1.44E-03
GO:0050877	nervous system process	755	200	1.46E-03
GO:0051234	establishment of localization	3775	834	1.55E-03
GO:0060048	cardiac muscle contraction	111	44	1.57E-03
GO:0051094	positive regulation of developmental process	967	247	1.64E-03
GO:0098662	inorganic cation transmembrane transport	572	158	1.65E-03
GO:0051062	regulation of synapse assembly	58	28	1.60F_02
GO:0031303	head development	402	20 119	1.07E-03 1.74E 02
GO:0000322	amehoidal tune call migration	332	101	1.74E-03 2.14E-02
GO:000100/	amedoidai-type cell migration	333 167	101	2.14E-03
GO:0048638	regulation of developmental growth	10/	39	2.18E-03
GU:000/16/	enzyme-linked receptor protein signaling pathway	/95	208	2.19E-03
	regulation of heart contraction	164	58	2.57E-03
GO:0008016	regulation of neure contraction			

GO:0006941	striated muscle contraction	142	52	2.76E-03
GO:0045595	regulation of cell differentiation	1129	281	2.82E-03
GO:0097/35	supramolecular fiber organization	710	188	3 17E-03
GO:0077433	multicellular organismal signaling	128	18	3.17E-03
GO:0033037	inorganic ion transmembrane transport	622	40	3.200-03
CO.0098000	morganic ion dansheribrane transport	142	100	3.22E-U3 2.47E-02
GO:0001505	regulation of neurotransmitter levels	143	52	5.4/E-03
GO:0048598	embryonic morphogenesis	308	94	3.66E-03
GO:0010647	positive regulation of cell communication	1374	333	3.80E-03
GO:0006816	calcium ion transport	313	95	4.16E-03
GO:0009967	positive regulation of signal transduction	1255	307	4.32E-03
GO:0099565	chemical synaptic transmission, postsynaptic	51	25	4.41E-03
GO:0009719	response to endogenous stimulus	1076	268	4 62E-03
GO:0099587	inorganic ion import across plasma membrane	112	43	5 31E-03
GO:0099659	inorganic cation import across plasma membrane	112	43	5.31E-03
CO:0000700	ambruo davalonment	505	140	5.31E 03
GO.0009790		105	140	5.02E-03
GO:0098742	molecules	195	03	5.95E-05
GO:0007169	transmembrane receptor protein tyrosine kinase signaling pathway	511	141	6.44E-03
GO:0023057	negative regulation of signaling	1067	265	6.57E-03
GO:1903522	regulation of blood circulation	188	63	6.84E-03
GO:0050807	regulation of synapse organization	124	46	7.05E-03
GO:0001508	action potential	117	44	7.54E-03
GO:0001308	nositive regulation of signaling	1380	320	7 60 5 03
GO:0023030	positive regulation of nervous system development	1300	552 50	1.00E-U3 9.20E-02
GU:0051962	positive regulation of nervous system development	14/	52	8.38E-03
GO:0198738	cell-cell signaling by wnt	343	101	8.47E-03
GO:0010631	epithelial cell migration	261	81	8.86E-03
GO:0043269	regulation of ion transport	458	128	9.01E-03
GO:0016358	dendrite development	155	54	9.18E-03
GO:0050803	regulation of synapse structure or activity	129	47	9.61E-03
GO:1903115	regulation of actin filament-based movement	32	18	9.75E-03
GO:1901888	regulation of cell junction assembly	144	51	9.80E-03
GO:0040008	regulation of growth	416	118	9.86F-03
GO:0040008	learning	52	25	1 00 00
GO:0007012		2547	23	1.00E-02
GO:0022607	central component assembly	204/	5/5	1.05E-02
GO:0010648	negative regulation of cell communication	1060	262	1.06E-02
GO:0042221	response to chemical	2943	656	1.07E-02
GO:0086001	cardiac muscle cell action potential	73	31	1.16E-02
GO:0071495	cellular response to endogenous stimulus	974	243	1.17E-02
GO:0090130	tissue migration	267	82	1.17E-02
GO:0090132	epithelium migration	263	81	1.19E-02
GO:0090596	sensory organ morphogenesis	119	44	1.21E-02
GO:0048738	cardiac muscle tissue development	138	49	1 34E-02
GO:0007760	neurotransmitter secretion	91	36	1.5 FL 02
GO:0007203	signal release from surgers	01	26	1.45E.02
GO:0099043	signal release from synapse	71	30	1.45E-02
GO:0016055	wnt signaling pathway	339	99	1.4/E-02
GO:0040007	growth	515	140	1.52E-02
GO:0048589	developmental growth	273	83	1.55E-02
GO:0098703	calcium ion import across plasma membrane	36	19	1.76E-02
GO:0099003	vesicle-mediated transport in synapse	121	44	1.91E-02
GO:0014706	striated muscle tissue development	144	50	2.13E-02
GO:0016310	phosphorylation	1444	342	2.13E-02
GO:0007517	muscle organ development	179	59	2.13E 02 2.24E-02
GO:0007317	regulation of transmombrane transport	385	100	2.27L-02 2.20E 02
GO.0034762	regulation of transmemorate transport	303	109	2.30E-02
GO:0006836	neurotransmitter transport	137	48	2.39E-02
GO:0044087	regulation of cellular component biogenesis	//4	197	2.41E-02
GO:0086003	cardiac muscle cell contraction	62	27	2.50E-02
GO:0007611	learning or memory	115	42	2.61E-02
GO:0009968	negative regulation of signal transduction	1009	248	2.74E-02
GO:0090257	regulation of muscle system process	157	53	2.86E-02
GO:0035249	synaptic transmission, glutamatergic	66	28	3.09E-02
GQ:0060560	developmental growth involved in morphogenesis	135	47	3 44E-02
GO.0000000	mornhogenesis of an anithelium	275	82	3.61E_02
CO:0002003	amell CTDasa mediated signal transduction	200	100	2.61E-02
GO:0007264	sman GTPase mediated signal transduction	207	109	5.01E-02
GO:000202/	regulation of heart rate	84	53	3.80E-02
GO:0043542	endothelial cell migration	194	62	3.82E-02
GO:0051668	localization within membrane	570	150	4.30E-02
GO:0086091	regulation of heart rate by cardiac conduction	41	20	4.31E-02
GO:0060828	regulation of canonical Wnt signaling pathway	211	66	4.44E-02
GO:0051965	positive regulation of synapse assembly	35	18	4.46E-02

GO:0048588	developmental cell growth	129	45	4.73E-02
GO:0099504	synaptic vesicle cycle	114	41	4.75E-02
GO:0042127	regulation of cell population proliferation	1218	291	4.82E-02
GO:0050890	cognition	156	52	4.83E-02
GO:0007158	neuron cell-cell adhesion	16	11	4.94E-02

GO ID	GO Description	Universe	COSMIC	Adjusted B volue
CO:000653	anatomical structure morphogenesis	1971	281	1 50E 10
GO:0009055 CO:0016043	cellular component organization	5370	031	1.50E-10 4.07E-10
GO:0010045	developmental process	4584	804	5.37E-09
GO:0032302	allular component organization or biogeneois	5520	045	1.77E-09
GO:00/1040	anatomical structure development	4152	724	1.//E-00
GO:0048850		4152	/ 34	1.85E-08
GO:0048099	generation of neurons	969	210	1.80E-08
GO:0007399	nervous system development	1648	333	2.19E-08
GO:0030182	neuron differentiation	923	204	1.65E-07
GO:0032501	multicellular organismal process	5319	904	2.10E-07
GO:0048731	system development	2976	543	2.40E-07
GO:0022008	Neurogenesis	1096	233	3.56E-07
GO:0007275	multicellular organism development	3266	587	4.31E-07
GO:0048666	neuron development	729	167	5.80E-07
GO:0030154	cell differentiation	2860	521	8.72E-07
GO:0048869	cellular developmental process	2879	523	1.24E-06
GO:0048468	cell development	1355	273	2.92E-06
GO:0010646	regulation of cell communication	2727	493	9.55E-06
GO:0023051	regulation of signaling	2733	492	1.83E-05
GO:0034330	cell junction organization	518	122	2.98E-05
GO:0031175	neuron projection development	656	147	3.28E-05
GO:0009966	regulation of signal transduction	2464	447	4.09E-05
GO:0048513	animal organ development	2176	401	4.17E-05
GO:0051128	regulation of cellular component organization	1929	360	6.48E-05
GO:0000904	cell morphogenesis involved in differentiation	495	116	9.06E-05
GO:0007010	cytoskeleton organization	1309	256	0.000164105
GO:0023052	Signaling	5190	860	0.000200273
GO:0007154	cell communication	5221	863	0.000302145
GO:0007155	cell adhesion	1216	239	0.000305302
GO:0050808	synapse organization	275	72	0.000421197
GO:0009887	animal organ morphogenesis	582	129	0.000483951
GO:0032989	cellular component morphogenesis	549	123	0.000504882
GO:0022505	cell morphogenesis involved in neuron differentiation	381	91	0.001066523
GO:0040007	axon development	323	80	0.001103984
GO:0001504	biological regulation	10721	1650	0.001103504
CO:0048812	neuron projection morphogenesis	441	1030	0.002100476
CO:0120036	plasma membrane bounded call projection organization	1144	222	0.002100470
CO:0048583	regulation of reanance to stimulus	2227	569	0.002358758
<u>CO:007400</u>	Axonogonacis	208	74	0.002505552
GO:0007409	Axonogenesis	1259	257	0.002622931
GO:0003008	system process	1338	237	0.002627434
GO:0030030		2169	223	0.002070372
GO:0035550		2108	38/	0.002/339/3
GO:0032879	regulation of localization	1615	298	0.003442374
GO:0051239	regulation of multicellular organismal process	2117	3/8	0.003636668
GU:0000902	cen morphogenesis	/18	149	0.00363/049
GO:0007165	signal transduction	4776	/86	0.003677398
GO:0098609	cell-cell adhesion	/43	153	0.004206573
GO:0120039	plasma membrane bounded cell projection morphogenesis	455	102	0.00520267
GO:0006811	ion transport	1187	227	0.005379723
GO:0051179	Localization	4343	718	0.007233245
GO:0044057	regulation of system process	392	90	0.007238929
GO:0051716	cellular response to stimulus	5982	962	0.007709961
GO:0048858	cell projection morphogenesis	459	102	0.007839606
GO:0065008	regulation of biological quality	2937	503	0.00859953
GO:0097485	neuron projection guidance	169	47	0.009226901
GO:0007411	axon guidance	169	47	0.009226901
GO:0009888	tissue development	1239	234	0.009565902
GO:0050794	regulation of cellular process	9523	1473	0.010601198
GO:0006812	cation transport	886	175	0.011607738
GO:0032990	cell part morphogenesis	469	103	0.012164938
GO:0055085	transmembrane transport	1060	203	0.017138186
GO:0048598	embryonic morphogenesis	308	73	0.018555392
GO:0007417	central nervous system development	584	122	0.022813937
GO:0009790	embryo development	505	108	0.02527435
GO:0031589	cell-substrate adhesion	290	69	0.028200129

Appendix Table B 8 Significant GO:BP enrichments for COSMIC G4 mutations leading to the loss of a G4.

