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ABSTRACT

INFERENCE OF SOJOURN TIME AND TRANSITION
DENSITY USING THE NLST X-RAY SCREENING DATA IN

LUNG CANCER

Farhin Rahman

July 19, 2023

This dissertation consists of three research projects on cancer screening

probability modeling. In these projects, the three key modeling parameters

(sensitivity, sojourn time, transition density) for cancer screening were estimated,

along with the long-term outcomes (including overdiagnosis as one outcome),

the optimal screening time/age, the lead time distribution, and the probability

of overdiagnosis at the future screening time were simulated to provide a

statistical perspective on the effectiveness of cancer screening programs.

In the first part of this dissertation, a statistical inference was conducted

for male and female smokers using the National Lung Screening Trial (NLST)

chest X-ray data. A likelihood function was applied to the lung cancer

screening data to obtain Bayesian inference of the transition probability and the

distribution of sojourn time. For the transition probability density function, a

log-normal distribution multiplied by 30% was used, while a Weibull distribution

was employed to model the sojourn time in the preclinical state. The early

transition occurred before age 50 and persisted until after age 90. Notably,

the transition probability from the disease-free to the preclinical state peaked
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around age 73 for males and 72 for females. The Bayesian posterior mean and

median sojourn time for males (females) heavy smokers were estimated to be

1.28 (1.23) and 1.23 (1.21) years, respectively. These estimations revealed that

male smokers are more susceptible to lung cancer due to their higher transition

probability density compared to same-aged female smokers. Furthermore,

female smokers exhibited a slightly shorter mean sojourn time than their male

counterparts, suggesting they develop clinical symptoms of lung cancer at a

faster rate.

In the second part of this dissertation, the probability model was applied

to assess the long-term effects of cancer screening. The participants in the cancer

screenings were categorized into four mutually exclusive groups: symptom-free-

life, no-early-detection, true-early-detection, and overdiagnosis. Simulation

studies and Bayesian inference were conducted, considering factors such as a

person’s age at the study entry, screening frequency, screening sensitivity, and

other relevant parameters. The probability of overdiagnosis among the screen-

detected cases was found to be relatively low but increased with the initial

screen age. It was observed that males were more susceptible to overdiagnosis

compared to females. The model can provide policymakers with essential

information about the distribution of individuals in the overdiagnosis and

true-early-detection groups, enabling them to minimize the long-term effects

resulting from frequent screenings.

In the third part of this dissertation, a recently developed statistical

method was applied to the National Lung Screening Trial (NLST) chest X-

ray data, to find the optimal time for initiating chest X-ray screening in

asymptomatic individuals. Incidence probability was used to control the risk of

clinical incidence before the first exam, constraining it to a small value, given

one’s current age. The simulation study showed that the optimal screening
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age interval remains relatively consistent as the current age increases. Notably,

male heavy smokers tended to have slightly later screening ages compared

to females, which contrasted with the findings from NLST CT data. Once

the future screening time/age was found, the lead time distribution and the

probability of overdiagnosis were estimated if one would be diagnosed at this

future time/age. The lead time was relatively consistent across incidence

probability and sensitivity, with a slight decrease in the mean lead time as

the current age increased, and it was positively correlated with the sojourn

time. The probability of overdiagnosis exhibited positive correlations with the

mean sojourn time, incidence probability, and current age, and it only slightly

changes with sensitivity. Overall, the probability of overdiagnosis was small

and was not a concern at a younger age.
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CHAPTER 1

INTRODUCTION

This dissertation contains three research projects (Chapters 2-4) on

cancer screening probability modeling. In Chapter 2, the Bayesian approach

is employed to estimate the key parameters in cancer screening. Specifically,

the sojourn time and transition density are estimated using the methodology

described in a previous study by Wu et al. (2005). Chapter 3 focuses on

estimating the probability of four outcomes, including overdiagnosis as one

outcome in cancer screening. By incorporating factors such as age at study entry,

screening frequency, and screening sensitivity, the probability of overdiagnosis

is estimated using simulation studies and Bayesian inference techniques. In the

third project, presented in Chapter 4, the focus shifts to finding the optimal

screening time/age for an asymptomatic individual, then evaluating the lead

time distribution and the probability of overdiagnosis at the future screening

time. This is the first step toward individualized screening time for individuals

at risk with helpful information for decision-making.

This chapter is a review of methods used to estimate the key parameters

along with the optimal screening time/age, the lead time distribution, and the

probability of overdiagnosis.
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1.1 Lung Cancer Screening Overview

Lung cancer is a significant public health concern, being the second most

common cancer and the leading cause of cancer-related deaths among both

men and women in the United States (NCI, 2019). It arises when malignant

(cancer) cells form in the lung tissues. The two main types of lung cancer are

small cell and non-small cell, with the latter being more prevalent. These types

exhibit different growth patterns and require distinct treatment approaches.

Cancer screening refers to the process of searching for cancer in individuals

who do not exhibit any symptoms. The primary objective of lung cancer

screening is to identify lung cancer in its early stages when it is more treatable

and potentially curable. Early detection allows for timely intervention, such

as surgical removal of tumors or other appropriate treatments, which can

significantly improve outcomes and increase survival rates.

Survival rates for lung cancer vary depending on the stage of the disease

at diagnosis. The five-year overall survival rate for lung cancer is 20.5%,

while for stage I lung cancer, the survival rate is 59%, and for stage II, it is

31.7% (NCI, 2019). Early detection and treatment are crucial for improving

survival outcomes, as the survival rates for advanced stages of lung cancer are

significantly lower. Lung cancer is commonly diagnosed among individuals

aged 65-74, with a median age of 71 at diagnosis. In 2020, it was estimated

that 12.7% of all cancer cases in the United States would be attributed to lung

cancer (NCI, 2019).

There are three common tests used for the diagnosis in lung cancer: (i)

Low-dose spiral CT scan (LDCT scan), which utilizes a low-dose radiation

X-ray machine to obtain detailed images of the internal body areas; (ii) Chest

X-ray, which provides images of the organs and bones within the chest; and (iii)
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Sputum cytology, a procedure where a sample of coughed-up mucus (sputum)

is examined under a microscope to check for the presence of cancer cells (NCI,

2019). The choice of which test or tests to use depends on various factors such

as the individual’s symptoms, medical history, and the suspected nature of the

lung abnormality.

1.2 Probability Modeling of Cancer Screening

The disease progression model is a commonly used framework in cancer

screening probability modeling, providing a basis for estimating the relevant

probabilities and their parameters (Zelen and Feinleib, 1969). In this study, the

disease progression model is adopted as the foundation for the cancer screening

probability modeling. This model assumes that the development of cancer

follows a sequence of three distinct states, denoted as S0 → Sp → Sc. These

states represent different stages of the disease progression.

The initial state S0, refers to the disease-free state. In this state, an

individual does not have the disease or has a disease at an early stage that cannot

be detected by the screening examination. The next state, Sp, represents the

preclinical disease state. In this stage, an asymptomatic individual unknowingly

possesses the disease that can be detected through a screening examination.

This state is crucial in cancer screening as the goal of screening is to detect the

tumor in the preclinical state. A graphical illustration of the disease progression

model is presented in figure 1.2.1.
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Figure 1.2.1: A graphical representation of the disease progression model

Several definitions and notations related to probability modeling are

introduced in this chapter, which are utilized throughout the remainder of the

dissertation. The focus is on lung cancer screening, specifically for a cohort of

initially asymptomatic individuals with no prior history of lung cancer.

One important parameter in this study is sensitivity, which represents

the probability of correctly identifying a disease during screening when an

individual is in the preclinical state (Sp). The sensitivity is estimated using

an epidemiological approach, which assumes that sensitivity is not dependent

on the age of participants (Wang et al., 2017). To estimate sensitivity, the

total number of cases detected through screening is divided by the sum of

screen-detected cases and interval cases.

Another key parameter to be estimated is the sojourn time, which refers

to the duration that a person remains in the preclinical state (Sp). This time

period represents the interval during which a person is asymptomatic, but the

cancer is detectable through screening. A longer sojourn time implies that the

disease can be detected more easily through screening. The sojourn time (Tp)

is calculated as the difference between the age at which a person enters the

preclinical state and the age at which clinical symptoms appear (Tp = t2 − t1),

as illustrated in Figure 1.2.1. The mean sojourn time (MST) is the average

time spent in the preclinical screen-detectable phase.

The transition probability is another key parameter estimated in this

4



study. It represents the probability density function (PDF) that describes the

time duration in the disease-free state (S0). Additionally, it provides essential

information about the age at which individuals transition from the disease-free

state to the preclinical state (Sp). The transition density is typically estimated

using common parametric models or assumptions of constant intervals.

In general, it is assumed that the sojourn time and transition time are

independent (Wu et al., 2005). However, since the inception of either Sp or

Sc is difficult to observe directly in a screening program, proper modeling is

required for accurate estimation of the sojourn time and transition density.

The objective of this study is to provide accurate statistical inference for the

distribution of the sojourn time and the transition probability from the disease-

free to the preclinical state for heavy smokers, utilizing the chest X-ray data

from the National Lung Screening Trial (NLST).

The existing statistical methods used to estimate these key parameters

in lung cancer screening, as well as the methods for estimating the optimal

screening age/time, the lead time distribution and the probability of overdiagnosis

are briefly reviewed in this study for various scenarios. The focus is on an

asymptomatic heavy smoker of age t0, with no history of lung cancer, who

undergoes a series of ordered screening exams at regular intervals.

Initially, we consider an asymptomatic heavy smoker of age t0, with

no lung cancer history. We suppose that the person will undergo K ordered

screening exams at ages t0 < t1 < ... < tK−1, where ti = t0 + i is for annual

screening exams. We define the ith screening interval as the interval between

the ith and the (i + 1)th screening exams (ti−1, ti) where i = 1, 2, ..., K − 1.

The sensitivity of the screening exam is denoted as β, and the function w(t)

represents the duration in the disease-free state (S0), it is a sub-PDF since

an individual may remain in the disease-free state throughout their lifetime.
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Finally, the probability density function of the sojourn time in Sp is denoted

as q(x), with the survival function Q(z) =
∫∞
z
q(x)dx.

Table 1.2.1: Sample Cancer Screening Data

age (t0) n1 s1 r1 n2 s2 r2 ... ank sk rk
... ... ... ... ...
60 1188 4 1 1123 3 2 1091 1 2
...
65 752 6 1 704 3 3 686 3 3
... ... ...

a The total number of screening K > 0 is an integer.K = 3 in NLST study

In the context of cancer screening, the screening data typically consists

of three parts for each screening cycle. Let’s define the following variables: (i)

ni,t0 represents the total number of individuals in the cohort who undergo the

ith screening exam. This variable provides the population size at a particular

screening point; (ii) si,t0 denotes the number of cases detected at the ith

screening exam. These are the individuals who are identified and confirmed

as having cancer during the screening process; (iii) ri,t0 refers to the number

of cases diagnosed in the clinical state (Sc) within the interval between the

(i− 1)th and ith screening exams, these cases are known as interval cases and

are diagnosed with cancer between two consecutive screening intervals.

Table 1.2.1 illustrates the data format for a screening program with

K scheduled exams. The table showcases the stratification of the data based

on the initial age at which the screenings are conducted. The three parts,

ni, si, ri represent the variables discussed above, corresponding to the respective

screening exams.

The probability of overdiagnosis is a significant concern in lung cancer

screening and the focus of the second part of this dissertation. It occurs when
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cancer is detected through screening, but the individual would not exhibit any

clinical symptoms. Essentially, overdiagnosis refers to the detection of cancers

that would not have caused any medical or clinical problems in the absence

of screening. This can lead to unnecessary treatments or interventions for

individuals who would not have experienced any adverse health outcomes.

To better understand the factors influencing the risk of overdiagnosis,

it is essential to estimate various events prior to the diagnosis status and the

appearance of symptoms before death. These events include the concept of

symptom-free-life, no-early-detection, true-early-detection, and others. Table

1.2.2 provides a summary of these events, which are relevant for assessing the

risk of overdiagnosis.

Table 1.2.2: Definition of long-term outcomes/events in screening

Diagnosis status
Ultimate lifetime disease status

No symptom before death symptoms before death
not screen detected symptom free life no early detection
screen detected overdiagnosis true early detection

People who take part in cancer screening are divided into four mutually

exclusive groups: true-early-detection, no-early-detection, overdiagnosis, and

symptom-free-life. In this dissertation (chapter 3) the probability for each

case derived in Wu et al. (2014) is used. These probabilities change with a

person’s age at study entry, screening frequency, screening sensitivity, and other

parameters. It is also allowed that the human lifetime is subject to a competing

risk of death from other causes. The model can provide policymakers with

important information regarding the distribution of individuals participating

in a screening program which eventually fall into one of the four groups:

• Group 1 : Symptom-free-life (SympF)- The participant went through the

screening exams, but lung cancer was never got detected, and ultimately

7



he/she died of other causes.

• Group 2 : No-early-detection (NoED)- The participant went through the

screening exams, and the disease reveals clinically but was not detected

by scheduled screening exams.

• Group 3 : True-early-detection (TrueED)- The participant was diagnosed

with lung cancer at a scheduled screening exam, and his/her clinical

symptoms would have appeared before his/her death.

• Group 4 : Overdiagnosis (OverD)- The participant of the Group 4 was

diagnosed with lung cancer at a scheduled screening exam, but his/her

clinical symptoms would not appear before his/her death.

