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ABSTRACT

EVALUATING CHATGPT FOR RECOMMENDATION: HOW DOES THE
ABILITY TO CONVERSE IMPACT RECOMMENDATION

Kyle Spurlock

August 7, 2023

Recommendation algorithms have become an absolute necessity in the modern world

to avoid information overload. However, the interaction between the human and the

system is largely superficial and without any real contact. If you are given poor

recommendations, you have no choice but to sift through mountains of content on

your own until the model learns to accommodate your tastes more. This is bad for

business as well as the consumer. Recently, large language models like ChatGPT

have seen a significant rise in popularity due to their ease of use and wide range of

knowledge. It has now become nearly as easy to ask ChatGPT a question as it is to

search for it online yourself. Due to their domain knowledge and transferability, they

have frequently been evaluated as possible tools for recommendation in recent years.

However, most existing studies exploring LLM as recommendation agents focus only

on a single input/output basis; neglecting one of the major benefits that LLM have

expanded upon. That is, the ability to converse and respond to feedback dynamically.

In this thesis we investigate how effective ChatGPT is as a recommender in its

natural use case: as a conversational, direct top-n recommendation system. We build

an evaluation pipeline around ChatGPT that allows us to provide iterative feedback

throughout the course of a conversation to simulate how a user would actually interact
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with it. We additionally explore whether popularity bias is present in ChatGPT’s

recommendations, and how it compares against baseline models.

Our findings indicate that reprompting ChatGPT with feedback on its recom-

mendations has a signficant impact on precision. Lastly, we show that popularity

bias is present in ChatGPT’s recommendations but can be easily mitigated through

a combination of prompt engineering and raising the temperature parameter of the

model.
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CHAPTER I

INTRODUCTION

Automated recommendation has become a prominent and ubiquitous practical ap-

plication of machine learning (ML) with potential benefit to both businesses and

consumers. As the amount of content available for viewing or purchasing online is

ever-increasing, it has become necessary to automate the task of filtering through

the vast amount of choices available to humans to avoid information overload. State

of the Art recommender systems rely on ML algorithms that aim to learn from the

patterns of activities and feedback of humans in order to identify and recommend

a narrower set of options that are most in-line with these patterns. These patterns

manifest in many interactions one has on the world wide web: as implicitly as a view

or a click; or explicitly as a rating or purchase. However, this mode of interaction

is largely superficial. In most recommendation algorithms implemented in practice

there is no direct line of communication between the human and the model. While

it can be argued that one may not want to argue with an AI about their preferences

when trying to choose a movie to watch or a book to read; the possibility to do so

presents an interesting opportunity for a model to learn directly from the user it

serves. This is in contrast to the more passive consumption of the user’s activity data

when building AI recommendation models.
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The task of introducing conversation into recommendation has been addressed in

the past with varying degrees of success. When Natural Language Processing (NLP)

was far less advanced, chatbots such as [1] were able to tailor the recommendation

experience to the user, but were restricted to only a handful of predetermined tem-

plates in their responses. This makes recommendations quick and easy, but with

limited scope. However, more recently, techniques that use deep learning [2] have be-

come far more interesting and surprising to engage with. The encapsulation of Large

Language Models (LLM) like ChatGPT into a non-technical, user-friendly interface

has completely redefined what it means to use and interact with technology. In this

work, we are interested in ChatGPT specifically because of this ease of access, with

the assumption that anyone could go to its interface and request recommendations

with little effort.

In this work we focus on evaluating the direct top-n recommendation potential

of the large language model ChatGPT [3]. Recent work [4]–[6] has largely evaluated

ChatGPT’s recommendation potential on a single input/output basis [5], [6], often

requiring the model to choose an option out of a predetermined set that best completes

the task. We choose to structure our study in a way that is more representative of how

someone would actually interact with the system, with an example given in Figure 1.

We aim to evaluate how ChatGPT performs at recommendation in a natural setting,

i.e. how can it generate pertinent information that is not readily and freely available?

Additionally, we aim to explore another characteristic that LLM have expanded upon:

the ability to converse and respond to feedback dynamically.
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Figure 1. Motivating example for evaluating ChatGPT as a recommender.

1 Objectives

In our study, we aim to answer the following research questions:

• RQ1: How does the ability to converse impact recommendation in large lan-

guage models?

• RQ2: How do large language models perform at recommendation in their typ-

ical use-case? (as primarily item-based, top-n recommenders)

• RQ3: Does Chat-GPT exhibit popularity bias in recommendation?

3



CHAPTER II

LITERATURE REVIEW AND BACKGROUND

1 Deep Learning Sequence Models

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are an adaptation of the traditional Feed Foward

(FF) model to allow for the temporal qualities of a variable-length sequence to be

captured and learned. In the most simple cases this type of model has been employed

with success in a wide variety of tasks ranging from sentiment classification [7] to

recommendation [8]. Effectively, a RNN unit merely compresses the information it

has seen in the sequence up to time t into a hidden state ht, and passes it along with

the next element in the sequence xt+1 back to the cell. The hidden state at time t is

computed as [8]:

ht = σ(Wxt + Uht−1) (1)

Where W and U are the model parameters. This recurrence repeats until the cell

has processed the entire sequence from timesteps t = 1 . . . T , in which case it produces

a final output yT . While the generic RNN cells are effective for small sequences, they
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struggle to maintain the temporal dependencies between elements as sequence length

grows.

There have been two notable advancements to this architecture to further mod-

ulate the flow of information from one time step to the next, one of these being

the Long Short Term Memory (LSTM) cell [9]. LSTM cells introduce several gates

that oversee the process of forgetting old information and storing new information.

Gated Recurrent Units (GRUs) [10] encompass this same idea, but with less param-

eterization and comparable performance. RNN have seen further success applied in

bidirectional contexts, i.e. representations of the sequence are learned both forward

and backwards using two stacked RNN cells [11].

Despite all these improvements in learning capacity, RNN variants are limited by

their inability to parallelize operations across a sequence. This has disallowed them

to take full advantage of the speedups afforded by new accelerator architectures like

GPUs and TPUs. Additionally, while the larger parameterization of LSTM and GRU

cells has allowed them to maintain a larger frame of reference surrounding a position,

it is still possible to fail in capturing long-term dependencies [12].

Text Vectorization

Representing textual data in a continuous space has long been a studied problem

in Information Retrieval (IR) and Natural Language Processing (NLP). In IR, a

number of techniques have been used to convert text data into real-valued vectors.

Allowing for better notions of similarity between documents to be derived. Among

these, methods like Latent Semantic Indexing (LSI) that produce compressed latent
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vectorizations of both words and documents in Rd have been the most successful [13].

In NLP, it became popular to utilize RNN and other deep learning models to

learn embeddings for words end-to-end through gradient descent. Allowing informa-

tion about how a word fits into its sentence syntactically to be encompassed into

its representation. Numerous methods were borne from this that further enriched

semantic and syntactic information in the embeddings [14]–[16]. This further allowed

transferability of pre-trained word embeddings to other models, providing a better

initialization point than starting from scratch.

