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ABSTRACT

STABILITY OF CAUCHY’S EQUATION ON ∆+

Holden Wells

August 1, 2023

The most famous functional equation f(x + y) = f(x) + f(y) known as

Cauchy’s equation due to its appearance in the seminal analysis text Cours d’Analyse

[9], was used to understand fundamental aspects of the real numbers and the

importance of regularity assumptions in mathematical analysis. Since then, the

equation has been abstracted and examined in many contexts. One such examination,

introduced by Stanislaw Ulam and furthered by Donald Hyers, was that of stability[20].

Hyers demonstrated that Cauchy’s equation exhibited stability over Banach Spaces

in the following sense: functions that approximately satisfy Cauchy’s equation

are approximated with the same level of error by functions that are solutions of

Cauchy’s equation, namely linear maps. Here we pose the question of the stability

of Cauchy’s equation for functions defined on the monoid known as ∆+, the space

of cumulative distribution functions. We present stability results analogous to those

of Hyer’s and Ulam and results involving a new perspective on stability. We furnish

a connection between the two perspectives and examples of the need for some

regularity assumptions.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

History of Equation Solving . . . . . . . . . . . . . . . . . . . . 2

Cauchy’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . 5

Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. PRELIMINARIES FOR ∆+ . . . . . . . . . . . . . . . . . . . . . . . 14

Order Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Algebraic Structure . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. CAUCHY’S EQUATION ON ∆+ . . . . . . . . . . . . . . . . . . . . 37

4. NEW RESULTS IN STABILITY . . . . . . . . . . . . . . . . . . . . 43

Framing Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Triangle functions generated over Strict T . . . . . . . . . . . . 45

Triangle functions generated by nilpotent T . . . . . . . . . . . 64

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vi



CHAPTER 1

INTRODUCTION

In this dissertation, we set out to examine what properties must be true of

approximate solutions to an important functional equation, Cauchy’s Equation, in a

novel setting, the space of cumulative distribution functions on non-negative random

variables, or ∆+. Of particular interest will be examining the relationship between

these approximate solutions and the true solutions. This relationship is called the

stability of the functional equation. In the process of examining the stability of

Cauchy’s equation in ∆+, we will discuss what Cauchy’s equation means in ∆+,

and we will explore how to meaningfully and naturally generalize the notion of

approximation in a space which is not strictly numerical. Alongside this process,

we will observe what this means about the construction of ∆+, and why examining

Cauchy’s equation allows us to naturally explore this construction.

In the introduction chapter, we provide a brief history of the functional

equations and their stability as a means of developing motivation and understanding

for results presented in Chapter 4 as well as a means of providing a sense of place

for these results in the broader mathematical context.

In the following two chapters, we present results relevant to ∆+. Chapter

2 provides history, motivation, and structural understanding of the space, and

Chapter 3 gives the necessary understanding of Cauchy’s equation in the context of

∆+ required to appreciate stability.

Finally, in Chapter 4 we present new results concerning stability.
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History of Equation Solving

Functional Equations is the field of mathematics in which equations are

solved for unknown functions. By solving we specifically mean identify the possible

functions (or combinations of functions) which make a given equation true.

Generally, one motivation for solving equations is to discover the answer to

a practical problem. In the book,
�
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al-Kitab al Mukhtasar fi Hisab al-Jabr wal-Muqabalah). The author, Muhammad

ibn Musa al-Khwarizimi, addresses a complex inheritance situation that has to

adhere to a set of rules observed in Baghdad circa 830:

“A man dies, leaving two sons behind him, and bequeathing one third of his

capital to a stranger. He leaves ten dirhems [currency] of property and a claim of

ten dirhems upon one of the sons.”[3]

The observed rules specify that the debts forgiven by the estate are considered

part of the size of the estate. Since both the share of the stranger and the share

of debt forgiveness to the indebted son are dependent on the size of the estate, a

near circular issue appears. To resolve the problem, al-Khwārizmı̄ pulls the clever

trick of assuming the situation has already been resolved and that the resolution

is by choosing the amount of debt forgiven to be “thing” (or in our case x). Then

concludes that the estate has been distributed correctly x would satisfy the equation

2
3
(10+x) = 2x. Through a series of repeatable steps for which al-Khwārizmı̄ became

the namesake of the word algorithm, it is established that the unique value of x

that solves the equation is 5.
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However, the utility of equations and their solutions extends beyond solving

every day problems, as is often the case in functional equations, solutions can define

properties. While the equation 2
3
(10+x) = 2x has a unique solution, there are many

choices of a, b, c which make the equation a2+b2 = c2 true, and characterizing these

solutions is synonymous with characterizing right triangles.

For a functional equations context, we examine how to parse 2π. Given that

exponentiation, was first a tool for abbreviating iterated multiplication, the phrase

2π might seem rather odd. What would it mean to multiply something by itself π

times? To begin to get an idea, we observe for natural numbers m and n we have

2m+n = 2 · 2 · . . . · 2 · 2︸ ︷︷ ︸
m+n

= (2 · . . . · 2)︸ ︷︷ ︸
m

· (2 · . . . · 2)︸ ︷︷ ︸
n

= 2m · 2n

and in fact this property holds regardless of the base. If we create a function ϵ(x)

that captures this property and applies it to all real numbers x and y we have

ϵ(x+ y) = ϵ(x)ϵ(y)

Since multiplication is uninteresting if all of the factors are one, and negative

numbers introduce unnecessary complication for the introduction, we will also

require ϵ(1) ̸= 1 and ϵ(1) > 0. If we assign a reference value to ϵ(1), say b, we

see that this function behaves like basic exponentiation would on natural numbers

since by induction we have for a natural number n

ϵ(n) = ϵ(1 + · · ·+ 1) = ϵ(1) · · · · · ϵ(1) = ϵ(1)n = bn.

Furthermore for natural numbers m and n

bm+n = ϵ(m+ n) = ϵ(n) + ϵ(m) = bmbn.

From these facts, other properties emerge,

ϵ(1) = ϵ(1 + 0) = ϵ(1)ϵ(0)

3



meaning b0 = 1, and

1 = ϵ(0) = ϵ(1− 1) = ϵ(1)ϵ(−1)

which can be interpreted as meaning b−1 = 1
ϵ(1)

= 1
b
. We also see that

ϵ(x) = ϵ
(x
n
+ · · ·+ x

n

)
= ϵ

(x
n

)n
which admits the interpretation that bx/n = n

√
bx. Therefore, we can meaningfully

parse bx/n so long as we can evaluate bx. In particular this means that we can

evaluate all rational powers of b. If we add the assumption that ϵ is a continuous

function (since for any a ∈ Q ϵ restricted to Q is bounded and monotone on (−∞, a],

we have the existence a continuous extension of the restricted ϵ ), we immediately

have the ability to parse all real exponents. Since b was arbitrarily chosen, we in fact

have a way to meaningfully discuss 2π as the limit of the sequence 23, 23.1, 23.14, . . . .

This example has both historical value and investigative value. On the

historical, the inverse function of ϵ, the logarithm is argued to be the first function

to be defined by a functional equation [1]. Burgi defined and constructed logarithms

by using the properties of exponents established above [8], Napier constructed them

via primitive differential equation [38], and Briggs constructed them explicitly by

the functional equation

λ(xy) = λ(x) + λ(y)

(although this was via description and not in modern function notation)[6]. In all

three cases, the logarithm was defined in a manner that can be expressed via a

functional equation.

On the investigative side, the construction of the exponential function as

above raises the question of how necessary it is to assume continuity. Is it perhaps

possible that there is enough structure imposed in the defining equation itself to do

away with continuity (or at least make a weaker assumption) and still get the same

result?
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Cauchy’s Equation

To gain some traction, we look to one of the foundational works of modern

analysis, Cauchy’s Cours D’Analyse. In his book, Cauchy introduced the four

functional equations to emphasize the use of regularity assumptions like continuity

and the necessity of being explicit in assuming them [9]. Below are the three

thematically important equations

f(x+ y) = f(x) + f(y) (1.1)

ϵ(x+ y) = ϵ(x)ϵ(y) (1.2)

λ(xy) = λ(x) + λ(y) (1.3)

the first of which is referred to as Cauchy’s equation due in part to its role in defining

solutions to all three equations. This role is highlighted in the following theorem:

Theorem 1 Let f : R → R be a solution of Cauchy’s equation, then ϵ is a solution

to Cauchy’s exponential equation, and λ is a solution to Cauchy’s logarithmic equation.

That is,

ϵ(x+ y) = ϵ(x)ϵ(y)

λ(xy) = λ(x) + λ(y)

if and only if there exists a, b ∈ (0,∞) such that ϵ(x) = af(x) and λ(x) = f(logb(x))

for all x ∈ R.

We therefore have as an immediate corollary that the existence of discontinuous

solutions to Cauchy’s equation is equivalent to discontinuous solutions of the Cauchy’s

5



logarithmic and exponential equations. If any such solutions exist, then the assumption

of continuity would be necessary.

While Cauchy was unable to characterize any discontinuous solutions, he

did completely characterize the continuous solutions in a method similar to our

examination of the exponential equation:

Theorem 2 Let f : R → R be a continuous function. Then for all x, y ∈ R

f(x+ y) = f(x) + f(y)

if and only if there exists c ∈ R such that f(x) = cx for all x ∈ R. In particular, if

f need only satisfy the equation for x, y ∈ Q the assumption of continuity may be

eliminated.

Several mathematicians including Banach, Sierpinski, and Steinhaus worked

to reduce the strength of the regularity assumptions required for Cauchy’s equation

to necessarily produce linear solutions. One such relaxation is the following

Theorem 3 Let f : R → R be a solution to Cauchy’s equation. There exists c ∈ R

such that f(x) = cx if and only if f can be bounded on a set of positive measure.

At the same time, particular attention was being paid to the logical foundations

of mathematics. One topic of interest was the axiom of choice which was being

investigated by Zermelo. With the goal of demonstrating the existence of a discontinuous

solution of Cauchy’s equation, Hamel used the well ordering principle which was

newly derived from Zermelo’s work to construct what is now known as a Hamel

basis [19]. In doing so, Hamel showed the necessity of some regularity assumptions

to yield linear solutions.
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Theorem 4 Let H be a Hamel basis for R over Q, and let g : H → R. Then for

some set of scalars {cx,h|h ∈ H }, finitely many of which are nonzero,

x =
∑
h∈H

cx,hh.

A function f satisfies

f(x) =
∑
h∈H

cx,hg(h)

if and only if f is a solutions of Cauchy’s equation. Furthermore, if g is such that

there exists h1, h2 ∈ H such that g(h1)
h1

̸= g(h2)
h2

, then f is not continuous.

Corollary 1 There exists discontinuous solutions of equation 1.2 and equation 1.3

As was Cauchy’s intent, we see that by examining the solutions of equation 1.1

deep analytic questions are raised which in turn develop analytic intuition. Furthermore,

Cauchy’s equation often is useful in solving and understanding other functional

equations. As a result, Cauchy’s equation has been cast in settings other than R.

One natural setting for which we will have use later is that of the positive half

interval for which Aczel and Erdos attained the following results [2]

Theorem 5 If g : [0,∞) → R is a solution to Cauchy’s Equation, then there exists

a solution to Cauchy’s Equation f : R → R for which g(x) = f(x) for all x ∈ [0,∞).

Corollary 2 If g is as above and g maps onto [0,∞), then there exists c ∈ [0,∞)

such that g(x) = cx

More generally, we observe that Cauchy’s equation (along with the logarithmic

and exponential equations) is really about defining automorphisms and homomorphisms,

so solutions are also important algebraically. As a result of the algebraic and analytic

properties of solutions of Cauchy’s equation, oftentimes solutions of other functional

equations will have some relationship to solutions of Cauchy’s equation making it

7



a natural jumping off point for investigating functional equations in various spaces.

It is for this reason that we have the goal of understanding Cauchy’s equation on

∆+. We will return to viewing Cauchy’s equation in this more general light once

we have developed other aspects important to our goals.

Stability

With some understanding of Cauchy’s equation, we now turn our attention

to the notion of stability. Ulam in a lecture given at the University of Wisconsin

raised the question of what approximate solutions of Cauchy’s equation would look

like. In particular, if there was some margin of error ε such that a function f(x+y)

was ε close to f(x)+f(y) for all x, y ∈ R, would f necessarily have any relationship

to a function which satisfied Cauchy’s equation? Shortly after, Hyers [20] answered

in the positive with the following theorem:

Theorem 6 Let E and E ′ be Banach spaces and let ε > 0. If for all x, y ∈ E the

function f : E → E ′ satisfies

∥f(x+ y)− (f(x) + f(y))∥ < ε

then L(x) = limn→∞
f(2nx)

2n
exists for all x ∈ E and is a linear transformation

of E into E ′. Furthermore, L(x) is the unique linear transformation satisfying

∥f(x)− L(x)∥ ≤ ε

This relationship between functions that are nearly solutions a functional

equation and the functions that are solutions of the equation is the stability of the

functional equation. Given that there are several ways of defining what it means to

“nearly” have a property, there are several notions of stability.

In fact, there is a way to examine a more general notion of stability than

the above theorem. The following result due to Rassias [43] relaxes the notion of

uniform error to error dependent on the size of x and y.

8



Theorem 7 Let E and E ′ be Banach spaces, ε ≥ 0, and p ∈ [0, 1). If f : E → E ′

is a mapping such that f(tx) is continuous in t for each fixed x and

∥f(x+ y)− (f(x) + f(y))∥
∥x∥p + ∥y∥p

≤ ε for any x, y ∈ E

then there exists a unique linear transformation T : E → E ′ such that

∥f(x)− T (x)∥
∥x∥p

≤ 2θ

2− 2p
for any x ∈ E

There are several generalizations of the result by Rassias. Forti [13] provided

one such generalization. Below we state a simpler version of Forti’s result with

relaxed hypothesis that we will need for later results.

Theorem 8 Let (S,+) be an abelian semi group and (X,+, d) be a complete metric

abelian semi group uniquely divisible by 2 for which d(2x, 2y) = cd(x, y) for some

c > 1. Let f : S → X,

ε(x, y) :=
∞∑
i=1

c−id
(
f(2i(x+ y), 2f(2iy)

)
,

and

en(x, y) = d(f(2n(x+ y)), f(2nx) + f(2ny))

If for every x, y ∈ S and the series ε(x, x) is convergent and en(x, y) = o(2n), then

1. There exists a unique homomorphism f1 : S → X satisfying d(f1(x), f(x)) =

ε(x, x).

2. If for some pair x̃, ỹ in S we have lim inf[2−nd(f(2nx̃), f(2nỹ))] > 0 then f1 is

not a constant function.

We furnish proof to justify the simplification

Proof :

Fix x, y ∈ R+. We show that 2−nf(2nx) is a Cauchy Sequence. Let n > m.

Observe that

cnd(2−nf(2nx), 2−mf(2mx)) = d(f(2nx), 2n−mf(2mx))

9



Applying the triangle inequality n−m−1 times to the expression d(f(2nx), 2n−mf(2mx))

we have that

d(f(2nx), 2n−mf(2mx)) ≤ d(f(2nx), 2f(2n−1x)+· · ·+d(2n−m+1f(2m+1x), 2n−mf(2mx)).

Recalling ei−1(x, x) = d(f(2ix), 2f(2i−1x)) we obtain

d(2−nf(2nx), 2−mf(2mx)) = c−nd(f(2nx), 2n−mf(2mx))

≤ c−n

∞∑
i=m+1

cn−iei−1(x, x)

=
∞∑

i=m+1

c−iei−1(x, x)

Since the latter sum is the tail of a convergent series we conclude that 2−nf(2nx) is

a Cauchy Sequence. Therefore, there is a function f1 that is the point wise limit of

2−nf(2nx).

We now show that f1 is an additive function. Observe that

lim
n→∞

d(c−nf(2nx+ 2ny), c−n(f(2nx) + f(2ny))] = d[f1(x+ y), f1(x) + f1(y))

On the other hand because d(f(2n(x+ y)), f(2nx) + f(2ny)) = o(2n),

lim
n→∞

d[c−nf(2nx+ 2ny), c−n(f(2nx) + f(2ny))] = 0

Thus, f1 is an additive function.

