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ABSTRACT

STATISTICAL METHODS FOR ASSESSING TREATMENT
EFFECTS ON ORDINAL OUTCOMES AND SELECTING

OPTIMAL TREATMENT FOR SURVIVAL OUTCOMES USING
OBSERVATIONAL DATA

Huirong Hu

August 2, 2023

This dissertation consists of two projects investigating statistical methods in

causal inference and personalized medication using observational data.

In the first project, we propose a parametric marginal structural ordinal lo-

gistic regression model (MS-OLRM) to assess treatment effects on ordinal outcomes.

Average treatment effect (ATE) is used to measure the difference of the mean out-

comes if all patients would have been treated compared with the outcomes if they

would not have been treated. Many statistical methods have been developed to esti-

mate ATE when the outcome is continuous or binary. The methodology on assessing

treatment effect for an ordinal outcome is less studied. For an ordinal outcome, the

concept of mean may not be appropriate. For example, the difference in breast cancer

between stage II versus stage I is quite different from that between stage IV versus

stage III. For an ordinal outcome, we propose use superiority score to measure the

treatment effect. Superiority score measures whether the outcome under treatment

is stochastically larger than the outcome under control. We propose using the MS-

OLRM along with the inverse probability of treatment weighting (IPTW) to estimate
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the superiority score under treatment compared with control. This methodology ad-

justs confounding factors between treatment and outcome by using IPTW. In the

weighted sample, all covariates become balanced among different treatment groups.

Extensive simulation studies are carried out to examine the performance of the pro-

posed method. We apply the proposed method to assess the treatment effects of

medications and behaviour therapies on patients’ recovery from alcohol use disorders

using the Kentucky Medicaid 2012-2019 database.

In the second project, we propose a doubly robust method for selecting optimal

treatment regimen for survival outcome using observational data. In the proposed

method, we apply the generalized partial linear single-index models (GPLSIMs) di-

rectly to model the contrast functions (i.e., the outcome difference between treatment

and control). We consider the outcome under control as nuisance function, and we tar-

get to estimate the contrast functions using A-learning method and structural mean

model. The optimal treatment regimen is defined as the treatment which results in

the optimal outcome. The contrast functions can be consistently estimated if either

the outcome model under control or the generalized propensity scores are correctly

specified. When the outcome model under control is estimated using GPLSIM, the

outcome model is less prone to mis-specification, which results in a more robust esti-

mation for contrast functions and optimal treatment selection. Extensive simulation

studies are carried out to examine the performance of the proposed method. The

simulation results show the good performance of the proposed method. We apply the

proposed method to select the optimal exercise level based on patients’ comorbid-

ity and other characteristics using the National Health and Nutrition Examination

Survey (NHANES) III data sets.
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CHAPTER 1

STATISTICAL METHODS FOR ASSESSING TREATMENT

EFFECTS ON ORDINAL OUTCOMES USING OBSERVATIONAL

DATA

1.1 Introduction

Randomized controlled trials (RCTs) are the gold standard to assess treat-

ment effect. However, observational data, such as electronic clinical records data and

medical claims data become abundant, and researchers are attempted to evaluate

treatment effect from observational data. In an observational study, the relation-

ship between treatment and outcome is often confounded by the third variables (see

Figure 1), called confounding variables. A vivid example is illustrated by Simpson’s

paradox phenomena, where a statistical association which holds in each subgroup is

reversed in the entire population (Pearl, 2009). Simpson’s paradox happens when

both exposure and outcome are strongly associated with the confounding variables

(Julious and Mullee, 1994). Sharma et al., (2022) provides an example in comparing

the success rate in removing kidney stone: patients who received open surgery had

78% success rate while patients who received percutaneous nephrolithotomy had 83%

success rate. However, in patients whose stones were smaller then 2 mm, open surgery

had 93% success rate and percutaneous nephrolithotomy had 83% success rate. In

patients whose stone were larger than 2 mm stone, open surgery had 73% success rate

compared with 69% success rate using percutaneous nephrolithotomy. The reason of
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this paradox is that patients who had larger stones were more likely to choose open

surgery. Thus, the difference of success rates between two treatment groups are ex-

plained by the diameters of stone as well as the treatments. The size of stone, which is

a confounding variable, is associated with success rate and treatment selection. As a

result, to evaluate the treatment effect accurately and correctly, confounding variables

should be controlled or adjusted (Charig et al., 1986). In a RCT, eligible patients

are randomly assigned to different treatment groups, thus the treatment assignment

is independent to all other variables, and there is no confounding between treatment

and outcome. Thus, the treatment effect can be directly estimated by the difference

of sample means between treatment and control. In an observed study, it is likely

that treatment selection is impacted by patients’ characteristics and health condi-

tions, such as age, comorbidities, and severity of diseases. The outcome is not only

impacted by treatment but also the patients’ characteristics and health conditions.

To evaluate treatment effect, generalized propensity score (GPS) and inverse proba-

bility of treatment weighting (IPTW) have been introduced to control confounding

variables (Guo and Fraser, 2014). GPS is defined as the conditional probability of

receiving a particular category of treatment given the confounding variables, which

is an extension of propensity score (Rosenbaum and Rubin, 1983; Imbens, 2000).

The IPTW method is a widely used GPS based method to estimate treatment ef-

fect, where the weight for each patient is obtained as the inverse of the probability

of treatment the patient received. Upon weighting, the confounding variables among

different treatment groups are expected to be balanced, and the treatment effects can

be compared based on the weighted sample (Li et al., 2016; Chattopadhyay et al.,

2020; Li and Li, 2021). In other words, the distributions of each confounding variable

under different treatment groups are similar in the weighted sample. That is, the

confounding is removed between treatment and outcome in the weighted sample.

When outcome is continuous or binary variable, average treatment effect (ATE)

2



Figure 1.1: Illustration of the relationship between treatment and outcome which is
confounded by X.

is often used to measure treatment effect (Rubin, 1974). ATE is defined as the dif-

ference of mean outcome when the target population would have been treated versus

the target population would have been under control. However, when the outcome

is an ordinal variable with more than two categories, the concept of mean outcome

is difficult to define because the ordinal outcome themselves are not well-quantified

and may not be compared in a numeric scale (Lu, 2018). For example, the stages of a

cancer are often graded as stage I through stage IV. However, we can not say that the

difference between stage IV and stage III is the same as the difference between stage

II and stage I (National Cancer Institute, 2022). Thus, it is not appropriate to take

an average for an ordinal outcome. Volfovsky et al. (2015) propose a multidimen-
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sional estimand that describes differences in the distributions of potential outcomes

under treatment and control in each outcome level. Lu et al. (2018) propose to

use two causal parameters, which are defined as the probabilities that the treatment

is beneficial and strictly beneficial for the experimental units, under fixed marginal

distributions of the potential outcomes. Agresti and Kateri (2017) propose superi-

ority measurement as the probability that an outcome variable under treatment is

stochastically superior to the outcome under control, defined as Pr(Y1 > Y0), where

Y1 is the outcome under treatment and Y0 is the outcome under control. Ryu and

Agresti (2018) propose a measure of stochastic superiority score of an outcome under

treatment over control as Pr(Y1 > Y0) + 0.5Pr(Y1 = Y0). Following the literature

in causal inference, we are interested in estimating the stochastic superiority score

which measures the beneficial effect of treatment over control for a target population

using the potential outcome framework.

The statistical methods to evaluate causal effect for the ordinal outcome based

on observational study are scarce in the literature. In this project, we surveyed the

causal parameters which are suitable for ordinal outcomes. Based on potential out-

come framework and the common assumptions on causal inference, we propose using

the marginal structure ordinal logistic regression model (MS-OLRM) with IPTW to

evaluate the superiority score for potential outcomes under treatment versus con-

trol. The remaining part of this paper is organized as follows. Section 2 introduces

the superiority score for ordinal outcomes and proposes using the MS-OLRM along

with IPTW to estimate the treatment effect for ordinal outcomes. Section 3 presents

the simulation studies to assess the performance of the proposed method. Section 4

provides a case study to evaluate the treatment effects of medication and psychother-

apy on patients diagnosed with alcohol use disorder. The last section is devoted as

conclusion and discussion.

4



1.2 Statistical method to assess treatment effects for ordinal outcomes

1.2.1 Basic settings and underlying assumptions

Let (X,A, Y ) denote the random variables of observable triplet, where X

is confounding variables, A is a treatment variable with K (K ≥ 2) choices (i.e.,

A ∈ {0, 1, · · · , K−1}). Y denotes an ordinal outcome variable of c (c > 2) levels with

possible values from 1 to c, a large value indicating a better outcome. To illustrate the

estimand we are interested, we use the concept of potential outcomes. Let Y (a) denote

the potential outcome when a patient receives treatment level a, a ∈ {0, 1, · · · , K−1}.

Thus, there are K potential outcomes for a patient, say Y (0), Y (1), · · · , Y (K−1). How-

ever, only one potential outcome is observed for each patient, which corresponds to the

treatment the patient receives. To compare the treatment a versus control, the target

estimand is θa = Pr(Y (0) < Y (a)) + 0.5Pr(Y (0) = Y (a)), where a ∈ {1, 2, · · · , K − 1}.

θa measures the stochastic superiority of treatment a over control in a target popula-

tion of interest. In this article, we focus on estimating the superiority score θa in the

target population from which the sample comes from. We propose using MS-OLRM

along with IPTWmethod to estimate the parameters θas. The IPTWmethod is based

on the generalized propensity scores, which are Pr(A = a|X) for a = 0, 1, · · · , K− 1.

To estimate θa (a = 1, 2, · · · , K − 1) appropriately based on observational data, we

need some underlying assumptions, which are presented later in this section. The

MS-OLRM is presented in Section 1.2.2, and the inference for θ(a) is presented in

Section 1.2.3.

To make a valid estimation and inference for θa, we make the following as-

sumptions: (i) Consistency: for a patient, the observed outcome Y is the potential

outcome corresponding to the treatment the patient receives (Cole and Frangakis,

2009). That is, Y =
∑K−1

a=0 I{A=a}Y
(a) . (ii) Exchageability (no unmeasured con-

founding): given confounding variables X, a potential outcome is independent of
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treatment assignment, that is, Y (a) ⊥⊥ A|X for a = 1, 2, 3. (iii) Positivity: the prob-

ability of being assigned to each treatment group is positive (Hernán, 2012; Hernan

and Robins, 2018). That is, Pr(A = a|X) > 0 for a ∈ {0, 1, · · · , K−1}. (iv) Correct

specification of GPS models, that is, the GPS model needs to be specified.

1.2.2 Marginal structural ordinal logistic regression model

Marginal structural ordinal logistic regression model (MS-OLRM) with IPTW

is proposed to estimate the superiority scores in observational studies. MS-OLRM

describes the causal relationships between treatment and ordinal potential outcomes

with the following form:

logit Pr(Y (a) ≤ j) = αj −
K−1∑
k=1

I{a=k}τk, (1.1)

for j = 1, 2, ..., c − 1, and a = 0, 1, · · · , K − 1. Here α = (α1, α2, · · · , αc−1) captures

the distribution of the potential outcome under control in the target population. To

illustrate, we set a = 0 in equation (1.1), we have logit Pr(Y (0) ≤ j) = αj which

implies that

Pr(Y (0) ≤ j) =
exp(αj)

1 + exp(αj)
, for j = 1, 2, · · · , c− 1. (1.2)

Similarly, we can see that the parameter component τa in τ = (τ1, τ2, · · · , τK−1) and

α jointly capture the distribution of the potential outcome under treatment a. From

equation (1.1), we have logit Pr(Y (a) ≤ j) = αj − τa (j = 1, 2, · · · , c − 1), which

implies that

Pr(Y (a) ≤ j) =
exp(αj − τa)

1 + exp(αj − τa)
. (1.3)
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Note that the MS-OLRM describes the relationship between treatment and potential

outcomes. In the presence of confounding variables, one cannot directly estimate

α and τ based on the observed treatment assignment A and outcome Y . Instead,

a weighted sample is formed, where each observation is weighted by the inverse of

the probability of treatment assigned. The distributions of each confounding variable

across different treatment groups are similar in the weighted sample. That is, the rela-

tionship between treatment and outcome is not confounded any more in the weighted

sample. The parameters α and τ in the MS-OLRM can be estimated based on the

weighted sample. For an observation with a realization (x, a, y), the weight is defined

as w(a, x) = Pr(A=a)
Pr(A=a|X=x)

, where Pr(A = a) is the marginal probability for treatment

assignment for treatment level a, Pr(A = a|X = x) is the conditional probability,

which is often referred as the generalized propensity score (GPS) and estimated using

multinomial logistic regression model based on the maximum likelihood method or

covariates balance criteria (Deb et al., 2016). The latter is often referred as covari-

ates balance propensity score (CBPS) model (Imai and Ratkovic, 2014). Once the

weight for each observation is obtained, one can estimate the parameters α and τ

in the association model log(Y ≤ j|A = a) = αj −
∑K

k=1 I{a=k}τa using the weighted

sample. This estimation procedure is implemented using the weighted likelihood ap-

proach, where the weights are calculated using the R-package WeightIt. Under the

underlying assumptions presented in section 1.2.1 (i.e., consistency, exchangeability,

positivity, and correct specification of GPS model), the estimation α̂ and τ̂ from the

association model have the causal interpretation.

1.2.3 Estimation and inference for superiority score θa

Once the parameters α and τ in the MS-OLRM are obtained, one can cal-

culate the superiority score θa (a = 1, · · · , K − 1) and make inference for treatment

effect. To calculate the superiority score θa, let us denote π
(0)
j = Pr(Y (0) = j)
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and π
(a)
j = Pr(Y (a) = j), j = 1, 2, · · · , c. Set π(0) = (π

(0)
1 , π

(0)
2 , · · · , π(0)

c )T , and

π(a) = (π
(a)
1 , π

(a)
2 , · · · , π(a)

c )T , then we can get

θa = Pr(Y (0) < Y (a)) + 0.5Pr(Y (0) = Y (a))

=
c−1∑
j=1

Pr(Y (a) > j)Pr(Y (0) = j) + 0.5
c∑

j=1

Pr(Y (a) = j)Pr(Y (0) = j)

=
c−1∑
j=1

c∑
k>j

π
(0)
j π

(a)
k + 0.5

c∑
j=1

π
(0)
j π

(a)
j

=π(a)TDππ
(0), (1.4)

where

Dπ =



0.5 0 · · · 0 0

1 0.5 · · · 0 0

...

