
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2023

Automated usability evaluation utilizing log files and data mining Automated usability evaluation utilizing log files and data mining

techniques. techniques.

Sima Shafaei
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Computational Engineering Commons, and the Industrial Engineering Commons

Recommended Citation Recommended Citation
Shafaei, Sima, "Automated usability evaluation utilizing log files and data mining techniques." (2023).
Electronic Theses and Dissertations. Paper 4211.
https://doi.org/10.18297/etd/4211

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=ir.library.louisville.edu%2Fetd%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=ir.library.louisville.edu%2Fetd%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/4211
mailto:thinkir@louisville.edu

AUTOMATED USABILITY EVALUATION UTILIZING LOG FILES
AND DATA MINING TECHNIQUES

By

Sima Shafaei
M.Sc., University of Isfahan, 2008

M.Sc., Isfahan University of Technology, 2005

A Dissertation
Submitted to the Faculty of the

J. B. Speed School of Engineering of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Industrial Engineering

Department of Industrial Engineering
University of Louisville

Louisville, Kentucky

December 2023

Copyright 2023 by Sima Shafaei

All rights reserved

 ii

AUTOMATED USABILITY EVALUATION UTILIZING LOG FILES
AND DATA MINING TECHNIQUES

By

Sima Shafaei
B.Sc., Isfahan University of Technology, 2005

M.Sc., University of Isfahan, 2008

A Dissertation Submitted on

Nov 9, 2023

By the following Dissertation Committee:

Dr. Jason Saleem (Advisor)

Dr. Monica Gentili

Dr. Gail DePuy

Dr. Olfa Nasraoui

 iii

DEDICATION

This dissertation is dedicated to my husband

Mr. Ryan Mahdi Samani

and

to my mother

Minoo Ghafarian

who have given me invaluable support.

 iv

ACKNOWLEDGMENTS

I extend my heartfelt appreciation to my advisor, Dr. Jason Saleem, for his

invaluable guidance, unwavering support, and patience. Gratitude is also due to the

esteemed committee members, Dr. Monica Gentili, Dr. Gail DePuy, and Dr. Olfa Nasraoui,

for their insightful feedback and assistance throughout my educational journey.

Special thanks are reserved for my husband, Ryan Mahdi Samani, who has been

my pillar of strength and most enthusiastic cheerleader. I am deeply grateful to my mother,

Minoo Ghafarian, for her enduring patience. During moments of uncertainty, she provided

encouragement that kept me persevering. I also express my thanks to my family

members—Sara, Mahsa, Arsalan, and Shahryar—for their unwavering support over the

years.

 v

ABSTRACT

AUTOMATED USABILITY EVALUATION UTILIZING LOG FILES

AND DATA MINING TECHNIQUES

Sima Shafaei

November 9, 2023

Usability evaluation is one of the essential aspects of software production. This

evaluation should be done during the entire life cycle of a software application, from pre-

production to production and post-production. However, the collection and evaluation of

usability data can be a very challenging, time-consuming, and expensive task to be

conducted manually, particularly for certain types of products and working conditions.

These challenges may include the need to recruit participants fully engage and motivate

them during evaluation, and factor in environmental conditions. Other challenges may

include collecting data in real-world environments, especially when the users are

geographically dispersed, minimizing evaluator and participant bias, and analyzing

complex data sets, particularly when the volume of data is large.

This research explores an alternative approach to automate the whole process of

usability evaluation by utilizing data mining and machine learning techniques on data

recorded in log files. The objective of this dissertation is to extract the value of usability-

related metrics from user interactions and estimate usability measures in a quantitative

manner. The use of log files for usability evaluation offers several advantages over

 vi

traditional methods of evaluation, such as collecting data objectively without the need for

subjective interpretation of the evaluator in some cases, creating a comprehensive view of

user interactions with the possibility of identifying user behavioral patterns and trends that

appear in large data sets, and collecting data from real-world scenarios instead of data from

simulated scenarios. Other advantages include reducing evaluation costs, enabling remote

data collection from anywhere in the world, which leads to the identification of location-

dependent usability problems, and facilitating continuous monitoring over time, which

leads to the identification of time-dependent usability issues.

In this dissertation, Chapter II provides a comprehensive categorization,

comparison, and summary of the pertinent usability evaluation techniques that utilize log

files as input data in both academic and industrial research. Each method is examined

carefully, and its respective strengths and weaknesses are highlighted to provide a

systematic understanding of the advantages and limitations of each technique. Chapter III

assesses the originality of the research questions and proposed solutions. Given the ongoing

development and refinement of log file analysis tools and techniques by proficient teams

in advanced corporations, and the substantial research already conducted in web usage

mining, this dissertation compares its solution with prior works in these two domains. The

similarities and disparities between them are evaluated to determine the uniqueness and

value of the approach advocated in this research. In Chapter IV, the complexities of data

collection are explored, highlighting its prominence as one of the foremost challenges when

dealing with log files. This chapter examines the generation of simulated data, as well as

the collection of real data. In order to generate synthetic log files that closely resemble real

log files and reflect the same challenges, a Bayesian networks model is proposed. This

 vii

model includes nodes at the highest level that can be numerically measured, such as the

number of task actions, entries, words per item, percentage of items with missing

information, percentage of legible items, and other relevant variables. By assigning values

to these variables at the highest level, log files can be generated based on measurable and

understandable factors. Moreover, the values can be adjusted in each iteration to produce

a new simulated log file of any desired size. Chapter V introduces a general framework

for estimating usability metrics and attributes through log file analysis. The systematic

steps of the presented framework are followed to introduce the essential models for log file

analysis and knowledge extraction. Within the knowledge extraction phase, a two-stage

clustering approach that leverages similarity distance and Hidden Markov Models (HMM)

is employed to identify page view sequences related to each task. In the subsequent

knowledge analysis stage, the required data for calculating usability metrics is extracted

and computed. Finally, the outcomes of the experiments are shared, solidifying the model's

effectiveness. A summary of overall conclusion from this dissertation is presented at the

end of Chapter V, demonstrating the unique contributions of this work.

 viii

TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 Background and Motivation ... 1

1.1.1 What is Usability? ... 3

1.1.2 Log Files .. 14

1.1.3 Log File Analysis and its Applications .. 18

1.2 Advantages and Limitations and Challenges.. 21

1.3 Scope and the Purpose of This Study ... 26

1.4 Research Questions .. 28

2 LITERATURE REVIEW ... 30

2.1 Introduction .. 30

2.2 Previous Works .. 30

2.3 Analysis and Data Mining Techniques in Previous Works .. 38

2.4 Usability Metrics Extracted in Previous Works ... 42

2.5 Limitations and Advantages of Previous Methods ... 45

2.6 This Dissertation Objectives Compared to Previous Works .. 51

3 COMPARISON WITH EXISTING TOOLS AND STUDIES 54

3.1 Introduction .. 54

 ix

3.2 Log Analysis Tools .. 55

3.2.1 Splunk .. 57

3.2.2 LogStash .. 58

3.2.3 NXLog ... 59

3.2.4 Amazon Cloudwatch Logs .. 59

3.2.5 AWStats ... 60

3.2.6 Microsoft Log Parser ... 61

3.3 Web Mining Research .. 63

3.3.1 Preprocessing ... 64

3.3.2 Knowledge Discovery ... 69

3.3.3 Knowledge Analysis .. 73

3.3.4 Applications of Web Usage Mining .. 75

3.4 Comparative Analysis of Previous Works with Current Study 76

3.4.1 Data Source ... 76

3.4.2 Purpose .. 77

3.4.3 Applications ... 79

4 DATA COLLECTION ... 81

4.1 Introduction .. 81

4.2 Data Collection in the Previous Works .. 81

4.3 Synthetic Data Generation .. 85

4.3.1 Defining a Bayesian Network Model for Data Generation .. 87

4.3.2 The Procedure of Creating Synthetic Data .. 103

4.3.3 Results ... 109

4.4 Real data ... 115

 x

5 IMPLEMENTATION OF AUTOMATIC USABILITY EVALUATION

FRAMEWORK... 120

5.1 Introduction .. 120

5.2 The Proposed Framework... 121

5.3 Data preparation ... 125

5.4 Knowledge Discovery .. 126

5.4.1 Step 1: Grouping based on Similarity Distance ... 129

5.4.2 Step 2: Clustering Using an HMM model ... 131

5.5 Knowledge Analysis ... 142

5.5.1 Metrics calculation methods .. 142

5.6 Experiments and Results .. 145

5.6.1 Clustering with Similarity Distance on Synthetic Data ... 145

5.6.2 Clustering with similarity distance on real data ... 149

5.6.3 HMM Model Clustering on Synthetic Data ... 151

5.6.4 HMM Model Clustering on Real Data .. 154

5.6.5 Examining Usability Metrics ... 156

5.7 Conclusion .. 158

REFERENCES ... 161

Appendix A: User Tasks for Read Data Collection .. 172

Appendix B: The Approved IRB Consent Document .. 175

CURRICULUM VITA ... 177

 xi

LIST OF TABLES

Table 1: A number of prominent user interface evaluation methods, their primary focus,

and type of measuring instrument and/or technique they utilize 7

Table 2: A number of prominent user interface evaluation methods and their features 8

Table 3: List of common metrics in reviewed literature, their definition, and associated

measures .. 12

Table 4: Advantages and limitations of proxy side logging ... 17

Table 5: The domain for the software being evaluated ... 37

Table 6: Type of analysis used in previous works. The 'Visualization’ column specifies

whether the method provides an analytical visualization for the evaluator or not.

The last column specifies whether the analysis performed is based on the

information of a single user or the information collected from a group of users. 40

Table 7: Possibility of analyzing usability attributes in reviewed articles. The label NA

means 'non-automatic' and implies that the method does not measure the value of

this attribute automatically but provides some heuristics for the usability inspector

to estimate them. ... 45

Table 8: Automatic evaluation parts in reviewed methods ... 49

Table 9:Requirements of each method for performing evaluation and their scalability and

reusability .. 51

Table 10: Comparison of the proposed method with previous methods in terms of analysis

and presentation of results .. 52

 xii

Table 11: Comparing several well-known and popular log analyzer tools in terms of their

abilities and their most important features. ... 62

Table 12: Types of data sources can be used in Log file analysis, web usage mining, and

current study.. 77

Table 13: Data collection method in previous work ... 82

Table 14: Type of information extracted from log file ... 83

Table 15: evaluators and users' efforts in collecting data ... 84

Table 16: Sample of the requested page list in the occurrence of each type of error 90

Table 17: Sample of publicly available access log dataset ... 116

Table 18: Summary information of logfile of learnInjaWebsite.com 119

Table 19: Summary of dataset after preprocessing steps .. 126

Table 20: A sample of information needs to be extracted from the log file 142

Table 21: Synthesized dataset characteristics ... 146

Table 22: Precision, Recall, and F-Score Values for Various 'k' Values in the Common

Sub-sequences Method ... 147

Table 23: The number of main steps required to perform each selected task 150

 xiii

LIST OF FIGURES

Figure 1: Key analysis coverage in each method using a stack bar chart 53

Figure 2: The general framework of web usage mining ... 64

Figure 3: Comparison of Log file analysis, web usage mining, and current study in terms

of their data source .. 77

Figure 4: The heat map of the contribution of each domain (log analysis, web usage mining

and usability evaluation using log file) in the three primary stages of the process

including preprocessing, knowledge discovery, and knowledge analysis 79

Figure 5: Comparison of Log file analysis, web usage mining, and current study in terms

of their applications ... 80

Figure 6: Representation of using log information in different types of log files (client side,

server side, and proxy side) .. 84

Figure 7: Eight main ergonomic criteria proposed by Scapin & Bastien (1997) 90

Figure 8: The sub-criteria of each of the main criteria in Figure 7. Three criteria including

Consistency, Significance of Codes, and compatibility do not have any subdivision

... 91

Figure 9: Bayesian network for modeling user behaviors based on usability features of a

website .. 103

Figure 10: A sample sitemap and a list of possible users’ path 105

Figure 11: Random sitemap generation algorithm.. 106

Figure 12: Sample Sitemap created by algorithm represented in Figure 11 107

 xiv

Figure 13: Sample of the synthetic log file ... 110

Figure 14:Effect of website structure on users' actions .. 111

Figure 15: Effect of three selected usability attributes on users' actions (a,b,c) and four

selected attributes on task completion time(d) .. 114

Figure 16: Home page of learninjawebsite.com ... 117

Figure 17: All Courses page of learninjawebsite.com and available filter for search 117

Figure 18: Summary of AWstats report on LearninjaWebsite.com logfile after excluding

bots or spiders ... 119

Figure 19: Proposed methodology for automatic usability evaluation using log files ... 123

Figure 20: The procedure of calculating the "time on task" metric 124

Figure 21: two-step hierarchical clustering approach for extracting page view sequence

related to each task. ... 128

Figure 22: The part of model related to task t which involves N(t) steps 135

Figure 23: part of the model that relates to random website browsing 135

Figure 24: All tasks will be categorized into two groups based on whether the

number of labeled sessions for each task is below or above the specified

threshold value, denoted as R .. 137

Figure 25: Flowchart of Extracting a part of required information for usability metric

calculation ... 144

Figure 26: Clustering Results on Synthetic Data Using the Common Sub-sequences

Method for k = 3, 4, and 6 .. 147

Figure 27: Clustering Results on Synthetic Data Using the Common Sub-sequences

Method, Levenshtein and MQS Distance ... 148

 xv

Figure 28: Sample Pages for 8 Selected Tasks ... 150

Figure 29: number of sessions clustered in each task category using the MQS method 151

Figure 30: confusion matrix of clustering page view sequences into 10 task using HMM

model... 153

Figure 31: Precision, Recall and F-Score of each class of the clustered synthetic data using

the HMM model .. 153

Figure 32: Silhouette plot for clustering real data with HMM model 155

Figure 33: Silhouette plot for clustering March 2023 data records using the HMM model.

... 156

Figure 34:the effect of changing information density on error rate 157

Figure 35: the effect of changing Significance of Code on error rate 157

1

CHAPTER 1

 INTRODUCTION

1.1 Background and Motivation

"In software engineering, usability is the degree to which a software can be used by

specified consumers to achieve quantified objectives with effectiveness, efficiency, and

satisfaction in a quantified context of use. (International Organization for Standardization,

1998). Usability evaluation and improvement are important not just for individuals who

want to have a positive experience with a product, but also for companies and

manufacturers to survive in today's competitive market and generate more profit by

attracting more customers and enhancing their reputation.

There are a variety of methodologies available for evaluating software usability,

including formative and summative usability testing, focus groups, card sorting, wireframe

testing, first-click testing, and surveys. Irrespective of the kind of methodology, there is a

common underlying procedure for all of them that can be broken down into five steps: 1)

definition of metrics, 2) choosing subjects, 3) collecting data, 4) cleansing data, 5)

extracting measures from data, and 6) analyzing results. Currently, the process of data

collection and preparation in these methods is typically performed manually (i.e.,

facilitated by a usability specialist) using observation, interview, and/or survey.

Consequently, the evaluation results are derived from the information collected from a

limited number of users. Although there is previous work that investigated the use of log

2

files for analyzing an application’s usability, much of that work is dated and there is a need

to revisit this to leverage newer approaches for log file analysis. A log file is a machine-

generated file that records all events or user actions in a certain application, system, or

website.

In this dissertation, the first objective is to establish a general comprehensive

framework that covers all the usability evaluation steps through the analysis of log files

(from the data collection step to analyzing the results.). The second objective is to

determine metrics that can be derived from the information captured in the log files and

formulate them to provide a measurable assessment of usability. Then, these quantitative

metrics will be extracted from log files by employing machine learning and data mining

techniques to track user behavior and extract patterns and errors.

While using log files as the source of information presents certain challenges, it

also provides a revolutionary opportunity to evolve usability evaluation and reach a larger

population of end-users compared to the traditional methods. We can define the following

steps to achieve this goal.

1) Since log files are unstructured text files, we first need to parse these files and

convert them into a structured database.

2) As with all research in the field of data mining, after the creation of the dataset,

we need to perform a data cleansing process and extract the appropriate features.

3) Next, we need to determine which usability metrics can be measured using the

information contained in the log files and propose a methodology for extracting the value

of these metrics.

3

4) Then, we can apply various machine learning techniques such as pattern mining,

sequence mining, clustering, and many more to determine the metrics values identified in

Step 3.

5) Finally, the method will be evaluated and compared with state-of-the-art models

to determine its effectiveness in achieving the study objectives.

There is a lot of research in the field of web usage mining to apply web server log

files to gain insights into user behavior and usage pattern in order to enhance marketing,

advertising, or website structure. However, there is limited recent research on exploring

the utilization of these data for usability evaluation. Much of the previous research in this

area is dated and does not leverage newer approaches for log file analysis. Further, there

does not seem to be a comprehensive framework that includes all the usability evaluation

steps using the log files (from the data collection step to analyzing the results). Therefore,

the chosen problem area is promising and warrants further investigation as a potential

research avenue.

1.1.1 What is Usability?

There are many different definitions for usability according to the context in which

it is mentioned and also the perspective it comes from, such as psychology, management,

development, and users' point of view. By combining them and extracting a common

thread, we can assert that usability is one of the system’s qualities that concerns with

effective interaction of users and products and how easily a product can be operated. One

of the most authoritative definitions for usability is provided by ISO 9241-11 as " the extent

to which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency, and satisfaction in a specified context of use". In this context,

4

effectiveness specifies achieving the intended goal(s); efficiency is about the resources,

such as time or effort needed by users to achieve their goals; and satisfaction deals with the

comfort and positive attitudes towards the use of the product (Organizacion Internacional

de Normatizacion - ISO, 2018).

1.1.1.1 Usability Evaluation Methods

During different phases of the product lifecycle, including design, development,

and testing, many crucial research questions arise. For instance, how should I categorize

information on a website to make it more understandable for users and to make it easier

and faster for users to find what they want? How easy is it for users to work with the

application in the initial use? What modifications can be made to speed up accomplishing

tasks in an application? Can international users work with and learn this application easily?

The quality of the final product significantly depends on finding correct answers to these

questions.

There are plenty of usability research methods available, each capable of answering

a range of questions at various stages of the product development process. Some of these

methods are for generating data or insights and others support ongoing activities to get

things done. So, how one should know which usability research method to do when?

Determining the appropriate research method requires careful consideration of several

factors such as product development stage, context, budget, and specific needs. To achieve

this, certain criteria can be considered.

First think about watching or asking. This leads us to select between behavioral and

attitudinal research methods respectively. Behavioral techniques are based on observing

users' actions whereas attitudinal techniques rely on users' self-reported perceptions. When

5

the research question has to do with what people actually do, or whether something is

discoverable, findable, understandable, or usable, it's most informative to observe them.

So, a method like a usability test is recommended. On the other hand, when the research

objective is to learn insights into people's opinions, such as their preferences or aversions

towards something, a self-reported approach involving interviews, surveys, and focus

groups can be utilized.

Another criterion to help us decide which research method to use, is whether the

research questions require quantitative or qualitative answers. If the objective is to compare

several products or designs, obtain benchmarks, or calculate cost savings from design

modifications, then a quantitative research method such as card sorting or tree testing

should be employed. The flip side of that is qualitative studies that are ideal for obtaining

quick and inexpensive insights so the design can be iterated and improved as much as

possible before releasing it.

Additionally, the required number of individuals to involve in a study can

sometimes be a critical factor. In some methods, evaluation can be done by a limited

number of users or experts while others necessitate the participation of a large group of

individuals in the study to produce reliable results. Although this number may vary

depending on various factors, such as the scope of the test, the complexity of the product,

the diversity of the user population, and the goals of the study, the minimum number

required to conduct the evaluation can be a deciding factor. Furthermore, to choose a

method, it is essential to determine the primary purpose of the study and the time of

performing it. One method may work better for comparing two different versions of a

product design while the other better suits for time analysis and performance of a single

6

design. Certain methods are highly effective in the early stages of production, when only

sketches or wireframes are available, while others are most appropriate for post-

development stages. Meanwhile, certain methods can be applied in every phase of

production (Nielsen Norman Group, 2023; Rohrer, 2014).

There exist many usability evaluation methods. Nielsen & Molich (1990) classified

all of them into four categories: 1) Formal methods which are structured and systematic

approaches and work based on a set of predefined rules and procedures; 2) Automated

methods, which computerize the procedure and apply tools to automatically collect data

and evaluate the usability of a system; 3) empirical methods, a group of research-based

methods that involve collecting and analyzing data from experiments with test users; and

4) Informal or heuristic methods, which are subjective and flexible approaches that rely on

rules of thumb and evaluators' personal experience and general skill. These methods simply

work by looking at the interface and passing judgment according to their own expert

assessment as a usability analyst.

Providing an in-depth explanation of all usability evaluation methods is beyond the

scope of this dissertation. However, to have an overview of their capabilities, Table 1 lists

several prominent user interface evaluation methods and shows their primary focus and

measuring instrument. A measuring instrument refers to a specialized tool or technique

used to gather and generate quantitative or qualitative data that can aid in the assessment

of usability. The selection of an appropriate measuring instrument depends on the type of

data needed, the research questions, and the target user group. They can be either subjective

or objective. Objective measuring instruments are employed to obtain quantifiable data on

user behavior or performance. Common examples of objective measuring instruments

7

include benchmarks, log files, eye-tracking, and clickstream and navigation paths. On the

other hand, subjective measuring instruments are utilized to gather user opinions, feedback,

and perceptions. Examples of subjective measuring instruments include questionnaires,

interviews, and the verbalized thoughts of users in a think-aloud protocol (Hartson & Pyla,

2012).

Table 1: A number of prominent user interface evaluation methods, their primary focus, and type of measuring

instrument and/or technique they utilize

Method Primary Focus Measuring instrument and/or
technique

Think aloud Identifying the significant usability issues
associated with the set of critical tasks

Transcribed verbalization of
participants, including what they do,
and notes of their difficulty

GOMS Focus on time analysis and performance
for skilled users

Systematic documentation of small-
scale steps of experienced user's
action and the time of each step

User testing/
usability testing

Evaluating the product or service with
real users

Observation of users working with
the product

Heuristic
evaluation/ expert
evaluation

Identifying the significant usability issues
based on predefined rules of thumbs and
expert experience

Guidelines, set of rules of thumb,
And general skill and experience of
evaluators + Interface design

Cognitive
walkthroughs

focus on first-time use Interface prototype and walk through
scenario

Pluralistic
walkthroughs

focus on first-time use with multiple
stakeholders concurrently

Interface prototype and walk through
scenario

Card Sorting Find the best way to organize and group
items

Grouping and labeling content and
features by actual users

Log file analysis Identify usability problems by analyzing
information recorded in the log files and
monitoring performance

Information recorded in server,
proxy, or client-side log files

Web testing
software (WebArch,
Web Trends

Identify usability problems by analyzing
transactions between users and the
website and monitoring performance

Server-side log files

Eye tracking Determining cognitive and visual impacts
of user interface (UI) elements.

Recorded information by eye tracker,
including person's eye movements
and gaze patterns

Clickstream analysis Focus on identifying problems by
analyzing users’ navigation paths

Recorded information by a software
tool that can track and record the
user's interactions with a website or
digital product

A/B Testing Comparing two design options Recorded information by the A/B
testing software tool such as
Optimizely, VWO, and Google
Optimize

Interview Learning about users’ perceptions of the
design

Interview guide used to structure the
interview and elicit feedback from

8

users on their experience using a
website or digital product.

Focus Groups Discovering what users want from the
system.

The moderator guide used to
structure the discussion and gather
feedback from a group of users on
their experience using a website or
digital product

Questionnaires Gathering information about users, their
attitudes, and behaviors

Questionnaire itself, which is used to
gather feedback from users about
their experience using a website or
digital product.

Tree Testing Evaluating information-architecture
hierarchies

The software tool used to conduct the
tree test and collect data on user
behavior and performance such as
Treejack, OptimalSort, and
TreeTesting.com

Clustering
Qualitative
Comments

Analyzing qualitative data and extracting
important themes in them

Comments provided by users and
typically a qualitative analysis
software tool that can identify
patterns and themes in those
comments and group them into
clusters based on similarities in their
content.

Table 2: A number of prominent user interface evaluation methods and their features

Method Phase of
development

People
involved

Approach Behavioral/
Attitudinal

Context Category

E
arly stage /D

esign

D
evelopm

ent

P
ost D

evelopm
ent

Q
ualitative

Q
uantitative

B
ehavioral

A
ttitudinal

N
ot T

ask B
ase

Specific tasks

N
orm

al U
sage

Think aloud 5-8 users B Formal
GOMS 5-15

Skilled users
A Formal

User testing/ usability
testing

5-8 users B Empirical

Heuristic evaluation/
expert evaluation

3-5 experts A Informal

Cognitive walkthroughs 3-5 experts A Informal
Pluralistic
walkthroughs

2-3 experts,
3-5 users

 A Informal

Card Sorting 20 users A Empirical
Log file analysis ≥ 102 users B Automated
Web testing software ≥ 102 users B Automated
Eye tracking 5-10 users B Empirical
Clickstream analysis ≥ 102 users B Empirical
A/B Testing 20-30 users B Empirical
Interview 5-8 users A Empirical
Focus Groups 6-10 users A Empirical

9

Questionnaires ≥ 30 users A Informal
Tree Testing 15-20 users B Formal
Clustering Qualitative
Comments

≥ 5-10 users A Informal

Table 2 summarizes the features of the methods listed in Table 1, including in which phase

of development they are better to use, the sample size range involved in the test, whether

the result is qualitative or quantitative or both, their category as Behavioral/ Attitudinal

method and whether they are based on normal usage, pre-specified tasks, or neither. A

portion of the information presented in these tables is derived from Nielsen Norman Group

research (Moran, 2018; Rohrer, 2014) and (Lewis, 1994; Nielsen, 1994a), while others are

based on the opinions and experiences of the authors.

1.1.1.2 Usability Measures

According to Hartson & Pyla (2012), a usability measure is a general and abstract

concept that refers to a user experience characteristic that needs to be measured with respect

to the evaluation of an interaction design in order to achieve a desired UX goal. The

selection of an appropriate usability measure informs the choice of suitable measuring

instruments and usability metrics.

Prior literature has introduced various sets of usability measures (Galitz, 1994; Lin,

Choong, & Salvendy, 1997; Nielsen, 1994b; Oppermann & Reiterer, 1997; Scapin &

Bastien, 1997) Nielsen's model (Nielsen, 1994b), Shackel’s model (Shackel & Richardson,

1991), and the ISO standard (International Organization for Standardization, 1998) are

widely recognized as prominent models for usability testing and evaluation. Nielsen's

model, for instance, proposes five fundamental usability measures, including Efficiency,

Learnability, Memorability, Satisfaction, and Error. Similarly, the ISO standard provides

three usability measures, namely, Effectiveness, Efficiency, and Satisfaction. Shackel's

10

model, on the other hand, outlines four distinct usability measures, including Effectiveness,

Learnability, Flexibility, and Attitude. (Hussain, Mkpojiogu, & Jasin, 2017)

The following are some common usability measures that can be paired with

quantitative metrics and their definitions (Nielsen, 1996) (Hartson & Pyla, 2012):

- Efficiency: Efficiency is the ratio of outcome to the resources expended and

refers to the performance, speed, and ease with which user can complete their

goals when they have become familiar with the system and are no longer

constantly in a learning state.

- Learnability: Refers to how quickly and easily users can learn to use a system

- Memorability or Retainability: refers to the ability of casual users to

remember how to use a product or service after a period of non-use.

- Effectiveness: Refers to the accuracy and completeness with which users

achieve certain goals

- Error: This states that the system should have a low error rate, so users will

encounter few errors. Those they do encounter should be easy to recover from.

Further, catastrophic errors must not occur.

- Advanced feature usage: helps determine user experience of more

complicated functions of a system.

- Initial performance: a user’s performance during the very first use

(somewhere between the first few minutes and the first few hours, depending

on the complexity of the system)

11

- Satisfaction/ Long-term (longitudinal) user satisfaction: States that the

system should be pleasant to use. This refers to the user’s opinion after using

the system for some greater period of time, after some allowance for learning.

- First impression (initial opinion, initial satisfaction): refers to the first

impression and opinion of users toward the product.

It's important to note that these are just a few examples of the many existing

usability measures. The choice of specific measures depends on the context of use, the

goals of the evaluation, and the characteristics of the user population.

1.1.1.3 Usability Metrics

A usability metric is a quantifiable data value that is used to obtain the value of a

usability measure (Hartson & Pyla, 2012). Examples of these metrics include click-through

rate, bounce rate, time on task, or task completion rate. It should be noted that the

relationship between metrics and measures is a many-to-many relationship. This means

that sometimes, we need to use multiple metrics to obtain a more accurate estimation of a

measure. On the other hand, a single metric may contribute to the calculation of several

different measures. For example, Efficiency can be determined by task completion time,

clicks/taps per task, page views, and error rate. While the error rate can be one of the

estimation factors of effectiveness as well.

After conducting an extensive literature review, a list of commonly used usability

metrics has been compiled and listed in Table 3. This table also presents a clear definition

for each metric and outlines several sample measures that can be calculated by them

(Hashim & Isse, 2019; Kopanitsa, Tsvetkova, & Veseli, 2012; Oztekin, Kong, & Uysal,

2010; Scholtz, 2006; Wronikowska et al., 2021).

12

Table 3: List of common metrics in reviewed literature, their definition, and associated measures

Metric Description Measures
1 Task Completion Rate The percentage of users who are able to

successfully complete a task
Efficiency
Learnability

2 Time on Task The amount of time a user spends on a
specific task or set of tasks. It can also be
broken down into different stages of the
task, such as time spent on navigation,
time spent on data entry, or time spent on
decision making

Effectiveness
Efficiency
Advanced Feature Usage

3 Task Completion Time The time it takes for users to complete a
task from start to finish

Learnability
Efficiency
Advanced Feature Usage

4 Throughput The number of tasks that users can
successfully complete in a given time.

Efficiency

5 Error Rate The total number of errors made by users
while completing a task.

Effectiveness
Learnability
Memorability
Efficiency
Satisfaction
Initial performance
Advanced Feature Usage

6 Error Count per Action The total number of errors made by users
per action or step taken

Efficiency
Learnability
Memorability

7 Task Completion Time
on the First Attempt

The amount of time it takes for a user to
complete a specific task or set of tasks on
their first attempt

Learnability
Initial performance

8 Error Rate on the First
Attempt

number of errors made by the user during
a specific task or set of tasks on their first
attempt

Learnability
Initial performance

9 First Time Task
Success or "FTTS"

The percentage of users who are able to
complete a specific task or set of tasks on
their first attempt, within a defined time
frame

Learnability
Initial performance

10 Error and Recovery
Time

The amount of time users spend in errors
and recovering from them

Efficiency

11 Number of Repetitions
of Failed Commands

The number of times that users repeat a
failed command

Efficiency
Learnability

12 Number of Actions The total number of commands, actions,
or steps taken by users to complete a task.

Efficiency

13 Success/Failure Ratio The ratio of successful task completions
to unsuccessful ones

Efficiency
Learnability
Memorability

14 Help/Documentation
Frequency

This is a measure of how often users
access help or documentation while using
a product.