To estimate the probability of overdiagnosis, we introduce the time

variable t, which represents an individual’s age at the time of screening.

Additionally, we consider the variable T , which represents a person’s lifetime and

is modeled as a continuous random variable with a probability density function

fT (t). We define an event denoted as A, which indicates that participants in

the screening exams are asymptomatic for cancer before and at the time t0.

In other words, event A signifies that individuals do not exhibit any clinical

symptoms related to cancer up until the time of their initial screening. This

assumption allows us to consider the probability of overdiagnosis in the context

of individuals who are initially free of cancer symptoms.

A = { Participant is asymptomatic of lung cancer before and at t0 }

The conditional probability of A derived in Wu et al. (2014) considers

that a participant is asymptomatic at t0 (event A), no lung cancer was found

before age t0, given that one’s lifetime T exceeds t0, is the sum of the two

8



probabilities: (i) participant remains in the disease-free state through age t0,

the probability of which is 1−
∫ t0

0
w(x)dx, and (ii) participant enter preclinical

state, Sp before t0 but remains in Sp for a long time that no symptoms appear

before t0, the probability of which is
∫ t0

0
w(x)Q(t0 − x)dx.

P (A|T > t0) = 1−
∫ t0

0

w(x)dx+

∫ t0

0

w(x)Q(t0 − x)dx (1.1)

The model where a person’s lifetime is a random variable, T ∼ fT (t)

is applied in this study to estimate the probability of each case considering

multiple screening exams.

The method employed in the third part of this study focuses on estimating

the optimal screening time and evaluating the lead time, and overdiagnosis.

The approach is based on the probability model developed by Wu (2022) and

involves the following steps:

• Optimal screening time/age: The first step is to find the optimal age for

the first screening exam, denoted as t0, for an asymptomatic individual

of current age a0. By constraining incidence probability to a small value,

such as 10% or 20%, a unique solution for the first screening time can be

obtained.

• Lead time distribution: The lead time distribution is estimated for

individuals who would be diagnosed with cancer at their first screening

exam.

• Probability of overdiagnosis : The probability of overdiagnosis is calculated

given that a person is diagnosed at the first screening exam and their

human lifetime exceeds the first screening age.

This methodology allows for optimal scheduling on an individual basis
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and provides accurate estimation of lead time, overdiagnosis, and true-early-

detection probabilities at the future screening time if one would be diagnosed

with cancer.

10



CHAPTER 2

INFERENCE OF SOJOURN TIME AND TRANSITION

DENSITY USING THE NLST X-RAY SCREENING DATA IN

LUNG CANCER

2.1 Introduction

The key parameters in the probability modeling of cancer screening

include the sojourn time distribution, the transition probability, and screening

sensitivity. These parameters play a crucial role in understanding and evaluating

the effectiveness of cancer screening programs. Additionally, other important

measures such as the probability of overdiagnosis, optimal screening time, and

lead time distribution can be expressed as functions of these key parameters.

Accurate estimation of these key parameters is essential for ensuring

the reliability and validity of cancer screening models. In this chapter, the

main objective is to provide precise statistical inference for the distribution of

sojourn time and the transition probability from the disease-free state to the

preclinical state specifically for heavy smokers. This estimation is carried out

using the chest X-ray data from the National Lung Screening Trial (NLST).

An existing conditional likelihood function Wu et al. (2005) will be used to

achieve this goal of evaluating lung cancer screening.

The subsequent sections of this chapter are structured as follows: Section

2.2 presents an introduction to the NLST data, Section 2.3 focuses on estimating
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key parameters for asymptomatic participants of current age t0, Section 2.4

demonstrates the application of an existing method through simulation utilizing

a Bayesian and MCMC approach, and Section 2.5 engages in a discussion

regarding the results obtained from the simulation.

2.2 The National Lung Screening Trial

The National Lung Screening Trial (NLST) is a randomized clinical trial.

It was launched by the National Cancer Institute in 2002 (Jang et al., 2013a).

NLST has screened a high-risk population with either low-dose helical (spiral)

computed tomography (CT) or standard chest X-ray (X-ray). In this study, the

standard chest X-ray (a single image of the whole chest) data was used, which

was divided into two groups: males (15,396) and females (10,634) of heavy

smokers. Asymptomatic participants aged 55 to 74 from 33 centers across the

US between August 2002 and April 2004 were initially screened from each

group. Three annual screening exams were provided to each participant from

each group. The data were organized in such a way for accurate estimation:

for each age t0 at study entry, and each screening, the total number of people

being screened ni, the number of confirmed cancer cases si and the number of

interval cases ri, before the next exam. Participants that dropped in the middle

of the program are also included. Table 1.2.1 shows the data format that have

been used in the NLST study. Participants with different ages, gender, and

smoking status are considered significant risk factors in this project. If any

of the tests were positive, the screen was considered positive, and a definitive

workup exam, such as a biopsy, was done.
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2.3 Method

Let t represents the age of participants in the screening. β(t) represents

the sensitivity of the screening. We define w(t)dt as the transition probability

from S0 to Sp in the time interval (t, t + dt). Let q(x) be the probability

density function (pdf) of the sojourn time in Sp, where Q(z) =
∫∞
x
q(x)dx is

the survival function of the sojourn time in Sp.

Initially, an asymptomatic heavy smoker of age t0 is considered, who has

no history of lung cancer. Suppose that the person will undergo K screening

exams at ages t0 < t1 < ... < tK−1, where ti = t0 + i for annual screening exams

in the NLST study. We define the ith screening interval as the interval between

the ith and the (i+ 1)th screening exams (ti−1, ti) where i = 1, 2, ..., K− 1. Let

t−1 = 0. For each screening exam, let ni,t0 be the total number of individuals in

this cohort examined at the ith screening, si,t0 is the number of cases detected

at the ith screening exam, and ri,t0 is the number of cases diagnosed in the

clinical state Sc within the interval (ti−1, ti), which is the interval cases. For

the NLST chest X-ray data, since the age of participants enrolled was between

55 to 74 at the study entry, the likelihood function for all groups is:

L =
74∏

t0=55

3∏
k=1

Dsk,t0
k,t0

Irk,t0k,t0
(1−Dk,t0 − Ik,t0)nk,t0

−sk,t0−rk,t0 (2.2)

where Dk,t0 is the probability that an individual will be diagnosed at

the kth scheduled exam given that he/she is in Sp, and Ik,t0 is the probability

of being incident in the kth screening interval. These two probabilities were

originally derived in Wu et al. (2005) as follows:

D1,t0 = β(t0)

∫ t0

0

w(x)Q(t0 − x)dx (2.3)

13



Dk,t0 = β(tk−1)

{
k−2∑
i=0

[1− β(ti)]...[1− β(tk−2)]

∫ ti

ti−1

w(x)Q(tk−1 − x)dx

+

∫ tk−1

tk−2

w(x)Q(tk−1 − x)dx

}
, for all k = 2, ..., K

(2.4)

Ik,t0(t) =
k−1∑
i=0

[1− β(ti)]...[1− β(tk−1)]

∫ ti

ti−1

w(x)[Q(tk−1 − x)−Q(tk − x)]dx

+

∫ tk

tk−1

w(x)[1−Q(tk − x)]dx, for all k = 1, ..., K

(2.5)

The sensitivity was estimated by the epidemiologic method using the

NLST data:

β(t) = β0 =
74∑

t0=55

K∑
k=1

sk,t0/
74∑

t0=55

K∑
k=1

sk,t0 +
74∑

t0=55

K∑
k=1

rk,t0 (2.6)

It was obtained by using the total number of screen-detected cases

divided by the sum of screen-detected cases and interval cases (Walter and

Day, 1983). The transition density follows a log-Normal PDF multiplied by

30%:

w(t|µ, σ2) =
0.3√
2πσt

exp{−(logt− µ)2/(2 ∗ σ2)} (2.7)

The density of sojourn time follows Weibull distribution.

q(x|α, λ) = αλxα−1exp(−λxα) (2.8)

So, the survival function of the sojourn time has the following form:

Q(x) = exp(−λxα)

where x is the sojourn time in the state of Sp; α and λ are positive
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parameters to be estimated.

2.4 Application

In this study, the likelihood function (2.2) was employed to calculate

the Bayesian estimate of the four unknown parameters θ = (µ, σ2, α, λ) using

the NLST chest X-ray data. To estimate the sensitivity of the screening study,

we adopted the epidemiological method, which assumes that sensitivity does

not vary with the age of the participants. The estimated values for sensitivity

were found to be 0.61 for males and 0.62 for females. This indicates that the

sensitivity is slightly higher in females compared to males.

Table 2.4.1: Bayesian Posterior Estimates

Male Female
Parameters Mean Median SE Mean Median SE
µ 4.3158 4.3156 0.0114 4.3178 4.3176 0.0665
σ2 0.0220 0.0218 0.0032 0.0376 0.0374 0.0063
α 2.3274 2.1165 0.7130 2.7634 2.7797 0.7200
λ 0.4210 0.4326 0.0587 0.4063 0.4164 0.0665
MST 1.2849 1.2389 0.5862 1.2330 1.2133 0.4823

In this study, Markov Chain Monte Carlo (MCMC) methodology was

employed to draw posterior samples from the target distribution using non-

informative Uniform priors. The prior distributions for the parameters were

specified as follows: µ was assigned a Uniform prior (0.1, 5), σ2 had a Uniform

prior (0.01, 0.99), α was assigned a Uniform prior (0.1, 5), and λ had a Uniform

prior (0.1, 2). The parameter ranges chosen were based on previous studies

(Wu et al., 2011; Liu et al., 2015), which identified the ranges as 4 < µ < 4.5,

0.01 < σ2 < 0.05, 1.5 < α < 4, and 0.01 < λ < 0.5.

Three simulations were carried out that were overdispersed with respect
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to the target distribution. Each simulation was run for 200,000 iterations, with

50,000 burn-in steps. After the burn-in steps, the posteriors were sampled

every 300 steps, resulting in 500 posterior samples for the parameter vector

θ. The 500 posterior samples from each of the three chains were pooled for

the analysis, providing 1,500 posterior samples for θ. The MCMC trace and

the posterior density of θ are plotted using the final 1,500 posterior samples

for θ of two groups: male and female. Figure 2.4.1 and figure 2.4.2 show the

MCMC trace plot of the male and female groups, respectively. Figures 2.4.3

and 2.4.4 show the density plots for the two groups, respectively. The posterior

estimates of parameters θ are listed in table 2.4.1. Mean sojourn time (MST)

of male is found slightly higher than female. The larger posterior standard

errors are indeed expected in Bayesian inference due to the incorporation of

prior uncertainty. Furthermore, the relatively low incidence of lung cancer

within each age group can also contribute to these larger standard errors.
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Figure 2.4.1: The MCMC trace plots of parameters θ = (µ, σ2, α, λ) using chest
X-ray of male group
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Figure 2.4.2: The MCMC trace plots of parameters θ = (µ, σ2, α, λ) using chest
X-ray of female group
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Figure 2.4.3: The posterior density plots of the parameters θ = (µ, σ2, α, λ)
using chest X-ray of male group
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Figure 2.4.4: The posterior density plots of the parameters θ = (µ, σ2, α, λ)
using chest X-ray of female group

Figures 2.4.3 and 2.4.4 present the density plots for each parameter,

θ = (µ, σ2, α, λ), with the Bayesian mean and 95% credible interval indicated for

both the male and female groups. These plots provide a visual representation of

the posterior distribution of the parameters and allow for a better understanding

of their estimated values.

Figures 2.4.5 and 2.4.6 display the posterior quantities of the transition

probability and sojourn time for each group. The age-dependent transition

probability follows a log-normal distribution that is multiplied by 30%. Notably,

the transition probability exhibits a unimodal pattern, reaching its maximum

around age 73 for males and 72 for females. This finding suggests that the

likelihood of transitioning from the disease-free state to the preclinical state is
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highest during these ages.

Regarding the sojourn time, the posterior mean sojourn time (MST) is

estimated to be 1.28 years for males and 1.23 years for females. The posterior

median sojourn time is slightly lower, at 1.23 years for males and 1.21 years

for females. The standard error for the sojourn time is 0.58 for males and

0.48 for females, indicating the uncertainty associated with these estimates.

Consequently, the Bayesian analysis suggests that the MST for males appears

to be longer than that for females, implying that males may have a slightly

longer period in the preclinical state.

Figure 2.4.5: Posterior quantities (2.5%, 50%, 97.5%) of transition probabilities

Figure 2.4.6: Posterior quantities (2.5%, 50%, 97.5%) of sojourn time
probabilities
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2.5 Discussion

This research focused on Bayesian estimation due to the challenges

associated with Maximum Likelihood Estimation (MLE) in the context of

limited screenings and small sample sizes. As highlighted by Wu and Kim

(2020) in their review article, MLE tends to provide less accurate estimates

when the number of screenings is less than four and the sample size is small for

each age group. Even with a large sample size, although the average of MLE

may be closer to the true value, the standard error tends to be large. In the

case of the NLST chest X-ray data, the number of screenings was limited to

three, making it difficult to obtain reliable MLE estimates.

To estimate the sojourn time and the transition density, the likelihood

method (2.2) was applied separately to the NLST chest X-ray data for male and

female heavy smokers. Markov Chain Monte Carlo (MCMC) was employed in a

Bayesian framework to draw posterior samples and obtain accurate estimations.