Encoder-Decoder Networks

Encoder-Decoder (E-D) networks are the application of sequential networks like RNN

to sequence-to-sequence tasks. E-D architectures have seen success in many differ-

ent applications, with one of the most prominent being Neural Machine Translation

(NMT)[10]. E-D networks are composed of an encoder model and a decoder model,

and are trained on a parallel data corpus containing a source sequence x and a target

sequence y [17]. The encoder processes the source sequence and compiles its hidden

states ht into a context vector c,

c = q({h1, . . . , hT x}) (2)

The decoder then takes this context vector c, and uses it alongside the target

sentence y to model the target sequence as a joint probability of ordered conditionals

[17],
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p(y) =
T∏
t=1

p(yt|{y1, . . . , yt−1}, c) (3)

For NMT this effectively means that the encoder compresses one sentence in one

language into c, and then the decoder uses this information along with the target

sentence in another language to determine how words in the two languages correspond

with one another. One of the significant issues with this is that there is only so much

information that can be squashed into the context vector. Combining this with RNN’s

existing difficulty with handling long sequences, E-D networks often failed to achieve

results comparable with statistical translation methods for some problems [17].

Attention

Attention mechanisms were introduced in E-D networks to further focus what in-

formation passed between the encoder and decoder. Bahdanau et al. (2015) [17]

introduced attention by way of a seperate FF network that produces a context vector

by weighting how well a position i in the source sequence and a position j in the tar-

get sequence align. Through this approach, the context vector is able to be expanded

and further parameterized to weight different positions in both sequences based on

how well they correspond to one another.

Luong et al. (2015) [18] introduced several simpler methods for determining how

well two positions aligned in the source and target sequences. One of the most

influential has been dot product attention, which computes alignment weights as,
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at(s) = softmax(score(ht, hs) = h⊤
t hs) (4)

Where at(s) is a variable-length alignment vector with size equal to the number of

source time steps, hs is a collection of all source hidden states, and ht is the current

target hidden state. Effectively this is used like a method of similarity between the

current state in the target sequence to all states in the source. The introduction of

attention significantly advanced the state of the art in NMT, and led the way towards

the Transformer model.

Transformer

The Transformer introduced by Vaswani et al. [19] and shown in Figure 2; built on the

E-D architecture for sequence-to-sequence prediction, but sought to eliminate many

of the limitations imposed by using RNN models as the encoder and decoder. To

accomplish this they dropped recurrence entirely, replacing it with a scaled variation

of the dot product attention mechanism introduced by Luong et al. (2015) [18],

computed as:

Attention(Q,K, V ) = softmax(
QK⊤
√
dk

)V (5)

Q, K, and V stand for Query, Key, and Value respectively and dk is the dimen-

sionality of the keys. This naming convention is heavily inspired by IR techniques,

and is analogous to a fuzzy, differentiable dictionary lookup. This attention mecha-

nism is additionally multi-headed, meaning that they divide the dimensionality of the
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inputs/ouputs amongst several ‘heads‘ to learn how latent factors of the embeddings

correlate to one another. In the self-attention layers, Q=K=V, and is representative

of the encoder/decoder learning how its own sequence fits together. In the cross-

attention layer, K=V are the outputs of the encoder and Q comes from the previous

block of the decoder. Additionally, the encoder is bidirectional, meaning it can com-

pute attention scores for all positions at once. The decoder, however, uses causal

masking, which limits it from computing scores for positions it has not seen yet.

Since recurrence (or convolution) was previously necessary to capture temporal

information within sequences, temporal information is preserved by way of positional

encodings added directly to the word embeddings in the sequences. These positional

encodings are computed as:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)

Where pos is the position in the sequence, i is the dimension, and dmodel is the

dimensionality used for the word embeddings and outputs of all transformations

throughout the model. This allows the model to derive temporal information from

the embeddings, as each position in the sequence receives its own additional frequency

embedding that distinguishes it.

9



Figure 2. Transformer architecture [19]

Language Models

Because the Transformer afforded significant speed-ups to previous RNN-based ar-

chitectures, it now became practical to train models on a scale never seen before.

Language modeling in Transformer models was first explored by GPT-1 [12], which

used only the decoder of the Transformer. Their training process first involved un-

supervised pre-training on a corpus of tokens U for a standard language modeling

objective,

L1(U) =
∑
i

logP (ui|ui−k, . . . , ui−1; Θ) (6)

Which is designed merely to maximize the probability of a token ui based on a
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context window surrounding it, where k is the size of the window and Θ are the model

parameters. This is followed by supervised fine-tuning for specific tasks.

After this was found to be effective, pre-trained language models quickly turned

into large language models (LLM) as parameterization skyrocketed, consuming near

unfathomable amounts of data and advancing the state-of-the-art across various NLP

tasks when fine-tuned; and showcasing impressive transferability even without tuning

for a specific task [20][21].

One of the more recent advances in LLM has been seen in gpt-3.5-turbo, the model

behind ChatGPT. ChatGPT has been further optimized for conversation through

Reinforcement Learning with Human Feedback (RLHF) to follow a user’s requests

more closely and provide a more enjoyable interactive experience [3].

Prompt Engineering

Prompt engineering is a new domain that has arisen as a result of recent LLM’s

in-context reasoning capabilities without fine-tuning. This burgeoning body of work

aims to explore how best to communicate with LLM when asking them to perform a

task in-context. Generally, there have been two predominant means of communication

with LLM through prompting [21]:

• Zero-shot: the model is provided with only instructions and asked to complete

a task.

• Few-shot: the model is given examples demonstrating a task, and is then

asked to repeat this task by generating its own output for a similarly structured
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question.

• Chain-of-Thought prompting (CoT): the model is gradually asked to pro-

duce intermediate answers before giving the final answer to a multi-step problem

[22]. The idea is to mimic an intuitive multi-step thought process when working

through a reasoning problem.

Most other devised approaches are based around these archetypes and either vary

the amount of information or present the task in a different way.

2 Recommender Systems

Consumers today are perpetually inundated with a never ending stream of infor-

mation and content; far too much for one person to ever sort through manually.

Recommender systems have emerged as the solution to this; with the general goal of

recommendation being to filter immense collections of items down to a small subset

that an individual may be interested in. The methods used to perform this filtering

are commonly divided into two primary categories: content-based, and collaborative-

based.

Content-Based

Content-filtering based recommenders work on a content level of the items to be

recommended. They consider only a user’s demonstrated preferences towards rec-

ommendable items and use this information to recommend similar items to the ones
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the user has already positively responded to. To accomplish this, a content-based

recommender is typically composed of several components [23]:

• Content Analyzer: the extraction of relevant information from non-structured

data about the items to be recommended, e.g. text.

• Profile Learner: the module that collects and maintains data on user preferences

to be used for future recommendations.

• Filtering Component: the module that utilizes the constructed user profile to

produce new recommendations.

Collaborative-Filtering

Collaborative-filtering based recommenders utilize social information to make recom-

mendations. Information about item preferences is learned from all the users, rather

than from the content of the item itself. In this way, if user A and user B are found

to overlap in their preferences, then what user A enjoys can be recommended to user

B with confidence that they will also enjoy that item based on their similar behavior

[24].

Neighbor style k-nearest neighbor style similarity methods (among the users or

among the items, based on the rating data) have been the traditional approach [24].