Efficiency
Learnability
Memorability

13

15 Time on task for Skilled
Users

The time it takes users to complete a task
after a certain amount of use and
compares it to their initial performance.

Learnability
Memorability
Advanced Feature Usage

16 Error Rate for Skilled
Users

The error rate after a certain amount of
use and compare to the initial error rate.

Learnability
Memorability
Advanced Feature Usage

17 Reacquisition Time The time it takes for users to relearn how
to complete a task after a period of non-
use (e.g., a week).

Memorability

18 Reacquisition Error
Rate

The number of errors made by users when
trying to complete a task after a period of
non-use (e.g., a week).

Memorability

19 Average Cursor
Movement Time

The average time users spend moving the
cursor during a task

Efficiency

20 Total Mouse Movement
Distance

The total distance the mouse cursor
travels during a task

Efficiency

21 Clicks/Taps The number of mouse-clicks or taps
required for users to complete a task

Efficiency

22 Keystrokes The number of keystrokes required to
complete a task.

Efficiency

23 Page Views The number of times a specific page is
viewed by users.

Efficiency

24 User Satisfaction
Rating by NPS (Net
Promoter Score)

Measuring customers' willingness to
recommend the product to a friend or
colleague by subtracting Detractors (who
have a low intention to recommend) from
Promoters (who are loyal and have a very
high intention to recommend)

Satisfaction

25 Likert Scale Rating Measures the user's attitudes, opinions, or
perceptions about a specific aspect of the
product by asking the users to rate an
agree/disagree question on a scale of 1-5
or 1-7

Satisfaction

26 Task Success Rate The percentage of users who can
complete a task successfully.

Effectiveness

27 Bounce Rate The number of users who leave a website
after visiting just a single page divided by
the total number of users who visit the
website.

Satisfaction
Effectiveness

28 Time on Page The amount of time that users spend on a
certain page.

Efficiency
Satisfaction

29 Conversion Rate The proportion of users who perform a
desired action, such as submitting a
request or completing an order

Effectiveness

30 Retention Rate The percentage of users who are able to
remember how to complete a task after a
period of time.

Learnability
Memorability

14

31 Goal completion rate The percentage of users who are able to
achieve their overall goals using the
system

Effectiveness

1.1.2 Log Files

It is hard to pinpoint the exact time of establishing the first definition of log file.

However, one of the earliest definitions was proposed by Rice and Borgman in 1983. They

defined transaction logs as "a data collection method that automatically captures the type,

content, or time of transactions made by a person from a terminal with the system" (Rice

& Borgman, 1983). Since then, log files have become an integrated part of various

computer programs and systems, including web servers, security systems, database servers,

and software tools that use log files to record events or transactions that occur within them.

Currently, logging is an important and essential feature of software development

and its primary goal is to use this valuable data for performance monitoring,

troubleshooting and analyzing bugs and other unexpected system events. Due to the fact

that these “treasure troves of valuable information” maintain a record of all user

transactions with the server or the user operations in an application, they are useful in many

research areas such as web usage assessment, usability evaluation, or user behavior

detection. Log files can be categorized into three main categories according to where they

are located. 1) web servers, 2) proxy servers, and 3) clients. In the following, the

characteristics of each of these log files will be elaborated and the limitations and

advantages they impose will be discussed.

1.1.2.1 Client Side

A client log file, also referred to as a browser log file, is generated on the client

side, usually by JavaScript or Java applets, and tracks the browsing history. For applying

15

these types of log files for log analysis purposes, participants should remotely test a website

by either downloading special software or using a modified browser that can record their

web usage. HTTP cookies may also be utilized for this purpose. HTTP cookies are pieces

of information generated by a web server and stored in the users’ computers for future

access.

In comparison to server-side and proxy-side log files, client-side logging can record

more details about user interactions, such as mouse and keyboard events, the number of

active windows, selected page items, and more. Therefore, actual user behavior can

supplement the understanding of web users with more concrete data. However, utilizing

these files imposes several drawbacks. Firstly, data collection requires more effort from

both the user and evaluator because software installation may be required or specific

system configuration on the users' end. Second, it is often platform-dependent, meaning

that the software may only work on a specific operating system or browser. Furthermore,

storing and transferring files can be problematic as there should be a mechanism for

sending the logged data back to the evaluator. Additionally, sometimes the client system

has a limitation on the amount of data that can be stored. Because of these problems, it is

hard to effectively test a website with a wide variety of test participants, resulting in the

loss of model scalability.

1.1.2.2 Proxy Side

A proxy server is responsible for receiving users' HTTP requests and forwarding

them to a web server, then transmitting the results back to the users. There are two primary

types of proxy servers:

16

- HTTP proxies: This approach requires either configuring the user’s browser

or installing special software on the user's device to pass all requests through

the proxy. In return, they offer high flexibility in capturing all user

interactions and providing a detailed log of the interactions. An example of

this type of proxy server commonly used is the corporate firewall.

- URL-based proxies: This type of proxy server requires no configuration or

software installation on the user's end and is compatible with any standard

web browser. Hence, it is generally easier to use for remote usability testing.

In this approach, all links are redirected to the proxy server's URL, which

captures only the traffic that is directed towards the URL of the proxy. The

advantage of this easy and inexpensive setup is counterbalanced by its

limitations in capturing some types of interactions, such as those involving

secure connections (HTTPS). An example of using this approach is web

anonymizers (such as www.anonymizer.com).

In addition to its numerous benefits, the utilization of log files collected from the

proxy server is not without limitations. Table 4 shows the list of advantages and limitations

of proxy-side logging (Hong, Heer, Waterson, & Landay, 2001).

17

Table 4: Advantages and limitations of proxy side logging

Advantages Limitations

 The proxy represents a separation of concerns.
Any necessary modifications needed for
tracking purposes can be made on the proxy,
allowing the server to focus only on serving
content. Therefore, the server and its content do
not have to be modified in any way.

 The proxy allows anyone to run usability tests
on any website, regardless of ownership. One
can simply set up a proxy and ask testers to
send their requests through it.

 In the URL based proxies, end users are not
required to make any changes to their settings
to get started. This simplifies the process of
logging and running usability tests on a
competitor's website.

 Having testers go through a proxy allows web
designers to "tag" and uniquely identify each
test participant. This way, designers can know
who the tester was and what they were trying
to do.

 It does not require any special software on the
client beyond a web browser, which results in
faster execution.

 It is much simpler to deploy. The proxy makes
it easier to test a website with a wide variety of
test participants, including novice users who
may be unable or reluctant to download special
software.

 It is compatible with a wider range of operating
systems and web browsers and works by
modifying the HTML in a platform-
independent way. This permits testing with a
more realistic sample of participants, devices,
and browsers.

 Users may experience some additional delays
with websites when using the proxy due to
overhead in retrieving and processing web
pages.

 The traditional proxy approach would require
users to configure their browsers to use the
proxy and then undo this setting after
performing usability tests. This would
seriously hamper the ease with which remote
usability tests could be performed.

 Any users who currently sit behind a firewall
would be unable to participate, as changes to
their proxy settings could render them unable
to connect to the Internet.

 In URL-based proxy, there are limitations on
capturing links or redirects created
dynamically by JavaScript and other browser
scripting languages. As a consequence, the
JavaScript-generated pop-up windows and
DHTML menus popular on many websites
are not captured by the proxy.

 For URL-based proxy, there is a limitation on
capturing embedded page components such
as Java applets and Flash animations.

18

1.1.2.3 Server Side

Each time a user visits a website, information about their visit is collected and

stored in the web server log file. There are three main standard formats for displaying web

server log files: W3C Extended log file format, NCSA common log file format, and IIS log

file format. These standard formats contain information like a) the IP address of the client

(remote host), b) the user Id of the person requesting the document, c) the date and time

that the server finished processing the request, d) the request line from the client, e) status

code that the server sends back to the client, and f) the size of the object returned to the

client. These data can be bound together as a single text file or divided into different logs,

like access logs, referrer logs, or error logs. There are several limitations to using server

logs in usability evaluation. First, these logs contain sensitive, personal information.

Therefore, the server owners usually keep them closed. Second, the logs do not record

cached pages visited. The cached pages are summoned from the local storage of browsers

or proxy servers, not from web servers. Third, server-side logs are insufficient when trying

to obtain logging data for user interaction (Suneetha & Krishnamoorthi, 2009).

1.1.3 Log File Analysis and its Applications

Log analysis refers to the process of analyzing machine-generated log files created

by computer systems, sensors, or any other devices in order to derive insights and identify

patterns. Log files typically contain unstructured records that include detailed information

on the activities performed within the system such as the event or action description, time

and date of occurrence, user identification, device, system responses, and other relevant

data.

19

Jansen (2006) considered three major stages for analyzing a log file including

collection, preparation, and analysis. Based on many other studies, reporting also can be

added as a fourth stage due to its importance in communicating the analysis results.

The collection stage determines what information should be recorded in a

transaction log for answering future research questions, the most appropriate method to

store them, and the storage location. Accurate answers to these questions is essential for

ensuring that the log is comprehensive, well-organized, and useful for further analysis.

The preparation stage includes all required preprocessing to make the data ready

for the next step. This includes parsing the log file to break down all entries into their

components and converting them into a structured or formatted file, normalization to

ensure a consistent unit or scale for all recorded information and standardizing data

formats, and data cleansing to filter out all irrelevant data, removing duplicate entries,

correcting data errors, and handling missing values. At the end of this step, the log data is

transformed into a more usable and accurate format, that allows for efficient and more

reliable analysis.

The analysis stage is the core step that contains applying various kinds of analyses

from simple filtering or query-based search on cleaned data to more complicated analyses

including different statistical, rule-based, or machine learning-based techniques to extract

features and uncover patterns and insights in the log file.

Finally, the reporting includes a clear and accurate representation of all results

obtained in the previous stage by any available visualization tools such as tables, charts,

graphs, or creating a dashboard. This step can summarize and highlight the critical findings

and trends in the log file to the audience in an accessible and understandable manner. These

20

reports may be used to identify issues that need to be addressed, track performance over

time, or provide insights to stakeholders.

Log analysis is a versatile technique that has a wide range of applications. For

instance, in the field of IT operations, Liu et al. (2021) have developed LogNADS, a

scheme that leverages machine-learning techniques to identify anomalous network

behaviors by analyzing log data. In a similar vein, Le & Zhang (2022) have demonstrated

how the log data can be used to automatically detect system anomalies by applying a deep

learning model.

Delias, Doumpos, Grigoroudis, Manolitzas, & Matsatsinis (2015) present a sample

of log file analysis applications in the healthcare industry. This study proposes a clustering

method that can handle large and complex event logs to identify patterns of activities in

healthcare processes and use the result to support healthcare management decisions. Log

analysis is also widely used in the finance industry. Anderka, Klerx, Priesterjahn, &

Büning, (2014) used the log file provided by the ATM’s D&S module as input data to learn

patterns of normal behavior by utilizing automatic model generation techniques. They

indicate a potential fraud attempt whenever there is a significant deviation from the learned

behavior.

There are many more applications of log file analysis beyond the above examples.

They can be used in a wide range of industries, including but not limited to cybersecurity,

e-commerce, telecommunications, and transportation that is not feasible to cover all of

them in this dissertation.

21

1.2 Advantages and Limitations and Challenges

In order to approach a perfect user experience, an iterative design process that

involves testing interactions with real users is essential. The design of a user interface

involves numerous variables, such as environmental and human cognitive factors, as well

as image and audio variables, which result in an overwhelming number of possible

combinations. Thus, the only reliable method for achieving effective user experience (UX)

design is through rigorous testing.

There are many different ways to perform a usability test, each suitable for a

different situation and purpose. These include methods such as card sorting, observation,

interview, inspection, lab usability testing, guerilla testing, etc. The method of data

collection and the type of data used in these methods are different. Therefore, they offer

various types of analysis and results. However, what they all have in common is that data

collection is done by one or more facilitators.

The method presented in this dissertation is to perform a usability evaluation based

on log file data. These files are created automatically by tracking user transactions with the

system. Although in some respects this method cannot provide all the detailed information

obtained by other usability testing techniques, its benefits as a cheap and ready source

should not be underestimated. The advantages of using log files instead of observation,

interview, and inspection methods include the following:

 Data is ready: The collection of data is easy and fully automated. Server-

side logging is auto-enabled and inexpensive to use and a proxy-side log

file is also faster and easier to deploy than traditional usability testing

techniques.

22

 No Hawthorne effect: This method can reduce the Hawthorne effect. The

whole process of logging is hidden from the user's perspective. Therefore,

it can diminish the alteration of behavior by the subjects due to their

awareness of being observed.

 Reflect actual usage: When tracking user operations with log files, users

perform tasks to meet their own goals in their natural environments, with

real contexts and constraints affecting them (Hong et al., 2001). This is a

benefit over usability testing, which often asks users to interact in an

isolated lab environment with artificially created tasks and contexts (V. F.

de F. de Santana & Baranauskas, 2008; Guzdial, 1993; Rubin & Chisnell,

2008).

 Holistic Data: Interaction data in server-side log files are collected from all

users of a website (Hong et al., 2001), therefore this data represents the

website usage of the whole population, unlike usability testing, which uses

a smaller and potentially less representative sample.

 Cost-effective: When using log files, data collection is cheap and cost-

effective. It does not require hiring usability specialists to interview users

or trace their actions and behaviors in the system. This is a benefit over

usability testing which is costly in terms of recording user interactions or

retrieving the data (Baker, Au, Dobbie, & Warren, 2008; Hong & Landay,

2001; López, Fajardo, & Abascal, 2007).

 Remote data collection: Recruitment of participants to test locations could

be a barrier. Using log files makes it possible to perform remote analysis.

23

Thus, no planning is required to record and use interaction data. This is a

benefit over usability testing, which requires planning of both (V. F. de F.

de Santana & Baranauskas, 2008; Guzdial, 1993; C. Menezes & Nonnecke,

2014).

 A large number of users: Some problems could just be highlighted in

quantitative analysis and also their impact could just be evaluated by

analyzing a large number of users (Vargas, Weffers, & Da Rocha, 2010).

Unlike traditional methods that use a small number of subjects, log files can

provide the possibility of interpretation based on usage patterns created by

a large and geographically separated group of real users (Hong et al., 2001;

Jorritsma, Cnossen, Dierckx, Oudkerk, & van Ooijen, 2016). Therefore,

they give designers more confidence to determine the features of the future

system.

 Faithful representation of usage: In log files, interactions are recorded

exactly as they happened and do not rely on the accuracy of human visual

and auditory systems, memory, and interpretation.

 Providing additional information: The existence of special information

such as IP address, referrer, and time stamp in server-side log files to cursor

movement distance, mouse click time interval, and the number of left and

right mouse clicks allows us to create additional useful and interesting

analyses on usage data (C. Menezes & Nonnecke, 2014).

 No need to define benchmark tasks: Selecting Benchmark tasks is

challenging work in usability testing. They should closely represent tasks

24

real users will perform in a real work context. One of the advantages of

using a log file is that one does not have to choose the benchmark task. The

test is based on regular daily use and does not require pre-defined tasks.

Despite the above advantages of using a log file, there are some

potential limitations, challenges, and concerns that cannot be overlooked:

 Log files offer less detailed testing results. They are incapable of capturing

all interaction information that is important for understanding

website/software usability, such as a user’s thoughts, intentions, gaze,

voice, a visual of the user, time spent interacting with another website or

program, time spent away from the computer, or network latency (C.

Menezes & Nonnecke, 2014),

 Qualitative usability testing is best for discovering problems in the user

experience. This type of testing focuses on collecting insights, findings, and

anecdotes about how people use the product or service. Log files are unable

to capture qualitative information.

 Server-side log files are incapable of capturing cursor movements, clicks on

non-clickable items, cursor-selected text, page scrolling, interactions with

the Internet browser, and whether a link was opened in the same window or

a new one (C. Menezes & Nonnecke, 2014).

 Proxy-side and server-side log files also do not capture interactions with

dynamic content such as AJAX or Flash, which do not send requests to the

webserver and thus do not prompt log file entries to be generated (C.

Menezes & Nonnecke, 2014).

25

 While server-side logging is an easy way to collect user data, there are

several limitations to its effectiveness that can undermine the validity of the

data collected. For example, proxy servers mask users’ IP addresses,

making it impossible to distinguish distinct users (Burton & Walther, 2006).

Additionally, Client-side caching stores previously visited webpages on the

user's machine, which can prevent entries from being made in the log file

when the user revisits the site (Hong et al., 2001; C. Menezes & Nonnecke,

2014). Finally, robots (bots), spiders, and web crawlers are other problem

makers for server-side logging, which can cause non-human-generated

interactions to be recorded in the log files (Atterer, Wnuk, & Schmidt, 2006;

C. Menezes & Nonnecke, 2014).

 Although Log files come in standard formats, it is not very easy to extract

meaningful information from these voluminous and low-level log data.

Sometimes it takes a lot of preprocessing to be able to effectively analyze

them.

 Sometimes (especially for the client-side log file), it is necessary to

reproduce the software/website or change their code to create a suitable log

file.

Because of these limitations and barriers, while log files are very useful and

informative for usability evaluation, it is not always the only best method. However,

considering the limited resources available for usability evaluation, a log data analysis

could be useful as a preliminary analysis that guides the collection of other sources of

usability data. This could focus other usability evaluation methods on aspects of the system

26

with which a large number of users exhibit sub-optimal interaction patterns (Jorritsma et

al., 2016). Using the results obtained from log data along with other traditional methods

can considerably increase the accuracy and reliability of the evaluation. According to

Balbo, Goschnick, Tong, & Paris (2005) “Even if an automated technique finds only a

subset of existing problems, if it is efficient and easy to use, and could be used on areas

that would otherwise receive no attention, then it makes sense to use it."

1.3 Scope and the Purpose of This Study

The objective of this research is to establish a practical, reliable, and effective

approach for utilizing log file information in usability evaluation. Specifically, this research

is designed to discover the barriers and facilitators to calculating numerical value of

usability metrics as well as usability measures based on log file data. It is further designed

to investigate to compare the accuracy and efficiency of traditional usability evaluation

method with the proposed automatic method.

While the approach outlined in this study can be extended for any type of log file

data, including client-, proxy-, and server-side log files of a web site, application-generated

log files, or even log files generated by sensors or other devices, to reduce the complexity

and keep it within the scope of a PhD dissertation, I will focus on only server-side log files,

which are one of the most straightforward ways of collecting log data.

The aim of this research is to develop models and algorithms to quantify usability

metrics required for estimating five main usability attributes proposed by Nielson, which

include efficiency, learnability, memorability, error and user satisfaction. To validate the

proposed approach, I will conduct testing on both real and synthetic log file data.

27

To the best of my knowledge, there are no current methods for generating synthetic

log files that align with the objectives of this dissertation. Therefore, providing a method

for generating a log file that accurately replicates the complexities and limitations of real

log files will be a key component of this study. To achieve this goal, graphical Bayesian

models that offer the unique capability of integrating expert knowledge with data-driven

learning will be leveraged. Moreover, graphical Bayesian models are one of the specialized

tools for data generation that is highly suited to this dissertation’s needs.

The model will be fed with different features of the website such as number of

tasks, tasks length distribution, number of users, roles of the system, and tasks complexity

distribution to create an unlimited number of log files needed to use in future experiments.

In this scenario, a good range of log files can be used with known design specifications and

user configuration which will open broad opportunities for iterating experiments, and

presents significant possibilities for improving and validating the usability evaluation

model.

 Furthermore, to ensure that the model is effective in real-world scenarios, it is

crucial to test the model with a real log file. However, obtaining such data can be a

challenge. While there are plenty data sets available for the log file in data center servers,

in most cases, the original website that produced it or the specifications of the website at

the time of generating the log file are unknown. Moreover, many website owners are

unwilling to share their log files due to security or privacy concerns. Therefore, accessing

a real dataset is problematic. To pass all these challenges, I have created an e-learning

website and will keep it up and running for eight months to collect an appropriate size log

file. This will provide the opportunity to not only compare the model with traditional

28

methods on a real dataset, but also to validate the model by modifying the website's design

and reevaluate and compare the usability of different design specifications.

1.4 Research Questions

The research questions used to advance the main goals mentioned in section 1.3 are as

follows:

1. What steps should be followed when employing a log file for usability

assessment? Is it feasible to establish a universal roadmap suitable for all types

of log files and usability metrics?

2. What metrics can be used to measure five main usability attributes (learnability,

memorability, efficiency, effectiveness, and user satisfaction) using the

information stored in a server-side log file?

3. What are the effective and accurate data mining and machine learning

techniques to calculate each metric identified in research question 2?

4. How can synthetic data be generated that effectively mirrors the complexities

and attributes of an authentic log file, facilitating accurate modeling and

assessment alongside real data?

The first question aims to outline a comprehensive framework for discerning the

main steps involved in utilizing log file data, starting from the initial data collection and

preprocessing and concluding with the attainment of numerical values of metrics and

usability attributes. Additionally, it seeks to identify various methodologies that can be

employed at each step.

The second question is designed to assemble a set of standard usability metrics that

can be computed, or at least estimated using the information available in the server-side

log files. These files will be studied precisely to examine the possibility as well as the

29

methodology for obtaining the value of each metric. This examination will shed light on

the viability and potential efficacy of the suggested approach.

Following the evaluation of theoretical calculations of usability metrics in the

second question, the third question places greater emphasis on practical solutions. This

research question focuses on identifying feasible, effective, and dependable methods for

obtaining the metrics outlined in question one. In this section, each metric will be discussed

in detail, specifying the algorithms and parameters that can be employed to obtain their

value.

The fourth question revolves around the generation of data required for the research

problem. Given the inherent difficulties in obtaining authentic log files, the use of

simulated data holds significant importance. Specifically, simulating log files for websites

with specific usability attributes serves two primary objectives. Firstly, it acts as a means

to validate the outcomes derived from the proposed automated usability evaluation

technique. Secondly, it empowers us to replicate tests using different log files, thereby

enhancing the model's precision. Through the simulation of diverse scenarios, it becomes

feasible to generate synthetic data mirroring the intricacies of real-world usage data. This,

in turn, enables a more confident evaluation and refinement of the suggested approach.

Consequently, recognizing the pivotal role of simulated data in this study, we introduce a

log file simulation model encompassing various usability characteristics within this

section.

30

CHAPTER 2

 LITERATURE REVIEW

2.1 Introduction

The primary objective of this chapter is to provide a systematic categorization,

comparison, and summary of relevant usability evaluation techniques available in current

academic and industrial research that use log files as the source of their input data. In this

chapter, Section 2 introduces 13 related articles on the subject of usability evaluation using

log files and briefly describes their methods and application domains. There are numerous

candidate factors that can be utilized to categorize these 13 methods. However, a few

significant dimensions are applicable to every project, and they will be evaluated in

subsequent sections, Section 3 introduces and categorizes the types of analyses performed

on log files for the aim of usability evaluation and specifies which types of analyses and

data mining techniques were performed in each method. Section 4 identifies which metrics

and attributes can be evaluated and estimated in each reviewed article. Finally, Section 5

summarizes the limitations and advantages of each method.

2.2 Previous Works

This section presents a concise overview of the methodologies employed in 13

scholarly articles relevant to usability evaluation through log file analysis. The models

applied in these articles and their respective approaches and techniques will be critically

reviewed.

31

Inversini, Cantoni, & Bolchini (2011) integrates usability and usage analysis to

investigate the most erroneous and risky parts of a website. To determine what parts of the

application require immediate attention for redesign or improvement, the developer should

consider risk assessment. The authors believe that user experience risks are comprised of

three main elements: (i) threats as usability problems inherent to the design; (ii)

vulnerability as the exposure to usability problems and (iii) resilience as the user’s ability

to overcome usability problems. For usability analysis, they used a heuristic-driven

evaluation method. A usability inspector with a set of usability guidelines runs a usability

test with the think-aloud method. For usage analysis, they applied Google Analytics

software to extract the ratio of page visits, bounce rate, average time per visit, etc. The

authors believe that the pages with higher traffic have a higher vulnerability that can

increase the threat. These pages can be determined by usage analysis. Moreover, a usability

test can be used to determine which pages have lower resilience and higher error

occurrence.

Menezes & Nonnecke (2014) developed a software tool called UX-Log to facilitate

the analysis of user sessions by usability experts. This is accomplished by recreating user

sessions from log files. These recreated sessions can then be examined by usability experts

to gain insight into users’ goals, strategies, successes or failures, and proficiencies. UX-

Log provides an automated interpretation of the user’s interactions; e.g., the time spent per

webpage or textual description of interactions. Additionally, it offers several controls that

allow experts to easily traverse through the interactions and pages visited.

Jorritsma, Cnossen, Dierckx, Oudkerk, & van Ooijen (2016) used a data mining

technique called closed sequential pattern mining to discover frequently occurring

32

interaction patterns in the log data. Given a sequence database, this technique generates all

closed sequential patterns above a predefined support threshold. The authors used the CM-

ClaSP1 algorithm (Fournier-Viger, Gomariz, Campos, & Thomas, 2014) on the open-

source Sequential Pattern Mining Framework (SPMF) library (Fournier-Viger, Gomariz,

Gueniche, et al., 2014) to implement their method. The advantages of using this method

are: first, it only mines closed patterns, which leads to clean output. Second, the user actions

within the patterns it generates are sequential but not necessarily consecutive. This allows

for the detection of patterns in which an action eventually leads to another action. It does

not matter how many irrelevant actions occur in between.

Babaian, Lucas, & Topi (2007) present an infrastructure that facilitates automatic

usability assessment for application enhancements and tests their approach in the domain

of enterprise systems. This research uses a keystroke level and mouse data logging that

records all users' data input in various UI components such as text fields, menus, list

structures, and check boxes and stores collected data in a relational database. The task

model is also represented explicitly within the system’s data model. The created database

links users, tasks, interface components, and the application’s domain data, to enable

sophisticated reasoning and analysis of the history of system usage. The results from this

analysis can be employed for evaluating the usability of the system and improving the

design.

1 ClaSP is an efficient algorithm for discovering closed sequential patterns in sequence databases,

proposed(Gomariz, Campos, Marin, & Goethals, 2013). CM-ClaSP is a modification of the original ClaSP

algorithm using a technique co-occurrence pruning to prune the search space (Fournier-Viger, Gomariz,

Campos, et al., 2014)

33

The research methods of Bader & Pagano (2013) consisted of three phases: a usage

data collection phase, a heuristic construction phase, and an evaluation phase. In the usage

data collection phase, they developed a generic tracking library that collects information

about user interactions at runtime and that can be embedded into arbitrary mobile

applications running on Apple’s iOS1 platform. Then they used a test application and

collected user interaction with it. In the heuristic construction phase, authors examined the

obtained user interaction traces for regularities both manually and by applying a sequential

pattern mining algorithm. Then they used the result of pattern mining to derive a heuristic

classifier for low discoverability issues. This model is able to accurately identify and

classify different types of usability issues, such as navigation problems and slow loading

times. For example, the authors extract the problems of a mobile application by considering

the length and existence of loops in interaction patterns. Finally, in the evaluation phase,

they assessed the feasibility of automatically detecting low discoverability issues at

runtime.

Siochi & Hix (1991) used the Most Repetitive Pattern (MRP) method to evaluate

the learnability of a simple game application. The authors found that the interesting

repetitions did not occur at the low level of actions. Therefore, they convert action to a

more abstract form and then run MRP to find useful repetitive patterns. Then, they count

the number of errors and the number of special meaningful sequences to show how users

learn to work with software. In this method, although extracting patterns is automatic,

analyzing and extracting heuristics from those patterns is done manually by experts.

Vargas, Weffers, & Da Rocha (2010) propose WebHint. In this tool, evaluators

start by defining the tasks that they want to analyze. Then, the user interactions with the

34

application interface are monitored. All actions performed by all users in the web

application’s interface are captured including mouse movements, keystrokes, links

accessed, pages loaded, etc. Then in the data preprocessing phase, the data of the different

users are separated. For analyzing the prepared data there are several steps: 1) Determining

sequence intervals – the algorithm finds in each log file the intervals in which there is a

sequence of actions that represents the execution of a certain task. This is made by looking

for representative actions in the task as the “begin” and “end” points. The algorithm also

deals with incomplete tasks. The intervals found are extracted from the log. 2) Extracting

executed tasks – For each selected interval (determined in step 1), a Longest Common

Subsequence (LCS) algorithm is applied to compare it with the expected sequence of the

referred task. The similarity rate is then calculated; if it is above a certain threshold, the

sequence is extracted from the log. 3) Clustering the extracted sequences and searching for

the most common patterns for the task; i.e., the most common way users performed the

referred task. 4) Finally, the evaluator compares the expected sequence for the referred task

with the most common patterns of execution for the task.

WebQuilt (Hong & Landay, 2001) is a web logging and visualization system that

helps web design teams run usability tests (both local and remote) and analyze the collected

data. Its strength lies in its data collection approach, which uses Java Servlet technology to

collect data on the user's navigational path, including the sequence of links, parent pages,

parent frames, and back/forward button clicks. The log file is created separately for each

test participant session which is subsequently fed into an Action Inferencer component.

The action inferencer converts the log file into a list of three possible actions including

requesting a page, going back, or going forward. The next component is a GraphMerger

35

that combines the list of actions performed by several users into a single graph and passes

this graph to a Graph Layout component. Graph Layout assigns a location for each node

of the graph to prepare it for final visualization. Finally, the visualization component shows

the graph of the web pages traversed that can be used by usability experts for further

interpretation and decision-making.

The creators of the tool GUITESTER (Okada & Asahi, 1999) selected ten usability

attributes and showed that four of these attributes can be evaluated using log file analysis

(clarity, safety, simplicity, continuity). To evaluate these four attributes, three metrics were

identified for analysis and visualization: MRP for extracting the most repetitive patterns,

average mouse movement, and percentage of users who performed the specified task

according to the method specified by the designers.