The primary objective was to provide policymakers with reliable estimates of

the sojourn time and the age at which individuals transition into the preclinical

state. This information can be valuable for making informed decisions regarding

the appropriate age to initiate lung cancer screening exams for heavy smokers

and determining the optimal frequency for future screenings.

In this study, the epidemiological method was utilized to estimate the

sensitivity, which represents the probability of obtaining a positive result on

a screening exam given that an individual is in the preclinical state. This

method is consistent with the approach used in Wang et al. (2017). The

study conducted by Wang et al. (2017) using the PLCO X-ray data reported a

sensitivity of 0.65 for male smokers and 0.68 for female smokers. In our analysis

of the NLST chest X-ray data, we found the sensitivity to be 0.61 for males
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and 0.62 for female heavy smokers, which closely aligns with the results from

the PLCO X-ray data.

Furthermore, previous NCI trials have demonstrated an average sensitivity

of 0.69 for chest X-ray screenings, with a range of 0.54 to 0.84 (Gavelli and

Giampalma, 2000). In the Mayo Lung Project, Wu et al. (2011) estimated

a 95% highest posterior density (HPD) interval for sensitivity as (0.72, 0.98)

with a posterior mean of 0.89. Additionally, Liu et al. (2015) used the NLST

low-dose CT group data and reported a sensitivity of approximately 0.95 across

all male and female groups, highlighting the significant improvement in lung

cancer screening sensitivity with low-dose CT scans.

The transition from the disease-free state to the preclinical state can

occur at different ages and vary between studies. In our analysis, we found

that the transition into the preclinical state could occur as early as before

age 50 and continue until after age 90, as depicted in Figure 2.4.5. In Wang

et al. (2017), the transition probability for male smokers was observed to peak

around age 72.5, while in Liu et al. (2015), the peak was around age 70 for

both genders. Wu et al. (2011) found a single maximum at age 68 for males in

their study, and in the study conducted by Chen et al. (2014) at the Memorial

Sloan-Kettering Cancer Center, the transition probability peaked around age 70.

In our study, the transition probability from the disease-free to the preclinical

state reached its maximum at around age 73 for males and 72 for females. This

information aids in determining the appropriate age to initiate screening and

target individuals who are more likely to transition into the preclinical state.

The mean sojourn time (MST) is an important parameter in cancer

screening where the cancer is detectable but no symptoms have appeared

yet. In our study, the estimated MST for male smokers in the NLST X-ray

study was 1.28 years, while for female smokers, it was 1.23 years. Although
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there is a slight difference, it is not statistically significant. Comparing our

results to previous studies, both male and female smokers in our study have

a shorter MST than reported in other studies. For example, Liu et al. (2015)

estimated the MST to be 1.44 years for males and 1.62 years for females in a

CT scan study of lung cancer. In contrast, Chen et al. (2014) found an MST

of approximately 3.35 years for male smokers. The Mayo Lung Project study

(Wu et al., 2011) reported a shorter MST of 2.24 years. A review article by

Chien et al. (2008) summarized MST estimates ranging from 1.38 to 3.86 years

from various CT scans. In Wang et al. (2017), the MST for males was 1.50

years, and for females, it was 1.74 years.

The 95% highest posterior density (HPD) interval for the sojourn time

in our study was (1.102, 1.576) for males and (1.088, 1.512) for females.

Additionally, the 90% HPD interval was (1.108, 1.515) for males and (1.100,

1.453) for females. Overall, our findings suggest that lung cancer screening

programs have a relatively short time interval to detect lung cancer due to the

relatively short sojourn time.

Obtaining accurate and reliable estimates of key parameters is crucial in

cancer screening research. These parameters serve as the foundation for various

important aspects of cancer screening, including the lead time distribution,

optimal screening time, the probability of overdiagnosis, and the probability

of early detection. By accurately estimating these key parameters, we can

acquire valuable insights into the effectiveness and potential drawbacks of

cancer screening programs.
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CHAPTER 3

INFERENCE OF LONG TERM OUTCOMES AND

OVERDIAGNOSIS IN LUNG CANCER SCREENING

3.1 Introduction

Cancer screening may detect cancer at an early stage. By the time

symptoms appear, cancer may have begun to spread. If any abnormalities in

tissues or cancer are found early, patients may have more choices for treatment

and usually have a better prognosis, which could increase survival. According

to American Lung Association, lung cancer screening may find 80% of lung

cancer at an early stage when it is more curable. 70% of lung cancers are

found without screening at a later stage when there is little chance for a cure

(ALA, 2022). Therefore, early detection may be useful to reduce the mortality

of cancer.

Lung cancer screening has a low radiation exposure risk, similar to other

screening tests. The amount of radiation is a little bit higher than the amount

women are exposed to through a mammogram (Hendrick, 2010). Screening for

lung cancer has the potential to reduce mortality, but it may also detect tumors

that would not cause clinical symptoms. Thus there is a need to quantify the

long-term outcomes of repeated screening, specially overdiagnosis.

Overdiagnosis is essential for understanding early detection as it refers to

a screening exam that detects a disease through a scheduled screening exam, but
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the clinical symptoms do not appear before death. Overdiagnosis is a concern

in lung cancer screening because new imaging technologies can detect tiny lung

nodules (Marcus et al., 2006). Although these nodules are considered to be

abnormal, their clinical significance remains uncertain. Therefore, overdiagnosis

is one of the key issues to consider when identifying the balance of possible

benefits and harms due to cancer screening, as it can lead to treatment that is

not necessary.

The long-term effects of continued cancer screening can be evaluated by

estimating the probability of each group and the risk of overdiagnosis among

the screen-detected cases. There is much research on overdiagnosis based

on observational studies, however, the results varied greatly due to a lack of

modeling. Wu et al. (2014) have developed a probability method for evaluating

the long-term effects of cancer screening. They separated all participants into

four mutually exclusive groups: symptom-free-life, no-early-detection, true-

early-detection, and overdiagnosis. These probabilities are influenced by factors

such as age at study entry, screening frequency, screening sensitivity, and other

parameters. Table 1.2.2 shows the definition of overdiagnosis and other groups

based on diagnosis and disease status.

This chapter begins with a brief review of the probability methods

used to estimate overdiagnosis and related probabilities in Section 3.2. A

simulation study is then conducted in Section 3.3 to assess the performance of

the probability models. Bayesian inference techniques are applied to estimate

the conditional probabilities in Section 3.4, utilizing the available data. The

results obtained from the probability models are presented in Section 3.5,

providing insights into the probabilities of overdiagnosis and other related

outcomes. Finally, a discussion of the findings and their implications is provided

in Section 3.6.
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3.2 Method

I will briefly review the probability methods developed in Wu et al.

(2014), that will be applied to the NLST chest X-ray data in this chapter for

multiple screening exams. Let, an initially asymptomatic individual undergoes

K screening exams, occurring at ages t0 < t1 < ... < tK−1. The conditional

probability of a case in any one of the four groups, given that his/her lifetime

is T = tK(> tK−1), can be calculated as follows:

For individuals in Group 1 (Symptom-Free), where clinical lung cancer

does not occur during their lifetime, the conditional probability is:

P (Case1, A|T = tk) = 1−
∫ tK

0

w(x)dx+

∫ tK

tK−1

w(x)Q(tK − x)dx

+
K−1∑
j=0

(1− βj)...(1− βK−1)

∫ tj

tj−1

w(x)Q(tK − x)dx

(3.9)

where the conditional probability of a symptom-free case can arise from

any one of (K + 2) mutually exclusive events: (a) the person remained in the

disease-free state S0 throughout his/her lifetime, the probability of which is

1−
∫ tK

0
w(x)dx, (b) he/she entered the preclinical state Sp when the person was

between ages tj−1 and tj ; j = 0, ..., K − 1, was not detected by the following

K − 1 exams, no symptom appeared before his/her death, (c) the person

entered Sp after tK−1 with no symptoms before his/her death.

A Group 2 case (no-early-detection) where the probability of no-early-

detection is calculated from IK,j as the probability of being an interval case in

the time interval (tj − 1, tj) in the order of K screening exams:

P (Case2, A|T = tk) = IK,1 + IK,2 + ...+ IK,K (3.10)

where IK,j, the probability of an interval case in (tj−1, tj) can be
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calculated (Wu et al. (2007)):

IK,j =

j−1∑
i=0

(1− βi)...(1− βj−1)

∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)]dx

+

∫ tj

tj−1

w(x)[1−Q(tj − x)]dx, for all j=1,...,K.

(3.11)

A Group 3 case, the probability of true-early-detection is:

P (Case3, A|T = tK) =
K−1∑
j=1

βj

{ j−1∑
i=0

(1− βi)...(1− βj−1)

∫ ti

ti−1

w(x)[Q(tj − x)

−Q(tK − x)]dx+

∫ tj

tj−1

w(x)[Q(tj − x)−Q(tK − x)]dx
}

+ β0

∫ t0

0

w(x)[Q(t0 − x)−Q(tK − x)]dx

(3.12)

where one of K mutually exclusive events can arises depending on

his/her age at diagnosis: if a participant is diagnosed at tj, j = 0, 1, ..., K − 1,

then he/she must have entered the preclinical state Sp before tj , and missed

the previous exams, and his/her sojourn time must have been at least (tj − x)

and at most (tK − x), where x represent the onset time of the preclincal state.

A Group 4 case, overdiagnosis, also can arise as one of K mutually

exclusive events, where a person might be diagnosed at the jth exam, but

his/her symptoms did not appear before his/her death. Hence, the conditional

probability of overdiagnosis is:

P (Case4, A|T = tK) =
K−1∑
j=1

βj

{ j−1∑
i=0

(1− βi)...(1− βj−1)

∫ ti

ti−1

w(x)Q(tK − x)dx

+

∫ tj

tj−1

w(x)Q(tK − x)dx
}

+ β0

∫ t0

0

w(x)Q(tK − x)dx

(3.13)

And it was verified in Wu et al. (2014) that for any screening number
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K ≥ 1,

4∑
i=1

P (Casei, A|T = tK) = 1−
∫ t0

0

w(x)dx+

∫ t0

0

w(x)Q(t0 − x)dx

= P (A|T ≥ t0)

(3.14)

For a future screening schedule, such as t0 < t1 < ..., considering the

screening number K = K(T ) is a random variable, which changes with the

lifetime T , the probability of each case when his/her lifetime T is longer than

t0 can be estimated from the following:

P (Case i, A|T ≥ t0) =

∫ ∞
t0

P (Case i, A|K = K(T ), T = t)fT (t|T ≥ t0)dt,

for all i=1,2,3,4

(3.15)

where fT (t|T ≥ t0) was defined in Wu et al. (2012) as follows:

fT (t|T ≥ t0) =


fT (t)

P (T>t0)
= fT (t)

1−FT (t0)
t ≥ t0

0 otherwise

(3.16)

While evaluating the probabilities of each case, it is necessary to verify

that for any future screening schedule when the lifetime T is random, the sum

of these probabilities is one (3.17).

4∑
i=1

P (Casei|A, T ≥ t0) = 1 (3.17)

A different sojourn time distribution (Weibull distribution) and sensitivity

of age (epidemiological approach) than Wu et al. (2014) is used for the

mathematical simplicity, where Weibull is considered more flexible as nth

moments exist, and the sensitivity is independent of age.
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3.3 Simulation Study

Simulation studies were conducted using the established method described

in Section 3.2. The probability of each case was a function of age at the

initial screening, the screening interval, the sensitivity, the sojourn time in

the preclinical state, the transition probability from the disease-free to the

preclinical state, and the human lifetime, T . To determine the effects of these

factors on the probability of each outcome and to explore how the proportion of

true-early-detection and overdiagnosis change among the screen-detected cases

due to these factors, the following scenarios were considered for the simulation:

age at initial screening t0 =55, 60, 65, screening interval, ∆ = 12, 18, 24 months,

screening sensitivity, β is 0.62 (female) and 0.61 (male) from Rahman and Wu

(2021).

The transition probability density was chosen to be a log-Normal pdf,

with an upper limit of 30% for lung cancer. The parameters (µ, σ2) is chosen

to be (4.250, 0.015), so that the mode of the transition density is about 70

years old. The sojourn time distribution was chosen to be a Weibull PDF, with

parameters, α = 2.50, 2.00, 1.60 and λ = 0.30, 0.03, 0.02 such that the MST is

2, 5, and 10 years, respectively.

The number of screens were considered from K = K(T ) = d (T−t0)
∆
e,

where K is the largest integer that is less than or equal to (T−t0)
∆

is a function of

lifetime T . The actuarial life table (2016) was chosen from the Social Security

Administration (SSA) for the lifetime distribution (NIH, 2020). The period

life table was based on mortality, and it provides the probability of death from

age 0 to 119 for both males and females. The conditional lifetime distribution

fT (t|T ≥ t0) was estimated using the life table of 2016. The conditional density

function of the lifetime T for males and females were plotted in figure 3.3.1 for
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three initial ages at screening, t0 =55, 60, 65; irrespective of screening or any

specific causes of death.