However, more recently, Matrix factorization (MF) has become the more popular,

state of the art method used in collaborative filtering. MF is a technique that is

able to capitalize on user behavior by decomposing the user-item feedback matrix

A ∈ Rm×n into two lower rank matrices U ∈ Rm×d and V ∈ n× d that place users i
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and items j in the same embedding space with d latent factors [25]. The user U and

item V matrices are learned in such a way that their product roughly approximates

the feedback matrix:

A ≈ UV ⊤ (7)

This means that the dot product between a user embedding ui and item embedding

vj can produce new ratings that did not exist prior. There are a variety of methods

used to learn these user-item embeddings, like Singular Value Decomposition (SVD)

or gradient descent. The latter is usually preferred to avoid overfitting, and can also

incorporate other terms like L2 regularization. MF can be trained with gradient

descent by minimizing the following objective function [25]:

J = min
∑

(i,j)∈A

(aij − uiv
⊤
j )

2 + λ(||ui||2 + ||vj||2) (8)

Where λ controls the strength of L2 regularization on the embeddings. When the

factors are enforced to be positive, MF becomes Non-negative MF or NMF [26].

3 Language Models as Recommenders

Due to the extensive domain knowledge of LLMs, they have frequently been explored

for the task of recommendation in recent years. However, as expressed in the intro-

duction, this has largely focused on tasks involving a single inputs and ouputs.

Sun et al. (2019) fine-tune the encoder-only language model BERT for sequential

recommendation and achieve significant improvements over previous baselines using
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RNN.

Zhang et al. (2021) [27] were among the first to explore in-context sequential

recommendation with LLM, showcasing the performance of the encoder-only model

[28] and GPT-2[20] across a variety of zero shot prompts. Kang et al. (2023) [6]

follow this up with more recent models, with findings that show the benefit of using

LLM for sequential recommendation with fine-tuning.

Liu et al. (2023) [13] evaluated ChatGPT on a number of different recommen-

dation tasks, including: rating prediction, sequential recommendation, and direct

recommendation. They find several results that outperform traditional recommenda-

tion approaches.

Gao et al. (2023) [4] further evaluate GPT-3 models as augmented language

models to interface with existing recommendation systems. They further provide a

number of case studies that showcase the potential of ChatGPT for recommendation.

4 Chapter Summary

In this chapter we have briefly explored the path that has lead to the development

of LLM, as well as their successes over RNN in several fields like NMT and recom-

mendation. We have further explored basic recommender systems, and discussed how

prompting has influenced the development of new recommendation systems utilizing

LLM with and without fine-tuning.
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CHAPTER III

METHODOLOGY

Figure 3. Proposed methodology. P=number of prompts, p=prompt number.

1 Overview of the Methodology

This section details the methodology used in this study to construct an evaluation

pipeline around ChatGPT that utilizes iterative feedback. This pipeline is visual-

ized in Figure 3. We liken the process to treating ChatGPT as a content-based
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recommender. Representations or embeddings are first computed for the items to

be recommended; a user profile is then learned in-context based on feedback; and

future recommendations are made based on this profile. Since one major goal of a

recommender system is to filter from a large quantity of content into a small, high-

relevancy subset, ChatGPT is asked to finalize its recommendations at the very end of

the pipeline. Therefore, the re-prompting stage is intended to explore a user’s interac-

tion space, and the final recommendation stage is intended to exploit the information

learned throughout the conversation.

2 Data

Our study is built around using the HetRec 2011 dataset [29] as the ground truth

for evaluation. Hetrec 2011 is an extended version of the MovieLens10M [30] dataset

containing additional film information sourced from IMDB [31] and Rotten Tomatoes

[32]. The added attributes that of greatest interest to our work are compared against

MovieLens10M in Table 1.

MovieLens10M HetRec 2011

Title +Directors
Year +Actors
Genres +Filming locations

User-generated tags +Country of origin

Table 1. Comparison of MovieLens10M base film attributes with those addeded by
HetRec 2011

Because we seek to mimic as much of the information ChatGPT knows about

these movies as possible in order to properly evaluate its recommendations, we use

this additional information to construct a richer representation embedding for each
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title in the content analysis stage. This is further supplemented with information

crawled from Wikipedia, in an amount equal to all paragraphs between the first

three headings for each article. Although Wikipedia lacks uniformity across all of its

articles, this is enough to capture some general information about a movie, as well

as its plot. Since some titles are based on books and may have differing articles,

we attempt to grab the film-specific version of all articles by querying only pages

containing an HTML template used for films (Template:Infobox film). Of the 10,197

movies contained in Hetrec, we were able to obtain the Wikipedia articles for 9,722

movies as of 8/1/2023.

3 Content Analysis

Because we wish to evaluate ChatGPT based on its natural output and not by pro-

viding it a set of correct answers ahead of time, we need to be able to quantitatively

assess the output of the model. This is made more difficult since ChatGPT is a closed

system that produces only text, and not continuous representations that would allow

for better measures of similarity to be derived. To get around this, the embed-

ding model text-ada-embedding-002 provided by OpenAI is used to generate these

continuous representations for the movies in Hetrec. Since both ChatGPT and the

embedding model are built on GPT-3 and use the same tokenizer, we believe that

this is the best available option for capturing the information ChatGPT has learned

about an item outside of having direct access to the model.

However, this idea comes with several other issues. LLM have been trained on

enormous swathes of data, and it would be a difficult task to determine what exact

18



information a model has consumed and learned about a specific item. It could be

the case that a movie appears in the training data alongside a large quantity of

additional information, including: its plot, directors, information from users who like

this movie, etc. In this case where extra information co-occurs with the most basic

descriptors of a movie; the title, release year, and genres should be enough to retrieve

a relatively robust representation for the item. In the contrary case where a movie has

not appeared in the training data, an embedding would need to be constructed from

scratch based on additional information. As a precaution to this issue, we generate

sentence embeddings for each item in Hetrec based on increasing levels of content,

shown in Figure 4.

Figure 4. Different amounts of content used to learn the embeddings for the movie
‘Toy Story (1995).‘

Level 1 content contains only the most basic information about a movie, which

would be present in smaller datasets like MovieLens100k [33]. Level 2 incorporates

the extra movie attributes from Hetrec displayed in Table 1. Level 3 contains the

additional text scraped from Wikipedia, and level 4 contains level 3 content but with
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the top 5% most frequent word-level tokens and stop words removed. We produce

this last level based on the traditional IR conception that frequently occurring words

are not meaningful for similarity [13].

The embedding model produces pre-normalized sentence embeddings based on the

content with dimensionality d = 1536 for each item. It is not disclosed how exactly

these embeddings are generated, but a good guess may come from added feedfoward

or attention layers to reduce a sequence x ∈ RT×d to y ∈ Rd, as has been explored in

other works [34], [35].

Because the embeddings come pre-normalized, our only applicable method of com-

puting similarity is cosine similarity. We examine qualitatively how each of these

different content levels affect the top-5 most similar items for a given item. This is

shown by an example for the movie ‘Pineapple Express (2008) in Figure 5. Based

on the description that this movie is a ”stoner action comedy film,” similar items

determined with content level 4 embeddings seem much more appropriate than those

found by content level 1 embeddings.