Web Automatic Usability Testing EnviRonment (WAUTER) (Balbo et al., 2005)

is another evaluation tool for a website. This method requires task models that are defined

by Diane+ notation (Tarby & Barthet, 1996). This notation can express task hierarchy, task

types, and temporal and logical relationships among tasks. Then, Web Interface Monitoring

and Management (WIMM) is used to capture proxy-based XML-coded log files of end-

user actions. Finally, the evaluators employ WEMA (Web EMA, where EMA is the French

abbreviation for Automatic Mechanism for usability Evaluation), which produces both an

annotated Task Model and an annotated log file. The annotations are based on a set of

heuristic rules that model patterns of user behavior and highlight potential usability flaws.

Five heuristics are selected to detect potential problems in the website:1) direction shift; a

direction shift is detected when the user stops progressing along a set path in the tree; 2)

36

immediate canceling of action; 3) re-occurring of actions; 4) irrelevant actions; and 5)

timing.

Web Event Logger and Flow Identification Tool (WELFIT) (V. F. de Santana &

Baranauskas, 2015) implements pattern analysis by extracting the usage graph and

computing the Sequence Alignment Method(SAM) distance for each event stream. In this

method, the data is collected at the client module. As soon as the log data reaches the size

limit (2kb) it is sent to the server. In the server, a usage graph is built based on the collected

data. The usage graph can also be seen as the combination of walks (non-empty alternating

sequence of nodes and edges) representing what, where, and when users performed actions.

In the usage graph, a node is identified by its label, which is the concatenation of the event

name and an identifier of the UI element where the event occurred. Moreover, each node

counts on information regarding the total of sessions that occurred, the mean distance from

the root node, and the mean timestamp. This method considers SAM for measuring the

distance between each node in the graph and the root node. A SAM-based heuristic (based

on the SAM value of each node and its neighbors) is applied to point out usage incidents.

Automated Website Usability Analyzer (AWUSA) (Tiedtke, Märtin, & Gerth,

2002) uses both static and dynamic analysis techniques. The static website and the

webpages are analyzed at design/definition time. For each web page, several metrics are

generated, including the Document Object Model (DOM), and the visual representation of

web pages are analyzed. Web content mining (using Webpage Analyzer) and web structure

mining (using Website Crawler) are applied in this phase. Later in dynamic analysis, first,

the log data is preprocessed by generating sessions and session paths from the access log

files. Then, the usage data is compared with the defined task structure, and data mining

37

techniques are applied to the gathered and generated data. During this dynamic analysis,

web usage mining is applied for path mining and cluster generation, and detection of

association rules. Finally, the defined structures and the results of the analysis are

visualized. The goals of this tool include finding and visualizing users´ paths on the

website, deviations between intended tasks and actual usage, locations/events where tasks

are canceled prematurely, areas and situations with poor usability, and classification of

different user groups and their mapping to the various tasks/goals.

Web Remote Usability Evaluator (WebRemUSINE) (Paganelli & Paterno, 2002) is

composed of three phases: Preparation, which consists of creating the task model of the

website, collecting the logged data, and defining the association between logged actions

and basic tasks; Automatic analysis, where WebRemUSINE examines the logged data with

the support of the task model and provides a number of results concerning the performed

tasks, errors, and loading time; and Evaluation, the information generated is analyzed by

the evaluators to identify usability problems and possible improvements in the interface

design. Table 5 shows the domain and domain description for the software being evaluated

in each paper.

Table 5: The domain for the software being evaluated

Evaluation
tool

Domain title Domain Description Web/Non-
Web

Inversini The tourism online
domain

The authors applied their model to the analysis of the BravoFly.com
website (a Swiss Online Travel Agent) as a representative case.

Web

UX-LOG Online research tool Orlando website (Orlando is an online tool for researching women’s
literature in the British Isles) http://orlando.cambridge.org/

Web

Jorritsma Medical imaging tool The Picture Archiving and Communication System (PACS), which is
the main software component of the radiology workstation

Non-Web

Babaian Enterprise
information system

A prototype Enterprise Information system deployed by authors. This
prototype uses this model in the implementation of a Purchase
Requisition Process from an ERP system

Non-Web

Bader Mobile application MoID, which is an electronic replacement for business cards available
in the iOS App Store

Non-Web

Siochi Game application A simple computer game application Non-Web

WebHint On-line course
environment

TelEduc is an environment for online courses where users have tools to
interact with, such as a mailbox, file repository, wall, etc. A simulated

Web

38

course was prepared in TelEduc for the experiment and the users were
invited to perform some tasks as participants in the course

WebQuilt U.C. Berkeley
Website

The task was to find a specific piece of information on the U.C. Berkeley
website

Web

GUITESTER GUI applications Authors used GUITESTER to test the usability of several GUI
applications including a printer driver that has dialog boxes for setting
printing options and an emailer

Non Web

WAUTER Website CSIRO internal website
They also used online booking of the cinema ticket for the task model

Web

WELFIT Website Generally for any website Web

AWUSA Website Generally for any website Web

WebRemUSINE Website Generally for any website Web

2.3 Analysis and Data Mining Techniques in Previous Works

Based on the reviewed articles, usability analysis techniques that use log files as

the source of their input data are divided into five categories: filtering, frequency analysis,

time analysis, distance analysis, and pattern analysis.

- Filtering for extracting unique users and sessions from log files

- Frequency analysis is one of the simplest kinds of analysis that looks at the

frequency of user interactions to infer their preferences. Page views, page

exit rate (the rate at which users leave the website from a particular page),

bounce rate, or frequency of performing specific tasks or actions are

examples of metrics obtained in frequency analysis. This is a

straightforward analysis that relies on counting the number of times a

particular interaction occurs. Tools such as Google Analytics and AWStats

offer various options for conducting this type of analysis.

- Time analysis looks at the amount of time spent on each page or the time of

a single visit. It can indicate the degree to which a particular webpage

requires cognitive effort from the user or the level of interestingness (sic) of

its content. (C. Menezes & Nonnecke, 2014)

39

- Distance analysis looks at the amount of mouse movement on the page per

visit or task. It measures the total distance between successively pointed

coordinates. Distance analysis can indicate the proper design of the page,

its consistency, and its simplicity.

- Pattern analysis aims to discover patterns within analytics data. It includes

task analysis (for automatic task detection), user and group analysis (for

clustering users based on their roles or groups), and error analysis. A variety

of machine learning and data mining techniques can be used for this

analysis. Association rules, for instance, are "if-then" statements, that help

to show the probability of relationships between the contents of two pages,

regardless of their time order access. Pairing analysis, on the other hand,

determines the frequency of actions performed in a specific sequence and

can help designers identify opportunities to streamline tasks by combining

or reordering actions. For example, if a high percentage of users always

perform two specific actions in sequence, it might be possible to combine

them into a single step for greater efficiency. Clustering is a powerful

technique that allows grouping users based on their behavior or preferences

and can help designers create personalized user experiences and optimize

the user interface. Finally, path analysis, or clickstream analysis, tracks the

sequence of pages or screens visited by users, as well as the time spent on

each page and the actions. By analyzing this data, designers can identify

common paths that users take through the website or application, as well as

40

any areas where users tend to drop off or encounter issues (C. Menezes &

Nonnecke, 2014).

Table 6 shows the types of analysis applied in the reviewed methods.

Table 6: Type of analysis used in previous works. The 'Visualization’ column specifies whether the

method provides an analytical visualization for the evaluator or not. The last column specifies

whether the analysis performed is based on the information of a single user or the information

collected from a group of users.

Filtering Frequency
analysis

Distance
analysis

Time
analysis

Pattern
analysis

Visualization Single/
Group

Inversini Yes Yes No Yes No Yes Group
UX-LOG Yes No No No No Yes Single
Jorritsma Yes No No No Yes No Group
Babaian Yes Yes No Yes No No Both
Bader Yes No No Yes Yes Yes Group
Siochi No No No No Yes No Single
WebHint Yes No No No Yes No Group
WebQuilt No No No Yes Yes Yes Group
GUITESTER Yes No Yes Yes Yes Yes Group
WAUTER No No No Yes Yes Yes Single
WELFIT No Yes No No Yes Yes Group
AWUSA Yes No No No Yes Yes Group
WebRemUSINE Yes Yes No Yes Yes Yes Both

The methods used in these articles are as follows:

- Inversini et al. (2007) utilized Google Analytics to obtain key metrics such

as the page visit ratio, bounce rate, and average time per visit, in order to

conduct their usage analysis.

- UXLog extract unique users and their sessions by parsing and filtering log

file (Menezes & Nonnecke, 2014). They apply relational SQL databases for

efficient data storage and retrieval.

- Jorritsma et al. (2007) first used filtering to extract the interaction sequence

related to a specific usage of the application, along with the type of use

(which includes modality and body part for their application). Then they

employed the CM-ClaSP algorithm for a closed sequential pattern

41

mining approach with parameter support = 200 in the first run and support

= 50 in the second run.

- In Babaian's work (Babaian et al., 2007), time analysis indicates spending

time on each page and each action during a task. Moreover, their relational

database model allows filtering and frequency analysis (counting) by

performing various queries.

- Bader's pattern analysis includes a sequential pattern mining algorithm and

heuristic classifier. They also employed the retention time (time spend on

each page) and average session time in their time analysis process. (Bader

& Pagano, 2013)

- Siochi & Hix (1991) use the Most Repetitive Pattern (MRP).

- WebHint (Vargas et al., 2010) applies LCS (Longest Common

Subsequence) for selecting the potential task. It also uses the process-

mining tool ProM (Van Dongen, de Medeiros, Verbeek, Weijters, & van

Der Aalst, 2005) for clustering.

- WebQuilt (Hong & Landay, 2001) pattern analysis is simply limited to

extracting the path taken by the user. They also use color code on the final

graph to represent the amount of time spent on each page.

- GUITESTER (Okada & Asahi, 1999) uses the MRP (Most Repetitive

Pattern) algorithm for detecting common interaction patterns. Then for the

distance and time analysis, GUITESTER calculates the mean values for

each operation in any of the detected common interaction patterns. The

mean value of the distance between successively pointed coordinates and

42

the mean value of the interval between time stamps of successive operations

are calculated.

- WELFIT (V. F. de Santana & Baranauskas, 2015) implements pattern

analysis by extracting the usage graph and computing the SAM distance for

each event stream.

- AWUSA (Tiedtke et al., 2002) has a usage pattern miner that is

implemented by cumulating similar session paths. A similarity ratio for

each pair of paths is computed, corresponding to the sessions' resource

sequence. Sessions with a ratio greater than a given threshold value are

cumulated to usage patterns. It also applied association rules to find

associations between requested resources.

- In WebRemUSINE (Paganelli & Paterno, 2002), the visited pages and the

number of accesses are reported in frequency analysis. For time analysis,

they represent the time of downloading and visiting each page. Finally, in

pattern analysis, they compared tasks with its model, the visit patterns

during navigation, and their frequency.

2.4 Usability Metrics Extracted in Previous Works

Usability is not a single, one-dimensional property of a user interface; rather, the

construct of usability includes multiple attributes. Various sets of attributes can be found

(Galitz, 1994; Lin et al., 1997; Nielsen, 1994b; Oppermann & Reiterer, 1997; Scapin &

Bastien, 1997). Among them, Nielsen's attributes are the most well-known and widely used

in the literature. These attributes are (1) learnability, (2) efficiency, (3) memorability, (4)

errors of effectiveness, and (5) satisfaction (Nielsen, 1994b). These attributes are closer to

43

usability metrics because they can be measured in terms of the task completion time, the

number of errors, or the subjective rating for questionnaires. Nielsen also showed ten

usability heuristics that achieve the widest coverage with respect to explaining usability

problems in his experiment (Okada & Asahi, 1999).

Although much research has been carried out on log-based usability testing tools,

to the best of our knowledge, none of them measure the value of the above attributes

automatically. Most research, after analyzing and visualizing the log file, allows the

evaluator to find a potential problem or analyze some of these attributes.

44

Table 7 shows which of these five main attributes can be estimated and evaluated

in each method based on the reports they provide to the evaluator. For example, to estimate

effectiveness, the method should create results that help the evaluator detect the portion of

completed tasks. For efficiency, the method should support time analysis as well as user

error detection. To estimate learnability and memorability, we need to track temporal

information regarding when errors occur and the time of performing tasks. The number of

errors users make over time and how they improve their speed to perform a task can give

us a good insight into the value of these attributes. For instance, if errors are concentrated

in the initial phase of the test, this can mean that the user interface is easy to learn to use.

Moreover, in consecutive sessions with longer intervals, if the number of errors increases

again, this may mean memorability is low. Satisfaction is likely the most challenging

attribute to measure directly from log file analysis due to its inherent dependence on quality

assessment.

45

Table 7: Possibility of analyzing usability attributes in reviewed articles. The label NA means 'non-

automatic' and implies that the method does not measure the value of this attribute automatically but provides some

heuristics for the usability inspector to estimate them.

Evaluation tool Effectiveness Efficiency Learnability Memorability Satisfaction Other

Inversini No No No No No No

UX-LOG Yes(NA) Yes(NA) No No No No

Jorritsma Yes(NA) No No No No No

Babaian Yes(NA) Yes(NA) Yes(NA) Yes(NA) No No

Bader No Yes(NA) Yes(NA) Yes(NA) No No

Siochi Yes(NA) Yes(NA) Yes(NA) No No No

WebHint Yes(NA) Yes(NA) No No No No

WebQuilt Yes(NA) Yes(NA) Yes(NA) Yes(NA) No No

GUITESTER Yes(NA) Yes(NA) No No No Yes

WAUTER Yes(NA) Yes(NA) No No No No

WELFIT Yes(NA) Yes(NA) No No No No

AWUSA Yes(NA) Yes(NA) No No No No

WebRemUSINE Yes(NA) Yes(NA) Yes(NA) No No No

For GUITESTER, the authors discussed the possibility of evaluating four other

usability attributes as well including clarity, safety, simplicity, and continuity (Okada &

Asahi, 1999).

2.5 Limitations and Advantages of Previous Methods

To evaluate the limitations and advantages of each method, the evaluation steps in

each method are examined for which ones are performed automatically. The whole process

of analyzing the usability of a software application or website, regardless of whether the

evaluation is automatic or not, can be divided into the following steps:

 Collecting data: The first step is to collect data. In traditional usability tests,

data collection can be done through observation, questionnaires, interviews,

46

checklists, etc. However, in automatic usability evaluation, we can use log

files, videos, images, or recorded audio as the source of data. Regardless of the

data analysis method, the data collection step can be automatic, non-automatic,

or semi-automatic.

 Preprocessing: The second phase involves data preprocessing, which entails

converting the information into a usable format, eliminating all useless details

from the data sources, correcting or substituting incomplete or distorted data,

and potentially applying data reduction or feature selection on the data. In the

case of using a log file, this stage may comprise parsing the log file,

normalization, cleaning the data, identifying users and sessions, and path

completion. However, these processes may differ depending on the type and

origin of the log file.

 Analyzing: In traditional usability testing such as think-aloud or interview,

this step is performed by the usability facilitator or inspector. But when using

the log files, as described in section 0, this step can include pattern analysis,

time analysis, frequency analysis, task mining, exit analysis, user analysis, and

distance analysis. Various methods of data mining, machine learning,

statistical analysis, and pattern recognition can be applied in this step.

 Quantifying usability attributes: There are two approaches for determining

or estimating the value of usability attributes. In the first way, which is a non-

automatic approach, the evaluator can use the results and heuristics obtained

from the analysis stage to derive the values. On the other hand, in an automatic

method, according to the available heuristics and analysis reports, an

47

appropriate formula or model can be extracted for estimating each usability

attribute. However, the objective of existing methods mainly is to identify

potential usability problems instead of determining the values of these

attributes. For example, possible design problems can be identified based on

the errors that occurred during a task or the time of performing it.

 Critique: The last step is not necessary but can be highly beneficial. In this

stage, according to the problems identified in the previous step,

recommendations are provided to enhance the system design. For instance, a

shortcut can be devised to reduce access time and expedite repetitive

operations.

Considering that the main purpose of this dissertation is automatic evaluation, in

48

Table 8, all the reviewed works have been examined from this perspective. This

table specifies which step of each method is automatic and semi-automatic or is completely

performed manually by an evaluator. As can be seen, none of the proposed methods

automatically estimate the usability attributes, detect potential problems or make

improvement suggestions, and the performance of these steps depends on the analysis,

knowledge, and opinion of the usability inspector.

49

Table 8: Automatic evaluation parts in reviewed methods

Evaluation tool Data
Collection

Preprocessing Analyzing Usability
Attributes

Potential
problems

Improvement
suggestion

Inversini Semi-
Automatic

Semi-
Automatic

Semi-
automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

UX-LOG Automatic Automatic Semi-
Automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

Jorritsma Automatic Automatic Semi-
Automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

Babaian Automatic Automatic Semi-
Automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

Bader Automatic Automatic Automatic Non-
Automatic

Automatic Non-
Automatic

Siochi Automatic Automatic Semi-
Automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

WebHint Automatic Automatic Semi-
Automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

WebQuilt Automatic Automatic Semi-
Automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

GUITESTER Automatic Automatic Automatic Non-
Automatic

Non-
Automatic

Non-
Automatic

WAUTER Automatic Automatic Semi-
Automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

WELFIT Automatic Automatic Semi-
Automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

AWUSA Automatic Automatic Automatic Non-
Automatic

Non-
Automatic

Non-
Automatic

WebRemUSINE Automatic Automatic Semi-
Automatic

Non-
Automatic

Non-
Automatic

Non-
Automatic

Semi-automatic values refer to cases where part of the work is done automatically

and part of the work is left to the usability expert. For example, in UX-LOG, recreating

users' sessions is automatic but analyzing and finding the problem is the expert's

responsibility. Pattern detection in Jorritsma's method is automatic but finding errors

remains to the usability inspector. In WebHint, defining the task model in the first step and

analyzing the detected patterns, and comparing them to the expected behavior are all

performed by the evaluator.

After data collection, the web designer could use the WebQuilt tools to aggregate,

visualize, and interact with the data to pinpoint usability problems. In fact, WebQuilt

50

represents the result of recreating several users' sessions but analyzing this result is on

evaluators.

WAUTER analysis is also semi-automatic because it needs an evaluator to define

the task model in the first step and analyze the patterns to detect potential problems in the

final step.

In addition, to gain a better insight into the studied methods in terms of their

strengths and limitations, Table 9 outlines the evaluation requirements for each method.

The "Knowledge About app/web" column determines whether the evaluator needs to have

an in-depth understanding of the software and its functionality. The "Informal use/ formal

use" column specifies if the evaluation is done based on daily usage and performing

arbitrary tasks (Informal) or performing only limited and predefined tasks (Formal). The

"Task model" column indicates whether the best way of performing a task should be

provided for the method or not.

The "Reusability" column determines if the presented model is specialized for a

particular software or website. For instance, WELFIT (V. F. de Santana & Baranauskas,

2015) has no reusability as the employed heuristics about SAM distance may not apply to

all applications. Similarly, Bader & Pagano's (2013) approach relies on finding loops in

usage patterns for the purpose of error detection. This assumption may not be valid for all

types of applications and websites.

Finally, the "Scalability" column denotes the ability of the model for performing

evaluation for a large number of users or tasks. All cases that require evaluation of users'

sessions or interactions one by one or depend on defining all task models do not have

scalability such as Siochi's method. Furthermore, all the methods that require user

51

cooperation, software installation, or adjusting settings on the users' system to collect data

may also lack scalability since it will be challenging to coordinate with a large number of

users. For example, GUITESTER (Okada & Asahi, 1999) requires running a logger on

users' systems, which limits its scalability.

Table 9:Requirements of each method for performing evaluation and their scalability and reusability

Evaluation tool Knowledge

About app/web

Informal use/ formal use Task model Reusability Scalability

Inversini Required Formal No Yes No

UX-LOG Required Formal Yes Yes No

Jorritsma Required Informal No No No

Babaian Required Formal Yes No No

Bader Required Informal No No Yes

Siochi Required Informal No No No

WebHint Required Informal Yes Yes Yes

WebQuilt Required Formal No Yes No

GUITESTER Required Formal Yes No No

WAUTER Required Formal Yes Yes No

WELFIT Required Informal No No Yes

AWUSA Required Formal Yes Yes Yes

WebRemUSINE Required Informal Yes Yes No

2.6 This Dissertation Objectives Compared to Previous Works

To compare my model with other methods, I have selected 13 key analyses based

on the objectives of this dissertation as well as insights extracted from the reviewed articles

(Table 10, Figure 1). The method of this dissertation supports 8 out of 13 selected analyses.

In my method, I will use task models to exclude automatic task detection. But I will

categorize user's page view sequences into pre-defined tasks. Then I will perform time

52

analysis and task analysis to detect errors and incomplete tasks. In the next step, I will

analyze errors and evaluate error history to estimate learnability and memorability.

The ultimate goal is to formulate and estimate usability metrics based on log file

information, which does not need session recreation or user and group analysis. Frequency

analysis and creating usage graphs can be helpful but I exclude them for simplifying the

process. Both Table 10 and Figure 1 illustrate how different methods support selected

various analyses. Two different display formats are used for more clarity. Among the

evaluated models, Babaian and WebRemUSINE (Paganelli & Paterno, 2002) have the most

overlap with my proposed method in terms of performing analyses supporting 7 and 6 cases

(i.e., columns in Table 10), respectively. However, both of these methods, unlike my

approach are using client-side log files. Moreover, Babaian's work focuses on designing a

relational database model for logged data and does not provide any automatic analysis or

reasoning.

Table 10: Comparison of the proposed method with previous methods in terms of analysis and presentation of

results

F
re

qu
en

t P
at

te
rn

 M
in

in
g

T
as

k
M

in
in

g

T
as

k
A

na
ly

si
s

E
rr

or
 D

et
ec

ti
on

E
rr

or
 A

na
ly

si
s

E
rr

or
 H

is
to

ry

F
re

qu
en

cy
 A

na
ly

si
s

T
im

e
A

na
ly

si
s

D
is

ta
nc

e
A

na
ly

si
s

E
xi

t A
na

ly
si

s

U
sa

ge
 G

ra
ph

S
es

si
on

 R
ec

re
at

io
n

U
se

r
an

d
G

ro
up

 A
na

ly
si

s

Proposed Method

Inversini

UX-LOG

Jorritsma

Babaian

Bader

Siochi

53

WebHint

WebQuilt

GUITESTER

WAUTER

WELFIT

AWUSA

WebRemUSINE

One fundamental differentiation between my model and prior research lies in the

fact that, to the best of my knowledge, my approach is the first to formulate and obtain

usability metrics directly and automatically from log files. While prior methods offer some

analyses to facilitate estimating these metrics.

Figure 1: Key analysis coverage in each method using a stack bar chart

54

CHAPTER 3

 COMPARISON WITH EXISTING TOOLS AND STUDIES

3.1 Introduction

This research focuses on the extraction of valuable information for usability

evaluation from machine-generated files such as system-, websites-, and application-

created log files, with a special emphasis on the server site website logs. As we know, there

is currently a plethora of various tools and techniques available to the public for analyzing

log files, which are being continually studied and enhanced by professional teams at the

world's leading companies. In addition, there has been extensive research conducted in the

field of web usage mining. With a simple search, one can find numerous articles and studies

available on how to extract usage behavioral patterns and other insights by utilizing the

data stored in log files.

Therefore, the question may be raised, does this research yield any novel

accomplishments beyond what has been done so far? Can it compete with the existing

strong file analysis tools like AWStats or Splunk? or does it offer additional value

compared to prior research done in the realm of web usage mining?

To address these questions, the subsequent section will explore these topics in

further detail. First, section 3.2 elaborates on the functionality of log analysis tools and the

whole steps involved in the log analysis process. Additionally, it will provide an overview

of several prominent and popular log file analysis tools, outlining their key features and

capabilities. Then, section 3.3 introduces the general framework of web usage mining, the

55

methods applied in each step, and an overview of the application domain in this field.

Finally, section 3.4 compares the current study with the two above domains and clarifies

their similarities and divergences in terms of three different aspects including their data

source, their purpose, and their application. After reviewing this section, the reader will

gain a comprehensive understanding of the position of this study on the frontier of scientific

research and its association with the two above fields of study.

3.2 Log Analysis Tools

Log analysis, as a sub-branch of data analysis, is a crucial part of the IT industry

where almost every product and service generates vast amounts of logs during various

processes. By reviewing and analyzing log records, organizations can obtain valuable

knowledge and meaningful insights that would otherwise be inaccessible. Therefore,

analyzing logs became an essential need in the world of technology and the principle of

supply and demand has led to the development of numerous tools designed for log analysis.

These tools utilize various techniques such as filtering, indexing, classification,

clustering, and more to detect patterns, trends, and errors within log files. The output

provided by them helps a wide range of professionals including security experts, system

and network administrators, web developers, and reliability engineers to identify the roots

of problems and guides them in making better business and security strategies.

Currently, there are numerous tools on the market for log file analysis that, along

with their special and distinctive features, have remarkably similar core functionality. The

main operation of these tools can be divided into the following main steps:

- Normalization: When the log files are coming from different sources and are

produced in different formats, for further analysis, all of their elements such as IP

56

addresses or timestamps need to be cleaned and converted into a single standard

format. This is done by normalization.

- Parsing: The input of this section is an unstructured file that can be any type of log

file such as an application, server-side, proxy side, security, etc. Its output is a data

set or a structured file in various formats such as SQL or XML.

- Filtering: One of the simplest levels of extracting meaningful information is using

filtering by applying queries to search in the log file database. A huge part of the

output of many log analysis tools such as Google Analytics is produced in this step.

A large portion of report information such as the average duration of the session,

the number of views of each page, the number of pages viewed in each session, the

bounce rate, the number of active users per day, etc. doesn’t need complicated data

mining and machine learning techniques and is obtained by filtering.

- Applying machine learning and data mining methods: Various methods such as

pattern detection and recognition, classification, correlation, etc. can be applied to

extract plenty of meaningful and useful information from log files but not all

common log analysis tools provide this level of analysis. By using correlation

methods, it is possible to identify lines of the log file that are related to each other.

These strategies are necessary for extracting events and identifying tasks. Pattern

recognition methods help to identify behavioral users’ patterns in the system and

spot anomalies. By applying classification techniques, we can log entries to tag and

categorize users, pages, events, and tasks into classes based on different

characteristics.

57

- Visualization: Log visualization, mostly in the form of the dashboard in log

analysis tools, is the graphical representation of data obtained by filtering,

searching, or machine learning techniques through the use of common visual

elements such as charts, graphs, plots, maps, and animations. These visual

representations of data-driven insights and information can make them more

accessible and easier to understand. They help to see trends, outliers, and patterns

in data and identify the root cause of the problems faster.

For a deeper understanding, in the rest of this section, some examples of popular

log file analyzers are reviewed and for each one, it is determined which of the above parts

are supported and embedded for them.

3.2.1 Splunk

Splunk (SplunkInc, 2005) is a popular commercial software platform for log

analysis and log management that allows users to navigate, index, search, analyze,

visualize, monitor, alert, and report on unstructured/structured machine-generated data in

real-time. It is often used to derive insights from large volumes of machine data collected

from virtually any source and location and provides a powerful platform for managing,

monitoring, and troubleshooting complex IT environments. Splunk’s search processing

language, along with its machine learning toolkit (MLKT) enables simple searches as well

as advanced data exploration. Users not only are able to search, filter, and analyze data

using a variety of techniques, including keyword search, field extraction, and statistical

analysis but also can apply MLKT to detect outliers and anomalies, as well as to perform

predictive analytics and clustering algorithms. Using this toolkit, for example, user

behavior analytics including threats detection and anomalous behavior recognition is

58

possible. Real-time processing is one of the most outstanding features and maybe the

biggest selling point of Splunk. Other key features are flexibility and extensibility,

visualization, and security capabilities. All these features and capabilities make it a popular

choice for log management, security, IT operations, and business analytics use cases.

3.2.2 LogStash

Logstash (LogStash, 2023) is a flexible and customizable open-source data

processing tool that helps users to collect, process, and forward logs and other event data

from various sources. Its ability for real-time processing allows users to obtain insights

from data and respond to events quickly. Logstash has a rich collection of plugins that

make it easy to integrate with other tools and platforms. Therefore, it can receive data from

many different sources, such as files, Syslog, and beats, and can send its outputs to various

ranges of destinations like Elasticsearch (ElasticSearch, 2023), Kibana (Kibana, 2023), and

different data stores.

Data processing in Logstash mainly includes parsing, cleaning, filtering, and

transforming data to a desired format. It does not support any data visualization or machine

learning techniques by itself. But, thanks to its huge collection of plugins, it can integrate

with other tools that have these capabilities and take the advantage of them for supporting

more complex data analysis. For instance, Kibana provides many different machine-

learning and data-mining algorithms that can be applied for pattern recognition and

anomaly detection from data stored in large log files. Among all of the outstanding features

of Logstash, the most salient one is that it is designed to be highly scalable which makes it

possible to process a large volume of data efficiently.

59

3.2.3 NXLog

Another well-known log management tool that can be introduced here is NXLog

(NXLog, 2023). This tool is efficient, flexible, lightweight, and easy to use. These features

make it suitable for small to medium-sized businesses. NXLog is a multi-platform log

collection tool. The meaning of multi-platform is that it is designed to collect log files from

a wide range of sources and platforms, including Windows, Linux, and Unix systems, as

well as network devices and applications. In fact, it can be said that this feature is the key

feature and the biggest selling point of NXLog.

From the data processing point of view, it can be said that by supporting

multithreaded processing, NXLog can process log data in parallel, which make it possible

to handle a large amount of data efficiently and in real time. Data processing in this tool

includes cleaning, parsing, extensive filtering, and data manipulation. NXLog does not

support complex machine learning processes by itself, but by creating a wide range of

output formats it is designed to support integration with many other log management tools

and systems such as Elasticsearch, Graylog (GrayLog, 2023), and Splunk.

3.2.4 Amazon Cloudwatch Logs

Another powerful log management service is Amazon CloudWatch Logs (Amazon

CloudWatch, 2023), which is provided by Amazon Web Services (AWS). CloudWatch

Logs allows users to collect, analyze, monitor, and perform complex searches and queries.

