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ABSTRACT 

Glioma is one of the most aggressive forms of brain cancer. It has been shown that 

the microenvironments differ significantly between the core and edge regions of glioma 

tumors. This study obtained metabolomic profiles of glioma core and edge regions using 

paired glioma core and edge tissue samples from 27 human patients. Data was acquired by 

performing liquid-liquid metabolite extraction and 2DLC-MS/MS on the tissue samples. 

In addition, a boosted generalized linear machine learning model was employed to predict 

the metabolomic profiles associated with O-6-methylguanine-DNA methyltransferase 

(MGMT) promoter methylation. 

A panel of 66 metabolites was found to be statistically significant between the core 

and edge regions. The machine learning model achieved AUROC values of 0.941 for the 

core and 0.960 for edge. This proof-of-concept study shows the metabolomic differences 

are reflected in MGMT promoter methylation status and demonstrates the potential for 

machine learning to aid as a prognostic and therapeutic tool. 
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OBJECTIVES 

Gliomas exhibit high intra-tumor and inter-patient heterogeneity. Recently, it has 

been shown that the microenvironment and phenotype differ significantly between glioma 

core (inner) and edge (infiltrating) regions. This proof-of-concept study differentiates 

metabolic signatures associated with these regions, with the potential for prognosis and 

targeted therapy that could improve surgical outcomes. 
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METHODS SUMMARY 

Paired glioma core and infiltrating edge samples were obtained from 27 human 

patients after craniotomy. Liquid-liquid metabolite extraction was performed on the 

samples and metabolomic data was obtained via 2DLC-MS/MS. To gauge the potential of 

metabolomics to identify clinically relevant predictors of survival from tumor core vs. edge 

tissues, a boosted generalized linear machine learning model was employed to predict 

metabolomic profiles associated with O-6-methylguanine-DNA methyltransferase 

(MGMT) promoter methylation. 
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RESULTS SUMMARY 

A panel of 66 (out of 168) metabolites was found to significantly differ between 

glioma core and edge regions (p≤0.05). Top metabolites with significantly different relative 

abundances included DL-alanine, creatine, cystathionine, nicotinamide and D-pantothenic 

acid. Significant metabolic pathways identified by QEA analysis included 

glycerophospholipid metabolism, butanoate metabolism, cysteine and methionine 

metabolism, glycine, serine, alanine and threonine metabolism, purine metabolism, 

nicotinate and nicotinamide metabolism, and pantothenate and CoA biosynthesis. The 

machine learning model using four key metabolites each within core and edge tissue 

specimens predicted MGMT promoter methylation status with AUROCEdge = 0.960 and 

AUROCCore = 0.941. Top metabolites associated with MGMT status in core included 

hydroxyhexanoycarnitine, spermine, succinic anhydride, and pantothenic acid, and in edge 

included 5-CMP, pantothenic acid, itaconic acid, and uridine. 
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CONCLUSIONS SUMMARY 

Key metabolic differences are identified between core and edge tissue in glioma 

and, further, demonstrate the potential for machine learning to provide insight into potential 

prognostic and therapeutic targets. 
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INTRODUCTION

 Tumor heterogeneity in glioblastoma (GBM) can be described by two major 

regions, the core (inner) and edge (infiltrating), which harbor unique environments1,2 that 

underlie the progression of GBM and are associated with pro-malignant processes 

including phenotypic transitions and heightened invasiveness, respectively. Recent work 

has also suggested that metabolic changes manifest spatially across the tumor and are 

essential mediators of tumor adaptation and therapy evasion. The edge demonstrates an 

increased expression of genes associated with fatty acid metabolism as well as abundance 

of acylcarnitines, but also has high glucose metabolism1, while the core tends to exhibit 

more metabolic plasticity and reliance on amino acid metabolism3. Although the 

contributions of metabolic changes to GBM progression are clear, the specific metabolites 

and metabolic pathways responsible for these alterations are poorly understood. 