Figure 5. Comparison of the top 5 most similar items to the movie ‘Pineapple
Express (2008)‘ based on content level.
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4 User & Item Selection

50 users were selected between the 50th and 75th percentile of items rated, corre-

sponding to at least 122 total interactions. Additionally, we required that each user

has provided negative reviews for at least 30 items. As long as a user satisfies these

constraints, the specific choice of user is arbitrary. It is only necessary that they have

had enough interactions to allow for a good estimate of their preferences. The pool

of users is kept small because the output of ChatGPT is inherently nondeterministic

even when randomness is minimized by setting the temperature parameter to the

lowest value. To try to increase reproducibility and reduce variance in the reported

metrics, we instead choose to perform replicate runs for each user to develop a better

estimate of the model’s performance.

User interactions are split into three random subsets which each serve different

purposes over the course of the evaluation. We refer to these as the example set

Eu, feedback set Fu, and evaluation set Tu for a user u ∈ U . This applies to both

positively rated items taken at the typical rating threshold of 3, as well as negatively

rated items with a rating lower than 3; for ratings between 1 and 5. The items in

the example set are used in the initial prompt construction to provide ChatGPT

with information on user’s preferences. The feedback set is used solely during the

reprompting component to help further develop ChatGPT’s understanding of the user

profile over several iterations. Lastly, the evaluation set is used to evaluate the final

set of recommendations. The importance of dividing the interactions amongst these

subsets is to separate the information ChatGPT is allowed to learn from versus what
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it will be tested on. Otherwise, it is probable that the model could merely regurgitate

those items given as examples to achieve high performance.

Splits are stratified when possible, ensuring that both the positive and negative

rating distribution is similar amongst each of the subsets. This becomes important

when trying to determine the relevancy of a recommended item, as ideally there will

be enough positive and negative interactions from the user to estimate how they will

feel about an item ChatGPT has recommended.

5 Initial Prompt Construction

The initial prompt that ChatGPT receives should inform it of its task and optionally

provide additional information that helps it complete this task favorably. For our

purposes we wish to paint an initial picture of a user’s tastes and allow ChatGPT to

build recommendations based on this. We experiment with three different prompting

strategies, as may be seen in Figure 6.

Items from the example set Eu are injected into each prompt, and postpended

with an identifier that indicates whether an item was liked or not. The example

items are followed by instructional text that request specific behavior from the model,

such as ranking by confidence. Other parameters are injected into the prompt that

indicate the requested number of recommendations k, as well a constraint on the

recommendation space by release cutoff . We specify the latter to avoid making

recommendations for items not contained in our dataset. For Hetrec the most recent

movie was released in 2011.

We recognize that zero-shot is the most likely style that would be used by some-
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Figure 6. Initial prompt choices. Parameter injection is in bold and contained in
‘{-}‘ but is represented as only the value in the actual text.

one interacting with the system normally. For the sake of comparison we include

prompting styles with examples of the task in few-shot and Chain-of-Thought (CoT)

[22] format based on findings that techniques displaying higher reasoning have been

widely found to increase the model’s reasoning ability in turn [5], [6], [21]. The

CoT format is also motivated by the work of [36] that shows a marginal increase in

performance when including additional explanations. To generate fake examples for
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few-shot and CoT prompts, we randomly sample |Eu| liked and disliked items from

all possible items and then construct k recommendations based on the similarity of

other items in the data set. The reasoning displayed in CoT also incorporates ranking

of results based on sorted collective similarity to the fake liked/disliked items, and

aims to demonstrate to ChatGPT how it should approach the problem of making

recommendations and sorting them based on confidence. We further include some

smaller details that have shown to be impactful, like using ‘\n‘ to separate reasoning

steps [37].

6 Recommendation, Extraction, & Mapping

Once ChatGPT has produced its completion at a given prompting stage, its recom-

mendations must be parsed from the textual output. Because this output is natural

language, some minor errors in formatting, spelling, and grammar are to be expected.

In other studies [4], [5], this has been addressed as a possible issue when extracting

and evaluating the recommendations. We have found little issue with formatting,

as ChatGPT will generally always provide its output as a numbered list of items,

similarly to what is shown in Figure 1. Explanations for each item also appear to

be automatically provided when the requested number of recommendations is low

(k ≤ 10), and can be turned on or off in the initial instruction prompt. Because for-

matting was shown consistent with numbered lists, it is possible to extract each title

using regular expressions and strip extraneous information, such as the list number

and explanation, to acquire the recommended title.

After extracting the titles of each item, they are matched to an embedding that has
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been learned and stored in an embedding database. As noted in [4], ChatGPT does

not follow the typical ordering used for film titles, e.g. ”{title}, {article} ({year}).”

To facilitate better matching, all item titles in Hetrec are preemptively re-ordered to

match ChatGPT’s natural output format of ”{article} {title} ({year}).” Furthermore,

it is highly likely that a recommended title does not exactly match the title stored

in the database. For example, a recommendation of ”Seven Samurai (1953)” would

fail to match with the actual title of ”Seven Samurai (1954)” due to a single error in

the release year. To avoid this problem, the embeddings for the recommended titles

are retrieved from the database using a fuzzy lookup by Normalized Levenshtein

Similarity (NLS)[38]:

NLS(X, Y ) = 1− 2 ·GLD(X, Y )

α · (|X|+ |Y |) +GLD(X, Y )
(9)

With,

α = max{γ(a → λ), γ(λ → b), a, b,∈ Σ} (10)

For an alphabet Σ and where GLD(X, Y ) is the Generalized Levenshtein Distance

between two strings X and Y given by:

GLD(X, Y ) = min{γ(TX,Y )} (11)

In which TX,Y = T1T2 . . . Tl is a sequence of edit operations and γ(TX,Y ) =∑l
i=1 γ(Ti) is a weighting function for each edit operation. Levenshtein distance
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allows for three operations, insertions: γ(λ → a); deletions: γ(a → λ); and substi-

tutions: γ(a → b), which are used to transform X into Y . Typically, weights for all

three operations are 1. Normally, the output of GLD is merely the number of inser-

tions, deletions, and substitutions required to transform a string into another. NLS,

however, constrains this to the range of [0, 1] and weights the number of changes

proportionally to the length of the strings. If we find that a title X is similar enough

to a title Y by NLS in the database, we proceed to match X with Y and return its

embedding. The similarity threshold is controlled by the parameter title threshold.

For out-of-dataset items that cannot be matched either exactly or with NLS, we

merely exclude these from the metric computation and feedback process. This neither

penalizes nor rewards the model for the error. However, as this could undoubtedly

skew the evaluation process in an unpredictable way, we attempt to mitigate the

amount of failed matches as much as possible by keeping a short list of the most

common unmatched titles. This list is then included in the database complete with

embeddings generated in the same way as was done in the content analysis step

described in section 3. As revealed by the case-study in [4], it would be possible to

discover embeddings for these items on the fly given their title, which has the benefit of

avoiding the possibility of matching errors altogether. However, since it is debatable

how much content is actually required to form a good quality embedding, we choose

to treat all collected unmatched titles as if they were entries originally present in the

data. This means there is a need for also collecting a similar amount of information

for them as is available in Hetrec 2011. From the IMDb non-commercial datasets [31]

we collect the correct release year and genre of the movie, then supplement this with
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portions of its Wikipedia article as described previously. We collect 363 additional

titles that are frequently mismatched.