Let x̃ and ỹ be as in our hypothesis.

d(f1(x̃), f1(ỹ)) = lim
n→∞

[c−nd(f(2nx̃), f(2nỹ))]

= lim inf[c−nd(f(2nx̃), f(2nỹ))] > 0

So f1 is not constant.

All that remains to be shown is d(f1(x), f(x)) ≤ ε(x, x) and that f1 is unique.

From earlier work we see that

d(2−nf(2nx), f(x)) = c−nd(f(2nx), 2n−0f(20x))

≤
n∑

i=1

2−iei(x)

10



Letting n go to infinity on both sides we achieve the desired proximity between f

and f1. Suppose now that g is a different additive function with the same proximity

to f . Then for some z, d(g(z), f1(z)) > 0. Since both are additive functions, we

further conclude

lim
n→∞

d(g(2nz), f1(2
nz)) = lim

n→∞
cnd(g(z), f1(z)) = ∞

On the other hand

lim
n→∞

d(g(2nz), f1(2
nz)) ≤ lim

n→∞
d(g(2nz), f(2nz)) + lim

n→∞
d(f(2nz), f1(2

nz)) ≤ 2ε(z, z)

The last piece is finite by hypothesis which contradicts our assumption of g being

different from f1 ■

We also want to emphasize that the Forti result is a generalization of the

Rassias result in every way. Not only do we have that we have relaxed assumption

around structure (metric groups vs. Banach Spaces), the following theorem shows

that the margin of error is more permissive as well.

Theorem 9 Let E and E ′ be Banach spaces, δ ≥ 0, and p ∈ [0, 1), and

ε(x, y) :=
∞∑
i=1

2−i∥f(2i+1x)− 2f(2iy)∥

If f : E → E ′ is a mapping such that f(tx) is continuous in t for each fixed

x and

∥f(x+ y)− (f(x) + f(y))∥
∥x∥p + ∥y∥p

≤ δ for any x, y ∈ E

then for every x, y ∈ E, the series ε(x, x) converges and ∥f(2n(x+ y))− (f(2nx) +

f(2ny))∥) = o(2n)

Proof :

11



Let x ∈ E, then

ϵ(x, x) =
∞∑
i=1

2−i∥f(2i+1x)− 2f(2ix)∥

≤
∞∑
i=1

2−iδ(∥2ix∥p + ∥2ix∥p)

= 2
∞∑
i=1

2(p−1)iδ∥x∥p

<∞

and thus for x, y ∈ E

lim
n→∞

2−n∥f(2nx+ 2ny)− (f(2nx) + f(2ny))∥ ≤ lim
n→∞

2−n(∥2nx∥p + ∥2ny∥p)δ

≤ lim
n→∞

2p−n(∥x∥p + ∥yp∥)δ

= 0

■

From these results, we take a moment to solidify what we mean by stability

in the sense of Hyers, Ulam, and Rassias with a sequence of definitions. To keep

things reasonably self contained, we present definitions whose scope is limited to

Cauchy’s equation.

Definition 1 Let S be a set and (X, d) a metric space. Let σ : S2 → S and

ξ : X2 → X be functions. If for all s, t ∈ S there exists δ(s, t) ∈ [0,∞) such that

the function f : S → X satisfies

d(f(σ(s, t)), ξ(f(s), f(t)) ≤ δ(s, t)

then f is metric quasi additive with error δ(s, t)

Definition 2 Let S be a set and (X, d) a metric space. If for all s ∈ S there

exists a solution of Cauchy’s Equation, f ′, and ε(s) ∈ [0,∞) such that the function

f : S → X satisfies

d(f(s), f ′(s)) ≤ ε(s)

12



then f is a metric additive approximator with error ε(s)

When we refer to Hyers Ulam Rassias stability of Cauchy’s equation, we are

specifically referring to stating relationships between metric quasi additive functions

and metric additive approximators. In the specific case δ and ε are constant

functions, the relationship between the two objects is the Hyers-Ulam stability of a

functional equation. We emphasize this notion of stability as we will see a novel way

of viewing stability using partial orders once we have a construction of ∆+. As such,

we are ready to narrow our focus on ∆+ and the stability of Cauchy’s equation. We

will do this in three parts. First, we will define and develop an understanding of

∆+. Second, we will discuss solutions to Cauchy’s equation on ∆+, and third, we

will produce new results centering on stability of Cauchy’s equation in both the

Hyers-Ulam sense and in an order theoretic sense.
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CHAPTER 2

PRELIMINARIES FOR ∆+

We wish to situate the question of the stability of Cauchy’s equation in the

context of the space ∆+ which was introduced by Karl Menger in his foundational

paper [29] on probabilistic metric spaces (titled by him statistical metrics). The

goal of the paper was to generalize the notion of metric spaces to include some

uncertainty in precision of measurement. In particular, he emphasized the utility

of considering uncertainty in cases where it is not a guarantee that distinct objects

are distinguishable as is the case with microscopic measurements and absolute

thresholds of sensation [29]. The notion of probabilistic metric spaces also underpins

notions of Fuzzy normed spaces and probabilistic normed spaces which has become

a contemporary topic of interest [22] [33] [41] [51].

In [29], Menger introduced a set S and a collection of “probability functions”

Fpq(x), which measured the certainty that two objects in S, p and q, were at most

distance x apart. We will informally refer to the collection of functions as ∆+,

reserving a more contemporary and precise definition for later. Together S and ∆+

form the underpinnings of a probabilistic metric space. Under this interpretation,

a few properties naturally follow. The first is that our certainty that p and q are

distance x apart should only grow (or at least not decrease) with x. A second, is that

since any two objects must be within some finite distance of one another. A third, is

that with the exception of a “few” thresholds where certainty may increase rapidly

(which can often occur in sense perception), the certainty of a measurement should

increase gradually. These notions are encapsulated by the following properties:
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1. If x ≤ y then Fpq(x) ≤ Fpq(y)

2. Fpq(∞) = 1

3. Fpq is left continuous

Menger imposed some additional regularity conditions on ∆+, some of which

have been changed over the years to mathematical utility without sacrificing the

underlying intuition. One such condition is that Fqq = 1. While it is certainly

desirable to say with certainty that everything is certainly distance zero away from

itself, we can state that fact separately and remove the functions of the form Fqq(x)

from ∆+. In doing so, we can instead impose the condition that Fpq(0) = 0

which essentially makes our informal ∆+ a collection of cumulative distribution

functions. Since it is a mathematician’s habit to investigate a space with the

broadest interpretation possible, the current definition of ∆+ encapsulates all such

functions with the properties described and not just the collection which apply to

a specific set S. Therefore, we have the following definition:

Definition 3 The space ∆+ is the set of functions F : [0,∞] → [0, 1] that satisfy

1. F (0) = 0

2. F is left continuous on (0,∞)

3. F is nondecreasing

4. F (∞) = 1

Here, we observe that codified in the original definition of a probabilistic

metric space were rules for comparing and combining members of ∆+. In particular,

the contexts which originally motivated probabilistic metric spaces it would be

necessary to make (an analog of) the following statements,
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� There are pairs of objects, p, q and r, s such that the objects p and q are

certainly closer to one another than r and s are. That is,

∀x Fpq(x) ≥ Frs(x)

� If there is a 100% that p and q are within 3 microns of one another, and a

70% chance that q and r are within 5 microns of each other, then there is at

least a 70% that p and r are within 8 microns of one another.

This suggests that ∆+ should be equipped with some sort of order structure

and some sort of algebraic structure which would indeed justify the notion ∆+ as

a space. We will first investigate the order structure of ∆+, and after reviewing

several results useful for understanding that structure, we will turn our attention

to the algebraic structure of ∆+.

Order Structure

For functions defined over the same domain (as is the case in ∆+), a common

ordering is the pointwise partial order. That is, we will order functions so that

F ≤ G is equivalent to the statement F (x) ≤ G(x) for every x in their domain.

This sort of ordering also aligns with our intuition in probabilistic metric spaces

that there are objects p, q, r, s such that Fpq(x) ≥ Frs(x) for all x. Since there are

functions which each exceed one another somewhere over their domain, there will

be functions which are incomparable to one another (which would also be expected

in probabilistic metric spaces). In [42], Powers investigates pointwise partial order

in the setting of L(a, b; c, d) which is defined below

Definition 4 Let [a, b] and [c, d] be subintervals of the extended real line, [−∞,∞].The

set L(a, b; c, d) is the set of functions F : [a, b] → [c, d] which satisfy

1. F (a) = c

16



2. F is left continuous on (a, b)

3. F is nondecreasing

4. F (b) = d

This setting is will be useful to us as ∆+ = L(0, 1; 0,∞). In Definition 4,

we referred to L as a lattice, which implies that under its partial order it contains

infima(meets) and suprema(joins) of any finite subset. In fact, as is justified in [42],

L is a complete lattice in the sense that it contains the infimum and supremum of

any subset. The completeness of L will be important in our investigation of stability,

so we will introduce several results from [42] supplying additional justification where

necessary to build intuition about ∆+.

We wish to emphasize a point of caution. For nonempty F ⊆ L, the

sets Fx = {F (x)|F ∈ F} are sets of real numbers, and therefore have always

infima and suprema. It follows then that S(x) := supFx and I(x) := inf Fx are

well defined functions, and for the remainder of the section on order structure,

we will preserve these definitions. Given that the partial ordering of L involves

pointwise comparison, it should seem likely that S has some relationship to supF ,

the least upper bound of F with respect to the partial order of L, and that a similar

relationship exists between I and inf F , the greatest lower bound of F under the

partial order of L. While there is certainly a relationship, we will see that there

is a technical distinction when it comes to infima. As such, we will emphasize the

supremum under pointwise partial order and infimum under pointwise partial order

of F as the order theoretic supremum and order theoretic infimum of F .

With the point of caution noted, we start with proving that L contains order

theoretic suprema of its nonempty sets, and that they are equivalent to the pointwise

supremum of those sets as given in [42].
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Theorem 10 Let F ⊆ L(a, b; c, d) be nonempty. The pointwise supremum of F

is a member of L, and a function F is the order theoretic supremum of F if and

only if it is the pointwise supremum.

Proof :

Let F be a nonempty subset of L(a, b; c, d) and S be the pointwise supremum

function. It is immediate that S(a) = c and S(b) = d. We will demonstrate that

S is nondecreasing and that it is left continuous. This gives S ∈ L, and we will

demonstrate this is sufficient for both directions of the theorem.

Let a ≤ x < y ≤ b. For an arbitrary F ∈ F , we have S(y) ≥ F (y) ≥ F (x).

Since F is arbitrary, we have that S(y) is an upper bound of the set Fx and thus

S(y) ≥ S(x)

Let x ∈ [a, b], xn be an increasing sequence which converges to x, and ε > 0.

Since S is the pointwise supremum, we may choose F ∈ F such that |S(x) −

F (x)| < ε
4
. Since F is left continuous, we choose N ∈ N such that n > N implies

|F (x)− F (xn)| < ε
4
. Because S is nondecreasing, we know S(x) > S(xn) for all n,

and by definition of S we know S(y)− F (y) ≥ 0 for all y ∈ [a, b]. Therefore

S(x)− F (xn) ≥ S(xn)− F (xn) = |S(xn)− F (xn)|.

Taking n > N we have

|S(x)− S(xn)| ≤ |S(x)− F (xn)|+ |S(xn)− F (xn)|

≤ |S(x)− F (xn)|+ |S(x)− F (xn)|

≤ 2(|S(x)− F (x)|+ |S(x)− F (xn)|)

< ε

(2.1)

Thus S is continuous on (a, b)

By the pointwise nature of the partial order of L, the fact that S is an upper

bound of F is automatic. Let G be distinct from S with G ≤ S. It follows that
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there exists x ∈ [a, b] such that S(x)−G(x) > 0. By construction of S, there must

be F ∈ F such that S(x)− F (x) < S(x)−G(x), thus S is the least upper bound

of F under pointwise partial order. ■

The above theorem implies that L is a join semi-lattice, which is to say

L contains suprema of all nonempty finite sets. Before turning discussion to the

containment and construction of infima, we first examine the collection of all join

irreducible elements which will be useful in understanding infima and the order

structure of L more broadly.

Definition 5 A member, a, of a join semi-lattice is join irreducible if whenever

a = sup{b, c} either a = b or a = c.

Definition 6 The set of δ functions denoted Lδ(a, b; c, d) (or ∆
+
δ in the case of ∆+)

is the set of all functions of the form

δu,v(x) =


c a ≤ x ≤ u

v u < x < b

d x = b

when (u, v) ∈ [a, b)× [c, d].

We observe for u ∈ [a, b)

δa,c = δu,c =


c a ≤ x < b

d x = b

and will therefore use δa,c when referring to such a function. Powers [42] showed

that Lδ(a, b; c, d) constitutes the entire set of join irreducible elements. Given the

equivalence of pointwise and lattice theoretic suprema, we also have insight into the

following statement which shows that any member of L can be expressed as the

supremum of join irreducible elements.
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Corollary 3 If F ∈ L(a, b; c, d), then F = sup{δt,F (t)|t < b}.

This follows immediately from the fact that any F is nondecreasing and left

continuous.

The set Lδ(a, b; c, d) is also useful for understanding infima. Let u ∈ (a, b)

and S = {δt,1|t < c}. Observe that the pointwise infimum of S is the function

d(x) =


c x < a+b

2

d x ≥ a+b
2

which is not a member of L(a, b; c, d) since it is not left continuous. If the order

theoretic infimum of a set is contained in L, we cannot rely on the pointwise infimum

to create it directly. However, the above example suggests that pointwise infima

may only differ from a member of L at points of discontinuity. Additionally, a

nonempty set F has a nonempty set of order theoretic lower bounds (observe δa,c

is in all lower bound sets), l(F ), and since we know L contains its order theoretic

suprema, sup l(F ) is also a likely candidate for inf F . Indeed, both intuitions hold,

and are encapsulated in the following theorem from [42].

Theorem 11 Let F ⊆ L(a, b; c, d) be nonempty, l(F ) be the set of lower bounds

of F , and I be the pointwise infimum of F . The following are equivalent

1. F is the pointwise supremum of l(F ).

2. F (a) = c, for all x ∈ (a, b) F (x) = limt→x− I(t), and F (b) = d.

3. F is the order theoretic infimum of F .

Proof :

Let M be the pointwise supremum of the lower bound set and I be the

pointwise infimum of F . Before justifying the equivalence outlined in the theorem,

we first prove a few useful claims.
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The first is that M ∈ l(F ). Suppose to the contrary that M is not a lower

bound of F . Then there exists x ∈ (a, b) and G ∈ F such that M(x)−G(x) > 0.

Because M is the pointwise supremum of l(F ), there exists H ∈ l(F ) such that

M(x) − H(x) < M(x) − G(x), but this would imply H(x) > G(x) which is a

contradiction.

The second claim is that when a ≤ x < y ≤ b, we haveM(x) ≤ I(x) ≤M(y).

Let G ∈ F and observe

δx,I(x)(x) ≤ I(x) ≤ G(x).

So δx,I(x) ∈ l(F ) which in turn gives

I(x) = δx,I(x)(y) ≤M(y).

On the other hand, since M ∈ l(F ), it follows that M(x) ≤ G(x), and since I is

the pointwise infimum of F , M(x) ≤ I(x).

The third claim is that I is nondecreasing. Suppose to the contrary that there

is y < x such that 0 < I(x)− I(y). Then there is G ∈ F such that G(y)− I(y) <

I(x)− I(y) < G(x)− I(y), which means G(y) < G(x) a contradiction.

The fourth claim is thatM(x) = I(x) at all continuity points ofM . Suppose

now thatM is continuous at x, and let ε > 0. SinceM is increasing and continuous

at x we choose η such that

0 ≤M(x+ η)−M(x) < ε.