Metabolomics provides a potential advantage in its ability to describe functional 

changes to the cells that complement the transcriptional and proteomic profiles of the 

tumor4 5. Early reports in metabolomics studies have shown that unique metabolic 

signatures can be identified between low grade and high-grade gliomas via tissue and 

serum from patients6. One study that performed GC/MS with cerebrospinal fluid (CSF) 

found citric and isocitric acid to have higher abundances in GBM than in grades I-III 

gliomas7. Metabolomics studies have traditionally utilized human body fluids such as 

urine, blood, CSF, and other sera to characterize cancer7. However, these approaches 

cannot resolve differences within the tumor. Therefore, studying the cancer tissue directly, 

rather than the biofluids, may provide more accurate insight into intra-tumoral metabolic 
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differences8, and yield detailed information about tumor microenvironment heterogeneity 

and potential cell-scale mechanisms9. Very recently, key metabolic differences between 

adult glioma subtypes were identified from resected tissue10. 

A variety of techniques have been applied for analysis of metabolomic data, 

including network-oriented techniques, such as principal network analysis, and data-driven 

methods, such as statistical modeling and machine learning11, as recently reviewed12. In 

parallel, substantial work has focused on application of machine learning to GBM imaging 

data, including radiomics and radiogenomics13,14, for detecting true progression from 

pseudoprogression15, to evaluate intra-tumoral heterogeneity16,17,and to analyze MRI with 

deep learning18,19. In this study, core and edge GBM tumor tissue pairs obtained from 

craniotomy and resection underwent liquid-liquid metabolite extraction, and the 

metabolomic profiles of the core and edge regions were contrasted. Differences in these 

profiles are important because the core is typically removed through surgery while the edge 

is left behind. Further, machine learning was applied to evaluate the potential of 

metabolomics to identify clinically relevant predictors of survival from tumor core vs. edge 

tissues. Here, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation 

was chosen as an example for evaluation, with the goal to demonstrate the capability to 

provide insight into potential prognostic and therapeutic targets. MGMT promoter 

methylation status has been associated with GBM patient prognosis, where methylation 

typically improves overall survival20. The MGMT promoter is a DNA repair protein and is 

associated with alkylating chemotherapeutic agents, such as TMZ21,22. It is currently 

unknown how MGMT promoter methylation status manifests in the metabolome of GBM 

tissue. Applying machine learning to deepen the understanding of GBM intra-tissue 
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metabolomic heterogeneity and identifying key differences would be relevant for future 

customization of treatment. 
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METHODS

Patient sample tissue and gene status collection 

Informed consent was obtained to participate in this study. All specimens were 

collected following approved Internal Review Board protocols at University of Louisville 

Hospital (IRB 20.0219) from patients with known or suspected brain tumors. As brain 

cancer affects both women and men, samples from both were collected. Samples were 

collected by the clinical team, blinded to the research analysis. Patient information was de-

identified by the clinical team before evaluation by the research team. IDH-R132H 

mutation was detected by immunohistochemistry and MGMT promotor methylation by 

next generation sequencing (Neogenomics Inc., Fort Meyers, FL). 

Patient sample tissue processing for metabolomics 

Samples of 27 GBM tumor core and edge pairs were received from the University 

of Louisville Brown Cancer Center Biorepository at separate times from human patients 

immediately following craniotomy, for a total of 54 samples. Core samples were collected 

from the contrast enhancing portion of the tumor (Figure_1). Infiltrating edge samples 

were collected from T2/FLAIR hyperintense surrounding tissue (Figure_2). For each core-

edge pair following craniotomy, the two sections were immediately placed into separate 

15mL centrifuge tubes containing 5mL non-supplemented RPMI medium and transferred 

to the lab for processing. Tissue sections were placed in separate sterile 1.5mL 

microcentrifuge tubes with tweezers. All tissue handling was performed under biosafety 

cabinet in sterile environment. PBS (1mL) was added to each tube, and tubes were 
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centrifuged 250xg for 5min. After supernatant was aspirated, this washing step was 

repeated for both samples. 500μL cold acetonitrile was added to each sample after second 

supernatant was aspirated; samples were then homogenized with handheld pellet mixer 

(VWR 47747-370) by grinding the sample against microcentrifuge tube wall. Next, 375μL 

nuclease-free water and 250μL chloroform were added to each tube, followed by vortexing 

10-15 sec. A final 20min centrifugation 664xg was completed to separate polar, protein, 

and lipid layers. Polar and lipid layers were pipetted for each sample into 1.5mL 

microcentrifuge tubes and 2.0mL glass screw top vials, respectively, and polar layers were 

lyophilized. 