GO ID	GO Description	Universe Count	COSMIC Count	Adjusted P-value
GO:0040011	Locomotion	1075	204	0.029753799
GO:0050793	regulation of developmental process	1810	322	0.033576014
GO:0050905	neuromuscular process	73	25	0.036424405
GO:0048523	negative regulation of cellular process	3896	643	0.039903379
GO:0010975	regulation of neuron projection development	288	68	0.042350124
GO:0052697	xenobiotic glucuronidation	11	8	0.042820644
GO:0016477	cell migration	1210	225	0.043542025
GO:0003013	circulatory system process	443	96	0.043990329
GO:0048646	anatomical structure formation involved in morphogenesis	751	149	0.045881349
GO:0003012	muscle system process	305	71	0.046497064
GO:0048519	negative regulation of biological process	4381	715	0.049876587

GO ID	GO Description	Universe	CLINVAR	Adjusted
				P-value
GO:0006936	muscle contraction	260	21	1.07E-06
GO:0003012	muscle system process	305	22	1.86E-06
GO:0060048	cardiac muscle contraction	111	14	5.31E-06
GO:0006941	striated muscle contraction	142	15	9.47E-06
GO:0060047	heart contraction	187	16	3.82E-05
GO:0003015	heart process	193	16	4.82E-05
GO:0086003	cardiac muscle cell contraction	62	10	6.95E-05
GO:0086002	cardiac muscle cell action potential involved in contraction	48	9	9.09E-05
GO:0070252	actin-mediated cell contraction	86	11	1.12E-04
GO:0030048	actin filament-based movement	113	12	1.84E-04
GO:0086001	cardiac muscle cell action potential	73	10	2.19E-04
GO:0008016	regulation of heart contraction	164	13	8.37E-04
GO:0001508	action potential	117	11	1.31E-03
GO:0035637	multicellular organismal signaling	128	11	2.48E-03
GO:0008015	blood circulation	363	18	2.56E-03
GO:0003013	circulatory system process	443	20	2.56E-03
GO:1903522	regulation of blood circulation	188	13	2.64E-03
GO:0060348	bone development	108	10	3.32E-03
GO:0086005	ventricular cardiac muscle cell action potential	29	6	4.45E-03
GO:0061337	cardiac conduction	91	9	5.54E-03
GO:0044057	regulation of system process	392	17	1.65E-02
GO:0002027	regulation of heart rate	84	8	2.02E-02
GO:0001501	skeletal system development	289	14	2.76E-02
GO:0030279	negative regulation of ossification	26	5	2.93E-02
GO:0060537	muscle tissue development	218	12	3 16E-02

Appendix Table B 9 Significant GO:BP enrichments for CLINVAR G4 mutations leading to the loss of a G4.

GO ID	GO Description	Universe	COSMIC	Adjusted P-value
			And	
			CLINVAR	
GO:0048856	anatomical structure development	4152	588	5.78E-18
GO:0032502	developmental process	4584	634	2.01E-17
GO:0048731	system development	2976	448	5.64E-17
GO:0007275	normous system development	3200	480	1./0E-10 1.02E-15
GO:0007399 GO:0009653	anatomical structure morphogenesis	1048	279	1.92E-13 2.05E-14
GO:0009055	cellular developmental process	2879	419	2.95E-14 7.27E-13
GO:0040007	cell differentiation	2860	415	1.07E-12
GO:0000104 GO:0007155	cell adhesion	1216	209	2 10F-11
GO:0007155 GO:0032501	multicellular organismal process	5319	684	2.10E 11 2.28E-11
GO:0032001 GO:0030029	actin filament-based process	717	138	2.20E 11 2.88E-10
GO:1903508	positive regulation of nucleic acid-templated	1297	215	3.71E-10
0011702200	transcription	1227	210	0111110
GO:0045893	positive regulation of DNA-templated transcription	1297	215	3.71E-10
GO:1902680	positive regulation of RNA biosynthetic process	1303	215	5.95E-10
GO:0045944	positive regulation of transcription by RNA polymerase	952	167	2.58E-09
	II			
GO:0010646	regulation of cell communication	2727	384	3.03E-09
GO:0000902	cell morphogenesis	718	135	3.17E-09
GO:0023051	regulation of signaling	2733	384	4.14E-09
GO:0050793	regulation of developmental process	1810	274	5.89E-09
GO:0032989	cellular component morphogenesis	549	110	7.78E-09
GO:0051254	positive regulation of RNA metabolic process	1433	227	7.96E-09
GO:0030036	actin cytoskeleton organization	637	121	2.50E-08
GO:0048858	cell projection morphogenesis	459	95	3.88E-08
GO:0032990	cell part morphogenesis	469	96	5.73E-08
GO:0045935	positive regulation of nucleobase-containing compound metabolic process	1620	245	1.21E-07
GO:0010557	positive regulation of macromolecule biosynthetic process	1492	229	1.43E-07
GO:0048522	positive regulation of cellular process	4704	594	2.02E-07
GO:0031328	positive regulation of cellular biosynthetic process	1568	237	2.77E-07
GO:0048812	neuron projection morphogenesis	441	90	2.81E-07
GO:0007267	cell-cell signaling	1269	200	2.89E-07
GO:0120039	plasma membrane bounded cell projection morphogenesis	455	92	2.89E-07
GO:0048513	animal organ development	2176	309	3.69E-07
GO:0009891	positive regulation of biosynthetic process	1593	239	4.60E-07
GO:0009887	animal organ morphogenesis	582	109	6.23E-07
GO:0023052	signaling	5190	642	8.45E-07
GO:0048699	generation of neurons	969	160	8.71E-07
GO:0000904	cell morphogenesis involved in differentiation	495	96	1.14E-06
GO:0048468	cell development	1355	208	1.18E-06
GO:0007154	cell communication	5221	644	1.30E-06
GO:0030182	neuron differentiation	923	153	1.64E-06
GO:0022008	neurogenesis	1096	175	1.72E-06
GO:0030030	cell projection organization	1164	183	2.34E-06
GO:0120036	plasma membrane bounded cell projection organization	1144	180	3.05E-06
GO:000/010	cytoskeleton organization	1309	199	0.53E-00
GO:0099330	syllaptic signaling	221	90	1.60E-05
GO:0048007 GO:0048518	positive regulation of biological process	501	/0 642	2.12E-03
GO:0048518 GO:0031175	positive regulation of biological process	5294	113	2.00E-03 3.77E-05
GO:0051175 GO:0050804	modulation of chemical synaptic transmission	250	56	5.77E-05 4 37E-05
GO:0000004	regulation of trans_synaptic signaling	252	56	4.32E-03 4.07E_05
GO:0009966	regulation of signal transduction	255	330	5 42F-05
GO:0009900	regulation of anatomical structure morphogenesis	2404	118	5.42E-05 6.09F-05
GO:0022003	positive regulation of nitrogen compound metabolic	2565	341	6 44E-05
20.0001175	process	2505	541	0.112 00
GO:0051239	regulation of multicellular organismal process	2117	289	8.50E-05

Appendix Table B 10 Significant GO:BP enrichments for COSMIC and CLINVAR G4 mutations leading to the gain of a G4.