1 1 · · · 0.5 0

1 1 · · · 1 0.5


∈ IRc×c

Let denote γ
(0)
j = Pr(Y (0) ≤ j) and γ

(a)
j = Pr(Y (a) ≤ j), and set γ(0) = (γ

(0)
1 , γ

(0)
2 , · · · , γ(0)c−1)

T

and γ(a) = (γ
(a)
1 , γ

(a)
2 , · · · , γ(a)c−1)

T . θa can also be expressed as

θa = γ(0)TDγγ
(a) + 0.5(1 + γ

(0)
c−1 − γ

(a)
c−1) (1.5)
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where

Dγ =



0 0.5 · · · 0 0

−0.5 0 · · · 0 0

...

0 0 · · · 0 0.5

0 0 · · · −0.5 0


∈ IR(c−1)×(c−1)

A proof of this relationship is provided in appendix.

The hypothesis test on whether treatment a is significantly different from con-

trol can be written as:

H0 : θa = 0.5 vs H1 : θa ̸= 0.5

Upon obtaining the estimates for α and τ in the MS-OLRM, one can obtain the

estimates for γ(0) and γ(a), here γ̂
(0)
j = P̂ r(Y (0) ≤ j) =

exp(α̂j)

1+exp(α̂j)
and γ̂

(a)
j = P̂ r(Y (a) ≤

j) =
exp(α̂j+τ̂a)

1+exp(α̂j+τ̂a)
(j = 1, 2, · · · , c − 1). Further, one can obtain the estimates for θa:

θ̂a = γ̂(0)TDγ γ̂
(a) + 0.5(1 + γ̂

(0)
c−1 − γ̂

(a)
c−1). To develop test statistics for H0 : θa = 0.5

versus Ha : θa ̸= 0.5, we need to obtain the variance estimate for θa. Let Ψ(x) =

ex

1+ex
denote the cumulative distribution function of a standard logistic distribution,

and ψ(x) = ex

(1+ex)2
denote its probability density function. From equation (1.5), we
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can obtain the first derivatives of θa related to α and τ :

∂θa
∂α1

= 0.5[−Ψ(α2)ψ(α1 − τa) + ψ(α1)Ψ(α2 − τa)],

∂θa
∂αj

= 0.5ψ(αj)[Ψ(αj+1 − τa)−Ψ(αj−1 − τa)] + 0.5(αj − τa)[Ψ(αj−1)−Ψ(αj+1)],

for j = 2, · · · , c− 2,

∂θa
∂αc−1

= 0.5[−ψ(αc−1)Ψ(αc−2 − τa) + ψ(αc−1 − τa)Ψ(αc−2) + ψ(αc−1)− ψ(αc−1 − τa)],

∂θa
∂τa

= −Ψ(α)TDγψ(α− τa) + 0.5(αc−1 − τa),

∂θa
∂τk

= 0 for k ∈ {1, · · · , a− 1, a+ 1, · · · , K − 1}, (1.6)

Here Ψ(α) = (Ψ(α1), · · · ,Ψ(αc−1))
T and Ψ(α−τa) = (Ψ(α1−τa), · · · ,Ψ(αc−1−τa))T .

Let D = ( ∂θa
∂α1

, · · · , ∂θa
∂αc−1

, ∂θa
∂τ1
, · · · , ∂θa

∂τa
)T . Let denote D̂ as the quantities obtained by

replacing α̂ and τ̂ by their estimates. Denote V as the variance covariance matrix for

(α̂, τ̂ ). Based on the delta method, the asymptotic variance for θ̂a can be estimated

as

ˆvar(θ̂a) = D̂T V̂ D̂. (1.7)

The estimated standard error for θ̂a can be obtained as ŝe(θ̂a) =

√
ˆvar(θ̂a), and

100(1− α)% confidence interval (CI) for θa is obtained as θ̂a ± zα/2ŝe(θ̂a).

The variance estimates for θa in Equation (1.7) did not consider the variation

in estimating the generalized propensity scores. Thus, the variance estimates for θ̂a

based on the delta method may not be appropriate. An alternative variance estimate

is based on the bootstrap resampling method, where B bootstrap samples are drawn,

and θ̂
(b)
a (b = 1, 2, ..., B) is obtained from bth bootstrap sample. The variance of θ̂a

can be estimated as (Horowitz, 2001):

ˆvarbs(θ̂a) =
1

B

B∑
b=1

(θ̂(b)a − θa)
2, (1.8)
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where θa =
1
B

∑B
b=1 θ̂

(b)
a . The 95% CI for θ̂a can be constructed as [ θ̂a−1.96

√
ˆvarbs(θ̂a),

θ̂a + 1.96

√
ˆvarbs(θ̂a) ].

1.3 Simulation studies

1.3.1 Simulation design

In this simulation study, we examine the performance of our proposed method

on estimating and testing treatment effect for ordinal outcomes. Assume that there

are four groups (K = 4): one control group and three treatment groups. The out-

come variable Y has three levels (c = 3), a higher level indicates a better outcome.

The confounding variables, say X with three components, are generated from stan-

dard normal distribution with mean 0 and variance 1. The treatment assignment

A is generated from a multinomial distribution with probabilities determined by a

regression model log Pr(A=a|X)
1−Pr(A=a|X)

= XT δ(a), where a = 0, 1, 2, 3, δ(0) = (0, 0, 0)T , δ(1) =

(0.1, 0.2, 0.3)T , δ(2) = (−0.1, 0.1, 0.4)T , and δ(3) = (0.2,−0.1,−0.5)T . Given X and A,

the outcome is generated from the following cumulative ordinal regression model:

ln(
Pr(Y ≤ j|X, A)

1− Pr(Y ≤ j|X, A)
) = α1I{j=1} + α2I{j=2} +XTβ − τ1I{A=1} − τ2I{A=2} − τ3I{A=3} (1.9)

Here we set β = (−0.1,−0.2,−0.3)T , α1 = −2, α2 = 1. τ = (τ1, τ2, τ3) = κτ ∗ with

τ ∗ = (1, 1, 1.5) and κ varying from 0 to 2.

The simulation study is carried out under three different sample sizes, say

n = 500, 1000, and 5000. For each sample size, we generate 1000 simulated data

sets. For each data set, we estimate θa and test the hypotheses on treatment effect

H0 : θa = 0.5 vs Ha : θa ̸= 0.5 for a = 1, 2, 3. The simulation studies are carried out

in the following Steps:

Step 1: Generate a covariate vector Xi (i = 1, 2, · · · , n), where Xi ∼MVN(0, I23×3).
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Step 2: Generate treatment assignment Ai ∈ (0, 1, 2, 3) for i = 1, 2, · · · , n. Given Xi,

the treatment Ai follows a multinomial distribution with the following proba-

bilities:

P (Ai = 0|Xi) =
1

1 +
∑3

k=1 exp(X
T
i δ

(k))
, and

P (Ai = a|Xi) =
exp(XT

i δ
(a))

1 +
∑3

k=1 exp(X
T
i δ

(k))
, a = 1, 2, 3.

where δ(1) = (0.1, 0.2, 0.3)T , δ(2) = (−0.1, 0.1, 0.4)T , and δ(3) = (0.2,−0.1,−0.5)T .

Step 3: Generate observed outcome Y based on the equation (1.9), given A and X.

Step 4: Estimate the parameters α̂ and τ̂ in the MS-OLRM using IPTW method, then

θa was estimated as:

θ̂a = γ̂(0)TDγ γ̂
(a) + 0.5(1 + γ̂

(0)
2 − γ̂

(a)
2 ), where Dγ =

 0 0.5

−0.5 0

 .
The variance of θ̂a is estimated by the delta method as well as bootstrap method

based on B = 100 bootstrap samples, and the resulting variances are denoted

as MSM.SE and BS.SE respectively. The hypothesis test for H0 : θa = 0.5

versus Ha : θa ̸= 0.5 is carried out by examining whether the 95% CI for θa

includes 0.5.

Step5: Estimate the parameters α̂ and τ̂ in the MS-OLRM without IPTW method,

and obtain the variance estimates using the delta method and the bootstrap

method, respectively.

Step 6: Repeat Steps 1-5 for 1000 times. The simulation results for the 1000 samples

are summarized by (i) the empirical standard error for the 1000 estimates of

θa (denoted as Emp.SE in Table 1.1 - 1.3), which is the standard deviation of
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the 1000 estimated θ̂a (a = 1, 2, 3); (ii) the mean of estimated standard errors

based on the delta method and bootstrap method (denoted as MSM.SE and

BS.SE respectively in Table 1.1 - 1.3); (iii) the proportion of rejection for the

hypothesis H0 : θa = 0.5 vs Ha : θa ̸= 0.5.

Step 7: Repeat Steps 1-6 for each τ , where τ = κ× τ ∗ with κ taking values from 0 to 2

by 0.2.

In addition, the quantile-quantile plots (Q-Q plots) based on 1000 simulated

data sets for testing the hypothesis H0 : θa = 0.5 versus Ha : θa ̸= 0.5 (a = 1, 2, 3)

are obtained when the null hypothesis is correct (i.e., κ = 0). The Q-Q plots are

presented in Figure 1.2 for different estimation methods under different sample sizes.

1.3.2 Simulation results

The empirical standard error (Emp.SE), the mean of standard errors based on

bootstrap method (BS.SE) and sandwich method (MSM.SE) are presented in Table

1.1 for different κ for sample size n = 500. The empirical standard error, the mean of

standard error based on bootstrap method and sandwich estimates for sample sizes

1000 and 5000 are presented in Table 1.2 and 1.3, respectively. Based on Tables 1.1 -

1.3, it is clear that the mean of standard error estimates based on bootstrap method

is close to the empirical standard error, while the empirical standard error is much

larger than the mean of standard error from delta method (MSM.SE), indicating

that the bootstrap method provides a more accurate standard error estimator than

delta method.

The Q-Q plots (Figure 1.2), where the null hypotheses are correct, show that

the empirical p-values and the theoretical p-values are almost identical when the

IPTWmethod and the bootstrap standard error estimates are applied. The Q-Q plots

are far from the diagonal straight lines when unweighted method is applied or the delta

method based standard error estimates is applied. These results indicate that the
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IPTW method and the bootstrap standard error estimates provide correct rejection

rates for the hypothesis tests. In the following, we only present the simulation results

with standard error estimated by bootstrap method. The additional simulation results

are presented in Figure 1.3 to Figure 1.5 under different sample sizes (n = 500, 1000,

and 5000). In each figure, the first row (panels A1, A2, and A3) summarizes the

empirical standard error and the mean of estimated standard error based on bootstrap

method, which shows that the mean of estimated standard errors is close to the

empirical standard error regardless IPTW is used or not. The second row (panels

B1, B2, and B3) shows the power of the test for H0 : θa = 0.5 VS Ha : θa ̸= 0.5

for a = 1, 2, 3 based on weighted and unweighted method with the standard errors

estimated by bootstrap method. Based on the simulation results in Figures 1.3 - 1.5,

we conclude that (1) the empirical standard error (Emp.SE) is close to the bootstrap

standard error (BS.SE) for both weighted and unweighted method (see panels A1

- A3), indicating the bootstrap SE estimates are more appropriate to capture the

variation of the estimates of θ1, θ2, and θ3; (2) the size of the test under the null

hypothesis (i.e., κ = 0 in panels B1 - B3) based on the IPTW method and the

bootstrap error estimate is about 5%, while the test based on unweighted method

has a larger type I error rate, indicating that the tests based on unweighted method

do not control type I error rate; (3) when the sample size increases from 500 (Figure

1.3) to 1000 (Figure 1.4) and 5000 (Figure 1.5), the standard errors decreased, the

power of the test increased for each fixed κ for the IPTW estimates, while the type

I errors based on the unweighted estimates increased as sample size increased for θ2

and θ3. Therefore, the proposed MS-OLR model using IPTW method and bootstrap

standard error estimate performs well in our simulation studies.
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Figure 1.2: Q-Q plots for testing H0 : θa = 0.5 vs Ha : θa ̸= 0.5 (a = 1, 2, 3) when the
null hypothesis is correct under different sample sizes.

Figure 1.3: Simulation results for testing θa = 0.5 vs θa ̸= 0.5 for sample size n =
500, where a = 1, 2, 3.

where the first row shows the estimated SE and empirical SD under different methods,
and the third row shows the power of the test for H0 : θa = 0.5 (a = 1, 2, 3).
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Figure 1.4: Simulation results for standard error estimation and testing θa = 0.5 vs
θa ̸= 0.5 for sample size n = 1000, where a = 1, 2, 3.

Figure 1.5: Simulation results for estimating the causal parameters (θ1, θ2, and θ3)
for sample size n = 5000.
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Table 1.1: Evaluation of standard error for sample size n = 500.

kappa 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Emp.SE 0.025 0.026 0.027 0.025 0.027 0.026 0.025 0.025 0.025 0.025 0.025

θ1 BS.SE 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.026 0.026 0.026 0.026

MSM.SE 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016

Emp.SE 0.027 0.027 0.027 0.026 0.026 0.025 0.026 0.027 0.026 0.026 0.026

θ2 BS.SE 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.026 0.026 0.026

MSM.SE 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016

Emp.SE 0.026 0.025 0.026 0.026 0.025 0.023 0.024 0.024 0.024 0.024 0.024

θ3 BS.SE 0.027 0.027 0.026 0.027 0.026 0.026 0.025 0.025 0.025 0.024 0.024

MSM.SE 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.015 0.015

Table 1.2: Evaluation of standard error for sample size n = 1000.

kappa 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Emp.SE 0.019 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018

θ1 BS.SE 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.018 0.018

MSM.SE 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.011 0.011

Emp.SE 0.019 0.019 0.018 0.019 0.018 0.019 0.019 0.018 0.019 0.018 0.019

θ2 BS.SE 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019

MSM.SE 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.011 0.011 0.011

Emp.SE 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.016 0.016

θ3 BS.SE 0.019 0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.017 0.017 0.017

MSM.SE 0.012 0.012 0.012 0.012 0.012 0.012 0.011 0.011 0.011 0.011 0.01

Table 1.3: Evaluation of standard error for sample size n = 5000.

kappa 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Emp.SE 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

θ1 BS.SE 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

MSM.SE 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Emp.SE 0.008 0.008 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.008 0.008

θ2 BS.SE 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008

MSM.SE 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Emp.SE 0.008 0.008 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.008 0.008

θ3 BS.SE 0.008 0.008 0.008 0.008 0.008 0.009 0.008 0.007 0.007 0.007 0.007

MSM.SE 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

1.4 Case study

Alcohol use becomes the seventh leading risk factor for both disabilities and

deaths and contributes to three million deaths each year globally (Esser et al., 2020).