In tables 3.3.1 and 3.3.2, the first column, mean sojourn time (MST) is

given in years. The following four columns are the conditional probabilities

(in percentage) of each of the four cases, i.e., P (Casei|A, T ≥ t0), i = 1, 2, 3, 4

corresponding to the probability of symptom-free-life, no-early-detection, true-

early-detection, and overdiagnosis. Therefore, the summation of these four

probabilities in each row is close to 1. The last two columns are the conditional

probability of true-early-detection and overdiagnosis, given that it is a screen-

diagnosed case; which is calculated by

P (Casei|A, T ≥ t0)

P (Case3|A, T ≥ t0) + P (Case4|A, T ≥ t0)
, i = 3, 4.

The probabilities are reported as percentages in these tables.

In this simulation, mean sojourn time plays the most important role

in the case of overdiagnosis. In the last column of table 3.3.1 and 3.3.2, the

proportion of overdiagnosis is as high as 29.03% among the screen-diagnosed

cases if the mean sojourn time was 10 years long for male and 29.34% if female.

It is around 12.68% for male and 11.40% for female if the mean sojourn time

is 5 years long, and it is only about 2% both for male and female when the

mean sojourn time changes to 2 years when the age at screening is 65 years

with a screening interval of 24 months.

The screening interval also plays a role in these probabilities: when the

screening interval is longer, the probability of no-early-detection is larger, the

probability of true-early-detection is smaller, and the probability of overdiagnosis

is slightly smaller. The case of symptom-free-life is pretty stable in all the

simulations, it is about 72-77% for the whole population.
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Table 3.3.1: Simulation: when the sojourn time is Weibull (Male)

MST P a(SympF) P a(NoED) P a(TrueED) P a(OverD) P b(TrueED|ScrD) P b(OverD|ScrD)

Screening interval ∆ = 12month, t0 = 55, β = 0.61
2 76.71 9.32 13.04 0.33 97.52 2.47
5 76.79 7.43 12.81 2.59 83.17 16.82
10 76.77 5.82 10.48 6.22 62.77 37.22

Screening interval ∆ = 18month, t0 = 55, β = 0.61
2 76.70 10.75 12.11 0.34 97.25 2.75
5 76.93 7.58 12.14 2.50 82.90 17.09
10 76.96 5.91 10.17 6.12 62.46 37.54

Screening interval ∆ = 24month, t0 = 55, β = 0.61
2 75.55 12.38 10.93 0.23 97.95 2.05
5 76.07 7.79 13.33 2.16 86.07 13.93
10 76.19 6.01 11.82 5.73 67.35 32.65

Screening interval ∆ = 12month, t0 = 60, β = 0.61
2 76.36 9.19 13.87 0.38 97.35 2.65
5 75.69 7.58 13.09 2.71 82.83 17.17
10 75.38 6.02 11.89 6.49 64.69 35.31

Screening interval ∆ = 18month, t0 = 60, β = 0.61
2 76.36 10.57 12.01 0.38 96.96 3.04
5 75.87 7.73 13.41 2.60 83.75 16.25
10 75.61 6.10 11.58 6.37 64.52 35.48

Screening interval ∆ = 24month, t0 = 60, β = 0.61
2 74.88 12.13 11.90 0.27 97.77 2.23
5 74.68 7.93 14.59 2.26 86.61 13.39
10 74.52 6.20 13.22 5.98 68.87 31.13

Screening interval ∆ = 12month, t0 = 65, β = 0.61
2 75.83 8.22 15.42 0.41 97.38 2.62
5 73.74 7.29 15.39 2.77 84.77 15.23
10 72.57 6.01 13.82 6.71 67.33 32.67

Screening interval ∆ = 18month, t0 = 65, β = 0.61
2 75.82 9.44 13.98 0.43 96.99 3.01
5 73.89 7.44 15.78 2.72 85.29 14.70
10 72.76 6.08 13.54 6.67 66.99 33.01

Screening interval ∆ = 24month, t0 = 65, β = 0.61
2 74.73 10.79 14.13 0.32 97.84 2.16
5 73.09 7.60 16.02 2.33 87.32 12.68
10 72.07 6.16 15.19 6.21 70.97 29.03

a The probability of each outcomes, i.e., P (Casei|A, T ≥ t0)
b The conditional probability of True-Early-Detection and of Over-Diagnosis

given that it is a screen-diagnosed

32



Table 3.3.2: Simulation: when the sojourn time is Weibull (Female)

MST P a(SympF) P a(NoED) P a(TrueED) P a(OverD) P b(TrueED|ScrD) P b(OverD|ScrD)

Screening interval ∆ = 12month, t0 = 55, β = 0.62
2 75.32 10.06 13.72 0.26 98.16 1.84
5 75.34 8.19 14.11 2.28 86.09 13.90
10 75.31 6.62 11.78 5.92 66.54 33.46

Screening interval ∆ = 18month, t0 = 55, β = 0.62
2 75.31 11.66 12.45 0.27 97.90 2.09
5 75.47 8.37 13.37 2.20 85.85 14.15
10 75.48 6.72 11.44 5.84 66.21 33.79

Screening interval ∆ = 24month, t0 = 55, β = 0.62
2 74.64 13.49 11.02 0.17 98.47 1.53
5 75.04 8.61 13.47 1.91 87.59 12.41
10 75.14 6.84 12.05 5.51 68.62 31.38

Screening interval ∆ = 12month, t0 = 60, β = 0.62
2 75.59 9.77 14.30 0.28 98.06 1.94
5 74.89 8.22 14.12 2.35 85.76 14.24
10 74.57 6.72 11.98 6.09 66.31 33.69

Screening interval ∆ = 18month, t0 = 60, β = 0.62
2 75.59 11.31 12.17 0.28 97.73 2.27
5 75.04 8.39 13.39 2.25 85.59 14.40
10 74.75 6.81 11.64 5.98 66.06 33.94

Screening interval ∆ = 24month, t0 = 60, β = 0.62
2 74.71 13.05 11.83 0.19 98.39 1.61
5 74.39 8.61 14.51 1.97 88.07 11.93
10 74.19 6.92 12.25 5.66 68.41 31.59

Screening interval ∆ = 12month, t0 = 65, β = 0.62
2 76.29 8.67 14.60 0.31 97.91 2.09
5 74.13 7.80 15.12 2.38 86.40 13.59
10 72.95 6.59 13.68 6.22 68.74 31.26

Screening interval ∆ = 18month, t0 = 65, β = 0.62
2 76.28 9.98 12.90 0.33 97.53 2.47
5 74.25 7.94 15.44 2.33 86.87 13.13
10 73.11 6.67 13.35 6.18 68.37 31.63

Screening interval ∆ = 24month, t0 = 65, β = 0.62
2 75.56 11.48 11.87 0.22 98.14 1.86
5 73.78 8.13 15.63 2.01 88.59 11.40
10 72.73 6.76 13.98 5.80 70.66 29.34

a The probability of each outcomes, i.e., P (Casei|A, T ≥ t0)
b The conditional probability of True-Early-Detection and of Over-Diagnosis

given that it is a screen-diagnosed
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Figure 3.3.1: The conditional PDF of the lifetime of males and females derived
from the life table when t0 = 55, 60, 65

3.4 Bayesian inference using the NLST data

We applied the existing methods reviewed in section 3.2 to the NLST

chest X-ray data. The probability for each of the four cases was the function

of the three key parameters, β(t), w(t), and q(x). These key parameters were

estimated from the NLST chest X-ray data using the models described in

section 2.3. For more detail, explore Rahman and Wu (2021).

The posterior predictive probability of each case was estimated using

the NLST data from the following:

P (Casei|T ≥ t0, A,NLST ) =

∫
P (Casei, θ|T ≥ t0, A,NLST )dθ

=

∫
P (Casei|T ≥ t0, A, θ)f(θ|NLST )dθ

≈ 1

n

n∑
j=1

P (Casei|T ≥ t0, A, θ
∗
j ).

(3.18)

Where θ∗j are posterior samples from the MCMC simulation, and the posterior

sample size n = 1500.
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3.5 Results

The MCMC posterior samples of 1500 were used in equation 3.18, to

conduct Bayesian inference for three hypothetical cohorts of asymptomatic

participants. In the first screening exam, the three cohorts had initial screening

ages of 55, 60, and 65. For each group, various screening frequencies were

examined, and screening intervals of ∆ = 12, 18, 24 months, respectively. The

number of screens, K = K(T ) = d (T−t0)
∆
e was considered a function of the

lifetime T again. The conditional lifetime distribution (equation 3.16) was

estimated using the actuarial life table from the SSA (NIH, 2020) described in

the previous section. The conditional probabilities of each of the four cases

P (Casei|A;T ≥ t0;NLST ) are reported in table 3.5.1 and 3.5.2.

Across all three age groups, the probability of overdiagnosis is observed

to be very low. Specifically, for the 12-month screening interval and initial

screening ages of 55, 60, and 65, the probabilities of overdiagnosis are approxi-

mately 0.33%, 0.38%, and 0.43% for males, and 0.23%, 0.24%, and 0.29% for

females, respectively. It is worth noting that these probabilities decrease as

the screening interval (∆) increases. While the probability of overdiagnosis is

slightly higher when the initial screening age is 65, there is minimal difference

observed for the other age groups. The results presented in Table 3.5.1 and

3.5.2 demonstrate that males exhibit a higher susceptibility to overdiagnosis

compared to females.

The probability of true-early-detection for different initial screening ages

of 55, 60, and 65 is determined to be 10.72%, 10.32%, and 10.11% for males,

and 11.10%, 10.76%, and 9.81% for females, respectively, when annual screening

is conducted. It is noteworthy that this probability remains relatively stable

as the age at the initial screening exam increases. However, the probability of
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Table 3.5.1: A projection of lung cancer screening effects using the NLST chest
X-ray data (Male)

∆a P b(SympF) P(NoED) P(TrueED) P(OverD)
Age at initial screen t0 = 55

12 mo. 80.49 (0.76) 8.36 (0.40) 10.72 (0.57) 0.33 (0.06)
18 mo. 80.53 (0.76) 9.31 (0.49) 9.82 (0.43) 0.32 (0.08)
24 mo. 80.62 (0.77) 11.03 (0.66) 8.07 (0.40) 0.23 (0.05)

Age at initial screen t0 = 60
12 mo. 80.84 (0.82) 8.25 (0.42) 10.32 (0.59) 0.38 (0.07)
18 mo. 80.97 (0.83) 9.48 (0.52) 9.12 (0.47) 0.37 (0.08)
24 mo. 81.01 (0.83) 11.31 (0.68) 7.60 (0.43) 0.24 (0.06)

Age at initial screen t0 = 65
12 mo. 81.42 (0.82) 8.02 (0.42) 10.11 (0.58) 0.43 (0.07)
18 mo. 81.53 (0.82) 9.56 (0.49) 8.35 (0.47) 0.41 (0.09)
24 mo. 81.71 (0.82) 11.47 (0.64) 6.43 (0.44) 0.32 (0.06)

a ∆ = ti − ti−1 is the time interval between screens
b The mean probability and it’s standard error (in parenthesis) are reported as

percentages in the table

true-early-detection decreases with longer screening time intervals. Table 3.5.1

and 3.5.2 provide a comparison, clearly indicating that males have a slightly

lower propensity for true-early-detection compared to females.

The probability of no-early-detection is 8.36%, 8.25%, and 8.02% for

males, and 7.99%, 7.69%, and 6.91% for females, when participants initiate

screening at ages 55, 60, and 65, respectively, using a 12-month screening

schedule. This probability increases as the screening interval increases and

decreases as the age at initial screening increases.

The probability of symptom-free-life is very high for all age groups,

ranging from approximately 80% to 82% for males and around 80% to 83% for

females. This probability increases as the screening interval increases. Notably,

the difference between the corresponding probabilities is smaller among the

age groups of 55 to 65.