2DLC-MS/MS Sample Processing 

Post-lyophilization, 2DLC-MS/MS was performed by the Center for Regulatory 

and Environmental Analytical Metabolomics (CREAM) at the University of Louisville. 

Each dried sample was dissolved in 200µL 50% acetonitrile and vigorously vortexed 3min. 

After centrifugation 14,000rpm and 4oC for 20min, 100µL was collected for further 

analysis. All samples were analyzed on Thermo Q Exactive HF Hybrid Quadrupole-

Orbitrap Mass Spectrometer coupled with Thermo DIONEX UltiMate 3000 HPLC system 

(Thermo Fisher Scientific, Waltham, MA). The LC system is equipped with reversed phase 

column (RPC, Waters Acquity UPLC HSS T3 column, 2.1x150mm, 1.8µm) and 

hydrophilic interaction chromatography column (HILIC, Millipore SeQuant ZIC-cHILIC 

column, 2.1x150mm, 3µm). The two chromatographic columns were configured to form a 

parallel 2DLC-MS system [9]. Mobile phase_A was water with 0.1% formic acid for PRC 

and 35% acetonitrile with 10mM ammonium acetate (pH adjusted to 3.25 with acetate) for 

HILIC. Mobile phase_B was acetonitrile with 0.1% formic acid for both RPC and HILIC. 

RPC gradient was 0% B, hold for 6.0min; 6.0 to 14min, 0% B to 28% B; 14.1 to 16min, 
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28% B to 50% B; 16.1 to 20.0min, 50% B to 100% B, hold for 1.0min; 21 to 21.1min, 

100% B to 0% B, hold for 11.9min. The HILIC gradient was 0 to 1.3min, 95% B; 1.3 to 

8.3min, 95% B to 0% B, hold for 2.7min; 11.0 to 11.5min, 0% B to 95% B, hold for 

11.5min. Flow rate was 0.35mL/min for RPC or 0.3mL/min for HILIC. Column 

temperature was 40oC for both RPC and HILIC. Samples were first analyzed in a random 

order in positive (+) and negative (-) modes to obtain full MS data for metabolite 

quantification. For metabolite identification, a pooled sample of each group was analyzed 

by 2DLC-MS/MS in positive and negative modes at three collision energies, 20, 40, and 

60eV.  

2DLC-MS/MS Data Analysis 

(XCMS, RRID:SCR_015538, xcmsonline.scripps.edu) was used for spectrum 

deconvolution23, and MetSign software for metabolite identification, cross-sample peak list 

alignment, normalization, and statistical analysis24,25. To identify metabolites, 2DLC-

MS/MS data was first matched to an in-house database that contains parent ion m/z, 

MS/MS spectra, and retention time of authentic standards. Threshold for spectral similarity 

was set ≥0.4, while thresholds of retention time difference and m/z variation window were 

respectively set ≤0.15min and ≤5 ppm. 2DLC-MS/MS data without a match with the 

metabolites in the in-house database were further analyzed using Compound Discoverer 

software (v2.0, Thermo Fisher Scientific, Germany), where MS/MS spectra similarity 

score threshold was set ≥40 with a maximum score of 100. This analysis yielded the 

intensity peaks for individual metabolites identified in each sample. 

Data Pre-Processing 

Data pre-processing was performed using R programming Language v.4.1.0. The 

metabolite intensity peaks from 2DLC-MS/MS were imported from an Excel file. 

https://xcmsonline.scripps.edu/
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Metabolites absent in 30% or more of the samples were excluded, resulting in 168 unique 

metabolomic signatures detected across all analytical batches 

(Supplementary_Figure_1). Data was pre-processed by log transformation and mass 

spectrometry total useful signal (MSTUS) normalization, both commonly used in 

metabolomics5,26, and centering. The log transform was applied to minimize 

heteroscedasticity5. MSTUS normalization, especially used for liquid chromatography, 

sums ion MS signals that are common among all samples to develop a normalization 

factor26. Data was centered around the mean to focus on the differences between the data5. 

Since data appeared to be missing at random (Supplementary_Figure_1), imputation was 

performed to handle missing values by Bayesian Principal Component Analysis (BPCA). 

Data from all 27 patients were obtained across two separate analytical batches. Batch 

correction was performed by the ber statistical model27 on positive and negative ion mode 

datasets separately (Supplementary_Figure_2). 