GO:0016043	cellular component organization	5370	646	9.41E-05
GO:0048666	neuron development	729	121	9.62E-05
GO:0031325	positive regulation of cellular metabolic process	2522	335	9.64E-05
GO:0099537	trans-synaptic signaling	501	90	1.58E-04
GO:0048589	developmental growth	273	57	2.93E-04
GO:0048523	negative regulation of cellular process	3896	484	2.94E-04
GO:0048870	cell motility	1362	197	3.32E-04
GO:0007268	chemical synaptic transmission	495	88	3.49E-04
GO:0098916	anterograde trans-synaptic signaling	495	88	3.49E-04
GO:0009987	cellular process	14783	1556	6.39E-04
GO:0034330	cell junction organization	518	90	7.04E-04
GO:0009888	tissue development	1239	180	8.89E-04
GO:0035556	intracellular signal transduction	2168	288	1.05E-03
GO:0007417	central nervous system development	584	98	1.09E-03
GO:0010604	positive regulation of macromolecule metabolic process	2889	369	1.09E-03
GO:0045595	regulation of cell differentiation	1129	166	1.22E-03
GO:0051128	regulation of cellular component organization	1929	260	1.31E-03
GO:0099587	inorganic ion import across plasma membrane	112	30	1.40E-03
GO:0098659	inorganic cation import across plasma membrane	112	30	1.40E-03
GO:0060322	head development	402	73	1.69E-03
GO:0071840	cellular component organization or biogenesis	5539	653	1.79E-03
GO:0048519	negative regulation of biological process	4381	529	2.36E-03
GO:0007409	axonogenesis	298	58	2.40E-03
GO:0009893	positive regulation of metabolic process	3177	398	2.59E-03
GO:0016477	cell migration	1210	174	2.61E-03
GO:0051716	cellular response to stimulus	5982	697	3.27E-03
GO:0060560	developmental growth involved in morphogenesis	135	33	3.51E-03
GO:0007420	brain development	384	69	4.70E-03
GO:0048729	tissue morphogenesis	348	64	4.93E-03
GO:0007165	signal transduction	4776	568	5.32E-03
GO:0061564	axon development	323	60	7.13E-03
GO:0014074	response to purine-containing compound	75	22	7.97E-03
GO:0048670	regulation of collateral sprouting	9	7	8.28E-03
GO:0048588	developmental cell growth	129	31	9.81E-03
GO:1990138	neuron projection extension	112	28	1.23E-02
GO:0050794	regulation of cellular process	9523	1052	1.23E-02
GO:0007167	enzyme-linked receptor protein signaling pathway	795	120	1.26E-02
GO:0098657	import into cell	216	44	1.26E-02
GO:0009719	response to endogenous stimulus	1076	154	1.31E-02
GO:0032970	regulation of actin filament-based process	330	60	1.36E-02
GO:0031344	regulation of cell projection organization	46/	78	1.63E-02
GO:00/1495	cellular response to endogenous stimulus	974	141	1.80E-02
GO:0120035	regulation of plasma membrane bounded cell projection	453	/6	1.80E-02
00 0000720	organization	170	27	1.055.00
GO:0098739	import across plasma membrane	1/2	37	1.85E-02
GO:0034329	cell junction assembly	341	61 140	1.88E-02
GO:0051094	positive regulation of developmental process	907	140	1.91E-02
GO:0048585	regulation of response to stimulus	5527	407	1.94E-02
60:000/156	molecular molecular adhesion via plasma memorane adhesion	03	19	2.13E-02
CO:0007015	notecules	205	69	2 20E 02
GO:0007015	actin mament organization	395	08	2.20E-02
GO:0032333 GO:0048638	regulation of developmental growth	230	49	2.21E-02
CO:0007160	transmomhrana resentar protein tyrosina kinasa	511	30	2.20E-02
60:0007109	signaling nothers	511	65	2.39E-02
CO:0008742	signaning pathway	105	40	2 62E 02
60:0098742	moloculos	195	40	2.02E-02
CO:0051002	notecules	610	06	2 42E 02
CO:0050780	regulation of high signation of developmental process	10085	90	3.43E-02
GO:0030789		10085	1105	3.33E-02
GO:0010243	response to organomicogen compound	013	95	5.80E-02
GO:00786009	cen-cen aunesion positive regulation of developmental growth	/43	111	4.07E-02
GO:0048039	positive regulation of developmental growth	03 200	<u></u>	4.10E-02
00.1903114	cell signaling	200	00	4.13E-02
GO:0051172	cen signalling	1027	240	A 44E 02
00.0031172	negative regulation of introgen compound metabolic	1941	247	4.44E-02
GO:0072350	circulatory system development	720	100	1 60E 02
0.0072339	enculatory system development	147	109	4.00E-02

Appendix Table B 11 Significant GO:BP enrichments for CLINVAR G4 mutations leading to the gain of a G4.

GO IDGO DescriptionUniverseCLINVARAdjusted P-valueGO:0001508action potential11764.30E-02GO:0086001cardiac muscle cell action potential7354.96E-02					
GO:0001508 action potential 117 6 4.30E-02 GO:0086001 cardiac muscle cell action potential 73 5 4.96E-02	GO ID	GO Description	Universe	CLINVAR	Adjusted P-value
GO:0086001 cardiac muscle cell action potential 73 5 4.96E-02	GO:0001508	action potential	117	6	4.30E-02
	GO:0086001	cardiac muscle cell action potential	73	5	4.96E-02

GO ID	GO Description	Universe	COSMIC	Adjusted
			and	P-value
		1205	CLINVAR	0.1.65.01
GO:0030054	cell junction	1385	893	2.16E-34
GO:00/1944	cell periphery	<u> </u>	2884	2.79E-34
GO:0042995	nlasma membrana	1307	2634	7.87E 20
<u>GO:0005880</u> <u>GO:0120025</u>	plasma membrane bounded cell projection	1540	2034	1.0/E-29
GO:0120023	plasma membrane region	794	529	4.09E-24
GO:00/05/0	peuron projection	839	553	1 42E-23
GO:0045202	synanse	652	445	2.85E-23
GO:0016020	membrane	7611	3986	9.36E-21
GO:0098797	plasma membrane protein complex	540	364	2.72E-17
GO:0030424	axon	339	243	4.48E-16
GO:0031226	intrinsic component of plasma membrane	1632	951	2.93E-15
GO:0005887	integral component of plasma membrane	1560	913	2.97E-15
GO:0015629	actin cytoskeleton	441	300	7.75E-15
GO:0036477	somatodendritic compartment	444	300	3.31E-14
GO:0005856	cytoskeleton	1812	1033	5.15E-13
GO:0031252	cell leading edge	289	206	5.23E-13
GO:0097060	synaptic membrane	160	126	9.52E-13
GO:0070161	anchoring junction	707	442	2.07E-12
GO:0043235	receptor complex	395	266	3.53E-12
GO:0098794	postsynapse	293	204	3.32E-11
GO:0005911	cell-cell junction	369	247	8.94E-11
GO:0097447	dendritic tree	341	230	1.79E-10
GO:0030425	dendrite	338	228	2.23E-10
GO:0005/3/	cytoplasm	10633	5335	1.52E-09
GO:0005912	adherens junction	144	2208	1.96E-09
GO:0043220	intracallular non-membrane hounded organelle	4394	2308	4.00E-09
GO:0043232 GO:0031224	intrinsic component of membrane	2600	1406	4.37E-09
GO:0005938	cell cortex	2000	1400	2 90E-08
GO:0099572	nostsynantic specialization	163	119	4 37E-08
GO:0005829	cytosol	5137	2662	6 95E-08
GO:0099081	supramolecular polymer	659	396	1.20E-07
GO:0098793	presynapse	241	164	1.37E-07
GO:0016021	integral component of membrane	2485	1339	1.60E-07
GO:0014069	postsynaptic density	151	110	2.64E-07
GO:0045211	postsynaptic membrane	106	82	3.26E-07
GO:0098984	neuron to neuron synapse	163	117	3.38E-07
GO:0099512	supramolecular fiber	650	389	3.45E-07
GO:0031982	vesicle	3535	1861	4.51E-07
GO:0042383	sarcolemma	77	63	5.11E-07
GO:0098978	glutamatergic synapse	82	66	7.67E-07
GO:0012505	endomembrane system	3988	2083	8.67E-07
GO:0032279	asymmetric synapse	158	113	9.15E-07
GO:0043025	neuronal cell body	209	143	1.00E-06
GU:0098588 CO:0021252	soll projection membrane	215	905	1.02E-06
CO:0007709	intracellular vasiele	1067	140	1.JUE-00
GO:0097708	autoplasmia vesicle	1967	1067	1.07E-00
CO:0031410	organelle	12740	6294	1.92E-00
CO:0043220	extrinsic component of membrane	282	184	1.95E-06
GO:0034702	ion channel complex	247	164	2.08E-06
GO:0044297	cell body	237	158	2.57E-06
GO:0034703	cation channel complex	218	147	2.71E-06
GO:0150034	distal axon	144	103	4.39E-06
GO:0005884	actin filament	105	79	5.83E-06
GO:0012506	vesicle membrane	881	504	8.55E-06
GO:0042734	presynaptic membrane	53	45	1.25E-05
GO:0030027	lamellipodium	135	96	2.09E-05
GO:0045177	apical part of cell	267	172	2.18E-05
GO:0005622	intracellular anatomical structure	13666	6714	2.42E-05
GO:0030659	cytoplasmic vesicle membrane	868	494	2.79E-05
GO:0019897	extrinsic component of plasma membrane	156	108	3 06E-05

Appendix Table B 12 . Significant GO:CC enrichments for COSMIC and CLINVAR G4 mutations.