Boxplots of the results for the probabilities of each case when t0 = 55,

60, and 65 for both males and females are presented in figures 3.5.1 to 3.5.6.
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Table 3.5.2: A projection of lung cancer screening effects using the NLST chest
X-ray data (Female)

∆a P b(SympF) P(NoED) P(TrueED) P(OverD)
Age at initial screen t0 = 55

12 mo. 80.64 (0.97) 7.99(0.49) 11.10 (0.68) 0.23 (0.06)
18 mo. 80.68 (0.98) 9.69 (0.63) 8.89 (0.56) 0.22 (0.05)
24 mo. 80.79 (0.98) 11.15 (0.79) 7.91 (0.51) 0.13 (0.03)

Age at initial screen t0 = 60
12 mo. 81.28 (1.02) 7.69 (0.51) 10.76 (0.70) 0.24 (0.06)
18 mo. 81.67 (1.01) 9.16 (0.63) 8.64 (0.58) 0.23 (0.05)
24 mo. 81.97 (1.01) 10.54 (0.79) 6.98 (0.52) 0.17 (0.04)

Age at initial screen t0 = 65
12 mo. 82.69 (0.97) 6.91 (0.48) 9.81 (0.67) 0.29(0.06)
18 mo. 82.86 (0.96) 8.88 (0.58) 7.91 (0.56) 0.26 (0.05)
24 mo. 82.97 (0.97) 9.78 (0.72) 6.67 (0.50) 0.20 (0.04)

a ∆ = ti − ti−1 is the time interval between screens
b The mean probability and its standard error (in parenthesis) are reported as

percentages in the table

In figure 3.5.1, for the age group of 55 in males, the probabilities of symptom-

free-life and overdiagnosis either remain stable or exhibit minimal changes with

the screening time interval. However, the probability of no-early detection

increases monotonically with the screening time interval, while the probability

of true-early-detection decreases monotonically with the length of the screening

time interval. This pattern is consistent across all screening ages for both males

and females.
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Figure 3.5.1: The boxplot of the estimated probability of male for each case
with t0 = 55
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Figure 3.5.2: The boxplot of the estimated probability of male for each case
with t0 = 60
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Figure 3.5.3: The boxplot of the estimated probability of male for each case
with t0 = 65
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Figure 3.5.4: The boxplot of the estimated probability of female for each case
with t0 = 55
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Figure 3.5.5: The boxplot of the estimated probability of female for each case
with t0 = 60
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Figure 3.5.6: The boxplot of the estimated probability of female for each case
with t0 = 65
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Table 3.5.3: The estimated probability of male and female given that it is a diagnosed cancer case

Male Female
∆ P c(NoED|Dd) P (TrueED|D) P (OverD|D) P (NoED|D) P (TrueED|D) P (OverD|D)

Age at initial screen t0 = 55
12 mo. 42.19 56.20 1.61 40.96 57.91 1.13
18 mo. 52.19 46.23 1.58 51.56 47.27 1.08
24 mo. 60.84 37.85 1.31 61.25 38.01 0.74

Age at initial screen t0 = 60
12 mo. 42.05 56.01 1.94 40.86 57.87 1.19
18 mo. 51.82 46.41 1.77 51.34 47.49 1.17
24 mo. 60.39 38.06 1.55 60.91 38.20 0.89

Age at initial screen t0 = 65
12 mo. 41.84 55.87 2.29 40.72 57.78 1.50
18 mo. 51.10 46.80 2.10 50.94 47.72 1.34
24 mo. 59.67 38.44 1.89 60.42 38.42 1.16

c The estimated conditional probability was calculated as p∗i /(p∗2 + p∗3 + p∗4), i = 2, 3, 4, for each of the 1500 posterior

samples, then averaged. It is in percentage.
d The event D={ Diagnosed cases: including both interval incident and screen-detected cases }
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The conditional probabilities were evaluated for cases 2, 3, and 4, given

that the person was diagnosed with cancer. The probabilities of overdiagnosis

are 1.61%, 1.94%, and 2.29% for males, and 1.13%, 1.19%, and 1.50% for

females, in the 12-month screening group when the starting age is 55, 60, and

65, respectively. The conditional probability of true-early-detection, given a

diagnosed case, decreases significantly as the screening interval ∆ increases.

It ranges from around 56% to 38% in the 60-year-old male group and from

around 58% to 38% in the 60-year-old female group. Conversely, the conditional

probability of no-early-detection increases within each age group as the screening

interval increases. These results are summarized in Table 3.5.3.

The probabilities and 95% HPD intervals of true-early-detection and

overdiagnosis, given it is a screen-detected case, are listed in table 3.5.4. The

length of the 95% HPD interval for these two probabilities (percentages)

decreases as the screening interval increases. However, these credible interval

lengths increase as the initial screening age increases. For males, the percentage

of overdiagnosis is 3.87%, 4.26%, and 5.12% for different screening ages with

a 24-month screening interval, which is higher than any other age group and

screening interval. For females, the percentages are 2.43%, 2.71%, and 3.46%.

In summary, the probability of overdiagnosis is much lower than expected,

while the probability of true-early-detection is often above 94% and higher.
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Table 3.5.4: The estimated probability of male and female for the screen detected cases with 95% credible interval

Male Female
∆ P d(TrueED|ScrDe) P (OverD|ScrD) P (TrueED|ScrD) P (OverD|ScrD)

Age at initial screen t0 = 55
12 mo. 97.06 (95.79,98.32) 2.94 (1.68,3.91) 98.25 (97.11,98.96) 1.75 (1.04,2.89)
18 mo. 96.69 (95.54,97.66) 3.31 (2.34,4.46) 98.09 (97.11,98.69) 1.90 (1.31,2.89)
24 mo. 96.13 (94.84,97.31) 3.87 (2.69,5.16) 97.57 (96.42,98.26) 2.43 (1.74,3.58)

Age at initial screen t0 = 60
12 mo. 96.65 (95.30,97.94) 3.35 (2.06,4.69) 97.97 (96.72,98.71) 2.03 (1.29,3.27)
18 mo. 96.12 (94.92,97.08) 3.88 (2.92,5.07) 97.73 (96.59,98.28) 2.27 (1.71,3.41)
24 mo. 95.74 (94.39,96.89) 4.26 (3.10,5.61) 97.29 (96.03,97.97) 2.71 (2.02,3.97)

Age at initial screen t0 = 65
12 mo. 96.06 (94.63,97.46) 3.94 (2.53,5.36) 97.46 (96.08,98.31) 2.54 (1.68,3.91)
18 mo. 95.34 (94.13,96.36) 4.66 (3.63,5.87) 97.08 (95.84,97.72) 2.92 (2.28,4.16)
24 mo. 94.89 (93.44,96.09) 5.12 (3.91,6.56) 96.54 (95.12,97.32) 3.46 (2.67,4.87)

d The estimated conditional probability was calculated as p∗i /(p∗3 + p∗4), i = 3, 4, for each of the 1500 posterior samples, then averaged.

It is in percentage.
e The event ScrD={ Screen-detected case}
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3.6 Discussion

In this study, we aimed to assess the long-term effects of lung cancer

screening using chest X-rays. Asymptomatic participants in the screening

program were eventually separated into four distinct groups: symptom-free-

life, no-early-detection, true-early-detection, and overdiagnosis based on their

diagnosis status and disease status. Our analyses provide policymakers with

valuable estimates of the probability of true-early-detection, overdiagnosis,

and other relevant outcomes that arise from a periodic lung cancer screening

program. To address uncertainty and calculate variations, we limited our

analysis to the Bayesian approach, which allows for the determination of

credible intervals (percentages).

On March 9, 2021, the U.S. Preventive Services Task Force released

(USPSTF, 2021) new recommendations endorsing annual screening for lung

cancer using low-dose computed tomography (LDCT) for individuals aged 50

to 80 years who have a 20 pack-year smoking history and currently smoke or

have quit within the past 15 years. Based on data from the NLST chest X-ray,

our findings indicate a high probability of symptom-free-life, ranging from 78%

to 82% for all participants, i.e., heavy smokers. Additionally, the probability of

overdiagnosis is very low, less than 0.43%, among all participants, regardless of

gender (as shown in tables 3.5.1 and 3.5.2) for annual screening. The estimated

rates of overdiagnosis in the 55-year-old cohort are as follows: for males, the

rates are 2.94% if screenings are conducted annually and 3.87% if screenings

occur every other year (as shown in Table 9). These estimates come with a

95% Highest Posterior Density (HPD) interval ranging from 2.69% to 5.16%.

Comparatively, for females in the 55-year-old cohort, the rates of overdiagnosis

among screen-detected cases are 1.75% if screenings take place annually and
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2.43% if screenings happen every other year. It’s important to note that the

overdiagnosis rates are lower for females than for males. Additionally, as

individuals age, the probability of overdiagnosis increases for both males and

females, even among those cases detected through screening.

The probability of symptom-free-life can be calculated as the complement

of the lifetime risk. According to Villeneuve and Mao (1994), the lifetime risk of

developing lung cancer is 17.2% for male current smokers and 11.6% for female

current smokers. However, the risk is substantially reduced for individuals who

have never smoked regularly. For the 55-year-old age group, the estimated

probability of symptom-free-life is approximately 80.49% for males and 80.64%

for females, which aligns with the accepted lifetime risk. This probability

indicates the likelihood of remaining free of symptoms throughout one’s life.

In a study by Tammemaegi et al. (2014), it was found that 26% of

individuals selected for screening based on USPSTF criteria had risks below the

threshold defined by the PLCOm2012risk lung cancer risk prediction model.

This model, derived from the Prostate Lung Colorectal and Ovarian Screening

(PLCO) study, assesses the risk of lung cancer based on various factors. For

former smokers with a quit time of more than 15 years, 8.5% had risks exceeding

the threshold. Notably, the risks of lung cancer were significantly higher in

PLCO smokers aged 65-80 years compared to those aged 55-64 years.

In the study by Wu et al. (2016) , which analyzed NLST CT scan data

for lung cancer, they found that the probability of overdiagnosis increases with

age. Specifically, the probability ranged from 3% to 9% when individuals aged

from 60 years to 80 years. This suggests that older individuals have a higher

risk of being overdiagnosed. Patz et al. (2014) conducted a research study on

screening with low-dose computed tomography (LDCT) for lung cancer. They

reported that the probability of overdiagnosis was 18.5% (95% CI, 5.4%-30.6%)
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for any lung cancer detected by LDCT screening.

Marcus et al. (2006) identified 46 cases of overdiagnosis (0.75%) among

6,101 patients in the incidence follow-up of the Mayo Lung Project. This finding

further supports the existence of overdiagnosis in lung cancer screening. Welch

and Black (2010) investigated the risk of overdiagnosis through the detection

of lung cancer using chest X-ray and/or sputum cytology. They found that

approximately 51% of cases (46 in 90) may be attributed to overdiagnosis. Blom

et al. (2020) analyzed different birth cohorts and their rates of overdiagnosis in

screen-detected lung cancer cases. They observed that the 1950 birth cohort had

a higher rate of overdiagnosis (10.5%) compared to the 1990 birth cohort (5.9%)

using the cumulative excess-incidence approach. Ten Haaf and de Koning

(2015) reported that 6.75% of all screen-detected cases in the chest X-ray

arm and 8.62% of all screen-detected cases in the CT arm of the NLST were

considered overdiagnosed. These percentages were relatively low, considering

that approximately 75% of NLST participants were younger than 65, suggesting

a lower potential for overdiagnosis in that particular population.

Late diagnosis might be one of the reasons for failure among patients.

Early detection is necessary as lung cancer may remain incurable for patients in

the advanced stage at diagnosis. Early detection trials proved a 20% reduction

in lung cancer-related mortality by screening high-risk individuals with low-

dose computed tomography (Vansteenkiste et al., 2012). In Wu et al. (2016),

they analyzed the NLST CT scan data for lung cancer and found that the

probability of true-early-detection depends more on future screening interval

and the current age than on the past screening interval and the probability

of true-early-detection would decrease to about 75% if the future screening

interval changes from annual to biennial. Probability model to early-detection

could prove major advancement as it addresses sojourn time (time duration in
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preclinical states) and transition into preclinical state.

Most of the recent research dealt with overdiagnosis alone. In contrast,

long term effects associated with the outcomes from true-early-detection, no-

early-detection, screen-diagnosed, screen-detected cases were considered along

with overdiagnosis in this research. Very few studies had dealt with probability

modeling while evaluating overdiagnosis. Most of the studies relied on other

characteristics, such as tumor size, cancer stage, cancer growth rate etc.. It

is necessary to develop better estimates of overdiagnosis, because at the time

of screening, clinicians do not know which patients have been overdiagnosed.

They tend to treat all of them. Thus, overdiagnosis is associated with the

problem of escalating healthcare costs. Even patients cannot benefit from

unnecessary treatment, instead it is harmful. In this case, accurate estimation

of the sensitivity, sojourn time, and the transition probability are very crucial.

Apart from screening history and smoking status, other risk factors, such as

family history, genomic aspects, inhalation of hazardous chemicals, etc. can be

considered for future research.
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CHAPTER 4

SCHEDULING THE FIRST EXAM IN LUNG CANCER

SCREENING

4.1 Introduction

Early detection is crucial for initiating effective treatment. To improve

the cure rates and increase the survival of cancer patients, screening exams

should be initiated at an appropriate time. This study aims to determine

the optimal timing for initiating chest x-ray for lung cancer screening in

asymptomatic individuals, to facilitate early treatment. A probability method

developed in Wu (2022), will be applied to the NLST chest X-ray data to

identify the appropriate screening time/age; after this screening time is found,

the lead time and the probability of overdiagnosis will be estimated in the

(future) screening time. Although low-dose CT is the recommended modality

for lung cancer screening in the United States, chest X-ray is still in use,

especially in many developing countries.

Detecting lung cancer early through screening may facilitate early

treatment and lead to improved long-term survival. Both chest X-rays and CT

scans expose the chest to radiation, which may increase the risk of developing

cancer. Therefore, it is crucial to determine the appropriate age for initiating

screening and establish the frequency of recurrent screenings to minimize

unnecessary exposure to radiation, harmful chemicals, and costs. A probability
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method is applied to the NLST chest X-ray lung cancer screening data to

identify the optimal timeline for initiating cancer screening. The optimal

screening time is found by limiting the probability of incidence (from one’s

current age to future screening time) to a small value. The probability of

incidence depends on the sensitivity, the duration of the disease-free state

(transition density), and the duration of the preclinical state (sojourn time),

which were previously estimated in a study in Rahman and Wu (2021).

Two other important terms in cancer screening, namely lead time and

the probability of overdiagnosis, will be evaluated for individuals diagnosed with

cancer during their initial screening using the probability method described

in the work by Wu (2022). The time interval between detection through

screening and the onset of clinical manifestations is referred to as the lead time,

which represents the time duration from the detection of lung cancer through

screening to the development of symptoms. In a study conducted in 2018, Liu

et al. (2018) used Bayesian posterior samples of key parameters from the NLST

low-dose CT data to simulate lead times by age and duration of screening

intervals. On the other hand, the probability of overdiagnosis refers to the

detection of disease through scheduled screening exams, but clinical symptoms

would not manifest before death. It has been estimated that 18% to 67% of lung

cancers detected through screening may lead to overdiagnosis, exposing many

patients to unnecessary risks (Lazris and Roth, 2019). Therefore, evaluating

lead time and overdiagnosis is crucial once the optimal screening time has been

determined.