Excessive alcohol consumption can cause various organ diseases, including but not
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limited to alcoholic cardiomyopathy, alcoholic liver disease, alcoholic gastritis, and

alcoholic polyneuropathy (Vittadini et al., 2001; Piano, 2002; O’shea et al., 2010).

Medication for alcohol abuse and alcohol dependence includes three Food and Drug

Administration (FDA) approved drugs (naltrexone, acamprosate, and disulfiram) and

one off-label drug (topiramate) which is approved by the U.S. Department of Veterans

Affairs (VA) (Litten et al., 2016; Kranzler and Soyka, 2018; Witkiewitz et al., 2019).

Other than medications, behaviour treatments, such as consultation or psychotherapy,

can help recovery from alcohol use disorder (National Institutes of Health, 2014). In

this study, we evaluate the treatments effect on patients with alcohol dependence or

alcohol abuse using Kentucky Medicaid data from 2012 to 2019.

Figure 1.6: Covariate balance scores for the case study of patients with alcohol
abuse/dependence.
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Table 1.4: The distributions of confounding variables among four different treatment
groups.

Total No treatment Behaviour therapy Only Medication Only Combination

Variables Levels N (%) N (%) N (%) N (%) N (%) P-Value

Overall 11819 5848 (49.5%) 5053 (42.7%) 352 (3.0%) 566 (4.8%)

Gender Male 6886 (58.3%) 3786 (64.7%) 2702 (53.5%) 179 (50.9%) 219 (38.7%) < 0.001

Female 4933 (41.7%) 2062 (35.3%) 2351 (46.5%) 173 (49.1%) 347 (61.3%)

Age [14, 18) 579 (4.8%) 183 (3.0%) 371 (7.3%) 9 (2.6%) 16 (2.8%) < 0.001

[18, 24] 976 (8.0%) 318 (5.2%) 586 (11.5%) 21 (6.0%) 51 (9.0%)

[25, 34] 2513 (20.6%) 840 (13.6%) 1400 (27.5%) 86 (24.4%) 187 (33.0%)

[35, 44] 2713 (22.3%) 1169 (18.9%) 1254 (24.6%) 102 (29.0%) 188 (33.2%)

[45, 54] 3255 (26.7%) 1997 (32.4%) 1058 (20.8%) 103 (29.3%) 97 (17.1%)

[55, 64] 1783 (14.6%) 1341 (21.7%) 384 (7.5%) 31 (8.8%) 27 (4.8%)

Race and Ethnicity Non-Hispanic White 8396 (71.0%) 3941 (67.4%) 3733 (73.9%) 268 (76.1%) 454 (80.2%) < 0.001

Non-Hispanic Black 1356 (11.5%) 738 (12.6%) 552 (10.9%) 28 (8.0%) 38 (6.7%)

Non-Hispanic Other 102 (0.9%) 51 (0.9%) 47 (0.9%) 3 (0.9%) 1 (0.2%)

Non-Hispanic Missing 1905 (16.1%) 1088 (18.6%) 697 (13.8%) 49 (13.9%) 71 (12.5%)

Hispanic 60 (0.5%) 30 (0.5%) 24 (0.5%) 4 (1.1%) 2 (0.4%)

RUC Metro 6464 (54.7%) 3073 (52.5%) 2850 (56.4%) 198 (56.2%) 343 (60.6%) < 0.001

No Metro 5354 (45.3%) 2775 (47.5%) 2202 (43.6%) 154 (43.8%) 223 (39.4%)

Acute Myocardial Infarction Yes 465 (3.9%) 330 (5.6%) 116 (2.3%) 11 (3.1%) 8 (1.4%) < 0.001

Congestive Heart Failure Yes 524 (4.4%) 376 (6.4%) 122 (2.4%) 13 (3.7%) 13 (2.3%) < 0.001

Peripheral Vascular Disease Yes 619 (5.2%) 431 (7.4%) 154 (3.0%) 10 (2.8%) 24 (4.2%) < 0.001

Cerebrovascular Disease Yes 464 (3.9%) 317 (5.4%) 114 (2.3%) 16 (4.5%) 17 (3.0%) < 0.001

Dementia Yes 48 (0.4%) 31 (0.5%) 16 (0.3%) 1 (0.3%) 0 (0%) 0.143

Chronic Obstructive Pulmonary Disease Yes 3729 (31.6%) 2089 (35.7%) 1368 (27.1%) 94 (26.7%) 178 (31.4%) < 0.001

Rheumatoid Disease Yes 218 (1.8%) 135 (2.3%) 62 (1.2%) 9 (2.6%) 12 (2.1%) <0.001

Peptic Ulcer Disease Yes 189 (1.6%) 119 (2.0%) 61 (1.2%) 3 (0.9%) 6 (1.1%) 0.004

Mild Liver Disease Yes 1275 (10.8%) 664 (11.4%) 501 (9.9%) 29 (8.2%) 81 (14.3%) 0.001

Moderate or Severe Liver Disease Yes 88 (0.7%) 59 (1.0%) 26 (0.5%) 1 (0.3%) 2 (0.4%) 0.014

Diabetes without Complication Yes 1549 (13.1%) 899 (15.4%) 550 (10.9%) 45 (12.8%) 55 (9.7%) < 0.001

Diabetes with Complication Yes 452 (3.8%) 287 (4.9%) 133 (2.6%) 17 (4.8%) 15 (2.7%) <0.001

Hemiplegia or Paraplegia Yes 119 (1.0%) 84 (1.4%) 30 (0.6%) 2 (0.6%) 3 (0.5%) <0.001

Renal Disease Yes 345 (2.9%) 220 (3.8%) 105 (2.1%) 13 (3.7%) 7 (1.2%) < 0.001

Cancer (Any Malignancy) Yes 322 (2.7%) 242 (4.1%) 70 (1.4%) 6 (1.7%) 4 (0.7%) < 0.001

Metastatic Solid Tumor Yes 62 (0.5%) 51 (0.9%) 9 (0.2%) 2 (0.6%) 0 (0%) <0.001

Table 1.5: The distributions of confounding variables stratified by outcomes.

Total Alcohol related organ disease Alcohol abuse/dependence Remission

Variables Levels N (%) N (%) N (%) N (%) P-Value

Overall 11819 669 (5.7%) 10730 (90.8%) 420 (3.5%)

Gender Male 6886 (58.3%) 477 (66.8%) 6211 (57.9%) 228 (54.3%) < 0.001

Female 4933 (41.7%) 222 (33.2%) 4519 (42.1%) 192 (45.7%)

Age [14, 18) 579 (4.8%) 3 (0.4%) 570 (5.2%) 6 (1.3%) < 0.001

[18, 24] 976 (8.0%) 12 (1.7%) 937 (8.5%) 27 (6.0%)

[25, 34] 2513 (20.6%) 73 (10.4%) 2363 (21.4%) 77 (17.0%)

[35, 44] 2713 (22.3%) 150 (21.4%) 2457 (22.3%) 106 (23.5%)

[45, 54] 3255 (26.7%) 280 (39.9%) 2851 (25.9%) 124 (27.4%)

[55, 64] 1783 (14.6%) 151 (21.5%) 1552 (14.1%) 80 (17.7%)

Race and Ethnicity Non-Hispanic White 8396 (71.0%) 473 (70.7%) 7602 (70.8%) 321(76.4%) 0.019

Non-Hispanic Black 1356 (11.5%) 66 (9.9%) 1259 (11.7%) 31 (7.4%)

Non-Hispanic Other 102 (0.9%) 3 (0.4%) 98 (0.9%) 1 (0.2%)

Non-Hispanic Missing 1905 (16.1%) 126 (18.8%) 1714 (16.0%) 65 (15.5%)

Hispanic 60 (0.5%) 1 (0.1%) 57 (0.5%) 2 (0.4%)

RUC Metro 6464 (54.7%) 346 (51.7%) 5872 (54.7%) 246 (58.6%) 0.085

No Metro 5354 (45.3%) 323 (48.3%) 4857 (45.3%) 174 (41.1%)

Acute Myocardial Infarction Yes 465 (3.9%) 47 (7.0%) 396 (3.7%) 22 (5.2%) < 0.001

Congestive Heart Failure Yes 524 (4.4%) 57 (8.5%) 444 (4.1%) 23 (5.5%) < 0.001

Peripheral Vascular Disease Yes 619 (5.2%) 52 (7.8%) 537 (5.0%) 30 (7.1%) 0.001

Cerebrovascular Disease Yes 464 (3.9%) 34 (5.1%) 409 (3.8%) 21 (5.0%) 0.121

Dementia Yes 48 (0.4%) 0 (0.0%) 45 (0.4%) 3 (0.7%) 0.106

Chronic Obstructive Pulmonary Disease Yes 3729 (31.6%) 258 (38.6%) 3315 (30.9%) 156 (37.1%) < 0.001

Rheumatoid Disease Yes 218 (1.8%) 11 (1.6%) 192 (1.8%) 15 (3.6%) 0.046

Peptic Ulcer Disease Yes 189 (1.6%) 21 (3.1%) 159 (1.5%) 9 (2.1%) 0.005

Mild Liver Disease Yes 1275 (10.8%) 205 (30.6%) 1017 (9.5%) 53 (12.6%) < 0.001

Moderate or Severe Liver Disease Yes 88 (0.7%) 39 (5.8%) 45 (0.4%) 4 (1.0%) < 0.001

Diabetes without Complication Yes 1549 (13.1%) 128 (19.1%) 1356 (12.6%) 65 (15.5%) < 0.001

Diabetes with Complication Yes 452 (3.8%) 53 (7.9%) 372 (3.5%) 27 (6.4%) < 0.001

Hemiplegia or Paraplegia Yes 119 (1.0%) 8 (1.2%) 100 (0.9%) 11 (2.6%) 0.005

Renal Disease Yes 345 (2.9%) 33 (4.9%) 288 (2.7%) 24 (5.7%) < 0.001

Cancer (Any Malignancy) Yes 322 (2.7%) 27 (4.0%) 276 (2.6%) 19 (4.5%) 0.007

Metastatic Solid Tumor Yes 62 (0.5%) 7 (1.0%) 51 (0.5%) 4 (1.0%) 0.048

To examine the treatment effects on patients with alcohol abuse/dependence,
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Table 1.6: Causal association between treatment and outcome for patients diagnosed
with alcohol abuse/dependence

Observed outcomes Estimated outcomes with IPTW

Treatment group sample size Alcohol related organ disease Alcohol abuse/dependence Remission Alcohol related organ disease Alcohol abuse/dependence Remission

Overall 11819 5.7% 90.8% 3.6%

No treatment 5848 8.2% 88.1% 3.7% 7.3% 89.0% 3.7%

Behaviour therapy only 5053 3.1% 93.6% 3.3% 3.5% 92.8% 3.7%

Medication only 352 5.1% 90.3% 4.5% 5.7% 89.6% 4.7%

Combination 566 2.7% 94.0% 3.4% 2.6% 94.4% 3.0%

Table 1.7: Estimated treatment effect with and without IPTW.

MS-OLRM without IPTW MS-OLRM with IPTW

Comparison groups OR 95% CI P-Value OR 95% CI P-Value

Behaviour therapy only 1.738 (1.521, 1.988) < 0.001 1.588 (1.450, 1.740) <0.001

Medication only 1.581 (1.083, 2.318) 0.019 1.380 (1.260, 1.512) <0.001

Combination 1.841 (1.359, 2.496) <0.001 1.623 (1.481, 1.779) <0.001

θ1 (Behaviour therapy only vs Control) 0.523 (0.517, 0.528) <0.001 0.518 (0.515, 0.522) <0.001

θ2 (Medication only vs Control) 0.519 (0.504, 0.534) 0.015 0.513 (0.509, 0.516) <0.001

θ3 (Combination vs Control) 0.525 (0.513, 0.537) <0.001 0.519 (0.515, 0.523) <0.001

θ21 (Medication only vs Behaviour therapy only) 0.496 (0.481, 0.512) 0.629 0.495 (0.492, 0.499) 0.009

θ31 (Combination vs Behaviour therapy only) 0.502 (0.490, 0.514) 0.711 0.501 (0.497, 0.504) 0.606

θ32 (Combination vs Medication only) 0.506 (0.487, 0.525) 0.526 0.506 (0.502, 0.509) 0.001

we obtain patients diagnosed with alcohol abuse/dependence but without alcohol re-

lated organ diseases. We consider four treatment groups: medication only group,

behaviour therapy only group, both medication and behaviour therapy, and none

of these (control group). The outcome variable is an ordinal variable with out-

come levels as progressing to alcohol related organ diseases, remaining as alcohol

abuse/dependence, and remission from alcohol abuse/dependence. We obtain a study

cohort of patients diagnosed with alcohol abuse/dependence who did not have alco-

holic related organ diseases or remission within one-year prior of alcohol abuse/dependence

diagnosis or within 6 months post alcohol abuse/dependence diagnosis. We use the

diagnosis codes and procedure codes to capture treatment utilization with 6-month

post alcohol abuse/dependence diagnosis, and we capture the outcomes from 7 to

18 months post diagnosis of alcohol abuse/dependence. The study cohort is formed

by the following inclusion/exclusion criteria: (1) exclude patients who did not have

any diagnosis of alcohol abuse or dependence; (2) exclude patients who had diagno-

sis of alcohol related organ diseases or remission prior the first diagnosis of alcohol

abuse/dependence within one year to exclude patients with history of organ dis-
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eases or remission (Smothers et al., 2004); (3) exclude patients with age < 14 or

age ≥ 65 years old; (4) exclude patients who did not have medical claims within 6

months of diagnosis of alcohol abuse/dependence (Rogal et al., 2020); (5) exclude

patients who did not have medical claims from 7-18 months since diagnosis of alcohol

abuse/dependence (Weisner et al., 2003). By following the inclusion/exclusion cri-

teria, we form a cohort of 11819 patients to evaluate treatment effect. The alcohol

dependence/abuse is captured from the International Classification of Disease nine

and tenth revision (ICD-9 and ICD-10) diagnosis codes from Medicaid claims data

(see codes in Table S1.1). Behaviour therapy is defined by the Healthcare Common

Procedure System (HCPCS) and the Current Procedural Terminology (CPT) codes

(see Table S1.2), and medication treatment includes naltrexone, acamprosate, topira-

mate, and disulfiram, which are obtained from Medicaid pharmacy claim data using

national drug codes (NDC) (see Table S1.3). The outcome variable on whether a

patient developed organ diseases, remained in alcohol abuse/dependence or remitted

are obtained from ICD-9/ICD-10 diagnosis codes (see Table S1.1).