GO:0099080	supramolecular complex
------------	------------------------

6.16E-05

GO ID	GO Description	Universe	COSMIC	Adjusted
	•		and	P-value
			CLINVAR	
GO:0009925	basal plasma membrane	177	119	8.22E-05
GO:0045178	basal part of cell	184	123	8.39E-05
GO:0042641	actomyosin	64	51	8.50E-05
GO:0031256	leading edge membrane	111	80	1.00E-04
GO:0098802	plasma membrane signaling receptor complex	176	118	1.14E-04
GO:0030863	cortical cytoskeleton	82	62	1.36E-04
GO:0044304	main axon	39	34	1.57E-04
GO:0048786	presynaptic active zone	39	34	1.57E-04
GO:0099634	postsynaptic specialization membrane	45	38	1.83E-04
GO:0016323	basolateral plasma membrane	158	107	1.85E-04
GO:0008328	ionotropic glutamate receptor complex	32	29	1.85E-04
GO:0098839	postsynaptic density membrane	35	31	2.38E-04
GO:0030055	cell-substrate junction	395	238	2.60E-04
GO:0030426	growth cone	88	65	2.96E-04
GO:0030427	site of polarized growth	93	68	3.11E-04
GO:0099513	polymeric cytoskeletal fiber	482	284	3.57E-04
GO:0005901	caveola	61	48	3.61E-04
GO:0005925	focal adhesion	387	233	3.62E-04
GO:0098796	membrane protein complex	1115	614	3.62E-04
GO:0016324	apical plasma membrane	234	149	4.01E-04
GO:0097517	contractile actin filament bundle	58	46	4.01E-04
GO:0001725	stress fiber	58	46	4.01E-04
GO:0000785	chromatin	1214	663	5.89E-04
GO:0098858	actin-based cell projection	133	91	6.17E-04
GO:0005604	basement membrane	65	50	7.08E-04
GO:0009898	cytoplasmic side of plasma membrane	160	106	9.53E-04
GO:0032432	actin filament bundle	64	49	1.11E-03
GO:0043292	contractile fiber	173	113	1.26E-03
GO:0005794	Golgi apparatus	1365	737	1.26E-03
GO:0045121	membrane raft	209	133	1.45E-03
GO:0005768	endosome	810	452	1.57E-03
GO:0030016	myofibril	165	108	1 74E-03
GO:0098862	cluster of actin-based cell projections	96	68	1.83E-03
GO:0098857	membrane microdomain	210	133	2.05E-03
GO:0044309	neuron spine	90	64	2.72E-03
GO:0044853	nlasma membrane raft	87	62	3 30E-03
GO:0070382	exocytic vesicle	151	99	3.62E-03
GO:0043197	dendritic spine	89	63	3.94E-03
GO:0030017	sarcomere	146	96	4.06E-03
GO:0043229	intracellular organelle	11898	5852	4 14E-03
GO:0034705	potassium channel complex	91	64	4 68E-03
GO:0044291	cell-cell contact zone	50	39	4 80E-03
GO:0048471	perinuclear region of cytoplasm	440	255	5 80E-03
GO:0032589	peuron projection membrane	38	31	7 16E-03
GO:0031674	I band	97	67	7.44E-03
GO:0016342	catenin complex	32	27	7.57E-03
GO:0005769	early endosome	295	177	7.71E-03
GO:0030864	cortical actin cytoskeleton	62	46	8.23E-03
GO:0001726	ruffle	118	79	8.51E-03
GO:1902495	transmembrane transporter complex	331	196	8.99E-03
GO:0098878	neurotransmitter recentor complex	37	30	1 18E-02
GO:0030018	7 disc	86	60	1.10E-02
GO:0032420	stereocilium	31	26	1.19E-02
GO:0032420	synaptic vesicle	128	84	1.27E-02
GO:0031234	extrinsic component of cytoplasmic side of plasma membrane	95	65	1.42E-02
GO:0031234	microtubule cytoskeleton	1159	622	1.58E-02
CO.0015050		36	20	1.00E-02
CO-0016010	dystronhin-associated glycoprotein complex	17	16	2 25E 02
CO.0010010	AMDA glutamate recentor complex	20	18	3.07E.02
<u>GO:0032281</u> CO:0031041	Aivir A guiddliate teceptor complex	20	24	3.07E-02
CO:0031941	manentous attin	29	207	3.02E-02
CO:0003013	avon initial sogment	12	12	4 20E 02
CO.0043194	anon miniai seginem	82	56	4.270-02
CO:0000070	vonage-galeu potassium enalmer complex	02	64	4.73E-02
00.0034377		20	04	J.00E-02

GO ID	GO Description	Universe	COSMIC	Adjusted P-value
GO:0071944	cell periphery	5199	2843	5.77E-34
GO:0030054	cell junction	1385	879	3.22E-33
GO:0042995	cell projection	1567	967	4.83E-30
GO:0005886	plasma membrane	4762	2598	7.93E-29
GO:0120025	plasma membrane bounded cell projection	1540	947	1.55E-28
GO:0045202	synapse	652	440	3.61E-23
GO:0098590	plasma membrane region	794	520	5.03E-23
GO:0043005	neuron projection	839	545	5.77E-23
GO:0016020	membrane	7611	3925	2.66E-20
GO:0030424	axon	339	242	1.07E-16
GO:0098797	plasma membrane protein complex	540	358	1.46E-16
GO:0005887	integral component of plasma membrane	1560	900	5.34E-15
GO:0015629	actin cytoskeleton	441	297	6.5E-15
GO:0031226	intrinsic component of plasma membrane	1632	936	9.92E-15
GO:00364//	somatodendritic compartment	444	296	0.2E-14 2.17E-12
GO:0097000 CO:0021252	synapuc memorane	280	204	2.1/E-13 4.07E-12
GO:0031252 CO:0005856	cell leading edge	1812	1018	4.9/E-13
<u>GO:0005850</u> CO:0070161	anchoring jungtion	707	1016	8.90E-15 2.3E 12
GO:0070101 GO:0098794	postsynapse	293	202	3.02E-11
GO:0043235	recentor complex	395	259	8 91F-11
GO:0097447	dendritic tree	341	227	2.74E-10
GO:0030425	dendrite	338	225	3.47E-10
GO:0005911	cell-cell junction	369	242	5 32E-10
GO:0005912	adherens junction	144	110	5.79E-10
GO:0043228	non-membrane-bounded organelle	4394	2279	1.51E-09
GO:0043232	intracellular non-membrane-bounded organelle	4393	2278	1.7E-09
GO:0005737	cytoplasm	10633	5250	4.16E-09
GO:0099572	postsynaptic specialization	163	119	1.28E-08
GO:0005938	cell cortex	209	146	1.83E-08
GO:0031224	intrinsic component of membrane	2600	1385	2.07E-08
GO:0014069	postsynaptic density	151	110	8.66E-08
GO:0016021	integral component of membrane	2485	1322	1.01E-07
GO:0045211	postsynaptic membrane	106	82	1.31E-07
GO:0005829	cytosol	5137	2619	1.67E-07
GO:0098793	presynapse	241	162	1.7E-07
GO:0098984	neuron to neuron synapse	163	116	2.92E-07
GO:0099081	supramolecular polymer	659	389	3.35E-07
GO:0098978	glutamatergic synapse	82	66	3.5E-07
GO:0019898	extrinsic component of membrane	282	184	4.45E-07
GO:0034702	ion channel complex	247	164	5.27E-07
GO:0034703	cation channel complex	218	147	/.5/E-0/
GO:0032279	asymmetric synapse	158	112	8.12E-07
GO:0099512	supramolecular liber	030	<u> </u>	9.7E-07
GO:0042385	sarcolemina	200	02	1.08E-00
GO:0043025 CO:0043226	organalla	12740	6100	1.51E.06
GO:0043220 GO:0012505	endomembrane system	3088	2050	1.51E-00
GO:0012505	cell projection membrane	215	144	2 15E-06
GO:00051255	actin filament	105	79	2.15E-00
GO:0005584	bounding membrane of organelle	1644	889	3E-06
GO:00/0200	cell body	237	156	3 16E-06
GO:0031982	vesicle	3535	1825	3 48E-06
GO:0097708	intracellular vesicle	1967	1050	3.97E-06
GO:0150034	distal axon	144	102	4.31E-06
GO:0031410	cytoplasmic vesicle	1966	1049	4.54E-06
GO:0042734	presynaptic membrane	53	45	7.12E-06
GO:0012506	vesicle membrane	881	497	9.91E-06
GO:0019897	extrinsic component of plasma membrane	156	108	1.15E-05
GO:0030027	lamellipodium	135	95	2.2E-05
GO:0005622	intracellular anatomical structure	13666	6611	2.35E-05
GO:0030659	cytoplasmic vesicle membrane	868	487	3.36E-05
GO:0042641	actomyosin	64	51	4.76E-05
GO:0099080	supramolecular complex	978	542	5.51E-05
GO:0030863	cortical cytoskeleton	82	62	7.1E-05

GO ID	GO Description	Universe	COSMIC	Adjusted P-value
GO:0048786	presynaptic active zone	39	34	0.000103
GO:0044304	main axon	39	34	0.000103
GO:0099634	postsynaptic specialization membrane	45	38	0.000116
GO:0031256	leading edge membrane	111	79	0.000126
GO:0008328	ionotropic glutamate receptor complex	32	29	0.000128
GO:0045177	apical part of cell	267	167	0.000152
GO:0030426	growth cone	88	65	0.000155
GO:0030427	site of polarized growth	93	68	0.000159
GO:0098839	postsynaptic density memorane	<u> </u>	31	0.000161
GO:0001725 CO:0007517	suress files	58	40	0.000242
GO:0037317	call substrate junction	305	235	0.000242
GO:0030035	basal part of cell	184	120	0.000271
GO:0009925	basal plasma membrane	177	116	0.000304
GO:0098796	membrane protein complex	1115	606	0.000328
GO:0005925	focal adhesion	387	230	0.000389
GO:0009898	cytoplasmic side of plasma membrane	160	106	0.000405
GO:0005604	basement membrane	65	50	0.000416
GO:0098802	plasma membrane signaling receptor complex	176	115	0.000416
GO:0098858	actin-based cell projection	133	90	0.000646
GO:0099513	polymeric cytoskeletal fiber	482	279	0.000661
GO:0032432	actin filament bundle	64	49	0.000663
GO:0000785	chromatin	1214	653	0.000752
GO:0016323	basolateral plasma membrane	158	104	0.000776
GO:0005901	caveola	61	47	0.000777
GO:0016324	apical plasma membrane	234	146	0.000888
GO:0043292	contractile fiber	1/3	112	0.001057
GO:0005768	endosome	810	44/	0.001123
GO:0030016 CO:0070382	myonomia vasiele	105	107	0.001521
GO:0070382	exocytic vesicle	06	<u> </u>	0.001079
GO:0034705	potassium channel complex	91	64	0.002472
GO:0043229	intracellular organelle	11898	5765	0.002825
GO:1902495	transmembrane transporter complex	331	196	0.002936
GO:0045121	membrane raft	209	130	0.003563
GO:0030017	sarcomere	146	95	0.003962
GO:0005769	early endosome	295	176	0.004405
GO:0001726	ruffle	118	79	0.004484
GO:0044853	plasma membrane raft	87	61	0.004808
GO:0098857	membrane microdomain	210	130	0.00492
GO:0032589	neuron projection membrane	38	31	0.005071
GO:0030864	cortical actin cytoskeleton	62	46	0.005237
GO:0016342	catenin complex	32	27	0.005544
GO:0005794	Golgi apparatus	1365	720	0.006418
GO:0008021	synaptic vesicle	128	30	0.00/44/
GO:0090078 GO:0090078	extrinsic component of cytoplasmic side of plasma membrana	05	65	0.008596
GO:0031234	neuron spine	90	62	0.009397
GO:0031674	I band	97	66	0.009766
GO:0048471	perinuclear region of cytoplasm	440	250	0.011477
GO:0043197	dendritic spine	89	61	0.013481
GO:0030315	T-tubule	36	29	0.014156
GO:0030018	Z disc	86	59	0.016795
GO:0032281	AMPA glutamate receptor complex	20	18	0.02496
GO:0015630	microtubule cytoskeleton	1159	611	0.027121
GO:1990351	transporter complex	356	204	0.02757
GO:0031941	filamentous actin	29	24	0.027799
GO:0008076	voltage-gated potassium channel complex	82	56	0.029877
GO:0044291	cell-cell contact zone	50	37	0.033809
GO:0043194	axon initial segment	12	12	0.036977
GO:0016363	intrincic component of compartie membrane	/9	34	0.03/414
GO:0099240	staraogilium	21	21	0.03/9/1
GO:0032420 GO:0005815	microtubule organizing center	<u> </u>	391	0.042303
00.0003013	merotuoute organizing center	124	571	0.043147