In the rest of the chapter, a brief review of the probability methods is

presented in Section 4.2. A simulation study is conducted in Section 4.3.1 to

investigate the optimal screening strategies. Bayesian inference is included in

Section 4.3.2 to identify the optimal screening parameters, including screening
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initiation age, lead time, and overdiagnosis. The results of the study are briefly

discussed in Section 4.4.

4.2 Method

The contribution of this project is to apply the most current statistical

method derived in Wu (2022) to accurately estimate the optimal screening

time/age, lead time distribution, and overdiagnosis based on the screening

frequency. We briefly review the method in Wu (2022) as follows: An

asymptomatic person at current age a0 has not undergone any screening yet,

the first screening will occur at the age t0 = a0 +tx, where tx > 0. The objective

is to find the appropriate value of tx to limit the probability of incidence to a

predetermined value p. The goal is to restrict the probability of experiencing

clinical incidence before the first screening to a small value, such as 10% or 20%.

We want to ensure that there is a 90% or 80% probability of not encountering

any clinical incidence before the first screening.

P (I0|I0 ∪D0) =
P (I0)

P (I0 ∪D0)
=

P (I0)

P (I0) + P (D0)
= p (4.19)

where P (I0) is the probability of incidence in (a0, t0) and P (D0) is the probability

of detection at the first exam:

P (I0) =

∫ a0

0

w(x)[Q(a0−x)−Q(t0−x)]dx+

∫ t0

a0

w(x)[1−Q(t0−x)]dx (4.20)

P (D0) = β

∫ t0

0

w(x)Q(t0 − x)dx (4.21)

Since P (I0|I0 ∪D0) is monotone increasing with tx (hence increasing with t0),

for any given value p in (0, 1), there exists a unique solution t0 such that

P (I0|I0 ∩D0) = p.
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After t0 is found, the lead time at age t0, if one were diagnosed with

cancer at the first exam is:

fL(z|D0) =
fL(z,D0)

P (D0)
, for z ∈ (0,∞) (4.22)

where the numerator is:

fL(z,D0) = β

∫ t0

0

w(x)q(t0 + z − x)dx (4.23)

The probability of overdiagnosis and the probability of early detection

at the first exam at one’s age t0 is:

P (OverD|D0, T > t0) =

∫ ∞
t0

P (OverD|D0, T = t)fT (t|T > t0)dt (4.24)

P (TrueED|D0, T > t0) =

∫ ∞
t0

P (TrueED|D0, T = t)fT (t|T > t0)dt (4.25)

Where the conditional PDF of a human lifetime, fT (t|T > t0) is the

same as defined in the previous chapter ((3.16)). P (OverD|D0, T = t) and

P (TrueED|D0, T = t) are defined as follows:

P (OverD|D0, T = t) =
P (OverD,D0|T = t)

P (D0|T = t)
(4.26)

P (TrueED|D0, T = t) =
P (TrueED,D0|T = t)

P (D0|T = t)
(4.27)

Since, P (D0|T = t) = P (D0), and the two numerators are derived as:

P (OverD,D0|T = t) = β

∫ t0

0

w(x)Q(t− x)dx (4.28)

P (TrueED,D0|T = t) = β

∫ t0

0

w(x)[Q(t0 − x)−Q(t− x)]dx (4.29)
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4.3 Results

To evaluate the optimal screening interval, lead time, and probability of

overdiagnosis, simulation studies were initially conducted using the existing

method mentioned in Section 4.2. Subsequently, a similar approach was applied

to the NLST chest X-ray data for assessing these parameters.

4.3.1 Simulation

In the simulation study, the following scenarios were considered to

estimate the optimal screening time/age, lead time, and probability of over-

diagnosis:

• Four values of the probability of incidence: p=0.05, 0.10, 0.15, 0.20

• Three different screening sensitivities: β = 0.80, 0.90, 0.95

• Four different mean sojourn times: MST = 1.5, 2.5, 5, 10 years

• Three different current ages: a0= 55, 60, 65 years

The parametric models for the transition density follow a log-Normal

probability density function multiplied by 30%, while the distribution of sojourn

time follows a Weibull distribution, as described in Rahman and Wu (2021).

The specific forms of these models are as follows:

w(t|µ, σ2) =
0.3√
2πσt

exp{−(logt− µ)2/(2σ2)} (4.30)

q(x|α, λ) = αλxα−1exp(−λxα) (4.31)

Q(x) = exp(−λxα) (4.32)
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Table 4.3.1: Optimal initial screening age t∗0 (in years) found by binary search

p
MST=1.5

a0=55 a0=60 a0=65
β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95

0.05 55.08 55.09 55.09 60.07 60.08 60.08 65.07 65.07 65.08
0.10 55.16 55.19 55.20 60.15 60.17 60.18 65.14 65.16 65.17
0.15 55.26 55.30 55.32 60.24 60.27 60.28 65.22 65.25 65.26
0.20 55.38 55.43 55.46 60.34 60.38 60.41 65.31 65.35 65.37

p
MST=2.5

a0=55 a0=60 a0=65
β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95

0.05 55.13 55.15 55.16 60.12 60.14 60.15 65.11 65.13 65.14
0.10 55.29 55.32 55.34 60.26 60.29 60.31 65.24 65.27 65.29
0.15 55.47 55.53 55.56 60.42 60.47 60.50 65.39 65.43 65.46
0.20 55.68 55.77 55.82 60.60 60.68 60.72 65.55 65.62 65.65

p
MST=5

a0=55 a0=60 a0=65
β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95

0.05 55.39 55.45 55.48 60.32 60.36 60.38 65.27 65.30 65.32
0.10 55.89 56.02 56.08 60.69 60.79 60.83 65.57 65.64 65.68
0.15 56.52 56.75 56.86 61.14 61.29 61.37 65.91 66.03 66.09
0.20 57.32 57.69 57.88 61.66 61.89 62.01 66.31 66.48 66.56

p
MST=10

a0=55 a0=60 a0=65
β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95

0.05 55.99 56.14 56.22 60.79 60.89 60.95 65.65 65.73 65.77
0.10 57.47 57.88 58.09 61.79 62.05 62.18 66.41 66.59 66.69
0.15 59.55 60.31 60.69 63.05 63.50 63.73 67.29 67.59 67.75
0.20 62.05 63.04 63.52 64.57 65.22 65.55 68.31 68.74 68.96

In this context, x represents the sojourn time in the pre-clinical state.

The parameters (µ, σ2) = (4.25, 0.015) were chosen such that the mode of the

transition density is approximately 70 years old. For the simulation study,

specific parameter values were selected to achieve the designed mean sojourn

times using the Weibull distribution. The chosen values for α are 3.47, 1.56,

2, and 1.6, while the corresponding λ values are 0.18, 0.202, 0.031, and 0.021.

These parameter selections result in mean sojourn times of 1.5, 2.5, 5, and 10

years, respectively.

Table 4.3.1 presents the optimal initial screening age t∗0 obtained using

the method described in Section 4.2 and the binary search, for different values
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of p. The analysis was conducted considering various sensitivities (β), MST ,

and current ages (a0).

From Table 4.3.1, it can be observed that when MST = 2.5 years,

the optimal screening ages under a0 = 55 and β = 0.9 for different p are

55.16, 55.34, 55.56, and 55.82. This indicates that if an individual seeks a 95%

probability of avoiding clinical incidents before the first exam, they should

undergo screening at age 55.16 (approximately two months after their current

age of 55). Alternatively, if someone aims for an 80% chance of remaining free

from clinical cases before the first exam, they can schedule screening at age

55.82 (approximately ten months after their current age).

Furthermore, the results demonstrate that as the screening sensitivity

increases from 0.8 to 0.95, the optimal initial screening age slightly increases

when other factors remain constant. However, the optimal initial screening age

increases with higher incidence probability p and longer mean sojourn time

MST . The ideal first screening age t∗0 is also influenced by one’s current age

a0, with the time interval (t∗0 − a0) decreasing as a0 increases, assuming other

factors remain the same.

The primary objective is to find the optimal t0, and after that, we

can investigate the lead time distribution fL(z|D0) and the probability of

overdiagnosis P (OverD|D0, T > t∗0) at the future screening time, t∗0. In Tables

4.3.2, 4.3.3, and 4.3.4, we present the estimated mean, median, mode, and

standard deviation of the lead time at the optimal first screening age t∗0 for

individuals with a current age of 55, 60, or 65 years, respectively.

From these tables, it is observed that the lead time distribution fL(z|D0)

is not directly influenced by the values of β, p, and a0. However, both the lead

time distribution and the probability of overdiagnosis are dependent on factors

such as t∗0, w(t), and Q(x). The findings across these three tables exhibit
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Table 4.3.2: Estimated mean, median, mode and standard deviation of the
lead time at optimal time t∗0 when a0=55

MST=1.5 years
p β=0.8 β=0.9 β=0.95
0.05 0.87, 0.82, 0.67, 0.54 0.87, 0.82, 0.67, 0.54 0.87, 0.82, 0.67, 0.54
0.10 0.87, 0.82, 0.67, 0.54 0.87, 0.82, 0.67, 0.54 0.87, 0.82, 0.67, 0.54
0.15 0.87, 0.82, 0.67, 0.54 0.87, 0.82, 0.67, 0.54 0.87, 0.82, 0.67, 0.54
0.20 0.87, 0.82, 0.67, 0.54 0.87, 0.82, 0.66, 0.54 0.87, 0.82, 0.66, 0.54

MST=2.5 years
p β=0.8 β=0.9 β=0.95
0.05 1.66, 1.59, 0.35, 1.25 1.66, 1.59, 0.35, 1.25 1.66, 1.59, 0.35, 1.25
0.10 1.66, 1.59, 0.35, 1.25 1.66, 1.59, 0.35, 1.25 1.66, 1.59, 0.35, 1.25
0.15 1.66, 1.59, 0.34, 1.25 1.66, 1.58, 0.34, 1.25 1.66, 1.58, 0.34, 1.25
0.20 1.66, 1.58, 0.34, 1.25 1.66, 1.58, 0.34, 1.25 1.66, 1.58, 0.33, 1.25

MST=5 years
p β=0.8 β=0.9 β=0.95
0.05 1.78, 3.38, 2.25, 1.49 1.78, 3.38, 2.25, 1.49 1.78, 3.38, 2.25, 1.49
0.10 1.78, 3.37, 2.21, 1.49 1.78, 3.36, 2.20, 1.49 1.78, 3.36, 2.20, 1.49
0.15 1.78, 3.34, 2.16, 1.49 1.78, 3.33, 2.14, 1.50 1.78, 3.33, 2.13, 1.50
0.20 1.78, 3.31, 2.09, 1.50 1.77, 3.29, 2.06, 1.50 1.77, 3.29, 2.05, 1.51

MST=10 years
p β=0.8 β=0.9 β=0.95
0.05 4.89, 5.01, 4.00, 1.62 4.89, 5.01, 3.98, 1.62 4.89, 5.01, 3.97, 1.62
0.10 4.89, 5.01, 3.83, 1.61 4.90, 5.01, 3.78, 1.61 4.90, 5.01, 3.76, 1.61
0.15 4.91, 5.01, 3.58, 1.61 4.92, 5.01, 3.48, 1.61 4.92, 5.01, 3.43, 1.61
0.20 4.93, 5.01, 3.24, 1.61 4.94, 5.01, 3.09, 1.61 4.94, 5.01, 3.02, 1.60
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similar patterns, suggesting consistency in the results as follows:

i. When the MST increases, the mean, median, and mode of the lead time

also increase. This indicates that a longer mean sojourn time leads to

a longer expected time from the initial screening to the development of

symptoms.

ii. The lead time distribution shows minimal dependence on the incidence

probability p and the sensitivity β when the optimal scheduling time t∗0

is used.

iii. With an increase in the current age a0, the mean, median, and mode of

the lead time decrease, while the standard deviation remains relatively

unchanged. This suggests that as an individual’s current age increases,

the expected time from screening to symptom onset becomes shorter,

indicating a potentially more rapid disease progression. However, the

variability of lead time remains relatively consistent across different ages.

Figure 4.3.1 displays the lead time PDF curves under different factors: p,

β, a0, and MST . The figure consists of four panels, each showing the estimated

lead time density when the optimal first screening age t∗0 is used. In each panel,

three factors are fixed, and only the fourth factor is allowed to vary.

The results demonstrate that, given t∗0, the lead time distribution exhibits

minimal changes with respect to the incidence probability p and sensitivity β.

However, it shows notable variation based on one’s current age a0 and the MST.