Appealing to our second claim we have

0 ≤ I(x)−M(x) < M(x+ η)−M(x) < ε.

(1 ⇒ 2) Let ε > 0. If F =M , then F (a) =M(a) = c and F (b) =M(b) = d.

If x is a continuity point of F ,

F (x) = I(x) = lim
t→x−

I(t).
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Otherwise, by monotonicity of F there is a w ∈ (a, x) such that F is continuous on

(w, x). Using left continuity of F , we choose η1 such that 0 ≤ F (x)−F (x−η1) < ε.

Taking η = min
{
η1,

x−w
2

}
we have

0 ≤ F (x)− I(x− η) = F (x)− F (x− η) < ε.

(2 ⇒ 3) Since I is continuous on the same set as M , it follows immediately

that the function F (x) = limt→x− I(t) is left continuous and monotone on (a, b). By

hypothesis satisfies F (a) = c and F (b) = d, so F ∈ L(a, b; c, d). Let G ∈ F . If F is

continuous at x then

F (x) = I(x) ≤ G(x).

If on the other hand F is not continuous at x, then by monotonicity of I

F (x) = lim
t→x−

I(x) < I(x) ≤ G(x)

therefore, F ∈ l(F ).

Taking H ∈ l(F ) we have that H(x0) ≤ I(x0) for any value x0 for which

I is continuous. If I is not continuous at x0 suppose by way of contradiction that

F (x0) ≤ H(x0) ≤ I(x0). By left continuity of F and H, there exists a η1 for

which F (x) < H(x) when x ∈ (x0 − η1, x0), and by monotonicity, there exits η2

for which both functions are continuous on the interval (x0 − η2, x0). Thus taking

η = min{η1, η2} we have that both H and F are continuous on (x0 − η, x0) while

H(x) > F (x) which contradicts the fact that F (x) ≥ H(x) at all points of continuity

of F . We therefore conclude F is the order theoretic maximum of l(F ).

(3 ⇒ 1) Let F = inf F and ε > 0. Let x ∈ [a, b] and l(Fx) = {H(x)|H ∈

l(F )}. Since F is the order theoretic maximum of l(F ), for any H ∈ l(F ),

the inequality H ≤ F holds which in turn implies H(x) ≤ F (x). On the other

hand, by definition F is a member of l(F ), so there exists an H ∈ l(F ) such that

|F (x)−H(x)| < ε, namely H = F . ■
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By the prior two theorems, L(a, b; c, d) equipped with pointwise partial order

contains suprema and infima of all non empty sets. In particular, this means that

supL and inf L exists. In fact, supL = δa,d and inf L = δa,c. Recalling the

convention in partially ordered sets that inf ∅ = supL and sup ∅ = inf L, every

subset of L has both an infimum and supremum, so L is a complete lattice.

The last aspect of L(a, b; c, d) we wish to discuss is the set of order isomorphisms

over L. These functions are useful not just in a comparative sense, but also for

examining a lattice itself. As an example, a well known result in lattice theory is

that the set of join irreducible elements is always fixed by order automorphisms

[42]. Therefore we introduce the following definitions:

Definition 7 An order isomorphism is an order preserving bijection from one

lattice to another, whose inverse is also order preserving. If the image set is the

same as the domain, the mapping is said to be an order automorphism.

Definition 8 A dual isomorphism is an order reversing bijection from one lattice

to another whose inverse has the same properties. If the image set is identical to

the domain the mapping is a dual automorphism.

Definition 9 For F ∈ L(a, b; c, d), we define the quasi inverse of F , F∨, to be

F ∨(y) =


a y = c

inf{x : F (x) > y} c < y < d

b y = d

Definition 10 Let A be a partially ordered set. A set P ⊂ A is a principal down-set

if there exists a ∈ A such that P = {x ∈ A|x ≤ a}.

Definition 11 A mapping F between two partially ordered sets A and B is called

residuated if the preimage of every principal down-set is itself a principal down
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set. In particular, if A and B are real intervals, F is residuated if it maps the left

endpoint of A to the left endpoint of B and is left continuous.

Definition 12 If F is a residual mapping between two partially ordered sets A and

B, then G is the residual of F if G is monotone mapping from B to A which for

all a ∈ A and b ∈ B, F ◦G(b) ≤ b and G ◦ F (a) ≥ a. In particular if A and B are

real intervals G = F∨.

The following theorems are central results of [42] and as such, thorough

proofs can be found there.

Theorem 12 The mapping φ is an order automorphism of L(a, b; c, d) if and only

if for all F ∈ L(a, b; c, d) one of the following holds:

1. φ(F ) = θ ◦F ◦ γ where θ is an order automorphism of [c, d] and γ is an order

automorphism of [a, b]

2. φ(F ) = α ◦F∨ ◦ β where α and β are dual isomorphisms from [a, b] into [c, d]

We will refer to order automorphisms as type one and type two order automorphisms

if they are of the first or second form above. The next theorem concerns weak

convergence, which is to say pointwise convergence of sequences of functions at

all points of continuity. As we have observed, in our investigation of the lattice

structure of L(a, b; c, d), pointwise suprema and infima behave well at points of

continuity. As a result, monotone sequences which are weakly convergent will

agree with the pointwise supremum or infimum of the sequence. This suggests

a relationship between weakly continuous maps on L(a, b; c, d) and order preserving

maps. The following result from [42] confirms that insight.

Theorem 13 Let Fn be a sequence in L(a, b; c, d), F ∈ L(a, b; c, d), and φ be an

order automorphism of L. If Fn converges weakly to F then φ(Fn) converges weakly

to φ(F ).
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As we conclude discussion on the order structure of L(a, b; c, d) we summarize

some key points to be framed in the space of our primary interest, ∆+.

1. ∆+ is a complete lattice where at all points of continuity, the suprema and

infima of sets are the same as the pointwise suprema and infima. Since

members of ∆+ are left continuous and monotone, it follows that save for a

countable, nowhere dense set, identifying order theoretic suprema and infima

is the same as finding pointwise suprema and infima.

2. The least element of ∆+ is δ0,0 and the greatest is δ0,1.

3. Type one order automorphisms are of the form φ(F ) = θ ◦ F ◦ γ where θ is

an order automorphism of the unit interval and γ is an order automorphism

of [0,∞]. In particular, they fix ∆+
δ in the following way

φ(δa,b)(x) = θ ◦ δa,b ◦ γ(x) =


θ(0) γ(x) ≤ a

θ(b) a < γ(x) <∞

θ(1) γ(x) = ∞

=


0 x ≤ γ−1(a)

θ(b) γ−1(a) < x <∞

1 x = ∞

= δγ−1(a),θ(b)

(2.2)

4. Type two order automorphisms are of the form φ = α ◦ F∨ ◦ β where α and

β are dual isomorphisms from [0,∞] into the unit interval. In particular they
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fix ∆+
δ in the following way

φ(δa,b)(x) = α ◦ δ ∨
a,b ◦ β(x)

=


α(∞) b ≤ β(x)

α(a) β(∞) < β(x) < b

α(0) β(∞) = β(x)

=


0 0 < x ≤ β−1(b)

α(a) β−1(b) < x <∞

1 x = ∞

= δβ−1(b),α(a)

(2.3)

Topology

Before turning our attention to the algebraic structure of ∆+, the end of the

section on its order structure and its compatibility with weak convergence suggests

a natural topology to apply to ∆+. From [53], we have that in the modified Levy

metric weak convergence is equivalent to metric convergence. Furthermore, ∆+

is essentially a collection of cumulative distribution functions, so modified Levy

convergence on ∆+ is akin to convergence in distribution of some sequence of random

variables reinforcing its desirability in application to ∆+. We define the Levy metric

and present evidence supporting our clam in sequel.

Definition 13 Let F,G ∈ ∆+. The modified Levy Distance between F and G,

dL(F,G), is

inf{h|∀x ∈
(
0,

1

h

)
F (x+ h) + h ≥ G(x) and G(x+ h) + h ≥ F (x)}

The following is a theorem from [53]
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Theorem 14 The function dL is a metric on ∆+, for which convergence in dL is

equivalent to weak convergence. Furthermore, (∆+, dL) is compact.

Since order automorphisms are weakly continuous, we have the following corollary:

Corollary 4 Order automorphisms are uniformly continuous on (∆+, dL).

The construction of the modified Levy metric may seem strange especially

in comparison to the original Levy metric presented below.

Definition 14 Let F,G ∈ ∆+. The the Levy Distance between F and G is

inf{h|F (x− h)− h ≤ G(x) ≤ F (x+ h) + h for all x}

However, we do have need for this modification as ∆+ is not complete in the

Levy metric. As an example, take the sequence δn,1. It converges weakly and in the

modified Levy metric to δ0,0 while in the Levy metric it does not converge in ∆+.

As we shall see, we will also have applications for the modified Levy metric

and its induced topology in our discussion of algebraic operations on ∆+.

Algebraic Structure

Focusing now on algebraic structure, we recall the prototype statement which

motivated imposing an algebraic structure on ∆+. “If there is a 100% chance that

p and q are within 3 microns of one another, and a 70% chance that q and r are

within 5 microns of each other, then there is at least a 70% that p and r are within

8 microns of one another.” Intentionally, this was not rephrased in precise notation,

but we will make a first pass here to initiate commentary:

Fpq(3) · Fqr(5) ≤ Fpr(8)

If we take d1 to be the distance between p and q, d2 to be the distance between q

and r, and d3 to be the distance between p and r, we observe that Fpq, Fqr, and Fpr
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are analogous to the cumulative distribution functions of random variables which

estimate d1, d2, and d3. Therefore, our first pass can be cast in the following way

P (d1 ≤ 3) · P (d2 ≤ 5) ≤ P (d3 ≤ 8)

On the other hand, applying conventional triangle inequality to the three

values we have

d3 ≤ d1 + d2

so we observe

P (d1 ≤ 3 and d2 ≤ 5) ≤ P (d1 + d2 ≤ 8) ≤ P (d3 ≤ 8)

Since P (d1 ≤ 3) = 1 in our example, we can see that this last inequality is equivalent

to what we started with. Further, if d1 and d2 were independent random variables,

the equivalence would not depend on the bound of d1. In this case we would have

for x, y ∈ [0,∞]

Fpq(x) · Fqr(y) ≤ Fpr(x+ y)

which is a generalization of triangle inequality.

More generally, if d1 and d2 were not independent, we would like a way to cast

the joint probability P (d1 ≤ x and d2 ≤ y) in terms of the distributions functions

Fpq(x) and Fqr(y). For this, we introduce the t-norm

Definition 15 A t-norm , T , is a binary operation on I = [0, 1] which is commutative,

associative, nondecreasing in each place, and has identity 1.

Here we observe that t-norms have many valuable features that capture

intuitions around the relationship between a joint distribution of random variables

and their marginal distributions.

1. Let x1 ≤ x2 and y1 ≤ y2. Since any t-norm T is nondecreasing in each place,

we have T (F (x1), G(y1)) ≤ T (F (x2), G(y2)) which captures the notion that a

joint distribution is increasing in each variable.
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2. Since any t-norm T is nondecreasing and has identity 1, if F (x) = 0, we may

conclude T (F (x), G(y)) ≤ T (F (x), 1) = 0. This captures the notion that a

joint probability is zero if either of the marginal probabilities are zero.

3. Since logical conjunction and intersection are associative and commutative, it

is appropriate that T is associative commutative.

4. Product is a t-norm, so t-norms have the capacity to model the joint distribution

of independent random variables.

Here a tempting and valid operation to apply to ∆+ is a pointwise application

of t-norms, ΠT (F,G)(x) = T (F (x), G(x)). However, recalling the desire of our

operation to model the lower bound of the generalized triangle inequality

P (d1 ≤ x and d2 ≤ y) ≤ P (d1 + d2 ≤ x+ y)

we propose an additional operation for consideration as well. Let u, v ∈ [0,∞] such

that u+ v = x+ y and observe that

sup
u+v=x+y

P (d1 ≤ u and d2 ≤ v) ≤ P (d1 + d2 ≤ x+ y)

would follow from the prior inequality, and would give the tightest lower bound.

Therefore, taking τT (F,G)(x) = supu+v=x T (F (u), G(v)) we model the tightest

lower bound that can be expressed in terms of marginal distributions.

With several natural operations to impose on ∆+, we introduce a general

class of operations, triangle functions (in reference to the generalized triangle inequality).

Definition 16 A function τ : ∆+ ×∆+ → ∆+ is a triangle function if and only if

1. τ(F,G) = τ(G,F ) i.e. τ is commutative

2. τ(F, τ(G,H)) = τ(τ(F,G), H) i.e. τ is associative

3. τ(δ0,1, F ) = F i.e. τ has identity δ0,1
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4. If F ≤ G, then τ(F,H) ≤ τ(G,H) i.e. τ is nondecreasing in each place

Commutativity of τ justifies the claim of δ0,1 as identity monotonicity in

each place. Using 3 and 4 we may verify that δ0,0 is a zero. Therefore (∆+, τ) is a

commutative monoid with 0. It is also readily verified for a t-norm T , both ΠT and

τT are triangle functions. Here we also introduce the notation, F n as a stand in for

iterated operation of F with itself under τ .

Because of the rich order structure of ∆+, it is often desirable that our

monoid operation be sup continuous, that is for F ⊆ ∆+, supF∈F τ(F,G) =

τ(supF∈F F,G). Fortunately, if T is a left continuous t-norm then τT and ΠT are

sup continuous as justified below in a result from [55].

Theorem 15 If T is a left continuous t-norm then both ΠT and τT are sup continuous.

Furthermore, (∆+
δ , τT ) and (∆+

δ ,ΠT ) are submonoids of (∆+, τT ) and (∆+,ΠT ).

Proof :

Let T be a left continuous t-norm, F ⊆ ∆+, and S = supF . For n ∈ N,

we define

Fn(x) =


0 x = 0

n−1
n
S(x) x ∈ (0,∞)

1 x = ∞

We have that limn→∞ Fn = supF∈F F and for x ∈ [0,∞] (Fn(x)) is a nondecreasing

sequence which converges to S(x). Since T is left continuous for G ∈ ∆+ we have

T ( sup
F∈F

F (u), G(v)) = T ( lim
n→∞

Fn(u), G(v)) = lim
n→∞

T (Fn(u), G(v))

Let n ∈ N, then there exists H ∈ F such that Fn(u) = S(u) − 1
n
S(u) ≤ H(u).

Since T is nondecreasing

lim
n→∞

T (Fn(u), G(v)) ≤ T (H(u), G(v)) ≤ sup
F∈F

T (H(u), G(v))
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Thus

T ( sup
F∈F

F (u), G(v)) ≤ sup
F∈F

T (F (u), G(v))

On the other hand, for H ∈ F , T (supF∈F F (u), G(v)) ≥ T (H(u), G(v)) which

makes it an upper bound. So

sup
F∈F

T (F (u), G(v)) ≤ T ( sup
F∈F

F (u), G(v))

Lastly, since S(x) is the pointwise supremum of F ,

sup
u+v=x

sup
F∈F

T (F (u), G(v)) = sup
F∈F

sup
u+v=x

T (F (u), G(v))

Thus

sup
F∈F

τT (F,G) = sup
F∈F

sup
u+v=x

T (F (u), G(v)) = sup
u+v=x

T ( sup
F∈F

F (u), G(v)) = τT ( sup
F∈F

F,G)

which is sufficient for the sup continuity claim.

To show that (∆+
δ , τT ) is a monoid, we observe that it is sufficient to show

closure as all other properties follow from the fact that τT is a monoid operation on

∆+. To that end, let δa,b, δc,d ∈ ∆+
δ and a, c < ∞. Let x ≤ a + c and y > a + c.