GO ID	GO Description	Universe	CLINVAR	Adjusted P-value
GO:0030017	sarcomere	146	26	9.1E-08
GO:0031674	I band	97	16	5.6E-04
GO:0042383	sarcolemma	77	14	7.7E-04
GO:0036379	myofilament	25	8	1.6E-03
GO:0030315	T-tubule	36	9	3.3E-03
GO:0005865	striated muscle thin filament	21	7	4.4E-03
GO:0014704	intercalated disc	32	8	9.8E-03
GO:0030018	Z disc	86	13	1.1E-02
GO:0043202	lysosomal lumen	87	13	1.2E-02
GO:0033268	node of Ranvier	12	5	2.1E-02
GO:0043194	axon initial segment	12	5	2.1E-02
GO:1990584	cardiac Troponin complex	3	3	2.2E-02
GO:0044291	cell-cell contact zone	50	9	4.0E-02
GO:0005861	troponin complex	8	4	4.8E-02

Appendix Table B 13 Significant GO:CC enrichments for CLINVAR G4 mutations

Appendix Table B 14 Significant KEGG enrichments for COSMIC and CLINVAR G4 mutations

KEGG ID	KEGG Description	Universe	COSMIC and CLINVAR	Adjusted P-
KEGG:04360	Axon guidance	181	137	9 52E-13
KEGG:04921	Oxytocin signaling pathway	154	120	1.19E-12
KEGG:05412	Arrhythmogenic right ventricular cardiomyopathy	77	68	1.05E-11
KEGG:04010	MAPK signaling pathway	294	201	2.43E-11
KEGG:04724	Glutamatergic synapse	114	92	4.31E-11
KEGG:04015	Rap1 signaling pathway	210	151	5.83E-11
KEGG:05200	Pathways in cancer	529	330	1.01E-10
KEGG:04510	Focal adhesion	200	143	5.00E-10
KEGG:04929	GnRH secretion	64	57	5.44E-10
KEGG:04728	A dranargia signaling in cardiomycautas	132	100	4.36E-09
KEGG:04201 KEGG:04072	Phospholipase D signaling pathway	130	109	4.40E-09
KEGG:04012	Ras signaling nathway	234	159	1.91E-08
KEGG:01522	Endocrine resistance	95	75	4 97E-08
KEGG:04725	Cholinergic synapse	113	86	7.34E-08
KEGG:04020	Calcium signaling pathway	239	160	9.32E-08
KEGG:04912	GnRH signaling pathway	93	73	1.37E-07
KEGG:05414	Dilated cardiomyopathy	95	74	1.96E-07
KEGG:04713	Circadian entrainment	97	75	2.75E-07
KEGG:04720	Long-term potentiation	67	55	9.00E-07
KEGG:05215	Prostate cancer	97	74	9.96E-07
KEGG:04934	Cushing syndrome	153	107	1.96E-06
KEGG:04750	Inflammatory mediator regulation of TRP channels	98	74	2.12E-06
KEGG:05410	Hypertrophic cardiomyopathy	90	69	2.26E-06
KEGG:04810 KECC:04012	ErbB signaling pathway	210	65	2.20E-00 3.13E.06
KEGG:04012	Aldosterone synthesis and secretion	98	73	6.95E-06
KEGG:04151	PI3K-Akt signaling nathway	353	216	1.11E-05
KEGG:04722	Neurotrophin signaling pathway	119	85	1.35E-05
KEGG:04911	Insulin secretion	86	65	1.49E-05
KEGG:04022	cGMP-PKG signaling pathway	166	112	1.84E-05
KEGG:05213	Endometrial cancer	58	47	2.40E-05
KEGG:04370	VEGF signaling pathway	59	47	6.10E-05
KEGG:04730	Long-term depression	59	47	6.10E-05
KEGG:04660	T cell receptor signaling pathway	103	74	6.17E-05
KEGG:05214	Glioma Continel conthecie and econotica	15	5/	6.46E-05
KEGG:04927 KECC:04070	Phoenhatidylinosital signaling system	04	30	0.54E.05
KEGG.04070 KECC:04919	Thyroid hormone signaling pathway	121	84	1.09E-04
KEGG:04662	B cell receptor signaling pathway	79	59	1.11E-04
KEGG:01521	EGFR tyrosine kinase inhibitor resistance	79	59	1.11E-04
KEGG:05165	Human papillomavirus infection	331	200	1.17E-04
KEGG:04928	Parathyroid hormone synthesis, secretion and action	106	75	1.33E-04
KEGG:05166	Human T-cell leukemia virus 1 infection	219	139	1.37E-04
KEGG:04330	Notch signaling pathway	59	46	2.38E-04
KEGG:04380	Osteoclast differentiation	125	85	3.47E-04
KEGG:05224	Breast cancer	147	98	2.42E-04
KEGG:05031	Amphetamine addiction	69	52	3.10E-04
KEGG:04727	GABAergic synapse	89	64 85	3.38E-04
KEGG:04380 KECC:04390	Hippo signaling pathway	123	103	3.47E-04 3.97E-04
KEGG:04320	Henatocellular carcinoma	166	108	4 11E-04
KEGG:05205	Proteoglycans in cancer	205	129	6.14E-04
KEGG:05222	Small cell lung cancer	92	65	7.28E-04
KEGG:04935	Growth hormone synthesis, secretion and action	120	81	8.95E-04
KEGG:04658	Th1 and Th2 cell differentiation	89	63	9.14E-04
KEGG:04666	Fc gamma R-mediated phagocytosis	96	67	1.01E-03
KEGG:04611	Platelet activation	124	83	1.13E-03
KEGG:04971	Gastric acid secretion	76	55	1.22E-03
KEGG:05220	Chronic myeloid leukemia	76	<u>55</u>	1.22E-03
KEGG:05210	Colorectal cancer	80	<u>59</u>	/.15E-03
REGG:04540	Gap junction	00	00	0.10E-03

KEGG:05135	Yersinia infection	136	87	8.37E-03
KEGG:04520	Adherens junction	71	50	9.16E-03
KEGG:04310	Wnt signaling pathway	170	108	1.92E-03
KEGG:04926	Relaxin signaling pathway	129	85	2.15E-03
KEGG:04371	Apelin signaling pathway	138	90	2.24E-03
KEGG:04512	ECM-receptor interaction	88	62	1.36E-03
KEGG:05235	PD-L1 expression and PD-1 checkpoint pathway in cancer	89	62	2.34E-03
KEGG:05231	Choline metabolism in cancer	98	67	2.83E-03
KEGG:04910	Insulin signaling pathway	137	89	3.06E-03
KEGG:04922	Glucagon signaling pathway	107	72	3.22E-03
KEGG:04144	Endocytosis	251	151	3.24E-03
KEGG:05226	Gastric cancer	148	95	3.33E-03
KEGG:04659	Th17 cell differentiation	105	70	6.43E-03
KEGG:05235	PD-L1 expression and PD-1 checkpoint pathway in cancer	89	62	2.34E-03
KEGG:04930	Type II diabetes mellitus	46	35	9.21E-03
KEGG:05032	Morphine addiction	90	63	1.60E-03
KEGG:00562	Inositol phosphate metabolism	73	51	1.07E-02
KEGG:04931	Insulin resistance	108	71	1.10E-02
KEGG:04916	Melanogenesis	101	67	1.14E-02
KEGG:04024	cAMP signaling pathway	220	132	1.16E-02
KEGG:04917	Prolactin signaling pathway	70	49	1.35E-02
KEGG:05230	Central carbon metabolism in cancer	70	49	1.35E-02
KEGG:04960	Aldosterone-regulated sodium reabsorption	37	29	1.51E-02
KEGG:05223	Non-small cell lung cancer	72	50	1.56E-02
KEGG:05218	Melanoma	72	50	1.56E-02
KEGG:05163	Human cytomegalovirus infection	223	133	1.57E-02
KEGG:04664	Fc epsilon RI signaling pathway	67	47	1.68E-02
KEGG:04625	C-type lectin receptor signaling pathway	104	68	1.90E-02
KEGG:04721	Synaptic vesicle cycle	78	53	2.32E-02
KEGG:04071	Sphingolipid signaling pathway	119	76	2.41E-02
KEGG:04152	AMPK signaling pathway	121	77	2.59E-02
KEGG:04726	Serotonergic synapse	112	72	2.62E-02
KEGG:05219	Bladder cancer	41	31	2.74E-02
KEGG:04270	Vascular smooth muscle contraction	134	84	2.83E-02
KEGG:04933	AGE-RAGE signaling pathway in diabetic complications	100	65	3.26E-02