It provides data log visualization as well. CloudWatch Logs supports a wide range of log

sources within the AWS environment, including Amazon EC2 instances, AWS Lambda

functions, Amazon VPC flow logs, and custom applications running on Amazon Elastic

Beanstalk. Moreover, by integrating with other AWS services, such as AWS CloudTrail

60

and AWS Config, it can provide a comprehensive view of activity and resource usage

within an AWS environment. With CloudWatch logs, users can obtain insights into the

performance, availability, and security of their infrastructure and applications. They also

can correlate related logs, troubleshoot issues, and improve operational efficiency.

Amazon CloudWatch Logs itself does not directly support machine learning or data

mining analyses. However, as mentioned above, it is possible to export log data to other

services for further analysis. For example, one can use Amazon Elasticsearch Service to

index and search log data and use Amazon SageMaker to build and train machine learning

models on log data, and then use these models to detect anomalies or predict future trends.

In addition, it is possible to export log data from CloudWatch Logs to Amazon S3, which

provides a highly scalable and durable object storage service. Once log data is in S3, a

variety of third-party tools and services to perform data mining and machine learning

analyses can be used.

3.2.5 AWStats

AWStats, which stands for Advanced Web Statistics, is another free and powerful

log analyzer tool that is designed for parsing, analyzing, and visualizing

data from internet services like web server logs. As input, AWStats supports most major

web server log file formats including Apache, Nginx, WebStar, IIS, and many other

common web log formats. It can be run through a web browser and the output, which

includes descriptive statistics and comprehensive reports about website traffic, is created

in an easy-to-read HTML format.

It can show you all possible information your log contains including the number of

visitors, the pages they visited, the operating systems and web browsers they used, and the

61

geographical location of visitors. These reports provide valuable insights into website

performance, visitor behavior, and traffic sources. However, this log analyzer does not

natively support machine learning techniques for further data analysis. Although it is

possible to export data and use it as input for other data analysis tools, it yet is not very

straightforward and may need additional preprocessing or cleaning of the data.

3.2.6 Microsoft Log Parser

Microsoft Log Parser is a powerful tool for cleaning, parsing, analyzing, and

manipulating log files from various sources. It receives a text-based input file format,

including CSV, XML, web server logs, event logs, Registry, the file system, and Active

Directory. Users can perform complex search queries and analysis on input data and extract

specific records based on selected conditions. The resulting dataset can then be saved in

different formats, including CSV, XML, and SQL. Utilizing SQL queries is one of the key

functionalities of Microsoft Log Parser, which allows users to easily extract and manipulate

data from log files. Some of the most common uses of Log parsers are analyzing website

traffic, monitoring server performance, and troubleshooting system issues.

Microsoft Log Parser includes neither built-in data visualization capabilities for

graphically displaying results nor machine learning techniques for more complex data

analysis. However, as mentioned earlier, it has various output formats including CSV,

XML, and SQL that can be used by other tools and applications.

62

Table 11 provides an overview of several most widely used log analyzers,

highlighting their distinguishing features. Furthermore, the table outlines the specific

stages of the log-analyzing process that each tool covers.

Table 11: Comparing several well-known and popular log analyzer tools in terms of their abilities and their

most important features.

N
orm

alization

P
arsing

F
iltering

M
L

 m
ethods

V
isualization

K
ey F

eature

P
rice

AWStats
    

Providing detailed and real-
time reports on website traffic

Free and open
source

Log Stash
    

High-volume data processing
and integration

Free and open
source

Webalizer
    

Ease of use and simplicity and
comprehensive website
statistics reporting

Free and open
source

NXLog
    

Collect logs from a wide range
of sources and platforms

Both a free and
commercial
version

Splunk
    

Real-time (fast) processing of
big data

commercial

Amazon
Cloudwatch
Logs

    
Seamless integration with
other AWS services.

pay-as-you-go
pricing

Logwatch

    

Simplicity and ease of use for
monitoring and analyzing
system logs on Unix and Linux
systems

Free and open
source

GoAccess
    

Real-time web log analysis
and extensive reporting
capabilities.

Free and open
source

Analog
    

High speed and efficiency in
processing large log files

Free and open
source

Microsoft
Log Parser     

Powerful and flexible log file
analysis using SQL-like
queries

Free and open
source

Graylog
    

Centralized log management
capabilities for the entire
infrastructure

Both a free and
commercial
enterprise

63

3.3 Web Mining Research

Web mining involves utilizing data mining methods to automatically derive

valuable insights from any web-related document or service (Singh & Singh, 2010). This

extracted information can be utilized in various domains such as website design

improvement, cyber-attack detection, summarization, indexing, etc. According to the type

of information being processed, web mining can be divided into three main categories: web

content mining, web structure mining, and web usage mining (Kandpal, Singh, &

Shekhawat, 2019). Among these three categories, I will focus on web usage mining, as it

usually uses information from log files and is closer to the topic studied in this dissertation.

The term web usage mining was first proposed by Cooley in 1997 and its purpose

is to use data mining techniques to extract usage patterns, web structure, and user behavior

by analyzing any data related to user interactions with web servers. This interaction data

can be obtained from various sources or places, including server-side logs, proxy-side logs,

browser logs, user profiles, registration data, cookies, user queries, bookmark data, mouse

movements, and clickstreams. Analysis of this data is very essential for the development

and improvement related to a website. Figure 2 illustrates the general framework of web

usage mining (Malik & Rizvi, 2011).

The procedure of web usage mining is composed of four main steps: data collection,

data pre-processing, knowledge discovery, and knowledge analysis. Given that the input

data comes from a log file or a group of log files, data collection, and its associated

challenges were discussed in Chapter I. In the next section, the next three steps and their

corresponding techniques are described. Lastly, examples are provided of the primary

applications of web usage mining.

64

Data Collection Preprocessing
knowledge
Discovery

knowledge
Analysis

Client‐Side log

Server‐Side log

Proxy‐Side log

Registration Froms

Mouse movement
and clickstream

User Profiles

Data Fusion

Data Cleaning

Normalization

Session
Identification

User
Identification

Page view
Identification

Path
Completion

Episod
Identification

Association Rules

Sequential Pattern
Analysis

Clustering

Classification

Dependency
Modeling

Descriptive
Statistical Analysis

Online Analytical
Processing (OLAP)

Data and
Knowledge
Querying

Visualization

Data
Formatting

Figure 2: The general framework of web usage mining

3.3.1 Preprocessing

Real-world data can be noisy, incomplete, or inconsistent. Therefore, it is necessary

to preprocess them and make them reliable and consistent before using them for further

analysis. This makes the preprocessing phase an essential step in the web usage mining

procedure. The main steps of preprocessing include data cleaning, normalization,

identifying users, identifying sessions, and completing paths (Kandpal, Sinha, &

Shekhawat, 2017). Several more steps can be added to this list based on the conditions of

data collection and the purpose of the analysis.

65

Data Fusion: In large websites, it is common to reduce the server load by using

multiple web or application servers with redundant content to serve users. However, this

leads to the recording of log information in several server log files. Moreover, if client-side

log files are used for web usage mining, each client will have a separate log file. In such

scenarios, data fusion becomes necessary to combine these log files into a single file for

further analysis. This requires more than just attaching input files. For instance, the files

may come from different time zones, but they need to have the same time source in the

merged file. Additionally, identifying sessions requires a heuristic method based on referrer

information, along with other user or session identification methods (Mobasher, 2006). As

illustrated in Figure 1, data fusion receives several log files, databases, or any other

structured/unstructured files containing user interaction data as input and produces a single

merged file or database as output.

Data Cleaning: Data cleaning involves the identification and removal of irrelevant

or extraneous information from raw log data to improve the accuracy and speed of data

analysis. The process involves several steps. First, extraneous references that are not

executed or downloaded based on the user's request, such as entries for accessing style

files, JPEGs, GIF files, Java Scripts, and other audio/video files, should be removed.

Second, the HTTP status code should be considered for data reduction. For example,

entries for resources that are not available on the web server are marked with error status

codes. These records are not necessary for e-commerce applications and should be

discarded. However, if the goal of web usage mining is web intrusion detection, all server

error status codes are important. Third, entries resulting from crawlers or spiders need to

be eliminated. It is common for a log file to contain a significant percentage of references

66

resulting from a search engine or other crawlers or spiders, and these records do not reflect

the way human visitors navigate the site. While crawlers' records can sometimes be

detected easily by simple string matching, in some cases, various heuristic-based or

classification methods are required to determine non-human behavior (Facca & Lanzi,

2003; Kandpal et al., 2017; V. Kumar & Thakur, 2017; Mobasher, 2006; Varnagar,

Madhak, Kodinariya, & Rathod, 2013).

Normalization: Normalization is a technique used to organize data in a consistent

and standardized way across all records and fields. By doing so, it can increase the

coherence and consistency of entry types, leading to higher-quality data. For example, in a

web server log file, normalization might involve changing the date and time format to a

predefined and consistent format.

User Identification: While it's not mandatory to know the identity of users for web

usage analysis purposes, it is essential to differentiate between different users who visit the

website. One approach to achieve this is by utilizing client-side cookies. However, not all

websites employ cookies, and privacy concerns sometimes prompt users to disable them.

IP addresses also can be utilized to distinguish unique visitors, but they are not always

sufficient for distinguishing between different users. For example, proxy servers can assign

the same IP address to multiple clients or a single user can use various systems or devices

to visit the website. To overcome this limitation, several heuristics have been proposed.

Cooley et al. assume a new user if a web page is accessed directly without any hyperlink

from the same IP address. This method is not foolproof either, as bookmarked page access

can lead to inaccuracies in identifying unique users and misconceptions. Another

assumption is using a combination of information about users' browsers, operating systems,

67

and referrers to distinguish users, but even this method can be prone to errors because of

caching at different levels and using various browsers/systems by users (Kandpal et al.,

2017; V. Kumar & Thakur, 2017; Mobasher, 2006; Varnagar et al., 2013).

Page View Identification: In a static single-frame site, each HTML file

corresponds to a single page view. However, multi-framed sites may require several files

to form a page view. Dynamic sites also may need to combine static templates and a

specific set of parameters to generate content and create a page view. Therefore, the process

of page view identification depends on various factors such as the structure of the website,

page contents, and domain knowledge. Page view identification can help identify specific

user events through a collection of web objects or resources, or alternatively, at a higher

level, a collection of pages. An example would be pages related to the same concept

category such as product views on an e-commerce website (Mobasher, 2006).

Session Identification and Reconstruction: A user's session can be defined as a

series of activities performed by a single user on a website from the time they enter until

they leave, with the restriction that the time elapsed between two consecutive clicks should

not exceed a certain period (V. Kumar & Thakur, 2017). After the user identification step,

each user's click stream is divided into clusters This method of division is called Session

Reconstruction or Sessionization (Kandpal et al., 2017). However, there are challenges in

this process caused by proxy servers or browser caching. Proxy servers can associate a

single IP address with multiple users, making it difficult to distinguish users and

consequently, sessions. Browser caching can also result in information loss in log files

when visitors use the back button, which makes it difficult to reconstruct the navigation

path in the users' sessions (Facca & Lanzi, 2003). To identify sessions, two approaches

68

have been proposed. The first approach involves using session IDs obtained from cookies,

while the second approach involves applying various heuristics, such as the time interval

between entries, the duration of time spent on the observed page, and the referrer (in the

absence of a referrer, it is assumed to be the first page of a new session) (Varnagar et al.,

2013).

Path Completion: Path completion is another important pre-processing step that is

usually performed after sessionization and can be critical for accurate analysis. Due to

browser or proxy-side caching, server access logs may not capture all access references for

pages or objects that have been cached, resulting in incomplete user paths. Path completion

is the process of identifying and filling in missing page sequences in the web server logs

to ensure complete user path information for subsequent knowledge discovery. This

technique relies on knowledge of site topology and referrer information from server logs

and can be applied to achieve the goal of accurate analysis (Mobasher, 2006; Varnagar et

al., 2013).

Episode identification: After performing page view identification, episode

identification can be carried out to recognize relevant subsets of page views within each

user session. An episode refers to a sequence of page views that are functionally or

semantically related. To accomplish this, page views may need to be classified or clustered

automatically or semi-automatically based on their functional types, domain ontology, or

concept hierarchy. In cases where the website is highly dynamic, it may also be necessary

to group page views within each session by considering parameters passed to script or

database queries (Mobasher, 2006).

69

Data Formatting: This step represents the final stage of the preprocessing phase.

Once the earlier phases have been executed, the data is correctly formatted before being

processed with mining techniques. To improve support for log querying aimed at frequent

pattern mining, data extracted from web server logs is stored in a relational database using

a click fact schema (Facca & Lanzi, 2003).

3.3.2 Knowledge Discovery

Knowledge discovery is a critical step in web usage mining as it enables the

identification of useful patterns and the extraction of valuable knowledge from web data.

There is a wide range of statistical and data mining techniques available from different

research fields such as data mining, machine learning, statistical methods, and pattern

recognition that can be employed for knowledge discovery. Some frequently used

techniques include sequential analysis, clustering, classification, association rule mining,

dependency modeling, and time series analysis (V. Kumar & Thakur, 2017; Varnagar et

al., 2013).

3.3.2.1 Association Rules

Association Rules represent one of the most widely used data mining techniques in

web usage mining. They are used to discover relationships among web pages that are

frequently referenced together during a single server session, even if these pages are not

directly linked to one another via hyperlinks. This technique is helpful for generating

frequent patterns and rules in website usage patterns. The outcome of association rules is

often in the form of "A.html, B.html ⇒ C.html", indicating that if a user accessed both

pages A.html and B.html, it is highly likely that they also accessed page C.html in the same

session (Facca & Lanzi, 2003). This technique has applications in business, marketing, and

70

website redesign. The presence or absence of association rules also can be used as a

heuristic for prefetching documents to reduce user-perceived latency when loading pages

from remote sites (Srivastava, Cooley, Deshpande, & Tan, 2000). There are several

algorithms available for performing association rule mining, including Apriori (Agrawal,

Srikant, & others, 1994), Eclat (Zaki, Parthasarathy, Ogihara, Li, & others, 1997), FP-

Growth (Han, Pei, & Yin, 2000b), and Frequent Pattern tree (Han, Pei, & Yin, 2000a).

3.3.2.2 Sequential Pattern Analysis

Sequential pattern analysis is similar to association rules in detecting the co-

occurrence of events but unlike association rules, they capture the temporal relationship

between events as well. In web usage mining, sequential patterns are commonly used to

discover maximal frequent navigation patterns among all interactions that occur during

users' sessions. For instance, the order in which pages A and B are accessed or the fact that

if users visit pages A and then B, accessing page C would be highly probable can be

captured in the discovered patterns (Facca & Lanzi, 2003). The identification of such

patterns has many applications. For example, they can aid web marketers in predicting

future visit patterns and improving their ability to target specific user groups with relevant

advertisements (Srivastava et al., 2000).

The algorithms used for sequential pattern extraction are either based on association

rule mining, tree structures, data projection techniques, or Markov chains. The most well-

known examples of algorithms include Apriori All, GSP, PSP+, FreeSpan, Prefix Span,

SPADE, Markov model, and Spam (Facca & Lanzi, 2003; Kandpal et al., 2017). After

identifying sequential patterns, other temporal analyses such as trend analysis, change point

detection, and similarity analysis can also be applied for further analysis (Srivastava et al.,

71

2000). As an example Rojas & Nasraoui (2007) have introduced a method for pattern

discovery in stream environments by constructing a prefix tree with a dynamic attribute

ranking. They applied their method to summarize evolving data streams of transactional

data.

3.3.2.3 Clustering

Clustering is a technique used in unsupervised machine learning to group similar

objects together based on a distance function that computes their similarity. In the web

usage mining domain, there are different types of clusters that can be discovered, including

user clusters, page clusters, and session clusters. User clustering is useful for identifying

groups of users who exhibit similar behavior and access patterns within the system. This

knowledge can be applied in e-commerce applications to infer user demographics or to

provide personalized web content to users who share similar interests. Clustering can also

be used to dynamically generate web page links for each user based on the traversal pattern

of other users who are assigned to the same cluster (Yan, Jacobsen, Garcia-Molina, &

Dayal, 1996).

Pages or items categorization can be conducted either based on usage data, such as

user sessions, or based on content features such as keywords. Content-based clustering can

result in groups of pages or products that are related to the same topic or category, which

is useful for internet search engines and web assistance providers. Usage-based clustering

automatically organizes items that are frequently accessed together into groups (Mobasher,

2006). Olfa Nasraoui, Krishnapuram, Joshi, & Kamdar (2002) introduced two robust fuzzy

relational techniques designed for clustering web user sessions. These techniques offer a

solution to effectively address the inherently noisy and fuzzy nature of web usage data.

72

Furthermore, clustering can be applied to detect anomalies in the data. After partitioning

the data into clusters, there may be cases that do not fit well into any clusters, and these

cases can be considered anomalies (Kandpal et al., 2017).

3.3.2.4 Classification

Classification is a technique in data mining where a data item is categorized into

one of several pre-defined classes through supervised learning. In the context of web usage

mining, this technique can be used to automatically assign a class label to a user based on

their browsing history or other attributes. This requires selecting the most appropriate

features to describe a given category. For instance, the classification of server logs can help

identify a user's role or experience within a system or classify users according to their

likelihood of purchasing a product, considering factors such as demographic attributes and

navigation patterns. Another application of classification in the web usage mining domain

is predicting the next web page a user is likely to visit based on their previous browsing

behavior such as the pages they have visited, the time spent on each page, and the sequence

of pages visited. Additionally, previously discovered clusters and association rules can

also be used to classify new users. There are many well-known algorithms that can be used

for classification, such as decision tree classifiers, naive Bayesian classifiers, k-nearest

neighbor classifiers, and Support Vector Machines (Mobasher, 2006; Srivastava et al.,

2000).

3.3.2.5 Dependency Modeling

Dependency modeling is a valuable task in web mining that involves creating a

model that can represent significant relationships among various variables in the web

domain. For instance, one may be interested in developing a model that can depict the

73

different stages a visitor goes through while shopping online, based on their actions, from

being a casual visitor to a potential buyer. To achieve this, probabilistic learning techniques

such as Hidden Markov Models and Bayesian Belief Networks can be employed to model

users' browsing behavior. Creating a model of web usage patterns can not only provide a

framework for analyzing user behavior but can also be useful in predicting future web

resource consumption. This information can be used to develop strategies that increase

product sales on a website or improve the user experience (Srivastava et al., 2000).

3.3.3 Knowledge Analysis

The outcome of the knowledge discovery stage may not be presented in a way that

allows for comprehension or drawing conclusions. Therefore, as demonstrated in Figure 1,

knowledge analysis comes into play as the final phase in web usage mining. This step

involves sifting through the results of the previous stage to identify interesting rules,

patterns, or statistics while disregarding irrelevant ones. The approach used to analyze

patterns is typically determined by the purpose of web mining. Descriptive statistical

analysis, knowledge query mechanism, Online Analytical Processing Technique (OLAP),

and Visualization Technique are the most commonly used methods for knowledge analysis

(Varnagar et al., 2013).

The most widely used approach to gain insights is through statistical methods. By

examining the session file, various descriptive statistical analyses can be performed on

variables like page views, viewing time, and navigational path length. Several web traffic

analysis tools create periodic reports that contain statistical information such as frequently

accessed pages, average page view time, or average path length through the website. While

these reports may have limited low-level error analysis, like detecting unauthorized entry

74

points or finding common invalid URIs, they still have the potential to be valuable in

improving system performance, enhancing system security, simplifying site modification

tasks, and offering assistance in making marketing decisions (Srivastava et al., 2000).

Another commonly used method for knowledge analysis is the knowledge query

mechanism such as SQL. This technique allows the analyzer to retrieve information by the

analyzer in a managed manner. For instance, SQL can be applied to identify abnormal user

behavior or to pinpoint the most common error experienced by international users (Kandpal

et al., 2017).

OLAP, which is a robust paradigm for strategic analysis of relational databases,

involves loading usage data into a data cube to perform various operations like roll-up,

drill-down, or slice. Typical applications of OLAP include Customer Relationship

Management (CRM), marketing and inventory analysis, business reporting, management

reporting, budgeting and forecasting, sales analysis, and financial reporting (Kandpal et al.,

2017).

The Visualization Technique is a method that employs various tools to transform

information into knowledge and comprehend the behavior of web users. It includes using

2D and 3D pictorials, tables, charts, graphs, or any other visual presentations such as

assigning colors to different values. These techniques can be beneficial in illuminating

overall patterns or trends in the data (Varnagar et al., 2013).

Finally, the outcome of the knowledge analysis phase can be saved in various

formats, such as HTML, CSV, or PDF. Some tools even offer the option to configure the

target email address within the tool, enabling the automatic emailing of the analysis report

at a predetermined scheduled time (Srivastava et al., 2000).

75

3.3.4 Applications of Web Usage Mining

Web usage mining has numerous applications across various domains. In the web

design domain, it can be utilized for web personalization. Web log mining can learn about

customer preferences and product associations based on users' profiles and their usage

behavior. Some examples of applications of web personalization include individualized

marketing for e-commerce and providing dynamic recommendations.

Web usage mining also finds application in the website optimization domain. It can

help in developing appropriate prefetching and caching strategies that can effectively

deliver web content and reduce server response time (Facca & Lanzi, 2003). Furthermore,

by analyzing user behavior, it can identify areas of the site that need improvement, such as

slow loading pages, high bounce rates, and ineffective navigation.

Web log mining techniques, such as clustering and classification methods, can be

applied in the security domain for online crime investigation. For instance, internet fraud,

hacking, virus spreading, child pornography distribution, web attacks, and cyber terrorism

can be investigated using these methods. Crime patterns can be identified and network

visualization can be done through techniques such as neural networks, decision trees,

genetic algorithms, and support vector machines (Kandpal et al., 2019).

Web usage mining can also be applied in the e-commerce and marketing domain

for mining business intelligence from web usage data and transaction analysis. It can

provide an effective advantage to Customer Relationship Management (CRM) through the

use of web usage mining techniques. Additionally, web log mining can improve web

advertising by determining the target pages and users for each advertisement based on user

groups and their usage patterns (Kandpal et al., 2017).

76

3.4 Comparative Analysis of Previous Works with Current Study

Log file analysis, web usage mining, and the research area of this study all involve

the extraction of insights from machine-generated data. However, there are notable

differences between them. This section provides a comparison of these methods from three

distinct perspectives: their data sources, their purpose, and the applications they serve.

3.4.1 Data Source

Web usage mining involves analyzing various forms of data related to user

interactions with web servers, including different types of weblogs (such as browser logs,

proxy logs, and server logs), as well as user profiles, form registrations, click streams,

keystrokes, and social media activity. Log file analysis, on the other hand, typically

involves analyzing any type of web or non-web log file that records any user interaction

with a system. This may include system logs, error logs, application logs, event logs, debug

logs, security logs, audit logs, performance logs, and log files generated by sensor systems.

While automatic usability evaluation using log files may utilize both application logs and

web logs, this dissertation narrows its focus to server logs to keep the scope of the study

feasible for a doctoral thesis. Figure 3 illustrates the similarities and differences between

these fields of study in terms of their data sources.

77

Web Usage MiningLog File Analysis

Usability Evaluation
Using Log Files

Current
Study

‐ System Logs

A
pp
lic
at
io
n
 L
og
s

‐ Event Logs

‐ Debug Logs

‐ Error Logs

‐ Sensor Logs

‐ Security Logs

‐ Audit Logs

‐ Performance Logs

Browser
Logs

Server
Logs

Proxy
Logs

‐ Registration Froms

‐ User Profile

Figure 3: Comparison of Log file analysis, web usage mining, and current study in terms of their data source

Table 12, also provides a more general overview of the types of data sources

associated with each method.

Table 12: Types of data sources can be used in Log file analysis, web usage mining, and current study

Web Log Data Other types of Log File Non-Log Data

Log File Analysis

Web Usage Mining

Usability Evaluation Using Log File

Current Study

3.4.2 Purpose

The primary purpose of log file analysis typically is tracking and examining various

types of log files. Its main focus is often on preprocessing log data to make it ready for

further analysis. Most log file analysis tools also involve knowledge analysis techniques

78

such as visualization, knowledge query mechanism, OLAP, or descriptive statistical

analysis. But as indicated in Table 11, only a few of them employ machine learning

techniques to support knowledge discovery.

In contrast, web usage mining is mostly focused on the third step of its procedure

(knowledge discovery). Although preprocessing is a necessary initial step for web log

mining, most of the innovations and research topics in this field revolve around extracting

knowledge and patterns from log data.

In this research, however, the main goal is to apply machine learning methods to

extract knowledge from log files and use it to estimate usability metrics and attributes.

While the proposed approach of this dissertation can be extended to different types of log

files, it focuses on web log data, particularly server logs. Therefore, this research uses

methods similar to those proposed in web mining knowledge discovery in section 3.3.2,

but it employs them for a different purpose than previous applications. This study, in its

knowledge discovery step, will specify which method to use and how to calculate each

usability metric. In the next step, a numerical modeling approach will be presented for

quantifying each usability attribute based on the value of extracted metrics in the previous

step. In fact, this numerical model will be used instead of the previous knowledge analysis

methods used in web mining frameworks (Figure 2), which include visualization, statistical

analysis, OLAP, or SQL query methods. In Figure 4, a heat map illustrates the

contributions of each domain (log analysis, web usage mining, and usability evaluation

using log files) in the three primary stages of the process: preprocessing, knowledge

discovery, and knowledge analysis.

79

Web Usage
Mining

Usability
Evaluation with

log file

P
re
 p
ro
ce
ss
in
g

K
n
o
w
le
d
ge
 D
is
co
ve
ry

K
n
o
w
le
d
ge
 A
n
al
ys
is

Log Analysis

Figure 4: The heat map of the contribution of each domain (log analysis, web usage mining and usability

evaluation using log file) in the three primary stages of the process including preprocessing, knowledge discovery, and

knowledge analysis

3.4.3 Applications

The application of log analysis is relevant to the source that generates the log. For

instance, analyzing the log file of an application can identify and improve its error-prone

areas. Similarly, analyzing the log data from video sensors can help assess security or

traffic flow in a given environment. System log file analysis can aid in monitoring,

securing, and improving its performance. Likewise, web log file analysis can provide

various reports such as determining peak traffic hours, bounce rate, session duration, etc.,

to enhance website performance, attract audiences, and strengthen website security.

Web usage mining is used in a variety of web domain pertinent applications,

including security monitoring (such as fraud detection), web personalization, e-commerce

80

(such as targeted advertising and enhancing marketing strategies), and web improvement

(such as prefetching and cashing or web design modification).

Usability evaluation is a significant application within both log analysis and web

usage mining domains. Although none of the previously mentioned applications in these

domains are specifically tailored to usability evaluation, it remains a crucial aspect of log

analysis that needs further attention and study. Figure 5 indicates the domain applications

of log file analysis, web usage mining, and current study to illustrate their relationships,

similarities, and differences.

Web Usage Mining

Log File Analysis

Usability
Evaluation

Using Log Files

Web
Usability
Evaluation

Current
Study

‐ Web Personalization

System monitoring &
improvement

Environment security &
improvement

Application
improvement

‐ e‐commerce and marketing

‐ Security Monitoring

Application
Usability

Evaluation

‐ web design & modification

‐ Prefetching & Caching

Figure 5: Comparison of Log file analysis, web usage mining, and current study in terms of their applications

81

4.1 Introduction

The aim of this chapter is first to provide a comprehensive overview of the methods

used for data collection in previous studies. This will include the different types of data

sources that have been used, such as server-side, proxy-side, or client-side, as well as the

strengths and limitations of each data type. Moreover, the effort that needs to be taken into

account when choosing a particular type of log file is identified. Next, the process of

synthesizing data will be examined and the techniques employed for simulating server log

data will be discussed in detail. Finally, I will examine the characteristics and sources of

real log data that will be used in the subsequent steps of this dissertation.

4.2 Data Collection in the Previous Works

This section reviews the previous methods from the perspective of their log files

and data collection methods. In the following, I examine what type of log file each method

used for their usability evaluation, what data they extracted from log files, and what

restrictions the type of log file imposed on the proposed method. Table 13 shows some of

the features of the data collection step for the 13 methods studied. The first column of the

table specifies whether a separate file is used to store the transaction data of each user or

the data of all users and all sessions are stored in a single file. The second column shows

the tools used to generate the log file. Out of 13 works reviewed, seven have produced their

 CHAPTER 4

DATA COLLECTION

82

own logger, 6 of which are client-side loggers. Column three shows the type of log file

(Client Side, Proxy Side, and Server Side), and the last column determines whether the

method was used for web or non-web applications.

Table 13: Data collection method in previous work

Evaluation tool Single file per
user/ One file
for all users

Language/ Tools Server/Client/Proxy
Side

Web/NonWeb

(Inversini et al., 2011) One file for all
users

Web Server Server Side Web

UX-LOG (T. C. Menezes &
Nonnecke, 2014)

One file for all
users

Web Server Server Side Web

(Jorritsma et al., 2016) Single file per
user

Create by authors Client Side Non Web

(Babaian et al., 2007) Single file per
user

SQL Client Side Non Web

(Bader & Pagano, 2013) One file for all
users

Create by authors Client Side Non Web

(Siochi & Hix, 1991) Single file per
user

Create by authors Client Side Non Web

WebHint (Vargas et al.,
2010)

One file for all
users

USAProxy Client Side Web

WebQuilt (Hong & Landay,
2001)

Single file per
user

WebQuiltProxy
Created by Java servlet
technology

Proxy Side Web

GUITESTER (Okada &
Asahi, 1999)

Single file per
user

Create by authors Client Side Non Web

WAUTER (Balbo et al.,
2005)

Single file per
user

WIMM (XML file) Proxy Side Web

WELFIT (V. F. de Santana &
Baranauskas, 2015)

Single file per
user

WELFIT Client Side Web

AWUSA (Tiedtke et al.,
2002)

One file for all
users

Web Server Server Side Web

WebRemUSINE (Paganelli
& Paterno, 2002)

Single file per
user

implemented in
Javascript

Client Side Web

Table 14 specifies a detailed overview of the information extracted by each of the

13 reviewed methods from the log file. The first column, Page, indicates the name or link

of a web page in case of web applications, or the title of a window in non-web applications.