Since τT is nondecreasing, we have that τT (δa,b, δc,d)(x) ≤ τT (δa,b, δc,d)(a+ c). So

τT (δa,b, δc,d)(x) ≤ sup
u+v=a+c

T (δa,b(u), δc,d(v)) ≤ T (δa,b(x), δc,d(c+ 1)) = 0

while taking ε = y−(a+c)
2

we have

τT (δa,b, δc,d)(y) = T (δa,b(a+ ε), δc,d(c+ ε)) = T (b, d)

So τT (δa,b, δc,d) = δa+c,T (b,d). A near identical proof holds for ΠT ■

Not only do left continuous t-norms induce sup continuous triangle norms,

a near converse holds if we relax the definition of τT as seen in a result from [44]:

Theorem 16 If τ is a sup continuous triangle function which satisfies

1. τ(δa,b, F ) is an injective map for all nonzero δa,b
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2. (∆+
δ , τ) is a monoid

3. If F ⊆ ∆+ with inf F = δ0,0, then for all δa,b ∈ ∆+
δ , infF∈F τ(δa,b, F ) = δ0,0

Then there is a commutative, associative, strictly increasing in each variable, and

right continuous function L : [0,∞) × [0,∞) → [0.∞) and left continuous strictly

increasing in each variable t-norm, T such that

τ(F,G)(x) = sup
L(t,s)=x

T (F (t), G(s))

Here we note that it is a nontrivial concern that a triangle function be sup

continuous. In particular, if we define F ∗G(x) =
∫
(0,∞)

F (x−t) dG(t) for x ∈ (0,∞)

we have that ∗ is a triangle norm that is not sup continuous [49].

In addition to sup continuity, it is desirable for τ to be continuous in the

(product) topology of ∆+ equipped with the modified Levy metric. Fortunately,

the above theorem and its converse from [44] holds with only minor modification in

that context.

Theorem 17 The operation τ is a sup continuous and continuous triangle function

which satisfies

1. τ(δa,b, F ) is an injective map for all nonzero δa,b

2. (∆+
δ , τ) is a monoid

3. If F ⊆ ∆+ with inf F = δ0,0, then for all δa,b ∈ ∆+
δ , infF∈F τ(δa,b, F ) = δ0,0

If and only if there is a commutative, associative, strictly increasing in each variable,

and continuous function L : [0,∞) × [0,∞) → [0.∞) and continuous strictly

increasing in each variable t-norm, T such that

τ(F,G)(x) = sup
L(t,s)=x

T (F (t), G(s))
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The above theorem along with the role t-norms have in the development of

triangle functions makes examining the structure of (∆+, τT ) where T is a continuous

t-norm a point of interest. Since τT is largely dependent on T , we will now develop

the theory of continuous t-norms. Two important types of continuous T norms are

Archimedean t-norms and strict t-norms, which are defined below.

Definition 17 We say T is an Archimedean t-norm if

1. T (x, x) < x for x ∈ (0, 1)

We further classify T as a strict t-norm if

1. T is Archimedean

2. T is continuous

3. T is strictly increasing on (0, 1)× (0, 1)

These notions are distinct, and as an example of each type, we have the

Lukasiewicz t-norm and the product t-norm Tp which are defined below

TL(a, b) = max{0, a+ b− 1} and Tp(x, y) = xy

As a way to emphasize that a continuous Archimedean t-norm is not strict, we

observe that for TL, all members of [0, 1) are nilpotent. That is to say, for all

x ∈ [0, 1) there exists an n ∈ N such that T n
L (x), x operated with itself n times

under TL, will be equal to 0. This gives rise to the following definition

Definition 18 A t-norm T is nilpotent if for all x ∈ [0, 1) there exists an n ∈ N

such that T n(x) = 0

Archimedean t-norms admit a useful representation that also provides another

way of distingushing the special set of strict t-norms from the broader set of
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Archimedean t-norms. For a > 0 there is a dual isomorphism, g : [0, 1] → [0, a] and

kg(x) =


g−1(x) x ≤ a

0 a < x ≤ 2a

such that

T (x, y) = kg(g(x) + g(y))

if and only if T is Archimedean, and we call g an inner additive generator of T .

Inner additive generators are not unique since for c > 0, h(x) = cg(x) will also be

a generator. If g maps onto [0,∞], then we have that T is strict and kg = g−1 [23].

Furthermore, when T is strict, we have that for any x0 ∈ (0, 1) if

g(x) = inf

{
m− n

k

∣∣∣∣m,n, k ∈ N and Tm(x0) < T

(
T n(x0), T

k(x)

)}
for all x ∈ (0, 1] (and g(0) = 0) then g is an inner additive generator of T [23]. This

gives rise to the following example which is a constructive way of identifying the

inner additive generator of the product t-norm.

Example 1 Let T (x, y) = xy and choose x0 = 1
2
. Observe

(
1
2

)m
<
(
1
2

)n
xk is

equivalent to 2
m−n

k > 1
x
, and{

m− n

k

∣∣∣∣m,n, k ∈ N
}

= Q

Since Tm(x0) < T n(x0) is implied by Tm(x0) < T

(
T n(x0), T

k(x)

)
, we have that

m > n, so we have that

g(x) = inf
{
q ∈ Q+|q > − log2(x)

}
= − log2(x)

so − log2(x) is a generator of T .

The inner additive generator construction also reveals the following fact:

Theorem 18 An Archimedean t-norm is either nilpotenet or strict.
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Proof :

Let T be an Archimedean t-norm and g be an additive generator of T . If T

is strict, then for x ∈ (0, 1) g(x) ∈ (0,∞), so n(g(x)) <∞ for all n ∈ N. Therefore

T n(x, . . . , x) = g−1(ng(x)) > 0

On the other hand if T is not stirct, take [0, a] to be the codomain of g. For

x ∈ (0, 1), g(x) > 0, so there exists n ∈ N such that ng(x) > a giving

T n(x, . . . , x) = kg(ng(x)) = 0

■

The following definition will be useful in classifying all continuous t-norms

and their relationship to Archimedean t-norms.

Definition 19 We say that two t-norms, T and T ′, are isomorphic if there is an

order automorphism f of [0, 1] such that

f−1(T (f(x), f(y))) = T ′(x, y)

With that definition, we have the following result due to [23]:

Theorem 19 Let T be an Archimedean t-norm and g an inner additive genrator

then the following are equivalent

1. T and T ′ are isomorphic

2. There is an order automorphism f on [0, 1] such that g◦f is an inner additive

generator of T ′

3. T ′ is Archimedean. Furthermore, either T and T ′ are both strict, or both are

nilpotent.
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Proof :

1 ⇒ 2 If g is an inner additive generator of T and let f be the automorphism

that makes T and T ′ isomorphic. Then

T ′(x, y) = f−1(T (f(x), f(y)))

= f−1(k(g(f(x)) + g(f(y))))

= (f−1 ◦ k)(g ◦ f(x) + g ◦ f(y))

Since (f−1 ◦kg)(x) = (g ◦f)−1(x) whenever x ≤ a and is 0 otherwise we have

T ′(x, y) = kg◦f (g ◦ f(x) + g ◦ f(y))

2 ⇒ 3 Since f is an order automorphism, g ◦ f is a dual isomorphism from [0, 1]

into [0, a] where [0, a] is the range of g. This is sufficent to conclude that T ′ is

Archimedean. If a = ∞ then clearly both T and T ′ are stirct. Otherwise, for

all x < 1 we have g(x) > 0 and therefore the existence of n ∈ N such that a <

ng(x) ≤ 2a which gives us that all x < 1 are nilpotent under T . Since f is an order

automorphism we have for all x < 1 that f(x) < 0 and that g(f(x)) > 0 allowing

us to conclude that all x < 1 are nilpotent under T ′.

3 ⇒ 1 Let h be the inner additive generator of T ′, a = g(0) and b = h(0).

Since T and T ′ share nilpotency, b
a
is well defined if we adopt the convention in this

context that ∞
∞ = 1. Let d(x) = a

b
x, and f = g−1 ◦ d ◦ h.

f−1(T (f(x), f(y))) = f−1(kg(g(f(x)) + g(f(y)))) = f−1
(
kg

(a
b
h(x) +

a

b
h(y)

))
Observe that f−1(0) = 0 and for x ≤ a, we have f−1(kg(x)) = h−1( b

a
(x)). Thus

f−1(T (f(x), f(y))) = f−1
(
kg

(a
b
(h(x) + h(y))

))
= h−1(h(x) + h(y)) = T ′(x, y)

Since f is an order automorphism of [0, 1] the two t-norms are isomorphic. ■

With thorough understanding of the structure of ∆+, we are ready to work

on functional equations in the space.
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CHAPTER 3

CAUCHY’S EQUATION ON ∆+

With a motivation for examining ∆+ and an understanding of the space

from several perspectives, we may now turn our attention to solutions of Cauchy’s

equation on ∆+. Once we have established solutions of Cauchy’s equation, we will

be able to meaningfully discuss notions of stability. Here we will principally follow

the results of [45]. Save for Lemma 2 which comes from [44] , all results in this

chapter either come from [45] or are immediate corollaries of those results.

As we established in the prior section, for a triangle function τ , the pair

(∆+, τ) is a monoid with zero, therefore, we may naturally define φ : ∆+ → ∆+ to

be a solution to Cauchy’s equation if

φ(τ(F,G)) = τ(φ(F ), φ(G)).

In keeping with convention, we will disregard the trivial solutions φ(F ) ≡ δ0,1 and

φ(F ) ≡ δ0,0 unless specified otherwise.

By definition, we have the following universal properties of solutions of

Cauchy’s Equation:

Lemma 1 Let φ satisfy Cauchy’s equation for τ then

1. φ(δ0,1) is the identity in Ran(φ)

2. φ(δ0,0) is the zero in Ran(φ)

3. φ maps idempotents to idempotents
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4. φ preserves n− th powers, i.e. φ(Hn) = φ(H)n for all H ∈ ∆+

5. φ maps nilpotents to nilpotents

6. φ maps any element with n− th root to an element with an n− th root i.e. if

there exists F,G ∈ ∆+ such that F = Gn then there exists H ∈ ∆+ such that

φ(F ) = Hn.

We also have the following solutions:

Theorem 20 Let H be an idempotent of τ . The following are solutions for Cauchy’s

equation for τ

� φH(F ) = τ(F,H), in particular, the identity map is a solution where H = δ0,1

� φ(F ) = F n

As emphasized in prior sections, an important set of functions on ∆+ are

the order automorphisms. We will first present a sequence of lemmas useful to

central results concerning order automorphisms, and what properties of an order

automorphism are necessary for it to be a solution to Cauchy’s equation.

Lemma 2 Let T be a continuous Archimedean t-norm, g an inner additive generator

of T , and θ a mapping from [0, 1] into [0, 1], then θ is a solution to Cauchy’s equation

for T if and only if there is a c > 0 such that g−1(c · g(x)).

Lemma 3 Let T be a nilpotent Archimedean t-norm and g be an inner additive

generator of T . Then θ is a solution of Cauchy’s equation for T if and only if there

is c ≥ 1 such that θ(x) = kg(c · g(x))

Corollary 5 Let T be a nilpotent Archimedean t-norm. If θ is a solution of Cauchy’s

equation for T then θ is an order automorphism if and only if θ is the identity map
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Proof :

The identity map is clearly an order automorphism, so we need only prove

coverse. We prove via contrapositive. Suppose θ is not the identity map. From

Lemma 3, we have that there is an inner additive generator of T , g, such that

θ(x) = kg(c · g(x)) by virtue of being a solution of Cauchy’s equation. Since θ is not

the identity map we further have c > 1 Since T is nilpotent, we have that there is

an a ∈ (0,∞) such that g(0) = a. Since g is injective and decreasing, there exists

x ∈ (0, 1) such that cg(x) = a. Therefore, there exists x ∈ (0, 1) such that

θ(x) = kg(c · g(x)) = kg(a) = 0

Therefore, θ is zero on the interval (0, x) which means it is not an order automorphism

■

Theorem 21 Let T be a continuous t-norm and let φ be a type one order automorphism

with θ and γ as in Theorem 12. The map φ satisfies Cauchy’s equation for τT if

and only if

γ(a+ b) = γ(a) + γ(b) for all a, b ∈ R+

and

θ(T (c, d)) = T (θ(c), θ(d))

Theorem 22 Let T be a continuous t-norm and let φ be a type two order automorphism

with α and β as in Theorem 12. The map φ satisfies Cauchy’s equation for τT if

and only if for all x, y ∈ [0, 1]

α(α−1(x) + α−1(y)) = T (x, y)

and

β(β−1(x) + β−1(y)) = T (x, y)

Furthermore, a solution exists if and only if T is a strict t-norm.
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It is also possible to find solutions to Cauchy’s equation which are not

order automorphisms. Again, using results from [45], we give a characterization

of sup continuous (but not necessarily bijective, nor order preserving under inverse)

solutions to Cauchy’s equation for τT . In order to do so, we introduce some notation

and define the set of T log concave functions. For a function F ∈ ∆+, the values

aF and bF are as follows:

aF = sup{x ∈ R+|F (x) = 0}

bF = lim
x→∞

F (x)

Definition 20 Let T be a strict t-norm and g be any inner additive generator of

T . Then the set of T log concave elements of ∆+ is

∆+
T = {F ∈ ∆+|g ◦ F is convex on (aF ,∞)}

Here we emphasize as in [45] that convexity is not affected by multiplication

with a positive scalar, so choice of g is irrelevant. In order to characterize the

sup continuous solutions to Cauchy’s equation, we need that exponentiation is well

defined over ∆+
T . For that, we have the following two theorems

Theorem 23 Let T be a strict t-norm with inner additive generator g and suppose

F ∈ ∆+ \ {δ0,0}. For any µ ≥ 0, let F µ be defined by

F µ(x) = g−1

(
µ · g

(
F

(
x

µ

)))
for 0 < µ <∞,

F 0 = lim
µ→0

F µ = δ0,1,

F∞ = lim
µ→∞

F µ =


δ0,0 F ̸= δ0,1

δ0,1 F = δ0,1.

Then F µ is in ∆+ for any µ, ν ≥ 0, we have

τT (F
µ, F ν) = F µ+ν ,
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(F µ)ν = (F ν)µ = F µν ,

and in particular for n ∈ N,

τnT (F, . . . , F ) = F n

that is, nth powers in the algebraic sense agree with the µ power defined above where

µ = n.

Corollary 6 Let T be a strict t-norm and G ∈ ∆+
T \ {δ0,0}. Then for any µ > 0,

there exists a unique H ∈ ∆+
T such that

G = Hµ,

namely H = G1/µ

We may now turn our attention to sup continuous solutions to Cauchy’s

equation and their properties

Corollary 7 Let T be a strict t-norm and φ a sup continuous solution of Cauchy’s

equation for τT and F ∈ ∆+
T \ {δ0,0}. If for all positive integers n, φ(F 1/n) ∈

∆+ \ {δ0,0} then for all µ ≥ 0,

φ(F µ) = [φ(F )]µ

Corollary 8 Let δa,b ̸= δ0,0 and let T be a strict t-norm with inner additive generator

g. Then for any c ∈ (0, 1), δa,b admits the decomposition

δa,b = τT (δ
a
1,1, δ

g(b)/g(c)
0,c )

Corollary 9 Let T be a strict t-norm with inner additive generator g and let φ be

a sup continuous solution of Cauchy’s equation for τT . If for some c ∈ (0, 1) and all

positive integers n, φ(δ
1/n
0,c ) and φ(δ

1/n
1,1 ) are in ∆+

T \ {δ0,0, δ0,1} then for all F ∈ ∆+,

φ(F ) = sup
t∈R+

τT ([φ(δ1,1)]
t, [φ(δ0,c)]

kg(F (t))),

where k = 1
g(c)

.

41



Theorem 24 Let T be a strict t-norm with generator g. Let G and H in ∆+
T \

{δ0,0, δ0,1} and c ∈ (0, 1). If φ : ∆+ → ∆+ is defined by

φ(F ) = sup
t∈R+

τT (G
t, Hkg(F (t))) for allF ∈ ∆+

where k = 1
g(c)

. Then φ is a sup continuous solution of Cauchy’s equation for τT .