GOID	GO Description	Universe	COSMIC	Adjusted
	•			P-value
KEGG:04611	Platelet activation	124	81	0.002339
KEGG:05226	Gastric cancer	148	94	0.002757
KEGG:04144	Endocytosis	251	149	0.002928
KEGG:05166	Human T-cell leukemia virus 1 infection	219	132	0.003096
KEGG:04926	Relaxin signaling pathway	129	83	0.00414
KEGG:04024	cAMP signaling pathway	220	132	0.004174
KEGG:04935	Growth hormone synthesis, secretion and action	120	78	0.004212
KEGG:04520	Adherens junction	71	50	0.005182
KEGG:04930	Type II diabetes mellitus	46	35	0.005861
KEGG:00562	Inositol phosphate metabolism	73	51	0.006052
KEGG:04666	Fc gamma R-mediated phagocytosis	96	64	0.006737
KEGG:04658	Th1 and Th2 cell differentiation	89	60	0.007009
KEGG:05231	Choline metabolism in cancer	98	65	0.007447
KEGG:04960	Aldosterone-regulated sodium reabsorption	37	29	0.010324
KEGG:04910	Insulin signaling pathway	137	86	0.010713
KEGG:04916	Melanogenesis	101	66	0.012641
KEGG:04721	Synaptic vesicle cycle	78	53	0.013364
KEGG:05135	Yersinia infection	136	85	0.014406
KEGG:05235	PD-L1 expression and PD-1 checkpoint pathway in cancer	89	59	0.015883
KEGG:04922	Glucagon signaling pathway	107	69	0.015977
KEGG:05230	Central carbon metabolism in cancer	70	48	0.019532
KEGG:05210	Colorectal cancer	86	57	0.020522
KEGG:05218	Melanoma	72	49	0.022161
KEGG:04931	Insulin resistance	108	69	0.023655
KEGG:04152	AMPK signaling pathway	121	76	0.025197
KEGG:04270	Vascular smooth muscle contraction	134	83	0.025742
KEGG:05163	Human cytomegalovirus infection	223	130	0.026284
KEGG:05220	Chronic myeloid leukemia	76	51	0.027645
KEGG:04659	Th17 cell differentiation	105	67	0.030128
KEGG:04625	C-type lectin receptor signaling pathway	104	66	0.041098
KEGG:05030	Cocaine addiction	49	35	0.043077
KEGG:04071	Sphingolipid signaling pathway	119	74	0.045066
KEGG:04917	Prolactin signaling pathway	70	47	0.04558
KEGG:04540	Gap junction	88	57	0.047383

Appendix Table B 15 Significant KEGG enrichments for COSMIC G4 mutations.

KEGG ID	KEGG Description	Universe	CLINVAR	Adjusted P-value
KEGG:05414	Dilated cardiomyopathy	95	21	6.7E-07
KEGG:05410	Hypertrophic cardiomyopathy	90	20	1.4E-06
KEGG:05412	Arrhythmogenic right ventricular cardiomyopathy	77	18	3.4E-06
KEGG:04261	Adrenergic signaling in cardiomyocytes	150	23	1.0E-04
KEGG:04512	ECM-receptor interaction	88	16	5.1E-04
KEGG:04260	Cardiac muscle contraction	87	15	1.8E-03
KEGG:05221	Acute myeloid leukemia	67	12	7.9E-03
KEGG:05230	Central carbon metabolism in cancer	70	12	1.2E-02
KEGG:04919	Thyroid hormone signaling pathway	121	16	2.0E-02
KEGG:05220	Chronic myeloid leukemia	76	12	2.4E-02
KEGG:04912	GnRH signaling pathway	93	13	4.1E-02

KEGG ID	KEGG Description	Univers	COSMIC and	Adjusted P-
		e	CLINVAR	value
KEGG:05412	Arrhythmogenic right ventricular	77	44	4.37E-11
	cardiomyopathy			
KEGG:05414	Dilated cardiomyopathy	95	50	7.37E-11
KEGG:05410	Hypertrophic cardiomyopathy	90	48	1.15E-10
KEGG:04261	Adrenergic signaling in cardiomyocytes	150	61	1.83E-07
KEGG:04921	Oxytocin signaling pathway	154	60	1.62E-06
KEGG:04010	MAPK signaling pathway	294	95	7.23E-06
KEGG:04015	Rap1 signaling pathway	210	73	1.11E-05
KEGG:04510	Focal adhesion	200	70	1.52E-05
KEGG:04020	Calcium signaling pathway	239	80	1.63E-05
KEGG:04725	Cholinergic synapse	113	44	1.41E-04
KEGG:04151	PI3K-Akt signaling pathway	353	104	2.35E-04
KEGG:04514	Cell adhesion molecules	153	53	6.96E-04
KEGG:05200	Pathways in cancer	529	142	9.19E-04
KEGG:04022	cGMP-PKG signaling pathway	166	56	9.35E-04
KEGG:04024	cAMP signaling pathway	220	69	1.41E-03
KEGG:04512	ECM-receptor interaction	88	34	2.64E-03
KEGG:04810	Regulation of actin cytoskeleton	216	67	2.74E-03
KEGG:04925	Aldosterone synthesis and secretion	98	36	5.22E-03
KEGG:04360	Axon guidance	181	57	6.73E-03
KEGG:04929	GnRH secretion	64	26	8.78E-03
KEGG:04713	Circadian entrainment	97	35	9.76E-03
KEGG:04911	Insulin secretion	86	32	1.00E-02
KEGG:04662	B cell receptor signaling pathway	79	30	1.07E-02
KEGG:04934	Cushing syndrome	153	49	1.34E-02
KEGG:04724	Glutamatergic synapse	114	39	1.42E-02
KEGG:05165	Human papillomavirus infection	331	91	1.55E-02
KEGG:04014	Ras signaling pathway	234	68	1.95E-02
KEGG:04728	Dopaminergic synapse	132	43	2.21E-02
KEGG:05032	Morphine addiction	90	32	2.49E-02
KEGG:04390	Hippo signaling pathway	157	49	2.56E-02
KEGG:05224	Breast cancer	147	46	3.61E-02
KEGG:04730	Long-term depression	59	23	4.14E-02
KEGG:04727	GABAergic synapse	89	31	4.49E-02

Appendix Table B 17 Significant KEGG enrichments for COSMIC and CLINVAR G4 mutations leading to a G4 loss.

Appendix Table B 18 Significant KEGG enrichments for COSMIC G4 mutations leading to a G4 loss.

KEGG ID	KEGG Description	Universe	COSMIC	Adjusted
				P-value
KEGG:05410	Hypertrophic cardiomyopathy	90	37	9.29E-08
KEGG:05414	Dilated cardiomyopathy	95	38	1.37E-07
KEGG:05412	Arrhythmogenic right ventricular cardiomyopathy	77	32	9.49E-07
KEGG:04261	Adrenergic signaling in cardiomyocytes	150	43	5.39E-04
KEGG:04020	Calcium signaling pathway	239	59	1.65E-03
KEGG:04921	Oxytocin signaling pathway	154	42	2.51E-03
KEGG:04360	Axon guidance	181	45	1.33E-02
KEGG:04022	cGMP-PKG signaling pathway	166	42	1.47E-02
KEGG:04015	Rap1 signaling pathway	210	50	1.76E-02
KEGG:04510	Focal adhesion	200	48	1.92E-02
KEGG:04024	cAMP signaling pathway	220	51	2.94E-02
KEGG:04151	PI3K-Akt signaling pathway	353	74	3.78E-02

Appendix Table B 19 Significant KEGG enrichments for CLINVAR G4 mutations leading to a G4 loss.

•

KEGG ID	KEGG Description	Universe	CLINVAR	Adjusted P-value
KEGG:05410	Hypertrophic cardiomyopathy	90	10	5.17E-04
KEGG:05414	Dilated cardiomyopathy	95	10	7.44E-04
KEGG:05412	Arrhythmogenic right ventricular cardiomyopathy	77	9	9.61E-04
KEGG:04261	Adrenergic signaling in cardiomyocytes	150	9	4.67E-02
KEGG:05221	Acute myeloid leukemia	67	6	5.00E-02

KEGG ID	KEGG Description	Univers	COSMIC and	Adjusted P-
		e	CLINVAR	value
KEGG:04929	GnRH secretion	64	22	1.99E-05
KEGG:05200	Pathways in cancer	529	89	5.62E-05
KEGG:04724	Glutamatergic synapse	114	30	8.27E-05
KEGG:04725	Cholinergic synapse	113	28	6.58E-04
KEGG:04919	Thyroid hormone signaling pathway	121	29	8.96E-04
KEGG:04015	Rap1 signaling pathway	210	42	1.20E-03
KEGG:04261	Adrenergic signaling in cardiomyocytes	150	33	1.45E-03
KEGG:05202	Transcriptional misregulation in cancer	192	39	1.70E-03
KEGG:04713	Circadian entrainment	97	24	3.03E-03
KEGG:04930	Type II diabetes mellitus	46	15	3.49E-03
KEGG:05210	Colorectal cancer	86	22	3.76E-03
KEGG:04010	MAPK signaling pathway	294	52	3.76E-03
KEGG:04928	Parathyroid hormone synthesis, secretion and action	106	25	4.76E-03
KEGG:04072	Phospholipase D signaling pathway	147	31	5.89E-03
KEGG:04730	Long-term depression	59	17	5.93E-03
KEGG:04921	Oxytocin signaling pathway	154	32	6.02E-03
KEGG:05218	Melanoma	72	19	7.97E-03
KEGG:04728	Dopaminergic synapse	132	28	1.16E-02
KEGG:04934	Cushing syndrome	153	31	1.22E-02
KEGG:04512	ECM-receptor interaction	88	21	1.52E-02
KEGG:05213	Endometrial cancer	58	16	1.62E-02
KEGG:04961	Endocrine and other factor-regulated calcium	53	15	1.89E-02
	reabsorption			
KEGG:04510	Focal adhesion	200	37	1.91E-02
KEGG:04974	Protein digestion and absorption	103	23	2.09E-02
KEGG:04810	Regulation of actin cytoskeleton	216	39	2.15E-02
KEGG:05030	Cocaine addiction	49	14	2.72E-02
KEGG:04720	Long-term potentiation	67	17	2.91E-02
KEGG:04911	Insulin secretion	86	20	3.02E-02
KEGG:04151	PI3K-Akt signaling pathway	353	56	3.34E-02
KEGG:05165	Human papillomavirus infection	331	53	3.80E-02
KEGG:04540	Gap junction	88	20	4.06E-02

Appendix Table B 20 Significant GO:CC enrichments for COSMIC and CLINVAR G4 mutations leading to a G4 gain.