The second column, User/IP, displays the username or IP address of the person who

performed the transaction, and the third column, Time, displays the timestamp of the

83

transaction (including date and time). The fourth column, Page Item, specifies the name of

the items on which the user performed an operation such as buttons, drop-down lists, radio

buttons, etc. The fifth and sixth columns, Mouse and Keyboard, indicate the mouse-related

(e,g., mouse movement, right or left click, and dragging) and keyboard events performed

by the user, respectively. The seventh column, Desktop, provides information about the

number of opened windows, frames, and active windows. The last column (Other) is

positive only for WebQuilt and includes additional information collected in this method

such as the transaction ID (TID), From TID, To TID, Parent ID, Frame ID, Link ID, HTTP

Response, HTTP Method, and URL+ Query. From all possible mouse events, WebQuilt

only captures clicks on the back and forward buttons on the browser.

Table 14: Type of information extracted from log file

Evaluation tool Page User/IP Time PageItem Mouse Keyboard Desktop Other
(Inversini et al., 2011) y y n n n n n n
UX-LOG (T. C. Menezes &
Nonnecke, 2014)

y y y n n n n n

(Jorritsma et al., 2016) y y n y y n n n
(Babaian et al., 2007) y y y y y y n n

(Bader & Pagano, 2013) y y y n n n n n

(Siochi & Hix, 1991) y y n n n n n n

WebHint (Vargas et al., 2010) y y n y y y n n
WebQuilt (Hong & Landay,
2001)

y y y n Back/Forward n n y

GUITESTER (Okada & Asahi,
1999)

y y y y y y y n

WAUTER (Balbo et al., 2005) y y n y y y n n
WELFIT (V. F. de Santana &
Baranauskas, 2015)

y y y y y y n n

AWUSA (Tiedtke et al., 2002) y y n n n n n n
WebRemUSINE (Paganelli &
Paterno, 2002)

y y y y y y n n

Figure 6 shows how different kinds of log files have used various types of

information. As we can see, the mouse, keyboard, and page items are employed only by

84

proxy and client which is obvious because they are not available in server logs. Moreover,

desktop information is used only in one client logging method.

Figure 6: Representation of using log information in different types of log files (client side, server side, and proxy

side)

Finally, Table 15 shows the challenges and limitations of data collection in each of

the methods studied. Of the thirteen, seven have changed the code or recreated the

evaluated software, of which six use the client-side log files. The only client-side method

that does not need to change or rebuild a code is GUITESTER, which sends an independent

logger application for the user; the user should run this application on her/his system.

Table 15: evaluators and users' efforts in collecting data

Evaluation tool Evaluators effort Users effort Source
(Inversini et al., 2011) Insertion of code into each Web page

element to log abstract events and
virtual page-views

None Server Side

UX-LOG (T. C.
Menezes & Nonnecke,
2014)

None None Server Side

(Jorritsma et al., 2016) Recreate a new version of the app to
create the log

None Client Side

(Babaian et al., 2007) Recreate a new version of the app to
create the log

None Client Side

(Bader & Pagano, 2013) Embed logging code in the application Use a modified version
of the application

Client Side

(Siochi & Hix, 1991) Recreate a new version of the app to
create the log

None Client Side

0

2

4

6

8

10

12

14

PageUser/IPTimePage ItemMouseKeyboardDesktopOther

N
u
m
b
er
 o
f
W
o
rk
s

Applied Log Information

client side proxy side server side

85

WebHint (Vargas et al.,
2010)

Invitation for users to access the proxy
every session

Access the proxy Client Side

WebQuilt (Hong &
Landay, 2001)

Invitation for users to access the proxy
every session

Access the proxy Proxy Side

GUITESTER (Okada &
Asahi, 1999)

Invitation for users to access the proxy
every session

Access the proxy Proxy Side

WAUTER (Balbo et al.,
2005)

Send logger application for users Run logger application
on his/her system

Client Side

WELFIT (V. F. de
Santana & Baranauskas,
2015)

Invitation for users to access the proxy
every session

Access the proxy Proxy Side

AWUSA (Tiedtke et al.,
2002)

Insertion of code into each Web page Accept the invitation
once

Client Side

WebRemUSINE
(Paganelli & Paterno,
2002)

None None Server Side

(Inversini et al., 2011) Task model definition and Insertion of
code into each Web page element to
log events

Indication of the task
being performed via one
modality

Client Side

4.3 Synthetic Data Generation

Due to the challenging nature of obtaining real log files, the use of simulation data

is quite important. In particular, simulating log files for websites with specific usability

features can serve two main purposes. First, it can be used to validate the results obtained

from the proposed automatic usability evaluation method. Second, it enables us to repeat

tests using different log files, leading to an improvement in the model's accuracy. By

simulating various scenarios, it is possible to generate synthetic data that reflects the

complexities of real-world usage data, allowing us to evaluate and refine the proposed

approach with greater confidence. Therefore, due to the critical importance of simulation

data in this study, a log file simulation model that accounts for various usability features is

presented in this section.

The present study employs a technique based on probabilistic graphical models,

with a particular emphasis on Bayesian networks. Bayesian networks are named after the

mathematician and statistician Thomas Bayes, whose work on conditional probability

made the foundation for Bayesian statistics (Koller & Friedman, 2009). A Bayesian

86

network is a graphical model that operates on probabilities. It represents a collection of

variables and their conditional relationships using a directed acyclic graph (DAG). In these

models, each variable is represented as a node in the graph, and the relationships between

variables are represented as directed edges between the nodes. The edges indicate the

conditional dependencies between the variables, where a variable is dependent on its parent

nodes in the graph and the full joint distribution of all variables in the model can be

obtained by 𝑃ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ ൌ ∏ 𝑃ሺ𝑋௜|𝑝𝑎𝑟𝑒𝑛𝑡ሺ𝑋௜ሻሻ
௡
௜ୀଵ (Koller & Friedman, 2009).

There are several reasons that make Bayesian networks a suitable tool for modeling

usability features. First, in log file analysis, we don't have much data to train the model,

and preparing a dataset is a time-consuming task. Therefore, we cannot rely on machine

learning techniques that rely on large amounts of data in their training phase such as Neural

Networks. But instead, in this domain, we have expert knowledge and heuristics which are

critical, and we can apply them in building the model. Bayesian networks can be used to

incorporate expert knowledge into the model, allowing domain experts to provide input

and guidance on the structure and parameters of the model. This can lead to more accurate

and effective models. However, it is still possible to use data in these models for learning.

Therefore, whenever new information is available, it can be used to improve the model and

adopt it with new data over time. Second, Bayesian networks are graphical models that

explicitly represent the relationships between variables, making it easy to interpret the

model and understand how different variables influence each other. Considering that our

work applies usability factors and creates a generalized model that is simplified based on

certain assumptions, this aspect holds significant importance. This feature improves the

reader's comprehensive understanding of the model, enabling them to optimize and refine

87

it for specific purposes or domains in the future. Therefore, this understanding becomes a

valuable foundation for further enhancements and advancements in the field.

Third, Bayesian networks provide a natural framework for effective reasoning

under conditions of uncertainty and making probabilistic predictions. This characteristic

proves to be particularly useful when dealing with usability attributes and human decision-

making processes, as both domains often exhibit inherent noise and uncertainties.

4.3.1 Defining a Bayesian Network Model for Data Generation

In order to generate data using a graphical Bayesian model, the first step is the

identification of model variables and their dependencies. To this aim, one should determine

how each usability feature impacts user behavior and consequently, user transactions with

the system. Thus, it is required to incorporate in the model, not only the variables that

capture the user's behavior, but also the variables that represent the website's usability

characteristics and their influence on the user's actions within the system. The variables

that determine the user's behavior in the system are those variables that can be used to

simulate the log file transactions.

During the task completion process, users may access multiple pages with varying

parameters, with each page requiring one or more actions to be performed. The website's

usability features can affect the speed of completing each action, the frequency of errors,

and the type of errors made by users. For instance, overwhelming a user with an excessive

amount of information may increase the time spent on a page, and unclear titles and labels

may lead to incorrect path selection. My analysis of user behavior has identified four

distinct categories of errors: improper usage of the back browser button, reloading the same

page due to an error or manually by user request, leaving the task incomplete, and selecting

88

an incorrect path. Four variables of 'Back', 'Loop on the Same Page', 'Incomplete', and

'Wrong Path' are added to the model respectively for each category. Although the selection

of an incorrect path has two possible outcomes, either the user may halt task completion

after one or more steps along the wrong path or revert to the correct path to resume the

task, for the sake of simplicity, only one variable will be included in the model. However,

in the implementation phase, both possible modes will be randomly added to the log file to

comprehensively capture all user behaviors.

To ensure an accurate representation of user behavior within the system, the model

requires four additional variables. The first variable, "Time," reflects the impact of usability

features on the speed of task completion. The second variable, "Correct Path," measures

the impact of usability features on the user's ability to select the correct path without any

error. The third variable, "Learning", measures the level of ease or difficulty involved in

learning the task at hand, based on the features of the website. Finally, the fourth variable,

"Remembering", reflects the positive and negative impacts of website features on the user's

ability to recall how to perform a task after a certain period of inactivity.

If a user is required to request pages A, B, C, D, E, and F from the server to complete

a task correctly, the occurrence of any of the aforementioned error categories can impact

the user's journey through the task. For example, if the user makes an error in performing

an action on page B, they may need to reload the same page from the server, resulting in a

request for page B again.

89

Table 16 illustrates an example of the requested page list in the occurrence of each

defined error category.

90

Table 16: Sample of the requested page list in the occurrence of each type of error

Correct Path ABCDEF
Loop on the Same Page ABCDEEEF
Wrong Path ABCGH

ABCGHDEF
Incomplete ABC
Back ABCDCDEF

As mentioned before, the objective is to generate a log file based on website

usability features. Therefore, to determine the second group of variables, a thorough

examination of various usability models including ISO Standard (Organizacion

Internacional de Normatizacion - ISO, 2018), Scapin & Bastien's model (1997) Shackel's

model (Shackel, 2009), and Nielsen's model (Nielsen, 1994b) was conducted. Following

this analysis, I found Scapin & Bastien's model (1997) the most appropriate for the intended

purpose. Scapin & Bastien proposed a set of usability dimensions (ergonomic criteria),

based on available experimental results and large sets of individual guidelines. This set

consists of eight main criteria (Figure 7), some of which are divided into sub-criteria

(Figure 8). To assess the reliability of this set, the authors asked a set of participants (human

factors specialists and non-specialists) to identify which criterion was violated for each

usability problem. Results show a one-to-one matching between usability problems and

criteria (i.e., all problems were diagnosed under one particular criterion), which supports

the independence of the criteria.

Figure 7: Eight main ergonomic criteria proposed by Scapin & Bastien (1997)

91

Figure 8: The sub-criteria of each of the main criteria in Figure 7. Three criteria including Consistency,

Significance of Codes, and compatibility do not have any subdivision

The primary motivation for developing the proposed Bayesian model based on

Scapin & Bastien's model is their unique approach to defining independent sets of usability

criteria and determining their hierarchical sub-criteria. As the Bayesian model establishes

conditional relationships among variables, using a set of independent groups and knowing

the relationships within each group can significantly simplify and enhance the model's

comprehensibility. Therefore, I will go through each main criterion and its sub-criteria to

find their relationship and their influence on predetermined variables including Time,

Back, Loop on the Same Page, Incomplete, Wrong Path, Correct Path, Learning, and

Remembering.

92

Guidance

The first main criterion defined in this model is 'Guidance', which pertains to

informing, advising, orienting, and instructing users through various means like messages,

labels, and alarms. Effective guidance enhances learning and system utilization, resulting

in fewer errors. As shown in Figure 8 it has 4 sub-criteria including 'Grouping', 'Prompting',

'Immediate Feedback', and 'Legibility'.

The criterion 'Grouping' concerns the distinction of items based on their visual

organization in relation to one another. It involves considering the location and graphical

characteristics of the items to indicate their relationships and differences. There are two

subcategories of 'Grouping': criterion 'Grouping by Location', which involves the relative

positioning of items, and criterion 'Grouping by Format', which involves graphical features

like color and font to indicate class membership or differences (Scapin & Bastien, 1997).

To determine the grouping value, four key factors come into play: G1 (Differences

Between Classes), G2 (Positioning of items within a class), G3 (Distinction Between

Classes), and G4 (Resemblance within a class). Eq. 1 to Eq. 4 formulates each factor.

𝐺1 ൌ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦ ௪௜௧௛ ௦௜௚௡௜௙௜௖௔௡௧ ௥௘௟௔௧௜௩௘ ௗ௜௦௧௔௡௖௘ ௙௥௢௠ ௢௧௛௘௥ ௖௟௔௦௦௘௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦
ൈ 100 Eq. 1

𝐺2 ൌ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦ ௪௜௧௛ ௖௟௢௦௘ ௥௘௟௔௧௜௩௘ ௗ௜௦௧௔௡௖௘ ௪௜௧௛௜௡ ௧௛௘ ௦௔௠௘ ௖௟௔௦௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦
ൈ 100 Eq. 2

𝐺3 ൌ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦ ௪௜௧௛ ௗ௜௦௧௜௡௖௧ ௚௥௔௣௛௜௖௔௟ ௙௘௔௧௨௥௘௦ ௙௥௢௠ ௢௧௛௘௥ ௖௟௔௦௦௘௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦
ൈ 100 Eq. 3

𝐺4 ൌ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦ ௪௜௧௛ ௦௜௠௜௟௔௥ ௚௥௔௣௛௜௖௔௟ ௙௘௔௧௨௥௘௦ ௪௜௧௛௜௡ ௧௛௘ ௦௔௠௘ ௖௟௔௦௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦
ൈ 100 Eq. 4

Having G1 to G4, Grouping can be obtained by a weighted average of these factors (Eq. 5)

𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔 ൌ ∑ 𝜔௜ ൈ 𝐺௜
ସ
௜ୀଵ Eq. 5

93

When items are presented in a well-organized and formatted manner that indicates

the similarities or differences between them and their groups, it improves the users’

understanding of a display screen and helps them not only learn their relationship(s) better

but also remember them later more easily. This resulted in adding two edges to the model

(Grouping  Learning, Grouping Remembering). Effective grouping also helps the

users to find faster what they are looking for and therefore decreases the time of achieving

their goal (Grouping  Time).

According to Scapin and Bastien's (1997) model, 'Prompting' refers to the tools

used to steer users toward certain actions, such as entering data or completing other tasks.

This criterion also encompasses any methods that assist users in understanding their

options when multiple actions are available, and it involves providing status updates about

the system's current state, as well as information about the availability and accessibility of

help resources. Because effective prompting can provide guidance and help users to learn

the system better and save users from having to memorize a sequence of commands, we

added the causal relationship between the Prompting node and both Learning and

Remembering nodes to the model (Prompting Learning, Prompting Remembering).

Moreover, good prompting reduces confusion during data entry and task completion, which

in turn reduces errors that lead to reloading the page (Prompting Loop on the Same

Page). Also, by clarifying available options, adequate prompting can prevent users from

using the back button or choosing the wrong path (PromptingBack, PromptingWrong

Path).

For better clarification, a formulation of the four principal factors of Prompting is

offered, namely P1 (Guiding Users for Action), P2 (Knowledge of Alternatives), P3

94

(Provision of Status Information), and P4=(Enhanced Help Accessibility) These factors

will be represented by Eq. 6 to Eq. 9 respectively.

𝑃ଵ ൌ
௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௪௜௧௛ ௨௦௘௥ ௚௨௜ௗ௘

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 6

𝑃ଶ ൌ
௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௥௘௩௘௔௟௜௡௚ ௔௟௟ ௔௟௧௘௥௡௔௧௜௩௘௦ ௧௢ ௧௛௘ ௨௦௘௥

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 7

𝑃ଷ ൌ
௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௔௙௧௘௥ ௪௛௜௖௛ ௧௛௘ ௨௦௘௥௦ ௞௡௢௪ ௧௛௘௜௥ ௦௧௔௧௨௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 8

𝑃ସ ൌ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௧௛௔௧ ௛௘௟௣ ௜௦ ௔௖௖௘௦௦௜௕௟௘ ௧௛௥௢௨௚௛௢௨௧

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 9

Then the Prompting can be calculated using Eq. 10 where 𝜔௜ represents the weight

assigned to each contributing factor.

𝑃𝑟𝑜𝑚𝑝𝑡𝑖𝑛𝑔 ൌ ∑ 𝜔௜ ൈ 𝑃௜
ସ
௜ୀଵ Eq. 10

'Immediate Feedback' refers to the way in which a system responds to any user's

actions from a simple keystroke to more complex series of commands. Regardless of the

action taken, the system's response should be rapid, consistent, informative, and

appropriate for the transaction being requested and its outcome. An illustrative

quantification for this variable can be represented as Eq. 11.

𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝐹𝑒𝑒𝑑𝑝𝑎𝑐𝑘 ൌ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௪௜௧௛ ௣௥௢௠௣௧ ௥௘௦௣௢௡௦௘

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 11

The quality and speed of this feedback help users to better understand how the

system functions. If feedback is not provided or there is a delay in receiving it, users may

become skeptical about the system's performance and request for unnecessary refreshing

of the page, repeat the action, or take wrong actions that disrupt ongoing processes.

95

Therefore, this has a causal relationship with the correct path node in the defined Bayesian

network model (Immediate feedback  Correct path).

The final criterion within this category is Legibility, which refers to the linguistic

features of the content displayed on the screen that could hinder or aid in the reading of the

information. We propose the formulation of this variable using Eq. 12.

𝐿𝑒𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ൌ ௡௨௠௕௘௥ ௢௙ ௟௘௚௜௕௟௘ ௜௧௘௠௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦
ൈ 100 Eq. 12

This includes factors such as character brightness, the contrast between the text and

background, font size, spacing between words, lines, and paragraphs, as well as line length.

According to Scapin and Bastien (1997), good legibility makes it easier and faster to read

the information. The link between Legibility and Time is for considering this fact in the

model (Legibility  Time).

Workload

The next main criterion is Workload, which encompasses all the interface elements

that contribute to the user's cognitive or perceptual burden. A higher workload increases

the chances of errors occurring. Furthermore, shorter actions lead to quicker interactions.

Figure 8 illustrates two sub-criteria related to Workload, including Brevity and Information

Density. The Brevity sub-criterion refers to the level of perceptual and cognitive workload

for individual inputs and outputs, or a set of inputs needed to accomplish a task. We can

introduce three key factors to quantify it: B1 (number of actions), B2 (average number of

items per action), and B3 (length of items). Obtaining B1 and B2 is straightforward.

However, when considering the length of items, it's important to note that its effect does

not increase linearly based on the number of words. To account for this, we can assume

96

that having more than seven words in an item significantly increases the error probability.

Based on this assumption, the formulation in Eq. 13 is proposed for B3.

𝐵3 ൌ ∑ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝑁௪௢௥ௗ௦, 𝑐ଵ ൌ 0.5, 𝑐ଶ ൌ 7ሻ ∗ 𝑁௪௢௥ௗ௦ ∀ ௜௧௘௠ Eq. 13

Therefore, Brevity can be computed by Eq. 14

𝐵𝑟𝑒𝑣𝑖𝑡𝑦 ൌ ∑ 𝜔௜ ൈ 𝐵௜
ଷ
௜ୀଵ Eq. 14

Good brevity implies that the entries are short and more succinct, which can reduce

not only the reading time (BrevityTime) but also the probability of making a mistake in

filling the forms (BrevityLoop on the Same Page) or getting tired to leave the task

incomplete (BrevityIncomplete). Effective brevity also means less reliance on the user's

short-term memory, which in turn increases learning and memorizing the task process

(BrevityLearning, BrevityRemembering).

The Information Density sub-criterion focuses on the user's perceptual and

cognitive workload with regard to the entire set of information presented to the users rather

than each individual element or item. To ensure an optimal information density, it is crucial

to avoid providing users with unnecessary information that increases their cognitive load,

while still presenting all the essential information they require to complete the task. Thus,

we can consider two significant factors for information density: I1 (Irrelevant Items) and

I2 (Missing Information), which are respectively defined by Eq. 15 and Eq. 16, and

Information Density can simply be calculated based on their values using Eq. 17.

𝐼1 ൌ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦ ௧௛௔௧ ௔௥௘ ௡௢௧ ௥௘௟௘௩௔௡௧ ௔௡ௗ ௖௔௡ ௕௘ ௥௘௠௢௩௘ௗ

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦
ൈ 100 Eq. 15

𝐼2 ൌ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௧௛௔௧ ௨௦௘௥ ௡௘௘ௗ௦ ௠௢௥௘ ௜௡௙௢௥௠௔௧௜௢௡ ௧௢ ௔௖௖௢௠௣௟௜௦௛ ௧௛௘௠

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 16

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ൌ ∑ 𝜔௜ ൈ 𝐼௜
ଶ
௜ୀଵ Eq. 17

97

By providing users with sufficient information without overwhelming them with

unnecessary details, they can learn to navigate the website more efficiently and effectively

(Information Density → Learning). When users have access to ample information, their

ability to make informed choices regarding the correct path increases (Information Density

→ Correct Path).

Explicit Control

The criterion Explicit Control consists of two distinct sub-criteria, E1 (Explicit User

Action), which means the computer must process only those actions requested by the user

explicitly and only when requested to do so, and E2 (User Control), which means that users

should always be able to control the system processing by interrupting, canceling, pausing,

and continuing the process. Eq. 18 and Eq. 19 are the proposed formulas for these factors

and Eq. 20 is proposed for quantifying the Explicit Control criterion.

𝐸1 ൌ ୬୳୫ୠୣ୰ ୭୤ ୟୡ୲୧୭୬ୱ ୲୦ୟ୲ ୵୧୪୪ ୠୣ ୮୰୭ୡୣୱୱୣୢ ୭୬୪୷ ୠୟୱୣୢ ୭୬ ୲୦ୣ ୳ୱୣ୰ᇱୱ ୰ୣ୯୳ୣୱ୲

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 18

𝐸2 ൌ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௧௛௔௧ ௨௦௘௥௦ ௛௔௩௘ ௔௟௟ ௞௜௡ௗ௦ ௢௙ ௖௢௡௧௥௢௟ ௢௡ ௧௛௘௠

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 19

𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ൌ ∑ 𝜔௜ ൈ 𝐸௜
ଶ
௜ୀଵ Eq. 20

When computer processing results from explicit user actions and lets them control

the interactions, users learn and understand better the application functioning and thus

diminish the probability of making errors (Explicit ControlLearning).

Adaptability

Scapin and Bastien's perspective is that a single interface cannot cater to all of its

potential users effectively. To prevent any negative consequences for the users, the

interface must adjust to suit their requirements. The ability of a system to behave

98

contextually and in accordance with the users' preferences and needs is referred to as its

Adaptability. Adaptability comprises two sub-criteria: A1 (Flexibility) and A2 (User

Experience). Flexibility pertains to the range of available methods for accomplishing a

specific objective and refers to the users' ability to customize the interface to fit their habits

and task demands. On the other hand, User Experience is concerned with the methods

available to consider the users' level of familiarity with the system. There are various

possible formulations for these two factors. However, a straightforward approach to

quantify Flexibility is by simply counting the number of ways to accomplish the task. For

User Experience, the percentage of items and actions that can be omitted for the

experienced user is considered. This is shown by Eq. 21

𝐴2 ൌ ሾଵ
ଶ
ሺே௨௠௕௘௥ ௢௙ ௜௧௘௠௦ ௧௛௔௧ ௔௥௘ ௥௘௠௢௩௘ௗ ௙௢௥ ௘௫௣௘௥௜௘௡௖௘ௗ ௨௦௘௥௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦ ௜௡ ௧௛௘ ௧௔௦௞
൅

ே௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௧௛௔௧ ௔௥௘ ௥௘௠௢௩௘ௗ ௙௢௥ ௘௫௣௘௥௜௘௡௖௘ௗ ௨௦௘௥௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௜௡ ௧௛௘ ௧௔௦௞
ሻ ൈ 100ሿ Eq. 21

Then, Adaptability will be obtained by Eq. 22

𝐴𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑦𝑡𝑦 ൌ ∑ 𝜔௜ ൈ 𝐴௜
ଶ
௜ୀଵ Eq. 22

If there are many different methods available to complete a task, then it is more

likely that a specific user will find a method that suits them. This method will be easier for

them to learn and remember over time. (AdaptabilityLearning,

AdaptabilityRemembering). Furthermore, users with varying levels of experience have

different information requirements. It may be necessary to offer inexperienced users clear

and concise step-by-step procedures that adapt the interface to their needs for simplicity

and guidance and thus reduce errors or leave tasks incomplete (AdaptabilityCorrect

Path). On the other hand, experienced users may find some procedures tedious and slow

99

down their interaction. In such cases, offering shortcuts can allow them to access system

functions more quickly (AdaptabilityTime).

Error Management

The next criterion is Error Management which is composed of three sub-criteria:

"Error Protection", "Quality of Error Messages", and "Error Correction". They respectively

refer to the ways available to prevent, decrease, and recover from errors, such as invalid

data entry, incorrect data format, or incorrect command syntax. "Error Protection" relates

to the ability to detect and avoid errors in data entry and their format, commands, or actions

that could result in harmful consequences. Two have a high Error Protection; it is required

to first prevent errors and then if an error occurred prevent destructive consequences.

Therefore, it can be quantified by computing the weighted average of two primary factors

EP1 (Error Prevention) and EP2 (Destructive Consequences) that are respectively

demonstrated by Eq. 23 and 24.

𝐸𝑃1 ൌ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௧௛௔௧ ௣௥௘௩௘௡௧ ௗ௔௧௔ ௘௡௧௥௬ ௢௥ ௖௢௠௠௔௡ௗ ௘௥௥௢௥௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 23

𝐸𝑃2 ൌ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௧௛௔௧ ௠௔௬ ௖௔௨௦௘ ௗ௘௦௧௥௨௖௧௜௩௘ ௖௢௡௦௘௤௨௡௖௘௦

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௜௡ ௧௛௘ ௧௔௦௞
ൈ 100 Eq. 24

"Quality of Error Messages" on the other hand, pertains to the phrasing and content

of error messages, including their accuracy, readability, and specificity in addressing the

nature of the error (e.g., syntax or formatting issues) and providing necessary steps to

correct it. This criterion is decomposed into four distinct factors: EQ1 (Error Message

Relevance), EQ2 (Error Messages Readability), EQ3 (Error Message Specificity), and EQ4

(Present Error Solution); each one can be defined by the following formulas:

𝐸𝑄1 ൌ ே௨௠௕௘௥ ௢௙ ௘௥௥௢௥ ௠௘௦௦௔௚௘௦ ௧௛௔௧ ௔௥௘ ௥௘௟௘௩௔௡௧ ௧௢ ௧௛௘ ௘௥௥௢௥

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௘௥௥௢௥ ௠௘௦௦௔௚௘௦
ൈ 100 Eq. 25

100

𝐸𝑄2 ൌ ே௨௠௕௘௥ ௢௙ ௘௥௥௢௥ ௠௘௦௦௔௚௘௦ ௧௛௔௧ ௔௥௘ ௥௘௔ௗ௔௕௟௘

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௘௥௥௢௥ ௠௘௦௦௔௚௘௦
ൈ 100 Eq. 26

𝐸𝑄3 ൌ ே௨௠௕௘௥ ௢௙ ௘௥௥௢௥ ௠௘௦௦௔௚௘௦ ௧௛௔௧ ௘௫௣௟௜௖௜௧௟௬ ௦௣௘௖௜௙௬ ௘௥௥௢௥

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௘௥௥௢௥ ௠௘௦௦௔௚௘௦
ൈ 100 Eq. 27

𝐸𝑄4 ൌ ே௨௠௕௘௥ ௢௙ ௘௥௥௢௥ ௠௘௦௦௔௚௘௦ ௜௡ ௔ ௧௔௦௞ ௧௛௔௧ ௣௥௘௦௘௡௧ ௦௢௟௨௧௜௢௡

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௘௥௥௢௥ ௠௘௦௦௔௚௘௦
ൈ 100 Eq. 28

The last criterion in this group is "Error Correction" (EC), which pertains to the

methods available to users for fixing their errors and can be defined by Eq. 29.

𝐸𝐶 ൌ ே௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦ ௔௟௟௢௪ ௨௦௘௥௦ ௧௢ ௖௢௥௥௘௖௧ ௣௢௧௘௡௧௜௔௟ ௘௥௥௢௥௦

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௖௧௜௢௡௦
ൈ 100 Eq. 29

Based on all the above factors, Error Management will be calculated by Eq. 30.

Error Management ൌ ∑ 𝜔௜ ൈ 𝐸𝑃௜
ଶ
௜ୀଵ ൅ ∑ 𝛼௜ ൈ 𝐸𝑄௜

ସ
௜ୀଵ ൅ 𝛽 ൈ 𝐸𝐶 Eq. 30

When Error Protection is effective, it can minimize system interruptions caused by

user errors. For instance, a website that has a strong level of error protection checks the

validity of data before transmitting it to the server and therefore reduces the same page

reloading. This imposes the "Error Management""Loop on the Same Page" relationship

to the model. Error Protection also reduces the number of interactions and time by limiting

the number of interruptions (Error ManagementTime). Moreover, it would be less

disruptive if errors can be detected in advance and corrected easily and immediately after

the occurrence. Thus, appropriate Error Protection and Correction can prevent interference

with task completion, which implies adding Error ManagementIncomplete to the model.

Moreover, the quality of error messages can enhance users' understanding of systems by

explaining the reasons for their errors and teaching them how to avoid or fix these errors

(Error ManagementLearning).

101

Significance of Codes

The criterion Significance of Codes(SoC) assesses the correlation between a term

or symbol and its intended meaning. Codes and names become meaningful to users when

there is a clear semantic connection between the code and the item or action it represents.

This criterion can be represented by Eq. 31.

𝑆𝑜𝐶 ൌ ே௨௠௕௘௥ ௢௙ ௜௧௘௠௦ ௪௜௧௛ ௡௔௠௘௦/௦௜௚௡௦ ௦௘௠௔௡௧௜௖௔௟௟௬ ௥௘௟௔௧௘ௗ ௧௢ ௧௛௘ ௥௘௙௘௥௘௡௖௘௦

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௧௘௠௦
ൈ 100 Eq. 31

Meaningful codes are easier to remember and recognize (Significance of

CodesRemembering), while non-meaningful codes or names can cause users to perform

incorrect actions, resulting in errors (Significance of CodesCorrect Path).

Consistency

The Consistency criterion pertains to the uniformity of interface design choices,

such as codes, naming conventions, formats, and procedures, across similar contexts while

ensuring that they are different in distinct contexts. Eq. 32 is proposed for defining

consistency.