7 Relevancy Matching

The most important part of the simulation pipeline is to estimate whether a given

user would respond positively to a recommended item. For a set of recommended

items Rk for user u, we estimate the rating r̂ui for an item i ∈ Rk by computing a

weighted sum of ratings ruj for j ∈ Su as [24]:

r̂ui =

∑
j∈Fu

sim(i, j) · ruj · signf(i, j)∑
j∈Fu

sim(i, j) · signf(i, j)
(12)

sim(u,v) =

∑d
i=1 ui · vi√∑d

i=1 u
2
i

√∑d
i=1 v

2
i

(13)

signf(i, j)


1 sim(i, j) ≥ z>qj

0 sim(i, j) < z>qj

(14)

Where sim(u,v) is cosine similarity, and z>qj is the q
th quantile of pairwise cosine

similarities between item j and all other items in the dataset. If r̂uj ≥ 3, we accept the

recommendation i as a relevant. Su := Fu or Su := Tu depending on the prompting

stage.

This by-item similarity threshold is put in place from a practical standpoint of

considering there to be a finite number of items that are realistically comparable to
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item j. For example, specifying that an item must exceed the 99th quantile of an

item’s similarities has the practical implication of restricting item interaction to only

the top 1% percent of interactions. For Hetrec, 1% of interactions for 10,197 movies

means that we consider there to be 101 items that are feasibly comparable to an item

of interest. This addition is made because the item representations produced by the

text-ada-embedding-002 model all have relatively high cosine similarity even as more

content is included for the item, making it difficult to define a threshold for item

comparison by standard convention, like 0.5 for cosine similarity.

8 Reprompting with Feedback

The reprompting stage involves performing relevancy matching against recommended

items, and merely informing ChatGPT which of these recommendations were good

or not. We make one small addition to the instructions to ask ChatGPT to avoid

making duplicate recommendations. This is to aid in exploring the user’s interaction

space. In preparing for evaluation, the value for k is substituted by the value for the

final number of recommendations kf , and some extra context is added to the next

prompt. Both of these prompts can be seen in Figure 7.

9 Evaluation Metrics

We base our true comparison of different methods only on the last set of kf recom-

mendations generated for comparison against the evaluation set Tu. Since the entire

purpose of a recommendation system is to provide a succinct set of relevant items,

it would otherwise be impractical to take all k · (p − 1) + kf recommendations gen-
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Figure 7. Re-prompting for incorporating feedback mid-conversation and requesting
a final recommendation list. Parameter injection is in bold and contained in ‘{-} but
is represented as only the value in the actual text.‘

erated throughout the conversation with p prompts and use this to determine the

performance of ChatGPT. The goal is to help ChatGPT explore the user’s interests

further, and use this to develop a more robust set of recommendations at the very

end. We compute the following metrics to evaluate final performance.

Mean Average Precision

MAP is a well-known metric for evaluating recommender systems that takes into

account the ranking of recommended items, as well as precision at different top-N

sets [39].

First the general formula for precision in recommendation for a set of recom-

mended items R:

P =
Number of recommendations that are relevant

Total number of recommendations
(15)

Hence for a recommended list of i ranked items, the precision at the ith rank would
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be P (i)= number of relevant items up to rank i.

Average precision is then computed as:

AP =
1

|R|

|R|∑
k=1

P (k)rel(k) (16)

Where rel(k) is a binary indicator that returns 1 if the ith item is relevant and 0

otherwise.

The Mean Average Precision (MAP) is finally calculated based on the Average

Precision for each user u

MAP =
1

|U |
∑
u∈U

AP (u) (17)

Normalized Discounted Cumulative Gain

The normalized metric is similar to MAP since it accounts for ranking, but is more

sensitive to the rank of the item. Relevant items closer to the front of the list are

worth more than those placed at the end [40].

With R as the recommended list and reli ∈ {0, 1}; indicating whether the ith item

in the list is relevant, the Discounted Cumulative Gain (DCG) is computed as:

DCG =

|R|∑
i=1

2reli − 1

log2(i+ 1)
(18)

and

nDCG =
DCG

IDCG
(19)

Where IDCG is the ideal DCG defined by the best possible ranking determined
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by the set of maximally relevant items R∗:

IDCG =

|R∗|∑
i=1

2reli − 1

log2(i+ 1)
(20)

Intra-list Similarity

The ILS metric is a simple metric that provides information about how similar items

in the recommendation list R are to one another [41]. It is commonly computed as

the the sum of all pairwise similarities between items i, j ∈ R divided by the total

number of comparisons:

ILS(R) =

∑
i∈R

∑
j∈R i ̸=jsim(i, j)

(|R|(|R| − 1))/2
(21)

Coverage

Coverage is a metric that measures how many items are retrievable from the entire

catalog of items [42]. Typically, this is synonymous with Recall, but we modify this

slightly based on the quantile threshold z>i for an item i and user u. With this

metric we would like to know how many items can be effectively ‘matched‘ by a

recommendation from ChatGPT. This is computed as:

Coverage =

∑
i∈RP j∈Fumatch(i, j)

|Fu|
(22)

Where RP is all recommendations made across all prompts, and match(i, j) is

1 when there exists some item i ∈ RP such that sim(i, j) ≥ z>j, and 0 otherwise.
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We only count individual occurences where this is true to show that ChatGPT has

approximately recommended an item.

Novelty

Novelty is considered to be the inverse of an item’s popularity [42]: 1 - Popularity(i),

where we compute Popularity(i) across the same pipeline configuration by collecting

how many times an item i was recommended to all users U across replicates τ .

Formally, we define this as:

Popularity(i) =

∑
u∈U occurs(i, RP

u )

|U | · τ
(23)

Where occurs(i, RP
u ) is an indicator function that returns 1 if i ∈ RP

u for a user

u and 0 otherwise. Then we compute the user novelty by summing these popularity

scores for each item i ∈ RP
u and averaging by the total number of recommended items

for each user:

Noveltyu =

∑
i∈Rp

u
1− Popularity(i)

k · (p− 1) + kf
(24)

Unmatched Ratio

We define a new metric to measure the amount of unmatchable recommendations

made for a user u, simply defined by:

URu =
{|i ∈ RP

u ∧ i /∈ I}|
k · (p− 1) + kf

(25)
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Where I is the set of items in our database, RP
u is the set of recommendations made

across all prompts, k is the number of recommendations made per initial/reprompt,

p is the number of prompts, and kf is the number of recommendations made at the

evaluation prompt.

10 Comparison With Other Methods

To achieve a meaningful comparison with the baseline recommendation methods,

the recommender component of the tested pipeline is replaced with an alternative

model to ChatGPT. This accounts for the unorthodox method of evaluation to ideally

establish lower and upper bounds on performance. Namely, two additional approaches

have been explored:

• Randomized

• Non-negative Matrix Factorization (NMF)

The randomized baseline is a simple model that merely builds a final list of kf

number of recommendations at random from the 10,197 items available in Hetrec.

For both options, we try to simulate how direct recommendation occurs through

ChatGPT in this context, and so these additional methods are subject to the same

extraction, mapping, and relevancy matching procedures even though they are not

necessary.

33



11 Chapter Summary

In this chapter we have laid out the process of our evaluation. Detailing how we have

chosen to interact with ChatGPT as a recommender, and how we plan to perform an

assessment of its performance.