Appendix Table B 21 Significant KEGG enrichments for COSMIC G4 mutations leading to a G4 gain.

KEGG ID	KEGG Description	Universe	COSMIC	Adjusted P-value
KEGG:05218	Melanoma	72	13	1.45E-02
KEGG:04072	Phospholipase D signaling pathway	147	20	1.59E-02
KEGG:05030	Cocaine addiction	49	10	2.90E-02

Appendix Table B 22 Significant INTERPRO enrichments for COSMIC and CLINVAR G4 mutations

INTERPRO ID	COSMIC and CLINVAR	UNIVERSE	FDR
IPR011993:Pleckstrin homology-like domain	150	446	1.41E-10
IPR001849:Pleckstrin homology domain	95	277	1.4E-06
IPR011009:Protein kinase-like domain	158	547	4.88E-06
IPR000719:Protein kinase, catalytic domain	146	502	9.19E-06
IPR013098:Immunoglobulin I-set	52	140	0.000295
IPR008271:Serine/threonine-protein kinase, active site	96	316	0.000295
IPR017441:Protein kinase, ATP binding site	113	390	0.000331
IPR017970:Homeobox, conserved site	65	193	0.000418
IPR001781:Zinc finger, LIM-type	32	75	0.001657
IPR001452:Src homology-3 domain	72	230	0.001677
IPR002219:Protein kinase C-like, phorbol ester/diacylglycerol	29	67	0.003026
binding			
IPR003598:Immunoglobulin subtype 2	76	254	0.004198
IPR013164:Cadherin, N-terminal	28	65	0.004198
IPR008936:Rho GTPase activation protein	35	95	0.013732
IPR015425:Actin-binding FH2	11	15	0.013732
IPR000008:C2 calcium-dependent membrane targeting	48	148	0.018196
IPR020479:Homeodomain, metazoa	34	93	0.018196
IPR013088:Zinc finger, NHR/GATA-type	24	57	0.021614
IPR001025:Bromo adjacent homology (BAH) domain	9	11	0.025203
IPR000536:Nuclear hormone receptor, ligand-binding, core	21	48	0.031914
IPR009057:Homeodomain-like	95	360	0.04254
IPR001478:PDZ domain	50	163	0.04254
IPR001628:Zinc finger, nuclear hormone receptor-type	20	46	0.045727

	000000		
INTERPRO ID	COSMIC	Universe	FDR
IPR011993:Pleckstrin homology-like domain	147	446	1.30E-10
IPR001849:Pleckstrin homology domain	93	277	1.46E-06
IPR011009:Protein kinase-like domain	153	547	1.13E-05
IPR000719:Protein kinase, catalytic domain	141	502	2.55E-05
IPR013098:Immunoglobulin I-set	50	140	7.98E-04
IPR017441:Protein kinase, ATP binding site	109	390	7.98E-04
IPR017970:Homeobox, conserved site	63	193	7.98E-04
IPR008271:Serine/threonine-protein kinase, active site	91	316	1.39E-03
IPR002219:Protein kinase C-like, phorbol ester/diacylglycerol binding	29	67	1.98E-03
IPR001781:Zinc finger, LIM-type	31	75	2.42E-03
IPR013164:Cadherin, N-terminal	28	65	2.72E-03
IPR001452:Src homology-3 domain	69	230	3.73E-03
IPR008936:Rho GTPase activation protein	35	95	7.92E-03
IPR015425:Actin-binding FH2	11	15	1.09E-02
IPR020479:Homeodomain, metazoa	34	93	1.09E-02
IPR003598:Immunoglobulin subtype 2	72	254	1.39E-02
IPR000008:C2 calcium-dependent membrane targeting	47	148	1.68E-02
IPR001025:Bromo adjacent homology (BAH) domain	9	11	2.07E-02
IPR001478:PDZ domain	50	163	2.28E-02
IPR013088:Zinc finger, NHR/GATA-type	23	57	3.61E-02
IPR009057:Homeodomain-like	93	360	3.71E-02
IPR015919:Cadherin-like	39	121	4.08E-02
IPR002126:Cadherin	38	118	4.83E-02

Appendix Table B 23 S	Significant INTERPRO enrichments for COSMIC G4 mutations.
-----------------------	---

Appendix 1 able D 24 Significant INTERT NO chinements for CEIN VAN 04 indiation	Ap	pendix	Tab	le B	24	Signi	ficant	IN	TERPRO	enric	chments	for	CLI	NVA	R G4	mutation	ıs.
---	----	--------	-----	------	----	-------	--------	----	--------	-------	---------	-----	-----	-----	-------------	----------	-----

INTERPRO ID	CLINVAR	UNIVERSE	FDR
IPR000595:Cyclic nucleotide-binding domain	7	36	0.009358
IPR018490:Cyclic nucleotide-binding-like	7	39	0.009358

Transcription Factor ID	Transcription Factor Description	Universe	COSMIC and CLINVAR	FDR
TF:M09636_1	Factor: MAZ;	14379	7641	6.97E-262
TF:M09973_1	motif: GGGMGGGGSSGGGGGGGGGGGGG; match class: 1 Factor: CPBP; motif: GNNRGGGHGGGGNNGGGRN; match class: 1	6788	4243	1.01E-254
TF:M09826_1	Factor: BTEB3; motif: CCNNSCCNSCCCCKCCCCC: match class: 1	7694	4675	1.41E-249
TF:M07289_1	Factor: GKLF; motif: NNNRGGNGNGGSN: match class: 1	10800	6111	2.57E-248
TF:M07039_1	Factor: ETF; motif: CCCCGCCCYN; match class: 1	13890	7403	5.24E-241
TF:M09973	Factor: CPBP; motif: GNNRGGGHGGGGNNGGGRN	11087	6214	2.70E-238
TF:M09984	Factor: MAZ; motif: GGGGGAGGGGGGGGRGRRRGNRG	9762	5614	4.46E-236
TF:M12351_1	Factor: TIEG1; motif: NCCCNSNCCCCGCCCCC; match class: 1	8412	4966	9.71E-228
TF:M09723	Factor: BTEB1; motif: GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	10228	5801	4.64E-226
TF:M09826	Factor: BTEB3; motif: CCNNSCCNSCCCCKCCCCC	11731	6462	1.50E-224
TF:M09984_1	Factor: MAZ; motif: GGGGGAGGGGGGGGRGRRRGNRG; match class: 1	5696	3615	3.02E-220
TF:M10026	Factor: PATZ; motif: GGGGNGGGGGMKGGRRNGGNRN	8607	5037	2.42E-219
TF:M07040_1	Factor: GKLF; motif: NNRRGRRNGNSNNN; match class: 1	8337	4909	3.67E-219
TF:M00986_1	Factor: Churchill; motif: CGGGNN; match class: 1	10609	5947	4.14E-216
TF:M09723_1	Factor: BTEB1; motif: GGGGGCGGGGGCNGSGGGNGS; match class: 1	6131	3819	2.47E-213
TF:M12160_1	Factor: KLF15; motif: RCCMCRCCCMCN; match class: 1	8212	4823	1.49E-208
TF:M10432_1	Factor: MAZ; motif: GGGMGGGGGS; match class: 1	4484	2948	2.74E-203
TF:M12351	Factor: TIEG1; motif: NCCCNSNCCCCGCCCCC	12580	6766	2.59E-200
TF:M10432	Factor: MAZ; motif: GGGMGGGGS	9496	5399	2.34E-199
TF:M00933	Factor: Sp1; motif: CCCCGCCCCN	9913	5589	4.40E-199
TF:M10529	Factor: Sp1; motif: RGGGMGGRGSNGGGG	7039	4230	1.45E-197
TF:M04953	Factor: Sp1; motif: GGNDGGRGGCGGGG	8852	5093	1.56E-196
TF:M02089_1	Factor: E2F-3; motif: GGCGGGN; match class: 1	9606	5440	8.00E-196
TF:M10112	Factor: Miz-1; motif: NNRGGWGGGGGGGGGGGMRR	8878	5103	9.30E-196
TF:M12160	Factor: KLF15; motif: RCCMCRCCCMCN	12959	6914	1.26E-195
TF:M09636	Factor: MAZ;	16533	8315	1.88E-194
TE-M10026_1		5052	2210	0.11E 102
11:10020_1	racior. PATZ; motif: GGGGNGGGGGGMKGGRRNGGNRN: match class: 1	3033	5219	9.11E-192
TF:M01104_1	Factor: MOVO-B; motif: GNGGGGG; match class: 1	5798	3599	1.13E-191
TF:M00932_1	Factor: Sp1; motif: NNGGGGCGGGGGNN: match class: 1	6212	3805	5.40E-191
TF:M07395_1	Factor: Sp1; motif: NGGGGCGGGGN: match class: 1	6529	3956	1.81E-188
TF:M00931	Factor: Sp1: motif: GGGGCGGGGC	10524	5832	8.08E-187
TF:M00933 1	Factor: Sp1; motif: CCCCGCCCCN: match class: 1	5316	3340	7.30E-186
TF:M09834	Factor: ZNF148; motif: NNNNNCCNNCCCCTCCCCCACCCN	7099	4227	3.40E-185
TF:M00932	Factor: Sp1; motif: NNGGGGCGGGGNN	10669	5892	5.01E-185
TF:M01303	Factor: SP1; motif: GGGGYGGGGNS	8089	4697	5.64E-183
TF:M03876_1	Factor: Kaiso; motif: GCMGGGRGCRGS; match class: 1	9311	5267	3.63E-182
TF:M07436	Factor: WT1; motif: NNGGGNGGGSGN	6637	3990	4.64E-181
TF:M07226	Factor: SP1; motif: NCCCCKCCCCC	8460	4865	2.87E-180

Appendix Table B 25 :Top 50 significant transcription factor enrichments for COSMIC and CLINVAR G4.