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ൌ
∑ భ

೙ೠ೘್೐ೝ ೚೑ ೡೌೝ೔೐೙೟ ೚೑ ೟೓ೌ೟ ೐೗೐೘೐೙೟ ೔೙ ೌ೗೗ ೛ೌ೒೐ೞ∀ ೘೐ೌ೙೔೙೒೑ೠ೗ ೐೗೐೘೐೙೟

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௠௘௔௡௜௡௚௙௨௟ ௘௟௘௠௘௡௧௦
ൈ 100 Eq. 32

By keeping procedures, labels, and commands in a consistent format, location, and

syntax from one screen to the next and from one session to the next, users are more likely

to remember, locate, recognize, and use them effectively. Inconsistent design choices can

significantly increase search time and reduce the likelihood of errors. Furthermore, a

consistent website is more predictable, making it easier for users to learn and generalize.

Therefore, the connection (ConsistencyRemembering), (ConsistencyTime),

(ConsistencyLearning), and (ConsistencyCorrect Path) are added to the model.

102

Compatibility

Scapin and Bastien (1997) introduced Compatibility as the final main criterion

among their independent variables. They defined Compatibility as the evaluation of how

well the psychological characteristics of users (memory, perception, habits, skills, age,

expectations, etc.) match the task characteristics. However, this criterion overlaps with

other criteria such as Legibility, Workload, Significance of Code, and Adaptability. As

independent variables are being sought, the Compatibility criterion is excluded from the

proposed model.

Moreover, it is important to note that the user's experience with the system can

impact the variables of Learning and Remembering. As users become more familiar with

the system through regular usage, they are likely to learn more and recall it better.

Therefore, the edges (Number of UseLearning) and (Number of UseRemembering)

are added to the model. On the other hand, the fact that a longer time interval between

system usage causes forgetting leads us to add the (Time GapRemembering) connection

to the Bayesian network. Moreover, both Learning and Remembering can also influence

the variables of task completion speed and error rate. When a user knows how to perform

a task, they are more likely to do it quickly and without errors (Remembering  Time,

Remembering  Correct path, Learning  Time, Learning  Correct path).

The diagram presented in Figure 9 depicts all the interrelationships involved in the

complete model design. It represents the finalized Bayesian network model that will be

employed to generate log data. During this process, values for each variable associated

with the usability criteria will be selected from a predetermined truncated normal

distribution. The distribution parameters for each variable including mu, sd, α, and β can

103

be defined by usability experts and based on the formula proposed for each one of them.

Moreover, the weights of the network can be initialized by usability experts and if a

database is collected in the future, they can be improved using parameter learning methods

and based on real data.

4 127

5 6

16

28 29

26
25

3027

21 24

22 23

3231

17

20

18 19

3

1 2

15

13 14

1098 11

1-Flexibility
2-User Experience
3-Adaptability
4-Legibility
5-Grouping by Format
6-Grouping by Location
7-Grouping
8-Significance of Codes
9-Time Gap
10-Number of Use
11- Consistency
12 -Immediate feedback
13 -Explicit User Action
14-User Control
15 -Explicit Control
16-Prompting
17- Error Protection
18-Quality of Error Message
19-Error Correction
20 -Error Management
21-Information Density
22-Minimal action
23-Conciseness
24-Brevity
25-Remembering
26-Learning
27-Correct Path
28-Time
29-Back
30-Loop on the Same Page
31-Wrong Path
32-Incomplete

Figure 9: Bayesian network for modeling user behaviors based on usability features of a website

Once a random value is assigned to each usability criterion, the model will be used

to derive the possible distribution of the variables that represent the user's behavior, such

as time of performing an action (Time), clicking on back (Back), clicking on the correct

link (Correct Path), clicking on an incorrect link (Wrong Path), stopping halfway through

a task (Incomplete), and Loop on The Same Page. Subsequently, this distribution will be

used to produce the simulated log file, as outlined in the next section.

4.3.2 The Procedure of Creating Synthetic Data

 In the previous section, a model was introduced that assessed the impact of

usability features of web pages on the likelihood of performing correct or incorrect actions,

104

as well as the distribution of the required time for executing these actions. While this

information is essential for determining the user's next move, it is still insufficient for

simulating users' behavior and therefore log file transactions. For instance, if the Bayesian

model suggests that the probability of making a mistake in selecting the right path is high,

then a wrong path that represents their error must be created in the simulation process to

reflect this information. However, the question remains: how and with what pattern should

the error be added to the user's movement model? Randomly including one or more pages

to the original path to create this path does not mirror the user's behavior in the real world.

In reality, errors do not occur randomly, and various factors, including the website or

application's structure, play a crucial role in determining user path patterns. As an example,

Figure 10(a) portrays a sample sitemap. Suppose a user is undertaking a task that involves

traversing through ABCDEF and the Bayesian model indicates a high

probability of occurrence error when the user reaches page C. In such a case, Figure 10(b)

represents a list of feasible paths that the user can undertake on this website. However, a

Path like ABCKI cannot occur since there exists no link between pages C and K

or between pages K and I. Alternatively, in a different scenario, if the Bayesian model

indicates a high probability of occurrence of errors when the user reaches page E, the sole

possibility is using the back button since page F is the only page accessible based on this

website's structure.

The importance of this fact becomes evident when the objective is to identify the

task models or detect errors from using analyzing a log file. In practical scenarios, where

the user's error paths are influenced by the website's structure, a single error path may be

replicated numerous times by different users. Consequently, while automatically

105

identifying the task model, an erroneous path could be inaccurately classified as one of the

task models. However, if the simulation procedure introduces these error paths randomly

into the user's behavioral model, it would considerably simplify the identification and

elimination of errors by machine learning algorithms, and it will not encounter the

challenges of analyzing actual log files.

A

B

C

D

E

F

G

JH

I K

L

M

Task Model:
ABC DEF

User selected the wrong path on page C and halted after two steps:
ABC JKL

User selected the wrong path on page C but return after two steps:
ABC JKJCDEF

User reload the page C:
ABCC DEF

Using clicked on back button on page C:
ABCBC DEF

(a) sitemap (b) Sample of possible user’s path pattern

Figure 10: A sample sitemap and a list of possible users’ path

Hence, it is crucial to incorporate a website structure in conjunction with a Bayesian

network for log file simulation. Figure 11 outlines an algorithm that generates a

randomized website structure according to the number of tasks and the number of pages

for each task.

Therefore, this algorithm utilizes three input parameters to generate task models.

The first parameter, 'n_task,' denotes the number of tasks within the system. For each task,

the algorithm employs the second and third parameters, 'mu_Npage' and 'sd_Npage,' along

with a normal distribution to determine the number of pages to request from the server

while performing that task. The primary objective of the algorithm is to establish a set of

106

task models that adhere to a unified website structure. To accomplish this, the algorithm

initially generates a random list of pages as the task model for the first task. This list

outlines the sequence of pages that users must navigate, starting from the home page and

concluding at the final goal. However, the approach differs for subsequent tasks. For each

new task with 'Np' pages, the algorithm begins by randomly selecting one of the pages

whose depth from the root is less than 'Np.' Let's refer to this page as 'P.' Consequently, the

clickstream path for this new task is shared from the root to 'P,' while the remaining pages

form a new branch extending from 'P'.

Random Sitemap Generator (n_task, mu_Npage,sd_Npage)
sitemap = Create an empty Tree to store the website structure.
for i in range(n_task):

‐ n_page[i] = randomly assigning a value from a normal distribution with a mean (mu_Npages) and a
standard deviation (sd_Npages).

‐ Generate a random number between 1 and min(n_page[i] ‐ 1, depth of sitemap). Call this number "k".

‐ if k > 0 :
Select one of the pages in depth k of sitemap and call it parentNode

‐ Generate a list of n_page[i]‐k random URL using a combination of letters, numbers, and symbols.

‐if k > 0:
 Add this list as an out going link to parentNode

else:
Add this list to the depth 0 of the sitemap

return the sitemap

Figure 11: Random sitemap generation algorithm2

It should be noted that this algorithm does not claim to generate all types of

sitemaps or statistically accurate sitemaps reflective of real-world scenarios. However, this

is not a requisite for the purposes of this study as well. The primary objective is to have a

structure that enables the inclusion of errors into the model based on it.

2 Implementation of this algorithm is available at GitHub

107

Figure 12 shows two examples of sitemaps created by the above algorithm for 5

tasks while the number of pages follows a normal distribution characterized by a mean of

four and a standard deviation of two.

A

B

C

D

E

F

I

G

H

J

K

L

M

N

O

I

J

A

B

C

D

H

E

I

J

F

G

K

L

M

N

O

P

Figure 12: Sample Sitemap created by algorithm represented in Figure 11

Having all the essential tools, the log file simulation is executed in accordance with

the following meticulously designed process:

1. Generate a random sitemap based on the task count.

2. Assign usability features randomly to each page in the sitemap, based on their

predetermined distributions.

3. Randomly select the number of roles, the number of users associated with each

role, and the activity frequency of each role in the system, with predefined

distributions.

4. Determine the distribution of performing each task by each role.

5. Randomly select a role based on its activity frequency in the system.

6. Randomly select a user from the pool of users assigned to the selected role.

108

7. Randomly select a task for the user, based on the distribution of task

performance for the user's role.

8. Select the entrance time based on exponential distribution with parameter 𝝀

and the time of the previous entrance.

9. Set the page equal to the first page of the task.

10. Feed the user and page information into the Bayesian network to determine

the next move of the user.

11. Based on the user's move determined in step 9 and the sitemap, select the next

page that the user will request.

12. Repeat steps 9 and 10 until the task is completed or the user leaves the task

incomplete.

13. For each page visited by the user, create a transaction.

14. Sort all transactions based on their time in save the result in the log file.3

In this process, the user login events occur continuously and independently at a

constant average rate, following a Poisson point process. Therefore, to determine the time

interval between two consecutive logins, an exponential distribution is utilized. A single

parameter, 𝝀, has been used for all types of tasks. However, it is also possible to define

different parameters based on the selected task in the previous step, considering the varying

time occurrence distribution of tasks within the system.

3 The implementation of this algorithm is available in GitHub

109

4.3.3 Results

An example of the created log file is shown in Figure 13. As you can see, instead

of registering the IP address, the IP code is used and instead of registering the complete

HTML link of the page, a randomly generated name is used to determine each page.

Replacing these codes with random IP addresses or HTML links is very straightforward.

However, for the sake of readability, the step of replacing them is omitted.

In addition, to enhance the possibility of incorporating geographic information and

researching on user locations, creating a dataset of random IP addresses and their allocated

locations is suggested. Then, when selecting a user, we can consider the distribution of

users' activities across various locations to choose a corresponding user to carry out the

task.

In an Apache access log file, there are two other fields that are omitted in the final

result: (1) the size of the response sent back to the client and (2) the User-Agent string,

which provides detailed information about the web browser or client software used by the

user to access the web page and its version.

The determination of whether to record the "POST" or "GET" method for each

transaction is based on the page specification. If the page includes forms that require the

user to input and submit data to the server, the "POST" method will be used. On the other

hand, if the user intends to retrieve information from the server without submitting any

data, the "GET" method will be recorded for the transaction.

110

Figure 13: Sample of the synthetic log file

Figure 14 illustrates the impact of website structure on users' actions, by comparing

two different website structures. The first structure features a simpler design, with fewer

outgoing links on each page. The degree of each node in the sitemap graph directly reflects

the number of outgoing links found on each page. In this structure, the degree of each node

in the sitemap graph which represents the number of outgoing links, is a maximum of 3

with an average degree of 1.02. Tasks within this structure typically span around 7 pages,

indicating that users, on average, navigate through 7 pages to complete a task.

On the other hand, the complex structure showcases a more intricate design with a

maximum degree of 10 and an average degree of 5.51 for each node in the sitemap graph.

Despite the structural complexity, the average task length remains the same at 7 steps. In

both cases, the first 1000 user transactions on the websites were examined, monitoring user

actions such as back button usage, page reloads (loops), incorrect path choices, and

incomplete task performances. Considering that if none of these actions are performed by

the users, they have inevitably chosen the correct path, counting and displaying the number

111

of correct path choices in the result was excluded, assuming that any uncounted action

implied the user had chosen the correct path.

Figure 14:Effect of website structure on users' actions

To ensure fairness, the usability specifications of all pages on both websites are

fixed and similar by employing the same probability distribution for all pages. Usability

specifications that reflect a suboptimal design were incorporated to amplify the likelihood

of user errors and to highlight the impact of the website structure. Figure 14 clearly

demonstrates that the complex structure leads to a nearly five-fold increase in incorrect

path choices. Similarly, there is a notable rise in both incomplete tasks and back button

usage. This outcome aligns with logical reasoning since whenever users deviate from the

correct path, they must retrace their steps or abandon the task altogether. To rectify their

course, users may rely on the back button or explore alternative links that redirect them to

the appropriate pages, ensuring they resume their intended path. Consequently, the upward

112

trend in incorrect path choices correlates with heightened back button usage and a greater

occurrence of incomplete paths.

 Furthermore, it is worth noting that the occurrence of page reloading remains

relatively consistent across both structures, with a slightly higher incidence observed in the

simpler structure, which may be due to the randomness of the user's choices. This result is

acceptable because the website's structure itself does not directly impact the frequency of

page reload requests or loops on the same page. In fact, page reloading commonly arises

when users encounter errors while completing form submissions or manually refreshing

pages due to a lack of expected response. Hence, it can be inferred that page reloading is

predominantly influenced by the usability features of individual pages rather than the

overall website structure.

The third experiment delves into examining the influence of three selected usability

features on users' actions (Figure 15 (a, b, c)) and the overall completion time of activities

(Figure 15 (d)). To conduct this test, a fixed page is employed to isolate and evaluate the

impact of each individual usability feature, while all other usability aspects remain

consistent. The first test focuses on exploring the significance of Code (SoC), the second

on Prompting, and the third on Error Protection.

Considering the formulas assigned to each feature (Eq. 31, Eq. 10, and Eq. 23 &

24, respectively), their values are represented as a percentage, ranging from 0 to 100. To

comprehensively assess their effects, specific values of 20%, 40%, 60%, 80%, and 100%

are employed for each attribute. Furthermore, the experiments elucidate how modifications

in each of these features influence the time required to complete a single step of a task,

specifically referring to the completion of an operation performed on a single page. These

113

results provide valuable insights into the relationship between usability features and task

completion performance.

Each graph's y-axis represents the mean value derived from the normal distribution

of user actions obtained through the implementation of the designed Bayesian network.

The Bayesian network model functions by obtaining the probability distribution of each

variable, where in this dissertation’s model, the variable corresponds to the likelihood of a

specific user action being performed. This probability distribution is determined based on

other observed variables and model parameters.

Hence, to determine which specific action will be performed by the user among the

available options, a random value is extracted from the respective probability distribution

associated with each action in the Bayesian network. This extracted value represents the

probability of executing the corresponding action. Ultimately, the action with the highest

probability is chosen as the final outcome. For instance, in the first experiment, when the

significance of code is set to 20%, the mean value of the normal distribution for the correct

path is comparatively lower than that of wrong path choices and loops on the same page.

Consequently, when a number is randomly sampled from these distributions, there is a

higher probability of selecting either a wrong path or a loop on the same page. Conversely,

when the significance of code increases to 100% while keeping other features constant, the

probability of successfully following the correct path is expected to notably increase.

114

Figure 15: Effect of three selected usability attributes on users' actions (a,b,c) and four selected attributes on task

completion time(d)

The results depicted in Figure 15 were obtained using predetermined values for

both other usability features and model parameters. Consequently, modifying these

parameters can alter the slope and characteristics of the presented plots. To ensure the

reliability and relevance of our findings, extensive testing was performed, and the

parameters were carefully adjusted in collaboration with 2 web designers and one usability

expert. This iterative process helps ensure that the obtained results align with expectations

within the field.

As illustrated in Figure 15 (d), incremental enhancements in SoC, Error Protection,

and Prompting lead to slight improvements in task completion time. The range of

completion time decreases from 80-60 seconds to 60-40 seconds as these variables are

115

refined. Considering that these three attributes have almost the same multiplier effect on

reducing the task time, to verify the accuracy of the model, the impact of Grouping on task

completion time was also examined. It becomes evident that improving Grouping

significantly reduces the overall task completion time from 120 to 40 seconds. This

outcome aligns with logical reasoning since a cluttered and chaotic design necessitates

users spending considerable time searching for desired buttons and links. By implementing

effective Grouping and organization strategies, users can swiftly locate relevant elements,

resulting in a substantial reduction in task completion duration.

4.4 Real data

In addition to the synthesized data, testing on real data is also essential to assess the

performance of the presented methods. To this aim, various real log data samples have

been studied such as those from GitHub, Kegel, or different universities. A sample of these

datasets are listed in Table 17. However, their usage for the intended purpose of this

dissertation can be challenging due to their certain limitations. For instance, some data are

restricted to a short time period or do not possess sufficient transactional data to perform

the desired methods. Additionally, some source websites may not be accessible, or the

available access logs may not be up-to-date, which makes it difficult or even impossible to

compare the manual and traditional usability evaluation methods of the website with the

outcome of automatic usability evaluation. Moreover, if these data are used, it is not

feasible to make modifications to the website, define tasks for users, and collect log files

associated with these changes and tasks. To overcome these limitations, I have developed

a website called Learninjawebsite.com, which provides easy access to its log file whenever

needed.

116

Table 17: Sample of publicly available access log dataset

Website title Description Access Link

NASA-HTTP Two months of all HTTP requests to the NASA
Kennedy Space Center WWW server in Florida

https://www.kaggle.com/datasets
/souhagaa/nasa-access-log-
dataset

Calgary-HTTP Approximately one year's worth of all HTTP
requests to the University of Calgary's
Department of Computer Science WWW
server located in Calgary, Alberta, Canada.

https://ita.ee.lbl.gov/html/contrib
/ClarkNet-HTTP.html

Saskatchewan-
HTTP

 Seven months of all HTTP requests to the
University of Saskatchewan's WWW server.
The University of Saskatchewan is located in
Saskatoon, Saskatchewan, Canada.

https://ita.ee.lbl.gov/html/contrib
/Sask-HTTP.html

UC Berkeley
Home IP Web
Traces

This dataset consists of 18 days' worth of
HTTP traces gathered from the Home
IP service offered by UC Berkeley to its
students, faculty, and staff Home IP provides.

https://ita.ee.lbl.gov/html/contrib
/UCB.home-IP-HTTP.html

Online
Shopping Store

Nginx server access log for an online shopping
store (2018-12-10)

https://dataverse.harvard.edu/dat
aset.xhtml?persistentId=doi:10.7
910/DVN/3QBYB5

 The Learninja website offers four different roles, including public user, student,

instructor, and site administrator. Public users have access to a variety of pages, such as

Home, About, Contact Us, and All Courses. They can also search for courses based on

their titles, categories, levels, and creator names, and send messages via the website.

Furthermore, public users can register as students or instructors, granting them access to

additional features. As a student, a user can enroll in courses, save courses to their wish

list, complete courses and quizzes, ask questions in the course forum, and rate registered

courses. Similarly, registered teachers, after approval from the site administrator, can

define new courses and new categories, create quizzes for their courses, conduct polls on

the lessons, and respond to questions in their course forums. The site administrator has the

power to approve teachers, edit website information, reply to messages, and manage

student and teacher accounts, along with defined courses and categories. Additionally, all

117

registered users have the ability to view and modify their profile information. Figure 16

and Figure 17 show two sample screenshots of this website.

Figure 16: Home page of learninjawebsite.com

Figure 17: All Courses page of learninjawebsite.com and available filter for search

This website was created on Jan 2023 and has been available to the public since Feb 2023.

So far, 261 people are registered as a student, and 33 people are registered as an instructor.

As a proof of concept, 10 tasks shown in Appendix A were defined and given to

students to perform with the web site. Each person was asked to complete two or three

118

tasks from the list. This data collection was approved by the University of Louisville’s

Institutional Review Board (IRB); the informed consent is provided in Appendix B.

Several tools such as Awstats, Webalizer, and Google Analytics are utilized to

monitor and perform primitive analyses on recorded information in the log file. Figure 18

shows a sample report obtained by Awstats which represents visiting information (from

the beginning of Feb 2023 to mid Oct 2023). As evident from Figure 18, the data for

February exhibits notable differences from the other months. This discrepancy is attributed

to the website's development and launch during this period, resulting in a surge of content

and page creation activities. Consequently, for subsequent analyses, the data for this month

was excluded. Furthermore, the transaction volume for the months of March and July

exceeds that of the other months. This can be attributed to the allocation of specific tasks

to a group of students during these months, with each student assigned particular

responsibilities. The data from these months will be given greater consideration in the

subsequent stages of analysis and evaluation.

119

Figure 18: Summary of AWstats report on LearninjaWebsite.com logfile after excluding bots or spiders

The final dataset consists of 128078 records related to 3655 visits. On average,

users had a click length of 12, and the typical time spent by users in a session was 315

seconds. Summary information of this log file is presented in Table 18.

Table 18: Summary information of logfile of learnInjaWebsite.com

Total number of records in log file 128078
Total number of distinct IP addresses 1232
Average pages per visit 12
Average session time 315(s)

120

CHAPTER 5

 IMPLEMENTATION OF AUTOMATIC USABILITY EVALUATION

FRAMEWORK

5.1 Introduction

In the previous chapters, we have thoroughly underscored the significance and

relevance of the research topic at hand. It is now imperative to delve deeper into the

intricacies of implementing the proposed approach, including the detailed characterization

of real and synthesized data, the essential pre-processing steps, methodological

considerations, and modeling approaches. Subsequently, I will ascertain the efficacy of this

approach by formulating a series of experiments and evaluating the outcomes.

The primary objective of this dissertation is to present a comprehensive

methodology for the automated evaluation of interactive systems' usability via log files.

This chapter will first introduce a general framework in Section 5.2 that can be applied for

any type of log file as input and produce any usability attribute as output. However, to

restrict the scope of the project, the implementation step will later exclusively concentrate

on server log files as input and learnability metrics as the output.

In the subsequent sections of this chapter, we adhere to the presented framework

and provide an in-depth explanation of the method's implementation. Section 5.3 elucidates

the data preparation and preprocessing steps. Following the completion of preprocessing,

121

the data proceeds to the phase of knowledge discovery and analysis, aimed at extracting

relevant usability metrics.

Section 5.4 elaborates on the proposed two-step approach for knowledge

extraction. This section's objective is to cluster the records from the log file, aligning them

with the user's intended task. Once the task association of each sequence of transactions or

visited pages is established, subsequent knowledge analysis such as error analysis and time

analysis for each task becomes more streamlined. Then, in Section 5.4.1, a range of metrics

is specified that can be extracted from the log files, along with their respective calculation

algorithms. Finally, the experiments, evaluation, and validation of results are presented in

Section 5.6 to determine the accuracy and effectiveness of the proposed method.

5.2 The Proposed Framework

The proposed framework, as illustrated in Figure 19, builds upon the web usage

mining procedure outlined in Section 3.3. I have introduced an additional step to this

framework, specifically for modeling usability attributes, in order to separate this more

targeted analysis from other intermediate knowledge analyses. Therefore, this model

comprises five main phases including Data Collection, Preprocessing, Knowledge

Discovery, Knowledge Analysis, and Data Modeling.

- Data Collection involves gathering real log files from various sources such as

clients, proxy servers, and web servers, in addition to generating synthetic log

data. The process of generating synthetic server log files is detailed in the

previous chapter.

- The preprocessing procedure is highly dependent on the type of log file being

used. For example, the preprocessing required for application log files may

122

differ from that for web log files. Even web log files from different sources may

not have identical preprocessing steps. For instance, client log files require log

file retrieval as the first preprocessing step in order to collect log files from

different clients. On the other hand, they do not undergo the path completion

step mentioned in Section 3.3.1., as no interaction is lost due to the caching

process.

Therefore, to maintain the generality of this model that can be applied to all

types of log files, I have included only the least options that are common among

all types of log files as preprocessing steps including Data Fusion or

aggregation, Parsing, Data Cleaning, Normalization, Filtering, and Data

Formatting. However, higher levels of preprocessing can still be incorporated

into this model through the loop in the model and repetitive execution of steps

3 and 4.

123

Data Collection Preprocessing
Knowledge
Discovery

Knowledge
Analysis

Client‐Side log

Server‐Side log

Proxy‐Side log

Data Fusion

Data Cleaning

Normalization

Association Rules

Sequential Pattern
Analysis

Clustering

Classification

Dependency
Modeling

Descriptive
Statistical Analysis

Data and
Knowledge
Querying

Data
Formatting

Parsing

Filtering

Data Modeling

Matematical
modeling

U
sab

ility M
e
trics

Quantitative estimation of
Usability Attributes

 Intermediate Pattern
Analysis Results

P
rep

ro
ce
ssed

 lo
g
 d
ata

A
n
y co

m
b
in
a
tio

n
 o
f lo

g
 d
ata

Application log

Figure 19: Proposed methodology for automatic usability evaluation using log files

- Knowledge Discovery is the third step that involves the knowledge

extraction process, which entails performing a series of operations and

processes on the log files to calculate the value of various usability metrics.

Similar to Step 3 in web usage mining, these operations can be a combination

of methods categorized into association rules, sequential pattern recognition,

dependency modeling, clustering, and classification. The proposed methods for

knowledge discovery of this study is described in Section 05.4

- After extracting the necessary information for calculating desired metrics, the

next step is Knowledge Analysis in order to interpret this information and use

it to derive the numerical value of the metrics. For instance, if the goal is to

determine the "time on tasks" metric, in the knowledge discovery step (Step 3),

task models can be automatically extracted or predetermined by the usability

124

expert. Then, all the actions performed in the system can be categorized and

labeled according to these tasks. However, it is the responsibility of the

knowledge analysis step to calculate the duration time of each task instance

using a database query and then interpret these values and convert them into a

single number as the time on task value. This can be achieved through various

methods such as considering the maximum time, the mode value in reported

times, or the average time after removing outliers (Figure 20). The knowledge

analysis methodology is elaborated in Section 5.4.1

Knowledge
Discovery

Knowledge
Analysis

Sequential
Pattern Analysis

Classification

Database of preprocessed
log information

Database of preprocessed
log information

Tasks model
database

Frequent
Sequential
Patterns

Tasks label of
each action
sequence

Time of tasks

Time of performing
each task instance

Figure 20: The procedure of calculating the "time on task" metric

Finally, the last step is Data Modeling, which receives the value of different

usability metrics and determines the value of usability attributes such as efficiency,

effectiveness, learnability, memorability, and user satisfaction. This mathematical model

can be obtained by various methods from completely manually by heuristic and expert

knowledge to completely automatically using various machine learning methods such as

regression analysis, genetic algorithms, neural networks, and Bayesian networks. This

125

dissertation does not focus on the modeling of usability attributes. Therefore, it concludes

its scope at the fourth stage of the presented framework.

5.3 Data preparation

From all possible data preprocessing steps explained in Section 5.2, the following

steps have been taken for log data preprocessing and preparation:

1) Remove all false visiting records in the log file

a. Remove duplicate entries.

b. Remove all records with incomplete or nonstandard HTTP headers:

Because bots may not always provide complete HTTP headers, or use

non-standard headers, we can check for inconsistencies or missing headers

in the log entries to identify bots or crawlers.

c. Some bots and crawlers respect the rules set in the "robots.txt" file or the

"robots" meta tag on our website. Therefore, we can simply recognize

records related to these bots and remove them.

d. Identify and remove all visits from known suspicious IP addresses.

e. Remove all single interaction visits. A single interaction visit indicates

that visitor is not finding what they expected or that the page did not

engage or fulfill their needs, so they abandon the website without

performing any task.

f. Remove requests for non-web page resources like images, stylesheets,

scripts, or video files. These resources are often not directly relevant to our

aim for user path analysis, and they can clutter the data and make analysis

more complex. However, there may be cases where we want to analyze

126

the paths leading to specific resources, so we may keep those relevant

records.

2) IP address-based segmentation: Grouping log file entries into separate sets of

visitor records based on users' IP addresses.

3) Session identification and reconstruction which involves the following steps:

a. Arranging all records in chronological order according to their visit times.

b. Detecting and extracting customer sessions from the visitor record

collection. If the time gap between two consecutive visiting records is

more than the specified time threshold (20 minutes), they are recognized

as different customer sessions.

Table 19 presents the refined dataset, after the removal of false visit records and

non-web page entries.

Table 19: Summary of dataset after preprocessing steps

35,766 Number of Records

2103 Number of Sessions

701Number of Unique IP address

17Number of pages per visit

716 Average Session Time

5.4 Knowledge Discovery

To derive usability metrics and measurements from the recorded log file data,

several steps are necessary. Following log file preprocessing and the extraction of web

request streams within each session, the initial phase involves discerning the user's

127

intended tasks for each session. This scenario aligns with unsupervised learning problems,

with sequential data. The primary objective is to assign task labels to the relevant segments

of the web request streams. An assumption is that task models have been pre-established.

In other words, for each task, the sequence of required web requests from initiation to

completion has been specified. However, in situations where task models are not available,

it becomes necessary to extract them from the log file by recognizing frequent patterns.

A two-step hierarchical clustering approach has been introduced to achieve this

goal (Figure 21). In the initial phase, the focus lies in identifying sessions devoted to a

single task with a reasonable rate of task execution errors. This step enables the creation of

a labeled dataset of web request sequences (or page view sequence) for each task that will

later help to train the model in the next step.

128

Web sessions (page
request stream)Task Models

Grouping Based on predefined Similarity Distance and
threshold t

Sessions
labeled with
task model 1

Sessions
labeled with
task model 2

Sessions
labeled with
task model m

Unlabeled
Sessions ...

Train HMM Model

New labeled Page
view Streams

Initial
HMM
Model

Trained
HMM
Model

Decoding
Web Session
Using HMM

Step 1

Step 2
Task Models

Website
Structure

Figure 21: two-step hierarchical clustering approach for extracting page view sequence related to each task.

The second step leverages Hidden Markov Models (HMMs) to cluster the

remaining unlabeled sessions. First, we construct an initial HMM model for each task based

on its predefined task model and the website's structure. Subsequently, these models are

trained using the labeled sequences from the first step. Further details regarding the

creation of this model are explained in Section 5.4.1.

In the final step, the HMM model is utilized to cluster sessions that remained

unlabeled in the preceding stage. To refine the model during the clustering of new sessions

and provide an incremental learning method, sessions are grouped into batches of 100.