Let assume that the order of outcome is alcohol related organ diseases, alco-

hol abuse/dependence, and remission. The confounding variables are demographic

variables (i.e., age, gender, race and ethnicity, metro versus non-metro) and Charlson

comorbidities (Hall et al., 2004; Quan et al., 2005; Hu et al., 2022). The associations

between confounding variables and treatment groups are presented in Table 1.4, and

the association between confounding variables and outcomes are presented in Table

1.5. Based on the two tables, it is clear that these variables are both associated

with treatment and outcome, thus need to be adjusted to evaluate treatment effect.

We evaluated the effects of different treatments with the proposed method with and

without IPTW.

We summarize the relationship between the outcomes and the treatment groups

using MS-OLRM with and without IPTW (see Table 1.6). The distribution of covari-
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ates in treatment groups are shown in Figure 1.5, which indicates that all covariates

are balanced with absolute mean difference below the cut point 0.1. Table 1.5 shows

the results from MS-OLRM with/without IPTW. Based on the simulation studies

as well as the theoretical argument, we draw conclusions based on the MS-OLRM

with IPTW method: (1) comparing with control group, the odds of getting better

outcome (alcohol abuse/dependence or remission versus organ diseases) are 1.59 in

behaviour therapy only group, 1.38 in medication only group, and 1.62 in combina-

tion group; (2) θ1, θ2, and θ3 are greater than 0.5, and their p-values are less than

0.05 with IPTW, indicating that treatment groups have stochastic superiority than

control group, and patients in treatment groups are more likely to get a better out-

come; (3) θ21 = 0.495 (p-value = 0.009) indicates that medication only is inferior than

behaviour therapy; θ31 = 0.501 (p-value = 0.606) indicates no significant difference

between combination therapy and behaviour therapy; θ32 = 0.506 (p-value = 0.001)

indicates that combination therapy is superior than medication therapy.

1.5 Conclusion and discussion

In this study, we used stochastic superiority score to assess the treatment effect

on an ordinal outcome, which is estimated using MS-OLRM with IPTW. Further

we develop the test procedure to test whether the superiority score effect between

treatment and outcome is statistically significantly different from 0.5. The simulation

results show that the stochastic superiority score estimated using MS-OLRM with

IPTW controls the type I error rate and has an increased power as the effect size

increases. The case study shows that the beneficial effect of behaviour therapy or

combination therapy on treating patients with alcohol abuse or dependence, when

comparing with control or medication only.

The valid inference for the stochastic superiority score relies on the four under-

lying assumptions: exchangeability, consistency, positivity, and correct specification
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of generalized propensity scores. The positivity requires that the probability for each

treatment (given all confounding variables) is positive, which can be illustrated by

the predicted density plots with zero probability at 0 and 1. The correct specifica-

tion of generalized propensity scores could be relaxed by developing a doubly robust

approach which uses both generalized propensity scores model and outcome model.

The doubly robust approach will be investigated in our future research.
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CHAPTER 2

DOUBLY ROBUST SINGLE INDEX MODEL FOR SELECTING

OPTIMAL TREATMENT ON SURVIVAL OUTCOMES IN

OBSERVATIONAL STUDIES

2.1 Introduction

Personalized medicine has become an area of interest in modern biomedical

research (Guo et al., 2021). Personalized medicine involves selecting appropriate and

optimal therapies based on the context of a patient’s demographics, comorbidity, ge-

netic content or other molecular or cellular analysis (Jain, 2002). A treatment that

works for a majority patients may fail to work for a subgroup of patients with specific

characteristics (Pan and Zhao, 2021). For example, olanzapine was considered effec-

tive, safe and well tolerated treatment for schizophrenia. However, Ishigooka et al.

(2000) reported that 79.5% of patients diagnosed with schizophrenia had improve-

ment while the remaining patients did not have any improvement, or even became

worse when treated with olanzpine (Qian and Murphy, 2011). Personalized treatment

that selects an optimal treatment for a patient with a particular set of characteristics

has received much attention (VanderWeele et al., 2019).

The important component of personalized medicine is to estimate individual-

ized treatment rules (IRTs) and to select an optimal treatment regime. Randomized

experiments could stratify patients into different subgroups by their specific char-

acteristics, and randomly assign patients in each subgroup to different treatments.
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Kaplan-Meier curves and/or Cox proportional model are applied to evaluate the op-

timal treatment (Murphy, 2002; Jiang et al., 2017). Removing heterogeneity and

keeping homogeneity are the common strategies to find which sub-population can get

the most benefit from a particular treatment. However, the way of controlling con-

founding variables in a randomized study is unlikely to work in an observational study

(Yao and Tarpey, 2022). To select the optimal treatment in an observational study,

the primary methods are Q-learning and A-learning methods (Zhao et al., 2009, 2011).

Q-learning is based on outcome regression models (Bather, 2000), while A-learning

requires only posited models for contrast function between treatment and control and

the propensity score model for treatment assignment (Schulte et al., 2014). Q-learning

is more efficient in estimating the parameters that defines the optimal regime when

the outcome regression models are correctly specified, while A-learning trends to of-

fer robust estimation of parameters when the outcome model is mis-specified (Schulte

et al., 2014). In addition to Q- and A- learning methods, machine-learning methods

have been used to directly estimate optimal treatment regime (Chen and Tsiatis,

2001). Non-parametric methods often provide more flexible and less biased estima-

tion for the contrast function, however, non-parametric models are less interpretable

in practice (Song et al., 2017). On the contrary, the parameters from parametric

models are usually interpretable. However, the parametric models are often prone to

model mis-specification. In this project, we propose to use generalized partial linear

single-index model (GPLSIM) as outcome model to estimate the contrast functions.

The GPLSIM model is a bridge between parametric model and non-parametric model,

its parameters could be interpretable and the model self is quite flexible.

Time-to-event data is very common in medical research. In this project, we

propose a semi-parametric accelerated failure time (AFT) mean model which com-

poses an outcome component and contrast component (Wallace et al., 2019; Chat-

ton et al., 2020; Simoneau et al., 2020). The contrast component is modeled using
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GPLSIM model. We develop a doubly robust method to estimate the optimal treat-

ment regimes. The proposed method is doubly robust in estimating the contrast

component if either the propensity score model or the outcome model under control

is correctly specified. The structure of this paper is organized as follows. Section 2

introduces the proposed structural accelerated failure time (AFT) mean model and

estimation procedure. Section 3 presents the simulation studies to examine the perfor-

mance of proposed method. Section 4 applies the proposed method to the National

Health and Nutrition Examination Survey (NHANES) data to identify the proper

level of physical activity for a patient’s survival. Section 5 draws conclusions and

provides discussions.

2.2 Proposed statistical method

Let us consider the outcome variable as a time-to-event outcome, which could

be right-censored. Let denote (X,Z, A, Tr,△) as the observed variables for each

subject. X denotes a vector of p continuous covariates (i.e., X ∈ Rp), Z denotes a

vector of q binary variables (i.e., Z ∈ Rq). A denotes the treatment assigned among

K + 1 treatment choices (i.e., A ∈ {0, 1, · · · , K}). Tr denotes the time to event or

time of censoring, which is identified by △ taking a value of 1 if Tr is an event time

and 0 if Tr is a censoring time.

Following the literature, we assume that (Tr,△) are from two random vari-

ables: the survival time T and the censoring time C. The observed time Tr =

min{T,C}, and △ = I{T<C}. To obtain the contrast functions, we propose using the

following AFT mean model (Wang et al., 2010):

log(T ) = h0(X,Z) +
K∑
a=1

I{A=a}
[
ZT θ(a) + ga(X

Tβ(a))
]
+ ϵ

Here h0(X,Z) captures the outcome under control model, and the second term
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ZT θ(a) + ga(X
Tβ(a)) does capture the difference between treatment a and control.

To illustrate these point, we introduce the potential outcomes. Let denote the sur-

vival time as T (a) if the subject would have received treatment a, a ∈ {0, 1, · · · , K}.

Thus, we have K+1 potential survival times which correspond to the K+1 treatment

choices. Let denote Y (a) = log T (a) for a ∈ {0, 1, · · · , K}. Following the literature

in causal inference, we assume that exchangeability and consistency hold. Exchange-

ability (no unmeasured confounding) assumes that given confound variables (X,Z), a

potential outcome is independent of treatment assignment given confound variables.

That is, Y (a) ⊥ A|(X,Z) for a ∈ (0, 1, · · · , K). Consistency indicates that for each

subject, the observed outcome is the potential outcome corresponding to the treat-

ment the subject receives, that is, Y =
∑K

a=0 I{A=a}Y
(a). With the notation that

Y = log T , and Y (a) = log T (a), we can rewrite the proposed model as:

Y = h0(X,Z) +
K∑
a=1

I{A=a}
[
ZT θ(a) + ga(X

Tβ(a))
]
+ ϵ

Based on the assumptions of exchangeability and consistency, we have:

E(Y |A = 0, X, Z) = E(Y (0)|A = 0, X, Z) = E(Y (0)|X,Z) = h0(X,Z)

Thus, h0(X,Z) captures the response profile when a patient with covariates (X,Z)

is in control group. Based on the assumptions of exchangeability and consistency, we

also have:

E(Y |A = a,X, Z) = E(Y (a)|A = a,X, Z) = E(Y (a)|X,Z)

Note that E(Y |A = a,X, Z) = h0(X,Z) + ZT θ(a) + ga(X
Tβ(a)). Thus, the average
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treatment effects in subjects with covariates (X,Z) can be expressed as:

E(Y (a)|X,Z)− E(Y (0)|X,Z) = ZT θ(a) + ga(X
Tβ(a))

Hence, ZT θ(a) + ga(X
Tβ(a)) is a contrast function between treatment a and control.

ga(.) is an unknown function which is estimated using B-splines. The contrast function

ZT θ(a) + ga(X
Tβ(a)) is described as a generalized partially linear single-index model

(GPLSIM) (Carroll et al., 1997). This GPLSIM captures the benefits from treatment.

The optimal treatment (say a∗) can be selected as the treatment which maximizes

the contrast functions (Geng et al., 2015). That is

a∗ = argmaxa∈{0,1,··· ,K}
{
0, ZT θ(1) + g1(X

Tβ(1)), · · · , ZT θ(a) + ga(X
Tβ(a))

}
Note that:

E(Y |X,Z) = E

{(
I{A=0}Y

(0) +
K∑
a=1

I{A=a}Y
(a)

)
|X,Z

}

= E
(
I{A=0}Y

(0)|X,Z
)
+ E

{
K∑
a=1

I{A=a}Y
(a)|X,Z

}

= E(Y (0)|X,Z)π0(X,Z) +
K∑
a=1

E(Y (a)|X,Z)πa(X,Z)

= h0(X,Z)π0(X,Z) +
K∑
a=1

[
h0(X,Z) + ZT θ(a) + ga(X

Tβ(a))
]
πa(X,Z)

= h0(X,Z) +
K∑
a=1

[
ZT θ(a) + ga(X

Tβ(a))
]
πa(X,Z)

= h(X,Z)

Here, π0(X,Z) = Pr(A = 0|X,Z) and πa(X,Z) = Pr(A = a|X,Z) (a = 1, · · · , K)

are the generalized propensity scores, which satisfy π0(X,Z) +
∑K

a=1 πa(X,Z) = 1.

With the equation h0(X,Z) = h(X,Z) −
∑K

a=1

[
ZT θ(a) + ga(X

Tβ(a))
]
πa(X,Z), we
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can rewrite the semiparametric AFT mean model as:

Y = h(X,Z) +
K∑
a=1

[
I{A=a} − πa(X,Z)

] [
ZT θ(a) + ga(X

Tβ(a))
]
+ ϵ, (2.1)

Note that Y = log T , where T is the time to event. T is not observed when the time

to event is censored, which is indicated by △ = 0. Let assume that the censoring

time and event time are independent. Let denote G(t) = Pr(C > t). That is, G(t)

is the probability of censoring time being greater than t. Let (Xi, Zi, Ai, T ri,△i)

(i = 1, · · · , n) denote the observed data, G(t) could be estimated by using Kaplan-

Meier curve using (Tri,△i) (i = 1, · · · , n) (Sugihara, 2010). The estimation of the

parameters and link functions are based on the observed uncensored data but with

each uncensored data point being weighted by the inverse of G(Tri). That is,

L(β, θ) =
1

n

n∑
i=1

△i

G(Tri)

{
Yi − h(Xi, Zi)−

K∑
a=1

[
I{Ai=a} − πa(Xi, Zi)

] [
ZT
i θ(a) + ga(X

T
i β(a))

]}2

(2.2)

For the unknown function ga(.), we suppose ga(.) can be represented as a linear com-

bination of B-spline basis functions. That is, ga(.) can be described as ga(X
Tβ(a)) =

Ba(X
Tβ(a))Tγ(a), where Ba(.) is the spline basis with k knots, and γ(a) is the spline

coefficient vector with k + 4 dimensions (Boehm, 1980). To estimate θ(a), β(a), and

the link function ga, we take the first derivative of the loss function in equation

(2.2) with respect to θ, β, and γ in equation (2.2). Here, θ = (θ(1)T , · · · , θ(K)T )T ,

β = (β(1)T , · · · , β(K)T )T , and γ = (γ(1)T , · · · , γ(K)T )T . By setting ∂l
∂θ

= 0, we have



∂l
∂θ(1)

∂l
∂θ(2)

...

∂l
∂θ(K)


=

2

n
νθ −

2

n
Dθ


θ(1)

θ(2)

...