TF:M07397	Factor: ZBP89; motif: CCCCKCCCCNN	7289	4306	2.95E-180
TF:M07289	Factor: GKLF; motif: NNNRGGNGNGGSN	14918	7675	3.00E-180
TF:M00196	Factor: Sp1; motif: NGGGGGGGGGGGYN	10479	5792	1.13E-179
TF:M10071	Factor: Sp1; motif: NGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	8705	4978	1.41E-179
TF:M00931_1	Factor: Sp1; motif: GGGGCGGGGC; match class: 1	6075	3707	2.15E-179
TF:M11529_1	Factor: E2F-2; motif: GCGCGCGCNCS; match class: 1	14789	7621	5.14E-179
TF:M07395	Factor: Sp1; motif: NGGGGCGGGGN	10901	5975	1.19E-177
TF:M00196_1	Factor: Sp1; motif: NGGGGGGGGGGGYN; match class: 1	6084	3703	4.14E-176
TF:M09970	Factor: KLF3; motif: NNNNNNGGGCGGGGCNNGN	7907	4589	3.12E-175
TF:M07039	Factor: ETF; motif: CCCCGCCCYN	16656	8320	3.08E-174
TF:M01104	Factor: MOVO-B; motif: GNGGGGG	10486	5777	3.21E-173
TF:M12703_1	Factor: ZNF383;	4453	2863	3.94E-173
	motif: SSNGGGMGGNGSNGGS; match class: 1			

Appendix Table B 26. Count and per	ccentage of effect of SNV calculated by
thermodynamic MFE and ED cha	anges in the G quadruplex sequence

Change in Stability by SNV	Change in multiconfirm by SNV	Frequency	Percentage
Further stabilized	less diversity	6,417	17.105
no change	less diversity	3,835	10.222
Destabilized	less diversity	5,383	14.349
Further stabilized	no change	34	0.091
no change	no change	5,378	14.335
Destabilized	no change	39	0.104
Further stabilized	more diversity	3,984	10.619
no change	more diversity	2,849	7.594
Destabilized	more diversity	9,597	25.581

Motif Positio	Gene Symbol	Transcription factor binding match	Referenc	Alternate P. value	Allele	Allele Effect Size
n	Symbol		e P-value	I -value	Difference	Effect Size
-3 6	NHLH1	tgtgtgggcAggtgggttg	0.0018	2.86E-05	2.1672	0.1850
-8 2	FOXO3	atgtgtgggcAggtgggttgg	0.0033	0.0001	2.3166	0.1431
-3 6	TAL1	tgtgtgggcAggtgggttg	0.0045	0.0001	2.3166	0.1814
-12 7	TP53		0.0031	0.0001	2.3166	0.1149
		gtccattccatgtgtgggcAggtgggttgggtggggtga				
-4 7	HES5	catgtgtgggcAggtgggttggg	0.0040	0.0001	2.2697	0.1547
-4 7	HES7	catgtgtgggcAggtgggttggg	0.0041	0.0002	2.2817	0.14880
1 8	USF2	gtgtgggcAggtgggtt	0.0026	0.0002	1.8992	0.1282
-11 3	EGR3	ttccatgtgtgggcGggtgggttgggtgg	3.47E-06	0.0002	-1.8709	-0.1170
-12 2	EGR3	ttccatgtgtgggcGggtgggttgggtgg	5.21E-06	0.0002	-1.8638	-0.1082
-11 2	EGR1	tccatgtgtgggcGggtgggttgggtg	6.63E-06	0.0002	-1.8447	-0.1058
-9 1	EGR2	atgtgtgggcGggtgggttgg	5.96E-06	0.0002	-1.4785	-0.1112
-11 2	EGR1	tccatgtgtgggcGggtgggttgggtg	4.59E-06	0.0003	-1.6940	-0.1215
-11 3	EGR2	ttccatgtgtgggcGggtgggttgggtgg	5.46E-06	0.0003	-1.7277	-0.1245
-12 3	EGR1	attccatgtgtgggcGggtgggttgggtggg	1.35E-05	0.0004	-1.9116	-0.1130
-8 1	EGR1	tgtgtgggcGggtgggttg	1.62E-05	0.0006	-1.9401	-0.1347
-6 3	ZNF740	tgtgtgggcGggtgggttg	4.86E-05	0.0011	-1.6642	-0.1248
-6 3	SP1	tgtgtgggcGggtgggttg	0.0001	0.0017	-1.0496	-0.1072
-6 4	KLF16	atgtgtgggcGggtgggttgg	0.0001	0.0021894	-1.5426264	-
						0.12738754
-7 9	SP4	cattccatgtgtgggcGggtgggttgggtgggg	0.0002	0.0023592	-	-
					1.76102043	0.10166014
-6 4	SP1	atgtgtgggcGggtgggttgg	0.0002	0.0029134	-	-
				8	1.15354231	0.11339262
-3 6	SP1	tgtgtgggcGggtgggttg	0.0002	0.0032386	-	-
				8	1.21127823	0.11785306
-6 3	ZNF740	tgtgtgggcGggtgggttg	0.0002	0.0037670	-	-
				1	1.71699463	0.13807642
-9 2	ZBTB7	catgtgtgggcGggtgggttggg	0.0004	0.0038684	-1.3008656	-
	A					0.11661897
-11 5	SP4	cattccatgtgtgggcGggtgggttgggtgggg	0.0002	0.0047031	-	-
~	672.0	a	0.0000	0.00.100.50	1.86702905	0.14590419
-6 4	SP3	atgtgtgggcGggtgggttgg	0.0003	0.0049958	-	-
				2	1.29081923	0.13319603

Appendix Table B 27 Effect of transition mutation G→A in chr10:122,143,482 on potential binding for multiple transcription factors. All effects are strong

•

Appendix Figure A 7 Top 25 GO: BP enrichments for Family 32

Appendix Figure A 8 Top 25 GO: BP enrichments for Family 75

Appendix Figure A 9 Top 25 GO: BP enrichments for Family 80

Appendix Figure A 10 Top 25 GO: BP enrichments for experimentally validated G4s overlapping enhancers, group 1.

Appendix Figure A 11 Supplemental Figure 6. Top 25 GO: BP enrichments for experimentally validated G4s overlapping enhancers, group 2.

Appendix Figure A 12 Correlation of selected enhancers consisting of pG4 with gene expression in multiple cell types utilizing the epimap correlation group-link data.

Appendix Figure B 1 Top 25 enriched GO: BP terms for COSMIC and CLINVAR G4 mutations.

Appendix Figure B 2: Enriched GO:BP terms for G4 mutations.`

Appendix Figure B 3: Top 25 enriched GO:BP terms for CLINVAR G4 mutations.

Appendix Figure B 4: Top25 enriched GO:CC terms for COSMIC and CLINVAR G4 mutations.

Appendix Figure B 5:Top 25 enriched GO:CC terms for COSMIC G4 mutations.

Appendix Figure B 6: Top 25 enriched GO:CC terms for CLINVAR G4 mutations.

Appendix Figure B 7: Top 25 enriched KEGG terms for COSMIC and CLINVAR Gain and loss muttions

Appendix Figure B 8: Top 25 enriched KEGG terms for COSMIC G4 mutations.

Appendix Figure B 9: Top 25 enriched KEGG terms for CLINVAR G4 mutations.

Appendix Figure B 10: Top 20 enriched transcription factors with overlapping ChIP-seq peaks for COSMIC and CLINVAR G4 SNVs in the HEK293 cell line.

Appendix Figure B 11: Top 20 enriched transcription factors with overlapping ChIP-seq peaks for COSMIC and CLINVAR G4 SNVs in the K562 cell line.

Appendix Figure B 12: Top 20 enriched transcription factors with overlapping ChIP-seq peaks for COSMIC and CLINVAR G4 SNVs in the Hep-G2 cell line.

Appendix Figure B 13: Distribution of A→G SNVs across the G4 region for different features on (A) the non-template and (B) template strand.

Appendix Figure B 14: Distribution of $G \rightarrow T$ SNVs across the G4 region for different features on (A) the non-template and (B) template strand.

245

Appendix Figure B 15: Distribution of G→A SNVs across the G4 region for different features on (A) the non-template and (B) template strand.

Appendix Figure B 16: Distribution of $T \rightarrow G$ SNVs across the G4 region for different features on (A) the non-template and (B) template strand.

Appendix Figure B 17: Effect of each SNV on Δ MFE of G4 on different annotations with percentile of the counts shown in the secondary y axis. Shown is (A) T \rightarrow G SNVs; (B) A \rightarrow G SNVs; (C) G \rightarrow A SNVs; and (D) G \rightarrow T SNVs.

Appendix Figure B 18: Distribution of SNVs across G-Quadruplex regions for the (A) forward and (B) reverse strands for SNVs detected in the CLINVAR database.

Appendix Figure B 19: G4 sequence along with variants along a TERT promoter

CURRICULUM VITAE

NAME:	Vitae Aryan Neupane
ADDRESS:	Bioinformatics Lab, Duthie Center For Engineering,
	222 Eastern Pkwy, Louisville, KY 40208
DOB:	Kathmandu, Nepal- July 7,1995
EDUCATION	ſ
& TRAININC	Bachelor of Science, Biotechnology,Kathmandu University, Nepal Aug 2012 - Nov 2016
AWARDS:	Best Poster Award in Bioinformatics and Data Science, 2019 Southeast Regional IDeA Conference, November 6-8,2019
PUBLICATIO	DNS:
	Structural and Functional Classification of G-Quadruplex Families within the Human Genome, Mdpi Genes 2023, 14(3), 645; <u>https://doi.org/10.3390/genes14030645</u> Aryan Neupane, Julia H. Chariker, Eric C. Rouchka, Analysis of nucleotide variations in human g-quadruplex forming regions associated with disease states [Submitted, Feb 2, 2023] <u>https://doi.org/10.1101/2023.01.30.526341</u> Optical properties of natural dyes: prospect of application in dye sensitized solar cells (DSSCs) and organic light emitting diodes (OLEDs): https://doi.org/10.26656/fr.2017.2(5).096