Moreover, G = φ(δ1,1), H = φ(δ0,c), and for all positive integers n, φ(δ
1/n
1,1 ) and

φ(δ
1/n
0,c ) are in ∆+

T \ {δ0,0, δ0,1}

Corollary 10 Let T be a strict t-norm with inner additive generator g and let φ be

an order automorphism solution of Cauchy’s equation for τT . If for some c ∈ (0, 1)

and all positive integers n, φ(δ
1/n
0,c ) and φ(δ

1/n
1,1 ) are in ∆+

T \ {δ0,0, δ0,1} then

φ(δ1,1) = δγ−1(1),1 and φ(δ0,c) = δ0,θ(c) if φ is type one

and

φ(δ1,1) = δ0,α(1) and φ(δ0,c) = δβ−1(c),1 if φ is type two

Corollary 11 Let T be a strict t-norm with generator g. Let G = δa,1 and H = δ0,b

where a ∈ (0,∞), b ∈ (0, 1). Let c ∈ (0, 1). If φ : ∆+ → ∆+ is defined by

φ(F ) = sup
t∈R+

τT (G
t, Hkg(F (t))) for allF ∈ ∆+

where k = 1
g(c)

. Then φ is a type one order automorphism solution of Cauchy’s

equation for τT . Moreover, G = φ(δ1,1), H = φ(δ0,c), and for all positive integers

n, φ(δ
1/n
1,1 ) and φ(δ

1/n
0,c ) are in ∆+

T \ {δ0,0, δ0,1}

If instead G = δ0,b and H = δa,1, φ is a type two order automorphism

solution.
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CHAPTER 4

NEW RESULTS IN STABILITY

Framing Stability

With sufficient knowledge of Cauchy’s equation on ∆+, we are now ready to

begin discussion of the principle focus of this dissertation, stability in the context of

∆+. Since ∆+ is equipped with the modified Levy metric, it is certainly natural to

investigate the Hyers Ulam Stability of Cauchy’s equation. So, we pose the question,

when is there a relationship between metric quasi solutions of Cauchy’s equation

and approximate solutions of Cauchy’s equation in metric in the context of ∆+?

One may have hope of finding solutions using general stability theorems like

Theorem 8. Alas, Theorem 8 and those like it require a degree of compatibility

between the group operation and the metric (see also [36]). Here we recall theorem

8 has the hypothesis that the range of our mapping, (X,+, d), be a complete metric

abelian semigroup uniquely divisible by 2 for which d(2x, 2y) = cd(x, y) for some

c > 1. In the context of (∆+, τ), we may not have unique divisibility when τ is not

sup continuous. Even if we take T to be the product triangle norm and τ = τT , for

which a great many regularity conditions are satisfied, the compatibility condition,

d(2x, 2y) = cd(x, y) , often fails as we see below:

dL(τT (δ0,0.2, δ0,0.2), τT (δ0,0.4, δ0,0.4))

dL(δ0,0.2, δ0,0.4)
=
dL(δ0,0.04, δ0,0.16)

dL(δ0,0.2, δ0,0.4)
=

0.12

0.2
< 1

We therefore must look elsewhere to understand Hyers Ulam stability. Here we
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observe that part of the reason for our trouble is that our group operation is in

many ways analogous to multiplication of numbers on [0, 1] which decreases over

iteration rather than increases. This observation also motivates a new perspective on

stability. In particular, we recall that in the phrasing of Hyers original investigation

of the question of stability, the one dimensional case would be

|f(x+ y)− (f(x) + f(y))| < ε

which is equivalent to

f(x) + f(y)− 2ε < f(x+ y)− ε < f(x) + f(y)

Since ∆+ is partially ordered and for all F,G ∈ ∆+ τ(F,G) ≤ F , we have

an analog to the above inequality in

τ(τ(φ(F ), φ(G)), τ(H,H)) ≤ τ(φ(τ(F,G)), H) ≤ τ(φ(F ), φ(G))

Unlike in the case of the inequality for real valued functions which defines the

standard metric over R, this inequality doesn’t define the Levy metric. Therefore,

this way of viewing quasi solutions of a functional equation is conceptually distinct

from the Hyers Ulam view. Since Cauchy’s Equation was originally phrased concerning

the preservation of addition, we will refer to functions which satisfy this inequality

as order quasi additive with error H, and if for all F ∈ ∆+, if φ satisfies the

inequality

τ(φ(F ), τ(H,H)),≤ τ(φ′(F ), H) ≤ φ(F )

for some solution of Cauchy’s equation for τ , then we will say φ is an order additive

approximator with errorH. The relationship between order quasi additive functions

and order additive approximators is the order stability of Cauchy’s equation.

Order stability not only gives us a different perspective on stability, as

we shall see, it also gives insight into stability in the sense of Hyer’s and Ulam.
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Therefore, we begin with results involving order stability. Our focus is finding

results in order stability involving those triangle functions generated by t-norms.

In order to do so, we will make use of the following Lemmas which will allow us to

simplify cases:

Triangle functions generated over Strict T

Lemma 4 Let F,G,H ∈ ∆+, H ̸= ε∞, and T be a strict t-norm. It follows that

τT (F,H) ≤ G if and only if τT (F,H
2) ≤ τT (G,H)

Proof :

Since τ is non decreasing in each place, one direction of the statement is

trivial. For the converse, we suppose to the contrary that there is x ∈ (0,∞) such

that τT (F,H)(x) > G(x). By left continuity of G we have that there is δ > 0 such

that

τT (F,H)(x) > G(x+ δ)

Then by strictness of T we have for all finite y > aH

T (τT (F,H)(x), H(y)) > T (G(x+ δ), H(y))

Let w = x+ aH + δ then

τT (F,H
2)(w) ≥ T ( sup

u+v=x
T (F (u), H(v)), H(δ + aH)) > T (G(x+ δ), H(δ + aH))

Since H(δ − e+ aH) = 0 if e ≥ δ

T (G(x+ δ), H(δ + aH)) ≥ sup
e∈[0,δ)

T (G(x+ e), H(δ − e+ aH))

= sup
u+v=w

T (G(u), H(v))

= τT (G,H)(w)

Therefore τT (G,H)(w) < τT (F,H
2)(w) which is a contradiction ■
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Corollary 12 Let F,G,H ∈ ∆+, H ̸= ε∞, and T be a strict t-norm. It follows

that

τT (F,H) = τT (G,H) ⇐⇒ F = G

For the following lemma, we recall the notation from Chapter 3

aF = sup{x ∈ R+|F (x) = 0}

bF = lim
x→∞

F (x)F (x)

and introduce the notation

Fδ := δaF ,bF

Lemma 5 Let F,G ∈ ∆+ and T be strict. We define H to be the set of function

H ∈ ∆+ such that

τT (F,H
2) ≤ τT (G,H) ≤ F

If S = supH , then

1. S ∈ H

2. H ≤ S if and only if H ∈ H

3. If F,G ∈ ∆+
δ then H ∈ H if and only if Hδ ∈ H . In particular Sδ = S ∈ H

Proof :

Observe that H is nonempty as ε∞ is always a member. Since T is strict,

we may cancel in an H in the first part of the compound inequality, so

τT (F,H) ≤ G and τT (G,H) ≤ F

for an H ∈ H . Since τT is sup continuous and G is an upper bound of τT (F,H)

for all H ∈ H we have

τT (F, S) ≤ G
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similar argumentation gives

τT (G,S) ≤ F

which is conclusion 1.

Clearly, H ∈ H implies H ≤ S, so observing that when H ≤ S,

τT (F,H) ≤ τT (F, S) ≤ G And τT (G,H) ≤ τT (G,S) ≤ F

yielding conclusion 2.

If F,G ∈ ∆+
δ then H ∈ H gives us ah + af ≥ ag and ah + ag ≥ af . For all

x ∈ (0,∞) it must be the case that T (H(x), bf ) ≤ bg and vice versa. Since T is

continuous this gives Hδ ∈ H . Since S ≤ Sδ, and S ∈ H we must have S = Sδ. ■

The above lemma means that for strict T whenever φ(F ) and φ(G) are delta

functions, we can reduce the order quasi solution inequality to one only involving

delta functions. As a result, we have the following theorems

Theorem 25 Let H ∈ ∆+ \ {ε∞} and T be a strict t-norm. If for all F,G ∈ ∆+
δ

a type one order automorphism φ : ∆+ → ∆+ satisfies

τT (τT (φ(F ), φ(G)), H
2) ≤ τT (φ(τT (F,G)), H) ≤ τT (φ(F ), φ(G))

Then there exists a unique type one order automorphism φ1 satisfying

1. ∀F,G ∈ ∆+ τT (φ1(F ), φ1(G)) = φ1(τT (F,G)) (φ1 is additive)

2. ∀F ∈ ∆+[τT (φ(F ), H) ≤ φ1(F ) and τT (φ1(F ), H) ≤ φ(F )] (φ and φ1 approximate

one another)

Proof :

By Lemma 5, it is sufficient to consider H ∈ ∆+
δ . Let φ satisfy our

hypothesis, then there exists γ ∈ Aut(R+) and θ ∈ Aut([0, 1]) such that φ(F ) =
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θ ◦ F ◦ γ. Let F = δaf ,bf , G = δag ,bg , and H = δah,bh . By hypothesis, we then have

the following

δ
γ−1(af )+γ−1(ag)+2ah,T

(
T (θ(bf ),θ(bg)),T (bh,bh)

) ≤ δ
γ−1
(
af+ag

)
+ah,T (θ(T (bf ,bg)),bh)

≤ δγ−1(af )+γ−1(ag),T (θ(bf ),θ(bg))

Which yields the following two inequalities

γ−1(af ) + γ−1(ag) ≤ γ−1(af + ag) + ah ≤ γ−1(af ) + γ−1(ag) + 2ah (4.1)

T

(
T
(
θ(bf ), θ(bg)

)
, b2h

)
≤ T

(
θ
(
T (bf , bg)

)
, bh

)
≤ T

(
θ(bf ), θ(bg)

)
(4.2)

Let z be the inner additive generator of T . Since T is strict and z is a

decreasing function, application of z to (4.2) yields

z
(
θ(bf )

)
+ z
(
θ(bg)

)
+ z(b2h) ≥ z

(
θ

(
z−1
(
z(bf ) + z(bg)

)))
+ z(bh)

≥ z
(
θ(bf )

)
+ z
(
θ(bg)

)
Notice that z(b2h) = z(z−1(z(bh) + z(bh))) and let ψ = z ◦ θ ◦ z−1 and observe that

the inequality becomes

ψ
(
z(bf )

)
+ ψ

(
z(bg)

)
+ 2z(bh) ≥ ψ

(
z(bf ) + z(bg)

)
+ z(bh)

≥ ψ
(
z(bf )

)
+ ψ

(
z(bg)

) (4.3)

We now wish to find additive functions that approximate ψ and γ−1. In

order to do so, we first establish particular facts about ψ. By hypothesis, we have

bh ̸= 0 meaning that z(bh) < ∞. Knowing that the inner additive generator, z is a

surjection onto R+ and that (4.3) holds for all choices of bf , bg ∈ [0, 1] means that

for some fixed c <∞ and for all x, y ∈ [0,∞)

|ψ(x+ y)− (ψ(x) + ψ(y))| ≤ c (4.4)
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Observe that (4.1) implies a similar statement for γ−1 and what follows will

be sufficient argumentation for both γ−1 and ψ . Let x = 2nu and y = 2nv. Then

(4.4) gives us that |ψ(2n(u + v)) − (ψ(2nu) − ψ(2nv))| = o(2n) and convergence of

the series
∞∑
i=1

2−i|ψ(2i+1u)− 2ψ(2iu)|.

To satisfy all hypotheses of Theorem 8 we now need only show that there are

some x̃, ỹ ∈ R+ such that lim inf[2−n|ψ(2nx̃) − ψ(2nỹ)|] > 0. In order to do so, we

first establish by induction ψ(2nx) ≥ 2n(ψ(x) − c). As a base case let n = 1 then

by (4.4) we have

ψ(2x) ≥ ψ(x) + ψ(x)− c ≥ 2ψ(x)− 2c

Suppose now for n > 1 we have ψ(2nx) ≥ 2n(ψ(x)− c) then

ψ(2n+1x) ≥ 2ψ(2nx)− c

≥ 2
(
2nψ(x)− (2n − 1)c

)
− c

≥ 2n+1ψ(x)− 2n+1c+ 2c− c

= 2n+1ψ(x)− (2n+1 − 1)c

= 2n+1(ψ(x)− c)

Since z−1(0) = 1, θ(1) = 1 and z(1) = 0, we have that ψ(0) = 0. Since ψ is a

surjection onto R+ we know there exists x̃ such that ψ(x̃) > c so

lim inf[2−n|ψ(2nx̃)− ψ(2n · 0)| ≥ lim inf[2−n · 2n(ψ(x̃)− c)] > 0

Therefore, by Theorem 8 we may conclude that there are unique non constant

additive functions ψ1, γ1 such that

|ψ1(x)− ψ(x)| ≤
∞∑
i=1

2−iz(bh) = z(bh) and |γ−1
1 (x)− γ−1(x)| ≤

∞∑
i=1

2−iah = ah
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We now turn our attention towards constructing an additive order automorphism

on ∆+ with the desired properties. We define θ1 = z−1 ◦ ψ1 ◦ z. Since z is an

order reversing bijection from [0, 1] into R+ and ψ1 is an additive function on R+

admitting the representation ψ1(x) = c1x which is an automphism of R+, θ1 is an

automorphism on [0, 1]. Similarly, γ−1
1 (x) = c2x , and thus γ1, so γ1 is an order

automorphism on R+. Therefore we can conclude the function φ1(F ) := θ1 ◦F ◦ γ1

is an order automorphism on ∆+.

Next we establish the additivity of φ1. Let u, v ∈ [0, 1]. Then

θ1(T (u, v)) = z−1 ◦ ψ1 ◦ z ◦ z−1(z(u) + z(v))

= z−1(ψ1(z(u)) + ψ1(z(v)))

= z−1(z ◦ θ1(u) + z ◦ θ1(v))

= T (θ1(u), θ1(v))

Let F,G ∈ ∆+. It follows that

φ1(τT (δx,F (x), δy,G(y)) = δγ−1
1 (x+y),θ1(T (F (x),G(y))

= δγ−1
1 (x)+γ−1

1 (y),T (θ1(F (x)),θ1(G(y)))

= τT (φ1(δx,F (x)), φ1(δy,G(y)))

Using sup continuity of order automorphisms we have the following

sup
y
[sup

x
[φ1(τT (δx,F (x), δy,G(y))]] = sup

y
[φ1(τT (sup

x
[δx,F (x)], δy,G(y)))

= sup
y
[φ1(τT (F, δy,G(y))] = φ1(τT (F,G))

While on the other hand

sup
y
[sup

x
[φ1(τT (δx,F (x), δy,G(y))]] = sup

y
[sup

x
[τT (φ1(δx,F (x)), φ1(δy,G(y))]]

= τT (φ1(F ), φ1(G))

Therefore allowing us to conclude that φ1 is additive.
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Now we demonstrate that φ1 approximates φ on all of ∆+. Let x ∈ R+ and

observe without loss of generality that

0 ≤ z ◦ θ ◦ z−1(x)− z ◦ θ1 ◦ z−1(x) ≤ z(bh).

Adding z ◦ θ1 ◦ z−1(x) and applying z−1 we obtain

θ1(z
−1(x)) ≥ θ(z−1(x)) ≥ T

(
θ1

(
z−1(x)

)
, bh

)
.

Let u = z−1(x) since x was chosen arbitrarily we have for all u ∈ [0, 1] that

T (θ1(u), bh) ≤ θ(u) and T (θ(u), bh) ≤ θ1(u). (4.5)

We may further conclude

γ−1
1 (x) + ah ≥ γ−1(x) and γ−1(x) + ah ≥ γ1(x). (4.6)

Let H ∈ ∆+
δ as before and F ∈ ∆+. It follows from (4.5) and (4.6) that

τT (φ1(δx,F (x)), H) = δγ−1
1 (x)+ah,T (θ1(F (x)),bh)

≤ δγ−1(x),θ(F (x)) = φ(δx,F (x)).