Specifically, as a0 increases, the mean, median, and mode of the lead time

slightly decrease. On the other hand, as MST increases, the central location

of the lead time distribution shifts towards higher values.
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Table 4.3.3: Estimated mean, median, mode and standard deviation of the
lead time at optimal time t∗0 when a0=60

MST=1.5 years
p β=0.8 β=0.9 β=0.95
0.05 0.85, 0.8, 0.56, 0.54 0.85, 0.8, 0.56, 0.54 0.85, 0.8, 0.56, 0.54
0.10 0.85, 0.8, 0.56, 0.54 0.85, 0.8, 0.56, 0.54 0.85, 0.8, 0.56, 0.54
0.15 0.84, 0.8, 0.56, 0.54 0.85, 0.8, 0.56, 0.54 0.85, 0.8, 0.56, 0.54
0.20 0.84, 0.8, 0.55, 0.54 0.85, 0.8, 0.55, 0.54 0.85, 0.8, 0.55, 0.54

MST=2.5 years
p β=0.8 β=0.9 β=0.95
0.05 1.63, 1.54, 0.21, 1.24 1.63, 1.54, 0.21, 1.24 1.63, 1.54, 0.21, 1.24
0.10 1.63, 1.54, 0.21, 1.24 1.63, 1.54, 0.21, 1.24 1.63, 1.54, 0.21, 1.24
0.15 1.63, 1.54, 0.2, 1.24 1.63, 1.54, 0.2, 1.24 1.63, 1.54, 0.2, 1.24
0.20 1.63, 1.53, 0.2, 1.241 1.62, 1.53, 0.2, 1.24 1.62, 1.53, 0.2, 1.24

MST=5 years
p β=0.8 β=0.9 β=0.95
0.05 1.77, 3.19, 1.82, 1.49 1.77, 3.19, 1.82, 1.49 1.77, 3.19, 1.82, 1.50
0.10 1.77, 3.17, 1.79, 1.50 1.77, 3.17, 1.78, 1.50 1.77, 3.17, 1.78, 1.50
0.15 1.77, 3.16, 1.75, 1.50 1.77, 3.15, 1.73, 1.51 1.77, 3.15, 1.72, 1.51
0.20 1.76, 3.14, 1.69, 1.51 1.77, 3.13, 1.67, 1.51 1.77, 3.12, 1.66, 1.51

MST=10 years
p β=0.8 β=0.9 β=0.95
0.05 4.92, 5.01, 3.42, 1.59 4.92, 5.01, 3.4, 1.59 4.92, 5.01, 3.39, 1.59
0.10 4.93, 5.01, 3.28, 1.59 4.93, 5.01, 3.24, 1.59 4.93, 5.01, 3.22, 1.59
0.15 4.94, 5.01, 3.09, 1.59 4.94, 5.01, 3.02, 1.59 4.95, 5.01, 2.99, 1.59
0.20 4.95, 5.01, 2.85, 1.58 4.96, 5.01, 2.74, 1.58 4.96, 5.01, 2.69, 1.58
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Table 4.3.4: Estimated mean, median, mode and standard deviation of the
lead time at optimal time t∗0 when a0=65

MST=1.5 years
p β=0.8 β=0.9 β=0.95
0.05 0.83, 0.78, 0.42, 0.53 0.83, 0.78, 0.42, 0.53 0.83, 0.78, 0.42, 0.53
0.10 0.83, 0.78, 0.42, 0.53 0.83, 0.78, 0.42, 0.53 0.83, 0.78, 0.42, 0.53
0.15 0.83, 0.78, 0.41, 0.53 0.83, 0.78, 0.41, 0.53 0.83, 0.77, 0.41, 0.53
0.20 0.83, 0.77, 0.41, 0.53 0.83, 0.77, 0.41, 0.53 0.83, 0.77, 0.41, 0.53

MST=2.5 years
p β=0.8 β=0.9 β=0.95
0.05 1.59, 1.49, 0.09, 1.23 1.59, 1.49, 0.09, 1.23 1.59, 1.49, 0.09, 1.23
0.10 1.59, 1.49, 0.08, 1.23 1.59, 1.49, 0.08, 1.23 1.59, 1.49, 0.08, 1.23
0.15 1.59, 1.49, 0.08, 1.23 1.59, 1.49, 0.08, 1.23 1.59, 1.49, 0.08, 1.23
0.20 1.59, 1.49, 0.08, 1.23 1.59, 1.49, 0.08, 1.23 1.59, 1.49, 0.08, 1.23

MST=5 years
p β=0.8 β=0.9 β=0.95
0.05 1.76, 3.00, 1.30, 1.51 1.76, 3.00, 1.30, 1.51 1.76, 3.00, 1.30, 1.51
0.10 1.76, 2.99, 1.27, 1.51 1.76, 2.98, 1.26, 1.51 1.76, 2.98, 1.26, 1.51
0.15 1.76, 2.97, 1.23, 1.51 1.75, 2.97, 1.21, 1.51 1.75, 2.97, 1.21, 1.51
0.20 1.76, 2.96, 1.18, 1.51 1.75, 2.95, 1.16, 1.51 1.75, 2.95, 1.15, 1.51

MST=10 years
p β=0.8 β=0.9 β=0.95
0.05 4.96, 5.01, 2.67, 1.56 4.96, 5.01, 2.66, 1.56 4.96, 5.01, 2.65, 1.56
0.10 4.97, 5.01, 2.54, 1.56 4.97, 5.01, 2.50, 1.56 4.97, 5.01, 2.49, 1.56
0.15 4.97, 5.01, 2.38, 1.56 4.98, 5.01, 2.32, 1.56 4.98, 5.01, 2.29, 1.56
0.20 4.98, 5.01, 2.18, 1.56 4.99, 5.01, 2.1, 1.56 4.99, 5.01, 2.05, 1.56

Table 4.3.5 presents the estimated probability of overdiagnosis (in

percentage) when using the optimal initial scheduling age t∗0. Specifically,

if an individual undergoes the first screening exam at the age t∗0 provided

in Table 4.3.1 and is subsequently diagnosed with cancer, the probability of

overdiagnosis is given by the corresponding value in Table 4.3.5.

The probability of overdiagnosis shows an increasing trend as the MST

increases. It also increases with higher incidence probability (p) and older age

(a0). However, it exhibits minimal variation with the sensitivity (β). In general,

when the MST is less than or equal to one and a half years, the probability of

overdiagnosis is typically less than 4%, which is considered negligible. Overall,
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Figure 4.3.1: The PDF curves of the lead time under the four factors: changing
one factor considering others as fixed
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Table 4.3.5: Estimated probability of overdiagnosis (in percentage) at the initial
screening age t∗0

p
MST=1.5

a0=55 a0=60 a0=65
β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95

0.05 1.30 1.31 1.31 1.85 1.87 1.87 2.48 2.48 2.50
0.10 1.39 1.43 1.44 1.99 2.02 2.04 2.65 2.70 2.72
0.15 1.51 1.56 1.59 2.15 2.21 2.23 2.85 2.92 2.95
0.20 1.66 1.73 1.77 2.34 2.42 2.48 3.08 3.19 3.24

p
MST=2.5

a0=55 a0=60 a0=65
β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95

0.05 2.39 2.41 2.43 3.33 3.37 3.38 4.45 4.50 4.52
0.10 2.58 2.61 2.64 3.57 3.62 3.65 4.75 4.83 4.88
0.15 2.80 2.87 2.91 3.85 3.94 3.99 5.12 5.22 5.30
0.20 3.06 3.18 3.25 4.18 4.33 4.41 5.53 5.72 5.80

p
MST=5

a0=55 a0=60 a0=65
β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95

0.05 4.74 4.81 4.85 6.24 6.31 6.34 8.20 8.27 8.32
0.10 5.35 5.47 5.55 6.87 7.05 7.12 8.93 9.10 9.21
0.15 6.13 6.45 6.60 7.60 7.88 8.03 9.81 9.96 10.12
0.20 7.21 7.77 8.07 8.60 9.07 9.20 10.73 11.21 11.45

p
MST=10

a0=55 a0=60 a0=65
β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95 β=0.8 β=0.9 β=0.95

0.05 9.39 9.52 9.65 10.30 10.53 10.67 11.41 11.65 11.77
0.10 10.71 10.46 10.72 11.04 11.09 11.11 12.04 12.18 12.31
0.15 11.46 11.92 11.76 12.06 12.16 12.49 13.81 13.96 14.53
0.20 12.56 12.84 12.11 13.07 13.53 13.61 14.10 14.34 14.61
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the probability of overdiagnosis is very small, with the largest value observed

being less than 15% for a MST of 10 years.

4.3.2 Application

To estimate the optimal screening age, lead time, and probability of

overdiagnosis, 1500 Markov Chain Monte Carlo (MCMC) samples were obtained

from the NLST chest X-ray data (Rahman and Wu, 2021). Equation 4.19

was applied to the NLST X-ray data for both male and female heavy smokers

to determine the optimal scheduling time t∗0. Once the scheduling time was

estimated for the 1500 MCMC samples, the lead time distribution, probability

of overdiagnosis, and true-early detection were also estimated. The values of

w(t), q(x), and Q(x) remain the same as in equations 4.30, 4.31, and 4.32,

respectively. Furthermore, another crucial parameter, sensitivity was estimated

using equation (2.6) described in chapter 2.

The unknown parameters θ = (β, µ, σ2, α, λ) were estimated using the

Markov Chain Monte Carlo (MCMC) method with a Gibbs sampler and a

likelihood function. Initially, 200,000 samples were generated. After discarding

the first 30,000 samples as burn-in and applying thinning every 200 iterations,

a posterior sample of 500 from each chain was obtained. By running three

initially overdispersed chains, a total of 1500 Bayesian posterior samples θ∗j

were obtained for each gender as the final outcome.
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Table 4.3.6: Estimated initial screening age t∗0 and its 95% HPD interval using the NLST X-ray data

p
MALE

a0=55 a0=60 a0=65
mean s.e. 95%CI mean s.e. 95%CI mean s.e. 95%CI

0.05 55.042 0.004 (55.035, 55.050) 60.042 0.004 (60.035, 60.050) 65.042 0.004 (65.035, 65.050)
0.10 55.089 0.009 (55.074, 55.105) 60.089 0.009 (60.074, 60.105) 65.089 0.009 (65.074, 65.105)
0.15 55.142 0.014 (55.117, 55.168) 60.142 0.014 (60.117, 60.168) 65.142 0.014 (65.117, 65.168)
0.20 55.201 0.020 (55.166, 55.237) 60.202 0.020 (60.166, 60.237) 65.202 0.020 (65.166, 65.238)

p
FEMALE

a0=55 a0=60 a0=65
mean s.e. 95%CI mean s.e. 95%CI mean s.e. 95%CI

0.05 55.041 0.004 (55.035, 55.049) 60.041 0.004 (60.035, 60.049) 65.041 0.004 (65.035, 65.049)
0.10 55.086 0.008 (55.074, 55.103) 60.086 0.008 (60.074, 60.103) 65.087 0.008 (65.074, 65.103)
0.15 55.137 0.013 (55.118, 55.164) 60.138 0.013 (60.118, 60.164) 65.138 0.013 (65.118, 65.164)
0.20 55.195 0.019 (55.167, 55.232) 60.195 0.019 (60.167, 60.232) 65.195 0.019 (65.167, 65.232)
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In this application, a hypothetical cohort was designed for the simulation

as follows: For each gender (male and female), 1500 posterior samples θ∗j , where

j = 1, 2, ..., 1500, were obtained from the MCMC estimation using the current

ages a0 = 55, 60, 65. Bayesian inference was then performed to determine the

optimal scheduling time for each θ∗j , based on a given incidence probability p.

By calculating P (I0|I0 ∪D0, θ
∗
j ) = p for each θ∗j , a corresponding scheduling

age/time t∗j was determined.

The mean, standard error (s.e.), and the 95% highest posterior density

(HPD) interval of the future screening age t∗j (in years) were evaluated and

summarized in Table 4.3.6 using the NLST X-ray data for male and female

heavy smokers. The results indicate that the optimal first screening times are

very close for both genders under similar conditions, with the same current age

a0 and the same incidence probability p. However, males tend to have slightly

higher optimal screening times compared to females.

After determining the optimal first screening time, the posterior distri-

bution of the lead time was obtained as the average distribution across the

pairs (θ∗j , t
∗
j), where j = 1, 2, ..., 1500 which has the following form:

fL(z|NLST ) =
1

1500

1500∑
j=1

fL(z|θ∗j )

The mean, median, mode, and standard deviation of the lead time,

calculated using fL(z|NLST ), are presented in Table 4.3.7. Generally, male

heavy smokers exhibit slightly longer mean lead times compared to their female

counterparts under similar conditions. Figure 4.3.2 displays the estimated lead

time density curves using the NLST X-ray data, considering different current

ages (a0) and incidence probabilities (p). Interestingly, the lead time curves

show minimal changes with respect to the incidence probability p when the

optimal scheduling time t∗0 is employed. However, the density curves do exhibit
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Table 4.3.7: Estimated mean, median, mode and standard deviation of the
lead time using NLST X-ray data

MALE
p a0=55 a0=60 a0=65
0.05 0.68, 0.64, 0.46, 0.43 0.67, 0.63, 0.39, 0.43 0.66, 0.62, 0.31, 0.43
0.10 0.68, 0.64, 0.46, 0.43 0.67, 0.63, 0.39, 0.43 0.66, 0.62, 0.31, 0.43
0.15 0.68, 0.64, 0.46, 0.43 0.67, 0.63, 0.39, 0.43 0.66, 0.62, 0.31, 0.43
0.20 0.68, 0.64, 0.46, 0.43 0.67, 0.63, 0.39, 0.43 0.66, 0.62, 0.31, 0.43

FEMALE
p a0=55 a0=60 a0=65
0.05 0.67, 0.62, 0.35, 0.43 0.66, 0.61, 0.29, 0.43 0.66, 0.61, 0.22, 0.43
0.10 0.67, 0.62, 0.35, 0.43 0.66, 0.61, 0.29, 0.43 0.66, 0.61, 0.22, 0.43
0.15 0.67, 0.62, 0.34, 0.43 0.66, 0.61, 0.29, 0.43 0.66, 0.61, 0.22, 0.43
0.20 0.67, 0.62, 0.34, 0.43 0.66, 0.61, 0.29, 0.43 0.66, 0.61, 0.22, 0.43

variations based on the current age a0: larger a0 values result in higher peaks

in the density curve, leading to slightly smaller mode values.