Statistical Analyses 

Paired and unpaired statistical analyses were performed in R v.4.1.0. Shapiro test 

was used to determine normality; t-test or Wilcoxon-rank sum test (Mann-Whitney U test) 

was used to determine significant differences between relative abundance of metabolites. 

A Partial Least Squares Discriminant Analysis (PLS-DA) analysis was performed with 

function plsda from mdatools library. Heat map of pre-processed data was generated with 

heatmap.2 function from gplots library.  

 

Classification Model 

A machine learning model (glmboost) was trained to discriminate between MGMT 

promoter methylation positive and negative samples using tumor core and edge 
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metabolomic data independently. A rigorous combination of feature selection and cross 

validation was performed to prevent overfitting. Test set validation was achieved with 5-

fold cross-validation, performed with 20 iterations of random subsampling. Results were 

obtained as the average across all folds and iterations. Classification performance metrics 

(AUROC; F1) were calculated as the averages across all folds and resampling iterations. 

Forward feature selection was performed after ranking features by variable importance and 

training/validating models on feature subsets 2 through 16. Across all feature subsets, a 

single optimal trained model was identified for the tumor core and edge. Variable 

importance was calculated as the absolute value of the coefficients of the tuned model, 

using function varImp from package caret. Model hyperparameters mstop (number of 

boosting iterations) and prune (AIC prune boolean) were tuned with R package caret 

(version 6.0-93), where prune=“no” and mstop=450 and 150 for models trained with core 

and edge data, respectively. 

Metabolic Network Visualization and Quantitative Enrichment Analysis 

(MetaboAnalyst 5.0, RRID:SCR_015539, www.metaboanalyst.ca/)28 was used to 

obtain chemical structure classes and quantitative enrichment analysis (QEA). (KEGG, 

RRID:SCR_012773, www.kegg.jp/) database was accessed (March 2023). Metabolic 

networks were visualized with (Cytoscape 3.8.2, RRID:SCR_003032, cytoscape.org/) and 

(MetScape 3.1.3, RRID:SCR_014687, metscape.ncibi.org/). 

http://www.metaboanalyst.ca/
http://www.kegg.jp/
https://cytoscape.org/
http://metscape.ncibi.org/
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RESULTS

Patient characteristics 

Of 27 patients (Table_1), 23 were white and 4 were of Black or African American 

ethnicity. Average age at tissue collection was 52 years (±17.7). Twenty-two patients had 

WHO grade 4 GBM; remainder was of astrocytoma, oligoastrocytoma or 

oligodendroglioma histology. All patients had IDH1 mutation status, with 6 positive; of 22 

patients with MGMT promoter methylation status, 7 were positive.  

Metabolic differences in tumor core and edge tissue 

PLS-DA separated tumor core and edge samples significantly (Poverlap = 5.37E-11) 

(Figure_3). A volcano plot of upregulated and downregulated metabolites between tumor 

core and edge is also shown. Metabolites with significant differences in relative abundance 

between paired tumor core and edge samples are in Supplementary_Table_1, with the top 

20 (by lowest p-value) compared between core and edge in Figure_4. Top metabolites 

upregulated in edge were DL-alanine (p=6.41E-07), creatine (p=7.85E-07), cystathionine 

(p=1.02E-06), nicotinamide (p=1.31E-06), D-pantothenic acid (p=1.47E-06), and 3-

Hydroxy-3-[(3-methylbutanoyl)oxy]-4-(trimethylammonio)butanoate (p=3.08E-06). Top 

metabolites upregulated in core were 2-oxobutyric acid, uric acid, threonine, and N1,N12-

Diacetylspermine Comparison of remaining significant metabolites between core and edge 

are in Supplementary_Figures_3-5. Further, 5 metabolites were identified with 

significantly different relative abundance between patients with MGMT promoter 

methylation positive or negative status, including higher hydroxyhexanoycarnitine and 
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lower spermine in core, and both higher itaconic acid and pantothenic acid in edge 

(Supplementary_Figure_6, Supplementary_Table_2).  