Similar argumentation justifies τT (φ(δx,F (x)), H) ≤ φ1(δx,F (x)). Taking the supremum

over x ∈ R+ in both inequalities gives us approximation on all of ∆+.

Finally, to justify uniqueness, suppose φ2 is an additive type one order

automorphism that satisfies τT (φ(F ), H) ≤ φ1(F ) and τT (φ1(F ), H) ≤ φ(F ) for

all F ∈ ∆+. Since φ2 is a type one order automorphism, it follows that for

γ2 ∈ Aut(R+) and θ2 ∈ Aut([0, 1]), φ2(F ) = θ2 ◦ F ◦ γ−1
2 . Therefore, for F ∈ ∆+

and x ∈ R+

δγ−1(x)+ah,T (θ(F (x)),bh) = τT (φ(δx,F (x)), H) ≤ φ2(δx,F (x)) = δγ−1
2 (x),θ2(F (x)) (4.7)

and

δγ−1
2 (x)+ah,T (θ2(F (x)),bh)

≤ δγ−1(x),θ(F (x)). (4.8)
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Allowing us to conclude that for all x: |γ−1
2 (x) − γ−1(x)| ≤ ah but the uniqueness

condition from Theorem 8 gives us that γ2 = γ1. We now define ψ2 = z ◦ θ2 ◦ z−1.

Let u = F (x) then from (4.7) and (4.8) we have

z−1(ψ(z(u)) + z(bh)) = T (θ(u), bh) ≤ θ2(u) = z−1(ψ2(z(u))

and

z−1(ψ2(z(u)) + z(bh)) ≤ z−1(ψ(z(u)).

Applying z to each of the above inequalities gives us

ψ(z(u))− z(bh) ≤ ψ2(z(u)) ≤ ψ(z(u)) + z(bh)

Since our choice of F and x are free and z is a surjection, we can conclude

|ψ2(y)−ψ(y)| ≤ z(bh) for all y ∈ R+. Therefore Lemma 1 guarantees that ψ2 = ψ1.

Furthermore, the bijectvity of z and z−1 gives us that θ2 = θ1. Since φ2 is completely

determined by θ2 and γ2 we conclude that φ1 = φ2. ■

We have the same result for type two order automorphisms:

Theorem 26 Let H ∈ ∆+ \ {ε∞} and T be a strict t-norm. If for all F,G ∈ ∆+
δ

a type two order automorphism φ : ∆+ → ∆+ satisfies

τT (τT (φ(F ), φ(G)), H
2) ≤ τT (φ(τT (F,G)), H) ≤ τT (φ(F ), φ(G))

Then there exists a unique type two order automorphism φ1 satisfying

1. ∀F,G ∈ ∆+ τT (φ1(F ), φ1(G)) = φ1(τT (F,G)) (φ1 is additive)

2. ∀F ∈ ∆+[τT (φ(F ), H) ≤ φ1(F ) and τT (φ1(F ), H) ≤ φ(F )] (φ and φ1 approximate

one another)

52



Proof :

By Lemma 5, it is sufficient to consider H ∈ ∆+
δ . Let φ satisfy our

hypothesis, then there exists strictly decreasing functions α, β : R+ → [0, 1] such

that φ(F ) = α ◦ F∨ ◦ β. Let F = δaf ,bf , G = δag ,bg , and H = δah,bh . By hypothesis,

we then have the following

δ
β−1(bf )+β−1(bg)+2ah,T

(
T (α(af ),α(ag)),T (bh,bh)

) ≤ δ
β−1
(
T (bf ,bg)

)
+ah,T (α(af+ag),bh)

≤ δβ−1(bf )+β−1(bg),T (α(af ),α(ag)).

Which yields the following two inequalities:

β−1(bf ) + β−1(bg) ≤ β−1
(
T (bf , bg)

)
+ ah ≤ β−1(bf ) + β−1(bg) + 2ah (4.9)

T

(
T
(
α(af ), α(ag)

)
, b2h

)
≤ T

(
α(af + ag), bh

)
≤ T

(
α(af ), α(ag)

)
(4.10)

Let z be the inner additive generator of T . Since T is strict and z is a decreasing

function, application of z to the second inequality yields:

z
(
α(af )

)
+ z
(
α(ag)

)
+ z(b2h) ≥ z

(
α(af + ag)

)
+ z(bh) ≥ z

(
α(af )

)
+ z
(
α(ag)

)
Notice that z(b2h) = z(z−1(z(bh) + z(bh))) and let ψ = z ◦ α and observe that the

inequality becomes

ψ(af ) + ψ(ag) + 2z(bh) ≥ ψ(af + ag) + z(bh) ≥ ψ(af ) + ψ(ag). (4.11)

Define ϖ = β−1 ◦ z−1 and observe that (4.9) becomes

ϖ
(
z(bf )

)
+ϖ

(
z(bg)

)
≤ ϖ

(
z(bf ) + z(bg)

)
+ ah

≤ ϖ
(
z(bf )

)
+ϖ

(
z(bg)

)
+ 2ah.

(4.12)

We now wish to find additive functions that approximate ψ and ϖ. In order

to do so, we first establish particular facts about ψ. By hypothesis, we have bh ̸= 0
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meaning that z(bh) <∞. Knowing that (4.11) holds for all choices of af , ag ∈ [0,∞)

means that for some fixed c <∞ and for all x, y ∈ [0,∞)

|ψ(x+ y)− (ψ(x) + ψ(y))| ≤ c. (4.13)

Observe that the inner additive generator, z, is a surjection onto R+ and ah < ∞

which means a similar statement for ϖ. Therefore what follows will be sufficient

argumentation for both ϖ and ψ. Let x = 2nu and y = 2nv. Equation (4.13) gives

us that

|ψ(2n(u+ v))− (ψ(2nu)− ψ(2nv))| = o(2n)

and convergence of the series

∞∑
i=1

2−i|ψ(2i+1u)− 2ψ(2iu)|.

To satisfy all hypotheses of Theorem 8 we now need only show that there are

some x̃, ỹ ∈ R+ such that lim inf[2−n|ψ(2nx̃)−ψ(2nỹ)|] > 0. Following the previous

proof, we have for all n ∈ N that ψ(2nx) ≥ 2n(ψ(x) − c). Since α(0) = 1 and

z(1) = 0, we have that ψ(0) = 0. Since ψ is a surjection onto R+ we know there

exists x̃ such that ψ(x̃) > c so

lim inf[2−n|ψ(2nx̃)− ψ(2n · 0)| ≥ lim inf[2−n · 2n(ψ(x̃)− c)] > 0.

By Theorem 8 we may conclude that there are unique non constant additive functions

ψ1, ϖ1 such that

|ψ1(x)− ψ(x)| ≤
∞∑
i=1

2−iz(bh) = z(bh)

and

|ϖ1(x)−ϖ(x)| ≤
∞∑
i=1

2−iah = ah.

We now turn our attention towards constructing an additive order automorphism

on ∆+ with the desired properties. We define α1 = z−1 ◦ψ1 and β1 = z−1 ◦ϖ−1
1 .By

Corollary 2, we have that there exists c1, c2 > 0 such that ψ1(x) = c1x and
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ϖ(x) = c2x. Therefore both ψ1 and ϖ−1
1 are strictly increasing bijections of R+.

Since z−1 is an order reversing bijection from R+ into [0, 1], α1 is a strictly decreasing

function from R+ into [0, 1]. Similarly, β1 is a strictly decreasing function from R+

into [0, 1]. Therefore we can conclude the function φ1(F ) := α1 ◦F∨ ◦β1 is an order

automorphism on ∆+.

Next we establish the additivity of φ1. Let x, y ∈ R+ and u, v ∈ [0, 1]. Then

α1(x+ y) = z−1 ◦ ψ1(x+ y)

= z−1(ψ1(x) + ψ1(y))

= z−1(z ◦ α1(x) + z ◦ α1(y))

= T (α1(x), α1(y))

and

β−1
1 (T (u, v)) = ϖ1 ◦ z(T (u, v))

= ϖ1(z(u) + z(v))

= ϖ1(z(u)) +ϖ1(z(v))

= β−1
1 (u) + β−1

1 (v).

Let F,G ∈ ∆+. It follows that

φ1(τT (δx,F (x), δy,G(y)) = δβ−1
1 (T (F (x),F (y))),α1(x+y)

= δβ−1
1 (F (x))+β−1

1 (y),T (α1(x),α1(y))

= τT (φ1(δx,F (x)), φ1(δy,G(y)))

Using sup continuity of order automorphisms we have the following

sup
y
[sup

x
[φ1(τT (δx,F (x), δy,G(y))]] = sup

y
[φ1(τT (sup

x
[δx,F (x)], δy,G(y)))

= sup
y
[φ1(τT (F, δy,G(y))] = φ1(τT (F,G))

While on the other hand

sup
y
[sup

x
[φ1(τT (δx,F (x), δy,G(y))]] = sup

y
[sup

x
[τT (φ1(δx,F (x)), φ1(δy,G(y))]]

= τT (φ1(F ), φ1(G))
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Therefore allowing us to conclude that φ1 is additive.

Now we demonstrate that φ1 approximates φ on all of ∆+. Let x ∈ R+ and

observe without loss of generality that

0 ≤ z ◦ α(x)− z ◦ α1(x) ≤ z(bh).

Adding z ◦ α1(x) and applying z−1 we obtain

α1(x) ≥ α(x) ≥ T
(
α1(x), bh

)
.

Therefore, we conclude for all x ∈ R+

T (α1(x), bh) ≤ α(x) and T (α(x), bh) ≤ α1(x). (4.14)

We may further conclude

ϖ1(x) + ah ≥ ϖ(x) and ϖ(x) + ah ≥ ϖ1(x).

Since the above is true for all x ∈ R+, we have for all u ∈ [0, 1].

β−1(u) ≤ β−1
1 (u) + ah and β−1

1 (u) ≤ β−1(u) + ah (4.15)

Let H ∈ ∆+
δ as before and F ∈ ∆+. It follows from (4.14) and (4.15) that

τT (φ1(δx,F (x)), H) = δβ−1
1 (F (x))+ah,T (α1(x),bh)

≤ δβ−1(F (x)),α(x) = φ(δx,F (x))

and

τT (φ(δx,F (x)), H) = δβ−1(F (x))+ah,T (α(x),bh) ≤ δβ−1
1 (F (x)),α1(x)

= φ1(δx,F (x)).

Application of a supremum to both inequalities gives us approximation on all of

∆+.

Finally, to justify uniqueness, suppose φ2 is an additive type two order

automorphism that satisfies τT (φ(F ), H) ≤ φ1(F ) and τT (φ1(F ), H) ≤ φ(F ) for

all F ∈ ∆+. Since φ2 is a type two order automorphism, it follows that there are
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α2, β2 : R+ → [0, 1] such that φ2(F ) = α2 ◦ F ∨ ◦ β2. Therefore, for F ∈ ∆+ and

x ∈ R+

δβ−1(F (x))+ah,T (α(x),bh) = τT (φ(δx,F (x)), H) ≤ φ2(δx,F (x)) = δβ−1
2 (F (x)),α2(x)

(4.16)

and

δβ−1
2 (F (x))+ah,T (α2(x),bh)

≤ δβ−1(F (x)),α(x). (4.17)

Allowing us to conclude that for all x

|β−1
2 (F (x))− β−1(F (x))| ≤ ah.

Since F (x) ∈ [0, 1] there exists y ∈ R+ such that z−1(y) = F (x) ,so

|β−1
2 (z−1(y))− β−1(z−1(y))| ≤ ah.

Since our choice of F and x are arbitrary we have the previous inequality for all

choices of y. Therefore for all y ∈ R+ we have |ϖ−1
2 (y) − ϖ−1(y)| ≤ ah where

ϖ2 = β−1
2 ◦z−1 but the uniqueness condition from Theorem 8 gives us that ϖ2 = ϖ1

which in turn guarantees β1 = β2. Similar reasoning gives us that α2 = α1. Since

φ2 is completely determined by α2 and β2 we conclude that φ1 = φ2. ■

Here we observe that we have yet to justify that there are order quasi

solutions which are in anyway distinct from actual solutions of Cauchy’s equation.

That is to say, that it could be the case that the only way to approximate solutions

of Cauchy’s equation is to actually be a solution. In the case of both type one and

type two order automorphisms, we have that there are indeed order quasi additive

functions which are not solutions of Cauchy’s equation. Below are examples for

each case:

Example 2 Let θ(x) =
√
xe−0.1 sin(πx)and γ(x) = 2x + 0.05 sin(x). We have that

both θ and γ are continuous strictly increasing functions over the interior of their

respective domains and both are surjections, hence each are order automorphisms.
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Since γ is an order automorphism, so is γ−1, thus φ(F ) = θ ◦ F ◦ γ−1 is an order

automorphism of ∆+.

Further, the map θ is bounded by
√
x and 0.9

√
x, while γ−1 is bounded

bounded by the functions 1
2
x− 0.05 and 1

2
x+0.05. Thus if we take T to be product,

H = δ0.15,0.81, and φ(F ) = θ ◦ F ◦ γ−1 we have

τT (τT (φ(F ), φ(G)), H
2) ≤ τT (φ(τT (F,G)), H) ≤ τT (φ(F ), φ(G)).

However, we also have

φ(τT (δπ
2
,0.5, (δπ

2
,0.5)) = δ

2π,0.5e0.1
√
2

2

while

τT (φ(δπ
2
,0.5), φ(δπ

2
,0.5)) = δ2π+0.1,0.5e−0.2

Therefore φ is strictly order quasi additive.

By Theorem 25 we should also be able to produce a unique additive order

automorphism which φ approximates with error δ0.15,0.81, and it is readily verified

that φ1(F )(x) :=
√
F (1

2
x) is the approximated solution.

Example 3 Let α(x) = e−2x+0.1| sin(x)|, β = e−2x and φ(F ) = α ◦F∨ ◦β. Since both

α and β are continuous, strictly decreasing, send 0 to 1 and ∞ to 0, we have that

φ is an order automorphism. If we take H = δ0,0.81 we can see that φ satisfies

τT (τT (φ(F ), φ(G)), H
2) ≤ τT (φ(τT (F,G)), H) ≤ τT (φ(F ), φ(G)).

However, φ is not a solution of Cauchy’s equation. Therefore φ is strictly

order quasi additive, and by Theorem 26 φ1(F ) := e2F
∨(e−2x) is the unique order

automorphism solution that φ approximates.

The following is a theorem concerning the similarity of stability between triangle

functions which are generated by isomorphic continuous t-norms. First we note that
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occasionally, it is useful to treat order automorphisms of [0, 1] as order automorphisms

of ∆+. We may do so because whenever f is an order automorphism of [0, 1] we

have that f(F (x)), f−1(F (x)) ∈ ∆+, and F (x) ≤ G(x) happens if and only if

f(F (x)) ≤ f(G(x)). Therefore, when we write f ◦ F for F ∈ ∆+ we are viewing f

as an order automorphism of ∆+ and when we write f(F (x)) we are emphasizing

f as an order automorphism of [0, 1].

Theorem 27 Let T and T ′ be continuous t-norms that are isomorphic under f

1. The function φ is order quasi additive on (∆+, τT ) for error function H if

and only if ψ(F ) = f ◦φ(f ◦F )) is order quasi additive on (∆+, τT ′) for error

function f ◦H.

2. The function φ is an order additive approximator on (∆+, τT ) for error function

H if and only if ψ(F ) = f ◦φ(f−1 ◦F )) is an order additive approximator on

(∆+, τT ′) for error function f ◦H.

Proof :

We first show part 1. Let F,G ∈ ∆+ and x ∈ R+. By isomorphism under f

we have

τT (F,G)(x) = sup
u+v=x

T (F (u), G(v))(x) = sup
u+v=x

f−1(T ′(f(F (u)), f(G(v))))(x).