Finally, each pair (θ∗j , t
∗
j), with j = 1, 2, ..., 1500, is utilized to estimate

the probability of overdiagnosis. The posterior mean, standard error, and 95%

highest posterior density (HPD) interval of the probability (or percentage)

of overdiagnosis are calculated and listed in Table 4.3.8. Additionally, the

probability of true-early detection can be obtained as 1 minus the probability

of overdiagnosis.

The probability of overdiagnosis at the first screening for heavy smokers,

using the parameters estimated from the NLST X-ray data, is very low (less than

3%). This risk of overdiagnosis shows a slight increase with one’s current age

for both genders, and it is slightly higher for male heavy smokers compared to

their female counterparts. Additionally, the probability of overdiagnosis slightly

increases with higher values of the incidence probability p. It is important to

note that, in this simulation, the maximum probability of overdiagnosis for

both genders remains below 3%. Therefore, overdiagnosis is not a significant

concern at the first screening exam using chest X-ray for heavy smokers.
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Figure 4.3.2: Lead time density curve for NLST X-ray

Table 4.3.8: Estimated mean, standard error and 95% C.I. for probability of
overdiagnosis at the first exam for the NLST X-ray data (in percentage)

p
MALE

a0=55 a0=60 a0=65
mean s.e. 95%CI mean s.e. 95%CI mean s.e. 95%CI

0.05 1.25 0.28 (1.05, 1.61) 1.78 0.29 (1.06, 2.21) 2.41 0.38 (2.06, 2.97)
0.10 1.32 0.25 (1.11, 1.63) 1.81 0.36 (1.60, 2.36) 2.52 0.39 (2.16, 3.09)
0.15 1.49 0.44 (1.13, 1.65) 1.85 0.38 (1.64, 2.40) 2.58 0.46 (2.21, 3.17)
0.20 1.53 0.52 (1.23, 1.69) 1.91 0.43 (1.71, 2.44) 2.67 0.58 (2.25, 3.22)

p
FEMALE

a0=55 a0=60 a0=65
mean s.e. 95%CI mean s.e. 95%CI mean s.e. 95%CI

0.05 0.74 0.08 (0.64, 0.90) 1.03 0.11 (0.89, 1.26) 1.48 0.16 (1.29, 1.82)
0.10 0.77 0.08 (0.67, 0.94) 1.08 0.11 (0.95, 1.32) 1.55 0.16 (1.35, 1.89)
0.15 0.81 0.08 (0.71, 0.98) 1.13 0.11 (0.99, 1.38) 1.63 0.17 (1.43, 1.99)
0.20 0.85 0.08 (0.75, 1.03) 1.19 0.12 (1.05, 1.45) 1.73 0.17 (1.51, 2.09)
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4.4 Discussion

The primary objective of this research was to determine the optimal

timing for the first screening exam for asymptomatic individuals, taking into

consideration their current age. The optimal first screening time for male

and female heavy smokers was estimated using the NLST X-ray data, and the

results were found to be consistent with the simulation study. In the simulation,

it was observed that the time interval between one’s current age and the first

screening time slightly increases with the screening sensitivity, holding other

factors constant. Additionally, it was found that the time interval increases

with higher incidence probabilities. These findings align with the research

conducted by Wu (2022) in her study on NLST CT scan data.

Regarding the NLST chest X-ray data used in this research, it was

observed that the optimal screening age is not significantly influenced by one’s

current age. In other words, the difference between the optimal screening time

and the current age remains relatively constant even as the current age increases.

Furthermore, male heavy smokers tend to have slightly longer screening ages

compared to their female counterparts. However, it is worth noting that when

considering the NLST CT scan data, Wu (2022) found that female heavy

smokers had longer screening ages compared to males.

In this research, it was observed that if an individual is diagnosed with

cancer at the first screening exam, the lead time does not show significant

changes with respect to the incidence probability and sensitivity. However, the

mean, median, and mode of the lead time display a slight decrease as one’s

current age increases, which aligns with the findings of Wu (2022).

Furthermore, previous research by Wu et al. (2007) demonstrated that

the mean lead time tends to increase as the interval between screening exams
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becomes shorter. Benbassat (2021) reported a decrease in the mean lead time

from 0.9 years with annual screening to 0.6 years with bi-annual screening.

Regarding the comparison between male and female heavy smokers, it is worth

noting that Liu et al. (2018), while analyzing NLST CT scan data, found

that the mean lead time appeared longer for women than for men. However,

the present study using NLST X-ray data indicates that male heavy smokers

exhibit a longer mean lead time compared to their female counterparts.

The sojourn time plays a crucial role in the lead time distribution, and

it is positively correlated with the mean lead time. In other words, a longer

mean sojourn time corresponds to a longer mean lead time. This relationship

holds true for lung cancer, as stated by Jang et al. (2013b), who noted that the

distribution of the sojourn time in lung cancer is heavily skewed to the right

and characterized by a large variance. Consequently, the lead time variance in

lung cancer is also large, which aligns with the findings of this research.

The probability of overdiagnosis, calculated using the estimated first

screening age, exhibits a positive correlation with the mean sojourn time,

incidence probability, and one’s current age. However, it shows only slight

changes with the sensitivity, particularly when the mean sojourn time is less

than 2 years. Importantly, the probability of overdiagnosis at the first screening

is found to be very small. This research highlights that overdiagnosis is more

closely associated with a person’s lifetime, denoted as T . Given that the first

screening occurs at a relatively younger age, it is expected to encounter small

values of overdiagnosis.

70



CHAPTER 5

FUTURE WORK

This dissertation focused on estimating three essential parameters in

lung cancer screening using data from the NLST chest X-ray. The estimated

parameters were then utilized to infer long-term outcomes that include over-

diagnosis as one outcome. The estimated parameters were also used to find the

optimal age/time for screening, the distribution of lead time, and the probability

of overdiagnosis at the future screening time if one would be diagnosed with

cancer. In the future, I might explore working on more complicated models,

such as when sensitivity depends on the sojourn time, or under other model

assumptions. Additionally, I might plan to refine the likelihood function and

explore alternative parametric models for these key parameters as well.
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M. C., Chiles, C., Black, W. C., Aberle, D. R., et al. (2014). Overdiagnosis

in low-dose computed tomography screening for lung cancer. JAMA internal

medicine, 174(2):269–274.

73

https://www.cdc.gov/cancer/lung/index.htm
https://www.cdc.gov/cancer/lung/index.htm
http://www.ssa.gov/OACT/STATS/table4c6.html.
http://www.ssa.gov/OACT/STATS/table4c6.html.


Rahman, F. and Wu, D. (2021). Inference of sojourn time and transition

density using the NLST X-ray screening data in lung cancer. Medical

research archives, 9(5).

Tammemaegi, M. C., Church, T. R., Hocking, W. G., Silvestri, G. A., Kvale,

P. A., Riley, T. L., Commins, J., and Berg, C. D. (2014). Evaluation of the

lung cancer risks at which to screen ever-and never-smokers: screening rules

applied to the PLCO and NLST cohorts. PLoS medicine, 11(12):e1001764.

Ten Haaf, K. and de Koning, H. J. (2015). Overdiagnosis in lung cancer

screening: why modelling is essential. J Epidemiol Community Health,

69(11):1035–1039.

USPSTF (2021). Lung cancer screening. https://www

.uspreventiveservicestaskforce.org.

Vansteenkiste, J., Dooms, C., Mascaux, C., and Nackaerts, K. (2012). Screening

and early—detection of lung cancer. Annals of Oncology, 23:x320–x327.

Villeneuve, P. J. and Mao, Y. (1994). Lifetime probability of developing lung

cancer, by smoking status, Canada. Canadian journal of public health=

Revue canadienne de sante publique, 85(6):385–388.

Walter, S. and Day, N. (1983). Estimation of the duration of a pre-clinical

disease state using screening data. American Journal of Epidemiology,

118(6):865–886.

Wang, D., Levitt, B., Riley, T., and Wu, D. (2017). Estimation of sojourn time

and transition probability of lung cancer for smokers using the PLCO data.

J Biom Biostat, 8(60):2.

74

https://www.uspreventiveservicestaskforce.org
https://www.uspreventiveservicestaskforce.org


Welch, H. G. and Black, W. C. (2010). Overdiagnosis in cancer. Journal of the

National Cancer Institute, 102(9):605–613.

Wu, D. (2022). When to initiate cancer screening exam? Statistics and Its

Interface, 15(4):503–514.

Wu, D., Erwin, D., and Kim, S. (2011). Projection of long-term outcomes

using X-rays and pooled cytology in lung cancer screening. Open Access

Medical Statistics, 1:13.

Wu, D., Kafadar, K., and Rosner, G. L. (2014). Inference of long term effects

and overdiagnosis in periodic cancer screening. Statistica Sinica, pages

815–831.

Wu, D., Kafadar, K., Rosner, G. L., and Broemeling, L. D. (2012). The

lead time distribution when lifetime is subject to competing risks in cancer

screening. The International Journal of Biostatistics, 8(1).

Wu, D. and Kim, S. (2020). Problems in the estimation of the key parameters

using MLE in lung cancer screening. Journal of clinical research and reports,

5(3).

Wu, D., Liu, R., Levitt, B., Riley, T., and Baumgartner, K. (2016). Evaluating

long-term outcomes via Computed Tomography in lung cancer screening. J

Biom Biostat, 7(313):2.

Wu, D., Rosner, G. L., and Broemeling, L. (2005). MLE and bayesian inference

of age-dependent sensitivity and transition probability in periodic screening.

Biometrics, 61(4):1056–1063.

Wu, D., Rosner, G. L., and Broemeling, L. D. (2007). Bayesian inference for

the lead time in periodic cancer screening. Biometrics, 63(3):873–880.

75



Zelen, M. and Feinleib, M. (1969). On the theory of screening for chronic

diseases. Biometrika, 56(3):601–614.

76



CURRICULUM VITA

NAME: Farhin Rahman

ADDRESS: Department of Bioinformatics and Biostatistics

University of Louisville, Louisville, KY 40292

EDUCATION:

Bachelor of Science in Applied Statistics,

University of Dhaka, Dhaka, Bangladesh, 2011

Master of Science in Statistics,

Ball State University, Indiana, USA, 2017

PUBLICATIONS:

Rahman, F., Wu, D. (2021) Inference of

Sojourn Time and Transition Density using the

NLST X-ray Screening Data in Lung Cancer.

Medical research archives.

Rahman, F., Begum, M. (2018)

Survival Analysis of Recurrent Events on

Prostate Cancer: Facts from Cancer Genome.

Journal of Statistical Research.

PRESENTATIONS:

The Statistics and data Science Conference,

April 2022. Inference of Sojourn Time and

Transition Density using the NLST X-ray

77



Screening Data in Lung Cancer.

Summer Public Health Workshop, July 2021.

Estimation in Lung Cancer Screening.

ASA-KY Chapter Meeting, April 2021.

Inference of Sojourn Time and Transition

Density using the NLST X-ray Screening

Data in Lung Cancer.

Department of Bioinformatics and Biostatistics

Spring Seminar Series, University of Louisville,

March 2021. Inference of Key Parameters using

the NLST X-ray Screening Data in Lung Cancer.

HONORS

AND AWARDS:

Graduate Student Assistantship, Resources

of Academic Achievements, University of

Louisville, August 2018 - December 2019

Research Assistantship, Department of

Bioinformatics and Biostatistics, University of

Louisville, January 2020 - August 2023

Graduate Assistantship, Department of Math-

ematical Sciences, Ball State University, August

2015 - May 2017

Research Assistantship, Center for Business

and Economic Research, Ball State University,

August 2017 - June 2018

78


	Statistical inference on lung cancer screening using the national lung screening trial data.
	Recommended Citation

	DEDICATION
	ACKNOWLEDGMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	Lung Cancer Screening Overview
	Probability Modeling of Cancer Screening 

	CHAPTER 2: INFERENCE OF SOJOURN TIME AND TRANSITION DENSITY USING THE NLST X-RAY SCREENING DATA IN LUNG CANCER
	Introduction
	The National Lung Screening Trial
	Method
	Application
	Discussion

	CHAPTER 3: INFERENCE OF LONG TERM OUTCOMES AND OVERDIAGNOSIS IN LUNG CANCER SCREENING
	Introduction
	Method
	Simulation Study
	Bayesian inference using the NLST data
	Results
	Discussion

	CHAPTER 4: SCHEDULING THE FIRST EXAM IN LUNG CANCER SCREENING
	Introduction
	Method
	Results
	Simulation
	Application

	Discussion

	CHAPTER 5: FUTURE WORK
	REFERENCES
	CURRICULUM VITA