Classifying samples by MGMT promoter methylation status 

PLS-DA score plots reveal significant separation between MGMT promoter 

methylation negative and positive samples using both tumor core (Poverlap =3.18E-05) and 

edge (Poverlap =3.11E-04) metabolomic data (Figure_5). This indicates that classification 

via machine learning could provide insight. A classification model was trained and 

validated as described in Figure_6. Excellent classification performance (Figure_5C) was 

achieved using the top 4 metabolomic features as ranked by variable importance 

(Supplementary_Table_3), with AUROC Core = 0.941 (0.905 - 0.967) (95%CI) and 

AUROC Edge =0.960 (0.937 - 0.982) (95%CI). Model performance across all feature 

subsets (2-10 or 2-11 for edge and core, respectively) is summarized in 

Supplementary_Figure_7. For both the tumor core and edge, AUROC increases initially 

and begins to decline after 4 features, while F1 also shows a decline after 4 features. 

Overall, these results indicate that the features ranked by glmboost variable importance 

were effective at filtering noise out of the datasets. 

Quantitative enrichment analysis 

The relative proportion of chemical structure main classes within tumor core and 

edge samples across both analytical batches is in Supplementary_Figure_8. Largest 

classes included amino acids and peptides, fatty acids and conjugates, fatty esters, 

pyrimidines, purines and TCA acids. The most significantly enriched metabolic pathways 

between core and edge (Supplementary_Figure_9), where the enrichment ratio is the 

number of observed hits divided by the number of expected hits, were glycine, serine and 
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threonine metabolism; nicotinate and nicotinamide metabolism; pantothenate and CoA 

metabolism; glutathione metabolism; cysteine and methionine metabolism. Pathway maps 

of significant metabolic pathways identified by QEA analysis for tumor core vs. edge are 

in Figure_7 and Supplementary_Figure_10. 
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DISCUSSION

 Little is known about differences in metabolic landscapes in spatially distinct core 

and edge (infiltrating) regions of gliomas. This proof-of-concept study identified 66 unique 

metabolomic signatures that differed significantly between paired core and edge human 

glioma specimens (Figure_3). A total of 5 metabolites were found to be significantly 

different in terms of relative abundance each between MGMT promoter methylation 

positive and negative patients (Supplementary_Figure_6). Further, a machine learning 

model (glmboost) was able to accurately classify MGMT promoter methylation status 

using metabolomic data from tumor core and edge (Figure_5C).  

The tricarboxylic acid (TCA) cycle occurs within mitochondria in order to produce 

adenosine triphosphate (ATP)29. Glutamic acid, a significantly differentiated metabolite 

found between core and edge (Supplementary_Figure_3), , is referred to synonymously 

as glutamate (Glu), the form of glutamic acid found within the body29. Glu is highly 

involved in energy metabolism29. It is a key factor in glutaminolysis, a process that prepares 

substrates for the TCA cycle and serves an important role in cancer metabolism 29. An 

increased level of Glu in the edge relative to the core, therefore, reflects the actively 

invasive nature of the edge. Astrocytes have been shown to uptake extra Glu produced by 

glioma cells29; however, if the astrocyte-to-glioma-cell ratio is too small, such as during 

higher grade glioma, when the ratio approximates 0.5:1, then cell death may ensue29. 

Glutamine, a driver of invasion in GBM, is abundant in the brain and is a direct precursor 

to Glu30. Glu is formed by a phosphate activated glutaminase, D-Glutamine 



17 

amidohydrolase, which also yields ammonia via reaction R01579 (KEGG) (Figure_7)30. 

Gliomas uptake glutamine through the upregulation of transporters of glutamine and Glu, 

and its deprivation is known to slow GBM tumor growth31. The results suggest that 

increased Glu detected in the infiltrating tumor edge may be due to increased glutamine 

uptake and conversion. 

Furthermore, pyruvate (Supplementary _Table _3) as a TCA cycle intermediate 

is associated with increased levels of Glu, citrate, malate, and aspartate32. Creatine 

(Figure_4) , associated with amino-acid metabolism, has been noted as an energy 

metabolism marker33. It is unsurprising, therefore, that creatine and Glu were found to be 

upregulated in the edge (infiltrating) tumor regions. Pantothenic acid, also known as 

vitamin B5 and pantothenate, is an essential cofactor involved in many metabolic reactions 

and is the precursor of co-enzyme A (CoA)34,35. CoA is an essential component of acetyl-

CoA, which serves many roles and participates in the TCA cycle and B-oxidation (lipid 

catabolism)36. D-Pantothenic acid, detected as a positive ion, was upregulated in tumor 

edge samples (Figure_4) and pantothenic acid, detected as a negative ion, was also 

included in the top 10 metabolites as ranked by the classification model using either tumor 

core or edge data (Supplementary_Table_3). Succinic anhydride, the acid anhydride of 

succinic acid, was also upregulated in tumor edge (Supplementary_Figure_4), consistent 

with the finding that succinate accumulation enables tumor cells to be more aggressive37. 