129

Following the clustering of each batch, the freshly labeled data are employed to retrain and

update the HMM models.

5.4.1 Step 1: Grouping based on Similarity Distance

In the approach represented in Figure 21, the initial step involves clustering sessions

into pre-defined task models. During this phase, the focus is solely on identifying sessions

that bear a strong resemblance to one of these task models. Hence, it's likely to pinpoint

sessions where users predominantly engage in a single task, and the occurrence of errors

in these sessions is relatively minimal. This enables confidence in assigning a specific task

label to such sessions. To facilitate this process, the selection of a suitable distance metric

becomes crucial. In this context, three distinct distance measures have been taken into

account.

1) Common Subsequences:

This metric, which is borrowed from Wang et al. (2013) and Inspired by the Jaccard

Coefficient (Levandowsky & Winter, 1971), involves identifying shared subsequences of

a specific length (k) between two streams of page views. A page view stream can be defined

as a sequence P, represented as 𝑃 ൌ ሺ𝑝ଵ, 𝑝ଶ, … ,𝑝௡ሻ, where 𝑝௜ represents the ith page in the

sequence. To formalize this, Tk is introduced as the collection of all possible k-grams

(consecutive sequences of k pages) within sequence P: 𝑇௞ሺ𝑃ሻ ൌ ሼ𝑘-𝑔𝑟𝑎𝑚|𝑘-𝑔𝑟𝑎𝑚 ൌ

ሺ𝑝௜𝑝௜ାଵ … 𝑝௜ା௞ିଵሻ, 𝑖 ∈ ሾ1,𝑛 ൅ 1 െ 𝑘ሿሽ. Ultimately, the distance between two sequences is

calculated based on the count of shared subsequences between the two sequences. we

establish the distance between sequences P1 and P2 as follows.

𝐷௞ሺ𝑃ଵ,𝑃ଶሻ ൌ 1 െ
|𝑇௞ሺ𝑃ଵሻ ∩ 𝑇௞ሺ𝑃ଶሻ|
|𝑇௞ሺ𝑃ଵሻ ∪ 𝑇௞ሺ𝑃ଶሻ|

2) Levenshtein distance (Edit Distance)

130

This is a string metric for measuring the dissimilarity between two sequences. It

quantifies the smallest number of necessary single-character modifications, (insertions,

deletions, or substitutions), required to transform one string into another. Originally

developed for assessing string similarity, the Levenshtein Distance can also be effectively

employed in the context of other sequences, such as DNA sequences, page view streams

or click streams. Kumar, Vibha, & Venugopal (2016) have leveraged a modified version

of the Levenshtein distance to cluster web sessions. This distance can be formulized as

follows:

𝐷௟௘௩ሺ𝑃ଵ,𝑃ଶሻ ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧

|𝑃ଵ| 𝑖𝑓 |𝑃ଶ| ൌ 0,
|𝑃ଶ| 𝑖𝑓 |𝑃ଵ| ൌ 0,
𝐷௟௘௩ሺ𝑡𝑎𝑖𝑙ሺ𝑃ଵሻ, 𝑡𝑎𝑖𝑙ሺ𝑃ଶሻሻ 𝑖𝑓 ℎ𝑒𝑎𝑑ሺ𝑃ଵሻ ൌ ℎ𝑒𝑎𝑑ሺ𝑃ଶሻ

1 ൅ minቐ
𝐷௟௘௩ሺ𝑡𝑎𝑖𝑙ሺ𝑃ଵሻ,𝑃ଶሻ
𝐷௟௘௩ሺ𝑃ଵ, 𝑡𝑎𝑖𝑙ሺ𝑃ଶሻሻ
𝐷௟௘௩ሺ𝑡𝑎𝑖𝑙ሺ𝑃ଵሻ, 𝑡𝑎𝑖𝑙ሺ𝑃ଶሻሻ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3) McBride Quimby Shih(MQS) Distance

This metric is described by McBride, Quimby, & Shih, (2005) and is an adaptation

of the Levenshtein Distance, specifically tailored for its application in path analysis. This

article introduces two key modifications to enhance its relevance.

In the first adjustment, the authors highlight that distinctions in shorter paths (e.g.,

AA and AB) carry more significance than those in longer paths (e.g., two paths with 20

requests, differing in just one). To account for this, they normalize the computed distance

by dividing it by the average length of the two paths (P1 and P2). This normalization

effectively scales the calculated distance in accordance with the lengths of the paths. The

second change is to consider the repetition between the nodes within a path. The authors

emphasize that although the Levenshtein distances between path ABB and the two paths

131

ABCDCB and ABABAB might be identical, paths that predominantly traverse the same

nodes inherently share a greater degree of similarity compared to those exploring

significantly distinct sets of nodes. To account for this, an additional condition has been

introduced for the insertion, deletion, and substitution of nodes. Specifically, if the symbol

to be added, removed, or replaced exists in both input strings, the edit cost is set at one.

However, if the symbol is exclusive to one of the original strings, the edit cost is elevated

to two.

5.4.2 Step 2: Clustering Using an HMM model

Hidden Markov Models (HMMs) are used in different areas where the aim is to

figure out a sequence of data that we can't see directly. Instead, we can observe other data

that rely on this hidden sequence; it is like solving a puzzle where we can only see some

pieces, but we need to guess and piece together the whole picture.

HMM is a well-established and extensively utilized statistical method for

characterizing spectral properties in various domains. It offers notable advantages such as

a short algorithm and high detection accuracy and has been successfully applied to various

domains such as signal processing, natural language processing, image processing, pattern

recognition, and web mining.

For example, Xia & Tingjie (2009) proposed an intelligent predicting model based

on the hidden Markov model (HMM), which mines the latent information requirement

concepts that exists in the customer visiting path and makes business information

predicting decisions. Moreover, classification of visitors based on click-streams is a

reasonably well explored area. Markov chains and Hidden Markov models (HMMs) are

commonly applied to model click data. Scott & Hann (2006) classified visitor sessions into

132

one of predefined categories, namely decisive shoppers, deliberators, and never buyers,

with a nested HMM. In this approach, the higher level HMM models visit across sessions,

while the nested lower level HMM captures clicks in a given session. HMMs are also used

by Ypma & Heskes (2003) to categorize web-pages. Further, they clustered users based on

the observed click-streams.

In another study, Cao, Qiao, & Lyu (2017) proposed an anomaly detection system

for web log files, which adopts a two-level machine learning algorithm. This paper first

preprocessed the log files by applying decision tree algorithms based on patterns by rule

set. The decision tree model classifies normal and anomalous data sets. Then, it models the

normal data set by using HMM to build a model that can represent normal data status as

the abnormity detector.

5.4.2.1 HMM Description

A Markov chain is a valuable tool in situations where we need to calculate the

likelihood of a sequence of observable events. However, in numerous scenarios related to

web mining and log file analysis, the events of interest are concealed or not directly

observed. For instance, when examining log files, we typically don't directly observe user

behaviors or specific actions. Instead, we observe log entries, and we need to deduce the

underlying user actions or patterns from these log entries. In this context, we refer to the

user actions or behaviors as "hidden" because they are not directly observable in the log

files. (Xia & Tingjie, 2009).

A hidden Markov model (HMM), proposed first by Baum and his colleagues in the

late 60s, is a stochastic process built upon the foundation of a Markov chain. It provides a

framework for discussing both observable events (such as log entries in the input data) and

133

unobservable events (like underlying user behaviors or actions) that are considered as

influencing factors in the probabilistic model. The main idea is that an HMM is a finite

model designed to represent the probability distribution across an infinite array of potential

sequences (Eddy, 1996).

An HMM is specified by the following components λ =(Q,A,O,B, π)

- Q: a set of n states in the model. The individual states are labeled as

{1,2,…,n} and denote the state at time t as 𝑞௧.

- A: a transition probability matrix, 𝐴 ൌ ൛𝑎௜௝ൟ where each 𝑎௜௝ represents the

probability of moving from state i to state j, s.t. ∑ 𝑎௜௝
௡
௜ୀଵ ൌ 1

𝑎௜௝ ൌ 𝑃ሾ𝑞௧ାଵ ൌ 𝑗|𝑞௧ ൌ 𝑖ሿ

- O: a sequence of m distinct observation symbols per state. The individual

symbols are denoted as ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௠ሽ

- B: a sequence of observation likelihoods 𝐵 ൌ ሼ𝑏௜ሺ𝑘ሻሽ, in which

𝑏௜ሺ𝑘ሻ ൌ 𝑃ሾ𝑜௧ ൌ 𝑣௞|𝑞௧ ൌ 𝑖ሿ 1 ൑ 𝑘 ൑ 𝑚

This is also called emission probabilities, each expressing the

probability of an observation 𝑜௧ being generated from a state i.

- The initial state distribution 𝜋 ൌ ሼ𝜋௜ሽ, in which 𝜋௜ ൌ 𝑃ሺ𝑞ଵ ൌ 𝑖ሻ 1 ൑ 𝑖 ൑ 𝑛.

𝜋௜ is the probability that the Markov chain will start in state i. Some

states j may have πj = 0, meaning that they cannot be initial states.

Also∑ 𝜋௜ ൌ 1௡
௜ୀଵ

Based on a tutorial by Rabiner (1989) hidden Markov models should be defined by

three core challenges or fundamental problems:

134

- Problem 1 (Likelihood): Given an HMM λ =(A,B, π) and an observation

sequence O, determine the likelihood P(O|λ).

- Problem 2 (Decoding): Given an observation sequence O and an HMM λ =

(A,B), discover the best hidden state sequence Q.

- Problem 3 (Learning): Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.

In this specific scenario, the challenges primarily align with Problem 3 (Learning)

before transitioning into Problem 2 (Decoding).

5.4.2.2 Problem Formulation

As previously mentioned, in order to define the Hidden Markov Model (HMM) for

a given problem, we must specify five essential components denoted as λ = (Q, A, O, B,

π).

 States of the model (Q):

Within this model, a distinct part is established for each task. Consequently, each

step of the task's execution introduces a state to the model. Figure 22 represents the part of

model related to task t which involves N(t) steps.

In cases where the number of steps required to complete a task becomes

considerably large, potentially complicating the model, it is possible to group steps

together. This involves defining a step to encompass multiple page views, instead of

assigning a single step for each individual page view.

135

S1
t S2

t SN(t)

tStart EndS3
t ...

Figure 22: The part of model related to task t which involves N(t) steps

Furthermore, to account for scenarios in which users engage with the website

randomly, without a specific task in mind, a new part to the model is introduced that enables

browsing through the website's primary pages. Figure 23 shows this part of the model. For

the selection of the top K pages, we identify the most frequently visited page (or category)

on the website based on information extracted from the log file.

S1
B S2

B Sk
BStart EndS3

B ...

Figure 23: part of the model that relates to random website browsing

An initial state and a final state have also been added within the model to specify

the start and end of tasks. Consequently, the set Q is defined as follows:

𝑄 ൌ ሼ𝑆𝑡𝑎𝑟𝑡,𝐸𝑁𝐷, 𝑆ଵ
ଵ, … , 𝑆ேሺଵሻ

ଵ , … , 𝑆ଵ
ே೟ೌೞೖ , … , 𝑆ேሺே೟ೌೞೖሻ

ே೟ೌೞೖ , 𝑆ଵ
஻, … , 𝑆௄

஻ሽ

Given 𝑁௧௔௦௞ as the total number of tasks on the website and N(t) as the number of

steps necessary to complete task t, the count of model hidden states (N) is determined as

follows:

136

𝑁 ൌ 𝐾 ൅ 2 ൅ ෍ 𝑁ሺ𝑡ሻ

ே೟ೌೞೖ

௧ୀଵ

 Observations (O):

In this problem, the observations are the records stored in the log file. Considering

that the focus is on requests related to page views, the number of O states is equal to the

total count of website pages. However, given that websites frequently feature a very large

number of web pages, they can be effectively grouped and categorized, streamlining the

observation process according to the page categories requested.

 Transition probability matrix (A):

In the process of establishing the transition probability matrix, the HMM model can

be acquired through data from the preceding step. However, there may be cases where

some tasks lack any instances, or the available labeled sessions are insufficient to

effectively learn the HMM model. Consequently, all tasks are classified into two

categories. The first group comprises tasks that have obtained more than R labeled sessions

(or page sequences). The second group encompasses tasks for which the count of identified

page sequences falls below R (Figure 24). In this context, the threshold value R is set to

30, taking into account both the number of sessions in the log file and the complexity of

the task.

137

Tasks in Group 1 Tasks in Group 2

Figure 24: All tasks will be categorized into two groups based on whether the number of labeled

sessions for each task is below or above the specified threshold value, denoted as R

The proposed approach involves initially constructing a model for tasks in the first

group. Subsequently, utilizing the transition probabilities obtained from group 1, the initial

model for the tasks in the second group is established. This method stems from the

understanding that, although the complexity of different tasks on a website may be

different, obtaining information about a few tasks can serve as a valuable foundation for

estimating the complexity or ease of performing other tasks. Hence, by modeling a set of

tasks and determining the transition probabilities between their states, we gain the capacity

to predict various transitions in other tasks, such as the likelihood of proceeding down the

correct path, employing the back button and revisiting previous pages, or making wrong

choices.

When establishing the model for tasks in group 1, it is essential to keep in mind that

the initial data selection prioritizes samples with fewer errors. Consequently, certain errors

may not be prominently evident in the data, but it is important not to assume their

probability is zero. Figure 22 illustrates all potential transitions. In the context of task t:

138

- The transition from 𝑆௜
௧ to 𝑆௜ାଵ

௧ represents the moment when the user selects the

correct path during the ith step of task execution.

- The transition from 𝑆௜
௧ to 𝑆௜ିଵ

௧ is associated with the user's choice to either

utilize the browser's back button or take an incorrect path during the ith step,

leading to a return to the previous step.

- The loop transition from 𝑆௜
௧ to itself encompasses situations where the user

employs the browser's refresh button in the i-th step, encounters errors while

completing a page's form, leading to a page reload, or remains stuck in the same

step due to choosing the wrong path and being unable to proceed to the next

step of the task.

- The transition from 𝑆௜
௧ to 𝑆௝

௧, where j < i-1, occurs when the user mistakenly

goes back or utilizes the back button. In some cases, client-side or proxy-side

caching may cause the absence of server requests for several pages in between.

The likelihood of transitioning to states further from i decreases as the gap

between j and i widens. For the sake of model simplicity, we restrict the analysis

of backward transitions to a maximum of three steps.

- The transition from 𝑆௜
௧ to 𝑆௝

௧, with j>i+1, occurs when the user inadvertently

bypasses a task step or when intermediate static pages are available in either the

user's or proxy server's cache, therefore they are not requested from the server.

As in the previous scenario, the probability of transitioning to states farther from

i decreases as the gap between j and i increases. For the sake of model

simplicity, we have limited our analysis to forward transitions spanning a

maximum of three steps.

139

- The transition from any state, except for the state 𝑆ேሺ௜ሻ
௧ , to the final state signifies

the abandonment of an incomplete task.

For all the aforementioned transitions:

- For tasks in the first group, where an adequate number of samples is available

within their respective clusters, we can derive transition probabilities from the

dataset. However, given a selective approach in favor of web sessions with low

error rates within each cluster, certain transitions may never appear in the

available sample sequences. Therefore, it is imperative to refine the model to

preserve these transitions and accommodate their potential occurrence in future

scenarios. To address this issue, a default percentage value is introduced,

denoted as α, to be added to all transition values within the model. In our

experimental configuration, we set α to 1%. Subsequently, all updated values

are normalized to ensure that the sum of transition probabilities for each state

equals 1.

- For tasks belonging to the second group, the average transition probabilities of

the first group tasks are calculated and then normalized. These normalized

averages are then assigned to equivalent transitions within the second group.

For instance, the probability of transitioning from 𝑆௜
௧ to𝑆௜ାଵ

௧ in all tasks within

the second group is the average of probabilities obtained from 𝑆௜
௧ to 𝑆௜ାଵ

௧ in all

tasks from the first group. The same approach is applied to determine

probabilities for actions such as choosing the wrong path or navigating

backward.

140

 Observation likelihood (B)

In this section, we must specify what observations will happen in each state, or in

other words, what is the probability of requesting each page from the server in each state.

During the i-th step of task t, the user has the option to progress in the correct direction,

resulting in a request for the associated page of that particular step, denoted as 𝑃௜
௧.

Additionally, the user may choose an incorrect path, leading to visiting other pages.

To determine the values of the matrix B, again for Group 1 and Group 2 tasks two

distinct approaches are employed.

- For every task (t) within the first group, we employ the data in its cluster to

train the respective segment of the HMM. As previously discussed, it's

imperative to adjust the acquired values post-learning to account for potential

observations that, while feasible, did not appear within the available sample

sequences in cluster t.

In state i of task t (𝑺𝒊
𝒕ሻ, for each page (P) that remained unvisited, the

distance between 𝑃௜
௧ to P within the website's structure is employed as a pivotal

criterion for establishing the probability of transitioning to page P.

𝑏𝑺𝒊𝒕ሺPሻ ൌ
α

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝑃௜
௧ ,𝑃ሻ

Following the assignment of new values, all the acquired values are

subjected to normalization, ensuring that their cumulative sum equals one.

𝑏𝑺𝒊𝒕ሺPሻ ൌ
𝑏𝑺𝒊𝒕ሺPሻ

∑ 𝑏𝑺𝒊𝒕ሺPሻ୔∈ሼ𝒂𝒍𝒍 𝒑𝒂𝒈𝒆𝒔 𝒐𝒇 𝒘𝒆𝒃𝒔𝒊𝒕𝒆ሽ

141

- For tasks within the second group, the average error percentage is calculated

across all steps of tasks in the first group, denoted as (𝐸ത).

𝐸ത ൌ
∑ ∑ 1 െ

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 𝑃௜
௧ 𝑖𝑛 𝑆௜

௧
𝑛𝑢𝑚𝑏𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑔𝑒𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 𝑆௜

௧
ேሺ௧ሻ
௜ୀଵ௧∈௙௜௥௦௧ ௚௥௢௨௣

∑ 𝑁ሺ𝑡ሻ௧∈௙௜௥௦௧ ௚௥௢௨௣

Subsequently, in all steps of the tasks in this group, the probability of

encountering 𝑃௜
௧ is set to 1 - 𝐸ത, while the probability of visiting other pages is

determined in relation to their distance from 𝑃௜
௧ in a manner that ensures the

sum of their probabilities equals 𝐸ത.

 Initial state distribution (π)

To derive the values of π, the conversion rates for each task are calculated. Given

that conversions typically occur at the final stage of a task and that, in most instances,

the last page of a task directly corresponds to the task itself, the assumption that task

completion is primarily marked by the request for the last page associated with that

task is simplified. Consequently, the π value corresponding to the initiation of task t

is determined based on the number of times 𝑷𝑵ሺ𝒕ሻ
𝒕 is requested and the total requests

for the final pages of all tasks. Moreover, the possibility of browsing the website

(π(𝑺𝟏
𝑩)) can be determined according to the nature of the website, its value is

considered to be 10% and the π value for other states which are not the first state of

any task is considered zero.

πሺ𝑆௜
௧ሻ ൌ ቐ

#൫𝑷𝑵ሺ𝒕ሻ
𝒕 ൯

∑ #ሺ𝑷𝑵ሺ𝒊ሻ
𝒊 ሻ𝑵𝒕𝒂𝒔𝒌

𝒊ୀ𝟏
ൈ ሺ𝟏 െ π൫𝑺𝟏

𝑩൯ሻ 𝒊 ൌ 𝟏

𝟎 𝒊 ൐ 𝟏

142

5.5 Knowledge Analysis

As depicted within the framework, the subsequent phase encompasses knowledge

analysis with the aim of deriving usability metrics. This section offers a comprehensive

and explicit explanation of the approach employed for data analysis and the acquisition of

usability metrics from log files. To achieve this aim, it begins by introducing the parameters

that need to be extracted from the log file and presents the proposed extraction

methodology for each. Subsequently, numerical formulas for several specific metrics are

provided.

5.5.1 Metrics calculation methods

According to the metrics and their corresponding definitions outlined in Table 3, it

is necessary to analyze the log file and extract some fundamental information from it,

which will serve as the foundation for computing the majority of the metrics in Table 3. A

part of the data that needs to be extracted from the log file is explained in the table below

and a name has been assigned to each of them, which will be used later in the program and

flowchart as their variable name.

Table 20: A sample of information needs to be extracted from the log file

Description Variable Name

Number of Tasks Models NTaskModel

The number of times that a task has been executed in the system. NTask(i)

The Number of times a task started to be performed but never ended. NIncomplete(i)

The number of times the user completed a task successfully but got
confused in the middle of the way and returned to the main task
routine after taking a few wrong steps.

NWrongPath(i)

The Number of times a task was performed and completed
successfully but the user used the back button of the browser.

NBack(i)

143

The Number of times a task was performed and completed
successfully but the user tried several times to complete several
specific actions.

NActionError(i)

The Number of times a task is performed and completed successfully
without error.

NComplete(i)

The Number of users that performed a particular task. NUser_Task(i)
The Number of users that started a particular task completely and
without error

NUser_Incomplete(i)

The Number of users that performed a particular task successfully but
got confused in the middle of the way and returned to the main task
routine after taking a few wrong steps

NUser_WrongPath(i)

The Number of users that performed and completed a task
successfully but user used the back button of the browser.

NUser_Back(i)

The Number of users that performed and completed a task
successfully but user tried several times to complete several specific
actions.

NUser_ActionError(i)

The Number of users that performed a particular task completely and
without error

NUser_Complete(i)

The Average time of performing all task instances with or without
Error

TAll(i)

The Average time of performing all task instances without Error. Tcorrect(i)
The Average time of performing all task instances that have been
completed successfully with or without Error.

TComplete (i)

The number of differences between the interaction sequence
performed by the user and the task model(i) in a particular execution
(instance(j))

Nerror(i)(j)

The Number of users that performed a particular task completely and
without error for the first time

NFirst_Correct(i)

The Number of users that performed a particular task for the first time
and had an error

NFirst_Error(i)

The Number of users that performed a particular task for the first
time.

NFirst (i)

The Number of users that performed a particular task for the first time
and complete it with or without error

NFirst_Complete (i)

Figure 25 represents a flowchart for extracting the information outlined in Table 20.

Various methods can be applied in different steps of this flowchart. For example, the task

model can be estimated by applying sequential pattern analysis, clustering, association

144

rules, or a combination of them. Similarly, for determining the task label of each user

interaction sequence, different classification methods can be employed.

Extract Task model
NTaskModel=Number of Tasks

Users’
interaction
sequences

Determine the task
label of each user

Intraction Sequence

T
as

k
M

od
el

s

L
ab

el
ed

In

te
ra

ct
io

n
Se

qu
en

ce

j<number of
interaction sequence

interaction(lastStep)!=
taskModel(lastStep)

Label Sequence as Incomplete
NIncomplete(i) +=1
Set(InCompUser(i)).add(user)

Interaction contains
page(s) that are not found

in the task model

Label Sequence as WrongPath
NWrongPath(i) +=1
Set(WrongUser(i)).add(user)

Interaction contains Loop
with length >=2

Label Sequence as BackUsage
NBack(i) +=1
Set(BackUser(i)).add(user)

Interaction contains Loop
with Length 1

Label Sequence as ActionError
NActionError(i)+=1
Set(ErrorUser(i)).add(user)

Label Sequence as Correct
NCorrect(i)+=1
Set(CorrectUser(i)).add(user)
Tcorrect(i)+= InteractionSequence(j)

i=Task label of current interaction sequence.
NTask(i) +=1

Set(AllUser(i)).add(user)

i<= NTaskModel

NTask(i)=0
NActionError(i)=0
NBack(i)=0
NWrongPath(i)=0
NIncomplete(i)=0
NCorrect(i)=0
TAll(i)=0
TComplete(i)=0
Tcorrect(i)=0
j=0

taskmodelN)/j(InteractionSequence+=)i(AllT

NTask(i)

NActionError(i)

NBack(i)

NWrongPath(i)

NIncomplete(i)

NCorrect(i)

TAll(i)
TComplete(i)
Tcorrect)i (

Starts

j+=1

)j(InteractionSequence+=)i(CompleteT

Tcorrect(i)/= NCorrect(i)
TComplete(i)/= (NTask(i)-NIncomplete(i))
NUser_Task(i) = size(AllUser(i))
NUser_Incomplete(i)= size(InCompUser(i))
NUser_WrongPath(i)= size(WrongUser(i))
NUser_Back(i)= size(BackUser(i))
NUser_ActionError(i)= size(ErrorUser(i))
NUser_Complete(i)= NUser_Task(i) -NUser_Incomplete(i)

NUser_Task(i)

NUser_Incomplete(i)
NUser_WrongPath(i)
NUser_Back(i)
NUser_ActionError(i)
NUser_Complete(i)

N

Y

Y

N

N

N

N

N

Y

Y

Y

Y

Stop

Figure 25: Flowchart of Extracting a part of required information for usability metric calculation

Once the information has been extracted, the calculation formula for each metric

can be proposed to determine its value using the available information. For example, the

Time on Task and the Task Completion Time metrics can respectively be obtained by

145

TAll(i) and TComplete(i). In addition, the Task Completion Rate metric represents the

percentage of users who were able to successfully complete a task can be computed by:

𝑇𝑎𝑠𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 ൌ
N୙ୱୣ୰_େ୭୫୮୪ୣ୲ୣሺ୧ሻ

N୙ୱୣ୰_୘ୟୱ୩ሺ୧ሻ
 ൈ 100

The Error Rate is the total number of errors made by users while completing a task

and is obtained by:

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 ൌ
∑ 𝑁௘௥௥௢௥ሺ௜ሻሺ௝ሻ௝

𝑁்௔௦௞ሺ௜ሻ

Similarly, the Task Completion Rate on the First Attempt and the Error Rate on the

First Attempt can be calculated by the following formula:

Task Completion Rate on the First Attempt ൌ
NFirstCorrectሺiሻ

NFirstሺiሻ
 ൈ 100

Error Rate on the First Attempt ൌ
∑ 𝑁௘௥௥௢௥ሺ௜ሻሺ௝ሻ௝∈ி௜௥௦௧ ௎௦௔௚௘

NFirstሺiሻ
 ൈ 100

5.6 Experiments and Results

5.6.1 Clustering with Similarity Distance on Synthetic Data

The initial experiment was conducted to determine the optimal value of 'k' in the

common sub-sequences method. Three distinct 'k' values were explored, 3, 4, and 6,

tailored to the task lengths of the models. These values were assessed through clustering

on a synthetic dataset comprising 10 unique tasks, each with an average page visit length

of 10 and a standard deviation of 4. This dataset was generated for 2000 sessions, 1203 of

which were single-task sessions. The primary aim of the initial clustering step was to

identify and label these single-task sessions. Altogether, these sessions encompassed a total

of 2901 tasks.

Table 21 provides a summary of the key details pertaining to this synthesized

dataset.

146

Table 21: Synthesized dataset characteristics

Feature Value
Number of records 43515
Number of sessions 2000
Number of users 400
Number of Taks 2901
Average Task Length 10 page
Average session time 717(s)

Upon computing the common sub-sequences distance for all sessions with respect

to each task model, a label for each session was assigned based on its closest task model,

provided that the distance value fell below the threshold value 0.3. As previously

mentioned, a substantial number of sessions do not fall into any category at this stage and

only those sessions exhibiting low errors and clearly associated with a single task are

categorized.

To select the best 'k' value, we calculated precision, recall, and F-Score for each

value. Figure 26 and Table 22 illustrate that with a larger 'k' value, the labeling becomes

more stringent. This means that the precision is higher, so the labeled samples are correctly

classified with greater confidence. However, this also leads to reduced sensitivity, causing

the omission of a portion of samples that may be useful for subsequent model learning.

147

Figure 26: Clustering Results on Synthetic Data Using the Common Sub-sequences Method for k = 3, 4, and 6

Table 22: Precision, Recall, and F-Score Values for Various 'k' Values in the Common Sub-sequences Method

Precision Recall F-Score
K=3 0.6847561 0.93349958 0.79001055
K=4 0.89508743 0.89359933 0.89434276
K=6 0.96359743 0.74812968 0.84230229

When working with sufficiently large log files, opting for a larger 'k' becomes

feasible. However, in cases where the log file is relatively smaller, preserving accurate data

becomes crucial. The website used in this dissertation is a creation aligned with the project's

objectives and not an actual commercial site. As a result, the transaction volume, and

subsequently, the log file size, are limited. Therefore, 'k=4' is chosen since it yields the

highest F-score.

The next experiment aims to determine the most suitable distance measure. In this

test, precision, recall, and F-Score is again calculated for all three methods. For the

Common Sub-sequences method, a threshold value of 0.5 is used. In the case of

Levenshtein, the Edit distance threshold is set to 4, while for MQS, the threshold is 0.4.

0.685

0.933

0.79

0.8950.8930.894
0.963

0.748

0.842

0

0.2

0.4

0.6

0.8

1

1.2

PrecisionRecallF‐Score

K=3 K=4 K=6

148

The choice of threshold values should be tailored to the complexity and length of

the tasks. For example, with an average task length of 10, a value of 4 for Levenshtein or

0.4 for MQS is reasonable. However, if the average task length is 6, a smaller value should

be chosen. The results of the test are presented in Figure 27.

Figure 27: Clustering Results on Synthetic Data Using the Common Sub-sequences Method, Levenshtein and

MQS Distance

As shown, the accuracy of Levenshtein is notably low. upon closer examination of

its results, it became evident that Levenshtein performs significantly poor when applied to

tasks of shorter length. This discrepancy arises from the ineffectiveness of the chosen

threshold for shorter tasks. The solution to this issue lies in updating the threshold in

accordance with the task's length, a problem that the MQS method has successfully

addressed. The results show that among the three distance measures, MQS outperforms the

other two.