We further note the following parameters of our proposed system:

• p: The number of prompts to which the recommender responds to. Including

the initial prompt.

• k: The number of recommendations to generate at the pth prompt.

• kf : The number of recommendations that we request from the recommender at

the final prompt. These recommendations are ideally a summarized and tuned

set of recommendations, after a series of feedback reprompts.

• example size: Determines the number or fraction of interaction tuples (rui, i)

to include in the example set Eu for a user u.

• eval size: Determines the number or fraction of interaction tuples (rui, i) to

include in the evaluation set Tu for a user u.

• prompt style: Specifies how the initial prompt will be constructed, namely one

of the options in the set: {‘zero‘, ‘few‘, ‘CoT‘}.

• q: The qth quantile of pairwise similarity for an item. Specifies the strictness

of weighting in relevancy matching by reserving weighting privilege to only a

subset of comparable items for each item.
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• title threshold: Similarity threshold in which to accept a recommended title as

a match in NLS.

• model: The recommender model component of the simulation pipeline.

• temperature: Influences the stochasticity of ChatGPT’s responses.

• random state: Seed shared by all random components of the system.
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CHAPTER IV

EXPERIMENTAL RESULTS & ANALYSIS

1 Experimental Design

For our experiments we utilize a Randomized Complete Block Design (RCBD) [43] to

account for the variance in the responses induced by different users and different-sized

interaction sets. We perform a block on the user and complete 3 full replicates for each

block at each level for the independent variables (IV) of interest. Randomization is

inherent both within the block and across blocks due to using a separate asynchronous

thread to make calls to the OpenAI API for each user. Each of these threads may

take approximately 200-1800 seconds to run, and parameterization is shuffled in-

between. Unless otherwise specified, we use an alpha level of α = 0.05 to determine

statistical significance. We run separate ANOVAs with each metric as the DV to

determine significantly different means; provided parametric assumptions hold. If the

data violates normality, then a Kruskal-Wallis test is used to determine significantly

different medians within groups. Post-hoc tests for significant factors are performed

with TukeyHSD after ANOVA, and Dunn’s multiple comparison test after Kruskal-

Wallis [44].

We hold the following parameters of the system constant throughout all experi-

ments:
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• kf = 20

• example size = 10

• eval size = 0.33

• title threshold = 0.75

• q = 0.99

• temperature = 0

• random state = 22222

The temperature parameter which increases the stochasticity of ChatGPT’s re-

sponses is held constant for our main results to maximize reproducibility. However,

we do vary it for one experiment, which may make the results non-reproducible.

2 Analyzing the Effect of Embedding Content

In this section we want to determine how the content used to generate item embed-

dings could impact the results. Since similarity between items forms the basis of how

relevant recommendations are determined, it is important that their representations

allow for a valid comparison. To get an idea of how the amount of content impacts

global similarity, we examine the distributions of pairwise cosine similarity for each

content level in Figure 8.

It is evident that introducing more content makes similarity more discriminative;

however, we seem to approach a limit when incorporating additional information, as

indicated by the distribution of levels 2-3.
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Figure 8. Cumulative distribution functions of item pairwise cosine similarity. Lev-
els are based on the amount of content contained in the sentence embeddings produced
by text-davinci-002, shown in Figure 4. The level 4 content level contains the same
content as level 3, but with stop words and and the top 5% most common word-level
tokens removed before embedding.

To determine whether these visible differences are actually statistically significant

we perform an ANOVA test. In order to use a parametric test like ANOVA, the

data must be approximately normal and identically distributed with homogeneity of

variance (NID)[45], which we verify by plotting residuals in Figure 9. The plots for

the residuals of ILS indicate that an ANOVA is not appropriate there is an extreme

violation of normality, so we instead utilize the Kruskal-Wallis non-parametric test to

determine if there is a significant difference in the levels. P-values for these tests are

given along with the mean metric values for each level in Table 2. We find that for the

specified tests, the level of content used in the embeddings is statistically significant

at α = 0.01.

A further analysis for precision, nDCG and AP using TukeyHSD to determine

significantly different groupings is shown in Figure 10(a). The Dunn’s test results
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(a) (b)

(c) (d)

Figure 9. One-way ANOVA residual plots for metrics as an effect of embedding level.
All plots with the exception of (c) indicate that the sample is roughly NID.

Content Level Precision nDCG ILS MAP

1 0.54 0.556 0.857 0.575
2 0.584 0.614 0.803 0.641
3 0.581 0.619 0.804 0.654
4 0.583 0.615 0.787 0.649

p-value < 0.01 < 0.01 *< 0.01 < 0.01

Table 2. Mean metric values for different content levels. The model used is ChatGPT
with prompt style=‘zero‘ for p = 1 prompts. Scores are based on k = 20, p = 1
recommendations matched against the evaluation set. *P-value for ILS is determined
via Kruskal-Wallis with tie-breaking. We find that content level does have a significant
effect on each of the tested metrics at α = 0.01

with ILS as DV is shown in Figure 10(b). Overall, our findings are consistent with

those shown from the initial visualization of the similarity distributions. However, it

is interesting to note that even as overall pairwise similarity decreases as content level
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(a) (b)

Figure 10. TukeyHSD groupings (left) and Dunn’s test (right) for embedding level
effect on evaluation metrics. Tukey is based on 95% confidence. Results indicate that
embedding content levels 2-4 are not significantly different, but interestingly increase
metric scores over embedding level 1.

increases, performance also increases. This is in conflict with the preconceived notion

that a greater overall similarity between items makes the process of determining

relevant matches less selective. Content levels 2-3 do not produce a significantly

different effect from each other, so any of them can be safely chosen to proceed

with in experimentation. We choose content level 4 embeddings due to a qualitative

assessment that they showcase more reasonable similar items.
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3 Analysis of Iterative Feedback

We aim to answer RQ1: How does the ability to converse impact recommen-

dation in language models?. To accomplish this, we wish to compare different

parameterizations of ChatGPT with reprompting against direct recommendation. We

vary the following parameters:

• prompt style ∈ {‘zero‘, ‘few‘, ‘CoT ‘}

• k ∈ {5, 10}

• p ∈ {3, 5}

For comparison against the default direct recommendation task with k = 20 and

p = 1 we also vary prompt style. For few-shot and CoT prompting styles, we only

utilize a single example of k recommendations. All together, there are a total of 15

total settings to compare. Since direct recommendation only ever uses the same k and

p treatments and thus would be found to be colinear, we combine these two factors

into a new factor config to compare both archetypes of the system in the same test.

We examine interactions through this engineered factor in the post-hoc tests. A two-

way ANOVA is used to test for significance in the metrics and we again examine the

residuals shown in Figure 11 to ensure that the test is valid. ILS is the only result that

violates parametric assumptions, so we display the Kruskall-Wallis with tie-breaking

p-values in Table 3 alongside the p-values for the ANOVA tests. We find that all

factors are significant, as well as the interaction between prompt style and config.

The post-hoc tests performed in Figure 12, Figure 13, and Figure 14 indicate that
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the configurations that allow for the most recommendations with k = 10 are shown

to be significantly different from other levels for precision, nDCG, and AP. Few-shot

and zero-shot are not significantly different, but both perform better than our CoT

prompting across the board. Dunn’s test results for ILS as DV in Figure 15 show

that reprompting noticeably increases the similarity between recommendations as the

number of prompts increases. CoT prompting significantly decreases ILS, which may

indicate that the model fixates on the items we choose as examples.