Uric acid (i.e. urate) was among the top 20 most significant metabolites in terms of 

relative abundance between core and edge tissue (Figure_4) and was also within the top 

10 most important metabolites for predicting MGMT promoter methylation status using 

core tissue data (Supplementary Table_3). Uric acid levels may correlate with cancer 
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progression38. Deng et al. found that Type-II diabetes patients with higher levels of serum 

uric acid levels (≥5.0mg/dL) experienced significantly higher rates of cancer than those 

with lower levels (<3.0mg/dL)38. It remains unclear why uric acid levels would be 

increased in the core of gliomas. Nicotinamide, a form of vitamin B3, was the fourth most 

significantly upregulated metabolite in the infiltrating tumor edge (Figure_4) and 

nicotinate and nicotinamide metabolism was found to be the second most significantly 

enriched metabolic pathway (Supplementary_Figure_9). Nicotinamide has been 

associated with neuronal development, survival, and central nervous system (CNS) 

function, and has implications in neurodegenerative conditions such as Alzheimer’s39. 

Nicotinamide N-methyltransferase is known to be overexpressed in GBM and is 

preferentially expressed by glioblastoma stem cells (GSCs)40. Nicotinamide is an important 

intermediate in the production of nicotinamide adenine dinucleotide (NAD+) and is 

involved with the maintenance of NAD and NADP39. Nicotinamide is connected with 

NAD+ directly via reactions R00555 and R00110 (KEGG) (Supplementary_Figure_10). 

NAD+ regulates functions for many metabolic pathways, including glycolysis and the TCA 

cycle41. Intracellular NAD(H) levels have been found to control motility and invasion in 

glioma cells, for which downregulation of NAMPT resulted in limited cell migration 

compared to controls42. Oral supplementation with nicotinamide has been shown to 

increase blood levels of NAD, suggesting that high levels of nicotinamide may increase 

the biosynthesis of NAD43. It can, therefore, be hypothesized that increased levels of 

nicotinamide in the infiltrating tumor edge found may also result in increased NAD levels, 

suggesting that NAD biosynthesis may reflect intratumoral heterogeneity. Higher NAD in 
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the tumor edge would further support the evidence that NAD levels have an impact on cell 

motility in glioma.  

Purine metabolism (Supplementary_Figure_10), a pathway found to be 

significantly enriched between core and edge tissue, has recently garnered interest in the 

study of glioma metabolism44,45. It has been established that brain tumor initiating cells 

(BTICs) are dependent on the downstream components of de novo purine synthesis45. It is 

known that the GBM tumor edge has a preferential expression of glioma stem-like cell 

(GSC) signatures, where CD133 and CD109 have different expression profiles in tumor 

cells localized at the core and edge46. Hypoxanthine, which was increased in the tumor 

edge (Supplementary_Figure_3), has also been found to be elevated in BTICs45. 

Guanosine monophosphate (GMP), which is linked to hypoxanthine through inosine 

monophosphate (IMP) and reactions R01134 and R01132 (KEGG) 

(Supplementary_Figure_10), was also elevated in the tumor edge 

(Supplementary_Figure_4). GMP has been found to be essential to the maintenance of 

BTIC proliferation, self-renewal and tumorigenicity45. Taken together, these differences 

may indicate an increased abundance of this cell phenotype in the tumor edge. GMP was 

also found to be dramatically decreased in GBM tissue treated with Temozolomide 

(TMZ)44. Interestingly, uric acid (i.e. urate) was increased in the tumor core (Figure_4), 

which may indicate a decreased rate of production of uric acid in the tumor edge from 

hypoxanthine or xanthine through reactions R01768 and R02107 (KEGG) 

(Supplementary_Figure_10). The pathway analysis further highlights ethanolamine 

phosphate downregulated in core, indicating reduced lipid metabolism47; serine 

upregulated in core, promoting cell adaptation to hypoxic conditions48; decreased 
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cystathionine in core, linked to GBM progression49; methionine higher in core and known 

to be prevalent in glioma50. 