θ(K)

 , (2.3)
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where

νθ =



∑n
i=1

△i

G(Ti)

[
I{Ai=1} − π1(Xi, Zi)

]
Zi

[
Yi − h0(Xi, Zi)−

∑K
a=1 I{Ai=a}ga(X

T
i β

(a))
]

∑n
i=1

△i

G(Ti)

[
I{Ai=2} − π2(Xi, Zi)

]
Zi

[
Yi − h0(Xi, Zi)−

∑K
a=1 I{Ai=a}ga(X

T
i β

(a))
]

...∑n
i=1

△i

G(Ti)

[
I{Ai=K} − πK(Xi, Zi)

]
Zi

[
Yi − h0(Xi, Zi)−

∑K
a=1 I{Ai=a}ga(X

T
i β

(a))
]


and

Dθ =
n∑

i=1



△i

G(Ti)

[
I{Ai=1} − π1(Xi, Zi)

] [
I{Ai=1}, I{Ai=2}, · · · , I{Ai=K}

]⊗
ZiZ

T
i

△i

G(Ti)

[
I{Ai=2} − π2(Xi, Zi)

] [
I{Ai=1}, I{Ai=2}, · · · , I{Ai=K}

]⊗
ZiZ

T
i

...

△i

G(Ti)

[
I{Ai=K} − πK(Xi, Zi)

] [
I{Ai=1}, I{Ai=2}, · · · , I{Ai=K}

]⊗
ZiZ

T
i


.

By setting ∂l
∂γ

= 0, we have



∂l
∂γ(1)

∂l
∂γ(2)

...

∂l
∂γ(K)


=

2

n
νγ −

2

n
Dγ



γ(1)

γ(2)

...

γ(K)


, (2.4)

where

νγ =



∑n
i=1

△i

G(Ti)

[
I{Ai=1} − π1(Xi, Zi)

]
B1(X

T
i β

(1))
[
Yi − h0(Xi, Zi)−

∑K
a=1 I{Ai=a}Z

T
i θ

(a)
]

∑n
i=1

△i

G(Ti)

[
I{Ai=2} − π2(Xi, Zi)

]
B2(X

T
i β

(2))
[
Yi − h0(Xi, Zi)−

∑K
a=1 I{Ai=a}Z

T
i θ

(a)
]

...∑n
i=1

△i

G(Ti)

[
I{Ai=K} − πK(Xi, Zi)

]
BK(X

T
i β

(K))
[
Yi − h0(Xi, Zi)−

∑K
a=1 I{Ai=a}Z

T
i θ

(a)
]


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and

Dγ =
n∑

i=1


△i

G(Ti)

[
I{Ai=1} − π1(Xi, Zi)

] [
I{Ai=1}, I{Ai=2}, · · · , I{Ai=K}

]⊗
B1(X

T
i β

(1))B1(X
T
i β

(1))T

△i

G(Ti)

[
I{Ai=2} − π2(Xi, Zi)

] [
I{Ai=1}, I{Ai=2}, · · · , I{Ai=K}

]⊗
B2(X

T
i β

(2))B2(X
T
i β

(2))T

...

△i

G(Ti)

[
I{Ai=K} − πK(Xi, Zi)

] [
I{Ai=1}, I{Ai=2}, · · · , I{Ai=K}

]⊗
BK(XT

i β
(1))BK(XT

i β
(1))T

 .

By setting ∂l
∂β

= 0, we have



∂l
∂β(1)

∂l
∂β(2)

...

∂l
∂β(K)


=

2

n
νβ −

2

n
Dβ



β(1)

β(2)

...

β(K)


, (2.5)

where

Dβ =
n∑

i=1


△i

G(Ti)

[
I{Ai=1} − π1(Xi, Zi)

]
g′1(X

T
i β

(1))
[
I{Ai=1}g

′
1(X

T
i β

(1)
old), · · · , I{Ai=K}g

′
K(XT

i β
(K)
old )

]⊗
XiX

T
i

△i

G(Ti)

[
I{Ai=2} − π2(Xi, Zi)

]
g′2(X

T
i β

(2))
[
I{Ai=1}g

′
1(X

T
i β

(1)
old), · · · , I{Ai=K}g

′
K(XT

i β
(K)
old )

]⊗
XiX

T
i

...

△i

G(Ti)

[
I{Ai=K} − πK(Xi, Zi)

]
g′K(XT

i β
(K))

[
I{Ai=1}g

′
1(X

T
i β

(1)
old), · · · , I{Ai=K}g

′
K(XT

i β
(K)
old )

]⊗
XiX

T
i

 ,

and

νβ =



∑n
i=1

△i

G(Ti)

[
I{Ai=1} − π1(Xi, Zi)

]
g

′
1(X

T
i β

(1)
old)RES

∗Xi∑n
i=1

△i

G(Ti)

[
I{Ai=2} − π2(Xi, Zi)

]
g

′
2(X

T
i β

(2)
old)RES

∗Xi

...∑n
i=1

△i

G(Ti)

[
I{Ai=k} − πk(Xi, Zi)

]
g

′

k(X
T
i β

(k)
old)RES

∗Xi


with

RES∗ = Yi − h0(Xi, Zi)−
K∑
a=1

I{Ai=a}

[
ZT

i θ
(a) + ga(X

T
i β

(a)
old)− g

′

a(X
T
i β

(a)
old)X

T
i β

(a)
old)
]
.
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Remark 2.2.1. Note that β(a) in the contrast function ZT θ(a)+ ga(X
Tβ(a)) is not in

the linear form of β(a). To solve for β(a), one needs to use the first order Taylor’s ex-

pansion and the Newton-Raphson iteration method. Based on the first order Taylor’s

expansion,

ga(X
Tβ(a)) ≈ ga(X

Tβ
(a)
old) + ga(X

Tβ
(a)
old)X

T (β(a) − β
(a)
old) (2.6)

The derivation for β(a) is obtained from replacing ga(X
Tβ(a)) by the right-hand side

in equation (2.6).

Remark 2.2.2. For the identifiability, in the single-index model ga(X
Tβ(a)), we re-

strict ∥β(a)∥2 = 1 and β
(a)
1 > 0 (Zhang et al., 2010). This is implemented by stan-

dardizing β(a) first and then times sign(β
(a)
1 ).

To estimate the contrast functions and to select the optimal treatment, we

propose the following algorithms:

Step 1: Estimate the probabilities of censoring function G(t) and generalized propensity

scores.

Step 2: Obtain the response profile when all subjects would have been in control group:

First building an outcome model based on observations in control group, and

then predicting the outcomes for all subjects regardless the treatment assign-

ment. Thus, we obtain ĥ0(Xi, Zi) for i = 1, · · · , n.

Step 3: Estimate the parameters θ(a), β(a) and link function ga in the contrast functions

ZT θ(a) + ga(X
Tβ(a)) (a = 1, · · · , K) by the following iterations:

S0: Replace censoring probabilities, the GPS, and the response profile under

control by their estimates;

S1: Obtain the initial values for parameter β(a), say β
(a)
old , by minimizing equa-

tion (2.2) with taking ga(.) as identity function;
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S2: Obtain the initial values for parameters θ(a) and γ(a) given the estimated

resulting value β
(a)
old from S1, denoted as θ

(a)
old and γ

(a)
old ;

S3: Given β
(a)
old , θ

(a)
old and γ

(a)
old , update β

(a) as β
(a)
new;

S4: Update θ
(a)
new and γ

(a)
new with β(a) obtained from S3;

S5: Set θ
(a)
new, β

(a)
new, and γ

(a)
new as β

(a)
old , θ

(a)
old and γ

(a)
old , repeat S2 - S4 until converge.

Step 4: Given (X,Z), the optimal treatment assignment is obtained by

a∗ = argmaxa∈{0,1,··· ,K}
{
0, ZT θ(a) + ga(X

Tβ(a))
}
.

2.3 Simulation studies

2.3.1 Simulation design

In this section, we conduct a set of simulation studies to investigate the per-

formance of the proposed method under settings. We first set up three continuous

variables, say X = (X1, X2, X3), and two categorical variables, say Z = (Z1, Z2), as

confounding variables. X follows a multivariate normal distribution with mean 0 and

variance I3×3. Two variables in Z follows Bernoulli distributions with probabilities

0.4 and 0.5 respectively. We consider a control group and three treatment groups

(K = 3). The treatment assignments A ∈ (0, 1, 2, 3) are generated from a multino-

mial distribution which is causally associated with confounding variables (X,Z) with

the probabilities specified by the following two GPS models:

P (A = a|X,Z) = exp((X,Z)T δ(a))

1 +
∑3

k=1 exp((X,Z)
T δ(k))

(2.7)

and

P (A = a|X,Z) =
exp((X,Z)T δ(a))

1 +
∑3

k=1 exp((X,Z)T δ(k) + (X2
1 +X2

2 +X2
3 )δ2 + (Z2

1 + Z2
2 + Z2

3 )δ3 + (X2Z1 +X3Z2)δ4
(2.8)
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for a = 1, 2, 3. P (A = 0|X,Z) = 1 −
∑3

a=1 P (A = a|X,Z), δ(1) = (−0.1, 1,−1, 1)T ,

δ(2) = (−0.1, 1, 1,−1, 1)T , δ(3) = (−0.1,−1,−1, 1,−1)T , δ2 = −0.5, δ3 = 0.8, and

δ4 = −0.3. However, to estimate the GPS, we only use the multinomial model in the

form of equation (2.7). Thus, when treatment assignment is generated from equation

(2.7), the fitted GPS model is correctly specified model. When treatment assignment

is generated from model (2.8), the fitted model using equation (2.7) is a mis-specified

GPS model.

Given (X,Z) and treatment assignment A, the outcome Y is generated by

each of the following models (Guo et al., 2021):

Model 1: Y = 1 +XTα1 + ZTα2 +
∑K

a=1 I{A=a}[Z
T θ(a) +XTβ(a)] + ϵ,

Model 2: Y = 1+XTα1(1−XTα1)+ZTα2+
∑K

a=1 I{A=a}[Z
T θ(a)+XTβ(a)(1−XTβ(a))]+ϵ,

Model 3: Y = 1 +XTα1(1−XTα1) + ZTα2 +∑K
a=1 I{A=a}

{
ZT θ(a) +XTβ(a)(1−XTβ(a)) + sin[π(XTβ(a))/2]

}
+ ϵ,

Model 4: Y = exp(XTα1) + sin[π(XTα3)/2] + ZTα2 +∑K
a=1 I{A=a}[Z

T θ(a) +XTβ(a)(1−XTβ(a))] + ϵ.

We set β(1) = (1, 0.4, 0.3)T , β(2) = (1,−0.5, 0.2)T , β(3) = (1, 0.1, 0.7)T , θ(1) = (−0.8, 0.6)T ,

θ(2) = (0.2,−0.3)T , θ(3) = (0.8, 0.6)T , α1 = (0.1, 0.2, 0.3)T , α2 = (0.5, 0.1)T , and

α3 = (−0.1, 0.3, 0.5)T . The error term ϵ follows a normal distribution with mean 0

and variance 0.1. Note that we propose to use either linear model or GPLSIM to cap-

ture outcome under control, and we use GPLSIM to capture contrast functions. When

linear model is used to model the outcome under control, only Model 1 is correctly

specified outcome under control model. When GPLSIM is used to model the outcome

under control, Model 1 to Model 3 all have correctly specified outcome model under

control, while Model 4 is a mis-specified outcome model for control group. Note that

we generate treatment assignment using two different GPS models. However, we only
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apply multinomial regression model to estimate GPS. When treatment assignment is

generated from the multinomial regression model (equation (2.7)), the GPS model is

correctly specified. When the treatment assignment is generated from the complex

multinomial model (equation (2.8)), the GPS model is mis-specified. In addition, we

also generate censoring observations with censoring time from a gumbel distribution

with parameters (3, c), where c is chosen to achieve 20% censoring rates. For each

outcome model, we generate data under the following three scenarios:

Scenario I: Treatment assignment A is generated from the multinomial model equation

(2.7), and there is no censored observations,

Scenario II: Treatment assignment A is generated from the multinomial model (2.7), and

there are censored observations,

Scenario III: Treatment assignment A is generated from the complex multinomial model

(2.8), and there are censored observations. Since we apply multinomial regres-

sion to obtain GPS, we have a mis-specified GPS model in this scenario.

We carry out simulation study with two sample sizes (n = 2000 and 5000)

for each outcome model under each of three scenarios related treatment assignment

and censoring. For each setting, we generate 1000 data sets. For each data set, we

estimate contrast function with the outcome model under control as linear model

O1 : h0(X,Z) = XTβ∗ + ZT θ∗ and as GPLSIM O2 : h0(X,Z) = g(XTβ∗) + ZT θ∗

respectively. The estimates for contrast functions are captured by the estimates of

β(a) and θ(a) in the contrast function ZT θ(a) + ga(X
tβ(a)), and the selected optimal

treatment a∗ = argmaxa∈{0,··· ,K}{ZT θ̂(a) + ga(X
T β̂(a))}.

2.3.2 Simulation results

We evaluate the performance of proposed method by (i) the box plots of the

estimated parameters in the contrast function for each outcome model under each
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scenario (see Figures 2.1 - 2.12); (ii) mean squared error (MSE) for each parameter

in the contrast function (see Table 2.1 and 2.2); and (iii) the percentage of correct

decision (PCD) (see Table 2.3) for the optimal treatment selection.

Figures 2.1 - 2.4 show the box plots of the estimates under four different

outcome models with data generated under Scenario I without censoring and with a

correctly specified GPS model. Figures 2.5 - 2.8 show the box plots of the estimates

under four different outcome models in Scenario II with data generated with censoring

and with a correctly specified GPS model. Figures 2.9 - 2.12 show the box plots of the

estimates in scenario III with data generated with censoring and with a mis-specified

GPS model. In each figure, the three rows show the box plots of the estimates in

three contrast functions (i.e., treatment a vs control with a = 1, 2, 3), and the left

panels show the estimates with sample size n = 2000, and the right panels show

the estimates with sample size n = 5000. The x-axis shows the parameters to be

estimated, and the y-axis shows the estimated values. From these figures, we can

see that (i) when the underlying outcome model is linear (Model 1) (see Figures 2.1,

2.5, and 2.9), the estimates with linear outcome model are similar to the ones with

GPLSIM. When GPS is a mis-specified model, the proposed GPLSIM outcome model

with CBPS performs better than multinomial GPS model (see Figure 2.9); (ii) when

the outcome model is non-linear but with partial linear single-index form (Models 2

and 3), the proposed GPLSIM outcome model performs better than those with linear

outcome model. Among those with GPLSIM outcome models, their estimates are

similar to those with true GPSs (see Figures 2.2 - 2.3, 2.6 - 2.7, and 2.10 - 2.11);

(iii) when the outcome model is not in a partial linear single-index form (Model

4), the proposed model with GPLSIM performs much better than those with linear

outcome model (see Figure 2.4, 2.8, and 2.12), and the proposed model with CBPS has

smaller variation (similar to those from true GPS), than those from multinomial GPS

model; which is similar to use true GPS; (iv) when the GPS model is mis-specified,
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the proposed method with correctly specified outcome models (Models 1 - 3) provide

unbiased estimates, the results with CBPS have smaller variation (Figures 2.9 - 2.11);

(v) when both GPS model and the outcome model (Model 4) are mis-specified (see

Figure 2.12), the results with GPLSIM outcome model and CBPS are compariable

with those with GPLSIM outcome and true GPS model. The results are less biased

and have smaller variation, indicating the advantage using the proposed methods

with GPLSIM as outcome model and CBPS as GPS. The MSE for β(a) presented in

Table 2.1 and θ(a) in Table 2.2 further support these findings.