Interactions only show a notable difference between configurations for precision,

but this provides evidence that reprompting is effective at making the model’s final

recommendations more relevant. With this finding we answer RQ1.

Aggregation of the mean metric values for each possible configuration in Table 4

shows that the configuration k = 10, p = 5, and prompt style = ‘zero‘ appears to

be the best parameterization overall based on raw values. We further examine this

model in Figure 16 to see how precision varies with coverage. We see that the model

is able to match more relevant items to the user as p increases, which also shows an

increase in precision.

Iterative Feedback Statistical Test p-values
ANOVA Kruskal-Wallis

Factor Precision nDCG MAP ILS
config <0.01 <0.01 <0.01 <0.01

prompt style <0.01 <0.01 <0.01 <0.01
config*prompt style <0.01 <0.01 <0.01 -

uid <0.01 <0.01 <0.01 -

Table 3. P-values for ANOVA and Kruskal-Wallis by factor and metric for evaluating
iterative feedback. All factors are found to be significant at α = 0.01
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(a) (b)

(c) (d)

Figure 11. Two-way ANOVA residual plots for metrics as an effect of prompt style
and configuration.

4 Analysis of ChatGPT as a Top-n Recommender

We compare between ChatGPT in the pipeline versus baseline models in order to

answer RQ2: How do language models perform at recommendation in their

typical use-case? (as primarily item-based, top-k recommenders). The two

best parameterizations of the pipeline with and without reprompting, as indicated

in Table 4, are selected to represent ChatGPT. We employ four total configurations

that utilize NMF as the underlying recommender component.

NMF-item constructs a set of kf recommendations for a user u by first building
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Figure 12. TukeyHSD groupings and interaction plot for precision as an effect of
pipeline configuration and prompting style. Tukey is conducted at 95% confidence.
Results show that reprompting does have a significant effect on the performance of
the system.

individual lists of kf unique recommendations for each positive item in the example

set, creating a pool Pu of possible recommendations where |Pu| = kf ∗ |Eu|. This pool

is then reduced to the top kf items with the highest similarity to the items in Eu.

NMF-user produces recommendations based on the top kf items most similar to the

user in the user-embedding space. Both models use their own learned embeddings to

produce recommended titles.

We also vary whether relevancy matching is to be performed using the learned

embeddings of NMF, or the GPT-3 embeddings. When using the GPT-3 embeddings,
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Figure 13. TukeyHSD groupings and interaction plot for nDCG as an effect of
pipeline configuration and prompting style. Tukey is conducted at 95% confidence.
Results indicate that model configurations using more prompts increases metric value,
but interactions between config and prompt style are largely insignificant.

NMF has obviously learned a very different representation for each item because so-

cial information has been incorporated. Therefore, what may be an otherwise good

recommendation when considering user correspondence is not likely to translate well

when evaluated with content-based information only. This inclusion is made regard-

less to ensure a fair comparison, since the only change to the pipeline is how recom-

mendations are produced. We otherwise include the NMF’s own learned embeddings

for relevancy matching to give a more accurate assessment of both its performance

and the overall effectiveness of the proposed evaluation approach.

The parameters for NMF are found by using grid search with a 5% validation split

taken from the non-evaluation items. Training is carried out for 15,000 updates using
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Figure 14. TukeyHSD groupings and interaction plot for AP as an effect of pipeline
configuration and prompting style. Tukey is conducted at 95% confidence. This
shows similar results to nDCG for the same factors. Utilizing more prompts is again
found to be a significant effect, but the interaction is not.

SGD, with model parameter restoration based on maximum RMSE for the validation

set. We find the optimal parameter set as λ = 0.05, α = 1.2, and d = 50 using this

approach. Results of evaluating the NMF model on the interactions in the evaluation

split T can be seen in Table 5.

The mean metric values for each model tested can be seen in Table 6, along with

the p-values for the statistical tests. Post-hoc tests were performed but have been

omitted for space. We find that ChatGPT is significantly better than the Random

baseline, which indicates that it is using the knowledge of the user to its advan-

tage. The NMF recommenders evaluated with GPT-3 embeddings perform poorly

as expected, but still perform better than random. Interestingly, the NMF models
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Figure 15. Dunn’s test results on ILS as an effect of prompt style and pipeline config.
Results show that generally increasing the number of prompts raises the similarity of
items in the recommendation list.

(a) (b)

Figure 16. Coverage and precision distributions for different prompt numbers using
best configuration from Table 4. We see here that ChatGPT contains to match unique
items in the feedback set while further increasing precision.
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Prompt Style k p Precision nDCG ILS MAP UR

Zero-Shot

20 1 .586 .618 .791 0.65 6e-4

5
3 .593 .624 0.79 .647 5e-4
5 .611 .624 .788 .638 1e-3

10
3 .612 .653 .789 .682 1e-3
5 .637 .656 .791 .674 1e-3

Few-Shot

20 1 .597 .626 .792 .658 6e-4

5
3 .616 .648 .788 .676 9e-4
5 .612 .62 .783 .632 2e-3

10
3 .629 .645 .787 .664 1e-3
5 .627 .645 .788 .66 5e-3

CoT

20 1 .52 .527 .743 .534 1e-2

5
3 .615 .628 .784 .644 3e-3
5 .602 .62 .787 .638 2e-3

10
3 .607 .632 .786 .651 6e-3
5 .625 .637 .783 .653 1e-2

Table 4. Mean metric values for different ChatGPT configurations in the pipeline.
Scores are based on a final set of k = 20 recommendations matched against the eval-
uation set. Unmatched Ratio (UR) indicates the average fraction of all recommended
items that were lost due to matching issues. Best results are colored in each column.

RMSE Precision@5 Recall@5 MAP@5 nDCG@5

1.181 0.796 0.052 0.672 0.553

Table 5. Average NMF performance as measured on the evaluation set outside of
the proposed methodology.

evaluated using their own learned embeddings perform similarly to ChatGPT. This

may indicate that ChatGPT with iterative feedback is as effective as a supervised

model in the eyes of our evaluation pipeline. However, we refrain from giving too

much significance to this claim without testing more model varieties. Based on these

findings, we answer RQ2 by showcasing that ChatGPT is at the very least preferable

to random selection at recommendation.
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Model Precision nDCG ILS MAP UR

ChatGPT (k=10, p=5, zero) .637 .656 .791 .674 1e-3
ChatGPT (k=20, p=1, few) .597 .626 .792 .658 6e-4
NMF-item .263 .262 .773 .259 -
NMF-user .27 .285 .77 .3 -
Random .243 .246 .76 .246 -
p-values < 0.01 < 0.01 *< 0.01 < 0.01

NMF-item (learned embeddings) .626 .629 .639 .634 -
NMF-user (learned embeddings) .646 .648 .637 .647 -

Table 6. Comparison of two best pipeline parameterizations (with and without
reprompting) against baseline models Non-negative Matrix Factorization (NMF) and
Random. Metric values are averaged. *P-value for ILS is determined via Kruskal-
Wallis with tie-breaking.