Due to the limited sample size in this proof-of-concept study, potential confounding 

variables age, histology, IDH1 mutation, MGMT promoter methylation status, and primary 

vs. recurrent disease could not be adjusted for (Table_1). Accounting for these variables 

is planned in the future with a larger sample set. GBM is heterogeneous and consists of 

multiple cell types, including tumorigenic stem cells, stromal cells and differentiated bulk 

tumor cells51,52. The bulk tissue specimen analysis utilized in this study is useful for 

determining global characteristics of the broadly defined tissue regions, but more nuanced 

specimen analyses could be performed, e.g., via single cell matrix assisted laser 

desorption/ionization MS (MALDI MS)53. Moreover, platforms such as MetaboAnalyst 

are limited because not all metabolites have been documented in reference databases; thus, 

several compounds detected here could not be characterized or classified. 
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CONCLUSIONS 

We have presented a proof-of-concept study evaluating metabolic differences in 

paired tumor core and infiltrating edge glioma samples and shown that unique metabolomic 

signatures distinguish these two tumor regions. Further, the potential of metabolomics to 

identify clinically relevant predictors of survival from these regions was evaluated by 

accurately classifying MGMT promoter methylation status. Longer term, metabolomics 

integrated with other analyses such as tumor tissue biophysical characterization might 

provide a comprehensive view of glioma heterogeneity. Investigation of mechanisms 

driving tumor aggression and invasion separately within core and edge could potentially 

identify therapeutic targets to minimize recurrence and benefit surgical outcomes. 
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TABLES

 

 

Table 1. Table of patient characteristics.  
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FIGURES

 

 

 
Figure_ 1. Intraoperative 3-dimensional navigation view using MRI imaging of a T1 

post-contrast four panel views. Demonstrates representative core biopsy location within 

the contrast enhancing portion of the tumor. 
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Figure_ 2. Intraoperative 3-dimensional navigation view using MRI imaging of a T1 

post-contrast four panel views. 

Demonstrates representative edge biopsy location outside the contrast enhancing portion 

of the tumor within the tumor infiltrating edge. 
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Figure_ 3. (Left) PLS-DA score plot of tumor core vs edge. 

There was a significant separation between groups (Poverlap = 5.37E-11) (Right) Volcano 

plot of significantly upregulated and downregulated metabolites of tumor core and tumor 

edge samples between patients, where tumor core is the reference. ‘POS’ and ‘NEG’ 

prefixes on metabolite names indicate whether the ion was detected in negative or 

positive ion mode. Blue points were increased in tumor core samples, and orange points 

were decreased in tumor core samples. 
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Figure_ 4. Relative abundance box plots of the top 20 metabolites differentiating 

between tumor core and tumor edge samples, ranked by p-value. 

Paired t-tests or Wilcoxon rank sum tests were performed, depending on the normality of 

the data. ‘POS’ and ‘NEG’ prefixes on metabolite names indicate whether the ion was 

detected in negative or positive ion mode. 
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Figure_ 5. MGMT promoter methylation status, PLS-DA score plots, and classification 

model results. 

Score plots indicate a significant separation between positive and negative MGMT 

promoter methylation groups with both (A) tumor core and (B) tumor edge metabolomic 

data. (C) A boosted generalized linear model (glmboost) was trained and validated with 

5-fold cross validation using the top 4 metabolomic features as respectively ranked by 

variable importance for core and edge (Supplementary_Table_3), showing excellent 

classification performance with AUROCEdge = 0.960 (0.937 - 0.982) (95%CI) and 

AUROCCore = 0.941 (0.905 - 0.967) (95%CI). Dashed line represents a non-

discriminatory reference model. 
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Figure_ 6. Machine learning model training and validation. 

The permuted (randomly sorted) dataset is split into k folds (subsets; here, k=5). Model is 

trained with k-1 folds and validated with the kth fold. This process is repeated until all 

folds have been used once as the validation set. The next iteration of the cross validation 

involves another permutation of the complete dataset and repeating the whole process. 