Table 2.1: Summarized mean square errors for the estimates of β(a) in the contrast
function ZT θ(a) + ga(X

Tβ(a)) for different sample sizes and different scenarios.

Linear.true.ps Linear.multinomial.ps Linear.CBPS Spline.true.ps Spline.multinomial.ps Spline.CBPS

Sample size (n) β(1) β(2) β(3) β(1) β(2) β(3) β(1) β(2) β(3) β(1) β(2) β(3) β(1) β(2) β(3) β(1) β(2) β(3)

Scenario I: without censoring and with correct GPS model

2000 0.008 0.014 0.009 0.010 0.013 0.011 0.009 0.012 0.009 0.008 0.014 0.010 0.010 0.013 0.011 0.008 0.012 0.010

Model 1 5000 0.002 0.004 0.002 0.002 0.003 0.002 0.002 0.003 0.001 0.002 0.004 0.002 0.001 0.003 0.001 0.001 0.003 0.001

2000 0.040 0.059 0.029 0.040 0.060 0.027 0.035 0.054 0.024 0.009 0.006 0.006 0.006 0.004 0.003 0.005 0.004 0.002

Model 2 5000 0.043 0.062 0.036 0.043 0.058 0.034 0.037 0.057 0.031 0.001 0.002 <0.001 <0.001 0.001 <0.001 <0.001 0.001 <0.001

2000 0.014 0.046 0.017 0.017 0.045 0.017 0.013 0.043 0.014 0.001 0.001 0.001 <0.001 0.002 0.001 0.001 0.002 0.001

Model 3 5000 0.017 0.055 0.021 0.019 0.057 0.020 0.017 0.055 0.019 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

2000 0.064 0.072 0.058 0.062 0.062 0.063 0.052 0.059 0.044 0.049 0.072 0.041 0.050 0.071 0.037 0.043 0.065 0.032

Model 4 5000 0.057 0.047 0.059 0.057 0.047 0.059 0.051 0.044 0.053 0.038 0.060 0.034 0.039 0.060 0.035 0.036 0.059 0.033

Scenario II: with censoring and with correct GPS model

2000 0.018 0.016 0.018 0.017 0.014 0.016 0.016 0.013 0.013 0.017 0.014 0.015 0.017 0.018 0.016 0.016 0.014 0.014

Model 1 5000 0.002 0.005 0.002 0.002 0.005 0.002 0.002 0.004 0.002 0.002 0.005 0.003 0.002 0.005 0.003 0.002 0.004 0.002

2000 0.037 0.058 0.034 0.039 0.057 0.031 0.032 0.053 0.026 0.006 0.008 0.004 0.007 0.010 0.005 0.009 0.009 0.004

Model 2 5000 0.025 0.042 0.023 0.026 0.042 0.026 0.023 0.041 0.025 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

2000 0.020 0.045 0.016 0.016 0.041 0.015 0.014 0.041 0.014 0.001 0.001 0.001 0.002 0.004 0.002 0.002 0.004 0.001

Model 3 5000 0.017 0.039 0.015 0.016 0.038 0.015 0.014 0.038 0.014 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

2000 0.033 0.036 0.027 0.036 0.035 0.030 0.024 0.031 0.023 0.009 0.015 0.009 0.016 0.014 0.010 0.013 0.014 0.006

Model 4 5000 0.016 0.016 0.013 0.016 0.018 0.014 0.014 0.020 0.012 0.004 0.006 0.002 0.005 0.006 0.003 0.004 0.006 0.002

Scenario III: with censoring and with mis-specified GPS model

2000 0.009 0.021 0.009 0.055 0.052 0.065 0.014 0.022 0.014 0.008 0.017 0.009 0.060 0.049 0.064 0.016 0.025 0.016

Model 1 5000 0.002 0.007 0.002 0.046 0.034 0.041 0.009 0.010 0.007 0.002 0.006 0.002 0.049 0.034 0.047 0.010 0.009 0.008

2000 0.096 0.089 0.081 0.399 0.132 0.301 0.141 0.091 0.113 0.004 0.020 0.003 0.146 0.056 0.104 0.024 0.016 0.013

Model 2 5000 0.069 0.060 0.046 0.515 0.190 0.396 0.212 0.146 0.195 <0.001 0.003 <0.001 0.142 0.046 0.086 0.012 0.010 0.10

2000 0.057 0.057 0.054 0.175 0.094 0.185 0.093 0.068 0.085 0.002 0.012 0.002 0.049 0.023 0.044 0.008 0.006 0.006

Model 3 5000 0.039 0.036 0.043 0.202 0.122 0.227 0.114 0.089 0.116 <0.001 0.001 <0.001 0.038 0.015 0.041 0.006 0.003 0.005

2000 0.085 0.086 0.064 0.560 0.267 0.722 0.274 0.160 0.267 0.031 0.049 0.024 0.484 0.180 0.464 0.169 0.097 0.139

Model 4 5000 0.042 0.075 0.031 0.510 0.196 0.703 0.164 0.086 0.154 0.016 0.035 0.010 0.470 0.140 0.455 0.108 0.065 0.082
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Table 2.2: Summarized mean square errors for the estimates of θ(a) in the contrast
function ZT θ(a) + ga(X

Tβ(a)) for different sample sizes and different scenarios.

Linear.true.ps Linear.multinomial.ps Linear.CBPS Spline.true.ps Spline.multinomial.ps Spline.CBPS

Sample size (n) θ(1) θ(2) θ(3) θ(1) θ(2) θ(3) θ(1) θ(2) θ(3) θ(1) θ(2) θ(3) θ(1) θ(2) θ(3) θ(1) θ(2) θ(3)

Scenario I: without censoring and with correct GPS model

2000 0.002 0.015 0.002 0.002 0.013 0.003 0.002 0.010 0.002 0.002 0.019 0.003 0.002 0.015 0.003 0.002 0.011 0.002

Model 1 5000 <0.001 0.001 0.001 <0.001 0.002 0.001 <0.001 0.002 <0.001 <0.001 0.002 0.001 <0.001 0.002 <0.001 <0.001 0.002 <0.001

2000 0.033 0.565 0.045 0.017 0.299 0.013 0.014 0.281 0.011 0.013 0.103 0.060 0.001 0.005 0.002 0.001 0.004 0.001

Model 2 5000 0.011 0.182 0.009 0.010 0.170 0.009 0.009 0.164 0.007 0.001 0.005 <0.001 <0.001 0.001 <0.001 <0.001 0.001 <0.001

2000 0.015 0.531 0.015 0.018 0.537 0.019 0.013 0.500 0.016 0.001 0.014 0.002 0.001 0.018 0.002 0.001 0.017 0.001

Model 3 5000 0.009 0.240 0.012 0.009 0.243 0.012 0.009 0.235 0.011 <0.001 0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.001 <0.001

2000 0.057 0.715 0.072 0.057 0.549 0.075 0.048 0.460 0.058 0.017 0.268 0.020 0.031 0.549 0.033 0.019 0.403 0.024

Model 4 5000 0.022 0.012 0.029 0.024 0.118 0.038 0.020 0.112 0.025 0.006 0.063 0.008 0.006 0.066 0.009 0.006 0.068 0.008

Scenario II: with censoring and with correct GPS model

2000 0.007 0.049 0.035 0.009 0.058 0.060 0.009 0.057 0.060 0.006 0.033 0.016 0.009 0.067 0.029 0.008 0.069 0.030

Model 1 5000 0.001 0.006 0.001 0.001 0.009 0.001 0.001 0.008 0.001 0.001 0.003 0.001 0.001 0.004 0.001 0.001 0.004 0.001

2000 0.020 0.452 0.017 0.017 0.411 0.017 0.017 0.544 0.021 0.002 0.014 0.002 0.002 0.124 0.002 0.002 0.018 0.002

Model 2 5000 0.006 0.082 0.006 0.007 0.095 0.007 0.006 0.089 0.006 <0.001 0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.001 <0.001

2000 0.026 0.725 0.020 0.024 0.665 0.019 0.021 0.630 0.016 0.002 0.005 0.002 0.002 0.007 0.002 0.002 0.006 0.002

Model 3 5000 0.009 0.201 0.010 0.009 0.195 0.010 0.008 0.193 0.010 <0.001 0.001 0.001 <0.001 0.001 0.001 <0.001 0.001 0.001

2000 0.020 0.414 0.015 0.013 0.155 0.019 0.014 0.238 0.034 0.004 0.081 0.004 0.004 0.068 0.005 0.004 0.071 0.004

Model 4 5000 0.004 0.024 0.004 0.004 0.018 0.004 0.003 0.019 0.004 0.001 0.017 0.001 0.001 0.012 0.001 0.001 0.012 0.001

Scenario III: with censoring and with mis-specified GPS model

2000 0.007 0.088 0.007 0.014 0.199 0.018 0.003 0.070 0.004 0.006 0.077 0.007 0.041 0.517 0.023 0.003 0.077 0.004

Model 1 5000 0.001 0.011 0.001 0.006 0.026 0.009 0.001 0.005 0.002 0.001 0.006 0.001 0.006 0.024 0.010 0.001 0.005 0.002

2000 0.283 2.636 0.383 3.436 65.636 3.637 0.375 11.485 0.860 0.007 0.146 0.009 0.059 0.520 0.127 0.009 0.033 0.011

Model 2 5000 0.072 0.371 0.080 1.158 21.526 2.618 0.189 6.666 0.251 0.001 0.005 0.001 0.017 0.226 0.046 0.001 0.007 0.002

2000 0.219 1.712 0.241 0.614 19.139 1.327 0.177 8.728 0.237 0.017 0.119 0.008 0.034 0.365 0.052 0.003 0.023 0.004

Model 3 5000 0.063 0.212 0.069 0.326 8.325 0.584 0.065 1.765 0.129 0.001 0.005 0.001 0.009 0.030 0.018 0.001 0.003 0.002

2000 0.523 10.728 1.162 17.424 522.079 29.306 1.371 17.647 2.180 0.059 1.056 0.044 3.092 97.579 8.688 0.338 7.853 0.537

Model 4 5000 0.052 0.772 0.046 2.532 12.111 6.868 0.048 0.666 0.071 0.014 0.145 0.012 0.692 4.084 1.340 0.024 0.502 0.039

Figure 2.1: Simulation results with outcome Model 1 without censoring.
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Table 2.3: Summarized percentage of correct decisions for different sample sizes and
different scenarios.

Sample size (n) Linear.true.ps Linear.multinomial.ps Linear.CBPS Spline.true.ps Spline.multinomial.ps Spline.CBPS

Scenario I: without censoring and with correct GPS model

2000 0.937 0.937 0.940 0.936 0.935 0.939

Model 1 5000 0.973 0.972 0.973 0.973 0.972 0.973

2000 0.782 0.780 0.791 0.960 0.961 0.964

Model 2 5000 0.781 0.784 0.790 0.981 0.981 0.981

2000 0.814 0.815 0.823 0.973 0.973 0.975

Model 3 5000 0.815 0.812 0.818 0.988 0.987 0.988

2000 0.722 0.734 0.744 0.773 0.775 0.785

Model 4 5000 0.755 0.759 0.768 0.803 0.803 0.807

Scenario II: with censoring and with correct GPS model

2000 0.861 0.860 0.865 0.859 0.858 0.863

Model 1 5000 0.889 0.889 0.891 0.890 0.890 0.892

2000 0.769 0.773 0.783 0.947 0.944 0.948

Model 2 5000 0.806 0.802 0.807 0.969 0.969 0.970

2000 0.816 0.819 0.825 0.967 0.965 0.967

Model 3 5000 0.823 0.825 0.829 0.972 0.972 0.972

2000 0.858 0.860 0.869 0.908 0.904 0.907

Model 4 5000 0.896 0.895 0.899 0.937 0.934 0.936

Scenario III: with censoring and with mis-specified GPS model

2000 0.849 0.798 0.873 0.853 0.796 0.870

Model 1 5000 0.922 0.856 0.929 0.926 0.856 0.928

2000 0.636 0.481 0.599 0.905 0.781 0.907

Model 2 5000 0.687 0.424 0.526 0.954 0.806 0.939

2000 0.682 0.555 0.659 0.931 0.851 0.938

Model 3 5000 0.736 0.513 0.616 0.967 0.883 0.953

2000 0.651 0.371 0.548 0.775 0.470 0.648

Model 4 5000 0.690 0.373 0.663 0.807 0.472 0.721

Figure 2.2: Simulation results with outcome Model 2 without censoring.
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Figure 2.3: Simulation results with outcome Model 3 without censoring.

Figure 2.4: Simulation results with outcome Model 4 without censoring.
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Figure 2.5: Simulation results for outcome Model 1 with censoring and with a cor-
rectly specified GPS model.

Figure 2.6: Simulation results for outcome Model 2 with censoring and with a cor-
rectly specified GPS model.
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Figure 2.7: Simulation results for outcome Model 3 with censoring and with a cor-
rectly specified GPS model.

Figure 2.8: Simulation results for outcome Model 4 with censoring and with a cor-
rectly specified GPS model.
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Figure 2.9: Simulation results for outcome Model 1 with censoring and with a mis-
specified GPS model.

Figure 2.10: Simulation results for outcome Model 2 with censoring and with a mis-
specified GPS model.
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Figure 2.11: Simulation results for outcome Model 3 with censoring and with a mis-
specified GPS model.