Since f−1 is an order autmorphism, we may pass the supremum through it yeliding

τT (F,G)(x) = f−1 ◦ τT ′(f ◦ F, f ◦G)(x)

Application of f to both sides and substituting f−1 ◦ F and g−1 ◦ G for F and G

respectively yeilds

τT ′(F,G) = f ◦ τT (f−1 ◦ F, f−1 ◦G).

Similar rearrangement also gives the following two equations:

τT (f
−1 ◦ F, f−1 ◦G) = f−1 ◦ τT ′(F,G)
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τT ′(f ◦ F, f ◦G) = f ◦ τT (F,G)

So for all F,G ∈ ∆+ we observe the following where U = f ◦ F and V = f ◦G

τT (φ(F ), φ(G)) = f−1 ◦ τT ′(f ◦ φ(F ), f ◦ φ(G)) = f−1 ◦ τT ′(ψ(U), ψ(V ))

φ(τT (F,G)) = f−1 ◦ ψ ◦ f ◦ f−1
(
τT ′(f ◦ F, f ◦G)

)
= f−1 ◦ ψ(τT ′(U, V ))

τT (φ(τT (F,G)), H) = τT (f
−1 ◦ ψ(τT ′(U, V )), H)

= f−1 ◦ τT ′(ψ(τT ′(U, V )), f ◦H)

τT (τT (φ(F ), φ(G)), τT (H,H)) = f−1 ◦ τT ′(τT ′(ψ(U), ψ(V )), τT ′(f ◦H, f ◦H))

Since φ is an order quasi additive function with error H, we have the following

inequalities:

f−1 ◦ τT ′(τT ′(ψ(U), ψ(V )), τT ′(f ◦H, f ◦H)) = τT (τT (φ(F ), φ(G)), τT (H,H))

≤ τT (φ(τT (F,G)), H)

= f−1 ◦ τT ′(ψ(τT ′(U, V )), f ◦H)

f−1 ◦ τT ′(ψ(τT ′(U, V )), f ◦H) = τT (φ(τT (F,G)), H)

≤ τT (φ(F ), φ(G))

= f−1 ◦ τT ′(ψ(U), ψ(V ))

Since f is order preserving, we may apply f to all parts of the above inequalities

and obtain

τT ′(τT ′(ψ(U), ψ(V )), τT ′(f ◦H, f ◦H)) ≤ τT ′(ψ(τT ′(U, V )), f ◦H) ≤ τT ′(ψ(U), ψ(V ))
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for all U, V ∈ f−1(∆+). Since composition with f−1 is a bijection, the above holds

for all U, V ∈ ∆+. For the converse, suppose ψ is an order quasi additive function

with error f ◦H. We have

f ◦ τT (τT (φ(F ), φ(G)), τT (H,H)) = τT ′(τT ′(ψ(U), ψ(V )), τT ′(f ◦H, f ◦H))

≤ τT ′(ψ(τT ′(U, V )), f ◦H)

= f ◦ τT (φ(τT (F,G)), H)

(4.18)

and

f ◦ τT (φ(τT (F,G)), H) = τT ′(ψ(τT ′(U, V )), f ◦H)

≤ τT ′(ψ(U), ψ(V ))

= f ◦ τT (φ(F ), φ(G)).

(4.19)

Applying f−1 to both (4.18) and (4.19) completes part 1.

For part 2, let φ be an order additive approximator over τT with error H,

and φ′ to be a solution which φ approximates. Then, taking ψ′ = f ◦ φ′ ◦ f−1

τT ′(ψ′(F ), ψ′(G)) = τT ′(f ◦ φ′(f−1 ◦ F ), f ◦ φ′(f−1 ◦G))

= f ◦ τT (φ′(f−1 ◦ F ), φ′(f−1 ◦G))

= f ◦ φ′(τT (f
−1 ◦ F, f−1 ◦G))

= f ◦ φ′(f−1 ◦ τT ′(F,G))

= ψ′(τT ′(F,G)).

So ψ′ is a τT ′ additive function and

f−1 ◦ τT ′(f ◦ ψ(F ), f ◦H) = τT (φ(f
−1 ◦ F ), H) ≤ φ′(f−1 ◦ F ) = f−1 ◦ ψ(F )

f−1 ◦ τT ′(f ◦ ψ′(F ), f ◦H) = τT (φ
′(f−1 ◦ F ), H) ≤ φ(f−1 ◦ F ) = f−1 ◦ ψ(F )

Applying f to both inequalities completes the forward direction.
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For the converse, suppose ψ is an order additive approximator with error

f ◦H , and take ψ′ to be the approximated solution. Therefore,

τT (φ(f
−1 ◦ F ), H) = f−1 ◦ τT ′(f ◦ ψ(F ), f ◦H) ≤ f−1 ◦ ψ(F ) = φ′(f−1 ◦ F )

τT (φ
′(f−1 ◦ F ), H) = f−1 ◦ τT ′(f ◦ ψ′(F ), f ◦H) ≤ f−1 ◦ ψ(F ) = φ(f−1 ◦ F )

This completes the proof. ■

Since we have a notion of the existence of an order stability relationship in

(∆+, τT ) when T is strict, this theorem gives us the ability to conclude a similar

result for Hyers Ulam stability when T is strict.

Theorem 28 Let F,G ∈ ∆+ and T be a strict t-norm whose isomorphism to the

product norm is denoted f .

1. If φ is an order quasi additive function on (∆+, τT ) with error δa,b, then ψ =

f ◦ φ ◦ f−1 is metric quasi additive in (∆+, τp, dL) with error bounded by

max{a, 1− f(b)}.

2. If φ is an order additive approximator in (∆+, τT ) with error δa,b then ψ =

f ◦ φ ◦ f−1 is a solution in metric approximation of Cauchy’s equation in

(∆+, τp, dL) with uncertainty bounded by max{a, 1− f(b)}.

Proof :

For the first claim, we have that

f(τT (τT (φ(F ), φ(G)), δa,b)) = τp(f(τT (φ(F ), φ(G))), f(δa,b))

= τp(τp(f(φ(F )), f(φ(G))), δa,f(b))

and

f(τT (φ(τT (F,G)), δa,b)) = τp(f(φ(τT (F,G))), δa,f(b))

By order quasi additivity of φ and strictness of T we have that

τT (τT (φ(F ), φ(G)), δa,b) ≤ φ(τT (F,G)) and τT (φ(τT (F,G)), δa,b) ≤ τT (φ(F ), φ(G))
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Therefore, by applying f to both sides of each inequality we obtain

τp(τp(f ◦ φ(F ), f ◦ φ(G)), δa,f(b)) ≤ f ◦ φ(τT (F,G))

and

τp(f ◦ φ(τT (F,G)), δa,f(b)) ≤ τp(f ◦ φ(F ), f ◦ φ(G))

In what follows we may adopt the harmless convention that all members of

∆+ are 0 on (−∞, 0) in order to avoid cases. ForW ∈ ∆+ we have by left continuity

that τp(W, δa,b)(x− a) = W (x) · b. Additionally, for any positive number y we have

that y − (1 − b) ≤ y · b when b ∈ [0, 1]. These observation grants us the following

inequalities:

τp(f ◦ φ(F ), f ◦ φ(G))(x) ≤ f ◦ φ(τT (F,G))(x+ a) + (1− f(b))

f ◦ φ(τT (F,G))(x) ≤ τp(f ◦ φ(F ), f ◦ φ(G))(x+ a) + (1− f(b))

Since this observation holds for all x ∈ R+ and not just x = 1
h
(where h = max{a, 1−

f(b)}) we may conclude

dL(τp(f ◦ φ(F ), f ◦ φ(G)), f ◦ φ(τT (F,G))) ≤ max{a, 1− f(b)}

Furthermore, we observe that since the above inequality is true for all F,G ∈ ∆+

and that left composition of f−1 is a bijection on ∆+ we may replace F and G

everywhere with f−1 ◦ F and f−1 ◦G. With the added observation that

f ◦ φ(τT (f−1 ◦ F, f−1 ◦G)) = f ◦ φ(f−1 ◦ f(τT (f−1 ◦ F, f−1 ◦G))) = ψ(τp(F,G))

we may conclude

dL(τp(ψ(F ), ψ(G)), ψ(τp(F,G))) ≤ max{a, 1− f(b)}

For the second claim, we have the assumption that φ is an order additive

approximator, so there is φ′ such that for all F ∈ ∆+

τT (φ(F ), δa,b) ≤ φ′(F ) and τT (φ
′(F ), δa,b) ≤ φ(F )
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Further, application of f to these inequalities along with replacement of F by f−1◦F

gives

dL(ψ(F ), ψ
′(F )) ≤ max{a, 1− f(b)}

where ψ′ = f ◦φ′ ◦f−1. Now we show ψ′ is additive over the product triangle norm.

To that end, the following suffices

τp(ψ
′(F ), ψ′(G)) = f(τT (φ

′(f−1(F )), φ′(f−1(G))))

= f ◦ φ′(τT (f
−1(F ), f−1(G)))

= ψ′(τp(F,G))

■

Corollary 13 follows from Theorem 25 and Theroem 26. While the subsequent

corollary follows from Corollary 13 and Lemma 5

Corollary 13 Let F,G ∈ ∆+ and T be a strict t-norm whose isomorphism to the

product norm is denoted f . If φ is an order automorphism which is order quasi

additive with error δa,b then ψ = f ◦ φ ◦ f−1 is a solution in metric approximation

of Cauchy’s equation in (∆+, τp, dL) with uncertainty bounded by max{a, 1− f(b)}.

Corollary 14 Let F,G ∈ ∆+ and T be a strict t-norm whose isomorphism to the

product norm is denoted f . If φ is an order automorphism which is order quasi

additive with error H ̸= δ0,0 then there exists a ∈ R+ and b ∈ (0, 1] such that

δa,b ≥ H and ψ = f ◦ φ ◦ f−1 is a solution in metric approximation of Cauchy’s

equation in (∆+, τp, dL) with uncertainty bounded by max{a, 1− f(b)}.

Triangle functions generated by nilpotent T

Now that we have results for strict t-norms, we turn our attention to gaining

results for continuous nilpotent Archimedean t-norms. Here, the state of affairs is
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less straightforward. For one, type two order isomorphism solutions do not exist

(recall Theorem 22). Furthermore, the relationship between order quasi additive

type one order automorphisms and an order additive approximator order automorphisms

isn’t as secure as we shall see in the following sequence of results.

Theorem 29 Let T be a continuous, nilpotent Archimedean t-norm isomorphic

under f to the Lukasiewicz t-norm, a ∈ R+, and b ∈ (0, 1). If γ is a metric

quasi additive order automorphism of R+ with error a, and θ is a convex order

automorphism of [0, 1] that satisfies θ(z − 1) ≤ 2θ( z
2
) − b when z > 1 then for all

F,G ∈ ∆+ ψ(F ) = f ◦θ ◦f−1 ◦F ◦γ is an order quasi additive function on (∆+, τT )

for error function δa,f(b).

Proof :

By Theorem 27, ψ satisfies τT order quasi additivity for error δa,f(b) if and

only if φ = θ ◦F ◦ γ satisfies τT ′ order quasi additivity for error δa,b where T
′ is the

Lukasiewicz t-norm. Therefore, we will show that φ is a quasi additive function on

(∆+, τT ′) for error function δa,b. Since φ is sup continuous, it suffices to show that

φ is order quasi additive on ∆+
δ . To that end, suppose x, y ∈ [0, 1] and w, z ∈ R+.

Letting b2 denote T ′(b, b) it follows that

τT ′(τT ′(φ(δx,w), φ(δy,z)), δ2a,b2) = δγ−1(w)+γ−1(z)+2a,T ′(T ′(θ(x),θ(y)),b2)

τT ′(φ(τT ′(δx,w, δy,z)), δa,b) = δγ−1(w+z)+a,T ′(θ(T ′(x,y)),b)

τT ′(φ(δx,w), δy,z) = δγ−1(w)+γ−1(z),T ′(θ(x),θ(y))

Since γ−1 is metric quasi additive with error a we have

γ−1(w) + γ−1(z) ≤ γ−1(w + z) + a ≤ γ−1(w) + γ−1(z) + 2a
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As such, we need only check θ satisfies the following inequality to verify quasi

additivity.

T ′(T ′(θ(x), θ(y)), b2) ≤ T ′(θ(T ′(x, y)), b) ≤ T ′(θ(x), θ(y))

Since θ is convex and θ(0) = 0, we have that it is super additive on its domain (see

[7]). In particular, taking x+ y ≤ 1 we have θ(x)+ θ(y) ≤ θ(x+ y) ≤ 1. Thus when

x+ y ≤ 1, we have that both T ′(θ(x), θ(y)) and θ(T ′(x, y)) are 0.

Instead taking 1 < x + y < 2 (while maintaining x, y ∈ [0, 1]) we have

0 < y − (1− x) . So by convexity of θ

θ(y)− θ(y − (1− x))

1− x
≤ θ(1)− θ(y − (1− x))

1− (y − 1 + x)
≤ θ(1)− θ(x)

1− x

Therefore, examining the secant line of θ between y − (1− x) and y

θ(y − (1− x)) = θ(y)− θ(y)− θ(y − (1− x))

1− x
(1− x) ≥ θ(y)− θ(1)− θ(x)

1− x
(1− x)

So θ(x + y − 1) ≥ θ(x) + θ(y) − 1 which implies θ(x) + θ(y) − 3 + 2b ≤

θ(x+ y − 1)− 1 + b. We claim this fact is sufficient to conclude that θ satisfies

T ′(T ′(θ(x), θ(y)), b2) ≤ T ′(θ(T ′(x, y)), b)

by observing that the inequality may be rephrased as

max{max{θ(x) + θ(y)− 1, 0}+ 2b− 2, 0} ≤ max{θ(max{x+ y − 1, 0}) + b− 1, 0}

The left side of the rephrased inequality is nonzero only when the expression θ(x)+

θ(y)− 3 + 2b is greater than zero, and is equivalent to the expression in that case.

Clearly then, the right side is necessarily greater in value.

Now we only need verify T ′(θ(T ′(x, y)), b) ≤ T ′(θ(x), θ(y)). Assuming without

loss of generality that T ′(θ(T ′(x, y)), b) > 0 and applying the hypothesis that

θ(x+ y − 1) ≤ 2θ(x+y
2
)− b we have

T ′(θ(T ′(x, y)), b) = θ(x+ y − 1)− 1 + b ≤ 2θ(
x+ y

2
)− 1
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By convexity we have

T ′(θ(T ′(x, y)), b) ≤ 2θ(
x+ y

2
)− 1 ≤ θ(x) + θ(y)− 1 = T ′(θ(x), θ(y)

■

Theorem 30 Let T be a continuous, nilpotent Archimedean t-norm isomorphic to

Lukasiewicz t-norm under f , a ∈ R+, and b ∈ (0, 1). If γ is a metric quasi additive

order automorphism on R+ with error a, and θ is a concave order automorphism

that satisfies θ(z − 1) ≥ 2θ( z
2
) + b − 2 when z > 1 then for all F,G ∈ ∆+ ψ(F ) =

f ◦ θ ◦ f−1 ◦F ◦ γ is an order quasi additive function on (∆+, τT ) for error function

δa,f(b).