Final results of each model are the averages of the validations across all folds and all 

iterations. 
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Figure_ 7. Pathway maps of significant metabolic pathways identified by QEA analysis 

for tumor core vs. edge, including glycerophospholipid metabolism, butanoate 

metabolism, cysteine and methionine metabolism, and glycine, serine, alanine and 

threonine metabolism. 

Red source nodes are shown connected to compounds (pink hexagons), enzymes (green 

squares), genes (purple circles) and reactions (gray diamonds). Upward orange or 

downward blue arrows underneath each metabolite (red) node indicate if the metabolite 

was significantly upregulated or downregulated with respect to the tumor core. (e.g., 

creatine was downregulated in tumor core/upregulated in tumor edge; L-serine was 

upregulated in tumor core/downregulated in tumor edge). 
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APPENDIX

 

 
Supplementary Table 1. P-values of metabolites with significant differences in relative 

abundance between paired tumor core and edge samples. ‘POS’ and ‘NEG’ prefixes on 

metabolite names indicate whether the ion was detected in negative or positive ion mode. 
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Supplementary Table 2. P-values of metabolites with significant differences in relative 

abundance between patients with MGMT positive or negative promoter methylation status 

using either tumor core or tumor edge samples. ‘POS’ and ‘NEG’ prefixes on metabolite 

names indicate whether the ion was detected in negative or positive ion mode. 
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Supplementary Figure 1. Visualization of metabolomics data set before and after 

imputation. Log transformation, MSTUS normalization and centering have been 

performed prior to imputation. Red indicates low values and green high values of relative 

abundance. Gray indicates missing values, i.e. no signal was detected.  
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Supplementary Figure 2. PLS-DA score plots of analytical batch 1 and analytical batch 

2 before and after batch correction. Separation between groups was decreased after batch 

correction.  

 

 

 



38 

 
 

Supplementary Figure 3. Volcano plots of significantly upregulated and downregulated 

metabolites between patients with positive or negative MGMT promoter methylation status 

from the tumor core samples (left) and tumor edge samples (right), where negative MGMT 

status is the reference. Rose color points increased in negative MGMT samples, and teal 

colored points decreased in negative MGMT samples. ‘POS’ and ‘NEG’ prefixes on 

metabolite names indicate whether the ion was detected in negative or positive ion mode.   
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Supplementary Figure 4. AUROC and F1 of glmboost classification models during 

feature selection. Only features with non-zero variable importance were included during 

feature selection. 
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Supplementary Figure 5. Relative proportion of chemical structure main classes within 

tumor core and tumor edge samples across both analytical batches, produced by 

MetaboAnalyst 5.0.  
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Supplementary Figure 6. Quantitative enrichment analysis of tumor core vs. tumor edge 

found with MetaboAnalyst 5.0 using the KEGG pathway database.  
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Supplementary Figure 7. Relative abundance box plots of the 20-40 top key metabolite 

differentiating tumor core and tumor edge samples. Paired t-tests or Wilcoxon rank sum 

tests were performed, depending on the normality of the data.  
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Supplementary Figure 8. Relative abundance box plots of the 40-60 top key metabolite 

differentiating tumor core and tumor edge samples. Paired t-tests or Wilcoxon rank sum 

tests were performed, depending on the normality of the data.  
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Supplementary Figure 9. Relative abundance box plots of the 61-66 top key metabolite 

differentiating tumor core and tumor edge samples. Paired t-tests or Wilcoxon rank sum 

tests were performed, depending on the normality of the data.  
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Supplementary Figure 10. Additional pathway maps of significant metabolic pathways 

identified by QEA analysis for tumor core vs. edge, including purine biosynthesis, 

pantothenate and CoA biosynthesis, and nicotinate and nicotinamide metabolism. Red 

source nodes are shown connected to compounds (pink hexagons), enzymes (green 

squares), genes (purple circles) and reactions (gray diamonds). Upward orange or 

downward blue arrows underneath each metabolite (red) node indicate if the metabolite 

was significantly upregulated or downregulated with respect to the tumor core. (e.g. 

pantothenate was downregulated in tumor core/upregulated in tumor edge; urate (i.e. uric 

acid) was upregulated in tumor core/downregulated in tumor edge). 
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