Figure 2.12: Simulation results for outcome Model 4 with censoring and with a mis-
specified GPS model.
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Table 2.3 summarizes the accuracy of each simulation setting for different

sample sizes (n = 2000 and 5000) in the three scenarios. Based on this table, we

conclude that (1) the PCD increases with sample size increased, no matter how the

data is generated; (2) PCDs are close between linear outcome model and GPLSIM

outcome model when the outcome model is a simple linear model (Model 1), and

PCDs are higher in GPLSIM outcome model when the outcome model is generated

from a GPLSIM (Model 2 and 3) or more complex model (Model 4); (3) When a

corrected propensity score model is applied, the PCDs are close regardless the GPS

models used; (4) When a mis-specified GPS model is used, the proposed method with

CBPS has a better performance than with multinomial GPS model, and the model

with outcome GPLSIM performs better than linear outcome model.

2.4 Case study

In this section, we apply the proposed method to examine who would benefit

more from physical exercise using the third national health and nutrition examination

survey (NHANES III: 1988-1994) data set. The mortality and survival information by

year 2020 on the subjects are obtained from the Centers for Disease Control and Pre-

vention (https://ftp.cdc.gov/pub/Health_Statistics/NCHS/datalinkage/linked_

mortality/).

Literature shows that physical activity is inversely associated with mortality

(Blair et al., 1989). A lower physical activity is associated with an increased mortal-

ity risk, and a greater moderate-to-vigorous physical activity is associated with lower

mortality (Saint-Maurice et al., 2018). In this study, we take different levels of phys-

ical activity as treatment groups, and subjects are classified to inactive, insufficient

active and active physical exercise groups according to the frequency and intensity of

physical activity in a week. We only include subjects aged 50-70 years old when they

were interviewed in NHANES III to have a more homogeneous group in age.
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Figure 2.13: Estimated survival time for subjects witout physical activity.

Figure 2.14: Estimated contrast function versus age for insufficient physical activity
and active physical activity comparing with inactive group, stratified by race (Non-
Hispanic black versus others).
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Table 2.4: The distributions of confounding variables among three different physical
exercise groups.

Levels of physical activity

Inactive Insufficient active Active

Continuous variables Mean (SD) Mean (SD) Mean (SD) P-Value

Age 61.20 (5.60) 60.45 (5.59) 61.38 (5.69) < 0.001

BMI 29.32 (6.50) 28.61 (5.38) 27.68 (5.05) < 0.001

Education 8.60 (4.58) 10.44 (4.09) 11.11 (4.03) < 0.001

Poverty ratio 1.98 (1.64) 2.85 (1.92) 3.12 (2.06) < 0.001

Total Inactive Insufficient active Active

Categorical variables Level N (%) N (%) N (%) N (%) P-Value

Overall 3084 732 (23.7%) 1279 (41.5%) 1073 (34.8%)

Gender Male 1495 257 (17.2%) 647 (43.3%) 591 (39.5%) < 0.001

Female 1589 475 (29.9%) 632 (39.8%) 482 (30.3%)

Non-Hispanic Black Yes 750 229 (30.5%) 292 (38.9%) 229 (30.5%) < 0.001

No 2334 503 (21.6%) 987 (42.3%) 844 (36.2%)

RUC Metro 1390 332 (23.9%) 543 (39.1%) 515 (37.1%) 0.026

No metro 1694 400 (23.6%) 736 (43.4%) 558 (32.9%)

Counts of comorbidities < 2 1084 197 (18.2%) 457 (42.2%) 430 (39.7%) < 0.001

≥ 2 2000 535 (26.8%) 822 (41.1%) 643 (32.1%)

Table 2.5: The distributions of confounding variables stratified by outcomes.

Survival Death

Continuous variables Mean (SD) Mean (SD) P-Value

Age 57.57 (4.89) 62.31 (5.35) < 0.001

BMI 28.33 (5.08) 28.51 (5.78) 0.672

Education 10.91 (4.39) 9.96 (4.23) < 0.001

Poverty ratio 3.16 (1.99) 2.51 (1.92) < 0.001

Total Survival Death

Categorical variables Level N N (%) N (%) P-Value

Overall 3084 885 (28.7%) 2199 (71.3%)

Gender Male 1495 358 (23.9%) 1137 (76.1%) < 0.001

Female 1589 527 (33.2%) 1062 (66.8%)

Non-Hispanic Black Yes 750 179 (23.9%) 571 (76.1%) 0.001

No 2334 706 (30.2%) 1628 (69.8%)

RUC Metro 1390 425 (30.6%) 965 (69.4%) 0.040

No metro 1694 460 (27.2%) 1234 (72.8%)

Counts of comorbidities ≤ 1 1084 449 (41.4%) 635 (58.6%) < 0.001

≥ 2 2000 436 (21.8%) 1564 (78.2%)

The treatment group, in terms of level of physical activity is created based

on the survey questions on Household Adult Questionnaire (HAQ). The frequency

and metabolic equivalent of task (MET) score for different types of activities are
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Table 2.6: Estimated parameters in the outcome under control model and in the two
contrast functions.

Outcome under control Contrasts

Inactive Insufficient active vs Inactive Active vs Inactive

Variables Est. SE 95 % CI Est. SE 95 % CI Est. SE 95 % CI

Age -0.030 0.007 (-0.047, -0.022) 0.288 0.198 (0.017, 0.784) 0.236 0.179 (0.009, 0.657)

BMI 0.019 0.006 (0.006, 0.026) -0.390 0.251 (-0.829, 0.114) -0.319 0.292 (-0.830, 0.306)

Education 0.010 0.010 (-0.013, 0.026) 0.208 0.423 (-0.640, 0.855) -0.008 0.451 (-0.785, 0.868)

Poverty ratio 0.010 0.029 (-0.044, 0.068) 0.208 0.630 (-0.918, 0.983) 0.212 0.691 (-0.990, 0.984)

Gender (ref: Male) 0.229 0.085 (0.061, 0.399) -0.082 0.109 (-0.282, 0.132) -0.033 0.109 (-0.245, 0.175)

RUC (ref: No metro) 0.074 0.087 (-0.109, 0.261) -0.111 0.103 (-0.315, 0.096) -0.106 0.114 (-0.335, 0.120)

Non-Hispanic Black (ref: No) -0.256 0.087 (-0.442, -0.063) 0.113 0.124 (-0.130, 0.365) 0.228 0.130 (0.045, 0.536)

Comorbidity (ref: ≤1) -0.256 0.092 (-0.460, -0.071) -0.012 0.115 (-0.237, 0.219) 0.029 0.120 (-0.209, 0.275)

Table 2.7: Illustration of optimal treatment assignment for patients with similar
characteristics.

Comparison Gender Non-Hispanic Black RUC Comorbidity Age BMI Education Poverty ratio Observed Trt Observed outcome Optimal Trt Optimal outcome (spline)

Female Yes Metro ≥ 2 62 24.5 6 2.46 Inactive 5.19 Active 5.24

Set 1 Female Yes Metro ≥ 2 62 24.0 12 3.48 Insufficient 5.28 Active 5.42

Female Yes Metro ≥ 2 62 25.0 12 0.54 Active 5.28 Active 5.34

Female No No metro ≥ 2 63 22.4 12 2.20 Inactive 4.64 Insufficient 5.56

Set 2 Female No No metro ≥ 2 63 23.5 9 2.47 Insufficient 5.42 Insufficient 5.42

Female No No metro ≥ 2 63 21.1 12 0.45 Active 5.15 Insufficient 5.57

collected. According to the World Health Organization (WHO) 2020 guidelines, the

physical activities are categorized as light-intensity physical activity (LPA) which

is performed between 1.5 and 3 METs, moderate-intensity physical activity (MPA)

which is performed between 3 and 6 METs, and vigorous-intensity physical activity

(VPA) with 6 or more METs (Bull et al., 2020). Combining frequency and intensity,

the active physical exercise group is defined as having MPA five or more times per

week or VPA at least three times per week. Inactive group is defined as if no physical

activity is reported. Insufficient active group is defined as if there is reported physical

activities but do not meet the criteria of active group (Beddhu et al., 2009). Demo-

graphic variables, laboratory measures and comorbidity are collected and considered

as confounding variables. Age, education and poverty income ratio are obtained from

the questionnaire data, and body mass index (BMI) is obtained from the examina-

tiondata. Gender, ethnicity, and Rural-Urban commuting (RUC) are obtained from

questionnaire taken as categorical variables. We also consider the following comor-

bidities which are summarized as binary variable. Hypertension is defined as an

average systolic blood pressure ≥ 140 mmHg and/or an average diastolic blood pres-
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sure ≥ 90 mmHg, or a self-reported physician diagnosis of hypertension. Diabetes

is defined as a glycated hemoglobin (HbAlc) ≥ 6.5%, or a self-reported physician

diagnosis of diabetes. Dyslipidemia is defined as a total cholestrol ≥ 240 mg/dL, or

triglyceridemia ≥ 150 mg/dL, or a low-density lipoprotein cholestrol (LDL-C) ≥ 130

mg/dL, or a high-density lipoprotein cholestrol (HDL-C) < 40 mg/dL for men and

<50 mg/dL for women. Chronic kidney disease (CKD) is defined as the estimated

glomerular filtration rate (eGFR) < 60 mL/min/1.73m2 and/or a urinary ACR > 30

mg/g (Liu et al., 2013). A diagnosis of stroke, congestive heart failure (CHF), chronic

obstructive pulmonary disease (COPD), cancer, and coronary heart disease (CHD)

are from self-reported diagnosis. The final comorbidity condition is summarized as a

binary variable according to whether the subject has 2 or more the above mentioned

comorbidity conditions. We exclude subjects who have missing information in mor-

tality, physical activity, or other characteristics, and we also exclude subjects who

died from accidents. Totally, 3084 subjects are included in the current study.

Table 2.4 and 2.5 show the distribution of these confounding variables stratified

by treatment assignment and outcome respectively. The significant difference is shown

when the p-value is less than 0.05. Table 2.6 shows the estimates of parameters in

the outcome model and contrast function using GPLSIM where the standard error

and 95% CI are obtained using 1000 bootstrap samples. In both the outcome under

control and contrast functions, age is significant variable. Race is significant in the

outcome under control and the comparison between active and inactive group. Other

variables are not significant in the model. Figure 2.13 shows the outcome profile for

subjects without physical activity. Based on Figure 2.13, we can see (1) for subjects

without physical activity, their survival time declines as subjects are aged; (2) the

survival time for non-Hispanic black is significantly shorter than other races. Figure

2.14 shows the estimated contrast functions for insufficient active physical exercise

group and active physical exercise group, comparing with inactive physical exercise
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group. From Figure 2.14, we can see that (1) both insufficient physical exercise and

active physical exercise are beneficial for longer survival time for patients aged 55 and

older, comparing with inactive physical exercise group; and (2) non-Hispanic black

benefits significantly from active physical exercise.

To illustrate the predicted optimal treatment group versus observed outcome

under different physical exercise levels, we select two sets of subjects. In each set,

the characteristics of the subjects are similar but with different physical exercise level

(see Table 2.7). In the first set, the three subjects are 62-year old female, Non-

Hispanic black, from metro area, and have 2 or more comorbidities. However, their

physical exercise levels are different; one with inactive exercise (treatment 1), one with

insufficient active exercise (treatment 2), and one with active exercise (treatment 3).

According to their characteristics, the estimated optimal treatment is active exercise.

Subject who is in the optimal treatment would have a longer survival time. In the

estimated optimal outcome, the estimates with GPLSIM and CBPS appears to be

close to the observed outcome. From the set 2, we see that with optimal treatment

has the longest survival time.

2.5 Conclusion

In this project, we propose to use structural AFT mean model to select opti-

mal treatment. The frame work of structural AFT mean model is used to estimate

the benefit from a treatment. GPLSIM is used to estimate the outcome function

under control and contrast functions. The proposed model provides more flexibility

in modeling contrast functions. We incorporate the inverse probability of censoring

weights and propensity score to reduce the impact due to censoring and confounding

variables.

We present the accuracy and MSE of proposed method and show a consistent

estimation when either the propensity score model or the outcome model under con-
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trol is correctly specified. Furthermore, even when both models are mis-specified, the

proposed method still selects optimal treatment with a good accuracy.
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Laplaud, D., Léger, M., Giraudeau, B., and Foucher, Y. (2020). G-computation,

propensity score-based methods, and targeted maximum likelihood estimator for

causal inference with different covariates sets: a comparative simulation study.

Scientific reports, 10(1):9219.

Chattopadhyay, A., Hase, C. H., and Zubizarreta, J. R. (2020). Balancing vs modeling

approaches to weighting in practice. Statistics in Medicine, 39(24):3227–3254.

Chen, P.-Y. and Tsiatis, A. A. (2001). Causal inference on the difference of the

restricted mean lifetime between two groups. Biometrics, 57(4):1030–1038.

Cole, S. R. and Frangakis, C. E. (2009). The consistency statement in causal inference:

a definition or an assumption? Epidemiology, 20(1):3–5.

Deb, S., Austin, P. C., Tu, J. V., Ko, D. T., Mazer, C. D., Kiss, A., and Fremes,

S. E. (2016). A review of propensity-score methods and their use in cardiovascular

research. Canadian Journal of Cardiology, 32(2):259–265.

Esser, M. B., Sherk, A., Liu, Y., Naimi, T. S., Stockwell, T., Stahre, M., Kanny, D.,

Landen, M., Saitz, R., and Brewer, R. D. (2020). Deaths and years of potential life

lost from excessive alcohol use—united states, 2011–2015. Morbidity and Mortality

Weekly Report, 69(39):1428.

Geng, Y., Zhang, H. H., and Lu, W. (2015). On optimal treatment regimes selection

for mean survival time. Statistics in medicine, 34(7):1169–1184.

Guo, S. and Fraser, M. W. (2014). Propensity score analysis: Statistical methods and

applications, volume 11. SAGE publications.

Guo, W., Zhou, X.-H., and Ma, S. (2021). Estimation of optimal individualized treat-

53



ment rules using a covariate-specific treatment effect curve with high-dimensional

covariates. Journal of the American Statistical Association, 116(533):309–321.

Hall, W. H., Ramachandran, R., Narayan, S., Jani, A. B., and Vijayakumar, S. (2004).

An electronic application for rapidly calculating charlson comorbidity score. BMC

cancer, 4(1):1–8.

Hernan, M. and Robins, J. (2018). Causal inference. boca ration, florida.

Hernán, M. A. (2012). Beyond exchangeability: the other conditions for causal infer-

ence in medical research.

Horowitz, J. L. (2001). The bootstrap. In Handbook of econometrics, volume 5, pages

3159–3228. Elsevier.