Proof :

Let, φ = θ◦F ◦γ, and T ′ be the Lukasiewicz t- norm. Following the proof of

the prior theorem using the same properties of γ, we observe that it will be sufficient

to show that θ satisfies

T ′(T ′(θ(x), θ(y)), b2) ≤ T ′(θ(T ′(x, y)), b) ≤ T ′(θ(x), θ(y))

Here, we will show that concavity gives T ′(θ(T ′(x, y)), b) ≤ T ′(θ(x), θ(y)). Since the

inequality is clearly true when the left side is 0, we can assume that it is instead

positive which in turn allows the assumption that x + y > 1. In this case, it is

sufficient to show concavity gives the following

θ(x+ y − 1) + b− 1 ≤ θ(x) + θ(y)− 1

So by concavity of θ

θ(y)− θ(y − (1− x))

1− x
≥ θ(1)− θ(y − (1− x))

1− (y − 1 + x)
≥ θ(1)− θ(x)

1− x

Therefore, examining the secant line of θ between y − (1− x) and y

θ(y − (1− x)) = θ(y)− θ(y)− θ(y − (1− x))

1− x
(1− x) ≤ θ(y)− θ(1)− θ(x)

1− x
(1− x)
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So

θ(x+ y − 1) + b− 1 ≤ θ(x+ y − 1) ≤ θ(x) + θ(y)− 1

To complete the proof, we show that θ satisfies T ′(T ′(θ(x), θ(y)), b2) ≤

T ′(θ(T ′(x, y)), b). To that end, we again observe that we need only examine when

T ′(T ′(θ(x), θ(y)), b2) is positive. In that case, it must also follow that θ(x) + θ(y) +

2b − 3 is positive. The following inequality demonstrates that x + y ≤ 1 would

therefore force T ′(T ′(θ(x), θ(y)), b2) ≤ 0

θ(x) + θ(y) + 2b− 3 ≤ θ(x+ y) + 2b− 3 ≤ 1 + 2b− 3 ≤ 0

So taking T ′(T ′(θ(x), θ(y)), b2) > 0, we have x+ y > 1 which yields θ(x+ y − 1) ≥

θ(x) + θ(y)− b under our hypothesis. Therefore,

T ′(T ′(θ(x), θ(y)), b2) ≤ θ(x) + θ(y) + 2b− 3

≤ θ(
x+ y

2
) + θ(

x+ y

2
) + 2b− 3

≤ θ(x+ y − 1) + b− 1

≤ T ′(θ(T ′(x, y)), b)

(4.20)

■

Now, with sufficient theoretical basis, we can show that unlike the case of

strict t norms, being an order quasi additive function with error function H is an

insufficient condition for being an order additive approximator with errorH. Taking

T to be a t-norm isomorphic to the Lukasewicz t-norm, T ′ we have the following of

counter example:

For b ∈ (0, 1), let

θ(x) =


b−b2

2−b
x 0 ≤ x ≤ 1− b

2

2−b+b2

b
x− 2−2b+fb2

b
1− b

2
< x.

Recalling Theorem 29, we have that θ is sufficient for φ(F ) = θ ◦ F to be an

order quasi additive function on (∆+, τT ′) for error function δ0,b. Furthermore, from
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Theorem 27 we have that there is an order automorphism that is an order quasi

additive function on (∆+, τT ) with error δ0,f(b), namely ψ = f ◦ θ ◦ f−1 ◦ φ.

However, we also recall from Corollary 5 that φ′(F ) is an order automorphism

solution of Cauhcy’s equation if and only if φ′(F ) = F ◦ γ where γ is an order

automorphism of R+. Therefore, for all x ∈ [0, 1] θ must satisfy both

T ′(θ(x), b) ≤ x

and

T ′(x, b) ≤ θ(x)

the latter fails in general since, for x = 1− b
2
:

θ(1− b

2
)− T ′(x, b) =

b− b2

2
− (1− b

2
+ b− 1) =

b− b2

2
− b

2
< 0

This means that ψ does not approximate an order automorphism solution of Cauchy’s

equation with error δ0,b. Furthermore by way of Theorem 27, this means that

for all δa,b and all continuous nilpotent Archimedean t-norm there exists an order

automorphism φ such that φ is an order quasi additive function on (∆+, τT ) with

error δa,b but is not an order additive approximator of an order automorphism

solution with the same error.

While this example shows that the relationship between order quasi additive

functions and order additive approximators is more tenuous in the context of triangle

functions generated by nilpotent t-norms, it does not mean that nilpotent t-norms

completely abbrogate the relationship between the two concepts either. If we instead

construct ψ1 = θ1 ◦ F and ψ2 = θ2 ◦ F where

θ1(x) = x2−b and θ(x) = xb

we see via Theorems 29 and 30 that ψ1 and ψ2 are order quasi additive functions

on (∆+, τT ′) for error function δ0,b. Since θ1 is convex and θ2 is concave the below
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it is sufficient to verify that

T ′(x, b) ≤ θ1(x) and T
′(θ2(x), b) ≤ x

hold in order to conclude ψ1 and ψ2 are order additive approximators. Let i(x, b) =

x2−b − x− b+ 1. We have that

i(x, 0) = x2 − x+ 1

which is positive for all x ∈ [0, 1] and that i(x, 1) = 0 for all x ∈ [0, 1]. Further

∂i

∂b
= −ln(x)x2−b − 1 and

∂2i

∂b2
= ln(x)x2−b

The second partial derivative is clearly negative for all x ∈ (0, 1] and b ∈ (0, 1), and

the first partial derivative is clearly negative for all x ∈ (0, 1] and b = 0 or b = 1

Therefore the first partial derivative is negative for all x ∈ (0, 1] and b ∈ (0, 1), so

by extension i is positive for all x, b ∈ [0, 1]. This gives the first inequality,and we

can verify with similar argumentation that the second inequality is satisfied by θ2.

Using Theorem 27 we further have for all continuous nilpotent Archimedean

t-norms, T , there exists an order automorphism φ on (∆+, τT ) which is an order

quasi additive function for some error functionH and is an order additive approximator

of an order automorphism with error H. This motivates the following results:

Theorem 31 Let φ(F ) = θ ◦ F ◦ γ be a type 1 order automorphism and T be the

Lukasiewicz t-norm. If γ is a metric quasi additive order automorphism with error a

on R+ and x2−b ≤ θ(x) ≤ xb, then φ is an order additive approximator on (∆+, τT )

with error function δa,b.

Proof :

Since γ is metric quasi additive on R+ with error a, it is in particular a

solution in metric approximation with error a. That is, there exists γ′ which is a
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solution of Cauchy’s equation on R+, such that |γ(x)−γ′(x)| ≤ a. Further, we have

that φ′(F ) = F ◦ γ′ is a solution of Cauchy’s equation for (∆+, τT ). Using the work

in the example above we have

T (x, b) ≤ x2−b ≤ θ(x)

and

T (θ(x), b) ≤ T (xb, b) ≤ x

so for all F ∈ ∆+
δ we have that

τT (φ(F ), δa,b) ≤ φ′(F ) and τT (φ
′(F ), δa,b) ≤ φ(F )

■

Corollary 15 Let T b a continuous, nilpotent Archimedean t-norm isomorphic

under f to the Lukasiewicz t-norm, a ∈ R+, and b ∈ (0, 1). If γ is a metric

quasi additive order automorphism on R+ with error a, and θ is a power function

that satisfies x2−b ≤ θ(x) ≤ xb ψ(F ) = f ◦ θ ◦ f−1 ◦ F ◦ γ is an order quasi additive

function on (∆+, τT ) for error function δa,f(b), and an order additive approximator

for error function δa,f(b).
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CHAPTER 5

CONCLUSIONS

This dissertation has laid the groundwork for understanding the stability

of Cauchy’s equation in the setting of ∆+ by contextualizing the problem, and

it has furthered understanding by introducing a framework to enrich the notion of

stability in a way that makes use of the unique properties of ∆+ by introducing order

stability. In keeping with tradition of Cauchy’s equation, the results in Chapter

Four emphasize the utility of regularity assumptions, and the close of Chapter Four

demonstrates the necessity of certain assumptions.

The next steps to supplement this work would be to relax the assumptions

of order automorphisms in many of the stability theorems to sup continuous maps

of ∆+ and to relax the hypothesis concerning triangle functions so that they are

instead generated by continuous T norms which are not Archimedean.

Several other natural questions are raised by this dissertation as well. For

one, in many other contexts, Cauchy’s equation is key for understanding a broad

array of other functional equations and their stability, so it is natural to ask whether

the same is true in this context. It may also be desirable to understand if there is

a meaningful generalization of the results of Rassias where approximation error is

a function of the equation’s variables.

In more general mathematics, the results of Chapter 4 hint at the possibility

of investigating the interplay of topological, order, and algebraic structure. In

particular, the use of order automorphisms which in this instance have topological

and algebraic properties suggests the possibility of category theoretic generalizations.
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This would have broad mathematical utility as well as allowing further development

of probabilistic metric spaces.
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[33] Dorel Miheţ and Reza Saadati, On the stability of the additive cauchy functional

equation in random normed spaces, Applied Mathematics Letters 24 (2011),

no. 12, 2005–2009.

[34] Alireza Kamel Mirmostafaee and Mohammad Sal Moslehian, Fuzzy versions

of hyers–ulam–rassias theorem, Fuzzy Sets and Systems 159 (2008), no. 6,

720–729.

[35] Paul S. Mostert and Allen L. Shields, On the structure of semigroups on a

compact manifold with boundary, The Annals of Mathematics 65 (1957), no. 1,

117.

[36] Zenon Moszner, On the stability of functional equations, Aequationes

mathematicae 77 (2009), no. 1, 33–88.

[37] John Napier, The description of the wonderful canon of logarithms, Andro

Hart, 1614.

[38] , The construction of the wonderful canon of logarithms, 1889.

[39] Mirko Navara, Triangular norms and measures of fuzzy sets, Logical, Algebraic,

Analytic and Probabilistic Aspects of Triangular Norms (Erich Peter Klement

and Radko Mesiar, eds.), Elsevier Science B.V., 2005, pp. 345–390.

[40] Roger B. Nelsen, Copulas and quasi-copulas: An introduction to their properties

and applications, Logical, Algebraic, Analytic and Probabilistic Aspects of

Triangular Norms (Erich Peter Klement and Radko Mesiar, eds.), Elsevier

Science B.V., 2005, pp. 391–413.

[41] Alireza Pourmoslemi, Siavash Rajabi, Mehdi Salimi, and Ali Ahmadian, Fuzzy

routing protocol for d2d communications based on probabilistic normed spaces,

Wireless Personal Communications 122 (2022), no. 3, 2505–2520.

78



[42] Robert C. Powers, Order automorphisms of spaces of nondecreasing functions,

Journal of Mathematical Analysis and Applications 136 (1980), 112–123.

[43] Themistocles Rassias, On the stability of the linear mapping in banach spaces,

Proceedings of the American Mathematical Society 72 (1978), no. 2, 297–300.

[44] T. Riedel, On sup-continuous triangle functions, Journal of Mathematical

Analysis and Applications 184 (1994), no. 2, 382–388.

[45] Thomas Riedel, Cauchy’s equation on delta +, aequationes mathematicae 41

(1991), no. 1, 192–211, 192.

[46] Thomas Riedel and Kelly Wallace, On a pexider type equation on delta+,

Annales Academiae Paedagogicae Cracoviensis (2000), 129–138.

[47] P. Saha, S. Guria, Samir Kumar Bhandari, and Binayak S. Choudhury, A global

optimality result in probabilistic spaces using control function, Optimization 70

(2021), no. 11, 2387–2400.

[48] Wolfgang Sander, Some aspects of functional equations, Logical, Algebraic,

Analytic and Probabilistic Aspects of Triangular Norms (Erich Peter Klement

and Radko Mesiar, eds.), Elsevier Science B.V., 2005, pp. 143–187.

[49] B. Schweizer and A. Sklar, Probabilistic metric spaces, Dover Publications,

INC., 1983.

[50] Berthold Schweizer, Triangular norms, looking back—triangle functions,

looking ahead, Logical, Algebraic, Analytic and Probabilistic Aspects of

Triangular Norms (Erich Peter Klement and Radko Mesiar, eds.), Elsevier

Science B.V., 2005, pp. 3–15.

79



[51] Mausumi Sen, Soumitra Nath, and Binod Chandra Tripathy, Best

approximation in quotient probabilistic normed space, Journal of Applied

Analysis 23 (2017), no. 1.

[52] Zhiqiang Shen and Dexue Zhang, A note on the continuity of triangular norms,

Fuzzy Sets and Systems 252 (2014), 35–38.

[53] David A. Sibley, A metric for weak convergence of distribution functions, Rocky

Mountain Journal of Mathematics 1 (1971), no. 3, 427–430.

[54] Frank Swetz, Mathematical treasure: John napier’s mirifici logarithmorum,

2013.

[55] Robert M. Tardiff, Topologies for probabilistic metric spaces., Pacific Journal

of Mathematics 65 (1976), no. 1, 233–251, Publisher: Pacific Journal of

Mathematics, A Non-profit Corporation.

80



CURRICULUM VITAE

Holden Wells

Education

University of Louisville August 2014 - Present
Doctor of Philosophy in Industrial and Applied Mathematics Expected August 2023
Master of Arts in Mathematics Earned December 2019
Bachelor of Science in Mathematics Earned April 2018

Research Experience, Publications, and Presentations

Research for Dissertation January 2019 - Present
Mathematics Department: University of Louisville
Description
Presentation Holden Wells. (2022, November) ”Cauchy’s Equation on Delta
Plus”. 42nd Western Kentucky University Mathematics Symposium.
Presentation Holden Wells. (2022, April) ”Super and Sub Additivity on the Space
of Distribution Functions”. KYMAA Spring Meeting
Teaching Experience

Graduate Teaching Assistant
Mathematics Department, University of Louisville August 2018 - Present

� Instructed business calculus, math for elementary education, pre calculus,
quantitative reasoning, and college algebra. Across all subjects, I taught
fundamental skills in mathematics and logical reasoning. Additionally, I
instructed students on communicating mathematics in informal settings like
group discussions and in formal settings like projects and exams.

� Led recitation sections in college algebra, quantitative reasoning, and business
calculus.

Undergraduate Teaching Assistant
Mathematics Department, University of Louisville August 2016 - April 2018

� Led recitation sections in quantitative reasoning, college algebra, and business
calculus.

Replacement Instructor
Saint Xavier High School January 2022 - May 2022

81



� I taught an introduction to statistics course where students where introduced
to skills in statistical interpretation and representation.

Adjunct Professor
Mathematics Department, Bellarmine University August 2021 - December 2021

� I taught Foundations of Mathematics, where students learned to investigate
the deep construction of topics typically taught in elementary classrooms.
Students were taught to come up with effective models of these common
topics and to rigorously evaluate the models of others,all while examining
fundamental problem solving skills.

Math Tutor
Resources for Academic Achievement (REACH), University of Louisville August
2015 - May 2018

� Gen 103/104 Assistant: I worked as an in class assistant for a course in
elementary algebra and math study strategies where I worked one on one
with students to develop fundamental concepts important to success in future
courses.

� Drop in tutor: I staffed a drop in tutoring center where students came to
receive individual assistance on a broad spectrum of math topics including
algebra, calculus, and math education. I also served as a resource for less
experienced tutors later in my tenure.

Academic Achievements and Campus Involvement

� University of Louisville American Mathematical Society Chapter President
August 2020 - May 2021

� Passed University of Louisville Probability Qualifying Exam December 2019

� Passed University of Louisville Analysis Qualifying Exam August 2019

� Passed University of Louisville Algebra Qualifying Exam August 2019

� University of Louisville Varsity Track and Field Member August 2016 - May
2018

� Robert J. Bickel Scholarship 2017
Awarded to a rising Junior and rising senior in the department of Mathematics
based off of mathematics GPA, general transcript, and letters of support from
Mathematics faculty.

� Lois Pedigo Scholarship 2017
Awarded to a rising Junior and rising senior in the department of Mathematics
based off of mathematics GPA and letters of support from Mathematics
faculty.

82



� Eagle Scout Award 2014
Since combined with trustees competitive scholarships. Awarded to some
Eagle Scout applicants based off of GPA and ACT considerations

83


	Stability of Cauchy's equation on Δ+.
	Recommended Citation

	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	1.661INTRODUCTION
	1.661History of Equation Solving
	1.661Cauchy's Equation
	1.661Stability

	1.661PRELIMINARIES FOR +
	1.661Order Structure
	1.661Topology
	1.661Algebraic Structure

	1.661CAUCHY'S EQUATION ON +
	1.661NEW RESULTS IN STABILITY
	1.661Framing Stability
	1.661Triangle functions generated over Strict T
	1.661Triangle functions generated by nilpotent T

	1.661CONCLUSIONS
	REFERENCES
	CURRICULUM VITAE