0.8950.8930.894 0.9120.9380.925

0.765

0.958

0.85

0

0.2

0.4

0.6

0.8

1

1.2

PrecisionRecallF‐Score

Common Subsequences (K=4) MQS Distance Levenshtein distance

149

5.6.2 Clustering with similarity distance on real data

For testing on real data, eight primary tasks were selected from the website, which

encompass:

1. Submit as a Student: This task pertains to the creation of a student account

on the website. (Figure 28 (a))

2. Submit as a Teacher: This task involves registering as a teacher on the

website. (Figure 28 (a))

3. Course Enrolment: It encompasses the process of enrolling in one of the

courses available on the website for learning. (Figure 28 (b))

4. Take a Quiz: This task is for participating in quizzes associated with

specific lessons. (Figure 28 (c))

5. Send a Message: It revolves around sending messages to the website's

administrator. (Figure 28 (d))

6. Submit a Review: This task involves writing reviews for courses that users

have enrolled in. (Figure 28 (e))

7. Create a Course: This task is intended for teachers and involves the

creation of new courses along with the uploading of their content. (Figure

28 (f))

8. Edit the Profile: This task centers on updating user account information,

including actions like changing the cover photo, email address, or expertise

details. (Figure 28 (g))

150

Figure 28: Sample Pages for 8 Selected Tasks

The Table 23 shows the number of main steps required to perform each task.

Table 23: The number of main steps required to perform each selected task

Tasks Number of required steps
Submit as a Student 5
Submit as a Teacher 6
Course Enrolment 9
Take a Quiz 11
Send a Message 4
Submit a Review 8
Create a Course 15
Edit the Profile 5

151

Figure 29 illustrates the number of sessions labeled for each task using the MQS

method on real data. An evaluation of the results underscores the initial clustering's success.

For example, the limited number of instances related to recording reviews for lessons can

be attributed to several factors. Firstly, there is a relatively low number of reviews

submitted for all courses on the website. Additionally, this task is typically not carried out

in isolation; most users tend to submit reviews after enrolling in a course or completing a

section of the course.

Furthermore, the task ratio between "Submit as a Student" and "Submit as a

Teacher" accurately reflects the real-world scenario, as the number of students registered

on the website significantly exceeds the number of teachers. An additional sign of the

model's effectiveness is the number of sessions detected for the last task. Since March

2023, 25 new courses have been added to the website, and this method successfully

identified 16 sessions out of those 25 course creations, which is a notable achievement.

Figure 29: number of sessions clustered in each task category using the MQS method

5.6.3 HMM Model Clustering on Synthetic Data

To assess the performance of the HMM model, the synthesized dataset was initially

used. Because in this data set, the true labels of each page view sequence are known, it

52

9

126

11

43

2
2116

0

20
40
60
80
100

120
140

152

provides a reference point for evaluating the model's accuracy. As mentioned earlier, the

synthesized data set consists of ten distinct tasks, so the sequences related to these ten tasks

have to be identified, along with the sequences related to random website browsing. The

data generation process did not include an option to generate data for random website

browsing. Consequently, no data was created or classified within this category, leading to

its exclusion from the evaluation.

As evidenced by the confusion matrix, an evaluation reflects the model's

commendable performance across most instances. However, it's important to acknowledge

that the synthesized data lacks the complexities and challenges of real-world data, and the

level of accuracy achieved here may not be directly translatable to real-world scenarios.

Nonetheless, these results instill confidence in the effectiveness of the designed HMM

model. Notably, the most significant misclassification occurred between tasks 7 and 1.

Upon closer examination, we discovered that task 7 encompasses nine primary steps, while

task 1 comprises ten steps, and they have two common subsequences of length 4. Given

their high similarity, this misclassification is deemed reasonable and understandable.

153

Figure 30: confusion matrix of clustering page view sequences into 10 task using HMM model

For a more comprehensive evaluation, Figure 31 presents precision, recall, and F-

scores for the clustering method, individually calculated for each class.

Figure 31: Precision, Recall and F-Score of each class of the clustered synthetic data using the HMM model

154

5.6.4 HMM Model Clustering on Real Data

To assess the results on real data, a silhouette plot was employed that created based

on MQS distance, which measures the dissimilarity between page view sequences (Figure

32). A silhouette plot is a graphical representation used in data analysis and clustering to

assess the quality of clustering results. It provides insight into the separation and cohesion

of data points within each cluster. The silhouette score ranges from -1 to 1, where a high

positive value (close to 1) indicates that the data point is well matched to its own cluster

and clearly separated from other clusters. On the other hand, a negative value (close to -1)

indicates that the data point may have been assigned to the wrong cluster. A value near 0

suggests that the data point is on or very close to the decision boundary between two

neighboring clusters.

Given that MQS distance alone may not serve as a definitive classification criterion,

we anticipated that the average silhouette score might not reach a very high value.

Nonetheless, the achieved score remains within an acceptable range. Furthermore, this

chart aids in evaluating the model's performance from multiple perspective.

The majority of the data points fall within the categories of website browsing and

course enrollment. This occurrence can be attributed to the nature of the website, which,

as an eLearning platform, naturally witnesses a substantial volume of searches on the

website and page views of course information. It is not uncommon for users to conduct

searches without proceeding to registration. Additionally, for simplification purposes,

specific models were not defined for certain tasks, such as adding a lesson to the wish list

or sharing a course link. As they lack distinct clusters, they may have been categorized

155

under website browsing. This fact might have contributed to a lower silhouette score for

this cluster.

The second-largest cluster pertains to course enrollment, which is logically

expected to have a higher number than other designated tasks, given that the primary

objective of visiting an eLearning website is to enroll in a course. Furthermore, since there

are shared steps between course enrollment, taking a quiz, and registering a review, there

exists the possibility of occasional misclassification among these classes as well. The sizes

of the other clusters align with expectations. For instance, registering as a teacher or

creating a lesson exhibits a lower count, as evidenced in the figure, resulting in smaller

cluster sizes for these categories.

Figure 32: Silhouette plot for clustering real data with HMM model

 To ensure the model's accuracy, a distinct silhouette plot was generated for the

month of March (Figure 33). During March, the website was newly established, resulting

in a reduced appearance in search results. Furthermore, a set of specific tasks on this month

was defined; a group of students were asked to complete those tasks on the website.

156

Consequently, due to the lower volume of miscellaneous visits and more uniform task

execution, it is reasonable to expect a reduction in the proportion of browsing and course

enrollment relative to other tasks. The observed graph confirms this trend, indicating a

higher silhouette value for this particular month as well. Notably, the category "creating a

course" maintained a relatively consistent size when compared to the overall dataset,

primarily because a significant number of courses were created during this period.

Figure 33: Silhouette plot for clustering March 2023 data records using the HMM model.

5.6.5 Examining Usability Metrics

The final set of tests aimed to evaluate the performance of usability metrics. In

particular, the focus was on assessing the error rate, as this metric plays a fundamental role

in computing various usability attributes. To conduct these tests, five synthetic datasets

were generated. These datasets were kept consistent in terms of the number of sessions and

the initial task, with the primary difference lying in the varying levels of information

density they contained.

157

The concept of information density, as defined in Chapter IV, dictates that as

information density increases, the likelihood of encountering errors increases. A parallel

set of experiments is perpormed by creating an additional five datasets. In this case, the

'significance of the Code' variable was heightened in each dataset. The resulting graphs

illustrate the shifting error rates in response to these modifications, consistently reflecting

that as the data complexity and the number of errors increase, the model's error rate

calculations also rise. (Figure 34, Figure 35)

Figure 34:the effect of changing information density on error rate

Figure 35: the effect of changing Significance of Code on error rate

Furthermore, in order to assess usability metrics with real data, a specific evaluation

was conducted by calculating the error rates for two distinct tasks: course enrollment and

student submission. The error rate for student submission was determined to be 0.08, while

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 10 20 30 40 50 60

er
ro
r
ra
te

Information Density

0

0.1

0.2

0.3

0.4

0.5

0.6

60 70 80 90 100

er
ro
r
ra
te

Significance of Code

158

for course creation, it was found to be 0.21. Notably, this outcome aligns with expectations,

as course creation typically involves more complexity, making the slightly higher error rate

entirely consistent with reality.

5.7 Conclusion

This dissertation employs a combination of data mining and machine learning

techniques to extract valuable insights from log files. Initially, it clusters visited page

sequences into task models and subsequently quantifies usability metrics based on user

performance. The evaluation of this model involves the use of both real data collected from

an eLearning website and simulated data created using a Bayesian network model. It

presents several significant contributions to the realm of automatic usability evaluation

through log file analysis.

1. Comprehensive Comparison Study and Categorization: This study commences

by conducting a thorough review of the existing literature in this field, offering a

meticulous comparison and categorization based on diverse criteria, including the

type of analysis they have applied, the range of calculable usability attributes, their

requisite data and assumptions, and their scalability and reusability.

2. Usability Metric and Attributes Extraction Framework: A comprehensive

framework is introduced that outlines all the necessary steps for extracting usability

metrics and attributes from log file analysis. This framework not only serves as a

roadmap for the majority of studies in the field but also provides a list of possible

approaches at each juncture of the analysis process.

3. Bayesian Model for Log Data Simulation: To overcome the challenge of

collecting log data for various scenarios, this dissertation introduces a Bayesian

159

model for simulating log data based on the usability features of web pages and

website structure. The obtained simulated log file has a wide range of applications

in various web usage mining studies. In the context of this research, it played a

pivotal role in aiding with model selection, parameter estimation, and evaluating

model performance.

4. Task Identification: This dissertation presents a novel two step clustering model

to automatically identify users' intended tasks based on their sequence of page visits

and website structure. The first step is based on similarity distance and the second

step uses the information from the first step to create and learn an HMM model.

5. Usability Metric Algorithm and Calculation Method: Finally, this dissertation

offers detailed algorithms and calculation methods for several examples of usability

metrics derived from extracted knowledge from log file, enhancing the usability

assessment.

Several potential research directions and extensions of this work include:

 Modeling Usability Attributes: While this dissertation focuses on

estimating usability metrics, the next step involves using these metrics to

numerically model usability attributes, providing a more comprehensive

usability evaluation. To achive this goal, after obtaining numerical values

for each metric, the significance and weight of each metric in the usability

features should be determined.

 Automatic Task Model Extraction: While manual task model definition

was assumed for simplicity, future work can explore techniques to

160

automatically extract task models from large log files, reducing the need for

manual intervention.

 Incorporating Domain Knowledge: Incorporating domain-specific

knowledge into the model can lead to more tailored and accurate usability

evaluations, enhancing the applicability of the framework. Many prior

studies in the realm of web usage mining have focused on integrating

domain information or adapting evolving web usage data. (Nasraoui &

Krishnapuram, 2002; Nasraoui, Rojas, & Cardona, 2006) The integration of

these approaches with the method proposed in this research holds the

potential to enhance overall accuracy significantly.

These proposed future works have the potential to advance the field of automatic

usability evaluation and further improve the practicality and effectiveness of log file

analysis in web usability assessment.

161

REFERENCES

Agrawal, R., Srikant, R., & others. (1994). Fast algorithms for mining association rules.

Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 1215, 487–499.

Amazon CloudWatch. (2023). Amazon CloudWatch. Retrieved from

https://aws.amazon.com/cloudwatch/

Anderka, M., Klerx, T., Priesterjahn, S., & Büning, H. K. (2014). Automatic ATM Fraud

Detection as a Sequence-based Anomaly Detection Problem. ICPRAM, 759–764.

Atterer, R., Wnuk, M., & Schmidt, A. (2006). Knowing the user’s every move: user activity

tracking for website usability evaluation and implicit interaction. Proceedings of the

15th International Conference on World Wide Web, 203–212.

Babaian, T., Lucas, W. T., & Topi, H. (2007). A Data-Driven Design for Deriving Usability

Metrics. ICSOFT (ISDM/EHST/DC), 154–159.

Bader, D., & Pagano, D. (2013). Towards automated detection of mobile usability issues.

Software Engineering 2013-Workshopband.

Baker, S., Au, F., Dobbie, G., & Warren, I. (2008). Automated usability testing using HUI

analyzer. 19th Australian Conference on Software Engineering (Aswec 2008), 579–

588.

Balbo, S., Goschnick, S., Tong, D., & Paris, C. (2005). Leading web usability evaluations

to WAUTER. Proceedings of the 11th AusWeb, Gold Coast, Australia, 23.

Burton, M. C., & Walther, J. B. (2006). The Value of Web Log Data in Use-Based Design

and Testing. Journal of Computer-Mediated Communication.

162

https://doi.org/10.1111/j.1083-6101.2001.tb00121.x

Cao, Q., Qiao, Y., & Lyu, Z. (2017). Machine learning to detect anomalies in web log

analysis. 2017 3rd IEEE International Conference on Computer and Communications

(ICCC), 519–523.

de Santana, V. F., & Baranauskas, M. C. C. (2015). WELFIT: A remote evaluation tool for

identifying Web usage patterns through client-side logging. International Journal of

Human-Computer Studies, 76, 40–49.

de Santana, V. F. de F., & Baranauskas, M. C. C. (2008). A prospect of websites evaluation

tools based on event logs. IFIP Human-Computer Interaction Symposium, 99–104.

Delias, P., Doumpos, M., Grigoroudis, E., Manolitzas, P., & Matsatsinis, N. (2015).

Supporting healthcare management decisions via robust clustering of event logs.

Knowledge-Based Systems, 84, 203–213.

Eddy, S. R. (1996). Hidden markov models. Current Opinion in Structural Biology, 6(3),

361–365.

ElasticSearch. (2023). ElasticSearch. Retrieved from https://www.elastic.co/

Facca, F. M., & Lanzi, P. L. (2003). Recent developments in web usage mining research.

Data Warehousing and Knowledge Discovery: 5th International Conference, DaWak

2003, Prague, Czech Republic, September 3-5, 2003. Proceedings 5, 140–150.

Fournier-Viger, P., Gomariz, A., Campos, M., & Thomas, R. (2014). Fast vertical mining

of sequential patterns using co-occurrence information. Advances in Knowledge

Discovery and Data Mining: 18th Pacific-Asia Conference, PAKDD 2014, Tainan,

Taiwan, May 13-16, 2014. Proceedings, Part I 18, 40–52.

Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.-W., Tseng, V. S., &

163

others. (2014). Spmf: a java open-source pattern mining library. J. Mach. Learn. Res.,

15(1), 3389–3393.

Galitz, W. O. (1994). It’s time to clean your windows: Designing GUIs that work. John

Wiley \& Sons, Inc.

Gomariz, A., Campos, M., Marin, R., & Goethals, B. (2013). Clasp: An efficient algorithm

for mining frequent closed sequences. Advances in Knowledge Discovery and Data

Mining: 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, April

14-17, 2013, Proceedings, Part I 17, 50–61.

GrayLog. (2023). GrayLog. Retrieved from https://www.graylog.org/

Guzdial, M. (1993). Deriving software usage patterns from log files.

Han, J., Pei, J., & Yin, Y. (2000a). Frequent pattern tree: design and construction. Proc.

Conf. on the Management of Data (SIGMOD’00, Dallas, TX), 1–12.

Han, J., Pei, J., & Yin, Y. (2000b). Mining frequent patterns without candidate generation.

ACM Sigmod Record, 29(2), 1–12.

Hartson, R., & Pyla, P. S. (2012). The UX Book: Process and Guidelines for Ensuring a

Quality User Experience. In The UX Book: Process and Guidelines for Ensuring a

Quality User Experience. https://doi.org/10.1016/C2010-0-66326-7

Hashim, N. L., & Isse, A. J. (2019). Usability evaluation metrics of tourism mobile

applications. Journal of Software Engineering and Applications, 12(7), 267–277.

Hong, J. I., Heer, J., Waterson, S., & Landay, J. A. (2001). WebQuilt: A proxy-based

approach to remote web usability testing. ACM Transactions on Information Systems,

19(3), 263–285.

Hong, J. I., & Landay, J. A. (2001). WebQuilt: A framework for capturing and visualizing

164

the web experience. Proceedings of the 10th International Conference on World Wide

Web, WWW 2001. https://doi.org/10.1145/371920.372188

Hussain, A., Mkpojiogu, E. O. C., & Jasin, N. M. (2017). Usability metrics and methods

for public transportation applications: a systematic review. Journal of Engineering

Science and Technology (JESTEC), 98–105.

International Organization for Standardization. (1998). ISO 9241-11:Ergonomic

requirements for office work with visual display terminals (VDTs): Part 11: Guidance

on usability.

Inversini, A., Cantoni, L., & Bolchini, D. (2011). Connecting usages with usability analysis

through the user experience risk assessment model: A case study in the tourism

domain. International Conference of Design, User Experience, and Usability, 283–

293.

Jansen, B. J. (2006). Search log analysis: What it is, what’s been done, how to do it. Library

\& Information Science Research, 28(3), 407–432.

Jorritsma, W., Cnossen, F., Dierckx, R. A., Oudkerk, M., & van Ooijen, P. M. A. (2016).

Pattern mining of user interaction logs for a post-deployment usability evaluation of

a radiology PACS client. International Journal of Medical Informatics, 85(1), 36–42.

Kandpal, N., Singh, H. P., & Shekhawat, M. S. (2019). Application of web usage mining

for administration and improvement of online counseling website. Int J Appl Eng Res,

14(7), 1431–1437.

Kandpal, N., Sinha, R. R., & Shekhawat, M. S. (2017). A survey on web usage mining:

process, application and tools. Suresh Gyan Vihar University Journal of Engineering

\& Technology, 3(1), 19–25.

165

Kibana. (2023). Kibana. Retrieved from https://www.elastic.co/kibana/

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and

techniques. MIT press.

Kopanitsa, G. D., Tsvetkova, Z., & Veseli, H. (2012). Analysis of metrics for the usability

evaluation of EHR management systems. MIE, 358–362.

Kumar, B. T. H., Vibha, L., & Venugopal, K. R. (2016). Web page access prediction using

hierarchical clustering based on modified Levenshtein distance and higher order

Markov model. 2016 IEEE Region 10 Symposium (TENSYMP), 1–6.

Kumar, V., & Thakur, R. S. (2017). A brief investigation on web usage mining tools

(WUM). Saudi J. Eng. Technol, 2(1), 1–11.

Le, V.-H., & Zhang, H. (2022). Log-based anomaly detection with deep learning: How far

are we? Proceedings of the 44th International Conference on Software Engineering,

1356–1367.

Levandowsky, M., & Winter, D. (1971). Distance between sets. Nature, 234(5323), 34–

35.

Lewis, J. R. (1994). Sample sizes for usability studies: Additional considerations. Human

Factors, 36(2), 368–378.

Lin, H. X., Choong, Y.-Y., & Salvendy, G. (1997). A proposed index of usability: a method

for comparing the relative usability of different software systems. Behaviour \&

Information Technology, 16(4–5), 267–277.

Liu, X., Liu, W., Di, X., Li, J., Cai, B., Ren, W., & Yang, H. (2021). LogNADS: Network

anomaly detection scheme based on log semantics representation. Future Generation

Computer Systems, 124, 390–405.

166

LogStash. (2023). LogStash. Retrieved from https://www.elastic.co/logstash/

López, J. M., Fajardo, I., & Abascal, J. (2007). Towards Remote Empirical Evaluation of

Web Pages’ Usability. International Conference on Human-Computer Interaction,

594–603.

Malik, S. K., & Rizvi, S. A. M. (2011). Information extraction using web usage mining,

web scrapping and semantic annotation. 2011 International Conference on

Computational Intelligence and Communication Networks, 465–469.

McBride, S., Quimby, R., & Shih, B. (2005). Understanding Web Usage Patterns Through

Path Analysis.

Menezes, C., & Nonnecke, B. (2014). UX-Log: understanding website usability through

recreating users’ experiences in logfiles. Journal ISSN, 2368, 6103.

Menezes, T. C., & Nonnecke, B. (2014). UX-Log: Understanding Website Usability

through Recreating Users’ Experiences in Logfiles. International Journal of Virtual

Worlds and Human Computer Interaction, (November).

https://doi.org/10.11159/vwhci.2014.006

Mobasher, B. (2006). 12 web usage mining. Encyclopedia of Data Warehousing and Data

Mining Idea Group Publishing, 449–483.

Moran, K. (2018). Quantitative User-Research Methodologies: An Overview. Retrieved

from Nielsen Norman Group website:

https://www.nngroup.com/articles/quantitative-user-research-methods/

Nasraoui, O., & Krishnapuram, R. (2002). A new evolutionary approach to web usage and

context sensitive associations mining. International Journal on Computational

Intelligence and Applications-Special Issue on Internet Intelligent Systems, 2(3), 339–

167

348.

Nasraoui, O., Krishnapuram, R., Joshi, A., & Kamdar, T. (2002). Automatic web user

profiling and personalization using robust fuzzy relational clustering. E-Commerce

and Intelligent Methods, 233–261.

Nasraoui, O., Rojas, C., & Cardona, C. (2006). A framework for mining evolving trends in

web data streams using dynamic learning and retrospective validation. Computer

Networks, 50(10), 1488–1512.

Nielsen, J. (1994a). Estimating the number of subjects needed for a thinking aloud test.

International Journal of Human-Computer Studies, 41(3), 385–397.

Nielsen, J. (1994b). Usability engineering. Morgan Kaufmann.

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, 249–256.

Nielsen Norman Group. (2023). When to Use Which UX Research Method. Retrieved from

https://www.youtube.com/watch?v=OtUWbsvCujM

NXLog. (2023). NXLog. Retrieved from https://nxlog.co/

Okada, H., & Asahi, T. (1999). Guitester: A log-based usability testing tool for graphical

user interfaces. IEICE Transactions on Information and Systems, 82(6), 1030–1041.

Oppermann, R., & Reiterer, H. (1997). Software evaluation using the 9241 evaluator.

Behaviour \& Information Technology, 16(4–5), 232–245.

Organizacion Internacional de Normatizacion - ISO. (2018). ISO 9241-11:2018(en),

Ergonomics of human-system interaction — Part 11: Usability: Definitions and

concepts.

Oztekin, A., Kong, Z. J., & Uysal, O. (2010). UseLearn: A novel checklist and usability

168

evaluation method for eLearning systems by criticality metric analysis. International

Journal of Industrial Ergonomics, 40(4), 455–469.

Paganelli, L., & Paterno, F. (2002). Intelligent analysis of user interactions with web

applications. Proceedings of the 7th International Conference on Intelligent User

Interfaces, 111–118.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2), 257–286.

Rice, R. E., & Borgman, C. L. (1983). The use of computer-monitored data in information

science and communication research. Journal of the American Society for Information

Science, 34(4), 247–256.

Rohrer, C. (2014). When to use which user-experience research methods. Nielsen Norman

Group, 12.

Rojas, C., & Nasraoui, O. (2007). Summarizing evolving data streams using dynamic

prefix trees. IEEE/WIC/ACM International Conference on Web Intelligence (WI’07),

221–227.

Rubin, J., & Chisnell, D. (2008). Handbook of usability testing: how to plan, design and

conduct effective tests. John Wiley \& Sons.

Scapin, D. L., & Bastien, J. M. C. (1997). Ergonomic criteria for evaluating the ergonomic

quality of interactive systems. Behaviour \& Information Technology, 16(4–5), 220–

231.

Scholtz, J. (2006). Beyond usability: Evaluation aspects of visual analytic environments.

2006 IEEE Symposium On Visual Analytics Science And Technology, 145–150.

Scott, S. L., & Hann, I.-H. (2006). A nested hidden markov model for internet browsing

169

behavior. Marshall School of Business, 1–26.

Shackel, B. (2009). Usability--Context, framework, definition, design and evaluation.

Interacting with Computers, 21(5–6), 339–346.

Shackel, B., & Richardson, S. J. (1991). Human factors for informatics usability.

Cambridge university press.

Singh, B., & Singh, H. K. (2010). Web data mining research: a survey. 2010 IEEE

International Conference on Computational Intelligence and Computing Research,

1–10.

Siochi, A. C., & Hix, D. (1991). A study of computer-supported user interface evaluation

using maximal repeating pattern analysis. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 301–305.

SplunkInc. (2005). Splunk. Retrieved from http://www.splunk.com

Srivastava, J., Cooley, R., Deshpande, M., & Tan, P.-N. (2000). Web usage mining:

Discovery and applications of usage patterns from web data. Acm Sigkdd Explorations

Newsletter, 1(2), 12–23.

Suneetha, K. R., & Krishnamoorthi, R. (2009). Identifying user behavior by analyzing web

server access log file. IJCSNS International Journal of Computer Science and

Network Security, 9(4), 327–332.

Tarby, J.-C., & Barthet, M.-F. (1996). The DIANE+ Method. CADUI, 96, 95–119.

Tiedtke, T., Märtin, C., & Gerth, N. (2002). AWUSA--a tool for automated website

usability analysis. Proceedings of 9th International Workshop on Design,

Specification and Verification DSV-IS.

Van Dongen, B. F., de Medeiros, A. K. A., Verbeek, H. M. W., Weijters, A., & van Der

170

Aalst, W. M. P. (2005). The ProM framework: A new era in process mining tool

support. International Conference on Application and Theory of Petri Nets, 444–454.

Vargas, A., Weffers, H., & Da Rocha, H. V. (2010). A method for remote and semi-

automatic usability evaluation of web-based applications through users behavior

analysis. Proceedings of the 7th International Conference on Methods and

Techniques in Behavioral Research, 1–5.

Varnagar, C. R., Madhak, N. N., Kodinariya, T. M., & Rathod, J. N. (2013). Web usage

mining: a review on process, methods and techniques. 2013 International Conference

on Information Communication and Embedded Systems (ICICES), 40–46.

Wang, G., Konolige, T., Wilson, C., Wang, X., Zheng, H., & Zhao, B. Y. (2013). You are

how you click: Clickstream analysis for sybil detection. 22nd USENIX Security

Symposium (USENIX Security 13), 241–256.

Wronikowska, M. W., Malycha, J., Morgan, L. J., Westgate, V., Petrinic, T., Young, J. D.,

& Watkinson, P. J. (2021). Systematic review of applied usability metrics within

usability evaluation methods for hospital electronic healthcare record systems:

Metrics and Evaluation Methods for eHealth Systems. Journal of Evaluation in

Clinical Practice, 27(6), 1403–1416.

Xia, C., & Tingjie, L. (2009). Intelligent business prediction in context-awareness services

based on hidden Markov model (HMM). 2009 Second Pacific-Asia Conference on

Web Mining and Web-Based Application, 116–119.

Yan, T. W., Jacobsen, M., Garcia-Molina, H., & Dayal, U. (1996). From user access

patterns to dynamic hypertext linking. Computer Networks and ISDN Systems, 28(7–

11), 1007–1014.

171

Ypma, A., & Heskes, T. (2003). Automatic categorization of web pages and user clustering

with mixtures of hidden markov models. WEBKDD 2002-Mining Web Data for

Discovering Usage Patterns and Profiles: 4th International Workshop, Edmonton,

Canada, July 23, 2002. Revised Papers 4, 35–49.

Zaki, M. J., Parthasarathy, S., Ogihara, M., Li, W., & others. (1997). New algorithms for

fast discovery of association rules. KDD, 97, 283–286.

172

APPENDIX

Appendix A: User Tasks for Read Data Collection

Task # Task Detail

Task 1  Go to the learninjawebsite.com
 Login if you have an account or register as a student if you are new.
 Set a photo for your profile
 Search and save 3 courses about Python programming to your wish

list. The wish list is represented by:

 Log out
 Login with your username and password
 Find your saved wish list and enroll in one of the courses that you

added before.

Task 2  Go to the learninjawebsite.com
 Find all courses in the business category.
 Find the 'Usability' and enroll in the course (log in or register on the

website if it is required)
 Finish the course and complete the quiz.
 Write a comment on the first lesson.
 Write a review for the course.

Task 3  Go to the learninjawebsite.com
 Find the 'Usability' course and enroll in it (log in or register on the

website if it is required)
 Finish the course and complete the quiz. (you don't need really to

watch the whole video to complete it. You can fast-forward it
manually)

 Ask a question about the course in the course forum (any question
is acceptable)

Task 4  Go to the learninjawebsite.com
 Login if you have an account or register as a student if you are new.
 Find a course about Python programming and enroll in one of the

courses
 Finish the course (you don't need really to watch the course

material to complete it.).
 Write a review for the course

173

 Ask a question about the course in the course forum (any question
is acceptable).

Task 5  Go to the learninjawebsite.com
 Find their contact information and send a message to them and ask

what the requirements are to be an instructor.
 Register as an instructor
 Search for Python courses.
 Enroll in one of the courses in the search result.

Task 6  Go to the learninjawebsite.com
 Login if you have an account or register as a student if you are new.
 Search for courses that are created for beginners.
 From the search result, add 5 courses to your wish list. The wish

list is represented by:

 Logout
 Login again with your user-id and password
 Find your saved wish list on the website
 Enroll in one of the courses
 Complete the course and write a review on it

Task 7  Go to the learninjawebsite.com
 Signup as a student
 After signing up as a student, apply to Become an instructor.

Task 8  Go to the learninjawebsite.com
 login with the following username and password to the website:

username: instructor1
password: instructor1620

 create a new course with any subject you want (you can use
youtube videos or even define an empty course)

 add a category for your course
 If you had any questions send a message through the website and

ask your questions

Task 9  Go to the learninjawebsite.com
 Find which universities and companies are the partners of

learninjawebsite.com
 Ask them "How UofL can be a partner of them?"

Task 10  Go to the learninjawebsite.com
 Find the profile and all courses created by 'Sima'

174

 Enroll in one of the courses in the 'Personal Development' category
(log in if you already have an account or register as a student if you
are new on the website)

 Complete the course. (you don't need really to watch the course
material to complete it)

 Write a review for the course.

175

Appendix B: The Approved IRB Consent Document

176

177

CURRICULUM VITA
NAME: Sima Shafaei

ADDRESS: Department of Industrial Engineering

220 Eastern Pkwy,

Louisville, KY 40292

DOB: Hamedan, Iran - April 7, 1981

EDUCATION

& TRAINING: B.S., Software Engineering

Isfahan University of Technology

2001-2005

M.Sc. Artificial Intelligence

University of Isfahan

2006-2008

Ph.D. Industrial Engineering

University of Louisville

2019-2023

AWARDS: Recipient IE Research Competition and Innovation Award,
University of Louisville,
2023

Recipient IE Outstanding GTA Award,
University of Louisville,
2023

Recipient Doctoral Dissertation Completion Award,
University of Louisville,
2023

178

Annual Award for INFORMS Student Chapter as the Web Master,
INFORMS Institution,
2021

Outstanding Student Award,
University of Isfahan,
2008

Outstanding Student Award,
Isfahan University of Technology,
2008

PUBLICATIONS: Shafaei, Sima, and Nasser Ghasem Aghaee. "Biological network

simulation using holonic multiagent systems." Tenth International

Conference on Computer Modeling and Simulation (uksim 2008).

IEEE, 2008.

	Automated usability evaluation utilizing log files and data mining techniques.
	Recommended Citation

	Microsoft Word - Sima Shafaei Dissertation.docx