Hu, H., Mitra, R., Han, Y., Pal, S., Huang, H., Vatsalya, V., et al. (2022). Prevalence

and treatment for alcohol use disorders based on kentucky medicaid 2012-2019

datasets. J Alcohol Drug Depend, 10(4).

Imai, K. and Ratkovic, M. (2014). Covariate balancing propensity score. Journal of

the Royal Statistical Society Series B: Statistical Methodology, 76(1):243–263.

Imbens, G. W. (2000). The role of the propensity score in estimating dose-response

functions. Biometrika, 87(3):706–710.

Ishigooka, J., Murasaki, M., Miura, S., and Group, T. O. L.-P. I. S. (2000). Olanzapine

optimal dose: Results of an open-label multicenter study in schizophrenic patients.

Psychiatry and clinical neurosciences, 54(4):467–478.

Jain, K. K. (2002). Personalized medicine. Current opinion in molecular therapeutics,

4(6):548–558.

54



Jiang, R., Lu, W., Song, R., Hudgens, M. G., and Naprvavnik, S. (2017). Doubly

robust estimation of optimal treatment regimes for survival data—with application

to an hiv/aids study. The annals of applied statistics, 11(3):1763.

Julious, S. A. and Mullee, M. A. (1994). Confounding and simpson’s paradox. Bmj,

309(6967):1480–1481.

Kranzler, H. R. and Soyka, M. (2018). Diagnosis and pharmacotherapy of alcohol use

disorder: a review. Jama, 320(8):815–824.

Li, J., Handorf, E., Bekelman, J., and Mitra, N. (2016). Propensity score and doubly

robust methods for estimating the effect of treatment on censored cost. Statistics

in medicine, 35(12):1985–1999.

Li, Y. and Li, L. (2021). Propensity score analysis methods with balancing constraints:

A monte carlo study. Statistical methods in medical research, 30(4):1119–1142.

Litten, R. Z., Wilford, B. B., Falk, D. E., Ryan, M. L., and Fertig, J. B. (2016).

Potential medications for the treatment of alcohol use disorder: an evaluation of

clinical efficacy and safety. Substance abuse, 37(2):286–298.

Liu, X., Wang, Y., Wang, C., Shi, C., Cheng, C., Chen, J., Ma, H., Lv, L., Li, L., and

Lou, T. (2013). A new equation to estimate glomerular filtration rate in chinese

elderly population. PloS one, 8(11):e79675.

Lu, J. (2018). On the partial identification of a new causal measure for ordinal

outcomes. Statistics & Probability Letters, 137:1–7.

Murphy, K. P. (2002). Dynamic bayesian networks: representation, inference and

learning. University of California, Berkeley.

National Institutes of Health (2014). Treatment for alcohol problems: Finding and

getting help. Technical report, NIH Publication.

55



O’shea, R. S., Dasarathy, S., and McCullough, A. J. (2010). Alcoholic liver disease.

Official journal of the American College of Gastroenterology— ACG, 105(1):14–32.

Pan, Y. and Zhao, Y.-Q. (2021). Improved doubly robust estimation in learning opti-

mal individualized treatment rules. Journal of the American Statistical Association,

116(533):283–294.

Pearl, J. (2009). Causal inference in statistics: An overview. Statistics surveys,

3:96–146.

Piano, M. R. (2002). Alcoholic cardiomyopathy: incidence, clinical characteristics,

and pathophysiology. Chest, 121(5):1638–1650.

Qian, M. and Murphy, S. A. (2011). Performance guarantees for individualized treat-

ment rules. Annals of statistics, 39(2):1180.

Quan, H., Sundararajan, V., Halfon, P., Fong, A., Burnand, B., Luthi, J.-C., Saun-

ders, L. D., Beck, C. A., Feasby, T. E., and Ghali, W. A. (2005). Coding algorithms

for defining comorbidities in icd-9-cm and icd-10 administrative data. Medical care,

pages 1130–1139.

Rogal, S., Youk, A., Zhang, H., Gellad, W. F., Fine, M. J., Good, C. B., Chartier,

M., DiMartini, A., Morgan, T., Bataller, R., et al. (2020). Impact of alcohol use

disorder treatment on clinical outcomes among patients with cirrhosis. Hepatology,

71(6):2080–2092.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score

in observational studies for causal effects. Biometrika, 70(1):41–55.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and

nonrandomized studies. Journal of educational Psychology, 66(5):688.

56



Saint-Maurice, P. F., Troiano, R. P., Matthews, C. E., and Kraus, W. E. (2018).

Moderate-to-vigorous physical activity and all-cause mortality: do bouts matter?

Journal of the American Heart Association, 7(6):e007678.

Schulte, P. J., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2014). Q-and a-learning

methods for estimating optimal dynamic treatment regimes. Statistical science: a

review journal of the Institute of Mathematical Statistics, 29(4):640.

Simoneau, G., Moodie, E. E., Nijjar, J. S., Platt, R. W., Investigators, S. E. R. A.

I. C., et al. (2020). Estimating optimal dynamic treatment regimes with survival

outcomes. Journal of the American Statistical Association, 115(531):1531–1539.

Smothers, B. A., Yahr, H. T., and Ruhl, C. E. (2004). Detection of alcohol use

disorders in general hospital admissions in the united states. Archives of internal

medicine, 164(7):749–756.

Song, R., Luo, S., Zeng, D., Zhang, H. H., Lu, W., and Li, Z. (2017). Semiparamet-

ric single-index model for estimating optimal individualized treatment strategy.

Electronic journal of statistics, 11(1):364.

Sugihara, M. (2010). Survival analysis using inverse probability of treatment weighted

methods based on the generalized propensity score. Pharmaceutical Statistics: The

Journal of Applied Statistics in the Pharmaceutical Industry, 9(1):21–34.

VanderWeele, T. J., Luedtke, A. R., van der Laan, M. J., and Kessler, R. C. (2019).

Selecting optimal subgroups for treatment using many covariates. Epidemiology

(Cambridge, Mass.), 30(3):334.

Vittadini, G., Buonocore, M., Colli, G., Terzi, M., Fonte, R., and Biscaldi, G. (2001).

Alcoholic polyneuropathy: a clinical and epidemiological study. Alcohol and alco-

holism, 36(5):393–400.

57



Wallace, M. P., Moodie, E. E., and Stephens, D. A. (2019). Model selection for

g-estimation of dynamic treatment regimes. Biometrics, 75(4):1205–1215.

Wang, J.-L., Xue, L., Zhu, L., and Chong, Y. S. (2010). Estimation for a partial-linear

single-index model.

Weisner, C., Ray, G. T., Mertens, J. R., Satre, D. D., and Moore, C. (2003). Short-

term alcohol and drug treatment outcomes predict long-term outcome. Drug and

alcohol dependence, 71(3):281–294.

Witkiewitz, K., Litten, R., and Leggio, L. (2019). Advances in the science and

treatment of alcohol use disorder. Science advances, 5(9):eaax4043.

Yao, L. and Tarpey, T. (2022). A single index model for longitudinal outcomes to

optimize individual treatment decision rules. Stat, page e493.

Zhang, R., Huang, Z., and Lv, Y. (2010). Statistical inference for the index parameter

in single-index models. Journal of Multivariate Analysis, 101(4):1026–1041.

Zhao, Y., Kosorok, M. R., and Zeng, D. (2009). Reinforcement learning design for

cancer clinical trials. Statistics in medicine, 28(26):3294–3315.

Zhao, Y., Zeng, D., Socinski, M. A., and Kosorok, M. R. (2011). Reinforcement learn-

ing strategies for clinical trials in nonsmall cell lung cancer. Biometrics, 67(4):1422–

1433.

58



APPENDIX

Appendix 1: Derivation for equation

Derivation for Equation (1.5)

Let us denote π
(a)
i = Pr(Y (a) = i) for i = 1, 2, · · · , c and a = 0, 1, · · · , K. Let

us denote γ
(a)
i = Pr(Y (a) ≤ i) for i = 1, 2, · · · , c and a = 0, 1, · · · , K − 1. It is clear

that γ
(a)
c = 1. Then we have:

π
(a)
1 = Pr(Y (a) = 1) = Pr(Y (a) ≤ 1) = γ

(0)
1 for a = 0, 1, · · · , K − 1,

π
(a)
i = Pr(Y (a) = i) = Pr(Y (a) ≤ i)−Pr(Y (a) ≤ i−1) = γ

(a)
i −γ(a)i−1, for i = 2, 3, · · · , c,

and a = 0, 1, · · · , K − 1.
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We can obtain:

θa = Pr(Y (0) < Y (a)) + 0.5Pr(Y (0) = Y (a))

=
c−1∑
i=1

c∑
j=i+1

Pr(Y (0) = i)Pr(Y (a) = j) + 0.5
c∑

i=1

Pr(Y (0) = i)Pr(Y (a) = i)

=
c−1∑
i=1

c∑
j=i+1

π
(0)
i π

(a)
j + 0.5

c∑
i=1

π
(0)
i π

(a)
i

= [π
(a)
1 , π

(a)
2 , · · · , π(a)

c−1, π
(a)
c ]×



0.5 0 · · · 0 0

1 0.5 · · · 0 0

· · · · · · · · ·

1 1 · · · 0.5 0

1 1 · · · 1 0.5


×



π
(0)
1

π
(0)
2

...

π
(0)
c−1

π
(0)
c



= [γ
(a)
1 , γ

(a)
2 − γ

(a)
1 , · · · , γ(a)c−1 − γ

(a)
c−2, 1− γ

(a)
c−1]×



0.5 0 · · · 0 0

1 0.5 · · · 0 0

· · · · · · · · ·

1 1 · · · 0.5 0

1 1 · · · 1 0.5


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(1.5) follows.

Derivation for Equation (1.6)

Note that the marginal structural model: logit Pr(Y (a) ≤ j) = αj −
∑3

k=1 τkIa=k,

(j = 1, 2, a = 0, 1, 2, 3), which implies that:

logit Pr(Y (0) ≤ j) = αj, for potential outcome under control, and

logit Pr(Y (a) ≤ j) = αj − τa, for potential outcome under treatment a.

Thus, we have:
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Appendix 2: Supplementary tables

Table S1.1: International Classification of Disease, Ninth and Tenth Revision (ICD-9
and ICD-10) diagnosis code for patients with alcohol abuse or dependence

Description ICD-9 codes ICD-10 codes

Alcohol dependent 303.00, 303.01, 303.02, 303.9, 303.9X F10.20, F10.22, F10.22X, F10.23, F10.23X, F10.29

Alcohol abuse 305.00, 305.01, 305.02 F10.10, F10.12, F10.12X, F10.13, F10.13X, F10.19

Alcohol related organ disease 571.0, 571.1, 571.2, 571.3, 357.5, 425.5, 535.3 K70.XX, G62.1, I42.6, K29.2X

Remission 305.03, 303.03 F10.11, F10.21

Table S1.2: Healthcare common procedure coding system (HCPCS) and current pro-
cedural terminology (CPT) codes related to behaviour treatments for patients with
alcohol abuse or dependence

Description HCPCS and CPT codes

Alcohol consultation H0005, H0015, T1006, G0396, G0397

No Specific consultation H0004, 90804, 90805, 90806, 90807, 90808, 90809,

90810, 90811, 90812, 90813, 90814, 90815, 90816,
90817, 90818, 90819, 90821, 90822, 90823, 90824,
90826, 90827, 90828, 90829, 90847, 90849, 90853,

90857, 90875, 90876, 0074T
Other alcohol related behaviour treatment H0001, H0003, H0006, H0007, H0021, H0022, H0026,

H0027, H0028, H0029, H0047, H0050, H2034, H2035,
H2036, T1007, T1011, T1012
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Table S1.3: National drug codes (NDC) which could be used to treat patients with
alcohol abuse or dependence

Drug Drug codes

Naltrexone 00406117001, 00406117003, 16729008101, 16729008110, 47335032683, 47335032688,

51224020630, 51224020650, 68084029121, 68094085362, 68084029111, 00555090201,
00555090202, 00185003901, 51927437700, 38779088703, 38779088704

Acamprosate 00093535286, 00378633380, 60687012125, 68382056928, 68462043518

00258400060, 51079024106
Disulfiram 00054035613, 00054035625, 00054035713, 00054035725, 00093503501, 00093403601,

47781060730, 64980017103, 64980017203, 64980017101, 64980071202, 00378414001,
00378414101, 00603343221

Topiramate 00093015506, 00093015510, 00093721906, 00093721910, 00093722006, 00093733506

00093733506, 00093733606, 00093754006, 00093754010, 00378610105, 00378610191,
00378610205, 00378610291, 00378610305, 00378610391, 00378610591, 00781227660,
13668003105, 13668003160, 13668003205, 13668003260, 13668003305, 13668003360,
13668003405, 13668003460, 16252056860, 16252056960, 31722027805, 31722027810,
31722027860, 31722027905, 31722027910, 31722027960, 31722028005, 31722028010,
31722028060, 31722028105, 31722028110, 31722028160, 51079072620, 31079072720,
51079072820, 59762103001, 59762103101, 59762103201, 59762103301, 60429077010,
60505276006, 60505276106, 60505276206, 60505276306, 62756070713, 62756070786,
62756071013, 62756071086, 62756071113, 62756071186, 62756071213, 62756071286,
64376012101, 64376012110, 68084034211, 68084034401, 68084034411, 68084034521,
68382000414, 68382000514, 68382013805, 68382013814, 68382013905, 68382013914,
68382014005, 68382014014, 68382014105, 68382014114, 68462010810, 68462010860,
68462010910, 68462010960, 68462011010, 68462011060, 68462015310, 68462015360,
60505276005, 60505276105, 65862017360, 65862017460, 00832107130, 00832107430,
00832107530, 60505276205, 60505276305, 68084034201, 00832107230, 00832107315,
00832107330, 00832107415, 29300011710, 38779244308, 47335070713, 47335071013,
47335071013, 47335071086, 47335071113, 47335071186, 47335071213, 47335071286,
51079072601, 51927467100, 69097012203, 69097012212, 69097012215, 69097012303,
69097012312, 69097012315, 69097012403, 69097012412, 69097012415, 69097012503,
69097012512, 69097012515, 29300011610, 51552120605, 69097081603, 69097081615,
69097081703, 69097081715, 69097081803, 69097081815, 69097081903, 29300011505,
29300011510, 29300011605, 29300011616, 29300011705, 29300011805, 29300011816,
29300011516, 29300011716, 00395815156, 29300011810, 38779244305, 69097081915
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