5 Exploring Popularity Bias in Recommendations

Our last experiment tries to answer RQ3: Does Chat-GPT exhibit popularity

bias in recommendation? Due to the amount of tests performed, it is apparent

that ChatGPT prefers certain recommendations over others; indicating popularity

bias. The configuration k = 10, p = 5 produces the largest quantity of recommen-

dations of the settings tested, so we visualize how frequently items are recommended

across 50 users for 3 replicates in Figure 17(a). Figure 17(b) shows the most common

recommendations, which appear to strongly coincide with entries on the IMDb top

250 movies [46].

With this evidence alone RQ3 could easily be answered. However, we would also

like to explore whether there is a way that this could be mitigated. We choose the

following factors and levels to test this:

• prompt popular ∈ {‘no‘, ‘yes‘}

• temperature ∈ {0, 0.5, 1}
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(a) (b)

Figure 17. Frequency of recommendations across 9,000 total recommendation in-
stances.

The factor prompt popular indicates whether we allow ChatGPT to use popular

recommendations. When prompt popular=‘no‘ we merely add the additional instruc-

tion: ”Try to recommend movies that are less popular,” to the initial prompt and

reprompts. The default settings are prompt popular = ‘yes‘ and temperature = 0.

To determine whether these factors play a role in reducing popularity bias in rec-

ommendations, we are mostly concerned with the novelty of the recommendations.

However, we performed significance tests for all other metrics as before. The residuals

of the ANOVAs are shown in Figure 18, which shows similar findings to previous ex-

periments. The P-values for the statistical tests are shown in Tab 7. We find that all

individual effects and interactions are significant for novelty, but only prompt popular

is significant for other metrics. TukeyHSD comparison on prompt popular in Figure

19(a) shows a significant performance reduction by restricting the recommendation

of popular items. Figure 19(b) shows that as temperature increases, the ILS of the
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(a) (b)

(c) (d)

(e)

Figure 18. Two-way ANOVA residual plots for metrics as an effect of temp and
prompt popular. All plots with the exception of (c) indicate that the sample is
roughly NID.

recommended items decreases considerably.
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Popularity Statistical Test p-values
ANOVA Kruskal-Wallis

Factor Precision nDCG MAP Novelty ILS
temperature .174 .246 .242 <.01 <.01

prompt popular <.01 <.01 <.01 <.01 <.01
temperature *
prompt popular

.908 .931 .927 <.01 -

uid <.01 <.01 <.01 <.01 -

Table 7. P-values for ANOVA and Kruskal-Wallis by factor and metric for evaluating
recommendation popularity. We find that only prompt popular is significant for
standard metrics, but both main effects and the interaction is significant for novelty
at α = 0.01

The main results of interest are how these factors influence novelty. TukeyHSD

comparison for novelty in Figure 20 indicates that a high temperature and restricting

popular recommendation has a profound effect on recommendation variety. If we wish

to maximize novelty, we would choose to use temperature = 1 and prompt popular=‘no‘.

The effect of this is better seen in Figure 21, clearly indicating a reduction of the

short-tail in item frequency. One caveat to this is that using these options comes at

the cost of performance; as indicated by analysis of the other metrics. However, this

is a common trade-off associated with traditional approaches to improve variety in

recommendation [47][48].

Lastly, we summarize the means of the results in Table 8 for ease of comparison.

We further note that increasing temperature and restricting popular recommenda-

tions has the undesirable effect of increasing the quantity of unmatchable items.

6 Chapter Summary

These experiments have provided answers to each of our three research questions:
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(a) (b)

Figure 19. TukeyHSD (a) for ILS as an effect of prompt popular and Dunn’s test
for ILS as an effect of temp. Tukey test conducted with 95% confidence.

Figure 20. TukeyHSD groupings and interaction plot for Novelty as an effect of
temp and prompt popular. Tukey is conducted at 95% confidence.

• RQ1: How does the ability to converse impact recommendation in language

models?
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(a) (b)

Figure 21. Recommendation frequency by item and and density of two ChatGPT
configurations. The model used has parameters p = 5, k = 10, prompt style =‘zero.‘
Prompting with temperature = 1 and specifying that popular recommendations
should be limited (prompt popular=no) reduces the short-tail of recommendation
frequency.

Temp Prompt Popular Precision nDCG ILS MAP Novelty UR

0.0
no .43 .438 .725 .448 .338 3e-2
yes .637 .656 .791 .674 .282 1e-3

0.5
no .437 .444 .747 .454 .407 3e-2
yes .64 .656 .792 .67 .288 2e-3

1.0
no .413 .422 .712 .43 .581 6e-2
yes .626 .643 .788 .65 .357 5e-3

Table 8. Mean metric values for combinations of temp and prompt popular param-
eters.

• RQ2: How do language models perform at recommendation in their typical

use-case? (as primarily item-based, top-k recommenders)

• RQ3: Does Chat-GPT exhibit popularity bias in recommendation?

We answer RQ1 by showing that model configurations with multiple prompts

score higher in precision than models using only a single prompt. Indicating that we

are able to inject additional information mid-conversation to help guide ChatGPT
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towards a better answer.

We answer RQ2 by showing that ChatGPT is a significantly better recommender

than a random baseline. While we find interesting results that imply ChatGPT with

reprompting performs nearly identically to a supervised model based on our evalua-

tion pipeline, we cannot make claims that it is actually comparable in performance

to any supervised method.

We answer RQ3 by showing that ChatGPT clearly exhibits popularity bias in its

recommendations. We propose to use temperature and a prompt-based restriction

of popular recommendations to increase the novelty of recommendations.
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CHAPTER V

CONCLUSIONS

In this thesis we constructed an evaluation pipeline around ChatGPT to evaluate

it as a conversational, direct top-n recommendation system. Compared to other

studies that have tested ChatGPT’s ability to pull the best recommendation out of

a pool of candidates [5][6], we sought to evaluate ChatGPT in way that is more

consistent with how a user would interact with it for recommendation. In seeking

this goal, we were able to answer all three of our research questions. We were able

to show that reprompting ChatGPT with feedback mid-conversation does have a

significant effect on the performance of the system. Additionally, we showed that

ChatGPT is significantly better than a random recommender, indicating that its

domain knowledge is useful for recommendation. Lastly, we were able to evaluate

popularity bias in ChatGPT, and find possible ways to mitigate it to receive more

novel recommendations.

Despite these satisfying findings, our system does have several limitations. First,

we are dependent on a relatively large amount of text data in order to produce robust

content embeddings. Additionally, we are constrained to relatively old movie releases

from our dataset. ChatGPT has been trained on data up to September 2021, so we

are omitting 10 years worth of extra items from our evaluation. Future work may
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require that a more recent dataset be used in order to fully capture how ChatGPT

performs on recent information.

Another limitation comes from our lack of comparable models to compare to

ChatGPT in the pipeline. In a follow up study, it would be more appropriate to

compare ChatGPT’s performance against other LLM, as many other authors have

done [4], [6].

Recommendation is a task that only becomes more important with each passing

year. As the amount of content available online continues to increase, it may soon

prove to be a more efficient use of time to have language models peruse this content

in your place. Overall, we believe that user experience is part of the recommendation

process as well. If the user is now able to have a consistent part in what they choose

to see and consume, this might help to eliminate many of the problem that plague

recommendation systems today; like popularity bias.
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